
NUMERICAL METHODS,
OPTIMIZATION TECHNIQUES AND

COMPUTER PROGRAMMING

(PG DIPLOMA

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

NAGARJUNA NAGAR,

NUMERICAL METHODS,
OPTIMIZATION TECHNIQUES AND

COMPUTER PROGRAMMING

 (DIB02)

PG DIPLOMA)

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

NAGARJUNA NAGAR,

GUNTUR

ANDHRA PRADESH

NUMERICAL METHODS,
OPTIMIZATION TECHNIQUES AND

COMPUTER PROGRAMMING

)

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

P.G.D. in Bioinformatics 1 Parallel Computers

Lesson 2.1.1

PARALLEL COMPUTERS

Contents

2.1.1.1 Introduction
2.1.1.2 Obejctive
2.1.1.3 Parallelism
2.1.1.4 First Generation
2.1.1.5 Trnaspeuter
2.1.1.6 Multitasking
2.1.1.7 Stack-Based Operation
2.1.1.8 Issues
2.1.1.9 Application
2.1.1.10 Self Assessment
2.1.1.11 Summary
2.1.1.12 References

2.1.1.1 Introduction

2.1.1.1.1 Pre-History

In 1821, Charles Babbage proposed and developed a prototype of his Difference Engine designed to
automatically generate successive values of a polynomial. He went on the design the Analytical Engine which
was to be a generall purpose computer. Each of these designs were examples of parallel computer architecture,
with results for successive computations being constructed whilst the preceeding results were delivered. When,
in 1943, the code-breaking ENIAC was introduced, it also showed some aspects of parallel architecture in its
design. However, for both Babbage and the designers of ENIAC, the technology was not adequate for the day-
to-day realisation of these designs. EDVAC and
successive digital computers followed the sequential architecture laid down by Von Neumann.

2.1.1.1.2 History

Parallel Computers actually have a long history, although it was not until the late 1960's that practical
digital parallel computers were introduced, and until the mid 1980's that they gained wider penetration. To a
large extent their lack of penetration can be put down to cost, although some blame must be attributed to the
difficulty of developing code for these machines. Each architecture was so different from the next that it was
difficult to exploit the potential power of the machines without re-writing the code to use the architecture
adequately. This, in turn, made programs non-portable, and even now the problem of writing programs for
parallel computers has not gone away.

Although the price of parallel hardware has fallen, and degrees of parallelism can be found in most
modern desktop PC's, there are still diverse forms of parallel hardware implementation. The next chapter
examines the various hardware forms in more detail, but in this section we will provide a quick history of

Centre for Distance Education 2 Acharya Nagarjuna University

developments to give a flavour of what is available. The Virtual Museum of Computers provides a more in-
depth look at the development of computers in general, and provides links to sites which provide a look at the
history of Parallel Computers.

2.1.1.2 Objective

 To know what parallelism of computers would be
 To understand the phenomenon of multitasking and stack based operation.
 To be aware of the issues of parallellism and its applications

2.1.1.3 What is Parallelism ?

As humans we tend to work in three modes :
 Sequence
As individuals, we perform one job after the completion of the previous job. For example, in manual labour, we
will dig a hole before attempting to pour the concrete which will be used to create the foundations for a house.

 Concurrent
We must, at times, be able to keep a number of jobs going at once. For example, we would have to put the
aggregates into the cement mixer part-way through digging the hole for the foundations, and turn the mixer on.
We would then periodically need to re-visit the cement mixer to check on the mixing process, while still in the
process of digging the hole. To a casual observer it would look as though both jobs were being done at the
same time, but in fact one person is alternating between the jobs.

 Parallel
In building a house, there are some jobs which are completed signifigantly faster if more than one person can
be involved. We may, if finances were available, allocate a number of workers to all dig the foundations at
once.
It would be helpful to have equivalent modes of operating within computing. In this section we will examine
this possibility.

Parallel

Parallel execution is the controlled, cooperative execution of an identifiable subset of the components
of a program (statements, subroutines, objects) across a number of distinct processing elements which are
interconnected to provide control and communication, in order to solve a distinct computationally time-
complex problem in a timely manner.

This definition must, however, be qualified, since it permits a wider area of study than we are
interested in here. Almasi and Gottlieb (1994) mark out a useful perimeter for us :

We are interested in computers that use a high degree of parallelism to speed the computation required to solve
a single large problem. This leaves out much of the world of business programs, where I/O rather than
computing power is typically the bottleneck. It leaves out most commercial multi-processors, whose added
processing units are used to increase the number of jobs that can be handled at a time, rather than to speed up a
single job (in other words, to improve throughput rather than turnaround time). Strictly speaking, it also leaves

P.G.D. in Bioinformatics 3 Parallel Computers

out distributed systems such as networks of personal workstations, because, although the number of processing
units can be quite large, the communication in such systems is currently so slow that it prevents large speedups
in one job.

2.1.1.4 The First Generation

 In 1969 the ILLIAC IV was introduced, followed soon after by the CDC7600. The ILLIAC IV was an
Array Processor - it fetched an array of data, performed one operation on all elements of the array (up to 63
elements at a time), and then stored the result back again. The CDC7600 was, in contrast, a Pipelined Processor
- it fetched a vector of data, one element at a time, and put the element into a pipeline of processors, each of
which performed an operation on the data item in succession. Speed-up was achieved by filling the pipeline
with many items of data moving through the pipeline at the same time, each item at a different stage in the
pipeline. NASA's ILLIAC IV was retired in 1976 when the Cray-1 - the first supercomputer - was introduced.
This computer was also a pipelined processor, but with many pipelines and an architecture which used every
available advance in technology to ensure that the pipelines and data delivery to and from the pipelines were all
as fast as possible. Successful though the Cray-1 was, none of these machines could be regarded as truely
general purpose - they were all specialised back-end processors to a front-end sequential machine. This was not
to hinder the development of other specialised architectures, however, such as the ICL DAP (1979) which was
a 1024 1 bit processor array, the Goodyear MPP (1983) - a 132 x 128 1 bit array processor, or the Connection
Machine (CM-1 and CM-2 in 1986/7) providing 65535 1 bit processors with FPUs.

However, the search was also on for a way to create a parallel computer from standard processing
units. The C.mmp was an early attempt (1977) which used 16 PDP-11 processors, whilst the BBN Butterfly
sought to connect 256 M68000 cpus using a multi-stage network. The speed and cost of the network, and the
computational effort needed to maintain the communications were all limiting factors which resulted in some
novel architectures in an attempt to bypass the problem. The cm* was a tree structured architecture that limited
communication requirements to four connected processors, but allowed expansion by adding nodes to the tree.

2.1.1.5 From the Transputer
The Inmos transputer (1985) changed things dramatically by placing communication processors on the chip
with the main processor so that the processor was not hindered by having to maintain communications whilst
performing other operations. Furthermore, it used cheap serial lines driven at high speed to reduce the cost of
interconnection. The development of the higher specification T-800 in 1988 opened the way to the
development of powerful multiple processor parallel machines, such as the Meiko Computing Surface. The
Parsys Supernode attempted to tackle the problem of having to use a fixed architecture in earlier machines by
providing a degree of reconfiguration.

In the meantime, other manufacturers were adding similar capabilities to their more powerful CPUs,
allowing (for example) the development of the Alliant FX/2800 (1990) which connected 28 Intel i860
processors, and the CM-5 (1992) which uses 1024 SPARC processors. The latest Cray T3D (1993) follows the
same line, using 2048 DEC Alpha processors.

In 1994 Inmos announced the development of the T9000 transputer which helps to remove the problem
of routing and the requirement to rewrite programs to a particular architecture by providing a virtual routing
capability. Although this processor has yet to gain acceptance, this technology represents another step to the

Centre for Distance Education 4 Acharya Nagarjuna University

creation of a practical parallel architecture. In the meantime, the advent of fast networking technology and
switches has allowed the development of 'virtual' parallel machines from networks of workstations using
software technologies such as MPI, PVM, or Corba. Whilst still requiring large granularity processes with
limited communication in order to achieve reasonable speed-up, it has opened up access to parallel
programming to the wider programming community.

The Processor

The design of the processor part of the transputer is very interesting. Although you may be tempted to
skip directly to the programming section, hold on for awhile. Some of the questions that will arise later when
we start Faswriting parallel tasks will be readily answered if we know a few things about the processor
hardware. Also, it is important to know where the performance of the processor comes from. We will see that
several key design choices contribute to the transputer's overall performance:

No dedicated data registers: The transputer does not have dedicated registers, but a stack of registers, which
allows for an implicit selection of the registers. The net result is a smaller instruction format.

Reduced Instruction Set design: The transputer adopts the RISC philosophy and supports a small set of
instructions executed in a few cycles each.

Multitasking supported in microcode: The actions necessary for the transputer to swap from one task to
another are executed at the hardware level, freeing the system programmer of this task, and resulting in fast
swap operations.

2.1.1.6 Multitasking
The process by which a processor divides its time among several programs (seemingly) running at the same
time is called multitasking. Multitasking is an important way to improve the performance of a processor by
allowing it to start running another program if the one that it is currently executing cannot continue for awhile.
A typical reason for this to happen is that an Input/Output operation is necessary but the peripheral, or I/O
controller is not available. By allowing the processor to put the first program aside and switch to another one
the total execution time of both is reduced.

Multitasking is the first form of parallelism supported by the transputer, and is accomplished by having the
processor maintain a list of tasks that must be executed. Each task executes for a small amount of time, called a
quantum, before it is stopped, and swapped for another task (if one awaits). For the transputer, a quantum of
time is typically on the order of two milliseconds (2 10-3 seconds)[1]. Task are executed in a round-robin
fashion. When a task eventually terminates it is removed from the list. At any time, new tasks may be created
and added to this list.

At any time a transputer task may be in either one of two states:

Active
This state refers to a task that is being executed, or in the list of tasks waiting to be executed.

P.G.D. in Bioinformatics 5 Parallel Computers

Inactive
This state refers to a task that is not in the list of active tasks, because either one of three conditions is
preventing it from continuing execution:

The task is waiting for an input from one of the I/O ports
the task is waiting to output to one of the I/O ports, or
the task has been asked to stay idle until a specified time in the future.

Active tasks
The transputer maintains the active tasks chained in a linked list, and two of its internal registers are used to
point to the front and rear of the list. The actual list is stored in memory, and the registers contain the memory
address of the cells defining the tasks. To further increase the flexibility and power of the multitasking
environment, the transputer implements two levels of priority for the tasks:

High priority tasks (level 0):
These tasks indeed have a high priority: Once they gain control of the processor, they continue executing until
they complete, or until they need to transfer information over a serial link. In this case, the task is said to be
blocked waiting for a link. These tasks thus enjoy an unlimited quantum, and, as a result, only tasks that are
expected to run for short periods of time are given high priority.

Low priority tasks (level 1):
These tasks run whenever there are no high priority tasks active, and run for up to one quantum of time,
switching in a round robin fashion. Most user-defined tasks will be low-priority.

Hence the transputer needs to maintain not one, but two linked-lists, one for low-priority and one for high-
priority tasks, and uses a total of four registers to point to the front and rear of both lists.

Fast task-switching
The switching between tasks belonging to the same priority-list or to different priority-lists is handled directly
by the processor, and all register updates are controlled internally, through the microcode. Removing this
action from a software kernel renders this operation extremely fast: less than 1 us typically [INMO88b].

Inactive tasks
Sometimes, active tasks encounter a situation where they cannot continue running until some external event
occurs. In such cases the processor deschedules the , which becomes inactive. The external event is typically
the expiration of a quantum, a timer event, or an event related to information transfer over a link.

When a task changes from active to inactive, it is removed from its associated linked-list and placed in what the
Inmos documentation refers to as the workspace, which is a reserved area of memory. Because inactive tasks
are removed from the link-lists, the processor does not suffer any overhead from them when it scans the lists to
find the next task to run.

Multitasking Rule The instantaneous performance of a transputer is not affected by the number of inactive
tasks that may exist at any given time

Centre for Distance Education 6 Acharya Nagarjuna University

We will refer to the inactive tasks that are waiting for communication as blocked tasks. We will explore this
concept when we look at the communication process in Section 2-4. The inactive tasks that await a specified
time, though, merit some attention right now.

Timers and inactive tasks
The T800 contains two 32-bit timers. The timers are separate entities outside the processors, as shown in
Figure 2-2. Each timer is associated with a priority. One timer, available to high-priority tasks, is incremented
every microseconds, and cycles through all its 32-bit states in 4295 seconds (232 s), or 71 minutes and 35
seconds. The other timer is associated with low-priority tasks and is incremented every 64 microsecond,
resulting in a 76-hour long cycle.

Each timer can be viewed as two registers. One, called Timer, incremented at every tick of a clock, the other,
TNextReg, defining a time in the future when some event must occur.

The following scenario explains how these counters come into play. Assume that a task is designed to check
the status of an I/O controller at regular intervals, say 20 times a second. Upon checking the controller and
having performed its function, the task can deschedule itself, that is voluntarily change its status from active to
inactive, while simultaneously specifying a time in the future when it should be rescheduled. It does so by
reading the contents of Timer and by adding a time delay to it. This new value represents the time in the future
when the tasks wants to be awakened, and is stored in the TNextReg register by the processor. When the
contents of Timer reaches the count in TNextReg, an event occurs (interrupt) and the processor puts the task
back in the list of active tasks.

More precisely, when a task performs such a descheduling action, it is removed from the list of active tasks and
added to a timer queue, located in memory. If that task requested a "wake-up" time earlier than any of the times
associated with the tasks in that queue, then that time is stored in the TNextReg register. When the task
becomes active again, it is placed at the end of the list of active tasks, and because this list may not be empty,
the task may not start right away.

The capability for tasks to determine the exact time at which they are activated is a useful feature in context
where synchronization of tasks is important, for debugging purposes, or when reliability is an issue, and watch-
dog timers and time-out detection must be implemented.

2.1.1.7 Stack-based operation

The processor contains six registers. Three (the A, B, and C registers) are used as data registers and
implement a stack. If you ever used a Hewlett-Packard calculator, you are already familiar with the reverse
polish notation, and the simplicity and efficiency associated with its use. Here is how the processor evaluates
the following high-level expression:

x = a+b+c;

where x, a, b, and c represent integer variables. With an evaluation stack, there is no need to specify which
processor registers receive the variables. Here, the processor is simply told to load each variable, one after the
other and to add them. As variables are loaded they are pushed into the stack. Every time an operation is

P.G.D. in Bioinformatics 7 Parallel Computers

performed, the two values at the top of the stack are first popped, then combined, and the result of the operation
is pushed back onto the stack:

 ;stack contents (=Undefined)
 ;[]
 load a ;[a]
 load b ;[b a]
 load c ;[c b a]
 add ;[c+b a]
 add ;[c+b+a]
 store x ;[c+b+a]

The above code shows a fragment of a program assigning the sum of the three variables to x, written in
a pseudo assembly language. We could have added the first two variables before loading the third one to get
the same result. The advantage of operating with a data stack lies is that it removes the need to add extra bits to
the instruction to specify which register is accessed. As a result, instructions can be packed in smaller words,
the net result of which is a tighter fit in memory, and less time spent fetching the instructions from memory.

2.1.1.8 Issues

The definition of Parallel raises a number of further issues which must be considered :

 "Components of a Program"

There is signifigant debate about what should be parallelised. This debate is intrinsically linked to the
kinds of execution architectures that are available, and the structure of the problem itself (see Carriero and
Gelernter, 1989). Various languages occupy the various niches in the landscape created by these variables. We
will seek to examine this debate in further detail in the chapters on Architectures, Design, and Languages.

 "Controlled, Cooperative Execution"

If two people are both seeking to pass through a doorway at one time, contention is bound to arise. In
concurrent programming we find out ways to deal with this contention, and in distributed systems we can
identify ways of implementing these control primitives without the need for global shared resources. However,
parallelism introduces further issues in cooperation, such as routing and job allocation, which must be resolved.

 "A number of processing elements"

Even if we can resolve the debate on what kind of processing abilities each processor should have, a
debate will still rage over how many processors are needed, and how they are interconnected. Furthermore, a
policy on and software provision for failure, reconfiguration, and recovery must be considered.

 "Inter- connected to provide Communication"

The programmer must also begin to consider whether the interconnectivity will provide sufficient data
rates to support a suitable increase in speed. Many parallel programs can actually work out to be ineffective,
not because they do not work, but because they do not provide sufficient speed up.

Centre for Distance Education 8 Acharya Nagarjuna University

2.1.1.9 Applications

Although many will be aware of the use of Cray supercomputers by varous weather centers, few are
aware of other areas where parallel computation is applied. In fact, until the end of the 1970's there were
relatively few applications which were using parallel architectures, mainly due to the cost of the machines that
were available. During the 1980's, however, there was an explosion of interest and enthusiasm in parallel
computing, and this has led to a widespread application of parallel computing. A few applications are
highlighted below :

Scientific and Engineering Applications

Most applications of parallel processing in the Science and Engineering research communities have
been focused upon numerical simulations where vast quantities of data must be processed in order to create or
test a model. Example applications include:

 Global atmospheric circulation,
 Blood flow circulation in the heart,
 The Evolution of Galaxies,
 Simulations of artificial ecosystems,
 Airflow circulation over aircraft components,
 Atomic particle movement from collidatron experiments,
 Optimisation of mechanical components.
 Airflow circulation is a particularly important application. It is suggested that a large aircraft design

company might perform up to five or six full body simulations per working day. It is important that the
processing is timely in order to meet the work schedule, and therefore parallel processing is important.

Database Systems

Opportunties for speed-up through parallelising a Database Management System abound. However, the
actual application of parallelism required depends very much on the application area that the DBMS is used
within. For example, in the financial sector the DBMS would suffer a lot of short simple transactions, but with
a high number of transactions per second, whilst in a CAD situation (eg. VLSI design) the transactions would
be long and with low traffic rates. In a Text query system, the database would undergo few updates, but would
be required to do complex pattern matching queries over a large number of entries. An example of a computer
designed to be used to speed up database queries is the Teradata computer, which employs parallelism in
processing complex queries.

AI Systems

Search is a vital component of many AI systems, and the search operations will be performed over
large quantities of complex structured data using unstructured inputs. Applications of parallelis include :

 Search through the rules of a production system,
 Using fine-grain parallelism to search the semantic networks created by NETL,

P.G.D. in Bioinformatics 9 Parallel Computers

 Implementation of Genetic Algorithms,
 Neural Network processors,
 Preprocessing inputs from complex enviroments, such as visual stimulii.

Image / Graphics Processing

The production of realistic moving images for television and the film industry is big business. Whilst
much of the work can be done on high specification workstations, large computer animation input will often
involve the application of parallel processing. Even at the cheap end of the image production spectrum,
affordable systems for small production companies have been formed by connecting cheap PC technology
using a small LAN to farm off processing work on each image to be produced.

2.1.1.10 Model Questions

1. What is meant by parallelism?
2. What are the various issues on the raised on parallelism?
3. How is parallelism applied ?

2.1.1.11 Summary

Although the enthusiasm of the 1980's has waned during the 1990's, the application of parallel
processing to new problems continues to expand. With the continued introduction of multiple processor
management capabilities into modern operating systems, and the spread of high speed networking, there would
appear to be every reason to expect this trend to continue.

2.1.1.12 References

 Computers And Commonsense – Roger Hunt and John Shelly
 Operating systems Concepts – Silberschatz Galvin
 Operating Systems (3rd Edition) -- Harvey M. Deitel, et al

P.G. D. in Bioinformatics 1 Inherent Parallelism in Physical.....

Lesson 2.1.2

INHERENT PARALLELISM IN PHYSICAL PHENOMENA
AND ITS MODELS

Objective
2.1.2.1 Introduction
2.1.2.2 Defining Parallelism
2.1.2.3 Emerging Parallelism
2.1.2.4 Inherent Parallelism in Scientific and Engg. Applications
2.1.2.5 Inherent Parallelism in General Physical Models
 Summary
 Model Questions
 References

Objective
To know the importance of parallelism in this modern computing world and inherent
parallelism of different physical models.

2.1.2.1 Introduction
Very different computational requirements of user problems given rise to a broad
spectrum of computers ranging from general purpose via specialized multipurpose
to special architectures. For the choice of the appropriate computer system, the
user has to take into account how the computational demands of the target
application and involved economic considerations. After a short characterization of
scientific and engineering problems, main hardware and software means for
specialization art described. Because of the versatility of multiprocessors, such
systems are especially well suited for adapting the architecture to the user
problem. This issue is discussed for architectural concepts such as hierarchical
bus systems and shared memory systems.

The "'T**" von Neumann computer is known as a universal computer. Since then,
the computational performance has been increased by several orders of magnitude
due to technological advance in hardware components, specialization and parallel
processing.

There has been an enormous gain of speed by very large scale integration
technology, by fast special components and units by hierarchically organized
memories and so on. Nevertheless, limits of technically possible performance of the
uniprocessor are showing up. Users demand more and more computing power and
storage capacity. On these grounds, the interest in parallel processing systems has
strongly been growing within the last three or five years. With parallel systems also
the structure of the interconnection system can be adapted to multipurpose or
special purpose use. This possibility does not exist with uniprocessor systems.
Whether to use a general purpose or a special purpose machine is primarily an
economic problem. A user needs a general purpose machine if it is aimed to a broad
spectrum of application problems. On the contrary, be wants a highly efficient special

Centre for Distance Education 2 Acharya Nagarjuna Univeristy

purpose machine if the application is well defined and featured by a small variation
of its computational parameters. Anyway, the user will be interested in a system
which provides for the needed computational power and storage capacity at a
minimum price/performance ratio.

2.1.2.2 Defining Parallelism
Not all models are created equal. Even if two models are ``equivalent'', such that they
may be used interchangeably to investigate a given system, the models may differ in
many respects: (1) they may reflect different perspectives, (2) one may be more
maintainable than another in a given setting, (3) one may facilitate analysis in a
superior fashion, or (4) one may be more suitable for parallel execution than another.
We refer to the fourth quality as the inherent parallelism of the model. According to the
philosophy described below, inherent parallelism should be regarded as a function of
the model representation, not the physical system. This important distinction is
clarified in the subsequent discussion.

PDES (Partial Differential Equations) protocols, in their usage and evaluation, describe
a notion of inherent parallelism. However, the concept is typically implicit, and vague in
its characterization. Explicit formulations of inherent parallelism have appeared in as a
basis for critical path analysis.
 “Inherent parallelism refers to the intrinsic structure of a system which allows it to be
split into a number of elements which can run independently of each other, without
requiring information to be transferred between them.”

2.1.2.3 Emerging parallelism
Parallel computational practices separate tasks, data, instructions and memory and
distribute them -- in various different ways -- between separate but interconnected
elements, which perform their operations simultaneously.

P.G. D. in Bioinformatics 3 Inherent Parallelism in Physical.....

The idea is natural, obvious and immediate; which is to be expected if parallel
computing is the inscription within the computational act of certain familiar (natural,
obvious, immediate) forms of collective cognition. This was recognized by computer
engineers some time ago. As B. Chandrasekaran observes in Natural and Social System
Metaphors for Distributed Problem Solving: "It is clear that distribution of processing or
computation is an intrinsic characteristic of most natural phenomena Social
organizations from honeybee colonies to a modern corporation, from bureaucracies to
medical communities, from committees to representative democracies are living
examples of distributed information processing embodying a variety of strategies of
decomposition and coordination. Computation in biological brains, especially in their
sensory processors such as vision systems, displays a high degree of distribution. There
is substantial evidence that higher cortical functions are also computed (and controlled)
in the brain in an essentially distributed mode" .

Observe that, unlike many of its social and biological precursors, this inscription is
fundamentally a question of software -- the computation is cognized, designed and
specified in parallel terms -- regardless of how it is implemented. Of course,
implementing it on distributed hardware is a natural choice, but not essential, and
parallel proceedures can be made to run -- with varying degrees of difficulty and
artificiality to be sure -- on serial machines.

The separate, distributed computing elements can vary greatly. They can be fully
autonomous computers wired together in a network distibuted within a building, across
a country or in different parts of the planet. They can be simple, stripped down
computers hard wired to each other to form a supercomputer like the Connection
Machine. They can be specialized computational engines, limited, at their most basic, to
simple finite state mechanisms or automata governed entirely by local rules. Or they
can be virtual versions of these, simulated engines within the memory of a single
computer.

This last, usually called Cellular Automata (CA), has proved to be an extraordinarily
fecund computational, explanatory and investigative technoscientific tool. The flocking
behaviour of starlings we encountered at the beginning, as well as aspects of the
behaviour of ants or bees in a colony, or cars in traffic patterns, are all examples of
situations that can be illuminatingly modelled by a CA: thus, each starling is identified
with an individual cell and the requirement to keep a fixed distance from its neighbors
is its local rule; and likewise for the distributed behaviour of ants and bees. A quite
different example of a CA comes from fluid dynamics: The Navier-Stokes equation in
that subject, a major triumph of 19th century partial differential calculus, summarises
the behaviour of an incompressible fluid. It turns out to be simulatable by a not very
complicated CA which uses a hexagonal grid: each cell of which models a single drop of
fluid subject to the flow in and out of it along the six directions governed by identical
local rules. Parallel computational methods, which include all kinds of distributed and
decentralized processes are increasing at almost an exponential rate in cognitive
science, evolutionary theory, complexity studies and throughout technoscience from the
level of abstract theorizing through heterogeneous modelling and simulation projects to
base-level engineeering practices.

Centre for Distance Education 4 Acharya Nagarjuna Univeristy

These include the generation of artificial life forms, including their habitats and
ecosystems together with the simulation of evolutionary possibilities open to them; the
invention and simulated creation of compounds, alloys and molecules with specified
properties and functionality; pattern recognition and learning behaviour within expert
systems via simulation techniques using connectionist and neural networks; and
genetic algorithms that evolve, refining their ability to solve a problem through the
feedback of the results of repeated trials.

2.1.2.4 Inherent parallelism in Scientific and Engineering Applications

Multiple processing systems have additional overhead compared to uniprocessor
systems. This is due to unbalanced load in the nodes of a multiple processing
system and due to interprocessor communication.
Despite these drawbacks there are two reasons to build multiple processing systems:

To offer higher performance for computing large user problems than can be
obtained with uniprocessors at comparable price/performance ratio, and to realize a
fault-tolerant computing system, for instance in case of safety requirements.
Obviously large multiple processing systems need some fault recognition and
recovery mechanisms.

We only refer to the high performance issue. User problems with high computational
and memory capacity requirements mostly belong to scientific or engineering applica-
tion fields. Principal problem classes are:

(1) Numerical grid problems:

Approximate solution of sets of partial differential equations (PDEs) by discretiza-
tion of space aod time. This problem class plays an essential role in scientific
supercomputing as it comprises many application fields in science and engineering
(e.g. numerical simulation of physical phenomena in material science, aerodynamics
etc).

(2) Panicle and field models:
Such models are used for a broad spectrum of applications in plasma physics, solid
state physics, aerodynamics, chemistry and others. For the mathematical descrip-
tion Molecular Dynamics and Monte-Carlo methods are applied

(3)Simulation of very large scale integrated (VLSI) electronic circuits (design
and verification): According to the simulation level to be considered different
methods and mathematical procedures are applied:

System level: Functional specification.
Logic and switch level: Logic operations.
Electric circuit and timing level: Sets of coupled, nonlinear ordinary
differential equations, Fourier transform and others.
Device and process level: Modeling of physical phenomena in electronic
devices and technological processes, e.g. mathematical description by
sets of partial differential equations (PDEs).

P.G. D. in Bioinformatics 5 Inherent Parallelism in Physical.....

(4) Ab initio quantum mechanical calculations of chemical systems for the theoretical
prediction of the properties of new materials or for the interpretation of new
physical phenomena (e.g. high temperature superconduction). Such problems
comprise the calculation of 1- and 2-electron-integrals, operations of large
matrices and the determination of eigen values.

These four problem dasses have in common a strong demand for East numerical
operation unique and large memory capacity. The degree of inherent parallelism
generally is high. In the case of VLSI simulation, this is only true for device and
process simulation where highly parallel algorithms can be used. A quite different
situation is found in the following problem class:

(5) Artificial intelligence and automation. This problem class comprises application

areas as for instance image processing, pattern recognition, computer vision,
speech understanding, intelligent robotics, expert systems and others. Depending
on the particular problem to be solved, there are requirements for massively
parallel operations (e.g. image preprocessing) up to complex computations with low
inherent parallelism (e.g. knowledge engineering, decision making).

This coarse classification of user problems in science and engineering shows the
heterogeneity of computational structures involved. Moreover, given one type of a
problem, there can be a broad variation of computational parameters even between
similar problems. As an example, the number of floating point operations to be
executed per data access can vary by orders of magnitude. For performance optimiza-
tion, the designer has to balance processor performance and data supply rate (e.g.
memory accesses per second). Maximum performance can be achieved for only one
case, that is, for one set of parameter values.

Due to the heterogeneity and broad variation of the computational structure of a
great deal of user problems each processor node must work under its own control
unit in order to allow for independent processing of subtasks and flexible interprocessor
communication.

Appropriate parallel computers belong to the category of multiple-instnictioa-multiple-
data (MLMD) systems. Such systems are realized as multiprocessor or multicomputer
machines based on various architectural concepts. Such systems can be used with
great versatility as the nodes can execute the same or different instructions and
operate on the same or different data.

2.1.2.5 Inherent parallelism in general physical models
Parallel/serial as universal duo
To respond, and to show what might be at stake in such a question, I want to back off
from computing as the prime site of instantiation of serial/parallel, and move to other
arenas. I want to give various examples of the duo in operation. What will emerge from
these is how the two poles operate together, impinging on each other as a combinatorial
tool everywhere from our pre-mammalian origins to presentday culture. Thus, not only
is the serial/parallel opposition a widespread organizing and creative principle across
various humanistic, artistic, mathematical, technoscientific, linguistic, and

Centre for Distance Education 6 Acharya Nagarjuna Univeristy

epistemological practices, but it is also to be found within biological systems as a hard
wired functioning binary.

Mathematics: an entire subject organized around and predicated on the serial/parallel
opposition. As Tobias Dantzig, Number: The Language of Science, in his discussion of
the two conceptual moves needed to handle whole numbers observes: "Correspondence
and succession, the two principles which permeate all mathematics -- nay, all realms of
exact thought -- are woven into the fabric of our number system.". The first refers to the
one-to-one correspondence whereby the elements of one collection are matched or
tallied with those of another; the second refers to the process of ordering the elements
into a sequence as part of counting them. Thus correspondence allows one to judge
which of two collections has more elements in the absence of any need (or ability) to
count them; succession determines how many elements are in each collection.

Thus number is a serial/parallel construction. But, as Dantzig declares, the opposition
is implicated throughout mathematics and beyond. Certainly, serial (succession) as
against parallel (correspondence), in the form of dependence of one thing on a given
other versus independence of two co-occurrently given things, is fundamental to the
construction of all post-Renaissance mathematics. As such it is, for example, the
founding abstraction of co ordinate geometry, as well as that of an algebraic variable
and the notion of a function; it institutes the separation of independent and dependent
events and hence founds the idea of a random variable in the theory of probability.
More primitively, as indicated the parallel is the all-at-once magnitude of cardinal
numbers, their determination as unordered collections or combinations against the
sequential, counted-into-being ranking of ordinals or permutations.

On the relation between ordinal and cardinal, there is the anecdote of the clocks: A man
heard the clock strike two times one day, just as he was falling asleep, and he counted
like this: "One, one." Then, when he realized how ridiculous that was, he said, "The
clock has gone crazy: it struck one o'olock twice!" Quoted in George Ifrah From One to
Zero Or again: there is the difference, crucial in the theory of sets, between the ordered
pair (a,b) and the unordered pair {a,b} of two objects, and the propriety (discussed by
mathematical logicians) of Kuratowski's formal definition of the former in terms of the
latter.

Not only do "the two principles permeate ... all exact thought", and prove to be "woven
into the fabric of our number system", but they also -- well outside the field of
mathematics or of so-called exact thought -- form a ubiquitous and formidable
constitutive principle. Put differently, the interplay of parallel and serial principles in
the manufacture and replication of concepts gives rise to an enormous idea machine, a
combinatorial tool or technology that permits the signifying, patterning, imagining --
constructing/discovering -- of an unsurveyable plenitude of 'objects'. Objects whose
viability and creative potential lie precisely in the way they neutralize the very difference
between serial and parallel that allowed them to be brought into existence.

By way of elaboration consider three examples: the code of Western classical music, the
language of traditional arithmetic, and the code of mathematical theory of infinite sets.
In each case the 'objects' making up the code -- musical compositions, integers, infinite

P.G. D. in Bioinformatics 7 Inherent Parallelism in Physical.....

numbers -- arise from an initial formal constraint. They are manufactured via a
principle of equality or interchangeability that operates as a built-in insistence that --
despite the evident opposition between them upon which music, arithmetic, set theory
are founded -- any parallel object be equivalent to a serial one and vice versa.

In classical music, with its enormously rich, intensely specialized mass of composition
based on key harmonies, this folding of serial and parallel into each other is
correspondingly complex and detailed. At bottom, however, it amounts to a vast algebra
of forms: compositions which arise from the different ways musicians have formulated
of re-writing and arranging sequential progressions into simultaneous chords and
spilling harmonies over time to be the successive notes of arpeggios and the like.

In traditional arithmetic the principle of ordinal/cardinal interchangeability is so
ingrained, and the proliferation of objects so effortless, that it's difficult to detach the
principle of parallel-serial interchangeability from the familiar idea of 'whole number'.
Thus, not only is it too obvious to even remark that an ordinal is necessarily a cardinal,
but the reverse is unasked: why can every collection, however named or described or
defined -- and independently of any method of achieving such a thing -- be 'counted'
into a sequence? What hidden necessity guarantees the possibility - the eventuality -- of
totally ordering anything nameable?

In the theory of infinite sets ordinals are defined to be sets and so are automatically
possess a cardinal magnitude, whilst the reverse is precisely the content of the
notorious axiom of choice, the axiomatic principle needed to guarantee that all sets can
be well-ordered. No exaggeration to point out the possibility of this cardinal/ordinal
interchange as the constitutive armature of Cantor's infinite arithmetic: certainly
without it the entire theory of sets as developed during the twentieth century would be
impossible.

One can press harder on the phenomenon of serial/parallel interchange, and identify
what might be called an horizon effect: in each case the technology of production, the
means of creating the plenitude of objects, is subject to an insurmountable limit, an
unanswered or even unanswerable question, whereby an horizon of the machine is
revealed; and with this emerges the impossibility of running the machine from within,
as before without reference to the presence of its external features. For Western
classical music composition the system of vertical-horizontal equivalences collapsed
early in the 20th century, when the key-based harmonies which controlled the
chord/arpeggio trade-off were repudiated by a movement appropriately calling itself
serialist. For set theory the horizon of the machine was revealed through the proof in
1963 of the independence of the continuum hypothesis, which left unsolvable and
essentially unresolvable the question of the magnitude of the continuuum (as well as
the independence of the axiom of choice that allowed the question of this magnitude to
be posed). For the classical integers and their arithmetic the horizon -- less obvious,
more contentious and needing considerable groundwork to reveal it -- arises from the
challenge to the orthodox account of infinity, and the subsequent emergence elaborated
in Ad Infinitum ... the Ghost in Turing's Machine of non-infinitistic, in fact non-
Euclidean arithmetic.

Centre for Distance Education 8 Acharya Nagarjuna Univeristy

In natural language, the opposition of serial/parallel is basic; an intrinsic and
constitutive binary. It appears, as a very general linguistic distinction according to the
Glossary of Semiotics, as the opposition of syntagmatic ("relationships ... of linear,
temporal sequence") and associative or paradigmatic ("relationships [which] do not as
such occur in time [but] make up an array of possibilities"). Or again, according to
Roman Jakobson, Fundamentals of Language, as a completely abstract and general
feature opeative at all levels of speech: "The concurrence of simultaneous entities and
the concatenation of successive entities are the two ways speakers combine linguitic
constituents.". Jakobson goes on to observe that "The fundamental role which these two
operations play in language was clearly recognized by Ferdinand de Saussure. Yet of the
two varieties of combination -- concurrence and concatenation -- it was only the latter,
the temporal sequence, which was recognized by the Geneva linguist.", a fact which,
according to Jakobson, stems from Saussure's immersion in the traditional belief "qui
exclut la possibilité de prononcer deux elements a la fois". Evidently, the serial/parallel
duo functions at all levels of speech: phoneme as simultaneous bundle of distinctive
features, syllable as succession of phonemes, the inherent parallelism of
intonation/gesture, the combined linearity and simultaneous unity of utterances, and
so on.

A final example: twentieth century physics. There is the well known parallelist
phenomenon of superposition in the standard (Copenhagen) interpretation of quantum
physics, where all the mutually contradictory states of a quantum system, ghost
tendencies that Heisenberg called potentia, are taken to be simultaneously present but
unrealized. This is opposed to an actual or 'real' state of the system resulting from a
measurement (the so-called collapse of the wave function), where such actualities are
understood as occurring one after the other. What can legitimately collapse the parallel
into a serial, what in other words constitutes a measurement is a major mystery -- the
so-called 'measurement problem' -- for such a view. Interestingly, the main rival
theoretical model of quantum events, the many-worlds interpretation, eschews
superposed parallel tendencies and so eliminates the measurement problem. By
positing one totally determined, unghostly state at a time in each of a multitude of
'simultaneously occurring' worlds, it replaces parallel unreal occurrences in one world
with real occurrences in parallel unreal worlds.

These examples, from brain morphology, Western classical music, mathematics, spoken
human language, and quantum physics, and the instance of computing we started
from, demonstrate the importance of the parallel/serial duo, as a creative and
organizing principle across many terrains. Further, as is evident from the depth at
which it operates and the dynamics it gives rise to, the duo acts in some sense like a
zero sum game. By which I mean not that there is a hidden equilibrating force or larger
matrix of control ensuring their balance, but that by virtue of their mutual enfolding
within specific cultural practices changes -- of status, scope, attributed importance,
aesthetic worth, semiotic transparence -- to one pole are accompanied by changes in
the other. It follows from this that the shift to parallelism being charted here will be
associated, as we shall see, with a countervailing, newly emergent form of serialism.
The claim we need to flesh out comes, then, to this: two co-occurrent, synergistic
transformations -- the ongoing move to parallel and distibuted computing and the
explosive growth in visualization -- are reconfiguring contemporary technoscience. The

P.G. D. in Bioinformatics 9 Inherent Parallelism in Physical.....

effects of this emergent parallelism as it circulates through cultural space are being felt
at every level from how we read, write, and see to the ways we understand ourselves as
'selves'. And that, in the process of its unfolding this parallelism is giving rise to a
hitherto unavailable, and yet to be adequately identified, serialism.

 Paraselves and multi-IDs
Am I beside myself or are their two or more of me/us? Can I, can 'one'(but one can't say
'one'), have more than one identity?

"Now we are one, or two, or three" A recent headline from the New Scientist
acknowledges our widespread pluralization, and the multi-disciplinary, multi-cultural,
multi-tasking, multi-plex environment we inhabit. It could easily be the title of a piece
on cognitive science's idea that the mind is not and never was a single agent, but an
assemblage of different and competing agents; or a report on neuroscience's
understanding of the mind/brain as a many-sided modular organ whose morphology
indicates two or three or more independent functioning units; or a human interest piece
about the recent increase in the number of people doing two things at once like using
mobile phones and wrecking their cars.

In fact, it's about Multiple Personality or Dissociative Identity Disorder. MPD/DID is a
hot topic with many books, hundreds of articles, debates, etc., made ultra hot by the
(widely accepted) view of it as a disorder of childhood abuse, which automatically links
it to FAQs from schizophrenia to alt.abuse.transcendence. I'll mention two books.

First Person Plural by Stephen Braude, acquiesces in this origin of Multiple Personality
in abuse and understands the phenomenon as the disruption of a natural
unpathological, unitary self. The vocabulary of pathology and the need to justify the
naturality of a single personality leads him to theorize the necessary existence "of an
underlying synthesizing subject". Braude is an analytic philosopher with a conventional
-- that is to say in the present context enlightenment -- epistemological agenda, so no
surprise to his polemic against the possibility that being plural or multi is anything
other than deviant departure from a prior (Kantian) subject which is the condition for
the possibility of any (rational) thought.

The abuse etiology is directly challenged, however, by Ian Hacking Re-writing the Soul
which situates the multiple personality effect within a history of memory, locating it in
the "conceptual space for the idea of multiplicity" constructed by French medicine in
the 19th century, used by patients to describe their symptoms and then looped back
through the doctor/patient circuit into confirmatory evidence of a disease. Though
sharply argued and historically focussed, Hacking's analysis elides the issue of
contemporaneity: even if, as he maintains, sufferers from the syndrome are creating
and fitting their symptoms to pre-given diagnosis, we're still left with the question: why
these symptoms right now? Why the irruption of this kind of multiplicity within
presentday culture?

One body with many (up to 96 so far) identities or "alters" differently related: most
claiming to be solo, but some aware of their co-inhabitants, some fully worked out
personae, but most persona-fragments and generic functions, such as The Angry One,

Centre for Distance Education 10 Acharya Nagarjuna Univeristy

the Innocent Child, etc. Maybe schizophrenia opens here into a generalized obverse:
instead of the original unity -- we were all one once -- become split and fragmented, we
have an originary collectivity mainfesting as a barely -- and not necessarily -- unitizable
ensemble: Stevenson's multifarious, incongruous denizens.

If, as Louis Sass Modernism and Madness has it, schizophrenics were the sensitives,
the "town criers of modern consciousness ... existing not just as a product of but also a
reaction against the prevailing social order", too easily able to internalize their rent and
disordered times, then perhaps the presentday multiples are their successors: emblems
of the multiplex instabilities of 21st century psychic reality whose ur-myth is nearer to
Osiris than Oedipus. This is not to deny that multiples aren't strange, aberrant,
frequently traumatized and needing help, but rather to suggest -- leaving aside their
disputed etiology -- that their aberrance might serve, at least for now, as "the best
paradigm we have for postmodern consciousness" and, beyond that, might presage an
inescapable aspect of future normalcy.

It is worth observing here that at least one account of multiple personality, a
neurological-based picture that evidences clinical and hypnosis findings, sees it as part
of an underlying multiplicity of brain function. Thus, for Oakley and Eames, in The
Plurality of Consciousness, the syndrome is a divergence form a normal and ongoing
mental parallelism: "It seems likely that the multiple parallel streams of conscious
activity [i.e. activity we are aware of], which are implied by the multiple personality
data, are no different from those which are present in normal individuals The
difference in the multiple personality case is that these processes can be attached to
different self represntations, and so when re-reprented are revealed as the thoughts of
different individuals. When only one self representation is available to self-awareness all
conscious processes, covert of othewise, is attibuted to a single 'me'." On this account,
then, multiples whilst undeniably aberrant, are closer to all of us than we have ever,
from the perspective of a natural, unfractured singularity, imagined.

If multiples deny the indivisible subject and the equation of one self with one body from
within, then MUDs or Multiple User Domains effect the inequality externally. Though
both uncouple the self/body unit (powerfully contested site of contemporary reality
that, for example, Allucquere Stone focuses on in The War of Technology and Desire),
the virtual (or cyber or net or web) communities that emerge from MUDs have no
history of deviancy attached to them, and as a result pose a more complex and less
easily dismissed effect of pluralization than those with multiple personae.

Wherever a collective presence is constructed, from primitive bulletin boards and
conference calls to sophisticated chat rooms on the net, and so on, virtual presences
arise from a separation between the physical substrate and the persona: the body
parked at the terminal or jacked into a VR rig and the self, ranging solo around
simland, or engaged in any manner of intimacies anywhere on the net with sundry
other disembodied, masked and anonymized virtual presences. In these contexts, the
Rastafarian usage "I-and-I" for "we" takes on a special and useful ambiguity, since the
first person 'I' is neither plural nor singular but an archaic misnomer for an emergent
I/me/us construct.

P.G. D. in Bioinformatics 11 Inherent Parallelism in Physical.....

Thus, as parallel computation writes collective cognition into a thinking machine
understand for millenia as an individual, so multiples and verts do the same for the
consciousness machine and its software we call the psyche: they effect a corresponding
inscription -- what might be called a phenomenological collectivization -- at the level of
'individual' perception and experience. In this, they realize in well-defined, repeatable
socio-technologic form, a pluralized I/me.

But of course, there is no separation here between interior and exterior: the experiential
and the collective fold into each other. All thought, even the most private, individual
and enclosed is social. Being socially present, mobilized and used is co-creative with the
psyche -- a phenomenon that seems difficult to theorize in any general way outside a
techno-ecology of the mind/brain. It is in this sense that one should interpret Merlin
Donald's contention that the key principle of the biological and social evolution of
individual cognition is the symbiosis of cognitive collectivities and external memory
systems, a linkage that allows new cultural formations and technologies to reconfigure
the thought diagrams inside (as we still say) our heads.

Summary
Very different computational requirements of user problems given rise to a broad
spectrum of computers ranging from general purpose via specialized multipurpose
to special architectures. For the choice of the appropriate computer system, the
user has to take into account how the computational demands of the target
application and involved economic considerations. After a short characterization of
scientific and engineering problems, main hardware and software means for
specialization art described. Because of the versatility of multiprocessors, such
systems are especially well suited for adapting the architecture to the user
problem. This issue is discussed for architectural concepts such as hierarchical
bus systems and shared memory systems.

Model Questions:

1. What is inherent parallelism and write a brief note on its applications in scientific
and engg. Applications?

2. What is parallelism and its importance in modern computing?
References:

1. www.thesimguy.com/ernie/papers/unref/dissert/node10.html
2. www.wideopenwest.com/~brian_rotman/parallel.html
3. Exploiting Inherent Parallelism In Non-Linear Finite Element Analysis,M. W. S.

Jaques, C. T. F. Ross And P. Strickland Computers & Swucrures Vol. 58, No.
4, Pp. 801-807, 1996

 AUTHOR:

B.M.REDDY M.Tech. (HBTI, Kanpur)

Lecturer, Centre for Biotechnology

Acharya Nagarjuna University.

P.G.D. in Bioinformatics 1 Inherent Parallelism in biological....

Lesson 2.1.3

INHERENT PARALLELISM IN BIOLOGICAL PHENOMENA
AND ITS MODELS

Objective

2.1.3.1 Introduction
2.1.3.2 Parallel computing in biological processes
2.1.3.3 Intelligent Computing Using Graphics Processors (GPUs)
2.1.3.4 Simulation Modeling Methodolgy
 Summary
 Model Questions
 References

2.1.3.1 Introduction
Over the past decade whole genome sequencing has evolutionised the biologloical sciences.
A new era of data rich science in biology has arisen based on the whole genome projects
and the wealth of post-genomic studies that they facilitate, aimed at understanding the
many complex cellular processes that occur in living organisms. Hence there is now an
unprecedented amount of data available about biological systems. These new data
resources have enabled the systems wide study of biological systems, referred to as
Systems Biology, in which the goal is to understand how the individual biological parts
interact to yield the behaviour of the whole system. One important approach in Systems
Biology is the modeling and simulation of a biological net- works to help understand and
predict the behaviour of these complex systems. The simulation of biological networks are
carried out with either deterministic simulators, stochastic simulators, or hybrid
simulators, each of which have their own advantages and disadvantages. Stochastic
simulations have been shown to capture the fine grain behaviour and randomness of
outcome of biological networks not captured by deterministic techniques and as such are
becoming an increasingly important technique. However, current efforts in the stochastic
simulation of biological networks are hampered by two main problems: (i) First, there is a
lack of quantitative data on molecular concentrations and kinetic parameters that are
essential to the successful simulation of biological networks. (ii) Secondly there is a large
computational cost to stochastic simulation of these networks. A recent review suggested
that an average personal computer would take a whole day to simulate 100 minutes of a
100 reaction system. This problem is exacerbated since multiple repetitions of simulations
are often required.

Centre for Distance Education 2 Acharya Nagarjuna University

2.1.3.2 Parallel computing in biological processes

Parallel computational methods, which include all kinds of distributed and decentralized
processes are increasing at almost an exponential rate in cognitive science, evolutionary
theory, complexity studies and throughout technoscience from the level of abstract
theorizing through heterogeneous modelling and simulation projects to base-level
engineeering practices.

On the understanding that parallel computing inscribes distributed biosocial and biological
phenomena, in particular collective cognition, one would predict this explosion of use to be
open ended: what is created is work, designs, proceedures and routines not previously
doable or often even thinkable from the perspective of individualized cognition. On the
other hand, it follows that the effects, consequences and cultural disruptions inherent in
parallel thinking are not easily predictable, since collective cognition is heterogeneous,
unschematized, and emergently different from individual thought in ways that, as we saw
earlier from the critique of cognitivism, have scarcely begun to be articulated.

Inherent Parallelism
The power of the DNA computing model lies in the fact that very large numbers of oligos can anneal to form a
vast number of combinations in a short period of time and in a small volume of solution. As an example, let's

consider the directed hamiltonian cycle problem on a graph with vertices. Given the starting vertex , there

are a possible permutations of the vertices between beginning and ending at . To explore each

permutation, a traditional computer must perform operations to explore all possible cycles. However,
the DNA computing model only requires the representative oligos. Once placed in solution, those oligos will
anneal in parallel, providing all possible paths in the graph at roughly the same time. That is equivalent to

operations, or constant time. In addition, no more space than what was originally provided is needed to
contain the constructed paths

2.1.3.3 Intelligent Computing Using Graphics Processors (GPUs)

Background & Description of Technology:

 High-performance 3D graphics systems have become as ubiquitous as floating-point
hardware. They are now a part of almost every personal computer or game console and
some handhelds. In fact, the two major computational components of a computer system
are its main processor (CPU) and its graphics processor, also known as the GPU. While the
CPUs are used for general purpose computation, the GPUs have been primarily designed
for drawing and filling primitives, geometric transformations and texturing. The main
application of GPUs has been fast rendering of lighted, smooth shaded, depth buffered,
texture mapped, anti-aliased triangles for visual simulation, virtual reality, and computer

P.G.D. in Bioinformatics 3 Inherent Parallelism in biological....

gaming. Some of the recent GPUs also include advanced features like multi-texturing, pixel
textures, programmable shading and programmable vertex engines, and support for
floating-point fragment pipelines and frame buffers. As graphics hardware becomes more
programmable, the barrier between the CPU and the GPU is being redefined. The GPU can
also be regarded as an efficient processor of images or a useful co-processor for many
diverse applications.

Following are the applications of GPU:

Modeling of Simulated Forces: Complex reasoning in real-world environments requires the
ability to simulate, reason, and plan for semi-autonomous or autonomous agents used in
various simulators for training, prototyping, mission planning purposes. Critical issues
that require attention are route planning for large number of agents, robot controllers,
complex reasoning, navigation and guidance of autonomous agents, computational
support for behavior modeling, and interactive visualization of battle space on
programmable graphics processors.

Physically-based Simulation: Several aspects of synthetic environments require
fundamental advancements in physically-based modeling and simulation techniques for
modeling complex physical and biological systems, as well as natural phenomena (e.g.
freezing rain, sand storms, etc). Collision detection and response are essential in modeling
complex interaction among multiple simulated agents and entities. For example, in
Computer-generated Force computations, physically-based simulations take up a majority
of computational cycle. Other geometric problems essential to physical simulation include
distance computation, visibility, etc. Performing physical simulations on the GPUs can
potentially enable us to incorporate physics-based modeling techniques into many
interactive applications. Moreover, they can run on mobile platforms or embedded systems.

Network and Communications: Communication requirements of the simulated
environment are distinct from those based on conventional interactions. One of the key
issues is the “line-of-sight” computation for large number of simulated agents, especially
under critical conditions such as varying weather conditions and non-optimal visibility
conditions often encountered in the battlefield.

Database and Data Mining: The enablement of fast database operations allows for the
rapid query and data search on any application systems. Research advances in this area
can exploit the inherent parallelism within programmable graphics processors. It can
considerably speedup the performance of database queries on complex databases.

Compiler Support and Software Environments: In addition to examining the possibility of
performing various computations mentioned above, other fundamental issues include
programmability, language and compiler support, and development of flexible software
environment for GPUs.

Centre for Distance Education 4 Acharya Nagarjuna University

Development status/technical maturity/limitations: Although over the last year and two,
several new algorithms and applications that exploit the inherent parallelism and vector
processing capabilities of graphics processors (GPUs) have been proposed, the basic
technology for computing on GPUs still is not fully developed. The Technology Readiness
Level is Level 4. It needs further research and development to live up to their full potential.

Forecast of Capability in the next 3-5 years: The growth rate of GPUs for the next 3-5 years
is shown in the graph. We have also compared its growth rate with Moore’s Law. While the
CPUs are expected to grow at the rate of 30-50 times, the GPUs peak performance might
grow by almost 2-3 orders of magnitude during the same period. They could have the
capability to perform tera-flop operations per second by 2007 and this makes them an
attractive candidate for simulation and Computer-generated force computations.

2.1.3.4 Simulation Modeling Methodolgy

Investigation in discrete event simulation modeling methodology has persisted for over
thirty years. Fundamental is the recognition that the overriding objectives for simulation
must involve decision support. Rapidly advancing technology is today exerting major
influences on the course of simulation in many areas, e.g. distributed interactive
simulation and parallel discrete event simulation, and evidence suggests that the role of
decision support is being subjugated to accommodate new technologies and system-level
constraints. Two questions are addressed by this research: (1) can the existing theories of
modeling methodology contribute to these new types of simulation, and (2) how, if at all,
should directions of modeling methodological research be redefined to support the needs of
advancing technology.

Requirements for a next-generation modeling framework (NGMF) are proposed, and a model
development abstraction is defined to support the framework. The abstraction identifies
three levels of model representation: (1) modeler-generated specifications, (2) transformed
specifications, and (3) implementations. This hierarchy may be envisaged as consisting of
either a set of narrow-spectrum languages, or a single wide-spectrum language. Existing
formal approaches to discrete event simulation modeling are surveyed and evaluated with
respect to the NGMF requirements. All are found deficient in one or more areas. The
Conical Methodology (CM), in conjunction with the Condition Specification (CS), is
identified as a possible NGMF candidate. Initial assessment of the CS relative to the model
development abstraction indicates that the CS is most suited for the middle level of the
hierarchy of representations - specifically functioning as a form for analysis.

The CS is extended to provide wide-spectrum support throughout the entire hierarchy via
revisions of its supportive facilities for both model representation and model execution.
Evaluation of the pertinent model representation concepts is accomplished through a
complete development of four models. The collection of primitives for the CS is extended to
support CM facilities for set definition. A higher-level form for the report specification is
defined, and the concept of an augmented specification is outlined whereby the object

P.G.D. in Bioinformatics 5 Inherent Parallelism in biological....

specification and transition specification may be automatically transformed to include the
objects, attributes and actions necessary to provide statistics gathering. An experiment
specification is also proposed to capture details, e.g. the condition for the start of steady
state, necessary to produce an experimental model.

In order to provide support for model implementation, the semantic rules for the CS are
refined. Based on a model of computation provided by the action cluster incidence graph
(ACIG), an implementation structure referred to as a direct execution of action clusters
(DEAC) simulation is defined. A DEAC simulation is simply an execution of an augmented
CS transition specification. Two algorithms for DEAC simulations are presented.

Support for parallelizing model execution is also investigated. Parallel discrete event
simulation (PDES) is presented as a case study. PDES research is evaluated from the
modeling methodological perspective espoused by this effort, and differences are noted in
two areas: (1) the enunciation of the relationship between simulation and decision support,
and the guidance provided by the life cycle in this context, and (2) the focus of the
development effort. Recommendations are made for PDES research to be reconciled with
the ``mainstream'' of DES.

The capability of incorporating parallel execution within the CM/CS approach is
investigated. A new characterization of inherent parallelism is given, based on the time and
state relationships identified in prior research. Two types of inherent parallelism are
described: (1) inherent event parallelism, which relates to the independence of attribute
value changes that occur during a given instant, and (2) inherent activity parallelism,
which relates to the independence of attribute value changes that occur over all instants of
a given model execution. An analogy between an ACIG and a Petri net is described, and a
synchronous model of parallel execution is developed based on this analogy. Revised
definitions for the concepts time ambiguity and state ambiguity in a CS are developed, and
a necessary condition for state ambiguity is formulated. A critical path algorithm for
parallel direct execution of action clusters (PDEAC) simulations is constructed. The
algorithm is an augmentation of the standard DEAC algorithm and computes the
synchronous critical path for a given model representation. Finally, a PDEAC algorithm is
described.

In terms of human semiosis, episodes and procedures corespond to the opposition between
pictures and words, between the parallel co-occurrence of the information in a scene and
the sequential delivery of speech. The two forms, found in birds as well as all mammals,
employ entirely different neural mechanisms, are morphologically distinct and functionally
incompatible: "Whereas procedural memories generalize across situations and events,
episodic memory stores specific details of situations and life events" . Of course, identifying
the opposition here in no way claims for it a total coverage of the field of memory, and
indeed, with the advent of language a third, conceptual form of memory emerged. But
whilst this adjoined, re-organized and in much of culture dominates the more primitive
substrate it found, it in no sense obliterated the episodic/procedural couple.

Centre for Distance Education 6 Acharya Nagarjuna University

This last, usually called Cellular Automata (CA), has proved to be an extraordinarily fecund
computational, explanatory and investigative techno scientific tool. The flocking behaviour of
starlings we encountered at the beginning, as well as aspects of the behaviour of ants or bees in a
colony, or cars in traffic patterns, are all examples of situations that can be illuminatingly modeled by
a CA: thus, each starling is identified with an individual cell and the requirement to keep a fixed
distance from its neighbors is its local rule; and likewise for the distributed behaviour of ants and
bees. A quite different example of a CA comes from fluid dynamics: The Navier-Stokes equation in
that subject, a major triumph of 19th century partial differential calculus, summarises the behaviour of
an incompressible fluid. It turns out to be simulatable by a not very complicated CA which uses a
hexagonal grid: each cell of which models a single drop of fluid subject to the flow in and out of it
along the six directions governed by identical local rules.

Summary

No question any more that an event -- global, all penetrative, encompassing, inescapable --
is arriving and being bidden by us to happen. Within this event we are going parallel and
becoming plural in ways and for the reasons . . One important approach in Systems
Biology is the modeling and simulation of a biological net- works to help understand and
predict the behaviour of these complex systems. The simulation of biological networks are
carried out with either deterministic simulators, stochastic simulators, or hybrid
simulators, each of which have their own advantages and disadvantages.

Model Questions:

1. What is inherent parallelism and write a brief note on its applications in scientific
and engg. Applications?

2. What is parallelism and its importance in modern computing?

References:
1. www.thesimguy.com/ernie/papers/unref/dissert/node10.html
2. www.wideopenwest.com/~brian_rotman/parallel.html
3. Exploiting Inherent Parallelism In Non-Linear Finite Element Analysis,M. W. S.

Jaques, C. T. F. Ross And P. Strickland Computers & Swucrures Vol. 58, No. 4,
Pp. 801-807, 1996

AUTHOR:

B.M.REDDY M.Tech. (HBTI, Kanpur)
Lecturer, Centre for Biotechnology

Acharya Nagarjuna University.

P.G.D. in Bioinformatics 1 Parallel Versus Sequential Computing

Lesson 2.1.4

PARALLEL VERSUS SEQUENTIAL COMPUTING

Objective
2.1.4.1 Introduction
2.1.4.2 Eras of computing
2.1.4.3 What is Parallelism?
2.1.4.4 Parallel Computing
2.1.4.5 Parallelism in real life
2.1.4.6 Inter-thread communication
2.1.4.7 Sequential Computing
2.1.4.8 Parallel vs sequential solutions

Summary
 Model Questions
 References
Objective

This lesson explains the eras of computing and differentiates the parallel and
sequential computing.

2.1.4.1 Introduction
It is now clear that silicon based processor chips are reaching their physical limits in

processing speed, as they are constrained by the speed of electricity, light and certain
thermodynamic laws. A viable solution to overcome this limitation is to connect multiple
processors working in coordination with each other to solve grand challenge problems.
Hence, high performance computing requires the use of Massively Parallel Processing
(MPP) systems containing thousands of powerful CPUs. A dominant representative
computing system (hardware) built using MPP approach is C-DAC’s PARAM
supercomputer.

2.1.4.2 Eras of computing
The most prominent two eras of computing are : sequential and parallel era. In the

past decade, parallel machines have become significant competitors to vector machines
in the quest for high performance computing. A century wide view of development of
computing eras is shown in fig. The computer era starts with a development in
hardware architectures, followed by system software, application, and reachingits
saturation point with its growth in problem solving environments.

Centre for Distance Education 2 Acharya Nagarjuna University

2.1.4.3 What is Parallelism?

A strategy for performing large, complex tasks faster.

A large task can either be performed serially, one step following another, or can be
decomposed into smaller tasks to be performed simultaneously, i.e., in parallel.

Parallelism is done by:

 Breaking up the task into smaller tasks

 Assigning the smaller tasks to multiple workers to work on simultaneously

 Coordinating the workers

Parallel problem solving is common. Examples: building construction; operating a
large organization; automobile manufacturing plant

Parallel computing is the simultaneous execution of the same task (split up and
specially adapted) on multiple processors in order to obtain faster results.The term
parallel processor is sometimes used for a computer with more than one processor,
available for parallel processing. Systems with thousands of such processors are known
as massively parallel.

P.G.D. in Bioinformatics 3 Parallel Versus Sequential Computing

There are many different kinds of parallel computers (or "parallel processors"). They
are distinguished by the kind of interconnection between processors (known as
"processing elements" or PEs) and between processors and memories. Flynn's taxonomy
also classifies parallel (and serial) computers according to whether all processors
execute the same instructions at the same time (single instruction/multiple data --
SIMD) or each processor executes different instructions (multiple
instruction/multiple data -- MIMD). Parallel processor machines are also divided into
symmetric and asymmetric multiprocessors, depending on whether all the processors
are capable of running all the operating system code and, say, accessing I/O devices or
if some processors are more or less privileged.

Performance vs. cost
While a system of n parallel processors is less efficient than one n-times-faster

processor, the parallel system is often cheaper to build. For tasks which require very
large amounts of computation, have time constraints on completion and especially for
those which can be divided into n execution threads, parallel computation is an
excellent solution. In fact, in recent years, most high performance computing systems,
also known as supercomputers, have a parallel architecture

Algorithms
It should not be imagined that successful parallel computing is a matter of obtaining

the required hardware and connecting it suitably. The difficulty of cooperative problem
solving is aptly demonstrated by the following dubious reasoning:

If it takes one man one minute to dig a post-hole then sixty men can dig it in
one second.

In practice, linear speedup (i.e., speedup proportional to the number of processors)
is very difficult to achieve. This is because many algorithms are essentially sequential in
nature.

Up to a certain point, certain workloads can benefit from pipeline parallelism when
extra processors are added. This uses a factory assembly line approach to divide the
work. If the work can be divided into n stages where a discrete deliverable is passed
from stage to stage, then up to n processors can be used. However, the slowest stage
will hold up the other stages so it is rare to be able to fully use n processors.

Most algorithms must be redesigned in order to make effective use of parallel
hardware. Programs which work correctly in a single CPU system may not do so in a
parallel environment. This is because multiple copies of the same program may interfere
with each other, for instance by accessing the same memory location at the same time.
Therefore, careful programming is required in a parallel system.

Superlinear speedup - the effect of a N processor machine completing a task more
than N times faster than a machine with a single processor similar to that in the
multiprocessor has at times been a controversial issue (and lead to much
benchmarking) but can be brought about by such effects as the multiprocessor
machine having not just N times the processing power but also N times cache and
memory thus flattening the cache-memory-disk hierarchy, more efficient use of memory
by the individual processors due to partitioning of the problem and a number of other
effects. Similar boosted efficiency claims are sometimes aired for the use of a cluster of

Centre for Distance Education 4 Acharya Nagarjuna University

cheap computers as a replacement of a large multiprocessor, but again the actual
results depend much on the problem at hand and the ability to partition the problem in
a way that is conductive to clustering.

2.1.4.4 Parallel Computing
Traditional Supercomputers
Technology

 Single processors were created to be as fast as possible.

 Peak performance was achieved with good memory bandwidth.

Benefits

 Supports sequential programming (Which many people understand)

 30+ years of compiler and tool development

 I/O is relatively simple

Limitations

 Single high performance processors are extremely expensive

 Significant cooling requirements

 Single processor performance is reaching its asymptotic limit

Parallel Supercomputers
Technology

 Applying many smaller cost efficient processors to work on a part of the
same task

 Capitalizing on work done in the microprocessor and networking markets

Benefits

 Ability to achieve performance and work on problems impossible with
traditional computers.

 Exploit "off the shelf" processors, memory, disks and tape systems.

 Ability to scale to problem.

 Ability to quickly integrate new elements into systems thus capitalizing on
improvements made by other markets.

 Commonly much cheaper.

Limitations

 New technology. Programmers need to learn parallel programming
approaches.

 Standard sequential codes will not "just run".

 Compilers and tools are often not mature.

 I/O is not as well understood yet.

P.G.D. in Bioinformatics 5 Parallel Versus Sequential Computing

Parallel computing requires:

 Multiple processors (The workers)

 Network (Link between workers)

 Environment to create and manage parallel processing

o Operating System
(Administrator of the system that knows how to handle multiple workers)

o Parallel Programming Paradigm

 Message Passing

 MPI

 PVM

 Data Parallel

 Fortran 90 / High Performance Fortran

 Others

 OpenMP

 shmem

 A parallel algorithm and a parallel program
(The decomposition of the problem into pieces that multiple workers can perform)

2.1.4.5 Parallelism in real life
The world of computing until recently was dominated by the sequential way of

thinking. In fact, sequential processing has been very successful and has set high
standards that parallel processing will have to try hard to match. Before introducing the
parallel way of thinking, let us make sure that we have a clearer idea of what problems
the sequential way of thinking may have. For example, let us consider the simple
problem of assigning 0 to the 100 memory locations of an integer array A, initialization
performed by most compilers every time arrays are used. The processor would have to
execute the code typically produced by the compiler, that visits sequentially every
memory location A[1..100] of the array and assigns the value 0 to it. This code could
look like this 2:

i = 0;

while (i <= 100) {

i++;

A[i] = 0;

}

This is an operation many of you were taught in your .rst CS course. It has been
observed that students in that introductory course often have some troubles coming up
with such a solution, and one of the reasons may be that it seems “unnatural” to those
who are not yet used to “think like the computer,” as the popular expression goes. Let
us explain what we mean by that.

Centre for Distance Education 6 Acharya Nagarjuna University

Consider the logically equivalent problem of an instructor distributing handouts to
her 100 students in the beginning of a class period. It is very unlikely that she would
walk around the class giving the handouts to each and every student in a sequential
fashion:

take a deep breath;

while (there are students you have not visited yet) {

visit a student that you have not visited yet;

give a copy of the handouts to that student;

}

Such an action would be very time consuming and would occupy her for most of the
class period, while the students stay idle — not to mention bored. 3 Instead, the
instructor would hand the whole package to the student sitting, say, at an end of the
.rst row, and then return to her previous activity. Each student will be occupied for only
a short period of time: receiving the handouts when they reach him, keeping one copy,
and handing the remaining copies to the nearest student that has not received
handouts yet.

Instructor’s action:
visit the first student;
give the pile with the handouts to that student;
continue teaching the class;
Student’s action:
while (the pile with the handouts have not reached you)
attend the class;
pick up a copy of the handouts;
if (there is a student that has not received handouts yet)
pass up the handouts to this student;

This is a special parallel method used commonly in assembly lines, known as the
pipeline, and in the classroom example is, apparently, preferable. In parallel computing
terms, we say that this technique has better load balance than the sequential one,
because the task of distributing the handouts is evenly divided among the number of
persons involved. It is irrelevant here that almost certainly this habit would make the
instructor wellknown around campus.

There is not, however, a single parallel way of doing this job, but several. When time
is at a premium, for example, when a midterm exam is being handed out, it is
important that every students gets a copy of the exam as soon as possible. In this case,
the instructor may speed up this process by handing a portion of the exams to the
students sitting at the end of each desk row. This process is faster than the previous
one by a factor that equals, roughly, the number of desk rows. This approach is more
e.cient than the .rst because the total amount of time to execute the same task is less
than the time associated with the first.

2.1.4.6 Inter-thread communication
Parallel computers are theoretically modeled as Parallel Random Access Machines

(PRAMs). The PRAM model ignores the cost of interconnection between the constituent

P.G.D. in Bioinformatics 7 Parallel Versus Sequential Computing

computing units, but is nevertheless very useful in providing upper bounds on the
parallel solvability of many problems. In reality the interconnection plays a significant
role.

The processors may either communicate in order to be able to cooperate in solving a
problem or they may run completely independently, possibly under the control of
another processor which distributes work to the others and collects results from them
(a "processor farm").

Processors in a parallel computer may communicate with each other in a number of
ways, including shared (either multiported or multiplexed) memory, a crossbar, a
shared bus or an interconnect network of a myriad of topologies including star, ring,
tree, hypercube, fat hypercube (an hypercube with more than one processor at a node),
a n-dimensional mesh, etc. Parallel computers based on interconnect network need to
employ some kind of routing to enable passing of messages between nodes that are not
directly connected. The communication medium used for communication between the
processors is likely to be hierarchical in large multiprocessor machines. Similarly,
memory may be either private to the processor, shared between a number of processors,
or globally shared. Systolic array is an example of a multiprocessor with fixed function
nodes, local-only memory and no message routing.

Approaches to parallel computers include:

 Multiprocessing

 Computer cluster

 Parallel supercomputers

 Distributed computing

 NUMA vs. SMP vs. massively parallel computer systems

 Grid computing

2.1.4.7 Sequential Computing
Almost all computation done during the first forty years of the history of computers

could be called sequential. One of the characteristics of sequential computation is that
it employs a single processor to solve some problem. (Here, the term “problem” is used
in the broad sense, i.e., performing some task.) These processors had become
continuously faster (and cheaper) during the first three decades, doubling their speed
every two or three years. However, due to the limit that the speed of light imposes on
us, it seems extremely unlikely that we can build uni-processor computers (i.e.,
computers that contain only one processor) that can achieve performance signi.cantly
higher than 1,000,000,000 .oating-point operations per second — usually called 1
G.ops. The unit .ops is a widely used measure of memory access performance. It equals
the rate at which a machine can perform single-precision floating point operations, i.e.,
how many such operations the computer can perform in a unit of time – second in our
case. As with physical quantities, computing power is measured using the notations
kilo (1K = 103), mega (1M = 106), giga (1G = 109) and tera (1T = 1012). If the computer
does not have the So, parallel computation is de.ned as the practice of employing a
(usually large1) number of cooperating processors, communicating among themselves
to solve large problems fast. It has quickly become an important area in computer

Centre for Distance Education 8 Acharya Nagarjuna University

science. During the past .ve years, parallel computation has grown so wide and strong
that most of the research conducted in the .elds of design and analysis of algorithms,
computer languages, computer applications and computer architectures are within its
context.

2.1.4.8 Parallel vs sequential solutions – The magic box
Probably the first approach one may think for designing a parallel algorithm is to

modify and parallelize an existing sequential one. It would be nice if someone had
written a program s2p.c that takes as input a sequential program and produces an
equivalent parallel program which runs much faster and exhibits good load balancing
(see figure 1.4). After all, this is not very difficult to do for the initialization problem we
saw earlier: one has only.

 Figure
1.4: The magic box that converts sequential code to parallel. to write a program that can
recognize a code fragment with the general structure

var1 = val1;

while (var1 < val2) {

var1++;

var2[var1] = val3;

}

and convert it to an equivalent parallel code which divides up the operations
performed by the number of available processors. This simple solution, of course,
requires that there are no data dependencies among operations assigned to different
processors. Unfortunately, it seems that very few sequential algorithms can be modified
to produce significantly faster parallel algorithms. At the same time, even fewer of them
have obvious or simple parallel modifications. Moreover, problems that happen to have
simple sequential solutions do not necessarily have a practical parallel solution,
sometimes do not have an efficient parallel solution at all!

An interesting example of the latter case is depth-.rst search, a technique which has
applications in almost every area of computer science. It has been used as a basis for
many problem solutions and, as is well known, it has a simple linear-time sequential
implementation. For example, it is used as a technique to search the nodes of a graph
for some property. 5 However, despite considerable research efforts, an efficient parallel
implementation for this technique has not yet been found. 6 What is worse, there is
some evidence that an efficient parallel algorithm for this problem may not even exist!

P.G.D. in Bioinformatics 9 Parallel Versus Sequential Computing

As a result of that, all these sequential algorithms that have been developed using
depth first search cannot be easily converted to parallel ones through some magic box.
We have to find new parallel solutions that use different methods.

Summary:
The most prominent two eras of computing are : sequential and parallel era. Parallel

computing is the simultaneous execution of the same task (split up and specially
adapted) on multiple processors in order to obtain faster results. Almost all
computation done during the first forty years of the history of computers could be called
sequential. One of the characteristics of sequential computation is that it employs a
single processor to solve some problem.

Model Questions:

1. Briefly explain the parallel computing?

2. Differentiate the parallel and sequential computing?

References:
1. SCIENTIFIC COMPUTING: An Introductory Survey, Second Edition by Michael T.
Heath, published by McGraw-Hill, New York, 2002.

AUTHOR:

B.M.REDDY M.Tech. (HBTI, Kanpur)
Lecturer, Centre for Biotechnology

Acharya Nagarjuna University.

P.G.D. in Bioinformatics 1 System Software

Lesson 2.2.1

SYSTEM SOFTWARE

Objective
2.2.1.1 Introduction
2.2.1.2 Programming Environments
2.2.1.3 A Unifying Framework
2.2.1.4 Operating System
2.2.1.5 Driver
2.2.1.6 BIOS
2.2.1.7 TP Monitor
2.2.1.8 Communications Protocols
2.2.1.9 DBMS
2.2.1.10 Programming Language
summary
Model Questions
References

Objective

 To know what a system software is
 To study the various components of system software

2.2.1.1 Introduction

 If it were not for system software, all programming would be done in machine code,
and applications programs would directly use hardware resources such as input-output
devices and physical memory. In such an environment, much of a programmers time
would be spent on the relatively clerical problems of program preparation and translation,
and on the interesting but unproductive job of reinventing effective ways to use the
hardware. System software exists to relieve programmers of these jobs, freeing their time
for more productive activities. As such, system software can be viewed as establishing a
programming environment which makes more productive use of the programmer's time
than that provided by the hardware alone.

2.2.1.2 Programming Environments

The term programming environment is sometimes reserved for environments containing
language specific editors and source level debugging facilities; here, the term will be used
in its broader sense to refer to all of the hardware and software in the environment used by
the programmer. All programming can therefore be properly described as takin place in a
programming environment.

Centre for Distance Education 2 Acharya Nagarjuna University

Programming environments may vary considerably in complexity. An example of a simple
environment might consist of a text editor for program preparation, an assembler for
translating programs to machine language, and a simple operating system consisting of
input-output drivers and a file system. Although card input and non-interactive operation
characterized most early computer systems, such simple environments were supported on
early experimental time-sharing systems by 1963.

Although such simple programming environments are a great improvement over the bare
hardware, tremendous improvements are possible. The first improvement which comes to
mind is the use of a high level language instead of an assembly language, but this implies
other changes. Most high level languages require more complicated run-time support than
just input-output drivers and a file system. For example, most require an extensive library
of predefined procedures and functions, many require some kind of automatic storage
management, and some require support for concurrent execution of threads, tasks or
processes within the program.

Many applications require additional features, such as window managers or elaborate file
access methods. When multiple applications coexist, perhaps written by different
programmers, there is frequently a need to share files, windows or memory segments
between applications. This is typical of today's electronic mail, database, and spreadsheet
applicatons, and the programming environments that support such applications can be
extremely complex, particularly if they attempt to protect users from malicious or
accidental damage caused by program developers or other users.

A programming environment may include a number of additional features which simplify
the programmer's job. For example, library management facilities to allow programmers to
extend the set of predefined procedures and functions with their own routines. Source level
debugging facilities, when available, allow run-time errors to be interpreted in terms of the
source program instead of the machine language actually run by the hardware. As a final
example, the text editor may be language specific, with commands which operate in terms
of the syntax of the language being used, and mechanisms which allow syntax errors to be
detected without leaving the editor to compile the program.

Historical Note

Historically, system software has been viewed in a number of different ways since the
invention of computers. The original computers were so expensive that their use for such
clerical jobs as language translation was viewed as a dangerous waste of scarce resources.
Early system developers seem to have consistently underestimated the difficulty of
producing working programs, but it did not take long for them to realize that letting the
computer spend a few minutes on the clerical job of assembling a user program was less
expensive than having the programmer hand assemble it and then spend hours of
computer time debugging it. As a result, by 1960, assembly language was widely accepted,
the new high level language, FORTRAN, was attracting a growing user community, and

P.G.D. in Bioinformatics 3 System Software

there was widespread interest in the development of new languages such as Algol, COBOL,
and LISP.

Early operating systems were viewed primarily as tools for efficiently allocating the scarce
and expensive resources of large central computers among numerous competing users.
Since compilers and other program preparation tools frequently consumed a large fraction
of an early machine's resources, it was common to integrate these into the operating
system. With the emergence of large scale general purpose operating systems in the mid
1960's, however, the resource management tools available became powerful enough that
they could efficiently treat the resource demands of program preparation the same as any
other application.

The separation of program preparation from program execution came to pervade the
computer market by the early 1970's, when it became common for computer users to
obtain editors, compilers, and operating systems from different vendors. By the mid
1970's, however, programming language research and operating system development had
begun to converge. New operating systems began to incorporate programming language
concepts such as data types, and new languages began to incorporate traditional operating
system features such as concurrent processes. Thus, although a programming language
must have a textual representation, and although an operating system must manage
physical resources, both have, as their fundamental purpose, the support of user
programs, and both must solve a number of the same problems.

The minicomputer and microcomputer revolutions of the mid 1960's and the mid 1970's
involved, to a large extent, a repetition of the earlier history of mainframe based work.
Thus, early programming environments for these new hardware generations were very
primitive; these were followed by integrated systems supporting a single simple language
(typically some variant of BASIC on each generation of minicomputer and microcomputer),
followed by general purpose operating systems for which many language implementations
and editors are available, from many different sources.

The world of system software has varied from the wildly competitive to domination by large
monopolistic vendors and pervasive standards. In the 1950's and early 1960's, there was
no clear leader and there were a huge number of wildly divergent experiments. In the late
1960's, however, IBM's mainframe family, the System 360, running IBM's operating
system, OS/360, emerged as a monopolistic force that persists to the present in the
corporate data processing world (the IBM 390 Enterprise Server is the current flagship of
this line, running the VM operating system).

The influence of IBM's near monopoly of the mainframe marketplace cannot be
underestimated, but it was not total, and in the emerging world of minicomputers, there
was wild competition in the late 1960's and early 1970's. The Digital Equipment
Corporation PDP-11 was dominant in the 1970's, but never threatened to monopolize the
market, and there were a variety of different operating systems for the 11. In the 1980's,

Centre for Distance Education 4 Acharya Nagarjuna University

however, variations on the Unix operating system originally developed at Bell Labs began
to emerge as a standard development environment, running on a wide variety of computers
ranging from minicomputers to supercomputers, and featuring the new programming
language C and its descendant C++.

The microcomputer marketplace that emerged in the mid 1970's was quite diverse, but for
a decade, most microcomputer operating systems were rudimentary, at best. Early
versions of Mac OS and Microsoft Windows presented sophisticated user interfaces, but on
versions prior to about 1995 these user interfaces were built on remarkably crude
underpinnings.

The marketplace of the late 1990's, like the marketplace of the late 1960's, came to be
dominated by a monopoly, this time in the form of Microsoft Windows. The chief rivals are
MacOS and Linux, but there is yet another monopolistic force hidden behind all three
operating systems, the pervasive influence of Unix and C. MacOS X is fully Unix
compatable. Windows NT offers full compatability, and so, of course, does Linux. Much of
the serious development work under all three systems is done in C++, and new languages
such as Java seem to be simple variants on the theme of C++. It is interesting to ask, when
we will we have a new creastive period when genuinely new programming environments
will be developed the way they were on the mainframes of the early 1960's or the
minicomputers of the mid 1970's?

2.2.1.3 A Unifying Framework
In all programming environments, from the most rudimentary to the most advanced, it is
possible to identify two distinct components, the program preparation component and the
program execution component. On a bare machine, the program preparation component
consists of the switches or push buttons by which programs and data may be entered into
the memory of the machine; more advanced systems supplement this with text editors,
compilers, assemblers, object library managers, linkers, and loaders. On a bare machine,
the program execution component consists of the hardware of the machine, the central
processors, any peripheral processors, and the various memory resources; more advanced
systems supplement this with operating system services, libraries of predefined
procedures, functions and objects, and interpreters of various kinds.

Within the program execution component of a programming environment, it is possible to
distinguish between those facilities needed to support a single user process, and those
which are introduced when resources are shared between processes. Among the facilities
which may be used to support a single process environment are command language
interpreters, input-output, file systems, storage allocation, and virtual memory. In a
multiple process environment, processor allocation, interprocess communication, and
resource protection may be needed. Figure 1.1 lists and classifies these components.
Editors
Compilers

P.G.D. in Bioinformatics 5 System Software

Assemblers Program Preparation
Linkers
Loaders
Command Languages
Sequential Input/Output
Random Access Input/Output
File Systems Used by a Single Process
Window Managers
Storage Allocation
Virtual Memory
------------------------------ Program Execution Support
Process Scheduling
Interprocess Communication
Resource Sharing Used by Multiple Processes
Protection Mechanisms

The distinction between preparation and execution is the basis of the division between the
first and second parts, while the distinction between single process and multiple process
systems is the basis of the division between the second and third parts.

Centre for Distance Education 6 Acharya Nagarjuna University

P.G.D. in Bioinformatics 7 System Software

2.2.1.4 Operating System

Centre for Distance Education 8 Acharya Nagarjuna University

The most important program that runs on a computer. Every general-purpose computer
must have an operating system to run other programs. Operating systems perform basic
tasks, such as recognizing input from the keyboard, sending output to the display screen,
keeping track of files and directories on the disk, and controlling peripheral devices such
as disk drives and printers.

For large systems, the operating system has even greater responsibilities and powers. It is
like a traffic cop -- it makes sure that different programs and users running at the same
time do not interfere with each other. The operating system is also responsible for security,
ensuring that unauthorized users do not access the system.

Operating systems can be classified as follows:
 multi-user : Allows two or more users to run programs at the same time. Some

operating systems permit hundreds or even thousands of concurrent users.
 multiprocessing : Supports running a program on more than one CPU.
 multitasking : Allows more than one program to run concurrently.
 multithreading : Allows different parts of a single program to run concurrently.
 real time: Responds to input instantly. General-purpose operating systems, such

as DOS and UNIX, are not real-time.

Operating systems provide a software platform on top of which other programs, called
application programs, can run. The application programs must be written to run on top of a
particular operating system. Your choice of operating system, therefore, determines to a
great extent the applications you can run. For PCs, the most popular operating systems
are DOS, OS/2, and Windows, but others are available, such as Linux.

As a user, you normally interact with the operating system through a set of commands.
For example, the DOS operating system contains commands such as COPY and RENAME
for copying files and changing the names of files, respectively. The commands are accepted
and executed by a part of the operating system called the command processor or command
line interpreter. Graphical user interfaces allow you to enter commands by pointing and
clicking at objects that appear on the screen.

Kinds of operating systems

Functionality

 Operating systems can be grouped according to functionality: operating systems for
supercomputing, render farms, mainframes, servers, workstations, desktops, handheld
devices, real time systems, or embedded systems.

 Supercomputing is primarily scientific computing, usually modelling real systems in
nature. Render farms are collections of computers that work together to render animations

P.G.D. in Bioinformatics 9 System Software

and special effects. Work that previously required supercomputers can be done with the
equivalent of a render farm.

 Mainframes used to be the primary form of computer. Mainframes are large centralized
computers. At one time they provided the bulk of business computing through time
sharing. Mainframes and mainframe replacements (powerful computers or clusters of
computers) are still useful for some large scale tasks, such as centralized billing systems,
inventory systems, database operations, etc. When mainframes were in widespread use,
there was also a class of computers known as minicomputers which were smaller, less
expensive versions of mainframes for businesses that couldn’t afford true mainframes.

 Servers are computers or groups of computers used for internet serving, intranet
serving, print serving, file serving, and/or application serving. Servers are also sometimes
used as mainframe replacements.

 Desktop operating systems are used for personal computers.

 Workstations are more powerful versions of personal computers. Often only one person
uses a particular workstation (like desktops) and workstations often run a more powerful
version of a desktop operating system, but workstations run on more powerful hardware
and often have software associated with larger computer systems.

 Handheld operating systems are much smaller and less capable than desktop operating
systems, so that they can fit into the limited memory of handheld devices.

 Real time operating systems (RTOS) are specifically designed to respond to events that
happen in real time. This can include computer systems that run factory floors, computer
systems for emergency room or intensive care unit equipment (or even the entire ICU),
computer systems for air traffic control, or embedded systems. RTOSs are grouped
according to the response time that is acceptable (seconds, milliseconds, microseconds)
and according to whether or not they involve systems where failure can result in loss of
life.

 Embedded systems are combinations of processors and special software that are inside
of another device, such as the electronic ignition system on cars.

2.2.1.5 Driver

Device management controls peripheral devices by sending them commands in their own
proprietary language. The software routine that knows how to deal with each device is
called a "driver." The operating system contains all the drivers for the peripherals attached
to the computer. When a new peripheral is added, that device's driver is installed into the

Centre for Distance Education 10 Acharya Nagarjuna University

operating system. A hardware device (typically a transistor) that provides signals or
electrical current to activate a transmission line or display screen pixel.

Also called a "device driver," it is a program routine that links the operating system to a
peripheral device. Written by programmers who understand the peripheral hardware's
command language and characteristics, the driver contains the precise machine language
necessary to perform the functions requested by the application. When a new peripheral
device is added to the computer, such as a display adapter, its driver must be installed in
order to use it. The application calls the operating system, the operating system calls the
driver, and the driver makes the device work (it "drives" the device). Routines that perform
internal functions, such as memory managers and disk caches, are also drivers.

2.2.1.6 BIOS
(bī´ōs) Acronym for basic input/output system, the built-in software that determines what a
computer can do without accessing programs from a disk. On PCs, the BIOS contains all
the code required to control the keyboard, display screen, disk drives, serial
communications, and a number of miscellaneous functions.

The BIOS is typically placed in a ROM chip that comes with the computer (it is often called
a ROM BIOS). This ensures that the BIOS will always be available and will not be damaged
by disk failures. It also makes it possible for a computer to boot itself. Because RAM is
faster than ROM, though, many computer manufacturers design systems so that the BIOS
is copied from ROM to RAM each time the computer is booted. This is known as
shadowing.

Many modern PCs have a flash BIOS, which means that the BIOS has been recorded on a
flash memory chip, which can be updated if necessary.

The PC BIOS is fairly standardized, so all PCs are similar at this level (although there are
different BIOS versions). Additional DOS functions are usually added through software
modules. This means you can upgrade to a newer version of DOS without changing the
BIOS.

PC BIOSes that can handle Plug-and-Play (PnP) devices are known as PnP BIOSes, or PnP-
aware BIOSes. These BIOSes are always implemented with flash memory rather than
ROM.

2.2.1.7 TP Monitor
Short for transaction processing monitor, a program that monitors a transaction as it
passes from one stage in a process to another. The TP monitor's purpose is to ensure that
the transaction processes completely or, if an error occurs, to take appropriate actions.

P.G.D. in Bioinformatics 11 System Software

TP monitors are especially important in three-tier architectures that employ load balancing
because a transaction may be forwarded to any of several servers. In fact, many TP
monitors handle all the load balancing operations, forwarding transactions to different
servers based on their availability.

Messaging Protocols

Also called: Messaging Standards, Email Protocols, Communications Standards, Electronic
Messaging Protocols, e-mail Protocols, Electronic Messaging Standards, Communications
Protocols, and Mail Protocols

messaging system

Software that provides an electronic mail delivery system. It is made up of the following
functional components, which may be packaged together or independently.

Mail User Agent

The mail user agent (MUA or UA) is the client e-mail program, such as Outlook, Eudora or
Mac Mail, that submits and receives the message.

Message Transfer Agent

The message transfer agent (MTA) forwards the message to another mail server or delivers
it to its own message store (MS). Sendmail is the most widely used MTA on the Internet. In
a large enterprise, there may be several MTA servers (mail servers) dedicated to Internet e-
mail while others support internal e-mail.

Message Store

The message store (MS) holds the mail until it is selectively retrieved and deleted by an
access server. In the Internet world, a delivery agent writes the messages from the MTA to
the message store, and typical access servers are either POP or IMAP servers.

The Internet's SMTP

Internet e-mail, the most ubiquitous messaging system in the world, is based on the SMTP
protocol. Prior to the Internet's enormous growth in the late 1990s, numerous proprietary
messaging systems were widely used, including cc:Mail, Microsoft Mail, PROFS and
DISOSS. See messaging middleware and SMTP.

Centre for Distance Education 12 Acharya Nagarjuna University

2.2.1.8 Communications Protocols

email, newsgroups and chat

These are the messaging protocols that allow users to communicate both asynchronously
(sender and receiver aren't required to both be connected to the Internet at the same time;
e.g. email) and synchronously (as with chatting in "real time").

Email
This method of Internet communication has become the standard. A main computer acts
as a "post office" by sending and receiving mail for those who have accounts. This mail can
be retrieved through any number of email software applications (MS Outlook, Eudora, etc.)
or from Web based email accounts (Yahoo, Hotmail). Email is an example of asynchronous
Internet communication.

Email also provides the ability to access email lists. You can subscribe to an email list
covering any number of topics or interests and will receive messages posted by other
subscribers. Email communities evolve from interaction between subscribers who have
similar interests or obsessions.

Usenet
Usenet is something like a bulletin board or an email list without the subscription. Anyone
can post a message to or browse through a Usenet newsgroup. Usenet messages are
retained on the serving computer only for a predetermined length of time and then are
automatically deleted, whereas email list messages are retained on the serving computer
until the account holder downloads them. Many email applications, as well as Web
browsers, allow you to set up Usenet newsgroup accounts.

IRC (Internet Relay Chat)

This protocol allows for synchronous communication: users on different computers
anywhere in the world can communicate in "real time" or simultaneously. You can
instantly see a response to a typed message by several people at the same time. This
protocol requires a special software application that can be downloaded from the Web,
generally for free.

2.2.1.9 DBMS
A collection of programs that enables you to store, modify, and extract information from a
database. There are many different types of DBMSs, ranging from small systems that run
on personal computers to huge systems that run on mainframes. The following are
examples of database applications:

 computerized library systems

P.G.D. in Bioinformatics 13 System Software

 automated teller machines
 flight reservation systems
 computerized parts inventory systems

From a technical standpoint, DBMSs can differ widely. The terms relational, network, flat,
and hierarchical all refer to the way a DBMS organizes information internally. The internal
organization can affect how quickly and flexibly you can extract information.

Requests for information from a database are made in the form of a query, which is a
stylized question. For example, the query

SELECT ALL WHERE NAME = "SMITH" AND AGE > 35

requests all records in which the NAME field is SMITH and the AGE field is greater than
35. The set of rules for constructing queries is known as a query language. Different
DBMSs support different query languages, although there is a semi-standardized query
language called SQL (structured query language). Sophisticated languages for managing
database systems are called fourth-generation languages, or 4GLs for short.

The information from a database can be presented in a variety of formats. Most DBMSs
include a report writer program that enables you to output data in the form of a report.
Many DBMSs also include a graphics component that enables you to output information in
the form of graphs and charts.

2.2.1.10 Programming Language

 Introduction to Programming

A program is a set of instructions that tell the computer to do various things; sometimes
the instruction it has to perform depends on what happened when it performed a previous
instruction. This section gives an overview of the two main ways in which you can give
these instructions, or “commands” as they are usually called. One way uses an interpreter,
the other a compiler. As human languages are too difficult for a computer to understand in
an unambiguous way, commands are usually written in one or other languages specially
designed for the purpose.

Interpreters

With an interpreter, the language comes as an environment, where you type in commands
at a prompt and the environment executes them for you. For more complicated programs,
you can type the commands into a file and get the interpreter to load the file and execute
the commands in it. If anything goes wrong, many interpreters will drop you into a
debugger to help you track down the problem.

Centre for Distance Education 14 Acharya Nagarjuna University

The advantage of this is that you can see the results of your commands immediately, and
mistakes can be corrected readily. The biggest disadvantage comes when you want to
share your programs with someone. They must have the same interpreter, or you must
have some way of giving it to them, and they need to understand how to use it. Also users
may not appreciate being thrown into a debugger if they press the wrong key! From a
performance point of view, interpreters can use up a lot of memory, and generally do not
generate code as efficiently as compilers

Compilers

Compilers are rather different. First of all, you write your code in a file (or files) using an
editor. You then run the compiler and see if it accepts your program. If it did not compile,
grit your teeth and go back to the editor; if it did compile and gave you a program, you can
run it either at a shell command prompt or in a debugger to see if it works properly. [1]

Obviously, this is not quite as direct as using an interpreter. However it allows you to do a
lot of things which are very difficult or even impossible with an interpreter, such as writing
code which interacts closely with the operating system--or even writing your own operating
system! It is also useful if you need to write very efficient code, as the compiler can take its
time and optimize the code, which would not be acceptable in an interpreter. Moreover,
distributing a program written for a compiler is usually more straightforward than one
written for an interpreter--you can just give them a copy of the executable, assuming they
have the same operating system as you.

Compiled languages include Pascal, C and C++. C and C++ are rather unforgiving
languages, and best suited to more experienced programmers; Pascal, on the other hand,
was designed as an educational language, and is quite a good language to start with. As
the edit-compile-run-debug cycle is rather tedious when using separate programs, many
commercial compiler makers have produced Integrated Development Environments (IDEs
for short). FreeBSD does not include an IDE in the base system, but devel/kdevelop is
available in the ports tree and many use Emacs for this purpose

Language Levels

All students are placed according to communicative ability in the language. There are six
levels of language proficiency as outlined in the pyramid below:

LEVEL 1: Low-Beginner Unable to function in the spoken language.

LEVEL 1: Mid-Beginner

P.G.D. in Bioinformatics 15 System Software

Able to function in only a very limited capacity by using a number of memorized words and
phrases.

LEVEL 2: High-Beginner

Able to satisfy immediate needs with learned utterances. Does not speak in complete
sentences.

LEVEL 3: Low-Intermediate

Able to handle a variety of tasks in
previously learned, uncomplicated
social situations. Speech is generally
limited to the present tense and
sentences may not always be complete.

LEVEL 4: High-Intermediate

Able to successfully handle a variety of
communicative tasks in uncomplicated
social situations. Can ask and respond
to questions, make requests for
information, and express personal
meaning, but responses may still
contain hesitancy and grammatical
inaccuracies.

LEVEL 5: Low-Advanced

Able to narrate and describe in major time frames and can talk about a wide range of
concrete social and work topics. May still make errors with basic grammatical structures,
but they have a much stronger control of the grammatical system than the Intermediate
level.

LEVEL 6: High-Advanced

Able to participate actively in most formal and informal exchanges on a variety of topics
with linguistic ease, confidence, and competence. May still make some high-level
grammatical and translation errors.

Summary
It quite probable to run into these two terms: system software and application software.
The distinction between the two is important. Without the former, your computer won't

Centre for Distance Education 16 Acharya Nagarjuna University

run. And without the latter, your computer—no matter how powerful—won't do much to
help run your business. System software constitutes the following such as Operating
system, drivers, protocols, DBMS and so on.

Model Questions

1. What is System software? What are its constituents?
2. How many levels of Programming Languages are there? What are they?
3. Explain communication and messaging protocols.

References
1. http://www.valenciacc.edu/institute/cgl/levels.asp
2. http://computing-dictionary.thefreedictionary.com/system%20software
3. System Software and Software Systems: Systems Methodology for System Software by R.

Rus

Author:-
Asha Smitha. B.

Centre for Biotechnology
Acharya Nagarjuna University

P.G.D. in Bioinformatics 1 Generations of Computers

Lesson 2.2.2

GENERATIONS OF COMPUTERS

CONTENTS

Objective
2.2.2.1 Introduction
2.2.2.2 The Mechanical Era
2.2.2.3 First Generation Electronic Computers
2.2.2.4 Second Generation Computers

2.2.2.5 Second Generation - Transistors
2.2.2.6 Third Generation - Integrated Circuits
2.2.2.7 Fourth Generation - Microprocessors
2.2.2.8 Fifth Generation Computers
2.2.2.9 Sixth Generation of Computers
2.2.2.10 Future Computer Generations

Summary
Model Questions
References

Objective

 To understand the evolution of computers through various generations.
 To know the chronological improvement in the computer technology

2.2.2.1 Introduction

Since humanity got the idea not to limit itself any longer to the usage of producing
and receiving sounds for the purpose of mutual understanding, the rise of visual
communication assumed large proportions. From a humble start, scratching stone or
engraving leaves of plants, writers in due course proceeded in applying newer means again
and again: hides of animals, gall-nut tincture, melting lead and laser radiants marked a
development of increasing refinement and differentiation.

Yet, when faced with the greatest step forward in communication facilities, that of
electronic data processing, the application of it for producing script seemed to require a
start from scratch again. A method that was based on only two available tokens presented
the most intractable medium mankind ever had been forced to handle. Nevertheless, the
advantages offered by the speed of transfer were so great that generations of people got
convinced that the elements of Morse-code, dots and dashes only, were a comfortable way
of expression, and presented a real progress. Still more rigid were the demands of the

Centre for Distance Education 2 Acharya Nagarjuna university

computer: only 0 or 1, on or off, flip or flop, yin or yang, to be or not to be, were the values
that the atoms of understanding, the bits, were permitted to assume. If nothing had
happened later on, the Stone Age had returned by way of the computer.

The evolution of digital computing is often divided into generations. Each generation
is characterized by dramatic improvements over the previous generation in the technology
used to build computers, the internal organization of computer systems, and programming
languages. Although not usually associated with computer generations, there has been a
steady improvement in algorithms, including algorithms used in computational science.
The following history has been organized using these widely recognized generations as
mileposts.

2.2.2.2 The Mechanical Era (1623--1945)

The idea of using machines to solve mathematical problems can be traced at least as far as
the early 17th century. Mathematicians who designed and implemented calculators that
were capable of addition, subtraction, multiplication, and division included Wilhelm
Schickhard, Blaise Pascal (Pascal's contribution to computing was recognized by computer
scientist Nicklaus Wirth, who in 1972 named his new computer language Pascal (and
insisted that it be spelled Pascal, not PASCAL)) and Gottfried Leibnitz.

The first multi-purpose, i.e. programmable, computing device was probably Charles
Babbage's Difference Engine, which was begun in 1823 but never completed. A more
ambitious machine was the Analytical Engine. It was designed in 1842, but unfortunately
it also was only partially completed by Babbage. Babbage was truly a man ahead of his
time: many historians think the major reason he was unable to complete these projects
was the fact that the technology of the day was not reliable enough. In spite of never
building a complete working machine, Babbage and his colleagues, most notably Ada
(Another pioneer with a programming language named after her. Naming languages after
mathematicians is somewhat of a tradition in computer science. Other such languages
include Russel, Euclid, Turning, and Goedel.) Countess of Lovelace, recognized several
important programming techniques, including conditional branches, iterative loops and
index variables.

A machine inspired by Babbage's design was arguably the first to be used in computational
science. George Scheutz read of the difference engine in 1833, and along with his son
Edvard Scheutz began work on a smaller version. By 1853 they had constructed a machine
that could process 15-digit numbers and calculate fourth-order differences. Their machine
won a gold medal at the Exhibition of Paris in 1855, and later they sold it to the Dudley
Observatory in Albany, New York, which used it to calculate the orbit of Mars. One of the
first commercial uses of mechanical computers was by the US Census Bureau, which used
punch-card equipment designed by Herman Hollerith to tabulate data for the 1890 census.
In 1911 Hollerith's company merged with a competitor to found the corporation which in
1924 became International Business Machines.

P.G.D. in Bioinformatics 3 Generations of Computers

When in the fifties the first computers appeared, a coding system had to be
developed for letters and digits, and if possible also for some punctuation marks and other
small stuff. But there existed yet a tradition of punched cards and chain printers, where
48 characters were the accepted limit. Though a 6-bit code allows for 64, it lasted several
years before that number was adopted for computer hardware and software alike. For
generations of computers this continued to be the upper limit, with the result that texts
were restricted to capital letters, and in fact, to English. To Scandinavians it was allowed to
sacrifice some special characters to include their own extra letters

2.2.2.3 First Generation Electronic Computers

 Three machines have been promoted at various times as the first electronic
computers. These machines used electronic switches, in the form of vacuum tubes, instead
of electromechanical relays. In principle the electronic switches would be more reliable,
since they would have no moving parts that would wear out, but the technology was still
new at that time and the tubes were comparable to relays in reliability. Electronic
components had one major benefit, however: they could ``open'' and ``close'' about 1,000
times faster than mechanical switches.

The earliest attempt to build an electronic computer was by J. V. Atanasoff, a
professor of physics and mathematics at Iowa State, in 1937. Atanasoff set out to build a
machine that would help his graduate students solve systems of partial differential
equations. By 1941 he and graduate student Clifford Berry had succeeded in building a
machine that could solve 29 simultaneous equations with 29 unknowns. However, the
machine was not programmable, and was more of an electronic calculator.

A second early electronic machine was Colossus, designed by Alan Turing for the
British military in 1943. Turing's main contribution to the field of computer science was
the idea of the Turing machine, a mathematical formalism widely used in the study of
computable functions. The existence of Colossus was kept secret until long after the war
ended, and the credit due to Turing and his colleagues for designing one of the first
working electronic computers was slow in coming.

The first general purpose programmable electronic computer was the Electronic
Numerical Integrator and Computer (ENIAC), built by J. Presper Eckert and John V.
Mauchly at the University of Pennsylvania. Work began in 1943, funded by the Army
Ordnance Department, which needed a way to compute ballistics during World War II. The
machine wasn't completed until 1945, but then it was used extensively for calculations
during the design of the hydrogen bomb. By the time it was decommissioned in 1955 it
had been used for research on the design of wind tunnels, random number generators,
and weather prediction. Eckert, Mauchly, and John von Neumann, a consultant to the
ENIAC project, began work on a new machine before ENIAC was finished. The main
contribution of EDVAC, their new project, was the notion of a stored program. There is
some controversy over who deserves the credit for this idea, but none over how important

Centre for Distance Education 4 Acharya Nagarjuna university

the idea was to the future of general purpose computers. ENIAC was controlled by a set of
external switches and dials; to change the program required physically altering the settings
on these controls. These controls also limited the speed of the internal electronic
operations. Through the use of a memory that was large enough to hold both instructions
and data, and using the program stored in memory to control the order of arithmetic
operations, EDVAC was able to run orders of magnitude faster than ENIAC. By storing
instructions in the same medium as data, designers could concentrate on improving the
internal structure of the machine without worrying about matching it to the speed of an
external control.

Regardless of who deserves the credit for the stored program idea, the EDVAC
project is significant as an example of the power of interdisciplinary projects that
characterize modern computational science. By recognizing that functions, in the form of a
sequence of instructions for a computer, can be encoded as numbers, the EDVAC group
knew the instructions could be stored in the computer's memory along with numerical
data. The notion of using numbers to represent functions was a key step used by Goedel in
his incompleteness theorem in 1937, work which von Neumann, as a logician, was quite
familiar with. Von Neumann's background in logic, combined with Eckert and Mauchly's
electrical engineering skills, formed a very powerful interdisciplinary team.

Software technology during this period was very primitive. The first programs were
written out in machine code, i.e. programmers directly wrote down the numbers that
corresponded to the instructions they wanted to store in memory. By the 1950s
programmers were using a symbolic notation, known as assembly language, then hand-
translating the symbolic notation into machine code. Later programs known as assemblers
performed the translation task.

As primitive as they were, these first electronic machines were quite useful in
applied science and engineering. Atanasoff estimated that it would take eight hours to
solve a set of equations with eight unknowns using a Marchant calculator, and 381 hours
to solve 29 equations for 29 unknowns. The Atanasoff-Berry computer was able to
complete the task in under an hour. The first problem run on the ENIAC, a numerical
simulation used in the design of the hydrogen bomb, required 20 seconds, as opposed to
forty hours using mechanical calculators. Eckert and Mauchly later developed what was
arguably the first commercially successful computer, the UNIVAC; in 1952, 45 minutes
after the polls closed and with 7% of the vote counted, UNIVAC predicted Eisenhower
would defeat Stevenson with 438 electoral votes (he ended up with 442).

General Features of First Generation Computers

1. The First Generation was from 1946 to 1956
 Computers in this generation did from 2,000 to 16,000 additions per second
 Had main memory from 100 bytes to 2 kilobytes (2,000 bytes)

2. All computers of this generation used vacuum tubes to perform calculations

P.G.D. in Bioinformatics 5 Generations of Computers

 Vacuum tubes are expensive because of the amount of materials and skill
needed to make them.

 Vacuum tubes get hot and burn out light an incandescent light bulb.
3. All computers in this generation where very large machines

 Needed special rooms to house them with air conditioning because of the heat
generated by the vacuum tubes

 All required specially trained technicians to run and maintain them

2.2.2.4 Second Generation Computers

The second generation saw several important developments at all levels of computer
system design, from the technology used to build the basic circuits to the programming
languages used to write scientific applications.

Electronic switches in this era were based on discrete diode and transistor technology with
a switching time of approximately 0.3 microseconds. The first machines to be built with
this technology include TRADIC at Bell Laboratories in 1954 and TX-0 at MIT's Lincoln
Laboratory. Memory technology was based on magnetic cores which could be accessed in
random order, as opposed to mercury delay lines, in which data was stored as an acoustic
wave that passed sequentially through the medium and could be accessed only when the
data moved by the I/O interface.

Important innovations in computer architecture (The term ``computer architecture''
generally refers to aspects of a computer's internal organization that are visible to
programmers or compiler writers; see Chapter CA.) included index registers for controlling
loops and floating point units for calculations based on real numbers. Prior to this
accessing successive elements in an array was quite tedious and often involved writing
self-modifying code (programs which modified themselves as they ran; at the time viewed
as a powerful application of the principle that programs and data were fundamentally the
same, this practice is now frowned upon as extremely hard to debug and is impossible in
most high level languages). Floating point operations were performed by libraries of
software routines in early computers, but were done in hardware in second generation
machines.

During this second generation many high level programming languages were introduced,
including FORTRAN (1956), ALGOL (1958), and COBOL (1959). Important commercial
machines of this era include the IBM 704 and its successors, the 709 and 7094. The latter
introduced I/O processors for better throughput between I/O devices and main memory.

The second generation also saw the first two supercomputers designed specifically for
numeric processing in scientific applications. The term ``supercomputer'' is generally
reserved for a machine that is an order of magnitude more powerful than other machines
of its era. Two machines of the 1950s deserve this title. The Livermore Atomic Research
Computer (LARC) and the IBM 7030 (aka Stretch) were early examples of machines that

Centre for Distance Education 6 Acharya Nagarjuna university

overlapped memory operations with processor operations and had primitive forms of
parallel processing.

General Features of the Second Generation

1. From 1959 to around 1965
2. Smaller, faster, and more reliable than the First Generation of

computers
o Used transistors instead of vacuum tubes for performing

calculations
o 6,000 to 3,000,000 operations per second
o 6 kilobytes to 1.3 megabytes of main memory
o Contained in four cabinets about 6 feet high by 4 feet wide, each

weighing 250 pounds
3. Cost about one-tenth the price of a First Generation computer
4. Computers become common in larger businesses and universities

2.2.2.5 Second Generation - Transistors

Transistors

1. Invented in 1947 by William Shockley, John Bardeen, and William
Brattain

o Picture of the first transistor
o Was made of silicon
o Lead solid state to solid state electronics

2. Advantages of a transistor when compared to a vacuum tube
o 200 transistors are about the same size as one vacuum tube in

a computer
o Much less expensive than a vacuum tube
o A transistor can work 40 times faster than a vacuum tube
o Do not get hot and burn out like a vacuum tube

2.2.2.6 Third Generation - Integrated Circuits

The third generation brought huge gains in computational power. Innovations in this era
include the use of integrated circuits, or ICs (semiconductor devices with several
transistors built into one physical component), semiconductor memories starting to be
used instead of magnetic cores, microprogramming as a technique for efficiently designing
complex processors, the coming of age of pipelining and other forms of parallel processing
(described in detail in Chapter CA), and the introduction of operating systems and time-
sharing.

P.G.D. in Bioinformatics 7 Generations of Computers

The first ICs were based on small-scale integration (SSI) circuits, which had around 10
devices per circuit (or ``chip''), and evolved to the use of medium-scale integrated (MSI)
circuits, which had up to 100 devices per chip. Multilayered printed circuits were
developed and core memory was replaced by faster, solid state memories. Computer
designers began to take advantage of parallelism by using multiple functional units,
overlapping CPU and I/O operations, and pipelining (internal parallelism) in both the
instruction stream and the data stream. In 1964, Seymour Cray developed the CDC 6600,
which was the first architecture to use functional parallelism. By using 10 separate
functional units that could operate simultaneously and 32 independent memory banks,
the CDC 6600 was able to attain a computation rate of 1 million floating point operations
per second (1 Mflops).

Five years later CDC released the 7600, also developed by Seymour Cray. The CDC 7600,
with its pipelined functional units, is considered to be the first vector processor and was
capable of executing at 10 Mflops. The IBM 360/91, released during the same period, was
roughly twice as fast as the CDC 660. It employed instruction look ahead, separate floating
point and integer functional units and pipelined instruction stream. The IBM 360--195 was
comparable to the CDC 7600, deriving much of its performance from a very fast cache
memory. The SOLOMON computer, developed by Westinghouse Corporation, and the
ILLIAC IV, jointly developed by Burroughs, the Department of Defense and the University
of Illinois, were representative of the first parallel computers. The Texas Instrument
Advanced Scientific Computer (TI--ASC) and the STAR--100 of CDC were pipelined vector
processors that demonstrated the viability of that design and set the standards for
subsequent vector processors.

Early in the this third generation Cambridge and the University of London cooperated in
the development of CPL (Combined Programming Language, 1963). CPL was, according to
its authors, an attempt to capture only the important features of the complicated and
sophisticated ALGOL. However, like ALGOL, CPL was large with many features that were
hard to learn. In an attempt at further simplification, Martin Richards of Cambridge
developed a subset of CPL called BCPL (Basic Computer Programming Language, 1967). In
1970 Ken Thompson of Bell Labs developed yet another simplification of CPL called simply
B, in connection with an early implementation of the UNIX operating system. comment):

General Features of The Third Generation

1. From 1965 to around 1972
2. Used integrated circuits - many transistors on one piece of silicon
3. Computers become smaller, faster, more reliable, and lower in price

 Size of a stove or refrigerator, some can fit on desktops
 Can do 100,000 to 400,000,000 operations per second
 Cost about one-tenth the amount of second generation computers

4. Computers become very common in medium to large businesses
5. The concept of the IC was developed by Jack St. Clair Kilby in 1958

Centre for Distance Education 8 Acharya Nagarjuna university

6. First IC was invented in 1961 separately by Jack Kilby and Robert Noyce
 Picture of the first IC
 IC were incorporated from 1961 in computers

7. An IC is called a silicon chip
8. An IC was about 1/4 inch square and can contain thousands of transistors

The Space Race

9. The Space Race that started in the late 1950's between the United States and
the former Soviet Union help to lead to the development of third generation
computers

10. Needed a computer small enough to fit in a space capsule

Minicomputer Invented

11. Much smaller and lower in price than previous computers
12. Was really the first general purpose computers used by many businesses.

2.2.2.7 Fourth Generation - Microprocessors

The next generation of computer systems saw the use of large scale integration (LSI -- 1000
devices per chip) and very large scale integration (VLSI -- 100,000 devices per chip) in the
construction of computing elements. At this scale entire processors will fit onto a single
chip, and for simple systems the entire computer (processor, main memory, and I/O
controllers) can fit on one chip. Gate delays dropped to about 1ns per gate.

Semiconductor memories replaced core memories as the main memory in most systems;
until this time the use of semiconductor memory in most systems was limited to registers
and cache. During this period, high speed vector processors, such as the CRAY 1, CRAY X-
-MP and CYBER 205 dominated the high performance computing scene. Computers with
large main memory, such as the CRAY 2, began to emerge. A variety of parallel
architectures began to appear; however, during this period the parallel computing efforts
were of a mostly experimental nature and most computational science was carried out on
vector processors. Microcomputers and workstations were introduced and saw wide use as
alternatives to time--shared mainframe computers.

Developments in software include very high level languages such as FP (functional
programming) and Prolog (programming in logic). These languages tend to use a declarative
programming style as opposed to the imperative style of Pascal, C, FORTRAN, et al. In a
declarative style, a programmer gives a mathematical specification of what should be
computed, leaving many details of how it should be computed to the compiler and/or
runtime system. These languages are not yet in wide use, but are very promising as
notations for programs that will run on massively parallel computers (systems with over

P.G.D. in Bioinformatics 9 Generations of Computers

1,000 processors). Compilers for established languages started to use sophisticated
optimization techniques to improve code, and compilers for vector processors were able to
vectorize simple loops (turn loops into single instructions that would initiate an operation
over an entire vector).

Two important events marked the early part of the third generation: the development of the
C programming language and the UNIX operating system, both at Bell Labs. In 1972,
Dennis Ritchie, seeking to meet the design goals of CPL and generalize Thompson's B,
developed the C language. Thompson and Ritchie then used C to write a version of UNIX
for the DEC PDP--11. This C--based UNIX was soon ported to many different computers,
relieving users from having to learn a new operating system each time they change
computer hardware. UNIX or a derivative of UNIX is now a de facto standard on virtually
every computer system.

An important event in the development of computational science was the publication of the
Lax report. In 1982, the US Department of Defense (DOD) and National Science
Foundation (NSF) sponsored a panel on Large Scale Computing in Science and
Engineering, chaired by Peter D. Lax. The Lax Report stated that aggressive and focused
foreign initiatives in high performance computing, especially in Japan, were in sharp
contrast to the absence of coordinated national attention in the United States. The report
noted that university researchers had inadequate access to high performance computers.
One of the first and most visible of the responses to the Lax report was the establishment
of the NSF supercomputing centers. Phase I on this NSF program was designed to
encourage the use of high performance computing at American universities by making
cycles and training on three (and later six) existing supercomputers immediately available.
Following this Phase I stage, in 1984--1985 NSF provided funding for the establishment of
five Phase II supercomputing centers.

The Phase II centers, located in San Diego (San Diego Supercomputing Center); Illinois
(National Center for Supercomputing Applications); Pittsburgh (Pittsburgh Supercomputing
Center); Cornell (Cornell Theory Center); and Princeton (John von Neumann Center), have
been extremely successful at providing computing time on supercomputers to the
academic community. In addition they have provided many valuable training programs and
have developed several software packages that are available free of charge. These Phase II
centers continue to augment the substantial high performance computing efforts at the
National Laboratories, especially the Department of Energy (DOE) and NASA sites.

General Features of Fourth Generation Computers

1. Form 1972 until now
2. Used large scale to very large scale integrated circuits

 Put more than one IC on a silicon chip
 Can do more than one function

3. Computers become smaller, faster, more reliable, and lower in price

Centre for Distance Education 10 Acharya Nagarjuna university

 Size of a television or much smaller
 Can do 500,000 to 1,000,000,000 operations per second
 Cost one-tenth, or less, the amount of third generation computers

4. Computers become very common in homes and business

The Microprocessor

5. The microprocessor is a complete computer on a chip
 Can do all the functions of a computer - input, process, and output

data
 The first microprocessor was produced by Ted Hoff for Intel in 1971 -

the Intel 4004
6. Modern microprocessors are usually less than one inch square and can

contain million of electronic circuits (picture of a Pentium II circuits)
7. Used in many electronic devices today, from wrist watches to microwave

ovens to cars

The Microcomputer is Invented

8. A microcomputer is any general purpose computer that uses a
microprocessor for a CPU

9. In 1972 the first microcomputer was introduced - the MITS 816 - with no
keyboard or display.

10. In 1976, the first real assembled and complete computer was produced - the
Apple II

 Used by schools and colleges
 Apple Corporation founded at this time by Steve Jobs and Steve

Wozniak

The Personal Computer

11. The PC was introduced by IBM in 1981
12. Use the DOS operating system developed by Microsoft Corporation
13. Changed the public's view of computers

 Wanted computers that could do useful tasks
 Wanted a computer that was easy to use
 Could do work at home that would be transferable to the company's

computer

The Macintosh Computer

14. Introduced in 1984 by the Apple Corporation

P.G.D. in Bioinformatics 11 Generations of Computers

First home and small business computer to use a Graphic User Interface
(GUI)

 Used a mouse as a pointing device
 Used icons (small pictures) to represent disks, files, and programs
 Based on ideas from Xerox PARC Alto system

15. With the invention of the Laser Printer by Apple a year later, desktop
publishing took off

The Internet

16. The Internet was started in 1969 as ARPAnet by the US military to connect
research facilities together

17. The Internet went public in 1991
 Connects computers together by using phone lines and other networks
 Allows for the rapid sharing of information and resources

18. Because of small powerful computers, the Internet is rapidly changing our
society

2.2.2.8 Fifth Generation Computers

The development of the next generation of computer systems is characterized mainly by
the acceptance of parallel processing. Until this time parallelism was limited to pipelining
and vector processing, or at most to a few processors sharing jobs. The fifth generation saw
the introduction of machines with hundreds of processors that could all be working on
different parts of a single program. The scale of integration in semiconductors continued at
an incredible pace --- by 1990 it was possible to build chips with a million components ---
and semiconductor memories became standard on all computers.

Other new developments were the widespread use of computer networks and the
increasing use of single-user workstations. Prior to 1985 large scale parallel processing
was viewed as a research goal, but two systems introduced around this time are typical of
the first commercial products to be based on parallel processing. The Sequent Balance
8000 connected up to 20 processors to a single shared memory module (but each
processor had its own local cache). The machine was designed to compete with the DEC
VAX--780 as a general purpose Unix system, with each processor working on a different
user's job. However Sequent provided a library of subroutines that would allow
programmers to write programs that would use more than one processor, and the machine
was widely used to explore parallel algorithms and programming techniques.

The Intel iPSC--1, nicknamed ``the hypercube'', took a different approach. Instead of using
one memory module, Intel connected each processor to its own memory and used a
network interface to connect processors. This distributed memory architecture meant
memory was no longer a bottleneck and large systems (using more processors) could be

Centre for Distance Education 12 Acharya Nagarjuna university

built. The largest iPSC--1 had 128 processors. Toward the end of this period a third type of
parallel processor was introduced to the market. In this style of machine, known as a data-
parallel or SIMD, there are several thousand very simple processors. All processors work
under the direction of a single control unit; i.e. if the control unit says ``add a to b'' then all
processors find their local copy of a and add it to their local copy of b. Machines in this
class include the Connection Machine from Thinking Machines, Inc., and the MP--1 from
MasPar, Inc.

Scientific computing in this period was still dominated by vector processing. Most
manufacturers of vector processors introduced parallel models, but there were very few
(two to eight) processors in this parallel machines. In the area of computer networking,
both wide area network (WAN) and local area network (LAN) technology developed at a
rapid pace, stimulating a transition from the traditional mainframe computing
environment toward a distributed computing environment in which each user has their
own workstation for relatively simple tasks (editing and compiling programs, reading mail)
but sharing large, expensive resources such as file servers and supercomputers. RISC
technology (a style of internal organization of the CPU) and plummeting costs for RAM
brought tremendous gains in computational power of relatively low cost workstations and
servers. This period also saw a marked increase in both the quality and quantity of
scientific visualization.

2.2.2.9 Sixth Generation of Computers

Combinations of parallel/vector architectures are well established, and one corporation
(Fujitsu) has announced plans to build a system with over 200 of its high end vector
processors. Manufacturers have set themselves the goal of achieving teraflops arithmetic
operations per second) performance by the middle of the decade, and it is clear this will be
obtained only by a system with a thousand processors or more. Workstation technology
has continued to improve, with processor designs now using a combination of RISC,
pipelining, and parallel processing. As a result it is now possible to purchase a desktop
workstation for about $30,000 that has the same overall computing power (100 megaflops)
as fourth generation supercomputers. This development has sparked an interest in
heterogeneous computing: a program started on one workstation can find idle workstations
elsewhere in the local network to run parallel subtasks.

One of the most dramatic changes in the sixth generation will be the explosive growth of
wide area networking. Network bandwidth has expanded tremendously in the last few
years and will continue to improve for the next several years. T1 transmission rates are
now standard for regional networks, and the national ``backbone'' that interconnects
regional networks uses T3. Networking technology is becoming more widespread than its
original strong base in universities and government laboratories as it is rapidly finding
application in K--12 education, community networks and private industry. A little over a
decade after the warning voiced in the Lax report, the future of a strong computational
science infrastructure is bright. The federal commitment to high performance computing

P.G.D. in Bioinformatics 13 Generations of Computers

has been further strengthened with the passage of two particularly significant pieces of
legislation: the High Performance Computing Act of 1991, which established the High
Performance Computing and Communication Program (HPCCP) and Sen. Gore's
Information Infrastructure and Technology Act of 1992, which addresses a broad spectrum
of issues ranging from high performance computing to expanded network access and the
necessity to make leading edge technologies available to educators from kindergarten
through graduate school.

In bringing this encapsulated survey of the development of a computational science
infrastructure up to date, we observe that the President's FY 1993 budget contains $2.1
billion for mathematics, science, technology and science literacy educational programs, a
43% increase over FY 90 figures.

2.2.2.10 Future Computer Generations

Hard to Predict

1. Most inventions or technologies that have changed computers are not
usually predicted to far in advance of when they are first used

2. Most likely the following will happen to computer technology
o It will become lower in price
o Computers will become smaller and faster
o Computers will have larger memories and more storage space

3. Computers will become an integral part of everyone's life

People Will Become More Interconnected

1. Computer technology and the World Wide Web will greatly reduce the
distance between people and cultures in the world

2. People will connect to information at any place or time
o Libraries and other information sources will always be open
o Cell phone technology will let you connect to information and

people any where

Computers Will Become Small Enough to Wear

1. The technology is already being developed
o Eyeglasses with a display
o Research is being done to find the best place to put computers

so they will not interfere with the body's movement
2. The computer will always be with you to help you in tasks,

communicate, and find information

Centre for Distance Education 14 Acharya Nagarjuna university

Summary

The evolution of digital computing is often divided into generations. Each generation
is characterized by dramatic improvements over the previous generation in the
technology used to build computers, the internal organization of computer systems,
and programming languages. Although not usually associated with computer
generations, there has been a steady improvement in algorithms, including
algorithms used in computational science. The first multi-purpose, i.e.
programmable, computing device was probably Charles Babbage's Difference
Engine. Three machines have been promoted at various times as the first electronic
computers.

The First Generation was from 1946 to 1956. All computers of this generation used
vacuum tubes to perform calculations. Second generation of computers are Smaller,
faster, and more reliable than the First Generation of computers. Third generation
was from 1965 to around 1972. They Used integrated circuits - many transistors on
one piece of silicon and microcomputer was also invented in the this generation of
computers. Fourth generation used microprocessor is a complete computer on a
chip and apple incorporation introduced Macintosh systems and the internet also
came into existence. The First Generation was from 1946 to 1956. The generations
from then took a faster leap and are now in the faster and never dreamt of state
with the fastest communication and greater and powerful processing abilities.

Model Questions

1. What is meant by generation of computers? How many generations of
computers are there so far?

2. How is the evolution and development of computers explained in various
generations of computers

3. Explain improvement in computers the fourth, fifth and sixth generation of
computers?

4. What would be the future predicted generation of computers?

References

1. Fifth Generation Management: Dynamic Teaming, Virtual Enterprising and
Knowledge Networking by Charles M Savage.

2. Fundamentals of Computer Science Using Java by David Hughes.
3. http://csep1.phy.ornl.gov/ov/node8.html

Author:-
Asha Smitha. B.

Center For Biotechnology

P.G.D. in Bioinformatics 15 Generations of Computers

Acharya Nagarjuna University

P.G.D. in Bioinformatics 1 Operating System

Lesson 2.2.3

OPERATING SYSTEM

Contents
2.2.3.1 Objective
2.2.3.2 Introduction
2.2.3.3 Origin
2.2.3.4 Operating System
2.2.3.5 Classification
2.2.3.6 Allocating Main Memory
2.2.3.7 Processes
2.2.3.8 Summary
2.2.3.9 Model Questions
2.2.3.10 References

2.2.3.1 Objective
 To understand what an operating system is
 To explain the concepts of operating systems like processes, memory management

etc.

2.2.3.2 Introduction

An operating system is an important part of almost every computer system. A
computer system can be divided roughly into four components: the hardware, the
operating system, the applications programs, and the users.

The software that the rest of the software depends on to make the computer
functional. On most PCs this is Windows or the Macintosh OS. Unix and Linux are other
operating systems often found in scientific and technical environments.

Early computers lacked any form of operating system. The user had sole use of the
machine; he would arrive at the machine armed with his program and data, often on
punched paper tape. The program would be loaded into the machine, and the machine set
to work, until the program stopped, or maybe more likely, crashed. Programs could
generally be debugged via a front panel using switches and lights; it is said that Alan
Turing was a master of this on the early Manchester Mark I machine.

Later, machines came with libraries of support code which were linked to the user's
program to assist in operations such as input and output. This would become the genesis
of the modern-day operating system. However, machines still ran a single job at a time; at
Cambridge University in England the job queue was at one time a washing line from which
tapes were hung with clothes pegs. The color of the pegs indicated the priority of the job.

Centre for Distance Education 2 Acharya Nagarjuna University

As machines became more powerful, the time needed for a run of a program diminished
and the time to hand off the equipment became very large by comparison. Accounting for
and paying for machine usage went from checking the wall clock to using the computer to
do the timing. Run queues went from being people waiting at the door to stacks of media
waiting on a table to using the hardware of the machine such as switching which magnetic
tape drive was online or stacking punch cards on top of the previous jobs cards in the
reader. Operating the computer went from a task performed by the program developer to a
job for full time dedicated machine operators. When commercially available computer
centers found they had to deal with accidental or malicious tampering of the accounting
information, equipment vendors were encouraged to enhance the properties of the runtime
libraries to prevent misuse of the systems resources. Accounting practices were also
expanded beyond recording CPU usage to also count pages printed, cards punched, cards
read, disk storage used, and even operator action required by jobs such as changing
magnetic tapes. Eventually, the runtime libraries became a program that was started
before the first customer job, that read in the customer job, controlled its execution,
cleaned up after it, recorded its usage, and immediately went on to process the next job.
Jobs also evolved from being binary images produced by hand encoding to symbolic
programs that were translated by the computer. An operating system, or "monitor" as it
was sometimes called, permitted jobs to become multistep with the monitor running
several programs in sequence to effect the translation and subsequent run of the user's
program.

The conceptual bridge between the precise description of an operating system and the
colloquial definition is the tendency to bundle widely, or generally, used utilities and
applications (such as text editors or file managers) with the basic OS for the sake of
convenience; as OSes progressed, a larger selection of 'second class' OS software came to
be included, such that now, an OS without a graphical user interface or various file
viewers is often considered not to be a true or complete OS. To accommodate this evolution
of the meaning most of what was the original "operating system" is now called the "kernel",
and OS has come to mean the complete package.

The broader categories of systems and application software are discussed in the computer
software article.

2.2.3.3 Origin

The first computers were built for military purposes during World War II, and the
first commercial computers were built during the 50's. They were huge (often filling a large
room with tons of equipment), expensive (millions of dollars, back when that was a lot of
money), unreliable, and slow (about the power of today's $1.98 pocket calculator).
Originally, there was no distinction between programmer, operator, and end-user (the
person who wants something done). A physicist who wanted to calculate the trajectory of a
missile would sign up for an hour on the computer. When his time came, he would come

P.G.D. in Bioinformatics 3 Operating System

into the room, feed in his program from punched cards or paper tape, watch the lights
flash, maybe do a little debugging, get a print-out, and leave.

The first card in the deck was a bootstrap loader. The user/operator/programmer would
push a button that caused the card reader to read that card, load its contents into the first
80 locations in memory, and jump to the start of memory, executing the instructions on
that card. Those instructions read in the rest of the cards, which contained the
instructions to perform all the calculations desired: what we would now call the
"application program".

This set-up was a lousy way to debug a program, but more importantly, it was a
waste of the fabulously expensive computer's time. Then someone came up with the idea of
batch processing. User/programmers would punch their jobs on decks of cards, which they
would submit to a professional operator. The operator would combine the decks into
batches. He would precede the batch with a batch executive (another deck of cards). This
program would read the remaining programs into memory, one at a time, and run them.
The operator would take the printout from the printer, tear off the part associated with
each job, wrap it around the associated deck, and put it in an output bin for the user to
pick up. The main benefit of this approach was that it minimized the wasteful down time
between jobs. However, it did not solve the growing I/O bottleneck.

Card readers and printers got faster, but since they are mechanical devices, there
were limits to how fast they could go. Meanwhile the central processing unit (CPU) kept
getting faster and was spending more and more time idly waiting for the next card to be
read in or the next line of output to be printed. The next advance was to replace the card
reader and printer with magnetic tape drives, which were much faster. A separate, smaller,
slower (and presumably cheaper) peripheral computer would copy batches of input decks
onto tape and transcribe output tapes to print. The situation was better, but there were
still problems. Even magnetic tapes drives were not fast enough to keep the mainframe
CPU busy, and the peripheral computers, while cheaper than the mainframe, were still not
cheap (perhaps hundreds of thousands of dollars).

Then the card reader and printer were hooked up to the mainframe (along with the
tape drives) and the mainframe CPU was reprogrammed to switch rapidly among several
tasks. First it would tell the card reader to start reading the next card of the next input
batch. While it was waiting for that operation to finish, it would go and work for a while on
another job that had been read into "core" (main memory) earlier. When enough time had
gone by for that card be read in, the CPU would temporarily set aside the main
computation, start transferring the data from that card to one of the tape units (say tape
1), start the card reader reading the next card, and return to the main computation. It
would continue this way, servicing the card reader and tape drive when they needed
attention and spending the rest of its time on the main computation. Whenever it finished
working on one job in the main computation, the CPU would read another job from an
input tape that had been prepared earlier (tape 2). When it finished reading in and

Centre for Distance Education 4 Acharya Nagarjuna University

executing all the jobs from tape 2, it would swap tapes 1 and 2. It would then start
executing the jobs from tape 1, while the input "process" was filling up tape 2 with more
jobs from the card reader. Of course, while all this was going on, a similar process was
copying output from yet another tape to the printer. This amazing juggling act was called
Simultaneous Peripheral Operations On Line, or SPOOL for short.

The hardware that enabled SPOOLing is called direct memory access, or DMA. It
allows the card reader to copy data directly from cards to core and the tape drive to copy
data from core to tape, while the expensive CPU was doing something else. The software
that enabled SPOOLing is called multiprogramming. The CPU switches from one activity, or
"process" to another so quickly that it appears to be doing several things at once.

In the 1960's, multiprogramming was extended to ever more ambitious forms.
Hardware developments supporting this extension included decreasing cost of core
memory (replaced during this period by semi-conductor random-access memory (RAM)),
and introduction of direct-access storage devices (called DASD - pronounced "dazdy" - by
IBM and "disks" by everyone else). With larger main memory, multiple jobs could be kept
in core at once, and with input spooled to disk rather than tape, each job could get directly
at its part of the input. With more jobs in memory at once, it became less likely that they
would all be simultaneously blocked waiting for I/O, leaving the expensive CPU idle.

Another break-through idea from the 60's based on multiprogramming was
timesharing, which involves running multiple interactive jobs, switching the CPU rapidly
among them so that each interactive user feels as if he has the whole computer to himself.
Timesharing let the programmer back into the computer room - or at least a virtual
computer room. It allowed the development of interactive programming, making
programmers much more productive. Perhaps more importantly, it supported new
applications such as airline reservation and banking systems that allowed 100s or even
1000s of agents or tellers to access the same computer "simultaneously". Visionaries
talked about an "computing utility" by analogy with the water and electric utilities, which
would delivered low-cost computing power to the masses.

Today, computers are used for a wide range of applications, including personal
interactive use (word-processing, games, desktop publishing, web browsing, email), real-
time systems (patient care, factories, missiles), embedded systems (cash registers, wrist
watches, toasters), and transaction processing (banking, reservations, e-commerce).

The goal of an OS is to make hardware look better than it is.
 More regular, uniform (instead of lots of idiosyncratic devices)
 Easier to program (e.g., don't have to worry about speeds, asynchronous events)

Closer to what's needed for applications:
 named, variable-length files, rather than disk blocks
 multiple "CPU's", one for each user (in shared system) or activity (in single-user

system)

P.G.D. in Bioinformatics 5 Operating System

 multiple large, dynamically-growing memories (virtual memory)

2.2.3.4 Operating System
An operating system is a layer of software which takes care of technical aspects of a

computer's operation. It shields the user of the machine from the low-level details of the
machine's operation and provides frequently needed facilities. There is no universal
definition of what an operating system consists of. You can think of it as being the software
which is already installed on a machine, before you add anything of your own.

Normally the operating system has a number of key elements: (i) a technical layer of
software for driving the hardware of the computer, like disk drives, the keyboard and the
screen; (ii) a filesystem which provides a way of organizing files logically, and (iii) a simple
command language which enables users to run their own programs and to manipulate
their files in a simple way. Some operating systems also provide text editors, compilers,
debuggers and a variety of other tools. Since the operating system (OS) is in charge of a
computer, all requests to use its resources and devices need to go through the OS. An OS
therefore provides (iv) legal entry points into its code for performing basic operations like
writing to devices.

2.2.3.5 Classification

Operating systems can be classified as follows:

Operating systems may be classified by both how many tasks they can perform
`simultaneously' and by how many users can be using the system `simultaneously'. That
is: single-user or multi-user and single-task or multi-tasking.

Centre for Distance Education 6 Acharya Nagarjuna University

 multi-user : Allows two or more users to run programs at the same time.
Some operating systems permit hundreds or even thousands of concurrent
users.

 multiprocessing : Supports running a program on more than one CPU.
 multitasking : Allows more than one program to run concurrently.
 multithreading : Allows different parts of a single program to run

concurrently.
 real time: Responds to input instantly. General-purpose operating systems,

such as DOS and UNIX, are not real-time.

Operating systems provide a software platform on top of which other programs,
called application programs, can run. The application programs must be written to run on
top of a particular operating system. Your choice of operating system, therefore,
determines to a great extent the applications you can run. For PCs, the most popular
operating systems are DOS, OS/2, and Windows, but others are available, such as Linux.

As a user, you normally interact with the operating system through a set of
commands. For example, the DOS operating system contains commands such as COPY
and RENAME for copying files and changing the names of files, respectively. The
commands are accepted and executed by a part of the operating system called the
command processor or command line interpreter. Graphical user interfaces allow you to
enter commands by pointing and clicking at objects that appear on the screen.

2.2.3.6 Allocating Main Memory

Let us first consider how to manage main (``core'') memory (also called random-
access memory (RAM)). In general, a memory manager provides two operations:

 Address allocate(int size);
 void deallocate(Address block);

The procedure allocate receives a request for a contiguous block of size bytes of
memory and returns a pointer to such a block. The procedure deallocate releases the
indicated block, returning it to the free pool for reuse. Sometimes a third procedure is also
provided,

 Address reallocate(Address block, int new_size);

which takes an allocated block and changes its size, either returning part of it to the free
pool or extending it to a larger block. It may not always be possible to grow the block
without copying it to a new location, so reallocate returns the new address of the block.

Memory allocators are used in a variety of situations. In Unix, each process has a
data segment. There is a system call to make the data segment bigger, but no system call
to make it smaller. Also, the system call is quite expensive. Therefore, there are library

P.G.D. in Bioinformatics 7 Operating System

procedures (called malloc, free, and realloc) to manage this space. Only when malloc or
realloc runs out of space is it necessary to make the system call. The operating system also
uses a memory allocator to manage space used for OS data structures and given to ``user''
processes for their own use. As we saw before, there are several reasons why we might
want multiple processes, such as serving multiple interactive users or controlling multiple
devices.

Suppose there are n processes in memory (this is called the level of

multiprogramming) and each process is blocked (waiting for I/O) a fraction p of the time. In
the best case, when they ``take turns'' being blocked, the CPU will be 100% busy provided
n(1-p) >= 1. For example, if each process is ready 20% of the time, p = 0.8 and the CPU
could be kept completely busy with five processes. Of course, real processes aren't so
cooperative. In the worst case, they could all decide to block at the same time, in which
case, the CPU utilization (fraction of the time the CPU is busy) would be only 1 - p (20% in
our example). If each processes decides randomly and independently when to block, the
chance that all n processes are blocked at the same time is only pn, so CPU utilization is 1 -
pn. Continuing our example in which n = 5 and p = 0.8, the expected utilization would be 1
- .85 = 1 - .32768 = 0.67232. In other words, the CPU would be busy about 67% of the time
on the average.

How does the memory manager know how big the returned block is? The usual trick

is to put a small header in the allocated block, containing the size of the block and perhaps
some other information. The allocate routine returns a pointer to the body of the block, not
the header, so the client doesn't need to know about it. The deallocate routine subtracts
the header size from its argument to get the address of the header. The client thinks the
block is a little smaller than it really is. So long as the client ``colors inside the lines'' there
is no problem, but if the client has bugs and scribbles on the header, the memory manager
can get completely confused. To make it easier to coalesce adjacent holes, the memory
manager also adds a flag (called a ``boundary tag'') to the beginning and end of each hole
or allocated block, and it records the size of a hole at both ends of the hole.

 When the block is deallocated, the memory manager adds the size of the block
(which is stored in its header) to the address of the beginning of the block to find the
address of the first word following the block. It looks at the tag there to see if the following
space is a hole or another allocated block. If it is a hole, it is removed from the free list and
merged with the block being freed, to make a bigger hole. Similarly, if the boundary tag
preceding the block being freed indicates that the preceding space is a hole, we can find
the start of that hole by subtracting its size from the address of the block being freed
(that's why the size is stored at both ends), remove it from the free list, and merge it with
the block being freed. Finally, we add the new hole back to the free list. Holes are kept in a
doubly-linked list to make it easy to remove holes from the list when they are being
coalesced with blocks being freed.

Centre for Distance Education 8 Acharya Nagarjuna University

Compaction and Garbage Collection

What do you do when you run out of memory? Any of these methods can fail
because all the memory is allocated, or because there is too much fragmentation. Malloc,
which is being used to allocate the data segment of a Unix process, just gives up and calls
the (expensive) OS call to expand the data segment. A memory manager allocating real
physical memory doesn't have that luxury. The allocation attempt simply fails. There are
two ways of delaying this catastrophe, compaction and garbage collection.

Compaction attacks the problem of fragmentation by moving all the allocated blocks
to one end of memory, thus combining all the holes. Aside from the obvious cost of all that
copying, there is an important limitation to compaction: Any pointers to a block need to be
updated when the block is moved. Unless it is possible to find all such pointers,
compaction is not possible. Pointers can stored in the allocated blocks themselves as well
as other places in the client of the memory manager. In some situations, pointers can point
not only to the start of blocks but also into their bodies. For example, if a block contains
executable code, a branch instruction might be a pointer to another location in the same
block. Compaction is performed in three phases. First, the new location of each block is
calculated to determine the distance the block will be moved. Then each pointer is updated
by adding to it the amount that the block it is pointing (in)to will be moved. Finally, the
data is actually moved. There are various clever tricks possible to combine these
operations.

Garbage collection finds blocks of memory that are inaccessible and returns them to
the free list. As with compaction, garbage collection normally assumes we find all pointers
to blocks, both within the blocks themselves and ``from the outside.'' If that is not possible,
we can still do ``conservative'' garbage collection in which every word in memory that
contains a value that appears to be a pointer is treated as a pointer. The conservative
approach may fail to collect blocks that are garbage, but it will never mistakenly collect
accessible blocks. There are three main approaches to garbage collection: reference
counting, mark-and-sweep, and generational algorithms.

Reference counting keeps in each block a count of the number of pointers to the
block. When the count drops to zero, the block may be freed. This approach is only
practical in situations where there is some ``higher level'' software to keep track of the
counts (it's much too hard to do by hand), and even then, it will not detect cyclic
structures of garbage: Consider a cycle of blocks, each of which is only pointed to by its
predecessor in the cycle. Each block has a reference count of 1, but the entire cycle is
garbage. Mark-and-sweep works in two passes: First we mark all non-garbage blocks by
doing a depth-first search starting with each pointer ``from outside'':

There are two problems with mark-and-sweep. First, the amount of work in the
mark pass is proportional to the amount of non-garbage. Thus if memory is nearly full, it

P.G.D. in Bioinformatics 9 Operating System

will do a lot of work with very little payoff. Second, the mark phase does a lot of jumping
around in memory, which is bad for virtual memory systems, as we will soon see.

The third approach to garbage collection is called generational collection. Memory is
divided into spaces. When a space is chosen for garbage collection, all subsequent
references to objects in that space cause the object to be copied to a new space. After a
while, the old space either becomes empty and can be returned to the free list all at once,
or at least it becomes so sparse that a mark-and-sweep garbage collection on it will be
cheap. As an empirical fact, objects tend to be either short-lived or long-lived. In other
words, an object that has survived for a while is likely to live a lot longer. By carefully
choosing where to move objects when they are referenced, we can arrange to have some
spaces filled only with long-lived objects, which are very unlikely to become garbage. We
garbage-collect these spaces seldom if ever.

2.2.3.7 Processes

 A process is a ``little bug'' that crawls around on the program executing the
instructions it sees there. Normally (in so-called sequential programs) there is exactly one
process per program, but in concurrent programs, there may be several processes
executing the same program. The details of what constitutes a ``process'' differ from system
to system. The main difference is the amount of private state associated with each process.
Each process has its own program counter, the register that tells it where it is in the
program. It also needs a place to store the return address when it calls a subroutine, so
that two processes executing the same subroutine called from different places can return
to the correct calling points. Since subroutines can call other subroutines, each process
needs its own stack of return addresses.

Processes with very little private memory are called threads or light-weight

processes. At a minimum, each thread needs a program counter and a place to store a
stack of return addresses; all other values could be stored in memory shared by all
threads. At the other extreme, each process could have its own private memory space,
sharing only the read-only program text with other processes. This essentially the way a
Unix process works. Other points along the spectrum are possible. One common approach
is to put the local variables of procedures on the same private stack as the return
addresses, but let all global variables be shared between processes. A stack frame holds all
the local variables of a procedure, together with an indication of where to return to when
the procedure returns, and an indication of where the calling procedure's stack frame is
stored. This is the approach taken by Java threads. Java has no global variables, but
threads all share the same heap. The heap is the region of memory used to hold objects
allocated by new. In short, variables declared in procedures are local to threads, but
objects are all shared. Of course, a thread can only ``see'' an object if it can reach that
object from its ``base'' object (the one containing its run method, or from one of its local
variables.

Centre for Distance Education 10 Acharya Nagarjuna University

 class Worker implements Runnable {
 Object arg, other;
 Worker(Object a) { arg = a; }
 public void run() {
 Object tmp = new Object();
 other = new Object();
 for(int i = 0; i < 1000; i++) // do something
 }
 }
 class Demo {
 static public void main(String args[]) {
 Object shared = new Object();

 Runnable worker1 = new Worker(shared);
 Thread t1 = new Thread(worker1);

 Runnable worker2 = new Worker(shared);
 Thread t2 = new Thread(worker2);

 t1.start(); t2.start();
 // do something here
 }
 }

There are three treads in this program, the main thread and two child threads
created by it. Each child thread has its own stack frame for Worker.run(), with space for
tmp and i. Thus there are two copies of the variable tmp, each of which points to a
different instance of Object. Those objects are in the shared heap, but since one thread has
no way of getting to the object created by the other thread, these objects are effectively
``private'' to the two threads.1 Similarly, the objects pointed to by other are effectively
private. But both copies of the field arg and the variable shared in the main thread all
point to the same (shared) object.
Other names sometimes used for processes are job or task.

Why Use Processes

Processes are basically just a programming convenience, but in some settings they
are such a great convenience, it would be nearly impossible to write the program without
them. A process allows you to write a single thread of code to get some task done, without
worrying about the possibility that it may have to wait for something to happen along the
way. Examples:
A server providing services to others.

One thread for each client.
A timesharing system.

One thread for each logged-in user.
A real-time control computer controlling a factory.

P.G.D. in Bioinformatics 11 Operating System

One thread for each device that needs monitoring.
A network server.

One thread for each connection.

 Resource allocation: A ``resource'' can be defined as something that costs money.
The philosophers represent processes, and the forks represent resources.
There are three kinds of resources:
 sharable
 serially reusable
 consumable

Sharable resources can be used by more than one process at a time. A consumable

resource can only be used by one process, and the resource gets ``used up.'' A serially
reusable resource is in between. Only process can use the resource at a time, but once it's
done, it can give it back for use by another process. Examples are the CPU and memory.
These are the most interesting type of resource. A process requests a (serially reusable)
resource from the OS and holds it until it's done with it; then it releases the resource. The
OS may delay responding to a request for a resource. The requesting process is blocked
until the OS responds. A set of processes is deadlocked if each process in the set is waiting
for an event that only a process in the set can cause.

2.2.3.8 Summary

An operating system is an important part of almost every computer system. A
computer system can be divided roughly into four components: the hardware, the
operating system, the applications programs, and the users. The procedure allocate
receives a request for a contiguous block of size bytes of memory and returns a pointer to
such a block. The procedure deallocate releases the indicated block, returning it to the
free pool for reuse. A process is a ``little bug'' that crawls around on the program executing
the instructions it sees there.

2.2.3.9 Model Questions

1. What is an operating system? How is it classified?
2. How did the operating system originate?
3. what is a process? Why are they used?
4. Explain the classification of an operating system?

2.2.3.10 References

1. Operatins systems Concepts – Silberschatz Galvin
2. Computers and Commonsense – Roger Hunt, John Shilly
3. Operating Systems (3rd Edition) -- Harvey M. Deitel, et al

P.G.D. in Bioinformatics 1 Internal and External Coordinate...

Lesson 2.2.4

INTERNAL AND EXTERNAL COORDINATE SYSTEM

2.2.4.1 Objective
2.2.4.2 Introduction
2.2.4.3 In Brief
2.2.4.4 Internal Coordinate Mechanics
2.2.4.5 Applications of ICM
2.2.4.6 Modules of ICM

Summary
 Model Questions
 References

2.2.4.1 Objective

To get a knowledge of internal coordinate system and its applications in biological
research.

2.2.4.1 Introduction

Internal coordinates define the distances, angles and torsional angles between the
atoms of a molecule. They allow the precise description of a molecular structure without
an external coordinate system. If the starting point is chosen well enough, even
complicated structures can be built easily just by following the bonding topology,
without the need for graphical structure editors or crystal structure data. The resulting
dataset is particularly easy to modify and extend, as the placement of substituents is a
much more straightforward task than in cartesian space. The closing of ring structures,
however, may prove adventurous to the beginner.

In the past ten years efficient algorithms have made computationally tractable the
use of internal coordinates in molecular dynamics simulations of systems of biological
interest (having more than say 100 atoms). Internal coordinates are an attractive
alternative to the Cartesian coordinates of each atom when particular degrees of
freedom are not of interest. For example, in the process of NMR structure determination
and refinement in which one seeks molecular structures consistent with experimental

NMR data, the bond lengths and bond angles are generally taken as fixed—and no
information about these features is generally available from the NMR experiments. If
these known coordinates are removed from the local optimizations and molecular
dynamics simulations, the conformational search space becomes smaller and can be
more rapidly sampled. For example, typical proteins have approximately Na=3 torsion
angles compared with 3Na coordinates in atomic Cartesian space, where Na is the
number of atoms. Hence, the conformational space is about an order of magnitude
smaller if torsion angles are used. Furthermore, in torsional angle molecular dynamics

Centre for Distance Education 2 Acharya Nagarjuna University

(TAMD), it is typical that the timestep required to maintain a given level of energy
conservation is about 10 times larger than that required in atomic Cartesian space
because the high frequency bond bending and stretching motions have been removed.
Other aspects of the simulation might also be made more efficient because bond and
bond-angle forces no longer need be calculated and because there are fewer coordinates
to update in the integrator. However, these final two aspects have not been found to
make a significant contribution to dynamics run times in practice.

An efficient recursive algorithm for dynamics in internal coordinateswas originally
introduced in the robotics literature (1–4). This algorithm was then implemented for
TAMD in X-ray and NMR refinement packages (5–7) and in a more general purpose
molecular dynamics package (8, 9). In this paper we report the implementation of a
general internal variable dynamics module (IVM) for efficient molecular dynamics. It
allows general hinge definitions including those used in TAMD, but it also allows more
general coordinates which are appropriate when some degrees of freedom are of interest
and others are not; for instance, in the refinement problem of a two protein complex in
which the backbone coordinates of the isolated protein structures are already known.
The IVM also includes local minimization routines (Powell method conjugate gradient
and steepest descent) so that these techniques can be conveniently employed in the
same coordinate system. Our package employs an efficient sixth-order
predictorcorrector integrator, which requires one force evaluation per timestep and
allows for automatic timestep adjustment.We have implemented loop constraints to
maintain bond lengths in ring topologies, although as yet we have found the feature to
be of limited use. Finally, the code has been developed in a highly modular fashion to
make the addition of new hinge definitions, integrators, and minimizers a relatively
simple task. The IVM is not a stand-alone program as it does not have code to evaluate
forces and lacks support for file formats, etc.

2.2.4.2 In Brief

If internal coordinates are to be kept fixed during a calculation, or if they are to be
varied automatically (as in the determination of a rotational barrier), the starting
structure must be given as internal coordinates.

This dataset starts with atomic number and type code of the first atom. For the
second atom, the distance from the first (in angstrom units, 1 Å=100pm) has to be given
as well. This must not necessarily be identical to a chemical bond, as the bond matrix is
determined solely on the basis of internuclear distances. However, it will usually be
easier to use actual bonds here. Definition of the third atom includes the angle it forms
with the second and first atom. Beginning with the fourth atom, the torsional angles,
measured clockwise viewing from the second to the first reference atom, have to be
given as well. While the definition is unequivocal for the first three atoms, all others
require the numbers of the reference atoms to be given. As this list is processed
sequentially, only atoms that are already defined to the program may be used as
references. This becomes particularly important, if an atom or a group of atoms is to be
deleted from the middle of a dataset, e.g. in the removal of a keto group. This will
usually change the reference atoms of all following atoms !

P.G.D. in Bioinformatics 3 Internal and External Coordinate...

Input ends with an atom of atomic number zero, or simply with a blank line.

The following attributes may be used in addition:

The variable IFIX, read between the type code and the atomic distance, specifies
whether the cartesian coordinates of the atom are to be fixed :

 IFIX=0, the atom is not fixed to its position,
 IFIX=1, the cartesian coordinates of this atom are fixed,
 IFIX=2, the Z coordinate of this atom is fixed (useful for enforcing

planarity)

IFIX is followed by the molecule number IMOL. As the program does not assume
bonds between fragments with different molecule numbers, this option may be useful in
the study of molecular complexes. However it should be used only as a last resort, if it
is not possible to rewrite the input. While it is easy to suppress unwanted bonding
between the two molecules, the short distance between them will give rise to extreme
van-der-Waals interaction.

The value of the torsional angle may be followed by the permutation flag:

 ITOR=0 no permutation
 ITOR=1 assumes angles of 0 and 180
 ITOR=2 selects 60 , 180 and 300
 ITOR=3 selects 0 , 90 , 180 and 270
 ITOR=4 selects 0 , 45 , 90 , 135 and 180
 ITOR=5 selects 0 , 60 , 120 , 180 , 240 , 300 and 360
 ITOR=6 initiates a sequence of seven random values

Up to ten torsional angles may be varied in this way, evaluating all combinations of
their values. The value of the restriction flag NH in the options line determines whether
these values are fixed throughout the calculation, or treated only as starting points in a
free optimization.

NB: The actual permutation is carried out in a sequential calculation FORTRAN
fixed record format: (4I3,3F10.4,I2,8X,3I3)

Centre for Distance Education 4 Acharya Nagarjuna University

Integer numbers should be entered right justified, floating point numbers must
contain a decimal point. According to the FORTRAN standard, if a floating point number
is read without a decimal point, zeroes will be appended to it up to the end of the input
field before the decimal point is added ! This feature will almost certainly lead to
unexpected and sometimes spectacular results.

{Example :

benzene
 6 3 0 2 2.00 2 0 80 3 5 1 20 50 0
 6 1 0 0 0. 0. 0. 0 0 0 0
 6 1 0 0 1.4 0. 0. 0 0 0 0
 6 1 0 0 1.4 120. 0. 0 0 0 0
 6 1 0 0 1.4 120. 0. 0 3 2 1
 6 1 0 0 1.4 120. 0. 0 4 3 2
 6 1 0 0 1.4 120. 0. 0 5 4 3
 1 19 1. 120. 180. 1 2 3
 1 19 1. 120. 180. 2 3 4
 1 19 1. 120. 180. 3 4 5
 1 19 1. 120. 180. 4 5 6
 1 19 1. 120. 180. 5 6 1
 1 19 1. 120. 180. 6 1 2

P.G.D. in Bioinformatics 5 Internal and External Coordinate...

Fig 1: Coordinate Systems

2.2.4.3 Internal Coordinate Mechanics

What is ICM anyway? Does 'I' mean integrated or interactive? Does 'C' stand for
computational, coordinate or communication? Is 'M' method, modeling or molecules?
Actually, even though all the above translations are relevant, the original meaning was
the Internal Coordinate Mechanics because the program started in 1985 was aimed
at energy optimization of several biopolymers with respect to an arbitrary subset of
internal coordinates such as bond lengths, bond angles torsion angles and phase angles.
The efficient and general global optimization method which evolved from the original
ICM method is still the central piece of the program. It is this basic algorithm which is
used for peptide prediction, homology modeling and loop simulations, flexible
macromolecular docking and refinement. However the complexity of problems related to
structure prediction and analysis, as well as the desire for perfection, compactness and
consistency, lead to the program expansion into neighboring areas such as graphics,
chemistry, sequence analysis and database searches, mathematics, statistics and
plotting.

Centre for Distance Education 6 Acharya Nagarjuna University

The original meaning became too narrow, but the name sounded good and was kept.
The current integrated ICM shell contains hundreds of variables, functions, commands,
database and web tools, novel algorithms for structure prediction and analysis into a
powerful yet compact program which is still called ICM. The seven principal areas are
the following:

2.2.4.4 What can you do with ICM?

Let us go through the short overview of ICM applications.

Graphics

Simplified molecular representations are build automatically (e.g. the protein-dna
complex is shown with one command: nice "1dnk"). You can combine different types of
molecular representations with solid or wire geometrical objects. Molecular
representations include wire models, ball-and-stick models, ribbons, space filling
models, and skin representation.

The contour-buildup alrorithm calculates the smooth and accurate analytical
molecular surface in seconds! This surface can be saved as a geometrical object, saved
as a vectorized postscript file.

PDB entry: 101d.brk; ICM command: nice "101d"

P.G.D. in Bioinformatics 7 Internal and External Coordinate...

PDB entry: 4tna.brk; ICM commands:

nice "4tna"
color ribbon a_N/* Count(Nof(a_N/*))

Simulations

Take a peptide sequence and predict its three-dimensional structure. Of course, the
success is not guaranteed, especially if the peptide is longer than about 25 residues but
some prelimary tests are encouraging. You will also get a movie of your peptide folding
up. Just type the peptide sequence in the _folding file and go ahead.

ICM has a good record in building accurate models by homology. The procedure will
build the framework, shake up the side-chains and loops by global energy optimization.
You can also color the model by local reliability to identify the potentially wrong parts of
the model.

ICM was used to design two new 7 residue loops and in both cases the designs were
successful. Moreover, the predicted conformations turned out to be exactly right
(accuracy of 0.5A after the crystallographic structures of the designed proteins were
determined in Rik Wierenga's lab. Use the _loop script to predict loop conformations
and dsEnergyStrain to identify the strained parts of the design.

Sequence analysis

It looks like this:

Centre for Distance Education 8 Acharya Nagarjuna University

Here the color shows the local significance of the alignment. You can change the
method to calculate probability, color scheme and residue comparison matrices and
calculate it interactively of in batch.

Make a pairwise sequence alignment and evaluate the probability that the two
aligned sequences share the same structural fold. The alignment is performed with the
Needleman and Wunsch algorithm modified to allow zero gap-end penalties (so called
ZEGA alignment). The ZEGA probability is a more sensitive indicator of structural
significance than the BLAST P-value. The structural statistics was derived by Abagyan
and Batalov, 1997: read sequence s_icmhome + "sh3.seq" show Align(Fyn Spec) # the
probability will be shown

You can change residue comparison matrices, gap penalties and do many
alignments in batch.

Read any number of sequences in fasta or swissprot formats and automatically align
the sequences, interactively or in batch. It will look like this:

Consensus ...#.^.YD%..+~..-#~# K~-.#~##.~~..~WW.#. ~~.~G%#P.

Fyn ----VTLFVALYDYEARTEDDLSFHKGEKFQILNSSEGDWWEARSLTTGETGYIPS

Spec DETGKELVLALYDYQEKSPREVTMKKGDILTLLNSTNKDWWKVE--
VNDRQGFVP-

Eps8 KTQPKKYAKSKYDFVARNSSELSM-KDDVLELILDDRRQWWKVR---
NSGDGFVPN

P.G.D. in Bioinformatics 9 Internal and External Coordinate...

nID 7 Lmin 56 ID 11.5 %
#MATGAP gonnet 2.4 0.15
ICM commands:
read sequence s_icmhome + "sh3.seq"
group sequences sh3
align sh3
show sh3

The Win95/NT version of ICM also has a great interactive alignment editor with
dynamic coloring according to conservation. It will automatically show secondary

structure and other features.

Relationships between sequences can be presented in three forms:

 as evolutionary trees (ICM uses the neighbor-joining method for tree
construction);

 as 2D distribution of sequences using the two main principal axes (use
plot2Dseq macro);

 as 3D distribution. This can be analyzed in stereo using controls of
molecular graphics (use ds3D macro: ds3D Distance(alig) Name(alig)).

Centre for Distance Education 10 Acharya Nagarjuna University

Search your sequence interactively of in batch through any database and generate a
list of possible homologues which are sorted and evaluated by probability of structural
significance. The sensitive and rigorous ZEGA alignment is used for each comparison.
This search may give you more homologues that a BLAST search!

2.2.4.5 ICM consists of four separate modules:

The formal list of features is as follows:

ICM-main:

 shell for molecules, numbers, strings, vectors, matrices, tables, sequences,
alignments, profiles, maps
 ICM-language and macros
 graphics, stereo
 imaging and vectorized postscript
 animation and movies
 mathematics, statistics, plotting
 WEB: presentation of the results in the html form
 WEB: user-definition and automated interpretation of web links
 WEB: HTML-form-output interpretation
 molecular conferencing
 pairwise and multiple sequence alignments, evolutionary trees, clustering
 secondary structure prediction and assignment, property profiles, pattern
searching
 superpositions, structural alignment, Ramachandran plots
 protein quality check
 analytical molecular surface

P.G.D. in Bioinformatics 11 Internal and External Coordinate...

 calculations of surface areas and volumes
 cavity analysis
 symmetry operations, access to 230 groups
 database fragment search
 identification of common substructures in PDB
 read pdb, mol2, csd, build from sequence
 energy, solvation, MIMEL, side-chain entropies, soft van der Waals, tethers,
distance and angular restraints
 local minimization
 ab initio peptide structure prediction by the Biased Probability Monte Carlo
method
 loop simulations
 side-chain placement

ICM-REBEL

 electrostatic free energy calculated by the boundary element method
 coloring molecular surface by electrostatic potential
 binding energy (electrostatic solvation component)
 maps of electrostatic potential and its isopotential contours

ICM-dock
 indexing of chemical databases in SD, mol2 and csd format
 searching and extracting from the indexed databases
 fast grid potentials
 scripts for flexible ligand docking
 scripts for protein-protein docking
 SMILES
 refinement in full atom representation

ICM-bioinformatics
 database indexing and manipulations
 functions to evaluate sequence-structure similarity
 scripts to recognize remote similarities in the protein sequence and PDB
databases
 search a pattern through a database
 searching profiles and patterns from the Prosite database through a sequence
 HTML representation of the search results with interpretation of links
 interactive editor of sequence-structure alignment
 automated building of models by homology with loop sampling and side-chain
placement

As a method for structure prediction, ICM (internal coordinate mechanics) offers a
new efficient way of global energy optimization and versatile modeling operations on
arbitrarily fixed multimolecular systems. It is aimed at predicting large structural
rearrangements in biopolymers. The ICM-method uses a generalized description of
biomolecular structures in which bond lengths, bond angles, torsion and phase angles
are considered as independent variables. Any subset of those variables can be fixed.

Centre for Distance Education 12 Acharya Nagarjuna University

Rigid bodies formed after exclusion of some variables (i.e. all bond lengths, bond angles
and phase angles, or all the variables in a protein domain, etc.) can be treated efficiently
in energy calculations, since no interactions withing a rigid body are calculated.
Analytical energy derivatives are calculated to allow fast local minimization. To allow
large scale conformational sampling and powerful molecular manipulations ICM
employs a family of new global optimization techniques such as: Biased Probability
Monte Carlo (Abagyan and Totrov, 1994), pseudo-Brownian docking method (
Abagyan, Totrov and Kuznetsov, 1994) and local deformation loop movements Abagyan
and Mazur, 1989).

 A set of ECEPP/3 energy terms is complemented with solvation energy,
electrostatic polarization energy and side-chain entropic effects (Abagyan and
Totrov, 1994), making the total calculated energy a more realistic approximation of the
true free energy. Powerful molecular graphics, the ICM-command language, and a set of
structure manipulation tools and penalty functions (such as multidimensional variable
restraints, tethers, distance restraints) allow the user to address a wide variety of
problems concerning biomolecular structures.

Summary:
In the past ten years efficient algorithms have made computationally tractable the

use of internal coordinates in molecular dynamics simulations of systems of biological
interest (having more than say 100 atoms). Internal coordinates are an attractive
alternative to the Cartesian coordinates of each atom when particular degrees of
freedom are not of interest. For example, in the process of NMR structure determination
and refinement in which one seeks molecular structures consistent with experimental
NMR data, the bond lengths and bond angles are generally taken as fixed—and no
information about these features is generally available from the NMR experiments.

Model Questions:
1. What are internal coordinates and explain how they can help in structure

prediction of biomolecules?
2. What is ICM and explain its biological applications?

References:
1. Internal Coordinates for Molecular Dynamics and Minimization in Structure

Determination and Refinement, Journal of Magnetic Resonance 152, 288–302
(2001), Charles D. Schwieters

2. Abagyan, R.A., Frishman, D., and Argos, P. (1994). Recognition of distantly
related proteins through energy calculations. Proteins 19, 132-140.

 AUTHOR:

B.M.REDDY M.Tech. (HBTI, Kanpur)
Lecturer, Centre for Biotechnology

Acharya Nagarjuna University.

P.G.Diploma in Bioinformatics 1 Numerical Methods

Lesson 2.3.1

NUMERICAL METHODS

 Objective
 2.3.1.1 Introduction

2.3.1.2 Representation of Physical Phenomena
2.3.1.3 Basis of Numerical Methods
2.3.1.4 Errors and Their Propagation
2.3.1.5 Direct Methods for the Solution of Linear Algebraic Equations
2.3.1.6 Solution of Linear Equations by Iterative Methods
2.3.1.7 Numerical Differentiation
2.3.1.8 Numerical Evaluation of Integrals: Quadrature
2.3.1.9 The Numerical Integration of Differential Equations
2.3.1.10 The Numerical Solution of Integral Equations

Summary
 Model Questions
 References
Objective:

The objective of this lesson is to know the importance of numerical methods in the
exciting field biocomputing.

2.3.1.1 Introduction
The extreme speed of contemporary machines has tremendously expanded the scope of

numerical problems that may be considered as well as the manner in which such
computational problems may even be approached. However, this expansion of the degree
and type of problem that may be numerically solved has removed the scientist from the
details of the computation. For this, most would shout "Hooray"! But this removal of the
investigator from the details of computation may permit the propagation of errors of
various types to intrude and remain undetected. Modern computers will almost always
produce numbers, but whether they represent the solution to the problem or the result of
error propagation may not be obvious. This situation is made worse by the presence of
programs designed for the solution of broad classes of problems. Almost every class of
problems has its pathological example for which the standard techniques will fail.

Centre for Distance Education 2 Acharya Nagarjuna University

Generally little attention is paid to the recognition of these pathological cases which have
an uncomfortable habit of turning up when they are least expected.

The linear equations play an important role in transformation theory and that these
equations could be simply expressed in terms of matrices. However, this is only a small
segment of the importance of linear equations and matrix theory to the mathematical
description of the physical world. Thus we should begin our study of numerical methods
with a description of methods for manipulating matrices and solving systems of linear
equations. However, before we begin any discussion of numerical methods, we must say
something about the accuracy to which those calculations can be made.

2.3.1.2 Representation of Physical Phenomena
The historic representation of physical phenomena falls into two categories referred to

as discrete representation and continuous representation. Both ideas appear at about the
same time in the Aristotlean period of Greek science (approximately 300 BC). We can use
the following definitions to help us understand the means by which physicists develop
mental representations of natural phenonmena.

 Continuous phenomena are ones for which division into smaller and smaller
geometrical scale sizes does not alter its fundamental description.

 Discrete phenomena are ones for which division into smaller and smaller
goemetrical scale sizes does lead to a new fundamental description.

Using these definitions we can form a table characterizing both physical nature and
physical behavior of phenonmena.

Nature

Behavior

Disc
rete

Continu
ous

Discrete X X

Continu
ous X X

The point here is that computers because they are limited to a finite number of digits in
expressing a number thus represent the discrete and not the continuous which would
require the ability to represent any number no matter how many digits in its expression.
Thus when we do a numerical simulation of a continuous phenomena, we are
approximating its nature or its behavior. This approximation may be perfectly acceptable
for most purposes, but at some level of representing the infinitesimal it will become the
limiting factor.

P.G.Diploma in Bioinformatics 3 Numerical Methods

2.3.1.3 Basis of Numerical Methods
The basis of numerical methods is to devise means for approximating infinitesimal

processes by finite processes which generally involves the development of an
approximating function that can be used in the method in place of the actual function. The
exceptions to this idea are algebraic equations in which we are already dealing with finite
methods. When we approximate we introduce errors, and so the errors in numerical
methods are extremely important to consider.

Errors in Numerical Methods
There are two major sources of errors in numerical methods. The first is called

truncation error, while the second is known as round-off error.

Truncation error is caused by the approximations used in the discrete mathematical
equations used in a mathematical algorithm to approximate continuous operations. Taylor
series are one of the most important means used to derive numerical schemes for
computation and to analyze these truncation errors. For a discussion of a Taylor series as
an approximating device consult the document Taylor Series.

Round-off errors, on the other hand, are associated with the limited number of digits
that are used to represent numbers in a computer. To understand the way in which
round-off errors occur in computation, it is necessary to understand how numbers are
stored in a computer and how additions and subtractions are performed. For a discussion
of round-off errors consult the document Round-Off Error.

Numerical Analysis Topics
The following documents provide a discussion of the numerical techniques for handling

various mathematical topics. The discussions are fairly restricted in scope with links to
more advanced topics.

 Algebraic Equations

 Approximation

 Differential Calculus

 Integral Calculus

 Ordinary Differential Equations

Centre for Distance Education 4 Acharya Nagarjuna University

2.3.1.4 Errors and Their Propagation
One of the most reliable aspects of numerical analysis programs for the electronic

digital computer is that they almost always produce numbers. As a result of the
considerable reliability of the machines, it is common to regard the results of their
calculations with a certain air of infallibility. However, the results can be no better than the
method of analysis and implementation program utilized by the computer and these are
the works of highly fallible man. This is the origin of the aphorism "garbage in − garbage
out". Because of the large number of calculations carried out by these machines, small
errors at any given stage can rapidly propagate into large ones that destroy the validity of
the result.

We can divide computational errors into two general categories: the first of these we will
call round off error, and the second truncation error. Round off error is perhaps the more
insidious of the two and is always present at some level. Indeed, its omnipresence indicates
the first problem facing us. How accurate an answer do we require? Digital computers
utilize a certain number of digits in their calculations and this base number of digits is
known as the precision of the machine. Often it is possible to double or triple the number
of digits and hence the phrase "double" or "triple" precision is commonly used to describe a
calculation carried out using this expanded number of digits. It is a common practice to
use more digits than are justified by the problem simply to be sure that one has "got it
right". For the scientist, there is a subtle danger in this in that the temptation to publish
all the digits presented by the computer is usually overwhelming. Thus published articles
often contain numerical results consisting of many more decimal places than are justified
by the calculation or the physics that went into the problem. This can lead to some reader
unknowingly using the results at an unjustified level of precession thereby obtaining
meaningless conclusions. Certainly the full machine precession is never justified, as after
the first arithmetical calculation, there will usually be some uncertainty in the value of the
last digit. This is the result of the first kind of error we called round off error. As an
extreme example, consider a machine that keeps only one significant figure and the
exponent of the calculation so that 6+3 will yield 9×100. However, 6+4, 6+5, and 6+8 will
all yield the same answer namely 1×101. Since the machine only carries one digit, all the
other information will be lost. It is not immediately obvious what the result of 6+9, or 7+9
will be. If the result is 2×101, then the machine is said to round off the calculation to the
nearest significant digit. However, if the result remains 1×101, then the machine is said to
truncate the addition to the nearest significant digit. Which is actually done by the
computer will depend on both the physical architecture (hardware) of the machine and the
programs (software) which instruct it to carry out the operation. Should a human operator
be carrying out the calculation, it would usually be possible to see when this is happening
and allow for it by keeping additional significant figures, but this is generally not the case
with machines. Therefore, we must be careful about the propagation of round off error into
the final computational result. It is tempting to say that the above example is only for a 1-
digit machine and therefore unrealistic. However, consider the common 6-digit machine. It

P.G.Diploma in Bioinformatics 5 Numerical Methods

will be unable to distinguish between 1 million dollars and 1 million and nine dollars.
Subtraction of those two numbers would yield zero. This would be significant to any
accountant at a bank. Repeated operations of this sort can lead to a completely
meaningless result in the first digit.

This emphasizes the question of 'how accurate an answer do we need?'. For the
accountant, we clearly need enough digits to account for all the money at a level decided
by the bank. For example, the Internal Revenue Service allows taxpayers to round all
calculations to the nearest dollar. This sets a lower bound for the number of significant
digits. One's income usually sets the upper bound. In the physical world very few
constants of nature are known to more than four digits (the speed of light is a notable
exception). Thus the results of physical modeling are rarely important beyond four figures.
Again there are exceptions such as in null experiments, but in general, scientists should
not deceive themselves into believing their answers are better answers than they are.

How do we detect the effects of round off error? Entire studies have been devoted to this
subject by considering that round off errors occurs in basically a random fashion.
Although computers are basically deterministic (i.e. given the same initial state, the
computer will always arrive at the same answer), a large collection of arithmetic operations
can be considered as producing a random collection of round-ups and round-downs.
However, the number of digits that are affected will also be variable, and this makes the
problem far more difficult to study in general. Thus in practice, when the effects of round
off error are of great concern, the problem can be run in double precession. Should both
calculations yield the same result at the acceptable level of precession, then round off error
is probably not a problem. An additional "rule of thumb" for detecting the presence of
round off error is the appearance of a large number of zeros at the right-hand side of the
answers. Should the number of zeros depend on parameters of the problem that determine
the size or numerical extent of the problem, then one should be concerned about round off
error. Certainly one can think of exceptions to this rule, but in general, they are just that -
exceptions.

The second form of error we called truncation error and it should not be confused with
errors introduced by the "truncation" process that happens half the time in the case of
round off errors. This type of error results from the inability of the approximation method
to properly represent the solution to the problem. The magnitude of this kind of error
depends on both the nature of the problem and the type of approximation technique. For
example, consider a numerical approximation technique that will give exact answers
should the solution to the problem of interest be a polynomial (we shall show in chapter 3
that the majority of methods of numerical analysis are indeed of this form). Since the
solution is exact for polynomials, the extent that the correct solution differs from a
polynomial will yield an error. However, there are many different kinds of polynomials and
it may be that a polynomial of higher degree approximates the solution more accurately
than one of lower degree.

This provides a hint for the practical evaluation of truncation errors. If the calculation
is repeated at different levels of approximation (i.e. for approximation methods that are

Centre for Distance Education 6 Acharya Nagarjuna University

correct for different degree polynomials) and the answers change by an unacceptable
amount, then it is likely that the truncation error is larger than the acceptable amount.
There are formal ways of estimating the truncation error and some 'black-box' programs do
this. Indeed, there are general programs for finding the solutions to differential equations
that use estimates of the truncation error to adjust parameters of the solution process to
optimize efficiency. However, one should remember that these estimates are just that -
estimates subject to all the errors of calculation we have been discussing. It many cases
the correct calculation of the truncation error is a more formidable problem than the one of
interest. In general, it is useful for the analyst to have some prior knowledge of the
behavior of the solution to the problem of interest before attempting a detailed numerical
solution. Such knowledge will generally provide a 'feeling' for the form of the truncation
error and the extent to which a particular numerical technique will manage it.

We must keep in mind that both round-off and truncation errors will be present at
some level in any calculation and be wary lest they destroy the accuracy of the solution.
The acceptable level of accuracy is determined by the analyst and he must be careful not to
aim too high and carry out grossly inefficient calculations, or too low and obtain
meaningless results.

We now turn to the solution of linear algebraic equations and problems involving
matrices associated with those solutions. In general we can divide the approaches to the
solution of linear algebraic equations into two broad areas. The first of these involve
algorithms that lead directly to a solution of the problem after a finite number of steps
while the second class involves an initial "guess" which then is improved by a succession of
finite steps, each set of which we will call an iteration. If the process is applicable and
properly formulated, a finite number of iterations will lead to a solution.

2.3.1.5 Direct Methods for the Solution of Linear Algebraic Equations
In general, we may write a system of linear algebraic equations in the form

P.G.Diploma in Bioinformatics 7 Numerical Methods

which in vector notation is Here x is an n-dimensional vector the elements of which
represent the solution of the equations. _c is the constant vector of the system of equations
and A is the matrix of the system's coefficients.

We can write the solution to these equations as thereby reducing the solution of any
algebraic system of linear equations to finding the inverse of the coefficient matrix. We
shall spend some time describing a number of methods for doing just that. However, there
are a number of methods that enable one to find the solution without finding the inverse of
the matrix. Probably the best known of these is Cramer's Rule

a. Solution by Cramer's Rule
It is unfortunate that usually the only method for the solution of linear equations that
students remember from secondary education is Cramer's rule or expansion by minors. As
we shall see, this method is rather inefficient and relatively difficult to program for a
computer. However, as it forms sort of a standard by which other methods can by judged,
we will review it here. The more general definition is inductive so that the determinant of
the matrix A would be given by

Centre for Distance Education 8 Acharya Nagarjuna University

Here the summation may be taken over either i or j, or indeed, any monotonically
increasing sequence of both. The quantity M

ij
is the determinant of the matrix A with the

ith row and jth column removed and, with the sign carried by (-1)(i+j) is called the cofactor of
the minor element a

ij
. With all this terminology, we can simply write the determinant a

P.G.Diploma in Bioinformatics 9 Numerical Methods

By making use of theorems 2 and 7 in section 1.2, we can write the solution in terms of
the determinant of A as

Centre for Distance Education 10 Acharya Nagarjuna University

which means that the general solution of equation (2.2.1) is given by

This requires evaluating the determinant of the matrix A as well as an augmented

matrix where the jth column has been replaced by the elements of the constant vector c
i
.

Evaluation of the determinant of an n×n matrix requires about 3n2 operations and this
must be repeated for each unknown, thus solution by Cramer's rule will require at least
3n3 operations. In addition, to maintain accuracy, an optimum path through the matrix
(finding the least numerically sensitive cofactors) will require a significant amount of logic.
Thus, solution by Cramer's rule is not a particularly desirable approach to the numerical
solution of linear equations either for a computer or a hand calculation. Let us consider a
simpler algorithm, which forms the basis for one of the most reliable and stable direct
methods for the solution of linear equations. It also provides a method for the inversion of
matrices. Let begin by describing the method and then trying to understand why it works.

P.G.Diploma in Bioinformatics 11 Numerical Methods

2.3.1.6 Solution of Linear Equations by Iterative Methods
So far we have dealt with methods that will provide a solution to a set of linear

equations after a finite number of steps (generally of the order of n3). The accuracy of the
solution at the end of this sequence of steps is fixed by the nature of the equations and to
a lesser extent by the specific algorithm that is used. We will now consider a series of
algorithms that provide answers to a linear system of equations in considerably fewer
steps, but at a level of accuracy that will depend on the number of times the algorithm is
applied. Such methods are generally referred to as iterative methods and they usually
require of the order of n2 steps for each iteration. Clearly for very large systems of
equations, these methods may prove very much faster than direct methods providing they
converge quickly to an accurate solution.

a. Solution by the Gauss and Gauss-Seidel Iteration Methods
All iterative schemes begin by assuming that an approximate answer is known and

then the scheme proceeds to improve that answer. Thus we will have a solution vector that
is constantly changing from iteration to iteration. In general, we will denote this by a
superscript in parentheses so that x(i) will denote the value of x at the ith iteration.
Therefore in order to begin, we will need an initial value of the solution vector . The concept
of the Gauss iteration scheme is extremely simple. Take the system of linear equations as
expressed in equations (2.2.1) and solve each one for the diagonal value of x so that

Centre for Distance Education 12 Acharya Nagarjuna University

Now use the components of the initial value of on the right hand side of equation (2.3.1)

to obtain an improved value for the elements. This procedure can be repeated until a
solution of the desired accuracy is obtained. Thus the general iteration formula would have
the form

P.G.Diploma in Bioinformatics 13 Numerical Methods

It is clear, that should any of the diagonal elements be zero, there will be a problem

with the stability of the method. Thus the order in which the equations are arranged will
make a difference to in the manner in which this scheme proceeds. One might suppose
that the value of the initial guess might influence whether or not the method would find
the correct answer, but as we shall see in section 2.4 that is not the case. However, the
choice of the initial guess will determine the number of iterations required to arrive at an
acceptable answer.

The Gauss-Seidel scheme is an improvement on the basic method of Gauss. Let us
rewrite equations (2.3.1) as follows:

When using this as a basis for an iteration scheme, we can note that all the values of xj

in the first summation for the kth iteration will have been determined before the value of
xi(k) so that we could write the iteration scheme as

Here the improved values of x

i
are utilized as soon as they are obtained. As one might

expect, this can lead to a faster rate of convergence, but there can be a price for the
improved speed. The Gauss-Seidel scheme may not be as stable as the simple Gauss
method. In general, there seems to be a trade off between speed of convergence and the
stability of iteration schemes.

Indeed, if we were to apply either if the Gauss iterative methods to equations (2.2.13)
that served as an example for the direct method, we would find that the iterative solutions
would not converge. We shall see later (sections 2.3d and 2.4) that those equations fail to
satisfy the simple sufficient convergence criteria given in section 2.3d and the necessary
and sufficient condition of section 2.4. With that in mind, let us consider another 3×3
system of equations which does satisfy those conditions. These equations are much more
strongly diagonal than those of equation (2.2.13) so

Centre for Distance Education 14 Acharya Nagarjuna University

For these equations, the solution under the Gauss-iteration scheme represented by

equations (2.3.2) takes the form

However, if we were to solve equations (2.3.5) by means of the Gauss-Seidel method the

iterative equations for the solution would be

If we take the initial guess to be

then repetitive use of equations (2.3.6) and (2.3.7) yield the results given in Table 2.1.

P.G.Diploma in Bioinformatics 15 Numerical Methods

Table 2.1
Convergence of Gauss and Gauss-Seidel Iteration Schemes

Centre for Distance Education 16 Acharya Nagarjuna University

As is clear from the results labeled "G" in table 2.1, the Gauss-iteration scheme converges very

slowly. The correct solution which would eventually be obtained is

P.G.Diploma in Bioinformatics 17 Numerical Methods

There is a tendency for the solution to oscillate about the correct solution with the

amplitude slowly damping out toward convergence. However, the Gauss-Seidel iteration
method damps this oscillation very rapidly by employing the improved values of the
solution as soon as they are obtained. As a result, the Gauss-Seidel scheme has
converged on this problem in about 5 iterations while the straight Gauss scheme still
shows significant error after 10 iterations.

2.3.1.7 Numerical Differentiation
Compared with other subjects to be covered in the study of numerical methods, little

is usually taught about numerical differentiation. Perhaps that is because the processes
should be avoided whenever possible. The reason for this can be seen in the nature of
polynomials. As on interpolation, high degree polynomials tend to oscillate between the
points of constraint. Since the derivative of a polynomial is itself a polynomial, it too will
oscillate between the points of constraint, but perhaps not quite so wildly. To minimize
this oscillation, one must use low degree polynomials which then tend to reduce the
accuracy of the approximation. Another way to see the dangers of numerical
differentiation is to consider the nature of the operator itself.

2.3.1.8 Numerical Evaluation of Integrals: Quadrature
While the term quadrature is an old one, it is the correct term to use for describing

the numerical evaluation of integrals. The term numerical integration should be reserved
for describing the numerical solution of differential equations (see chapter 5). There is a
genuine necessity for the distinction because the very nature of the two problems is
quite different. Numerically evaluating an integral is a rather common and usually
stable task. One is basically assembling a single number from a series of independent
evaluations of a function. Unlike numerical differentiation, numerical quadrature tends
to average out random computational errors.

Because of the inherent stability of numerical quadrature, students are generally
taught only the simplest of techniques and thereby fail to learn the more sophisticated,
highly efficient techniques that can be so important when the integrand of the integral
is extremely complicated or occasionally the result of a separate lengthy study. Virtually
all numerical quadrature schemes are based on the notion of polynomial
approximation. Specifically, the quadrature scheme will give the exact value of the
integral if the integrand is a polynomial of some degree n. The scheme is then said to
have a degree of precision equal to n. In general, since a nth degree polynomial has n+1
linearly independent coefficients, a quadrature scheme will have to have n+1 adjustable
parameters in order to accurately represent the polynomial and its integral.
Occasionally, one comes across a quadrature scheme that has a degree of precision that
is greater than the number of adjustable parameters. Such a scheme is said to be
hyper-efficient and there are a number of such schemes known for multiple integrals.

2.3.1.9 The Numerical Integration of Differential Equations
When we speak of a differential equation, we simply mean any equation where the

dependent variable appears as well as one or more of its derivatives. The highest

Centre for Distance Education 18 Acharya Nagarjuna University

derivative that is present determines the order of the differential equation while the
highest power of the dependent variable or its derivative appearing in the equation sets
its degree. Theories which employ differential equations usually will not be limited to
single equations, but may include sets of simultaneous equations representing the
phenomena they describe. Thus, we must say something about the solutions of sets of
such equations. Indeed, changing a high order differential equation into a system of
first order differential equations is a standard approach to finding the solution to such
equations. Basically, one simply replaces the higher order terms with new variables and
includes the equations that define the new variables to form a set of first order
simultaneous differential equations that replace the original equation.

2.3.1.10 The Numerical Solution of Integral Equations
For reasons that I have never fully understood, the mathematical literature is

crowded with books, articles, and papers on the subject of differential equations. Most
universities have several courses of study in the subject, but little attention is paid to
the subject of integral equations. The differential operator is linear and so is the integral
operator. Indeed, one is just the inverse of the other. Equations can be written where
the dependent variable appears under an integral as well as alone. Such equations are
the analogue of the differential equations and are called integral equations. It is often
possible to turn a differential equation into an integral equation which may make the
problem easier to numerically solve. Indeed many physical phenomena lend themselves
to description by integral equations. So one would think that they might form as large
an area for analysis are do the differential equations. Such is not the case. Indeed, we
will not be able to devote as much time to the discussion of these interesting equations
as we should, but we shall spend enough time so that the student is at least familiar
with some of their basic properties. Of necessity, we will restrict our discussion to those
integral equations where the unknown appears linearly. Such linear equations are more
tractable and yet describe much that is of interest in science.

Summary:
The extreme speed of contemporary machines has tremendously expanded the scope

of numerical problems that may be considered as well as the manner in which such
computational problems may even be approached. However, this expansion of the
degree and type of problem that may be numerically solved has removed the scientist
from the details of the computation. For this, most would shout "Hooray"! But this
removal of the investigator from the details of computation may permit the propagation
of errors of various types to intrude and remain undetected. Modern computers will
almost always produce numbers, but whether they represent the solution to the
problem or the result of error propagation may not be obvious. This situation is made
worse by the presence of programs designed for the solution of broad classes of
problems. Almost every class of problems has its pathological example for which the
standard techniques will fail. Generally little attention is paid to the recognition of these
pathological cases which have an uncomfortable habit of turning up when they are least
expected.

Model Questions:
1. What are the applications of Numerical Methods?

2. Explain the errors of Numerical Methods and their propagation?

P.G.Diploma in Bioinformatics 19 Numerical Methods

References:
1. Fundamental Numerical Methods and Data Analysis by George W. Collins, II

2. Numerical Analysis Basics by J. C. Evans

AUTHOR:

B.M.REDDY M.Tech. (HBTI, Kanpur)

Lecturer, Centre for Biotechnology

Acharya Nagarjuna University.

P.G.D. in Bioinformatics 1 Optimization Techniques

Lesson 2.3.2

OPTIMIZATION TECHNIQUES

Objective
2.3.2.1 Introduction
2.3.2.2 Techniques
2.3.2.3 Use of Optimization Techniques
2.3.2.4 Nonlinearly Constrained QN Optimization
2.3.2.5 Optimization and Iteration History
2.3.2.6 Line-Search Methods
2.3.2.7 Restricting the Step Length
2.3.2.8 Techniques of global optimization

Summary
 Model Questions
 References

Objective: The objective of this lesson is to have an exposure of optimization and global
optimization techniques which have an application in structure prediction.

2.3.2.1 Introduction
In mathematics, the term optimization refers to the study of problems that have the

form
Given: a function f : A R from some set A to the real numbers

Sought: an element x0 in A such that f(x0) ≤ f(x) for all x in A ("minimization")
or such that f(x0) ≥ f(x) for all x in A ("maximization").

Such a formulation is sometimes called a mathematical program (a term not directly
related to computer programming, but still in use for example for linear programming).
Many real-world and theoretical problems may be modeled in this general framework.

Typically, A is some subset of the Euclidean space Rn, often specified by a set of
constraints, equalities or inequalities that the members of A have to satisfy. The
elements of A are called feasible solutions. The function f is called an objective function,
or cost function. A feasible solution that minimizes (or maximizes, if that is the goal) the
objective function is called an optimal solution.

In general, there will be several local minima and maxima, where a local minimum x*
is defined as a point such that for some δ > 0 and all x such that

;

the formula

Centre for Distance Education 2 Acharya Nagarjuna University

holds; that is to say, on some ball around x* all of the function values are greater
than or equal to the value at that point. Local maxima are defined similarly. In general,
it is easy to find local minima — additional facts about the problem (e.g. the function
being convex) are required to ensure that the solution found is a global minimum.

Notation

Optimization problems are often expressed with special notation. Here are some
examples:

This asks for the minimum value for the expression x2 + 1, where x ranges over the
real numbers R. The minimum value in this case is 1, occurring at x = 0.

This asks for the maximum value for the expression 2x, where x ranges over the
reals. In this case, there is no such maximum as the expression is unbounded, so the
answer is "infinity" or "undefined".

This asks for the value(s) of x in the interval [−∞, −1] which minimizes the expression
x2 + 1. (The actual minimum value of that expression does not matter.) In this case, the
answer is x = −1.

This asks for the (x, y) pair(s) that maximize the value of the expression x·cos(y),
with the added constraint that x lies in the interval [−5, 5]. (Again, the actual maximum
value of the expression does not matter.) In this case, the solutions are the pairs of the
form (5, 2πk) and (−5, (2k + 1)π), where k ranges over all integers.

2.3.2.2 Techniques

For twice-differentiable functions, unconstrained problems can be solved by finding
the points where the gradient of the objective function is 0 (that is, the stationary
points) and using the Hessian matrix to classify the type of each point. If the Hessian is
positive definite, the point is a local minimum, if negative definite, a local maximum,
and if indefinite it is some kind of saddle point.

One can find the stationary points by starting with a guess for a stationary point,
and then iterate towards it by using methods such as

P.G.D. in Bioinformatics 3 Optimization Techniques

 gradient descent
 Newton's method
 conjugate gradient
 line search

Should the objective function be convex over the region of interest, then any local
minimum will also be a global minimum. There exist robust, fast numerical techniques
for optimizing doubly differentiable convex functions.

Constrained problems can often be transformed into unconstrained problems with
the help of Lagrange multipliers.

2.3.2.3 Use of Optimization Techniques

No algorithm for optimizing general nonlinear functions exists that will always find
the global optimum for a general nonlinear minimization problem in a reasonable
amount of time. Since no single optimization technique is invariably superior to others,
PROC CALIS provides a variety of optimization techniques that work well in various
circumstances. However, you can devise problems for which none of the techniques in
PROC CALIS will find the correct solution. All optimization techniques in PROC CALIS
use O(n2) memory except the conjugate gradient methods, which use only O(n) of
memory and are designed to optimize problems with many parameters.

The PROC CALIS statement NLOPTIONS can be especially helpful for tuning
applications with nonlinear equality and inequality constraints on the parameter
estimates. Some of the options available in NLOPTIONS may also be invoked as PROC
CALIS options. The NLOPTIONS statement can specify almost the same options as the
SAS/OR NLP procedure.

Nonlinear optimization requires the repeated computation of

 the function value (optimization criterion)
 the gradient vector (first-order partial derivatives)
 for some techniques, the (approximate) Hessian matrix (second-order

partial derivatives)
 values of linear and nonlinear constraints
 the first-order partial derivatives (Jacobian) of nonlinear constraints

For the criteria used by PROC CALIS, computing the gradient takes more computer
time than computing the function value, and computing the Hessian takes much more
computer time and memory than computing the gradient, especially when there are
many parameters to estimate. Unfortunately, optimization techniques that do not use
the Hessian usually require many more iterations than techniques that do use the
(approximate) Hessian, and so they are often slower. Techniques that do not use the
Hessian also tend to be less reliable (for example, they may terminate at local rather
than global optima).

Centre for Distance Education 4 Acharya Nagarjuna University

Problems in rigid body dynamics (in particular articulated rigid body dynamics) often
require mathematical programming techniques, since you can view rigid body dynamics
as attempting to solve an ordinary differential equation on a constraint manifold; the
constraints are various nonlinear geometric constraints such as "these two points must
always coincide", "this surface must not penetrate any other", or "this point must
always lie somewhere on this curve". Also, the problem of computing contact forces can
be done by solving a linear complementarity problem, which can also be viewed as a QP
(quadratic programming problem).

Many design problems can also be expressed as optimization programs. This
application is called design optimization. One recent and growing subset of this field is
multidisciplinary design optimization, which, while useful in many problems, has in
particular been applied to aerospace engineering problems.

Another field that uses optimization techniques extensively is operations research

The available optimization techniques are displayed in Table 1 and can be chosen by
the TECH=name option.

Table1: Optimization Techniques

TECH
=

Optimization Technique

LEVM
AR

Levenberg-Marquardt Method

TRUR
EG

Trust-Region Method

NEW
RAP

Newton-Raphson Method with Line Search

NRRI
DG

Newton-Raphson Method with Ridging

QUAN
EW

Quasi-Newton Methods (DBFGS, DDFP, BFGS,
DFP)

DBLD
OG

Double-Dogleg Method (DBFGS, DDFP)

CON
GRA

Conjugate Gradient Methods (PB, FR, PR, CD)

Table shows, for each optimization technique, which derivatives are needed (first-
order or second-order) and what kind of constraints (boundary, linear, or nonlinear) can
be imposed on the parameters.

P.G.D. in Bioinformatics 5 Optimization Techniques

The Levenberg-Marquardt, trust-region, and Newton-Raphson techniques are
usually the most reliable, work well with boundary and general linear constraints, and
generally converge after a few iterations to a precise solution. However, these
techniques need to compute a Hessian matrix in each iteration. For HESSALG=1, this
means that you need about 4(n(n+1)/2)t bytes of work memory (n = the number of
manifest variables, t = the number of parameters to estimate) to store the Jacobian and
its cross product. With HESSALG=2 or HESSALG=3, you do not need this work
memory, but the use of a utility file increases execution time. Computing the
approximate Hessian in each iteration can be very time- and memory-consuming,
especially for large problems (more than 60 or 100 parameters, depending on the
computer used). For large problems, a quasi-Newton technique, especially with the
BFGS update, can be far more efficient.

For a poor choice of initial values, the Levenberg-Marquardt method seems to be
more reliable.

If memory problems occur, you can use one of the conjugate gradient techniques,
but they are generally slower and less reliable than the methods that use second-order
information.

There are several options to control the optimization process. First of all, you can
specify various termination criteria. You can specify the GCONV= option to specify a
relative gradient termination criterion. If there are active boundary constraints, only
those gradient components that correspond to inactive constraints contribute to the
criterion. When you want very precise parameter estimates, the GCONV= option is
useful. Other criteria that use relative changes in function values or parameter
estimates in consecutive iterations can lead to early termination when active
constraints cause small steps to occur. The small default value for the FCONV= option
helps prevent early termination. Using the MAXITER= and MAXFUNC= options enables
you to specify the maximum number of iterations and function calls in the optimization
process. These limits are especially useful in combination with the INRAM= and
OUTRAM= options; you can run a few iterations at a time, inspect the results, and
decide whether to continue iterating.

2.3.2.4 Nonlinearly Constrained QN Optimization

The algorithm used for nonlinearly constrained quasi-Newton optimization is an
efficient modification of Powell's Variable Metric Constrained WatchDog (VMCWD)
algorithm. A similar but older algorithm (VF02AD) is part of the Harwell library. Both
VMCWD and VF02AD use Fletcher's VE02AD algorithm (also part of the Harwell library)
for positive definite quadratic programming. The PROC CALIS QUANEW implementation
uses a quadratic programming subroutine that updates and downdates the
approximation of the Cholesky factor when the active set changes. The nonlinear
QUANEW algorithm is not a feasible point algorithm, and the value of the objective
function need not decrease (minimization) or increase (maximization) monotonically.
Instead, the algorithm tries to reduce a linear combination of the objective function and
constraint violations, called the merit function.

Centre for Distance Education 6 Acharya Nagarjuna University

The following are similarities and differences between this algorithm and VMCWD:

 A modification of this algorithm can be performed by specifying

VERSION=1, which replaces the update of the Lagrange vector with the original
update of Powell, which is used in VF02AD. This can be helpful for some
applications with linearly dependent active constraints.

 If the VERSION= option is not specified or VERSION=2 is specified, the

evaluation of the Lagrange vector is performed in the same way as Powell
describes.

 Instead of updating an approximate Hessian matrix, this algorithm uses
the dual BFGS (or DFP) update that updates the Cholesky factor of an
approximate Hessian. If the condition of the updated matrix gets too bad, a
restart is done with a positive diagonal matrix. At the end of the first iteration
after each restart, the Cholesky factor is scaled.

 The Cholesky factor is loaded into the quadratic programming subroutine,
automatically ensuring positive definiteness of the problem. During the quadratic
programming step, the Cholesky factor of the projected Hessian matrix Z'kGZk
and the QT decomposition are updated simultaneously when the active set
changes. Refer to Gill et al. (1984) for more information.

 The line-search strategy is very similar to that of Powell. However, this
algorithm does not call for derivatives during the line search; hence, it generally
needs fewer derivative calls than function calls. The VMCWD algorithm always
requires the same number of derivative and function calls. It was also found in
several applications of VMCWD that Powell's line-search method sometimes uses
steps that are too long during the first iterations. In those cases, you can use the
INSTEP= option specification to restrict the step length of the first iterations.

 Also the watchdog strategy is similar to that of Powell (1982a, 1982b).
However, this algorithm doesn't return automatically after a fixed number of
iterations to a former better point. A return here is further delayed if the
observed function reduction is close to the expected function reduction of the
quadratic model.

 Although Powell's termination criterion still is used (as FCONV2), the
QUANEW implementation uses two additional termination criteria (GCONV and
ABSGCONV).

This algorithm is automatically invoked when you specify the NLINCON statement.
The nonlinear QUANEW algorithm needs the Jacobian matrix of the first-order
derivatives (constraints normals) of the constraints

P.G.D. in Bioinformatics 7 Optimization Techniques

where nc is the number of nonlinear constraints for a given point x.

You can specify two update formulas with the UPDATE= option:

 UPDATE=DBFGS performs the dual BFGS update of the Cholesky factor of
the Hessian matrix. This is the default.

 UPDATE=DDFP performs the dual DFP update of the Cholesky factor of
the Hessian matrix.

This algorithm uses its own line-search technique. All options and parameters
(except the INSTEP= option) controlling the line search in the other algorithms do not
apply here. In several applications, large steps in the first iterations are troublesome.
You can specify the INSTEP= option to impose an upper bound for the step size
during the first five iterations. The values of the LCSINGULAR=, LCEPSILON=, and
LCDEACT= options, which control the processing of linear and boundary constraints,
are valid only for the quadratic programming subroutine used in each iteration of the
nonlinear constraints QUANEW algorithm.

2.3.2.5 Optimization and Iteration History

The optimization and iteration histories are displayed by default because it is
important to check for possible convergence problems.

The optimization history includes the following summary of information about the
initial state of the optimization.

 the number of constraints that are active at the starting point, or more
precisely, the number of constraints that are currently members of the working
set. If this number is followed by a plus sign, there are more active constraints,
of which at least one is temporarily released from the working set due to negative
Lagrange multipliers.

 the value of the objective function at the starting point
 if the (projected) gradient is available, the value of the largest absolute

(projected) gradient element
 for the TRUREG and LEVMAR subroutines, the initial radius of the trust

region around the starting point

The optimization history ends with some information concerning the optimization
result:

 the number of constraints that are active at the final point, or more
precisely, the number of constraints that are currently members of the working
set. If this number is followed by a plus sign, there are more active constraints,
of which at least one is temporarily released from the working set due to negative
Lagrange multipliers.

 the value of the objective function at the final point

Centre for Distance Education 8 Acharya Nagarjuna University

 if the (projected) gradient is available, the value of the largest absolute
(projected) gradient element

 other information specific to the optimization technique

The iteration history generally consists of one line of displayed output containing the
most important information for each iteration. The _LIST_ variable (see the "SAS
Program Statements" section) also enables you to display the parameter estimates and
the gradient in some or all iterations.

The iteration history always includes the following (the words in parentheses are the
column header output):

 the iteration number (Iter)
 the number of iteration restarts (rest)
 the number of function calls (nfun)
 the number of active constraints (act)
 the value of the optimization criterion (optcrit)
 the difference between adjacent function values (difcrit)
 the maximum of the absolute gradient components corresponding to

inactive boundary constraints (maxgrad)

An apostrophe trailing the number of active constraints indicates that at least one of
the active constraints is released from the active set due to a significant Lagrange
multiplier.

For the Levenberg-Marquardt technique (LEVMAR), the iteration history also
includes the following information:

 An asterisk trailing the iteration number means that the computed
Hessian approximation is singular and consequently ridged with a positive
lambda value. If all or the last several iterations show a singular Hessian
approximation, the problem is not sufficiently identified. Thus, there are other
locally optimal solutions that lead to the same optimum function value for
different parameter values. This implies that standard errors for the parameter
estimates are not computable without the addition of further constraints.

 the value of the Lagrange multiplier (lambda); this is 0 if the optimum of
the quadratic function approximation is inside the trust region (a trust-region-
scaled Newton step can be performed) and is greater than 0 when the optimum of
the quadratic function approximation is located at the boundary of the trust
region (the scaled Newton step is too long to fit in the trust region and a
quadratic constraint optimization is performed). Large values indicate
optimization difficulties. For a nonsingular Hessian matrix, the value of lambda
should go to 0 during the last iterations, indicating that the objective function
can be well approximated by a quadratic function in a small neighborhood of the
optimum point. An increasing lambda value often indicates problems in the
optimization process.

P.G.D. in Bioinformatics 9 Optimization Techniques

 the value of the ratio (rho) between the actually achieved difference in
function values and the predicted difference in the function values on the basis
of the quadratic function approximation. Values much less than 1 indicate

optimization difficulties. The value of the ratio indicates the goodness of the

quadratic function approximation; in other words, means that the radius

of the trust region has to be reduced. A fairly large value of means that the
radius of the trust region need not be changed. And a value close to or larger
than 1 means that the radius can be increased, indicating a good quadratic
function approximation.

For the Newton-Raphson technique (NRRIDG), the iteration history also includes the
following information:

 the value of the ridge parameter. This is 0 when a Newton step can be
performed, and it is greater than 0 when either the Hessian approximation is
singular or a Newton step fails to reduce the optimization criterion. Large values
indicate optimization difficulties.

 the value of the ratio (rho) between the actually achieved difference in
function values and the predicted difference in the function values on the basis
of the quadratic function approximation. Values much less than 1.0 indicate
optimization difficulties.

For the Newton-Raphson with line-search technique (NEWRAP), the iteration history
also includes

 the step size (alpha) computed with one of the line-search algorithms
 the slope of the search direction at the current parameter iterate. For

minimization, this value should be significantly negative. Otherwise, the line-
search algorithm has difficulty reducing the function value sufficiently.

For the Trust-Region technique (TRUREG), the iteration history also includes the
following information:

 An asterisk after the iteration number means that the computed Hessian
approximation is singular and consequently ridged with a positive lambda value.

 the value of the Lagrange multiplier (lambda). This value is zero when the
optimum of the quadratic function approximation is inside the trust region (a
trust-region-scaled Newton step can be performed) and is greater than zero when
the optimum of the quadratic function approximation is located at the boundary
of the trust region (the scaled Newton step is too long to fit in the trust region
and a quadratically constrained optimization is performed). Large values indicate
optimization difficulties. As in Gay (1983), a negative lambda value indicates the

Centre for Distance Education 10 Acharya Nagarjuna University

special case of an indefinite Hessian matrix (the smallest eigenvalue is negative
in minimization).

 the value of the radius of the trust region. Small trust region radius
values combined with large lambda values in subsequent iterations indicate
optimization problems.

For the quasi-Newton (QUANEW) and conjugate gradient (CONGRA) techniques, the
iteration history also includes the following information:

 the step size (alpha) computed with one of the line-search algorithms
 the descent of the search direction at the current parameter iterate. This

value should be significantly smaller than 0. Otherwise, the line-search algorithm
has difficulty reducing the function value sufficiently.

Frequent update restarts (rest) of a quasi-Newton algorithm often indicate numerical
problems related to required properties of the approximate Hessian update, and they
decrease the speed of convergence. This can happen particularly if the ABSGCONV=
termination criterion is too small, that is, when the requested precision cannot be
obtained by quasi-Newton optimization. Generally, the number of automatic restarts
used by conjugate gradient methods are much higher.

For the nonlinearly constrained quasi-Newton technique, the iteration history also
includes the following information:

 the maximum value of all constraint violations,

 the value of the predicted function reduction used with the GCONV and
FCONV2 termination criteria,

 the step size of the quasi-Newton step. Note that this algorithm works
with a special line-search algorithm.

 the maximum element of the gradient of the Lagrange function,

P.G.D. in Bioinformatics 11 Optimization Techniques

For the double dogleg technique, the iteration history also includes the following
information:

 the parameter of the double-dogleg step. A value corresponds to
the full (quasi) Newton step.

 the slope of the search direction at the current parameter iterate. For
minimization, this value should be significantly negative.

2.3.2.6 Line-Search Methods

In each iteration k, the (dual) quasi-Newton, hybrid quasi-Newton, conjugate
gradient, and Newton-Raphson minimization techniques use iterative line-search
algorithms that try to optimize a linear, quadratic, or cubic approximation of the
nonlinear objective function f of n parameters x along a feasible descent search
direction s(k)

by computing an approximately optimal scalar .Since the outside iteration
process is based only on the approximation of the objective function, the inside iteration
of the line-search algorithm does not have to be perfect. Usually, it is satisfactory that
the choice of significantly reduces (in a minimization) the objective function. Criteria
often used for termination of line-search algorithms are the Goldstein conditions
(Fletcher 1987).

Various line-search algorithms can be selected by using the LIS= option. The line-
search methods LIS=1, LIS=2, and LIS=3 satisfy the left-hand-side and right-hand-side
Goldstein conditions (refer to Fletcher 1987). When derivatives are available, the line-
search methods LIS=6, LIS=7, and LIS=8 try to satisfy the right-hand-side Goldstein
condition; if derivatives are not available, these line-search algorithms use only function
calls.

Centre for Distance Education 12 Acharya Nagarjuna University

The line-search method LIS=2 seems to be superior when function evaluation
consumes significantly less computation time than gradient evaluation. Therefore,
LIS=2 is the default value for Newton-Raphson, (dual) quasi-Newton, and conjugate
gradient optimizations.

2.3.2.7 Restricting the Step Length

Almost all line-search algorithms use iterative extrapolation techniques that can
easily lead to feasible points where the objective function f is no longer defined
(resulting in indefinite matrices for ML estimation) or is difficult to compute (resulting in
floating point overflows). Therefore, PROC CALIS provides options that restrict the step
length or trust region radius, especially during the first main iterations.

The inner product g's of the gradient g and the search direction s is the slope of

along the search direction s with step length . The default starting

value in each line-search algorithm ()during the main
iteration k is computed in three steps.

1. Use either the difference df=|f(k) - f(k-1)| of the function values during the
last two consecutive iterations or the final stepsize value of the previous

iteration k-1 to compute a first value .
o Using the DAMPSTEP<=r> option:

The initial value for the new step length can be no larger than r times
the final step length of the previous iteration. The default is r=2.

o Not using the DAMPSTEP option:

with

P.G.D. in Bioinformatics 13 Optimization Techniques

This value of can be too large and can lead to a difficult or
impossible function evaluation, especially for highly nonlinear functions
such as the EXP function.

2. During the first five iterations, the second step enables you to reduce

to a smaller starting value using the INSTEP=r option:

After more than five iterations, is set to .

3. The third step can further reduce the step length by

where u is the maximum length of a step inside the feasible region.

The INSTEP=r option lets you specify a smaller or larger radius of the trust region
used in the first iteration by the trust-region, double-dogleg, and Levenberg-Marquardt
algorithm. The default initial trust region radius is the length of the scaled gradient

(Mor 1978). This step corresponds to the default radius factor of r=1. This choice is
successful in most practical applications of the TRUREG, DBLDOG, and LEVMAR
algorithms. However, for bad initial values used in the analysis of a covariance matrix
with high variances, or for highly nonlinear constraints (such as using the EXP
function) in your programming code, the default start radius can result in arithmetic

Centre for Distance Education 14 Acharya Nagarjuna University

overflows. If this happens, you can try decreasing values of INSTEP=r, 0 < r < 1, until
the iteration starts successfully. A small factor r also affects the trust region radius of

the next steps because the radius is changed in each iteration by a factor

depending on the ratio. Reducing the radius corresponds to increasing the ridge
parameter that produces smaller steps directed closer toward the gradient direction.

2.3.2.8 Techniques of global optimization

Global Optimisation (GO) problems involving a given cost function arise in many
areas of technology, industry, as well as in natural, economical and social sciences,
having received enormous attention in recent years, mostly due to the enormous
increase in computational power which has taken place in the last decade.

The figure below provides a trivial two-dimensional example of the optimization
paradigm, where one wants to find the value of the coordinates (x,y) for which C(x,y) has
its absolute minimum - notice that the figure shows only a portion of the total domain
of C(x,y); the sphere symbolizes a molecule the energy of which changes as the
coordinates (x,y) change.

As the number of independent variables of the cost function increases, the number
of minima tends to increase exponentially. As such, global optimization problems are
typical examples of NP-complete problems, that is, problems considered generally
intractable.

For a large number of independent variables, and for the most general forms of the
cost-function, Simulated Annealing (SA) constitutes one of the simplest yet powerful
methods to perform GO. However, it is well known that SA requires many evaluations of

P.G.D. in Bioinformatics 15 Optimization Techniques

the cost-function in order to provide reliable results, a feature which becomes
prohibitively expensive whenever the computation of the cost-function is itself
expensive, as happens too frequently.

In this project new approaches are studied and developed along two main lines of
research:

 methods that do not require computation of the derivatives of the cost-
function, such as Jump Annealing (JA) - which constitutes a very efficient
improvement of the original SA - as well as more involved techniques, such as
Genetic Algorithms, Memetic Algoithms, Differential Evolution, etc.

 methods which make explicit use of the multi-dimensional gradients of the
cost-function, and which i) either do not involve modifications of the cost
function, such as modified conjugate-gradient techniques, ii) or which map the
cost-function in more convenient topologically derived functions, such as TRUST.

Summary:

In typical engineering processes, often there are complicated constraints and the
objective function is not easy to calculate. This makes the selection and systematic
application of suitable optimization techniques a critical task, which is the thrust of our
research in this area.

Sometimes the evaluation of the objective function in practical engineering problems
may require a significant amount of computational time and resources. Building an
approximate response surface for the objective function and using this response surface
for optimization is an efficient alternative.

Model Questions:

1. What is optimization and its uses?
2. Briefly explain the various techniques of optimization?

References:

1. Basic Optimization Techniques By Jim Hedger
2. Homotopy Optimization Methods and Protein Structure Prediction by Daniel M.

Dunlavy

 AUTHOR:

B.M.REDDY M.Tech. (HBTI, Kanpur)
Lecturer, Centre for Biotechnology

Acharya Nagarjuna University.

P.G.D. in Bioinformatics 1 Construction of Models for the Real....

Lessons 2.3.3

CONSTRUCTION OF MODELS FOR THE REAL PHYSICAL
PROCESSES

 Objective

2.3.3.1 Introduction
2.3.3.2 Typical Tasks in the Development Process Life Cycle
2.3.3.3 Ad-hoc Development
2.3.3.4 The Waterfall Model
2.2.3.5 Iterative Development
2.3.3.6 Prototyping
2.2.3.7 The Exploratory Model
2.3.3.8 The Spiral Model
2.3.3.9 The Reuse Model
2.3.3.10 Creating and Combining Models

Summary

 Model Questions
 References

Objective:

This topic provides an overview of the more common system development Process
Models, used to guide the analysis, design, development, maintenance of information
systems, and errors (problems) involved in them.

2.3.3.1 Introduction
This topic provides an overview of the more common system development Process

Models, used to guide the analysis, design, development, and maintenance of
information systems. There are many different methods and techniques used to direct
the life cycle of a software development project and most real-world models are
customized adaptations of the generic models. While each is designed for a specific
purpose or reason, most have similar goals and share many common tasks.

2.3.3.2 Typical Tasks in the Development Process Life Cycle
Professional system developers and the customers they serve share a common goal

of building information systems that effectively support business process objectives. In
order to ensure that cost-effective, quality systems are developed which address an
organization’s business needs, developers employ some kind of system development

Centre for Distance Education 2 Acharya Nagarjuna University

Process Model to direct the project’s life cycle. Typical activities performed include the
following:

 System conceptualization
 System requirements and benefits analysis
 Project adoption and project scoping
 System design
 Specification of software requirements
 Architectural design
 Detailed design
 Unit development
 Software integration & testing
 System integration & testing
 Installation at site
 Site testing and acceptance
 Training and documentation
 Implementation
 Maintenance

Process Model/Life-Cycle Variations
While nearly all system development efforts engage in some combination of the

above tasks, they can be differentiated by the feedback and control methods employed
during development and the timing of activities. Most system development Process
Models in use today have evolved from three primary approaches: Ad-hoc Development,
Waterfall Model, and the Iterative process.

2.3.3.3 Ad-hoc Development
Early systems development often took place in a rather chaotic and haphazard

manner, relying entirely on the skills and experience of the individual staff members
performing the work. Today, many organizations still practice Ad-hoc Development
either entirely or for a certain subset of their development (e.g. small projects). The
Software Engineering Institute at Carnegie Mellon University2 points out that with Ad-
hoc

Process Models, “process capability is unpredictable because the software process is
constantly changed or modified as the work progresses. Schedules, budgets,
functionality, and product quality are generally (inconsistent). Performance depends on
the capabilities of individuals and varies with their innate skills, knowledge, and
motivations. There are few stable software processes in evidence, and performance can
be predicted only by individual rather than organizational capability.” 3

P.G.D. in Bioinformatics 3 Construction of Models for the Real....

Figure 1. Ad-hoc Development
“Even in undisciplined organizations, however, some individual software projects

produce excellent results. When such projects succeed, it is generally through the
heroic efforts of a dedicated team, rather than through repeating the proven methods of
an organization with a mature software process. In the absence of an organization-wide
software process, repeating results depends entirely on having the same individuals
available for the next project. Success that rests solely on the availability of specific
individuals provides no basis for long-term productivity and quality improvement
throughout an organization.”4

2.3.3.4 The Waterfall Model
The Waterfall Model is the earliest method of structured system development.

Although it has come under attack in recent years for being too rigid and unrealistic
when it comes to quickly meeting customer’s needs, the Waterfall Model is still widely
used. It is attributed with providing the theoretical basis for other Process Models,
because it most closely resembles a “generic” model for software development.

Feedback & Error Correction

Figure 2. Waterfall Model
The Waterfall Model consists of the following steps:

System Conceptualization. System Conceptualization refers to the consideration
of all aspects of the targeted business function or process, with the goals of determining

Centre for Distance Education 4 Acharya Nagarjuna University

how each of those aspects relates with one another, and which aspects will be
incorporated into the system.

Systems Analysis. This step refers to the gathering of system requirements, with
the goal of determining how these requirements will be accommodated in the system.
Extensive communication between the customer and the developer is essential.

System Design. Once the requirements have been collected and analyzed, it is
necessary to identify in detail how the system will be constructed to perform necessary
tasks. More specifically, the System Design phase is focused on the data requirements
(what information will be processed in the system?), the software construction (how will
the application be constructed?), and the interface construction (what will the system
look like? What standards will be followed?).

Coding. Also known as programming, this step involves the creation of the system
software. Requirements and systems specifications from the System Design step are
translated into machine readable computer code.

Testing. As the software is created and add d to the developing system, testing is
performed to ensure that it is working correctly and efficiently. Testing is generally
focused on two areas: internal efficiency and external effectiveness. The goal of external
effectiveness testing is to verify that the software is functioning according to system
design, and that it is performing all necessary functions or sub-functions. The goal of
internal testing is to make sure that the computer code is efficient, standardized, and
well documented. Testing can be a labor-intensive process, due to its iterative nature.

2.2.3.5 Iterative Development
The problems with the Waterfall Model created a demand for a new method of

developing systems which could provide faster results, require less up-front
information, and offer greater flexibility. With Iterative Development, the project is
divided into small parts. This allows the development team to demonstrate results
earlier on in the process and obtain valuable feedback from system users. Often, each
iteration is actually a mini-Waterfall process with the feedback from one phase
providing vital information for the design of the next phase. In a variation of this model,
the software products which are produced at the end of each step (or series of steps)
can go into production immediately as incremental releases.

P.G.D. in Bioinformatics 5 Construction of Models for the Real....

Figure 3. Iterative Development
Variations on Iterative Development
A number of Process Models have evolved from the Iterative approach. All of these

methods produce some demonstrable software product early on in the process in order
to obtain valuable feedback from system users or other members of the project team.
Several of these methods are described below.

2.3.3.6 Prototyping
The Prototyping Model was developed on the assumption that it is often difficult to

know all of your requirements at the beginning of a project. Typically, users know many
of the objectives that they wish to address with a system, but they do not know all the
nuances of the data, nor do they know the details of the system features and
capabilities. The Prototyping Model allows for these conditions, and offers a development
approach that yields results without first requiring all information up-front . When
using the Prototyping Model, the developer builds a simplified version of the proposed
system and presents it to the customer for consideration as part of the development
process. The customer in turn provides feedback to the developer, who goes back to
refine the system requirements to incorporate the additional information. Often, the
prototype code is thrown away and entirely new programs are developed once
requirements are identified. There are a few different approaches that may be followed
when using the Prototyping Model:

creation of the major user interfaces without any substantive coding in the
background in order to give the users a “feel” for what the system will look like,

Centre for Distance Education 6 Acharya Nagarjuna University

development of an abbreviated version of the system that performs a limited
subset of functions; development of a paper system (depicting proposed screens,
reports, relationships etc.), or

use of an existing system or system components to demonstrate some functions
that will be included in the developed system.

Prototyping is comprised of the following steps:

Requirements Definition/Collection. Similar to the Conceptualization phase of
the Waterfall Model, but not as comprehensive. The information collected is usually
limited to a subset of the complete system requirements.

Design. Once the initial layer of requirements information is collected, or new
information is gathered, it is rapidly integrated into a new or existing design so that it
may be folded into the prototype.

Prototype Creation/Modification. The information from the design is rapidly
rolled into a prototype. This may mean the creation/modification of paper information,
new coding, or modifications to existing coding.

Assessment. The prototype is presented to the customer for review. Comments
and suggestions are collected from the customer.

Prototype Refinement. Information collected from the customer is digested and
the prototype is refined. The developer revises the prototype to make it more effective
and efficient.

System Implementation. In most cases, the system is rewritten once
requirements are understood. Sometimes, the Iterative process eventually produces a
working system that can be the cornserstone for the fully functional system.

Variation of the Prototyping Model
A popular variation of the Prototyping Model is called Rapid Application

Development (RAD).
RAD introduces strict time limits on each development phase and relies heavily on

rapid application tools which allow for quick development.

2.2.3.7 The Exploratory Model
In some situations it is very difficult, if not impossible, to identify any of the

requirements for a system at the beginning of the project. Theoretical areas such as
Artificial Intelligence are candidates for using the Exploratory Model, because much of
the research in these areas is based on guess-work, estimation, and hypothesis. In
these cases, an assumption is made as to how the system might work and then rapid
iterations are used to quickly incorporate suggested changes and build a usable system.
A distinguishing characteristic of the Exploratory Model is the absence of precise
specifications. Validation is based on adequacy of the end result and not on its
adherence to pre-conceived requirements.The Exploratory Model is extremely simple in
its construction; it is composed of the following steps:

P.G.D. in Bioinformatics 7 Construction of Models for the Real....

Initial Specification Development. Using whatever information is immediately
available, a brief System Specification is created to provide a rudimentary starting
point.

System Construction/Modification. A system is created and/or modified
according to whatever information is available.

System Test. The system is tested to see what it does, what can be learned from
it, and how it may be improved.

System Implementation. After many iterations of the previous two steps
produce satisfactory results, the system is dubbed as “finished” and implemented.

2.3.3.8 The Spiral Model
The Spiral Model was designed to include the best features from the Waterfall and

Prototyping Models, and introduces a new component - risk-assessment. The term
“spiral” is used to describe the process that is followed as the development of the
system takes place. Similar to the Prototyping Model, an initial version of the system is
developed, and then repetitively modified based on input received from customer
evaluations. Unlike the Prototyping Model, however, the development of each version of
the system is carefully designed using the steps involved in the

Waterfall Model. With each iteration around the spiral (beginning at the center and
working outward), progressively more complete versions of the system are built.

Figure 4. Spiral Model
Risk assessment is included as a step in the development process as a means of

evaluating each version of the system to determine whether or not development should
continue. If the customer decides that any identified risks are too great, the project
may be halted. For example, if a substantial increase in cost or project completion time
is identified during one phase of risk assessment, the customer or the developer may
decide that it does not make sense to continue with the project, since the increased cost
or lengthened timeframe may make continuation of the project impractical or
unfeasible.

The Spiral Model is made up of the following steps:

Centre for Distance Education 8 Acharya Nagarjuna University

Project Objectives. Similar to the system conception phase of the Waterfall
Model. Objectives are determined, possible obstacles are identified and alternative
approaches are weighed.

Risk Assessment. Possible alternatives are examined by the developer, and
associated risks/problems are identified. Resolutions of the risks are evaluated and
weighed in the consideration of project continuation. Sometimes prototyping is used to
clarify needs.

Engineering & Production. Detailed requirements are determined and the
software piece is developed.

Planning and Management. The customer is given an opportunity to analyze the
results of the version created in the Engineering step and to offer feedback to the
developer.

2.3.3.9 The Reuse Model
The basic premise behind the Reuse Model is that systems should be built using

existing components, as opposed to custom-building new components. The Reuse Model
is clearly suited to Object-Oriented computing environments, which have become one of
the premiere technologies in today’s system development industry. Within the Reuse
Model, libraries of software modules are maintained that can be copied for use in any
system. These components are of two types: procedural modules and database modules.
When building a new system, the developer will “borrow” a copy of a module from the
systemlibrary and then plug it into a function or procedure. If the needed module is not
available, the developer will build it, and store a copy in the system library for future
usage. If the modules are well engineered, the developer with minimal changes can
implement them.

The Reuse Model consists of the following steps:

Definition of Requirements. Initial system requirements are collected. These
requirements are usually a subset of complete system requirements.

Definition of Objects. The objects, which can support the necessary system
components, are identified.

Collection of Objects. The system libraries are scanned to determine whether or
not the needed objects are available. Copies of the needed objects are downloaded from
the system.

Creation of Customized Objects. Objects that have been identified as needed,
but that are not available in the library are created.

Prototype Assembly. A prototype version of the system is created and/or
modified using the necessary objects.

Prototype Evaluation. The prototype is evaluated to determine if it adequately
addresses customer needs and requirements.

Requirements Refinement. Requirements are further refined as a more detailed
version of the prototype is created.

P.G.D. in Bioinformatics 9 Construction of Models for the Real....

Objects Refinement. Objects are refined to reflect the changes in the
requirements.

2.3.3.10 Creating and Combining Models
In many cases, parts and procedures from various Process Models are integrated to

support system development. This occurs because most models were designed to
provide a framework for achieving success only under a certain set of circumstances.
When the circumstances change beyond the limits of the model, the results from using
it are no longer predictable. When this situation occurs it is sometimes necessary to
alter the existing model to accommodate the change in circumstances, or adopt or
combine different models to accommodate the new circumstances.

The selection of an appropriate Process Model hinges primarily on two factors:
organizational environment and the nature of the application. Frank Land, from the
London School of Economics, suggests that suitable approaches to system analysis,
design, development, and implementation be based on the relationship between the
information system and its organizational environment.8 Four categories of
relationships are identified:

The Unchanging Environment. Information requirements are unchanging for
the lifetime of the system (e.g. those depending on scientific algorithms). Requirements
can be stated unambiguously and comprehensively. A high degree of accuracy is
essential. In this environment, formal methods (such as the Waterfall or Spiral Models)
would provide the completeness and precision required by the system.

The Turbulent Environment. The organization is undergoing constant change
and system requirements are always changing. A system developed on the basis of the
conventional Waterfall Model would be, in part; already obsolete by the time it is
implemented. Many business systems fall into this category. Successful methods would
include those, which incorporate rapid development, some throwaway code (such as in
Prototyping), the maximum use of reusable code, and a highly modular design.

The Uncertain Environment. The requirements of the system are unknown or
uncertain. It is not possible to define requirements accurately ahead of time because
the situation is new or the system being employed is highly innovative. Here, the
development methods must emphasize learning. Experimental Process Models, which
take advantage of prototyping and rapid development, are most appropriate.

The Adaptive Environment. The environment may change in reaction to the
system being developed, thus initiating a changed set of requirements. Teaching
systems and expert systems fall into this category. For these systems, adaptation is key,
and the methodology must allow for a straightforward introduction of new rules.

Summary
The evolution of system development Process Models has reflected the changing

needs of computer customers. As customers demanded faster results, more involvement
in the development process, and the inclusion of measures to determine risks and
effectiveness, the methods for developing systems changed. In addition, the software
and hardware tools used in the industry changed (and continue to change)
substantially. Faster networks and hardware supported the use of smarter and faster

Centre for Distance Education 10 Acharya Nagarjuna University

operating systems that paved the way for new languages and databases, and
applications that were far more powerful than any predecessors. These rapid and
numerous changes in the system development environment simultaneously spawned
the development of more practical new Process Models and the demise of older models
that were no longer useful.

Model Questions:
1. Explain various physical construction models and the problems facing in them?

References:
1. G Walsham “Interpreting Information Systems in Organizations”, John Wiley,

Chichester.
2. Automatic Construction of Accurate Models of Physical Systems, by Elizabeth

Bradley.

AUTHOR:

B. M. REDDY M.Tech. (HBTI, Kanpur)
Lecturer, Centre for Biotechnology

Acharya Nagarjuna University.

P.G.D. in Bioinformatics 1 Errors involved in the construction of…

Lesson 2.3.4

ERRORS INVOLVED IN THE CONSTRUCTION OF MODELS FOR
REAL PHYSICAL PROCESSES

Objective
2.3.4.1 The Waterfall Model
2.3.4.2 Iterative Development
2.3.4.3 Prototyping
2.3.4.4 The Exploratory Model
2.3.4.5 The Spiral Model
2.3.4.6 The Reuse Model
2.3.4.7 Automatic Construction of Accurate Models of Physical Systems

Summary
 Model Questions

 References

Objective:

In the previous lesson we have learned about the construction of models. The present
lesson discusses the problems (errors) associated with those construction models.

2.3.4.1 The Waterfall Model

Problems/Challenges associated with the Waterfall Model

Although the Waterfall Model has been used extensively over the years in the
production of many quality systems, it is not without its problems. In recent years it has
come under attack, due to its rigid design and inflexible procedure. Criticisms fall into the
following categories:

Real projects rarely follow the sequential flow that the model proposes.

At the beginning of most projects there is often a great deal of uncertainty about
requirements and goals, and it is therefore difficult for customers to identify these criteria
on a detailed level. The model does not accommodate this natural uncertainty very well.

Developing a system using the Waterfall Model can be a long, painstaking process that
does not yield a working version of the system until late in the process.

Centre for Distance Education 2 Acharya Nagarjuna University

2.3.4.2 Iterative Development

Problems/Challenges associated with the Iterative Model

While the Iterative Model addresses many of the problems associated with the Waterfall
Model, it does present new challenges.

The user community needs to be actively involved throughout the project. While this
involvement is a positive for the project, it is demanding on the time of the staff nd can add
project delay.

Communication and coordination skills take center stage in project development.

Informal requests for improvement after each phase may lead to confusion -- a
controlled mechanism for handling substantive requests needs to be developed.

The Iterative Model can lead to “scope creep,” since user feedback following each
phase may lead to increased customer demands. As users see the system develop, they
may realize the potential of other system capabilities which would enhance their work.

2.3.4.3 Prototyping

Problems/Challenges associated with the Prototyping Model

Criticisms of the Prototyping Model generally fall into the following categories:

Prototyping can lead to false expectations. Prototyping often creates a situation
where the customer mistakenly believes that the system is “finished” when in fact it is not.
More specifically, when using the Prototyping Model, the pre-implementation versions of a
system are really nothing more than one-dimensional structures. The necessary,
behindthe- scenes work such as database normalization, documentation, testing, and
reviews for efficiency have not been done. Thus the necessary underpinnings for the
system are not in place.

Prototyping can lead to poorly designed systems. Because the primary goal of
Prototyping is rapid development, the design of the system can sometimes suffer because
the system is built in a series of “layers” without a global consideration of the integration of
all other components. While initial software development is often built to be a “throwaway,
” attempting to retroactively produce a solid system design can sometimes be problematic.

2.3.4.4 The Exploratory Model

Problems/Challenges associated with the Exploratory Model

There are numerous criticisms of the Exploratory Model:

P.G.D. in Bioinformatics 3 Errors involved in the construction of…

It is limited to use with very high-level languages that allow for rapid development,
such as LISP.

It is difficult to measure or predict its cost-effectiveness.

As with the Prototyping Model, the use of the Exploratory Model often yields
inefficient or crudely designed systems, since no forethought is given as to how to produce
a streamlined system.

2.3.4.5 The Spiral Model

Problems/Challenges associated with the Spiral Model

Due to the relative newness of the Spiral Model, it is difficult to assess its strengths and
weaknesses. However, the risk assessment component of the Spiral Model provides both
developers and customers with a measuring tool that earlier Process Models do not have.
The measurement of risk is a feature that occurs everyday in real-life situations, but
(unfortunately) not as often in the system development industry. The practical nature of
this tool helps to make the Spiral Model a more realistic Process Model than some of its
predecessors.

2.3.4.6 The Reuse Model

Problems/Challenges Associated with the Reuse Model

A general criticism of the Reuse Model is that it is limited for use in object-oriented
development environments. Although this environment is rapidly growing in popularity, it
is currently used in only a minority of system development applications.

2.3.4.7 Automatic Construction of Accurate Models of Physical Systems

Traditional system identification addresses the task of inferring a mathematical model of a
system from observations of that system. A controls engineer might perform this task, in
its most basic form, by choosing a power series and matching its coefficients against the
numerical observations via some sort of regression. This topic describes a computer
program called pret that automates the system identi_cation process, at several levels, by
building an artificial intelligence (AI) layer on top of a set of traditional system
identification techniques. This AI layer automates the high-level stages of the identification
process that are normally performed by a human expert. Qualitative, symbolic, and
geometric reasoning are used to perform structural identification in the choice of the power
series made by the engineer in the example above. This layer also automates another
subtle and difficult part of the process: the choice and application of the appropriate lower-
level method for each stage of the process. pret works with ordinary differential equation
(ODE) models, linear or nonlinear, in one variable or many. Its implementation is a
hybridization of traditional numerical analysis methods, such as simulation and nonlinear

Centre for Distance Education 4 Acharya Nagarjuna University

regression, with logic programming, computer vision techniques, and qualitative reasoning.
The input consists of specific information about an individual system, in three forms:

 the user's hypotheses about the physics involved

 observations, interpreted and described by the user, symbolically or graphically, in
varying formats and degrees of precision

 physical measurements made directly and automatically on the system

To construct an ODE model from this information, pret combines powerful mathematical
formalisms, such as the link between the divergence of an ODE and the friction of the
system that it describes, with domain-specific notions such as force balances in
mechanical systems to allow the types of custom-generated approximations" that are
lacking in existing AI modeling programs. Two sets of rules, both of which may easily be
changed or augmented by the user, play very different roles in the model-building task.
Domain-specific rules are used to combine hypotheses into models a nontrivial task in a
system with more than one degree of freedom, or a system in which physical effects couple
to one another while general rules about ODE properties are used by a custom deduction
engine to infer facts from models and from observations. Both model- and observation-
based inferences are governed by specifications, which prescribe the resolution for
quantities of interest. Any contradictions between the set of facts inferred from the
observations and the set of facts inferred from a candidate model cause that model to be
ruled out, in which case prêt tries a new combination of hypotheses. The first
noncontradictory model in this sequence is returned as the answer.

Acting upon simple mechanical examples like the parametrically driven pendulum, the
current version of the program can efficiently perform these tasks and construct accurate
ODE models. Of course, a model of a driven pendulum is not the research goal here
physicists and engineers have spent centuries constructing and refining such models. This
is simply an example one that was chosen because it is instantly recognizable and
intuitively obvious to the reader. In spite of its simplicity, this example is interesting from
an AI standpoint, as it demonstrates effective automated reasoning, even if only on the
level performed by a 17th-century physicist. One of the ultimate goals of this research is to
produce a tool that can construct a model of a black-box system using only information
from its ports. Textbook examples like the pendulum are critical to such an endeavor, as
one must, for obvious reasons, verify the tool's performance on such exercises before
trusting the results that it produces when presented with difficult open problems. The
following subsection is a brief review of AI and AI-specific perspectives on modeling
research, coupled with a description of where this work fits within that context. The next
section presents an overview of pret's function, illustrates its input syntax using a simple
example, and discusses some of the more important implications of that syntax. Section 3
outlines how the program uses that information, together with its encoded knowledge, to
build an ODE model and closes with some discussion of related work, both in AI and other

P.G.D. in Bioinformatics 5 Errors involved in the construction of…

fields. The final section wraps up the example, gives a status report, discusses future
directions, and summarizes some of the most important issues of the research.

Artificial Intelligence and Modeling

Research in AI has two major goals: the understanding of the mechanisms that make
human intelligence possible and the construction of intelligent artifacts. Both ends of this
spectrum analytic and synthetic AI depend on each other: a theory of human intelligence
may be verified by the intelligent behavior of an artifact that instantiates the theory.
Conversely, an engineer who builds an intelligent system may obtain useful ideas by
observing human experts. Intelligent behavior requires that the world knowledge that is
relevant to the task at hand be available, along with the means to reason about it. The
construction of an intelligent computer program requires a framework in which both
knowledge and reasoning can be formalized. This formal system should be small and neat
enough to be understandable and easy to maintain, and yet powerful enough to allow its
users to think and formulate in the language and concepts of the application domain. An
adequate representation formalism allows a natural formulation of the problem that is to
be solved. Therefore, AI programmers typically try to represent knowledge declaratively
rather than operationally: one formulates facts rather than instructions. Ideally, the
declarative representation of the problem is executable. That means, it is not just part of
the intelligent artifact but it is the artifact.

Modeling physical systems is an ideal application for these ideas and techniques. One of
the most powerful analysis tools in existence| and often one of the most difficult to create
is a good model. Expert model-builders typically construct hierarchies of successively
subtler representations that capture the salient features of a physical system, each
incorporating more physics than the last. At each level in the hierarchy, the modeler
assesses what properties and perspectives are important and uses approximations and
abstractions to focus the model accordingly. The subtlety of the reasoning skills involved in
this process, together with the intricacy of the interplay between them, has led many of its
practitioners to classify modeling as \intuitive" and \an art." Any tool that effectively
automated a coherent and useful part of this art would be of obvious practical importance
in science and engineering: as a corroborator of existing models and designs, as a medium
within which to instruct newcomers, and as an intelligent assistant, whose aid allows more
time and creative thought to be devoted to other demanding tasks. The computer program
pret described in this paper is exactly such an automatic modeler. This work falls on the
\intelligent artifact" end of the AI spectrum | its focus is not to construct a cognitive
model of the thought process of a physicist or an engineer when he or she builds a model
of a physical system, but rather to build a useful tool that obtains the same result as a
human expert would. However, as outlined above, learning from a physicist's techniques is
a fruitful approach. pret's techniques fall mostly in the category of qualitative physics (QP)
or qualitative reasoning (QR) Like AI in general, qualitative reasoning about physics spans
a whole spectrum, from modeling how humans reason about their physical environment to
engineering artifacts that can reason about physics. Its main goals are the prediction of

Centre for Distance Education 6 Acharya Nagarjuna University

behavior, analysis, design, control, monitoring, and fault diagnosis. Many QR programs,
particularly the ones that perform monitoring or diagnosis, infer the behavior of a physical
system from its structure or vice versa. What distinguishes QP from other formalisms that
represent physics knowledge, such as differential equations, is the abstraction to a
qualitative level. For example, so-called landmarks divide the continuum of real numbers
into a finite number of intervals. Typically, landmarks are critical values of quantities that
describe the physical system. The behavior of the physical system | the progression of the
values of relevant quantities | is described as a discrete sequence of states and state
transitions. States describe situations, such as \x = 0" or \y is positive" or \z = l1" where
l1 is a landmark. State transitions describe changing values, e.g., \x is monotonically
increasing." Many well-developed formalisms to represent and reason about mathematical,
quantitative, and numerical knowledge exist. The goal of QP, however, is to formalize and
automate conceptual, abstract, and qualitative reasoning in the physics domain. This
qualitative kind of knowledge and reasoning requires a completely different set of
primitives, such as the states and state transitions described above, or the facts about
ordinary differential equations that are pret's primitives. Adequate combinations of well-
chosen primitives are a primary research goal in problems like this; as they enable a
computer program to handle unforeseen situations. The ability to rearrange thought
primitives in order to solve new problems is a crucial part of what makes a good scientist
or engineer | or an intelligent artifact that performs the same tasks. In general, modeling
underlies most of the approaches to reasoning about physical systems. Strictly speaking,
every formalization of the properties of a physical system constitutes a model of the
physical system. The spectrum ranges from models that use a language that is very close
to the physics of the system to models that use a language that is well-suited to describe
the system mathematically. An example of the physics end of this spectrum might be
formal instructions how to build a pendulum. These instructions would use terms like rod,
bob, and bearing. In any case, a modeler human or not builds the model out of simple
components, assuming that the overall behavior follows from the behavior of the
components and their interaction. Examples of QR modeling systems include the
ENVISION system, which reasons about the components of the system and their
interaction, as well as QPT (Qualitative Process Theory) and its successor QPE (Qualitative
Process Engine), which emphasize the notion of causality. This is a very useful approach if
the goal of the program is to explain certain phenomena in physical terms. QSIM
(Qualitative SIMulation) simulates the behavior of a physical system qualitatively. The
description of the physical system, called a qualitative differential equation (QDE), uses
mathematical language rather than terms from physics, namely the progression of relevant
quantities (functions) and constraints on relations between these functions. The following
example, drawn directly from a recent and thorough text on this topic, is a QDE fragment
that relates the amounts of fluids in two connected containers, A and B, and the flow rates
in the pipe between them, while constraining the total amount of fluid to remain constant:

 ((minus flowAB -flowAB))

((d/dt amtB flowAB))

P.G.D. in Bioinformatics 7 Errors involved in the construction of…

((d/dt amtA -flowAB))

((add amtA amtB total))

((constant total))

From this information and some initial conditions2, QSIM generates qualitative
descriptions of every possible outcome, which it presents on graphs whose breakpoints are
the landmarks described above. One current thrust of research by this group targets the
integration of quantitative and qualitative information. Some other useful QR references
are: on varying resolution, on order-of-magnitude reasoning, and on mathematical
aspects. A few useful general AI references are . On the spectrum from physics language to
mathematics language, QPT resides on the physics end, QSIM on the mathematics end,
and pret somewhere in between. Its inputs primarily observations and hypotheses about
the physical system are partially in the terms of physics. This approach allows the user to
state the problem in his or her domain language. Also, pret's reasoning uses concepts from
physics, allowing it to rule out bad candidate models by high-level abstract reasoning. The
rules about how hypotheses are combined into ODEs reflect laws of physics, such as F =
ma. The decision about what to try next if some candidate model fails will also use physics
concepts, e.g, \try quadratic friction instead of linear friction." However, pret's output | the
model of the physical system that it constructs | is purely mathematical: an ODE.

In summary, pret makes heavy use of QR's notions of landmarks, qualitative vocabulary,
and qualitative behavior. As do most QR systems, it exploits symbolic reasoning and
reason-maintenance techniques. The structure of the physical system is described by
notions like point, loop, etc., but there is no elaborate scenario description (e.g., a
description that uses language that is highly specific to, say, fluids in containers). The
program does not reason about causal relationships between behaviors of physical system
components, nor does it try to explain observed phenomena. pret takes a minimalist
approach: find a simple model that is consistent with the observed behavior of the physical
system.

Fig1: Structure and application.

Centre for Distance Education 8 Acharya Nagarjuna University

Summary

The evolution of system development Process Models has reflected the changing needs
of computer customers. As customers demanded faster results, more involvement in the
development process, and the inclusion of measures to determine risks and effectiveness,
the methods for developing systems changed. In addition, the software and hardware tools
used in the industry changed (and continue to change) substantially. Faster networks and
hardware supported the use of smarter and faster operating systems that paved the way
for new languages and databases, and applications that were far more powerful than any
predecessors. These rapid and numerous changes in the system development environment
simultaneously spawned the development of more practical new Process Models and the
demise of older models that were no longer useful.

Model Questions:

1. Explain various physical construction models and the problems facing in them?

References:

1. G Walsham “Interpreting Information Systems in Organizations”, John Wiley,
Chichester.

2. Automatic Construction of Accurate Models of Physical Systems, by Elizabeth
Bradley.

AUTHOR:

B.M.REDDY M.Tech. (HBTI, Kanpur)
Lecturer, Centre for Biotechnology

Acharya Nagarjuna University.

P.G.D. in Bioinformatics 1 Minimisation and Maximisation of Functions

Lesson 2.4.1

MINIMISATION AND MAXIMISATION OF FUNCTIONS

Objective
2.4.1.1 Introduction
2.4.1.2 Maxima and Minima
2.4.1.3 Maxima and Minima In brief
2.4.1.4 Examples
2.4.1.5 Maxima and Minima in a Bounded Region
2.4.1.6 Maxima and Minima in a Disk
2.4.1.7 Functions of More than 2 Variables

Summary
 Model Questions
 References

Objective:
This lesson tells about the minimization and maximization of functions in different

fields along with examples.

2.4.1.1 Introduction
The problem of determining the maximum or minimum of function is encountered in

geometry, mechanics, physics, and other fields, and was one of the motivating factors in
the development of the calculus in the seventeenth century. One of the great powers of
calculus is in the determination of the maximum or minimum value of a function. Take
f(x) to be a function of x. Then the value of x for which the derivative of f(x) with respect
to x is equal to zero corresponds to a maximum, a minimum or an inflexion point of the
function f(x).

2.4.1.2 Maxima and Minima
For example, the height of a projectile that is fired straight up is given by the motion

equation:

The derivative of a function can be geometrically interpreted as the slope of the curve
of the mathematical function y(t) plotted as a function of t. The derivative is positive
when a function is increasing toward a maximum, zero (horizontal) at the maximum,
and negative just after the maximum. The second derivative is the rate of change of the
derivative, and it is negative for the process described above since the first derivative
(slope) is always getting smaller. The second derivative is always negative for a "hump"
in the function, corresponding to a maximum

Centre for Distance Education 2 Acharya Nagarjuna University

2.4.1.3 Maxima and Minima In brief

A continuous function may assume a minimum at a single point or may have

minima at a number of points. A global minimum of a function is the smallest value in
the entire range of the function, while a local minimum is the smallest value in some
local neighborhood.

For a function which is continuous at a point , a necessary but not sufficient
condition for to have a relative minimum at is that be a critical point (i.e.,

is either not differentiable at or is a stationary point, in which case).

The first derivative test can be applied to continuous functions to distinguish
minima from maxima. For twice differentiable functions of one variable, , or of two
variables, , the second derivative test can sometimes also identify the nature of an
extremum. For a function , the extremum test succeeds under more general
conditions than the second derivative test.

As in one variable calculations, one use for derivatives in several variables is in
calculating maxima and minima. Again as for one variable, we shall rely on the theorem
that if f is continuous on a closed bounded subset of 2, then it has a global maximum
and a global minimum. And again as before, we note that these must occur either at a
local maximum or minimum, or else on the boundary of the region. Of course in , the
boundary of the region usually consisted of a pair of end points, while in 2, the

P.G.D. in Bioinformatics 3 Minimisation and Maximisation of Functions

situation is more complicated. However, the principle remains the same. And we can
test for local maxima and minima in the same way as for one variable.

A graph illustrating local min/max and global min/max points

In mathematics, a point x* is a local maximum of a function f if there exists some ε
> 0 such that f(x*) ≥ f(x) for all x with |x-x*| < ε. Stated less formally, a local maximum is
a point where the function takes on its largest value among all points in the immediate
vicinity. On a graph of a function, its local maxima will look like the tops of hills.

A local minimum is a point x* for which f(x*) ≤ f(x) for all x with |x-x*| < ε. On a
graph of a function, its local minima will look like the bottoms of valleys.

A global maximum is a point x* for which f(x*) ≥ f(x) for all x. Similarly, a global
minimum is a point x* for which f(x*) ≤ f(x) for all x. Any global maximum (minimum) is
also a local maximum (minimum); however, a local maximum or minimum need not
also be a global maximum or minimum.

The concepts of maxima and minima are not restricted to functions whose domain is
the real numbers. One can talk about global maxima and global minima for real-valued
functions whose domain is any set. In order to be able to define local maxima and local
minima, the function needs to take real values, and the concept of neighborhood must
be defined on the domain of the function. A neighborhood then plays the role of the set
of x such that |x - x*| < ε.

One refers to a local maximum/minimum as to a local extremum (or local optimum),
and to a global maximum/minimum as to a global extremum (or global optimum).

Finding global maxima and minima is the goal of optimization. For twice-
differentiable functions in one variable, a simple technique for finding local maxima and
minima is to look for stationary points, which are points where the first derivative is
zero. If the second derivative at a stationary point is positive, the point is a local
minimum; if it is negative, the point is a local maximum; if it is zero, further
investigation is required.

Centre for Distance Education 4 Acharya Nagarjuna University

If the function is defined over a bounded segment, one also need to check the end
points of the segment.

2.4.1.4 Examples
 The function x2 has a unique global minimum at x = 0.

 The function x3 has no global or local minima or maxima. Although the
first derivative (3x2) is 0 at x = 0, the second derivative (6x) is also 0.

 The function x3/ 3 - x has first derivative x2 - 1 and second derivative 2x.
Setting the first derivative to 0 and solving for x gives stationary points at -1 and
+1. From the sign of the second derivative we can see that -1 is a local maximum
and +1 is a local minimum. Note that this function has no global maxima or
minima.

 The function |x| has a global minimum at x = 0 that cannot be found by
taking derivatives, because the derivative does not exist at x = 0.

 The function cos(x) has infinitely many global maxima at 0, ±2π, ±π, ...,
and infinitely many global minima at ±π, ±3π,

 The function 2cos(x) - x has infinitely many local maxima and minima, but
no global maxima or minima.

 The function x3 + 3x2 - 2x + 1 defined over the closed interval (segment) [-

4,2] (see graph) has two extrema: one local maximum in ,

one local minimum in , a global maximum on x=2 and a
global minimum on x=-4.

Definition Say that f (x, y) has a critical point at (a, b) if and only if

(a, b) = (a, b) = 0.

It is clear by comparison with the single variable result, that a necessary condition
that f have a local extremum at (a, b) is that it have a critical point there, although that
is not a sufficient condition. We refer to this as the first derivative test.

We can get more information by looking at the second derivative. Recall that we gave
a number of different notations for partial derivatives, and in what follows we use fx

rather than the more cumbersome etc. This idea extends to higher derivatives; we
shall use

fxx instead of , and fxy instead of etc.

P.G.D. in Bioinformatics 5 Minimisation and Maximisation of Functions

Theorem (Second Derivative Test) Assume that (a, b) is a critical point for f. Then

 If, at (a, b), we have fxx < 0 and fxxfyy - f2xy > 0, then f has a local maximum
at (a, b).

 If, at (a, b), we have fxx > 0 and fxxfyy - f2xy > 0, then f has a local minimum
at (a, b).

 If, at (a, b), we have fxxfyy - f2xy < 0, then f has a saddle point at (a, b).

The test is inconclusive at (a, b) if fxxfyy - f2xy = 0, and the investigation has to be
continued some other way.

Note that the discriminant is easily remembered as

= = fxxfyy - f2xy

A number of very simple examples can help to remember this. After all, the result of
the test should work on things where we can do the calculation anyway!

Example 1 Show that f (x, y) = x2 + y2 has a minimum at (0, 0).

Of course we know it has a global minimum there, but here goes with the test:

Solution. We have fx = 2x; fy = 2y, so fx = fy precisely when x = y = 0, and this is the
only critical point. We have fxx = fyy = 2; fxy = 0, so = fxxfyy - f2xy = 4 > 0 and there is a
local minimum at (0, 0).

Exercise 2 Let f (x, y) = xy. Show there is a unique critical point, which is a saddle
point

Proof. We give an indication of how the theorem can be derived -- or if necessary how
it can be remembered. We start with the two dimensional version of Taylor's theorem,
see section 5.6. We have

f (a + h, b + k) f (a, b) + h (a, b) + k (a, b) + h2 + 2kh +

k2

where we have actually taken an expansion to second order and assumed the
corresponding remainder is small.

We are looking at a critical point, so for any pair (h, k), we have h (a, b) + k (a,
b) = 0 and everything hinges on the behaviour of the second order terms. It is thus

Centre for Distance Education 6 Acharya Nagarjuna University

enough to study the behaviour of the quadratic Ah2 + 2Bhk + Ck2, where we have
written

A = , B = , and C = .

Assuming that A 0 we can write

Ah2 + 2Bhk + Ck2

= A h + + C - k2

= A h + + k2

where we write = CA - B2 for the discriminant. We have thus expressed the
quadratic as the sum of two squares. It is thus clear that

 if A < 0 and > 0 we have a local maximum;

 if A > 0 and > 0 we have a local minimum; and

 if < 0 then the coefficients of the two squared terms have opposite signs,
so by going out in two different directions, the quadratic may be made either to
increase or to decrease.

Note also that we could have completed the square in the same way, but starting
from the k term, rather than the h term; so the result could just as easily be stated in
terms of C instead of A

Example 3 Let f (x, y) = 2x3 - 6x2 - 3y2 - 6xy. Find and classify the critical points of
f. By considering f (x, 0), or otherwise, show that f does not achieve a global maximum.

Solution. We have fx = 6x2 - 12x - 6y and fy = - 6y - 6x. Thus critical points occur
when y = - x and x2 - x = 0, and so at (0, 0) and (1, - 1). Differentiating again, fxx = 12x -
12, fyy = - 6 and fxy = - 6. Thus the discriminant is = - 6.(12x - 12) - 36. When x = 0,

= 36 > 0 and since fxx = - 12, we have a local maximum at (0, 0). When x = 1, = -
36 < 0, so there is a saddle at (1, - 1).

To see there is no global maximum, note that f (x, 0) = 2x3(1 - 3/x) as x ,
since x3 as x .

Exercise 4 Find the extrema of f (x, y) = xy - x2 - y2 - 2x - 2y + 4.

Example 5 An open-topped rectangular tank is to be constructed so that the sum of
the height and the perimeter of the base is 30 metres. Find the dimensions which
maximise the surface area of the tank. What is the maximum value of the surface area?

P.G.D. in Bioinformatics 7 Minimisation and Maximisation of Functions

[You may assume that the maximum exists, and that the corresponding dimensions of
the tank are strictly positive.]

Solution. Let the dimensions of the box be as shown.

Figure: A dimensioned box

Let the area of the surface of the material be S. Then

S = 2xh + 2yh + xy,

and since, from our restriction on the base and height,

30 = 2(x + y) + h, we have h = 30 - 2(x + y).

Substituting, we have

S = 2(x + y) 30 - 2(x + y) + xy = 60(x + y) - 4(x + y)2 + xy,

and for physical reasons, S is defined for x 0, y 0 and x + y 15.

A global maximum (which we are given exists) can only occur on the boundary of the
domain of definition of S, or at a critical point, when

= = 0. On the boundary of the domain of definition of S, we have x = 0 or y =
0 or x + y = 15, in which case h = 0. We are given that we may ignore these cases. Now

S -4x2 - 4y2 - 7xy + 60x + 60y, so

-8x - 7y + 60 = 0,

-8y - 7x + 60 = 0.

Centre for Distance Education 8 Acharya Nagarjuna University

Subtracting gives x = y and so 15x = 60, or x = y = 4. Thus h = 14 and the surface
area is S = 16(- 4 - 4 - 7 + 15 + 15) = 240 square metres. Since we are given that a
maximum exists, this must be it. [If both sides of the surface are counted, the area is
doubled, but the critical proportions are still the same.]

Sometimes a function necessarily has an absolute maximum and absolute minimum
-- in the following case because we have a continuous function defined on a closed
bounded subset of 2, and so the analogue of 4.35 holds. In this case exactly as in the
one variable case, we need only search the boundary (using ad - hoc methods, which in
fact reduce to 1-variable methods) and the critical points in the interior, using our
ability to find local maxima.

Example 6 Find the absolute maximum and minimum values of

f (x, y) = 2 + 2x + 2y - x2 - y2

on the triangular plate in the first quadrant bounded by the lines x = 0, y = 0 and y
= 9 - x

Solution. We know there is a global maximum, because the function is continuous
on a closed bounded subset of 2. Thus the absolute max will occur either in the
interior, at a critical point, or on the boundary. If y = 0, investigate f (x, 0) = 2 + 2x - x2,
while if x = 0, investigate f (0, y) = 2 + 2y - y2. If y = 9 - x, investigate

f (x, 9 - x) = 2 + 2x + 2(9 - x) - x2 - (9 - x)2

for an absolute maximum. In fact extreme may occur when (x, y) = (0, 1) or (1, 0) or
(0, 0) or (9, 0) or (0, 9), or (9/2, 9/2). At these points, f takes the values -41/2, 2, 3, -
61.

Next we seek critical points in the interior of the plate,

fx = 2 - 2x = 0 and fy = 2 - 2y = 0.

so (x, y) = (1, 1) and f (1, 1) = 4, so this must be the global maximum. Can check also using the
second derivative test, that it is a local maximum.

The notions of critical points and the second derivative test carry over to functions of
two variables. Let z=f(x,y). Critical points are points in the xy-plane where the tangent
plane is horizontal.

P.G.D. in Bioinformatics 9 Minimisation and Maximisation of Functions

Since the normal vector of the tangent plane at (x,y) is given by

The tangent plane is horizontal if its normal vector points in the z direction. Hence,

critical points are solutions of the equations:

because horizontal planes have normal vector parallel to z-axis. The two equations

above must be solved simultaneously.

Example 7

Let us find the critical points of

The partial derivatives are

f_x=0 if 1-x^2=0 or the exponential term is 0. f_y=0 if -2y=0 or the exponential term

is 0. The exponential term is not 0 except in the degenerate case. Hence we require 1-
x^2=0 and -2y=0, implying x=1 or x=-1 and y=0. There are two critical points (-1,0) and
(1,0).

Centre for Distance Education 10 Acharya Nagarjuna University

The Second Derivative Test for Functions of Two Variables:

How can we determine if the critical points found above are relative maxima or
minima? We apply a second derivative test for functions of two variables.

Let (x_c,y_c) be a critical point and define

We have the following cases:

 If D>0 and f_xx(x_c,y_c)<0, then f(x,y) has a relative maximum at (x_c,y_c).

 If D>0 and f_xx(x_c,y_c)>0, then f(x,y) has a relative minimum at (x_c,y_c).

 If D<0, then f(x,y) has a saddle point at (x_c,y_c).

 If D=0, the second derivative test is inconclusive.

An example of a saddle point is shown in the example below.

Example: Continued

For the example above, we have

For x=1 and y=0, we have D(1,0)=4exp(4/3)>0 with f_xx(1,0)=-2exp(2/3)<0. Hence,

(1,0) is a relative maximum. For x=-1 and y=0, we have D(-1,0)=-4exp(-4/3)<0. Hence, (-
1,0) is a saddle point.

The figure below plots the surface z=f(x,y).

P.G.D. in Bioinformatics 11 Minimisation and Maximisation of Functions

Notice the relative maximum at (x=1,y=0). (x=-1,y=0) is a relative maximum if one

travels in the y direction and a relative minimum if one travels in the x-direction. Near (-
1,0) the surface looks like a saddle, hence the name.

2.4.1.5 Maxima and Minima in a Bounded Region

Suppose that our goal is to find the global maximum and minimum of our model
function above in the square -2<=x<=2 and -2<=y<=2? There are three types of points
that can potentially be global maxima or minima:

1. Relative extrema in the interior of the square.

2. Relative extrema on the boundary of the square.

3. Corner Points.

We have already done step 1. There are extrema at (1,0) and (-1,0). The boundary of
square consists of 4 parts. Side 1 is y=-2 and -2<=x<=2. On this side, we have

The original function of 2 variables is now a function of x only. We set g'(x)=0 to

determine relative extrema on Side 1. It can be shown that x=1 and x=-1 are the relative
extrema. Since y=-2, the relative extrema on Side 1 are at (1,-2) and (-1,-2).

On Side 2 (x=-2 and -2<=y<=2)

We set h'(y)=0 to determine the relative extrema. It can be shown that y=0 is the only

critical point, corresponding to (-2,0).

Centre for Distance Education 12 Acharya Nagarjuna University

We play the same game to determine the relative extrema on the other 2 sides. It can
be shown that they are (2,0), (1,2), and (-1,2).

Finally, we must include the 4 corners (-2,-2), (-2,2), (2,-2), and (2,2). In summary,
the candidates for global maximum and minimum are (-1,0), (1,0), (1,-2), (-1,-2), (-2,0),
(2,0), (1,2), (-1,2), (-2,-2), (-2,2), (2,-2), and (2,2). We evaluate f(x,y) at each of these
points to determine the global max and min in the square. The global maximum occurs
(-2,0) and (1,0). This can be seen in the figure above. The global minimum occurs at 4
points: (-1,2), (-1,-2), (2,2), and (2,-2).

2.4.1.6 Maxima and Minima in a Disk

Another example of a bounded region is the disk of radius 2 centered at the origin.
We proceed as in the previous example, determining in the 3 classes above. (1,0) and (-
1,0) lie in the interior of the disk.

The boundary of the disk is the circle x^2+y^2=4. To find extreme points on the disk
we parameterize the circle. A natural parameterization is x=2cos(t) and y=2sin(t) for
0<=t<=2*pi. We substitute these expressions into z=f(x,y) and obtain

On the circle, the original functions of 2 variables is reduced to a function of 1

variable. We can determine the extrema on the circle using techniques from calculus of
on variable.

In this problem there are not any corners. Hence, we determine the global max and
min by considering points in the interior of the disk and on the circle. An alternative
method for finding the maximum and minimum on the circle is the method of Lagrange
multipliers.

2.4.1.7 Functions of More than 2 Variables

The notion of extreme points can be extended to functions of more than 2 variables.
Suppose z=f(x_1,x_2,...,x_n). (a_1,a_2,...,a_n) is extreme point if it satisfies the n
equations

There is not a general second derivative test to determine if a point is a relative

maximum or minimum for functions of more than two variables.

 Functional minimization is an important area of study in many fields, and a variety
of numerical methods have been developed to address particular problems. We will look
at just one such method, which is particularly effective at minimizing functions of many
variables.

Let's define the problem. Let's say you want to minimize a function, f(x), of a single
variable, x. For a simple function, you follow the standard practice of solving for those
values, x1, x2, x3 ... such that: f'(xi)=0, and f"(xi) > 0. The value of xi so obtained that gives
the smallest f(xi) is the global minimum of the function. All other f(xi) give the local
minima of the function.

P.G.D. in Bioinformatics 13 Minimisation and Maximisation of Functions

It could happen that the function to be minimized is too unwieldy to evaluate the
necessary derivatives and/or to solve for the roots of f'(xi)=0. Furthermore, there could
be constraints on the variable that must be factored into the minimization. Finally, we
might need to minimize a function of many variables: f(x1,x2,x3...). In such cases,
efficient numerical techniques to achieve minimization are essential.

It should be pointed out that the techniques used to minimize functions can
immediately be used to maximize them: just take f to be -f. The field of minimization or
maximization of functions is called OPTIMIZATION.

Many optimization techniques are described in the Numerical Recipes book used in
PH430. In this module, we will focus on a particular application of the so-called
"annealing method".

The system that we will be studying is called a "quantum dot". It consists of a group

of electrons that are quantum-confined in all three spatial dimensions, and so they are
analogous to atoms. Quantum dots can be fabricated in a variety of shapes, and the
sizes are typically in the range of ~10's to 100's of nanometers--billionths of a meter. A
great deal of research is currently ongoing with the goal of designing quantum dot
systems for particular applications such as high-efficiency lasers, biological tracers, and
quantum computers.

In the quantum dot system that we will model, a "puddle" of electrons is confined to
a plane and restricted to lie near the center of a two-dimensional parabolic potential
energy profile (such systems are actually made!). The parabolic potential tries to keep
the electrons near the origin--they have to climb uphill to move away from the bottom of
the potential well. This is counter-acted by the repulsion between electrons that keeps
them apart. As a rough approximation, we will treat the electrons as classical point
particles instead of quantum particles. We want to answer the following question:

We will be guided to the answer by noting that the electrons will want to reside in
the configuration that minimizes their total energy:

For classical electrons we can immediately eliminate the Kinetic energy, K, by taking

the electrons to be stationary. Then, our problem amounts to minimizing the potential
energy, V.

Let's consider the simple cases first: for the case of one electron, there is no
Coulomb energy and the single electron will sit at the bottom of the potential well with
E=0. For two electrons the potential energy is:

where and are the 2D coordinates of the 2 electrons, and defines the

curvature of the potential energy parabola. Note that since and

Centre for Distance Education 14 Acharya Nagarjuna University

, V is now a function of the 4 the variables, x1,y1, x2,y2. We can reduce
this down to a single variable as follows.

Let's make a transformation to center-of-mass (CM) and relative coordinates:

with the inverse transformation:

Plugging in to V gives:

with and .

Notice that the relative and CM parts of V now separate. It is clear that we can lower
the energy by choosing the location of the CM at the origin, R=0. This means that

.

Then,

Now, V is a simple function of a single variable. The minimum is located from:

Of course, there is a much easier way of extracting this result. At the minimum of
the total potential energy, the net force on each electron must be zero.

P.G.D. in Bioinformatics 15 Minimisation and Maximisation of Functions

Calculate the location of each electron in the two-electron dot by requiring that the
sum of the forces on each electron vanish.

If we now consider higher numbers of electrons, N=3,4,..., the minimization

procedure used above becomes intractable. For N electrons, the potential energy is:

For simplicity, we can switch to new variables, ri, measured in units of and measure
energy in units of E0. Then, the potential energy is simplified to:

If N=100, we have 200 independent variables. Transformation of coordinates as above
will separate out the CM part. Requiring the CM to be at the origin introduces only 2
constraints and so leaves us with 198 variables! We need a minimization technique that
can accommodate the large number of variables arising in this problem.

Summary:
maximum or minimum of function is encountered in geometry, mechanics, physics, and
other fields, and was one of the motivating factors in the development of the calculus in
the seventeenth century. One of the great powers of calculus is in the determination of
the maximum or minimum value of a function. The field of minimization or
maximization of functions is called OPTIMIZATION.

Model Questions:
1. Briefly explain the maxima and minima of functions?

2. Outline the procedure to find out the maxima & minima of functions?

References:

1. Linear Algebra and its Applications, 3rd ed. by Strang, G

 2. Calculus (Early Transcendentals) 3rd ed.by James Stewart.

AUTHOR:

B. M.REDDY M.Tech. (HBTI, Kanpur)
Lecturer, Centre for Biotechnology

Acharya Nagarjuna University.

P.G.D. in Bioinformatics 1 Randomized Minimization Techniques

Lesson 2.4.2

RANDOMIZED MINIMIZATION TECHNIQUES

Objective
2.4.2.1 Introduction
2.4.2.2 RANDOMIZED UNIT TESTING
2.4.2.3 Three robust design paradigms
2.4.2.4 Properties of the scenario design
 Summary
 Model Questions
 References

Objective
Engineering design problems can often be cast as numerical optimization programs where
the designer goal is to minimize a cost index (or maximize a utility index), subject to a
set of constraints on the decision variables. In particular, a class of design problems
that have both a theoretical and a practical relevance are those where the
minimization objective and the constraints are convex functions of the variables.

However, in practice, the problem data are often uncertain, and hence the design
needs not only be optimal, but also guaranteed, or robust, against the uncertainty. Un-
fortunately, it has been proven that convex problems in which uncertainty is present are
very hard to solve. In this note, we discuss a novel technique based on uncertainty
randomization that permits to overcome this difficulty.

2.4.2.1 Introduction

The main motivation for studying robustness problems in engineering comes from
the fact that the actual system (a "plant," or in general a problem involving
physical data) upon which the engineer should act, is realistically not fixed but
rather it entails some level of uncertainty. For instance, the data that characterizes
an engineering problem typically depends on the value of physical parameters. If
measurements of these parameters are performed, say, on different days or under
different operating conditions, it is likely that we will end up not with a single
(nominal) problem representation D, but rather with a family D(δ) of possible
problems, where δ E Δ represents the vector of uncertain parameters that affect the
data, and Δ is the admissible set of variation of the parameters. Any sensible
design should in some way take into account the variability in the problem data,
i.e. it should be robust with respect to the uncertainty.

To formalize our setup, we consider specifically design problems that may be
expressed in the form of minimization of a linear objective subject to convex
constraints:

Centre for Distance Education 2 Acharya Nagarjuna University

where is a convex set, and the functions fi(x,δ) that define the
constraints are convex in the decision variable x, for any given value of the
uncertainty δ G Δ. Without loss of generality, we can actually consider problems
with a single constraint function

(the maximum of convex functions is still convex), which yields a prototype
problem in the form

Notice that in this problem statement we remained voluntarily vague as to the
meaning of robustness. We shall next define and briefly discuss three different ways
in which this robustness can be intended.

2.4.2.2. RANDOMIZED UNIT TESTING

A. Controlflow and Dataflow Views of Drivers
In a flowchart view of the operation of a unit test driver (Figure 1), the driver

performs a sequence of test cases, checks the results, and judges the success or
failure of each test case. For example, test cases for the Course class may
include one that tries to register a student having the prerequisites, one that tries to
register a student not having the prerequisites, and one that tries to register students
when the size limit has been reached. The driver could be programmed from scratch or
built using a framework, in which each test case would be represented by one test
method.

For the purpose of generalizing a test driver to a randomized test driver, it is more

useful to view the driver not in terms of its control flow, but rather in terms of its data
flow, because the randomized operations will randomly change the values of the data
used. In this dataflow-oriented view (Figure 1b), the driver executes a series of test
fragments, each of which might either perform a call to a UUT method, set up
parameters for future method calls, or extract information from the results of past
method calls.

P.G.D. in Bioinformatics 3 Randomized Minimization Techniques

The driver will typically have one or more local variables, such as instances of a
class under test or variables to be used as parameters or results of UUT methods.
Each local variable whose value is set by one test fragment and whose value is then
used by a future test fragment is here called a persistent variable (PV in Figure 1b). The
driver can therefore be seen as a program that sets initial values for the persistent
variables, and then executes test fragments, each of which may change the value of one
or more of the persistent variables. For example, a Course driver may have one
Course persistent variable and one Student persistent variable; the test fragments
may initialize or reinitialize the Student to a new object instance, may add more
information to the Student about past courses taken, and/or may call the register
method, giving the Student as a parameter.

Fig. 1. (a) Controlflow-oriented view of a unit driver. (b) Dataflow-oriented view of a unit
driver. (c) A randomized unit driver based on the dataflow view.

B. Randomized Test Drivers

The kind of randomized test drivers that we consider are generalizations of the
dataflow view of unit test drivers. The randomized driver initializes the persistent
variables, and then randomly selects and executes a test fragment. It keeps randomly
selecting and executing test fragments until some stopping condition is met, such as
when a certain number of test fragments has been executed. Each of these test
fragments may evaluate preconditions and skip further processing of its target method
calls if the preconditions are not met - for instance, if the persistent variables are not

Centre for Distance Education 4 Acharya Nagarjuna University

yet in a form that can be passed as a parameter. Each fragment may itself contain a
random element, such as in the selection of scalar arguments for method calls. Each
fragment may evaluate results, or just output information about the results for later
evaluation, as with a test oracle.

For example, a randomized driver for Course might contain a test fragment that
reinitializes the Student, another that randomly selects a "past course taken" from a
fixed list of courses and adds it to the Student, and another that calls the register
method. A random sequence of test fragment executions is very likely to eventually
make both valid and invalid calls to register, and may execute test sequences not
accounted for by the writer of a non-randomized test driver, such as calling register
twice with the same Student.

Such randomized drivers are a strict generalization of the dataflow view of
conventional non-randomized drivers, such as JUnit drivers. Since conventional drivers
are commonly written for units (for instance, JUnit is widely used in industry), it is
reasonable to expect test engineers to be able to write randomized test drivers from
scratch. However, there is clearly potential for automating parts of the process of writing
the randomized test drivers.

C. Test Case Minimization

Although randomized unit testing can accurately find failing test cases, the test inputs
that cause the failure can contain both commands relevant to the failure and random
commands that are irrelevant, in the sense of not contributing to forcing the failure.
Separating the relevant parts from the irrelevant parts is a difficult task for the human
debugger; for example, Andrews estimated that half the time spent in randomized
testing of some units consisted of tracking down and fixing bugs.

It is therefore natural to ask how much benefit could be obtained by automatically

reducing the size of the failing test cases. The state of the art in this area is Zeller and
Hilde-brandt's Delta Debugging minimization algorithm, ddmin. We briefly summarize
this algorithm here.

First some definitions. A failing test case is a test case that causes the SUT to

perform incorrectly. Since we assume software with text inputs, and since the unit of
input to our test driver programs is a one-line command, the length of a test case is
the number of lines in its input file. A global minimized failing test case is one whose
length is less than or equal to the length of all other failing test cases. A local
minimized failing test case is one such that deleting any one line in the input file does
not result in a failing test case. The ddmin algorithm does not attempt to find global
minimized failing test cases; instead it finds local minimized failing test cases based on
a given failing test case.

P.G.D. in Bioinformatics 5 Randomized Minimization Techniques

2.4.2.3 Three robust design paradigms

1 Worst-case design

A first paradigm is a worst-case one, in which we seek a design x that satisfies the
constraints for all possible realizations of the uncertain parameter δ. In formal
terms, the design problem becomes

A worst-case design may be necessary in cases when the violation of a constraint is
associated to an unacceptable cost or it has disastrous consequences. It is a
"pessimistic" paradigm in which the designer tries to be guaranteed against all
possible odds. For the same reason, this kind of design tends to be conservative,
since it takes into account also very rare events that may never realize in practice.
Also, from a computation point of view, worst-case design problems are, in general,
computationally hard. Even under the convexity assumptions the convex
optimization problem (1) entails a usually infinite number of constraints. This class
of problem goes under the name of robust convex programs, which are known to be
NP-hard, see for instance.

2 Probabilistic design

A second paradigm for robustness is a probabilistic one. In this setup, we add
further structure on the problem, assuming that δ is a random variable with
assigned probability distribution over Δ. Then, the probabilistic design objective is
to determine a parameter x that satisfies the constraints up to a given high level of
probability, p G (0,1). Formally, the optimization problem takes the form:

This design formulation alleviates the pessimism inherent in the worst-case
design, but still gives rise to a numerically untractable problem. In fact, even under
the convexity assumption, problem (2) can be extremely hard to solve exactly in
general. This is due to the fact that the probability in the so-called "chance
constraint" (3) can be hard to compute explicitly and, more fundamentally, to the
fact that the restriction imposed on x by (3) is in general nonconvex, even though f(x,
δ) is convex in x, see for instance.

Centre for Distance Education 6 Acharya Nagarjuna University

3 Sampled scenarios design

Finally, we define a third approach to robustness, which is the scenario
approach: let be N independent and identically distributed random
samples of the uncertainty extracted according to some assigned probability
distribution. Each sample corresponds to a different realization (scenario) of the
uncertain parameters upon which the problem data depend. If the problem solver
task is to devise a once and for all fixed policy that performs well on the actual
(unknown) problem, a sensible strategy would be to design this policy such that it
performs well on all the collected scenarios. This is of course a well-established
technique which is widely used in practical problems, and it is for instance the
standard way in which uncertainty is dealt with in difficult financial planning
problems, such as multi-stage stochastic portfolio optimization. We hence define the
scenario design problem as:

We readily notice that the scenario problem is a standard convex problem with a
finite number of constraints, and therefore it is generally solvable efficiently by
numerical techniques, such as interior point methods.

While simple and effective in practice, the scenario approach also raises
interesting theoretical questions. First, it is clear that a design that is robust
for given scenarios is not robust in the worst-case sense, unless the considered
scenarios actually contain all possible realizations of the uncertain parameters.
Also, satisfaction of the constraints for the considered scenarios does not a-priori
enforce the probabilistic constraint (3). Then, it becomes natural to ask what is
the relation between robustness in the scenario sense and the probabilistic
robustness. It turns out that a design based on scenarios actually guarantees a
specified level of probabilistic robustness, provided that the number N of scenarios
is chosen properly.

2.4.2.4 Properties of the scenario design

In this section we analyze in further detail the properties of the solution of the
scenario-robust design problem (4). The first results on sampling-based convex
optimization appeared recently in the paper [3], whereas an important refinement of
these results is given in [2]. This section is based on the results contained in these
references.

Denote with XN the optimal solution of (4), assuming that the problem is feasible
and the solution is attained. Notice that problem (4) is certainly feasible whenever
the worst-case problem (1) is feasible, since the former involves a subset of the
constraints of the latter. Notice further that the optimal solution XN is a random

variable, since it depends on the sampled random scenarios

P.G.D. in Bioinformatics 7 Randomized Minimization Techniques

The following key result establishes the connection between the scenario

approach and the probabilistic approach to robust design.

Theorem 1 (Scenario optimization) Let p, β G (0,1) be given probability levels, and
let XN denote the optimal solution1 of problem (4), where the number N of scenarios
has been selected so that

Then, it holds with probability at least 1 — β that

What it is claimed in the above theorem is that if the number of scenarios is
selected according to the bound (6), then the optimal solution returned by the
scenario-robust design has, with high probability 1 — β, a guaranteed level p of
probabilistic robustness. An important feature of bound (6) is that the probability
level β enters it under a logarithm, and therefore β may be chosen very small
without substantially increasing the required number of samples. For instance,

setting , we have the bound

Summary:

Seeking robustness in design by considering different scenarios has long been a
common practice in engineering. However, the application of the sampling
technique was mainly driven by heuristics, and no general result was previously
available to answer the key question: "how many scenarios are needed to guarantee
some given level of robustness" ?

The methodology that we briefly illustrated here actually answers in a rigorous

way this fundamental question. The result from Theorem 1 states that the number
of required scenarios scales gracefully with the problem dimension n and with the
probabilistic levels. Convex optimization based on sampled scenarios is thus a
simple, rigorous and efficient way to achieve robustness in design.

In a broader perspective, methods based on sampling and randomization have

proved to be effective in solving in a relaxed sense problems that are otherwise hard
to attack by means of classical deterministic techniques. Specific applications of

Centre for Distance Education 8 Acharya Nagarjuna University

randomized techniques in the domain of dynamic systems and robust control are
extensively discussed in the recent monograph [8]. A comprehensive and up-to-date
account of general probabilistic optimization methods, along with many pointers to
the literature, is instead available in the edited monograph [4].

Model Questions:

1. Draw a flow chart for randomized unit testing and explain it?
2. Explain the randomized minimization techniques and how they can help in

bioinformatics?
References:

1. Randomized Techniques for Design Under Uncertainty by Giuseppe Carlo
Calafiore

2. Minimization of Randomized Unit Test Cases by Yong Lei and James H. Andrews

AUTHOR:

B.M.REDDY M.Tech. (HBTI, Kanpur)
Lecturer, Centre for Biotechnology

Acharya Nagarjuna University.

P.G.D. in Bioinformatics 1 Fourier transform for Discretely Sampled Data

Lesson 2.4.3

FOURIER TRANSFORM FOR DISCRETELY SAMPLED DATA

CONTENTS

2.4.3.1 Introduction
2.4.3.2 Fourier Transform
2.4.3.3 DFT Definition
2.4.3.4 A derivation of the discrete Fourier transform
2.4.3.5 Properties
2.4.3.6 Generalized DFT
2.4.3.7 Applications
2.4.3.8 Some discrete Fourier transform pairs
2.4.3.9 Variants of the Fourier transform
2.4.3.10 Applications

2.4.3.1 Introduction

Jean Baptiste Fourier showed that any signal or waveform could be made up just by
adding together a series of pure tones (sine waves) with appropriate amplitude and phase.
This is a rather startling theory, if you think about it. It means, for instance, that by
simply turning on a number of sine wave generators we could sit back and enjoy a
Beethoven symphony. Of course we would have to use a very large number of sine wave
generators, and we would have to turn them on at the time of the Big Bang and leave them
on until the heat death of the universe. Fourier's theorem assumes we add sine waves of
infinite duration.

2.4.3.2 Fourier Transform
Before we get started on the DFT, let's look for a moment at the Fourier transform (FT) and
explain why we are not talking about it instead. The Fourier transform of a continuous-

time signal may be defined as

Thus, right off the bat, we need calculus. The DFT, on the other hand, replaces the infinite
integral with a finite sum:

where the various quantities in this formula are defined on the next page. Calculus is not
needed to define the DFT (or its inverse), and with finite summation limits, we cannot

Centre for Distance Education 2 Acharya Nagarjuna University

encounter difficulties with infinities (provided is finite, which is always true in
practice). Moreover, in the field of digital signal processing, signals and spectra are
processed only in sampled form, so that the DFT is what we really need anyway
(implemented using the FFT when possible). In summary, the DFT is simpler
mathematically, and more relevant computationally than the Fourier transform. At the same
time, the basic concepts are the same.

In mathematics, the discrete Fourier transform (DFT), sometimes called the finite Fourier
transform, is a Fourier transform widely employed in signal processing and related fields to
analyze the frequencies contained in a sampled signal, solve partial differential equations,
and to perform other operations such as convolutions. The DFT can be computed
efficiently in practice using a fast Fourier transform (FFT) algorithm.

2.4.3.3 DFT Definition
The Discrete Fourier Transform (DFT) of a signal may be defined by

where

The sampling interval is also called the sampling period. For a tutorial on sampling
continuous-time signals to obtain non-aliased discrete-time signals.

P.G.D. in Bioinformatics 3 Fourier transform for Discretely Sampled Data

When all signal samples are real, we say . If they may be complex, we write

. Finally, means is any integer.

The sequence of n complex numbers x0, ..., xn−1 are transformed into the sequence of n
complex numbers f0, ..., fn−1 by the DFT according to the formula:

Note that the normalization factor multiplying the DFT and IDFT (here 1 and 1/n) and the
signs of the exponents are merely conventions, and differ in some treatments.

2.4.3.4 A derivation of the discrete Fourier transform

The discrete Fourier transform article defines the transform as:

and notes that it can be derived as the continuous Fourier transform of infinite periodic
sequences of impulses. That is an instructive exercise:

When the sequence represents a subset of the samples of a waveform , we can

model the process that created as applying a window function to , followed by
sampling (or vice versa). It is instructive to envision what those operations do to the

Fourier transform, . The window function widens every frequency component of

in a way that depends on the type of window used. That effect is called spectral

leakage. We can think of it as causing to blur... thus a loss of resolution. The
sampling operation causes the Fourier transform to become periodic. Copies of the blurred

are repeated at regular multiples of the sampling frequency, , and summed
together where they overlap. The copies are aliases of the original frequency components.
In particular, due to the overlap, aliases can significantly distort the region containing the

original (if is not sufficiently large enough to prevent it). But if the windowing and
sampling are done with sufficient care, the Fourier transform still contains a reasonable

semblance of . The transform is defined as:

Centre for Distance Education 4 Acharya Nagarjuna University

This continuous Fourier transform is valid for all frequencies, including the discrete
subset:

One thing to note about this subset is that the width of the region it spans is , which is

the periodicity of . So there is no need for more frequencies at this spacing .

Another thing to notice is that: .So the DFT coefficients are a subset of the
actual (continuous) Fourier transform of the windowed and sampled waveform.

Periodicity of the time-samples has not been assumed.

In fact up to this point, it is specifically in contradiction with the assumed window
function.

Without it, the continuous Fourier transform, , is indeed continuous. So a different
function, can be imagined by sampling it:

P.G.D. in Bioinformatics 5 Fourier transform for Discretely Sampled Data

This transform also has the property: . But of course it is zero in between
the non-zero samples.

Its inverse transform is the original sequence, repeated at intervals of .

So in summary, the DFT can be viewed in a couple of different ways:

1. as points on the spectrum of the windowed time-samples (i.e., the blurred and

possibly aliased , or
2. as the non-zero coefficients of the spectrum of the windowed time-samples that have

been periodically extended (to infinity)

Discrete Time Fourier Transform

For completeness, we note that with this definition:

we can also write (now a function of) as:

, (because of the window function)

which is now recognizable as the discrete-time Fourier transform.

In conclusion, rather than simply presenting the DFT and the DTFT as definitions, we have
shown how they can be viewed as the logical result of applying the standard Fourier
transform to discrete data. From that perspective, we have the satisfying result that it's not
the transform that varies, it's just the form of the input:

 If it is discrete, the Fourier transform becomes a DTFT.
 If it is periodic, the Fourier transform becomes a Fourier series.
 If it is both, the Fourier transform becomes a DFT.

Centre for Distance Education 6 Acharya Nagarjuna University

2.4.3.5 Properties
1. Completeness

The discrete Fourier transform is an invertible, linear transformation

with C denoting the set of complex numbers. In other words, for any n ≥ 0, any n-
dimensional complex vector has a DFT and an IDFT which are in turn n-dimensional
complex vectors.

2. Orthogonality
The vectors exp(2πi jk/n) form an orthogonal basis over the set of n-dimensional complex
vectors:

where δjk is the Kronecker delta.

3. The Plancherel theorem and Parseval's theorem
If Xj and Yj are the DFTs of xk and yk respectively then we have the Plancherel theorem:

where the star denotes complex conjugation. Parseval's theorem is a special case of the
Plancherel theorem and states:

4. The shift theorem

Multiplying xn by a linear phase exp(2πinm / N) for some integer m corresponds to a
circular shift of the output Xk: Xk is replaced by Xk − m, where the subscript is interpreted
modulo N (i.e. periodically). Similarly, a circular shift of the input xn corresponds to
multiplying the output Xk by a linear phase. Mathematically, if {xn} represents the vector x
then

if

then

and

P.G.D. in Bioinformatics 7 Fourier transform for Discretely Sampled Data

5. Periodicity and aliasing

Although the DFT transforms N numbers to N numbers, in many ways it can be thought of
as implicitly operating on infinite periodic sequences of both inputs and outputs. (Indeed,
the DFT can be derived as the continuous Fourier transform of infinite periodic sequences
of impulses.)

If one simply evaluates the DFT formula at k + N then one finds that Xk + N = Xk, because
exp[− 2πi(k + N)n / N] is equal to exp[− 2πikn / N]exp[− 2πiNn / N] which equals exp[−
2πikn / N]. This phenomenon is called aliasing, and it means that in a discrete signal one
cannot distinguish between frequencies k that differ by N.

For the same reason, if one evaluates the inverse DFT formula at n + N then one finds that
xn + N = xn. Thus, the inputs also have implicitly periodic boundaries.

The shift theorem, above, is also an expression of this implicit periodicity, because it shows
that the DFT amplitudes | Xk | are unaffected by a circular (periodic) shift of the inputs,
which is simply a choice of origin and therefore only affects the phase.

These periodic boundary conditions play an important role in many applications of the
DFT. When solving differential equations they allow periodic boundary conditions to be
automatically satisfied, and thus can be a useful property. For digital signal processing on
the other hand, the periodicity is usually an obstacle—not only does it alias high
frequencies with low frequencies, as noted above, but it also tends to introduce artifacts
because natural signals are often non-periodic (resulting in implied discontinuities
between the ends of the input).

6. Circular Convolution theorem and cross-correlation theorem
The cyclic convolution x*y of the two vectors x = xj and y = yk is the vector x*y with
components

where we continue y cyclically so that

The discrete Fourier transform turns cyclic convolutions into component-wise

multiplication. That is, if then

where capital letters (X, Y, Z) represent the DFTs of sequences represented by small letters
(x, y, z). Note that if a different normalization convention is adopted for the DFT (e.g., the
unitary normalization), then there will in general be a constant factor multiplying the
above relation.

Centre for Distance Education 8 Acharya Nagarjuna University

The direct evaluation of the convolution summation, above, would require O(n2) operations,
but the DFT (via an FFT) thus provides an O(nlogn) method to compute the same thing.
Conversely, convolutions can be used to efficiently compute DFTs via Rader's FFT
algorithm and

Bluestein's FFT algorithm.
In an analogous manner, it can be shown that if zk is the cross-correlation of xj and yj:

where the sum is again cyclic in j, then the discrete Fourier transform of zk is:

where capital letters are again used to signify the discrete Fourier transform.
7. Relationship to the trigonometric interpolation polynomial
The function

whose coefficients fj /n are given by the DFT of xk, above, is called the trigonometric
interpolation polynomial of degree n − 1. It is the unique function of this form that satisfies
the property: p(2πk/n) = xk for k = 0, ..., n − 1.

8. The DFT as a unitary transformation
With unitary normalization constants, the DFT becomes a unitary transformation. In a real
vector space, a unitary transformation can be thought of as simply a rigid rotation of the
coordinate system, and all of the properties of a rigid rotation can be found in the unitary
DFT. Using unitary normalization, we can express the DFT as:

where primed coordinates indicate the components of the vector x in the transformed
space and

The orthogonality of the DFT is now expressed as an orthonormality condition:

The Plancherel theorem is expressed as:

P.G.D. in Bioinformatics 9 Fourier transform for Discretely Sampled Data

which is the statement that the dot product of two vectors is preserved under a unitary
DFT transformation. This means that the angle between two vectors is preserved as well,
as is the length of a vector. The fact that the length of a vector is preserved is just
Parseval's theorem:

Another way of looking at the unitary DFT is to note that in the above discussion, the DFT
has been expressed as a Vandermonde matrix:

where
ωn = e - 2πi / n
is a primitive nth root of unity. This matrix is a unitary matrix with

where det() is the determinant function and

9. The real DFT
If x0, ..., xn−1 are real numbers, as they often are in the applications, then fj = fn−j*, where
the star denotes complex conjugation. Hence, the full information in this case is already
contained in the first half (roughly) of the sequence f0, ..., fn−1. In this case, the "DC"
element f0 is purely real, and for even n the "Nyquist" element fn/2 is also real, so there are
exactly n non-redundant real numbers in the first half + Nyquist element of the complex
output f. Using Euler's formula, the interpolating trigonometric polynomial can then be
interpreted as a sum of sine and cosine functions.

2.4.3.6 Generalized DFT
It is possible to shift the transform sampling in time and/or frequency domain by some
real shifts a and b, respectively. This is sometimes known as a generalized DFT (or GDFT)
and has analogous properties to the ordinary DFT:

Centre for Distance Education 10 Acharya Nagarjuna University

Most often, shifts of (half a sample) are used. While the ordinary DFT corresponds to a

periodic signal in both time and frequency domains, produces a signal that is anti-

periodic in frequency domain (fj + n = - fj) and vice-versa for . Thus, the specific case

of is known as an odd-time odd-frequency discrete Fourier transform (or O2
DFT). Such shifted transforms are most often used for symmetric data, to represent
different boundary symmetries, and for real-symmetric data they correspond to different
forms of the discrete cosine and sine transforms.
The discrete Fourier transform can be viewed as a special case of the z-transform,
evaluated on the unit circle in the complex plane.

2-D transform
For digital image processing, the 2-D transform is used to find the frequency content of an
image. The transform is defined as:

and the inverse transform is defined as:

where
f(x,y) is a 2-D signal (e.g., an image) with x as the xth column of f; and y as the yth row of f
F(u,v) is the 2-D frequency spectrum of f(x,y)
The form of the 2-D DFT can be simplified by using matrices
F = WfTW
where

P.G.D. in Bioinformatics 11 Fourier transform for Discretely Sampled Data

(this is the unitary matrix shown above)

Matrix form derivation
The forward transform can be reformulated into matrix notation

Fv = Wf

F = WfTW
Equation 1 is the 2-D DFT definition from above.

Equation 2 is equation 1 with pulled out of the inner summation.
Equation 3 shows that the inner summation is a 1-D DFT taken with respect to the y-

dimension (the columns and denoted) of the signal f(x,y).
Equation 4 is the matrix form of a 1-D DFT of the underbraced portion in equation 3.
Equation 5 is with Fv(x,v) substituted for the underbraced portion of equation 3. Fv(x,v) is
the vth frequency of the xth column of f(x,y). Collecting the column 1-D DFTs of f(x,y) forms
the matrix Fv.

Centre for Distance Education 12 Acharya Nagarjuna University

Equation 6 is derived after realizing that equation 4 is a 1-D DFT of .
Equation 7 is simply equation 4 substituted into equation 6 and noting that W = WT
because W is symmetric.

In summation:
A column of Fv represents the 1-D DFT of the xth column of the signal f(x,y). So, Fv can be
created by combining the 1-D DFT column vectors taken with respect to each column of

f(x,y). Consequently, the transposition of Fv in and pre-multiplication of W is
the same as taking the 1-D DFT of the rows of Fv.

2.4.3.7 Applications
The DFT has seen wide usage across a large number of fields; we only sketch a few
examples below (see also the references at the end). All applications of the DFT depend
crucially on the availability of a fast algorithm to compute discrete Fourier transforms and
their inverses, a fast Fourier transform.

Signal analysis
Suppose a signal x(t) is to be analyzed. Here, t stands for time, which varies over the
interval [0,T], and, in the case of a sound signal, x(t) is the air pressure at time t.The signal
is sampled at n equidistant points to get the n real numbers x0 = x(0), x1 = x(h), x2 = x(2h),
..., xn−1 = x((n−1)h), where h = T/n and n is even.Then the discrete Fourier transform f0, ...,
fn−1 is computed and the numbers fn/2 + 1, ..., fn−1 are discarded (they are redundant for real
signals).Then f0/n approximates the average value of the signal over the interval, and for
every j = 1, ..., n/2, the argument arg(fj) represents the phase and the modulus |fj|/n
represents one half of the amplitude of the component of the signal having frequency j/T
The reason behind this interpretation is that the fj are approximations to the coefficients
occurring in the Fourier series expansion of x(t). In general, the problem of using the DFT
of discrete samples to approximate the Fourier transform of an infinite, continuous signal
is called spectral estimation, and involves many more details than are described here. (For
example, one often wants to window the data in order to reduce the distortion caused by
the periodic boundary conditions implicit in the DFT.)

Data compression
The field of digital signal processing relies heavily on operations in the frequency domain
(i.e. on the Fourier transform). For example, several lossy image and sound compression
methods employ the discrete Fourier transform: the signal is cut into short segments, each
is transformed, and then the Fourier coefficients of high frequencies, which are assumed to
be unnoticeable, are discarded. The decompressor computes the inverse transform based
on this reduced number of Fourier coefficients. (Compression applications often use a
specialized form of the DFT, the discrete cosine transform.)

P.G.D. in Bioinformatics 13 Fourier transform for Discretely Sampled Data

Partial differential equations
Discrete Fourier transforms, especially in more than one dimension, are often used to solve
partial differential equations. The reason is that it expands the signal in complex
exponentials eikx, which are eigenfunctions of differentiation: d/dx eikx = ik eikx. Thus, in the
Fourier representation, a linear differential equation with constant coefficients is
transformed into an easily solvable algebraic equation. One then uses the inverse DFT to
transform the result back into the ordinary spatial representation. Such an approach is
called a spectral method.

Multiplication of large integers
The fastest known algorithms for the multiplication of large integers or polynomials are
based on the discrete Fourier transform: the sequences of digits or coefficients are
interpreted as vectors whose convolution needs to be computed; in order to do this, they
are first Fourier-transformed, then multiplied component-wise, then transformed back.

2.4.3.8 Some discrete Fourier transform pairs
In the following table ωn stands for exp(- 2πi / n)

2.4.3.9 Variants of the Fourier transform
Continuous Fourier transform
Most often, the unqualified term "Fourier transform" refers to the continuous Fourier
transform, representing any square-integrable function f(t) as a sum of complex
exponentials with angular frequencies ω and complex amplitudes F(ω):

This is actually the inverse continuous Fourier transform, whereas the Fourier transform
expresses F(ω) in terms of f(t); the original function and its transform are sometimes called
a transform pair. A generalization of this transform is the fractional Fourier transform, by
which the transform can be raised to any real "power".

Centre for Distance Education 14 Acharya Nagarjuna University

When f(t) is an even or odd function, the sine or cosine terms disappear and one is left with
the cosine transform or sine transform, respectively. Another important case is where f(t) is
purely real, where it follows that F(−ω) = F(ω)*. (Similar special cases appear for all other
variants of the Fourier transform as well.)

Fourier series
The continuous transform is itself actually a generalization of an earlier concept, a Fourier
series, which was specific to periodic (or finite-domain) functions f(x) (with period 2π), and
represents these functions as a series of sinusoids:

where Fn is the (complex) amplitude. Or, for real-valued functions, the Fourier series is
often written:

where an and bn are the (real) Fourier series amplitudes.

Discrete Fourier transform
For use on computers, both for scientific computation and digital signal processing, one
must have functions xk that are defined over discrete instead of continuous domains, again
finite or periodic. In this case, one uses the discrete Fourier transform (DFT), which
represents xk as the sum of sinusoids:

where fj are the Fourier amplitudes. Although applying this formula directly would require
O(n2) operations, it can be computed in only O(n log n) operations using a fast Fourier
transform (FFT) algorithm, which makes FFT a practical and important operation on
computers.

Other variants
The DFT is a special case of (and is sometimes used as an approximation for) the discrete-
time Fourier transform (DTFT), in which the xk are defined over discrete but infinite
domains, and thus the spectrum is continuous and periodic. The DTFT is essentially the
inverse of the

Fourier series.
These Fourier variants can also be generalized to Fourier transforms on arbitrary locally
compact abelian topological groups, which are studied in harmonic analysis; there, one
transforms from a group to its dual group. This treatment also allows a general
formulation of the convolution theorem, which relates Fourier transforms and
convolutions. Time-frequency transforms such as the short-time Fourier transform,
wavelet transforms, chirplet transforms, and the fractional Fourier transform try to obtain

P.G.D. in Bioinformatics 15 Fourier transform for Discretely Sampled Data

frequency information from a signal as a function of time (or whatever the independent
variable is), although the ability to simultaneously resolve frequency and time is limited by
a (mathematical) uncertainty principle

2.4.3.10 Applications
Fourier transforms have many scientific applications — in physics, number theory,
combinatorics, signal processing, probability theory, statistics, cryptography, acoustics,
oceanography, optics, geometry, and other areas. (In signal processing and related fields,
the Fourier transform is typically thought of as decomposing a signal into its component
frequencies and their amplitudes.) This wide applicability stems from several useful
properties of the transforms:

The transforms are linear operators and, with proper normalization, are unitary as well (a
property known as Parseval's theorem or, more generally, as the Plancherel theorem, and
most generally via Pontryagin duality). The transforms are invertible, and in fact the
inverse transform has almost the same form as the forward transform. The sinusoidal
basis functions are eigenfunctions of differentiation, which means that this representation
transforms linear differential equations with constant coefficients into ordinary algebraic
ones. (For example, in a linear time-invariant physical system, frequency is a conserved
quantity, so the behavior at each frequency can be solved independently.)

By the convolution theorem, Fourier transforms turn the complicated convolution
operation into simple multiplication, which means that they provide an efficient way to
compute convolution-based operations such as polynomial multiplication and multiplying
large numbers. The discrete version of the Fourier transform can be evaluated quickly on
computers using fast Fourier transform (FFT) algorithms.

Summary
The Discrete Fourier Transform (DFT) is used to produce frequency analysis of discrete
non-periodic signals. The FFT is another method of achieving the same result, but with
less overhead involved in the calculations. The various properties of DFT are also described
and the applications of DFT. The variants of DFT are dealt.

Model Questions

1. Define Discrete Fourier Trnasform? Give its derivation.
2. What are the variants of fourier transform?
3. What are the properties of DFT ?

References:
1. http://www.imb-jena.de/ImgLibDoc/ftir/IMAGE_FTIR.html
2. http://topex.ucsd.edu/geodynamics/01fourier.pdf
3. http://en.wikipedia.org/wiki/Fourier_transform#Applications
4. http://en.wikipedia.org/wiki/Discrete_Fourier_transform
5. http://en.wikipedia.org/wiki/Discrete_Fourier_transform#Generalized_DFT

Asha Smitha. B, Centre for Biotechnology

P.G.D. in Bioinformatics 1 Fast Fourier Transform

Lesson 2.4.4

FAST FOURIER TRANSFORM

CONTENTS

Objective
2.4.4.1 Introduction
2.4.4.2 Why FFT
2.4.4.3 Background
2.4.4.4 Fast Fourier transform
2.4.4.5 The Cooley-Tukey algorithm
2.4.4.6 Other FFT algorithms
2.4.4.7 FFT algorithms specialized for real and/or symmetric data
2.4.4.8 Multidimensional FFT algorithms
2.4.4.9 Applications of the FFT
Summary
Model Questions
References

Objective

 To know what fast fourier transform is
 To understand how it is applied

2.4.4.1 Introduction

In 1807, the French mathematician Joseph Fourier (1768-1830) submitted a paper to the
Academy of Sciences in Paris. In it he presented a mathematical description of problems
involving heat conduction. Although the paper was at first rejected, it contained ideas that
would develop into an important area of mathematics named in honor, Fourier analysis.
One surprising ramification of Fourier's work was that many familiar functions can be
expanded in infinite series and integrals involving trigonometric functions. The idea today
is important in modeling many phenomena in physics and engineering.

The mathematical operation that resolves a time series (for example, a recording of ground
motion) into a series of numbers that characterize the relative amplitude and phase
components of the signal as a function of frequency. Frequency. Number of cycles
occurring in unit time.

Centre for Distance Education 2 Acharya Nagarjuna University

2.4.4.2 Why FFT ?

If you look at the equation for the Discrete Fourier Transform you will see that it is
complicated to work out as it involves many additions and multiplications involving
complex numbers. Even a simple eight sample signal would require 49 complex
multiplications and 56 complex additions to work out the DFT. At this level it is still
manageable, however a realistic signal could have 1024 samples which requires over
20,000,000 complex multiplications and additions. As you can see the number of
calculations required soon mounts up to unmanageable proportions.

The Fast Fourier Transform is a simply a method of laying out the computation, which is
much faster for large values of N, where N is the number of samples in the sequence. It is
an ingenious way of achieving rather than the DFT's clumsy P2 timing.

The idea behind the FFT is the divide and conquer approach, to break up the original N
point sample into two (N / 2) sequences. This is because a series of smaller problems is
easier to solve than one large one. The DFT requires (N-1)2 complex multiplications and
N(N-1) complex additions as opposed to the FFT's approach of breaking it down into a
series of 2 point samples which only require 1 multiplication and 2 additions and the
recombination of the points which is minimal.

2.4.4.3 Background

The Fast Fourier Transform (FFT) is one of the most important family of algorithms in
applied and computational mathematics. These are the algorithms that make most of
signal processing, and hence modern telecommunications possible. The most basic divide
and conquer approach was originally discovered by Gauss for the efficient interpolation of
asteroidal orbits. Since then, various versions of the algorithm have been discovered and

P.G.D. in Bioinformatics 3 Fast Fourier Transform

rediscovered many times, culminating with the publishing of Cooley and Tukey's landmark
paper, "An algorithm for machine calculation of complex Fourier series",

A Fourier series can sometimes be used to represent a function over an interval. If a
function is defined over the entire real line, it may still have a Fourier series representation
if it is periodic. If it is not periodic, then it cannot be represented by a Fourier series for all
x. In such case we may still be able to represent the function in terms of sines and cosines,
except that now the Fourier series becomes a Fourier integral.

The motivation comes from formally considering Fourier series for functions of period 2T
and letting T tend to infinity.

Suppose

and

Now, set

and insert the integral formula for the Fourier coefficients:

Centre for Distance Education 4 Acharya Nagarjuna University

The summation resembles a Riemann sum for a definite integral, and in the limit

() we might get

This informal reasoning suggest the following definition

2.4.4.4 Fast Fourier transform

A fast Fourier transform (FFT) is an efficient algorithm to compute the discrete Fourier
transform (DFT) and its inverse. FFTs are of great importance to a wide variety of
applications, from digital signal processing to solving partial differential equations to
algorithms for quickly multiplying large integers. This article describes the algorithms, of
which there are many; see discrete Fourier transform for properties and applications of the
transform.

Let x0,, xn-1 be complex numbers. The DFT is defined by the formula

Evaluating these sums directly would take O(n2) arithmetical operations. An FFT is an
algorithm to compute the same result in only O(n log n) operations. In general, such
algorithms depend upon the factorization of n, but (contrary to popular misconception)
there are O(n log n) FFTs for all n, even prime n.

Since the inverse DFT is the same as the DFT, but with the opposite sign in the exponent
and a 1/n factor, any FFT algorithm can easily be adapted for it as well.

2.4.4.5 The Cooley-Tukey algorithm

By far the most common FFT is the Cooley-Tukey algorithm. This is a divide and conquer
algorithm that recursively breaks down a DFT of any composite size n = n1n2 into many
smaller DFTs of sizes n1 and n2, along with O(n) multiplications by complex roots of unity
traditionally called twiddle factors.

This method (and the general idea of an FFT) was popularized by a publication of J. W.
Cooley and J. W. Tukey in 1965, but it was later discovered that those two authors had
independently re-invented an algorithm known to Carl Friedrich Gauss around 1805 (and
subsequently rediscovered several times in limited forms).

P.G.D. in Bioinformatics 5 Fast Fourier Transform

The most well-known use of the Cooley-Tukey algorithm is to divide the transform into two
pieces of size n / 2 at each step, and is therefore limited to power-of-two sizes, but any
factorization can be used in general (as was known to both Gauss and Cooley/Tukey).
These are called the radix-2 and mixed-radix cases, respectively (and other variants have
their own names as well). Although the basic idea is recursive, most traditional
implementations rearrange the algorithm to avoid explicit recursion. Also, because the
Cooley-Tukey algorithm breaks the DFT into smaller DFTs, it can be combined arbitrarily
with any other algorithm for the DFT.

2.4.4.6 Other FFT algorithms

There are other FFT algorithms distinct from Cooley-Tukey. For n = n1n2 with coprime n1
and n2, one can use the Prime-Factor (Good-Thomas) algorithm (PFA), based on the
Chinese Remainder Theorem, to factorize the DFT similarly to Cooley-Tukey but without
the twiddle factors. The Rader-Brenner algorithm (1976) is a Cooley-Tukey-like
factorization but with purely imaginary twiddle factors, reducing multiplications at the cost
of increased additions and reduced numerical stability. Algorithms that recursively
factorize the DFT into smaller operations other than DFTs include the Bruun and QFT
algorithms. (The Rader-Brenner and QFT algorithms were proposed for power-of-two sizes,
but it is possible that they could be adapted to general composite n. Bruun's algorithm
applies to arbitrary even composite sizes.) Bruun's algorithm, in particular, is based on
interpreting the FFT as a recursive factorization of the polynomial zn − 1, here into real-
coefficient polynomials of the form zm − 1 and z2m + azm + 1. Another polynomial viewpoint
is exploited by the Winograd algorithm, which factorizes zn − 1 into cyclotomic
polynomials—these often have coefficients of 1, 0, or −1, and therefore require few (if any)
multiplications, so Winograd can be used to obtain minimal-multiplication FFTs and is
often used to find efficient algorithms for small factors. Indeed, Winograd showed that the
DFT can be computed with only O(n) multiplications, leading to a proven achievable lower
bound on the number of irrational multiplications for power-of-two sizes; unfortunately,
this comes at the cost of many more additions, a tradeoff no longer favorable on modern
processors with hardware multipliers. In particular, Winograd also makes use of the PFA
as well as an algorithm by Rader for FFTs of prime sizes. Rader's algorithm, exploiting the
existence of a generator for the multiplicative group modulo prime n, expresses a DFT of
prime size n as a cyclic convolution of (composite) size n − 1, which can then be computed
by a pair of ordinary FFTs via the convolution theorem (although Winograd uses other
convolution methods). Another prime-size FFT is due to L. I. Bluestein, and is sometimes
called the chirp-z algorithm; it also re-expresses a DFT as a convolution, but this time of
the same size (which can be zero-padded to a power of two and evaluated by radix-2
Cooley-Tukey FFTs, for example), via the identity jk = − (j − k)2 / 2 + j2 / 2 + k2 / 2.

2.4.4.7 FFT algorithms specialized for real and/or symmetric data

In many applications, the input data for the DFT are purely real, in which case the outputs
satisfy the symmetry

Centre for Distance Education 6 Acharya Nagarjuna University

and efficient FFT algorithms have been designed for this situation (see e.g. Sorensen,
1987). One approach consists of taking an ordinary algorithm (e.g. Cooley-Tukey) and
removing the redundant parts of the computation, saving roughly a factor of two in time
and memory. Alternatively, it is possible to express an even-length real-input DFT as a
complex DFT of half the length (whose real and imaginary parts are the even/odd elements
of the original real data), followed by O(n) post-processing operations.

It was once believed that real-input DFTs could be more efficiently computed by means of
the Discrete Hartley transform (DHT), but it was subsequently argued that a specialized
real-input DFT algorithm (FFT) can typically be found that requires fewer operations than
the corresponding DHT algorithm (FHT) for the same number of inputs. Bruun's algorithm
(above) is another method that was initially proposed to take advantage of real inputs, but
it has not proved popular.

There are further FFT specializations for the cases of real data that have even/odd
symmetry, in which case one can gain another factor of (roughly) two in time and memory
and the DFT becomes the discrete cosine/sine transform(s) (DCT/DST). Instead of directly
modifying an FFT algorithm for these cases, DCTs/DSTs can also be computed via FFTs of
real data combined with O(n) pre/post processing.

Accuracy and approximations

All of the FFT algorithms discussed so far compute the DFT exactly (in exact arithmetic,
i.e. neglecting floating-point errors). A few "FFT" algorithms have been proposed, however,
that compute the DFT approximately, with an error that can be made arbitrarily small at
the expense of increased computations. Such algorithms trade the approximation error for
increased speed or other properties. For example, an approximate FFT algorithm by
Edelman et al. (1999) achieves lower communication requirements for parallel computing
with the help of a fast-multipole method. A wavelet-based approximate FFT by Guo and
Burrus (1996) takes sparse inputs/outputs (time/frequency localization) into account
more efficiently than is possible with an exact FFT. Another algorithm for approximate
computation of a subset of the DFT outputs is due to Shentov et al. (1995). Only the
Edelman algorithm works equally well for sparse and non-sparse data, however, since it is
based on the compressibility (rank deficiency) of the Fourier matrix itself rather than the
compressibility (sparsity) of the data.

Even the "exact" FFT algorithms have errors when finite-precision floating-point arithmetic
is used, but these errors are typically quite small; most FFT algorithms, e.g. Cooley-Tukey,
have excellent numerical properties. The upper bound on the relative error for the Cooley-
Tukey algorithm is O(ε log n), compared to O(ε n3/2) for the naïve DFT formula (Gentleman
and Sande, 1966), where ε is the machine floating-point relative precision. In fact, the root

P.G.D. in Bioinformatics 7 Fast Fourier Transform

mean square (rms) errors are much better than these upper bounds, being only O(ε √log n)
for Cooley-Tukey and O(ε √n) for the naïve DFT (Schatzman, 1996). These results, however,
are very sensitive to the accuracy of the twiddle factors used in the FFT (i.e. the
trigonometric function values), and it is not unusual for incautious FFT implementations
to have much worse accuracy, e.g. if they use inaccurate trigonometric recurrence
formulas. Some FFTs other than Cooley-Tukey, such as the Rader-Brenner algorithm, are
intrinsically less stable.

In fixed-point arithmetic, the finite-precision errors accumulated by FFT algorithms are
worse, with rms errors growing as O(√n) for the Cooley-Tukey algorithm (Welch, 1969).
Moreover, even achieving this accuracy requires careful attention to scaling in order to
minimize the loss of precision, and fixed-point FFT algorithms involve rescaling at each
intermediate stage of decompositions like Cooley-Tukey.

To verify the correctness of an FFT implementation, rigorous guarantees can be obtained in
O(n log n) time by a simple procedure checking the linearity, impulse-response, and time-
shift properties of the transform on random inputs (Ergün, 1995).

2.4.4.8 Multidimensional FFT algorithms
As defined in the multidimensional DFT article, the multidimensional DFT

transforms an array with a d-dimensional vector of indices

by a set of d nested summations.
Equivalently, it is simply the composition of a sequence of d one-dimensional DFTs,
performed along one dimension at a time (in any order).

This compositional viewpoint immediately provides the simplest and most common
multidimensional DFT algorithm, known as the row-column algorithm (after the two-
dimensional case, below). That is, one simply performs a sequence of d one-dimensional
FFTs (by any of the above algorithms): first you transform along the k1 dimension, then
along the k2 dimension, and so on (or actually, any ordering will work). This method is
easily shown to have the usual O(NlogN) complexity, where is the total
number of data points transformed. In particular, there are N / n1 transforms of size n1,
etcetera, so the complexity of the sequence of FFTs is:

Centre for Distance Education 8 Acharya Nagarjuna University

In two dimensions, the can be viewed as an matrix, and this algorithm
corresponds to first performing the FFT of all the rows and then of all the columns (or vice
versa), hence the name.

In more than two dimensions, it is often advantageous for cache locality to group the
dimensions recursively. For example, a three-dimensional FFT might first perform two-
dimensional FFTs of each planar "slice" for each fixed k1, and then perform the one-
dimensional FFTs along the k1 direction. More generally, an (asymptotically) optimal cache-
oblivious algorithm consists of recursively dividing the dimensions into two groups

and that are transformed recursively (rounding if d is not
even) (see Frigo and Johnson, 2005). Still, this remains a straightforward variation of the
row-column algorithm that ultimately requires only a one-dimensional FFT algorithm as
the base case, and still has O(NlogN) complexity. Yet another variation is to perform matrix
transpositions in between transforming subsequent dimensions, so that the transforms
operate on contiguous data; this is especially important for out-of-core and distributed
memory situations where accessing non-contiguous data is extremely time-consuming.

There are other multidimensional FFT algorithms that are distinct from the row-column
algorithm, although all of them have O(NlogN) complexity. Perhaps the simplest non-row-
column FFT is the vector-radix FFT algorithm, which is a generalization of the ordinary
Cooley-Tukey algorithm where one divides the transform dimensions by a vector

of radices at each step. (This may also have cache benefits.) The
simplest case of vector-radix is where all of the radices are equal (e.g. vector-radix-2
divides all of the dimensions by two), but this is not necessary. Vector radix with only a

single non-unit radix at a time, i.e. , is essentially a row-
column algorithm. Other, more complicated, methods include polynomial transform
algorithms due to Nussbaumer (1977), which view the transform in terms of convolutions
and polynomials products.

2.4.4.9 Applications of the FFT

The FFT algorithm tends to be better suited to analyzing digital audio recordings than for
filtering or synthesizing sounds. A common example is when you want to do the software
equivalent of a device known as a spectrum analyzer, which electrical engineers use for
displaying a graph of the frequency content of an electrical signal. You can use the FFT to
determine the frequency of a note played in recorded music, to try to recognize different
kinds of birds or insects, etc. The FFT is also useful for things which have nothing to do
with audio, such as image processing (using a two-dimensional version of the FFT). The
FFT also has scientific/statistical applications, like trying to detect periodic fluctuations in
stock prices, animal populations, etc. FFTs are also used in analyzing seismographic

P.G.D. in Bioinformatics 9 Fast Fourier Transform

information to take "sonograms" of the inside of the Earth. It is even used to read about
Fourier methods used to analyze DNA sequences!

The main problem with using the FFT for processing sounds is that the digital recordings
must be broken up into chunks of n samples, where n always has to be an integer power of
2. One would first take the FFT of a block, process the FFT output array (i.e. zero out all
frequency samples outside a certain range of frequencies), then perform the inverse FFT to
get a filtered time-domain signal back. When the audio is broken up into chunks like this
and processed with the FFT, the filtered result will have discontinuities which cause a
clicking sound in the output at each chunk boundary. For example, if the recording has a
sampling rate of 44,100 Hz, and the blocks have a size n = 1024, then there will be an
audible click every 1024 / (44,100 Hz) = 0.0232 seconds, which is extremely annoying to
say the least.

Assume the buffer size is n = 2^N. On the first iteration, read n samples from the input
audio, do the FFT, processing, and IFFT, and keep the resulting time data in a second
buffer. Then, shift the second half of the original buffer to the first half (remember that n is
a power of 2, so it is divisible by 2), and read n/2 samples into the second half of the
buffer. Do the same FFT, processing, IFFT. Now, do a linear fade out on the second half of
the old buffer that was saved from the first (FFT,processing,IFFT) triplet by multiplying
each sample by a value that varies from 1 (for sample number n/2) to 0 (for sample
number n - 1). Do a linear fade in on the first half of the new output buffer (going linearly
from 0 to 1), and add the two halves together to get output which is a smooth transition.
Note that the areas surrounding each discontinuity are virtually erased from the output,
though a consistent volume level is maintained. This technique works best when the
processing does not disturb the phase information of the frequency spectrum. For
example, a bandpass filter will work very well, but you may encounter distortion with pitch
shifting.

An open question in computational molecular biology is whether long-range correlations
are present in both coding and noncoding DNA or only in the latter. To answer this
question, we consider all 33 301 coding and all 29 453 noncoding eukaryotic sequences—
each of length larger than 512 base pairs (bp—in the present release of the GenBank to
determine whether there is any statistically significant distinction in their long-range
correlation properties. Standard fast Fourier transform (FFT) analysis indicates that coding
sequences have practically no correlations in the range from 10 bp to 100 bp (spectral
exponent β=0.00±0.04, where the uncertainty is two standard deviations). In contrast, for
noncoding sequences, the average value of the spectral exponent β is positive (0.16±0.05),
which unambiguously shows the presence of long-range correlations. We also separately
analyze the 874 coding and the 1157 noncoding sequences that have more than 4096 bp
and find a larger region of power-law behavior. We calculate the probability that these two
data sets (coding and noncoding) were drawn from the same distribution and we find that
it is less than 10-10. We obtain independent confirmation of these findings using the
method of detrended fluctuation analysis (DFA), which is designed to treat sequences with

Centre for Distance Education 10 Acharya Nagarjuna University

statistical heterogeneity, such as DNA’s known mosaic structure (‘‘patchiness’’) arising
from the nonstationarity of nucleotide concentration. The near-perfect agreement between
the two independent analysis methods, FFT and DFA, increases the confidence in the
reliability of our conclusion.

Summary

Fourier analysis of a periodic function refers to the extraction of the series of sines and
cosines which when superimposed will reproduce the function. This analysis can be
expressed as a Fourier series. The fast Fourier transform is a mathematical method for
transforming a function of time into a function of frequency. Sometimes it is described as
transforming from the time domain to the frequency domain. It is very useful for analysis
of time-dependent phenomena.. Fast fourier transform can also be used for the DNA
sequence analysis. The FFT also has scientific/statistical applications, like trying to detect
periodic fluctuations in stock prices, animal populations, etc

Model Questions

1. What is meant Fast Fourier transform?Why do we use it ?
2. Wrire about FFT algorithms.
3. How is fast fourier transform applied?

References

1. http://mathworld.wolfram.com/FastFourierTransform.html
2. http://en.wikipedia.org/wiki/Fast_Fourier_transform
3. http://astron.berkeley.edu/~jrg/ngst/fft/fft.html

Author :-
Asha Smitha. B

Center for Biotechnology
Acharaya Nagarjuna University

P.G.D. in Bioinformatics 1 Programming with C

 1

Lesson 2.5.1

PROGRAMMING WITH C
Objective
2.5.1.1. Introduction
2.5.1.2. The origin of C
2.5.1.3. The character set
2.5.1.4. Constants, variables & keywords
2.5.1.5. Type declaration
2.5.1.6. Hierarchy of operations
2.5.1.7 Basic Structure of C Program
2.5.1.8. The first C program
2.5.1.9. Control instructions in C
2.5.1.10. Loops
2.5.1.11. The for loop
2.5.1.12. The goto statement
2.5.1.13. Functions
2.5.1.14. Datatypes in C
2.5.1.15. Arrays

 Summary
 Self-assessment questions
 Reference books

Objectives
 To know what are programming languages and their various

generations.
 The origin and fundamentals of C on hand.
 To program using C programming language features like.

 Operators
 Control structures
 Loops
 Functions
 Arrays

2.5.1.1. Introduction

 Computers are man made machines. They do only what they are told to do.
Most computer systems perform their operations on a very primitive level. The basic
operations of a computer system form what is known as the computer’s `instruction
set’. In order to solve a problem using a computer, it is must to express the solution to
the problem in terms of the instructions of the particular computer. Man instructs a
computer to perform given tasks or applications through computer programming
languages.

A programming language or computer language is a standardized communication
technique for expressing instructions to a computer. It is a set of syntactic and
semantic rules used to define computer programs. A language enables a programmer to

Centre for Distance Education 2 Acharya Nagarjuna University

 2

precisely specify what data a computer will act open, how these data will be stored /
transmitted, and precisely what actions to take under various circumstances.

 A primary purpose of programming languages is to enable programmers to
express their intent for a computation more easily than they could with a lower-level
language or machine code. For this reason, programming languages are generally
designed to use a higher-level syntax, which can be easily communicated and
understood by human programmers. Programming languages are important tools for
helping software engineers write better programs faster. During the last few decades, a
large number of computer languages have been introduced have replaced each other,
and have been modified / combined. The need for a significant range of computer
languages is caused by the fact that the purpose of programming languages varies from
commercial software development to scientific to hobby use; There are many special
purpose languages, for use in special situations: PHP is a scripting language that is
especially suited for web development. Perl is suitable for text manipulation. The C
language has been widely used for developing of the operating system and compilers
(so-called system programming). Programming languages make computer programs
less dependent on particular machines or environments. This is because programming
languages are converted into specific machine code for a particular machine rather than
being executed directly by the machine.

 Most languages can be either compiled or interpreted, but most are better suited
for one than the other. In some programming systems, programs are compiled in
multiple stages, into a variety of intermediate representations. Typically, later stages of
compilation are closer to machine code than earlier stages.

 If the program code is translated at runtime, with each translated step being
executed immediately, the translation mechanism is spoken of as an interpreter.
Interpreted programs run usually more slowly than compiled programs, but have more
flexibility because they are able to interact with the execution environment. If the
translation mechanism used is one that translates the program which takes the
human-readable program text (called source code) as data input and supplies object
code as output. The resulting object code may be machine code which will be executed
directly by the computer’s CPU, or it may be code matching the specification of virtual
machine.

 Computers communicate and are communicated using their own languages. The
`natural’ language of the computer is far less exotic than the human languages and has
comparatively restricted vocabulary. Programming languages are divided into several
categories-there is the machine level, ie., the binary level which the computer actually
executes; there is the assembly level; ie., a machine-oriented version which allows the
use of mnemonics. Both of these are termed low level because they mirror directly the
machine’s architecture. There are high level languages, also known as problem-
oriented languages because they allow the programmer to write instructions more
closely related to a class of problem rather than to the constraints of a given computer’s
architecture.

P.G.D. in Bioinformatics 3 Programming with C

 3

One such language is the C programming language that which possesses the powerful
features of programming and supports conditional constructs, loop constructs, a rich
list of operators and a variety of data structures as in third generation languages.
There is a higher level yet which includes packages, such as word processing, database
management and spreadsheets. These languages allow users to specify the information
they want, in non-programming terms, and the package will produce the required
results. There are closely related to Fourth Generation Languages (4 GLs).

 Many hundreds of programming languages exist and it is commonly accepted to
attach a descriptive label to each, eg: `scientific’, `commercial’. However attempts to
classify the various languages are rigid and should be used with caution.

2.5.1.2. The origin of C

 C is a programming language developed at AT & T’s Bell Laboratories of USA in
1972. Basic Combined Programming Language (BCPL), developed by Martin Richards
at Cambridge University aimed to solve this problem by bringing CPL down to its basic
good features. Around same time a language called B was written by Ken Thompson at
AT & T’s Bell Labs, as further simplification of CPL. But like BCPL, B too turned out to
be very specific. C programming language was designed and written by a man named
Dennis Ritchie. Ritchie inherited the features of B and BCPL, added some of his own
and developed C. In the late seventies C began to replace the more familiar languages
of that time like PL/I, ALGOL etc. Ritchie’s main achievement is the restoration of the
lost generality in BCPL and B, and still keeping it powerful. Possibly why C seems so
popular is because it is reliable, simple and easy to use.

 C is often called a middle-level computer language. This does not mean that C is
less powerful, harder to use, or less developed than a high-level language, nor does it
imply that C has the cumbersome nature of assembly language. As a middle-level
language, C allows the manipulation of bits, bytes, and addresses the basic elements
with which the computer functions.

Getting started with C
 Communicatinng with a computer involves speaking the language the computers
understands, which immediately rules out English as the language of communication
with computer. However, there is close analogy between learning English language and
learning C language.

2.5.1.3. The character set

 A character denotes any alphabet, digit or special symbol used to represent
information. Following table shows the valid alphabets, numbers and special symbols
allowed in C:

 Alphabets A,B,……Y, Z

 A, b, ……., y, z

Centre for Distance Education 4 Acharya Nagarjuna University

 4

 Digits 0,1,2,3,4,5,6,7,8,9

 Special ~ ‘ ! @ % ^ & * () _ - + =

 1 / { } [] : ; “ ‘ <> , . ? /

2.5.1.4. Constants, variables & keywords

 The alphabets, numbers and special symbols when properly combined form
constants, variables and keywords. A constant is a quantity that doesn’t change. This
quantity can be stored at a location in the memory of the computer. A variable can be
considered as a name given to the location in memory where this constant is stored.
The contents of a variable can change.

1. Types of constants

 C constants can be divided into two major categories:
a. Primary constants

Integer constant
Real constant
Character constant

b. Secondary constant
Array
Pointer
Structure
Union
Enum etc.

For constructing these different types of constants certain rules have been laid down.
These rules are as under:

a. Rules for constructing integer constants

a. An integer must have atleast one digit.

b. It must not have a decimal point.

c. It could be either positive or negative.

d. If no sign precedes an integer constant is assumed to be positive.

e. No commas or blanks are allowed within an integer constant

f. The allowable range for integer constants is –32767 to +32767.

Integer constants must fall within this range because the 1BM compatible
microcomputers are usually 16 bit computers which cannot support a number falling
outside the above mentioned range. For a 32 bit computer ofcourse the range would be
much larger.

P.G.D. in Bioinformatics 5 Programming with C

 5

 Eg: 426

 + 782

- 8000

b. Rubles for constructing real constants

 Real constants are often called floating point constants. The real constants could
be written in two forms, Fractional form and exponential form.

a. A real constant must have atleast one digit.

b. It must have a decimal point.

c. It could be either positive or negative.

d. Default sign is positive.

e. No commas or blanks are allowed within a real constant.

Eg: 426.0

 - 32.76

In exponential form of representation, the real constant is represented in two
parts. The part appearing before `e’ is called mantissa, whereas the part following `e’ is
called exponent.

a. The mantissa part and the exponential part should be separated by a letter C.

b. The mantissa part may have a positive or negative sign.
c. Default sign of mantissa part is positive.

d. The exponent must have atleast one digit which must be a positive or negative
integer. Default sign is positive.

e. Range of real constants expressed inn exponential form is –3.4e38 to 3.4e38.
Eg: + 3.2 e-5

 4.1e8
-0.2e+3

c. Rules for constructing character constants

a. A character constant is either a single alphabet, a single digit or a single special
symbol enclosed within single inverted commas both the inverted commas
should point to the left. For example, `A’ is a valid character constant whereas
`A’ is not.

b. The maximum length of a character constant can be 1 character.

Centre for Distance Education 6 Acharya Nagarjuna University

 6

Eg : `A’ `1’

 `5’ `=’

2. Types of C variables

 In C, a quantity which may vary during program is called a variable. Variable
names are the names given to locations in the memory of computer where different
constants are stored. These locations can contain integer, real or character constants.
A constant stored in a location with a particular type of variable name can hold only
that type of constant.

a. A variable name is any combination of 1 to 8 alphabets, digits or underscores.

b. The first character in variable name must be an alphabet.

c. No commas or blanks are allowed within a variable name.

d. No special symbol other than an underscore (as in gross-sal) can be used in a
variable name.

Eg: si-int

 Pop-e-89

These rules remain same for all the types of primary and secondary variables. C
compiler is able to distinguish between the variable names, by making it compulsory to
declare the type of any variable name to be used in a program. This type declaration is
done at the beginning of the program.

3. C Key words

 Keywords are the words whose meaning has already been explained to the C
compiler (or in broad sense to the computer). The keywords cannot be used as variable
names because doing so implies to assign a new meaning to the keyword, which is not
allowed by the computer. The keywords are also called `Reserved words’. There are
only 32 keywords available in C. Following is the list of keywords in C.

Auto Double If Statie Break Else Int Struct Case

Enum Long Switch Char Extern Near Typedy Const Float

Register Union Continue Far Return Unsigned Default For Short

Void Do Goto Signed While

P.G.D. in Bioinformatics 7 Programming with C

 7

2.5.1.5. Type declaration

 Type declaration is used to declare the type of variables being used in the
program. Any variable used in the program must be declared before using it in any
statement. The type declaration statement is usually written at the beginning of the C
program.

 Eg : int bas;

 Float sal;

 Char name;

 It is very important to understand how the execution of an arithmetic statement
takes place. First, the right hand side is evaluated using constants and the numerical
values stored in the variable names. This value is assigned to the variable on the left
hand side.

The following points has to be noted carefully.

a. C allows only one variable on left hand side of = that is, Z = k * l is legal, where
as k * l = Z is illegal.

b. No operator is assumed to be present. It must be written explicitly. In the
following example, the manipulation operator after b must be explicitly written.
A = c,b,d (xy) has to be written as

A = c*b*d* (x*y).
c. Arithematic operations can be performed on ints, floats is chars.

Thus the statements,
Char x, y;

Int z;
X = `a’,

Y = `b’,
Z = x+y; are perfectly valid,

Since the addition is performed on the ASC11 values of the characters and not on
characters themselves. The ASC11 values of `a’ eg `b’ are 97 and 98 (refer the ASC11
values) and hence can definetly be added.

d. Unlike other high level languages, there is no operator for performing
exponentiation operation.
A = 3 **2;
B = 3” 2; are valid

e. An arithmetic operation between an integer and integer always yields an integer
result.

Centre for Distance Education 8 Acharya Nagarjuna University

 8

f. Operation between a real and real always yields a real result.

g. Operation between an integer and real always yields a real result.

Eg : 5/2 = 2 ; 2/5 = 0

 5.0/2 = 2.5 ; 2.0/5 = 0.4

 5.0/2.0 = 2.5 ; 2.0/5.0 = 0.4

2.5.1.6. Hierarchy of operations

 All operators in C are ranked according to their precedence.

Priority Operators Description

1st * 1% Multiplication, division, modular division

2nd + - Addition, subtraction

3rd = Assignment

a. In case of a tie between operations of same priority preference is given to the
operator which occurs first.

b. Within a parantheses, if more than one set of parantheses are present, the
operations within the innermost parantheses will be performed first, followed by
the operations within the second innermost pair and so on.

A careless imbalance of the right and left parantheses is a common error.

2.5.1.7 Basic Structure of C Program

A C program may contain one or more sections shown.
The documentation section consists of a set of comment lines giving the name of the
program, the author and other details, which the programmer would like to use later.
The link section provides instructions to the compiler to link functions from the system
library. The definition section defines all symbolic constants.

There are some variables that are used in more than one function. Such variables are
called global variables and are declared in the global declaration section that is outside
of all the functions. This section also declares all the user-defined functions.

Every C program must have one main() function section. This section contains two

parts, declaration part and executable part. The declaration part declares all the
variables used in the executable part. There is at least one statement in the executable
part. These two parts must appear between the opening and the closing braces. The
program execution begins at the opening brace and ends at the closing brace. The

P.G.D. in Bioinformatics 9 Programming with C

 9

closing brace of the main function section is the logical end of the program. All
statements in the declaration and executable parts end with a semicolon.

The subprogram section contains all the user-defined functions that are called in the

main function. User-defined functions are generally placed immediately after the main
function, although they may appear in any order.
All sections, except the main function section may be absent when they are not
required.

2.5.1.8. The first C program

 Each instruction in a C program is written as a separate statement. Therefore a
complete C program is nothing but statements in the same order in which they are to
be executed; unless ofcourse the logic of the problem demands a deliberate `jump’ or
transfer of control to a statement which is out of sequence. The following rules are
applicable to all C statements:

a. Blank spaces may be inserted between two words to improve the reliability of the
statement. However, no blank spaces are allowed within a variable, constant or
keyword.

b. C has no specific rules for the position at which a statement is to be written.
That’s why it is often called a free-form language.

c. Any C statement always ends with a ; (semicolon).

Centre for Distance Education 10 Acharya Nagarjuna University

 10

A Sample C Program
/* calculation of simple interest */
/* Author gekay Date: 25/12/1994 */
{
 int p, n;
 float r, si;
 P = 1000;
 N = 3;
 R = 8.5;
 Si = p * n * r / 100;
 Printf (“ % f “ , si);
}

 Comment about the program should be enclosed within /* */. For example, the first
two statements in the above program are comments. Any number of comments
anywhere in the program can be written. Comments cannot be nested. A comment can
be split over more than one line as in,
/* This is
 just a
 comment */

 Any C program is nothing but a combination of functions. Main ()
is one such function. Empty parantheses after `main’ are necessary.

 The set of statements belonging to a function are enclosed within a
pair of braces. For eg:
Main ()
{

 statement 1;
 statement 2;

}
 Any variable used in the program must be declared before using it.
 Print () is a function which is used to print on the screen the value contained in a
variable.
The general form of printf statement is,
Printf (“< format string >”, <list of variables>);
< format string > could be,
% f for printing real values
% d for printing integer values
% c for printing character values

P.G.D. in Bioinformatics 11 Programming with C

 11

Eg: Printf (“% f”, si);
 Printf (“% d %d%f%f”, p, n, r, si);
 Printf (“ simple interest = Rs. % f”, si) ;
 The output of the last statement would be
 Simple interest = Rs. 25
 Printf (“Prin = % d in Rate = % f”, p, r);
 “In” is called new line and it takes the cursor to the next line. Therefore the
output is split over two lines like
 Prin = 1000
 Rate = 8.5
In the above sample program, the values of p, n & r are supplied through keyboard,
rather, a statement called scant should be used:
Main ()
{
 int p, n;
 float r, si;
 print f (“Enter values of p, n, r”);
 scanf (“%d %d %f”, & p, &n, &r);
 si = p * n * r/100;
 printf (“%f”, si);
}

 The first printf () statement outputs the message `enter the values of p,n,r’ on
the screen. The ambersand (&) before the variables in the scanf statement is a must, &
is a pointer operator. The meaning and working of this pointer operator is the `address
of’ operator, that which returns the address of the variables. Here, in the above
program, the p, n & r values are to be supplied through keyboard. The three values can
be separted, while entering through keyboard, using a blank, a tab or even by entering
each value on a new line.

2.5.1.9. Control instructions in C
 C has three major decision making instructions, otherwise called conditional
statements:

a. the if statement, (b) the if-else statement, and (c) the switch statement.
1. The if statement
 C uses the keyword `if’ to implement the decision control instruction. The
general form is :
If (this condition is true)

 Execute this statement;

Centre for Distance Education 12 Acharya Nagarjuna University

 12

 The keyword `if’ tells the compiler that what follows, is a decision control
instruction. The condition following the keyword if is always enclosed within a pair of
paratheses. If the condition, whatever it is, is true, then the statement is executed. If
the condition is not true then the statement is not executed; instead the program skips
past it. As a general rule, the condition is expressed using C’s `relational’ operators.
They allow to compare the values.

OPERATOR MEANING

== Equals

! = Not equals

< Less than

> Greater than

<= Lessthan or equals

> = Greater than or equals

The requirement of more than one statement are to be executed if a given if condition is
satisfied, then they must be placed within a pair of braces.

2. The if-else statement
 The if statement will execute a single or multiple statement (s) when the
condition following if is true, it doesn’t do anythis if the condition is not satisfied.
 This is what the purpose of the else statement. As the if statement, the default
scope of else is also the statement immediately after the else. To override, a pair of
braas are used. The format would be:
If (condition)
{
 statement 1;
 statement 2;
}
else
{
 statement 3;
 statement 4;
}
3. Nested if-elses
 It is perfectly alright to write an entire if-else construct within either the body of
the if statement or the body of an else statement. This is called `nesting’ of ifs. Note
that the second if-else construct is nested in the first else statement. If the condition in

P.G.D. in Bioinformatics 13 Programming with C

 13

the first if statement is false then the condition in the second if statement is checked. If
it is false as well, the final else statement is executed.
4. Logical operators
 C allows usage of three logical operators.

a. & & (read as AND)
b. 11 (OR)
c. ! (NOT)

They are composed of and are used as two symbols together. The first two operators, &
& and 11, allow two or more conditions to be combined in an if statement. The & &
operator is used to combine two conditions in which if one of the conditions evaluate to
false then the whole condition of the if statement is treated as false. And when 11 is
used, any one of conditions evaluates to true then the whole condition is treated as
true. The third operator is the NOT operator written as !. It reverses the value of the
expression it operates on; it makes a true expression false and a false expression true.
Eg : (1) if (a>b & & b>c)
 That implies the condition is true only when a is greater than be and b is greater
than c.
Eg : if (a>10 11 a>5)
 A is greater than 10 and it can be true when the a is just greater than 5.
Eg : ! (y<10)
 Implies “not y less than”. In other words
The NOT operator is often used to reverse the logical value of a single variable.
5. The conditional operators
 The conditional operators ? and : are sometimes called ternary operators since
they take three arguments.
The general form is;
Expression 1 ? expression 2 : expression 3
This implies that : “if expression 1 is true (that is, if its value is non-zero), then the
value returned will be expression 2 otherwise the value returned will be expression 3”.
Eg : int x, y;
 Scanf (“%d”, & x);
 Y = (x>5 ? 3:4);
 This statement will store 3 in y if x is greater than 5, otherwise it will store 4 in y.
2.5.1.10. Loops
 The versatility of the computer lies in its ability to perform a set of instructions
repeatedly. Repeating some portion of the program either a specific number of times or
until a particular condition is being satisfied. This repetitive operation is done through
a loop control structure. There are three methods by way of which looping is done.

a. Using a for statement

Centre for Distance Education 14 Acharya Nagarjuna University

 14

b. Using a while statement
c. Using a do-while statement

1. The while loop
 In programming, it is often a case of doing something a fixed number of times.
The while loop is ideally suited for such cases. In a while block of statements, the
condition is evaluated first and, if it is true, the loop body is executed. The parantheses
after the while contains a condition. So long as this condition remains true all
statements within the body of the while loop keep getting executed repeatedly. After
execution of the loop body once / everytime, the condition in the while statement is
evaluated again. This repeats until the condition becomes false. The format would be :
 While (condition)
 {
 statement 1;
 statement 2;
 }
 The statements within the while loop’s condition may use relational or logical
operators.
 While (I<=10)
 While (j>10 & & (b<15 \\ c < 20))
 As a rule the while must test a condition that will eventually become false,
otherwise the loop would be executed forever, indefinitely.
Eg:
 Int I = 1;
 While (I<=10)
 Printf (“%d”, I);
 This is an indefinite loop, since ; remains equal to 1 forever.
 No semicolon or anytermination are not to be used after the while condition and
before the while block begins.
2. More operators
 The increment operator(++) increments the value of preceeding / succeeding variable
to which it is used.
Eg: I++ I is incremented by 1.
 The decrement operator (--) decrements the value of the variable by 1.
Eg: 1 -- I is decreased by 1.
 += is a compound assignment operator.
Eg : I = I+1;
 Can be written as
 I + = 1;
Similarly other compound assignment operators are -=, *=, /= and %=.

P.G.D. in Bioinformatics 15 Programming with C

 15

2.5.1.11. The for loop
 The for loops allows to specify three conditions about the loop in a single line.

a. setting a loop counter to an initial value.
b. Testing the loop counter to determine whether its value has reached the number

of repetitions desired.
c. Increasing the value of loop counter each time the program segment within the

loop has been executed.
The general form of for statement is as under:
For (intialise counter; test counter; increment counter)
{
 do this;
 statements;
 }
Eg: int count;
 For (count =1 ; count < = 3; count = count + 1)
 {
 statement 1;
 statement 2;
 }

 When the for statement is executed for the first time, the value of
count is set to an initial value 1.

 Now the condition count <=3 is tested. Since count is 1 the
condition is satisfied and the body of the loop is executed for once.
And after that, upon reaching the closing brace of for, the control
gets back to the for statements, where the third statement of the for
condition is evaluated and incremented, by 1.

 Again the test is performed to check whether the value is <3 or not
and the cycle goes on.

 When count reaches the value 4 the control exists from the loop and
is transferred to the statement (if any) immediately after the body of
for.

The flowchart, further clarryfying the concept:
Eg: main ()
{
 int I;
 for (I = 1; I<=10; I=I+1)
 printf (“%d in”, I);
 }
prints numbers 1 to 10

Centre for Distance Education 16 Acharya Nagarjuna University

 16

 The way if statements can be nested, similarly whiles and fors can
also be nested.

 In the for loop, multiple initializations can be done. That is, more
than variables can be initialized with in the for loop
Eg : for (I=1, j=2, j<=10; j++)

 A break is usually used when the situations arise that the control
has to jump out of the loop instantly, without waiting to get back to
the conditional test. When the keyword break is encountered inside
any C loop, control automatically passes to the first statement after
the loop.

 A continue statement allows to take the control to the beginning of
the loop, bypassing the statements inside the loop which have not
yet been executed. When the keyword continue is encountered
inside any C loop, control automatically passes to the beginning of
the loop. A continue is usually associated with an if.

4. The do-while loop
 The do-while loop has a format of:
 Do
 {
 statement 1;
 statement 2;
 } while (condition is true);
 There is a minor difference between the working of while and do-while loops. The
place where the condition is tested. `While’ tests the condition before executing any of
the statements within the while loop. The do-while tests the condition after having
executed the statements within the loop. This means that do-while would execute its
statement atleast once, even if the condition fails for the first time itself.

Break and continue are used with do-while just as they would be in a while or a for
loop.

5. The switch statement

 The control statement which allows the user to make a decision from a number
of choices is called a switch, or more correctly a switch-case-default, since these three
keywords go together to make up the control statement.
 Switch (integer expression)
 {
 case constant 1;
 do this;
 case constant 2;
 do this;
 case constant 3;
 do this;

P.G.D. in Bioinformatics 17 Programming with C

 17

 default;
 do this;
 }
 The integer expression following the keyword switch is any C expression that will
yield an integer value. The keyword case is followed by an integer or a character
constant that which different for each case. First, the integer expression following the
keyword switch is evaluated. The value it gives is then matched, one by one, against
the constant values that follow the case statements. When match found, the
statements following that case are executed, and all subsequent case and default
statements as well. If no match found, only the statements following the default are
executed.
Eg :
 Main ()
 {
 int I =2;
 switch (i)
 {
 case 1:
 Printf (“I am in case 1 in”);
 Case 2:
 Printf (“I am in case 2 in”);
 Case 3:
 Printf (“I am in case 3 in”);
 Default :
 Printf (“I am in default in”);
 }
 }
The output would be
I am in case 2
I am in case 3
I am in default.
If the requirement is to print only the statements of the matched case, then break
statement is to be used at the end of every case. No need fro a break after the default,
since the control comes to the end anyway. For better understanding:

 The order of the case number can be either ascending or descending
or even without any order even.

 Char values in case and switch can also be used instead of integer
values.

 Unlike if and else, no need to enclose multiple statements to be
executed within braces.

2.5.1.12. The goto statement
 The goto statements make a computer or C programmer’s life miserable. The
reason is programs become unreliable, unreadable and hard to debug. A goto
statement can cause program control to end up almost anywhere in the program.

 When goto’s are used, it is never sure how a point is reached in the
code. They obscure the flow of control.

Centre for Distance Education 18 Acharya Nagarjuna University

 18

2.5.1.13. Functions
 A function is a self-contained block of statements that perform a coherent task of
some kind. A task that which is always performed exactly in the same way everytime.
Eg:
 Main ()
 {
 message ();
 Printf (“in this is after the function”);
 }
 message ()
 {
 printf (“ in From the message function”);
 }
The output would be:
From the message function
This is after the function
That is, from the main () the function message is called. The activity of main () falls
asleep for a while and the message () function is waked up, which is defined after or at
the end of the program. The control returns to main () and continues to execute the
rest of the statements. Main () is called the calling function and message () the called
function.
The general format of a function would be :
Function (arg 1, arg 2, arg 3)
 Type arg1, arg2, arg3;
 {
 statement 1;
 statement 4;
 }
Arguments are the values passed from one function to the other. Before beginning with
the statements in the functions it is necessary to declare the type of the arguments
through type declaration statements.

 Any C program contains at least one function.
 If a program contains only one function, it must be main (), because

the program execution always begins with main ().
 There is no limit on the number of functions that might be present

in a C program.
 Each function is called in the sequence specified by the function

calls in main ().
 A function gets called when the function name is followed by a

semicolon.
 A function is defined when the function name is followed by a pair of

baraces and some statements within them.
 Any function can be called from any function. Even a function can

call itself from within. Such a process is called `recursion’. But a
function cannot be defined another function.

 There are basically two types of functions.
Library functions Eg: printf () , scanf () etc.
User defined functions Eg: message ().

P.G.D. in Bioinformatics 19 Programming with C

 19

 Library functions are commonly required functions grouped together and stored
in what is called a library. The library is present on the disk and is written for the
users. Almost always a compiler comes with a library of standard functions.

 User defined functions are defined entirely by the user.

 Writing functions avoids rewriting the same code over and over.
 The mechanism used to convey information to the function is the

`argument’.
Eg : main ()
 {
 int a, b, c sum;
 printf (“Enter 3 numbers”);
 scanf (“%d %d %d”, &a, &b, &c);
 sum = calsum (a,b,c);
 printf (“in sum = % d”, sum);
 }
 calsum (x, y, z)
 int x, y, z;
 {
 int d;
 d = x+y+z;
 return (d);
 }

The output would be:
 Enter 3 numbers 10 20 30
 Sum = 60

 The values of a,b &c are passed in to the function calsum (). These
variables a, b & c are called `actual arguments and the variables x, y
& z are called `formal arguments’. They number of arguments can
be passed to the function, the type, order and number of the actual
and formal arguments must be same. The compiler treats x, y & z
variables as different, though the same names a, b & c are used, as
they are in a different function.

 The return statement serves two purposes.
1. The control is immediately transferred to the calling function.
2. To return a value from the called function.

 Whenever the control returns from a function, some value is
definitely returned.

 `void’ keyword placed before any function name at its definition,
doesnot return any value.

 Return function can return only one value at a time.
 A value of a variable changed in the formal arguments does not

affect the value in the actual argument.

 When a function is called with values of the variables as arguments
then it is said to be `calls by value’. Instead when the location

Centre for Distance Education 20 Acharya Nagarjuna University

 20

number (address) of a variable is passed as an argument, then it is
said to be `call by reference’

 A pointer points towards the location number, of a variable.

2.5.1.14. Datatypes in C
 As seen earlier, it is necessary to define or declare type of data being used in a
program. The int or the integer datatype has two classification long and short. The
short is the ordinary int used.
Whereas, the long int occupies four bytes of memory and its range would be –
2147483648 to +2147483647. They are declared as:
 Long I;
 Int j; Here I is a long integer variable, j is a short or ordinary int.

Integer variables can be further classified into signed and unsigned, basing on the sign.
When the variable is declared as: unsigned int num-students; the range of permissible
integer values will shift from the range –32768 to +32767 to the range 0 to 65535.
Unsigned integers can be short and long. Unsigned long integer would be 0 to
4294967295.

 The way there are signed and unsigned ints there are signed and unsigned chars
also. A signed char is same as our ordinary char and ranges from –128 to +127 An
unsigned clear from 0 to 255.

 A float occupies four types in memory and ranges from –3.4e38 to + 3.4e38. C
offers a double data type which occupies 8 bytes in memory and has range from –
1.7e308 to + 1.7e308. A double variable can be declared as: double population;

There exists even a long double which can range from –1.7e4932 to +1.7e4932. A long
double occupies 10 bytes in memory.

2.5.1.15. Arrays
 An – array is a collective name given to a group of `similar quantities’. It would
be easier to handle one variable than handling 100 different variables. The similar
quantities could be percentage of marks, of 100 students, or salaries etc. The similar
elements could all be ints, or all floats or all chars etc. Usually array of characters is
called a string.

1. Array declaration
 int marks (30);

 int specifies the type of variable, marks the variable name and (30) tells how
many elements of type int will be in our array. The bracket ([]) tells the compiler that it
is an array.

2. Entering data into an array

 Eg:

 For (I=0; I<29; I++)

P.G.D. in Bioinformatics 21 Programming with C

 21

 {

 Printf (“in enter marks”);

 Scanf (“%d, & marks [I]);

 }

 The for loop, one by one takes inn the marks. The count of I starts from 0. The
1st element of the array would be marks (0) and second marks (1) and so on, until
marks (29) not marks (30) as the count starts from 0. Another way of array
initialization would be

 Int num (6) = {2,4,12,5, 45, 5};

 Float n () = {12.3, 34.2, -23.4, -11.3};

Summary

 The C programming language started at AT & T’s Bell laboratories, called the
middle level language, has its own characterset that which includes alphabets,
numbers and special symbols, keywords, constants, variables and flexible datatypes
and the opportunity for the programmer to define uses defined functions. Its control
structures allows the user to define various conditions and checks to the task to refine
it. Arrays, a collection of similar elements is the feature of C programming languages
that enables to task with large numbers of data programming pleasure is offered by C
programming language with its salient features.

Self assessment questions
1. Write a C program to input two numbers through the keyboard into two locations

C and D and swap the contents of C & D, using a third variable.

2. Write a C program to print all prime numbers from 1 to 300.

(Hint: Use nested loops, break & continue).

3. Write a program to generate all combinations of 1, 2 & 3 using for loop.

4. Write a menu driven C program to perform deposit, withdrawl and checking
balance of bank transactions using functions and switch case.

5. Write a C program to calculate the percentages, grade and separate the failed
students of 50 students of a class, using arrays.

Reference books
1. Programming in C - Stephen G. Kochan

2. Let us C - Yashwant Kanetkar

3. Learner’s guide to `C’ programming - NIIT.

4. Programming with `C’ - Byron & Gottfried.

Asha Smitha. B.
Research Scholar

Center for Biotechnology
Acharya Nagarjuna University.

P.G.D. in Bioinformatics 1 Programming with HTML

Lesson 2.5.2

PROGRAMMING WITH HTML

Contents
Objective
2.5.2.1 Introduction
2.5.2.2 A brief history of HTML
2.5.2.3 Authoring documents with HTML 4
2.5.2.4 HTML Document Structure
2.5.2.5 HTML element overview
2.5.2.6 HTML TAGS
Summary
Model Questions
References

Objective

 To study and know the use of various HTML tags.
 To understand the difference between HTML and DHTML.
 To improve knowledge in creating efficient web pages.

2.5.2.1 Introduction

To publish information for global distribution, one needs a universally

understood language, a kind of publishing mother tongue that all computers may
potentially understand. The publishing language used by the World Wide Web is HTML
(from HyperText Markup Language).

 Hyper is the opposite of linear. It used to be that computer programs had to move

in a linear fashion. This before this, this before this, and so on. HTML does not hold
to that pattern and allows the person viewing the World Wide Web page to go
anywhere, any time they want.

 Text is what you will use. Real, honest to goodness English letters.
 Mark up is what you will do. You will write in plain English and then mark up what

you wrote. More to come on that in the next Primer.
 Language because they needed something that started with "L" to finish HTML and

Hypertext Markup Louie didn't flow correctly. Because it's a language, really -- but
the language is plain English.

2.5.2.2 A brief history of HTML

HTML was originally developed by Tim Berners-Lee while at CERN, and

popularized by the Mosaic browser developed at NCSA. During the course of the 1990s
it has blossomed with the explosive growth of the Web. During this time, HTML has
been extended in a number of ways. The Web depends on Web page authors and
vendors sharing the same conventions for HTML. This has motivated joint work on

Centre for Distance Education 2 Acharya Nagarjuna Univeristy

specifications for HTML. HTML 2.0 (November 1995) was developed under the aegis of
the Internet Engineering Task Force (IETF) to codify common practice in late 1994.
HTML+ (1993) and HTML 3.0 (1995) proposed much richer versions of HTML. Despite
never receiving consensus in standards discussions, these drafts led to the adoption of
a range of new features. The efforts of the World Wide Web Consortium's HTML Working
Group to codify common practice in 1996 resulted in HTML 3.2 (January 1997).

Most people agree that HTML documents should work well across different

browsers and platforms. Achieving interoperability lowers costs to content providers
since they must develop only one version of a document. If the effort is not made, there
is much greater risk that the Web will devolve into a proprietary world of incompatible
formats, ultimately reducing the Web's commercial potential for all participants. HTML
has been developed with the vision that all manner of devices should be able to use
information on the Web: PCs with graphics displays of varying resolution and color
depths, cellular telephones, hand held devices, devices for speech for output and input,
computers with high or low bandwidth, and so on.

HTML, or Hyper Text Markup Language is designed to specify the logical

organization of a document, with important hypertext extensions. It is not designed to
be the language of a WYSIWYG word processor such as Word or WordPerfect. This
choice was made because the same HTML document may be viewed by many different
"browsers", of very different abilities. HTML 4 extends HTML with mechanisms for style
sheets, scripting, frames, embedding objects, improved support for right to left and
mixed direction text, richer tables, and enhancements to forms, offering improved
accessibility for people with disabilities.

2.5.2.3 Authoring documents with HTML 4

HTML instructions divide the text of a document into blocks called elements.
These can be divided into two broad categories -- those that define how the BODY of the
document is to be displayed by the browser, and those that define information `about'
the document, such as the title or relationships to other documents.

HTML gives authors the means to:

 Publish online documents with headings, text, tables, lists, photos, etc.
 Retrieve online information via hypertext links, at the click of a button.
 Design forms for conducting transactions with remote services, for use in

searching for information, making reservations, ordering products, etc.
 Include spread-sheets, video clips, sound clips, and other applications directly in

their documents.

Text Block Elements:
As mentioned on the previous page, the BODY element contains all the displayed
content of a document. Structurally, the document content is organized into blocks of
text, such as paragraphs, lists, headings, paragraphs, block quotations, and so on.
These are generically called block elements, since they "block" chunks of text together
into logical units. Block elements can often contain other blocks -- for example, a list
item can contain paragraphs or block quotations, so that these elements can often nest
together.

P.G.D. in Bioinformatics 3 Programming with HTML

The block-level elements are:
Hn (Headings)

 P
 ADDRESS
 BLOCKQUOTE
 PRE
 HR
 FORM
 TABLE
 DIV

Character-Level Elements
Then are what I call character-level elements, namely line breaks (BR) and images
(IMG). These are treated much like characters, and can appear wherever there is a
character in a document.

2.5.2.4 HTML Document Structure

HTML documents are structured into two parts, the HEAD, and the BODY. Both
of these are contained within the HTML element -- this element simply denotes this as
an HTML document.

The head contains information about the document that is not generally
displayed with the document, such as its TITLE. The BODY contains the body of the
text, and is where you place the document material to be displayed. Elements allowed
inside the HEAD, such as TITLE, are not allowed inside the BODY, and vice versa.

Some of the most common elements used in HTML documents are listed here:

 The <HTML>, <HEAD>, and <BODY> tag pairs are used to structure the
document.

 The <TITLE> and </TITLE> tag pair specifies the title of the document.
 The <H1> and </H1> header tag pair creates a headline.
 The <HR> element, which has no end tag, inserts a horizontal rule, or bar, across

the screen.
 The <P> and </P> paragraph tag pair indicates a paragraph of text.

Strucutre
<! Doctype HTML PUBLIC “-//W3C/DTD HTML 4.0 Transational // EN”>
<HTML>
<HEAD>
<TITLE> Document title </TITLE>

 ….. Other supplementary information goes here…
</HEAD>
<BODY>
…. Marked - up text goes here ….
</BODY>
</HTML>

Centre for Distance Education 4 Acharya Nagarjuna Univeristy

HTML Rules and Guidelines
The following are some rules to remember when writing HTML.
 HTML documents are structured documents. The structure of HTML

Document is specified by a document type definition (DTD). A DTD defines
what elements a document can contain, their relationships to one another
inside a document, and their possible attributes and values. If the
elements in a particular HTML document, agree with this formal
definition, the document is said to be valid.

 Element name are not case-sensitive. An element such as <hTml> is
equivalent to <html> or <HTML>.

 Attribute names are not case-sensitive.
 Attribute values may e case-sensitive, especially when it refers to a file.
 Attribute values should be quoted. The actual attribute value may contain

spaces or special characters if it is enclosed by quotes.
 Element names cannot contain spaces. Browsers treat the first space

encountered inside an element as the end of an element’s name and the
beginning of its attributes.

 Browsers collapse and ignore space characters in HTML content. Browsers
collapse any sequence of spaces, tabs and returns in an HTML document
into a single space character. These characters convey no formatting
information, unless they occur inside a special preformatting element,
such as <PRE>, which preserves their meaning. Extra space can be
liberally used within HTML document to make it more legible.

 HTML documents may contain comments which are denoted by start
value <!--and an end value-->. Comments may be many lines.

 Elements should nest. Any element that starts within a section enclosed
by another element must also end within that section.

 Browsers ignore unknown elements and attributes.

2.5.2.5 HTML element overview

The HTML element starts with a start tag: E.g. <H1>
The HTML element ends with an end tag: </H1>

P.G.D. in Bioinformatics 5 Programming with HTML

HTML tags are used to mark-up HTML elements. HTML tags are surrounded by the
two characters < and >. The surrounding characters are called angle brackets.
The purpose of the <H1> tag is to define an HTML element that should be displayed as
a heading.This HTML element starts with the start tag <body>, and ends with the end
tag </body>.
The purpose of the <body> tag is to define the HTML element that contains the body of
the HTML document. Tags can have attributes.

 Attributes can provide additional information about the HTML elements on your
page.

 Attributes always come in name/value pairs like this: name="value".
 Attributes are always added to the start tag of an HTML element.

The most important tags in HTML are tags that define headings, paragraphs and line
breaks.

2.5.2.6 HTML TAGS

 <HTML> </HTML>
Attributes: VERSION=string
The HTML tag is the outermost tag. It is not required and may safely be omitted. It
indicates that the text is HTML (the version can be indicated with the optional VERSION
attribute), but this information is almost never used by servers or browsers.

 Headings
Headings are defined with the <h1> to <h6> tags. <h1> defines the largest heading.
<h6> defines the smallest heading.
<h1>This is a heading</h1>
<h2>This is a heading</h2>
<h3>This is a heading</h3>
<h4>This is a heading</h4>
<h5>This is a heading</h5>
<h6>This is a heading</h6>
HTML automatically adds an extra blank line before and after a heading.

 Paragraphs
Paragraphs are defined with the <p> tag.
<p>This is a paragraph</p>
HTML automatically adds an extra blank line before and after a paragraph.

 Line Breaks
The
 tag is used when you want to end a line, but don't want to start a new
paragraph. The
 tag forces a line break wherever you place it.<p>This
 is a
para
graph with line breaks</p>. The
 tag is an empty tag. It has no closing
tag.
 <ADDRESS> </ADDRESS>
The ADDRESS tag should be used to enclose contact information, addresses and the
likes. It is often rendered with a slightly indented left margin and italics. Appearance:

Centre for Distance Education 6 Acharya Nagarjuna Univeristy

 . Attributes: HREF=URL, NAME=string, REL=string, REV=string,
TITLE=string

The anchor tag is the "glue" for hypertext documents. The enclosed text and/or image(s)
will be selectable by the user, and doing so will take the user to the location specified in
the HREF attribute. The TITLE attribute can be used to provide a description of that
location, which is displayed by some browsers when the mouse moves over the URL.
The NAME attribute is used to set up "named anchors." The enclosed text will be
marked as a "target" to which a browser can jump directly. For example, if you have "Table of Contents" somewhere in the document, and the user selects
the URL . REL and REV are not widely used, although these attributes were already
present. Be sure to close the quotes around the value in HREF. a hyperlink with an
unclosed quote may not work correctly. The A element used with the NAME attribute
requires a closing tag and non-empty content.

 <BODY> </BODY>
Attributes: BACKGROUND=URL, BGCOLOR=#RRGGBB, TEXT=#RRGGBB,
LINK=#RRGGBB VLINK=#RRGGBB, ALINK=#RRGGBB.

The BODY tag contains the actual contents of the document. The attributes
contain the appearance of the document. The BACKGROUND attribute should point to
the location of an image, which is used as the (tiled) background of the document. The
other attributes set the colors for the background, text, links, visited links and active
(currently being selected) links, using the order above.

B is used to indicate that the enclosed text must be rendered in a bold typeface.

 <U> </U>
U is used to indicate the enclosed text should be underlined.

 <I> </I>
I is used to indicate that the enclosed text must be rendered in a italic (slanted) typeface

 <CENTER> </CENTER>
It is used to indicate that large blocks of text should appear centered.

 <FORM ACTION=URL> </FORM>
Attributes: ACTION=URL, METHOD=get|post, ENCTYPE=string.

 <FORM ACTION=URL> </FORM>

ACTION=URL, METHOD=get|post, ENCTYPE=string.
Forms allow a person to send data to the WWW server. FORM has one required
attribute, ACTION, specifying the URL of a CGI script which processes the form and
sends back feedback. There are two methods to send form data to a server. GET, the
default, will send the form input in an URL, whereas POST sends it in the body of the
submission. The latter method means you can send larger amounts of data, and that
the URL of the form results doesn't show the encoded form. A form should always have
at least one submit button. This can be done with <INPUT TYPE=submit

P.G.D. in Bioinformatics 7 Programming with HTML

NAME=submitit> or with an image: <INPUT TYPE=image NAME=submitit>.More than
one submit button is legal. If each submit button has a unique NAME attribute, the
name of the selected submit button is sent along with the rest of the form input. This
allows the parsing script to determine which button was pressed.

 <HEAD> </HEAD>
The HEAD part of the document provides information about the document. It should
not contain text or normal markup. If a browser encounters such markup, it will
assume it has arrived in the BODY section of the document already

 <TITLE> </TITLE>
Each document must have exactly one TITLE element. This element provides the title of
the document. It is usually displayed at the top of the browser's window, but also used
to label a bookmark entry for the document and as a caption in search engine results.
 <HR>
Attributes: ALIGN=left|right|center, NOSHADE, SIZE=n, WIDTH=n|p%
HR is used to draw horizontal rules across the browser window. None of the attributes
for HR existed in HTML 2, so they may not be supported by all browsers. This can
produce bizarre effects if you are using multiple HRs in a row to produce growing or
shrinking "stripes".

 <INPUT TYPE=x NAME=y>
Attributes : TYPE=text|password|checkbox|radio|submit|reset|file|hidden|image,
NAME=string, VALUE=string, CHECKED, SIZE=n, MAXLENGTH=n, SRC=URL,
ALIGN=top|middle|bottom|left|right
The INPUT tag is probably the most useful tag inside forms. It can generate buttons,
input fields and checkboxes. In all cases, the NAME attribute must be set.
TYPE=text

This generates a input field, where the user can enter up to MAXLENGTH
characters. The SIZE attribute lists the length of the input field (if the user enters
more characters, the text will scroll). The VALUE attribute specifies the initial
value for the input field.

TYPE=password
Same as TYPE=text, but the text will be hidden by "*" or similar characters. It is
still sent in the clear to the server, though.

TYPE=checkbox
Produces a checkbox. It has two states, on and off. When it is on when the form
is submitted, it will be sent as "name=on", otherwise it is ignored altogether. If
you use CHECKED, it will come up checked (selected) initially.

TYPE=radio
Produces a radio button. A radio button always exists in a group. All members of
this group should have the same NAME attribute, and different VALUEs. The
VALUE of the selected radio button will be sent to the server. You must specify
CHECKED on exactly one radio button, which then will come up selected
initially.

Centre for Distance Education 8 Acharya Nagarjuna Univeristy

TYPE=submit
Produces a button, which when pressed sends the contents of the form to the
server. You can have more than one submit button in the form. Each should
have a different NAME. The name and value of the pressed button will be sent to
the server as well. The value of the VALUE attribute is typically used as text on
the submit button.

TYPE=reset
Also produces a button, which will restore the form to its original state if pressed.
The value of the VALUE attribute is typically used as text on the reset button.

TYPE=file
Allows the user to upload a file. It is still very new, so it is not very widely
supported. It is typically presented as an input box with a button to start
browsing the local hard disk. This way, a user can specify one or more
filename(s) to upload.

TYPE=hidden
Allows you to embed information in the form which you do not want changed.
This can be useful if the document is generated by a script and you need to store
state information. NAME and VALUE of this input field will be sent to the server
without modifications.

TYPE=image
Functions similar to a submit button, but uses an image instead. The ALIGN
attribute controls the alignment of the image. The coordinates of the selected
region will also be sent to the server, in the form of "NAME.x=n&NAME.y=n". A
text browser will treat it as identical to a normal submit button.

TYPE=disc|square|circle when in UL, TYPE=1|a|A|i|I when in OL, VALUE=n

 <TABLE> </TABLE>
ALIGN=left|center|right, WIDTH=n|p%, BORDER=n, CELLSPACING=n,
CELLPADDING=n
The ALIGN attribute controls the alignment of the table itself, but not of the individual
cells. This can be set either in the TR element for an entire row, or in the TD and TH
elements for individual cells. The WIDTH attribute can be a pixel width or a percentage.
It indicates the suggested width of the table, although the browser can ignore this if it is
not possible. A "100%" value means the table will span across the entire browser
window.
<TABLE BORDER=1>
 <CAPTION>A test table with merged cells</CAPTION>
 <TR><TH ROWSPAN=2><TH COLSPAN=2>Average
 <TH ROWSPAN=2>other
category<TH>Misc
 <TR><TH>height<TH>weight
 <TR><TH ALIGN=LEFT>males<TD>1.9<TD>0.003
 <TR><TH ALIGN=LEFT ROWSPAN=2>females<TD>1.7<TD>0.002
</TABLE>
<TD> </TD>
ROWSPAN=n, COLSPAN=n, NOWRAP, ALIGN=left|right|center,
VALIGN=top|middle|bottom, WIDTH=n, HEIGHT=n

P.G.D. in Bioinformatics 9 Programming with HTML

The TD tag is used to mark up individual cells inside a table row. It may contain almost
all tags, including nested tables. If the cell is a label of some sort, use TH instead of TD.
The NOWRAP attribute indicates the contents of the current cell should not be
wrapped. You must use BR in the cell to force line breaks to prevent the entire cell from
showing up as just one line.

The ROWSPAN and COLSPAN attributes indicate how many rows or columns this cell
overlaps. If you use these attributes, make sure you count correctly or you can get some
very weird results. The ALIGN and VALIGN attributes control the horizontal and vertical
alignment of the current cell. ALIGN can be set for left, right or centered cells. VALIGN
indicates that the table cell's contents should appear at the top, the middle or the
bottom of the row. Note that align and valign attributes for a cell override the values set
for the row.

The WIDTH and HEIGHT attributes can be used to suggest a width and height for this
cell. This should be a value in pixels. Setting different widths for multiple cells in the
same column, or different heights for multiple cells in one row can cause unexpected
effects.

<TR> </TR>
ALIGN=left|right|center, VALIGN=top|middle|bottom
HTML tables are constructed as a sequence of rows. Each row of table cells should be
enclosed in a TR tag. The end tag is optional, since it is usually obvious to see where a
row ends - where the new row begins, or where the entire table ends.

The ALIGN and VALIGN attributes control the horizontal and vertical alignment of the
entire row. ALIGN can be set for left, right or centered cells. VALIGN indicates that the
table cell's contents should appear at the top, the middle or the bottom of the row.

 <TEXTAREA NAME=string, ROWS=n, COLS=n> </TEXTAREA>
Attributes: NAME=string, ROWS=n, COLS=n
The TEXTAREA tag, used inside FORMs, sets up an area in which the user can type
text. This text will be sent to the server when the form is submitted. The user can enter
more than one line (as opposed to <INPUT TYPE=text> which only permits one line),
although he will have to break lines himself.

The NAME attribute assigns the text area a name, used by the script, which processes
the form. ROWS and COLS are used to specify the height and width of the text area, in
number of characters.

To supply default text for the text area, put it inside the TEXTAREA tag.

Summary
To publish information for global distribution, one needs a universally understood
language, a kind of publishing mother tongue that all computers may potentially
understand. The publishing language used by the World Wide Web is HTML (from
HyperText Markup Language).
HTML gives authors the means to:

Centre for Distance Education 10 Acharya Nagarjuna Univeristy

 Publish online documents with headings, text, tables, lists, photos, etc.
 Retrieve online information via hypertext links, at the click of a button.
 Design forms for conducting transactions with remote services, for use in

searching for information, making reservations, ordering products, etc.
 Include spread-sheets, video clips, sound clips, and other applications directly in

their documents.

Model Questions
1. What is HTML and how is it used to construct web documents?
2. Explain the rules and regulations of HTML programming.
3. How is a HTML document structure explained?

References

1. HTML Pocket Reference, 2nd Edition by Jennifer Niederst
2. Html for the World Wide Web Visual Quickstart Guide: Visual QuickStart Guide

by Elizabeth Castro -

P.G.D. in Bioinformatics 1 Dynamic HTML (DHTML)

Lesson 2.5.3

Dynamic HTML (DHTML)

CONTENTS
Objective
2.5.3.1 Introduction
2.5.3.2 Dynamic Positioning
2.5.3.3 Properties of STYLE
2.5.3.4 Putting the D in DHTML
2.5.3.5 Dynamic Programming
2.5.3.6 The Event Connection

Objective
In this we explore three main components of Dynamic HTML authoring:
1. Positioning; precisely placing blocks of content on the page and, if desired, moving
these blocks around.
2. Style modifications; on-the-fly altering the aesthetics of content on the page.
3. Event handling; how to relate user events to changes in positioning or other style
modifications.

2.5.3.1 Introduction

The Web is an ever evolving environment, and Web pages themselves are steadily
blooming from static displays of data to interactive applications. "Dynamic HTML" is an
umbrella term encompassing several ways in which Web developers can breathe life into
pages which have traditionally been still portraits of information.
The basic notion behind Dynamic HTML is quite simple: allow any element of a page to
be changeable at any time. Sounds like a dream, but as with any simple plan, "God is
in the details," as they say. In the olden days, you could only change content on a page
via CGI. This required a server to perform the changes to the page and re-serve the
entire page, modifications and all, back to the client. While workable, this process was
quite slow, as it placed a burden on both network traffic and server processing time.
With long delays between a user's action and an on-screen response, building effective
Web-based applications was quite constricting.

With DHTML, the magic occurs entirely on the client-side. This means that page
modifications should appear immediately following a trigger, such as a user selection.
And, remember, the DHTML dream is that you can modify any aspect of the currently
loaded page -- text styles, swapped images, context-sensitive forms and tables, and even
the on-screen data itself.

It's worth noting here, then, that "Dynamic HTML," isn't really about HTML, the markup
language. By and large, DHTML describes the abstract concept of breaking up a page
into manipulable elements, and exposing those elements to a scripting language which
can perform the manipulations. The degree, or fineness, to which these elements are
defined and actionable is a function of DHTML's maturity. Because we're only seeing
the second generation of browsers supporting DHTML (MSIE 5 and the upcoming

Centre for Distance Education 2 Acharya Nagarjuna University

Netscape 5 based on Mozilla), DHTML is still an evolving and at times, inconsistent set
of tools.

Technically speaking, DHTML positioning is actually a type of style modification;
however, this introduction will be all the clearer if we address positioning as its own
topic.

The Old Standard about Standards
Dynamic HTML was and still is logical and wonderful idea whose time has come.
Netscape thought so. Microsoft thought so. Yet, they didn't think alike. Netscape
introduced a very modest vision of DHTML, debuted in Navigator 4.0. By and large,
Netscape's DHTML was limited to the concept of "layers," also known as Cascading
Style Sheet Positioning. Microsoft, on the other hand, chose to shoot for the moon,
providing developers with surprisingly complex DHTML support in Internet Explorer
4.0, wherein many objects on the page were manipulable, including support for CSS
Positioning.

In the past few years, quite a lot of Web development time has been spent haranguing
over the challenge of coding pages which function under both versions of DHTML.
Known as "cross browser DHTML," a cottage industry has sprung up to span the ravine
between browsers. Visual editors such as Macromedia's Dreamweaver have matured to
include pre-built DHTML objects which are already coded to work in both browsers.
Still, the development community has its collected fingers crossed, however, that soon a
common standard will emerge, allowing developers to focus on the true subject at hand,
rather than compatibility issues. For the intranet developer, you may find it easier to
focus on a single DHTML implementation, such as MSIE 5 or Netscape 4, in cases
where your intranet requires the use of a particular browser platform.

Much of what we term "Dynamic HTML" -- the set of page elements which are
manipulable -- is defined by a construct called the Document Object Model (or "DOM").
This model describes each page element and which of its characteristics may be
modified, and how so. As you can imagine, Netscape and Microsoft do not share a
common DOM. The hopes of DHTML standardization rest strongly on the success of a
standardized DOM, currently in development by the World Wide Web Consortium (W3C)
-- http://www.w3c.org/DOM/.

DHTML, to stress the point, is not a language itself. In practice, one programs Dynamic
HTML using a combination of HTML, Cascading Style Sheets, and JavaScript. The
Document Object Model, described earlier, provides a programming interface between
HTML/CSS and JavaScript. In theory, other client-side scripting languages such as
VBScript can be used with the Document Object Model, and therefore DHTML; but
JavaScript remains the de facto standard scripting language for DHTML.

2.5.3.2 Dynamic Positioning
A Web developer may wear many hats -- writer, editor, programmer, and artist. As
artists, we care how content is positioned on the page, whether for navigational or
aesthetic purposes. Using DHTML, you can define a block of HTML content and
precisely position it on the page.

P.G.D. in Bioinformatics 3 Dynamic HTML (DHTML)

There are two ways to position a block of content: Netscape's <LAYER> tag or Cascading
Style Sheet Positioning (CSSP). Although Netscape's proprietary tag is simple to use, it
is only supported within Netscape. Alternatively, CSSP is supported by both Netscape
and Microsoft, so we will look at positioning using the style sheet syntax. There is no
real loss of functionality, as layers and CSSP blocks behave nearly identically.

DHTML Programming
Typically, a block of content is contained within <DIV> tags. Imagine, then, that you
would like to create a small block of content -- an image plus a mailto hyperlink:

<DIV>
Mail me!

</DIV>
To position this block, however, you must tell the <DIV> block to use a style sheet. A
style sheet, as you may know, defines display characteristics. Style sheets can either be
pre-defined, and applied to tags as style sheet classes, or defined on-the-fly. Typically,
when using CSS Positioning, you define the block's style on-the-fly. We do this by using
the STYLE attribute for the <DIV> tag. The STYLE attribute contains a string which lists
each desired style property and its value. For example:
<DIV ID="mailblock" STYLE="position:absolute; width:auto; height:auto; left:400px;
top:50px; background-color:white">
Mail me!

</DIV>
In the above example, we've first added the ID attribute to assign an identifier to this
content block. This may become useful later when manipulating this block using
JavaScript. Next, the STYLE attribute contains a list of property parameters and values.
Notice that a colon separates the parameter (left) from the value (right) and a semicolon
separates each parameter/value pair from the next. In this case, we've specified that
mailblock should be absolutely positioned on the page (meaning that it is not fixed
relative to the position of any other page elements), with automatic width and height,
400 pixels right from the left edge of the browser's content window and 50 pixels down
from the top edge of the browser's content window.

Simple enough -- except for one bit of trouble: we don't know the size of the user's
screen or browser window! Thus, we don't really know where 400 pixels to the right will
land this block relative to the rest of the page. This could result in an ugly layout. The
solution to precise, but adaptable, layouts is to use relative positioning. Imagine, for
example, that we want mailblock to appear slightly indented leftwards from the upper-
right corner of the page. To achieve this position, we will create a two-level <DIV> block
-- a parent and a child:

<DIV ID="mailblock_parent" ALIGN="right">
<DIV ID="mailblock_child" STYLE="position:relative; width:auto; height:auto; left:10px;
top:0px; background-color:white">
Mail me!

Centre for Distance Education 4 Acharya Nagarjuna University

</DIV>
</DIV>
In this example, the parent <DIV> block contains, as a child <DIV> block, the content
for the mailto link and image. The parent block is aligned to the right edge of the page.
The child block, which contains the actual content, is dynamically positioned relative to
the parent, 10 pixels to the left of the parent's left edge.

2.5.3.3 Properties of STYLE
Clearly, positioning your block of content depends upon the specified STYLE properties.
We seemed to pull our example properties out of a hat -- position, width, left? Where did
we get these from? Well, several documents on Web contain references to the
positioning properties available for style sheets -- two worth reviewing are Microsoft's
CSS Attributes Reference (under "Positioning Properties") and Netscape's Defining
Positioned Blocks of HTML Content.

Below we've included a handy chart summarizing the common STYLE properties which
you may want to use when using the CSS syntax to position blocks of content.

position

Specifies how the block should be positioned on the page with respect to
other page elements. Possible values:

"position:absolute;" Block is positioned absolutely within the browser
window, relative to <BODY> block.
"position:relative;" Block is positioned relative to its parent block, if any,
or else normal flow of page.
"position:static;" Block is positioned according to standard HTML layout
rules -- follows flow of document. (MSIE 4+ only; Netscape 5)

width

Specifies the width at which the block's contents should wrap. You may
specify width in measured units (50px), as a percentage of the parent
block's width (50%), or auto which wraps the block according to its
parent's width.
Examples: "width:50px;" or "width:50%;"

height

Specifies the height of the block, measured in units (50px), percentage of
the parent block's height (50%), or auto. Note that the height of the block
will be forced to the minimum necessary to display its contents;
however, you can make the block taller than necessary.
Examples: "height:50px;" or "height:50%;"

left

Specifies the offset of the left edge of the block in accordance with the
position attribute. Positive measures (5px) are offset towards the right
while negative measures (-5px) are offset towards the left.
Examples: "left:5px;" or "left:-5px;"

top

Specified the offset from the top edge of the block in accordance with the
position attribute. Positive measures (5px) are offset towards the bottom
of the page while negative measures (-5px) are offset towards the top of
the page.

Examples: "top:10px;" or "top:-10px;"

P.G.D. in Bioinformatics 5 Dynamic HTML (DHTML)

clip

Specifies a rectangular portion of the block which is visible. Typically,
you use the clip property if you want to show only a portion of the block,
therefore hiding a portion. Syntax:

MSIE: clip:rect(top right bottom left)
Example: "clip:rect(0px 30px 50px 0px);"

Netscape: clip:rect(left,top,right,bottom)
Example: "clip:rect(0,0,30,50);"

Notice that the syntaxes vary between browsers, both in the need to
specify measurement units (MSIE) and the order of the parameters.

visibility

Specifies whether a block should be visibile. If not visible, the block will
not appear on the page, although you can make it visible later using
JavaScript. The possible values for this property again vary between
browsers.

MSIE:
"visbility:inherit;" Block inherits the visibility property of its parent.
"visibility:visible;" Block is visible.
"visibility:hidden;" Block is invisible.

Netscape:
"visbility:inherit;" Block inherits the visibility property of its parent.
"visibility:show;" Block is visible.
"visibility:hide;" Block is invisible.

z-index

Specifies the "stacking order" of blocks, should they happen to overlap
other positioned blocks. A block is assigned a z-index, which is any
integer. When blocks overlap, that which has the greater positive z-index
appears above a block with a lower z-index. Blocks with an equal z-index
value are stacked according to the order in which they appear in the
source code (bottom-to-top: first block defined appears on bottom, last
block defined appears on top).
Example: "z-index:3;"

background-
color

Specifies the background color for the block.

Examples: "background-color:green;" or "background-color:FF8F00;"

background-
image

Specifies a background image for the block.

Example: "background-image:url('images/tilewood.jpg');"

Employing the various STYLE properties gives you powerful control over the position
and look of the blocks of content on your page. Conceptually, then, when we think in
DHTML we think of a page as made up of one or more blocks. Of course, this is not
immediately evident to the viewer, who essentially sees a flat Web page, without
realizing that several smaller blocks of content are positioned here and there to create
the overall effect.

Centre for Distance Education 6 Acharya Nagarjuna University

Still, the question begs: how is this dynamic? Precise, yes, but dynamic?
Consider the fact that, now that the blocks have been put into place, you can -- at any
time -- change their properties. Position, background, clipping region, z-index -- it's all
plastic, with the help of JavaScript, and that is the reason to be excited!

2.5.3.4 Putting the D in DHTML
Once a content block is positioned on the page using <DIV> tags in your HTML, you can
use JavaScript to modify its properties. This has many possible consequences: you can
move the entire block up, down, left or right. You can change its background color, or
change the clipping region, causing more or less of the block to be visible. Speaking of
visibility, you can even hide or show the entire block in an instant via the visibility
property.

How, then, does JavaScript access the style properties of the content block? The answer
is twofold:
1. Assuming that you are familiar with JavaScript, you know that data structures are
represented as objects, and each object has a set of properties. JavaScript statements
can read or write to the properties of an object.
2. Content blocks contained in <DIV> tags are exposed as objects to JavaScript by the
Document Object Model. This means that, following the object and property
specifications defined by the DOM, JavaScript can access the style sheet properties of
the content block. Voila!
Let's recall our example content block, mailblock. In its simple form:
<DIV ID="mailblock" STYLE="position:absolute; width:auto; height:auto; left:400px;
top:50px; background-color:white">
Mail me!

</DIV>
Because Netscape and Microsoft do not currently share compatible DOM's, the above
block is exposed to different objects in each browser. For now, we'll consider each case
separately -- a future article will look at the issue of patching over this problem in
"cross browser DHTML."

In Netscape's DOM, each <DIV> block takes the form of a Layer Object. In Microsoft,
each block is exposed as a DIV object, which in turn possesses a STYLE object, whose
properties reflect the familiar style attribute properties.This might sound confusing, but
it's all a matter of syntax. Let's first consider how you would construct a JavaScript
reference to mailblock. You use the identifier specified in the ID attribute:

Microsoft:
document.all["mailblock"]
Netscape:
document.layers["mailblock"]
Now, let's consider the background color property for mailblock. The CSS property for
the background color was "background-color" as specified in our <DIV> tag. When
reflected via the DOM, however, this property takes on a different name between
browsers:

P.G.D. in Bioinformatics 7 Dynamic HTML (DHTML)

Microsoft:
document.all["mailblock"].style.backgroundColor
Netscape:
document.layers["mailblock"].bgColor

Knowing that, we can easily create a JavaScript statement which would change the
background color of mailblock to green.
Microsoft:
document.all["mailblock"].style.backgroundColor="green";
Netscape:
document.layers["mailblock"].bgColor="green";

Similarly, we can modify the top and left style properties which will move the block on-
screen. Thus, once we know the correct DOM property for the style sheet left property,
we can move mailblock directly to the left edge of the page:
Microsoft:
document.all["mailblock"].style.left="0px";
OR
document.all["mailblock"].style.pixelLeft=0;
Netscape:
document.layers["mailblock"].left=0;

Once again, it is likely to ask just how one is supposed to discover which DOM
properties for which browser map to the style sheet properties we've seen. Two handy
on-line references are once again provided -- Netscape's Using JavaScript with
Positioned Content lists the Layer Object's properties and Microsoft's currentStyle
Object Reference lists the properties relevant to their style object. In the effort to make
life simpler, however, the following table summarizes which style sheet properties map
onto which DOM properties for each browser.

CSS Property Netscape Layer Object
Property Microsoft currentStyle Object Property

position none
position

Note: read-only, cannot modify via script

width none pixelWidth
height none pixelHeight

left

left

Note: Accepts either an
integer (assumed pixel
units) or a percentage
string.

Examples: left=10 or
left="20%"

left or pixelLeft

Note: pixelLeft accepts a string which specifies
measurement units; e.g. pixelLeft="10px" whereas
left accepts an integer and assumes pixel units;
e.g. left=10.

Centre for Distance Education 8 Acharya Nagarjuna University

top

top
Note: Accepts either an
integer (assumed pixel
units) or a percentage
string.

Examples: top=10 or
top="20%"

top or pixelTop

Note: pixelTop accepts a string which specifies
measurement units; e.g. pixelTop="10px" whereas
top accepts an integer and assumes pixel units;
e.g. top=10.

clip

clip.top
clip.left
clip.right
clip.bottom
clip.width
clip.height

Each dimension of the
clipping coordinates is its
own property, as seen
here. Changing any
property immediately
causes the on-screen clip
to change.

"rect(top right bottom left)"

To change the clip in MSIE you must redefine all
clipping coordinates. The syntax can be a bit
confusing.

Example:
document.all.blockname.style.clip="rect(0 25 25
0)"< /FONT>

visibility

visibility

May contain any of
"inherit", "show", or "hide"

visibility

May contain any of "inherit", "visible", or "hidden"

z-index
zIndex

Any non-negative integer.

zIndex

MSIE allows negative integers, but you may as
well stick with positive for the sake of Netscape.

background-
color

bgColor

Accepts string containing
pre-defined color name or
hex RGB triplet.

Examples:
document.layers["blockna
me"].bgColor="black"
document.layers["blockna
me"].bgColor="#000000"<
/FONT>

backgroundColor

Accepts string containing pre-defined color name
or hex RGB triplet.

Examples:
document.all.blockname.style.backgroundColor="
black"
document.all.blockname.style.backgroundColor="
#000000"< /FONT>

background-
image

background.src

Example:
document.layers["blockna

backgroundImage

Example:
document.all.blockname

P.G.D. in Bioinformatics 9 Dynamic HTML (DHTML)

me"].background.src="imag
es/tile.jpg"< /FONT>

2.5.3.5 Dynamic Programming
Armed with the understanding of positioned content blocks, and the ability to
manipulate their characteristics via JavaScript, you basically need only to rely on your
imagination (although JavaScript skill can certainly help). Consider some nifty uses of
dynamic positioning:

 Animation: images contained in a positioned block can be moved around the
page following a certain path.

 Drop-down menus: modifying clipping regions allows you to show or hide
portions of a content block. To create a drop down menu, you would initially
show only the top strip of the block containing the menu choices. When the user
triggers the menu to drop, you chance the clipping region to display the vertical
length of the menu chosen. We'll look at triggers from user events later in this
article.

 Content-swapping: by positioning multiple blocks of content at the same spot on
the page, yet keeping all but one block invisible, you can quickly swap a new
block of content into place by changing their visibility properties. Alternatively,
by keeping two overlapped blocks visible, you can modify their clipping regions in
such a pattern as to produce a "transition" effect.

Dynamic Styles

As we've seen, positioning a content block is a form of style sheet. However, there
are other uses for style sheets aside from placing blocks on the page. Style sheets (aka
Cascading Style Sheets or CSS) can be used to define any set of styles which may apply
to certain HTML elements or block of HTML. Like JavaScript, Cascading Style Sheets
are their own in-depth web authoring topic. Because our focus is on DHTML, insofar as
it uses and combines web authoring technologies, this isn't the place for a detailed
tutorial on creating styles or style sheets.

In brief, there are several ways to apply styles using style sheets. You can define
styles which apply globally to all HTML elements of a certain type. For instance, you
might create a style sheet which specifies that all <H3> elements be bold (font-weight)
and red (color).

It may also be defined style "classes," which are predefined styles applied to an
element on-demand. For example, you might specify that the style class "redbold"
contains the styles bold (font-weight) and red (color). This redbold class would only apply
to elements in which you demand it; e.g. <BLOCKQUOTE CLASS=redbold>.
Lastly, it is already seen, you can define and apply styles on-the-fly, using the STYLE
attribute for an element tag; e.g. <H4 STYLE="color:red; font-weight:bold;">. These on-
the-fly styles apply only to the tag in which they are specified.
Both Microsoft and Netscape support CSS as described above, although Microsoft
supports additional style properties which do not exist under Netscape. The critical
difference between the browsers, however, is the degree to which their CSS support is
dynamic.
Quasi-Dynamic HTML

Centre for Distance Education 10 Acharya Nagarjuna University

The style sheet determines how, aesthetically, the document is rendered on the screen.
Once rendered, though, can these styles be modified on-screen? This is where the two
browsers diverge markedly.
Within Microsoft's Internet Explorer, you can, via JavaScript, modify many of the
properties of a style sheet or an element's individual style. These changes will be
immediately reflected on-screen -- so, if you changed the redbold class's color property
to blue, any on-screen text using the redbold class will suddenly change to blue.
Similarly, you can change any style property for those elements which possess inline
("on-the-fly") styles.
Netscape, on the other hand, is not so accomodating. While there is an interface to style
sheets via JavaScript (albeit very different from the Microsoft implementation), you can
only use JavaScript to define styles before they are rendered. By and large, this would
be used as a slightly more flexible replacement for definining your styles rather than
using standard CSS syntax. On the other hand, using standard CSS syntax would
maintain compatibility between browsers. For this reason, it could be argued that
Netscape's support for CSS via JavaScript is not terribly useful, and not at all dynamic,
since changes applied to styles once the page has been rendered do not appear on-
screen.
Stuck in the middle are we -- but because Microsoft's support for style modifications is
far more robust, we will focus here on dynamic styles in MSIE. These concepts will
apply to Netscape 5, based on Mozilla, whenever it finally arives, although the exact
syntax may differ.

Inline Styles
Speaking non-strictly, we can say that an "inline style" is a style which applies only to
an individual element rather than all elements of a certain type or class. Typically, an
inline style is defined using the STYLE attribute for the element's tag; e.g. <H2
STYLE="color:blue">.
Within MSIE, then, you can use JavaScript to modify an inline style at any time. The
modification will take effect on-screen immediately. You do this using the Style Object,
which we looked at earlier with Dynamic Positioning. The Style Object in MSIE's DOM
supports every property which CSS supports for styles. However, the property names
differ slightly between CSS syntax and DOM syntax. Fortunately, the naming
differences follow a rule. Consider the CSS property font-weight. The corresponding
Style Object property is named fontWeight. Similarly, the CSS property text-align maps
to the Style Object property textAlign. Of course, color retains the same name in both
syntaxes. As you can see, then, CSS property names simply lose their hyphen and
capitalize the first letter following the hyphen when used in JavaScript syntax.
So, then, confusing though that might sound, let's look at an example which illustrates
just how easy changing styles can be. Imagine that you have the following HTML
element:
<P ID="selectrule" ALIGN="left" STYLE="color:blue; font-weight:normal;">
Please select one item below.
</P>
Now, some series of events occur and the user fails to follow instructions. So, you'd like
to emphasize the exhortation:
document.all["selectrule"].style.color="red";
document.all["selectrule"].style.fontWeight="bold";

P.G.D. in Bioinformatics 11 Dynamic HTML (DHTML)

When the above statements are executed, the text associated with the element named
selectrule will become red and bold. Of course, you can set the element back to its
original state by setting color back to "blue" and fontWeight back to "normal".
Notice that our JavaScript statements are modifying the styles directly associated with
the particular element. You can always do this, even if the element's style wasn't
defined inline, but was inherited from a class or global style sheet. No matter how the
element gained its original style, whether inline or by style sheet, directly modifying the
style in the above manner only applies to the individual element. For this reason, this
form of JavaScript dynamic styles is always an inline style.
Changing the Rules
Modifying the style of an individual element is very precise, but sometimes you may
want to have a more global effect: perhaps you'd like to modify a style defined by a style
sheet as a class or global style. Such a modification would have a ripple-effect,
immediately re-rendering all elements on the page which are subject to that style sheet.
Below is a style sheet definition which specifies two styles: a global style which applies
to all <H3> element (blue, arial font family, large size), and a generic style class named
warning (red, bold, italic)which will apply to any element which uses that class.
<STYLE ID="sheet1">
H3 { color:blue; font-family:"Arial"; font-size:large; }
.warning { color:red; font-weight:bold; font-style:italic; }
</STYLE>
Once the document has been rendered according to the above style sheet, to modify this
style sheet via JavaScript such that any changes are dynamically reflected on-screen is
the goal. To do this, you'll need to learn some new terminology. Each "style definition" in
the style sheet is known as a "rule". Thus, the line defining the style for H3 is one rule,
while the line which defines the warning class is a second rule.
In Microsoft's Document Object Model, you access a style sheet through the
styleSheets[] array (aka "collection"). A single style sheet is defined as everything
between a set of <STYLE>...</STYLE> tags. The above example, then, is one style sheet.
If it were the first instance of such tags in your source code then it would be the first
style sheet, as well. You access the first style sheet via JavaScript using the reference:
document.styleSheets[0]
Within each styleSheet object is a rules collection. This array contains an entry for each
rule within the style sheet. Therefore, you would access the first rule -- the H3 rule -- of
this style sheet as:
document.styleSheets[0].rules[0]
And the second rule -- the warning class -- as:
document.styleSheets[0].rules[1]
Now, before this grows ever more baffling, let me add that each rule object possesses a
style object. And it is through that style object which you can modify the rule. What??
Example: You want to change the H3 rule in this example so that its color becomes
yellow:
document.styleSheets[0].rules[0].style.color="yellow";
Now you want to change this rule's font family to courier:
document.styleSheets[0].rules[0].style.fontFamily="courier";
You can modify any style property for the rule, even one which wasn't specified in the
original style sheet. Thus, if you'd suddenly like to make all H3 text on the page italic:
document.styleSheets[0].rules[0].style.fontStyle="italic";

Centre for Distance Education 12 Acharya Nagarjuna University

Any of the above JavaScript statements will apply the changes to all <H3> elements on
the page. Similarly, making any changes to the style object for the warning class rule
(document.styleSheets[0].rules[1].style.property) will apply all changes to any tags which
specify the attribute STYLE="warning"; e.g. <P STYLE="warning">.
Clearly, dynamic styles are extremely powerful, allowing you to alter the look of a page
in seconds. A particularly interesting style property you should investigate is display.
This property allows you to set whether a style is rendered at all or not. An un-rendered
style will not take up any screen space, but if you later change the display property
from "none" to "block", any element with that style will suddenly appear. The rest of the
page is automatically re-rendered to accomodate the new content. This differs from an
invisible block precisely because the entire page expands and contracts to accomodate
the presence or absence of the content contained with the style.
2.5.3.6 The Event Connection
Quite frequently, you want some type of trigger to cause your DHTML to kick in.
Whether repositioning blocks or changing style properties, some event usually causes
these changes.
Many different types of event can occur on a Web page, most of them caused by the
user. He or she might click on a button (click event), might move the mouse over an
element (mouseover event), or move the mouse off of an element (mouseout event). The
user may submit a form (submit event) or resize the browser window (resize event).
Additionally, some events occur without direct user intervention -- the page may finish
loading (load event), for example.
Events, although an intrinsic part of DHTML, are not part of the standard DOM Level 1
specification. Consequently, event handling between Microsoft and Netscape browsers
can vary enormously in practice. The DOM Level 2 specification does include events,
but unfortunately as of this writing, DOM Level 2 support in both major browsers is still
more of a dream than a reality.
Managing events can be relatively simple or quite complex, depending on the ambitions
of your project. Since this is an introduction, we'll focus mainly on event basics.
Fortunately, basic events are handled most similarly between browsers.
Event Handlers
Events occur on a Web page whether you choose to act on them or not. When the user
moves the mouse over an element, a mouseover event occurs. If you would like to
leverage this event as a trigger for some dynamic action, you must construct an event
handler.
An event handler is created as an attribute for the tag which defines the element at
which you wish to catch the event. Event handler attribute named follow the syntax
onEventname, and they accept JavaScript statements as their action. For example, the
following tag creates a hyperlink with a mouseover event handler specified.
Click here
The onMouseOver event handler catches a mouseover event. When this event occurs at
this element, a JavaScript function is called named changeStatus(). This is a fictional
function, you can imagine that it might exist to change the message on the browser's
status bar. Any JavaScript statement is allowed in an event handler, so we could also
execute direct statement rather than call a function. For example, suppose that a
mouseover for this element in MSIE should modify a style sheet's color property:

P.G.D. in Bioinformatics 13 Dynamic HTML (DHTML)

<A HREF=
"page.html"onMouseOver="document.styleSheets[0].rules[0].color='blue'">Click
here
The above example assumes MSIE, since live style sheet modifications aren't supported
in Netscape. We also assume that a style sheet exists in this document! But, hey, it's
just an example.
Once again, a convenient table will help summarize the common event and their event
handler names.
Event Event Handler Syntax Description

click onClick User clicks (left) mouse button on an
element.

submit onSubmit
User submits a form, this event fires
before the form submission is
processed.

reset onReset User resets a form.

focus onFocus
User brings focus to an element
either
via mouse click or tabbing.

blur onBlur User loses focuses from an element
by clicking away or tabbing away.

mouseover onMouseOver User moves mouse over an element.
mouseout onMouseOut User moves mouse off of an element.
mousemove onMouseMove User moves mouse.

change onChange
User changes value in a text,
textarea,
or select field.

select onSelect
User selects (highlights) a portion of
text
in a text or textarea field.

resize onResize User resizes browser window or
frame.

move onMove User moves browser window or
frame.

load onLoad Page completes loading.

unload onUnload
User exits page (by navigating to a
new
page or quitting browser).

error onError An error occurs loading an image or
document.

abort onAbort User stops an image loading using

Centre for Distance Education 14 Acharya Nagarjuna University

the stop button.
The above table is a quick reference guide. There are some important caveats to keep in
mind. For one, this is not a comprehensive list of all events, although these are by far
the most commonly used. Both browser support additional events for detecting
keypresses and other mouse actions, while MSIE supports additional events above and
beyond Netscape's. Secondly, you must keep in mind that not every event is applicable
to every element. This also varies between browsers. For example, within Netscape a
mouseover event only applies to a hyperlink <A>, area <AREA> or layer <LAYER>. Yet,
within MSIE, you can apply a mouseover event to almost any element, including images
, and paragraphs <P>.
In general, the above rule holds between browsers: Netscape restricts each event to
certain limited elements, while MSIE allows most events to be handled at most
elements. The best way to clarify these distinctions is to read the documentation --
Netscape's Events and Event Handlers and Microsoft's DHTML Events Reference.

Mastering event handling is most certainly a topic unto itself. At the surface, handling
basic events is simple, as you've seen. The classic "rollover effect" is a perfect example of
a simple event used in DHTML. A rollover occurs when the user moves the mouse over
an element; while the mouse hovers over the element, its appearance changes to reflect
that it is "active". When the mouse moves off the element is reverts to a more subdued
state. Rollovers commonly use changes in either image or style. Below is a basic MSIE
style-based rollover, which makes the "active" text red and bold, and returns to normal
blue when inactive. Remember that such dynamic styles don't work so easily under
Netscape, although you could certainly re-imagine this example for Netscape, perhaps
by swapping an image for the rollover effect; or swapping a layer.

MSIE Dynamic Style Rollover Example
<A HREF="special.html" TARGET="mainframe" STYLE="color:blue;font-
weight:normal;font-
family:Arial"
onMouseOver="this.style.color='red';this.style.fontWeight='bold'"

onMouseOut="this.style.color='blue';this.style.fontWeight='normal'">Today's
special

Summary
As with any introduction, we hope that much of what's been written serves as
inspiration for your own ideas. Coding impressive DHTML is not necessarily obscure or
difficult, but it does benefit from imagination and cleverness. No doubt you'll find plenty
of pre-built DHTML effects in your Web travels, and these, too, are useful sources of
inspiration and programming techniques. Always approach an interesting effect with a
"How'd they do that?" mindset, rather than simply adopting what they did.
Because DHTML is a moving target, as a developer you necessarily need to be sensitive
to the browser environment that you are designing for. This is a major reason why
cross-browser coding is such a challenge. The promise of a standardized DOM adopted
by both browsers seems an ever distant possibility, even with fifth generation browsers.
Intranet developers who have the relative "luxury" of a single browser platform can
enjoy some additional freedom from the strain of balancing multiple browser
environments.

P.G.D. in Bioinformatics 15 Dynamic HTML (DHTML)

Model Questions

1. What is DHTML and what is its role in web pages?
2. Explain dynamic positioning.
3. Explain the properties of Style.

References
1. JavaScript & DHTML Cookbook by Danny Goodman
2. Dhtml and Css for the World Wide Web: Visual QuickStart Guide by Jason

Cranford Teague

Author :-
Asha Smitha .B.

Center for Biotechnology
Acharya Nagarjuna University

P.G.D. in Bioinformatics 1 Web Pages

Lesson 2.5.4
WEB PAGES

Contents
Objective
2.5.4.1 Introduction
 2.5.4.2 Planning
2.5.4.3 Technology
2.5.4.4 Web server support
2.5.4.5 Organizing information
2.5.4.6 Hierarchy of importance
2.5.4.7 Relations
2.5.4.8 Function
2.5.4.9 Section contents
Summary
Model questions
References

Objective

 What is the mission of your organization?
 How will creating a Web site support your mission?
 What are your two or three most important goals for the site?
 Who is the primary audience for the Web site?
 What do you want the audience to think or do after having visited your site?
 What Web-related strategies will you use to achieve those goals?
 How will you measure the success of your site?
 How will you adequately maintain the finished site?

2.5.4.1Introduction

Though still young, the World Wide Web has already undergone several
transformations. The framers of the Web were scientists who wanted to create a device-
independent method for exchanging documents. They devised HTML (HyperText
Markup Language) as a method for "marking up" the structure of documents to allow
for exchange and comparison. The focus was on the structural logic of documents, not
the visual logic of graphic design.

But the Web quickly caught on as a publishing medium; no communication
device is more inexpensive or far-reaching. As a tool for communication, however, Web
authoring with HTML has limitations. With their focus on the structure of documents,
the originators of the Web ignored those visual aspects of information delivery that are
critical to effective communication. Once the Web was established as a viable
publishing medium, these limitations became obvious and cumbersome. Pages that
conformed to HTML standards lacked visual appeal, showing little evidence of the past
five centuries of progress in print design. Graphic designers took this relatively primitive
authoring and layout tool and began to bend and adapt it to a purpose it was never
intended to serve: graphic page design.

The Web viewing audience was also beginning to refine its tastes. The pioneering
Web "surfers" who were content to skim the surface of Internet documents are now
outnumbered. People are turning to the Web for information — information with depth,
breadth, and integrity.

Centre for Distance Education 2 Acharya Nagarjuna University

Web design should be almost transparent to the reader. How to create a user interface
that will allow visitors to your site to navigate your content with ease. This is a new
genre with its own style and guidelines.

As is the case with many innovations, the Web has gone through a period of
extremes. At its inception, the Web was all about information. Visual design was
accidental at best. Web pages were clumsily assembled, and "sites" were accumulations
of hyperlinked documents lacking structure or coherence. Designers then took over and
crafted attractive, idiosyncratic, and often baffling containers for information. The Web
became a better-looking place, but many users hit up against barriers of large graphics,
complex layouts, and nonstandard coding. Every site was different, and each required
users to relearn how to use the Web, because "real" designers could not be bound by
standards or conventions. Instead, designers pushed the boundaries of HTML, using
workarounds, kludges, and sleight of hand to design on the cutting edge.

Today, the field of Web design is seen much more as a craft than an art, where
function takes precedence over form and content is king. Innovative designs using fancy
navigational doodads are generally seen as an annoyance standing between the user
and what he or she seeks. Large graphic eye-candy, no matter how pleasing, is simply
wasted bandwidth. Like 1960s architecture, much of yesterday's Web design now
makes users wince and wonder how it could ever have been fashionable. Instead,
today's Web designers are also information architects and usability engineers, and a
user-centered design approach is the key to a successful Web site. Instead of constantly
requiring users to relearn the Web, sites are beginning to look more alike and to employ
the same metaphors and conventions. The Web has now become an everyday thing
whose design should not make users think.

When things change this fast, humans have a hard time adapting, keeping up,
and just plain understanding what's going on. But people's reactions to the Web
changed so fast precisely because so few of us really understood what it is. In fact, most
of us didn't have the time to think hard about how Web sites could truly be useful and
good things and how important sound design principles are to making them so.

Frenzied anxiety forced us to rush to legions of "experts" who played upon our
fears that "we didn't get it." Through hype and jargon (not to mention wildly creative
business modeling), they bullied us back to where we are today: square one.

Fortunately, this wonderful little book is still here to show us those
fundamentals.

2.5.4.2 Planning

Web sites are developed by groups of people to meet the needs of other groups of
people. Unfortunately, Web projects are often approached as a "technology problem,"
and projects are colored from the beginning by enthusiasms for particular Web
techniques or browser plug-ins (Flash, digital media, XML, databases, etc.), not by real
human or business needs. People are the key to successful Web projects. To create a
substantial site you'll need content experts, writers, information architects, graphic
designers, technical experts, and a producer or committee chair responsible for seeing
the project to completion. If your site is successful it will have to be genuinely useful to
your target audience, meeting their needs and expectations without being too hard to
use.

Although the people who will actually use your site will determine whether the
project is a success, ironically, those very users are the people least likely to be present

P.G.D. in Bioinformatics 3 Web Pages

and involved when your site is designed and built. Remember that the site development
team should always function as an active, committed advocate for the users and their
needs. Experienced committee warriors may be skeptical here: these are fine
sentiments, but can you really do this in the face of management pressures, budget
limitations, and divergent stakeholder interests? Yes, you can — because you have no
choice if you really want your Web project to succeed. If you listen only to management
directives, keep the process sealed tightly within your development team, and dictate to
imagined users what the team imagines is best for them, be prepared for failure. Involve
real users, listen and respond to what they say, test your designs with them, and keep
the site easy to use, and the project will be a success.

What are your goals?

A short statement identifying two or three goals should be the foundation of your
Web site design. The statement should include specific strategies around which the Web
site will be designed, how long the site design, construction, and evaluation periods will
be, and specific quantitative and qualitative measures of how the success of the site will
be evaluated. Building a Web site is an ongoing process, not a one-time project with
static content. Long-term editorial management and technical maintenance must be
covered in your budget and production plans for the site. Without this perspective your
electronic publication will suffer the same fate as many corporate communications
initiatives — an enthusiastic start without lasting accomplishments.

Know your audience

The next step is to identify the potential readers of your Web site so that you can
structure the site design to meet their needs and expectations. The knowledge,
background, interests, and needs of users will vary from tentative novices who need a
carefully structured introduction to expert "power users" who may chafe at anything
that seems to patronize them or delay their access to information. A well-designed
system should be able to accommodate a range of users' skills and interests. For
example, if the goal of your Web site is to deliver internal corporate information, human
resources documents, or other information formerly published in paper manuals, your
audience will range from those who will visit the site many times every day to those who
refer only occasionally to the site.

Design critiques

Each member of a site development team will bring different goals, preferences,
and skills to the project. Once the team has reached agreement on the mission and
goals of the project, consensus on the overall design approach for the Web site needs to
be established. The goal at this stage is to identify potential successful models in other
Web sites and to begin to see the design problem from the site user's point of view.

Unfortunately, production teams rarely include members of the target audience
for the Web site. And it is often difficult for team members who are not already
experienced site designers to articulate their specific preferences, except in reference to
existing sites. Group critiques are a great way to explore what makes a Web site
successful, because everyone on the team sees each site from a user's point of view.
Have each team member bring a list of a few favorite sites to the critique, and ask them
to introduce their sites and comment on the successful elements of each design. In this

Centre for Distance Education 4 Acharya Nagarjuna University

way you will learn one another's design sensibilities and begin to build consensus on
the experience that your audience will have when they visit the finished site.

Content inventory

Once you have an idea of your Web site's mission and general structure, you can
begin to assess the content you will need to realize your plans. Building an inventory or
database of existing and needed content will force you to take a hard look at your
existing content resources and to make a detailed outline of your needs. Once you know
where you are short on content you can concentrate on those deficits and avoid wasting
time on areas with existing resources that are ready to use. A clear grasp of your needs
will also help you develop a realistic schedule and budget for the project. Content
development is the hardest, most time-consuming part of any Web site development
project. Starting early with a firm plan in hand will help ensure that you won't be
caught later with a well-structured but empty Web site.

Developing a site specification

The site specification is the planning team's concise statement of core goals,
values, and intent, to provide the ultimate policy direction for everything that comes
next. Designing a substantial Web site is a costly and time-consuming process. When
you're up to your neck in the daily challenges of building the site, it can be surprisingly
easy to forget why you are doing what you are, to lose sight of your original priorities,
and to not know on any given day whether the detailed decisions you are making
actually support those overall goals and objectives. A well-written site specification is a
powerful daily tool for judging the effectiveness of a development effort. It provides the
team with a compass to keep the development process focused on the ultimate
purposes of the site. As such, it quickly becomes a daily reference point to settle
disputes, to judge the potential utility of new ideas as they arise, to measure progress,
and to keep the development team focused on the ultimate goals.

At minimum, a good site specification should define the content scope, budget,
schedule, and technical aspects of the Web site. The best site specifications are very
short and to the point, and are often just outlines or bullet lists of the major design or
technical features planned. The finished site specification should contain the goals
statement from the planning phase, as well as the structural details of the site.

Production issues

 How many pages will the site contain? What is the maximum acceptable count
under this budget?

 What special technical or functional requirements are needed?
 What is the budget for the site?
 What is the production schedule for the site, including intermediate milestones

and dates?
 Who are the people or vendors on the development team and what are their

responsibilities?
These are big questions, and the broad conceptual issues are too often dismissed as
committees push toward starting the "real work" of designing and building a Web site.
However, if you cannot confidently answer all of these questions, then no amount of
design or production effort can guarantee a useful result.

P.G.D. in Bioinformatics 5 Web Pages

Avoiding "scope creep"
The site specification defines the scope of your project — that is, what and how much
you need to do, the budget, and the development schedule. "Scope creep" is the most
prevalent cause of Web project failures. In badly planned projects, scope creep is the
gradual but inexorable process by which previously unplanned "features" are added,
content and features are padded to mollify each stakeholder group, major changes in
content or site structure during site construction are made, and more content or
interactive functionality than you originally agreed to create is stuffed in. No single over
commitment is fatal, but the slow, steady accumulation of additions and changes is
often enough to blow budgets, ruin schedules, and bury what might have been an
elegant original plan under megabytes of muddle and confusion.

Don't leap into building a Web site before you understand what you want to accomplish
and before you have developed a solid and realistic site specification for creating your
Web site. The more carefully you plan, the better off you will be when you begin to build
your site.

One excellent way to keep a tight rein on the overall scope of the site content is to
specify a maximum page count in the site specification. Although a page count is hardly
infallible as a guide (after all, Web pages can be arbitrarily long), it serves as a constant
reminder to everyone involved of the project's intended scope. If the page count goes up,
make it a rule to revisit the budget implications automatically — the cold realities of
budgets and schedules will often cool the enthusiasm to stuff in "just one more page." A
good way to keep a lid on scope creep is to treat the page count as a "zero sum game." If
someone wants to add pages, it's up to them to nominate other pages to remove or to
obtain a corresponding increase in the budget and schedule to account for the
increased work involved.

Changes and refinements can be a good thing, as long as everyone is realistic about the
impact of potential changes on the budget and schedule of a project. Any substantial
change to the planned content, design, or technical aspects of a site must be tightly
coupled with a revision of the budget and schedule of the project. People are often
reluctant to discuss budgets or deadlines frankly and will often agree to substantial
changes or additions to a development plan rather than face an awkward conversation
with a client or fellow team member. But this acquiescence merely postpones the
inevitable damage of not dealing with scope changes rationally.
The firm integration of schedule, budget, and scope is the only way to keep a Web
project from becoming unhinged from the real constraints of time, money, and the
ultimate quality of the result. A little bravery and honesty up front can save you much
grief later. Make the plan carefully, and then stick to it.

Site definition and planning
This initial stage is where you define your goals and objectives for the Web site and
begin to collect and analyze the information you'll need to justify the budget and
resources required. This is also the time to define the scope of the site content, the
interactive functionality and technology support required, and the depth and breadth of
information resources that you will need to fill out the site and meet your reader's
expectations. If you are contracting out the production of the Web site, you will also

Centre for Distance Education 6 Acharya Nagarjuna University

need to interview and select a site design firm. Ideally, your site designers should be
involved as soon as possible in the planning discussions.

Site production checklist
Not every site will require consideration of every item below. Developers within
corporations or other large enterprises can often count on substantial in-house
technology support when creating new Web sites. If you are on your own as an
individual or small business, you may need to contract with various technology and
design vendors to assemble everything you'll need to create a substantial content site or
small e-commerce site.

Production

 Will your site production team be composed of in-house people, outside
contractors, or a mix of the two?

 Who will manage the process?
 Who are your primary content experts?
 Who will be the liaison to any outside contractors?
 Who will function long-term as the Webmaster or senior site editor?

2.5.4.3 Technology
 What browsers and operating systems should your site support?

o Windows, Macintosh, UNIX, Linux
o Netscape Navigator, Internet Explorer; minimum version supported

 Network bandwidth of average site visitors
o Internal audience or largely external audience?
o Ethernet or high-speed connections typical of corporate offices
o ISDN, or DSL medium-speed connections typical of suburban homes
o Modem connections for rural, international, or poorer audiences

 Dynamic HTML (HyperText Markup Language) and advanced features?
o JavaScript or vbscript required
o Java applets required
o Style sheets required
o Third-party browser plug-ins required
o Special features of the UNIX or NT server environments required
o Special security or confidentiality features required

 How will readers reach the support personnel?
o Email messages from readers
o Chat rooms, forums, help desks, or phone support

 Database support?
o User log-ins required to enter any site areas?
o Questionnaires required?
o Search and retrieval from databases needed?

 Audiovisual content
o Video or audio productions?

2.5.4.4 Web server support
 In-house Web server or outsourced to Internet Service Provider (ISP)?

o Unique domain names available (multihoming)

P.G.D. in Bioinformatics 7 Web Pages

o Disk space or site traffic limitations or extra costs
o Adequate capacity to meet site traffic demands?
o Twenty-four-hour, seven-days-a-week support and maintenance?
o Statistics on users and site traffic?
o Server log analysis: in-house or outsourced?
o Search engine suitable for your content?
o CGI (Common Gateway Interface), programming, and database middleware

support available?
o Database support or coordination with in-house staff?

Budgeting
 Salaries and benefits for short-term development staff and long-term editorial

and support staff
 Hardware and software for in-house development team members
 Staff training in Web use, database, Web marketing, and Web design
 Outsourcing fees

o Site design and development
o Technical consulting
o Database development
o Site marketing

 Ongoing personnel support for site
o Site editor or Webmaster

 Ongoing server and technical support
 Database maintenance and support
 New content development and updating

Appoint a site editor
A site that is "everyone's responsibility" can quickly become an orphan. A maintenance
plan should specify who is responsible for the content of each page in the site. To
maintain consistent editorial, graphic design, and management policies you'll also need
one person to act as the editor of the overall Web site. The site editor's duties will vary
according to how you choose to maintain your site. Some editors do all the work of
maintaining site content, relieving their coworkers of the need to deal directly with Web
page editing. Other editors coordinate and edit the work of many contributors who work
directly on the site pages. If multiple people contribute to site maintenance, the site
editor may choose to edit pages after they are created and posted to avoid becoming a
bottleneck in the communications process. However, high-profile public pages or pages
that contain very important content should be vetted by the editor before public
posting.

In addition to ensuring editorial quality, a site editor must also ensure that the content
of the site reflects the policies of the enterprise, is consistent with local appropriate use
policies, and does not contain material that violates copyright laws. Many people who
post pictures, cartoons, music files, or written material copied from other sites on their
own sites do not understand copyrights and the legal risks in using copyrighted
materials inappropriately. A site editor is often an institution's first line of defense
against an expensive lawsuit over the misuse of protected material.

Centre for Distance Education 8 Acharya Nagarjuna University

2.5.4.5 Organizing information
Our day-to-day professional and social lives rarely demand that we create detailed
architectures of what we know and how those structures of information are linked. Yet
without a solid and logical organizational foundation, your Web site will not function
well even if your basic content is accurate, attractive, and well written. Cognitive
psychologists have known for decades that most people can hold only about four to
seven discrete chunks of information in short-term memory. The way people seek and
use reference information also suggests that smaller, discrete units of information are
more functional and easier to handle than long, undifferentiated tracts.

There are five basic steps in organizing your information:

1. Divide your content into logical units
2. Establish a hierarchy of importance among the units
3. Use the hierarchy to structure relations among units
4. Build a site that closely follows your information structure
5. Analyze the functional and aesthetic success of your system

"Chunking" information
Most information on the World Wide Web is gathered in short reference documents that
are intended to be read nonsequentially. This is particularly true of sites whose
contents are mostly technical or administrative documents. Long before the Web was
invented, technical writers discovered that readers appreciate short "chunks" of
information that can be located and scanned quickly. This method for presenting
information translates well to the Web for several reasons:

 Few Web users spend time reading long passages of text on-screen. Most users
either save long documents to disk or print them for more comfortable reading.

 Discrete chunks of information lend themselves to Web links. The user of a Web
link usually expects to find a specific unit of relevant information, not a book's
worth of general content. But don't overly subdivide your information or you will
frustrate your readers. One to two pages (as printed) of information is about the
maximum size for a discrete chunk of information on the Web.

 Chunking can help organize and present information in a uniform format. This
allows users not only to apply past experience with a site to future searches and
explorations but also to predict how an unfamiliar section of a Web site will be
organized.

 Concise chunks of information are better suited to the computer screen, which
provides a limited view of long documents. Long Web pages tend to disorient
readers; they require users to scroll long distances and to remember what is off-
screen.

The concept of a chunk of information must be flexible and consistent with common
sense, logical organization, and convenience. Let the nature of the content suggest how
it should be subdivided and organized. At times it makes sense to provide long
documents as a subdivided and linked set of Web pages. Although short Web
documents are usually preferable, it often makes little sense to divide a long document
arbitrarily, particularly if you want users to be able to print easily or save the entire
document in one step.

P.G.D. in Bioinformatics 9 Web Pages

2.5.4.6 Hierarchy of importance
Hierarchical organization is virtually a necessity on the Web. Most sites depend on
hierarchies, moving from the most general overview of the site (the home page), down
through increasingly specific submenus and content pages. Chunks of information
should be ranked in importance and organized by the interrelations among units. Once
you have determined a logical set of priorities, you can build a hierarchy from the most
important or general concepts down to the most specific or detailed topics.

2.5.4.7 Relations
When confronted with a new and complex information system, users build mental
models. They use these models to assess relations among topics and to guess where to
find things they haven't seen before. The success of the organization of your Web site
will be determined largely by how well your system matches your users' expectations. A
logical site organization allows users to make successful predictions about where to find
things. Consistent methods of displaying information permit users to extend their
knowledge from familiar pages to unfamiliar ones. If you mislead users with a structure
that is neither logical nor predictable, they will be frustrated by the difficulties of getting
around. You don't want your users' mental model of your Web site to look like this:

2.5.4.8 Function
Once you have created your site, analyze its functionality. Efficient Web site design is
largely a matter of balancing the relation of menu, or home, pages with individual
content pages. The goal is to build a hierarchy of menus and pages that feels natural to
users and doesn't mislead them or interfere with their use of the site.
Web sites with too shallow a hierarchy depend on massive menu pages that can
degenerate into a confusing "laundry list" of unrelated information:

Menu schemes can also be too deep, burying information beneath too many layers of
menus. Having to navigate through layers of nested menus before reaching real content
is frustrating:

Centre for Distance Education 10 Acharya Nagarjuna University

If your Web site is actively growing, the proper balance of menus and content pages is a
moving target. Feedback from users (and analyzing your own use of the site) can help
you decide if your menu scheme has outlived its usefulness or has weak areas.
Complex document structures require deeper menu hierarchies, but users should never
be forced into page after page of menus if direct access is possible. With a well-
balanced, functional hierarchy you can offer users menus that provide quick access to
information and reflect the organization of your site.

Site elements
Web sites vary enormously in their style, content, organization, and purpose, but all
Web sites that are designed primarily to act as information resources share certain
characteristics.

2.5.4.9 Section contents

Home pages
All Web sites are organized around a home page that acts as a logical point of entry into
the system of Web pages in a site. In hierarchical organizations, the home page sits at
the top of the chart, and all pages in the Web site should contain a direct link back to
the home page. The World Wide Web URL for a home page is the Web "address" that
points users to the Web site. In many cases, home page addresses are used more than
home and business street addresses.

Menus and subsites
Unless your site is small you will probably need a number of submenu pages that users
enter from a general category listing on your home page. In complex sites with multiple
topic areas it is not practical to burden the home page with dozens of links — the page
grows too long to load in a timely manner, and its sheer complexity may be off-putting
to many users. Providing a submenu page for each topic will create a mini-home page
for each section of the site. For specialized, detailed submenus you could even
encourage frequent users to link there directly. In this way the submenus will become
alternate home pages in "subsites" oriented to a specific audience. Be sure to include a

P.G.D. in Bioinformatics 11 Web Pages

basic set of links to other sections of the site on each subsite home page, and always
include a link back to your main organization home page

Resource lists, "other related sites" pages
The World Wide Web is growing so rapidly that even the large commercial Web index
services such as Yahoo! and Excite are only partial listings of the information accessible
through the Web. When authors begin to build Web sites, their first page is often a
collection of favorite links to sites related to their profession, industry, or interests. In a
corporate or institutional site, a well-edited, well-maintained "Other useful sites" page
may be the most valuable and heavily used resource.

Site guides
Unlike print media, where the physical heft and dimensions of a book or magazine give
instant cues to the amount of information to expect, Web sites often give few explicit
indications of the depth and extent of the content available. This is especially true when
the home page does not provide an extensive listing of internal site links. Although
search facilities offer users quick access to your content, they are no substitute for a
clear, well-organized exposition of your site's contents. Even the best search engines are
relatively stupid and have only the most primitive means of assessing the priority,
relevance, and interrelations of the information resources you offer in your Web site.

"What's new?" pages
Many Web sites need to be updated frequently so that the information they present
doesn't become stale. But the presence of new information may not be obvious to
readers unless you make a systematic effort to inform them. If items that appear on
your home page menu are updated, you could place a "new" graphic next to each
updated item. If, however, your site is complex, with many levels of information spread
over dozens (or hundreds) of pages, you might consider making a "What's New" page
designed specifically to inform users of updated information throughout the site.

Search features
The search software you use will often dictate the user interface for searching. If you
update your content frequently, be sure that your search engine's indexing is done at
least daily. Also be sure that your readers understand exactly what content is being
searched: the entire Web site or just a subsection? If your site is complex you may wish
to offer readers a pop-up menu that lists the areas of your site and allows them to limit
their search to a specific area. And make sure that the results page also matches the
graphic design of the site.

Contact information and user feedback

The Web is a bidirectional medium — people expect to be able to send you comments,
questions, and suggestions. Always provide at least one link to an email address in a
prominent location in your site. You can request user information and feedback using
Web page forms and then use a database to store and analyze their input.

Centre for Distance Education 12 Acharya Nagarjuna University

Bibliographies and appendixes
The concept of "documents" in electronic environments like the Web is flexible, and the
economics and logistics of digital publishing make it possible to provide information
without the costs associated with printing paper documents. Making a report available
to colleagues on paper usually means printing a copy for each person, so costs and
practicality dictate that paper reports be concise and with limited supporting material.
Bibliographies, glossaries, or appendixes that might be too bulky to load into a task
force report or committee recommendations document can instead be placed in a Web
site, making the information available to colleagues as needed.

FAQ pages

The Web and other Internet-based media have evolved a unique institution, the FAQ or
"frequently asked questions" page, where the most commonly asked questions from
users are listed along with answers. FAQ pages are ideal for Web sites designed to
provide support and information to a working group within an institution or to a
professional or trade group that maintains a central office staff. Most questions from
new users have been asked and answered many times before. A well-designed FAQ page
can improve users' understanding of the information and services offered and reduce
demands on your support staff.

Custom server error pages
Most Web users are familiar with the "404 error, file not found" screens that pop up
on the screen when a Web server is unable to locate a page. The file may be missing
because the author has moved or deleted it, or the reader may simply have typed or
copied the URL of the page incorrectly. One mark of a really polished Web site is
custom-designed and useful error and server message pages. Most standard error
screens are generic, ugly, and uninformative. A well-designed error screen should be
consistent with the graphic look and feel of the rest of the Web site. The page should
offer some likely explanations for the error, suggest alternatives, and provide links to
the local home page, site index, or search page

Summary
The most important step in planning your site is to organize your information. Thinking
carefully about what you want to say and how you want to say it requires that you
become intimately acquainted with your site content. Create outlines, chunk your
information into sections and subsections, think about how the sections relate to one
another, and create a table of contents. This exercise will help immensely when it comes
time to build the individual pages of your site and may determine the eventual success
of your Web site.
A well-organized table of contents can be a major navigation tool in your Web site. The
table is more than a list of links — it gives the user an overview of the organization,
extent, and narrative flow of your presentation

Model questions

1) How are web pages designed?
2) What is the technology used to design web pages?
3) Explain the various elements of a site ?How are sites related?

P.G.D. in Bioinformatics 13 Web Pages

References:
Fleming, Jennifer. 1998. Web navigation: Designing the user experience. Sebastopol,

Calif.: O'Reilly.
Harrower, Tim. 1998. The newspaper designer's handbook, 4th ed. Boston: McGraw-

Hill.
Krug, Steve. 2001. Don't make me think! A common sense approach to Web usability.

Indianapolis, Ind.: Que.
Nielsen, Jakob. 1995. The alertbox: Current issues in Web usability.
http://www.useit.com/alertbox.

Author

B.Asha smitha
Centre for biotechnology

ANU

