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2.1.1.1    Introduction 
 
2.1.1.1.1 Pre-History 

In 1821, Charles Babbage proposed and developed a prototype of his Difference Engine designed to 
automatically generate successive values of a polynomial. He went on the  design the Analytical Engine which 
was to be a generall purpose computer. Each of  these designs were examples of parallel computer architecture, 
with results for successive computations being constructed whilst the preceeding results were delivered. When, 
in 1943, the code-breaking ENIAC was introduced, it also showed some aspects of parallel architecture in its 
design. However, for both Babbage and the designers of ENIAC, the technology was not adequate for the day-
to-day realisation of these designs. EDVAC and 
successive digital computers followed the sequential architecture laid down by Von Neumann. 
 
2.1.1.1.2  History 
 

Parallel Computers actually have a long history, although it was not until the late 1960's that practical 
digital parallel computers were introduced, and until the mid 1980's that they gained wider penetration. To a 
large extent their lack of penetration can be put down to cost, although some blame must be attributed to the 
difficulty of developing code for these machines. Each architecture was so different from the next that it was 
difficult to exploit the potential power of the machines without re-writing the code to use the architecture 
adequately. This, in turn, made programs non-portable, and even now the problem of writing programs for 
parallel computers has not gone away.  
 

Although the price of parallel hardware has fallen, and degrees of parallelism can be found in most 
modern desktop PC's, there are still diverse forms of parallel hardware implementation. The next chapter 
examines the various hardware forms in more detail, but in this section we will provide a quick history of 
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developments to give a flavour of what is available. The Virtual Museum of Computers provides a more in-
depth look at the development of computers in general, and provides links to sites which provide a look at the 
history of Parallel Computers. 
 
2.1.1.2 Objective 
 
 To know what parallelism of computers would be 
 To understand the phenomenon of multitasking and stack based operation. 
 To be aware of the issues of parallellism and its applications 
 
2.1.1.3  What is Parallelism ? 
 
As humans we tend to work in three modes :  
 Sequence 
As individuals, we perform one job after the completion of the previous job. For example, in manual labour, we 
will dig a hole before attempting to pour the concrete which will be used to create the foundations for a house.  
 
 Concurrent 
We must, at times, be able to keep a number of jobs going at once. For example, we would have to put the 
aggregates into the cement mixer part-way through digging the hole for the foundations, and turn the mixer on. 
We would then periodically need to re-visit the cement mixer to check on the mixing process, while still in the 
process of digging the hole. To a casual observer it would look as though both jobs were being done at the 
same time, but in fact one person is alternating between the jobs.  
 
 Parallel 
In building a house, there are some jobs which are completed signifigantly faster if more than one person can 
be involved. We may, if finances were available, allocate a number of workers to all dig the foundations at 
once.  
It would be helpful to have equivalent modes of operating within computing. In this section we will examine 
this possibility. 
 
Parallel 

Parallel execution is the controlled, cooperative execution of an identifiable subset of the components 
of a program (statements, subroutines, objects) across a number of distinct processing elements which are 
interconnected to provide control and communication, in order to solve a distinct computationally time-
complex problem in a timely manner.   
 

This definition must, however, be qualified, since it permits a wider area of study than we are 
interested in here. Almasi and Gottlieb (1994) mark out a useful perimeter for us :  
 
We are interested in computers that use a high degree of parallelism to speed the computation required to solve 
a single large problem. This leaves out much of the world of business programs, where I/O rather than 
computing power is typically the bottleneck. It leaves out most commercial multi-processors, whose added 
processing units are used to increase the number of jobs that can be handled at a time, rather than to speed up a 
single job (in other words, to improve throughput rather than turnaround time). Strictly speaking, it also leaves 
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out distributed systems such as networks of personal workstations, because, although the number of processing 
units can be quite large, the communication in such systems is currently so slow that it prevents large speedups 
in one job. 
 
2.1.1.4 The First Generation 
 

 In 1969 the ILLIAC IV was introduced, followed soon after by the CDC7600. The ILLIAC IV was an 
Array Processor - it fetched an array of data, performed one operation on all elements of the array (up to 63 
elements at a time), and then stored the result back again. The CDC7600 was, in contrast, a Pipelined Processor 
- it fetched a vector of data, one element at a time, and put the element into a pipeline of processors, each of 
which performed an operation on the data item in succession. Speed-up was achieved by filling the pipeline 
with many items of data moving through the pipeline at the same time, each item at a different stage in the 
pipeline.  NASA's ILLIAC IV was retired in 1976 when the Cray-1 - the first supercomputer - was introduced. 
This computer was also a pipelined processor, but with many pipelines and an architecture which used every 
available advance in technology to ensure that the pipelines and data delivery to and from the pipelines were all 
as fast as possible. Successful though the Cray-1 was, none of these machines could be regarded as truely 
general purpose - they were all specialised back-end processors to a front-end sequential machine. This was not 
to hinder the development of other specialised architectures, however, such as the ICL DAP (1979) which was 
a 1024 1 bit processor array, the Goodyear MPP (1983) - a 132 x 128 1 bit array processor, or the Connection 
Machine (CM-1 and CM-2 in 1986/7) providing 65535 1 bit processors with FPUs.     
 

However, the search was also on for a way to create a parallel computer from standard processing 
units. The C.mmp was an early attempt (1977) which used 16 PDP-11 processors, whilst the BBN Butterfly 
sought to connect 256 M68000 cpus using a multi-stage network. The speed and cost of the network, and the 
computational effort needed to maintain the communications were all limiting factors which resulted in some 
novel architectures in an attempt to bypass the problem. The cm* was a tree structured architecture that limited 
communication requirements to four connected processors, but allowed expansion by adding nodes to the tree. 
 
2.1.1.5 From the Transputer 
The Inmos transputer (1985) changed things dramatically by placing communication processors on the chip 
with the main processor so that the processor was not hindered by having to maintain communications whilst 
performing other operations. Furthermore, it used cheap serial lines driven at high speed to reduce the cost of 
interconnection. The development of the higher specification T-800 in 1988 opened the way to the 
development of powerful multiple processor parallel machines, such as the Meiko Computing Surface. The 
Parsys Supernode attempted to tackle the problem of having to use a fixed architecture in earlier machines by 
providing a degree of reconfiguration.  
 

In the meantime, other manufacturers were adding similar capabilities to their more powerful CPUs, 
allowing (for example) the development of the Alliant FX/2800 (1990) which connected 28 Intel i860 
processors, and the CM-5 (1992) which uses 1024 SPARC processors. The latest Cray T3D (1993) follows the 
same line, using 2048 DEC Alpha processors.  
 

In 1994 Inmos announced the development of the T9000 transputer which helps to remove the problem 
of routing and the requirement to rewrite programs to a particular architecture by providing a virtual routing 
capability. Although this processor has yet to gain acceptance, this technology represents another step to the 
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creation of a practical parallel architecture. In the meantime, the advent of fast networking technology and 
switches has allowed the development of 'virtual' parallel machines from networks of workstations using 
software technologies such as MPI, PVM, or Corba. Whilst still requiring large granularity processes with 
limited communication in order to achieve reasonable speed-up, it has opened up access to parallel 
programming to the wider programming community. 
 
The Processor 
 

The design of the processor part of the transputer is very interesting. Although you may be tempted to 
skip directly to the programming section, hold on for awhile. Some of the questions that will arise later when 
we start Faswriting parallel tasks will be readily answered if we know a few things about the processor 
hardware. Also, it is important to know where the performance of the processor comes from. We will see that 
several key design choices contribute to the transputer's overall performance: 
 
No dedicated data registers: The transputer does not have dedicated registers, but a stack of registers, which 
allows for an implicit selection of the registers. The net result is a smaller instruction format. 
 
Reduced Instruction Set design: The transputer adopts the RISC philosophy and supports a small set of 
instructions executed in a few cycles each. 
 
Multitasking supported in microcode: The actions necessary for the transputer to swap from one task to 
another are executed at the hardware level, freeing the system programmer of this task, and resulting in fast 
swap operations.  
 
2.1.1.6  Multitasking 
The process by which a processor divides its time among several programs (seemingly) running at the same 
time is called multitasking. Multitasking is an important way to improve the performance of a processor by 
allowing it to start running another program if the one that it is currently executing cannot continue for awhile. 
A typical reason for this to happen is that an Input/Output operation is necessary but the peripheral, or I/O 
controller is not available. By allowing the processor to put the first program aside and switch to another one 
the total execution time of both is reduced.  
 
Multitasking is the first form of parallelism supported by the transputer, and is accomplished by having the 
processor maintain a list of tasks that must be executed. Each task executes for a small amount of time, called a 
quantum, before it is stopped, and swapped for another task (if one awaits). For the transputer, a quantum of 
time is typically on the order of two milliseconds (2 10-3 seconds)[1]. Task are executed in a round-robin 
fashion. When a task eventually terminates it is removed from the list. At any time, new tasks may be created 
and added to this list.  
 
At any time a transputer task may be in either one of two states:  
 
Active 
This state refers to a task that is being executed, or in the list of tasks waiting to be executed. 
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Inactive 
This state refers to a task that is not in the list of active tasks, because either one of three conditions is 
preventing it from continuing execution: 
 
The task is waiting for an input from one of the I/O ports  
the task is waiting to output to one of the I/O ports, or  
the task has been asked to stay idle until a specified time in the future.  
 
Active tasks 
The transputer maintains the active tasks chained in a linked list, and two of its internal registers are used to 
point to the front and rear of the list. The actual list is stored in memory, and the registers contain the memory 
address of the cells defining the tasks. To further increase the flexibility and power of the multitasking 
environment, the transputer implements two levels of priority for the tasks: 
 
High priority tasks (level 0):  
These tasks indeed have a high priority: Once they gain control of the processor, they continue executing until 
they complete, or until they need to transfer information over a serial link. In this case, the task is said to be 
blocked waiting for a link. These tasks thus enjoy an unlimited quantum, and, as a result, only tasks that are 
expected to run for short periods of time are given high priority. 
 
Low priority tasks (level 1):  
These tasks run whenever there are no high priority tasks active, and run for up to one quantum of time, 
switching in a round robin fashion. Most user-defined tasks will be low-priority. 
 
Hence the transputer needs to maintain not one, but two linked-lists, one for low-priority and one for high-
priority tasks, and uses a total of four registers to point to the front and rear of both lists. 
 
Fast task-switching 
The switching between tasks belonging to the same priority-list or to different priority-lists is handled directly 
by the processor, and all register updates are controlled internally, through the microcode. Removing this 
action from a software kernel renders this operation extremely fast: less than 1 us typically [INMO88b]. 
 
Inactive tasks 
Sometimes, active tasks encounter a situation where they cannot continue running until some external event 
occurs. In such cases the processor deschedules the , which becomes inactive. The external event is typically 
the expiration of a quantum, a timer event, or an event related to information transfer over a link.  
 
When a task changes from active to inactive, it is removed from its associated linked-list and placed in what the 
Inmos documentation refers to as the workspace, which is a reserved area of memory. Because inactive tasks 
are removed from the link-lists, the processor does not suffer any overhead from them when it scans the lists to 
find the next task to run.  
 
Multitasking Rule The instantaneous performance of a transputer is not affected by the number of inactive 
tasks that may exist at any given time  
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We will refer to the inactive tasks that are waiting for communication as blocked tasks. We will explore this 
concept when we look at the communication process in Section 2-4. The inactive tasks that await a specified 
time, though, merit some attention right now. 
 
Timers and inactive tasks 
The T800 contains two 32-bit timers. The timers are separate entities outside the processors, as shown in 
Figure 2-2. Each timer is associated with a priority. One timer, available to high-priority tasks, is incremented 
every microseconds, and cycles through all its 32-bit states in 4295 seconds (232 s), or 71 minutes and 35 
seconds. The other timer is associated with low-priority tasks and is incremented every 64 microsecond, 
resulting in a 76-hour long cycle. 
 
Each timer can be viewed as two registers. One, called Timer, incremented at every tick of a clock, the other, 
TNextReg, defining a time in the future when some event must occur.  
 
The following scenario explains how these counters come into play. Assume that a task is designed to check 
the status of an I/O controller at regular intervals, say 20 times a second. Upon checking the controller and 
having performed its function, the task can deschedule itself, that is voluntarily change its status from active to 
inactive, while simultaneously specifying a time in the future when it should be rescheduled. It does so by 
reading the contents of Timer and by adding a time delay to it. This new value represents the time in the future 
when the tasks wants to be awakened, and is stored in the TNextReg register by the processor. When the 
contents of Timer reaches the count in TNextReg, an event occurs (interrupt) and the processor puts the task 
back in the list of active tasks.  
 
More precisely, when a task performs such a descheduling action, it is removed from the list of active tasks and 
added to a timer queue, located in memory. If that task requested a "wake-up" time earlier than any of the times 
associated with the tasks in that queue, then that time is stored in the TNextReg register. When the task 
becomes active again, it is placed at the end of the list of active tasks, and because this list may not be empty, 
the task may not start right away.  
 
The capability for tasks to determine the exact time at which they are activated is a useful feature in context 
where synchronization of tasks is important, for debugging purposes, or when reliability is an issue, and watch-
dog timers and time-out detection must be implemented. 
 
2.1.1.7   Stack-based operation 

The processor contains six registers. Three (the A, B, and C registers) are used as data registers and 
implement a stack. If you ever used a Hewlett-Packard calculator, you are already familiar with the reverse 
polish notation, and the simplicity and efficiency associated with its use. Here is how the processor evaluates 
the following high-level expression:  
 

x = a+b+c; 
 
where x, a, b, and c represent integer variables. With an evaluation stack, there is no need to specify which 
processor registers receive the variables. Here, the processor is simply told to load each variable, one after the 
other and to add them. As variables are loaded they are pushed into the stack. Every time an operation is 
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performed, the two values at the top of the stack are first popped, then combined, and the result of the operation 
is pushed back onto the stack: 
 
   ;stack contents (=Undefined) 
   ;[    ] 
 load a  ;[a    ] 
 load b  ;[b a  ] 
 load c  ;[c b a] 
 add  ;[c+b a  ] 
 add  ;[c+b+a  ] 
 store x  ;[c+b+a  ] 
 

The above code shows a fragment of a program assigning the sum of the three variables to x, written in 
a pseudo assembly language. We could have added the first two variables before loading the third one to get 
the same result. The advantage of operating with a data stack lies is that it removes the need to add extra bits to 
the instruction to specify which register is accessed. As a result, instructions can be packed in smaller words, 
the net result of which is a tighter fit in memory, and less time spent fetching the instructions from memory. 
 
2.1.1.8 Issues 
 
The definition of Parallel raises a number of further issues which must be considered :  
 
 "Components of a Program" 
 

There is signifigant debate about what should be parallelised. This debate is intrinsically linked to the 
kinds of execution architectures that are available, and the structure of the problem itself (see Carriero and 
Gelernter, 1989). Various languages occupy the various niches in the landscape created by these variables. We 
will seek to examine this debate in further detail in the chapters on Architectures, Design, and Languages.  
 
 "Controlled, Cooperative Execution" 
 

If two people are both seeking to pass through a doorway at one time, contention is bound to arise. In 
concurrent programming we find out ways to deal with this contention, and in distributed systems we can 
identify ways of implementing these control primitives without the need for global shared resources. However, 
parallelism introduces further issues in cooperation, such as routing and job allocation, which must be resolved.  
 
 "A number of processing elements" 

Even if we can resolve the debate on what kind of processing abilities each processor should have, a 
debate will still rage over how many processors are needed, and how they are interconnected. Furthermore, a 
policy on and software provision for failure, reconfiguration, and recovery must be considered.  
 
 "Inter- connected to provide Communication" 

The programmer must also begin to consider whether the interconnectivity will provide sufficient data 
rates to support a suitable increase in speed. Many parallel programs can actually work out to be ineffective, 
not because they do not work, but because they do not provide sufficient speed up. 
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2.1.1.9  Applications 
 

Although many will be aware of the use of Cray supercomputers by varous weather centers, few are 
aware of other areas where parallel computation is applied. In fact, until the end of the 1970's there were 
relatively few applications which were using parallel architectures, mainly due to the cost of the machines that 
were available. During the 1980's, however, there was an explosion of interest and enthusiasm in parallel 
computing, and this has led to a widespread application of parallel computing. A few applications are 
highlighted below :  
 
Scientific and Engineering Applications 
 

Most applications of parallel processing in the Science and Engineering research communities have 
been focused upon numerical simulations where vast quantities of data must be processed in order to create or 
test a model. Example applications include:  
 
 Global atmospheric circulation,  
 Blood flow circulation in the heart,  
 The Evolution of Galaxies,  
 Simulations of artificial ecosystems,  
 Airflow circulation over aircraft components,  
 Atomic particle movement from collidatron experiments,  
 Optimisation of mechanical components.  
 Airflow circulation is a particularly important application. It is suggested that a large aircraft design 

company might perform up to five or six full body simulations per working day. It is important that the 
processing is timely in order to meet the work schedule, and therefore parallel processing is important.  

 
Database Systems 
 

Opportunties for speed-up through parallelising a Database Management System abound. However, the 
actual application of parallelism required depends very much on the application area that the DBMS is used 
within. For example, in the financial sector the DBMS would suffer a lot of short simple transactions, but with 
a high number of transactions per second, whilst in a CAD situation (eg. VLSI design) the transactions would 
be long and with low traffic rates. In a Text query system, the database would undergo few updates, but would 
be required to do complex pattern matching queries over a large number of entries. An example of a computer 
designed to be used to speed up database queries is the Teradata computer, which employs parallelism in 
processing complex queries.  
 
AI Systems 
 

Search is a vital component of many AI systems, and the search operations will be performed over 
large quantities of complex structured data using unstructured inputs. Applications of parallelis include :  
 
 Search through the rules of a production system,  
 Using fine-grain parallelism to search the semantic networks created by NETL,  
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 Implementation of Genetic Algorithms,  
 Neural Network processors,  
 Preprocessing inputs from complex enviroments, such as visual stimulii.  
 
Image / Graphics Processing 
 

The production of realistic moving images for television and the film industry is big business. Whilst 
much of the work can be done on high specification workstations, large computer animation input will often 
involve the application of parallel processing. Even at the cheap end of the image production spectrum, 
affordable systems for small production companies have been formed by connecting cheap PC technology 
using a small LAN to farm off processing work on each image to be produced.  
 
2.1.1.10 Model Questions 
 
1. What is meant by parallelism? 
2. What are the various issues on the raised on parallelism? 
3. How is parallelism applied ? 

 
2.1.1.11 Summary 

Although the enthusiasm of the 1980's has waned during the 1990's, the application of parallel 
processing to new problems continues to expand. With the continued introduction of multiple processor 
management capabilities into modern operating systems, and the spread of high speed networking, there would 
appear to be every reason to expect this trend to continue. 
 
2.1.1.12 References  
 

 Computers And Commonsense – Roger Hunt and John Shelly  
 Operating systems Concepts – Silberschatz Galvin 
 Operating Systems (3rd Edition) --  Harvey M. Deitel, et al 
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Lesson 2.1.2 
 

INHERENT PARALLELISM IN PHYSICAL PHENOMENA 
AND ITS MODELS 

 
Objective 
2.1.2.1 Introduction 
2.1.2.2 Defining Parallelism 
2.1.2.3 Emerging Parallelism 
2.1.2.4 Inherent Parallelism in Scientific and Engg. Applications 
2.1.2.5 Inherent Parallelism in General Physical Models 
 Summary 
 Model Questions 
 References 
 
Objective 
To know the importance of parallelism in this modern computing world and inherent 
parallelism of different physical models. 
 
2.1.2.1 Introduction 
Very different computational requirements of user problems given rise to a broad 
spectrum of computers ranging from general purpose via specialized multipurpose 
to special architectures. For the choice of the appropriate computer system, the 
user has to take into account how the computational demands of the target 
application and involved economic considerations. After a short characterization of 
scientific and engineering problems, main hardware and software means for 
specialization art described. Because of the versatility of multiprocessors, such 
systems are especially well suited for adapting the architecture to the user 
problem. This issue is discussed for architectural concepts such as hierarchical 
bus systems and shared memory systems. 
 
The "'T**" von Neumann computer is known as a universal computer. Since then, 
the computational performance has been increased by several orders of magnitude 
due to technological advance in hardware components, specialization and parallel 
processing. 
 
There has been an enormous gain of speed by very large scale integration 
technology, by fast special components and units by hierarchically organized 
memories and so on. Nevertheless, limits of technically possible performance of the 
uniprocessor are showing up.  Users demand more and more computing power and 
storage capacity. On these grounds, the interest in parallel processing systems has 
strongly been growing within the last three or five years. With parallel systems also 
the structure of the interconnection system can be adapted to multipurpose or 
special purpose use. This possibility does not exist with uniprocessor systems. 
Whether to use a general purpose or a special purpose machine is primarily an 
economic problem. A user needs a general purpose machine if it is aimed to a broad 
spectrum of application problems. On the contrary, be wants a highly efficient special 
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purpose machine if the application is well defined and featured by a small variation 
of its computational parameters. Anyway, the user will be interested in a system 
which provides for the needed computational power and storage capacity at a 
minimum price/performance ratio. 
 
2.1.2.2 Defining Parallelism 
Not all models are created equal. Even if two models are ``equivalent'', such that they 
may be used interchangeably to investigate a given system, the models may differ in 
many respects: (1) they may reflect different perspectives, (2) one may be more 
maintainable than another in a given setting, (3) one may facilitate analysis in a 
superior fashion, or (4) one may be more suitable for parallel execution than another. 
We refer to the fourth quality as the inherent parallelism of the model. According to the 
philosophy described below, inherent parallelism should be regarded as a function of 
the model representation, not the physical system. This important distinction is 
clarified in the subsequent discussion.  

 
PDES (Partial Differential Equations) protocols, in their usage and evaluation, describe 
a notion of inherent parallelism. However, the concept is typically implicit, and vague in 
its characterization. Explicit formulations of inherent parallelism have appeared in  as a 
basis for critical path analysis.  
 “Inherent parallelism refers to the intrinsic structure of a system which allows it to be 
split into a number of elements which can run independently of each other, without 
requiring information to be transferred between them.”  
 
2.1.2.3 Emerging parallelism 
Parallel computational practices separate tasks, data, instructions and memory and 
distribute them -- in various different ways -- between separate but interconnected 
elements, which perform their operations simultaneously.  
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The idea is natural, obvious and immediate; which is to be expected if parallel 
computing is the inscription within the computational act of certain familiar (natural, 
obvious, immediate) forms of collective cognition. This was recognized by computer 
engineers some time ago. As B. Chandrasekaran observes in Natural and Social System 
Metaphors for Distributed Problem Solving: "It is clear that distribution of processing or 
computation is an intrinsic characteristic of most natural phenomena ... . Social 
organizations from honeybee colonies to a modern corporation, from bureaucracies to 
medical communities, from committees to representative democracies are living 
examples of distributed information processing embodying a variety of strategies of 
decomposition and coordination. Computation in biological brains, especially in their 
sensory processors such as vision systems, displays a high degree of distribution. There 
is substantial evidence that higher cortical functions are also computed (and controlled) 
in the brain in an essentially distributed mode ... ." .  
 
Observe that, unlike many of its social and biological precursors, this inscription is 
fundamentally a question of software -- the computation is cognized, designed and 
specified in parallel terms -- regardless of how it is implemented. Of course, 
implementing it on distributed hardware is a natural choice, but not essential, and 
parallel proceedures can be made to run -- with varying degrees of difficulty and 
artificiality to be sure -- on serial machines.  
 
The separate, distributed computing elements can vary greatly. They can be fully 
autonomous computers wired together in a network distibuted within a building, across 
a country or in different parts of the planet. They can be simple, stripped down 
computers hard wired to each other to form a supercomputer like the Connection 
Machine. They can be specialized computational engines, limited, at their most basic, to 
simple finite state mechanisms or automata governed entirely by local rules. Or they 
can be virtual versions of these, simulated engines within the memory of a single 
computer.  
 
This last, usually called Cellular Automata (CA), has proved to be an extraordinarily 
fecund computational, explanatory and investigative technoscientific tool. The flocking 
behaviour of starlings we encountered at the beginning, as well as aspects of the 
behaviour of ants or bees in a colony, or cars in traffic patterns, are all examples of 
situations that can be illuminatingly modelled by a CA: thus, each starling is identified 
with an individual cell and the requirement to keep a fixed distance from its neighbors 
is its local rule; and likewise for the distributed behaviour of ants and bees. A quite 
different example of a CA comes from fluid dynamics: The Navier-Stokes equation in 
that subject, a major triumph of 19th century partial differential calculus, summarises 
the behaviour of an incompressible fluid. It turns out to be simulatable by a not very 
complicated CA which uses a hexagonal grid: each cell of which models a single drop of 
fluid subject to the flow in and out of it along the six directions governed by identical 
local rules. Parallel computational methods, which include all kinds of distributed and 
decentralized processes  are increasing at almost an exponential rate in cognitive 
science, evolutionary theory, complexity studies and throughout technoscience from the 
level of abstract theorizing through heterogeneous modelling and simulation projects to 
base-level engineeering practices.  
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These include the generation of artificial life forms, including their habitats and 
ecosystems together with the simulation of evolutionary possibilities open to them; the 
invention and simulated creation of compounds, alloys and molecules with specified 
properties and functionality; pattern recognition and learning behaviour within expert 
systems via simulation techniques using connectionist and neural networks; and 
genetic algorithms that evolve, refining their ability to solve a problem through the 
feedback of the results of repeated trials. 
 
2.1.2.4 Inherent parallelism in Scientific and Engineering Applications 
 
Multiple processing systems have additional overhead compared to uniprocessor 
systems. This is due to unbalanced load in the nodes of a multiple processing 
system and due to interprocessor communication. 
Despite these drawbacks there are two reasons to build multiple processing systems: 
 

To offer higher performance for computing large user problems than can be 
obtained with uniprocessors at comparable price/performance ratio, and to realize a 
fault-tolerant computing system, for instance in case of safety requirements. 
Obviously large multiple processing systems need some fault recognition and 
recovery mechanisms. 
 

We only refer to the high performance issue. User problems with high computational 
and memory capacity requirements mostly belong to scientific or engineering applica-
tion fields. Principal problem classes are: 
 
(1) Numerical grid problems: 

Approximate solution of sets of partial differential equations (PDEs) by discretiza-
tion of space aod time. This problem class plays an essential role in scientific 
supercomputing as it comprises many application fields in science and engineering 
(e.g. numerical simulation of physical phenomena in material science, aerodynamics 
etc). 
 

(2) Panicle and field models: 
Such models are used for a broad spectrum of applications in plasma physics, solid 
state physics, aerodynamics, chemistry and others. For the mathematical descrip-
tion Molecular Dynamics and Monte-Carlo methods are applied 
 

(3)Simulation   of very   large   scale   integrated   (VLSI)   electronic   circuits   (design   
and verification):  According to  the simulation level to be considered different 
methods and mathematical procedures are applied: 

System level: Functional specification. 
Logic and switch level: Logic operations. 
Electric   circuit   and   timing   level:   Sets   of  coupled,   nonlinear   ordinary 
differential equations, Fourier transform and others. 
Device and process level: Modeling of physical phenomena in electronic 
devices   and   technological   processes,   e.g.   mathematical   description   by 
sets of partial differential equations (PDEs). 
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(4) Ab initio quantum mechanical calculations of chemical systems for the theoretical 
prediction of the properties of new materials or for the interpretation of new 
physical phenomena (e.g. high temperature superconduction). Such problems 
comprise the calculation of 1- and 2-electron-integrals, operations of large 
matrices and the determination of eigen values. 

 
These four problem dasses have in common a strong demand for East numerical 
operation unique and large memory capacity. The degree of inherent parallelism 
generally is high. In the case of VLSI simulation, this is only true for device and 
process simulation where highly parallel algorithms can be used. A quite different 
situation is found in the following problem class: 
 
(5) Artificial intelligence and automation. This problem class comprises application 

areas as for instance image processing, pattern recognition, computer vision, 
speech understanding, intelligent robotics, expert systems and others. Depending 
on the particular problem to be solved, there are requirements for massively 
parallel operations (e.g. image preprocessing) up to complex computations with low 
inherent parallelism (e.g. knowledge engineering, decision making). 

 
This coarse classification of user problems in science and engineering shows the 
heterogeneity of computational structures involved. Moreover, given one type of a 
problem, there can be a broad variation of computational parameters even between 
similar problems. As an example, the number of floating point operations to be 
executed per data access can vary by orders of magnitude. For performance optimiza-
tion, the designer has to balance processor performance and data supply rate (e.g. 
memory accesses per second). Maximum performance can be achieved for only one 
case, that is, for one set of parameter values. 
 
Due to the heterogeneity and broad variation of the computational structure of a 
great deal of user problems each processor node must work under its own control 
unit in order to allow for independent processing of subtasks and flexible interprocessor 
communication. 
 
Appropriate parallel computers belong to the category of multiple-instnictioa-multiple-
data (MLMD) systems. Such systems are realized as multiprocessor or multicomputer 
machines based on various architectural concepts. Such systems can be used with 
great versatility as the nodes can execute the same or different instructions and 
operate on the same or different data. 
 
2.1.2.5 Inherent parallelism in general physical models 
Parallel/serial as universal duo  
To respond, and to show what might be at stake in such a question, I want to back off 
from computing as the prime site of instantiation of serial/parallel, and move to other 
arenas. I want to give various examples of the duo in operation. What will emerge from 
these is how the two poles operate together, impinging on each other as a combinatorial 
tool everywhere from our pre-mammalian origins to presentday culture. Thus, not only 
is the serial/parallel opposition a widespread organizing and creative principle across 
various humanistic, artistic, mathematical, technoscientific, linguistic, and 
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epistemological practices, but it is also to be found within biological systems as a hard 
wired functioning binary.  
 
Mathematics: an entire subject organized around and predicated on the serial/parallel 
opposition. As Tobias Dantzig, Number: The Language of Science, in his discussion of 
the two conceptual moves needed to handle whole numbers observes: "Correspondence 
and succession, the two principles which permeate all mathematics -- nay, all realms of 
exact thought -- are woven into the fabric of our number system.". The first refers to the 
one-to-one correspondence whereby the elements of one collection are matched or 
tallied with those of another; the second refers to the process of ordering the elements 
into a sequence as part of counting them. Thus correspondence allows one to judge 
which of two collections has more elements in the absence of any need (or ability) to 
count them; succession determines how many elements are in each collection.  
 
Thus number is a serial/parallel construction. But, as Dantzig declares, the opposition 
is implicated throughout mathematics and beyond. Certainly, serial (succession) as 
against parallel (correspondence), in the form of dependence of one thing on a given 
other versus independence of two co-occurrently given things, is fundamental to the 
construction of all post-Renaissance mathematics. As such it is, for example, the 
founding abstraction of co ordinate geometry, as well as that of an algebraic variable 
and the notion of a function; it institutes the separation of independent and dependent 
events and hence founds the idea of a random variable in the theory of probability. 
More primitively, as indicated the parallel is the all-at-once magnitude of cardinal 
numbers, their determination as unordered collections or combinations against the 
sequential, counted-into-being ranking of ordinals or permutations.  
 
On the relation between ordinal and cardinal, there is the anecdote of the clocks: A man 
heard the clock strike two times one day, just as he was falling asleep, and he counted 
like this: "One, one." Then, when he realized how ridiculous that was, he said, "The 
clock has gone crazy: it struck one o'olock twice!" Quoted in George Ifrah From One to 
Zero  Or again: there is the difference, crucial in the theory of sets, between the ordered 
pair (a,b) and the unordered pair {a,b} of two objects, and the propriety (discussed by 
mathematical logicians) of Kuratowski's formal definition of the former in terms of the 
latter.  
 
Not only do "the two principles permeate ... all exact thought", and prove to be "woven 
into the fabric of our number system", but they also -- well outside the field of 
mathematics or of so-called exact thought -- form a ubiquitous and formidable 
constitutive principle. Put differently, the interplay of parallel and serial principles in 
the manufacture and replication of concepts gives rise to an enormous idea machine, a 
combinatorial tool or technology that permits the signifying, patterning, imagining -- 
constructing/discovering -- of an unsurveyable plenitude of 'objects'. Objects whose 
viability and creative potential lie precisely in the way they neutralize the very difference 
between serial and parallel that allowed them to be brought into existence.  
 
By way of elaboration consider three examples: the code of Western classical music, the 
language of traditional arithmetic, and the code of mathematical theory of infinite sets. 
In each case the 'objects' making up the code -- musical compositions, integers, infinite 
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numbers -- arise from an initial formal constraint. They are manufactured via a 
principle of equality or interchangeability that operates as a built-in insistence that -- 
despite the evident opposition between them upon which music, arithmetic, set theory 
are founded -- any parallel object be equivalent to a serial one and vice versa.  
 
In classical music, with its enormously rich, intensely specialized mass of composition 
based on key harmonies, this folding of serial and parallel into each other is 
correspondingly complex and detailed. At bottom, however, it amounts to a vast algebra 
of forms: compositions which arise from the different ways musicians have formulated 
of re-writing and arranging sequential progressions into simultaneous chords and 
spilling harmonies over time to be the successive notes of arpeggios and the like.  
 
In traditional arithmetic the principle of ordinal/cardinal interchangeability is so 
ingrained, and the proliferation of objects so effortless, that it's difficult to detach the 
principle of parallel-serial interchangeability from the familiar idea of 'whole number'. 
Thus, not only is it too obvious to even remark that an ordinal is necessarily a cardinal, 
but the reverse is unasked: why can every collection, however named or described or 
defined -- and independently of any method of achieving such a thing -- be 'counted' 
into a sequence? What hidden necessity guarantees the possibility - the eventuality -- of 
totally ordering anything nameable?  
 
In the theory of infinite sets ordinals are defined to be sets and so are automatically 
possess a cardinal magnitude, whilst the reverse is precisely the content of the 
notorious axiom of choice, the axiomatic principle needed to guarantee that all sets can 
be well-ordered. No exaggeration to point out the possibility of this cardinal/ordinal 
interchange as the constitutive armature of Cantor's infinite arithmetic: certainly 
without it the entire theory of sets as developed during the twentieth century would be 
impossible.  
 
One can press harder on the phenomenon of serial/parallel interchange, and identify 
what might be called an horizon effect: in each case the technology of production, the 
means of creating the plenitude of objects, is subject to an insurmountable limit, an 
unanswered or even unanswerable question, whereby an horizon of the machine is 
revealed; and with this emerges the impossibility of running the machine from within, 
as before without reference to the presence of its external features. For Western 
classical music composition the system of vertical-horizontal equivalences collapsed 
early in the 20th century, when the key-based harmonies which controlled the 
chord/arpeggio trade-off were repudiated by a movement appropriately calling itself 
serialist. For set theory the horizon of the machine was revealed through the proof in 
1963 of the independence of the continuum hypothesis, which left unsolvable and 
essentially unresolvable the question of the magnitude of the continuuum (as well as 
the independence of the axiom of choice that allowed the question of this magnitude to 
be posed). For the classical integers and their arithmetic the horizon -- less obvious, 
more contentious and needing considerable groundwork to reveal it -- arises from the 
challenge to the orthodox account of infinity, and the subsequent emergence elaborated 
in Ad Infinitum ... the Ghost in Turing's Machine of non-infinitistic, in fact non-
Euclidean arithmetic.  



 
 
 
Centre for Distance Education 8 Acharya Nagarjuna Univeristy 

In natural language, the opposition of serial/parallel is basic; an intrinsic and 
constitutive binary. It appears, as a very general linguistic distinction according to the 
Glossary of Semiotics, as the opposition of syntagmatic ("relationships ... of linear, 
temporal sequence") and associative or paradigmatic ("relationships [which] do not as 
such occur in time [but] make up an array of possibilities"). Or again, according to 
Roman Jakobson, Fundamentals of Language, as a completely abstract and general 
feature opeative at all levels of speech: "The concurrence of simultaneous entities and 
the concatenation of successive entities are the two ways speakers combine linguitic 
constituents.". Jakobson goes on to observe that "The fundamental role which these two 
operations play in language was clearly recognized by Ferdinand de Saussure. Yet of the 
two varieties of combination -- concurrence and concatenation -- it was only the latter, 
the temporal sequence, which was recognized by the Geneva linguist.", a fact which, 
according to Jakobson, stems from Saussure's immersion in the traditional belief "qui 
exclut la possibilité de prononcer deux elements a la fois". Evidently, the serial/parallel 
duo functions at all levels of speech: phoneme as simultaneous bundle of distinctive 
features, syllable as succession of phonemes, the inherent parallelism of 
intonation/gesture, the combined linearity and simultaneous unity of utterances, and 
so on.  
 
A final example: twentieth century physics. There is the well known parallelist 
phenomenon of superposition in the standard (Copenhagen) interpretation of quantum 
physics, where all the mutually contradictory states of a quantum system, ghost 
tendencies that Heisenberg called potentia, are taken to be simultaneously present but 
unrealized. This is opposed to an actual or 'real' state of the system resulting from a 
measurement (the so-called collapse of the wave function), where such actualities are 
understood as occurring one after the other. What can legitimately collapse the parallel 
into a serial, what in other words constitutes a measurement is a major mystery -- the 
so-called 'measurement problem' -- for such a view. Interestingly, the main rival 
theoretical model of quantum events, the many-worlds interpretation, eschews 
superposed parallel tendencies and so eliminates the measurement problem. By 
positing one totally determined, unghostly state at a time in each of a multitude of 
'simultaneously occurring' worlds, it replaces parallel unreal occurrences in one world 
with real occurrences in parallel unreal worlds.  
 
These examples, from brain morphology, Western classical music, mathematics, spoken 
human language, and quantum physics, and the instance of computing we started 
from, demonstrate the importance of the parallel/serial duo, as a creative and 
organizing principle across many terrains. Further, as is evident from the depth at 
which it operates and the dynamics it gives rise to, the duo acts in some sense like a 
zero sum game. By which I mean not that there is a hidden equilibrating force or larger 
matrix of control ensuring their balance, but that by virtue of their mutual enfolding 
within specific cultural practices changes -- of status, scope, attributed importance, 
aesthetic worth, semiotic transparence -- to one pole are accompanied by changes in 
the other. It follows from this that the shift to parallelism being charted here will be 
associated, as we shall see, with a countervailing, newly emergent form of serialism.  
The claim we need to flesh out comes, then, to this: two co-occurrent, synergistic 
transformations -- the ongoing move to parallel and distibuted computing and the 
explosive growth in visualization -- are reconfiguring contemporary technoscience. The 
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effects of this emergent parallelism as it circulates through cultural space are being felt 
at every level from how we read, write, and see to the ways we understand ourselves as 
'selves'. And that, in the process of its unfolding this parallelism is giving rise to a 
hitherto unavailable, and yet to be adequately identified, serialism.  
 
 Paraselves and multi-IDs 
Am I beside myself or are their two or more of me/us? Can I, can 'one'(but one can't say 
'one'), have more than one identity?  
 
"Now we are one, or two, or three" A recent headline from the New Scientist 
acknowledges our widespread pluralization, and the multi-disciplinary, multi-cultural, 
multi-tasking, multi-plex environment we inhabit. It could easily be the title of a piece 
on cognitive science's idea that the mind is not and never was a single agent, but an 
assemblage of different and competing agents; or a report on neuroscience's 
understanding of the mind/brain as a many-sided modular organ whose morphology 
indicates two or three or more independent functioning units; or a human interest piece 
about the recent increase in the number of people doing two things at once like using 
mobile phones and wrecking their cars.  
 
In fact, it's about Multiple Personality or Dissociative Identity Disorder. MPD/DID is a 
hot topic with many books, hundreds of articles, debates, etc., made ultra hot by the 
(widely accepted) view of it as a disorder of childhood abuse, which automatically links 
it to FAQs from schizophrenia to alt.abuse.transcendence. I'll mention two books.  
 
First Person Plural by Stephen Braude, acquiesces in this origin of Multiple Personality 
in abuse and understands the phenomenon as the disruption of a natural 
unpathological, unitary self. The vocabulary of pathology and the need to justify the 
naturality of a single personality leads him to theorize the necessary existence "of an 
underlying synthesizing subject". Braude is an analytic philosopher with a conventional 
-- that is to say in the present context enlightenment -- epistemological agenda, so no 
surprise to his polemic against the possibility that being plural or multi is anything 
other than deviant departure from a prior (Kantian) subject which is the condition for 
the possibility of any (rational) thought.  
 
The abuse etiology is directly challenged, however, by Ian Hacking Re-writing the Soul 
which situates the multiple personality effect within a history of memory, locating it in 
the "conceptual space for the idea of multiplicity"  constructed by French medicine in 
the 19th century, used by patients to describe their symptoms and then looped back 
through the doctor/patient circuit into confirmatory evidence of a disease. Though 
sharply argued and historically focussed, Hacking's analysis elides the issue of 
contemporaneity: even if, as he maintains, sufferers from the syndrome are creating 
and fitting their symptoms to pre-given diagnosis, we're still left with the question: why 
these symptoms right now? Why the irruption of this kind of multiplicity within 
presentday culture?  
 
One body with many (up to 96 so far) identities or "alters" differently related: most 
claiming to be solo, but some aware of their co-inhabitants, some fully worked out 
personae, but most persona-fragments and generic functions, such as The Angry One, 
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the Innocent Child, etc. Maybe schizophrenia opens here into a generalized obverse: 
instead of the original unity -- we were all one once -- become split and fragmented, we 
have an originary collectivity mainfesting as a barely -- and not necessarily -- unitizable 
ensemble: Stevenson's multifarious, incongruous denizens.  
 
If, as Louis Sass Modernism and Madness has it, schizophrenics were the sensitives, 
the "town criers of modern consciousness ... existing not just as a product of but also a 
reaction against the prevailing social order", too easily able to internalize their rent and 
disordered times, then perhaps the presentday multiples are their successors: emblems 
of the multiplex instabilities of 21st century psychic reality whose ur-myth is nearer to 
Osiris than Oedipus. This is not to deny that multiples aren't strange, aberrant, 
frequently traumatized and needing help, but rather to suggest -- leaving aside their 
disputed etiology -- that their aberrance might serve, at least for now, as "the best 
paradigm we have for postmodern consciousness"  and, beyond that, might presage an 
inescapable aspect of future normalcy.  
 
It is worth observing here that at least one account of multiple personality, a 
neurological-based picture that evidences clinical and hypnosis findings, sees it as part 
of an underlying multiplicity of brain function. Thus, for Oakley and Eames, in The 
Plurality of Consciousness, the syndrome is a divergence form a normal and ongoing 
mental parallelism: "It seems likely that the multiple parallel streams of conscious 
activity [i.e. activity we are aware of], which are implied by the multiple personality 
data, are no different from those which are present in normal individuals ... . The 
difference in the multiple personality case is that these processes can be attached to 
different self represntations, and so when re-reprented are revealed as the thoughts of 
different individuals. When only one self representation is available to self-awareness all 
conscious processes, covert of othewise, is attibuted to a single 'me'." On this account, 
then, multiples whilst undeniably aberrant, are closer to all of us than we have ever, 
from the perspective of a natural, unfractured singularity, imagined.  
 
If multiples deny the indivisible subject and the equation of one self with one body from 
within, then MUDs or Multiple User Domains effect the inequality externally. Though 
both uncouple the self/body unit (powerfully contested site of contemporary reality 
that, for example, Allucquere Stone focuses on in The War of Technology and Desire), 
the virtual (or cyber or net or web) communities that emerge from MUDs have no 
history of deviancy attached to them, and as a result pose a more complex and less 
easily dismissed effect of pluralization than those with multiple personae.  
 
Wherever a collective presence is constructed, from primitive bulletin boards and 
conference calls to sophisticated chat rooms on the net, and so on, virtual presences 
arise from a separation between the physical substrate and the persona: the body 
parked at the terminal or jacked into a VR rig and the self, ranging solo around 
simland, or engaged in any manner of intimacies anywhere on the net with sundry 
other disembodied, masked and anonymized virtual presences. In these contexts, the 
Rastafarian usage "I-and-I" for "we" takes on a special and useful ambiguity, since the 
first person 'I' is neither plural nor singular but an archaic misnomer for an emergent 
I/me/us construct.  
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Thus, as parallel computation writes collective cognition into a thinking machine 
understand for millenia as an individual, so multiples and verts do the same for the 
consciousness machine and its software we call the psyche: they effect a corresponding 
inscription -- what might be called a phenomenological collectivization -- at the level of 
'individual' perception and experience. In this, they realize in well-defined, repeatable 
socio-technologic form, a pluralized I/me.  
 
But of course, there is no separation here between interior and exterior: the experiential 
and the collective fold into each other. All thought, even the most private, individual 
and enclosed is social. Being socially present, mobilized and used is co-creative with the 
psyche -- a phenomenon that seems difficult to theorize in any general way outside a 
techno-ecology of the mind/brain. It is in this sense that one should interpret Merlin 
Donald's contention that the key principle of the biological and social evolution of 
individual cognition is the symbiosis of cognitive collectivities and external memory 
systems, a linkage that allows new cultural formations and technologies to reconfigure 
the thought diagrams inside (as we still say) our heads.  
 
Summary 
Very different computational requirements of user problems given rise to a broad 
spectrum of computers ranging from general purpose via specialized multipurpose 
to special architectures. For the choice of the appropriate computer system, the 
user has to take into account how the computational demands of the target 
application and involved economic considerations. After a short characterization of 
scientific and engineering problems, main hardware and software means for 
specialization art described. Because of the versatility of multiprocessors, such 
systems are especially well suited for adapting the architecture to the user 
problem. This issue is discussed for architectural concepts such as hierarchical 
bus systems and shared memory systems. 
 
Model Questions: 

1. What is inherent parallelism and write a brief note on its applications in scientific 
and engg. Applications? 

2. What is parallelism and its importance in modern computing? 
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2.1.3.1 Introduction 
Over the past decade whole genome sequencing has evolutionised the biologloical sciences. 
A new era of data rich science in biology has arisen based on the whole genome projects 
and the wealth of post-genomic studies that they facilitate, aimed at understanding the 
many complex cellular processes that occur in living organisms. Hence there is now an 
unprecedented amount of data available about biological systems. These new data 
resources have enabled the systems wide study of biological systems, referred to as 
Systems Biology, in which the goal is to understand how the individual biological parts 
interact to yield the behaviour of the whole system. One important approach in Systems 
Biology is the modeling and simulation of a biological net- works to help understand and 
predict the behaviour of these complex systems. The simulation of biological networks are 
carried out with either deterministic simulators, stochastic simulators, or hybrid 
simulators, each of which have their own advantages and disadvantages. Stochastic 
simulations have been shown to capture the fine grain behaviour and randomness of 
outcome of biological networks not captured by deterministic techniques and as such are 
becoming an increasingly important technique. However, current efforts in the stochastic 
simulation of biological networks are hampered by two main problems: (i) First, there is a 
lack of quantitative data on molecular concentrations and kinetic parameters that are 
essential to the successful simulation of biological networks. (ii) Secondly there is a large 
computational cost to stochastic simulation of these networks. A recent review suggested 
that an average personal computer would take a whole day to simulate 100 minutes of a 
100 reaction system. This problem is exacerbated since multiple repetitions of simulations 
are often required. 
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2.1.3.2 Parallel computing in biological processes 

Parallel computational methods, which include all kinds of distributed and decentralized 
processes  are increasing at almost an exponential rate in cognitive science, evolutionary 
theory, complexity studies and throughout technoscience from the level of abstract 
theorizing through heterogeneous modelling and simulation projects to base-level 
engineeering practices.  

On the understanding that parallel computing inscribes distributed biosocial and biological 
phenomena, in particular collective cognition, one would predict this explosion of use to be 
open ended: what is created is work, designs, proceedures and routines not previously 
doable or often even thinkable from the perspective of individualized cognition. On the 
other hand, it follows that the effects, consequences and cultural disruptions inherent in 
parallel thinking are not easily predictable, since collective cognition is heterogeneous, 
unschematized, and emergently different from individual thought in ways that, as we saw 
earlier from the critique of cognitivism, have scarcely begun to be articulated.  

Inherent Parallelism  
The power of the DNA computing model lies in the fact that very large numbers of oligos can anneal to form a 
vast number of combinations in a short period of time and in a small volume of solution. As an example, let's 

consider the directed hamiltonian cycle problem on a graph with vertices. Given the starting vertex , there 

are a possible permutations of the vertices between beginning and ending at . To explore each 

permutation, a traditional computer must perform operations to explore all possible cycles. However, 
the DNA computing model only requires the representative oligos. Once placed in solution, those oligos will 
anneal in parallel, providing all possible paths in the graph at roughly the same time. That is equivalent to 

operations, or constant time. In addition, no more space than what was originally provided is needed to 
contain the constructed paths 

2.1.3.3 Intelligent Computing Using Graphics Processors (GPUs) 

Background & Description of Technology: 

 High-performance 3D graphics systems have become as ubiquitous as floating-point 
hardware. They are now a part of almost every personal computer or game console and 
some handhelds. In fact, the two major computational components of a computer system 
are its main processor (CPU) and its graphics processor, also known as the GPU. While the 
CPUs are used for general purpose computation, the GPUs have been primarily designed 
for drawing and filling primitives, geometric transformations and texturing. The main 
application of GPUs has been fast rendering of lighted, smooth shaded, depth buffered, 
texture mapped, anti-aliased triangles for visual simulation, virtual reality, and computer 
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gaming. Some of the recent GPUs also include advanced features like multi-texturing, pixel 
textures, programmable shading and programmable vertex engines, and support for 
floating-point fragment pipelines and frame buffers. As graphics hardware becomes more 
programmable, the barrier between the CPU and the GPU is being redefined. The GPU can 
also be regarded as an efficient processor of images or a useful co-processor for many 
diverse applications. 

Following are the applications of GPU: 

Modeling of Simulated Forces: Complex reasoning in real-world environments requires the 
ability to simulate, reason, and plan for semi-autonomous or autonomous agents used in 
various simulators for training, prototyping, mission planning purposes. Critical issues 
that require attention are route planning for large number of agents, robot controllers, 
complex reasoning, navigation and guidance of autonomous agents, computational 
support for behavior modeling, and interactive visualization of battle space on 
programmable graphics processors. 

Physically-based Simulation: Several aspects of synthetic environments require 
fundamental advancements in physically-based modeling and simulation techniques for 
modeling complex physical and biological systems, as well as natural phenomena (e.g. 
freezing rain, sand storms, etc). Collision detection and response are essential in modeling 
complex interaction among multiple simulated agents and entities. For example, in 
Computer-generated Force computations, physically-based simulations take up a majority 
of computational cycle. Other geometric problems essential to physical simulation include 
distance computation, visibility, etc. Performing physical simulations on the GPUs can 
potentially enable us to incorporate physics-based modeling techniques into many 
interactive applications. Moreover, they can run on mobile platforms or embedded systems. 

Network and Communications: Communication requirements of the simulated 
environment are distinct from those based on conventional interactions. One of the key 
issues is the “line-of-sight” computation for large number of simulated agents, especially 
under critical conditions such as varying weather conditions and non-optimal visibility 
conditions often encountered in the battlefield. 

Database and Data Mining: The enablement of fast database operations allows for the 
rapid query and data search on any application systems. Research advances in this area 
can exploit the inherent parallelism within programmable graphics processors. It can 
considerably speedup the performance of database queries on complex databases. 

Compiler Support and Software Environments: In addition to examining the possibility of 
performing various computations mentioned above, other fundamental issues include 
programmability, language and compiler support, and development of flexible software 
environment for GPUs. 
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Development status/technical maturity/limitations: Although over the last year and two, 
several new algorithms and applications that exploit the inherent parallelism and vector 
processing capabilities of graphics processors (GPUs) have been proposed, the basic 
technology for computing on GPUs still is not fully developed. The Technology Readiness 
Level is Level 4. It needs further research and development to live up to their full potential. 

Forecast of Capability in the next 3-5 years: The growth rate of GPUs for the next 3-5 years 
is shown in the graph. We have also compared its growth rate with Moore’s Law. While the 
CPUs are expected to grow at the rate of 30-50 times, the GPUs peak performance might 
grow by almost 2-3 orders of magnitude during the same period. They could have the 
capability to perform tera-flop operations per second by 2007 and this makes them an 
attractive candidate for simulation and Computer-generated force computations. 

2.1.3.4 Simulation Modeling Methodolgy  

Investigation in discrete event simulation modeling methodology has persisted for over 
thirty years. Fundamental is the recognition that the overriding objectives for simulation 
must involve decision support. Rapidly advancing technology is today exerting major 
influences on the course of simulation in many areas, e.g. distributed interactive 
simulation and parallel discrete event simulation, and evidence suggests that the role of 
decision support is being subjugated to accommodate new technologies and system-level 
constraints. Two questions are addressed by this research: (1) can the existing theories of 
modeling methodology contribute to these new types of simulation, and (2) how, if at all, 
should directions of modeling methodological research be redefined to support the needs of 
advancing technology.  

Requirements for a next-generation modeling framework (NGMF) are proposed, and a model 
development abstraction is defined to support the framework. The abstraction identifies 
three levels of model representation: (1) modeler-generated specifications, (2) transformed 
specifications, and (3) implementations. This hierarchy may be envisaged as consisting of 
either a set of narrow-spectrum languages, or a single wide-spectrum language. Existing 
formal approaches to discrete event simulation modeling are surveyed and evaluated with 
respect to the NGMF requirements. All are found deficient in one or more areas. The 
Conical Methodology (CM), in conjunction with the Condition Specification (CS), is 
identified as a possible NGMF candidate. Initial assessment of the CS relative to the model 
development abstraction indicates that the CS is most suited for the middle level of the 
hierarchy of representations - specifically functioning as a form for analysis.  

The CS is extended to provide wide-spectrum support throughout the entire hierarchy via 
revisions of its supportive facilities for both model representation and model execution. 
Evaluation of the pertinent model representation concepts is accomplished through a 
complete development of four models. The collection of primitives for the CS is extended to 
support CM facilities for set definition. A higher-level form for the report specification is 
defined, and the concept of an augmented specification is outlined whereby the object 
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specification and transition specification may be automatically transformed to include the 
objects, attributes and actions necessary to provide statistics gathering. An experiment 
specification is also proposed to capture details, e.g. the condition for the start of steady 
state, necessary to produce an experimental model.  

In order to provide support for model implementation, the semantic rules for the CS are 
refined. Based on a model of computation provided by the action cluster incidence graph 
(ACIG), an implementation structure referred to as a direct execution of action clusters 
(DEAC) simulation is defined. A DEAC simulation is simply an execution of an augmented 
CS transition specification. Two algorithms for DEAC simulations are presented.  

Support for parallelizing model execution is also investigated. Parallel discrete event 
simulation (PDES) is presented as a case study. PDES research is evaluated from the 
modeling methodological perspective espoused by this effort, and differences are noted in 
two areas: (1) the enunciation of the relationship between simulation and decision support, 
and the guidance provided by the life cycle in this context, and (2) the focus of the 
development effort. Recommendations are made for PDES research to be reconciled with 
the ``mainstream'' of DES.  

The capability of incorporating parallel execution within the CM/CS approach is 
investigated. A new characterization of inherent parallelism is given, based on the time and 
state relationships identified in prior research. Two types of inherent parallelism are 
described: (1) inherent event parallelism, which relates to the independence of attribute 
value changes that occur during a given instant, and (2) inherent activity parallelism, 
which relates to the independence of attribute value changes that occur over all instants of 
a given model execution. An analogy between an ACIG and a Petri net is described, and a 
synchronous model of parallel execution is developed based on this analogy. Revised 
definitions for the concepts time ambiguity and state ambiguity in a CS are developed, and 
a necessary condition for state ambiguity is formulated. A critical path algorithm for 
parallel direct execution of action clusters (PDEAC) simulations is constructed. The 
algorithm is an augmentation of the standard DEAC algorithm and computes the 
synchronous critical path for a given model representation. Finally, a PDEAC algorithm is 
described.  

In terms of human semiosis, episodes and procedures corespond to the opposition between 
pictures and words, between the parallel co-occurrence of the information in a scene and 
the sequential delivery of speech. The two forms, found in birds as well as all mammals, 
employ entirely different neural mechanisms, are morphologically distinct and functionally 
incompatible: "Whereas procedural memories generalize across situations and events, 
episodic memory stores specific details of situations and life events" . Of course, identifying 
the opposition here in no way claims for it a total coverage of the field of memory, and 
indeed, with the advent of language a third, conceptual form of memory emerged. But 
whilst this adjoined, re-organized and in much of culture dominates the more primitive 
substrate it found, it in no sense obliterated the episodic/procedural couple.  
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This last, usually called Cellular Automata (CA), has proved to be an extraordinarily fecund 
computational, explanatory and investigative techno scientific tool. The flocking behaviour of 
starlings we encountered at the beginning, as well as aspects of the behaviour of ants or bees in a 
colony, or cars in traffic patterns, are all examples of situations that can be illuminatingly modeled by 
a CA: thus, each starling is identified with an individual cell and the requirement to keep a fixed 
distance from its neighbors is its local rule; and likewise for the distributed behaviour of ants and 
bees. A quite different example of a CA comes from fluid dynamics: The Navier-Stokes equation in 
that subject, a major triumph of 19th century partial differential calculus, summarises the behaviour of 
an incompressible fluid. It turns out to be simulatable by a not very complicated CA which uses a 
hexagonal grid: each cell of which models a single drop of fluid subject to the flow in and out of it 
along the six directions governed by identical local rules.  

Summary 

No question any more that an event -- global, all penetrative, encompassing, inescapable -- 
is arriving and being bidden by us to happen. Within this event we are going parallel and 
becoming plural in ways and for the reasons . . One important approach in Systems 
Biology is the modeling and simulation of a biological net- works to help understand and 
predict the behaviour of these complex systems. The simulation of biological networks are 
carried out with either deterministic simulators, stochastic simulators, or hybrid 
simulators, each of which have their own advantages and disadvantages. 

Model Questions: 

1. What is inherent parallelism and write a brief note on its applications in scientific 
and engg. Applications? 

2. What is parallelism and its importance in modern computing? 

References: 
1. www.thesimguy.com/ernie/papers/unref/dissert/node10.html 
2. www.wideopenwest.com/~brian_rotman/parallel.html 
3. Exploiting Inherent Parallelism In Non-Linear Finite Element Analysis,M. W. S. 

Jaques, C. T. F. Ross And P. Strickland Computers & Swucrures Vol. 58, No. 4, 
Pp. 801-807, 1996 
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Lesson 2.1.4  

PARALLEL VERSUS SEQUENTIAL COMPUTING 
 

Objective 
2.1.4.1 Introduction 
2.1.4.2 Eras of computing 
2.1.4.3 What is Parallelism? 
2.1.4.4 Parallel Computing  
2.1.4.5 Parallelism in real life 
2.1.4.6 Inter-thread communication 
2.1.4.7 Sequential Computing 
2.1.4.8 Parallel vs sequential solutions 

Summary 
  Model Questions 
  References 
Objective 

This lesson explains the eras of computing and differentiates the parallel and 
sequential computing. 

 

2.1.4.1 Introduction 
It is now clear that silicon based processor chips are reaching their physical limits in 

processing speed, as they are constrained by the speed of electricity, light and certain 
thermodynamic laws. A viable solution to overcome this limitation is to connect multiple 
processors working in coordination with each other to solve grand challenge problems. 
Hence, high performance computing requires the use of Massively Parallel Processing 
(MPP) systems containing thousands of powerful CPUs. A dominant representative 
computing system ( hardware ) built using MPP approach is C-DAC’s PARAM 
supercomputer. 

2.1.4.2 Eras of computing 
The most prominent two eras of computing are : sequential and parallel era. In the 

past decade, parallel machines have become significant competitors to vector machines 
in the quest for high performance computing. A century wide view of development of 
computing eras is shown in fig. The computer era starts with a development in 
hardware architectures, followed by system software, application, and reachingits 
saturation point with its growth in problem solving environments. 
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2.1.4.3 What is Parallelism? 

A strategy for performing large, complex tasks faster.  

A large task can either be performed serially, one step following another, or can be 
decomposed into smaller tasks to be performed simultaneously, i.e., in parallel.  

Parallelism is done by:  

 Breaking up the task into smaller tasks  

 Assigning the smaller tasks to multiple workers to work on simultaneously  

 Coordinating the workers  

Parallel problem solving is common. Examples: building construction; operating a 
large organization; automobile manufacturing plant  

Parallel computing is the simultaneous execution of the same task (split up and 
specially adapted) on multiple processors in order to obtain faster results.The term 
parallel processor is sometimes used for a computer with more than one processor, 
available for parallel processing. Systems with thousands of such processors are known 
as massively parallel. 
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There are many different kinds of parallel computers (or "parallel processors"). They 
are distinguished by the kind of interconnection between processors (known as 
"processing elements" or PEs) and between processors and memories. Flynn's taxonomy 
also classifies parallel (and serial) computers according to whether all processors 
execute the same instructions at the same time (single instruction/multiple data -- 
SIMD) or each processor executes different instructions (multiple 
instruction/multiple data -- MIMD). Parallel processor machines are also divided into 
symmetric and asymmetric multiprocessors, depending on whether all the processors 
are capable of running all the operating system code and, say, accessing I/O devices or 
if some processors are more or less privileged. 

Performance vs. cost 
While a system of n parallel processors is less efficient than one n-times-faster 

processor, the parallel system is often cheaper to build. For tasks which require very 
large amounts of computation, have time constraints on completion and especially for 
those which can be divided into n execution threads, parallel computation is an 
excellent solution. In fact, in recent years, most high performance computing systems, 
also known as supercomputers, have a parallel architecture 

Algorithms 
It should not be imagined that successful parallel computing is a matter of obtaining 

the required hardware and connecting it suitably. The difficulty of cooperative problem 
solving is aptly demonstrated by the following dubious reasoning: 

If it takes one man one minute to dig a post-hole then sixty men can dig it in 
one second.  

In practice, linear speedup (i.e., speedup proportional to the number of processors) 
is very difficult to achieve. This is because many algorithms are essentially sequential in 
nature. 

Up to a certain point, certain workloads can benefit from pipeline parallelism when 
extra processors are added. This uses a factory assembly line approach to divide the 
work. If the work can be divided into n stages where a discrete deliverable is passed 
from stage to stage, then up to n processors can be used. However, the slowest stage 
will hold up the other stages so it is rare to be able to fully use n processors. 

Most algorithms must be redesigned in order to make effective use of parallel 
hardware. Programs which work correctly in a single CPU system may not do so in a 
parallel environment. This is because multiple copies of the same program may interfere 
with each other, for instance by accessing the same memory location at the same time. 
Therefore, careful programming is required in a parallel system. 

Superlinear speedup - the effect of a N processor machine completing a task more 
than N times faster than a machine with a single processor similar to that in the 
multiprocessor has at times been a controversial issue (and lead to much 
benchmarking) but can be brought about by such effects as the multiprocessor 
machine having not just N times the processing power but also N times cache and 
memory thus flattening the cache-memory-disk hierarchy, more efficient use of memory 
by the individual processors due to partitioning of the problem and a number of other 
effects. Similar boosted efficiency claims are sometimes aired for the use of a cluster of 
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cheap computers as a replacement of a large multiprocessor, but again the actual 
results depend much on the problem at hand and the ability to partition the problem in 
a way that is conductive to clustering. 

2.1.4.4 Parallel Computing  
Traditional Supercomputers 
Technology  

 Single processors were created to be as fast as possible.  

 Peak performance was achieved with good memory bandwidth.  

Benefits  

 Supports sequential programming (Which many people understand)  

 30+ years of compiler and tool development  

 I/O is relatively simple  

Limitations  

 Single high performance processors are extremely expensive  

 Significant cooling requirements  

 Single processor performance is reaching its asymptotic limit  

Parallel Supercomputers  
Technology  

 Applying many smaller cost efficient processors to work on a part of the 
same task  

 Capitalizing on work done in the microprocessor and networking markets  

Benefits  

 Ability to achieve performance and work on problems impossible with 
traditional computers.  

 Exploit "off the shelf" processors, memory, disks and tape systems.  

 Ability to scale to problem.  

 Ability to quickly integrate new elements into systems thus capitalizing on 
improvements made by other markets.  

 Commonly much cheaper.  

Limitations  

 New technology. Programmers need to learn parallel programming 
approaches.  

 Standard sequential codes will not "just run".  

 Compilers and tools are often not mature.  

 I/O is not as well understood yet.  
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Parallel computing requires:  

 Multiple processors (The workers)  

 Network  (Link between workers)  

 Environment to create and manage parallel processing  

o Operating System  
(Administrator of the system that knows how to handle multiple workers)  

o Parallel Programming Paradigm  

 Message Passing  

 MPI  

 PVM  

 Data Parallel  

 Fortran 90 / High Performance Fortran  

 Others  

 OpenMP  

 shmem  

 A parallel algorithm and a parallel program  
(The decomposition of the problem into pieces that multiple workers can perform)  

2.1.4.5 Parallelism in real life 
The world of computing until recently was dominated by the sequential way of 

thinking. In fact, sequential processing has been very successful and has set high 
standards that parallel processing will have to try hard to match. Before introducing the 
parallel way of thinking, let us make sure that we have a clearer idea of what problems 
the sequential way of thinking may have. For example, let us consider the simple 
problem of assigning 0 to the 100 memory locations of an integer array A, initialization 
performed by most compilers every time arrays are used. The processor would have to 
execute the code typically produced by the compiler, that visits sequentially every 
memory location A[1..100] of the array and assigns the value 0 to it. This code could 
look like this 2: 

i = 0; 

while (i <= 100) { 

i++; 

A[i] = 0; 

} 

This is an operation many of you were taught in your .rst CS course. It has been 
observed that students in that introductory course often have some troubles coming up 
with such a solution, and one of the reasons may be that it seems “unnatural” to those 
who are not yet used to “think like the computer,” as the popular expression goes. Let 
us explain what we mean by that. 
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Consider the logically equivalent problem of an instructor distributing handouts to 
her 100 students in the beginning of a class period. It is very unlikely that she would 
walk around the class giving the handouts to each and every student in a sequential 
fashion:  

take a deep breath; 

while (there are students you have not visited yet) { 

visit a student that you have not visited yet; 

give a copy of the handouts to that student; 

} 

Such an action would be very time consuming and would occupy her for most of the 
class period, while the students stay idle — not to mention bored. 3 Instead, the 
instructor would hand the whole package to the student sitting, say, at an end of the 
.rst row, and then return to her previous activity. Each student will be occupied for only 
a short period of time: receiving the handouts when they reach him, keeping one copy, 
and handing the remaining copies to the nearest student that has not received 
handouts yet. 

Instructor’s action: 
visit the first student; 
give the pile with the handouts to that student; 
continue teaching the class; 
Student’s action: 
while (the pile with the handouts have not reached you) 
attend the class; 
pick up a copy of the handouts; 
if (there is a student that has not received handouts yet) 
pass up the handouts to this student; 

This is a special parallel method used commonly in assembly lines, known as the 
pipeline, and in the classroom example is, apparently, preferable. In parallel computing 
terms, we say that this technique has better load balance than the sequential one, 
because the task of distributing the handouts is  evenly divided among the number of 
persons involved. It is irrelevant here that almost certainly this habit would make the 
instructor wellknown around campus. 

There is not, however, a single parallel way of doing this job, but several. When time 
is at a premium, for example, when a midterm exam is being handed out, it is 
important that every students gets a copy of the exam as soon as possible. In this case, 
the instructor may speed up this process by handing a portion of the exams to the 
students sitting at the end of each desk row. This process is faster than the previous 
one by a factor that equals, roughly, the number of desk rows. This approach is more 
e.cient than the .rst because the total amount of time to execute the same task is less 
than the time associated with the first. 

2.1.4.6 Inter-thread communication 
Parallel computers are theoretically modeled as Parallel Random Access Machines 

(PRAMs). The PRAM model ignores the cost of interconnection between the constituent 
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computing units, but is nevertheless very useful in providing upper bounds on the 
parallel solvability of many problems. In reality the interconnection plays a significant 
role. 

The processors may either communicate in order to be able to cooperate in solving a 
problem or they may run completely independently, possibly under the control of 
another processor which distributes work to the others and collects results from them 
(a "processor farm"). 

Processors in a parallel computer may communicate with each other in a number of 
ways, including shared (either multiported or multiplexed) memory, a crossbar, a 
shared bus or an interconnect network of a myriad of topologies including star, ring, 
tree, hypercube, fat hypercube (an hypercube with more than one processor at a node), 
a n-dimensional mesh, etc. Parallel computers based on interconnect network need to 
employ some kind of routing to enable passing of messages between nodes that are not 
directly connected. The communication medium used for communication between the 
processors is likely to be hierarchical in large multiprocessor machines. Similarly, 
memory may be either private to the processor, shared between a number of processors, 
or globally shared. Systolic array is an example of a multiprocessor with fixed function 
nodes, local-only memory and no message routing. 

Approaches to parallel computers include: 

 Multiprocessing  

 Computer cluster  

 Parallel supercomputers  

 Distributed computing  

 NUMA vs. SMP vs. massively parallel computer systems  

 Grid computing  

2.1.4.7 Sequential Computing 
Almost all computation done during the first forty years of the history of computers 

could be called sequential. One of the characteristics of sequential computation is that 
it employs a single processor to solve some problem. (Here, the term “problem” is used 
in the broad sense, i.e., performing some task.) These processors had become 
continuously faster (and cheaper) during the first three decades, doubling their speed 
every two or three years. However, due to the limit that the speed of light imposes on 
us, it seems extremely unlikely that we can build uni-processor computers (i.e., 
computers that contain only one processor) that can achieve performance signi.cantly 
higher than 1,000,000,000 .oating-point operations per second — usually called 1 
G.ops. The unit .ops is a widely used measure of memory access performance. It equals 
the rate at which a machine can perform single-precision floating point operations, i.e., 
how many such operations the computer can perform in a unit of time – second in our 
case. As with physical quantities, computing power is measured using the notations 
kilo (1K = 103), mega (1M = 106), giga (1G = 109) and tera (1T = 1012). If the computer 
does not have the So, parallel computation is de.ned as the practice of employing a 
(usually large1) number of cooperating processors, communicating among themselves 
to solve large problems fast. It has quickly become an important area in computer 
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science. During the past .ve years, parallel computation has grown so wide and strong 
that most of the research conducted in the .elds of design and analysis of algorithms, 
computer languages, computer applications and computer architectures are within its 
context. 

2.1.4.8 Parallel vs sequential solutions – The magic box 
Probably the first approach one may think for designing a parallel algorithm is to 

modify and parallelize an existing sequential one. It would be nice if someone had 
written a program s2p.c that takes as input a sequential program and produces an 
equivalent parallel program which runs much faster and exhibits good load balancing 
(see figure 1.4). After all, this is not very difficult to do for the initialization problem we 
saw earlier: one has only. 

 Figure 
1.4: The magic box that converts sequential code to parallel. to write a program that can 
recognize a code fragment with the general structure 

var1 = val1; 

while (var1 < val2) { 

var1++; 

var2[var1] = val3; 

} 

and convert it to an equivalent parallel code which divides up the operations 
performed by the number of available processors. This simple solution, of course, 
requires that there are no data dependencies among operations assigned to different 
processors. Unfortunately, it seems that very few sequential algorithms can be modified 
to produce significantly faster parallel algorithms. At the same time, even fewer of them 
have obvious or simple parallel modifications. Moreover, problems that happen to have 
simple sequential solutions do not necessarily have a practical parallel solution, 
sometimes do not have an efficient parallel solution at all! 

An interesting example of the latter case is depth-.rst search, a technique which has 
applications in almost every area of computer science. It has been used as a basis for 
many problem solutions and, as is well known, it has a simple linear-time sequential 
implementation. For example, it is used as a technique to search the nodes of a graph 
for some property. 5 However, despite considerable research efforts, an efficient parallel 
implementation for this technique has not yet been found. 6 What is worse, there is 
some evidence that an efficient parallel algorithm for this problem may not even exist! 
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As a result of that, all these sequential algorithms that have been developed using 
depth first search cannot be easily converted to parallel ones through some magic box. 
We have to find new parallel solutions that use different methods. 

Summary: 
The most prominent two eras of computing are : sequential and parallel era. Parallel 

computing is the simultaneous execution of the same task (split up and specially 
adapted) on multiple processors in order to obtain faster results. Almost all 
computation done during the first forty years of the history of computers could be called 
sequential. One of the characteristics of sequential computation is that it employs a 
single processor to solve some problem. 

 
Model Questions: 
 

1. Briefly explain the parallel computing? 

2. Differentiate the parallel and sequential computing? 

References: 
1. SCIENTIFIC COMPUTING: An Introductory Survey, Second Edition by Michael T. 
Heath, published by McGraw-Hill, New York, 2002. 
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Lesson 2.2.1  

SYSTEM SOFTWARE 
 

Objective 
2.2.1.1 Introduction 
2.2.1.2 Programming Environments 
2.2.1.3 A Unifying Framework 
2.2.1.4 Operating System 
2.2.1.5 Driver 
2.2.1.6 BIOS 
2.2.1.7 TP Monitor 
2.2.1.8 Communications Protocols 
2.2.1.9 DBMS 
2.2.1.10 Programming Language 
summary 
Model Questions 
References 
 
Objective 

 To know what a system software is 
 To study the various components of system software 

 
2.2.1.1 Introduction 

 If it were not for system software, all programming would be done in machine code, 
and applications programs would directly use hardware resources such as input-output 
devices and physical memory. In such an environment, much of a programmers time 
would be spent on the relatively clerical problems of program preparation and translation, 
and on the interesting but unproductive job of reinventing effective ways to use the 
hardware. System software exists to relieve programmers of these jobs, freeing their time 
for more productive activities. As such, system software can be viewed as establishing a 
programming environment which makes more productive use of the programmer's time 
than that provided by the hardware alone.  

2.2.1.2 Programming Environments 

The term programming environment is sometimes reserved for environments containing 
language specific editors and source level debugging facilities; here, the term will be used 
in its broader sense to refer to all of the hardware and software in the environment used by 
the programmer. All programming can therefore be properly described as takin place in a 
programming environment.  
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Programming environments may vary considerably in complexity. An example of a simple 
environment might consist of a text editor for program preparation, an assembler for 
translating programs to machine language, and a simple operating system consisting of 
input-output drivers and a file system. Although card input and non-interactive operation 
characterized most early computer systems, such simple environments were supported on 
early experimental time-sharing systems by 1963.  

Although such simple programming environments are a great improvement over the bare 
hardware, tremendous improvements are possible. The first improvement which comes to 
mind is the use of a high level language instead of an assembly language, but this implies 
other changes. Most high level languages require more complicated run-time support than 
just input-output drivers and a file system. For example, most require an extensive library 
of predefined procedures and functions, many require some kind of automatic storage 
management, and some require support for concurrent execution of threads, tasks or 
processes within the program.  

Many applications require additional features, such as window managers or elaborate file 
access methods. When multiple applications coexist, perhaps written by different 
programmers, there is frequently a need to share files, windows or memory segments 
between applications. This is typical of today's electronic mail, database, and spreadsheet 
applicatons, and the programming environments that support such applications can be 
extremely complex, particularly if they attempt to protect users from malicious or 
accidental damage caused by program developers or other users.  

A programming environment may include a number of additional features which simplify 
the programmer's job. For example, library management facilities to allow programmers to 
extend the set of predefined procedures and functions with their own routines. Source level 
debugging facilities, when available, allow run-time errors to be interpreted in terms of the 
source program instead of the machine language actually run by the hardware. As a final 
example, the text editor may be language specific, with commands which operate in terms 
of the syntax of the language being used, and mechanisms which allow syntax errors to be 
detected without leaving the editor to compile the program.  

Historical Note 

Historically, system software has been viewed in a number of different ways since the 
invention of computers. The original computers were so expensive that their use for such 
clerical jobs as language translation was viewed as a dangerous waste of scarce resources. 
Early system developers seem to have consistently underestimated the difficulty of 
producing working programs, but it did not take long for them to realize that letting the 
computer spend a few minutes on the clerical job of assembling a user program was less 
expensive than having the programmer hand assemble it and then spend hours of 
computer time debugging it. As a result, by 1960, assembly language was widely accepted, 
the new high level language, FORTRAN, was attracting a growing user community, and 
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there was widespread interest in the development of new languages such as Algol, COBOL, 
and LISP.  

Early operating systems were viewed primarily as tools for efficiently allocating the scarce 
and expensive resources of large central computers among numerous competing users. 
Since compilers and other program preparation tools frequently consumed a large fraction 
of an early machine's resources, it was common to integrate these into the operating 
system. With the emergence of large scale general purpose operating systems in the mid 
1960's, however, the resource management tools available became powerful enough that 
they could efficiently treat the resource demands of program preparation the same as any 
other application.  

The separation of program preparation from program execution came to pervade the 
computer market by the early 1970's, when it became common for computer users to 
obtain editors, compilers, and operating systems from different vendors. By the mid 
1970's, however, programming language research and operating system development had 
begun to converge. New operating systems began to incorporate programming language 
concepts such as data types, and new languages began to incorporate traditional operating 
system features such as concurrent processes. Thus, although a programming language 
must have a textual representation, and although an operating system must manage 
physical resources, both have, as their fundamental purpose, the support of user 
programs, and both must solve a number of the same problems.  

The minicomputer and microcomputer revolutions of the mid 1960's and the mid 1970's 
involved, to a large extent, a repetition of the earlier history of mainframe based work. 
Thus, early programming environments for these new hardware generations were very 
primitive; these were followed by integrated systems supporting a single simple language 
(typically some variant of BASIC on each generation of minicomputer and microcomputer), 
followed by general purpose operating systems for which many language implementations 
and editors are available, from many different sources.  

The world of system software has varied from the wildly competitive to domination by large 
monopolistic vendors and pervasive standards. In the 1950's and early 1960's, there was 
no clear leader and there were a huge number of wildly divergent experiments. In the late 
1960's, however, IBM's mainframe family, the System 360, running IBM's operating 
system, OS/360, emerged as a monopolistic force that persists to the present in the 
corporate data processing world (the IBM 390 Enterprise Server is the current flagship of 
this line, running the VM operating system).  

The influence of IBM's near monopoly of the mainframe marketplace cannot be 
underestimated, but it was not total, and in the emerging world of minicomputers, there 
was wild competition in the late 1960's and early 1970's. The Digital Equipment 
Corporation PDP-11 was dominant in the 1970's, but never threatened to monopolize the 
market, and there were a variety of different operating systems for the 11. In the 1980's, 
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however, variations on the Unix operating system originally developed at Bell Labs began 
to emerge as a standard development environment, running on a wide variety of computers 
ranging from minicomputers to supercomputers, and featuring the new programming 
language C and its descendant C++.  

The microcomputer marketplace that emerged in the mid 1970's was quite diverse, but for 
a decade, most microcomputer operating systems were rudimentary, at best. Early 
versions of Mac OS and Microsoft Windows presented sophisticated user interfaces, but on 
versions prior to about 1995 these user interfaces were built on remarkably crude 
underpinnings.  

The marketplace of the late 1990's, like the marketplace of the late 1960's, came to be 
dominated by a monopoly, this time in the form of Microsoft Windows. The chief rivals are 
MacOS and Linux, but there is yet another monopolistic force hidden behind all three 
operating systems, the pervasive influence of Unix and C. MacOS X is fully Unix 
compatable. Windows NT offers full compatability, and so, of course, does Linux. Much of 
the serious development work under all three systems is done in C++, and new languages 
such as Java seem to be simple variants on the theme of C++. It is interesting to ask, when 
we will we have a new creastive period when genuinely new programming environments 
will be developed the way they were on the mainframes of the early 1960's or the 
minicomputers of the mid 1970's?  

2.2.1.3 A Unifying Framework 
In all programming environments, from the most rudimentary to the most advanced, it is 
possible to identify two distinct components, the program preparation component and the 
program execution component. On a bare machine, the program preparation component 
consists of the switches or push buttons by which programs and data may be entered into 
the memory of the machine; more advanced systems supplement this with text editors, 
compilers, assemblers, object library managers, linkers, and loaders. On a bare machine, 
the program execution component consists of the hardware of the machine, the central 
processors, any peripheral processors, and the various memory resources; more advanced 
systems supplement this with operating system services, libraries of predefined 
procedures, functions and objects, and interpreters of various kinds.  

Within the program execution component of a programming environment, it is possible to 
distinguish between those facilities needed to support a single user process, and those 
which are introduced when resources are shared between processes. Among the facilities 
which may be used to support a single process environment are command language 
interpreters, input-output, file systems, storage allocation, and virtual memory. In a 
multiple process environment, processor allocation, interprocess communication, and 
resource protection may be needed. Figure 1.1 lists and classifies these components.  
Editors 
Compilers 
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Assemblers                           Program Preparation 
Linkers 
Loaders 
Command Languages 
Sequential Input/Output 
Random Access Input/Output 
File Systems                    Used by a Single Process 
Window Managers 
Storage Allocation 
Virtual Memory 
------------------------------ Program Execution Support 
Process Scheduling 
Interprocess Communication 
Resource Sharing              Used by Multiple Processes 
Protection Mechanisms 

The distinction between preparation and execution is the basis of the division between the 
first and second parts, while the distinction between single process and multiple process 
systems is the basis of the division between the second and third parts.  
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2.2.1.4 Operating System 
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The most important program that runs on a computer. Every general-purpose computer 
must have an operating system to run other programs. Operating systems perform basic 
tasks, such as recognizing input from the keyboard, sending output to the display screen, 
keeping track of files and directories on the disk, and controlling peripheral devices such 
as disk drives and printers.  

For large systems, the operating system has even greater responsibilities and powers. It is 
like a traffic cop -- it makes sure that different programs and users running at the same 
time do not interfere with each other. The operating system is also responsible for security, 
ensuring that unauthorized users do not access the system.  

Operating systems can be classified as follows:  
  multi-user : Allows two or more users to run programs at the same time. Some 

operating systems permit hundreds or even thousands of concurrent users.  
  multiprocessing : Supports running a program on more than one CPU.  
  multitasking : Allows more than one program to run concurrently.  
  multithreading : Allows different parts of a single program to run concurrently.  
  real time: Responds to input instantly. General-purpose operating systems, such 

as DOS and UNIX, are not real-time.  

Operating systems provide a software platform on top of which other programs, called 
application programs, can run. The application programs must be written to run on top of a 
particular operating system. Your choice of operating system, therefore, determines to a 
great extent the applications you can run. For PCs, the most popular operating systems 
are DOS, OS/2, and Windows, but others are available, such as Linux.  

As a user, you normally interact with the operating system through a set of commands. 
For example, the DOS operating system contains commands such as COPY and RENAME 
for copying files and changing the names of files, respectively. The commands are accepted 
and executed by a part of the operating system called the command processor or command 
line interpreter. Graphical user interfaces allow you to enter commands by pointing and 
clicking at objects that appear on the screen.  

Kinds of operating systems 

Functionality 

    Operating systems can be grouped according to functionality: operating systems for 
supercomputing, render farms, mainframes, servers, workstations, desktops, handheld 
devices, real time systems, or embedded systems. 

    Supercomputing is primarily scientific computing, usually modelling real systems in 
nature. Render farms are collections of computers that work together to render animations 
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and special effects. Work that previously required supercomputers can be done with the 
equivalent of a render farm. 

    Mainframes used to be the primary form of computer. Mainframes are large centralized 
computers. At one time they provided the bulk of business computing through time 
sharing. Mainframes and mainframe replacements (powerful computers or clusters of 
computers) are still useful for some large scale tasks, such as centralized billing systems, 
inventory systems, database operations, etc. When mainframes were in widespread use, 
there was also a class of computers known as minicomputers which were smaller, less 
expensive versions of mainframes for businesses that couldn’t afford true mainframes. 

    Servers are computers or groups of computers used for internet serving, intranet 
serving, print serving, file serving, and/or application serving. Servers are also sometimes 
used as mainframe replacements. 

    Desktop operating systems are used for personal computers. 

    Workstations are more powerful versions of personal computers. Often only one person 
uses a particular workstation (like desktops) and workstations often run a more powerful 
version of a desktop operating system, but workstations run on more powerful hardware 
and often have software associated with larger computer systems. 

    Handheld operating systems are much smaller and less capable than desktop operating 
systems, so that they can fit into the limited memory of handheld devices. 

    Real time operating systems (RTOS) are specifically designed to respond to events that 
happen in real time. This can include computer systems that run factory floors, computer 
systems for emergency room or intensive care unit equipment (or even the entire ICU), 
computer systems for air traffic control, or embedded systems. RTOSs are grouped 
according to the response time that is acceptable (seconds, milliseconds, microseconds) 
and according to whether or not they involve systems where failure can result in loss of 
life. 

    Embedded systems are combinations of processors and special software that are inside 
of another device, such as the electronic ignition system on cars. 

2.2.1.5 Driver 

Device management controls peripheral devices by sending them commands in their own 
proprietary language. The software routine that knows how to deal with each device is 
called a "driver." The operating system contains all the drivers for the peripherals attached 
to the computer. When a new peripheral is added, that device's driver is installed into the 
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operating system. A hardware device (typically a transistor) that provides signals or 
electrical current to activate a transmission line or display screen pixel. 

Also called a "device driver," it is a program routine that links the operating system to a 
peripheral device. Written by programmers who understand the peripheral hardware's 
command language and characteristics, the driver contains the precise machine language 
necessary to perform the functions requested by the application. When a new peripheral 
device is added to the computer, such as a display adapter, its driver must be installed in 
order to use it. The application calls the operating system, the operating system calls the 
driver, and the driver makes the device work (it "drives" the device). Routines that perform 
internal functions, such as memory managers and disk caches, are also drivers. 

2.2.1.6 BIOS 
(bī´ōs) Acronym for basic input/output system, the built-in software that determines what a 
computer can do without accessing programs from a disk. On PCs, the BIOS contains all 
the code required to control the keyboard, display screen, disk drives, serial 
communications, and a number of miscellaneous functions.  

The BIOS is typically placed in a ROM chip that comes with the computer (it is often called 
a ROM BIOS). This ensures that the BIOS will always be available and will not be damaged 
by disk failures. It also makes it possible for a computer to boot itself. Because RAM is 
faster than ROM, though, many computer manufacturers design systems so that the BIOS 
is copied from ROM to RAM each time the computer is booted. This is known as 
shadowing.  

Many modern PCs have a flash BIOS, which means that the BIOS has been recorded on a 
flash memory chip, which can be updated if necessary.  

The PC BIOS is fairly standardized, so all PCs are similar at this level (although there are 
different BIOS versions). Additional DOS functions are usually added through software 
modules. This means you can upgrade to a newer version of DOS without changing the 
BIOS.  

PC BIOSes that can handle Plug-and-Play (PnP) devices are known as PnP BIOSes, or PnP-
aware BIOSes. These BIOSes are always implemented with flash memory rather than 
ROM.  

2.2.1.7 TP Monitor 
Short for transaction processing monitor, a program that monitors a transaction as it 
passes from one stage in a process to another. The TP monitor's purpose is to ensure that 
the transaction processes completely or, if an error occurs, to take appropriate actions.  
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TP monitors are especially important in three-tier architectures that employ load balancing 
because a transaction may be forwarded to any of several servers. In fact, many TP 
monitors handle all the load balancing operations, forwarding transactions to different 
servers based on their availability.  

Messaging Protocols 

Also called: Messaging Standards, Email Protocols, Communications Standards, Electronic 
Messaging Protocols, e-mail Protocols, Electronic Messaging Standards, Communications 
Protocols, and Mail Protocols  

messaging system  

Software that provides an electronic mail delivery system. It is made up of the following 
functional components, which may be packaged together or independently.  

Mail User Agent 

The mail user agent (MUA or UA) is the client e-mail program, such as Outlook, Eudora or 
Mac Mail, that submits and receives the message.  

Message Transfer Agent 

The message transfer agent (MTA) forwards the message to another mail server or delivers 
it to its own message store (MS). Sendmail is the most widely used MTA on the Internet. In 
a large enterprise, there may be several MTA servers (mail servers) dedicated to Internet e-
mail while others support internal e-mail.  

Message Store 

The message store (MS) holds the mail until it is selectively retrieved and deleted by an 
access server. In the Internet world, a delivery agent writes the messages from the MTA to 
the message store, and typical access servers are either POP or IMAP servers.  

The Internet's SMTP 

Internet e-mail, the most ubiquitous messaging system in the world, is based on the SMTP 
protocol. Prior to the Internet's enormous growth in the late 1990s, numerous proprietary 
messaging systems were widely used, including cc:Mail, Microsoft Mail, PROFS and 
DISOSS. See messaging middleware and SMTP.   
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2.2.1.8 Communications Protocols 

email, newsgroups and chat 

These are the messaging protocols that allow users to communicate both asynchronously 
(sender and receiver aren't required to both be connected to the Internet at the same time; 
e.g. email) and synchronously (as with chatting in "real time"). 

Email  
This method of Internet communication has become the standard. A main computer acts 
as a "post office" by sending and receiving mail for those who have accounts. This mail can 
be retrieved through any number of email software applications (MS Outlook, Eudora, etc.) 
or from Web based email accounts (Yahoo, Hotmail). Email is an example of asynchronous 
Internet communication. 

Email also provides the ability to access email lists. You can subscribe to an email list 
covering any number of topics or interests and will receive messages posted by other 
subscribers. Email communities evolve from interaction between subscribers who have 
similar interests or obsessions. 

Usenet   
Usenet is something like a bulletin board or an email list without the subscription. Anyone 
can post a message to or browse through a Usenet newsgroup. Usenet messages are 
retained on the serving computer only for a predetermined length of time and then are 
automatically deleted, whereas email list messages are retained on the serving computer 
until the account holder downloads them. Many email applications, as well as Web 
browsers, allow you to set up Usenet newsgroup accounts. 

IRC (Internet Relay Chat) 

 
This protocol allows for synchronous communication: users on different computers 
anywhere in the world can communicate in "real time" or simultaneously. You can 
instantly see a response to a typed message by several people at the same time. This 
protocol requires a special software application that can be downloaded from the Web, 
generally for free. 

2.2.1.9 DBMS 
A collection of programs that enables you to store, modify, and extract information from a 
database. There are many different types of DBMSs, ranging from small systems that run 
on personal computers to huge systems that run on mainframes. The following are 
examples of database applications:  

 computerized library systems  
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 automated teller machines  
 flight reservation systems  
 computerized parts inventory systems  
 

From a technical standpoint, DBMSs can differ widely. The terms relational, network, flat, 
and hierarchical all refer to the way a DBMS organizes information internally. The internal 
organization can affect how quickly and flexibly you can extract information.  

Requests for information from a database are made in the form of a query, which is a 
stylized question. For example, the query  

SELECT ALL WHERE NAME = "SMITH" AND AGE > 35  

requests all records in which the NAME field is SMITH and the AGE field is greater than 
35. The set of rules for constructing queries is known as a query language. Different 
DBMSs support different query languages, although there is a semi-standardized query 
language called SQL (structured query language). Sophisticated languages for managing 
database systems are called fourth-generation languages, or 4GLs for short.  

The information from a database can be presented in a variety of formats. Most DBMSs 
include a report writer program that enables you to output data in the form of a report. 
Many DBMSs also include a graphics component that enables you to output information in 
the form of graphs and charts.  

2.2.1.10 Programming Language 

 Introduction to Programming 

A program is a set of instructions that tell the computer to do various things; sometimes 
the instruction it has to perform depends on what happened when it performed a previous 
instruction. This section gives an overview of the two main ways in which you can give 
these instructions, or “commands” as they are usually called. One way uses an interpreter, 
the other a compiler. As human languages are too difficult for a computer to understand in 
an unambiguous way, commands are usually written in one or other languages specially 
designed for the purpose. 

Interpreters 

With an interpreter, the language comes as an environment, where you type in commands 
at a prompt and the environment executes them for you. For more complicated programs, 
you can type the commands into a file and get the interpreter to load the file and execute 
the commands in it. If anything goes wrong, many interpreters will drop you into a 
debugger to help you track down the problem. 
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The advantage of this is that you can see the results of your commands immediately, and 
mistakes can be corrected readily. The biggest disadvantage comes when you want to 
share your programs with someone. They must have the same interpreter, or you must 
have some way of giving it to them, and they need to understand how to use it. Also users 
may not appreciate being thrown into a debugger if they press the wrong key! From a 
performance point of view, interpreters can use up a lot of memory, and generally do not 
generate code as efficiently as compilers 

Compilers 

Compilers are rather different. First of all, you write your code in a file (or files) using an 
editor. You then run the compiler and see if it accepts your program. If it did not compile, 
grit your teeth and go back to the editor; if it did compile and gave you a program, you can 
run it either at a shell command prompt or in a debugger to see if it works properly. [1] 

Obviously, this is not quite as direct as using an interpreter. However it allows you to do a 
lot of things which are very difficult or even impossible with an interpreter, such as writing 
code which interacts closely with the operating system--or even writing your own operating 
system! It is also useful if you need to write very efficient code, as the compiler can take its 
time and optimize the code, which would not be acceptable in an interpreter. Moreover, 
distributing a program written for a compiler is usually more straightforward than one 
written for an interpreter--you can just give them a copy of the executable, assuming they 
have the same operating system as you. 

Compiled languages include Pascal, C and C++. C and C++ are rather unforgiving 
languages, and best suited to more experienced programmers; Pascal, on the other hand, 
was designed as an educational language, and is quite a good language to start with. As 
the edit-compile-run-debug cycle is rather tedious when using separate programs, many 
commercial compiler makers have produced Integrated Development Environments (IDEs 
for short). FreeBSD does not include an IDE in the base system, but devel/kdevelop is 
available in the ports tree and many use Emacs for this purpose 

Language Levels 

All students are placed according to communicative ability in the language. There are six 
levels of language proficiency as outlined in the pyramid below: 

LEVEL 1:  Low-Beginner Unable to function in the spoken language. 
 
LEVEL 1:  Mid-Beginner 
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Able to function in only a very limited capacity by using a number of memorized words and 
phrases. 

LEVEL 2:  High-Beginner 

Able to satisfy immediate needs with learned utterances. Does not speak in complete 
sentences. 

LEVEL 3:  Low-Intermediate  

Able to handle a variety of tasks in 
previously learned, uncomplicated 
social situations. Speech is generally 
limited to the present tense and 
sentences may not always be complete. 

LEVEL 4:  High-Intermediate  

Able to successfully handle a variety of 
communicative tasks in uncomplicated 
social situations. Can ask and respond 
to questions, make requests for 
information, and express personal 
meaning, but responses may still 
contain hesitancy and grammatical 
inaccuracies. 

LEVEL 5:  Low-Advanced 

Able to narrate and describe in major time frames and can talk about a wide range of 
concrete social and work topics. May still make errors with basic grammatical structures, 
but they have a much stronger control of the grammatical system than the Intermediate 
level. 

LEVEL 6:  High-Advanced 

Able to participate actively in most formal and informal exchanges on a variety of topics 
with linguistic ease, confidence, and competence. May still make some high-level 
grammatical and translation errors. 
 
Summary 
It quite probable to run into these two terms: system software and application software. 
The distinction between the two is important. Without the former, your computer won't 
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run. And without the latter, your computer—no matter how powerful—won't do much to 
help run your business. System software constitutes the following such as Operating 
system, drivers, protocols,  DBMS and so on. 
 
Model Questions 

1. What is System software? What are its constituents? 
2. How many levels of Programming Languages are there? What are they? 
3. Explain communication and messaging protocols. 
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Objective  

 To understand the evolution of computers through various generations. 
 To know the chronological improvement in the computer technology 

2.2.2.1 Introduction 

Since humanity got the idea not to limit itself any longer to the usage of producing 
and receiving sounds for the purpose of mutual understanding, the rise of visual 
communication assumed large proportions. From a humble start, scratching stone or 
engraving leaves of plants, writers in due course proceeded in applying newer means again 
and again: hides of animals, gall-nut tincture, melting lead and laser radiants marked a 
development of increasing refinement and differentiation.  

Yet, when faced with the greatest step forward in communication facilities, that of 
electronic data processing, the application of it for producing script seemed to require a 
start from scratch again. A method that was based on only two available tokens presented 
the most intractable medium mankind ever had been forced to handle. Nevertheless, the 
advantages offered by the speed of transfer were so great that generations of people got 
convinced that the elements of Morse-code, dots and dashes only, were a comfortable way 
of expression, and presented a real progress. Still more rigid were the demands of the 
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computer: only 0 or 1, on or off, flip or flop, yin or yang, to be or not to be, were the values 
that the atoms of understanding, the bits, were permitted to assume. If nothing had 
happened later on, the Stone Age had returned by way of the computer.  

The evolution of digital computing is often divided into generations. Each generation 
is characterized by dramatic improvements over the previous generation in the technology 
used to build computers, the internal organization of computer systems, and programming 
languages. Although not usually associated with computer generations, there has been a 
steady improvement in algorithms, including algorithms used in computational science. 
The following history has been organized using these widely recognized generations as 
mileposts.  

2.2.2.2 The Mechanical Era (1623--1945) 

The idea of using machines to solve mathematical problems can be traced at least as far as 
the early 17th century. Mathematicians who designed and implemented calculators that 
were capable of addition, subtraction, multiplication, and division included Wilhelm 
Schickhard, Blaise Pascal (Pascal's contribution to computing was recognized by computer 
scientist Nicklaus Wirth, who in 1972 named his new computer language Pascal (and 
insisted that it be spelled Pascal, not PASCAL)) and Gottfried Leibnitz.  

The first multi-purpose, i.e. programmable, computing device was probably Charles 
Babbage's Difference Engine, which was begun in 1823 but never completed. A more 
ambitious machine was the Analytical Engine. It was designed in 1842, but unfortunately 
it also was only partially completed by Babbage. Babbage was truly a man ahead of his 
time: many historians think the major reason he was unable to complete these projects 
was the fact that the technology of the day was not reliable enough. In spite of never 
building a complete working machine, Babbage and his colleagues, most notably Ada 
(Another pioneer with a programming language named after her. Naming languages after 
mathematicians is somewhat of a tradition in computer science. Other such languages 
include Russel, Euclid, Turning, and Goedel.) Countess of Lovelace, recognized several 
important programming techniques, including conditional branches, iterative loops and 
index variables.  

A machine inspired by Babbage's design was arguably the first to be used in computational 
science. George Scheutz read of the difference engine in 1833, and along with his son 
Edvard Scheutz began work on a smaller version. By 1853 they had constructed a machine 
that could process 15-digit numbers and calculate fourth-order differences. Their machine 
won a gold medal at the Exhibition of Paris in 1855, and later they sold it to the Dudley 
Observatory in Albany, New York, which used it to calculate the orbit of Mars. One of the 
first commercial uses of mechanical computers was by the US Census Bureau, which used 
punch-card equipment designed by Herman Hollerith to tabulate data for the 1890 census. 
In 1911 Hollerith's company merged with a competitor to found the corporation which in 
1924 became International Business Machines. 
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When in the fifties the first computers appeared, a coding system had to be 
developed for letters and digits, and if possible also for some punctuation marks and other 
small stuff. But there existed yet a tradition of punched cards and chain printers, where 
48 characters were the accepted limit. Though a 6-bit code allows for 64, it lasted several 
years before that number was adopted for computer hardware and software alike. For 
generations of computers this continued to be the upper limit, with the result that texts 
were restricted to capital letters, and in fact, to English. To Scandinavians it was allowed to 
sacrifice some special characters to include their own extra letters 

2.2.2.3 First Generation Electronic Computers  

   Three machines have been promoted at various times as the first electronic 
computers. These machines used electronic switches, in the form of vacuum tubes, instead 
of electromechanical relays. In principle the electronic switches would be more reliable, 
since they would have no moving parts that would wear out, but the technology was still 
new at that time and the tubes were comparable to relays in reliability. Electronic 
components had one major benefit, however: they could ``open'' and ``close'' about 1,000 
times faster than mechanical switches.  

The earliest attempt to build an electronic computer was by J. V. Atanasoff, a 
professor of physics and mathematics at Iowa State, in 1937. Atanasoff set out to build a 
machine that would help his graduate students solve systems of partial differential 
equations. By 1941 he and graduate student Clifford Berry had succeeded in building a 
machine that could solve 29 simultaneous equations with 29 unknowns. However, the 
machine was not programmable, and was more of an electronic calculator.  

A second early electronic machine was Colossus, designed by Alan Turing for the 
British military in 1943. Turing's main contribution to the field of computer science was 
the idea of the Turing machine, a mathematical formalism widely used in the study of 
computable functions. The existence of Colossus was kept secret until long after the war 
ended, and the credit due to Turing and his colleagues for designing one of the first 
working electronic computers was slow in coming.  

The first general purpose programmable electronic computer was the Electronic 
Numerical Integrator and Computer (ENIAC), built by J. Presper Eckert and John V. 
Mauchly at the University of Pennsylvania. Work began in 1943, funded by the Army 
Ordnance Department, which needed a way to compute ballistics during World War II. The 
machine wasn't completed until 1945, but then it was used extensively for calculations 
during the design of the hydrogen bomb. By the time it was decommissioned in 1955 it 
had been used for research on the design of wind tunnels, random number generators, 
and weather prediction. Eckert, Mauchly, and John von Neumann, a consultant to the 
ENIAC project, began work on a new machine before ENIAC was finished. The main 
contribution of EDVAC, their new project, was the notion of a stored program. There is 
some controversy over who deserves the credit for this idea, but none over how important 
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the idea was to the future of general purpose computers. ENIAC was controlled by a set of 
external switches and dials; to change the program required physically altering the settings 
on these controls. These controls also limited the speed of the internal electronic 
operations. Through the use of a memory that was large enough to hold both instructions 
and data, and using the program stored in memory to control the order of arithmetic 
operations, EDVAC was able to run orders of magnitude faster than ENIAC. By storing 
instructions in the same medium as data, designers could concentrate on improving the 
internal structure of the machine without worrying about matching it to the speed of an 
external control.  

Regardless of who deserves the credit for the stored program idea, the EDVAC 
project is significant as an example of the power of interdisciplinary projects that 
characterize modern computational science. By recognizing that functions, in the form of a 
sequence of instructions for a computer, can be encoded as numbers, the EDVAC group 
knew the instructions could be stored in the computer's memory along with numerical 
data. The notion of using numbers to represent functions was a key step used by Goedel in 
his incompleteness theorem in 1937, work which von Neumann, as a logician, was quite 
familiar with. Von Neumann's background in logic, combined with Eckert and Mauchly's 
electrical engineering skills, formed a very powerful interdisciplinary team.  

Software technology during this period was very primitive. The first programs were 
written out in machine code, i.e. programmers directly wrote down the numbers that 
corresponded to the instructions they wanted to store in memory. By the 1950s 
programmers were using a symbolic notation, known as assembly language, then hand-
translating the symbolic notation into machine code. Later programs known as assemblers 
performed the translation task.  

As primitive as they were, these first electronic machines were quite useful in 
applied science and engineering. Atanasoff estimated that it would take eight hours to 
solve a set of equations with eight unknowns using a Marchant calculator, and 381 hours 
to solve 29 equations for 29 unknowns. The Atanasoff-Berry computer was able to 
complete the task in under an hour. The first problem run on the ENIAC, a numerical 
simulation used in the design of the hydrogen bomb, required 20 seconds, as opposed to 
forty hours using mechanical calculators. Eckert and Mauchly later developed what was 
arguably the first commercially successful computer, the UNIVAC; in 1952, 45 minutes 
after the polls closed and with 7% of the vote counted, UNIVAC predicted Eisenhower 
would defeat Stevenson with 438 electoral votes (he ended up with 442).  

General Features of First Generation Computers 

1. The First Generation was from 1946 to 1956  
 Computers in this generation did from 2,000 to 16,000 additions per second  
 Had main memory from 100 bytes to 2 kilobytes (2,000 bytes)  

2. All computers of this generation used vacuum tubes to perform calculations  
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 Vacuum tubes are expensive because of the amount of materials and skill 
needed to make them.  

 Vacuum tubes get hot and burn out light an incandescent light bulb.  
3. All computers in this generation where very large machines  

 Needed special rooms to house them with air conditioning because of the heat 
generated by the vacuum tubes  

 All required specially trained technicians to run and maintain them  

2.2.2.4 Second Generation Computers 
 
The second generation saw several important developments at all levels of computer 
system design, from the technology used to build the basic circuits to the programming 
languages used to write scientific applications.  

Electronic switches in this era were based on discrete diode and transistor technology with 
a switching time of approximately 0.3 microseconds. The first machines to be built with 
this technology include TRADIC at Bell Laboratories in 1954 and TX-0 at MIT's Lincoln 
Laboratory. Memory technology was based on magnetic cores which could be accessed in 
random order, as opposed to mercury delay lines, in which data was stored as an acoustic 
wave that passed sequentially through the medium and could be accessed only when the 
data moved by the I/O interface.  

Important innovations in computer architecture (The term ``computer architecture'' 
generally refers to aspects of a computer's internal organization that are visible to 
programmers or compiler writers; see Chapter CA.) included index registers for controlling 
loops and floating point units for calculations based on real numbers. Prior to this 
accessing successive elements in an array was quite tedious and often involved writing 
self-modifying code (programs which modified themselves as they ran; at the time viewed 
as a powerful application of the principle that programs and data were fundamentally the 
same, this practice is now frowned upon as extremely hard to debug and is impossible in 
most high level languages). Floating point operations were performed by libraries of 
software routines in early computers, but were done in hardware in second generation 
machines.  

During this second generation many high level programming languages were introduced, 
including FORTRAN (1956), ALGOL (1958), and COBOL (1959). Important commercial 
machines of this era include the IBM 704 and its successors, the 709 and 7094. The latter 
introduced I/O processors for better throughput between I/O devices and main memory.  

The second generation also saw the first two supercomputers designed specifically for 
numeric processing in scientific applications. The term ``supercomputer'' is generally 
reserved for a machine that is an order of magnitude more powerful than other machines 
of its era. Two machines of the 1950s deserve this title. The Livermore Atomic Research 
Computer (LARC) and the IBM 7030 (aka Stretch) were early examples of machines that 
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overlapped memory operations with processor operations and had primitive forms of 
parallel processing.  

General Features of the Second Generation 

1. From 1959 to around 1965  
2. Smaller, faster, and more reliable than the First Generation of 

computers  
o Used transistors instead of vacuum tubes for performing 

calculations  
o 6,000 to 3,000,000 operations per second  
o 6 kilobytes to 1.3 megabytes of main memory  
o Contained in four cabinets about 6 feet high by 4 feet wide, each 

weighing 250 pounds  
3. Cost about one-tenth the price of a First Generation computer  
4. Computers become common in larger businesses and universities  

2.2.2.5 Second Generation - Transistors  

Transistors 

1. Invented in 1947 by William Shockley, John Bardeen, and William 
Brattain  

o Picture of the first transistor   
o Was made of silicon  
o Lead solid state to solid state electronics  

2. Advantages of a transistor when compared to a vacuum tube  
o 200 transistors are about the same size as one vacuum tube in 

a computer  
o Much less expensive than a vacuum tube  
o A transistor can work 40 times faster than a vacuum tube  
o Do not get hot and burn out like a vacuum tube  

2.2.2.6 Third Generation - Integrated Circuits 

The third generation brought huge gains in computational power. Innovations in this era 
include the use of integrated circuits, or ICs (semiconductor devices with several 
transistors built into one physical component), semiconductor memories starting to be 
used instead of magnetic cores, microprogramming as a technique for efficiently designing 
complex processors, the coming of age of pipelining and other forms of parallel processing 
(described in detail in Chapter CA), and the introduction of operating systems and time-
sharing.  
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The first ICs were based on small-scale integration (SSI) circuits, which had around 10 
devices per circuit (or ``chip''), and evolved to the use of medium-scale integrated (MSI) 
circuits, which had up to 100 devices per chip. Multilayered printed circuits were 
developed and core memory was replaced by faster, solid state memories. Computer 
designers began to take advantage of parallelism by using multiple functional units, 
overlapping CPU and I/O operations, and pipelining (internal parallelism) in both the 
instruction stream and the data stream. In 1964, Seymour Cray developed the CDC 6600, 
which was the first architecture to use functional parallelism. By using 10 separate 
functional units that could operate simultaneously and 32 independent memory banks, 
the CDC 6600 was able to attain a computation rate of 1 million floating point operations 
per second (1 Mflops).  

Five years later CDC released the 7600, also developed by Seymour Cray. The CDC 7600, 
with its pipelined functional units, is considered to be the first vector processor and was 
capable of executing at 10 Mflops. The IBM 360/91, released during the same period, was 
roughly twice as fast as the CDC 660. It employed instruction look ahead, separate floating 
point and integer functional units and pipelined instruction stream. The IBM 360--195 was 
comparable to the CDC 7600, deriving much of its performance from a very fast cache 
memory. The SOLOMON computer, developed by Westinghouse Corporation, and the 
ILLIAC IV, jointly developed by Burroughs, the Department of Defense and the University 
of Illinois, were representative of the first parallel computers. The Texas Instrument 
Advanced Scientific Computer (TI--ASC) and the STAR--100 of CDC were pipelined vector 
processors that demonstrated the viability of that design and set the standards for 
subsequent vector processors.  

Early in the this third generation Cambridge and the University of London cooperated in 
the development of CPL (Combined Programming Language, 1963). CPL was, according to 
its authors, an attempt to capture only the important features of the complicated and 
sophisticated ALGOL. However, like ALGOL, CPL was large with many features that were 
hard to learn. In an attempt at further simplification, Martin Richards of Cambridge 
developed a subset of CPL called BCPL (Basic Computer Programming Language, 1967). In 
1970 Ken Thompson of Bell Labs developed yet another simplification of CPL called simply 
B, in connection with an early implementation of the UNIX operating system. comment): 

General Features of The Third Generation 

1. From 1965 to around 1972  
2. Used integrated circuits - many transistors on one piece of silicon  
3. Computers become smaller, faster, more reliable, and lower in price  

 Size of a stove or refrigerator, some can fit on desktops  
 Can do 100,000 to 400,000,000 operations per second  
 Cost about one-tenth the amount of second generation computers  

4. Computers become very common in medium to large businesses  
5. The concept of the IC was developed by Jack St. Clair Kilby in 1958  
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6. First IC was invented in 1961 separately by Jack Kilby and Robert Noyce  
 Picture of the first IC  
 IC were incorporated from 1961 in computers  

7. An IC is called a silicon chip  
8. An IC was about 1/4 inch square and can contain thousands of transistors  

The Space Race 

9. The Space Race that started in the late 1950's between the United States and 
the former Soviet Union help to lead to the development of third generation 
computers  

10. Needed a computer small enough to fit in a space capsule  

Minicomputer Invented 

11. Much smaller and lower in price than previous computers  
12. Was really the first general purpose computers used by many businesses. 

2.2.2.7 Fourth Generation - Microprocessors  

The next generation of computer systems saw the use of large scale integration (LSI -- 1000 
devices per chip) and very large scale integration (VLSI -- 100,000 devices per chip) in the 
construction of computing elements. At this scale entire processors will fit onto a single 
chip, and for simple systems the entire computer (processor, main memory, and I/O 
controllers) can fit on one chip. Gate delays dropped to about 1ns per gate.  

Semiconductor memories replaced core memories as the main memory in most systems; 
until this time the use of semiconductor memory in most systems was limited to registers 
and cache. During this period, high speed vector processors, such as the CRAY 1, CRAY X-
-MP and CYBER 205 dominated the high performance computing scene. Computers with 
large main memory, such as the CRAY 2, began to emerge. A variety of parallel 
architectures began to appear; however, during this period the parallel computing efforts 
were of a mostly experimental nature and most computational science was carried out on 
vector processors. Microcomputers and workstations were introduced and saw wide use as 
alternatives to time--shared mainframe computers.  

Developments in software include very high level languages such as FP (functional 
programming) and Prolog (programming in logic). These languages tend to use a declarative 
programming style as opposed to the imperative style of Pascal, C, FORTRAN, et al. In a 
declarative style, a programmer gives a mathematical specification of what should be 
computed, leaving many details of how it should be computed to the compiler and/or 
runtime system. These languages are not yet in wide use, but are very promising as 
notations for programs that will run on massively parallel computers (systems with over 
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1,000 processors). Compilers for established languages started to use sophisticated 
optimization techniques to improve code, and compilers for vector processors were able to 
vectorize simple loops (turn loops into single instructions that would initiate an operation 
over an entire vector).  

Two important events marked the early part of the third generation: the development of the 
C programming language and the UNIX operating system, both at Bell Labs. In 1972, 
Dennis Ritchie, seeking to meet the design goals of CPL and generalize Thompson's B, 
developed the C language. Thompson and Ritchie then used C to write a version of UNIX 
for the DEC PDP--11. This C--based UNIX was soon ported to many different computers, 
relieving users from having to learn a new operating system each time they change 
computer hardware. UNIX or a derivative of UNIX is now a de facto standard on virtually 
every computer system.  

An important event in the development of computational science was the publication of the 
Lax report. In 1982, the US Department of Defense (DOD) and National Science 
Foundation (NSF) sponsored a panel on Large Scale Computing in Science and 
Engineering, chaired by Peter D. Lax. The Lax Report stated that aggressive and focused 
foreign initiatives in high performance computing, especially in Japan, were in sharp 
contrast to the absence of coordinated national attention in the United States. The report 
noted that university researchers had inadequate access to high performance computers. 
One of the first and most visible of the responses to the Lax report was the establishment 
of the NSF supercomputing centers. Phase I on this NSF program was designed to 
encourage the use of high performance computing at American universities by making 
cycles and training on three (and later six) existing supercomputers immediately available. 
Following this Phase I stage, in 1984--1985 NSF provided funding for the establishment of 
five Phase II supercomputing centers.  

The Phase II centers, located in San Diego (San Diego Supercomputing Center); Illinois 
(National Center for Supercomputing Applications); Pittsburgh (Pittsburgh Supercomputing 
Center); Cornell (Cornell Theory Center); and Princeton (John von Neumann Center), have 
been extremely successful at providing computing time on supercomputers to the 
academic community. In addition they have provided many valuable training programs and 
have developed several software packages that are available free of charge. These Phase II 
centers continue to augment the substantial high performance computing efforts at the 
National Laboratories, especially the Department of Energy (DOE) and NASA sites.  

General Features of Fourth Generation Computers 

1. Form 1972 until now  
2. Used large scale to very large scale integrated circuits  

 Put more than one IC on a silicon chip  
 Can do more than one function  

3. Computers become smaller, faster, more reliable, and lower in price  
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 Size of a television or much smaller  
 Can do 500,000 to 1,000,000,000 operations per second  
 Cost one-tenth, or less, the amount of third generation computers  

4. Computers become very common in homes and business  

The Microprocessor 

5. The microprocessor is a complete computer on a chip  
 Can do all the functions of a computer - input, process, and output 

data  
 The first microprocessor was produced by Ted Hoff for Intel in 1971 - 

the Intel 4004   
6. Modern microprocessors are usually less than one inch square and can 

contain million of electronic circuits (picture of a Pentium II circuits )  
7. Used in many electronic devices today, from wrist watches to microwave 

ovens to cars  

The Microcomputer is Invented 

8. A microcomputer is any general purpose computer that uses a 
microprocessor for a CPU  

9. In 1972 the first microcomputer was introduced - the MITS 816 - with no 
keyboard or display.  

10. In 1976, the first real assembled and complete computer was produced - the 
Apple II   

 Used by schools and colleges  
 Apple Corporation founded at this time by Steve Jobs and Steve 

Wozniak  

The Personal Computer 

11. The PC was introduced by IBM in 1981   
12. Use the DOS operating system developed by Microsoft Corporation  
13. Changed the public's view of computers  

 Wanted computers that could do useful tasks  
 Wanted a computer that was easy to use  
 Could do work at home that would be transferable to the company's 

computer  

The Macintosh Computer 

14. Introduced in 1984 by the Apple Corporation   
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First home and small business computer to use a Graphic User Interface 
(GUI)  

 Used a mouse as a pointing device  
 Used icons (small pictures) to represent disks, files, and programs  
 Based on ideas from Xerox PARC Alto system  

15. With the invention of the Laser Printer by Apple a year later, desktop 
publishing took off  

The Internet 

16. The Internet was started in 1969 as ARPAnet by the US military to connect 
research facilities together  

17. The Internet went public in 1991  
 Connects computers together by using phone lines and other networks  
 Allows for the rapid sharing of information and resources  

18. Because of small powerful computers, the Internet is rapidly changing our 
society  

2.2.2.8 Fifth Generation Computers 

The development of the next generation of computer systems is characterized mainly by 
the acceptance of parallel processing. Until this time parallelism was limited to pipelining 
and vector processing, or at most to a few processors sharing jobs. The fifth generation saw 
the introduction of machines with hundreds of processors that could all be working on 
different parts of a single program. The scale of integration in semiconductors continued at 
an incredible pace --- by 1990 it was possible to build chips with a million components --- 
and semiconductor memories became standard on all computers.  

Other new developments were the widespread use of computer networks and the 
increasing use of single-user workstations. Prior to 1985 large scale parallel processing 
was viewed as a research goal, but two systems introduced around this time are typical of 
the first commercial products to be based on parallel processing. The Sequent Balance 
8000 connected up to 20 processors to a single shared memory module (but each 
processor had its own local cache). The machine was designed to compete with the DEC 
VAX--780 as a general purpose Unix system, with each processor working on a different 
user's job. However Sequent provided a library of subroutines that would allow 
programmers to write programs that would use more than one processor, and the machine 
was widely used to explore parallel algorithms and programming techniques.  

The Intel iPSC--1, nicknamed ``the hypercube'', took a different approach. Instead of using 
one memory module, Intel connected each processor to its own memory and used a 
network interface to connect processors. This distributed memory architecture meant 
memory was no longer a bottleneck and large systems (using more processors) could be 
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built. The largest iPSC--1 had 128 processors. Toward the end of this period a third type of 
parallel processor was introduced to the market. In this style of machine, known as a data-
parallel or SIMD, there are several thousand very simple processors. All processors work 
under the direction of a single control unit; i.e. if the control unit says ``add a to b'' then all 
processors find their local copy of a and add it to their local copy of b. Machines in this 
class include the Connection Machine from Thinking Machines, Inc., and the MP--1 from 
MasPar, Inc.  

Scientific computing in this period was still dominated by vector processing. Most 
manufacturers of vector processors introduced parallel models, but there were very few 
(two to eight) processors in this parallel machines. In the area of computer networking, 
both wide area network (WAN) and local area network (LAN) technology developed at a 
rapid pace, stimulating a transition from the traditional mainframe computing 
environment toward a distributed computing environment in which each user has their 
own workstation for relatively simple tasks (editing and compiling programs, reading mail) 
but sharing large, expensive resources such as file servers and supercomputers. RISC 
technology (a style of internal organization of the CPU) and plummeting costs for RAM 
brought tremendous gains in computational power of relatively low cost workstations and 
servers. This period also saw a marked increase in both the quality and quantity of 
scientific visualization.  

2.2.2.9 Sixth Generation of Computers 

Combinations of parallel/vector architectures are well established, and one corporation 
(Fujitsu) has announced plans to build a system with over 200 of its high end vector 
processors. Manufacturers have set themselves the goal of achieving teraflops arithmetic 
operations per second) performance by the middle of the decade, and it is clear this will be 
obtained only by a system with a thousand processors or more. Workstation technology 
has continued to improve, with processor designs now using a combination of RISC, 
pipelining, and parallel processing. As a result it is now possible to purchase a desktop 
workstation for about $30,000 that has the same overall computing power (100 megaflops) 
as fourth generation supercomputers. This development has sparked an interest in 
heterogeneous computing: a program started on one workstation can find idle workstations 
elsewhere in the local network to run parallel subtasks. 

One of the most dramatic changes in the sixth generation will be the explosive growth of 
wide area networking. Network bandwidth has expanded tremendously in the last few 
years and will continue to improve for the next several years. T1 transmission rates are 
now standard for regional networks, and the national ``backbone'' that interconnects 
regional networks uses T3. Networking technology is becoming more widespread than its 
original strong base in universities and government laboratories as it is rapidly finding 
application in K--12 education, community networks and private industry. A little over a 
decade after the warning voiced in the Lax report, the future of a strong computational 
science infrastructure is bright. The federal commitment to high performance computing 
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has been further strengthened with the passage of two particularly significant pieces of 
legislation: the High Performance Computing Act of 1991, which established the High 
Performance Computing and Communication Program (HPCCP) and Sen. Gore's 
Information Infrastructure and Technology Act of 1992, which addresses a broad spectrum 
of issues ranging from high performance computing to expanded network access and the 
necessity to make leading edge technologies available to educators from kindergarten 
through graduate school.  

In bringing this encapsulated survey of the development of a computational science 
infrastructure up to date, we observe that the President's FY 1993 budget contains $2.1 
billion for mathematics, science, technology and science literacy educational programs, a 
43% increase over FY 90 figures.  

2.2.2.10 Future Computer Generations 

Hard to Predict 

1. Most inventions or technologies that have changed computers are not 
usually predicted to far in advance of when they are first used  

2. Most likely the following will happen to computer technology  
o It will become lower in price  
o Computers will become smaller and faster  
o Computers will have larger memories and more storage space  

3. Computers will become an integral part of everyone's life  

People Will Become More Interconnected 

1. Computer technology and the World Wide Web will greatly reduce the 
distance between people and cultures in the world  

2. People will connect to information at any place or time  
o Libraries and other information sources will always be open  
o Cell phone technology will let you connect to information and 

people any where  

Computers Will Become Small Enough to Wear 

1. The technology is already being developed  
o Eyeglasses with a display  
o Research is being done to find the best place to put computers 

so they will not interfere with the body's movement  
2. The computer will always be with you to help you in tasks, 

communicate, and find information  
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Summary  

The evolution of digital computing is often divided into generations. Each generation 
is characterized by dramatic improvements over the previous generation in the 
technology used to build computers, the internal organization of computer systems, 
and programming languages. Although not usually associated with computer 
generations, there has been a steady improvement in algorithms, including 
algorithms used in computational science. The first multi-purpose, i.e. 
programmable, computing device was probably Charles Babbage's Difference 
Engine. Three machines have been promoted at various times as the first electronic 
computers. 

The First Generation was from 1946 to 1956. All computers of this generation used 
vacuum tubes to perform calculations. Second generation of computers are Smaller, 
faster, and more reliable than the First Generation of computers. Third generation 
was from 1965 to around 1972. They Used integrated circuits - many transistors on 
one piece of silicon and microcomputer was also invented in the this generation of 
computers. Fourth generation used microprocessor is a complete computer on a 
chip and  apple incorporation introduced Macintosh systems and the internet also 
came into existence. The First Generation was from 1946 to 1956. The  generations 
from then took a faster leap and are now in the faster and never dreamt of state 
with the fastest communication and greater and powerful processing abilities. 

Model Questions  

1. What is meant by generation of computers? How many generations of 
computers are there so far? 

2. How is the evolution and development of computers explained in various 
generations of computers 

3. Explain improvement in computers the fourth, fifth and sixth generation of 
computers? 

4. What would be the future predicted generation of computers? 
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Lesson 2.2.3   
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2.2.3.1 Objective 
 To understand what an operating system is 
 To explain the concepts of operating systems like processes, memory management 

etc. 
 
2.2.3.2  Introduction 

An operating system is an important part of almost every computer system. A 
computer system can be divided roughly into four components: the hardware, the 
operating system, the applications programs, and the users. 

The software that the rest of the software depends on to make the computer 
functional. On most PCs this is Windows or the Macintosh OS. Unix and Linux are other 
operating systems often found in scientific and technical environments. 

Early computers lacked any form of operating system. The user had sole use of the 
machine; he would arrive at the machine armed with his program and data, often on 
punched paper tape. The program would be loaded into the machine, and the machine set 
to work, until the program stopped, or maybe more likely, crashed. Programs could 
generally be debugged via a front panel using switches and lights; it is said that Alan 
Turing was a master of this on the early Manchester Mark I machine. 

Later, machines came with libraries of support code which were linked to the user's 
program to assist in operations such as input and output. This would become the genesis 
of the modern-day operating system. However, machines still ran a single job at a time; at 
Cambridge University in England the job queue was at one time a washing line from which 
tapes were hung with clothes pegs. The color of the pegs indicated the priority of the job. 
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As machines became more powerful, the time needed for a run of a program diminished 
and the time to hand off the equipment became very large by comparison. Accounting for 
and paying for machine usage went from checking the wall clock to using the computer to 
do the timing. Run queues went from being people waiting at the door to stacks of media 
waiting on a table to using the hardware of the machine such as switching which magnetic 
tape drive was online or stacking punch cards on top of the previous jobs cards in the 
reader. Operating the computer went from a task performed by the program developer to a 
job for full time dedicated machine operators. When commercially available computer 
centers found they had to deal with accidental or malicious tampering of the accounting 
information, equipment vendors were encouraged to enhance the properties of the runtime 
libraries to prevent misuse of the systems resources. Accounting practices were also 
expanded beyond recording CPU usage to also count pages printed, cards punched, cards 
read, disk storage used, and even operator action required by jobs such as changing 
magnetic tapes. Eventually, the runtime libraries became a program that was started 
before the first customer job, that read in the customer job, controlled its execution, 
cleaned up after it, recorded its usage, and immediately went on to process the next job. 
Jobs also evolved from being binary images produced by hand encoding to symbolic 
programs that were translated by the computer. An operating system, or "monitor" as it 
was sometimes called, permitted jobs to become multistep with the monitor running 
several programs in sequence to effect the translation and subsequent run of the user's 
program. 

The conceptual bridge between the precise description of an operating system and the 
colloquial definition is the tendency to bundle widely, or generally, used utilities and 
applications (such as text editors or file managers) with the basic OS for the sake of 
convenience; as OSes progressed, a larger selection of 'second class' OS software came to 
be included, such that now, an OS without a graphical user interface or various file 
viewers is often considered not to be a true or complete OS. To accommodate this evolution 
of the meaning most of what was the original "operating system" is now called the "kernel", 
and OS has come to mean the complete package. 

The broader categories of systems and application software are discussed in the computer 
software article. 

2.2.3.3 Origin 

The first computers were built for military purposes during World War II, and the 
first commercial computers were built during the 50's. They were huge (often filling a large 
room with tons of equipment), expensive (millions of dollars, back when that was a lot of 
money), unreliable, and slow (about the power of today's $1.98 pocket calculator). 
Originally, there was no distinction between programmer, operator, and end-user (the 
person who wants something done). A physicist who wanted to calculate the trajectory of a 
missile would sign up for an hour on the computer. When his time came, he would come 
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into the room, feed in his program from punched cards or paper tape, watch the lights 
flash, maybe do a little debugging, get a print-out, and leave.  

The first card in the deck was a bootstrap loader. The user/operator/programmer would 
push a button that caused the card reader to read that card, load its contents into the first 
80 locations in memory, and jump to the start of memory, executing the instructions on 
that card. Those instructions read in the rest of the cards, which contained the 
instructions to perform all the calculations desired: what we would now call the 
"application program".  

This set-up was a lousy way to debug a program, but more importantly, it was a 
waste of the fabulously expensive computer's time. Then someone came up with the idea of 
batch processing. User/programmers would punch their jobs on decks of cards, which they 
would submit to a professional operator. The operator would combine the decks into 
batches. He would precede the batch with a batch executive (another deck of cards). This 
program would read the remaining programs into memory, one at a time, and run them. 
The operator would take the printout from the printer, tear off the part associated with 
each job, wrap it around the associated deck, and put it in an output bin for the user to 
pick up. The main benefit of this approach was that it minimized the wasteful down time 
between jobs. However, it did not solve the growing I/O bottleneck.  

Card readers and printers got faster, but since they are mechanical devices, there 
were limits to how fast they could go. Meanwhile the central processing unit (CPU) kept 
getting faster and was spending more and more time idly waiting for the next card to be 
read in or the next line of output to be printed. The next advance was to replace the card 
reader and printer with magnetic tape drives, which were much faster. A separate, smaller, 
slower (and presumably cheaper) peripheral computer would copy batches of input decks 
onto tape and transcribe output tapes to print. The situation was better, but there were 
still problems. Even magnetic tapes drives were not fast enough to keep the mainframe 
CPU busy, and the peripheral computers, while cheaper than the mainframe, were still not 
cheap (perhaps hundreds of thousands of dollars).  

Then the card reader and printer were hooked up to the mainframe (along with the 
tape drives) and the mainframe CPU was reprogrammed to switch rapidly among several 
tasks. First it would tell the card reader to start reading the next card of the next input 
batch. While it was waiting for that operation to finish, it would go and work for a while on 
another job that had been read into "core" (main memory) earlier. When enough time had 
gone by for that card be read in, the CPU would temporarily set aside the main 
computation, start transferring the data from that card to one of the tape units (say tape 
1), start the card reader reading the next card, and return to the main computation. It 
would continue this way, servicing the card reader and tape drive when they needed 
attention and spending the rest of its time on the main computation. Whenever it finished 
working on one job in the main computation, the CPU would read another job from an 
input tape that had been prepared earlier (tape 2). When it finished reading in and 
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executing all the jobs from tape 2, it would swap tapes 1 and 2. It would then start 
executing the jobs from tape 1, while the input "process" was filling up tape 2 with more 
jobs from the card reader. Of course, while all this was going on, a similar process was 
copying output from yet another tape to the printer. This amazing juggling act was called 
Simultaneous Peripheral Operations On Line, or SPOOL for short.  

The hardware that enabled SPOOLing is called direct memory access, or DMA. It 
allows the card reader to copy data directly from cards to core and the tape drive to copy 
data from core to tape, while the expensive CPU was doing something else. The software 
that enabled SPOOLing is called multiprogramming. The CPU switches from one activity, or 
"process" to another so quickly that it appears to be doing several things at once.  

In the 1960's, multiprogramming was extended to ever more ambitious forms. 
Hardware developments supporting this extension included decreasing cost of core 
memory (replaced during this period by semi-conductor random-access memory (RAM)), 
and introduction of direct-access storage devices (called DASD - pronounced "dazdy" - by 
IBM and "disks" by everyone else). With larger main memory, multiple jobs could be kept 
in core at once, and with input spooled to disk rather than tape, each job could get directly 
at its part of the input. With more jobs in memory at once, it became less likely that they 
would all be simultaneously blocked waiting for I/O, leaving the expensive CPU idle.  

Another break-through idea from the 60's based on multiprogramming was 
timesharing, which involves running multiple interactive jobs, switching the CPU rapidly 
among them so that each interactive user feels as if he has the whole computer to himself. 
Timesharing let the programmer back into the computer room - or at least a virtual 
computer room. It allowed the development of interactive programming, making 
programmers much more productive. Perhaps more importantly, it supported new 
applications such as airline reservation and banking systems that allowed 100s or even 
1000s of agents or tellers to access the same computer "simultaneously". Visionaries 
talked about an "computing utility" by analogy with the water and electric utilities, which 
would delivered low-cost computing power to the masses.  

Today, computers are used for a wide range of applications, including personal 
interactive use (word-processing, games, desktop publishing, web browsing, email), real-
time systems (patient care, factories, missiles), embedded systems (cash registers, wrist 
watches, toasters), and transaction processing (banking, reservations, e-commerce).  

The goal of an OS is to make hardware look better than it is.  
 More regular, uniform (instead of lots of idiosyncratic devices)  
 Easier to program (e.g., don't have to worry about speeds, asynchronous events) 

Closer to what's needed for applications:  
 named, variable-length files, rather than disk blocks  
 multiple "CPU's", one for each user (in shared system) or activity (in single-user 

system)  
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 multiple large, dynamically-growing memories (virtual memory)  
 

2.2.3.4 Operating System  
An operating system is a layer of software which takes care of technical aspects of a 

computer's operation. It shields the user of the machine from the low-level details of the 
machine's operation and provides frequently needed facilities. There is no universal 
definition of what an operating system consists of. You can think of it as being the software 
which is already installed on a machine, before you add anything of your own.  

Normally the operating system has a number of key elements: (i) a technical layer of 
software for driving the hardware of the computer, like disk drives, the keyboard and the 
screen; (ii) a filesystem which provides a way of organizing files logically, and (iii) a simple 
command language which enables users to run their own programs and to manipulate 
their files in a simple way. Some operating systems also provide text editors, compilers, 
debuggers and a variety of other tools. Since the operating system (OS) is in charge of a 
computer, all requests to use its resources and devices need to go through the OS. An OS 
therefore provides (iv) legal entry points into its code for performing basic operations like 
writing to devices. 

 
2.2.3.5  Classification 

Operating systems can be classified as follows:  

Operating systems may be classified by both how many tasks they can perform 
`simultaneously' and by how many users can be using the system `simultaneously'. That 
is: single-user or multi-user and single-task or multi-tasking. 
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 multi-user : Allows two or more users to run programs at the same time. 
Some operating systems permit hundreds or even thousands of concurrent 
users. 

 multiprocessing : Supports running a program on more than one CPU.  
 multitasking : Allows more than one program to run concurrently.  
 multithreading : Allows different parts of a single program to run 

concurrently.  
 real time: Responds to input instantly. General-purpose operating systems, 

such as DOS and UNIX, are not real-time.  
 

Operating systems provide a software platform on top of which other programs, 
called application programs, can run. The application programs must be written to run on 
top of a particular operating system. Your choice of operating system, therefore, 
determines to a great extent the applications you can run. For PCs, the most popular 
operating systems are DOS, OS/2, and Windows, but others are available, such as Linux.  

As a user, you normally interact with the operating system through a set of 
commands. For example, the DOS operating system contains commands such as COPY 
and RENAME for copying files and changing the names of files, respectively. The 
commands are accepted and executed by a part of the operating system called the 
command processor or command line interpreter. Graphical user interfaces allow you to 
enter commands by pointing and clicking at objects that appear on the screen.  
 
2.2.3.6  Allocating Main Memory  

Let us first consider how to manage main (``core'') memory (also called random-
access memory (RAM)). In general, a memory manager provides two operations:  
 
    Address allocate(int size); 
    void deallocate(Address block); 
 

The procedure allocate receives a request for a contiguous block of size bytes of 
memory and returns a pointer to such a block. The procedure deallocate releases the 
indicated block, returning it to the free pool for reuse. Sometimes a third procedure is also 
provided,  
 
    Address reallocate(Address block, int new_size); 
 
which takes an allocated block and changes its size, either returning part of it to the free 
pool or extending it to a larger block. It may not always be possible to grow the block 
without copying it to a new location, so reallocate returns the new address of the block.  
 

Memory allocators are used in a variety of situations. In Unix, each process has a 
data segment. There is a system call to make the data segment bigger, but no system call 
to make it smaller. Also, the system call is quite expensive. Therefore, there are library 
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procedures (called malloc, free, and realloc) to manage this space. Only when malloc or 
realloc runs out of space is it necessary to make the system call. The operating system also 
uses a memory allocator to manage space used for OS data structures and given to ``user'' 
processes for their own use. As we saw before, there are several reasons why we might 
want multiple processes, such as serving multiple interactive users or controlling multiple 
devices.  

 
Suppose there are n processes in memory (this is called the level of 

multiprogramming) and each process is blocked (waiting for I/O) a fraction p of the time. In 
the best case, when they ``take turns'' being blocked, the CPU will be 100% busy provided 
n(1-p) >= 1. For example, if each process is ready 20% of the time, p = 0.8 and the CPU 
could be kept completely busy with five processes. Of course, real processes aren't so 
cooperative. In the worst case, they could all decide to block at the same time, in which 
case, the CPU utilization (fraction of the time the CPU is busy) would be only 1 - p (20% in 
our example). If each processes decides randomly and independently when to block, the 
chance that all n processes are blocked at the same time is only pn, so CPU utilization is 1 - 
pn. Continuing our example in which n = 5 and p = 0.8, the expected utilization would be 1 
- .85 = 1 - .32768 = 0.67232. In other words, the CPU would be busy about 67% of the time 
on the average. 

 
How does the memory manager know how big the returned block is? The usual trick 

is to put a small header in the allocated block, containing the size of the block and perhaps 
some other information. The allocate routine returns a pointer to the body of the block, not 
the header, so the client doesn't need to know about it. The deallocate routine subtracts 
the header size from its argument to get the address of the header. The client thinks the 
block is a little smaller than it really is. So long as the client ``colors inside the lines'' there 
is no problem, but if the client has bugs and scribbles on the header, the memory manager 
can get completely confused. To make it easier to coalesce adjacent holes, the memory 
manager also adds a flag (called a ``boundary tag'') to the beginning and end of each hole 
or allocated block, and it records the size of a hole at both ends of the hole.  

 When the block is deallocated, the memory manager adds the size of the block 
(which is stored in its header) to the address of the beginning of the block to find the 
address of the first word following the block. It looks at the tag there to see if the following 
space is a hole or another allocated block. If it is a hole, it is removed from the free list and 
merged with the block being freed, to make a bigger hole. Similarly, if the boundary tag 
preceding the block being freed indicates that the preceding space is a hole, we can find 
the start of that hole by subtracting its size from the address of the block being freed 
(that's why the size is stored at both ends), remove it from the free list, and merge it with 
the block being freed. Finally, we add the new hole back to the free list. Holes are kept in a 
doubly-linked list to make it easy to remove holes from the list when they are being 
coalesced with blocks being freed.  
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Compaction and Garbage Collection  

What do you do when you run out of memory? Any of these methods can fail 
because all the memory is allocated, or because there is too much fragmentation. Malloc, 
which is being used to allocate the data segment of a Unix process, just gives up and calls 
the (expensive) OS call to expand the data segment. A memory manager allocating real 
physical memory doesn't have that luxury. The allocation attempt simply fails. There are 
two ways of delaying this catastrophe, compaction and garbage collection. 

Compaction attacks the problem of fragmentation by moving all the allocated blocks 
to one end of memory, thus combining all the holes. Aside from the obvious cost of all that 
copying, there is an important limitation to compaction: Any pointers to a block need to be 
updated when the block is moved. Unless it is possible to find all such pointers, 
compaction is not possible. Pointers can stored in the allocated blocks themselves as well 
as other places in the client of the memory manager. In some situations, pointers can point 
not only to the start of blocks but also into their bodies. For example, if a block contains 
executable code, a branch instruction might be a pointer to another location in the same 
block. Compaction is performed in three phases. First, the new location of each block is 
calculated to determine the distance the block will be moved. Then each pointer is updated 
by adding to it the amount that the block it is pointing (in)to will be moved. Finally, the 
data is actually moved. There are various clever tricks possible to combine these 
operations.  

Garbage collection finds blocks of memory that are inaccessible and returns them to 
the free list. As with compaction, garbage collection normally assumes we find all pointers 
to blocks, both within the blocks themselves and ``from the outside.'' If that is not possible, 
we can still do ``conservative'' garbage collection in which every word in memory that 
contains a value that appears to be a pointer is treated as a pointer. The conservative 
approach may fail to collect blocks that are garbage, but it will never mistakenly collect 
accessible blocks. There are three main approaches to garbage collection: reference 
counting, mark-and-sweep, and generational algorithms.  

Reference counting keeps in each block a count of the number of pointers to the 
block. When the count drops to zero, the block may be freed. This approach is only 
practical in situations where there is some ``higher level'' software to keep track of the 
counts (it's much too hard to do by hand), and even then, it will not detect cyclic 
structures of garbage: Consider a cycle of blocks, each of which is only pointed to by its 
predecessor in the cycle. Each block has a reference count of 1, but the entire cycle is 
garbage. Mark-and-sweep works in two passes: First we mark all non-garbage blocks by 
doing a depth-first search starting with each pointer ``from outside'':  

There are two problems with mark-and-sweep. First, the amount of work in the 
mark pass is proportional to the amount of non-garbage. Thus if memory is nearly full, it 
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will do a lot of work with very little payoff. Second, the mark phase does a lot of jumping 
around in memory, which is bad for virtual memory systems, as we will soon see.  

The third approach to garbage collection is called generational collection. Memory is 
divided into spaces. When a space is chosen for garbage collection, all subsequent 
references to objects in that space cause the object to be copied to a new space. After a 
while, the old space either becomes empty and can be returned to the free list all at once, 
or at least it becomes so sparse that a mark-and-sweep garbage collection on it will be 
cheap. As an empirical fact, objects tend to be either short-lived or long-lived. In other 
words, an object that has survived for a while is likely to live a lot longer. By carefully 
choosing where to move objects when they are referenced, we can arrange to have some 
spaces filled only with long-lived objects, which are very unlikely to become garbage. We 
garbage-collect these spaces seldom if ever. 

2.2.3.7  Processes 

 A process is a ``little bug'' that crawls around on the program executing the 
instructions it sees there. Normally (in so-called sequential programs) there is exactly one 
process per program, but in concurrent programs, there may be several processes 
executing the same program. The details of what constitutes a ``process'' differ from system 
to system. The main difference is the amount of private state associated with each process. 
Each process has its own program counter, the register that tells it where it is in the 
program. It also needs a place to store the return address when it calls a subroutine, so 
that two processes executing the same subroutine called from different places can return 
to the correct calling points. Since subroutines can call other subroutines, each process 
needs its own stack of return addresses.  

 
Processes with very little private memory are called threads or light-weight 

processes. At a minimum, each thread needs a program counter and a place to store a 
stack of return addresses; all other values could be stored in memory shared by all 
threads. At the other extreme, each process could have its own private memory space, 
sharing only the read-only program text with other processes. This essentially the way a 
Unix process works. Other points along the spectrum are possible. One common approach 
is to put the local variables of procedures on the same private stack as the return 
addresses, but let all global variables be shared between processes. A stack frame holds all 
the local variables of a procedure, together with an indication of where to return to when 
the procedure returns, and an indication of where the calling procedure's stack frame is 
stored. This is the approach taken by Java threads. Java has no global variables, but 
threads all share the same heap. The heap is the region of memory used to hold objects 
allocated by new. In short, variables declared in procedures are local to threads, but 
objects are all shared. Of course, a thread can only ``see'' an object if it can reach that 
object from its ``base'' object (the one containing its run method, or from one of its local 
variables.  
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    class Worker implements Runnable { 
        Object arg, other; 
        Worker(Object a) { arg = a; } 
        public void run() { 
            Object tmp = new Object(); 
            other = new Object(); 
            for(int i = 0; i < 1000; i++) // do something 
        } 
    } 
    class Demo { 
        static public void main(String args[]) { 
            Object shared = new Object(); 
 
            Runnable worker1 = new Worker(shared); 
            Thread t1 = new Thread(worker1); 
 
            Runnable worker2 = new Worker(shared); 
            Thread t2 = new Thread(worker2); 
 
            t1.start(); t2.start(); 
            // do something here 
        } 
    } 

There are three treads in this program, the main thread and two child threads 
created by it. Each child thread has its own stack frame for Worker.run(), with space for 
tmp and i. Thus there are two copies of the variable tmp, each of which points to a 
different instance of Object. Those objects are in the shared heap, but since one thread has 
no way of getting to the object created by the other thread, these objects are effectively 
``private'' to the two threads.1 Similarly, the objects pointed to by other are effectively 
private. But both copies of the field arg and the variable shared in the main thread all 
point to the same (shared) object.  
Other names sometimes used for processes are job or task.  
 
Why Use Processes  

Processes are basically just a programming convenience, but in some settings they 
are such a great convenience, it would be nearly impossible to write the program without 
them. A process allows you to write a single thread of code to get some task done, without 
worrying about the possibility that it may have to wait for something to happen along the 
way. Examples:  
A server providing services to others.  

One thread for each client.  
A timesharing system.  

One thread for each logged-in user.  
A real-time control computer controlling a factory.  
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One thread for each device that needs monitoring.  
A network server.  

One thread for each connection.  
 
 Resource allocation: A ``resource'' can be defined as something that costs money. 
The philosophers represent processes, and the forks represent resources.  
There are three kinds of resources:  
 sharable  
 serially reusable  
 consumable  
 
Sharable resources can be used by more than one process at a time. A consumable 

resource can only be used by one process, and the resource gets ``used up.'' A serially 
reusable resource is in between. Only process can use the resource at a time, but once it's 
done, it can give it back for use by another process. Examples are the CPU and memory. 
These are the most interesting type of resource. A process requests a (serially reusable) 
resource from the OS and holds it until it's done with it; then it releases the resource. The 
OS may delay responding to a request for a resource. The requesting process is blocked 
until the OS responds. A set of processes is deadlocked if each process in the set is waiting 
for an event that only a process in the set can cause.  

 
2.2.3.8 Summary 

An operating system is an important part of almost every computer system. A 
computer system can be divided roughly into four components: the hardware, the 
operating system, the applications programs, and the users. The procedure allocate 
receives a request for a contiguous block of size bytes of memory and returns a pointer to 
such a block. The procedure  deallocate releases the indicated block, returning it to the 
free pool for reuse. A process is a ``little bug'' that crawls around on the program executing 
the instructions it sees there. 

 
2.2.3.9  Model Questions 

1. What is an operating system? How is it classified? 
2. How did the operating system originate? 
3. what is a process? Why are they used?  
4. Explain the classification of an operating system? 

 
2.2.3.10 References 
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Lesson 2.2.4 

INTERNAL AND EXTERNAL COORDINATE SYSTEM 
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2.2.4.3 In Brief 
2.2.4.4 Internal Coordinate Mechanics  
2.2.4.5 Applications of ICM 
2.2.4.6 Modules of ICM 

Summary 
  Model Questions 
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2.2.4.1 Objective 

To get a knowledge of internal coordinate system and its applications in biological 
research. 

2.2.4.1 Introduction 

Internal coordinates define the distances, angles and torsional angles between the 
atoms of a molecule. They allow the precise description of a molecular structure without 
an external coordinate system. If the starting point is chosen well enough, even 
complicated structures can be built easily just by following the bonding topology, 
without the need for graphical structure editors or crystal structure data. The resulting 
dataset is particularly easy to modify and extend, as the placement of substituents is a 
much more straightforward task than in cartesian space. The closing of ring structures, 
however, may prove adventurous to the beginner.  

In the past ten years efficient algorithms have made computationally tractable the 
use of internal coordinates in molecular dynamics simulations of systems of biological 
interest (having more than say 100 atoms). Internal coordinates are an attractive 
alternative to the Cartesian coordinates of each atom when particular degrees of 
freedom are not of interest. For example, in the process of NMR structure determination 
and refinement in which one seeks molecular structures consistent with experimental 

NMR data, the bond lengths and bond angles are generally taken as fixed—and no 
information about these features is generally available from the NMR experiments. If 
these known coordinates are removed from the local optimizations and molecular 
dynamics simulations, the conformational search space becomes smaller and can be 
more rapidly sampled. For example, typical proteins have approximately Na=3 torsion 
angles compared with 3Na coordinates in atomic Cartesian space, where Na is the 
number of atoms. Hence, the conformational space is about an order of magnitude 
smaller if torsion angles are used. Furthermore, in torsional angle molecular dynamics 
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(TAMD), it is typical that the timestep required to maintain a given level of energy 
conservation is about 10 times larger than that required in atomic Cartesian space 
because the high frequency bond bending and stretching motions have been removed. 
Other aspects of the simulation might also be made more efficient because bond and 
bond-angle forces no longer need be calculated and because there are fewer coordinates 
to update in the integrator. However, these final two aspects have not been found to 
make a significant contribution to dynamics run times in practice.  

An efficient recursive algorithm for dynamics in internal coordinateswas originally 
introduced in the robotics literature (1–4). This algorithm was then implemented for 
TAMD in X-ray and NMR refinement packages (5–7) and in a more general purpose 
molecular dynamics package (8, 9). In this paper we report the implementation of a 
general internal variable dynamics module (IVM) for efficient molecular dynamics. It 
allows general hinge definitions including those used in TAMD, but it also allows more 
general coordinates which are appropriate when some degrees of freedom are of interest 
and others are not; for instance, in the refinement problem of a two protein complex in 
which the backbone coordinates of the isolated protein structures are already known. 
The IVM also includes local minimization routines (Powell method conjugate gradient 
and steepest descent) so that these techniques can be conveniently employed in the 
same coordinate system. Our package employs an efficient sixth-order 
predictorcorrector integrator, which requires one force evaluation per timestep and 
allows for automatic timestep adjustment.We have implemented loop constraints to 
maintain bond lengths in ring topologies, although as yet we have found the feature to 
be of limited use. Finally, the code has been developed in a highly modular fashion to 
make the addition of new hinge definitions, integrators, and minimizers a relatively 
simple task. The IVM is not a stand-alone program as it does not have code to evaluate 
forces and lacks support for file formats, etc.  

2.2.4.2 In Brief 

If internal coordinates are to be kept fixed during a calculation, or if they are to be 
varied automatically (as in the determination of a rotational barrier), the starting 
structure must be given as internal coordinates.  

This dataset starts with atomic number and type code of the first atom. For the 
second atom, the distance from the first (in angstrom units, 1 Å=100pm) has to be given 
as well. This must not necessarily be identical to a chemical bond, as the bond matrix is 
determined solely on the basis of internuclear distances. However, it will usually be 
easier to use actual bonds here. Definition of the third atom includes the angle it forms 
with the second and first atom. Beginning with the fourth atom, the torsional angles, 
measured clockwise viewing from the second to the first reference atom, have to be 
given as well. While the definition is unequivocal for the first three atoms, all others 
require the numbers of the reference atoms to be given. As this list is processed 
sequentially, only atoms that are already defined to the program may be used as 
references. This becomes particularly important, if an atom or a group of atoms is to be 
deleted from the middle of a dataset, e.g. in the removal of a keto group. This will 
usually change the reference atoms of all following atoms !  
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Input ends with an atom of atomic number zero, or simply with a blank line.  

The following attributes may be used in addition:  

The variable IFIX, read between the type code and the atomic distance, specifies 
whether the cartesian coordinates of the atom are to be fixed :  

 IFIX=0, the atom is not fixed to its position,  
 IFIX=1, the cartesian coordinates of this atom are fixed,  
 IFIX=2, the Z coordinate of this atom is fixed (useful for enforcing 

planarity)  

IFIX is followed by the molecule number IMOL. As the program does not assume 
bonds between fragments with different molecule numbers, this option may be useful in 
the study of molecular complexes. However it should be used only as a last resort, if it 
is not possible to rewrite the input. While it is easy to suppress unwanted bonding 
between the two molecules, the short distance between them will give rise to extreme 
van-der-Waals interaction.  

The value of the torsional angle may be followed by the permutation flag:  

 ITOR=0 no permutation  
 ITOR=1 assumes angles of 0  and 180   
 ITOR=2 selects 60 , 180  and 300   
 ITOR=3 selects 0 , 90 , 180  and 270   
 ITOR=4 selects 0 , 45 , 90 , 135  and 180   
 ITOR=5 selects 0 , 60 , 120 , 180 , 240 , 300  and 360   
 ITOR=6 initiates a sequence of seven random values  

Up to ten torsional angles may be varied in this way, evaluating all combinations of 
their values. The value of the restriction flag NH in the options line determines whether 
these values are fixed throughout the calculation, or treated only as starting points in a 
free optimization.  

NB: The actual permutation is carried out in a sequential calculation FORTRAN 
fixed record format: (4I3,3F10.4,I2,8X,3I3)  
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Integer numbers should be entered right justified, floating point numbers must 
contain a decimal point. According to the FORTRAN standard, if a floating point number 
is read without a decimal point, zeroes will be appended to it up to the end of the input 
field before the decimal point is added ! This feature will almost certainly lead to 
unexpected and sometimes spectacular results.  

{Example :  

benzene 
  6  3  0  2  2.00  2  0 80  3  5  1 20 50  0   
 6  1  0  0  0.                  0.                  0.      0         0  0  0   
 6  1  0  0  1.4                0.                  0.      0         0  0  0   
 6  1  0  0  1.4             120.                  0.      0         0  0  0   
 6  1  0  0  1.4             120.                  0.      0         3  2  1   
 6  1  0  0  1.4             120.                  0.      0         4  3  2   
 6  1  0  0  1.4             120.                  0.      0         5  4  3   
 1 19        1.                120.                180.                1  2  3   
 1 19        1.                120.                180.                2  3  4   
 1 19        1.                120.                180.                3  4  5   
 1 19        1.                120.                180.                4  5  6   
 1 19        1.                120.                180.                5  6  1   
 1 19        1.                120.                180.                6  1  2   
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Fig 1: Coordinate Systems 

2.2.4.3 Internal Coordinate Mechanics  

What is ICM anyway? Does 'I' mean integrated or interactive? Does 'C' stand for 
computational, coordinate or communication? Is 'M' method, modeling or molecules? 
Actually, even though all the above translations are relevant, the original meaning was 
the Internal Coordinate Mechanics because the program  started in 1985 was aimed 
at energy optimization of several biopolymers with respect to an arbitrary subset of 
internal coordinates such as bond lengths, bond angles torsion angles and phase angles. 
The efficient and general global optimization method which evolved from the original 
ICM method is still the central piece of the program. It is this basic algorithm which is 
used for peptide prediction, homology modeling and loop simulations, flexible 
macromolecular docking and refinement. However the complexity of problems related to 
structure prediction and analysis, as well as the desire for perfection, compactness and 
consistency, lead to the program expansion into neighboring areas such as graphics, 
chemistry, sequence analysis and database searches, mathematics, statistics and 
plotting. 
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The original meaning became too narrow, but the name sounded good and was kept. 
The current integrated ICM shell contains hundreds of variables, functions, commands, 
database and web tools, novel algorithms for structure prediction and analysis into a 
powerful yet compact program which is still called ICM. The seven principal areas are 
the following: 

 

 

2.2.4.4 What can you do with ICM? 

Let us go through the short overview of ICM applications.  

Graphics 

Simplified molecular representations are build automatically (e.g. the protein-dna 
complex is shown with one command: nice "1dnk"). You can combine different types of 
molecular representations with solid or wire geometrical objects. Molecular 
representations include wire models, ball-and-stick models, ribbons, space filling 
models, and skin representation.  

The contour-buildup alrorithm calculates the smooth and accurate analytical 
molecular surface in seconds! This surface can be saved as a geometrical object, saved 
as a vectorized postscript file.  

 

 
PDB entry: 101d.brk; ICM command: nice "101d" 
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PDB entry: 4tna.brk; ICM commands:  

nice "4tna" 
color ribbon a_N/* Count(Nof(a_N/*)) 

Simulations 

Take a peptide sequence and predict its three-dimensional structure. Of course, the 
success is not guaranteed, especially if the peptide is longer than about 25 residues but 
some prelimary tests are encouraging. You will also get a movie of your peptide folding 
up. Just type the peptide sequence in the _folding file and go ahead.  

ICM has a good record in building accurate models by homology. The procedure will 
build the framework, shake up the side-chains and loops by global energy optimization. 
You can also color the model by local reliability to identify the potentially wrong parts of 
the model.  

ICM was used to design two new 7 residue loops and in both cases the designs were 
successful. Moreover, the predicted conformations turned out to be exactly right 
(accuracy of 0.5A after the crystallographic structures of the designed proteins were 
determined in Rik Wierenga's lab. Use the _loop script to predict loop conformations 
and dsEnergyStrain to identify the strained parts of the design.  

Sequence analysis 

It looks like this: 
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Here the color shows the local significance of the alignment. You can change the 
method to calculate probability, color scheme and residue comparison matrices and 
calculate it interactively of in batch.  

Make a pairwise sequence alignment and evaluate the probability that the two 
aligned sequences share the same structural fold. The alignment is performed with the 
Needleman and Wunsch algorithm modified to allow zero gap-end penalties (so called 
ZEGA alignment). The ZEGA probability is a more sensitive indicator of structural 
significance than the BLAST P-value. The structural statistics was derived by Abagyan 
and Batalov, 1997: read sequence s_icmhome + "sh3.seq" show Align(Fyn Spec)   # the 
probability will be shown 

You can change residue comparison matrices, gap penalties and do many 
alignments in batch.  

Read any number of sequences in fasta or swissprot formats and automatically align 
the sequences, interactively or in batch. It will look like this:  

# Consensus ...#.^.YD%..+~..-#~# K~-.#~##.~~..~WW.#.   ~~.~G%#P. 

Fyn     ----VTLFVALYDYEARTEDDLSFHKGEKFQILNSSEGDWWEARSLTTGETGYIPS 

Spec    DETGKELVLALYDYQEKSPREVTMKKGDILTLLNSTNKDWWKVE--
VNDRQGFVP- 

Eps8    KTQPKKYAKSKYDFVARNSSELSM-KDDVLELILDDRRQWWKVR---
NSGDGFVPN 
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# nID 7 Lmin 56 ID 11.5 % 
#MATGAP gonnet 2.4 0.15 
ICM commands:  
read sequence s_icmhome + "sh3.seq" 
group sequences sh3 
align sh3 
show sh3 

The Win95/NT version of ICM also has a great interactive alignment editor with 
dynamic coloring according to conservation. It will automatically show secondary 

structure and other features.  

Relationships between sequences can be presented in three forms:  

 as evolutionary trees (ICM uses the neighbor-joining method for tree 
construction);  

 as 2D distribution of sequences using the two main principal axes (use 
plot2Dseq macro);  

 as 3D distribution. This can be analyzed in stereo using controls of 
molecular graphics (use ds3D macro: ds3D Distance(alig) Name(alig)).  
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Search your sequence interactively of in batch through any database and generate a 
list of possible homologues which are sorted and evaluated by probability of structural 
significance. The sensitive and rigorous ZEGA alignment is used for each comparison. 
This search may give you more homologues that a BLAST search!  

2.2.4.5 ICM consists of four separate modules: 

The formal list of features is as follows: 

ICM-main:  

 shell for molecules, numbers, strings, vectors, matrices, tables, sequences, 
alignments, profiles, maps  
 ICM-language and macros  
 graphics, stereo  
 imaging and vectorized postscript  
 animation and movies  
 mathematics, statistics, plotting  
 WEB: presentation of the results in the html form  
 WEB: user-definition and automated interpretation of web links  
 WEB: HTML-form-output interpretation  
 molecular conferencing  
 pairwise and multiple sequence alignments, evolutionary trees, clustering  
 secondary structure prediction and assignment, property profiles, pattern 
searching  
 superpositions, structural alignment, Ramachandran plots  
 protein quality check  
 analytical molecular surface  
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 calculations of surface areas and volumes  
 cavity analysis  
 symmetry operations, access to 230 groups  
 database fragment search  
 identification of common substructures in PDB  
 read pdb, mol2, csd, build from sequence  
 energy, solvation, MIMEL, side-chain entropies, soft van der Waals, tethers, 
distance and angular restraints  
 local minimization  
 ab initio peptide structure prediction by the Biased Probability Monte Carlo 
method  
 loop simulations  
 side-chain placement  

ICM-REBEL  

 electrostatic free energy calculated by the boundary element method  
 coloring molecular surface by electrostatic potential  
 binding energy (electrostatic solvation component)  
 maps of electrostatic potential and its isopotential contours  

ICM-dock  
 indexing of chemical databases in SD, mol2 and csd format  
 searching and extracting from the indexed databases  
 fast grid potentials  
 scripts for flexible ligand docking  
 scripts for protein-protein docking  
 SMILES  
 refinement in full atom representation  

ICM-bioinformatics  
 database indexing and manipulations  
 functions to evaluate sequence-structure similarity  
 scripts to recognize remote similarities in the protein sequence and PDB 
databases  
 search a pattern through a database  
 searching profiles and patterns from the Prosite database through a sequence  
 HTML representation of the search results with interpretation of links  
 interactive editor of sequence-structure alignment  
 automated building of models by homology with loop sampling and side-chain 
placement  

As a method for structure prediction, ICM (internal coordinate mechanics) offers a 
new efficient way of global energy optimization and versatile modeling operations on 
arbitrarily fixed multimolecular systems. It is aimed at predicting large structural 
rearrangements in biopolymers. The ICM-method uses a generalized description of 
biomolecular structures in which bond lengths, bond angles, torsion and phase angles 
are considered as independent variables. Any subset of those variables can be fixed. 
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Rigid bodies formed after exclusion of some variables (i.e. all bond lengths, bond angles 
and phase angles, or all the variables in a protein domain, etc.) can be treated efficiently 
in energy calculations, since no interactions withing a rigid body are calculated. 
Analytical energy derivatives are calculated to allow fast local minimization. To allow 
large scale conformational sampling and powerful molecular manipulations ICM 
employs a family of new global optimization techniques such as: Biased Probability 
Monte Carlo ( Abagyan and Totrov, 1994 ), pseudo-Brownian docking method ( 
Abagyan, Totrov and Kuznetsov, 1994 ) and local deformation loop movements Abagyan 
and Mazur, 1989 ). 

 A set of ECEPP/3 energy terms is complemented with solvation energy, 
electrostatic polarization energy and side-chain entropic effects ( Abagyan and 
Totrov, 1994 ), making the total calculated energy a more realistic approximation of the 
true free energy. Powerful molecular graphics, the ICM-command language, and a set of 
structure manipulation tools and penalty functions (such as multidimensional variable 
restraints, tethers, distance restraints) allow the user to address a wide variety of 
problems concerning biomolecular structures. 

Summary: 
In the past ten years efficient algorithms have made computationally tractable the 

use of internal coordinates in molecular dynamics simulations of systems of biological 
interest (having more than say 100 atoms). Internal coordinates are an attractive 
alternative to the Cartesian coordinates of each atom when particular degrees of 
freedom are not of interest. For example, in the process of NMR structure determination 
and refinement in which one seeks molecular structures consistent with experimental 
NMR data, the bond lengths and bond angles are generally taken as fixed—and no 
information about these features is generally available from the NMR experiments. 

Model Questions: 
1. What are internal coordinates and explain how they can help in structure 

prediction of biomolecules? 
2. What is ICM and explain its biological applications? 

References: 
1. Internal Coordinates for Molecular Dynamics and Minimization in Structure 

Determination and Refinement, Journal of Magnetic Resonance 152, 288–302 
(2001), Charles D. Schwieters 

2. Abagyan, R.A., Frishman, D., and Argos, P. (1994). Recognition of distantly 
related proteins through energy calculations. Proteins 19, 132-140. 

 AUTHOR: 
 

B.M.REDDY M.Tech. (HBTI, Kanpur) 
Lecturer, Centre for Biotechnology 

Acharya Nagarjuna University. 

 



 
 
 
P.G.Diploma in Bioinformatics 1 Numerical Methods 

  

Lesson 2.3.1  

NUMERICAL METHODS 
 

 Objective 
 2.3.1.1 Introduction 

2.3.1.2 Representation of Physical Phenomena 
2.3.1.3 Basis of Numerical Methods 
2.3.1.4 Errors and Their Propagation  
2.3.1.5 Direct Methods for the Solution of Linear Algebraic Equations  
2.3.1.6 Solution of Linear Equations by Iterative Methods 
2.3.1.7 Numerical Differentiation  
2.3.1.8 Numerical Evaluation of Integrals: Quadrature  
2.3.1.9 The Numerical Integration of Differential Equations  
2.3.1.10 The Numerical Solution of Integral Equations  

Summary 
  Model Questions 
  References 
Objective: 

The objective of this lesson is to know the importance of numerical methods in the 
exciting field biocomputing. 

2.3.1.1 Introduction 
The extreme speed of contemporary machines has tremendously expanded the scope of 

numerical problems that may be considered as well as the manner in which such 
computational problems may even be approached. However, this expansion of the degree 
and type of problem that may be numerically solved has removed the scientist from the 
details of the computation. For this, most would shout "Hooray"! But this removal of the 
investigator from the details of computation may permit the propagation of errors of 
various types to intrude and remain undetected. Modern computers will almost always 
produce numbers, but whether they represent the solution to the problem or the result of 
error propagation may not be obvious. This situation is made worse by the presence of 
programs designed for the solution of broad classes of problems. Almost every class of 
problems has its pathological example for which the standard techniques will fail. 
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Generally little attention is paid to the recognition of these pathological cases which have 
an uncomfortable habit of turning up when they are least expected.  

The linear equations play an important role in transformation theory and that these 
equations could be simply expressed in terms of matrices. However, this is only a small 
segment of the importance of linear equations and matrix theory to the mathematical 
description of the physical world. Thus we should begin our study of numerical methods 
with a description of methods for manipulating matrices and solving systems of linear 
equations. However, before we begin any discussion of numerical methods, we must say 
something about the accuracy to which those calculations can be made. 

2.3.1.2 Representation of Physical Phenomena 
The historic representation of physical phenomena falls into two categories referred to 

as discrete representation and continuous representation. Both ideas appear at about the 
same time in the Aristotlean period of Greek science (approximately 300 BC). We can use 
the following definitions to help us understand the means by which physicists develop 
mental representations of natural phenonmena. 

 Continuous phenomena are ones for which division into smaller and smaller 
geometrical scale sizes does not alter its fundamental description.  

 Discrete phenomena are ones for which division into smaller and smaller 
goemetrical scale sizes does lead to a new fundamental description.  

Using these definitions we can form a table characterizing both physical nature and 
physical behavior of phenonmena. 

Nature 

Behavior 

Disc
rete 

Continu
ous 

Discrete X X 

Continu
ous X X 

The point here is that computers because they are limited to a finite number of digits in 
expressing a number thus represent the discrete and not the continuous which would 
require the ability to represent any number no matter how many digits in its expression. 
Thus when we do a numerical simulation of a continuous phenomena, we are 
approximating its nature or its behavior. This approximation may be perfectly acceptable 
for most purposes, but at some level of representing the infinitesimal it will become the 
limiting factor. 
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2.3.1.3 Basis of Numerical Methods 
The basis of numerical methods is to devise means for approximating infinitesimal 

processes by finite processes which generally involves the development of an 
approximating function that can be used in the method in place of the actual function. The 
exceptions to this idea are algebraic equations in which we are already dealing with finite 
methods. When we approximate we introduce errors, and so the errors in numerical 
methods are extremely important to consider. 

Errors in Numerical Methods 
There are two major sources of errors in numerical methods. The first is called 

truncation error, while the second is known as round-off error. 

Truncation error is caused by the approximations used in the discrete mathematical 
equations used in a mathematical algorithm to approximate continuous operations. Taylor 
series are one of the most important means used to derive numerical schemes for 
computation and to analyze these truncation errors. For a discussion of a Taylor series as 
an approximating device consult the document Taylor Series. 

Round-off errors, on the other hand, are associated with the limited number of digits 
that are used to represent numbers in a computer. To understand the way in which 
round-off errors occur in computation, it is necessary to understand how numbers are 
stored in a computer and how additions and subtractions are performed. For a discussion 
of round-off errors consult the document Round-Off Error. 

Numerical Analysis Topics 
The following documents provide a discussion of the numerical techniques for handling 

various mathematical topics. The discussions are fairly restricted in scope with links to 
more advanced topics. 

 Algebraic Equations  

 Approximation  

 Differential Calculus  

 Integral Calculus  

 Ordinary Differential Equations  
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2.3.1.4 Errors and Their Propagation  
One of the most reliable aspects of numerical analysis programs for the electronic 

digital computer is that they almost always produce numbers. As a result of the 
considerable reliability of the machines, it is common to regard the results of their 
calculations with a certain air of infallibility. However, the results can be no better than the 
method of analysis and implementation program utilized by the computer and these are 
the works of highly fallible man. This is the origin of the aphorism "garbage in − garbage 
out". Because of the large number of calculations carried out by these machines, small 
errors at any given stage can rapidly propagate into large ones that destroy the validity of 
the result.  

We can divide computational errors into two general categories: the first of these we will 
call round off error, and the second truncation error. Round off error is perhaps the more 
insidious of the two and is always present at some level. Indeed, its omnipresence indicates 
the first problem facing us. How accurate an answer do we require? Digital computers 
utilize a certain number of digits in their calculations and this base number of digits is 
known as the precision of the machine. Often it is possible to double or triple the number 
of digits and hence the phrase "double" or "triple" precision is commonly used to describe a 
calculation carried out using this expanded number of digits. It is a common practice to 
use more digits than are justified by the problem simply to be sure that one has "got it 
right". For the scientist, there is a subtle danger in this in that the temptation to publish 
all the digits presented by the computer is usually overwhelming. Thus published articles 
often contain numerical results consisting of many more decimal places than are justified 
by the calculation or the physics that went into the problem. This can lead to some reader 
unknowingly using the results at an unjustified level of precession thereby obtaining 
meaningless conclusions. Certainly the full machine precession is never justified, as after 
the first arithmetical calculation, there will usually be some uncertainty in the value of the 
last digit. This is the result of the first kind of error we called round off error. As an 
extreme example, consider a machine that keeps only one significant figure and the 
exponent of the calculation so that 6+3 will yield 9×100. However, 6+4, 6+5, and 6+8 will 
all yield the same answer namely 1×101. Since the machine only carries one digit, all the 
other information will be lost. It is not immediately obvious what the result of 6+9, or 7+9 
will be. If the result is 2×101, then the machine is said to round off the calculation to the 
nearest significant digit. However, if the result remains 1×101, then the machine is said to 
truncate the addition to the nearest significant digit. Which is actually done by the 
computer will depend on both the physical architecture (hardware) of the machine and the 
programs (software) which instruct it to carry out the operation. Should a human operator 
be carrying out the calculation, it would usually be possible to see when this is happening 
and allow for it by keeping additional significant figures, but this is generally not the case 
with machines. Therefore, we must be careful about the propagation of round off error into 
the final computational result. It is tempting to say that the above example is only for a 1-
digit machine and therefore unrealistic. However, consider the common 6-digit machine. It 
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will be unable to distinguish between 1 million dollars and 1 million and nine dollars. 
Subtraction of those two numbers would yield zero. This would be significant to any 
accountant at a bank. Repeated operations of this sort can lead to a completely 
meaningless result in the first digit.  

This emphasizes the question of 'how accurate an answer do we need?'. For the 
accountant, we clearly need enough digits to account for all the money at a level decided 
by the bank. For example, the Internal Revenue Service allows taxpayers to round all 
calculations to the nearest dollar. This sets a lower bound for the number of significant 
digits. One's income usually sets the upper bound. In the physical world very few 
constants of nature are known to more than four digits (the speed of light is a notable 
exception). Thus the results of physical modeling are rarely important beyond four figures. 
Again there are exceptions such as in null experiments, but in general, scientists should 
not deceive themselves into believing their answers are better answers than they are.  

How do we detect the effects of round off error? Entire studies have been devoted to this 
subject by considering that round off errors occurs in basically a random fashion. 
Although computers are basically deterministic (i.e. given the same initial state, the 
computer will always arrive at the same answer), a large collection of arithmetic operations 
can be considered as producing a random collection of round-ups and round-downs. 
However, the number of digits that are affected will also be variable, and this makes the 
problem far more difficult to study in general. Thus in practice, when the effects of round 
off error are of great concern, the problem can be run in double precession. Should both 
calculations yield the same result at the acceptable level of precession, then round off error 
is probably not a problem. An additional "rule of thumb" for detecting the presence of 
round off error is the appearance of a large number of zeros at the right-hand side of the 
answers. Should the number of zeros depend on parameters of the problem that determine 
the size or numerical extent of the problem, then one should be concerned about round off 
error. Certainly one can think of exceptions to this rule, but in general, they are just that - 
exceptions.  

The second form of error we called truncation error and it should not be confused with 
errors introduced by the "truncation" process that happens half the time in the case of 
round off errors. This type of error results from the inability of the approximation method 
to properly represent the solution to the problem. The magnitude of this kind of error 
depends on both the nature of the problem and the type of approximation technique. For 
example, consider a numerical approximation technique that will give exact answers 
should the solution to the problem of interest be a polynomial (we shall show in chapter 3 
that the majority of methods of numerical analysis are indeed of this form). Since the 
solution is exact for polynomials, the extent that the correct solution differs from a 
polynomial will yield an error. However, there are many different kinds of polynomials and 
it may be that a polynomial of higher degree approximates the solution more accurately 
than one of lower degree.  

This provides a hint for the practical evaluation of truncation errors. If the calculation 
is repeated at different levels of approximation (i.e. for approximation methods that are 



 
 
 
Centre for Distance Education 6 Acharya Nagarjuna University 

correct for different degree polynomials) and the answers change by an unacceptable 
amount, then it is likely that the truncation error is larger than the acceptable amount. 
There are formal ways of estimating the truncation error and some 'black-box' programs do 
this. Indeed, there are general programs for finding the solutions to differential equations 
that use estimates of the truncation error to adjust parameters of the solution process to 
optimize efficiency. However, one should remember that these estimates are just that - 
estimates subject to all the errors of calculation we have been discussing. It many cases 
the correct calculation of the truncation error is a more formidable problem than the one of 
interest. In general, it is useful for the analyst to have some prior knowledge of the 
behavior of the solution to the problem of interest before attempting a detailed numerical 
solution. Such knowledge will generally provide a 'feeling' for the form of the truncation 
error and the extent to which a particular numerical technique will manage it.  

We must keep in mind that both round-off and truncation errors will be present at 
some level in any calculation and be wary lest they destroy the accuracy of the solution. 
The acceptable level of accuracy is determined by the analyst and he must be careful not to 
aim too high and carry out grossly inefficient calculations, or too low and obtain 
meaningless results.  

We now turn to the solution of linear algebraic equations and problems involving 
matrices associated with those solutions. In general we can divide the approaches to the 
solution of linear algebraic equations into two broad areas. The first of these involve 
algorithms that lead directly to a solution of the problem after a finite number of steps 
while the second class involves an initial "guess" which then is improved by a succession of 
finite steps, each set of which we will call an iteration. If the process is applicable and 
properly formulated, a finite number of iterations will lead to a solution.  

2.3.1.5 Direct Methods for the Solution of Linear Algebraic Equations  
In general, we may write a system of linear algebraic equations in the form 
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which in vector notation is    Here x is an n-dimensional vector the elements of which 
represent the solution of the equations. _c is the constant vector of the system of equations 
and A is the matrix of the system's coefficients.  

We can write the solution to these equations as thereby reducing the solution of any 
algebraic system of linear equations to finding the inverse of the coefficient matrix. We 
shall spend some time describing a number of methods for doing just that. However, there 
are a number of methods that enable one to find the solution without finding the inverse of 
the matrix. Probably the best known of these is Cramer's Rule  

a. Solution by Cramer's Rule  
It is unfortunate that usually the only method for the solution of linear equations that 
students remember from secondary education is Cramer's rule or expansion by minors. As 
we shall see, this method is rather inefficient and relatively difficult to program for a 
computer. However, as it forms sort of a standard by which other methods can by judged, 
we will review it here. The more general definition is inductive so that the determinant of 
the matrix A would be given by 
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Here the summation may be taken over either i or j, or indeed, any monotonically 
increasing sequence of both. The quantity M

ij 
is the determinant of the matrix A with the 

ith row and jth column removed and, with the sign carried by (-1)(i+j) is called the cofactor of 
the minor element a

ij
. With all this terminology, we can simply write the determinant a
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By making use of theorems 2 and 7 in section 1.2, we can write the solution in terms of 
the determinant of A as  
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which means that the general solution of equation (2.2.1) is given by 

 

 
This requires evaluating the determinant of the matrix A as well as an augmented 

matrix where the jth column has been replaced by the elements of the constant vector c
i
. 

Evaluation of the determinant of an n×n matrix requires about 3n2 operations and this 
must be repeated for each unknown, thus solution by Cramer's rule will require at least 
3n3 operations. In addition, to maintain accuracy, an optimum path through the matrix 
(finding the least numerically sensitive cofactors) will require a significant amount of logic. 
Thus, solution by Cramer's rule is not a particularly desirable approach to the numerical 
solution of linear equations either for a computer or a hand calculation. Let us consider a 
simpler algorithm, which forms the basis for one of the most reliable and stable direct 
methods for the solution of linear equations. It also provides a method for the inversion of 
matrices. Let begin by describing the method and then trying to understand why it works. 
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2.3.1.6 Solution of Linear Equations by Iterative Methods  
So far we have dealt with methods that will provide a solution to a set of linear 

equations after a finite number of steps (generally of the order of n3). The accuracy of the 
solution at the end of this sequence of steps is fixed by the nature of the equations and to 
a lesser extent by the specific algorithm that is used. We will now consider a series of 
algorithms that provide answers to a linear system of equations in considerably fewer 
steps, but at a level of accuracy that will depend on the number of times the algorithm is 
applied. Such methods are generally referred to as iterative methods and they usually 
require of the order of n2 steps for each iteration. Clearly for very large systems of 
equations, these methods may prove very much faster than direct methods providing they 
converge quickly to an accurate solution.  

a. Solution by the Gauss and Gauss-Seidel Iteration Methods  
All iterative schemes begin by assuming that an approximate answer is known and 

then the scheme proceeds to improve that answer. Thus we will have a solution vector that 
is constantly changing from iteration to iteration. In general, we will denote this by a 
superscript in parentheses so that x(i) will denote the value of x at the ith iteration. 
Therefore in order to begin, we will need an initial value of the solution vector . The concept 
of the Gauss iteration scheme is extremely simple. Take the system of linear equations as 
expressed in equations (2.2.1) and solve each one for the diagonal value of x so that 
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Now use the components of the initial value of on the right hand side of equation (2.3.1) 

to obtain an improved value for the elements. This procedure can be repeated until a 
solution of the desired accuracy is obtained. Thus the general iteration formula would have 
the form 
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It is clear, that should any of the diagonal elements be zero, there will be a problem 

with the stability of the method. Thus the order in which the equations are arranged will 
make a difference to in the manner in which this scheme proceeds. One might suppose 
that the value of the initial guess might influence whether or not the method would find 
the correct answer, but as we shall see in section 2.4 that is not the case. However, the 
choice of the initial guess will determine the number of iterations required to arrive at an 
acceptable answer.  

The Gauss-Seidel scheme is an improvement on the basic method of Gauss. Let us 
rewrite equations (2.3.1) as follows: 

 
When using this as a basis for an iteration scheme, we can note that all the values of xj 

in the first summation for the kth iteration will have been determined before the value of 
xi(k) so that we could write the iteration scheme as 

 
Here the improved values of x

i 
are utilized as soon as they are obtained. As one might 

expect, this can lead to a faster rate of convergence, but there can be a price for the 
improved speed. The Gauss-Seidel scheme may not be as stable as the simple Gauss 
method. In general, there seems to be a trade off between speed of convergence and the 
stability of iteration schemes.  

Indeed, if we were to apply either if the Gauss iterative methods to equations (2.2.13) 
that served as an example for the direct method, we would find that the iterative solutions 
would not converge. We shall see later (sections 2.3d and 2.4) that those equations fail to 
satisfy the simple sufficient convergence criteria given in section 2.3d and the necessary 
and sufficient condition of section 2.4. With that in mind, let us consider another 3×3 
system of equations which does satisfy those conditions. These equations are much more 
strongly diagonal than those of equation (2.2.13) so  
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For these equations, the solution under the Gauss-iteration scheme represented by 

equations (2.3.2) takes the form 

 
However, if we were to solve equations (2.3.5) by means of the Gauss-Seidel method the 

iterative equations for the solution would be  

 
If we take the initial guess to be 

 
then repetitive use of equations (2.3.6) and (2.3.7) yield the results given in Table 2.1.
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Table 2.1  
Convergence of Gauss and Gauss-Seidel Iteration Schemes
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As is clear from the results labeled "G" in table 2.1, the Gauss-iteration scheme converges very 

slowly. The correct solution which would eventually be obtained is 
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There is a tendency for the solution to oscillate about the correct solution with the 

amplitude slowly damping out toward convergence. However, the Gauss-Seidel iteration 
method damps this oscillation very rapidly by employing the improved values of the 
solution as soon as they are obtained. As a result, the Gauss-Seidel scheme has 
converged on this problem in about 5 iterations while the straight Gauss scheme still 
shows significant error after 10 iterations. 

2.3.1.7 Numerical Differentiation  
Compared with other subjects to be covered in the study of numerical methods, little 

is usually taught about numerical differentiation. Perhaps that is because the processes 
should be avoided whenever possible. The reason for this can be seen in the nature of 
polynomials. As on interpolation, high degree polynomials tend to oscillate between the 
points of constraint. Since the derivative of a polynomial is itself a polynomial, it too will 
oscillate between the points of constraint, but perhaps not quite so wildly. To minimize 
this oscillation, one must use low degree polynomials which then tend to reduce the 
accuracy of the approximation. Another way to see the dangers of numerical 
differentiation is to consider the nature of the operator itself. 

2.3.1.8 Numerical Evaluation of Integrals: Quadrature  
While the term quadrature is an old one, it is the correct term to use for describing 

the numerical evaluation of integrals. The term numerical integration should be reserved 
for describing the numerical solution of differential equations (see chapter 5). There is a 
genuine necessity for the distinction because the very nature of the two problems is 
quite different. Numerically evaluating an integral is a rather common and usually 
stable task. One is basically assembling a single number from a series of independent 
evaluations of a function. Unlike numerical differentiation, numerical quadrature tends 
to average out random computational errors.  

Because of the inherent stability of numerical quadrature, students are generally 
taught only the simplest of techniques and thereby fail to learn the more sophisticated, 
highly efficient techniques that can be so important when the integrand of the integral 
is extremely complicated or occasionally the result of a separate lengthy study. Virtually 
all numerical quadrature schemes are based on the notion of polynomial 
approximation. Specifically, the quadrature scheme will give the exact value of the 
integral if the integrand is a polynomial of some degree n. The scheme is then said to 
have a degree of precision equal to n. In general, since a nth degree polynomial has n+1 
linearly independent coefficients, a quadrature scheme will have to have n+1 adjustable 
parameters in order to accurately represent the polynomial and its integral. 
Occasionally, one comes across a quadrature scheme that has a degree of precision that 
is greater than the number of adjustable parameters. Such a scheme is said to be 
hyper-efficient and there are a number of such schemes known for multiple integrals.  

2.3.1.9 The Numerical Integration of Differential Equations  
When we speak of a differential equation, we simply mean any equation where the 

dependent variable appears as well as one or more of its derivatives. The highest 
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derivative that is present determines the order of the differential equation while the 
highest power of the dependent variable or its derivative appearing in the equation sets 
its degree. Theories which employ differential equations usually will not be limited to 
single equations, but may include sets of simultaneous equations representing the 
phenomena they describe. Thus, we must say something about the solutions of sets of 
such equations. Indeed, changing a high order differential equation into a system of 
first order differential equations is a standard approach to finding the solution to such 
equations. Basically, one simply replaces the higher order terms with new variables and 
includes the equations that define the new variables to form a set of first order 
simultaneous differential equations that replace the original equation. 

2.3.1.10 The Numerical Solution of Integral Equations  
For reasons that I have never fully understood, the mathematical literature is 

crowded with books, articles, and papers on the subject of differential equations. Most 
universities have several courses of study in the subject, but little attention is paid to 
the subject of integral equations. The differential operator is linear and so is the integral 
operator. Indeed, one is just the inverse of the other. Equations can be written where 
the dependent variable appears under an integral as well as alone. Such equations are 
the analogue of the differential equations and are called integral equations. It is often 
possible to turn a differential equation into an integral equation which may make the 
problem easier to numerically solve. Indeed many physical phenomena lend themselves 
to description by integral equations. So one would think that they might form as large 
an area for analysis are do the differential equations. Such is not the case. Indeed, we 
will not be able to devote as much time to the discussion of these interesting equations 
as we should, but we shall spend enough time so that the student is at least familiar 
with some of their basic properties. Of necessity, we will restrict our discussion to those 
integral equations where the unknown appears linearly. Such linear equations are more 
tractable and yet describe much that is of interest in science.  

Summary: 
The extreme speed of contemporary machines has tremendously expanded the scope 

of numerical problems that may be considered as well as the manner in which such 
computational problems may even be approached. However, this expansion of the 
degree and type of problem that may be numerically solved has removed the scientist 
from the details of the computation. For this, most would shout "Hooray"! But this 
removal of the investigator from the details of computation may permit the propagation 
of errors of various types to intrude and remain undetected. Modern computers will 
almost always produce numbers, but whether they represent the solution to the 
problem or the result of error propagation may not be obvious. This situation is made 
worse by the presence of programs designed for the solution of broad classes of 
problems. Almost every class of problems has its pathological example for which the 
standard techniques will fail. Generally little attention is paid to the recognition of these 
pathological cases which have an uncomfortable habit of turning up when they are least 
expected.  

Model Questions: 
1. What are the applications of Numerical Methods? 

2. Explain the errors of Numerical Methods and their propagation? 
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Lesson 2.3.2  
 

OPTIMIZATION TECHNIQUES 
 
Objective 
2.3.2.1 Introduction 
2.3.2.2 Techniques 
2.3.2.3 Use of Optimization Techniques 
2.3.2.4 Nonlinearly Constrained QN Optimization 
2.3.2.5 Optimization and Iteration History 
2.3.2.6 Line-Search Methods 
2.3.2.7 Restricting the Step Length 
2.3.2.8 Techniques of global optimization 

Summary 
  Model Questions 
  References 

Objective: The objective of this lesson is to have an exposure of optimization and global 
optimization techniques which have an application in structure prediction. 

2.3.2.1 Introduction 
In mathematics, the term optimization refers to the study of problems that have the 

form 
Given: a function f : A R from some set A to the real numbers  

Sought: an element x0 in A such that f(x0) ≤ f(x) for all x in A ("minimization") 
or such that f(x0) ≥ f(x) for all x in A ("maximization").  

Such a formulation is sometimes called a mathematical program (a term not directly 
related to computer programming, but still in use for example for linear programming). 
Many real-world and theoretical problems may be modeled in this general framework. 

Typically, A is some subset of the Euclidean space Rn, often specified by a set of 
constraints, equalities or inequalities that the members of A have to satisfy. The 
elements of A are called feasible solutions. The function f is called an objective function, 
or cost function. A feasible solution that minimizes (or maximizes, if that is the goal) the 
objective function is called an optimal solution. 

In general, there will be several local minima and maxima, where a local minimum x* 
is defined as a point such that for some δ > 0 and all x such that 

;  

the formula 
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holds; that is to say, on some ball around x* all of the function values are greater 
than or equal to the value at that point. Local maxima are defined similarly. In general, 
it is easy to find local minima — additional facts about the problem (e.g. the function 
being convex) are required to ensure that the solution found is a global minimum. 

Notation 

Optimization problems are often expressed with special notation. Here are some 
examples: 

 

This asks for the minimum value for the expression x2 + 1, where x ranges over the 
real numbers R. The minimum value in this case is 1, occurring at x = 0. 

 

This asks for the maximum value for the expression 2x, where x ranges over the 
reals. In this case, there is no such maximum as the expression is unbounded, so the 
answer is "infinity" or "undefined". 

 

This asks for the value(s) of x in the interval [−∞, −1] which minimizes the expression 
x2 + 1. (The actual minimum value of that expression does not matter.) In this case, the 
answer is x = −1. 

 

This asks for the (x, y) pair(s) that maximize the value of the expression x·cos(y), 
with the added constraint that x lies in the interval [−5, 5]. (Again, the actual maximum 
value of the expression does not matter.) In this case, the solutions are the pairs of the 
form (5, 2πk) and (−5, (2k + 1)π), where k ranges over all integers. 

2.3.2.2 Techniques 

For twice-differentiable functions, unconstrained problems can be solved by finding 
the points where the gradient of the objective function is 0 (that is, the stationary 
points) and using the Hessian matrix to classify the type of each point. If the Hessian is 
positive definite, the point is a local minimum, if negative definite, a local maximum, 
and if indefinite it is some kind of saddle point. 

One can find the stationary points by starting with a guess for a stationary point, 
and then iterate towards it by using methods such as 
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 gradient descent  
 Newton's method  
 conjugate gradient  
 line search  

Should the objective function be convex over the region of interest, then any local 
minimum will also be a global minimum. There exist robust, fast numerical techniques 
for optimizing doubly differentiable convex functions. 

Constrained problems can often be transformed into unconstrained problems with 
the help of Lagrange multipliers. 

2.3.2.3 Use of Optimization Techniques 

No algorithm for optimizing general nonlinear functions exists that will always find 
the global optimum for a general nonlinear minimization problem in a reasonable 
amount of time. Since no single optimization technique is invariably superior to others, 
PROC CALIS provides a variety of optimization techniques that work well in various 
circumstances. However, you can devise problems for which none of the techniques in 
PROC CALIS will find the correct solution. All optimization techniques in PROC CALIS 
use O(n2) memory except the conjugate gradient methods, which use only O(n) of 
memory and are designed to optimize problems with many parameters.  

The PROC CALIS statement NLOPTIONS can be especially helpful for tuning 
applications with nonlinear equality and inequality constraints on the parameter 
estimates. Some of the options available in NLOPTIONS may also be invoked as PROC 
CALIS options. The NLOPTIONS statement can specify almost the same options as the 
SAS/OR NLP procedure.  

Nonlinear optimization requires the repeated computation of  

 the function value (optimization criterion)  
 the gradient vector (first-order partial derivatives)  
 for some techniques, the (approximate) Hessian matrix (second-order 

partial derivatives)  
 values of linear and nonlinear constraints  
 the first-order partial derivatives (Jacobian) of nonlinear constraints  

For the criteria used by PROC CALIS, computing the gradient takes more computer 
time than computing the function value, and computing the Hessian takes much more 
computer time and memory than computing the gradient, especially when there are 
many parameters to estimate. Unfortunately, optimization techniques that do not use 
the Hessian usually require many more iterations than techniques that do use the 
(approximate) Hessian, and so they are often slower. Techniques that do not use the 
Hessian also tend to be less reliable (for example, they may terminate at local rather 
than global optima).  
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Problems in rigid body dynamics (in particular articulated rigid body dynamics) often 
require mathematical programming techniques, since you can view rigid body dynamics 
as attempting to solve an ordinary differential equation on a constraint manifold; the 
constraints are various nonlinear geometric constraints such as "these two points must 
always coincide", "this surface must not penetrate any other", or "this point must 
always lie somewhere on this curve". Also, the problem of computing contact forces can 
be done by solving a linear complementarity problem, which can also be viewed as a QP 
(quadratic programming problem). 

Many design problems can also be expressed as optimization programs. This 
application is called design optimization. One recent and growing subset of this field is 
multidisciplinary design optimization, which, while useful in many problems, has in 
particular been applied to aerospace engineering problems. 

Another field that uses optimization techniques extensively is operations research 

The available optimization techniques are displayed in Table 1 and can be chosen by 
the TECH=name option.  

Table1: Optimization Techniques  

TECH
=  

Optimization Technique  

LEVM
AR 

Levenberg-Marquardt Method 

TRUR
EG 

Trust-Region Method 

NEW
RAP 

Newton-Raphson Method with Line Search 

NRRI
DG 

Newton-Raphson Method with Ridging 

QUAN
EW 

Quasi-Newton Methods (DBFGS, DDFP, BFGS, 
DFP) 

DBLD
OG 

Double-Dogleg Method (DBFGS, DDFP) 

CON
GRA 

Conjugate Gradient Methods (PB, FR, PR, CD) 

Table  shows, for each optimization technique, which derivatives are needed (first-
order or second-order) and what kind of constraints (boundary, linear, or nonlinear) can 
be imposed on the parameters.  
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The Levenberg-Marquardt, trust-region, and Newton-Raphson techniques are 
usually the most reliable, work well with boundary and general linear constraints, and 
generally converge after a few iterations to a precise solution. However, these 
techniques need to compute a Hessian matrix in each iteration. For HESSALG=1, this 
means that you need about 4(n(n+1)/2)t bytes of work memory (n = the number of 
manifest variables, t = the number of parameters to estimate) to store the Jacobian and 
its cross product. With HESSALG=2 or HESSALG=3, you do not need this work 
memory, but the use of a utility file increases execution time. Computing the 
approximate Hessian in each iteration can be very time- and memory-consuming, 
especially for large problems (more than 60 or 100 parameters, depending on the 
computer used). For large problems, a quasi-Newton technique, especially with the 
BFGS update, can be far more efficient.  

For a poor choice of initial values, the Levenberg-Marquardt method seems to be 
more reliable.  

If memory problems occur, you can use one of the conjugate gradient techniques, 
but they are generally slower and less reliable than the methods that use second-order 
information.  

There are several options to control the optimization process. First of all, you can 
specify various termination criteria. You can specify the GCONV= option to specify a 
relative gradient termination criterion. If there are active boundary constraints, only 
those gradient components that correspond to inactive constraints contribute to the 
criterion. When you want very precise parameter estimates, the GCONV= option is 
useful. Other criteria that use relative changes in function values or parameter 
estimates in consecutive iterations can lead to early termination when active 
constraints cause small steps to occur. The small default value for the FCONV= option 
helps prevent early termination. Using the MAXITER= and MAXFUNC= options enables 
you to specify the maximum number of iterations and function calls in the optimization 
process. These limits are especially useful in combination with the INRAM= and 
OUTRAM= options; you can run a few iterations at a time, inspect the results, and 
decide whether to continue iterating.  

2.3.2.4 Nonlinearly Constrained QN Optimization 

The algorithm used for nonlinearly constrained quasi-Newton optimization is an 
efficient modification of Powell's  Variable Metric Constrained WatchDog (VMCWD) 
algorithm. A similar but older algorithm (VF02AD) is part of the Harwell library. Both 
VMCWD and VF02AD use Fletcher's VE02AD algorithm (also part of the Harwell library) 
for positive definite quadratic programming. The PROC CALIS QUANEW implementation 
uses a quadratic programming subroutine that updates and downdates the 
approximation of the Cholesky factor when the active set changes. The nonlinear 
QUANEW algorithm is not a feasible point algorithm, and the value of the objective 
function need not decrease (minimization) or increase (maximization) monotonically. 
Instead, the algorithm tries to reduce a linear combination of the objective function and 
constraint violations, called the merit function.  
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The following are similarities and differences between this algorithm and VMCWD:  

 A modification of this algorithm can be performed by specifying 

VERSION=1, which replaces the update of the Lagrange vector with the original 
update of Powell, which is used in VF02AD. This can be helpful for some 
applications with linearly dependent active constraints.  

 If the VERSION= option is not specified or VERSION=2 is specified, the 

evaluation of the Lagrange vector is performed in the same way as Powell 
describes.  

 Instead of updating an approximate Hessian matrix, this algorithm uses 
the dual BFGS (or DFP) update that updates the Cholesky factor of an 
approximate Hessian. If the condition of the updated matrix gets too bad, a 
restart is done with a positive diagonal matrix. At the end of the first iteration 
after each restart, the Cholesky factor is scaled.  

 The Cholesky factor is loaded into the quadratic programming subroutine, 
automatically ensuring positive definiteness of the problem. During the quadratic 
programming step, the Cholesky factor of the projected Hessian matrix Z'kGZk 
and the QT decomposition are updated simultaneously when the active set 
changes. Refer to Gill et al. (1984) for more information.  

 The line-search strategy is very similar to that of Powell. However, this 
algorithm does not call for derivatives during the line search; hence, it generally 
needs fewer derivative calls than function calls. The VMCWD algorithm always 
requires the same number of derivative and function calls. It was also found in 
several applications of VMCWD that Powell's line-search method sometimes uses 
steps that are too long during the first iterations. In those cases, you can use the 
INSTEP= option specification to restrict the step length of the first iterations.  

 Also the watchdog strategy is similar to that of Powell (1982a, 1982b). 
However, this algorithm doesn't return automatically after a fixed number of 
iterations to a former better point. A return here is further delayed if the 
observed function reduction is close to the expected function reduction of the 
quadratic model.  

 Although Powell's termination criterion still is used (as FCONV2), the 
QUANEW implementation uses two additional termination criteria (GCONV and 
ABSGCONV).  

This algorithm is automatically invoked when you specify the NLINCON statement. 
The nonlinear QUANEW algorithm needs the Jacobian matrix of the first-order 
derivatives (constraints normals) of the constraints  
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where nc is the number of nonlinear constraints for a given point x.  

You can specify two update formulas with the UPDATE= option:  

 UPDATE=DBFGS performs the dual BFGS update of the Cholesky factor of 
the Hessian matrix. This is the default.  

 UPDATE=DDFP performs the dual DFP update of the Cholesky factor of 
the Hessian matrix.  

This algorithm uses its own line-search technique. All options and parameters 
(except the INSTEP= option) controlling the line search in the other algorithms do not 
apply here. In several applications, large steps in the first iterations are troublesome. 
You can specify the INSTEP= option to impose an upper bound for the step size 
during the first five iterations. The values of the LCSINGULAR=, LCEPSILON=, and 
LCDEACT= options, which control the processing of linear and boundary constraints, 
are valid only for the quadratic programming subroutine used in each iteration of the 
nonlinear constraints QUANEW algorithm.  

2.3.2.5 Optimization and Iteration History 

The optimization and iteration histories are displayed by default because it is 
important to check for possible convergence problems.  

The optimization history includes the following summary of information about the 
initial state of the optimization.  

 the number of constraints that are active at the starting point, or more 
precisely, the number of constraints that are currently members of the working 
set. If this number is followed by a plus sign, there are more active constraints, 
of which at least one is temporarily released from the working set due to negative 
Lagrange multipliers.  

 the value of the objective function at the starting point  
 if the (projected) gradient is available, the value of the largest absolute 

(projected) gradient element  
 for the TRUREG and LEVMAR subroutines, the initial radius of the trust 

region around the starting point  

The optimization history ends with some information concerning the optimization 
result:  

 the number of constraints that are active at the final point, or more 
precisely, the number of constraints that are currently members of the working 
set. If this number is followed by a plus sign, there are more active constraints, 
of which at least one is temporarily released from the working set due to negative 
Lagrange multipliers.  

 the value of the objective function at the final point  
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 if the (projected) gradient is available, the value of the largest absolute 
(projected) gradient element  

 other information specific to the optimization technique  

The iteration history generally consists of one line of displayed output containing the 
most important information for each iteration. The _LIST_ variable (see the "SAS 
Program Statements" section) also enables you to display the parameter estimates and 
the gradient in some or all iterations.  

The iteration history always includes the following (the words in parentheses are the 
column header output):  

 the iteration number (Iter)  
 the number of iteration restarts (rest)  
 the number of function calls (nfun)  
 the number of active constraints (act)  
 the value of the optimization criterion (optcrit)  
 the difference between adjacent function values (difcrit)  
 the maximum of the absolute gradient components corresponding to 

inactive boundary constraints (maxgrad)  

An apostrophe trailing the number of active constraints indicates that at least one of 
the active constraints is released from the active set due to a significant Lagrange 
multiplier.  

For the Levenberg-Marquardt technique (LEVMAR), the iteration history also 
includes the following information:  

 An asterisk trailing the iteration number means that the computed 
Hessian approximation is singular and consequently ridged with a positive 
lambda value. If all or the last several iterations show a singular Hessian 
approximation, the problem is not sufficiently identified. Thus, there are other 
locally optimal solutions that lead to the same optimum function value for 
different parameter values. This implies that standard errors for the parameter 
estimates are not computable without the addition of further constraints.  

 the value of the Lagrange multiplier (lambda); this is 0 if the optimum of 
the quadratic function approximation is inside the trust region (a trust-region-
scaled Newton step can be performed) and is greater than 0 when the optimum of 
the quadratic function approximation is located at the boundary of the trust 
region (the scaled Newton step is too long to fit in the trust region and a 
quadratic constraint optimization is performed). Large values indicate 
optimization difficulties. For a nonsingular Hessian matrix, the value of lambda 
should go to 0 during the last iterations, indicating that the objective function 
can be well approximated by a quadratic function in a small neighborhood of the 
optimum point. An increasing lambda value often indicates problems in the 
optimization process.  
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 the value of the ratio (rho) between the actually achieved difference in 
function values and the predicted difference in the function values on the basis 
of the quadratic function approximation. Values much less than 1 indicate 

optimization difficulties. The value of the ratio indicates the goodness of the 

quadratic function approximation; in other words, means that the radius 

of the trust region has to be reduced. A fairly large value of means that the 
radius of the trust region need not be changed. And a value close to or larger 
than 1 means that the radius can be increased, indicating a good quadratic 
function approximation.  

For the Newton-Raphson technique (NRRIDG), the iteration history also includes the 
following information:  

 the value of the ridge parameter. This is 0 when a Newton step can be 
performed, and it is greater than 0 when either the Hessian approximation is 
singular or a Newton step fails to reduce the optimization criterion. Large values 
indicate optimization difficulties.  

 the value of the ratio (rho) between the actually achieved difference in 
function values and the predicted difference in the function values on the basis 
of the quadratic function approximation. Values much less than 1.0 indicate 
optimization difficulties.  

For the Newton-Raphson with line-search technique (NEWRAP), the iteration history 
also includes  

 the step size (alpha) computed with one of the line-search algorithms  
 the slope of the search direction at the current parameter iterate. For 

minimization, this value should be significantly negative. Otherwise, the line-
search algorithm has difficulty reducing the function value sufficiently.  

For the Trust-Region technique (TRUREG), the iteration history also includes the 
following information:  

 An asterisk after the iteration number means that the computed Hessian 
approximation is singular and consequently ridged with a positive lambda value.  

 the value of the Lagrange multiplier (lambda). This value is zero when the 
optimum of the quadratic function approximation is inside the trust region (a 
trust-region-scaled Newton step can be performed) and is greater than zero when 
the optimum of the quadratic function approximation is located at the boundary 
of the trust region (the scaled Newton step is too long to fit in the trust region 
and a quadratically constrained optimization is performed). Large values indicate 
optimization difficulties. As in Gay (1983), a negative lambda value indicates the 
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special case of an indefinite Hessian matrix (the smallest eigenvalue is negative 
in minimization).  

 the value of the radius of the trust region. Small trust region radius 
values combined with large lambda values in subsequent iterations indicate 
optimization problems.  

For the quasi-Newton (QUANEW) and conjugate gradient (CONGRA) techniques, the 
iteration history also includes the following information:  

 the step size (alpha) computed with one of the line-search algorithms  
 the descent of the search direction at the current parameter iterate. This 

value should be significantly smaller than 0. Otherwise, the line-search algorithm 
has difficulty reducing the function value sufficiently.  

Frequent update restarts (rest) of a quasi-Newton algorithm often indicate numerical 
problems related to required properties of the approximate Hessian update, and they 
decrease the speed of convergence. This can happen particularly if the ABSGCONV= 
termination criterion is too small, that is, when the requested precision cannot be 
obtained by quasi-Newton optimization. Generally, the number of automatic restarts 
used by conjugate gradient methods are much higher.  

For the nonlinearly constrained quasi-Newton technique, the iteration history also 
includes the following information:  

 the maximum value of all constraint violations,  

 

 the value of the predicted function reduction used with the GCONV and 
FCONV2 termination criteria,  

 

 the step size of the quasi-Newton step. Note that this algorithm works 
with a special line-search algorithm.  

 the maximum element of the gradient of the Lagrange function,  
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For the double dogleg technique, the iteration history also includes the following 
information:  

 the parameter of the double-dogleg step. A value corresponds to 
the full (quasi) Newton step.  

 the slope of the search direction at the current parameter iterate. For 
minimization, this value should be significantly negative.  

2.3.2.6 Line-Search Methods 

In each iteration k, the (dual) quasi-Newton, hybrid quasi-Newton, conjugate 
gradient, and Newton-Raphson minimization techniques use iterative line-search 
algorithms that try to optimize a linear, quadratic, or cubic approximation of the 
nonlinear objective function f of n parameters x along a feasible descent search 
direction s(k)  

 

by computing an approximately optimal scalar .Since the outside iteration 
process is based only on the approximation of the objective function, the inside iteration 
of the line-search algorithm does not have to be perfect. Usually, it is satisfactory that 
the choice of significantly reduces (in a minimization) the objective function. Criteria 
often used for termination of line-search algorithms are the Goldstein conditions 
(Fletcher 1987).  

Various line-search algorithms can be selected by using the LIS= option. The line-
search methods LIS=1, LIS=2, and LIS=3 satisfy the left-hand-side and right-hand-side 
Goldstein conditions (refer to Fletcher 1987). When derivatives are available, the line-
search methods LIS=6, LIS=7, and LIS=8 try to satisfy the right-hand-side Goldstein 
condition; if derivatives are not available, these line-search algorithms use only function 
calls.  
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The line-search method LIS=2 seems to be superior when function evaluation 
consumes significantly less computation time than gradient evaluation. Therefore, 
LIS=2 is the default value for Newton-Raphson, (dual) quasi-Newton, and conjugate 
gradient optimizations.  

2.3.2.7 Restricting the Step Length 

Almost all line-search algorithms use iterative extrapolation techniques that can 
easily lead to feasible points where the objective function f is no longer defined 
(resulting in indefinite matrices for ML estimation) or is difficult to compute (resulting in 
floating point overflows). Therefore, PROC CALIS provides options that restrict the step 
length or trust region radius, especially during the first main iterations.  

The inner product g's of the gradient g and the search direction s is the slope of 

along the search direction s with step length . The default starting 

value in each line-search algorithm ( )during the main 
iteration k is computed in three steps.  

1. Use either the difference df=|f(k) - f(k-1)| of the function values during the 
last two consecutive iterations or the final stepsize value of the previous 

iteration k-1 to compute a first value .  
o Using the DAMPSTEP<=r> option:  

 

The initial value for the new step length can be no larger than r times 
the final step length of the previous iteration. The default is r=2.  

o Not using the DAMPSTEP option:  

 

with  
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This value of can be too large and can lead to a difficult or 
impossible function evaluation, especially for highly nonlinear functions 
such as the EXP function.  

2. During the first five iterations, the second step enables you to reduce 

to a smaller starting value using the INSTEP=r option:  

 

After more than five iterations, is set to .  

3. The third step can further reduce the step length by  

 

where u is the maximum length of a step inside the feasible region.  

The INSTEP=r option lets you specify a smaller or larger radius of the trust region 
used in the first iteration by the trust-region, double-dogleg, and Levenberg-Marquardt 
algorithm. The default initial trust region radius is the length of the scaled gradient 

(Mor  1978). This step corresponds to the default radius factor of r=1. This choice is 
successful in most practical applications of the TRUREG, DBLDOG, and LEVMAR 
algorithms. However, for bad initial values used in the analysis of a covariance matrix 
with high variances, or for highly nonlinear constraints (such as using the EXP 
function) in your programming code, the default start radius can result in arithmetic 
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overflows. If this happens, you can try decreasing values of INSTEP=r, 0 < r < 1, until 
the iteration starts successfully. A small factor r also affects the trust region radius of 

the next steps because the radius is changed in each iteration by a factor 

depending on the ratio. Reducing the radius corresponds to increasing the ridge 
parameter that produces smaller steps directed closer toward the gradient direction.  

2.3.2.8 Techniques of global optimization 

Global Optimisation (GO) problems involving a given cost function arise in many 
areas of technology, industry, as well as in natural, economical and social sciences, 
having received enormous attention in recent years, mostly due to the enormous 
increase in computational power which has taken place in the last decade.  

The figure below provides a trivial two-dimensional example of the optimization 
paradigm, where one wants to find the value of the coordinates (x,y) for which C(x,y) has 
its absolute minimum - notice that the figure shows only a portion of the total domain 
of C(x,y); the sphere symbolizes a molecule the energy of which changes as the 
coordinates (x,y) change. 

 

As the number of independent variables of the cost function increases, the number 
of minima tends to increase exponentially. As such, global optimization problems are 
typical examples of NP-complete problems, that is, problems considered generally 
intractable.  

For a large number of independent variables, and for the most general forms of the 
cost-function, Simulated Annealing (SA) constitutes one of the simplest yet powerful 
methods to perform GO. However, it is well known that SA requires many evaluations of 
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the cost-function in order to provide reliable results, a feature which becomes 
prohibitively expensive whenever the computation of the cost-function is itself 
expensive, as happens too frequently. 

In this project new approaches are studied and developed along two main lines of 
research:  

 methods that do not require computation of the derivatives of the cost-
function, such as Jump Annealing (JA) - which constitutes a very efficient 
improvement of the original SA - as well as more involved techniques, such as 
Genetic Algorithms, Memetic Algoithms, Differential Evolution, etc.  

 methods which make explicit use of the multi-dimensional gradients of the 
cost-function, and which i) either do not involve modifications of the cost 
function, such as modified conjugate-gradient techniques, ii) or which map the 
cost-function in more convenient topologically derived functions, such as TRUST.  

Summary: 

In typical engineering processes, often there are complicated constraints and the 
objective function is not easy to calculate. This makes the selection and systematic 
application of suitable optimization techniques a critical task, which is the thrust of our 
research in this area.  

Sometimes the evaluation of the objective function in practical engineering problems 
may require a significant amount of computational time and resources. Building an 
approximate response surface for the objective function and using this response surface 
for optimization is an efficient alternative.  

Model Questions: 

1. What is optimization and its uses? 
2. Briefly explain the various techniques of optimization? 

References: 

1. Basic Optimization Techniques By Jim Hedger  
2. Homotopy Optimization Methods and Protein Structure Prediction by Daniel M. 

Dunlavy 
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Objective: 

This topic provides an overview of the more common system development Process 
Models, used to guide the analysis, design, development, maintenance of information 
systems, and  errors ( problems) involved in them. 

2.3.3.1 Introduction 
This topic provides an overview of the more common system development Process 

Models, used to guide the analysis, design, development, and maintenance of 
information systems. There are many different methods and techniques used to direct 
the life cycle of a software development  project and most real-world models are 
customized adaptations of the generic models. While each is designed for a specific 
purpose or reason, most have similar goals and share many common tasks.  

2.3.3.2 Typical Tasks in the Development Process Life Cycle 
Professional system developers and the customers they serve share a common goal 

of building information systems that effectively support business process objectives. In 
order to ensure that cost-effective, quality systems are developed which address an 
organization’s business needs, developers employ some kind of system development 
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Process Model to direct the project’s life cycle. Typical activities performed include the 
following: 

 System conceptualization 
 System requirements and benefits analysis 
 Project adoption and project scoping 
 System design 
 Specification of software requirements 
 Architectural design 
 Detailed design 
 Unit development 
 Software integration & testing 
 System integration & testing 
 Installation at site 
 Site testing and acceptance 
 Training and documentation 
 Implementation 
 Maintenance 

Process Model/Life-Cycle Variations 
While nearly all system development efforts engage in some combination of the 

above tasks, they can be differentiated by the feedback and control methods employed 
during development and the timing of activities. Most system development Process 
Models in use today have evolved from three primary approaches: Ad-hoc Development, 
Waterfall Model, and the Iterative process. 

2.3.3.3 Ad-hoc Development 
Early systems development often took place in a rather chaotic and haphazard 

manner, relying entirely on the skills and experience of the individual staff members 
performing the work. Today, many organizations still practice Ad-hoc Development 
either entirely or for a certain subset of their development (e.g. small projects). The 
Software Engineering Institute at Carnegie Mellon University2 points out that with Ad-
hoc 

Process Models, “process capability is unpredictable because the software process is 
constantly changed or modified as the work progresses. Schedules, budgets, 
functionality, and product quality are generally (inconsistent). Performance depends on 
the capabilities of individuals and varies with their innate skills, knowledge, and 
motivations. There are few stable software processes in evidence, and performance can 
be predicted only by individual rather than organizational capability.” 3 
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Figure 1. Ad-hoc Development 
“Even in undisciplined organizations, however, some individual software projects 

produce  excellent results. When such projects succeed, it is generally through the 
heroic efforts of a dedicated team, rather than through repeating the proven methods of 
an organization with a mature software process. In the absence of an organization-wide 
software process, repeating results depends entirely on having the same individuals 
available for the next project. Success that rests solely on the availability of specific 
individuals provides no basis for long-term productivity and quality improvement 
throughout an organization.”4 

2.3.3.4 The Waterfall Model 
The Waterfall Model is the earliest method of structured system development. 

Although it has come under attack in recent years for being too rigid and unrealistic 
when it comes to quickly meeting customer’s needs, the Waterfall Model is still widely 
used. It is attributed with providing the theoretical basis for other Process Models, 
because it most closely resembles a “generic” model for software development. 

Feedback & Error Correction 

 
Figure 2. Waterfall Model 
The Waterfall Model consists of the following steps: 

System Conceptualization. System Conceptualization refers to the consideration 
of all aspects of the targeted business function or process, with the goals of determining 
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how each of those aspects relates with one another, and which aspects will be 
incorporated into the system. 

Systems Analysis. This step refers to the gathering of system requirements, with 
the goal of determining how these requirements will be accommodated in the system. 
Extensive communication between the customer and the developer is essential.  

System Design. Once the requirements have been collected and analyzed, it is 
necessary to identify in detail how the system will be constructed to perform necessary 
tasks. More specifically, the System Design phase is focused on the data requirements 
(what information will be processed in the system?), the software construction (how will 
the application be constructed?), and the interface construction (what will the system 
look like? What standards will be followed?). 

Coding. Also known as programming, this step involves the creation of the system 
software. Requirements and systems specifications from the System Design step are 
translated into machine readable computer code. 

Testing. As the software is created and add d to the developing system, testing is 
performed to ensure that it is working correctly and efficiently. Testing is generally  
focused on two areas: internal efficiency and external effectiveness. The goal of external 
effectiveness testing is to verify that the software is functioning according to system 
design, and that it is performing all necessary functions or sub-functions. The goal of 
internal testing is to make sure that the computer code is efficient, standardized, and 
well documented. Testing can be a labor-intensive process, due to its iterative nature. 

2.2.3.5 Iterative Development 
The problems with the Waterfall Model created a demand for a new method of 

developing systems which could provide faster results, require less up-front 
information, and offer greater flexibility. With Iterative Development, the project is 
divided into small parts. This allows the development team to demonstrate results 
earlier on in the process and obtain valuable feedback from system users. Often, each 
iteration is actually a mini-Waterfall process with the feedback from one phase 
providing vital information for the design of the next phase. In a variation of this model, 
the software products which are produced at the end of each step (or series of steps) 
can go into production immediately as incremental releases. 
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Figure 3. Iterative Development 
Variations on Iterative Development 
A number of Process Models have evolved from the Iterative approach. All of these 

methods produce some demonstrable software product early on in the process in order 
to obtain valuable feedback from system users or other members of the project team. 
Several of these methods are described below. 

2.3.3.6 Prototyping 
The Prototyping Model was developed on the assumption that it is often difficult to 

know all of your requirements at the beginning of a project. Typically, users know many 
of the objectives that they wish to address with a system, but they do not know all the 
nuances of the data, nor do they know the details of the system features and 
capabilities. The Prototyping Model allows for these conditions, and offers a development 
approach that yields results without first requiring all information up-front . When 
using the Prototyping Model, the developer builds a simplified version of the proposed 
system and presents it to the customer for consideration as part of the development 
process. The customer in turn provides feedback to the developer, who goes back to 
refine the system requirements to incorporate the additional information. Often, the 
prototype code is thrown away and entirely new programs are developed once 
requirements are identified. There are a few different approaches that may be followed 
when using the Prototyping Model:  

creation of the major user interfaces without any substantive coding in the 
background in order to give the users a “feel” for what the system will look like,  
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development of an abbreviated version of the system that performs a limited 
subset of functions; development of a paper system (depicting proposed screens, 
reports, relationships etc.), or 

use of an existing system or system components to demonstrate some functions 
that will be included in the developed system. 

Prototyping is comprised of the following steps: 

Requirements Definition/Collection. Similar to the Conceptualization phase of 
the Waterfall Model, but not as comprehensive. The information collected is usually 
limited to a subset of the complete system requirements. 

Design. Once the initial layer of requirements information is collected, or new 
information is gathered, it is rapidly integrated into a new or existing design so that it 
may be folded into the prototype. 

Prototype Creation/Modification. The information from the design is rapidly 
rolled into a prototype. This may mean the creation/modification of paper information, 
new coding, or modifications to existing coding. 

Assessment. The prototype is presented to the customer for review. Comments 
and suggestions are collected from the customer. 

Prototype Refinement. Information collected from the customer is digested and 
the prototype is refined. The developer revises the prototype to make it more effective 
and efficient. 

System Implementation. In most cases, the system is rewritten once 
requirements are understood. Sometimes, the Iterative process eventually produces a 
working system that can be the cornserstone for the fully functional system. 

Variation of the Prototyping Model 
A popular variation of the Prototyping Model is called Rapid Application 

Development (RAD). 
RAD introduces strict time limits on each development phase and relies heavily on 

rapid application tools which allow for quick development. 

2.2.3.7 The Exploratory Model 
In some situations it is very difficult, if not impossible, to identify any of the 

requirements for a system at the beginning of the project. Theoretical areas such as 
Artificial Intelligence are candidates for using the Exploratory Model, because much of 
the research in these areas is based on guess-work, estimation, and hypothesis. In 
these cases, an assumption is made as to how the system might work and then rapid 
iterations are used to quickly incorporate suggested changes and build a usable system. 
A distinguishing characteristic of the Exploratory Model is the absence of precise 
specifications. Validation is based on adequacy of the end result and not on its 
adherence to pre-conceived requirements.The Exploratory Model is extremely simple in 
its construction; it is composed of the following steps: 
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Initial Specification Development. Using whatever information is immediately 
available, a brief System Specification is created to provide a rudimentary starting 
point. 

System Construction/Modification. A system is created and/or modified 
according to whatever information is available. 

System Test. The system is tested to see what it does, what can be learned from 
it, and how it may be improved. 

System Implementation. After many iterations of the previous two steps 
produce satisfactory results, the system is dubbed as “finished” and implemented.  

2.3.3.8 The Spiral Model 
The Spiral Model was designed to include the best features from the Waterfall and 

Prototyping Models, and introduces a new component - risk-assessment. The term 
“spiral” is used to describe the process that is followed as the development of the 
system takes place. Similar to the Prototyping Model, an initial version of the system is 
developed, and then repetitively modified based on input received from customer 
evaluations. Unlike the Prototyping Model, however, the development of each version of 
the system is carefully designed using the steps involved in the 

Waterfall Model. With each iteration around the spiral (beginning at the center and 
working outward), progressively more complete versions of the system are built. 

 
Figure 4. Spiral Model 
Risk assessment is included as a step in the development process as a means of 

evaluating each version of the system to determine whether or not development should 
continue. If the customer  decides that any identified risks are too great, the project 
may be halted. For example, if a substantial increase in cost or project completion time 
is identified during one phase of risk assessment, the customer or the developer may 
decide that it does not make sense to continue with the project, since the increased cost 
or lengthened timeframe may make continuation of the project impractical or 
unfeasible. 

The Spiral Model is made up of the following steps: 
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Project Objectives. Similar to the system conception phase of the Waterfall 
Model. Objectives are determined, possible obstacles are identified and alternative 
approaches are weighed. 

Risk Assessment. Possible alternatives are examined by the developer, and 
associated risks/problems are identified. Resolutions of the risks are evaluated and 
weighed in the consideration of project continuation. Sometimes prototyping is used to 
clarify needs. 

Engineering & Production. Detailed requirements are determined and the 
software piece is developed. 

Planning and Management. The customer is given an opportunity to analyze the 
results of the version created in the Engineering step and to offer feedback to the 
developer. 

2.3.3.9 The Reuse Model 
The basic premise behind the Reuse Model is that systems should be built using 

existing components, as opposed to custom-building new components. The Reuse Model 
is clearly suited to Object-Oriented computing environments, which have become one of 
the premiere technologies in today’s system development industry. Within the Reuse 
Model, libraries of software modules are maintained that can be copied for use in any 
system. These components are of two types: procedural modules and database modules. 
When building a new system, the developer will “borrow” a copy of a module from the 
systemlibrary and then plug it into a function or procedure. If the needed module is not 
available, the developer will build it, and store a copy in the system library for future 
usage. If the modules are well engineered, the developer with minimal changes can 
implement them.  

The Reuse Model consists of the following steps: 

Definition of Requirements. Initial system requirements are collected. These 
requirements are usually a subset of complete system requirements. 

Definition of Objects. The objects, which can support the necessary system 
components, are identified. 

Collection of Objects. The system libraries are scanned to determine whether or 
not the needed objects are available. Copies of the needed objects are downloaded from 
the system. 

Creation of Customized Objects. Objects that have been identified as needed, 
but that are not available in the library are created. 

Prototype Assembly. A prototype version of the system is created and/or 
modified using the necessary objects. 

Prototype Evaluation. The prototype is evaluated to determine if it adequately 
addresses customer needs and requirements. 

Requirements Refinement. Requirements are further refined as a more detailed 
version of the prototype is created. 
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Objects Refinement. Objects are refined to reflect the changes in the 
requirements. 

2.3.3.10 Creating and Combining Models 
In many cases, parts and procedures from various Process Models are integrated to 

support system development. This occurs because most models were designed to 
provide a framework for achieving success only under a certain set of circumstances. 
When the circumstances change beyond the limits of the model, the results from using 
it are no longer predictable. When this situation occurs it is sometimes necessary to 
alter the existing model to accommodate the change in circumstances, or adopt or 
combine different models to accommodate the new circumstances. 

The selection of an appropriate Process Model hinges primarily on two factors: 
organizational environment and the nature of the application. Frank Land, from the 
London School of Economics, suggests that suitable approaches to system analysis, 
design, development, and implementation be based on the relationship between the 
information system and its organizational environment.8 Four categories of 
relationships are identified: 

The Unchanging Environment. Information requirements are unchanging for 
the lifetime of the system (e.g. those depending on scientific algorithms). Requirements 
can be stated unambiguously and comprehensively. A high degree of accuracy is 
essential. In this environment, formal methods (such as the Waterfall or Spiral Models) 
would provide the completeness and precision required by the system. 

The Turbulent Environment. The organization is undergoing constant change 
and system requirements are always changing. A system developed on the basis of the 
conventional Waterfall Model would be, in part; already obsolete by the time it is 
implemented. Many business systems fall into this category. Successful methods would 
include those, which incorporate rapid development, some throwaway code (such as in 
Prototyping), the maximum use of reusable code, and a highly modular design. 

The Uncertain Environment. The requirements of the system are unknown or 
uncertain. It is not possible to define requirements accurately ahead of time because 
the situation is new or the system being employed is highly innovative. Here, the 
development methods must emphasize learning. Experimental Process Models, which 
take advantage of prototyping and rapid development, are most appropriate.  

The Adaptive Environment. The environment may change in reaction to the 
system being developed, thus initiating a changed set of requirements. Teaching 
systems and expert systems fall into this category. For these systems, adaptation is key, 
and the methodology must allow for a straightforward introduction of new rules.  

Summary 
The evolution of system development Process Models has reflected the changing 

needs of computer customers. As customers demanded faster results, more involvement 
in the development process, and the inclusion of measures to determine risks and 
effectiveness, the methods for developing systems changed. In addition, the software 
and hardware tools used in the industry changed (and continue to change) 
substantially. Faster networks and hardware supported the use of smarter and faster 
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operating systems that paved the way for new languages and databases, and 
applications that were far more powerful than any predecessors. These rapid and 
numerous changes in the system development environment simultaneously spawned 
the development of more practical new Process Models and the demise of older models 
that were no longer useful. 

 

Model Questions: 
1. Explain various physical construction models and the problems facing in them? 

References: 
1. G Walsham “Interpreting Information Systems in Organizations”, John Wiley, 
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2. Automatic Construction of Accurate Models of Physical Systems, by Elizabeth 
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Objective: 

In the previous lesson we have learned about the construction of models. The present 
lesson discusses the problems (errors) associated with those construction models. 

2.3.4.1 The Waterfall Model 

Problems/Challenges associated with the Waterfall Model 

Although the Waterfall Model has been used extensively over the years in the 
production of many quality systems, it is not without its problems. In recent years it has 
come under attack, due to its rigid design and inflexible procedure. Criticisms fall into the 
following categories:  

Real projects rarely follow the sequential flow that the model proposes. 

At the beginning of most projects there is often a great deal of uncertainty about 
requirements and goals, and it is therefore difficult for customers to identify these criteria 
on a detailed level. The model does not accommodate this natural uncertainty very well. 

Developing a system using the Waterfall Model can be a long, painstaking process that 
does not yield a working version of the system until late in the process. 
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2.3.4.2 Iterative Development 

Problems/Challenges associated with the Iterative Model 

While the Iterative Model addresses many of the problems associated with the Waterfall 
Model, it does present new challenges. 

The user community needs to be actively involved throughout the project. While this 
involvement is a positive for the project, it is demanding on the time of the staff nd can add 
project delay. 

Communication and coordination skills take center stage in project development.  

Informal requests for improvement after each phase may lead to confusion -- a 
controlled mechanism for handling substantive requests needs to be developed. 

The Iterative Model can lead to “scope creep,” since user feedback following each 
phase may lead to increased customer demands. As users see the system develop, they 
may realize the potential of other system capabilities which would enhance their work. 

2.3.4.3 Prototyping 

Problems/Challenges associated with the Prototyping Model 

Criticisms of the Prototyping Model generally fall into the following categories: 

Prototyping can lead to false expectations. Prototyping often creates a situation 
where the customer mistakenly believes that the system is “finished” when in fact it is not. 
More specifically, when using the Prototyping Model, the pre-implementation versions of a 
system are really nothing more than one-dimensional structures. The necessary, 
behindthe- scenes work such as database normalization, documentation, testing, and 
reviews for efficiency have not been done. Thus the necessary underpinnings for the 
system are not in place. 

Prototyping can lead to poorly designed systems. Because the primary goal of 
Prototyping is rapid development, the design of the system can sometimes suffer because 
the system is built in a series of “layers” without a global consideration of the integration of 
all other components. While initial software development is often built to be a “throwaway, 
” attempting to retroactively produce a solid system design can sometimes be problematic. 

2.3.4.4 The Exploratory Model 

Problems/Challenges associated with the Exploratory Model 

There are numerous criticisms of the Exploratory Model: 
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It is limited to use with very high-level languages that allow for rapid development, 
such as LISP. 

It is difficult to measure or predict its cost-effectiveness. 

As with the Prototyping Model, the use of the Exploratory Model often yields 
inefficient or crudely designed systems, since no forethought is given as to how to produce 
a streamlined system. 

2.3.4.5 The Spiral Model 

Problems/Challenges associated with the Spiral Model 

Due to the relative newness of the Spiral Model, it is difficult to assess its strengths and 
weaknesses. However, the risk assessment component of the Spiral Model provides both 
developers and customers with a measuring tool that earlier Process Models do not have. 
The measurement of risk is a feature that occurs everyday in real-life situations, but 
(unfortunately) not as often in the system development industry. The practical nature of 
this tool helps to make the Spiral Model a more realistic Process Model than some of its 
predecessors. 

2.3.4.6 The Reuse Model 

Problems/Challenges Associated with the Reuse Model 

A general criticism of the Reuse Model is that it is limited for use in object-oriented 
development environments. Although this environment is rapidly growing in popularity, it 
is currently used in only a minority of system development applications. 

2.3.4.7 Automatic Construction of Accurate Models of Physical Systems 

Traditional system identification addresses the task of inferring a mathematical model of a 
system from observations of that system. A controls engineer might perform this task, in 
its most basic form, by choosing a power series and matching its coefficients against the 
numerical observations via some sort of regression. This topic describes a computer 
program called pret that automates the system identi_cation process, at several levels, by 
building an artificial intelligence (AI) layer on top of a set of traditional system 
identification techniques. This AI layer automates the high-level stages of the identification 
process that are normally performed by a human expert. Qualitative, symbolic, and 
geometric reasoning are used to perform structural identification in the choice of the power 
series made by the engineer in the example above. This layer also automates another 
subtle and difficult part of the process: the choice and application of the appropriate lower-
level method for each stage of the process. pret works with ordinary differential equation 
(ODE) models, linear or nonlinear, in one variable or many. Its implementation is a 
hybridization of traditional numerical analysis methods, such as simulation and nonlinear 
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regression, with logic programming, computer vision techniques, and qualitative reasoning. 
The input consists of specific information about an individual system, in three forms: 

 the user's hypotheses about the physics involved 

 observations, interpreted and described by the user, symbolically or graphically, in 
varying formats and degrees of precision  

 physical measurements made directly and automatically on the system 

To construct an ODE model from this information, pret combines powerful mathematical 
formalisms, such as the link between the divergence of an ODE and the friction of the 
system that it describes, with domain-specific notions  such as force balances in 
mechanical systems to allow the types of custom-generated approximations" that are 
lacking in existing AI modeling programs. Two sets of rules, both of which may easily be 
changed or augmented by the user, play very different roles in the model-building task. 
Domain-specific rules are used to combine hypotheses into models a nontrivial task in a 
system with more than one degree of freedom, or a system in which physical effects couple 
to one another  while general rules about ODE properties are used by a custom deduction 
engine to infer facts from models and from observations. Both model- and observation-
based inferences are governed by specifications, which prescribe the resolution for 
quantities of interest. Any contradictions between the set of facts inferred from the 
observations and the set of facts inferred from a candidate model cause that model to be 
ruled out, in which case prêt tries a new combination of hypotheses. The first 
noncontradictory model in this sequence is returned as the answer. 

Acting upon simple mechanical examples like the parametrically driven pendulum, the 
current version of the program can efficiently perform these tasks and construct accurate 
ODE models. Of course, a model of a driven pendulum is not the research goal here 
physicists and engineers have spent centuries constructing and refining such models. This 
is simply an example one that was chosen because it is instantly recognizable and 
intuitively obvious to the reader. In spite of its simplicity, this example is interesting from 
an AI standpoint, as it demonstrates effective automated reasoning, even if only on the 
level performed by a 17th-century physicist. One of the ultimate goals of this research is to 
produce a tool that can construct a model of a black-box system using only information 
from its ports. Textbook examples like the pendulum are critical to such an endeavor, as 
one must, for obvious reasons, verify the tool's performance on such exercises before 
trusting the results that it produces when presented with difficult open problems. The 
following subsection is a brief review of AI and AI-specific perspectives on modeling 
research, coupled with a description of where this work fits within that context. The next 
section presents an overview of pret's function, illustrates its input syntax using a simple 
example, and discusses some of the more important implications of that syntax. Section 3 
outlines how the program uses that information, together with its encoded knowledge, to 
build an ODE model and closes with some discussion of related work, both in AI and other 
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fields. The final section wraps up the example, gives a status report, discusses future 
directions, and summarizes some of the most important issues of the research.  

Artificial Intelligence and Modeling 

Research in AI has two major goals: the understanding of the mechanisms that make 
human intelligence possible and the construction of intelligent artifacts. Both ends of this 
spectrum analytic and synthetic AI depend on each other: a theory of human intelligence 
may be verified by the intelligent behavior of an artifact that instantiates the theory. 
Conversely, an engineer who builds an intelligent system may obtain useful ideas by 
observing human experts. Intelligent behavior requires that the world knowledge that is 
relevant to the task at hand be available, along with the means to reason about it. The 
construction of an intelligent computer program requires a framework in which both 
knowledge and reasoning can be formalized. This formal system should be small and neat 
enough to be understandable and easy to maintain, and yet powerful enough to allow its 
users to think and formulate in the language and concepts of the application domain. An 
adequate representation formalism allows a natural formulation of the problem that is to 
be solved. Therefore, AI programmers typically try to represent knowledge declaratively 
rather than operationally: one formulates facts rather than instructions. Ideally, the 
declarative representation of the problem is executable. That means, it is not just part of 
the intelligent artifact but it is the artifact. 

Modeling physical systems is an ideal application for these ideas and techniques. One of 
the most powerful analysis tools in existence| and often one of the most difficult to create 
is a good model. Expert model-builders typically construct hierarchies of successively 
subtler representations that capture the salient features of a physical system, each 
incorporating more physics than the last. At each level in the hierarchy, the modeler 
assesses what properties and perspectives are important and uses approximations and 
abstractions to focus the model accordingly. The subtlety of the reasoning skills involved in 
this process, together with the intricacy of the interplay between them, has led many of its 
practitioners to classify modeling as \intuitive" and \an art." Any tool that effectively 
automated a coherent and useful part of this art would be of obvious practical importance 
in science and engineering: as a corroborator of existing models and designs, as a medium 
within which to instruct newcomers, and as an intelligent assistant, whose aid allows more 
time and creative thought to be devoted to other demanding tasks. The computer program 
pret described in this paper is exactly such an automatic modeler. This work falls on the 
\intelligent artifact" end of the AI spectrum | its focus  is not to construct a cognitive 
model of the thought process of a physicist or an engineer when he or she builds a model 
of a physical system, but rather to build a useful tool that obtains the same result as a 
human expert would. However, as outlined above, learning from a physicist's techniques is 
a fruitful approach. pret's techniques fall mostly in the category of qualitative physics (QP) 
or qualitative reasoning (QR) Like AI in general, qualitative reasoning about physics spans 
a whole spectrum, from modeling how humans reason about their physical environment to 
engineering artifacts that can reason about physics. Its main goals are the prediction of 
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behavior, analysis, design, control, monitoring, and fault diagnosis. Many QR programs, 
particularly the ones that perform monitoring or diagnosis, infer the behavior of a physical 
system from its structure or vice versa. What distinguishes QP from other formalisms that 
represent physics knowledge, such as differential equations, is the abstraction to a 
qualitative level. For example, so-called landmarks divide the continuum of real numbers 
into a finite number of intervals. Typically, landmarks are critical values of quantities that 
describe the physical system. The behavior of the physical system | the progression of the 
values of relevant quantities | is described as a discrete sequence of states and state 
transitions. States describe situations, such as \x = 0" or \y is positive" or \z = l1" where 
l1 is a landmark. State transitions describe changing values, e.g., \x is monotonically 
increasing." Many well-developed formalisms to represent and reason about mathematical, 
quantitative, and numerical knowledge exist. The goal of QP, however, is to formalize and 
automate conceptual, abstract, and qualitative reasoning in the physics domain. This 
qualitative kind of knowledge and reasoning requires a completely different set of 
primitives, such as the states and state transitions described above, or the facts about 
ordinary differential equations that are pret's primitives. Adequate combinations of well-
chosen primitives are a primary research goal in problems like this; as they enable a 
computer program to handle unforeseen situations. The ability to rearrange thought 
primitives in order to solve new problems is a crucial part of what makes a good scientist 
or engineer | or an intelligent artifact that performs the same tasks. In general, modeling 
underlies most of the approaches to reasoning about physical systems. Strictly speaking, 
every formalization of the properties of a physical system constitutes a model of the 
physical system. The spectrum ranges from models that use a language that is very close 
to the physics of the system to models that use a language that is well-suited to describe 
the system mathematically. An example of the physics end of this spectrum might be 
formal instructions how to build a pendulum. These instructions would use terms like rod, 
bob, and bearing. In any case, a modeler human or not  builds the model out of simple 
components, assuming that the overall behavior follows from the behavior of the 
components and their interaction. Examples of QR modeling systems include the 
ENVISION system, which reasons about the components of the system and their 
interaction, as well as QPT (Qualitative Process Theory) and its successor QPE (Qualitative 
Process Engine), which emphasize the notion of causality. This is a very useful approach if 
the goal of the program is to explain certain phenomena in physical terms. QSIM 
(Qualitative SIMulation) simulates the behavior of a physical system qualitatively. The 
description of the physical system, called a qualitative differential equation (QDE), uses 
mathematical language rather than terms from physics, namely the progression of relevant 
quantities (functions) and constraints on relations between these functions. The following 
example, drawn directly from a recent and thorough text on this topic, is a QDE fragment 
that relates the amounts of fluids in two connected containers, A and B, and the flow rates 
in the pipe between them, while constraining the total amount of fluid to remain constant: 

 ((minus flowAB -flowAB)) 

((d/dt amtB flowAB)) 
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((d/dt amtA -flowAB)) 

((add amtA amtB total)) 

((constant total)) 

From this information and some initial conditions2, QSIM generates qualitative 
descriptions of every possible outcome, which it presents on graphs whose breakpoints are 
the landmarks described above. One current thrust of research by this group targets the 
integration of quantitative and qualitative information. Some other useful QR references 
are:  on varying resolution, on order-of-magnitude reasoning, and on mathematical 
aspects. A few useful general AI references are . On the spectrum from physics language to 
mathematics language, QPT resides on the physics end, QSIM on the mathematics end, 
and pret somewhere in between. Its inputs primarily observations and hypotheses about 
the physical system are partially in the terms of physics. This approach allows the user to 
state the problem in his or her domain language. Also, pret's reasoning uses concepts from 
physics, allowing it to rule out bad candidate models by high-level abstract reasoning. The 
rules about how hypotheses are combined into ODEs reflect laws of physics, such as F = 
ma. The decision about what to try next if some candidate model fails will also use physics 
concepts, e.g, \try quadratic friction instead of linear friction." However, pret's output | the 
model of the physical system that it constructs | is purely mathematical: an ODE. 

In summary, pret makes heavy use of QR's notions of landmarks, qualitative vocabulary, 
and qualitative behavior. As do most QR systems, it exploits symbolic reasoning and 
reason-maintenance techniques. The structure of the physical system is described by 
notions like point, loop, etc., but there is no elaborate scenario description (e.g., a 
description that uses language that is highly specific to, say, fluids in containers). The 
program does not reason about causal relationships between behaviors of physical system 
components, nor does it try to explain observed phenomena. pret takes a minimalist 
approach: find a simple model that is consistent with the observed behavior of the physical 
system.  

 

Fig1: Structure and application. 
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Summary 

The evolution of system development Process Models has reflected the changing needs 
of computer customers. As customers demanded faster results, more involvement in the 
development process, and the inclusion of measures to determine risks and effectiveness, 
the methods for developing systems changed. In addition, the software and hardware tools 
used in the industry changed (and continue to change) substantially. Faster networks and 
hardware supported the use of smarter and faster operating systems that paved the way 
for new languages and databases, and applications that were far more powerful than any 
predecessors. These rapid and numerous changes in the system development environment 
simultaneously spawned the development of more practical new Process Models and the 
demise of older models that were no longer useful. 

Model Questions: 

1. Explain various physical construction models and the problems facing in them? 
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Lesson 2.4.1  

MINIMISATION AND MAXIMISATION OF FUNCTIONS 
 

Objective 
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Summary 
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Objective: 
This lesson tells about the minimization and maximization of functions in different 

fields along with examples. 

2.4.1.1 Introduction 
The problem of determining the maximum or minimum of function is encountered in 

geometry, mechanics, physics, and other fields, and was one of the motivating factors in 
the development of the calculus in the seventeenth century. One of the great powers of 
calculus is in the determination of the maximum or minimum value of a function. Take 
f(x) to be a function of x. Then the value of x for which the derivative of f(x) with respect 
to x is equal to zero corresponds to a maximum, a minimum or an inflexion point of the 
function f(x).  

2.4.1.2 Maxima and Minima 
For example, the height of a projectile that is fired straight up is given by the motion 

equation: 

The derivative of a function can be geometrically interpreted as the slope of the curve 
of the mathematical function y(t) plotted as a function of t. The derivative is positive 
when a function is increasing toward a maximum, zero (horizontal) at the maximum, 
and negative just after the maximum. The second derivative is the rate of change of the 
derivative, and it is negative for the process described above since the first derivative 
(slope) is always getting smaller. The second derivative is always negative for a "hump" 
in the function, corresponding to a maximum  
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2.4.1.3 Maxima and Minima In brief 

 
A continuous function may assume a minimum at a single point or may have 

minima at a number of points. A global minimum of a function is the smallest value in 
the entire range of the function, while a local minimum is the smallest value in some 
local neighborhood.  

For a function which is continuous at a point , a necessary but not sufficient 
condition for to have a relative minimum at is that be a critical point (i.e., 

is either not differentiable at or is a stationary point, in which case ).  

The first derivative test can be applied to continuous functions to distinguish 
minima from maxima. For twice differentiable functions of one variable, , or of two 
variables, , the second derivative test can sometimes also identify the nature of an 
extremum. For a function , the extremum test succeeds under more general 
conditions than the second derivative test.  

As in one variable calculations, one use for derivatives in several variables is in 
calculating maxima and minima. Again as for one variable, we shall rely on the theorem 
that if f is continuous on a closed bounded subset of 2, then it has a global maximum 
and a global minimum. And again as before, we note that these must occur either at a 
local maximum or minimum, or else on the boundary of the region. Of course in , the 
boundary of the region usually consisted of a pair of end points, while in 2, the 
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situation is more complicated. However, the principle remains the same. And we can 
test for local maxima and minima in the same way as for one variable.  

 
A graph illustrating local min/max and global min/max points 

In mathematics, a point x* is a local maximum of a function f if there exists some ε 
> 0 such that f(x*) ≥ f(x) for all x with |x-x*| < ε. Stated less formally, a local maximum is 
a point where the function takes on its largest value among all points in the immediate 
vicinity. On a graph of a function, its local maxima will look like the tops of hills. 

A local minimum is a point x* for which f(x*) ≤ f(x) for all x with |x-x*| < ε. On a 
graph of a function, its local minima will look like the bottoms of valleys. 

A global maximum is a point x* for which f(x*) ≥ f(x) for all x. Similarly, a global 
minimum is a point x* for which f(x*) ≤ f(x) for all x. Any global maximum (minimum) is 
also a local maximum (minimum); however, a local maximum or minimum need not 
also be a global maximum or minimum. 

The concepts of maxima and minima are not restricted to functions whose domain is 
the real numbers. One can talk about global maxima and global minima for real-valued 
functions whose domain is any set. In order to be able to define local maxima and local 
minima, the function needs to take real values, and the concept of neighborhood must 
be defined on the domain of the function. A neighborhood then plays the role of the set 
of x such that |x - x*| < ε. 

One refers to a local maximum/minimum as to a local extremum (or local optimum), 
and to a global maximum/minimum as to a global extremum (or global optimum). 

Finding global maxima and minima is the goal of optimization. For twice-
differentiable functions in one variable, a simple technique for finding local maxima and 
minima is to look for stationary points, which are points where the first derivative is 
zero. If the second derivative at a stationary point is positive, the point is a local 
minimum; if it is negative, the point is a local maximum; if it is zero, further 
investigation is required. 
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If the function is defined over a bounded segment, one also need to check the end 
points of the segment. 

2.4.1.4 Examples 
 The function x2 has a unique global minimum at x = 0.  

 The function x3 has no global or local minima or maxima. Although the 
first derivative (3x2) is 0 at x = 0, the second derivative (6x) is also 0.  

 The function x3/ 3 - x has first derivative x2 - 1 and second derivative 2x. 
Setting the first derivative to 0 and solving for x gives stationary points at -1 and 
+1. From the sign of the second derivative we can see that -1 is a local maximum 
and +1 is a local minimum. Note that this function has no global maxima or 
minima.  

 The function |x| has a global minimum at x = 0 that cannot be found by 
taking derivatives, because the derivative does not exist at x = 0.  

 The function cos(x) has infinitely many global maxima at 0, ±2π, ±π, ..., 
and infinitely many global minima at ±π, ±3π, ... .  

 The function 2cos(x) - x has infinitely many local maxima and minima, but 
no global maxima or minima.  

 The function x3 + 3x2 - 2x + 1 defined over the closed interval (segment) [-

4,2] (see graph) has two extrema: one local maximum in , 

one local minimum in , a global maximum on x=2 and a 
global minimum on x=-4.  

 

Definition Say that f (x, y) has a critical point at (a, b) if and only if  

(a, b) = (a, b) = 0.  

It is clear by comparison with the single variable result, that a necessary condition 
that f have a local extremum at (a, b) is that it have a critical point there, although that 
is not a sufficient condition. We refer to this as the first derivative test.  

We can get more information by looking at the second derivative. Recall that we gave 
a number of different notations for partial derivatives, and in what follows we use fx 

rather than the more cumbersome etc. This idea extends to higher derivatives; we 
shall use  

fxx    instead of    ,    and    fxy    instead of        etc.      
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Theorem (Second Derivative Test)   Assume that (a, b) is a critical point for f. Then  

 If, at (a, b), we have fxx < 0 and fxxfyy - f2xy > 0, then f has a local maximum 
at (a, b).  

 If, at (a, b), we have fxx > 0 and fxxfyy - f2xy > 0, then f has a local minimum 
at (a, b).  

 If, at (a, b), we have fxxfyy - f2xy < 0, then f has a saddle point at (a, b).  

The test is inconclusive at (a, b) if fxxfyy - f2xy = 0, and the investigation has to be 
continued some other way. 

Note that the discriminant is easily remembered as  

= = fxxfyy - f2xy  

A number of very simple examples can help to remember this. After all, the result of 
the test should work on things where we can do the calculation anyway!  

Example 1   Show that f (x, y) = x2 + y2 has a minimum at (0, 0). 

Of course we know it has a global minimum there, but here goes with the test:  

Solution. We have fx = 2x; fy = 2y, so fx = fy precisely when x = y = 0, and this is the 
only critical point. We have fxx = fyy = 2; fxy = 0, so = fxxfyy - f2xy = 4 > 0 and there is a 
local minimum at (0, 0).  

Exercise 2   Let f (x, y) = xy. Show there is a unique critical point, which is a saddle 
point 

Proof. We give an indication of how the theorem can be derived -- or if necessary how 
it can be remembered. We start with the two dimensional version of Taylor's theorem, 
see section 5.6. We have  

f (a + h, b + k) f (a, b) + h (a, b) + k (a, b) + h2  + 2kh  + 

k2   

where we have actually taken an expansion to second order and assumed the 
corresponding remainder is small.  

We are looking at a critical point, so for any pair (h, k), we have h (a, b) + k (a, 
b) = 0 and everything hinges on the behaviour of the second order terms. It is thus 
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enough to study the behaviour of the quadratic Ah2 + 2Bhk + Ck2, where we have 
written  

A = ,        B = ,    and    C = .  

Assuming that A  0 we can write  

Ah2 + 2Bhk + Ck2 

= A h + + C - k2 

    

  

= A h + + k2 

    

where we write = CA - B2 for the discriminant. We have thus expressed the 
quadratic as the sum of two squares. It is thus clear that  

 if A < 0 and > 0 we have a local maximum;  

 if A > 0 and > 0 we have a local minimum; and  

 if < 0 then the coefficients of the two squared terms have opposite signs, 
so by going out in two different directions, the quadratic may be made either to 
increase or to decrease.  

Note also that we could have completed the square in the same way, but starting 
from the k term, rather than the h term; so the result could just as easily be stated in 
terms of C instead of A  

Example 3   Let f (x, y) = 2x3 - 6x2 - 3y2 - 6xy. Find and classify the critical points of 
f. By considering f (x, 0), or otherwise, show that f does not achieve a global maximum. 

Solution. We have fx = 6x2 - 12x - 6y and fy = - 6y - 6x. Thus critical points occur 
when y = - x and x2 - x = 0, and so at (0, 0) and (1, - 1). Differentiating again, fxx = 12x - 
12, fyy = - 6 and fxy = - 6. Thus the discriminant is = - 6.(12x - 12) - 36. When x = 0, 

= 36 > 0 and since fxx = - 12, we have a local maximum at (0, 0). When x = 1, = - 
36 < 0, so there is a saddle at (1, - 1).  

To see there is no global maximum, note that f (x, 0) = 2x3(1 - 3/x)  as x , 
since x3  as x .  

Exercise 4   Find the extrema of f (x, y) = xy - x2 - y2 - 2x - 2y + 4. 

Example 5   An open-topped rectangular tank is to be constructed so that the sum of 
the height and the perimeter of the base is 30 metres. Find the dimensions which 
maximise the surface area of the tank. What is the maximum value of the surface area? 
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[You may assume that the maximum exists, and that the corresponding dimensions of 
the tank are strictly positive.] 

Solution. Let the dimensions of the box be as shown.  

 
Figure: A dimensioned box 

Let the area of the surface of the material be S. Then  

S = 2xh + 2yh + xy,  

and since, from our restriction on the base and height,  

30 = 2(x + y) + h,    we have    h = 30 - 2(x + y).  

Substituting, we have  

S = 2(x + y) 30 - 2(x + y)  + xy = 60(x + y) - 4(x + y)2 + xy,  

and for physical reasons, S is defined for x  0, y  0 and x + y 15.  

A global maximum (which we are given exists) can only occur on the boundary of the 
domain of definition of S, or at a critical point, when  

= = 0. On the boundary of the domain of definition of S, we have x = 0 or y = 
0 or x + y = 15, in which case h = 0. We are given that we may ignore these cases. Now  

S -4x2 - 4y2 - 7xy + 60x + 60y,    so     

 
-8x - 7y + 60 = 0, 

 
-8y - 7x + 60 = 0. 
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Subtracting gives x = y and so 15x = 60, or x = y = 4. Thus h = 14 and the surface 
area is S = 16(- 4 - 4 - 7 + 15 + 15) = 240 square metres. Since we are given that a 
maximum exists, this must be it. [If both sides of the surface are counted, the area is 
doubled, but the critical proportions are still the same.]  

Sometimes a function necessarily has an absolute maximum and absolute minimum 
-- in the following case because we have a continuous function defined on a closed 
bounded subset of 2, and so the analogue of 4.35 holds. In this case exactly as in the 
one variable case, we need only search the boundary (using ad - hoc methods, which in 
fact reduce to 1-variable methods) and the critical points in the interior, using our 
ability to find local maxima.  

Example 6   Find the absolute maximum and minimum values of  

f (x, y) = 2 + 2x + 2y - x2 - y2  

on the triangular plate in the first quadrant bounded by the lines x = 0, y = 0 and y 
= 9 - x 

Solution. We know there is a global maximum, because the function is continuous 
on a closed bounded subset of 2. Thus the absolute max will occur either in the 
interior, at a critical point, or on the boundary. If y = 0, investigate f (x, 0) = 2 + 2x - x2, 
while if x = 0, investigate f (0, y) = 2 + 2y - y2. If y = 9 - x, investigate  

f (x, 9 - x) = 2 + 2x + 2(9 - x) - x2 - (9 - x)2  

for an absolute maximum. In fact extreme may occur when (x, y) = (0, 1) or (1, 0) or 
(0, 0) or (9, 0) or (0, 9), or (9/2, 9/2). At these points, f takes the values -41/2, 2, 3, - 
61.  

Next we seek critical points in the interior of the plate,  

fx = 2 - 2x = 0    and    fy = 2 - 2y = 0.  

so (x, y) = (1, 1) and f (1, 1) = 4, so this must be the global maximum. Can check also using the 
second derivative test, that it is a local maximum.  

The notions of critical points and the second derivative test carry over to functions of 
two variables. Let z=f(x,y). Critical points are points in the xy-plane where the tangent 
plane is horizontal.  
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Since the normal vector of the tangent plane at (x,y) is given by  

 
The tangent plane is horizontal if its normal vector points in the z direction. Hence, 

critical points are solutions of the equations:  

 
because horizontal planes have normal vector parallel to z-axis. The two equations 

above must be solved simultaneously.  

Example 7 

Let us find the critical points of  

 
The partial derivatives are  

 

 
f_x=0 if 1-x^2=0 or the exponential term is 0. f_y=0 if -2y=0 or the exponential term 

is 0. The exponential term is not 0 except in the degenerate case. Hence we require 1-
x^2=0 and -2y=0, implying x=1 or x=-1 and y=0. There are two critical points (-1,0) and 
(1,0).  
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The Second Derivative Test for Functions of Two Variables: 

How can we determine if the critical points found above are relative maxima or 
minima? We apply a second derivative test for functions of two variables.  

Let (x_c,y_c) be a critical point and define  

 
We have the following cases:  

 If D>0 and f_xx(x_c,y_c)<0, then f(x,y) has a relative maximum at (x_c,y_c).  

 If D>0 and f_xx(x_c,y_c)>0, then f(x,y) has a relative minimum at (x_c,y_c).  

 If D<0, then f(x,y) has a saddle point at (x_c,y_c).  

 If D=0, the second derivative test is inconclusive.  

An example of a saddle point is shown in the example below.  

Example: Continued  

For the example above, we have  

 

 

 
For x=1 and y=0, we have D(1,0)=4exp(4/3)>0 with f_xx(1,0)=-2exp(2/3)<0. Hence, 

(1,0) is a relative maximum. For x=-1 and y=0, we have D(-1,0)=-4exp(-4/3)<0. Hence, (-
1,0) is a saddle point.  

The figure below plots the surface z=f(x,y).  
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Notice the relative maximum at (x=1,y=0). (x=-1,y=0) is a relative maximum if one 

travels in the y direction and a relative minimum if one travels in the x-direction. Near (-
1,0) the surface looks like a saddle, hence the name.  

2.4.1.5 Maxima and Minima in a Bounded Region  

Suppose that our goal is to find the global maximum and minimum of our model 
function above in the square -2<=x<=2 and -2<=y<=2? There are three types of points 
that can potentially be global maxima or minima: 

1. Relative extrema in the interior of the square.  

2. Relative extrema on the boundary of the square.  

3. Corner Points.  

We have already done step 1. There are extrema at (1,0) and (-1,0). The boundary of 
square consists of 4 parts. Side 1 is y=-2 and -2<=x<=2. On this side, we have  

 
The original function of 2 variables is now a function of x only. We set g'(x)=0 to 

determine relative extrema on Side 1. It can be shown that x=1 and x=-1 are the relative 
extrema. Since y=-2, the relative extrema on Side 1 are at (1,-2) and (-1,-2).  

On Side 2 (x=-2 and -2<=y<=2)  

 
We set h'(y)=0 to determine the relative extrema. It can be shown that y=0 is the only 

critical point, corresponding to (-2,0).  
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We play the same game to determine the relative extrema on the other 2 sides. It can 
be shown that they are (2,0), (1,2), and (-1,2).  

Finally, we must include the 4 corners (-2,-2), (-2,2), (2,-2), and (2,2). In summary, 
the candidates for global maximum and minimum are (-1,0), (1,0), (1,-2), (-1,-2), (-2,0), 
(2,0), (1,2), (-1,2), (-2,-2), (-2,2), (2,-2), and (2,2). We evaluate f(x,y) at each of these 
points to determine the global max and min in the square. The global maximum occurs 
(-2,0) and (1,0). This can be seen in the figure above. The global minimum occurs at 4 
points: (-1,2), (-1,-2), (2,2), and (2,-2).  

2.4.1.6 Maxima and Minima in a Disk  

Another example of a bounded region is the disk of radius 2 centered at the origin. 
We proceed as in the previous example, determining in the 3 classes above. (1,0) and (-
1,0) lie in the interior of the disk.  

The boundary of the disk is the circle x^2+y^2=4. To find extreme points on the disk 
we parameterize the circle. A natural parameterization is x=2cos(t) and y=2sin(t) for 
0<=t<=2*pi. We substitute these expressions into z=f(x,y) and obtain  

 
On the circle, the original functions of 2 variables is reduced to a function of 1 

variable. We can determine the extrema on the circle using techniques from calculus of 
on variable.  

In this problem there are not any corners. Hence, we determine the global max and 
min by considering points in the interior of the disk and on the circle. An alternative 
method for finding the maximum and minimum on the circle is the method of Lagrange 
multipliers.  

2.4.1.7 Functions of More than 2 Variables  

The notion of extreme points can be extended to functions of more than 2 variables. 
Suppose z=f(x_1,x_2,...,x_n). (a_1,a_2,...,a_n) is extreme point if it satisfies the n 
equations  

 
There is not a general second derivative test to determine if a point is a relative 

maximum or minimum for functions of more than two variables.  

 Functional minimization is an important area of study in many fields, and a variety 
of numerical methods have been developed to address particular problems. We will look 
at just one such method, which is particularly effective at minimizing functions of many 
variables.  

Let's define the problem. Let's say you want to minimize a function, f(x), of a single 
variable, x. For a simple function, you follow the standard practice of solving for those 
values, x1, x2, x3 ... such that: f'(xi)=0, and f"(xi) > 0. The value of xi so obtained that gives 
the smallest f(xi) is the global minimum of the function. All other f(xi) give the local 
minima of the function.  
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It could happen that the function to be minimized is too unwieldy to evaluate the 
necessary derivatives and/or to solve for the roots of f'(xi)=0. Furthermore, there could 
be constraints on the variable that must be factored into the minimization. Finally, we 
might need to minimize a function of many variables: f(x1,x2,x3...). In such cases, 
efficient numerical techniques to achieve minimization are essential.  

It should be pointed out that the techniques used to minimize functions can 
immediately be used to maximize them: just take f to be -f. The field of minimization or 
maximization of functions is called OPTIMIZATION.  

Many optimization techniques are described in the Numerical Recipes book used in 
PH430. In this module, we will focus on a particular application of the so-called 
"annealing method".  

 
The system that we will be studying is called a "quantum dot". It consists of a group 

of electrons that are quantum-confined in all three spatial dimensions, and so they are 
analogous to atoms. Quantum dots can be fabricated in a variety of shapes, and the 
sizes are typically in the range of ~10's to 100's of nanometers--billionths of a meter. A 
great deal of research is currently ongoing with the goal of designing quantum dot 
systems for particular applications such as high-efficiency lasers, biological tracers, and 
quantum computers.  

In the quantum dot system that we will model, a "puddle" of electrons is confined to 
a plane and restricted to lie near the center of a two-dimensional parabolic potential 
energy profile (such systems are actually made!). The parabolic potential tries to keep 
the electrons near the origin--they have to climb uphill to move away from the bottom of 
the potential well. This is counter-acted by the repulsion between electrons that keeps 
them apart. As a rough approximation, we will treat the electrons as classical point 
particles instead of quantum particles. We want to answer the following question:  

We will be guided to the answer by noting that the electrons will want to reside in 
the configuration that minimizes their total energy:  

 

 
For classical electrons we can immediately eliminate the Kinetic energy, K, by taking 

the electrons to be stationary. Then, our problem amounts to minimizing the potential 
energy, V.  

Let's consider the simple cases first: for the case of one electron, there is no 
Coulomb energy and the single electron will sit at the bottom of the potential well with 
E=0. For two electrons the potential energy is:  

 

where and are the 2D coordinates of the 2 electrons, and defines the 

curvature of the potential energy parabola. Note that since and 
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, V is now a function of the 4 the variables, x1,y1, x2,y2. We can reduce 
this down to a single variable as follows.  

Let's make a transformation to center-of-mass (CM) and relative coordinates:  

 

 
with the inverse transformation:  

 

 
Plugging in to V gives:  

 

with and .  

Notice that the relative and CM parts of V now separate. It is clear that we can lower 
the energy by choosing the location of the CM at the origin, R=0. This means that 

.  

Then,  

 
Now, V is a simple function of a single variable. The minimum is located from:  

 

 

 
 

Of course, there is a much easier way of extracting this result. At the minimum of 
the total potential energy, the net force on each electron must be zero.  
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Calculate the location of each electron in the two-electron dot by requiring that the 
sum of the forces on each electron vanish.  

 
If we now consider higher numbers of electrons, N=3,4,..., the minimization 

procedure used above becomes intractable. For N electrons, the potential energy is:  

 
 

For simplicity, we can switch to new variables, ri, measured in units of and measure 
energy in units of E0. Then, the potential energy is simplified to:  

 
 

If N=100, we have 200 independent variables. Transformation of coordinates as above 
will separate out the CM part. Requiring the CM to be at the origin introduces only 2 
constraints and so leaves us with 198 variables! We need a minimization technique that 
can accommodate the large number of variables arising in this problem.  

Summary: 
maximum or minimum of function is encountered in geometry, mechanics, physics, and 
other fields, and was one of the motivating factors in the development of the calculus in 
the seventeenth century. One of the great powers of calculus is in the determination of 
the maximum or minimum value of a function. The field of minimization or 
maximization of functions is called OPTIMIZATION. 

 

Model Questions: 
1. Briefly explain the maxima and minima of functions? 

2. Outline the procedure to find out the maxima & minima of functions? 
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Lesson 2.4.2 

RANDOMIZED MINIMIZATION TECHNIQUES 
 

Objective 
2.4.2.1 Introduction 
2.4.2.2 RANDOMIZED UNIT TESTING 
2.4.2.3 Three robust design paradigms 
2.4.2.4 Properties of the scenario design 
 Summary 
 Model Questions 
 References 
 
Objective 
Engineering design problems can often be cast as numerical optimization programs where 
the designer goal is to minimize a cost index (or maximize a utility index), subject to a 
set of constraints on the decision variables. In particular, a class of design problems 
that have both a theoretical and a practical relevance are those where the 
minimization objective and the constraints are convex functions of the variables.  
 

However, in practice, the problem data are often uncertain, and hence the design 
needs not only be optimal, but also guaranteed, or robust, against the uncertainty. Un-
fortunately, it has been proven that convex problems in which uncertainty is present are 
very hard to solve. In this note, we discuss a novel technique based on uncertainty 
randomization that permits to overcome this difficulty. 

2.4.2.1 Introduction 

The main motivation for studying robustness problems in engineering comes from 
the fact that the actual system (a "plant," or in general a problem involving 
physical data) upon which the engineer should act, is realistically not fixed but 
rather it entails some level of uncertainty. For instance, the data that characterizes 
an engineering problem typically depends on the value of physical parameters.   If 
measurements of these parameters are performed, say, on different days or under 
different operating conditions, it is likely that we will end up not with a single 
(nominal) problem representation D, but rather with a family D(δ) of possible 
problems, where δ E Δ represents the vector of uncertain parameters that affect the 
data, and Δ is the admissible set of variation of the parameters. Any sensible 
design should in some way take into account the variability in the problem data, 
i.e. it should be robust with respect to the uncertainty. 

To formalize our setup, we consider specifically design problems that may be 
expressed in the form of minimization of a linear objective subject to convex 
constraints: 
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where is a convex set, and the functions fi(x,δ) that define the 
constraints are convex in the decision variable x, for any given value of the 
uncertainty δ G Δ. Without loss of generality, we can actually consider problems 
with a single constraint function 

 

(the maximum of convex functions is still convex), which yields a prototype 
problem in the form 

 

Notice that in this problem statement we remained voluntarily vague as to the 
meaning of robustness. We shall next define and briefly discuss three different ways 
in which this robustness can be intended. 

2.4.2.2. RANDOMIZED UNIT TESTING 

A.  Controlflow and Dataflow Views of Drivers 
In a flowchart view of the operation of a unit test driver (Figure 1), the driver 

performs a sequence of test cases, checks the results, and judges the success or 
failure of each test case. For example, test cases for the Course class may 
include one that tries to register a student having the prerequisites, one that tries to 
register a student not having the prerequisites, and one that tries to register students 
when the size limit has been reached. The driver could be programmed from scratch or 
built using a framework, in which each test case would be represented by one test 
method. 

 
For the purpose of generalizing a test driver to a randomized test driver, it is more 

useful to view the driver not in terms of its control flow, but rather in terms of its data 
flow, because the randomized operations will randomly change the values of the data 
used. In this dataflow-oriented view (Figure 1b), the driver executes a series of test 
fragments, each of which might either perform a call to a UUT method, set up 
parameters for future method calls, or extract information from the results of past 
method calls. 
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The driver will typically have one or more local variables, such as instances of a 
class under test or variables to be used as parameters or results of UUT methods. 
Each local variable whose value is set by one test fragment and whose value is then 
used by a future test fragment is here called a persistent variable (PV in Figure 1b). The 
driver can therefore be seen as a program that sets initial values for the persistent 
variables, and then executes test fragments, each of which may change the value of one 
or more of the persistent variables. For example, a Course driver may have one 
Course persistent variable and one Student persistent variable; the test fragments 
may initialize or reinitialize the Student to a new object instance, may add more 
information to the Student about past courses taken, and/or may call the register 
method, giving the Student as a parameter. 

 

 
Fig. 1. (a) Controlflow-oriented view of a unit driver. (b) Dataflow-oriented view of a unit 
driver. (c) A randomized unit driver based on the dataflow view. 

B. Randomized Test Drivers 

The kind of randomized test drivers that we consider are generalizations of the 
dataflow view of unit test drivers. The randomized driver initializes the persistent 
variables, and then randomly selects and executes a test fragment. It keeps randomly 
selecting and executing test fragments until some stopping condition is met, such as 
when a certain number of test fragments has been executed. Each of these test 
fragments may evaluate preconditions and skip further processing of its target method 
calls if the preconditions are not met - for instance, if the persistent variables are not 
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yet in a form that can be passed as a parameter. Each fragment may itself contain a 
random element, such as in the selection of scalar arguments for method calls. Each 
fragment may evaluate results, or just output information about the results for later 
evaluation, as with a test oracle. 

 
For example, a randomized driver for Course might contain a test fragment that 
reinitializes the Student, another that randomly selects a "past course taken" from a 
fixed list of courses and adds it to the Student, and another that calls the register 
method. A random sequence of test fragment executions is very likely to eventually 
make both valid and invalid calls to register, and may execute test sequences not 
accounted for by the writer of a non-randomized test driver, such as calling register 
twice with the same Student. 
 

Such randomized drivers are a strict generalization of the dataflow view of 
conventional non-randomized drivers, such as JUnit drivers. Since conventional drivers 
are commonly written for units (for instance, JUnit is widely used in industry), it is 
reasonable to expect test engineers to be able to write randomized test drivers from 
scratch. However, there is clearly potential for automating parts of the process of writing 
the randomized test drivers. 

C. Test Case Minimization 

Although randomized unit testing can accurately find failing test cases, the test inputs 
that cause the failure can contain both commands relevant to the failure and random 
commands that are irrelevant, in the sense of not contributing to forcing the failure. 
Separating the relevant parts from the irrelevant parts is a difficult task for the human 
debugger; for example, Andrews  estimated that half the time spent in randomized 
testing of some units consisted of tracking down and fixing bugs. 

 
It is therefore natural to ask how much benefit could be obtained by automatically 

reducing the size of the failing test cases. The state of the art in this area is Zeller and 
Hilde-brandt's Delta Debugging minimization algorithm, ddmin. We briefly summarize 
this algorithm here. 

 
First some definitions. A failing test case is a test case that causes the SUT to 

perform incorrectly. Since we assume software with text inputs, and since the unit of 
input to our test driver programs is a one-line command, the length of a test case is 
the number of lines in its input file. A global minimized failing test case is one whose 
length is less than or equal to the length of all other failing test cases. A local 
minimized failing test case is one such that deleting any one line in the input file does 
not result in a failing test case. The ddmin algorithm does not attempt to find global 
minimized failing test cases; instead it finds local minimized failing test cases based on 
a given failing test case. 
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2.4.2.3 Three robust design paradigms 

1    Worst-case design 

A first paradigm is a worst-case one, in which we seek a design x that satisfies the 
constraints for all possible realizations of the uncertain parameter δ. In formal 
terms, the design problem becomes 

 

A worst-case design may be necessary in cases when the violation of a constraint is 
associated to an unacceptable cost or it has disastrous consequences. It is a 
"pessimistic" paradigm in which the designer tries to be guaranteed against all 
possible odds.  For the same reason, this kind of design tends to be conservative, 
since it takes into account also very rare events that may never realize in practice. 
Also, from a computation point of view, worst-case design problems are, in general, 
computationally hard. Even under the convexity assumptions the convex 
optimization problem (1) entails a usually infinite number of constraints. This class 
of problem goes under the name of robust convex programs, which are known to be 
NP-hard, see for instance. 

2 Probabilistic design 

A second paradigm for robustness is a probabilistic one. In this setup, we add 
further structure on the problem, assuming that δ is a random variable with 
assigned probability distribution over Δ. Then, the probabilistic design objective is 
to determine a parameter x that satisfies the constraints up to a given high level of 
probability, p G (0,1). Formally, the optimization problem takes the form: 

 

This design formulation alleviates the pessimism inherent in the worst-case 
design, but still gives rise to a numerically untractable problem. In fact, even under 
the convexity assumption, problem (2) can be extremely hard to solve exactly in 
general. This is due to the fact that the probability in the so-called "chance 
constraint" (3) can be hard to compute explicitly and, more fundamentally, to the 
fact that the restriction imposed on x by (3) is in general nonconvex, even though f(x, 
δ) is convex in x, see for instance. 
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3 Sampled scenarios design 

Finally, we define a third approach to robustness, which is the scenario 
approach: let be N independent and identically distributed random 
samples of the uncertainty extracted according to some assigned probability 
distribution. Each sample corresponds to a different realization (scenario) of the 
uncertain parameters upon which the problem data depend. If the problem solver 
task is to devise a once and for all fixed policy that performs well on the actual 
(unknown) problem, a sensible strategy would be to design this policy such that it 
performs well on all the collected scenarios. This is of course a well-established 
technique which is widely used in practical problems, and it is for instance the 
standard way in which uncertainty is dealt with in difficult financial planning 
problems, such as multi-stage stochastic portfolio optimization. We hence define the 
scenario design problem as: 

 
We readily notice that the scenario problem is a standard convex problem with a 
finite number of constraints, and therefore it is generally solvable efficiently by 
numerical techniques, such as interior point methods. 
 

While simple and effective in practice, the scenario approach also raises 
interesting theoretical questions. First, it is clear that a design that is robust 
for given scenarios is not robust in the worst-case sense, unless the considered 
scenarios actually contain all possible realizations of the uncertain parameters. 
Also, satisfaction of the constraints for the considered scenarios does not a-priori 
enforce the probabilistic constraint (3). Then, it becomes natural to ask what is 
the relation between robustness in the scenario sense and the probabilistic 
robustness. It turns out that a design based on scenarios actually guarantees a 
specified level of probabilistic robustness, provided that the number N of scenarios 
is chosen properly. 

2.4.2.4 Properties of the scenario design 

In this section we analyze in further detail the properties of the solution of the 
scenario-robust design problem (4). The first results on sampling-based convex 
optimization appeared recently in the paper [3], whereas an important refinement of 
these results is given in [2]. This section is based on the results contained in these 
references. 

Denote with XN the optimal solution of (4), assuming that the problem is feasible 
and the solution is attained. Notice that problem (4) is certainly feasible whenever 
the worst-case problem (1) is feasible, since the former involves a subset of the 
constraints of the latter. Notice further that the optimal solution XN is a random 

variable, since it depends on the sampled random scenarios  
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The following key result establishes the connection between the scenario 

approach and the probabilistic approach to robust design. 

Theorem 1 (Scenario optimization) Let p, β G (0,1) be given probability levels, and 
let XN denote the optimal solution1 of problem (4), where the number N of scenarios 
has been selected so that 

 

 
Then, it holds with probability at least 1 — β that 

 

What it is claimed in the above theorem is that if the number of scenarios is 
selected according to the bound (6), then the optimal solution returned by the 
scenario-robust design has, with high probability 1 — β, a guaranteed level p of 
probabilistic robustness. An important feature of bound (6) is that the probability 
level β enters it under a logarithm, and therefore β may be chosen very small 
without substantially increasing the required number of samples. For instance, 

setting , we have the bound 

 

Summary: 

Seeking robustness in design by considering different scenarios has long been a 
common practice in engineering. However, the application of the sampling 
technique was mainly driven by heuristics, and no general result was previously 
available to answer the key question:  "how many scenarios are needed to guarantee 
some given level of robustness" ? 

 
The methodology that we briefly illustrated here actually answers in a rigorous 

way this fundamental question. The result from Theorem 1 states that the number 
of required scenarios scales gracefully with the problem dimension n and with the 
probabilistic levels. Convex optimization based on sampled scenarios is thus a 
simple, rigorous and efficient way to achieve robustness in design. 

 
In a broader perspective, methods based on sampling and randomization have 

proved to be effective in solving in a relaxed sense problems that are otherwise hard 
to attack by means of classical deterministic techniques. Specific applications of 
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randomized techniques in the domain of dynamic systems and robust control are 
extensively discussed in the recent monograph [8]. A comprehensive and up-to-date 
account of general probabilistic optimization methods, along with many pointers to 
the literature, is instead available in the edited monograph [4]. 
 
Model Questions: 

1. Draw a flow chart for randomized unit testing and explain it? 
2. Explain the randomized minimization techniques and how they can help in 

bioinformatics? 
References: 
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Lesson 2.4.3 
 

FOURIER TRANSFORM FOR DISCRETELY SAMPLED DATA 
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2.4.3.10  Applications 
 
2.4.3.1 Introduction 
 

Jean Baptiste Fourier showed that any signal or waveform could be made up just by 
adding together a series of pure tones (sine waves) with appropriate amplitude and phase. 
This is a rather startling theory, if you think about it. It means, for instance, that by 
simply turning on a number of sine wave generators we could sit back and enjoy a 
Beethoven symphony. Of course we would have to use a very large number of sine wave 
generators, and we would have to turn them on at the time of the Big Bang and leave them 
on until the heat death of the universe. Fourier's theorem assumes we add sine waves of 
infinite duration. 
 
2.4.3.2 Fourier Transform 
Before we get started on the DFT, let's look for a moment at the Fourier transform (FT) and 
explain why we are not talking about it instead. The Fourier transform of a continuous-

time signal may be defined as  

 
Thus, right off the bat, we need calculus. The DFT, on the other hand, replaces the infinite 
integral with a finite sum:  

 
where the various quantities in this formula are defined on the next page. Calculus is not 
needed to define the DFT (or its inverse), and with finite summation limits, we cannot 
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encounter difficulties with infinities (provided is finite, which is always true in 
practice). Moreover, in the field of digital signal processing, signals and spectra are 
processed only in sampled form, so that the DFT is what we really need anyway 
(implemented using the FFT when possible). In summary, the DFT is simpler 
mathematically, and more relevant computationally than the Fourier transform. At the same 
time, the basic concepts are the same. 
 
In mathematics, the discrete Fourier transform (DFT), sometimes called the finite Fourier 
transform, is a Fourier transform widely employed in signal processing and related fields to 
analyze the frequencies contained in a sampled signal, solve partial differential equations, 
and to perform other operations such as convolutions. The DFT can be computed 
efficiently in practice using a fast Fourier transform (FFT) algorithm. 
 
 
2.4.3.3 DFT Definition  
The Discrete Fourier Transform (DFT) of a signal may be defined by  

 
where  

 
 
The sampling interval is also called the sampling period. For a tutorial on sampling 
continuous-time signals to obtain non-aliased discrete-time signals. 
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When all signal samples are real, we say . If they may be complex, we write 

. Finally, means is any integer.  
 
The sequence of n complex numbers x0, ..., xn−1 are transformed into the sequence of n 
complex numbers f0, ..., fn−1 by the DFT according to the formula: 

 
Note that the normalization factor multiplying the DFT and IDFT (here 1 and 1/n) and the 
signs of the exponents are merely conventions, and differ in some treatments.  

2.4.3.4 A derivation of the discrete Fourier transform 

The discrete Fourier transform article defines the transform as: 

 

and notes that it can be derived as the continuous Fourier transform of infinite periodic 
sequences of impulses. That is an instructive exercise: 

 

When the sequence represents a subset of the samples of a waveform , we can 

model the process that created as applying a window function to , followed by 
sampling (or vice versa). It is instructive to envision what those operations do to the 

Fourier transform, . The window function widens every frequency component of 

in a way that depends on the type of window used. That effect is called spectral 

leakage. We can think of it as causing to blur... thus a loss of resolution. The 
sampling operation causes the Fourier transform to become periodic. Copies of the blurred 

are repeated at regular multiples of the sampling frequency, , and summed 
together where they overlap. The copies are aliases of the original frequency components. 
In particular, due to the overlap, aliases can significantly distort the region containing the 

original (if is not sufficiently large enough to prevent it). But if the windowing and 
sampling are done with sufficient care, the Fourier transform still contains a reasonable 

semblance of . The transform is defined as: 
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This continuous Fourier transform is valid for all frequencies, including the discrete 
subset: 

 

One thing to note about this subset is that the width of the region it spans is , which is 

the periodicity of . So there is no need for more frequencies at this spacing . 

Another thing to notice is that: .So the DFT coefficients are a subset of the 
actual (continuous) Fourier transform of the windowed and sampled waveform. 

Periodicity of the time-samples has not been assumed.  

In fact up to this point, it is specifically in contradiction with the assumed window 
function. 

Without it, the continuous Fourier transform, , is indeed continuous. So a different 
function, can be imagined by sampling it: 
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This transform also has the property: . But of course it is zero in between 
the non-zero samples. 

Its inverse transform is the original sequence, repeated at intervals of . 

So in summary, the DFT can be viewed in a couple of different ways: 

1. as points on the spectrum of the windowed time-samples (i.e., the blurred and 

possibly aliased , or  
2. as the non-zero coefficients of the spectrum of the windowed time-samples that have 

been periodically extended (to infinity)  

Discrete Time Fourier Transform 

For completeness, we note that with this definition: 

 

we can also write (now a function of ) as: 

 
 

 
,   (because of the window function) 

which is now recognizable as the discrete-time Fourier transform. 

In conclusion, rather than simply presenting the DFT and the DTFT as definitions, we have 
shown how they can be viewed as the logical result of applying the standard Fourier 
transform to discrete data. From that perspective, we have the satisfying result that it's not 
the transform that varies, it's just the form of the input: 

 If it is discrete, the Fourier transform becomes a DTFT.  
 If it is periodic, the Fourier transform becomes a Fourier series.  
 If it is both, the Fourier transform becomes a DFT.  
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2.4.3.5 Properties 
1. Completeness 

The discrete Fourier transform is an invertible, linear transformation 

 
with C denoting the set of complex numbers. In other words, for any n ≥ 0, any n-
dimensional complex vector has a DFT and an IDFT which are in turn n-dimensional 
complex vectors. 

2. Orthogonality 
The vectors exp(2πi jk/n) form an orthogonal basis over the set of n-dimensional complex 
vectors: 

 
where δjk is the Kronecker delta. 

3. The Plancherel theorem and Parseval's theorem 
If Xj and Yj are the DFTs of xk and yk respectively then we have the Plancherel theorem: 

 
where the star denotes complex conjugation. Parseval's theorem is a special case of the 
Plancherel theorem and states: 

 

4. The shift theorem 

Multiplying xn by a linear phase exp(2πinm / N) for some integer m corresponds to a 
circular shift of the output Xk: Xk is replaced by Xk − m, where the subscript is interpreted 
modulo N (i.e. periodically). Similarly, a circular shift of the input xn corresponds to 
multiplying the output Xk by a linear phase. Mathematically, if {xn} represents the vector x 
then 

if  

then  

and  
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5. Periodicity and aliasing 

Although the DFT transforms N numbers to N numbers, in many ways it can be thought of 
as implicitly operating on infinite periodic sequences of both inputs and outputs. (Indeed, 
the DFT can be derived as the continuous Fourier transform of infinite periodic sequences 
of impulses.) 

If one simply evaluates the DFT formula at k + N then one finds that Xk + N = Xk, because 
exp[ − 2πi(k + N)n / N] is equal to exp[ − 2πikn / N]exp[ − 2πiNn / N] which equals exp[ − 
2πikn / N]. This phenomenon is called aliasing, and it means that in a discrete signal one 
cannot distinguish between frequencies k that differ by N. 

For the same reason, if one evaluates the inverse DFT formula at n + N then one finds that 
xn + N = xn. Thus, the inputs also have implicitly periodic boundaries. 

The shift theorem, above, is also an expression of this implicit periodicity, because it shows 
that the DFT amplitudes | Xk | are unaffected by a circular (periodic) shift of the inputs, 
which is simply a choice of origin and therefore only affects the phase. 

These periodic boundary conditions play an important role in many applications of the 
DFT. When solving differential equations they allow periodic boundary conditions to be 
automatically satisfied, and thus can be a useful property. For digital signal processing on 
the other hand, the periodicity is usually an obstacle—not only does it alias high 
frequencies with low frequencies, as noted above, but it also tends to introduce artifacts 
because natural signals are often non-periodic (resulting in implied discontinuities 
between the ends of the input).  

6. Circular Convolution theorem and cross-correlation theorem 
The cyclic convolution x*y of the two vectors x = xj  and y = yk  is the vector x*y with 
components 

 
where we continue y cyclically so that 

 
The discrete Fourier transform turns cyclic convolutions into component-wise 

multiplication. That is, if then 

 
where capital letters (X, Y, Z) represent the DFTs of sequences represented by small letters 
(x, y, z). Note that if a different normalization convention is adopted for the DFT (e.g., the 
unitary normalization), then there will in general be a constant factor multiplying the 
above relation. 
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The direct evaluation of the convolution summation, above, would require O(n2) operations, 
but the DFT (via an FFT) thus provides an O(nlogn) method to compute the same thing. 
Conversely, convolutions can be used to efficiently compute DFTs via Rader's FFT 
algorithm and  
 
Bluestein's FFT algorithm.  
In an analogous manner, it can be shown that if zk is the cross-correlation of xj and yj: 

 
where the sum is again cyclic in j, then the discrete Fourier transform of zk is: 

 
where capital letters are again used to signify the discrete Fourier transform. 
7. Relationship to the trigonometric interpolation polynomial 
The function 

 
whose coefficients fj /n are given by the DFT of xk, above, is called the trigonometric 
interpolation polynomial of degree n − 1. It is the unique function of this form that satisfies 
the property: p(2πk/n) = xk for k = 0, ..., n − 1. 
 
8. The DFT as a unitary transformation 
With unitary normalization constants, the DFT becomes a unitary transformation. In a real 
vector space, a unitary transformation can be thought of as simply a rigid rotation of the 
coordinate system, and all of the properties of a rigid rotation can be found in the unitary 
DFT. Using unitary normalization, we can express the DFT as: 

 
where primed coordinates indicate the components of the vector x in the transformed 
space and 

 
The orthogonality of the DFT is now expressed as an orthonormality condition: 

 
The Plancherel theorem is expressed as: 
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which is the statement that the dot product of two vectors is preserved under a unitary 
DFT transformation. This means that the angle between two vectors is preserved as well, 
as is the length of a vector. The fact that the length of a vector is preserved is just 
Parseval's theorem: 

 
Another way of looking at the unitary DFT is to note that in the above discussion, the DFT 
has been expressed as a Vandermonde matrix: 

 
where 
ωn = e - 2πi / n  
is a primitive nth root of unity. This matrix is a unitary matrix with 

 
where det() is the determinant function and 

 
9. The real DFT 
If x0, ..., xn−1 are real numbers, as they often are in the applications, then fj = fn−j*, where 
the star denotes complex conjugation. Hence, the full information in this case is already 
contained in the first half (roughly) of the sequence f0, ..., fn−1. In this case, the "DC" 
element f0 is purely real, and for even n the "Nyquist" element fn/2 is also real, so there are 
exactly n non-redundant real numbers in the first half + Nyquist element of the complex 
output f. Using Euler's formula, the interpolating trigonometric polynomial can then be 
interpreted as a sum of sine and cosine functions. 
 
2.4.3.6 Generalized DFT 
It is possible to shift the transform sampling in time and/or frequency domain by some 
real shifts a and b, respectively. This is sometimes known as a generalized DFT (or GDFT) 
and has analogous properties to the ordinary DFT: 
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Most often, shifts of (half a sample) are used. While the ordinary DFT corresponds to a 

periodic signal in both time and frequency domains, produces a signal that is anti-

periodic in frequency domain (fj + n = - fj) and vice-versa for . Thus, the specific case 

of is known as an odd-time odd-frequency discrete Fourier transform (or O2 
DFT). Such shifted transforms are most often used for symmetric data, to represent 
different boundary symmetries, and for real-symmetric data they correspond to different 
forms of the discrete cosine and sine transforms. 
The discrete Fourier transform can be viewed as a special case of the z-transform, 
evaluated on the unit circle in the complex plane. 
 
2-D transform 
For digital image processing, the 2-D transform is used to find the frequency content of an 
image. The transform is defined as: 

 
and the inverse transform is defined as: 

 
where 
f(x,y) is a 2-D signal (e.g., an image) with x as the xth column of f; and y as the yth row of f  
F(u,v) is the 2-D frequency spectrum of f(x,y)  
The form of the 2-D DFT can be simplified by using matrices 
F = WfTW  
where 
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(this is the unitary matrix shown above)  

 
Matrix form derivation 
The forward transform can be reformulated into matrix notation 

 

 

 
Fv = Wf  

 

 
F = WfTW  
Equation 1 is the 2-D DFT definition from above. 

Equation 2 is equation 1 with pulled out of the inner summation. 
Equation 3 shows that the inner summation is a 1-D DFT taken with respect to the y-

dimension (the columns and denoted ) of the signal f(x,y). 
Equation 4 is the matrix form of a 1-D DFT of the underbraced portion in equation 3. 
Equation 5 is with Fv(x,v) substituted for the underbraced portion of equation 3. Fv(x,v) is 
the vth frequency of the xth column of f(x,y). Collecting the column 1-D DFTs of f(x,y) forms 
the matrix Fv. 
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Equation 6 is derived after realizing that equation 4 is a 1-D DFT of . 
Equation 7 is simply equation 4 substituted into equation 6 and noting that W = WT 
because W is symmetric. 
 
In summation: 
A column of Fv represents the 1-D DFT of the xth column of the signal f(x,y). So, Fv can be 
created by combining the 1-D DFT column vectors taken with respect to each column of 

f(x,y). Consequently, the transposition of Fv in and pre-multiplication of W is 
the same as taking the 1-D DFT of the rows of Fv.  
 
2.4.3.7 Applications 
The DFT has seen wide usage across a large number of fields; we only sketch a few 
examples below (see also the references at the end). All applications of the DFT depend 
crucially on the availability of a fast algorithm to compute discrete Fourier transforms and 
their inverses, a fast Fourier transform. 
 
Signal analysis 
Suppose a signal x(t) is to be analyzed. Here, t stands for time, which varies over the 
interval [0,T], and, in the case of a sound signal, x(t) is the air pressure at time t.The signal 
is sampled at n equidistant points to get the n real numbers x0 = x(0), x1 = x(h), x2 = x(2h), 
..., xn−1 = x((n−1)h), where h = T/n and n is even.Then the discrete Fourier transform f0, ..., 
fn−1 is computed and the numbers fn/2 + 1, ..., fn−1 are discarded (they are redundant for real 
signals).Then f0/n approximates the average value of the signal over the interval, and for 
every j = 1, ..., n/2, the argument  arg(fj) represents the phase and the modulus |fj|/n 
represents one half of the amplitude of the component of the signal having frequency j/T  
The reason behind this interpretation is that the fj are approximations to the coefficients 
occurring in the Fourier series expansion of x(t). In general, the problem of using the DFT 
of discrete samples to approximate the Fourier transform of an infinite, continuous signal 
is called spectral estimation, and involves many more details than are described here. (For 
example, one often wants to window the data in order to reduce the distortion caused by 
the periodic boundary conditions implicit in the DFT.) 
 
Data compression 
The field of digital signal processing relies heavily on operations in the frequency domain 
(i.e. on the Fourier transform). For example, several lossy image and sound compression 
methods employ the discrete Fourier transform: the signal is cut into short segments, each 
is transformed, and then the Fourier coefficients of high frequencies, which are assumed to 
be unnoticeable, are discarded. The decompressor computes the inverse transform based 
on this reduced number of Fourier coefficients. (Compression applications often use a 
specialized form of the DFT, the discrete cosine transform.) 
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Partial differential equations 
Discrete Fourier transforms, especially in more than one dimension, are often used to solve 
partial differential equations. The reason is that it expands the signal in complex 
exponentials eikx, which are eigenfunctions of differentiation: d/dx eikx = ik eikx. Thus, in the 
Fourier representation, a linear differential equation with constant coefficients is 
transformed into an easily solvable algebraic equation. One then uses the inverse DFT to 
transform the result back into the ordinary spatial representation. Such an approach is 
called a spectral method. 
 
Multiplication of large integers 
The fastest known algorithms for the multiplication of large integers or polynomials are 
based on the discrete Fourier transform: the sequences of digits or coefficients are 
interpreted as vectors whose convolution needs to be computed; in order to do this, they 
are first Fourier-transformed, then multiplied component-wise, then transformed back. 
 
2.4.3.8 Some discrete Fourier transform pairs 
In the following table ωn stands for exp( - 2πi / n) 

  

 
 

 
 

 
 
2.4.3.9  Variants of the Fourier transform 
Continuous Fourier transform 
Most often, the unqualified term "Fourier transform" refers to the continuous Fourier 
transform, representing any square-integrable function f(t) as a sum of complex 
exponentials with angular frequencies ω and complex amplitudes F(ω): 

 
This is actually the inverse continuous Fourier transform, whereas the Fourier transform 
expresses F(ω) in terms of f(t); the original function and its transform are sometimes called 
a transform pair. A generalization of this transform is the fractional Fourier transform, by 
which the transform can be raised to any real "power". 
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When f(t) is an even or odd function, the sine or cosine terms disappear and one is left with 
the cosine transform or sine transform, respectively. Another important case is where f(t) is 
purely real, where it follows that F(−ω) = F(ω)*. (Similar special cases appear for all other 
variants of the Fourier transform as well.) 
 
Fourier series 
The continuous transform is itself actually a generalization of an earlier concept, a Fourier 
series, which was specific to periodic (or finite-domain) functions f(x) (with period 2π), and 
represents these functions as a series of sinusoids: 

 
where Fn is the (complex) amplitude. Or, for real-valued functions, the Fourier series is 
often written: 

 
where an and bn are the (real) Fourier series amplitudes. 
 
Discrete Fourier transform 
For use on computers, both for scientific computation and digital signal processing, one 
must have functions xk that are defined over discrete instead of continuous domains, again 
finite or periodic. In this case, one uses the discrete Fourier transform (DFT), which 
represents xk as the sum of sinusoids: 

 
where fj are the Fourier amplitudes. Although applying this formula directly would require 
O(n2) operations, it can be computed in only O(n log n) operations using a fast Fourier 
transform (FFT) algorithm, which makes FFT a practical and important operation on 
computers. 
 

Other variants 
The DFT is a special case of (and is sometimes used as an approximation for) the discrete-
time Fourier transform (DTFT), in which the xk are defined over discrete but infinite 
domains, and thus the spectrum is continuous and periodic. The DTFT is essentially the 
inverse of the  
 
Fourier series. 
These Fourier variants can also be generalized to Fourier transforms on arbitrary locally 
compact abelian topological groups, which are studied in harmonic analysis; there, one 
transforms from a group to its dual group. This treatment also allows a general 
formulation of the convolution theorem, which relates Fourier transforms and 
convolutions. Time-frequency transforms such as the short-time Fourier transform, 
wavelet transforms, chirplet transforms, and the fractional Fourier transform try to obtain 
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frequency information from a signal as a function of time (or whatever the independent 
variable is), although the ability to simultaneously resolve frequency and time is limited by 
a (mathematical) uncertainty principle 
 
2.4.3.10 Applications 
Fourier transforms have many scientific applications — in physics, number theory, 
combinatorics, signal processing, probability theory, statistics, cryptography, acoustics, 
oceanography, optics, geometry, and other areas. (In signal processing and related fields, 
the Fourier transform is typically thought of as decomposing a signal into its component 
frequencies and their amplitudes.) This wide applicability stems from several useful 
properties of the transforms: 
 

The transforms are linear operators and, with proper normalization, are unitary as well (a 
property known as Parseval's theorem or, more generally, as the Plancherel theorem, and 
most generally via Pontryagin duality). The transforms are invertible, and in fact the 
inverse transform has almost the same form as the forward transform. The sinusoidal 
basis functions are eigenfunctions of differentiation, which means that this representation 
transforms linear differential equations with constant coefficients into ordinary algebraic 
ones. (For example, in a linear time-invariant physical system, frequency is a conserved 
quantity, so the behavior at each frequency can be solved independently.)  
 

By the convolution theorem, Fourier transforms turn the complicated convolution 
operation into simple multiplication, which means that they provide an efficient way to 
compute convolution-based operations such as polynomial multiplication and multiplying 
large numbers. The discrete version of the Fourier transform can be evaluated quickly on 
computers using fast Fourier transform (FFT) algorithms.  
 

Summary 
The Discrete Fourier Transform (DFT) is used to produce frequency analysis of discrete 
non-periodic signals. The FFT is another method of achieving the same result, but with 
less overhead involved in the calculations. The various properties of DFT are also described 
and the applications of DFT. The variants of DFT are dealt. 
 
Model Questions 

1. Define Discrete Fourier Trnasform? Give its derivation. 
2. What are the variants of fourier transform? 
3. What are the properties of DFT ? 
 

References: 
1. http://www.imb-jena.de/ImgLibDoc/ftir/IMAGE_FTIR.html 
2. http://topex.ucsd.edu/geodynamics/01fourier.pdf 
3. http://en.wikipedia.org/wiki/Fourier_transform#Applications 
4. http://en.wikipedia.org/wiki/Discrete_Fourier_transform 
5. http://en.wikipedia.org/wiki/Discrete_Fourier_transform#Generalized_DFT 
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Objective 

 To know what fast fourier transform is 
 To understand how it is applied 

2.4.4.1 Introduction 

In 1807, the French mathematician Joseph Fourier (1768-1830) submitted a paper to the 
Academy of Sciences in Paris. In it he presented a mathematical description of problems 
involving heat conduction. Although the paper was at first rejected, it contained ideas that 
would develop into an important area of mathematics named in honor, Fourier analysis. 
One surprising ramification of Fourier's work was that many familiar functions can be 
expanded in infinite series and integrals involving trigonometric functions. The idea today 
is important in modeling many phenomena in physics and engineering.  

The mathematical operation that resolves a time series (for example, a recording of ground 
motion) into a series of numbers that characterize the relative amplitude and phase 
components of the signal as a function of frequency. Frequency. Number of cycles 
occurring in unit time. 
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2.4.4.2 Why FFT ? 
 
If you look at the equation for the Discrete Fourier Transform you will see that it is 
complicated to work out as it involves many additions and multiplications involving 
complex numbers. Even a simple eight sample signal would require 49 complex 
multiplications and 56 complex additions to work out the DFT. At this level it is still 
manageable, however a realistic signal could have 1024 samples which requires over 
20,000,000 complex multiplications and additions. As you can see the number of 
calculations required soon mounts up to unmanageable proportions.  

 

The Fast Fourier Transform is a simply a method of laying out the computation, which is 
much faster for large values of N, where N is the number of samples in the sequence. It is 
an ingenious way of achieving rather than the DFT's clumsy P2 timing.  

The idea behind the FFT is the divide and conquer approach, to break up the original N 
point sample into two (N / 2) sequences. This is because a series of smaller problems is 
easier to solve than one large one. The DFT requires (N-1)2 complex multiplications and 
N(N-1) complex additions as opposed to the FFT's approach of breaking it down into a 
series of 2 point samples which only require 1 multiplication and 2 additions and the 
recombination of the points which is minimal.  

2.4.4.3 Background 

The Fast Fourier Transform (FFT) is one of the most important family of algorithms in 
applied and computational mathematics. These are the algorithms that make most of 
signal processing, and hence modern telecommunications possible. The most basic divide 
and conquer approach was originally discovered by Gauss for the efficient interpolation of 
asteroidal orbits. Since then, various versions of the algorithm have been discovered and 
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rediscovered many times, culminating with the publishing of Cooley and Tukey's landmark 
paper, "An algorithm for machine calculation of complex Fourier series", 

A Fourier series can sometimes be used to represent a function over an interval. If a 
function is defined over the entire real line, it may still have a Fourier series representation 
if it is periodic. If it is not periodic, then it cannot be represented by a Fourier series for all 
x. In such case we may still be able to represent the function in terms of sines and cosines, 
except that now the Fourier series becomes a Fourier integral.  

The motivation comes from formally considering Fourier series for functions of period 2T 
and letting T tend to infinity.  

Suppose  

 
 
 
and  

 
 
 
Now, set  

 
 
 
and insert the integral formula for the Fourier coefficients:  

 
 
 



 
 
 
Centre for Distance Education 4 Acharya Nagarjuna University 
  
The summation resembles a Riemann sum for a definite integral, and in the limit 

( ) we might get  

 

This informal reasoning suggest the following definition 

2.4.4.4 Fast Fourier transform 

A fast Fourier transform (FFT) is an efficient algorithm to compute the discrete Fourier 
transform (DFT) and its inverse. FFTs are of great importance to a wide variety of 
applications, from digital signal processing to solving partial differential equations to 
algorithms for quickly multiplying large integers. This article describes the algorithms, of 
which there are many; see discrete Fourier transform for properties and applications of the 
transform. 

Let x0, ...., xn-1 be complex numbers. The DFT is defined by the formula 

 

Evaluating these sums directly would take O(n2) arithmetical operations. An FFT is an 
algorithm to compute the same result in only O(n log n) operations. In general, such 
algorithms depend upon the factorization of n, but (contrary to popular misconception) 
there are O(n log n) FFTs for all n, even prime n. 

Since the inverse DFT is the same as the DFT, but with the opposite sign in the exponent 
and a 1/n factor, any FFT algorithm can easily be adapted for it as well. 

2.4.4.5 The Cooley-Tukey algorithm 

By far the most common FFT is the Cooley-Tukey algorithm. This is a divide and conquer 
algorithm that recursively breaks down a DFT of any composite size n = n1n2 into many 
smaller DFTs of sizes n1 and n2, along with O(n) multiplications by complex roots of unity 
traditionally called twiddle factors. 

This method (and the general idea of an FFT) was popularized by a publication of J. W. 
Cooley and J. W. Tukey in 1965, but it was later discovered that those two authors had 
independently re-invented an algorithm known to Carl Friedrich Gauss around 1805 (and 
subsequently rediscovered several times in limited forms). 
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The most well-known use of the Cooley-Tukey algorithm is to divide the transform into two 
pieces of size n / 2 at each step, and is therefore limited to power-of-two sizes, but any 
factorization can be used in general (as was known to both Gauss and Cooley/Tukey). 
These are called the radix-2 and mixed-radix cases, respectively (and other variants have 
their own names as well). Although the basic idea is recursive, most traditional 
implementations rearrange the algorithm to avoid explicit recursion. Also, because the 
Cooley-Tukey algorithm breaks the DFT into smaller DFTs, it can be combined arbitrarily 
with any other algorithm for the DFT. 

2.4.4.6 Other FFT algorithms 

There are other FFT algorithms distinct from Cooley-Tukey. For n = n1n2 with coprime n1 
and n2, one can use the Prime-Factor (Good-Thomas) algorithm (PFA), based on the 
Chinese Remainder Theorem, to factorize the DFT similarly to Cooley-Tukey but without 
the twiddle factors. The Rader-Brenner algorithm (1976) is a Cooley-Tukey-like 
factorization but with purely imaginary twiddle factors, reducing multiplications at the cost 
of increased additions and reduced numerical stability. Algorithms that recursively 
factorize the DFT into smaller operations other than DFTs include the Bruun and QFT 
algorithms. (The Rader-Brenner and QFT algorithms were proposed for power-of-two sizes, 
but it is possible that they could be adapted to general composite n. Bruun's algorithm 
applies to arbitrary even composite sizes.) Bruun's algorithm, in particular, is based on 
interpreting the FFT as a recursive factorization of the polynomial zn − 1, here into real-
coefficient polynomials of the form zm − 1 and z2m + azm + 1. Another polynomial viewpoint 
is exploited by the Winograd algorithm, which factorizes zn − 1 into cyclotomic 
polynomials—these often have coefficients of 1, 0, or −1, and therefore require few (if any) 
multiplications, so Winograd can be used to obtain minimal-multiplication FFTs and is 
often used to find efficient algorithms for small factors. Indeed, Winograd showed that the 
DFT can be computed with only O(n) multiplications, leading to a proven achievable lower 
bound on the number of irrational multiplications for power-of-two sizes; unfortunately, 
this comes at the cost of many more additions, a tradeoff no longer favorable on modern 
processors with hardware multipliers. In particular, Winograd also makes use of the PFA 
as well as an algorithm by Rader for FFTs of prime sizes. Rader's algorithm, exploiting the 
existence of a generator for the multiplicative group modulo prime n, expresses a DFT of 
prime size n as a cyclic convolution of (composite) size n − 1, which can then be computed 
by a pair of ordinary FFTs via the convolution theorem (although Winograd uses other 
convolution methods). Another prime-size FFT is due to L. I. Bluestein, and is sometimes 
called the chirp-z algorithm; it also re-expresses a DFT as a convolution, but this time of 
the same size (which can be zero-padded to a power of two and evaluated by radix-2 
Cooley-Tukey FFTs, for example), via the identity jk = − (j − k)2 / 2 + j2 / 2 + k2 / 2. 

2.4.4.7 FFT algorithms specialized for real and/or symmetric data 

In many applications, the input data for the DFT are purely real, in which case the outputs 
satisfy the symmetry 
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and efficient FFT algorithms have been designed for this situation (see e.g. Sorensen, 
1987). One approach consists of taking an ordinary algorithm (e.g. Cooley-Tukey) and 
removing the redundant parts of the computation, saving roughly a factor of two in time 
and memory. Alternatively, it is possible to express an even-length real-input DFT as a 
complex DFT of half the length (whose real and imaginary parts are the even/odd elements 
of the original real data), followed by O(n) post-processing operations. 

It was once believed that real-input DFTs could be more efficiently computed by means of 
the Discrete Hartley transform (DHT), but it was subsequently argued that a specialized 
real-input DFT algorithm (FFT) can typically be found that requires fewer operations than 
the corresponding DHT algorithm (FHT) for the same number of inputs. Bruun's algorithm 
(above) is another method that was initially proposed to take advantage of real inputs, but 
it has not proved popular. 

There are further FFT specializations for the cases of real data that have even/odd 
symmetry, in which case one can gain another factor of (roughly) two in time and memory 
and the DFT becomes the discrete cosine/sine transform(s) (DCT/DST). Instead of directly 
modifying an FFT algorithm for these cases, DCTs/DSTs can also be computed via FFTs of 
real data combined with O(n) pre/post processing. 

Accuracy and approximations 

All of the FFT algorithms discussed so far compute the DFT exactly (in exact arithmetic, 
i.e. neglecting floating-point errors). A few "FFT" algorithms have been proposed, however, 
that compute the DFT approximately, with an error that can be made arbitrarily small at 
the expense of increased computations. Such algorithms trade the approximation error for 
increased speed or other properties. For example, an approximate FFT algorithm by 
Edelman et al. (1999) achieves lower communication requirements for parallel computing 
with the help of a fast-multipole method. A wavelet-based approximate FFT by Guo and 
Burrus (1996) takes sparse inputs/outputs (time/frequency localization) into account 
more efficiently than is possible with an exact FFT. Another algorithm for approximate 
computation of a subset of the DFT outputs is due to Shentov et al. (1995). Only the 
Edelman algorithm works equally well for sparse and non-sparse data, however, since it is 
based on the compressibility (rank deficiency) of the Fourier matrix itself rather than the 
compressibility (sparsity) of the data. 

Even the "exact" FFT algorithms have errors when finite-precision floating-point arithmetic 
is used, but these errors are typically quite small; most FFT algorithms, e.g. Cooley-Tukey, 
have excellent numerical properties. The upper bound on the relative error for the Cooley-
Tukey algorithm is O(ε log n), compared to O(ε n3/2) for the naïve DFT formula (Gentleman 
and Sande, 1966), where ε is the machine floating-point relative precision. In fact, the root 
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mean square (rms) errors are much better than these upper bounds, being only O(ε √log n) 
for Cooley-Tukey and O(ε √n) for the naïve DFT (Schatzman, 1996). These results, however, 
are very sensitive to the accuracy of the twiddle factors used in the FFT (i.e. the 
trigonometric function values), and it is not unusual for incautious FFT implementations 
to have much worse accuracy, e.g. if they use inaccurate trigonometric recurrence 
formulas. Some FFTs other than Cooley-Tukey, such as the Rader-Brenner algorithm, are 
intrinsically less stable. 

In fixed-point arithmetic, the finite-precision errors accumulated by FFT algorithms are 
worse, with rms errors growing as O(√n) for the Cooley-Tukey algorithm (Welch, 1969). 
Moreover, even achieving this accuracy requires careful attention to scaling in order to 
minimize the loss of precision, and fixed-point FFT algorithms involve rescaling at each 
intermediate stage of decompositions like Cooley-Tukey. 

To verify the correctness of an FFT implementation, rigorous guarantees can be obtained in 
O(n log n) time by a simple procedure checking the linearity, impulse-response, and time-
shift properties of the transform on random inputs (Ergün, 1995). 

2.4.4.8 Multidimensional FFT algorithms 
As defined in the multidimensional DFT article, the multidimensional DFT 

 

transforms an array with a d-dimensional vector of indices 

by a set of d nested summations. 
Equivalently, it is simply the composition of a sequence of d one-dimensional DFTs, 
performed along one dimension at a time (in any order). 

This compositional viewpoint immediately provides the simplest and most common 
multidimensional DFT algorithm, known as the row-column algorithm (after the two-
dimensional case, below). That is, one simply performs a sequence of d one-dimensional 
FFTs (by any of the above algorithms): first you transform along the k1 dimension, then 
along the k2 dimension, and so on (or actually, any ordering will work). This method is 
easily shown to have the usual O(NlogN) complexity, where is the total 
number of data points transformed. In particular, there are N / n1 transforms of size n1, 
etcetera, so the complexity of the sequence of FFTs is: 
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In two dimensions, the can be viewed as an matrix, and this algorithm 
corresponds to first performing the FFT of all the rows and then of all the columns (or vice 
versa), hence the name. 

In more than two dimensions, it is often advantageous for cache locality to group the 
dimensions recursively. For example, a three-dimensional FFT might first perform two-
dimensional FFTs of each planar "slice" for each fixed k1, and then perform the one-
dimensional FFTs along the k1 direction. More generally, an (asymptotically) optimal cache-
oblivious algorithm consists of recursively dividing the dimensions into two groups 

and that are transformed recursively (rounding if d is not 
even) (see Frigo and Johnson, 2005). Still, this remains a straightforward variation of the 
row-column algorithm that ultimately requires only a one-dimensional FFT algorithm as 
the base case, and still has O(NlogN) complexity. Yet another variation is to perform matrix 
transpositions in between transforming subsequent dimensions, so that the transforms 
operate on contiguous data; this is especially important for out-of-core and distributed 
memory situations where accessing non-contiguous data is extremely time-consuming. 

There are other multidimensional FFT algorithms that are distinct from the row-column 
algorithm, although all of them have O(NlogN) complexity. Perhaps the simplest non-row-
column FFT is the vector-radix FFT algorithm, which is a generalization of the ordinary 
Cooley-Tukey algorithm where one divides the transform dimensions by a vector 

of radices at each step. (This may also have cache benefits.) The 
simplest case of vector-radix is where all of the radices are equal (e.g. vector-radix-2 
divides all of the dimensions by two), but this is not necessary. Vector radix with only a 

single non-unit radix at a time, i.e. , is essentially a row-
column algorithm. Other, more complicated, methods include polynomial transform 
algorithms due to Nussbaumer (1977), which view the transform in terms of convolutions 
and polynomials products.  

2.4.4.9 Applications of the FFT 

 
The FFT algorithm tends to be better suited to analyzing digital audio recordings than for 
filtering or synthesizing sounds. A common example is when you want to do the software 
equivalent of a device known as a spectrum analyzer, which electrical engineers use for 
displaying a graph of the frequency content of an electrical signal. You can use the FFT to 
determine the frequency of a note played in recorded music, to try to recognize different 
kinds of birds or insects, etc. The FFT is also useful for things which have nothing to do 
with audio, such as image processing (using a two-dimensional version of the FFT). The 
FFT also has scientific/statistical applications, like trying to detect periodic fluctuations in 
stock prices, animal populations, etc. FFTs are also used in analyzing seismographic 
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information to take "sonograms" of the inside of the Earth. It  is even used to read about 
Fourier methods used to analyze DNA sequences!  

The main problem with using the FFT for processing sounds is that the digital recordings 
must be broken up into chunks of n samples, where n always has to be an integer power of 
2. One would first take the FFT of a block, process the FFT output array (i.e. zero out all 
frequency samples outside a certain range of frequencies), then perform the inverse FFT to 
get a filtered time-domain signal back. When the audio is broken up into chunks like this 
and processed with the FFT, the filtered result will have discontinuities which cause a 
clicking sound in the output at each chunk boundary. For example, if the recording has a 
sampling rate of 44,100 Hz, and the blocks have a size n = 1024, then there will be an 
audible click every 1024 / (44,100 Hz) = 0.0232 seconds, which is extremely annoying to 
say the least.  

Assume the buffer size is n = 2^N. On the first iteration, read n samples from the input 
audio, do the FFT, processing, and IFFT, and keep the resulting time data in a second 
buffer. Then, shift the second half of the original buffer to the first half (remember that n is 
a power of 2, so it is divisible by 2), and read n/2 samples into the second half of the 
buffer. Do the same FFT, processing, IFFT. Now, do a linear fade out on the second half of 
the old buffer that was saved from the first (FFT,processing,IFFT) triplet by multiplying 
each sample by a value that varies from 1 (for sample number n/2) to 0 (for sample 
number n - 1). Do a linear fade in on the first half of the new output buffer (going linearly 
from 0 to 1), and add the two halves together to get output which is a smooth transition. 
Note that the areas surrounding each discontinuity are virtually erased from the output, 
though a consistent volume level is maintained. This technique works best when the 
processing does not disturb the phase information of the frequency spectrum. For 
example, a bandpass filter will work very well, but you may encounter distortion with pitch 
shifting.  

An open question in computational molecular biology is whether long-range correlations 
are present in both coding and noncoding DNA or only in the latter. To answer this 
question, we consider all 33 301 coding and all 29 453 noncoding eukaryotic sequences—
each of length larger than 512 base pairs (bp—in the present release of the GenBank to 
determine whether there is any statistically significant distinction in their long-range 
correlation properties. Standard fast Fourier transform (FFT) analysis indicates that coding 
sequences have practically no correlations in the range from 10 bp to 100 bp (spectral 
exponent β=0.00±0.04, where the uncertainty is two standard deviations). In contrast, for 
noncoding sequences, the average value of the spectral exponent β is positive (0.16±0.05), 
which unambiguously shows the presence of long-range correlations. We also separately 
analyze the 874 coding and the 1157 noncoding sequences that have more than 4096 bp 
and find a larger region of power-law behavior. We calculate the probability that these two 
data sets (coding and noncoding) were drawn from the same distribution and we find that 
it is less than 10-10. We obtain independent confirmation of these findings using the 
method of detrended fluctuation analysis (DFA), which is designed to treat sequences with 
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statistical heterogeneity, such as DNA’s known mosaic structure (‘‘patchiness’’) arising 
from the nonstationarity of nucleotide concentration. The near-perfect agreement between 
the two independent analysis methods, FFT and DFA, increases the confidence in the 
reliability of our conclusion. 

Summary 

Fourier analysis of a periodic function refers to the extraction of the series of sines and 
cosines which when superimposed will reproduce the function. This analysis can be 
expressed as a Fourier series. The fast Fourier transform is a mathematical method for 
transforming a function of time into a function of frequency. Sometimes it is described as 
transforming from the time domain to the frequency domain. It is very useful for analysis 
of time-dependent phenomena.. Fast fourier transform can also be used for the DNA 
sequence analysis. The FFT also has scientific/statistical applications, like trying to detect 
periodic fluctuations in stock prices, animal populations, etc 

Model Questions 

1. What is meant Fast Fourier transform?Why do we use it ? 
2. Wrire about FFT algorithms. 
3. How is fast fourier transform applied? 
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Lesson 2.5.1 
 

PROGRAMMING WITH C 
Objective 
2.5.1.1.  Introduction 
2.5.1.2.  The origin of C 
2.5.1.3.  The character set 
2.5.1.4.  Constants, variables & keywords 
2.5.1.5.  Type declaration 
2.5.1.6.  Hierarchy of operations 
2.5.1.7  Basic Structure of C Program 
2.5.1.8.  The first C program 
2.5.1.9.  Control instructions in C 
2.5.1.10.  Loops 
2.5.1.11.  The for loop 
2.5.1.12.  The goto statement 
2.5.1.13.  Functions 
2.5.1.14.  Datatypes in C 
2.5.1.15.  Arrays 

 Summary 
 Self-assessment questions 
 Reference books 

Objectives 
 To know what are programming languages and their various 

generations. 
 The origin and fundamentals of C on hand. 
 To program using C programming language features like. 

 Operators 
 Control structures 
 Loops 
 Functions 
 Arrays 

2.5.1.1. Introduction 

 Computers are man made machines.  They do only what they are told to do.  
Most computer systems perform their operations on a very primitive  level.  The basic 
operations of a computer system form what is known as the computer’s `instruction 
set’.  In order to solve a problem using a computer, it is must to express the solution to 
the problem in terms of the instructions of the particular computer.  Man instructs a 
computer to perform given tasks or applications through computer programming 
languages. 

A programming language or computer language is a standardized communication 
technique for expressing instructions to a computer.  It is a set of syntactic and 
semantic rules used to define computer programs.  A language enables a programmer to 
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precisely specify what data a computer will act open, how these data will be stored / 
transmitted, and precisely what actions to take under various circumstances. 

 A primary purpose of programming languages is to enable programmers to 
express their intent for a computation more easily than they could with a lower-level 
language or machine code.   For this reason, programming languages are generally 
designed to use a higher-level syntax, which can be easily communicated and 
understood by human programmers.  Programming languages are important tools for 
helping software engineers write better programs faster.  During the last few decades, a 
large number of computer languages have been introduced have replaced each other, 
and have been modified / combined.  The need for a significant range of computer 
languages is caused by the fact that the purpose of programming languages varies from 
commercial software development to scientific to hobby use; There are many special 
purpose languages, for use in special situations: PHP is a scripting language that is 
especially suited for web development.  Perl is suitable for text manipulation.  The C 
language has been widely used for developing of the operating system and compilers 
(so-called system programming).  Programming languages make computer programs 
less dependent on particular machines or environments.  This is because programming 
languages are converted into specific machine code for a particular machine rather than 
being executed directly by the machine. 

 Most languages can be either compiled or interpreted, but most are better suited 
for one than the other.  In some programming systems, programs are compiled in 
multiple stages, into a variety of intermediate representations.  Typically, later stages of 
compilation are closer to machine code than earlier stages. 

 If the program code is translated at runtime, with each translated step being 
executed immediately, the translation mechanism is spoken of as an interpreter.  
Interpreted programs run usually more slowly than compiled programs, but have more 
flexibility because they are able to interact with the execution environment.  If the 
translation mechanism used is one that translates the program which takes the 
human-readable program text (called source code) as data input and supplies object 
code as output.  The resulting object code may be machine code which will be executed 
directly by the computer’s CPU, or it may be code matching the specification of virtual 
machine. 

 Computers communicate and are communicated using their own languages.  The 
`natural’ language of the computer is far less exotic than the human languages and has 
comparatively restricted vocabulary.  Programming languages are divided into several 
categories-there is the machine level, ie., the binary level which the computer actually 
executes; there is the assembly level; ie., a machine-oriented version which allows the 
use of mnemonics.  Both of these are termed low level because they mirror directly the 
machine’s architecture.  There are high level languages, also known as problem-
oriented languages because they allow the programmer to write instructions more 
closely related to a class of problem rather than to the constraints of a given computer’s 
architecture.   
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One such language is the C programming language that which possesses  the powerful 
features of programming and supports conditional constructs, loop constructs, a rich 
list of operators and a variety of data structures as in third generation languages.  
There is a higher level yet which includes packages, such as word processing, database 
management and spreadsheets.  These languages allow users to specify the information 
they want, in non-programming terms, and the package will produce the required 
results.  There are closely related to Fourth Generation Languages (4 GLs). 

 Many hundreds of programming languages exist and it is commonly accepted to 
attach a descriptive label to each, eg: `scientific’, `commercial’.  However attempts to 
classify the various languages are rigid and should be used with caution. 

2.5.1.2. The origin of C 

 C is a programming language developed at AT & T’s Bell Laboratories of USA in 
1972.  Basic Combined Programming Language (BCPL), developed by Martin Richards 
at Cambridge University aimed to solve this problem by bringing CPL down to its basic 
good features.  Around same time a language called B was written by Ken Thompson at 
AT & T’s Bell Labs, as further simplification of CPL.  But like BCPL, B too turned out to 
be very specific.  C programming language was designed and written by a man named 
Dennis Ritchie.  Ritchie inherited the features of B and BCPL, added some of his own 
and developed C.  In the late seventies C began to replace the more familiar languages 
of that time like PL/I, ALGOL etc.  Ritchie’s main achievement is the restoration of the 
lost generality in BCPL and B, and still keeping it powerful.  Possibly why C seems so 
popular is because it is reliable, simple and easy to use. 

 C is often called a middle-level computer language.  This does not mean that C is 
less powerful, harder to use, or less developed than a high-level language, nor does it 
imply that C has the cumbersome nature of assembly language.  As a middle-level 
language, C allows the manipulation of bits, bytes, and addresses the basic elements 
with which the computer functions. 

Getting started with C 
 Communicatinng with a computer involves speaking the language the computers 
understands, which immediately rules out English as the language of communication 
with computer.  However, there is close analogy between learning English language and 
learning C language. 

2.5.1.3. The character set 

 A character denotes any alphabet, digit or special symbol used to represent 
information.  Following table shows the valid alphabets, numbers and special symbols 
allowed in C: 

 Alphabets                     A,B,……Y, Z 

            A, b, ……., y, z 
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 Digits                           0,1,2,3,4,5,6,7,8,9 

 Special                          ~ ‘ ! @  % ^ & * ( )  _ - + =  

     1 / { } [ ] : ; “ ‘ <> , . ? / 

2.5.1.4. Constants, variables & keywords 

 The alphabets, numbers and special symbols when properly combined form 
constants, variables and keywords.  A constant is a quantity that doesn’t change.  This 
quantity can be stored at a location in the memory of the computer.  A variable can be 
considered as a name given to the location in memory where this constant is stored.  
The contents of a variable can change. 

1. Types of constants 

 C constants can be divided into two major categories: 
a. Primary constants 

Integer constant 
Real constant 
Character constant 

b. Secondary constant 
Array 
Pointer 
Structure 
Union 
Enum etc. 

For constructing these different types of constants certain rules have been laid down.  
These rules are as under: 

a. Rules for constructing integer constants 

a. An integer must have atleast one digit. 

b. It must not have a decimal point. 

c. It could be either positive or negative. 

d. If no sign precedes an integer constant is assumed to be positive. 

e. No commas or blanks are allowed within an integer constant 

f. The allowable range for integer constants is –32767 to +32767. 

Integer constants must fall within this range because the 1BM compatible 
microcomputers are usually 16 bit computers which cannot support a number falling 
outside the above mentioned range.  For a 32 bit computer ofcourse the range would be 
much larger.   
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 Eg:     426 

       +  782 

- 8000 

b. Rubles for constructing real constants 

 Real constants are often called floating point constants.  The real constants could 
be written in two forms, Fractional form and exponential form. 

a. A real constant must have atleast one digit. 

b. It must have a decimal point. 

c. It could be either positive or negative. 

d. Default sign is positive. 

e. No commas or blanks are allowed within a real constant. 

Eg:   426.0 

       -  32.76 

In exponential form of representation, the real constant is represented in two 
parts.  The part appearing before `e’ is called mantissa, whereas the part following `e’ is 
called exponent. 

a. The mantissa part and the exponential part should be separated by a letter C. 

b. The mantissa part may have a positive or negative sign. 
c. Default sign of mantissa part is positive. 

d. The exponent must have atleast one digit which must be a positive or negative 
integer.  Default sign is positive. 

e. Range of real constants expressed inn exponential form is –3.4e38 to 3.4e38. 
Eg:  + 3.2 e-5 

          4.1e8 
-0.2e+3 

c. Rules for constructing character constants 

a. A character constant is either a single alphabet, a single digit or a single special 
symbol enclosed within single inverted commas both the inverted commas 
should point to the left.  For example, `A’ is a valid character constant whereas 
`A’ is not. 

b. The maximum length of a character constant can be 1 character. 
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Eg : `A’ `1’ 

       `5’ `=’ 

2. Types of C variables 

 In C, a quantity which may vary during program is called a variable.  Variable 
names are the names given to locations in the memory of computer where different 
constants are stored.  These locations can contain integer, real or character constants.  
A constant stored in a location with a particular type of variable name can hold only 
that type of constant. 

a. A variable name is any combination of 1 to 8 alphabets, digits or underscores. 

b. The first character in variable name must be an alphabet. 

c. No commas or blanks are allowed within a variable name. 

d. No special symbol other than an underscore (as in gross-sal) can be used in a 
variable name. 

Eg: si-int 

  Pop-e-89 

These rules remain same for all the types of primary and secondary variables.  C 
compiler is able to distinguish between the variable names, by making it compulsory to 
declare the type of any variable name to be used in a program.  This type declaration is 
done at the beginning of the program. 

3. C Key words 

 Keywords are the words whose meaning has already been explained to the C 
compiler (or in broad sense to the computer).  The keywords cannot be used as variable 
names because doing so implies to assign a new meaning to the keyword, which is not 
allowed by the computer.  The keywords are also called `Reserved words’.  There are 
only 32 keywords available in C.  Following is the list of keywords in C. 

Auto  Double  If  Statie Break Else  Int Struct Case 

Enum Long  Switch Char Extern Near Typedy Const Float 

Register Union Continue  Far Return Unsigned Default For Short 

Void  Do Goto Signed While     
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2.5.1.5. Type declaration 

 Type declaration is used to declare the type of variables being used in the 
program.  Any variable used in the program must be declared before using it in any 
statement.  The type declaration statement is usually written at the beginning of the C 
program. 

 Eg : int bas; 

        Float sal; 

                 Char name; 

 It is very important to understand how the execution of an arithmetic statement 
takes place.  First, the right hand side is evaluated using constants and the numerical 
values stored in the variable names.  This value is assigned to the variable on the left 
hand side. 

The following points has to be noted carefully. 

a. C allows only one variable on left hand side of = that is, Z = k * l is legal, where 
as k * l = Z is illegal. 

b. No operator is assumed to be present.  It must be written explicitly.  In the 
following example, the manipulation operator after b must be explicitly written. 
A = c,b,d (xy) has to be written as 

A = c*b*d* (x*y). 
c. Arithematic operations can be performed on ints, floats is chars. 

Thus the statements, 
Char x, y; 

Int z; 
X = `a’, 

Y = `b’,  
Z = x+y; are perfectly valid, 

Since the addition is performed on the ASC11 values of the characters and not on 
characters themselves.  The ASC11 values of `a’ eg `b’ are 97 and 98 (refer the ASC11 
values) and hence can definetly be added. 

d. Unlike other high level languages, there is no operator for performing 
exponentiation operation. 
A = 3 **2; 
B = 3” 2;   are valid 

e. An arithmetic operation between an integer and integer always yields an integer 
result. 
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f. Operation between a real and real always yields a real result. 

g. Operation between an integer and real always yields a real result. 

Eg :      5/2       =  2        ;  2/5 = 0 

   5.0/2    = 2.5       ;  2.0/5 = 0.4 

    5.0/2.0 = 2.5       ;  2.0/5.0 = 0.4 

2.5.1.6. Hierarchy of operations 

 All operators in C are ranked according to their precedence. 

Priority Operators Description 

1st * 1% Multiplication, division, modular division 

2nd + -  Addition, subtraction 

3rd = Assignment 

 

a. In case of a tie between operations of same priority preference is given to the 
operator which occurs first. 

b. Within a parantheses, if more than one set of parantheses are present, the 
operations within the innermost parantheses will be performed first, followed by 
the operations within the second innermost pair and so on. 

A careless imbalance of the right and left parantheses is a common error. 

2.5.1.7 Basic Structure of C Program 

A C program may contain one or more sections shown. 
The documentation section consists of a set of comment lines giving the name of the 
program, the author and other details, which the programmer would like to use later. 
The link section provides instructions to the compiler to link functions from the system 
library. The definition section defines all symbolic constants. 

There are some variables that are used in more than one function. Such variables are 
called global variables and are declared in the global declaration section that is outside 
of all the functions. This section also declares all the user-defined functions. 

 
Every C program must have one main() function section. This section contains two 

parts, declaration part and executable part. The declaration part declares all the 
variables used in the executable part. There is at least one statement in the executable 
part. These two parts must appear between the opening and the closing braces. The 
program execution begins at the opening brace and ends at the closing brace. The 
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closing brace of the main function section is the logical end of the program. All 
statements in the declaration and executable parts end with a semicolon. 

 
The subprogram section contains all the user-defined functions that are called in the 

main function. User-defined functions are generally placed immediately after the main 
function, although they may appear in any order. 
All sections, except the main function section may be absent when they are not 
required. 

 

 

2.5.1.8. The first C program 

 Each instruction in a C program is written as a separate statement.  Therefore a 
complete C program is nothing but statements in the same order in which they are to 
be executed; unless ofcourse the logic of the problem demands a deliberate `jump’ or 
transfer of control to a statement which is out of sequence.  The following rules are 
applicable to all C statements: 

a. Blank spaces may be inserted between two words to improve the reliability of the 
statement.  However, no blank spaces are allowed within a variable, constant or 
keyword. 

b. C has no specific rules for the position at which a statement is to be written.  
That’s why it is often called a free-form language. 

c. Any C statement always ends with a  ; (semicolon). 
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A Sample C Program 
/* calculation of simple interest */ 
/* Author gekay Date: 25/12/1994 */ 
{ 
 int p, n; 
 float r, si; 
 P = 1000; 
 N = 3; 
 R = 8.5; 
 Si = p * n * r / 100; 
 Printf (“ % f “ , si); 
} 

 Comment about the program should be enclosed within /* */.  For example, the first 
two statements in the above program are comments.  Any number of comments 
anywhere in the program can be written.  Comments cannot be nested.  A comment can 
be split over more than one line as in, 
/* This is 
     just a 
     comment */ 

 Any C program is nothing but a combination of functions.  Main ( ) 
is one such function.  Empty parantheses after `main’ are necessary. 

 The set of statements belonging to a function are enclosed within a 
pair of braces.  For eg: 
Main ( ) 
{  

  statement 1; 
  statement 2; 

} 
 Any variable used in the program must be declared before using it. 
 Print (  ) is a function which is used to print on the screen the value contained in a 
variable. 
The general form of printf statement is, 
Printf ( “< format string >”, <list of variables>); 
< format string > could be, 
% f for printing real values  
% d for printing integer values 
% c  for printing character values 



 
 
 
P.G.D. in Bioinformatics 11 Programming with C 

 11 

Eg: Printf (“% f”, si); 
      Printf (“% d %d%f%f”, p, n, r, si); 
      Printf ( “ simple interest = Rs. % f”, si) ;  
 The output of the last statement would be  
 Simple interest = Rs. 25 
  Printf (“Prin = % d in Rate = % f”, p, r); 
 “In” is called new line and it takes the cursor to the next line.  Therefore the 
output is split over two lines like  
 Prin = 1000 
 Rate = 8.5 
In the  above sample program, the values of p, n & r are  supplied through keyboard, 
rather, a statement called scant should be used: 
Main (  ) 
{  
  int p, n; 
  float r, si; 
  print f (“Enter values of p, n, r”); 
  scanf (“%d %d %f”, & p, &n, &r); 
   si = p * n * r/100; 
   printf (“%f”, si); 
} 

 The first printf (  ) statement outputs the message `enter the values of p,n,r’ on 
the screen.  The ambersand (&) before the variables in the scanf statement  is a must, & 
is a pointer operator.  The meaning and working of this pointer operator is the `address 
of’ operator, that which returns the address of the variables.  Here, in the above 
program, the p, n & r values are to be supplied through keyboard.  The three values can 
be separted, while entering through keyboard, using a blank, a tab or even by entering 
each value on a new line. 

2.5.1.9. Control instructions in C 
 C has three major decision making instructions, otherwise called conditional 
statements: 

a. the if statement, (b) the if-else statement, and ( c) the switch statement. 
1. The if statement 
 C uses the keyword `if’ to implement the decision control instruction.  The 
general form is :  
If (this condition is true) 

   Execute this statement; 
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 The keyword `if’ tells the compiler that what follows, is a decision control  
instruction.  The condition following the keyword if is always enclosed within a pair of 
paratheses.  If the condition, whatever it is, is true, then the statement is executed.  If 
the condition is not true then the statement is not executed; instead the program skips 
past it.  As a general rule, the condition is expressed using C’s `relational’ operators.  
They allow to compare the values. 

OPERATOR MEANING 

== Equals 

! =  Not equals 

< Less than 

> Greater than 

<= Lessthan or equals 

> =  Greater than or equals 

The requirement of more than one statement are to be executed if a given if condition is 
satisfied, then they must be placed within a pair of braces. 

2. The if-else statement 
 The if statement will execute a single or multiple statement (s) when the 
condition following if is true, it doesn’t do anythis if the condition is not satisfied. 
 This is what the purpose of the else statement.  As the if statement, the default 
scope of else is also the statement immediately after the else.  To override, a pair of 
braas are used.  The format would be: 
If (condition) 
{  
  statement 1; 
  statement 2; 
} 
else 
{ 
  statement 3; 
  statement 4; 
} 
3. Nested if-elses 
 It is perfectly alright to write an entire if-else construct within either the body of 
the if statement or the body of an else statement.  This is called `nesting’ of ifs.  Note 
that the second if-else construct is nested in the first else statement.  If the condition in 
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the first if statement is false then the condition in the second if statement is checked.  If 
it is false as well, the final else statement is executed. 
4. Logical operators 
 C allows usage of three logical operators. 

a. & & (read as AND) 
b. 11 (OR) 
c. ! (NOT) 

They are composed of and are used as two symbols together.  The first two operators, & 
& and 11, allow two or more conditions to be combined in an if statement.  The & & 
operator is used to combine two conditions in which if one of the conditions evaluate to 
false then the whole condition of the if statement is treated as false.  And when 11 is 
used, any one of conditions evaluates to true then the whole condition is treated as 
true.  The third operator is the NOT operator written as !.  It reverses the value of the 
expression it operates on; it makes a true expression false and a false expression true. 
Eg : (1) if (a>b & & b>c) 
 That implies the condition is true only when a is greater than be and b is greater 
than c. 
Eg : if (a>10 11 a>5) 
 A is greater than 10 and it can be true when the a is just greater than 5. 
Eg : ! (y<10) 
 Implies “not y less than”.  In other words  
The NOT operator is often used to reverse the logical value of a single variable. 
5. The conditional operators 
 The conditional operators ? and : are sometimes called ternary operators since 
they take three arguments. 
The general form is; 
Expression 1 ? expression 2  : expression 3 
This implies that : “if expression 1 is true (that is, if its value is non-zero), then the 
value returned will be expression 2 otherwise the value returned will be expression 3”. 
Eg : int x, y; 
       Scanf (“%d”, & x); 
       Y = (x>5 ? 3:4); 
 This statement will store 3 in y if x is greater than 5, otherwise it will store 4 in y. 
2.5.1.10. Loops 
 The versatility of the computer lies in its ability to perform a set of instructions 
repeatedly.  Repeating some portion of the program either a specific number of times or 
until a particular condition is being satisfied.  This repetitive operation is done through 
a loop control structure.  There are three methods by way of which looping is done. 

a. Using a for statement 
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b. Using a while statement 
c. Using a do-while statement 

1. The while loop 
 In programming, it is often a case of doing something a fixed number of times.  
The while loop is ideally suited for such cases.  In a while block of statements, the 
condition is evaluated first and, if it is true, the loop body is executed.  The parantheses 
after the while contains a condition.  So long as this condition remains true all 
statements within the body of the while loop keep getting executed repeatedly.  After 
execution of the loop body once / everytime, the condition in the while statement is 
evaluated again.  This repeats until the condition becomes false.  The format would be : 
 While (condition) 
 { 
   statement 1; 
            statement 2; 
 } 
 The statements within the while loop’s condition may use relational or logical 
operators. 
 While (I<=10) 
 While (j>10 & & (b<15 \\ c < 20) ) 
 As a rule the while must test a condition that will eventually become false, 
otherwise the loop would be executed forever, indefinitely. 
Eg: 
 Int I = 1; 
 While (I<=10) 
 Printf (“%d”, I); 
 This is an indefinite loop, since ; remains equal to 1 forever. 
 No semicolon or anytermination are not to be used after the while condition and 
before the while block begins. 
2. More operators 
 The increment operator(++) increments the value of preceeding / succeeding variable 
to which it is used. 
Eg: I++  I is incremented by 1. 
 The decrement operator (--) decrements the value of the variable by 1. 
Eg: 1 --  I is decreased by 1. 
 += is a compound assignment operator. 
Eg : I = I+1; 
 Can be written as 
 I + = 1; 
Similarly other compound assignment operators are -=, *=, /= and %=. 
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2.5.1.11. The for loop 
 The for loops allows to specify three conditions about the loop in a single line. 

a. setting a loop counter to an initial value. 
b. Testing the loop counter to determine whether its value has reached the number 

of repetitions desired. 
c. Increasing the value of loop counter each time the program segment within the 

loop has been executed. 
The general form of for statement is as under: 
For (intialise counter; test counter; increment counter) 
{ 
    do this; 
     statements; 
    } 
Eg: int count; 
 For (count =1 ; count < = 3; count = count + 1) 
 { 
    statement 1; 
             statement 2; 
     } 

 When the for statement is executed for the first time, the value of 
count is set to an initial value 1. 

 Now the condition count <=3 is tested.  Since count is 1 the 
condition is satisfied and the body of the loop is executed for once.  
And after that, upon reaching the closing  brace of for, the control 
gets back to the for statements, where the third statement of the for 
condition is evaluated and incremented, by 1. 

 Again the test is performed to check whether the value is <3 or not 
and the cycle goes on. 

 When count reaches the value 4 the control exists from the loop and 
is transferred to the statement  (if any) immediately after the body of 
for.   

The flowchart, further clarryfying the concept: 
Eg: main (  ) 
{ 
   int I; 
    for ( I = 1; I<=10; I=I+1) 
     printf (“%d in”, I); 
  } 
prints numbers 1 to 10 
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 The way if statements can be nested, similarly whiles and fors can 
also be nested. 

 In the for loop, multiple initializations can be done.  That is, more 
than variables can be initialized with in the for loop 
Eg : for (I=1, j=2, j<=10; j++) 

 A break is usually used when the situations arise that the control 
has to jump out of the loop instantly, without waiting to get back to 
the conditional test.  When the keyword break is encountered inside 
any C loop, control  automatically passes to the first statement after 
the loop. 

 A continue statement allows to take the control to the beginning of 
the loop, bypassing the statements inside the loop which have not 
yet been executed.  When the keyword continue is encountered 
inside any C loop, control automatically passes to the beginning of 
the loop.  A continue is usually associated with an if. 

4. The do-while loop 
 The do-while loop has a format of: 
 Do 
 { 
   statement 1; 
   statement 2; 
 } while (condition is true); 
 There is a minor difference between the working of while and do-while loops.  The 
place where the condition is tested.  `While’ tests the condition before executing any of 
the statements within the while loop.  The do-while tests the condition after having 
executed the statements within the loop.  This means that do-while would execute its 
statement atleast once, even if the condition fails for the first time itself. 

Break and continue are used with do-while just as they would be in a while or a for 
loop. 

5. The switch statement 

 The control statement which allows the user to make a decision from a number 
of choices is called a switch, or more correctly a switch-case-default, since these three 
keywords go together to make up the control statement. 
 Switch (integer expression) 
 { 
    case constant 1; 
     do this; 
    case constant 2; 
  do this; 
     case constant 3; 
  do this; 
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    default; 
  do this; 
 } 
 The integer expression following the keyword switch is any C expression  that will 
yield an integer value.  The keyword case is followed by an integer or a character 
constant that which different for each case.  First, the integer expression following the 
keyword switch is evaluated.  The value it gives is then matched, one by one, against 
the constant values that follow the case statements.  When match found, the 
statements following that case are executed, and all subsequent case and default 
statements as well.  If no match found, only the statements following the default are 
executed. 
Eg : 
 Main (  ) 
 { 
    int I =2; 
    switch (i) 
 {  
    case 1: 
  Printf (“I am in case 1 in”); 
     Case 2: 
  Printf (“I am in case 2 in”); 
   Case 3: 
  Printf (“I am in case 3 in”); 
    Default : 
  Printf (“I am in default in”); 
 } 
 } 
The output would be  
I am in case 2 
I am in case 3 
I am in default. 
If the requirement is to print only the statements of the matched case, then break 
statement is to be used at the end of every case.  No need fro a break after the default, 
since the control comes to the end anyway.  For better understanding: 
 

 The order of the case number can be either ascending or descending 
or even without any order even. 

 Char values in case and switch can also be used instead of integer 
values. 

 Unlike if and else, no need to enclose multiple statements to be 
executed within braces. 

2.5.1.12. The goto statement 
 The goto statements make a computer or C programmer’s life miserable.  The 
reason is programs become unreliable, unreadable and hard to debug.  A goto 
statement can cause program control to end up almost anywhere in the program.  

 When goto’s are used, it is never sure how a point is reached in the 
code.  They obscure the flow of control. 
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2.5.1.13. Functions 
 A function is a self-contained block of statements that perform a coherent task of 
some kind.  A task that which is always performed exactly in the same way everytime. 
Eg: 
 Main (  ) 
 { 
   message (  ); 
   Printf ( “in this is after the function”); 
 } 
   message (  ) 
 { 
   printf (“ in From the message function”); 
 } 
The output would be: 
From the message function 
This is after the function 
That is, from the main (  ) the function message is called.  The activity of main (  ) falls 
asleep for a while and the message (  ) function is waked up, which is defined after or at 
the end of the program.  The control returns to main (  ) and continues to execute the 
rest of the statements.  Main (  ) is called the calling function and message (  ) the called 
function. 
The general format of a function would be : 
Function (arg 1, arg 2, arg 3) 
 Type arg1, arg2, arg3; 
 { 
   statement 1; 
   statement 4; 
 } 
Arguments are the values passed from one function to the other.  Before beginning with 
the statements in the functions it is necessary to declare the type of the arguments 
through type declaration statements. 

 Any C program contains at least one function. 
 If a program contains only one function, it must be main ( ), because 

the program execution always begins with main ( ). 
 There is no limit on the number of functions that might be present 

in a C program. 
 Each function is called in the sequence specified by the function 

calls in main ( ). 
 A function gets called when the function name is followed by a 

semicolon. 
 A function is defined when the function name is followed by a pair of 

baraces and some statements within them.   
 Any function can be called from any function.  Even a function can 

call itself from within.  Such a process is called `recursion’.  But a 
function cannot be defined another function. 

 There are basically two types of functions. 
Library functions   Eg: printf ( ) , scanf ( ) etc. 
User defined functions    Eg: message ( ). 
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 Library functions are commonly required functions grouped together and stored 
in what is called a library.  The library is present on the disk and is written for the 
users.  Almost always a compiler comes with a library of standard functions.   
 
 User defined functions are defined entirely by the user. 

 Writing functions avoids rewriting the same code over and over. 
 The mechanism used to convey information to the function is the 

`argument’. 
Eg : main ( ) 
 { 
  int a, b, c sum; 
  printf (“Enter 3 numbers”); 
  scanf (“%d %d %d”, &a, &b, &c); 
  sum = calsum (a,b,c); 
  printf (“in sum = % d”, sum); 
 } 
  calsum (x, y, z) 
  int x, y, z; 
 { 
  int d; 
  d = x+y+z; 
   return (d); 
 } 

The output would be: 
 Enter 3 numbers 10  20  30 
 Sum = 60 

 The values of a,b &c are passed in to the function calsum ( ).  These 
variables a, b & c are called `actual arguments and the variables x, y 
& z are called `formal arguments’.  They number of arguments can 
be passed to the function, the type, order and number of the actual 
and formal arguments must be same.  The compiler treats x, y & z 
variables as different, though the same names a, b & c are used, as 
they are in a different function. 

 The return statement serves two purposes. 
1. The control is immediately transferred to the calling function. 
2. To return a value from the called function. 

 Whenever the control returns from a function, some value is 
definitely returned. 

 `void’ keyword placed before any function name at its definition, 
doesnot return any value. 

 Return function can return only one value at a time. 
 A value of a variable changed in the formal arguments does not 

affect the value in the actual argument. 

 When a function is called with values of the variables as arguments 
then it is said to be `calls by value’.  Instead when the location 
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number (address) of a variable is passed as an argument, then it is 
said to be `call by reference’ 

 A pointer points towards the location number, of a variable. 

2.5.1.14. Datatypes in C 
 As seen earlier, it is necessary to define or declare type of data being used in a 
program.  The int or the integer datatype has two classification long and short.  The 
short is the ordinary int used. 
Whereas, the long int occupies four bytes of memory and its range would be –
2147483648 to +2147483647.  They are declared as: 
 Long I; 
 Int j;   Here I is a long integer variable, j is a short or ordinary int. 

Integer variables can be further classified into signed and unsigned, basing on the sign.  
When the variable is declared as: unsigned int num-students; the range of permissible 
integer values will shift from the range –32768 to +32767 to the range 0 to 65535.  
Unsigned integers can be short and long.  Unsigned long integer would be 0 to 
4294967295. 

 The way there are signed and unsigned ints there are signed and unsigned chars 
also.  A signed char is same as our ordinary char and ranges from –128 to +127 An 
unsigned clear from 0 to 255. 

 A float occupies four types in memory and ranges from –3.4e38 to + 3.4e38.  C 
offers a double data type which occupies 8 bytes in memory and has range from –
1.7e308 to + 1.7e308.  A double variable can be declared as: double population; 

There exists even a long double which can range from –1.7e4932 to +1.7e4932.  A long 
double occupies 10 bytes in memory. 

2.5.1.15. Arrays 
 An – array is a collective name given to a group of `similar quantities’.  It would 
be easier to handle one variable than handling 100 different variables.  The similar 
quantities could be percentage of marks, of 100 students, or salaries etc.  The similar  
elements could all be ints, or all floats or all chars etc.  Usually array of characters is 
called a string. 

1. Array declaration 
 int marks (30); 

 int specifies the type of variable, marks the variable name and (30) tells how 
many elements of type int will be in our array.  The bracket ([ ]) tells the compiler that it 
is an array. 

2. Entering data into an array 

 Eg: 

 For (I=0; I<29; I++) 
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 { 

  Printf (“in enter marks”); 

  Scanf (“%d, & marks [I]); 

 } 

 The for loop, one by one takes inn the marks.  The count of I starts from 0.  The 
1st element of the array would be marks (0) and second marks (1) and so on, until 
marks (29) not marks (30) as the count starts from 0.  Another way of array 
initialization would be 

 Int num (6) = {2,4,12,5, 45, 5}; 

 Float n (  )  = {12.3,  34.2, -23.4, -11.3}; 

Summary 

 The C programming language started at AT & T’s Bell laboratories, called the 
middle level language, has its own characterset that which includes alphabets, 
numbers and special symbols, keywords, constants, variables and flexible datatypes 
and the opportunity for the programmer to define uses defined functions.  Its control 
structures allows the user to define various conditions and checks to the task to refine 
it.  Arrays, a collection of similar elements is the feature of C programming languages 
that enables to task with large numbers of data programming pleasure is offered by C 
programming language with its salient features. 

Self assessment questions 
1. Write a C program to input two numbers through the keyboard into two locations 

C and D and swap the contents of C & D, using a third variable. 

2. Write a C program to print all prime numbers from 1 to 300. 

(Hint: Use nested loops, break & continue). 

3. Write a program to generate all combinations of 1, 2 & 3 using for loop. 

4. Write a menu driven C program to perform deposit, withdrawl and checking 
balance of bank transactions using functions and switch case. 

5. Write a C program to calculate the percentages, grade and separate the failed 
students of 50 students of a class, using arrays. 

Reference books 
1. Programming in C  - Stephen G. Kochan 

2. Let us C   -  Yashwant Kanetkar 

3. Learner’s guide to `C’ programming  -  NIIT. 

4. Programming with `C’  - Byron & Gottfried. 
 
  

Asha Smitha. B. 
Research Scholar 

Center for Biotechnology 
Acharya Nagarjuna University.  
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Lesson 2.5.2 
 

PROGRAMMING WITH HTML 
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Summary 
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Objective 

 
 To study and know the use of various HTML tags. 
 To understand the difference between HTML and DHTML. 
 To improve knowledge in creating efficient web pages. 
 
2.5.2.1   Introduction 

 
To publish information for global distribution, one needs a universally 

understood language, a kind of publishing mother tongue that all computers may 
potentially understand. The publishing language used by the World Wide Web is HTML 
(from HyperText Markup Language). 
 
  Hyper is the opposite of linear. It used to be that computer programs had to move 

in a linear fashion. This before this, this before this, and so on. HTML does not hold 
to that pattern and allows the person viewing the World Wide Web page to go 
anywhere, any time they want.  

 Text is what you will use. Real, honest to goodness English letters.  
 Mark up is what you will do. You will write in plain English and then mark up what 

you wrote. More to come on that in the next Primer.  
 Language because they needed something that started with "L" to finish HTML and 

Hypertext Markup Louie didn't flow correctly. Because it's a language, really -- but 
the language is plain English. 

 
2.5.2.2  A brief history of  HTML 

 
HTML was originally developed by Tim Berners-Lee while at CERN, and 

popularized by the Mosaic browser developed at NCSA. During the course of the 1990s 
it has blossomed with the explosive growth of the Web. During this time, HTML has 
been extended in a number of ways. The Web depends on Web page authors and 
vendors sharing the same conventions for HTML. This has motivated joint work on 
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specifications for HTML. HTML 2.0 (November 1995) was developed under the aegis of 
the Internet Engineering Task Force (IETF) to codify common practice in late 1994. 
HTML+ (1993) and HTML 3.0 (1995) proposed much richer versions of HTML. Despite 
never receiving consensus in standards discussions, these drafts led to the adoption of 
a range of new features. The efforts of the World Wide Web Consortium's HTML Working 
Group to codify common practice in 1996 resulted in HTML 3.2 (January 1997).  

 
Most people agree that HTML documents should work well across different 

browsers and platforms. Achieving interoperability lowers costs to content providers 
since they must develop only one version of a document. If the effort is not made, there 
is much greater risk that the Web will devolve into a proprietary world of incompatible 
formats, ultimately reducing the Web's commercial potential for all participants. HTML 
has been developed with the vision that all manner of devices should be able to use 
information on the Web: PCs with graphics displays of varying resolution and color 
depths, cellular telephones, hand held devices, devices for speech for output and input, 
computers with high or low bandwidth, and so on. 

 
HTML, or Hyper Text Markup Language is designed to specify the logical 

organization of a document, with important hypertext extensions. It is not designed to 
be the language of a WYSIWYG word processor such as Word or WordPerfect. This 
choice was made because the same HTML document may be viewed by many different 
"browsers", of very different abilities. HTML 4 extends HTML with mechanisms for style 
sheets, scripting, frames, embedding objects, improved support for right to left and 
mixed direction text, richer tables, and enhancements to forms, offering improved 
accessibility for people with disabilities. 

 
2.5.2.3 Authoring documents with HTML 4  

HTML instructions divide the text of a document into blocks called elements. 
These can be divided into two broad categories -- those that define how the BODY of the 
document is to be displayed by the browser, and those that define information `about' 
the document, such as the title or relationships to other documents. 

 
HTML gives authors the means to: 

 Publish online documents with headings, text, tables, lists, photos, etc.  
 Retrieve online information via hypertext links, at the click of a button.  
 Design forms for conducting transactions with remote services, for use in 

searching for information, making reservations, ordering products, etc.  
 Include spread-sheets, video clips, sound clips, and other applications directly in 

their documents. 
 

Text Block Elements: 
As mentioned on the previous page, the BODY element contains all the displayed 
content of a document. Structurally, the document content is organized into blocks of 
text, such as paragraphs, lists, headings, paragraphs, block quotations, and so on. 
These are generically called block elements, since they "block" chunks of text together 
into logical units. Block elements can often contain other blocks -- for example, a list 
item can contain paragraphs or block quotations, so that these elements can often nest 
together.  
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The block-level elements are: 
Hn (Headings)  

 P  
 ADDRESS  
 BLOCKQUOTE  
 PRE  
 HR  
 FORM  
 TABLE  
 DIV  
 

Character-Level Elements 
Then are what I call character-level elements, namely line breaks (BR) and images 
(IMG). These are treated much like characters, and can appear wherever there is a 
character in a document. 
 
2.5.2.4 HTML Document Structure  

HTML documents are structured into two parts, the HEAD, and the BODY. Both 
of these are contained within the HTML element -- this element simply denotes this as 
an HTML document. 

The head contains information about the document that is not generally 
displayed with the document, such as its TITLE. The BODY contains the body of the 
text, and is where you place the document material to be displayed. Elements allowed 
inside the HEAD, such as TITLE, are not allowed inside the BODY, and vice versa. 

 
Some of the most common elements used in HTML documents are listed here: 

 The <HTML>, <HEAD>, and <BODY> tag pairs are used to structure the 
document. 

 The <TITLE> and </TITLE> tag pair specifies the title of the document. 
 The <H1> and </H1> header tag pair creates a headline. 
 The <HR> element, which has no end tag, inserts a horizontal rule, or bar, across 

the screen. 
 The <P> and </P> paragraph tag pair indicates a paragraph of text. 

 
Strucutre 
<! Doctype HTML PUBLIC “-//W3C/DTD HTML 4.0 Transational // EN”> 
<HTML> 
<HEAD> 
<TITLE> Document title </TITLE> 

     ….. Other supplementary information goes here… 
</HEAD> 
<BODY> 
…. Marked - up text goes here …. 
</BODY> 
</HTML> 
 
 



 
 
 
 
Centre for Distance Education 4 Acharya Nagarjuna Univeristy 

HTML Rules and Guidelines 
The following are some rules to remember when writing HTML. 
 HTML documents are structured documents. The structure of HTML 

Document is specified by a document type definition (DTD). A DTD defines 
what elements a document can contain, their relationships to one another 
inside a document, and their possible attributes and values. If the 
elements in a particular HTML document, agree with this formal 
definition, the document is said to be valid. 

 Element name are not case-sensitive. An element such as <hTml> is 
equivalent to <html> or <HTML>. 

 Attribute names are not case-sensitive. 
 Attribute values may e case-sensitive, especially when it refers to a file. 
 Attribute values should be quoted. The actual attribute value may contain 

spaces or special characters if it is enclosed by quotes. 
 Element names cannot contain spaces. Browsers treat the first space 

encountered inside an element as the end of an element’s name and the 
beginning of its attributes. 

 Browsers collapse and ignore space characters in HTML content. Browsers 
collapse any sequence of spaces, tabs and returns in an HTML document 
into a single space character. These characters convey no formatting 
information, unless they occur inside a special preformatting element, 
such as <PRE>, which preserves their meaning. Extra space can be 
liberally used within HTML document to make it more legible. 

 HTML documents may contain comments which are denoted by start 
value <!--and an end value-->. Comments may be many lines. 

 Elements should nest. Any element that starts within a section enclosed 
by another element must also end within that section. 

 Browsers ignore unknown elements and attributes. 
 

 

2.5.2.5 HTML element overview 
 

 
The HTML element starts with a start tag: E.g. <H1>  
The HTML element ends with an end tag: </H1> 
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HTML tags are used to mark-up HTML elements. HTML tags are surrounded by the 
two characters < and >. The surrounding characters are called angle brackets. 
The purpose of the <H1> tag is to define an HTML element that should be displayed as 
a heading.This HTML element starts with the start tag <body>, and ends with the end 
tag </body>. 
The purpose of the <body> tag is to define the HTML element that contains the body of 
the HTML document. Tags can have attributes. 

 Attributes can provide additional information about the HTML elements on your 
page. 

 Attributes always come in name/value pairs like this: name="value". 
 Attributes are always added to the start tag of an HTML element. 

The most important tags in HTML are tags that define headings, paragraphs and line 
breaks. 
 
2.5.2.6  HTML TAGS 
 
 <HTML> </HTML> 
Attributes: VERSION=string 
The HTML tag is the outermost tag. It is not required and may safely be omitted. It 
indicates that the text is HTML (the version can be indicated with the optional VERSION 
attribute), but this information is almost never used by servers or browsers. 
 
 Headings 
Headings are defined with the <h1> to <h6> tags. <h1> defines the largest heading. 
<h6> defines the smallest heading. 
<h1>This is a heading</h1> 
<h2>This is a heading</h2> 
<h3>This is a heading</h3> 
<h4>This is a heading</h4> 
<h5>This is a heading</h5> 
<h6>This is a heading</h6> 
HTML automatically adds an extra blank line before and after a heading. 
 
 Paragraphs 
Paragraphs are defined with the <p> tag. 
<p>This is a paragraph</p> 
HTML automatically adds an extra blank line before and after a paragraph. 
 
 Line Breaks 
The <br> tag is used when you want to end a line, but don't want to start a new 
paragraph. The <br> tag forces a line break wherever you place it.<p>This <br> is a 
para<br>graph with line breaks</p>. The <br> tag is an empty tag. It has no closing 
tag. 
 <ADDRESS> </ADDRESS> 
The ADDRESS tag should be used to enclose contact information, addresses and the 
likes. It is often rendered with a slightly indented left margin and italics. Appearance: 
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<A HREF=URL> </A>. Attributes: HREF=URL, NAME=string, REL=string, REV=string, 
TITLE=string 
 
The anchor tag is the "glue" for hypertext documents. The enclosed text and/or image(s) 
will be selectable by the user, and doing so will take the user to the location specified in 
the HREF attribute. The TITLE attribute can be used to provide a description of that 
location, which is displayed by some browsers when the mouse moves over the URL.  
The NAME attribute is used to set up "named anchors." The enclosed text will be 
marked as a "target" to which a browser can jump directly. For example, if you have "<A 
NAME="toc">Table of Contents</A>" somewhere in the document, and the user selects 
the URL . REL and REV are not widely used, although these attributes were already 
present. Be sure to close the quotes around the value in HREF. a hyperlink with an 
unclosed quote may not work correctly. The A element used with the NAME attribute 
requires a closing tag and non-empty content. 
 
 <BODY> </BODY> 
Attributes: BACKGROUND=URL, BGCOLOR=#RRGGBB, TEXT=#RRGGBB, 
LINK=#RRGGBB VLINK=#RRGGBB, ALINK=#RRGGBB.  

The BODY tag contains the actual contents of the document. The attributes 
contain the appearance of the document. The BACKGROUND attribute should point to 
the location of an image, which is used as the (tiled) background of the document. The 
other attributes set the colors for the background, text, links, visited links and active 
(currently being selected) links, using the order above. 
 
 <B> </B> 
B is used to indicate that the enclosed text must be rendered in a bold typeface. 
 
 <U> </U> 
U is used to indicate the enclosed text should be underlined. 
 
 <I> </I> 
I is used to indicate that the enclosed text must be rendered in a italic (slanted) typeface 
 
 <CENTER> </CENTER> 
It is used to indicate that large blocks of text should appear centered. 
 
 <FORM ACTION=URL> </FORM> 
Attributes: ACTION=URL, METHOD=get|post, ENCTYPE=string. 
 
 <FORM ACTION=URL> </FORM> 

ACTION=URL, METHOD=get|post, ENCTYPE=string.  
Forms allow a person to send data to the WWW server. FORM has one required 
attribute, ACTION, specifying the URL of a CGI script which processes the form and 
sends back feedback. There are two methods to send form data to a server. GET, the 
default, will send the form input in an URL, whereas POST sends it in the body of the 
submission. The latter method means you can send larger amounts of data, and that 
the URL of the form results doesn't show the encoded form. A form should always have 
at least one submit button. This can be done with <INPUT TYPE=submit 
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NAME=submitit> or with an image: <INPUT TYPE=image NAME=submitit>.More than 
one submit button is legal. If each submit button has a unique NAME attribute, the 
name of the selected submit button is sent along with the rest of the form input. This 
allows the parsing script to determine which button was pressed.  
 
 <HEAD> </HEAD> 
The HEAD part of the document provides information about the document. It should 
not contain text or normal markup. If a browser encounters such markup, it will 
assume it has arrived in the BODY section of the document already 
 
 <TITLE> </TITLE> 
Each document must have exactly one TITLE element. This element provides the title of 
the document. It is usually displayed at the top of the browser's window, but also used 
to label a bookmark entry for the document and as a caption in search engine results.  
 <HR> 
Attributes: ALIGN=left|right|center, NOSHADE, SIZE=n, WIDTH=n|p% 
HR is used to draw horizontal rules across the browser window. None of the attributes 
for HR existed in HTML 2, so they may not be supported by all browsers. This can 
produce bizarre effects if you are using multiple HRs in a row to produce growing or 
shrinking "stripes". 
 
 <INPUT TYPE=x NAME=y> 
Attributes : TYPE=text|password|checkbox|radio|submit|reset|file|hidden|image, 
NAME=string, VALUE=string, CHECKED, SIZE=n, MAXLENGTH=n, SRC=URL, 
ALIGN=top|middle|bottom|left|right 
The INPUT tag is probably the most useful tag inside forms. It can generate buttons, 
input fields and checkboxes. In all cases, the NAME attribute must be set. 
TYPE=text  

This generates a input field, where the user can enter up to MAXLENGTH 
characters. The SIZE attribute lists the length of the input field (if the user enters 
more characters, the text will scroll). The VALUE attribute specifies the initial 
value for the input field.  

TYPE=password  
Same as TYPE=text, but the text will be hidden by "*" or similar characters. It is 
still sent in the clear to the server, though.  

TYPE=checkbox  
Produces a checkbox. It has two states, on and off. When it is on when the form 
is submitted, it will be sent as "name=on", otherwise it is ignored altogether. If 
you use CHECKED, it will come up checked (selected) initially.  

TYPE=radio  
Produces a radio button. A radio button always exists in a group. All members of 
this group should have the same NAME attribute, and different VALUEs. The 
VALUE of the selected radio button will be sent to the server. You must specify 
CHECKED on exactly one radio button, which then will come up selected 
initially.  
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TYPE=submit  
Produces a button, which when pressed sends the contents of the form to the 
server. You can have more than one submit button in the form. Each should 
have a different NAME. The name and value of the pressed button will be sent to 
the server as well. The value of the VALUE attribute is typically used as text on 
the submit button.  

TYPE=reset  
Also produces a button, which will restore the form to its original state if pressed. 
The value of the VALUE attribute is typically used as text on the reset button.  

TYPE=file  
Allows the user to upload a file. It is still very new, so it is not very widely 
supported. It is typically presented as an input box with a button to start 
browsing the local hard disk. This way, a user can specify one or more 
filename(s) to upload.  

TYPE=hidden  
Allows you to embed information in the form which you do not want changed. 
This can be useful if the document is generated by a script and you need to store 
state information. NAME and VALUE of this input field will be sent to the server 
without modifications.  

TYPE=image  
Functions similar to a submit button, but uses an image instead. The ALIGN 
attribute controls the alignment of the image. The coordinates of the selected 
region will also be sent to the server, in the form of "NAME.x=n&NAME.y=n". A 
text browser will treat it as identical to a normal submit button.  

 
 <LI> </LI> 
TYPE=disc|square|circle when in UL, TYPE=1|a|A|i|I when in OL, VALUE=n 

 
 <TABLE> </TABLE> 
ALIGN=left|center|right, WIDTH=n|p%, BORDER=n, CELLSPACING=n, 
CELLPADDING=n 
The ALIGN attribute controls the alignment of the table itself, but not of the individual 
cells. This can be set either in the TR element for an entire row, or in the TD and TH 
elements for individual cells. The WIDTH attribute can be a pixel width or a percentage. 
It indicates the suggested width of the table, although the browser can ignore this if it is 
not possible. A "100%" value means the table will span across the entire browser 
window.  
<TABLE BORDER=1> 
  <CAPTION>A test table with merged cells</CAPTION> 
  <TR><TH ROWSPAN=2><TH COLSPAN=2>Average 
  <TH ROWSPAN=2>other<BR>category<TH>Misc 
  <TR><TH>height<TH>weight 
  <TR><TH ALIGN=LEFT>males<TD>1.9<TD>0.003 
  <TR><TH ALIGN=LEFT ROWSPAN=2>females<TD>1.7<TD>0.002 
</TABLE> 
<TD> </TD> 
ROWSPAN=n, COLSPAN=n, NOWRAP, ALIGN=left|right|center, 
VALIGN=top|middle|bottom, WIDTH=n, HEIGHT=n 
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The TD tag is used to mark up individual cells inside a table row. It may contain almost 
all tags, including nested tables. If the cell is a label of some sort, use TH instead of TD. 
The NOWRAP attribute indicates the contents of the current cell should not be 
wrapped. You must use BR in the cell to force line breaks to prevent the entire cell from 
showing up as just one line.  
 
The ROWSPAN and COLSPAN attributes indicate how many rows or columns this cell 
overlaps. If you use these attributes, make sure you count correctly or you can get some 
very weird results. The ALIGN and VALIGN attributes control the horizontal and vertical 
alignment of the current cell. ALIGN can be set for left, right or centered cells. VALIGN 
indicates that the table cell's contents should appear at the top, the middle or the 
bottom of the row. Note that align and valign attributes for a cell override the values set 
for the row.  
 
The WIDTH and HEIGHT attributes can be used to suggest a width and height for this 
cell. This should be a value in pixels. Setting different widths for multiple cells in the 
same column, or different heights for multiple cells in one row can cause unexpected 
effects.  
 
<TR> </TR> 
ALIGN=left|right|center, VALIGN=top|middle|bottom 
HTML tables are constructed as a sequence of rows. Each row of table cells should be 
enclosed in a TR tag. The end tag is optional, since it is usually obvious to see where a 
row ends - where the new row begins, or where the entire table ends.  
 
The ALIGN and VALIGN attributes control the horizontal and vertical alignment of the 
entire row. ALIGN can be set for left, right or centered cells. VALIGN indicates that the 
table cell's contents should appear at the top, the middle or the bottom of the row.  
 
 <TEXTAREA NAME=string, ROWS=n, COLS=n> </TEXTAREA> 
Attributes: NAME=string, ROWS=n, COLS=n 
The TEXTAREA tag, used inside FORMs, sets up an area in which the user can type 
text. This text will be sent to the server when the form is submitted. The user can enter 
more than one line (as opposed to <INPUT TYPE=text> which only permits one line), 
although he will have to break lines himself.  
 
The NAME attribute assigns the text area a name, used by the script, which processes 
the form. ROWS and COLS are used to specify the height and width of the text area, in 
number of characters.  
 
To supply default text for the text area, put it inside the TEXTAREA tag.  
 
Summary 
To publish information for global distribution, one needs a universally understood 
language, a kind of publishing mother tongue that all computers may potentially 
understand. The publishing language used by the World Wide Web is HTML (from 
HyperText Markup Language). 
HTML gives authors the means to: 
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 Publish online documents with headings, text, tables, lists, photos, etc.  
 Retrieve online information via hypertext links, at the click of a button.  
 Design forms for conducting transactions with remote services, for use in 

searching for information, making reservations, ordering products, etc.  
 Include spread-sheets, video clips, sound clips, and other applications directly in 

their documents.  
  

Model Questions 
1. What is HTML and how is it used to construct web documents? 
2. Explain the rules and regulations of HTML programming. 
3. How is a HTML document structure explained? 

 
References 
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Lesson 2.5.3 
 

Dynamic HTML (DHTML) 
 
CONTENTS 
Objective 
2.5.3.1 Introduction 
2.5.3.2 Dynamic Positioning 
2.5.3.3 Properties of STYLE 
2.5.3.4 Putting the D in DHTML  
2.5.3.5 Dynamic Programming 
2.5.3.6 The Event Connection  
 
Objective 
In this we explore three main components of Dynamic HTML authoring: 
1. Positioning; precisely placing blocks of content on the page and, if desired, moving 
these blocks around. 
2. Style modifications; on-the-fly altering the aesthetics of content on the page. 
3. Event handling; how to relate user events to changes in positioning or other style 
modifications. 
 
2.5.3.1 Introduction 
 
The Web is an ever evolving environment, and Web pages themselves are steadily 
blooming from static displays of data to interactive applications. "Dynamic HTML" is an 
umbrella term encompassing several ways in which Web developers can breathe life into 
pages which have traditionally been still portraits of information. 
The basic notion behind Dynamic HTML is quite simple: allow any element of a page to 
be changeable at any time. Sounds like a dream, but as with any simple plan, "God is 
in the details," as they say. In the olden days, you could only change content on a page 
via CGI. This required a server to perform the changes to the page and re-serve the 
entire page, modifications and all, back to the client. While workable, this process was 
quite slow, as it placed a burden on both network traffic and server processing time. 
With long delays between a user's action and an on-screen response, building effective 
Web-based applications was quite constricting. 

With DHTML, the magic occurs entirely on the client-side. This means that page 
modifications should appear immediately following a trigger, such as a user selection. 
And, remember, the DHTML dream is that you can modify any aspect of the currently 
loaded page -- text styles, swapped images, context-sensitive forms and tables, and even 
the on-screen data itself. 

It's worth noting here, then, that "Dynamic HTML," isn't really about HTML, the markup 
language. By and large, DHTML describes the abstract concept of breaking up a page 
into manipulable elements, and exposing those elements to a scripting language which 
can perform the manipulations. The degree, or fineness, to which these elements are 
defined and actionable is a function of DHTML's maturity. Because we're only seeing 
the second generation of browsers supporting DHTML (MSIE 5 and the upcoming 
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Netscape 5 based on Mozilla), DHTML is still an evolving and at times, inconsistent set 
of tools. 

Technically speaking, DHTML positioning is actually a type of style modification; 
however, this introduction will be all the clearer if we address positioning as its own 
topic. 

 
The Old Standard about Standards 
Dynamic HTML was and still is logical and wonderful idea whose time has come. 
Netscape thought so. Microsoft thought so. Yet, they didn't think alike. Netscape 
introduced a very modest vision of DHTML, debuted in Navigator 4.0. By and large, 
Netscape's DHTML was limited to the concept of "layers," also known as Cascading 
Style Sheet Positioning. Microsoft, on the other hand, chose to shoot for the moon, 
providing developers with surprisingly complex DHTML support in Internet Explorer 
4.0, wherein many objects on the page were manipulable, including support for CSS 
Positioning. 
 
In the past few years, quite a lot of Web development time has been spent haranguing 
over the challenge of coding pages which function under both versions of DHTML. 
Known as "cross browser DHTML," a cottage industry has sprung up to span the ravine 
between browsers. Visual editors such as Macromedia's Dreamweaver have matured to 
include pre-built DHTML objects which are already coded to work in both browsers. 
Still, the development community has its collected fingers crossed, however, that soon a 
common standard will emerge, allowing developers to focus on the true subject at hand, 
rather than compatibility issues. For the intranet developer, you may find it easier to 
focus on a single DHTML implementation, such as MSIE 5 or Netscape 4, in cases 
where your intranet requires the use of a particular browser platform. 
 
Much of what we term "Dynamic HTML" -- the set of page elements which are 
manipulable -- is defined by a construct called the Document Object Model (or "DOM"). 
This model describes each page element and which of its characteristics may be 
modified, and how so. As you can imagine, Netscape and Microsoft do not share a 
common DOM. The hopes of DHTML standardization rest strongly on the success of a 
standardized DOM, currently in development by the World Wide Web Consortium (W3C) 
-- http://www.w3c.org/DOM/. 
 
DHTML, to stress the point, is not a language itself. In practice, one programs Dynamic 
HTML using a combination of HTML, Cascading Style Sheets, and JavaScript. The 
Document Object Model, described earlier, provides a programming interface between 
HTML/CSS and JavaScript. In theory, other client-side scripting languages such as 
VBScript can be used with the Document Object Model, and therefore DHTML; but 
JavaScript remains the de facto standard scripting language for DHTML. 
 
2.5.3.2 Dynamic Positioning 
A Web developer may wear many hats -- writer, editor, programmer, and artist. As 
artists, we care how content is positioned on the page, whether for navigational or 
aesthetic purposes. Using DHTML, you can define a block of HTML content and 
precisely position it on the page. 
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There are two ways to position a block of content: Netscape's <LAYER> tag or Cascading 
Style Sheet Positioning (CSSP). Although Netscape's proprietary tag is simple to use, it 
is only supported within Netscape. Alternatively, CSSP is supported by both Netscape 
and Microsoft, so we will look at positioning using the style sheet syntax. There is no 
real loss of functionality, as layers and CSSP blocks behave nearly identically. 
 
DHTML Programming 
Typically, a block of content is contained within <DIV> tags. Imagine, then, that you 
would like to create a small block of content -- an image plus a mailto hyperlink: 
 
<DIV> 
<A HREF="mailto:me@myhouse.com">Mail me!</A><BR> 
<IMG SRC="mailbox.gif" width=30 height=15 alt='Mailbox'> 
</DIV> 
To position this block, however, you must tell the <DIV> block to use a style sheet. A 
style sheet, as you may know, defines display characteristics. Style sheets can either be 
pre-defined, and applied to tags as style sheet classes, or defined on-the-fly. Typically, 
when using CSS Positioning, you define the block's style on-the-fly. We do this by using 
the STYLE attribute for the <DIV> tag. The STYLE attribute contains a string which lists 
each desired style property and its value. For example: 
<DIV ID="mailblock" STYLE="position:absolute; width:auto; height:auto; left:400px; 
top:50px; background-color:white"> 
<A HREF="mailto:me@myhouse.com">Mail me!</A><BR> 
<IMG SRC="mailbox.gif" width=30 height=15 alt="Mailbox"> 
</DIV> 
In the above example, we've first added the ID attribute to assign an identifier to this 
content block. This may become useful later when manipulating this block using 
JavaScript. Next, the STYLE attribute contains a list of property parameters and values. 
Notice that a colon separates the parameter (left) from the value (right) and a semicolon 
separates each parameter/value pair from the next. In this case, we've specified that 
mailblock should be absolutely positioned on the page (meaning that it is not fixed 
relative to the position of any other page elements), with automatic width and height, 
400 pixels right from the left edge of the browser's content window and 50 pixels down 
from the top edge of the browser's content window. 
 
Simple enough -- except for one bit of trouble: we don't know the size of the user's 
screen or browser window! Thus, we don't really know where 400 pixels to the right will 
land this block relative to the rest of the page. This could result in an ugly layout. The 
solution to precise, but adaptable, layouts is to use relative positioning. Imagine, for 
example, that we want mailblock to appear slightly indented leftwards from the upper-
right corner of the page. To achieve this position, we will create a two-level <DIV> block 
-- a parent and a child: 
 
<DIV ID="mailblock_parent" ALIGN="right"> 
<DIV ID="mailblock_child" STYLE="position:relative; width:auto; height:auto; left:10px; 
top:0px; background-color:white"> 
<A HREF="mailto:me@myhouse.com">Mail me!</A><BR> 
<IMG SRC="mailbox.gif" width=30 height=15 alt="Mailbox"> 
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</DIV> 
</DIV> 
In this example, the parent <DIV> block contains, as a child <DIV> block, the content 
for the mailto link and image. The parent block is aligned to the right edge of the page. 
The child block, which contains the actual content, is dynamically positioned relative to 
the parent, 10 pixels to the left of the parent's left edge. 
 
2.5.3.3 Properties of STYLE 
Clearly, positioning your block of content depends upon the specified STYLE properties. 
We seemed to pull our example properties out of a hat -- position, width, left? Where did 
we get these from? Well, several documents on Web contain references to the 
positioning properties available for style sheets -- two worth reviewing are Microsoft's 
CSS Attributes Reference (under "Positioning Properties") and Netscape's Defining 
Positioned Blocks of HTML Content. 
 
Below we've included a handy chart summarizing the common STYLE properties which 
you may want to use when using the CSS syntax to position blocks of content. 

position 

Specifies how the block should be positioned on the page with respect to 
other page elements. Possible values: 
 
"position:absolute;" Block is positioned absolutely within the browser 
window, relative to <BODY> block. 
"position:relative;" Block is positioned relative to its parent block, if any, 
or else normal flow of page. 
"position:static;" Block is positioned according to standard HTML layout 
rules -- follows flow of document. (MSIE 4+ only; Netscape 5) 

width 

Specifies the width at which the block's contents should wrap. You may 
specify width in measured units (50px), as a percentage of the parent 
block's width (50%), or auto which wraps the block according to its 
parent's width. 
Examples: "width:50px;" or "width:50%;" 

height 

Specifies the height of the block, measured in units (50px), percentage of 
the parent block's height (50%), or auto. Note that the height of the block 
will be forced to the minimum necessary to display its contents; 
however, you can make the block taller than necessary. 
Examples: "height:50px;" or "height:50%;" 

left 

Specifies the offset of the left edge of the block in accordance with the 
position attribute. Positive measures (5px) are offset towards the right 
while negative measures (-5px) are offset towards the left. 
Examples: "left:5px;" or "left:-5px;" 

top 

Specified the offset from the top edge of the block in accordance with the 
position attribute. Positive measures (5px) are offset towards the bottom 
of the page while negative measures (-5px) are offset towards the top of 
the page. 
 
Examples: "top:10px;" or "top:-10px;" 
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clip 

Specifies a rectangular portion of the block which is visible. Typically, 
you use the clip property if you want to show only a portion of the block, 
therefore hiding a portion. Syntax: 
 
MSIE: clip:rect(top right bottom left) 
Example: "clip:rect(0px 30px 50px 0px);" 
 
Netscape: clip:rect(left,top,right,bottom) 
Example: "clip:rect(0,0,30,50);" 
 
Notice that the syntaxes vary between browsers, both in the need to 
specify measurement units (MSIE) and the order of the parameters. 

visibility 

Specifies whether a block should be visibile. If not visible, the block will 
not appear on the page, although you can make it visible later using 
JavaScript. The possible values for this property again vary between 
browsers. 
 
MSIE:  
"visbility:inherit;" Block inherits the visibility property of its parent. 
"visibility:visible;" Block is visible. 
"visibility:hidden;" Block is invisible. 
 
Netscape: 
"visbility:inherit;" Block inherits the visibility property of its parent. 
"visibility:show;" Block is visible. 
"visibility:hide;" Block is invisible. 

z-index 

Specifies the "stacking order" of blocks, should they happen to overlap 
other positioned blocks. A block is assigned a z-index, which is any 
integer. When blocks overlap, that which has the greater positive z-index 
appears above a block with a lower z-index. Blocks with an equal z-index 
value are stacked according to the order in which they appear in the 
source code (bottom-to-top: first block defined appears on bottom, last 
block defined appears on top). 
Example: "z-index:3;" 

background-
color 

Specifies the background color for the block.  
 
Examples: "background-color:green;" or "background-color:FF8F00;" 

background-
image 

Specifies a background image for the block. 
 
Example: "background-image:url('images/tilewood.jpg');" 

Employing the various STYLE properties gives you powerful control over the position 
and look of the blocks of content on your page. Conceptually, then, when we think in 
DHTML we think of a page as made up of one or more blocks. Of course, this is not 
immediately evident to the viewer, who essentially sees a flat Web page, without 
realizing that several smaller blocks of content are positioned here and there to create 
the overall effect. 
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Still, the question begs: how is this dynamic? Precise, yes, but dynamic? 
Consider the fact that, now that the blocks have been put into place, you can -- at any 
time -- change their properties. Position, background, clipping region, z-index -- it's all 
plastic, with the help of JavaScript, and that is the reason to be excited! 
 
2.5.3.4 Putting the D in DHTML  
Once a content block is positioned on the page using <DIV> tags in your HTML, you can 
use JavaScript to modify its properties. This has many possible consequences: you can 
move the entire block up, down, left or right. You can change its background color, or 
change the clipping region, causing more or less of the block to be visible. Speaking of 
visibility, you can even hide or show the entire block in an instant via the visibility 
property. 
 
How, then, does JavaScript access the style properties of the content block? The answer 
is twofold: 
1. Assuming that you are familiar with JavaScript, you know that data structures are 
represented as objects, and each object has a set of properties. JavaScript statements 
can read or write to the properties of an object. 
2. Content blocks contained in <DIV> tags are exposed as objects to JavaScript by the 
Document Object Model. This means that, following the object and property 
specifications defined by the DOM, JavaScript can access the style sheet properties of 
the content block. Voila! 
Let's recall our example content block, mailblock. In its simple form: 
<DIV ID="mailblock" STYLE="position:absolute; width:auto; height:auto; left:400px; 
top:50px; background-color:white"> 
<A HREF="mailto:me@myhouse.com">Mail me!</A><BR> 
<IMG SRC="mailbox.gif" width=30 height=15 alt="Mailbox"> 
</DIV> 
Because Netscape and Microsoft do not currently share compatible DOM's, the above 
block is exposed to different objects in each browser. For now, we'll consider each case 
separately -- a future article will look at the issue of patching over this problem in 
"cross browser DHTML." 
 
In Netscape's DOM, each <DIV> block takes the form of a Layer Object. In Microsoft, 
each block is exposed as a DIV object, which in turn possesses a STYLE object, whose 
properties reflect the familiar style attribute properties.This might sound confusing, but 
it's all a matter of syntax. Let's first consider how you would construct a JavaScript 
reference to mailblock. You use the identifier specified in the ID attribute: 
 
Microsoft: 
document.all["mailblock"] 
Netscape: 
document.layers["mailblock"] 
Now, let's consider the background color property for mailblock. The CSS property for 
the background color was "background-color" as specified in our <DIV> tag. When 
reflected via the DOM, however, this property takes on a different name between 
browsers: 
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Microsoft: 
document.all["mailblock"].style.backgroundColor 
Netscape: 
document.layers["mailblock"].bgColor 
 
Knowing that, we can easily create a JavaScript statement which would change the 
background color of mailblock to green. 
Microsoft: 
document.all["mailblock"].style.backgroundColor="green"; 
Netscape: 
document.layers["mailblock"].bgColor="green"; 
 
Similarly, we can modify the top and left style properties which will move the block on-
screen. Thus, once we know the correct DOM property for the style sheet left property, 
we can move mailblock directly to the left edge of the page: 
Microsoft: 
document.all["mailblock"].style.left="0px"; 
OR 
document.all["mailblock"].style.pixelLeft=0; 
Netscape: 
document.layers["mailblock"].left=0; 
 
Once again, it  is likely to ask just how one is supposed to discover which DOM 
properties for which browser map to the style sheet properties we've seen. Two handy 
on-line references are once again provided -- Netscape's Using JavaScript with 
Positioned Content lists the Layer Object's properties and Microsoft's currentStyle 
Object Reference lists the properties relevant to their style object. In the effort to make 
life simpler, however, the following table summarizes which style sheet properties map 
onto which DOM properties for each browser. 

CSS Property  Netscape Layer Object 
Property  Microsoft currentStyle Object Property  

      

position none 
position 
 
Note: read-only, cannot modify via script  

width none pixelWidth 
height none pixelHeight 

left 

left 
 
Note: Accepts either an 
integer (assumed pixel 
units) or a percentage 
string. 
 
Examples: left=10 or 
left="20%" 

left or pixelLeft 
 
Note: pixelLeft accepts a string which specifies 
measurement units; e.g. pixelLeft="10px" whereas 
left accepts an integer and assumes pixel units; 
e.g. left=10. 
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top 

top 
Note: Accepts either an 
integer (assumed pixel 
units) or a percentage 
string. 
 
Examples: top=10 or 
top="20%" 

top or pixelTop 
 
Note: pixelTop accepts a string which specifies 
measurement units; e.g. pixelTop="10px" whereas 
top accepts an integer and assumes pixel units; 
e.g. top=10. 

clip 

clip.top  
clip.left  
clip.right  
clip.bottom 
clip.width 
clip.height 
 
Each dimension of the 
clipping coordinates is its 
own property, as seen 
here. Changing any 
property immediately 
causes the on-screen clip 
to change.  

"rect(top right bottom left)" 
 
To change the clip in MSIE you must redefine all 
clipping coordinates. The syntax can be a bit 
confusing.  
 
Example: 
document.all.blockname.style.clip="rect(0 25 25 
0)"< /FONT>  

visibility 

visibility 
 
May contain any of 
"inherit", "show", or "hide"  

visibility 
 
May contain any of "inherit", "visible", or "hidden"  

z-index 
zIndex 
 
Any non-negative integer.  

zIndex 
 
MSIE allows negative integers, but you may as 
well stick with positive for the sake of Netscape.  

background-
color 

bgColor 
 
Accepts string containing 
pre-defined color name or 
hex RGB triplet. 
 
Examples: 
document.layers["blockna
me"].bgColor="black" 
document.layers["blockna
me"].bgColor="#000000"< 
/FONT> 

backgroundColor 
 
Accepts string containing pre-defined color name 
or hex RGB triplet. 
 
Examples: 
document.all.blockname.style.backgroundColor="
black" 
document.all.blockname.style.backgroundColor="
#000000"< /FONT> 

background-
image 

background.src 
 
Example: 
document.layers["blockna

backgroundImage 
 
Example: 
document.all.blockname 
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me"].background.src="imag
es/tile.jpg"< /FONT> 

 
 
2.5.3.5 Dynamic Programming 
Armed with the understanding of positioned content blocks, and the ability to 
manipulate their characteristics via JavaScript, you basically need only to rely on your 
imagination (although JavaScript skill can certainly help). Consider some nifty uses of 
dynamic positioning: 

 Animation: images contained in a positioned block can be moved around the 
page following a certain path. 

 Drop-down menus: modifying clipping regions allows you to show or hide 
portions of a content block. To create a drop down menu, you would initially 
show only the top strip of the block containing the menu choices. When the user 
triggers the menu to drop, you chance the clipping region to display the vertical 
length of the menu chosen. We'll look at triggers from user events later in this 
article. 

 Content-swapping: by positioning multiple blocks of content at the same spot on 
the page, yet keeping all but one block invisible, you can quickly swap a new 
block of content into place by changing their visibility properties. Alternatively, 
by keeping two overlapped blocks visible, you can modify their clipping regions in 
such a pattern as to produce a "transition" effect.  

 
Dynamic Styles 

As we've seen, positioning a content block is a form of style sheet. However, there 
are other uses for style sheets aside from placing blocks on the page. Style sheets (aka 
Cascading Style Sheets or CSS) can be used to define any set of styles which may apply 
to certain HTML elements or block of HTML. Like JavaScript, Cascading Style Sheets 
are their own in-depth web authoring topic. Because our focus is on DHTML, insofar as 
it uses and combines web authoring technologies, this isn't the place for a detailed 
tutorial on creating styles or style sheets.  

In brief, there are several ways to apply styles using style sheets. You can define 
styles which apply globally to all HTML elements of a certain type. For instance, you 
might create a style sheet which specifies that all <H3> elements be bold (font-weight) 
and red (color). 

It may also be defined style "classes," which are predefined styles applied to an 
element on-demand. For example, you might specify that the style class "redbold" 
contains the styles bold (font-weight) and red (color). This redbold class would only apply 
to elements in which you demand it; e.g. <BLOCKQUOTE CLASS=redbold>. 
Lastly, it is already seen, you can define and apply styles on-the-fly, using the STYLE 
attribute for an element tag; e.g. <H4 STYLE="color:red; font-weight:bold;">. These on-
the-fly styles apply only to the tag in which they are specified. 
Both Microsoft and Netscape support CSS as described above, although Microsoft 
supports additional style properties which do not exist under Netscape. The critical 
difference between the browsers, however, is the degree to which their CSS support is 
dynamic. 
Quasi-Dynamic HTML 
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The style sheet determines how, aesthetically, the document is rendered on the screen. 
Once rendered, though, can these styles be modified on-screen? This is where the two 
browsers diverge markedly. 
Within Microsoft's Internet Explorer, you can, via JavaScript, modify many of the 
properties of a style sheet or an element's individual style. These changes will be 
immediately reflected on-screen -- so, if you changed the redbold class's color property 
to blue, any on-screen text using the redbold class will suddenly change to blue. 
Similarly, you can change any style property for those elements which possess inline 
("on-the-fly") styles. 
Netscape, on the other hand, is not so accomodating. While there is an interface to style 
sheets via JavaScript (albeit very different from the Microsoft implementation), you can 
only use JavaScript to define styles before they are rendered. By and large, this would 
be used as a slightly more flexible replacement for definining your styles rather than 
using standard CSS syntax. On the other hand, using standard CSS syntax would 
maintain compatibility between browsers. For this reason, it could be argued that 
Netscape's support for CSS via JavaScript is not terribly useful, and not at all dynamic, 
since changes applied to styles once the page has been rendered do not appear on-
screen. 
Stuck in the middle are we -- but because Microsoft's support for style modifications is 
far more robust, we will focus here on dynamic styles in MSIE. These concepts will 
apply to Netscape 5, based on Mozilla, whenever it finally arives, although the exact 
syntax may differ. 
 
Inline Styles 
Speaking non-strictly, we can say that an "inline style" is a style which applies only to 
an individual element rather than all elements of a certain type or class. Typically, an 
inline style is defined using the STYLE attribute for the element's tag; e.g. <H2 
STYLE="color:blue">. 
Within MSIE, then, you can use JavaScript to modify an inline style at any time. The 
modification will take effect on-screen immediately. You do this using the Style Object, 
which we looked at earlier with Dynamic Positioning. The Style Object in MSIE's DOM 
supports every property which CSS supports for styles. However, the property names 
differ slightly between CSS syntax and DOM syntax. Fortunately, the naming 
differences follow a rule. Consider the CSS property font-weight. The corresponding 
Style Object property is named fontWeight. Similarly, the CSS property text-align maps 
to the Style Object property textAlign. Of course, color retains the same name in both 
syntaxes. As you can see, then, CSS property names simply lose their hyphen and 
capitalize the first letter following the hyphen when used in JavaScript syntax. 
So, then, confusing though that might sound, let's look at an example which illustrates 
just how easy changing styles can be. Imagine that you have the following HTML 
element: 
<P ID="selectrule" ALIGN="left" STYLE="color:blue; font-weight:normal;"> 
Please select one item below. 
</P> 
Now, some series of events occur and the user fails to follow instructions. So, you'd like 
to emphasize the exhortation: 
document.all["selectrule"].style.color="red"; 
document.all["selectrule"].style.fontWeight="bold"; 
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When the above statements are executed, the text associated with the element named 
selectrule will become red and bold. Of course, you can set the element back to its 
original state by setting color back to "blue" and fontWeight back to "normal". 
Notice that our JavaScript statements are modifying the styles directly associated with 
the particular element. You can always do this, even if the element's style wasn't 
defined inline, but was inherited from a class or global style sheet. No matter how the 
element gained its original style, whether inline or by style sheet, directly modifying the 
style in the above manner only applies to the individual element. For this reason, this 
form of JavaScript dynamic styles is always an inline style. 
Changing the Rules  
Modifying the style of an individual element is very precise, but sometimes you may 
want to have a more global effect: perhaps you'd like to modify a style defined by a style 
sheet as a class or global style. Such a modification would have a ripple-effect, 
immediately re-rendering all elements on the page which are subject to that style sheet. 
Below is a style sheet definition which specifies two styles: a global style which applies 
to all <H3> element (blue, arial font family, large size), and a generic style class named 
warning (red, bold, italic)which will apply to any element which uses that class. 
<STYLE ID="sheet1"> 
H3 { color:blue; font-family:"Arial"; font-size:large; } 
.warning { color:red; font-weight:bold; font-style:italic; } 
</STYLE> 
Once the document has been rendered according to the above style sheet, to modify this 
style sheet via JavaScript such that any changes are dynamically reflected on-screen is 
the goal. To do this, you'll need to learn some new terminology. Each "style definition" in 
the style sheet is known as a "rule". Thus, the line defining the style for H3 is one rule, 
while the line which defines the warning class is a second rule. 
In Microsoft's Document Object Model, you access a style sheet through the 
styleSheets[] array (aka "collection"). A single style sheet is defined as everything 
between a set of <STYLE>...</STYLE> tags. The above example, then, is one style sheet. 
If it were the first instance of such tags in your source code then it would be the first 
style sheet, as well. You access the first style sheet via JavaScript using the reference: 
document.styleSheets[0] 
Within each styleSheet object is a rules collection. This array contains an entry for each 
rule within the style sheet. Therefore, you would access the first rule -- the H3 rule -- of 
this style sheet as: 
document.styleSheets[0].rules[0] 
And the second rule -- the warning class -- as: 
document.styleSheets[0].rules[1] 
Now, before this grows ever more baffling, let me add that each rule object possesses a 
style object. And it is through that style object which you can modify the rule. What?? 
Example: You want to change the H3 rule in this example so that its color becomes 
yellow: 
document.styleSheets[0].rules[0].style.color="yellow"; 
Now you want to change this rule's font family to courier: 
document.styleSheets[0].rules[0].style.fontFamily="courier"; 
You can modify any style property for the rule, even one which wasn't specified in the 
original style sheet. Thus, if you'd suddenly like to make all H3 text on the page italic: 
document.styleSheets[0].rules[0].style.fontStyle="italic"; 
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Any of the above JavaScript statements will apply the changes to all <H3> elements on 
the page. Similarly, making any changes to the style object for the warning class rule 
(document.styleSheets[0].rules[1].style.property) will apply all changes to any tags which 
specify the attribute STYLE="warning"; e.g. <P STYLE="warning">. 
Clearly, dynamic styles are extremely powerful, allowing you to alter the look of a page 
in seconds. A particularly interesting style property you should investigate is display. 
This property allows you to set whether a style is rendered at all or not. An un-rendered 
style will not take up any screen space, but if you later change the display property 
from "none" to "block", any element with that style will suddenly appear. The rest of the 
page is automatically re-rendered to accomodate the new content. This differs from an 
invisible block precisely because the entire page expands and contracts to accomodate 
the presence or absence of the content contained with the style. 
2.5.3.6 The Event Connection  
Quite frequently, you want some type of trigger to cause your DHTML to kick in. 
Whether repositioning blocks or changing style properties, some event usually causes 
these changes. 
Many different types of event can occur on a Web page, most of them caused by the 
user. He or she might click on a button (click event), might move the mouse over an 
element (mouseover event), or move the mouse off of an element (mouseout event). The 
user may submit a form (submit event) or resize the browser window (resize event). 
Additionally, some events occur without direct user intervention -- the page may finish 
loading (load event), for example. 
Events, although an intrinsic part of DHTML, are not part of the standard DOM Level 1 
specification. Consequently, event handling between Microsoft and Netscape browsers 
can vary enormously in practice. The DOM Level 2 specification does include events, 
but unfortunately as of this writing, DOM Level 2 support in both major browsers is still 
more of a dream than a reality. 
Managing events can be relatively simple or quite complex, depending on the ambitions 
of your project. Since this is an introduction, we'll focus mainly on event basics. 
Fortunately, basic events are handled most similarly between browsers. 
Event Handlers 
Events occur on a Web page whether you choose to act on them or not. When the user 
moves the mouse over an element, a mouseover event occurs. If you would like to 
leverage this event as a trigger for some dynamic action, you must construct an event 
handler.  
An event handler is created as an attribute for the tag which defines the element at 
which you wish to catch the event. Event handler attribute named follow the syntax 
onEventname, and they accept JavaScript statements as their action. For example, the 
following tag creates a hyperlink with a mouseover event handler specified. 
<A HREF="page.html" onMouseOver="changeStatus('Read this page');">Click here</A> 
The onMouseOver event handler catches a mouseover event. When this event occurs at 
this element, a JavaScript function is called named changeStatus(). This is a fictional 
function, you can imagine that it might exist to change the message on the browser's 
status bar. Any JavaScript statement is allowed in an event handler, so we could also 
execute direct statement rather than call a function. For example, suppose that a 
mouseover for this element in MSIE should modify a style sheet's color property: 
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<A HREF= 
"page.html"onMouseOver="document.styleSheets[0].rules[0].color='blue'">Click 
here</A> 
The above example assumes MSIE, since live style sheet modifications aren't supported 
in Netscape. We also assume that a style sheet exists in this document! But, hey, it's 
just an example. 
Once again, a convenient table will help summarize the common event and their event 
handler names. 
Event Event Handler Syntax Description 
      

click onClick User clicks (left) mouse button on an 
element. 

submit onSubmit 
User submits a form, this event fires 
before the form submission is 
processed. 

reset onReset User resets a form. 

focus onFocus 
User brings focus to an element 
either  
via mouse click or tabbing. 

blur onBlur User loses focuses from an element 
by clicking away or tabbing away. 

mouseover onMouseOver User moves mouse over an element. 
mouseout onMouseOut User moves mouse off of an element. 
mousemove onMouseMove User moves mouse. 

change onChange 
User changes value in a text, 
textarea, 
or select field. 

select onSelect 
User selects (highlights) a portion of 
text 
in a text or textarea field. 

resize onResize User resizes browser window or 
frame. 

move onMove User moves browser window or 
frame. 

load onLoad Page completes loading. 

unload onUnload 
User exits page (by navigating to a 
new  
page or quitting browser). 

error onError An error occurs loading an image or 
document. 

abort onAbort User stops an image loading using 
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the stop button. 
The above table is a quick reference guide. There are some important caveats to keep in 
mind. For one, this is not a comprehensive list of all events, although these are by far 
the most commonly used. Both browser support additional events for detecting 
keypresses and other mouse actions, while MSIE supports additional events above and 
beyond Netscape's. Secondly, you must keep in mind that not every event is applicable 
to every element. This also varies between browsers. For example, within Netscape a 
mouseover event only applies to a hyperlink <A>, area <AREA> or layer <LAYER>. Yet, 
within MSIE, you can apply a mouseover event to almost any element, including images 
<IMG>, and paragraphs <P>. 
In general, the above rule holds between browsers: Netscape restricts each event to 
certain limited elements, while MSIE allows most events to be handled at most 
elements. The best way to clarify these distinctions is to read the documentation -- 
Netscape's Events and Event Handlers and Microsoft's DHTML Events Reference. 
 
Mastering event handling is most certainly a topic unto itself. At the surface, handling 
basic events is simple, as you've seen. The classic "rollover effect" is a perfect example of 
a simple event used in DHTML. A rollover occurs when the user moves the mouse over 
an element; while the mouse hovers over the element, its appearance changes to reflect 
that it is "active". When the mouse moves off the element is reverts to a more subdued 
state. Rollovers commonly use changes in either image or style. Below is a basic MSIE 
style-based rollover, which makes the "active" text red and bold, and returns to normal 
blue when inactive. Remember that such dynamic styles don't work so easily under 
Netscape, although you could certainly re-imagine this example for Netscape, perhaps 
by swapping an image for the rollover effect; or swapping a layer. 
 
MSIE Dynamic Style Rollover Example 
<A HREF="special.html" TARGET="mainframe" STYLE="color:blue;font-
weight:normal;font-
family:Arial"<BR>onMouseOver="this.style.color='red';this.style.fontWeight='bold'"<BR> 
onMouseOut="this.style.color='blue';this.style.fontWeight='normal'">Today's 
special</A> 
 
Summary 
As with any introduction, we hope that much of what's been written serves as 
inspiration for your own ideas. Coding impressive DHTML is not necessarily obscure or 
difficult, but it does benefit from imagination and cleverness. No doubt you'll find plenty 
of pre-built DHTML effects in your Web travels, and these, too, are useful sources of 
inspiration and programming techniques. Always approach an interesting effect with a 
"How'd they do that?" mindset, rather than simply adopting what they did.  
Because DHTML is a moving target, as a developer you necessarily need to be sensitive 
to the browser environment that you are designing for. This is a major reason why 
cross-browser coding is such a challenge. The promise of a standardized DOM adopted 
by both browsers seems an ever distant possibility, even with fifth generation browsers. 
Intranet developers who have the relative "luxury" of a single browser platform can 
enjoy some additional freedom from the strain of balancing multiple browser 
environments.  
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Model Questions 

1. What is DHTML and what is its role in web pages? 
2. Explain dynamic positioning. 
3. Explain the properties of Style. 
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Objective 

 What is the mission of your organization?  
 How will creating a Web site support your mission?  
 What are your two or three most important goals for the site?  
 Who is the primary audience for the Web site?  
 What do you want the audience to think or do after having visited your site?  
 What Web-related strategies will you use to achieve those goals?  
 How will you measure the success of your site?  
 How will you adequately maintain the finished site?  

 
2.5.4.1Introduction  

Though still young, the World Wide Web has already undergone several 
transformations. The framers of the Web were scientists who wanted to create a device-
independent method for exchanging documents. They devised HTML (HyperText 
Markup Language) as a method for "marking up" the structure of documents to allow 
for exchange and comparison. The focus was on the structural logic of documents, not 
the visual logic of graphic design. 

But the Web quickly caught on as a publishing medium; no communication 
device is more inexpensive or far-reaching. As a tool for communication, however, Web 
authoring with HTML has limitations. With their focus on the structure of documents, 
the originators of the Web ignored those visual aspects of information delivery that are 
critical to effective communication. Once the Web was established as a viable 
publishing medium, these limitations became obvious and cumbersome. Pages that 
conformed to HTML standards lacked visual appeal, showing little evidence of the past 
five centuries of progress in print design. Graphic designers took this relatively primitive 
authoring and layout tool and began to bend and adapt it to a purpose it was never 
intended to serve: graphic page design. 

The Web viewing audience was also beginning to refine its tastes. The pioneering 
Web "surfers" who were content to skim the surface of Internet documents are now 
outnumbered. People are turning to the Web for information — information with depth, 
breadth, and integrity. 
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Web design should be almost transparent to the reader. How to create a user interface 
that will allow visitors to your site to navigate your content with ease. This is a new 
genre with its own style and guidelines.  

As is the case with many innovations, the Web has gone through a period of 
extremes. At its inception, the Web was all about information. Visual design was 
accidental at best. Web pages were clumsily assembled, and "sites" were accumulations 
of hyperlinked documents lacking structure or coherence. Designers then took over and 
crafted attractive, idiosyncratic, and often baffling containers for information. The Web 
became a better-looking place, but many users hit up against barriers of large graphics, 
complex layouts, and nonstandard coding. Every site was different, and each required 
users to relearn how to use the Web, because "real" designers could not be bound by 
standards or conventions. Instead, designers pushed the boundaries of HTML, using 
workarounds, kludges, and sleight of hand to design on the cutting edge. 

Today, the field of Web design is seen much more as a craft than an art, where 
function takes precedence over form and content is king. Innovative designs using fancy 
navigational doodads are generally seen as an annoyance standing between the user 
and what he or she seeks. Large graphic eye-candy, no matter how pleasing, is simply 
wasted bandwidth. Like 1960s architecture, much of yesterday's Web design now 
makes users wince and wonder how it could ever have been fashionable. Instead, 
today's Web designers are also information architects and usability engineers, and a 
user-centered design approach is the key to a successful Web site. Instead of constantly 
requiring users to relearn the Web, sites are beginning to look more alike and to employ 
the same metaphors and conventions. The Web has now become an everyday thing 
whose design should not make users think. 

When things change this fast, humans have a hard time adapting, keeping up, 
and just plain understanding what's going on. But people's reactions to the Web 
changed so fast precisely because so few of us really understood what it is. In fact, most 
of us didn't have the time to think hard about how Web sites could truly be useful and 
good things and how important sound design principles are to making them so. 

Frenzied anxiety forced us to rush to legions of "experts" who played upon our 
fears that "we didn't get it." Through hype and jargon (not to mention wildly creative 
business modeling), they bullied us back to where we are today: square one. 

Fortunately, this wonderful little book is still here to show us those 
fundamentals.  

 
2.5.4.2 Planning 

Web sites are developed by groups of people to meet the needs of other groups of 
people. Unfortunately, Web projects are often approached as a "technology problem," 
and projects are colored from the beginning by enthusiasms for particular Web 
techniques or browser plug-ins (Flash, digital media, XML, databases, etc.), not by real 
human or business needs. People are the key to successful Web projects. To create a 
substantial site you'll need content experts, writers, information architects, graphic 
designers, technical experts, and a producer or committee chair responsible for seeing 
the project to completion. If your site is successful it will have to be genuinely useful to 
your target audience, meeting their needs and expectations without being too hard to 
use. 

Although the people who will actually use your site will determine whether the 
project is a success, ironically, those very users are the people least likely to be present 
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and involved when your site is designed and built. Remember that the site development 
team should always function as an active, committed advocate for the users and their 
needs. Experienced committee warriors may be skeptical here: these are fine 
sentiments, but can you really do this in the face of management pressures, budget 
limitations, and divergent stakeholder interests? Yes, you can — because you have no 
choice if you really want your Web project to succeed. If you listen only to management 
directives, keep the process sealed tightly within your development team, and dictate to 
imagined users what the team imagines is best for them, be prepared for failure. Involve 
real users, listen and respond to what they say, test your designs with them, and keep 
the site easy to use, and the project will be a success. 
 
What are your goals? 

A short statement identifying two or three goals should be the foundation of your 
Web site design. The statement should include specific strategies around which the Web 
site will be designed, how long the site design, construction, and evaluation periods will 
be, and specific quantitative and qualitative measures of how the success of the site will 
be evaluated. Building a Web site is an ongoing process, not a one-time project with 
static content. Long-term editorial management and technical maintenance must be 
covered in your budget and production plans for the site. Without this perspective your 
electronic publication will suffer the same fate as many corporate communications 
initiatives — an enthusiastic start without lasting accomplishments. 

 
Know your audience 

The next step is to identify the potential readers of your Web site so that you can 
structure the site design to meet their needs and expectations. The knowledge, 
background, interests, and needs of users will vary from tentative novices who need a 
carefully structured introduction to expert "power users" who may chafe at anything 
that seems to patronize them or delay their access to information. A well-designed 
system should be able to accommodate a range of users' skills and interests. For 
example, if the goal of your Web site is to deliver internal corporate information, human 
resources documents, or other information formerly published in paper manuals, your 
audience will range from those who will visit the site many times every day to those who 
refer only occasionally to the site. 

 
Design critiques 

Each member of a site development team will bring different goals, preferences, 
and skills to the project. Once the team has reached agreement on the mission and 
goals of the project, consensus on the overall design approach for the Web site needs to 
be established. The goal at this stage is to identify potential successful models in other 
Web sites and to begin to see the design problem from the site user's point of view. 

Unfortunately, production teams rarely include members of the target audience 
for the Web site. And it is often difficult for team members who are not already 
experienced site designers to articulate their specific preferences, except in reference to 
existing sites. Group critiques are a great way to explore what makes a Web site 
successful, because everyone on the team sees each site from a user's point of view. 
Have each team member bring a list of a few favorite sites to the critique, and ask them 
to introduce their sites and comment on the successful elements of each design. In this 
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way you will learn one another's design sensibilities and begin to build consensus on 
the experience that your audience will have when they visit the finished site. 

 
Content inventory 

Once you have an idea of your Web site's mission and general structure, you can 
begin to assess the content you will need to realize your plans. Building an inventory or 
database of existing and needed content will force you to take a hard look at your 
existing content resources and to make a detailed outline of your needs. Once you know 
where you are short on content you can concentrate on those deficits and avoid wasting 
time on areas with existing resources that are ready to use. A clear grasp of your needs 
will also help you develop a realistic schedule and budget for the project. Content 
development is the hardest, most time-consuming part of any Web site development 
project. Starting early with a firm plan in hand will help ensure that you won't be 
caught later with a well-structured but empty Web site. 

 
Developing a site specification 

The site specification is the planning team's concise statement of core goals, 
values, and intent, to provide the ultimate policy direction for everything that comes 
next. Designing a substantial Web site is a costly and time-consuming process. When 
you're up to your neck in the daily challenges of building the site, it can be surprisingly 
easy to forget why you are doing what you are, to lose sight of your original priorities, 
and to not know on any given day whether the detailed decisions you are making 
actually support those overall goals and objectives. A well-written site specification is a 
powerful daily tool for judging the effectiveness of a development effort. It provides the 
team with a compass to keep the development process focused on the ultimate 
purposes of the site. As such, it quickly becomes a daily reference point to settle 
disputes, to judge the potential utility of new ideas as they arise, to measure progress, 
and to keep the development team focused on the ultimate goals. 

At minimum, a good site specification should define the content scope, budget, 
schedule, and technical aspects of the Web site. The best site specifications are very 
short and to the point, and are often just outlines or bullet lists of the major design or 
technical features planned. The finished site specification should contain the goals 
statement from the planning phase, as well as the structural details of the site. 

 
Production issues 

 How many pages will the site contain? What is the maximum acceptable count 
under this budget?  

 What special technical or functional requirements are needed?  
 What is the budget for the site?  
 What is the production schedule for the site, including intermediate milestones 

and dates?  
 Who are the people or vendors on the development team and what are their 

responsibilities?  
These are big questions, and the broad conceptual issues are too often dismissed as 
committees push toward starting the "real work" of designing and building a Web site. 
However, if you cannot confidently answer all of these questions, then no amount of 
design or production effort can guarantee a useful result. 
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Avoiding "scope creep" 
The site specification defines the scope of your project — that is, what and how much 
you need to do, the budget, and the development schedule. "Scope creep" is the most 
prevalent cause of Web project failures. In badly planned projects, scope creep is the 
gradual but inexorable process by which previously unplanned "features" are added, 
content and features are padded to mollify each stakeholder group, major changes in 
content or site structure during site construction are made, and more content or 
interactive functionality than you originally agreed to create is stuffed in. No single over 
commitment is fatal, but the slow, steady accumulation of additions and changes is 
often enough to blow budgets, ruin schedules, and bury what might have been an 
elegant original plan under megabytes of muddle and confusion. 
 
Don't leap into building a Web site before you understand what you want to accomplish 
and before you have developed a solid and realistic site specification for creating your 
Web site. The more carefully you plan, the better off you will be when you begin to build 
your site. 
 
One excellent way to keep a tight rein on the overall scope of the site content is to 
specify a maximum page count in the site specification. Although a page count is hardly 
infallible as a guide (after all, Web pages can be arbitrarily long), it serves as a constant 
reminder to everyone involved of the project's intended scope. If the page count goes up, 
make it a rule to revisit the budget implications automatically — the cold realities of 
budgets and schedules will often cool the enthusiasm to stuff in "just one more page." A 
good way to keep a lid on scope creep is to treat the page count as a "zero sum game." If 
someone wants to add pages, it's up to them to nominate other pages to remove or to 
obtain a corresponding increase in the budget and schedule to account for the 
increased work involved. 
 
Changes and refinements can be a good thing, as long as everyone is realistic about the 
impact of potential changes on the budget and schedule of a project. Any substantial 
change to the planned content, design, or technical aspects of a site must be tightly 
coupled with a revision of the budget and schedule of the project. People are often 
reluctant to discuss budgets or deadlines frankly and will often agree to substantial 
changes or additions to a development plan rather than face an awkward conversation 
with a client or fellow team member. But this acquiescence merely postpones the 
inevitable damage of not dealing with scope changes rationally. 
The firm integration of schedule, budget, and scope is the only way to keep a Web 
project from becoming unhinged from the real constraints of time, money, and the 
ultimate quality of the result. A little bravery and honesty up front can save you much 
grief later. Make the plan carefully, and then stick to it. 
 
Site definition and planning 
This initial stage is where you define your goals and objectives for the Web site and 
begin to collect and analyze the information you'll need to justify the budget and 
resources required. This is also the time to define the scope of the site content, the 
interactive functionality and technology support required, and the depth and breadth of 
information resources that you will need to fill out the site and meet your reader's 
expectations. If you are contracting out the production of the Web site, you will also 
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need to interview and select a site design firm. Ideally, your site designers should be 
involved as soon as possible in the planning discussions. 
 
Site production checklist 
Not every site will require consideration of every item below. Developers within 
corporations or other large enterprises can often count on substantial in-house 
technology support when creating new Web sites. If you are on your own as an 
individual or small business, you may need to contract with various technology and 
design vendors to assemble everything you'll need to create a substantial content site or 
small e-commerce site. 
 
Production 

 Will your site production team be composed of in-house people, outside 
contractors, or a mix of the two?  

 Who will manage the process?  
 Who are your primary content experts?  
 Who will be the liaison to any outside contractors?  
 Who will function long-term as the Webmaster or senior site editor?  
  

2.5.4.3 Technology 
 What browsers and operating systems should your site support?  

o Windows, Macintosh, UNIX, Linux  
o Netscape Navigator, Internet Explorer; minimum version supported  

 Network bandwidth of average site visitors  
o Internal audience or largely external audience?  
o Ethernet or high-speed connections typical of corporate offices  
o ISDN, or DSL medium-speed connections typical of suburban homes  
o Modem connections for rural, international, or poorer audiences  

 Dynamic HTML (HyperText Markup Language) and advanced features?  
o JavaScript or vbscript required  
o Java applets required  
o Style sheets required  
o Third-party browser plug-ins required  
o Special features of the UNIX or NT server environments required  
o Special security or confidentiality features required  

 How will readers reach the support personnel?  
o Email messages from readers  
o Chat rooms, forums, help desks, or phone support  

 Database support?  
o User log-ins required to enter any site areas?  
o Questionnaires required?  
o Search and retrieval from databases needed?  

 Audiovisual content  
o Video or audio productions?  
 

2.5.4.4 Web server support 
 In-house Web server or outsourced to Internet Service Provider (ISP)?  

o Unique domain names available (multihoming)  
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o Disk space or site traffic limitations or extra costs  
o Adequate capacity to meet site traffic demands?  
o Twenty-four-hour, seven-days-a-week support and maintenance?  
o Statistics on users and site traffic?  
o Server log analysis: in-house or outsourced?  
o Search engine suitable for your content?  
o CGI (Common Gateway Interface), programming, and database middleware 

support available?  
o Database support or coordination with in-house staff?  
 

Budgeting 
 Salaries and benefits for short-term development staff and long-term editorial 

and support staff  
 Hardware and software for in-house development team members  
 Staff training in Web use, database, Web marketing, and Web design  
 Outsourcing fees  

o Site design and development  
o Technical consulting  
o Database development  
o Site marketing  

 Ongoing personnel support for site  
o Site editor or Webmaster  

 Ongoing server and technical support  
 Database maintenance and support  
 New content development and updating  
 

Appoint a site editor 
A site that is "everyone's responsibility" can quickly become an orphan. A maintenance 
plan should specify who is responsible for the content of each page in the site. To 
maintain consistent editorial, graphic design, and management policies you'll also need 
one person to act as the editor of the overall Web site. The site editor's duties will vary 
according to how you choose to maintain your site. Some editors do all the work of 
maintaining site content, relieving their coworkers of the need to deal directly with Web 
page editing. Other editors coordinate and edit the work of many contributors who work 
directly on the site pages. If multiple people contribute to site maintenance, the site 
editor may choose to edit pages after they are created and posted to avoid becoming a 
bottleneck in the communications process. However, high-profile public pages or pages 
that contain very important content should be vetted by the editor before public 
posting. 
 
In addition to ensuring editorial quality, a site editor must also ensure that the content 
of the site reflects the policies of the enterprise, is consistent with local appropriate use 
policies, and does not contain material that violates copyright laws. Many people who 
post pictures, cartoons, music files, or written material copied from other sites on their 
own sites do not understand copyrights and the legal risks in using copyrighted 
materials inappropriately. A site editor is often an institution's first line of defense 
against an expensive lawsuit over the misuse of protected material. 
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2.5.4.5 Organizing information 
Our day-to-day professional and social lives rarely demand that we create detailed 
architectures of what we know and how those structures of information are linked. Yet 
without a solid and logical organizational foundation, your Web site will not function 
well even if your basic content is accurate, attractive, and well written. Cognitive 
psychologists have known for decades that most people can hold only about four to 
seven discrete chunks of information in short-term memory. The way people seek and 
use reference information also suggests that smaller, discrete units of information are 
more functional and easier to handle than long, undifferentiated tracts. 
 
There are five basic steps in organizing your information: 

1. Divide your content into logical units  
2. Establish a hierarchy of importance among the units  
3. Use the hierarchy to structure relations among units  
4. Build a site that closely follows your information structure  
5. Analyze the functional and aesthetic success of your system  
 

"Chunking" information 
Most information on the World Wide Web is gathered in short reference documents that 
are intended to be read nonsequentially. This is particularly true of sites whose 
contents are mostly technical or administrative documents. Long before the Web was 
invented, technical writers discovered that readers appreciate short "chunks" of 
information that can be located and scanned quickly. This method for presenting 
information translates well to the Web for several reasons: 

 Few Web users spend time reading long passages of text on-screen. Most users 
either save long documents to disk or print them for more comfortable reading.  

 Discrete chunks of information lend themselves to Web links. The user of a Web 
link usually expects to find a specific unit of relevant information, not a book's 
worth of general content. But don't overly subdivide your information or you will 
frustrate your readers. One to two pages (as printed) of information is about the 
maximum size for a discrete chunk of information on the Web.  

 Chunking can help organize and present information in a uniform format. This 
allows users not only to apply past experience with a site to future searches and 
explorations but also to predict how an unfamiliar section of a Web site will be 
organized.  

 Concise chunks of information are better suited to the computer screen, which 
provides a limited view of long documents. Long Web pages tend to disorient 
readers; they require users to scroll long distances and to remember what is off-
screen.  

 
The concept of a chunk of information must be flexible and consistent with common 
sense, logical organization, and convenience. Let the nature of the content suggest how 
it should be subdivided and organized. At times it makes sense to provide long 
documents as a subdivided and linked set of Web pages. Although short Web 
documents are usually preferable, it often makes little sense to divide a long document 
arbitrarily, particularly if you want users to be able to print easily or save the entire 
document in one step. 
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2.5.4.6 Hierarchy of importance 
Hierarchical organization is virtually a necessity on the Web. Most sites depend on 
hierarchies, moving from the most general overview of the site (the home page), down 
through increasingly specific submenus and content pages. Chunks of information 
should be ranked in importance and organized by the interrelations among units. Once 
you have determined a logical set of priorities, you can build a hierarchy from the most 
important or general concepts down to the most specific or detailed topics. 
 
2.5.4.7 Relations 
When confronted with a new and complex information system, users build mental 
models. They use these models to assess relations among topics and to guess where to 
find things they haven't seen before. The success of the organization of your Web site 
will be determined largely by how well your system matches your users' expectations. A 
logical site organization allows users to make successful predictions about where to find 
things. Consistent methods of displaying information permit users to extend their 
knowledge from familiar pages to unfamiliar ones. If you mislead users with a structure 
that is neither logical nor predictable, they will be frustrated by the difficulties of getting 
around. You don't want your users' mental model of your Web site to look like this: 

 
 
2.5.4.8 Function 
Once you have created your site, analyze its functionality. Efficient Web site design is 
largely a matter of balancing the relation of menu, or home, pages with individual 
content pages. The goal is to build a hierarchy of menus and pages that feels natural to 
users and doesn't mislead them or interfere with their use of the site. 
Web sites with too shallow a hierarchy depend on massive menu pages that can 
degenerate into a confusing "laundry list" of unrelated information: 

 
 
Menu schemes can also be too deep, burying information beneath too many layers of 
menus. Having to navigate through layers of nested menus before reaching real content 
is frustrating: 
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If your Web site is actively growing, the proper balance of menus and content pages is a 
moving target. Feedback from users (and analyzing your own use of the site) can help 
you decide if your menu scheme has outlived its usefulness or has weak areas. 
Complex document structures require deeper menu hierarchies, but users should never 
be forced into page after page of menus if direct access is possible. With a well-
balanced, functional hierarchy you can offer users menus that provide quick access to 
information and reflect the organization of your site. 
 
Site elements 
Web sites vary enormously in their style, content, organization, and purpose, but all 
Web sites that are designed primarily to act as information resources share certain 
characteristics. 
 
2.5.4.9 Section contents 

Home pages  
All Web sites are organized around a home page that acts as a logical point of entry into 
the system of Web pages in a site. In hierarchical organizations, the home page sits at 
the top of the chart, and all pages in the Web site should contain a direct link back to 
the home page. The World Wide Web URL for a home page is the Web "address" that 
points users to the Web site. In many cases, home page addresses are used more than 
home and business street addresses. 
 
Menus and subsites 
Unless your site is small you will probably need a number of submenu pages that users 
enter from a general category listing on your home page. In complex sites with multiple 
topic areas it is not practical to burden the home page with dozens of links — the page 
grows too long to load in a timely manner, and its sheer complexity may be off-putting 
to many users. Providing a submenu page for each topic will create a mini-home page 
for each section of the site. For specialized, detailed submenus you could even 
encourage frequent users to link there directly. In this way the submenus will become 
alternate home pages in "subsites" oriented to a specific audience. Be sure to include a 
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basic set of links to other sections of the site on each subsite home page, and always 
include a link back to your main organization home page 
 

Resource lists, "other related sites" pages  
The World Wide Web is growing so rapidly that even the large commercial Web index 
services such as Yahoo! and Excite are only partial listings of the information accessible 
through the Web. When authors begin to build Web sites, their first page is often a 
collection of favorite links to sites related to their profession, industry, or interests. In a 
corporate or institutional site, a well-edited, well-maintained "Other useful sites" page 
may be the most valuable and heavily used resource. 
 

Site guides  
Unlike print media, where the physical heft and dimensions of a book or magazine give 
instant cues to the amount of information to expect, Web sites often give few explicit 
indications of the depth and extent of the content available. This is especially true when 
the home page does not provide an extensive listing of internal site links. Although 
search facilities offer users quick access to your content, they are no substitute for a 
clear, well-organized exposition of your site's contents. Even the best search engines are 
relatively stupid and have only the most primitive means of assessing the priority, 
relevance, and interrelations of the information resources you offer in your Web site. 
 
 

"What's new?" pages  
Many Web sites need to be updated frequently so that the information they present 
doesn't become stale. But the presence of new information may not be obvious to 
readers unless you make a systematic effort to inform them. If items that appear on 
your home page menu are updated, you could place a "new" graphic next to each 
updated item. If, however, your site is complex, with many levels of information spread 
over dozens (or hundreds) of pages, you might consider making a "What's New" page 
designed specifically to inform users of updated information throughout the site. 
 

Search features  
The search software you use will often dictate the user interface for searching. If you 
update your content frequently, be sure that your search engine's indexing is done at 
least daily. Also be sure that your readers understand exactly what content is being 
searched: the entire Web site or just a subsection? If your site is complex you may wish 
to offer readers a pop-up menu that lists the areas of your site and allows them to limit 
their search to a specific area. And make sure that the results page also matches the 
graphic design of the site. 

 
Contact information and user feedback  

The Web is a bidirectional medium — people expect to be able to send you comments, 
questions, and suggestions. Always provide at least one link to an email address in a 
prominent location in your site. You can request user information and feedback using 
Web page forms and then use a database to store and analyze their input. 
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Bibliographies and appendixes  
The concept of "documents" in electronic environments like the Web is flexible, and the 
economics and logistics of digital publishing make it possible to provide information 
without the costs associated with printing paper documents. Making a report available 
to colleagues on paper usually means printing a copy for each person, so costs and 
practicality dictate that paper reports be concise and with limited supporting material. 
Bibliographies, glossaries, or appendixes that might be too bulky to load into a task 
force report or committee recommendations document can instead be placed in a Web 
site, making the information available to colleagues as needed. 

 
FAQ pages  

The Web and other Internet-based media have evolved a unique institution, the FAQ or 
"frequently asked questions" page, where the most commonly asked questions from 
users are listed along with answers. FAQ pages are ideal for Web sites designed to 
provide support and information to a working group within an institution or to a 
professional or trade group that maintains a central office staff. Most questions from 
new users have been asked and answered many times before. A well-designed FAQ page 
can improve users' understanding of the information and services offered and reduce 
demands on your support staff. 

 
Custom server error pages  
Most Web users are familiar with the "404 error, file not found" screens that pop up 
on the screen when a Web server is unable to locate a page. The file may be missing 
because the author has moved or deleted it, or the reader may simply have typed or 
copied the URL of the page incorrectly. One mark of a really polished Web site is 
custom-designed and useful error and server message pages. Most standard error 
screens are generic, ugly, and uninformative. A well-designed error screen should be 
consistent with the graphic look and feel of the rest of the Web site. The page should 
offer some likely explanations for the error, suggest alternatives, and provide links to 
the local home page, site index, or search page 

 
Summary 
The most important step in planning your site is to organize your information. Thinking 
carefully about what you want to say and how you want to say it requires that you 
become intimately acquainted with your site content. Create outlines, chunk your 
information into sections and subsections, think about how the sections relate to one 
another, and create a table of contents. This exercise will help immensely when it comes 
time to build the individual pages of your site and may determine the eventual success 
of your Web site. 
A well-organized table of contents can be a major navigation tool in your Web site. The 
table is more than a list of links — it gives the user an overview of the organization, 
extent, and narrative flow of your presentation 
 
Model questions 

1) How are web pages designed? 
2) What is the technology used to design web pages? 
3) Explain the various elements of a site ?How are sites related? 
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