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. Lesson 1

THERE·AL NUMBER SYSTEM
1.0 tntroduction : ----.--

m
We know that a rational number is defined as - where m, n are integers and- n ;t O. Wen .

also know that !he set Q of all rational numbe;rs is an ordered field (in the sense of Definition 1.2.5).

We now observe that the equation

/ m
is not satisfied by any rational P. Suppose there is a rational p=- satisfying p2=2. Withoutn

loss of generality, we can assume that both m and n are not even. So, m2 = 2n2 . This shows that

m2 is even. Hence m is even (otherwise m2 is odd). So, m2 is divisible by 4 so that n2 is even
and hen~e n is even. So, both m and n are even, a contradiction to the choice of m and n.

Hence there is no rational number P satisfying p2 = 2 .

Now consider the sets

A ={p E Q/ p > 0, p2 <2} and

we, now, show that neither A contains greatest element nor B contains least element. Let p E Q
be such that p > 0 .

p2 -2 2p+2
Let q=p- 2 =p+ ..p+2

Now,
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=>qEA, q> p

=>PEQ, p>O,q2>2, q<p

=>qEB'f<P' ;":""

Thus, A contains no greatest element and B contains no least element.

The purpose of the above discussion to exhibit certain gaps in the rational number system
inspite of the fact that between any two rationals, there is another rational. The real number system
fill these gaps. )

We also study the extended real number systeni, the field of complex numbers and Schwarz
inequality.

Further, we study "sets and functions" which play an important role in the study of Modern
i'.,!·'lhematics, in particular, this study is useful in the study of countable sets.

1.1 ORDERED SETS

1 1 Definition: Let S be a set. An order on S is a binary relation < on S satisfying the followir«;
properties. ,

(i) If XES and YES then one and only one of the statements.

x<y, x=y, y< xis true.

(ii) If X,y,z E S and if x<y and y «'e then x.( z .

1.1.1.1 Note: The condition 1J.r1 (i) is called the !aw. of Trichotomy.
, .- ,

1.1.2 Definition: Any pair (S, <) where S is a set and < is an order on S is called an ordered

set.

1.1.3 Definition: Let (S, <) be an ordered set. Let E'~ S .
'\

(i) An element f3 78 is called an upper bound of E if x::; f3 for all x E E .

(ii) An element f3 E S is called a least upper bound of E (briefly lub E) or Supremum

of E (briefly sup E) if

(a) fJ is an upper bound of E and



(b) a E S, a < f3 implies a is not an upper bound of E,
'. ' .

In this case, we write jJ=Jub E or jJ=Sup E,

(iii) An element rES is called a lower bound of E if r S; x for all x E E ,

(iv) An element rES is called a lower bound of E (briefly glb E) or Infimum of E

(briefly Inf E) if

(a) r is a lower bound of E and

(b) 0 E S, r c S implies 0 is not a lower bound of E,

In this case, we write r = glb E or r ~ In/£; ,

(v) E is said to be bounded above if E has an upper bound in S
! I ~

(vi) E is said to be bounded below if E has a lower bound in S,

(vii) An element x E E is called least element Eif X'S s ror all 5 E E, ,

(viii) An element Y E E is called greatest (largest) element of E if s S; y for all sEE,

1.1.4 Lemma:

(a) The second condition --,---" a E S, a < {3-::::;.a,is not an upper bound of E", in the

definition of lub E = ,8 is equivalent to" a E S, a is an upper bound of E -::::;.f3 S; a ''.

(b) The second condition' ------" <5E S, r < b => b is ~oia lower bound of E ", in the

definition of glbE=r is equivalent to vzi ES, (j is a lower bound of E=>bS,r",
»:

Proof: Clear (We leave this asan exercise),

1.1.5 Definition: An ordered set (S, <) is said to have the leastup~e~bound property (briefly lub

property) ifthe.following is true: ' ',' ',' :,iv

If E c S, E:f:.¢ and E is bounded above, then supE( =lubE) exists in S.

Similarly, we define glb property.

1.1.6 Definition: An ordered set (S, <) IS said to hav~ the qreatest lower bound property (briefly

glb property) if the following true: '
" .~ 10

If E c S, E *¢ and E is bounded below, then In! E( =glbE) exists in S,



acentre for Distance Education) ~Acharya Nagarjuna UniversitiE

The following theorem relates the 1u b property a,nd gIb property.

1.1.7 Theorem: An ordered set (S, <) has the lub property if and only if it has the glb property.

Proof: Let (S, <) be an ordered set. Assume that (S, <) has lub property.

Let E c:;;:; S, E *9 and E be bounded below by x in S. Let L be the set of all lower

bounds of E in S. Clearly, L * 9 (since x E F), L c:;;:; Sand L is bounded above by every element

of E. Since (S, <) has 1u b property, sup L = sexists r;; s.
Now, we show that s = glb E . Sirce every element of E is an upper bound of L , we have

that s is a lower bound of E "Clearjy, e~~ry rower bound of E is less than or equal to {s) s .So,
-- ---~- - .------='.::..._-=-. . /

s=glbE. Hence, (S,<:} has_the-g!b-pyop~erty. ~ .~

We leave the converse part as an exercise.

1.2 FIELDS

1.2.1 Definition: A field is a set F with two operations, called addition and multiplication
(respectively denoted by + and .), which satisfy the following so-called'

"field axioms" (A), (M) and (D).

(A) Axioms for addition:

(A1) : If x E F and Y E F then x +yE F

(A2) : Addition is commutative: x+ y= y-t-x for all x,y E F .

.I

(A3) : Addltion is assocratlve : (x+ y )+z ~x+(y+z) for all x, y, ZE F

(A4) : F contains an element 0 such that 0 + x = x for each x E R.
---. -.

(A5) : To each x E F; there exists an element -x E F such that x +(- x) = 0

(M) Axioms for multiplication:

(M1): If x E F and y E F then XyE F

(M2) : Multiplication is commutative: xy = yx for all x, y E F

(M3) : Multiplication is associative: (xy )z=x(yz ) for all x,y, ZE F



(M4): F contains an element] 7= a .such that xl=~ for every x E F

- - - . 1 1
(M5) : To each x E F - {o], there exists an element - E F such that x- - = 1 .

x x

(0) The distributive law:

x(y+z)=xy+XZ for all x.v.e e F:

1.2.1;1 Note: In any field, we write

x , 232 3x-y, -, x+y+z, xyz, x ,x, x, x in place of
y

1
x+( -y), x.-, (x+ y)+ z, (xy) z, x x, X· x- x, x+ x, x+x+x, respectively.

y .

1.2.2 Theorem: In any field--JL.-tbe following hold.---
(a) x+y=x+z=>y=z (Cancellation law)

(b) x+ y=x=> y=o

(c) x+ y=o => y=- x

(d) -( -x\)=x

Pr~f : Exercise. -

1.2.3 Theorem: In any field F , the following hold,
(a) x s= O, xy=xz=>y=z

(b) X7=O,xy=x=:>y=l

1
- (c) x:;t:O, xy=l => y=-.

x

1
... (d) x" Oc=> /~Yxr x (Yx means ~)

·f
---. / ~~~

Proof' Exercise - -=' =-:::~~~ . "• .• _. __ -""=~:-:-W._. ~_..\./'

1.2.4 Theorem ;-In any field, ~~~~-~'-T:

(a) Ox=o.
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(b) x:;t:O,y:;t:O=>xy:;t:O

(c) (-x)y = -(xy)=x(-y)

(d) ( -x) ( - y ) = xy

Proof: (a) Ox+Ox = (O+O)x =Ox => Ox = 0

. , 1
(b) Suppose x:;t: 0, y:;t: 0 and xy=O. Since x:;t:O there exist elements - such that

x

1x·-=l
x

1 ( )' 1xy=O=>- x y =- 0
x 'x

=> 1 Y c.. oj i.e. y = 0, a contradiction to y :;t: 0

Hence xy:;t:O

(C) xy+( -x) y=( x+( -x ))y=O y=O

=>(-x) y=- (xy)

Similarly, we can prove that x( -y)=-(xy)

(d) (-x)( -y)=-( x( -y))=-[ -( xy)]=xy
•. \ .v

1.2.5 Definition: An ordered fi~ld'is 'a fieid F which is also an ordered set, such that

(i) xy.z e Fv y c z =>x+y<x+z
. I

(ii) X,YE F,x > O,y > O=>xy>O

1.2.6 Definition: Let F be an ordered field. Let x,E F. We say that x is positive if x> 0; x is

negative if x < 0 .

1.2.7 Theorem: In any ordered field, the fc:>"owinghold

(a) x>O<=>-x<O



(b) x > o,,')~<z=>xy<xz

(C) x<o,Y< Z=>XY>XZ

(d) x:;t: o=> x2 > O. In particular, 1> Q.. .

(e)

" 'Proof: Let F be .anordered field

(a) Let xc-O. By definition 1.2.5. (i), x+(-x»O+(-x)

i.e., O>-x i.e.; -x<O.

-x<O=>x+( -x) -cx+O (by Definition 1.2.5.(i»·

(b) Let x>O,Y< z

y<z=> y+( -y)<z+( -y)

=>O<z+(-y)

=> xO <:x(z +{- y)) (By Definition 1.2.5. (ii»

=>O<xz+x( -y)

~xz+[ -(xy)]

-, .

'. 9\f

=>O+xy«xz+[ - (xy)])+xy (by O~finition 1.2.5. (i)

=>xy<xz+([ -(xy)]+xy)

=>xz+O=xz

(c) Let x<O,y<z. So, -x>O and z+(-Y»9 .

By Definition 1.2.5.(ii), (-x) (z+( -y)) ~ 0
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i.e., (-x)z+( -x)( -y»O

i.e., -(xz)+xy>O

i.e., xy>xz

(d) L,et x '* O. So, either xc-O or x-c O (since F is an ordered field).
»>

x-cO : So, -x>O. By Definitiq.n 1.2.5 (ii),

( -x) ( -x) > 0 i.e., x2 > 0

xc- O : By Definition 1.2.5 (ii), x2 >0_

1.2.8 Definition: Let (F, +,.) (where + and· denote the operations of addition and multiplication

respectively) be a field. A subset K of F is called a subfield of F if the following
conditions are' satisfled.

'(a) O,lEK
'====--

(b) x,YEK =>x- yE K

(c) X,YE K -{o}=> fyE K
,

""i~ •

1.3 THE REAL FIELD
Now, we state the existence theorem which is the core of this.chapter (with out proof).

ftt~·.:, "
\ 1.3.1 Theo~em.i There exists an ordered field TIt, which has the least upper bound property.

~.--_ ...

More over, m contains Q, the field of rationals as a subfield.

',- 1 ;~.1.1 Note.: The members of m are called-real-numbers.
_.• Ii.

1.3.2 Theorem:
I "', , '. , ==i*",

i(a) If x 'EIR, Y ElR, and xc- O then there exists a positive integer n such that
j ,~,

(b) If x Em, Y Em and x< Y then there exists e p e Q such that x < p < y.

Proof:

nx i- y ,

(a) Let x E JR.,Y IE JR.and x > 0 . Let

,A ={nx/ n is a positive integer} .

/

/



l-
Suppose the conclusion of (a) is false i.e., tor.every positive integer n, nx s;y. So, y is an

upper bound of A . Thus, A is a non empty subset of real numbers which is'bounded above. Since

m has lubproperty, lub A = a (say) exists in IR. Since x>O,a-x,-(a. So, a-x is not an

upper bound of A. Hence a=x-cmx for some positive integer m . Then\a<mx+x = (m+l)x,

(m +1) X E A, a contradiction to that a is an upper bound of A . Hence, there exists a positive

integer n such that nx > y .

(b) Let x E IR, YEIR and x<y.

x<y=> y-x>O (by definition 1.2.5 (i))

By (a), there exists a positive integer n such that

/

Since I> 0; by (a), there exist positive integers ml and m2 such that ml > nx, m2 > - nx .

Then

Hence there is an integer m such that

From (1) and (2), we have

nx-cm c nx+Y-c ny ,

Since n>O,

m
x<-<y.

n

m
By Definition, - is a rational number.

n

1.3.2.1 Note: The property (a) of the above theorem is called Archimedian property. The property
(b) of the above theorem is nothing but Q is dense in IR (in the sense of Definition

4.1.3 U».
1.3.2.2. Note: Any real number which is not rational is called an irrational number i.e., each

x E IR- Q is called an irrational number .

.2

-'
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13.4 Theorem: For every real x> 0 and every integer n > 0, there is one and only one positive real

Y such that yn =X.

1
(This number y is denoted by n 'x or -).'IX »»

Proof: Let x be a real number such that xc- O. Let n be a positive integer. Let

x
E:;e¢ : Put t=-- then 0<t<1. Hence t" <t «:x , So, tEE. Hence E*¢.

l+x

E is bonded above: Now,
'I

t Em, t>l+x=>tn >t>l+x => t rf-E·

So, zs l-t » for any tEE l.e.I-r x is an upper bound of E.

Thus, E is a non empty subset of ill. which is bounded above. Since/TIt has lub property,

tub E exists in TIt. Let y =-= I ub E. Now, we prove that yn =x.

Clearly,

x=y"
Case (I) : Assume yn < x : Choose h such that 0< h <1 and h < 1

n(y+lr-

Put a= y, b=y= h . Then

So, (y+ht<x i.e., y+hEE. Since y=lubE,y+h~y and hence h~O, a

contradiction to h » O. So, v" 1: x .



Case (ii) : Assume v" >x : Put

ny -xR=~-
nyn-1

Then O<R<y.lf t?.y-R,

So, y - R is an upper bound of E , a contradiction to y = I u b E

Hence v" =x.

Uniqueness: Suppose Yl and Y2 are two positive reals such that YI = x, /2 = x .

O<Yl <Y2 => Y] <yz i.e. x «x, a Contradiction.

O<Y2 < Yl => Y2 <Yl i.e., x-c x , a Contradiction.

Hence Yl = Y2 .

1.3.4.1 Corollary ~If a and b are positive real numbers and n is a positive integer, then

Proof: Put a=ar,;, f3 = hr,;. So, a>O, fJ>O and an =a; fJn =b·

Now, ab= a/1 fJ/1 =( afJt (Since multiplication is commutative). By the uniqueness

assertion of the theorem 1.3.4,

1/ 1/ 1/
(a b)/n = afJ = a/» b/n

1.3.5 Decimals: Let x » 0 be real. Let no be the largest integer such that no S; x (such integer

exists by Archimedian property of IR). Having choosen nO,lll,··· ..···,nR-J, let

nn be the larqestinteqer
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such that

Let E be the set of these-numbers

Then x = Sup E. The decimal expansion of x is

Conversely, if

is an infinite decimal expansion of x, then the set of numbers

nl nR ( _ ) .nO+-+ +R R-O,1,2, tnbondedaboveand x=SupE.
10 10'

1.4 THE EXTENDED REAL NUMBER SYSTEM

1.4.1 Definition: The extended real number system consists of the real field m and two symbols,
+ 00 and - 00 . We preserve the order in m and define

-oo<x<+oo

for every x Em. We write

1.4.1.1 Note: If E is any subset of the extended real number system, then -00 and + CXl are
lower and upper bounds of E respectively. Clearly, every nonempty subset of the

extended real number system has both I u band glb .

1.4.1.2 Note: If E is a nonempty subset of mwhich is not bounded above in m , then Sup E = + 00

in the extended real number system. Similarly, if E is a nonempty subset of reals
which is not bounded below in m. Then Inf E == - 00 in the extended real number

, ,

system. If E is the empty set then SupE=-oo and 1nf£=+00 in the extended
real number system. Actually, the empty set is neither bounded above nor bounded
below m.



1.4.1.3Note : The extended real number system does not form a field, but it is customary to make
the following convertions :

(a) If x is real, then

x x
x+oo =+ 00 X-OO =-00 -=-=0

, '+00 -00

(b) If xc-O then

x- ( + 00) = + 00, x (-oo}~:,-w

(c) If x-c O then

x (+ 00) = - 00, x (-00 ) = + 00 .

1.5 COMPLEX FIELD
1.5.1 'Definition: A complex number is an ordered pair of real numbers, '

1.5.1.1 Note:
o

In the above definition ordered means that (a, b) and (b, a) are treated as distinct

if a -:;f:. b.

1.5.2 Definition: Let x = (a, b) be a complex number. Then a and b are called real and imaginary

parts of x. We write

a=Re x, b=Im x.

1.5.3 Definition: Let x = (a, b) and y =(c, d) be complex numbers.

(i) We say that x and yare equal and we write x = y if and only if a = c and

b=d.
(ii) Define + (the addition of complex numbers) and (the multiplication of complex

numbers) as <,

x+y=(a+c, b+d), xy=(ac~bd, ad+bci

1.5.4 Theorem: The set <C of all complex numbers form a field with respect to the addition + and
the multiplication of complex numbers defined in the definition 1.5.3.

Proof:
o

I. Axioms for addition : Let x=(a,b), y=(c,d), z=(e,f)
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(AI): x+ yE <Cis clear.

(A2): Addition is commutative. x+ y=(a+e, b+d)

=(c+a, d+b) =(c,d)+(a,b)=y+x

(A3): Addition is associative: (x+ y)+z = (a+e, b+d)+(e,j)

=((a+e)+e, (b+d)+ j)=(a+(c+e),b+(d+ j))

=x+(c+e, d+/)=x+(y+z)

(A4): LetO=(O,O). Then OE<C and x+O=(a,b)+(O, 0)

=(a+O, b+O) = (a, b)=x

(AS): Put -x=(-a,-b).Then -x E<Cand x+(-x)=(O,O)=O

II. Axioms for multiplication : Let x=(a,b), y=(e,d), z=(e,j)

(Ml) X· Y E <C (Clear).

(M2) Multiplication is commutative: xy=(ac-bd, ad+bc)

=( ca=db, da+eb)= yx

(M3) (xy)z = (ae-bd, ad+be)(e,j)

=((ac-bd)e - (ad+bc)/, (ac-bd)/ + e (ad +bc))

=( ace -hde +adf -hej, aej -hdf +ead +ehe)

=( a( ee-df)-h (de +ej), a (de +ej)+h( ce-dj))

= (a,b)(ce-d/, de+c/)

=x(yz)



:The Real Number SysterE

(M4) Let 1=(1,0). SO, 1E<C and xl = (a,b)(l,O)

= (a.l- b-I), a·O+b·l) = (a, b)=x.

(M5) Let x=(a,h)::;f:O. So at least one of a, b is different from O.

So, a2 + b2 > O. Define

1 r a -b Jx.-=(a,h) 2 2' 2 2 =(10)\=1.
x a +b a +h '-,

HI. (D) Distributive Law:

x(y+z) = (a,h)(c+e, d+ f)

=(a(c+e)-b(d+f), a(d+f)+b(c+e))

= (ac + ae - bd - bf , ad +af + be + be) .

=(ac-hd, ad+bcs +(ae-bf, af +be)

=xy+xz

Hence <Cis a field.

l 1.5.5 Theorem: For any real numbers a and b , we have

(a,O)+(b,O)=(a+b, 0),

(a,O) (b,O) = (ab,O)

Proof: Excercise

1.5.5.1 Note: We can treat each real number a as the complex number (a, 0). So, lR is a

subfield of the field of complex numbers.

1.5.6 Definition: i = (0, 1).
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1.5.7 Theorem: ;2 =-1

Proof: i2=(0, 1)(0, 1) = (0.0 - 1.1, 0.1 + 1.0) =(-1, 0) = -1

1.5.8 Theorem: If a and hare reals, then (a, b) = a+ ib .

Proof: a-s-ib = (a,O)+(O,l)(b,O)

'=(a,0)+(0.b-1.0, 0·0 + l.b)

=(a, 0)+(0, b)

=( a, b)

1.5.8.1 Note: Let z=a+bi, w=c+di. Then z=(a,b), w=(c,d). So, z+w = (a+c, b+d)

= (a+c) +(b +d)i and zw=( ac=bd, ad +bc) = (ac - bd) + (ad +bc)l. Infact,

zw=(a+bi)(c+di) =(a+bi)c+(a+bi)di

=ac v bci +adi +bdP

= ac-bd+i(ad+bc) (since ;2= -1)

1.5.9 Definition: If z=a+bi is the complex number then the complex number z = a=bi is

called the conjugate of z.

1.5.10 Theorem: If z and ware complex numbers, then

(a) z + w = z+w

(b) Z1V = z w

(c) z+z =2Rez, z- z =2ilmz

(d) z --; is real and positive (except when z = 0)

Proof: Let z= a+bi, w =c+di. So, z =a-bi, --; =c-di.

(a) z + w = (a+ c) + (b+d)i = (a+c)-(b+d)i



=a+c-bi-di = a-bi+c-di = z + w

(b) ~ -;- = (a, -b) (e, -d) = (ae-(-b)(-d), a(-d)+(-b)e)

= (ae - bd, - (ad +be) )

=(ac=bd , ad + be) = zw

(c) z+ z = a + b i + a- b i = 2a = 2 Re z

z-z =a+bi-(a-bi)

=a+bi - a s-bi

=2bi = 2i 1m z

(d) z -; = (a,b)(a,-b) = (aoa - bo(-b), a(-b)+boa)
f ~.

=(a2+b2, 0) = a2 + bfo

- 2 2 . 0

zz =O=>a +b =0 =>a=b=O=>z=O,

.. - 2 2
z=O=>a=O=b =>z z = a +b =0

1.5.11 Definition: If z is a complex number, then the absolute value of z , denoted by Izl is

1
defined as (z . -;)2 0

1

1.5.11.1 Note: (i) If z=a+bi, then Izl = (z.-;)2 = ~a2 +b2 ;

(ii) z=a+bi is real <=> b =0 and hence z i=a

<=>z= z

(iii) z=a+ib is pure irnaqinary

<=> a = 0 and hence z = ib
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1.5.12 Theorem: Let z and w be complex numbers. Then

(a) /z/ > ° unless z=O, /0'/=0

(b) n-.
(c) Iz wi = I z II w I,

(d) IRe zl ~ I z I, 11m zl ~ I z I
(e) Iz+wl ~ I z 1+Iwl

/"'

Proof: Let z+ a+bi, W= c+ id

z=O~ a=O, h=O~1 z 1=0.

(c)
2 - -- - - 2 2

Izwl =zwzW=zwz w=zzww=lzllwl

So, Izwi = Izllwl

(d)

(e) Iz+wl2 = (z+w) (z+w)



=(z+w) (~ +w)

=zz+wz +zw+ww

2 -= - 2=1 z 1 + z w + z w +1 w 1

2 1-I 2=1 z I +2Re z w +1 w I

2 1-I 2~IZI +2zw +IWI

Hence, Iz + wi ~ i z I + I w I
1.5.13 Notation: If xl, X2, , Xn are complex numbers, we write

n
Xl +X2 + ..... +Xn = LXi

i=l

(This theorem is called Schwarz inequality).

If B=O, then bi =b: = ... ·······=bn =0 and hence the conclusion is clear.

Assume that B> 0 . Now,
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"'IBa - Cb ,\2 = "'(Ba, -Cb) (B~ -Ch.)L.,\] ] L., ] .I ] ]

2 I 12 - - ..:...- 2 1 12
=B Laj -BCLajbj-BCLajbj+ICI Lbj

=B2 A-BICl2

=B(AB-ICI
2
) ,

SO, B(AB-ICI2)~O.

Since B>O, AB-ICl2 ~O

i.e. 1 C 12 ::; AB and hence the result.

1.6 SETS AND FUNCTIONS

1.6.1 Definition: Let A and B be sets.

(i) The set

A xB= {(a,b )ja E A, b e B} is called the Cartesian product of A and B.

(ii) Any subset of A x B is called a relation from A to B .

If R is a relation from A to B and if (a, b) E R then we write a Rb.

(iii) Any relation from A to A (i.e. any subset of A x A ) is;,,;!,,(j a binary relation

on A.

1.6.2 Definition: Let {1 and B be two sets. A relation f from A to B is ~.;.·:f~da mapping (or a

function) from A to B and we write f: A ~ B or A ~ B if the following

conditions are satisfied.

(i) to each a in A there exists an element b in B such tha! (a, b) E f ;

1.6.2.1 Note Infact, a function f from A to B can also be defined as a relation from A to B

such that to each a in A there is a unique b in B such that (a, b) E f .
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1.6.3 Definition: Let 1:A -7 B

(i) If (a, b) E 1then we write b =1(a) ;we call b as the image of a and a is called

a preimage of b .

(ii) If X <;;;:: A and Y <;;;:: B th~n

1(x) = {I(x) / x EX} is called the image of X with respect to 1;and the set

1-1 (Y) = {x E A/I (x) E Y} is called the inverse image of Y with respect to 1·

1.6.3.1 Note: In order to define a function 1from A to B , it is enough to specify the irnaqe for

each element of A .

1.6.4 Definition: Let 1:A -7 B . 1 is called

(i) one - one (or one to one or injection) if distinct elements in A have distinct

images in B.

i.e.x:;t:y in A =>1(x):;t:l(Y) in B.

(ii) onto (or surjection) if to each b in B , there exists atleast one element a in A

such that l(a}=h.

(iii) bijection if 1is both one - one and onto.

1.6.5 Theorem: Let 1:A -7 B . Then

(i) 1is one - one if and only if "1(x) =1(y) => x = y"

(ii) 1is onto if and only if B = 1(A). .

. Proof: (i) Assume that 1is one - one. Suppose 1(x) = j (y) . If x:;t: y then 1(x):;t: 1(y) (since

1is one- one), a contradiction. SO, X= y.

Conversely assume that "f ( x) = f (y) => x = y". Let x, y be in A SUCrl that x:;t: y. If

f (x) = f (y) then x = y (by our assumption), a contradiction. So, 1(x) :;t: f (y). Hence 1is

one-one.

(ii) Assume that f is onto i.e. to each b in B . There exists atleast one b in B such that

h=f(a). So, B <;;;:: f(A). Clearly f(A) <;;;:: B. Hence f(A)=B.

Conversely assume that B = f (A) . Clearly, f is onto.
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1.'6.6Definition: The mapping C( A ~ A defined by iA (a )=a for all a in A is called the
identity mapping.

1.6.6.1 Note: Clearly, any identity mapping is a bijection.

1.6.7 Definition: Let f and g be relations from A to B and from B to C respectively. The

composite relation go j from A to C of j and g is defined by

1.6.8 Theorem: If f: A ~ Band g: B ~ C then the composite relation go f of f and g is a

mapping from A to C .

Proof: Let f:A ~ Band g:B ~ C.

(i) Let aEA. Clearly (a,f(a))Ej and hence (j(a), g(f(a)))Eg. So,

(a,g(f( a))) e g of ,

(ii) Let (a, cd, (a, c2) E ,I) 0 f. So, there exist elements bl, b2 in B such that

(a, q) E f, (hi, cl ) E g , (a, h2) E j and (b2, C2) E g .Now hi = b2 (since j is a function)

and hence c] = c2 (since g is a function).

Hence g 0 f : A ~ C .

1.6.8.1 Note: Suppose j:A~B and g:B~C. Then goj: A~C. Let aEA and

(goj)(a)=e. So, (a,e) c.g cf . So, there exists bE B such that (a,h) E j and

(h,C)Eg. i.e. h=f(a), c=g(h).

Hence (gof)(a)=c =g(h)=g( C(a)). Thus, the mapping gof: A ~ C-,

is given by (g ,0 j)(a)=g(f(a)).

1.6.9 Theorem: Composition of relations is associative.

Proof: Let t.g, h be relations from A to B; B to C and C to A respectively. Clearly,

gof<;;;;;AxC, hog <;;;;;BxDand hence ho(gof) <;;;;; AxD; (hog)of

~ A xD
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(a, d) E h 0 (g oj) <=>-·3 CEC 3 (a, C)Eg 0 I, (c, d)E h

<=>3bE B3 (a,b )Ej, (b,c) E g, (c,d) e h

<=>(a,b)Ej, (b,d)Eh 0 g

<=> (a, d)E(h og) 0 j

Hence, h ()'(g 0 j)=(h 0 g) 0 j

1.6.9.1 Note: Suppose j: A ~ Band g: C ~ D . Suppose j and g are equal as sets. Let

aEA. Then (a,j(a)) E j=g. So, aEC and j(a)=g(a). Hence, A<:;;;C

and f( a ) = g (a) for any a in A . Similarly, C c A ana g (c) = j (c) for any c in

C. Thus, A=C and j( a)=g(a) for any ain A.

Now, we are in a position to define the equality of two function.

1.6.10 Definition : Two functions j:A~B and g:C~D are equal if (i) A=C and

(ii) j (a ) =g (a) for all a in A .

1.6.11 Theorem: Compositions of functions is associative.

Proof: I: As a corollary of theorem 1.6.9

II : Let j:A~B, g:B~C and .h:C~D. Clearly, goj:A~C and

o hog: B ~ D. Hence, h 0 (g 0 j) : A ~ D and (h 6g) 0 j : A ~ D . For any a

in A,

[h 0 (s 0 j)J(a) 0 h((g 0 j)(a))

=h(g(j(a)))

= (h 0 g)(j(a))

=[(h 0 g) 0 jJ(a)

Hence, f}o(goj)=(hog) of
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1.6.12 Definition: Write here the definition of 1-1. ,-

1.6.13: Theorem: Let I: A ~ B. Then, I is a bijection it and only it 1-1:B ~ A is a mapping

(intact, I-I is a bijection!.

Proof: Assume that I is a bijection.

(1) I-I is a mapping from B to A :

(i) Let b E B . Since I is onto, there exists atleast one a in A , such that b =I(a)

i.e., (a,b)EI i.e. ib, a)Ef-l.

(ii) Let (b,ad, (b,a2) E r ' i.e. (al,b)EI and (a2,b)EI i.e.

I(al) = b = l(a2)' Since I is one-one, al =oi-

Hence I-I is a mapping.

one - one.

(3) I-I is onto : Let aEA. So, (a,/(a))EI i.e. (/(a), a)E/-1,

i.e.f-1(f(a))=a.Soj-I is onto.

Hence I-I :B ~ A is a bijection.

Conversely assume that I-I :B -tA is a function.

(1) f is one - one : j(ad = f(a2) (=b say) ~(al,b)Ef, (a2,b)Ef

~(b,al)' (b,a2)Ef-1 ~al =a2 (since 1-1:B ~ A is a mapping).
\ (

i I
(2) I is onto: Let b e B. Put a = I-I (b)( E A) (since I-I is a mappinq). So,

(b,a)Ef-l i.e. (a,b)EI i.e. b=f(a). Hence I is onto.

Thus, I is a bijection.

••
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Lesson  2

COUNTABILITY

2.0  INTRODUCTION :

In this lesson, we study the concepts - finite sets, countable sets and infinite sets. In lesson
1, we have studied the equivalence of sets and this equivalence is an equivalence relation on any
non-empty family of sets (see theorem 1.6.20). We prove some important theorems like - countable
union of countable sets is countable (see theorem 2.1.8).

2.1 COUNTABILITY

2.1.1 Definition : We say that a set A is

(i) finite if A  is empty  . .i e A   or ~ nA J  for some positive integer n .

(ii) infinite if A  is not finite.

(iii) countable or denumerable or enumerable if ~A J .

(iv) atmost countable if A  is finite or countable.

(v) uncountable if A  is not atmost countable i.e. A  is neither finite nor countable.

2.1.2 Theorem : Any non-empty finite set can be written as  1 2, ,......, nx x x  for some positive

integer n , where i jx x  whenever i j .

Proof : Let A  be a non-empty finite set. So ~ nA J  for some positive integer n . Hence, there is a

bijection : nf J A . So,       n n i nA f J f i i J x i J      (where   if i x ) =

 1 2, ,........, nx x x . Since f  is one - one, i jx x  whenever i j .

2.1.2.1 Note : In view of theorem 2.1.2, if ~ nA J , then we say that A  contains n  elements.

2.1.3 Theorem : Every countable set can be written as

 1 2, , .................x x

where i jx x  whenever i j

Proof : Let A  be a countable set i.e. ~A J  i.e. there exists a bijection :f J A . So,
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          A f J  (since f  is onto)

  f i i J 

 ix i J 

 1 2, ,...............x x

Since f  is one - one, i jx x  whenever i j .

2.1.4  Example : Let   be the set of all integers. Define :f J   as

 
if is even

2
-1

if  is odd
2

n
n

f n
n

n






Infact, f  is given by

: 1, 2, 3, 4, 5, 6, 7,.........

:

: 0, 1, 1, 2, 2, 3, 3........

J

f 
  

Clearly, f  is a bijection. So ~J  . Hence   is countable.

2.1.5 Example : The identity mapping JI  of the set J  of all positive integers is a bijection. So,

~J J  i.e. J  is countable.

2.1.6  Lemma : Let ~A B

(i) If A  is finite then B  is finite and hence both A  and B  have the same number of
elements (namely, n  elements)

(ii) If A  is countable, then B  is countable.

Proof : (i) Suppose A  is finite. So, ~ nA J  for some positive integer ' n '. Since ~  is an

equivalence relation and ~A B , we have that ~ nB J . So  B  is finite. In view of

Note 2.1.2.1, both A  and B  have the same number n  of  elements.

(ii) Suppose A  is countable i.e. ~A J . Since ~  is an equivalence relation and since

~A B , we have that ~B J . So, B  is countable.



Countability2.3Analysis

2.1.7  Theorem : Every subset of a countable set is atmost countable. Infact, every infinite subset
of a countable set is countable.

Proof : Let A  be a countable set. By theorem 2.1.3, A  can be written as

 1 2, , .............A x x

where i jx x  whenever i j . Let B  be an infinite subset of A .

Now, we show that B  is countable.

Put   1 nS n J x B   . Since B  is infinite, B  . So, 1S  . By the well ordering principle,

1S  contains least element 1n  say. Thus, 1nx B  and nx B  for 1n n .

Put   12 n nS n J x B x    . Since B  is infinite,  1nB x  is infinite and hence 2S  .

By the well ordering principle, 2S contains least element 2n  say. Thus, 2 1 2,nx B n n   and nx B

for 1 2n n n  .

 After choosing positive integers 1 2, ,......, kn n n  such that  1 2 ......... , 1,2,........
ik nn n n x B i K    

and nx B for  1 1, 2,....., 1i in n n i K    , we choose 1Kn   as the least element of

  1 21 , , .....
KK n n n nS n J x B x x x    

(which exists by the well ordering principle).

Thus, we have that  1 2
, , .......n nB x x . Clearly i j  implies i jn n  (infact i jn n  if i j )

which implies i jn nx x .  Define :g J B  by  
ing i x . Clearly, , g  is a bijection. So, ~J B .

Hence, B  is countable.

2.1.8 Theorem : Countable union of countable sets is countable. i.e. If   1,2,...n nE   is a sequence

of countable sets then 
1

n

n
n

S E


   is countable.

Proof :  Let   1,2,.....n n
E 

 be a sequence of countable sets. By theorem 2.1.3 each nE  can be

written as
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 1 2
, ,................n n nE x x

where i j  implies i jn nx x  we, now write the elements of 1 2, ,.......E E  as follows.

11,x 12,x 13,x

21,x 22 ,x 23,x

31,x 32 ,x 33,x

..................

..................

..................

..................

1:E

2 :E

3 :E

1st arrow
2nd arrow

3rd arrow

:iE
1
,ix

2
,ix

3
,ix

Now, the elements in 
1

n
n

S E



   can be arranged (numbered) as follows :

1st arrow : 11x

        (1) 1

2nd arrow  :  21 12,x x

     (1)  2   (2)  3

3rd arrow :    31 22 13, ,x x x

      (1) 4,      (2) 5,     (3)  6

4th arrow :   41 32 23 14, , ,x x x x

     (1) 7     (2) 8    (3) 9     (4) 10

......................................................

......................................................

......................................................

 
 

11 22 1 11 th arrow : ........................ ...............

(1) 1 (2) 2 ( )

i j i j ij i ji j x x x x

j j i j i j

      

        

......................................................

......................................................

......................................................
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Where   = The number of all elements in the first  2i j   rows (irrespective of repetetions

of mnx s.

 1 2 ......... 2i j     

   2 1

2

i j i j   


In this process, the element ijx  will be given the positive integer 
   2 1

2

i j i j
j

   


Clearly,

(1) thK  arrow contains K  elements;

(2) ijx  lies in the  th1i j   arrow - as thj  element.

Clearly, each nE  contains distinct elements. But, two distinct nE s may have a common

element. On ommitting the repetetion s  of ijx s  in S  along with the positive integers associated

with them, we get a subset T  of positive integers such that ~S T . By Theorem 2.1.7, T  is

countable. By Lemma 2.1.6(ii), S  is countable.

2.1.8.1 Corollary : Suppose A  is atmost countable and for each A , E  is atmost countable,

put

A
S E


 

Then, S  is atmost countable.

Proof : Since A  is atmost countable, either nA J , for some positive integer n  or A J . When

nA J , we can take   A
E   as

   1 2, ,............., nA
E E E E  

      1 2, ,....... , , ,..............n n nE E E E E .

When ,A J  we can take   A
E   as
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   1 2, ,...........E E E 

By Theorem 2.1.8, there exists a subset T  of positive integers such that ~S T . Since T

is atmost countable, S  is atmost countable (by Lemma 2.1.6.)

2.1.9 Theorem : If 1 2, ,............, nA A A  are countable sets then 1 2 ............ nA A A    is countable.

Proof : We prove this by induction on ' n '. To each positive integer n , write

  1 2:If , ,........., np n A A A  are countable sets then 1 2 ............ nA A A    is countable.

Truth of  1P  : Clear

Truth of  2P  : Suppose A  and B  are countable. So, we can write

 1 2, , .............A a a  and

 1 2, ,................B b b .

Now   , 1, 2, ..........& 1, 2,..........i jA B a b i j    .

Clearly, 
1

i
i

A B E



  

Where    1, 2,.........i iE a B i  

Clearly, for each i ,  ~iE B  and hence iE  is countable (by Lemma 2.1.6 (ii)). By theorem

2.1.8, A B  is countable.

Truth of  P n    Truth of  1P n  : Assume that  P n  is true. Let 1 2 1, ,........ nA A A   be

countable sets. Since  P n  is true, 1 2 .......... n nA A A B    is countable. Clearly,,

1 2 1 1........... ~n n nA A A B A     .

Since  2P  is true, 1n nB A   is countable. By Lemma 2.1.6(ii) 1 2 1nA A A    is

countable i.e.  1P n  is true.

Hence, by the principle of mathematical induction,  P n  is true for all positive integers n .
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2.1.9.1  Corollary : Let A  be a countable set. For any positive integer n , .............nA A A A   

( n  - times) = The set of all n -tuples of elements of A  is countable.

Proof : Exercise

2.1.9.2  Corollary : The set Q  of all rationals is countable.

Proof : From example 2.1.4, the set   of all integers is countable. By theorem 2.1.7,  * 0  

is countable. By Theorem 2.1.9, *   is countable. Define *:f Q    by  , mf m n n .

Clearly, f  is onto (by the definition of rational number). By theorem 1.6.16, there exists a 1 1

function. *:g Q   . So,  ~Q g Q . Since  g Q  is an infinite subset of the countable set

,   g Q  is countable (by Theorem 2.1.7) and hence Q  is countable.

Now, we recall the definition of a sequence (see Definition 1.6.22)

2.1.10  Definition : By a sequence  in a set A , we mean any function :f J A

2.1.10.1  Note : Let f  be a sequence in A . So, :f J A .  We know that f  is completely given

by specifying the images of elements of J . Let   if i x . We can represent f  by

1 2, ,................x x

or

simply   1,2,...........n n
x 

2.1.11  Theorem : Let A  be the set of all sequences of the digits 0s and 1s. Then A  is uncountable.

Proof : Suppose A  is countable. So, we can write

 1 2, ,..........A x x

where i jx x  whenever i j .  Since each ix  is a sequence of 0s and 1s we can write

1 11 12 13 ..........................x x x x

2 21 22 23 ..........................x x x x

3 31 32 33 ..........................x x x x

......................................................
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......................................................

1 2 3 ..........................i i i ix x x x

......................................................

......................................................

where each ijx  is 0 or 1. Define a sequence

1 2 3 ..............a a a a

of 0s and 1s such that i iia x  for all i .  Clearly, , a A  and ia x  for all i , a contradiction.

So, A  is countable.

2.1.12  Definition : Let ,a bR  be such that a b . The set

   ,a b x a x b   R

is called a segment (or finite open interval) in the real line.

2.1.13  Theorem : The segment (0, 1) is uncountable.

Proof : The proof of this theorem is almost on the similar lines of that of theorem 2.1.11.

Assume (0, 1) is uncountable. By theorem 2.1.3, we can write    1 20,1 , ,..................x x ,

where i jx x  whenever i j . Now, we will write decimal representation for 1 2, ,........x x  as given

below.

1 11 120 ....................x x x 

2 21 220 ....................x x x 

.............................................

1 20 ....................i i ix x x 

.............................................

.............................................

where each ijx  is one of the digits 0, 1, 2, .........., 9.

Take 1 2 30a a a a  ................
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where 1 2, ,.........a a  are digits such that i iia x  for all i . Clearly, ,  0,1a  and ia x  for i ,

a contradiction. Hence,  0,1  is uncountable.

2.1.13.1  Note : The idea of the proofs of theorems 2.1.11 and 2.1.13 was first used by Cantor and
is called Cantor's diagonal process.

2.2 SHORT ANSWER QUESTIONS :

2.2.1 : Define a countable set.

2.2.2 : Prove that the set of all even integers is countable.

2.2.3 : Prove that the set of all odd integers is countable.

2.2.4 : Define a sequence.

2.3 MODEL EXAMINATION QUESTIONS :

2.3.1 : Define countable set and prove that the set of all integers is countable.

2.3.2 : Prove that the countable union of countable sets is countable.

2.3.3 : Prove that every countable set is equal to a proper subset of itself.

2.3.4 : If :f X Y  is onto and Y  is countbale, prove that X is countable.

2.3.5 : Prove that the set of all sequences of the digits 0 and 1 is uncountable.

2.3.6 : Prove that the set of all rational numbers is countable.

2.3.7 : If A  and B  are countable sets, prove that A B  is countable.

2.4 EXERCISES :

2.4.1 : Let ,a bR  be such that a b . Prove that the interval    ,a b x a x b   R  is

uncountable.

(Hint : The mapping 
x a

x
b a




 :    , 0,1a b  is a bijection)

2.4.2 : Let :f A B . (i) If B  is countable and f  is 1 - 1, prove that A  is atmost countable

(ii) If A  is countable and f  is onto, prove that  B  is atmost countable.

(Hint : (i)    ~A f A ,  f A B . Use theorem 2.1.7 and Lemma 2.1.6.
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(ii)   Use theorems 1.6.16,  2.1.7)

2.4.3 : (i)   Prove that every superset of an uncountable set is uncountable

(ii)   Show that the set R  of all reals is uncountable.

(Hint : Use theorem 2.1.13 and (i))

(iii) Prove that the set of all irrational numbers is uncountable.

2.4.4 : Prove that countable union of countable sets is countable.

2.4.5 : Prove Corollary 2.1.9.1.

2.5 ANSWERS TO SHORT ANSWER QUESTIONS :
2.2.1 : See definition 2.1.1 (iii)

2.2.2 : Define :f J E , where E  is the set of all even integers by

J   :   1    2      3      4        5       6        7 .............

E  :   0    2     -2      4      -4       6       -6 ............

f

i.e.    
if is even

1 if is odd

n n
f n

n n

  

Clearly, f  is a bijection. So, ~J E . Hence E  is countable.

2.2.3 : Define :f J O , where O  is the set of all odd integers by

J   :   1    2      3      4        5       6 .............

O  :   1   -1     3     - 3      5       -5  ............

f

i.e.    
if is odd

1 if is even

n n
f n

n n

  

Clearly, f  is a bijection. So, ~J O . Hence O  is countable.

2.2.4 : See definition 2.1.10

2.6 REFERENCE BOOK :

Principles of Mathematical Analysis, Third Edition, Mc Graw - Hill International Editions :

Walter Rudin.

       Lesson writer :

 Prof.  P. Ranga Rao



Lesson - 3

EUCLIDEAN SPACES

3.0 INTRODUCTION'

Our main interest of this lesson is to study the Euclidean space ~k . We observe that IRk

is an inner product space (see Example 3.1.3). Infact, IRk is a normal linear space with respect to
the norm induced by the inner product and we study the properties of this norm.

3.1 INNER PRODUCT SPACES AND NORM ED LINEAR SPACES:

3.1.1 Definition: Let F be the field of real numbers or the field of complex numbers. Let V be a

vector space over F. A mapping <, >: V xY~E. is called inner product on V if the following
conditions are satisfied.

(II): <a+l!, r > = <a, r > + </3, r>

(12): <ca, /3> = c<a; P>

(13) : < /3 , a > = < a, /J >

(14) : <a, a > >0 if a* 0

for all a, /J, r in V and c in F.

3.1.2 Definition: An inner product space is a real or complex vector space together with a specified
inner product on that space.

3.1.2.1 Notation: If XJ, x2,' , xn are elements in a field, we write

n
xl,x2,··············,xn = I Xi

i=l

3.1.3 Example: Let F be the field of real or complex numbers. Let Fn be the set of all n - tuples
of elements in F .
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we say that two elements X=(Xl>X2, ,Xn), Y=(Yl, Y2, :.'Yn) in Fn are equal

and we write x = Y if xi = Yi (I:-::; i :-::;n).

(1) Define the binary operation + on Fn and the scalar multiplication

FxFn ~Fn as follows.

Then (Fn, +). is a vector space over F ,

(2) The mapping < , > : Fn x Fn ~ F defined by

n
< x, Y > ••L xi Yi

i=l

where x=(x}> x2, , xn), Y=(Yb Y2, 'Yn) in Fn is an innerproduct on 1 '1

This inner product is called standard inner product.

(1) I :(Fn, +) is an abelian group:

(i) + is commutative: Forany X=(Xl, x2, , xn), Y=(Yl, Y2, 'Yn) in r",

= (Yl + xl, Y2 + x2,······ ...~.. , Yn + xn) (since addition of complex numbers is

commutative)

=Y+X

\



=(XI +(Yl +Zr), x2 +(Y2 +Z2),··· .. ····· .. ,Xn +(Yn +Zn))

=[(~l+YI)+ZI, (~2+ Y2)+Z2,·············,(Xn +Yn)+znl

(since addition of complex numbers is associative)

=(x+y)+z

(iii) Existence of identity Clearly, 0=(0,0, ,0)EFn and for any

X+O = (Xl +0, x2 +O, 'xn +0)

.. So, ° is identity with respect to '+'.

(iv) Existence of inverse: Let x=(xj,x4.! .: ,xn)EFn. Then
~::.

=(0,0, ,0)=0.

So, - Y is inverse of x with respect to '+'.

(From the definition of scalar multiplication, y=( -l)x.

So, -x=y=(-l)x)

Hence, (pn, +) is an abelian group.

in Fn and a,b in F ,
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(i) a(x+ y)=a(x1 + Yl> x2 +Y2,···········'xn +Yn)

(since multiplication of complex numbers is distributive over addition)

=ax+ay;

(ii) (a +b) x = ((a + h) xl, (a +b) x2, ( a + b) xn )

(since distributive law holds for compiex numbers)

=( ax], ax2, , axn) +(hx], bX2, , bxn)

=ax+hx;

=( a: (bx] ), a (hx2)' .a (hxn))

=(( ab )XI'( ah )X2, ,;.,( ab )xn)

(since multilplication of complex numbers is associative)

=(ah)x;

Hence, (Fn, +) is a vector space over F .

(2) <, > defined is an inner product:



n . - n

= L. (Xi +Yi ) Zi = L (Xi Zi +Yi Zi) (since distributive laws hold for complex numbers)
i=l i=l

n n=" x-;- + "y.--;-' =<x Z >+<Y z »L. I I L. I I ,_ ,

i=l i=l

n n n
= L (C xi ) Yi = L.C (Xi Yi) = C L Xi Yi = C < X, Y >

i=l i=l i=l

n n n
(13): <Y,x>= LYiXj = L(Yi Xi)-::: LXiYi

i=l i=l i=l

= <x, Y>

n _ n 2
(14): « x, x> = LXjXj = IIXjl . If x:;tO then xi:;tO for atleast one, so that IXiI2>O

i= 1 i=1

and hence <X, x» O.

Hence, Fn is an innerproduct space.

3.1.4 Lemma: Let V be an innerproduct space. For any u, v, w in Vand c, d in F, the following
hold

(i) <u , c v+dw > = C <U, v » + d <u, w> . Consequently <u, cv > == C <U, v »

(ii) u=O or v=O implies <u,v>=O

(iii) < u, v > is real and < u, u >~O.

(iv) <u,u>=O ifandonlyifu=O.

Proof:

(i) <u,cv+dw>=<cv+dw,u>=c<v,u> d c w,u.» (by II)

-
=c < v, u > + d < w, u >
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The rest is clear by taking d = 0 .

(ii) u=O : <u, v > = <0·0, v » =0<0, v » (by 12)

=0

-
v = 0 : < u, v > = < u, o- a > = 0 < u, 0 > (by (i))

=0

o
(iii) <u , u > = <u, u > (by 13 ). So, <tc.u > is real.

If u:;t:.0 then <U,U > > 0 (by 14). If u=O then <u ; U > =0 (by (ii)). Thus, <U, U >:2:O.

(iv) <u, u > = 0 => u=O (by 14 and (iii))

u=O=><u, u > = 0 (by (ii))

3.1.5 Definition: Let V be a real or complex vector space. A mapping II II: V ~ ill. satisfying the

following conditions is called a norm on V.

(N 1) : II x II;:::0 for all x E V

(N2):llxll~o ifandonlyif x=O

(N3): II ex II =Ielllxli for any scalar c and XEV.

(N 4): Ilx+ yll::; II x 11+11 y II for any X,YE V .

3.1.6 Definition: Any real or complex vectorspace V together with a norm defined on it is called a
normed linear space.

3.1.7 Definition: Let V be an inner product space. If v E V then we define the length of v or norm

of v denoted by IIv II as

II v II = ~< v, v>

I

3.1.7.1 Note: For any vector v in an innerproduct space V, II v II;:::0 (in view of Lemma 3.1.4 (iii)) .



Now, we prove that the function II II defined on the inner product space V in the definition

3.1.7 is a norm on V in the sense of definition 3.1.5 and hence every inner product space is a
normed linear space (with respect to the definition 3.1.6). In orderto prove this, we prove a sequence
of lemmas and theorems. Here after (throughout this section), V stands for the inner product space
with inner product <, >

3.1.8 Lemma: For any u, v in V and scaiars c, d,

< cu +dv, cu + dv > = 1

c c <u,u > + cd <U,V> + c d <v,U > + d d c v;v »

Proof: Follows directly.

3.1.8.1 Corollary: II cull = I c III u II

Proof: Obvious by taking d = 0 . We prove this directly.

~:,.: II cu 112= < cu, cu » = c < u, c u > (by 12) = c ~ < u, u >

by lemma (3.1.4(i» = Ie 12 II u 112. Hence II cull = I c III u II·

3.1.9 Lemma: If a, b, care reals such that a> 0 and aA..2 + 2bA..+c :::::0 for all real ;1", then b2 s:;ac .

Proof: Take reals a, b, c such that the hypothesys holds.

1 2 b2
= - (aA + b) +c - - .

a a

b
Taking A..= - - , we have the conclusion.

a
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. 3.1.10 Theorem (Schwarz inequality) : If u, v EV then

1< u, v > I ~ II U 1II1v II·

Proof: If u=O then < u, v » =0 and IIu II =0 so that 1<u, v>l=o=11 u IIII v II· Suppose x 1:- O·

Case (i) : Assume that <u, v> is real. For any real number A I

0;:;;< AU+V, AU+V > -(by Lemma 3.1.4 (ii»

By Lemma 3.1.9
.'~. ' .

<U, v >2 ~II U 11211 v 112

i.e. 1<u, v >1 ~ IIU !III v II·

Case (ii) : Assume that \U,vI = a is not real. So,

U 1 1< -, v > = - < U, v> = -. a = 1
a a a

is real. By case (i),

i.e.l~ < u, v >1 ~·I~III U 1II1v II (by corollary 3.1.8.1) .

i.e., I<u, v >1 ~ IIu IIII vii·
3.1.11 Theorem: For any u, v in V,

Ilu + vii ~ IIu II + II v II·

Proof: Let u, v E V .
J'"

Ilu+vl12 = <u+u, u+v >

/



./ 2=IIUII" + 2Re <u, v> + IIVII (by

~ II u f + 2 (u, v)1 + II v II+ II v f (for any complex number z , we have Re z ~ I z I)

s IIul12 + 211u I I!vii + 11vII2 (by Schwarz in equality)

Hence, Ilu + vii ~ Ilull + 11vII·
3.1.12 Theorem : Any inner product space is a normed linear space with respect to the norm

defined ir the definition 3.1.7.

Proof: Let V be an inner product space together with the norm defined in 3.1.7 ..' .

(Nl): Holds in view of Lemma 3.1.4 (iii).

(N2): Holds in view of Lemma 3.1.4 (ii).
. I

(N3): Holds in view of Corollary 3.1.8.1

(N4): Holds n view of Theorem 3.1.11

Hence V is a 10rmed linear space.
'[ :'
t ,

3.1.13 Theorem: Let V be a normed linear space with norm II II defined 01)V. Define d: V x V -4lR

by d iu, v) = Ilu-~il· Then

\
(i) d iu, v)~()

(ii) d(u, v)= J if and only if u =V
(iii) d(u,v)=i(v,u)

(iv) d(u,v)~d(u,w)+d(w,v) forallu,v,w inV .

. Proof: (i) d (u, v) = Ilu - vll:2 0 (by Nl)
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(ii) d(u,v)=\lu-vl\=O ifandonlyifu-v=O (by N2)i.e. U=V

(iii) d (u, v)=llu - vii = 11-( v-u )11= II( -1)( v-u )11

=l-llllv-ull (by N3) = d(v,u)

(iv) d iu,v)=llu-vll=llu-w+w-vll

~ Ilu-wil+llw--vll (by N4)

=d(u,w)+d(w,v)

3.2 EUCLIDEAN SPACES
Our main interest is the Example 3.1.3

3.2.1 Example: Consider the Example 3.1.3 with F = ¢' the. field of complex numbers Fn = ¢n

is an inner product space with inner product defined by

n _

< x, Y > = L Xi, v,
i=l

Where X=(Xl, X2, ,xn), Y=(YbY2, 'Yn) in ¢": This innerproduct is called
standard inner product.

n .. _ n I 2
< x, X > = L Xi Xi = L !Xi I

i=l i=l

and hence

1

HI~.J< x, X> ~ [i~llx, 12J"

3.2.1.1 Note: VVe sometimes denote < x, y > by X· Y and !xl for lixll·



n 12 n 1 12S L laj L bj
j=l j=l

3.2.2 Example: Consider the Example 3.1.3. With F =m, the field of real numbers. Now, Fn =IRn

is an inner product space with inner product defined by

n

< x, Y > = L xi Yi
i=l

then

n _ n 2
< x, x > = L xi xi = L xi

i=l i=l

and hence

3.2.2.1 Note: cj:: nand ml1 are normed linear spaces (for any positive integer n).
!

3.2.3 Theorem (Schwarz inequality) : If ab a2, .a; and ~,b2, .b; are complex
numbers, then

! Method I : Put x=( a}, a2,'" an), y=(~, bi, ,bn). By theorem 3.1,10,

1< x,Y >I~IIxliii y II

i.e.

2

o
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Method II: See Theorem 1.5.14

3.2.4 Theorem: Suppose x,y, Z E IRk, and a is real. Then

(a) Ixl20
,:-" (

~- ".,.;

(b) Ix I = 0 if and only if x = 0 ,~~

(c) la xl = lallxl e-.
••. I"

(d) Ix, yl ~ Ixllyl
(e) Ix+YI~lxl+IYI
(f) Ix-zl::;lx- yl+ly-zl

Proof: Exercise.

3.3 SHORT ANSWER CtJESTIONS :

3.3.1 :If ¢ is the field of complex numbers, define the standard inner product.

3.3.2 : State Schwarz inequality.

3.3.3: Define a normed linear space.

3.3.4 : Define the norm induced by the inner product.

3.3.5: State Schwarz inequality in an inner productspace ..

. >

\ .«

3.4 MODEL EXAMINATION QUESTIONS

~.4.1 : State and prove Schwarz inequality .

3.4.2 : Define the standard inner product on IRk and the norm induced by this inner product. For

any x,y in IRk and real a, prove the followin.

(a) Ixl~O
I

(b) Ixl=O~x=O I
-'."

(c) : la xl = lallxl



_ .....•..L.1..~ ::.;;~.. ,,: '..•. ,':-~ ...•. =: ';;- - .

-:

(Euclidean spac« '-

\

(Here Ixl and Ilxll represent the same).

3.5 EXERCISES :
3.5.1: Give proof of Theorem 3.2.4.

3.5.2: Define normed linear space. Prove that IRk is a normed linear space with respect to the

norm II lion rn.k defined by

3.6 ANSWERS TO S.A.Q.s :
3.3.1 : See Definitipn given in Example 3.2.1

3.3.2: See the statement of Theorem 3.2.3

J.3.3: See Definition 3.1.5

J.3.4: See Definition 3.1.7 /'

3.3.5 : See the statement of the Theorm 3.1.10

3.7 REFERENCE BOOK :
Principles of Mathematical Analysis, Third edition, Mc Graw - Hill International Editions: .

w~r Rudin / ..' ., .

Lesson writer:

Prof. P. Ranga Rao
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Lesson - 4

METRIC SPACES

4.0 INTRODUCTION
In this lesson, we study the notion of distance (also called metric) on a set. Any set together

with a metric is called a metric space. In a metric space, we study the concepts - neighborhood,
open set, closed set, perfect set and dense sets.

4.1 METRIC SPACES

4.1.1 Definition: Let X be a non-empty set. A mapping d: X x X ~ ill. (where TIt is the set of

real numbers) is called a metric or distance function on X if the following conditions are satisfied

(DI): d(p,q)~O

(D2): d(p,q)=O if and only if p=q

(D3): d(p,q)=d(q,p) (symmetry)

(D4): d(p,q)~d(p,r)+d(r,q) (triangle inequality) for all p,q,r in X.

4.1.2 Definition: By a metric space we mean any pair (X, d) where X is a non-empty set and

d is a metric on X. Elements of X are called points. If p, q E X then d (p,q) is called the

distance between the points p and q.

4.1.3 Example: Let TIt be the set of real numbers. Define d: IR x IR ~ IR by d ( x, y) = Ix - yl. Then

d is a metric on TIt (called the usual metric).

We know that the absolute value of I a I of a real number a defined by I a I = rnax {a, - a}
has the following properties.

(1) I x I ~O

(2) I x !=O<=>x=O

(3). /-x/=!x/
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(4) Ix+yl ~ Ixl +Iyl for all reals x,y

(Dl)" Clearly, d(x,y)=\x-y\~O for all x,y in m.

(D2): d(x,y)=O¢>lx- yl=O

/ <=>x- y=O i.e. X= y

(D3): d(x,y)=lx- yl=!-(x- y)! = Iy-xl = d i y, x)

for any x, y in m

(D4): d(x,y) = Ix- YI~lx-z+z- yl
~!x-z!+!z-y!

=d(x,z)+d(z,y)

for any x, y, z in IR.

Hence, d i$ a metric.on IR· Thus (m, d) is a metric space.

4.14 e,~rnple : Let <c:: be the set of complex numbers. Define d :a::x a::~.m by

~h~re I z I denotes the absolute value of the cqmpl.~,~ number, z=a+ib given by
. ",.,', ,

We know that the absolute value (i.e. I I) satisfies

(i) Izl~o;

(ii) ! z !=O<=>z=O;
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\Zl-Z2\=\(al-a2)+i(b1-b2)\

=~(a} -a2)2 +(q -b2)2
,

--

Now, we prove that d is a metric on <C.

(Dl): d(Zl,Z2) = \zl-z21~ 0

(D2) : d(z}'Z2) =~ ¢:> IZl-z21= 0

=d(Z2, Zl)

(D4): d(ZJ,Z2) =IZI-Z2,1= IZI-Z3 +z3 -z21

~IZI-Z31 +IZ3 -z21
. :.f.

Hence, d is a metric on <C..

4.1.5 Example: Inview of Theorem 2.1.13, every normal linear space V is a metric space with

respect to the metric d on V defined by d(x,y)=llx-yll_
4.1.6 Example: Every inner product space is a normed linear space with respect to the norm

induced by the inner product (i.e. IIxii = -J< x, x > '(by Theorem 2.1.12) and hence a metric space

(byTheorem 2.1.13) Example 4.3.3 is infact, can be obtained by taking F = ill. , n = 1 in Example

2.1.3 and Example 4.1.4 can be obtained by taking F = <C, n= 1 in Example 2.1.3.
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4.1.7 Example: Let X be any non-empty set. Define d: X x X ~ IR.by

{
I if x;t:y

d(x,y)= 0
other wise

Then d is a metric on X .

(D 1) : d (x, y) ~ 0 for all x, y in X holds by definition.

(D 2): d( x,y )=0 if and only if X= Y (by definition)

(D3): d(x,y)=d(y,x) for all x,y in X (by definition)

(D4) : Let x,y,z EX.

Case Sub-case d(x,y) d( x,z) d(z,y) d(x,z)+d(z,y)

'J

X=y -- 0 ~o ~o ~o
x;t:y X=Z 1 0 1 1

x;t:z 1 1 o or 1 1 or 2

Clearly, d(x,y}~d(x,z)+d(z,y).

Hence, d is a metric on X . This metric is called discrete metric and this metric space is
called discrete metric space.

4.1.7.1 Note: Any non-empty set X can be converted into a metric space by defining d as in the
Example 4.1.8.

4.1.8 Example: Let X be a non-empty set. Let r >0 be real. Define d: X x X ~ IR by

( )_{r if x;t:y
d X,y - o if x = Y

Then d is a metric on X .

4.1.9 Definition: Let IR be the set of real numbers.

(i) (a,b )={x EIR/a < x <b} (where a,b EIR, a < b) is called a segment.



(ii) [a, b]= {x E TR/ a s: x:S;b} .(where a, b ETR" a :s; b) is called an interval.

(iii) [a, b) = {x E ~/ a :s; x < b} (where a, bE TR, a < b ) is called a left closed right

open interval.

(iv) (a,b] = {xE~/a<x:S;b} (where a,bETR, a-c b i is called a left open right
closed interval.

4.1.9.1 Note: Clearly, the segment (a, b) contains all points between a and b ; except a and b ; ~

the interval [a, b] contains all points between a and b (inclusive of a and b); [a, b) contains all

points between a and b inclusive of a but not b; (a, b] contains all points between a and b

. inclusive of b but not a.

4.1.10 Definition: Let ai «b, (i = 1,2, , k) hold in TR. Then the set

4.1.10.1 Note : (i) The k - cell defined above is, infact, the Cartesian product of the intervals

k

[al>b:t], [a2,b2], ..,[abbk] i.e. IT [ai, bd (where ai,bisarein TR and ai<bi)
1=1o

(ii) I - cell is an interval and 2 - cell is a rectangle.

o

/)
b21---~

2 - cell

~-Jf-----
a b

1 - cell
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4.1.11 : Definition: A subset E cmk is call&d convex if

,whenever x E E, Y E E. and O:::;A:::;L

4,.1.12 Definition: Let x, Y E IRk. The line :legment joining x and y is defined as the set

{( 1- AI)X + AY / 0 :::;A :::;1}

This set is denoted by [x, y]

4.1.12.1 Note: Inview of the definition 4. f>11, a subset E c ill.k is called convex whenever x, Y E E ,
the line segment joining x and y lies entirely in E .

4.1.13 Definition: Let (X, d) be a metric space. Let E ~ X.

(a) Let P EX. For any real r >0, the set
_ 0

Nr (p) = {q E X / d i». q) <r} is called a neighbourhood ~ p. p is called the center
-

and r is called radius of N; (p). Some times, we call N; (p) as the open sphere or

open ball centered at p with radius r .

(b) Let p EX. For any r > 0, the set

s, [p] = {q E X / d (p, q):::;r } is called a closed sphere or closed ball with centre p
and radius r .

(c) A point p E X is called a limit point of E if every neighbourhoo.? of p contains at least

one point of E other than p .

i.e. N n (E - {p});i: ¢ for every neighbourhood of N of p.



(d) A point pEE is called an isolated point of E if p is hot a limit - point of E.

(e) E is called Closed if E contains all of its limit points.

(f) A point pEE is called an interior point of E if there exists a neighbourhood N of p

such that N c E .

(g) E is called open if every point of E is an interior point of E .

(h) The complement of E is defined as the set

EC ={x EX/X ~ E}

(i) f is called perfect if E is closed and every point of E is a limit point of E.
/ .

G). E is bounded if there exists a real number M and a point q E X such that d (p, q) <M

for all pEE. Diagramatically

(~~JE),
Xq\'j )

~------
(k) The closure of E denoted by E is defined as the set E = E U E' .

where E' is the set of all limit points of E .
-rc

(I) E is called dense if every point of X is either in E or a limit point of E i.e. X =E oJ.
-.. ,
'(mY X is called separable if X has a countable dense set i.e.rhere exists a countable set

E ~ X such that X = E . . .- (

4.1.14 Lemma: pEE is an isolate~ point of E iff there exists a neighborhood N of p such that

i.e. NnEc{p}

i.e. NnE"={p} (since pEE)

iJroof is clear.
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4.1.15 Lemma: If E ;s bounded then to each x EX, there exists a real number M (x) such that

d(p,x)<M(x) for all pEE.

Proof: Assume that E is bounded, so, there exists a real number M and a point q E X such that

d(p,q)<M for all pEE. Let XEX. For any pEE, d(x,p)sd(x,q)+d(q,p)

<d(x,q)+M = M(x) (say).

4.1.16 Lemma: Balls are convex in rn.k

Proof: We know that the balls in IRk are of the form N; (p) or Nr[p] .

'Nr (p) is convex: Let x,Y E N; (p) and let Os AS 1..

d((l-A)X+AY, p) = 11(1-A)X + AY- pll = 11(1-A)X +Ay-(I-A)p-Apll

=11(1-A )(x- p )+A(Y- p)11

sll(1-A)(X-p)ll+ IIA(y-p)11

=II-Alllx- pll+IAllly- P\I = (l-A)d(x,p)+Ad(y,p)

< (1 - A) r +Ar = r

So, (I-A )X+AYENr (p). Hence, N; (p) is convex.

Similarly, we can prove that N; [p] is convex.

4.1.17 Theorem: Every neighborhood is an openset.

Proof: Let N =Nr (p) ={q EX! di p,« )<.r} be a neighborhood of p. Let q EN. So, di p, q)<r.

Choose 0 such that 0<0 <r-d(p,q).

Now, we show that N5 (q) ~ N; (p) .

X E N5 (q):=>d(x,q)<8

:=>d(p, x)sd(p, q)+d (q, x)

/



'.
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<d(p,q)+8

«r .

So, No (q) ~ N; (p) . Thus, every point of N; (p) is an interior point of N; (p) . Hence,

N; (p) is open.

4.1.18 Theorem : Every closed sphere is a closed set.

Proof: Consider the closed sphere N; [p]. To prove that N, [p] is closed, it is enough if w~

prove that no point outside Nr [p] is a limit point of Nr [p].

Let q ~ N; [pl. So, d(p,q»r. Choose 8 such that 0<8 <d(p,q)-r. Now,

X E No (q) ~d(x, q)<8 «di p, q)-r

~d (p, q) <d (p, x) +d (x, q)

~d(p,x)+8

< d(p,x)+d(p,q)-r

~r<d(p,x)

So, No (q)cNr [pt

i.e. No(q)nNr[p]=¢

Thus, q is not a limit point of N; [p] . Hence, N; [p] contains all its limit points i.e. N; [p] is

closed.

4.1.19 Theorem: p E X is a limit point of E if and only if every neighbourhood of p contains

infinitel'y many points of E .

Proof: Assume that p E X is a limit point of E. Let N= N; (p) be a neighbourhood of p. Suppose
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N contains only finite number of points of E and hence only a finite number of points E - {p} . Let

N n(E -{P})={Pl' P2 , ,PnJ

Clearly ,E>O, Let 0<0 <E. Since 0 <d i p, Pi) for i= J, 2, .m , no Pi is in N5 (p) . i.e.

N5 (p)n (E - {p}) = ¢ , a contradiction to the fact that' p is a limit point of

E. o

o

\

Conversely assume that ever'} neighbourhood of p contains infinitely many points of E
and hence every neighbourhood of p contains atleast one point of E other than p .

i.e. p is a limit point of E,

4.1,19.1 Corollary: Any finite subset of a metric space is closed.

Proof: Let E be a finite subset of a metric space X . By Theorem 4.1.19, E has no limit points.

So, E contains all of its limit points. Hence E is closed.

Now, we examine the form of neiqhbc... :lood in (nl, d) when k = 1,2.

4.1.20 Example: Consider the example 4.1.3 whre the set IR of all real numbers equipped with the

usual metric d defined by'd (x, y) = Ix - yl.'For any P E ill., r (> 0)in IR,

<::::> p-r<q <p+r



i.e. Nr(p)=(p-r, p+r).

Thus, every neighbourhood in m is a bounded open interval i.e. a segment.

Conversely, if the segment (a, b) is given then it is clear that

a+b b-a
where P=-2-' ":»:

4.1 ;21 Example: Consider the example 4.1.4 where the set <C of all complex numbers - equipped

with metric d: <C x<C ~ m defined by

(
Let Zo E <C and r >0. Now,

i.e. Iz-zol<r

<=> The set of all complex numbers z whose distance from Zo is
less than r ,

So, N; (zo) is shown belo~

4.1.21.1 Note: Consider the metric space (m', d) where d(x,y)=lx- yl mentioned in example

4.1.3. Let E sm. Let p Em. Plot the points of E on m' .

(i) To check whether p is a limit point of E , we have to check whether every segment
containing p contains infinitely many points of E or not.

(

(ii) To check whether p E:.E is an interior point of E, we have to search for a segment

containing p which is fully contained in E. /f at/east one such segment is there then
we conclude that p as an interior point of E.

(iii) To check whether E is bounded we have to try to find a segment (bounded open
interval) containing E. Ifsuch a segment exists, then we conclude that E is bounded.
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. 4.1.21.2 Note : Consider the metric space (IR 2, d) where d (zl' Z2) = /Zl - Z2/ mentioned in

example 4.1.4. Let E ~IR2. Plot the points of E on IR2 (i.e. two dimensional plane).

(i) To check whether p is a limit point of E,. we have to check whether every circle
centered at p with positive radius contains infinitely many points or not.

(ii) To check whether pEE is an interior point of E, we have to search for a circle with

center p with some positive radius that is contained in E . If such a circle exists then
we conclude that p is an interior point of E .

(iii) To check whether E is bounded, we have to try to draw a circle so that E is fully
contained in the interior of the circle. If such a circle exists, then we conclude that E is
bounded.

4.1.22 Examples: Consider the subsets of IR2.

(a) The set of all complex numbers Z subset /zl<l.

(b) The set of all complex numbers z such that Izi S; 1 .

(c) The set of all integers.

(d) 'The set of all complex numbers z=reiB with 0~e~6Qo and r;;::O.

(e) Lgt a,bEIR be such that a-cb . Consider (a,b) the set of all real numbers x such that

a-c x-cb :

(f) The set of all complex numbers i.e. IR2.

(g) { ~ In = 1, 2, -}

(h) A finite set.

(i) The set of all complex numbers z such that I z 1=1.
We now examine whether the sets are closed, open, perfect and bounded.

(a) :E={zEIR2/lzl<1}. Clearly, E=Nl(O). By theorem 4.1.17, E is open.
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Take a point z such that 1 z 1/= 1.

If we consider any neighbourhood of z , it contains infinitely many points of E and

hence z is a limit point of E. Thus, each complex number z with 1 z 1=1 is a limit point

of E. Clearly no complex number z with 1z 1=1 is in E. So, E is not closed. Hence,

E is not perfect. E is clearly bounded since E is contained in N 2 (0) .

(e) E=Segment (a,b)={xEffija<x<b}

(i) Let x E (a, b) . Clearly, we cam)ot draw any circle with center x so that it is contained
.. ~__ .:.....' ')11~\

in( a,b) . So: x is not an inte:ribr point of (a, b). Thus, no point of E is an interior

point of (a, b) .

(ii) Let x E (a, b) . Clearly, every circle centered at x contains infinitely many points of

(a, b) . So, x is a limit point of (a, b) . Clearly a is a limit point of (a, b) which is not

in (a, b). So, (a, b) is not closed. Similarly, b is a limit point of (a, b) which is not

in (a, b). So, (a, b) is not perfect.

(iii) Clearly, (a, b) ~ N; (0) = circle with center 0 and radius r , for some appropriate

r i-t), So, (a,b) is bounded.

We now give the answers for (a), (b), (c), (d), (e), (f), (g), (h) and (i). The student is advised
to check.

Closed Open Perfect Bounded

(a) No Yes No Yes

(b) Yes No Yes Yes

(c) Yes No No No
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(d) Yes No Yes No

(e) No No No Yes

(f) Yes Yes Yes No

(9) No No No Yes

(h) Yes No No Yes.
(i) Yes No Yes Yes

Now; we prove a set-theoretic result which is useful.

4.1.23 The~rem : Let {Ea}a be a (finite or infinite) collection of sets Ea. Then

nE~ and
a

Proof: (i)

QX rf.Ea for any a

Q x E Eg for any a

Q x \lEa for some a

. C fi.e. x E Ea or some a



~xEUE~
a

4.1.24 Theorem: A set E is open if and only if its complement is closed.

Proof: Assume that E is open. Let x be a limit point of EC
• Suppose x ~ EC i.e. x E E. Since E

is open, x i~ an interior point of E. So, there exists r > 0 such that

Thus, we have a neiqhbournood of x which does not contain any point of EC other than x.

So, x is not a limit point of EC other than x, a contradiction. Hence x E EC
. Thus, EC contains all

ofIts limit points. i.e. EC is closed.

Conversely, assume that EC is closed. Let x E E i.e. x ~Ec . Since EC is closed, x is not

a limit point of EC
• So, there exists a neighbourhood N of x such that

i.e. NnEc =¢ (since xEE)

i.e. N c E.

So, x is an interior point of E. Thus, every point of E is an interior point of E i.e. E is open.

4.1.24.1 Corollary: A set F is closed if and only if its complement is open.

Proof: Clear

4.1.25 Theorem:

(a) For any collection {Ga} of opensets, UGa is open



(b) For any collection {Fa} of closed sets,'nFa is closed. '
a

(c)
n

For any finite collection Gb G2, , Gn of open sets n G, is open
1=1

(d)
n

For any finite collection of closed sets Fl, F2, .... ,}~' U Fj is closed.
i = 1

Proof: (a) Let {Ga}a be a collection of open sets. Put G=UGa

XEG~XEGa for some a",

=>3 a neiqhbourhoodjv of x3N <;;;:; Ga (since Ga is open) <;;;:; G.

=> x is an interior point of G .

Thus, every point of G is an interior point of G. Hence G is open.

(c)
11

Let G1, G2, ..... .G; be open sets. Put H = n Gi.
i=l

X E H => X E G, for i = 1,2, ,n.

~ For i = I, 2, , ,n , there exists positive reais r1,r2, , rn such that

s

~ X is an interior point of H .

Thus, every point of H is an interior point of H i.e. H is open.

(b) Let {Fa} be a collection of closed sets. By Corollary 4.1.24.1, each F~' is open. By (a),

UF~ = (n};~Jc is open. By Theorem 4.3.24, nFa is closed ..
a a a



I
\.

~- ..,:.
It -,I:'

.
(d) Let Fi, F2, ... .F; be closed sets. So, FjG (l::;t::;n) are open. By (c),

TQe above Theorem 4.1.25 does not give answers for the following questions.

01 : Is the intersection of an arbitrary family of opensets open?

02 : Is the union of an arbitrary family of closed sets closed?
"

Consider the following

4.1.26 Example: Consider the metric space (IR', d) where d is the usual metric on IR.

(i) Put c,=(-~'~) for n=1,2, Clearly, each Gn is open and

which is finite and hence not open (No non-empty finite set is open. For, let F be a non-
empty finite subset of IR. Suppose Fis open. Since F "'"¢ ,we can choose x E F. Since F is

open, there exists r>O such that N; (x)=(x-r, x+r)c;;;,F. Since (x-r, x+r) is uncountable,
".

F is uncountable, a contradiction to that F is finite).

Thus, arbitrary intersection Q~q>pensets is not open.

[
1 1J .

(il) Put Fn = n 1--;; for, n =3,4,5, Clearly each F;l is closed. Clearly,

00

U Fn = (0,1)
n=3

which is not closed (as 0 is a limit point of (0, 1) which is not in (0, 1». Thus, arbitrary union
closed sets need not closed.

4.1.27 Theorem: Let (X, d) be a metric space. Let E c;;;, X. Then l

(a) E is a Closed set containing E.

(b) E = E if and only if E is closed.
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(c) E is the smallest closed set containing E.

i.e. E is closed and E ~F for every closed set F containing E.

Proof:

(a) By definition E;;::; E UE' where E' IS the set of all limit points of E. Clearly E

contains E . Suppose x (l E .

Now,

x E E =>x e E and x e E'

=> :3 5>03 No (x)nE=¢

=> no point of No (x) is a limit point of E

i.e. No (x)nE' = ¢

~ No(x)n(EUE')=¢

i.e. No (x)nE = ¢

=> x is not a limit point of J!;

Thus, E contains all of its limit points. Hence E is closed.

(b) E=E~E is closed (by (a».

Assume that E is closed. So, E' c E (by definition). Hence E=EUE' = E.

(c) Let F bea closed set containing E. E~F=>E=EUE'~FUF'=F=F (since

F is closed).

4.1.27.2' Note: Infact, E is the intersection of all closed sets containing E.

For, let g = {F k X/F is a closed set, F :=>E}. By (a), E E g. Put C=nF:
FEg

By Theorem 4.3.25(b), C is a closed set containing E. By (c), Er;;;,CcE i.e. E=C.

4.1.27.2 Note: While proving (c), we have used the factthat E r:;;;, F=>E' cF'. This holds since

NnE-{x}~NnF -{x} holds whenever E r;;,F.



4.1.28 Definition: Let E be a subset of a metric space X . The set of all interior points of E is the

Interior of E and is denoted by EO or Int (E) .

4.1.29 Theorem : Let E be a subset of a metri space (X, d). Then Int (E) . is the largest

opensubset of E.

Proof: To prove the theorem we have to prove:

(i) EO is an open subset of E

(ii) G if open in X , G <;;;; E i~plies G c EO .

(i) EO=Int (E) is an open sub set of E : Clearly, EO cE .

Let -x E EO i.e. x is an interior point of E _i.e. there exists 5> 0 such that N 15 (x) c E. Now,

Y EO N i5(x) =>y is an interior point of N 15 (x) (since No (x) is open)

=> There exists r>O such th.at Nr (y)<;;;; No (x)<;;;;E

=> y is an interior point of E

. °I.e. YEE

Thus, No (:::)cEO. So, x is an interior point of EO Thus, ev~ry point of EO is an interior

point of EO. Hence EO is open.

(Ii) Let G be an open subset of E . So,

X E G => x is an interior point of G .

=> there exists. z c-O such that N; (x)<;;;;GcE

=> x is an interior point of E .

=>xEInt( E)= EO

Hence, G c EO. So, EO is the largest open subset of E.

4.1.30 Theorem: Let (X,d) be a metric space. A subset E of X is open if and only if E=EO.



Centre for Distance Education 4.20 Acharya Nagarjuna University

Proof: Assume that E ;s open. So, the largest open subset of E is E itself i.e. Int(E)=E, i.e.

£0=£.

Converse is clear.

4.1.31 Theorem: Let E be a closed set of real numbers which is bounded above. Let Y be the

I u b of E Then Y E E .

Proof: Suppose y (/:E. Let E>O. Now, Y- E<Y. Since y=lub E , Y-E is not an upper bound
, ,

of E. So, there exists x E E such that x :1 y-E. i.e. Y-E <x:S:Y (since Y is an upper bound of

E). Since y (/:E, X EE , we have that X:f:. y. So, y- E<X<Y<Y+E. So, (y-E, Y+E) contains

atleast one point of E other than x: This holds for all E >0. So, Y is a limit point of E. Since E

is closed, y E E , a Contradiction. Hence Y E E .

4.1.32 Definition: Let (X, d) be a metric space. Let Y be a nonempty subset of X . Let E ~ Y .

We say that E is open relative to Y if E is open in the metric space (y, d).

4.1.32.1 Note: Let (X, d) be a metric space. Let Y ( :f:. ¢)~ X . So, (Y, d) is also a metric space.

Let p E Y and r > 0 be real. Suppose N; (p) and N; (p) denote the nighbourhood of p in .X

and Y respectively. So,

N; (p)={qEY/d(p,q)<r}

=ynNr (p)

4.1.32.2 Note: Let Y (:;t: ¢)cX where X is a metric space: So, Y is also a metric space with

respect to the metric on X. We call Y as a subspace of X. Suppose E ~ Y . Then, E ~ X

(since Y ~ X). So, we can talk of openness of E in Y as well as in X. What is the relation

between the openness of E in X and that of E In Y? There are open sets in Y without being
open in X . Consider the following example.

4.1.33 Example: Consider the metric space (m.', d). Take Y =( 0,1]. Take E = Y . Clearly Y is not

open in (m.', d) (as 1 is not an interior point of Y). Thus, E is open relative to Y but Y is not open

relative to (IR', d). Infact, let Y be a nonempty subset of a metric space (X, d) which is not open.

Take E =r: Then E is clearly open relative to Y but E is not open relative to X .

---'



The following theorem characteristics the open sets in a subspace of a metric space.

4.1.34 Theorem : Let (X, d) be a metric space. Let Y ( :;t:¢) eX. A subset E of Y is open

relative to Y if and only if E = Y n G for some open set G in X .

Proof: Let E c Y . Assume that E is open relative to Y . So, E is open in (Y, d) . Let pEE. So,

P is an interior point of E (in the metric space (Y,d)). So, there exists a positive real '» such
that

--------- (1)

Thus, to each pEE, there exists a positive real fp such that
)

(1) holds. Put

Clearly, G is open. and

Conversely assume that E = Y n G for some open set G in X . Let pEE. So, pEE and

pEG. Since G is open, there exists r >0 such that

and hence

ynNr(p) c ynG

i.e. N,/ (p)cE.

So, pEE is an interior point of E (in the metric space (Y, d)). Thus, every point of E is

an interior point of E in Y . So, E is open relative to y.
4.1.35 Problem: Let (X, d) be a metric space. Let x, y be in X such that x:;t: y. Prove t~t
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there exist disjoint neighbourhoods for x and y respectively. In fact there exists 8 > 0 such that

S <d(x,y) and

Solution; Since x;t: y, d( x,y ):>0. Choose 5 such that 0<25 <d( x,y) . If

Z E NJ(x)nNo (y) then

d(x,y)~ d i x, z )+d( z, x) (by D4)

= 25<d(x,y) (By the choice of o),acontradiction.

4.1.36 Theorem : Let A be a subset of a metric space X. Then x c A if and only if every
neighbourhood of x intersects A .

Proof: Assume that x E A = A U A' . If x E A, then the conclusion is clear. If x ~ A then x E A' i.e.

x is a limit point r f A and hence the conclusion follows from the definition of limit point.

Conversely assume that every neighbourhood of x intersects A . If x E A, it is well and

good. Suppose x e: A. For any neighbourhood N of x,

NnA;t:¢

i.e. Nn(A-{x}):;t¢ (since X(l'A)

and hence x is a limit point of A· i.e. x E A' ~A . Hence the theorem.

4.1.37 Theorem: Let (X, d) be a metric space. Let A ~ X . Then A is dense in X if and only if

every non-empty open set intersects A .

Proof: Assume that A is dense in X i.e. X = A. Let G be a non-empty open set in G. Let

X E G . Since G is open there exists r >0 such that



Now, x EX =A. By theorem 4.3.35,

and hence

Conversely assume that every non-empty open set intersects A . Now,

X EX=> for any r >0, N; (x) n A 7:. ¢ (since every nbd is an open set by

Theorem 4.3.17)

=> every nbd of x intersects A

~ x E A (by Theorem 4.3.35)

Thus, X cA i.e., X=A i.e., A is dense in X.

4.1.38 Definition : Let E be a subset of a metric space (X, d) .

(i) Let x EX. The distance of x from E is defined as infimum or greatest lower bound
of the set

{d(x,a)jaEE}

i.e. inf {d (x,a)/a E E}( =glb {d (x,a)/a E E}) and is denoted by d( x, E).

(ii) The diameter of E is defined as the least upper bound or Supremum of the set

{d(x, y)jxEE, YEE}

i.e., sup {d(x, y)jxEE, YEE}(=lUb{d(x,y)jxEE, YEE}) and is denoted by

diam E.

4.1.39 Problem: Let A be a subset of a metric space (X, d) . Let x EX. Prove that x E A if and

only if d(x,A)=O.

Solution: Assume that x E .Ii . So, every neighbourhood of x intersects A (by Theorem 4.1.36).
Let n be a positive integer. So,

n
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Take a point an in this set. Now,

d(x,A)~d(x,a)<.! -----------(1)
n

Thus, (1) holds for each positive integer n . Hence d (x, A) = 0 . Otherwise, d (x, A) >O. By

Archimedian property, there exists a positive integer n such that

n·d(x,A»l

1
i.e. d (x, A) >- ,a contradiction to (1)

n

Conversely assume that d(x,A) = O. Let E>O (i.e. we are considering the E -

neighbourhood NE (x) of x).
I

Since O=d( x, A)

=glb {de x,a )/a E A}
E is not a lower bound of the set

{d(x, a)/a E A}

So, there exists an element a E A such that

E~d(x,a) i.e. d(x,a)<E

Thus, every neighbourhood of x intersects A . By theorem 4.1.36, x EA.

4.1.40 Problem: Let (x, d) be a metric space. A subset G of X is open if and only if G is a

union of open spheres.

Solution: Let G eX. Assume that G is open. Therefore, each x EGis an interior point of G

and hence to each x E G, there'exists a nbd Nx of x such that

So, G= U Nx
XEG



Thus, G is a union of neighbourhoods (i.e. open spheres)

Conversely assume that there exists a family {Nj }iEI of open spheres such that

We know that each neighbourhood is open (by theorm 4.1.17) and hence each N, is open.

We know that arbitrary union of open sets is open (by theorem 4.1.25(a)). Hence G is open.

4.1.41 Problem: Let (X,d) be a metric space. Define u: XxX ~m by

d( x, y)
Jl( x,y)= ( )1 +d x,y

Prove that Jl is a metric on X .

Solution: (0 1) : Clearly Jl( x, y)::::o for all x, y in X .
•

d(x,x) •
(0 2) . Jl (x x) = 0 (since d satisfies (0 2)) : Now,. ' l+d(x,x)

Jl ( x, y) = 0 => d (x, y) = 0

=>X= Y (since d.satisfies (0 ~\\

Thus, 11 satisfies (02).

( )
d(x,y)

(03): Jl x,y = l+d(x,y)

d(y,x) ()- -Jl yx
-l+d(y,x) - ,

for any x,y in X.

(04): Let x,y,z EX. Suppose

Jl (x, r)£ Jl (x, z) + Jl (z, y)
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d(x,'y) d(x,z) d(z,y)
i.e. l+d(x,y) > l+d(x,zj+l+d(z,y)

i.e. [d(y,z)+d(x,z)-d(x,y)J+2d(x, z)d(y,z)

+d( x,y )d(y, z )d(z, x)< 0

i.e.2d(x,z)d(y,z)+d(x,y)d(y,z)d(z,x)<O, r

a contradiction. So, ).1 satisfies (04). Hence It is a metric on X .

4.1.42 Problem: Prove that the set of all limit points of any subset of a metric space is closed.

Solution: Let (X, d) be a metric space. Let E ~ X . Let E' be the set of all limit points of E.

Now, we prove that E' is closed i.e. E' contains all its limit points. Let x E X be a limit point of E' .

Let 0> 0 . Since x is a limit point of E' .

Choose a point y in this set. So, O<d(x,y)<o and y E E': Choose E>O such that

E < Min {d (x, y), 0 - d (x, y )}

Clearly, NE (y) ~ N£5(x) . Since y E E', NE (y) contains atlaast one point of E other than

y and hence N £5(x) contains atleast one point of E other than .r . Thus, each neiqhbourhcod Of

x contains atleast one point of E other than x. So, x is a limit point of E i.e. x E E'; Thus, J!..-'

contains all of its limit points. Hence E' is closed.o
4.1.43 Problem: For any subset E of a metric space X, prove that

Solution: Let E be a subset of a metric space X . Now,

EC ~ EC (by Theorem 4.1.27(a))



--C --c
Since EC is closed, EC is open. Thus, EC is an open subset of E. Let G be an open

subset of E . Now,

~ EC c GC = GC (since G is open, cr . is clC'~ed by Theorem 4.1.24

--C

and hence by Theorem 4.1.27(b)) ~ G ~ EC

--C

Thus EC is the largest open subset of E. Hence

--c
EO <E" (by Theorem 4.1.29)

4.2 SHORT ANSWER QUESTIONS :

4.2.1 :' Is (5, 7) a neighbourhood of some point in (m.', d) ?

4.2.2: Is every segment in m.' a neighbourhood of some point in (m.', d) r(

4.2.3: Let (X, d) be a discrete metric space. Describe N 1 (x) in this space.

2

4.2.4: Define a k - cell.

4.2.5: Prove that balls are convex (balls means open or closed balls in m.k.

4.2.6: Is O.an interior point of the set .,

E=(-l, 1)= {x Em./-1<x<1} inthemetricspace(<c, d).

4.2.7: Let E be a subset of a metric space X . If pEE is an isolated point of E prove that there

exists a neighbourhood N of p such that N 'IE = {p} .

4.2.8: Is (2, 3) openin (IR', d)? Is (2, 3) open in (<C, d)?

4.2.9: Is [2, 3](~ IR.) ~ <C is perfect in (<C, d)?

4.2.10: Let E be a subset of a metric space X such that E is contained in a neighbourhood of
, some point. Then only one of the following is most appropriate.
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(C) E is perfect (D) E is bounded

4.2.11 : Consider the set Q of all rationals in the metric space (nt', d) . Then Q is

(A) open (8) Closed . (C) Perfect (D) Dense

4.2.12: Is the set /z of all integers closed in (nt', d) ?

4.2.13: Is every point of the set Z, of all integers an isolated point of IZ in the metric space (IR', d)?

Justify.

4.2.14 :Is Q, the set of all rationals is dense in (lR', d) ? Justify.

4.2.15: Consider the metric space (X, j.l) obtained from the metric space (X, d). What is the

relationship between the neighbourhoods in these two metric spaces?

4.3 MODEL EXAMINATION QUESTIONS
4.3.1: Define metric space. Give two examples.

4.3.2: Define neighbourhood of a point.

Prove that every neighbourhood is an open set.

Characterize the neighborhoods in the metric space (nt, d) where ill. is the set of all real

numbers and d:nt xIR --)- IR is defined by d(x,y)=lx- yl

4.3.3: Define limit point. <.'2'

Let (X, d) be a metric space. Let E ~ X . Prove that a point x E X is a limit point E if and

only if every neighbourhood of x contains infinitely many points of E.

4.3.4: Define bounded set. If a subset E of a metric space X i~ bounded, prove that to each

point x in X , there exists a real number M (x) such that d (x, y ) ~M (x) for all y in E .

4.3.5: Define (i) Closed set (ii) Open set

Prove that a subset E of a metric space X is open if and only ifthe complement of E is
closed.

4.3.6: Define open set. Prove that arbitrary union of opensets IS open. Is arbitrary intersection of
open sets open? Justify your answer.

4.3.7: Dehne the closure of a set. In any metric space, for any se: /:, prove that E is the smallest

closed set containing E.



4.3.8: Define interior of a set. For any subset E of a metric space X , prove that EO = interior of

E is the 'largest open subset of E .

4.3.9: Let A be a subset of a metric space X. Prove that a point x E.Ii if and only if every
neighbourhood intersects A .

Deduce that A is dense if and only if every lion-empty open set intersects A ,

4.3.10: Define distance of a point from a set in a metric space.

Let A be a subset of a metric space X. Let x EX. Prove that x E .Ii <=> d (x, A) = 0 .

4.3.11: Let (X,d) be a metric space. Define Ji.:XxX -j-IR by

d(x,y)
;.(x,y)= ( )

l+d x,Y

Prove that (X, Ji.) is a metric space. What is the connection between the neiqhbourhoods

in (X,d) and (X"Ll).

4.3.12: For any subset E of a metric space X , prove that EOc = EC

4.3.13: Prove that the set of a!llimit points of a set is closed.

4.4 EXERCISES:
4.4.1: Construct a bounded set of real numbers with exactly three limit points.

4.4.2: Wliich of the following sets are (i) open? (ii) closed? (iii) bounded? (iv) perfect? in (IR/, d) .

(a)(2,3) (b) (2,5) (c) (1,00) (d) The set 0 of all rational numbers.

4.4.3: Answer the problem 4,7.2 in (<C, d),

4.4.4: In any metric space, prove that any two distinct points can be separated by open sets in the
sense that if x andj: are distinct points in a metric space, then there exist neighbourhoods

of M and N of x and y respectively such that M n ,V=¢ (observe that the radii of each

1
A1 and N can be taken as less than zd (x, y).

4.4.5: Prove that any two disjoint closed sets in any metric space can be separated by open sets
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i.e. if A and B are disjoint closed sets in a metric space (X, d) then there exist disjoint

open sets G and H containing A and B respectively.

(Hint: Use the Exercise 4.4.4 or see the proof of Theorem 6.2.2).

4.4.6: Let E be a subset of a metric space X . Prove that the set E' of all limit points of E is
closed.

4.4.7: Define E I the closure of a subset E of a metric space X . Prove that E is the intersection
of all closed sets in X containing E ..

4.4.8: Let (X, d) be a metric space.

(1) For any subsets A I B of X I prove that

(2): Is AO UBO =(AUB)O true? (Hint: In (IR', d) I take A=(O,l], B=(1,3])

4.4.9: Let {X, d) be a metric space.

For any subsets A I B of X I Prove that

(ii) AUB = lus
(iii) AnB ~ ;Ins

(2) Is AnB = lns true? (Hint: In (IR', d) take A=[O,l], B=[1,2])

4.4.10: For any subset E of a metric space X I prove that diam E = diam E. (use Theorem
4.1.35 or seeTheorem 8.1.8).
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4.5 ANSW~RS TO SHORT ANSWEr~ QUESTIONS
4.2.1: (In view of Example 4.1.20),

(5,7) = Nl (6) = 1 - neighbourhood of 6.

a+b b=a
4.2.2: Consider the segment (a,h) in ffi' where a,hEffi with a-cb . Taking P=-2-' r=-2-'

we have

Nr(p)=(p-r, p+r) = (a, h)

Thus, every segment is a neighbourhood of some point (infact its mid point).

4.2.3: N! (x) ={YEX/ d(x;y)<i}
2

={X}

\
\

4.2.4: See definition 4.1.10

4.2.5: See Lemma 4.1.16

4.2.6: Consider the E-nhd ofOin(<C, d) i.e. NE(O)={zE<C/lzl< E}.

Clearly, N E (0) contains infinitely many points in <Cwhich are not in (-1,1) . Th~s, .

for any E>O. HenceO is not an interior point of (-1,1) .

4.2.7: See Lemma 4.1.14.

4.2.8: (i) (2,3) is open in (m', d) since

(2,3) = N 1 (2.5) and every neighbourhood is an openset.

2



~tre for Distance.Education 4.32 Ach~rya t,lagarjuna Univ·· ~

(ii) (2,3) is not open in (CC, d) since each neighbourhood of 2·5 E (2,3) contains ihfinitely

many points which are not in (2,3). See the following figure.

4.2.9:

lie---[0 J-
2 ~3

\!!J
(i) Clearly no point outside [2, 3] is a limit point of [2,3] : Take a point p in CCout side [2, 3].
We can draw a small circle centred at p nqt muting the line segment joining 2 and 3. So,
P is not a limit point of [2,3] i.e. [2, 3] contains all of its limit.points, Hence [2, 3] is closed.

4.2.12: Yes (since it has no limit points)

)( ( x) x
2 3 4

Take a point p in JR' .

(i) Su~pose p EIZ. r=? say. If we consider N}_ (3) = (2.5, 3.5) in (IR', d) then it contains

2

no point of Z other than 3. So, 3 is not a limit point of Z. Thus, no point of IZ is a limit point

of Z.

(ii) Suppose p \l Z. P = ~ say. Clearly N! (~) =(0, 1) in (IR', d) contain's no point ofZ
2 . ~~.

. 1 . .
and hence 2' is not a limit point of Z . Thus, P is not a limit point of /Z.



Hence, Z has no limit points in (nt', d) .

4.2.13 : If p E 7L then N 1 (p )nZ = (p-~, p+~)n7L ={p} and hence p is an limited point of
- 2 2 .. 2

. Z. (by Lemma 4.1.14).

4.2.14 : Clearly, every segment in (IR', d) contains infinitely many rationals i.e. every nbd in

(IR', d) intersects Q. Hence every openset intersectsQ. By Theorem 4.1.37, Q is dense

in (IR', d) .

4.2.15 : Let x E X and E >O. If E ~ 1 then the neiqhbourhood of x with radious E in (X, fl) is

since fl(X,Y)<l holds for all X,Y in X.

Suppose 0 < E <1. Then

,d(x,y) _
fl(X,Y)<EG ( \,:<c

l+d x,Y,

E<;:::,;>d(x, v)<-
" 1- E

So, NE (x)(in (X,fl)) = l~:(x) (in(X,d))

4.6 REFERENCE BOOK :
Principles of Mathematical Analysis, Third Edition, Me Graw - Hill International Editions:

Walter Rudin

Lesson Writer:

Prof. P. Ranga Rao



Lesson - 5

COMPACT SETS

5.0 INTRODUCTION
-- -ln this lesson, we study the compactness of subsets of a metric space. We prove that

everY-compact subset of a metric space is closed and bounded (see Theorem 5.1.6). Converse of

this statement is not true (see Note 5.1.6.1). This converse is true in IRk (see Theorem 5.1.14);
when k = 1, this converse called Heine Borel Theorem (see note 5.1.12.1). We further study the
properties of compact sets.

5.1 COMPACT SETS

5.1.1 Definition: Let (X, d) be a metric space. Let E ~ X . By an open cover of E , we mean

'any collection {Ga }aED of open sets such that each point of E is in atleast one Ga i.e.

5.1.2 Example: Consider the metric space (!R', d). Let E = (0,1). Put Gn = (!,1 - !)n n

(n = 3, 4, 5, ...) . Then {Gn} is an open cover for (0,1) . Clearly, each Gn is open and is contained

in (0, I) . Furhter,

G3 ~ G4 ~ GS ~ .

So,

Let x E E=(O,I). So, O<x<l. Choose positive integer n such that !<min{x, I-X}._ n

Without loss of generality, we can assume that n>3 (or Take N =max {n, 3}. Then

1 I .' }
N

s -< mill {x, I-x ).Hence,
n
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1 1
-<x<l--
n n

i.e. XEGn

So,
a:

Ec U c;
n=3

Hence
00

E= U c;
n=3

is an open cover for E .

5.1.3 Definition: A subset K of a metric space X is called compact if every open cover of K
has a finite sub cover. .

5.1.3.1 Explanation: Let K be a subset of a metric space' X . The open cover {Ka} aE£l has a

finite sub cover means there exist finitely many indices aI, a2, .a; in L1such that

n
= U Ga

i =1 1

Suppose K <;;;;; Y c X when~"x is a metric space. Sin~e Y <;;;;; X, we have that Y is also a

metric space with respect to the metric in X . Now, we can talk of compactness of K in X as well
as in y . The compactness of K in X can be called as the compactness of K relative to X i.e.
every open cover of K relative to X has a finite sub cover. Similarly, we have the compactness of
K in r .We know that K may be open in y without being open in X .:The following theorem
gives the relation between the compactness of K. in X and the compactness in y .

5.1.4 Theorem: Suppose K <;;;;; Y <;;;;; X , where X is a metric space. Then K is compact relative

to X if and only if K is compact relative to y .

Proof: Assume that K is compact relative to X. Let {Ga }aeL'l be an open cover relative to y

Thus, each Ga is open relative to y and



By Theorem 4.3.33, to each a E ~ , there exists an open set Ha (relative to X) such that

So, {H a }aE~ is an open cover for K relative to X . By our assumption (i.e. K is compact

relative to X), there exist aI, a2,' an in ~ such that

n
Kc UHa

i=I I

and hence

n
= U Ga

i=l I

Hence K is compact relative to Y .

Conversely assume that K is compact relative to Y .

Let {Ha}a~~ be an open cover for K relative toY. ~o, each Ha is open in X and

o

So,

'"
Wh~re o; ~YnHa (a·~~). 'Sinc~ n.; is open in X, c; is open r~lative to y (for each

a E /j,). Th~is, '{Ga }q:'E~ is ~n 6f?\~rlco\yer fbr K relative to r .By our assumption, there exist

Ut, a2"":"",,U"1"} in, A ~ych that \
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n n
K~ U Ga ~U Ha

i=l I i=l I

Hence K is compact relative to X .

, 5 r two,em : Closed subsets of compact sets are compact.

.oof I.I'l t.: be a compact subset of a metric space X . Let F be a closed subset of X such

. 'd[ I . _A Let {Va }aE~ be an open cover for F (relative to X). Since F is closed, FG is open

:q\' .Then open set FG together with {Va }aE6 form an open cover for K. Since K is compact,

there exist lXI, a2, .....,an in ~ such that

n
K c FGU U Va and hence

i=1 I

Hence F is compact.

5.1.6 Theorem: Compact subsets of metric spaces are closed and bounded.

Proof: Let K be a compact subset of a metric space X. K is closed. !nview of theorem 5.1.5,

to prove that K is closed it is enough if we prove that the complement KG of K is open.

Let P E KG. So, P ~ K,' Let q E K. So, P ~ q. By problem 4.1.34, there exist

neighborhoods Vq and Wq of p and q respectively such that Vq n Wq = ¢ .Without loss of generality,

we can assume that the radius /l: of each 1~1and Wq satisfies



Thus, to each q E K , we have an open set Wq containing q. So, {Wq }qEK is an open

cover for K. Since K is compact, there exist q}, q2, , qn in K such that

11

K~ U Wq
. i=l I

Put

Wherer r zz: min'{ c5qi /1 :s; i :s; n} . Clearly, V. is a neighborhood of p and

(i=l, 2, n)

and hence

for i=I,2, ,n. NOw,

--.',

n
= u (vnw) =¢. 1 ql

1=

Thus, to each P E KG, there existsa neighborhood J[ of p such that V is contained in KG.

i.e. each point of KC is an interior point of KC

i.e. KG is open. Hence K is closed.

K is bounded: Let E> O. Clearly, {SE (x)}xEK is an open cover for K. Since K is compact,

there exist xI, x2, ..., xn in K such that

n
K c U SE(XJ

i=l
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d( Xl, x)~d(XI' xi )+d( Xi, X)

< M+E

I
I Thus, for any xEK, d(xl,X)<M+E. So, K is bounded.

5.1.6.1 Note: Converse of Theorem 5.1.6 is not true. Consider the infinite discrete metric space

(X, d) . Consider the open cover {{x} / x EX} of X ... This cover has no finite sub cover for X as

the union of members of every finite subcover of this cover provides only a finite subset of X . So
X is not compact. Clearly, X is bounded.

5.1.6.2 Corollary: If F and K are closed and compact subsets of a metric space X respectiyely,
then F nK is compact.

Proof: Let F and K be closed and compact subsets of a metric space X respectively. By
theorem 5.1.6, K is closed. By theorem 4.1.25(b) F nK is closed. Since K is compact, F nK
is compact (By theorem 5.1.5).

5.1.7 Definition: A collection {K} of subsets of a metric space is said to have Finitea aEL".

Intersection Property (F.I.P.) if the intersection of every finite subcollection of {Ka }aEL". is non-

empty.

5.1.8 Theorem: The intersection of any collection of compact subsets of a metric space with finite
intersection property is non-empty.

Proof: Let {Ka }aEL". be a collection of compact subsets of metric space with finite intersection

property. Suppose

Fix ao in ~. By theorem 5.1.6, each Ka is closed and hence eachGa =K~ is open (by

Corollary 4.1.24.1). Now, .

¢> = n x; => X =¢>c = U K~ = U Ga
aEL". aEL". aEL".

:=;> {Ga} A is an open cover for Ka (since Ka eX)aEL.\ o· 0 -

:=;> there exist a}, a2, ,an in J. - {ao} such that



=>Kao nKal n nKan = rjJ, a contradiction to our assumption that

{Ka }aEL'1 has F.I.P. Hence the theorem.

5.1.8.1 Corollary: If {Kn}n=1,2, .... is a decreasing sequence of non-empty compact sets in a

metric space X . Then

Proof: Let {Kn}n=I,i, ... be a decreasing sequence of compact sets in a metric space X. By

theorem 5.1.8, itisenough if we prove thatthe family {Kn}n=12 hasF.I.P. Let g be a finite sub
, . . " ....

collection of {Kn} n = 1, 2, ..... With out loss of generality, we can write

Now,

Hence {Kn }n=I 2 has F.I.P. Hence the Corollary ;, ,

5.1.9 Theorem: If E is an infinite subset of a compact set K, in a metric space. Then E has a
limit point in K .

Proof: Let E be an infinite subset of a compact set K in a metric space X . Suppose no point of

K is a limit point of K.

P E K => p is not a limit point of E .

~ there exists neighborhood N p of P such that N p n E - {p} = rjJ
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Thus, {Np} is an open cover for K. Since K is compact, there exist
pEK

Pl,P2,··· .P» in K such that

n
K~ U Np

i=1 I

>.,. n
~ U {pd

i=l

={PI, P2, 'Pn}

So, E is finite, a contradiction. Hence E has a limit point in K.

5.1.9.1 Note: The property mentioned in Theorem 5.1.9 is called Bolzano-Weierstress property.

5.1.10 Theorem: If {In}n =1,2, .... is a sequence of intervals in m' such that

In -;;;dIn+1 . (n=1,2, )

Then

Proof: Let {In} n=I,2, be a sequence of intervals in m' such that

In -;;;dIn+l (n=1,2, )



For n=l,i, .

So, E is bounded above by q. Let x =Iub E (which exists)

For any integers m, n

So, each bm is an upper bound of E. Since x = lub E, x ~ bn for all n . But an ~ x for all

n . Hence x E In for all n . Hence the conclusion.

We know that a k - cell in mk is the Cartesian product of k bounded closed intervals of TIt
(See Definition 4.1.10 and Note 4.1.10.1 (i».

5.1.11 Theorem: Let k be a positive integer. If {In }n=1,2, .....Is a decreasing sequence of k - cells,

1;' then

00

n In:l;¢.
n=l .

Proof: Let {In} n = 1 2 be a decreasing sequence of k - cells. Then We can write each In as, ,.....

Fix i such that 1~i::;,k. Now {Ini }n=l is a decPeasing sequence of intervals in m' . By" ....

theorem 5.1.10,

Choose xi 'in this set. Thus, we have xl,x2, ,xk. Clearly X=(xl,x2, ·..,Xk) lies in

each In' Hence tile conclusion.
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5.1.12 Theorem: Every k - cell is compact.

Proof: Let 1 be a k- cell. Sc,

k
1= 11 I-

i =1 I,

the product of the intervals Ii = [ai, bd (i = 1,2, ....,k). Put

Clearly, x, y E I implies Ilx- yll <!:'8. Suppose 1 is not compact. So.fhere exists an open

cover {Ga }aELl for I which has no -finite sub cover of I . Put c, = (ai +bi Vz.The intervals

[ai, Ci] and [Ci' bi] then determine 2k k - cells Qi whose union is I . Since {Ga }aELl has no

finite subcover for 1,at least one of these Qi s cell it II is not covered by any finite sub cover of

We, now divide h and continue the process. We obtain a sequence {In} of k - cells with

the following ~roperties.

(a)

(b) In is not covered by anyfinite sub collection of {era} ;

(c)

By (a) and Theorem 5.3.11, there exists a point x* in rn.k -such that XX E In for al~n'. Since

{Ga} is an open cover of 1, x * E Ga for some a. Since Ga is open, there exists r,>O sucf that

Ily-x*ll<r implies y E Ga (i.e. N; (x*)~Ga)' Choose a positive integer n such thaL2-n (j <r

(of course this is possible). Clearly, In ~Nr (X*)S;Ga, a contradiction to the property (b). Hence

1 is compact.



5.1.12.1 Note: When k = 1, theorem 5.1.12 is called Heine-Borel Theorem. Thus, Heine Borel

Theorem is - "Every closed and bounded interval on the real line IR is compact". Inview of theorem
5.1.5 we can state the Heine - Borel Theorem as "Every closed and bounded subsetof the real line
is compact".

5.1.13 Theorem: Every bounded subset of IRk is contained in a k - cell.

Proof: Let E be a bounded subset of IRk. So, there exists q=( ql>q2, , qd in IRk and a

positive real M such that

=>qi -M 5,xi s q, +M (i= 1,2, ,k)

(i =.1, 2, :' k.)

k
=>X E Tl I, (= I say)

i=!

_ . i.l

Clearly, I is a k' - cell'and E ~ ~ Hence every bounded set in IRk is contained in a k - cell.
--.!!!

5.1.14 Theorem: Let E be a subset of IRk. The following are equivalent.

(a) E is closed and bounded

(b) E is compact

(c) Every infinite subset of E has a limit point in E.

Proof: (a )=>( b) :Assume (a) i.e. E is closed and bounded. By Theorem 5.1.13, there exists a

k - C~II I such that E <:;::.; I (since E is bounded). By theorem 5.1.12, I is compact. Thus E is a

closed subset of the compact set I . By Theorem 5.1.5, E is compact.

(b) =>( c): Follows from Theorem5.1.9.

-, . (c)=>( a): Assume (c) i.e. every infinite subsetof E has a limit point in.E.

Suppose E is not bounded. So, to each positive integer n, there exists a point xn in E
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such that Ilxn II >n . Let S = {xn / n'?l} . Clearly, S is an infinite subset of E and has no limit point in

mk and hence in E, a co~tradiction to our assumption. So, E is bounded.

Let Xo Emk is a limit point of E. Suppose Xo EE . For n= 1,2, ...., there exist points xn in

E such that Ilxn -xoll< ~ . Let S be the set of these points xn. Then, S is infinite (otherwise

.Ixn - Xo I is a constant positive value for infinitely many n) and clearly, Xo is a limit point of S . Now,

we observe that S has no limit point other than xo. For if y E mk , Y -:f. Xo then

for all but finitely many n . So, Y is not a limit point of S . Hence Xo is the only limit point of

S. By our assumption, Xo E E. Thus, E contains all of its limit points i.e. E is closed.

5.1.15 Theorem (Weierstrass) : Every bounded infinite subset of mk has a limit point in mk.

Proof: Let E be a bounded infinite subset of mk . By Theorem 5.1.12, there exists a k .: cell I
such that E (;;J By Theorem 5.1.12, I is compact. By Theorem 5.1.9, E hasa limit point in 1

and hence in mk .

5.2 SHORT ANSWER QUESTIONS
5.2.1: Prove that every finite subset of a metric space is compact

5.2.2: Is every compact set finite?

5.2.3: Is (0,1) a compact set in m ?

5.2.4: We know that every compact subset of a metric space is closed and bounded. Is the
converse of this statement true?

5.2.5: Is every closed subset of a metric space compact?

5.2.6: In every bounded subset of a metric space compact?

5.2.7: What is the speciality of Heine-Borel Theorem?



--C Analysis ) ~ C Compact Sets E
5.2.8: Is every closed subset of compact set compact ?

5.2.9: State Bolzano - Weierstrass property

5.2.10: Give example of a compact set of real numbers whose limit points form a countable set

5.2.11 : Define k - cell.

5.2.12 : Prove that every bounded set in rn.k is contained in a k - cell.

5.3 MODEL EXAMINATION QUESTIONS:

5.3.1: Prove that a metric space X is compact if and only if X has Bolzano - Weierstrass
property i.e. every infinite subset of X has a limit point in X .

5.3.2: Characterize discrete compact metric spaces.

5.3.3 : Let X be the set of all rational numbers with metric d on X. defined by d (x, y) =Ix - yl·

Let E={x E X/2 < x2 <3}

Prove that E is bounded, but not compact.

5.3.4: Let X be a metric space. Let K ~ Y ~ X. Prove that K is compact relative to X if and'

only if K is compact relative to y .

5.3.5: Prove that every k - cell is compact.

5,3.6: Prove that every infinite subset of rn.k.
5.3.7: Prove that every closed subset of a compact set is compact.

5.3.8: Prove that every compact set is closed and bounded.{s.converse true? .Justifyyour answer.

5.3.9: Let E be a subset of rn.k . Prove that the following are equivalent..

(a) E is closed and bounded

(b) E is compact

(c) Every infinite subset of rn.k has a limit point in rn.k.

5.4 EXERCISES :

..5.4.1 : Define compact set. Prove that every finite open interval in rn.' is not compact (i.e. if a, b

are real numbers such that a <b , prove that (a, b) is not compact).
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(Hint: See the open cover in Example 5.3.2 for (0,1) . Try to imitate).

Prove that every closed subset of a compact set is compact.5.4.2 :

5.4.3 : Prove that any compact set in a metric space is closed and bounded. Is converse true? .'
Justify your answer (For converse: consider any infinite set X toqether with :discrete
metric. Clearly X is closed and bounded, but not compact.)

5.4.4: Prove that every k - cell is compact.

5.4.5 : Prove that a subset K of a metric space is compact if and only if every infinite subset of
K has a limit point in K. . . "- .",.' '"

5.4.6 : Oefnite finite intersection property. Prove that a metric space X is compact if and only if
every collection of closed sets in X with finite intersection property has non-empty
intersection. . ~ . ~.' ~:\.,' <~it:". -,>

5.4.7: Let E be a subset of IRk. Prove that the following statements are equlvalienti :o •

"

(a) E is closed and bounded

(b) E is compact

(c) Every infinite subset of E has a limit point in E.

5.4.8 : Let X be a metric space.

(i) A real number a~O is called a Lebesque number for an open cover {Gj} of X if

every subset of X whose diameter is less than a is contained in at least one G, .
,

Prove that in a sequentially compact metric space, every open cover has a Lebesque
number.

(ii) ~et.E>O.Afi':litesubset(l of.X is called an E-netif X= U SE(a).
aEA

X is said to be totally bounded if X has an E- net for every E> 0 .

Prove that everY totally bounded set is bounded. Is converse true! Justify your
answer.

(iii) Prove that every sequentially compact metric space is totally bounded.

(iv) Prove that every sequentially compact metric space is compact.

5.4.9: Let (X, d) be a metric space. Prove that the following statements are equivalent.

(a) X is compact
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(b) X is sequentially compact.

(c) X has Bolzano - Weierstrass property.

5.4.10: Let A be a subset of a metric space X. Prove that A is totally bounded if and only if A
is totally bounded.. -

5.4.11: Prove that a subset of m.n is,bounded if and only if it is totally bounded.

5.4.12: Prove that a compact metric space is separable.

5.4.13: L.et X be a closed and bounded subset of IRn. Prove that every infinite subset of X has
a limit point in X . 0

..
5.5 ANSWERS TO S.A.Q.s

5.2.1 : Let K be a finite subset of a metric space X . Let K ={xl, x2, , x., } . Let {Ga }aE~ be

elm open cover of K. So. each point in K is in some Ga' Thus, to each i = 1,2, ....~.....n ,

there exist al>a2, ....,an in d such that

for i = 1,2, ,n . Clearly,

n
KcUG'- a·

i=l 1

Hence K is compact.

5.2.2:' By Heine-Borel Theorem, [0,1] is a compact subset of IR. By theorem [0,1] is uncountable.

Thus, every compact subset of a metric space is not finite.

5.2.3: Cqnsider the open cover {Gn }n=3,4, .... of E={O, 1) in m., where
~ {. .

o,=(~,- -~) (n=3,4, )

, .
Suppose E is compact. So, there exist positive integers nl, n2, ;nk such that

hI <n2 < <nk and
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i.e. (0,])cC~;i- :J a contradiction. So, (0,]) is not compact

5.2.4: No. consider the open interval in Dr. Clearly, (0,1) is bounded (since, for any x in (0,1)

Ix-OI<2). We know that (0,1) is not compact.

5.2.5: Consider the metric space (X,d), where X =IR, d(x,y)=/x- y/. Clearly IR is closec

but not compact since the open cover

{Gn =( -n, n)}n=l 2 has no finite subcover, ~ .

5.2.6 : Clearly (0,1) is a bounde.d subset of IR but not compact.

5.2.7: We know that every compact subset of a metric space is closed and bounded. The
converse of this statement "Every closed and bounded subset of a metric space is
compact" is not true ingeneral; but it is true in the case of the Real line with usual metric

Yes; (See Theorem 5.1.5)

See Note 5.3.9.1

5.2.8:

5.2.9:

5.2.10: Conslderthe subset E of IR given by

Clearly, 0 isthe only limit point of E in IR. Now, we prove that E is compact. Let {Ga }aELl

be an open cover for E . So, 0 E G for some ao in ~. Since G is open, there existsao: ao

E>O such that (O..,...E,O+E)CGao l.e. (-E, E)cGao' Choose a positive integer N such

1
that N <E. For n'C.N,

1
1 I 1 1 1- =-::;;-<E => -E(-E E)CG

N ' - ao·n n n -
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\

To each positive integer i = 1,2, ,N -1 , there exist a1, a2, ,aN -1 if' 11 suchth~t

1
-EGa (i=1,2, .....,N-l)
i i

Clearly,

N-l
Er:;;;, U o;

i=O 1

So, E is compact.

5.~.l~ ~lSeedefinition 4.1.10.
t. " ~

5..2.1.2 : See Theorem 5.1.13

:',,8EFE,RENCEBOOK :
" I i,' '\ " to ' ':. ~. ',~, -,

Principles of Mathematical Analysis, Third Edition, McGraw - Hill International Editions:
Walter Rudin

Lesson writer :

Prof P. Ranga Rao



Lesson - 6

PERFECT AND CONNECTED SETS

6.0 INTRODUCTION
In this lesson, we study the concept of a perfect set and observe that every non-empty

perfect set in lRk is uncountable (see Theorem 6.1.3). We study the construction of Cantor set
and prove that Cantor set is a perfect uncountable set of measure O.

Further, we study the concept of a connected set in a metric space and characterize the
connected subsets of the real line lR (See Theorem 6.2.4).

6.1 PERFECT SETS

6.1.1 Definition: Let X be a metric space. A subset E of X is called a perfect set if E is closed

and every point of E is a limit point of E .

6.1.1.1 Note: Clearly a subset E of a metric space is perfect if and only if E = E' .

6.1.2 Examples:

(i) Consider the metric space (lR', d) . Every interval [a, b] where a, bE lR with

a <b is perfect.

(ii) Consider the metric space (lR2: d). The set { Z E <C=lR2/ 1Z 1:::;1} is perfect.

In fact, N; [z] is perfect for any Z E <Cand real r >0 .

6.1.3 Theorem: Every non-empty perfect set in IRk is uncountable.

Proof: Let P be a non-empty perfect set in IRk. So, P is closed and every point of P is a limit
point. Since P;t. ¢ , P has atleast one limit' point: By Theorem 4.1.19, P is infinite.

,

Assume that P is countable. So, P can be written as

P={Xl,X2,············}

Let VI = n, (Xl) be a neighbourhood of Xl. Let ~ be the closure of VI i.e. Vi =Nr [xd.
Xl E P and Pis perfect implies Xl is a limit point of P . So,
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Without loss of .generality, wecan assume that' ,
• ._ , ".! " '.,', • .~ i.f • .'

Choose a neighborhood V2 of x2 such that

Since x2 is a limit point of P',

without loss of generality, we can assume that

Choose a neighborhood V3 of x3 such that

to,.'v., ~ V2, x2~V3· .

Continuing this process, suppose we have a neighborhood Vn of xn such that

Without loss of generality, we can assume that.., ,

Now, we choose a neighborhood Vn+l of xn+l such that

Vn+l ~ Vn, xn ~Vn+l
I ..,

Thus, we have a sequence {~n} of neiqhbourhoods such that

00 00

Since each Kn cP, no point of pis in n·Kn i.e. n Kn = ¢ .
n=l n=l



Since P is closed, each K; is closed. Since each Vn is bounded, each K; is bounded.

By theorem 5.1.14, each K; is compact. Further,

(n =1, 2, )

By Corollary 5.2.8.1 ,

00

n Kn -:t:.rj;,a Contradiction.
n=l

Hence P is uncountable.

6.1.3.1 Corollary: Every interval [a, b] (a, bE JR,a <b) in JR is uncountable. In particular; the

set of all real numbers is uncountable.

Proof: We know that [a, b] is a non-empty perfect set in ill.. By the above theorem 6.1.3, [a, b]

is uncountable. Since [a, b] ~ IR. , TIt is uncountable.

6.1.4 The Cantor set: The set which we are now going to construct shows that there exist perfect
sets in JR' which contain no segment.

Let Eo = [0,1]. Let E1 be the subset of Eo obtained by removing the middle one third

(1 2)
segment 3'"3 i.e.,

Let E2 be the subset of E1 by removinq the middle one third segments namely (~, ~) 01

[0 1] (7 8) [2 l'J''3 and 8'"9 of J' I.e.,

E2 =[0 .!]u [~ .!]u [~ 2] u [~ 1], 9 . 9' 3 3' 9 9'

Continuing this process ( of removing the middle one third of intervals) we have a sequence

{En} such that
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,(i) En :2En+l for all n E N

DO

p = n En 1S called Cantor set.
n=l

6.1.5 Properties of Cantor set:

(a) The Cantor set is non-empty : Clearly, O-E P, Hence P is non-empty. Infact, for each

-i == 0, 1,2, , the end points of the closed intervals that are appearing in E, (as the union of i
closed intervals) are in the Cantor set P i.e., the points

0,1;

1 2
0, 3' 3' 1;

123 127 8a -' - - = -' - -' - I'
'9'9'9 3'3'9'9"

are in P.

(b) The Cantor set is compact: We know that every k - cell in IRk is compact. So, Eo is

compact. Each E, is closed, since E, is a finite union of closed intervals. We know that arbitrary

,'intersection of closed sets is closed. So, P is a closed subset of the compact set Eo. By theorem

5.1.5, P is compact.

(c) The Cantor set contains no segment : Clearly, no segment of the form

where k and m are positive integers, has a point in common with P. Let (a, 13) be a

segment. If we choose a positive integer m such that '
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3-m fJ-a '<--
6

then (a,p) contains a segment of the form (above), So, P contains no segment.
;' ',- .

(d) The Cantor set is perfect (and hence Uncountable by Theorem 6.2.3) : Clearly, P is

closed, Now, we show that every point of P is a limit point of P , Let x E P: Let S be a neighborhood

NE (x) = (x -E, X +E) of x . Choose a positive integer hi such that 3-11 <: E ,Now x E 'En (for this

n). So, x E In where In is the closed interval among,the 2n closedi.~tervals whose L':~ionis equal
• j

to En' Clearly .e(In)=rn <E, Now, for any y E In' Ix- yl::;length of 111 =rn <E andhence

YE(X-E, X+E),SO, In is contained in (X-I, x+;i).'Choosethatend~Ofpointof z of In such that

x 1c z . Clearly, Z E (x - t, x + t) nP - {x}. Thus, e~ery' neighbor'h06d'ofx ' contains at(e~st on~

point of P other than x . So, x is a limit point of P . Thus, every point of? is a limit point of P ,

Hence P is perfect. By theorem 6.1.3, P is uncountable.

(e) Measure of P is 0 (zero) : Sumof the lengths of the open-intervals removed is

'}' ..

• -'i -, ''', '"-•.".; • _,,' .

So, measure of P is 0,

6.1.5.1 Note: In measure theory, we know that the measure of any countable set is zero. The
Cantor set stands as an example for an uncountableset of measure zero. '

• ! r

6.2 CONNECTED SETS

6.2.1 Definition: A set E in a metric space X is said to be connected if there do not exist two
disjoint open subsets A and B of X such that both A andB intersect E, and E <;;;;; AU B .

6.2.1.1 Note: The above definition' is intact connectednessof E r~lati;ve to X .

6.2.2 Theorem: A set E in a metric space i iscOrlnectedif and only if' E is connected relative

to E.

Proof: Let E be a subset of a metric space=Y ,AssufT1Efthat' E is connected (relative to X),'

Suppose E is not connected relative toE .So,.the(e:existnon-empty disjoint sets G, H , open
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relative to E such that (both G and H intersect E) and E ~ G U Hi. e. E = G U H .

.Since G is open relative to E, to each pEG, there exists 0p > 0 such that

q E E, d (p, q) <0p implies q E G. Similarly, to each q E H, there exists <5q >0 such that
~L>

pEE, d(p,q)<Oq implies pEH.

For any pEG, q E H , both these inequalities fail and hence

For pEG, q E H , let Vp be the set of all x in X such that 2d(p,x)<8 p and let Wq be

the set of all x in X such that 2d(q,x)<Oq. Clearly, VpnWq=¢ (otherwise we can choose

x E "»nWq and hence

1 -
d(p,q) S dl p, x)+d( x, q)S2( Op +Oq), a contradiction). Put'

A- U V- p
peG '

B= U Wq
qeH

Clearly, A and B are non-empty dis-joint open sets such that both A and B intersect E

and E=GUH cAUB. So, E is not connected relative to X, a Contradiction. Hence E is

connected relative to E .
.! .\l" .

Conversely assume that E is connected relative to E . Suppose E is not connected (relative
to X). So, there exist non-empty disjoint open subsets A and B of X such that both A and B

intersect E and E cA UB . Put cf= A nE, H = B nE'. Clearly q ,and H ,are non-empty cjisjoint
. ,.,,' ~,~' '. . . '. ,

open subsets of E (relative to E) such that

So, E is not connected relative to E, a contradiction. So, E is connected relative to X '.

6.2.3 Definition: A subset E of the real line m' is called an interval if x E E, Y E E and x< z <v
then Z E E.

6.2.4 Theorem: A subset E of the real line ll?' is ccnnected.it and onlyif E is an interval..

Proof: Let E ~ m' . Assume that E is connected: Suppose E is not an interval. So, there exist
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real numbers. x, y, z such that x<z<y, x E E, y E E and Z $ E. Put A =(-00, z), B=(z, (0).
Clealry, A, B are non empty (since X.E A, Y E B) disjoint opensets in ill. , such that both A and B
intersect E (as x t.:: AnE and Y EBnE) and

E<::ill.-{z}

=( __~LZJU(Z,'.oo) =AUB

So, E is not connected, a contradiction to our assumption. Hence E is an interval.
Conversely assume that E is an interval. Suppose E is not connected. So, there exist

disjoint open sets A, B such that both A and B intersect E and E <:: AUB. Let

x E An E, Y E B n E. With out loss of generality, we can assume that x <y . Let

S=An[x,y]

Clearly S is a non-empty set of reals (since XES) bounded above by y. So, I u b S
exists-say z . Since S is bounded, Z EA. Clearly, x::;; Z (since XE Sand z is an upper bound)

S y (since Y is an upper bound and z =1u b S). By our assumption, Z E E.

AnB=¢=>A c.B" =>AclJc =Bc (since B is open, BC is closed and hence BC = BC)

=> .If n B=¢. Similarly, we have AnS=¢).

Since zEA, z e B and hence z:t:y i.e. z<y. Since EcAUB, tEA. So, z$13
(Since AnB=¢).So, z is not a.lirnit point of B and hence there exists E>O such that

(Z-E, z+E)nB-{z} = (Z-E, Z+E)nB (since Z $ B) = ¢ ------- (1)

Without loss of generality, we can assume that Z+E<y (Choose E such that O<E<y-Z).

Take zl such that

XSZ<ZI <Z+E<y.

Then zl $ B (by (1» and zl E [x, y] . By our assumption, zl E E . Since E £:;; AU B, zl E A

and hence zl::;;z, a contradiction to Z< zl . Hence E is connected.

6.2.4.1 Corollary: A set. E in ill.' is connected if and only if E is one of the following sets (where

a and b arereals, as b) :
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(-00, b) (-00, b]' (a, 00), la, 00), (-00, 00), (a,b),[a,b), (a,b],[a,b].

6.3 SHORT ANSWER QUESTIONS
6.3.1 : Define Perfect set.

6.3.2 : Is the set (0,1) perfect in IR' ?

. 6.3.3: Is the set [0,1] perfect in IR' ?

6.3.4 : Is the set

6.3.5 : Is every non-empty perfect set in IRk uncountable?

6.3.6.: Is every finite non-empty set in a metric space X perfect?

,6.3.7 : Construct cantor set.

6.3.8 : Define connected set.
. .

6.3.9 : State precisely the connected subsets of the real line IR .

6:3.10 : What are the connected subsets of the discrete metric space?

6.4 MODEL EXAMINATION QUESTIONS

6.4.1 : Define perfect set and prove that every non-empty perfect set in IRk is uncountable.

6.4.2 : Describe the construction of the Cantor set. Prove the f<?Uowing:
;

(a) Cantor set is compact.

(b) Cantor set is perfect.

(c) Cantor set is uncountable.

6.4.3: Define connected set. Prove that a subset E of IR is connected if and only if "x E E, Y E E,

Z E IR implies Z E E." (i.e. E is an interval).

6.4.4: Prove that a set E in a metric space X. is connected if and only if E is connected relative
to E.

-



6.5 EXERCISES

6.5.1 : Prove that every interval [a, b] (a <b) in ill, is uncountable.

6.5.2 : What is Cantor set. Prove that Cantor set is a perfect set.

6.5.3 : Define connected set. Characterize the connected subsets of the real line IR .

6.5.4: Call two subsets A and B of a'metrlc space X separated if AnB=¢ and AnS=¢.
(a) Prove that separated sets are disjoint.

(b) What can you say about the truth of the statement:

Disjoint sets are separated. (Hint: In ill,' , take A =(0,1) and B=[1,2])
(c) Prove that disjoint open sets are separated.

6.5.5: Let X be a metric space. Let E ~ X . Prove that E is connected if and only if E. cannot be
written as a union of two non-empty separated sets.

6.6 ANSWERS TO SHORT ANSWER QUESTIONS
6.3.1 : See definition 6.1.1

,

6.3.2 : No (since (0,1) is not closed in ill,, as 0 ~ (0,1) ; butO is a limit point of (0,1) ).

6.3.3: Yes'

6.3.4 : Yes.

6.3.5: Yes (See Theorem 6.1.3).

6.3.6: No. (Let A be a nonempty finite subset of a metric space X . So, A has no limit points.
Hence A is closed. Clearly, no point of A is a limit point of A . So, A is not perfect).

6.3.7: See 6.1.4

6.3.8 : See definition 6.2.1.

6.3.9 : The connected subsets of ill, are precisely the intervals.

6.3.10 : Connected subsets of the discrete metric space are precisely single ton sets.

REFERENCE BOOK :
Principles of Mathematical Analysis, Third Edition Mc Graw-Hillinternational Editions: Walter

Rudin.

Lesson writer:

Prof P. Ranga Rao



Lesson - 7

SEQUENCES IN METRIC SPACES

7.0 INTRODUCTION
In this lesson, we study the notion of convergence of a sequence (in a metric space) and its

properties. In particular, we study relation between the convergence of a sequence in IRk and the
convergence of its component sequences (in IR) (see theorem 7.1.10(a»; consequently the

properties of convergent sequences in IRk (see theorem 7.1.10(b». Further, we observe that
every compact metric space is sequentially compact (see Theorem 7.1.7).

7.1 SEQUENCES IN METRIC SPACES
We start this section by recalling the definition of the sequence.

7.1.1 Definition: Bya sequence in a set A, we mean any mapping x:.J -? A we denote xCi)

I)y xi and write X={Xi}'

7.1.2 Definition : A sequence {Pn} in a metric space X is said to converge ifthere is a point

p EO X with the following property.

For every E>O there exists a positive integer N such that

(Where d is the distance in X). In this case we say that {Pn} converges to P or P is

the limit of {Pn} and we write Pn -? P or

lim Pn = P
n

If {Pn} does not converge then we say that {Pn} diverges.

7.1.3 Definition: If {Pn} is a sequence then the set E={Pn/n?l}is called the range of {Pn}'

7.1.4 Definition: A sequence {Pn} is a metric space X is said to be bounded if its range is

bounded.
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7.1.5 Example: Consider the metric space of complex numbers:

1
(a) Let s; =- .Now, we prove that

n

1
Let E > O. Choose a positive inteqer N such that N < E .

Now,

11 I I 1n?N => ISn -01= --0 = - ~ -<E
n n N

Hence, sn -40. Clearly the range of {sn }is infinite and bounded (as I~I~1 for ~II n?l).

(b) Let sn =n2
. Clearly the sequence is

(i) unbounded

(ii)divergent

(iii) with infinite range ',';
.r :

1 .
(i) sn -41: Let E>O.Choose N such that N <E.For n> N ,

(-It I 1 IISn -11=--I=-~-<En n N

Hence sn ~I.

(ii) Clearly the range of {sn} is infinite.

(iii) The range of {sn} is bounded since
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(d) Let sn =::in. Then

I

(i) Clearly, the range of {sn} is

{Sn / n~ I} = {i, -1, - i, I} is finite and hence bounded.

(ii) Clearly, the sequence is divergent.

(e) Let sn =1 for all n~l.Clearly, sn ~1, the range of the sequence {sn} is {I} (which is

finite and hence bounded.

,(f) ~~t sn =(-It .,The sequence {sn} is -1,1, -1, 1, in (m., d). So, the range l

of {sn} is the set E = {- i,I} which is clearly bounded. But {sn} is not convergent.

7.1.6 Example: Let {x~} be a constant sequence in a metric space. So, there exists an element

xin X such that xn=x for all n~I.Clearly, d(xn, x)=O foral! n~1 and hence xn ~x.

7.1.6.1 Note: Suppose that a sequence {xn} converges to a point x in a metric space (X,d)

such that xn ::f::- x for all n ~ 1. Put Y = X - {x} . Clearly, {xn} is a sequence in Y . If {xn} converges

to a point y in y then {xn} converges to y in X and hence x =y (by Theorem ), a contradiction.

So, {xn} does not converge in the metric space (Y, d). Thus, the convergence of a sequence

depends on the metric space to which it belongs.

Now, we study some important properties of convergent sequences in metric spaces.

7.1.7 Theorem: Let {Pn} be a sequence in a metric space X .

(a) {Pn} converges to P E X if and only if every neighbourhood of P contains infinitely

many points (terms) of the sequence {Pn}.

(b) If P E X, P' E X and if {Pn} converges to both p and p' then P = P' .

\ (c) If {Pn} converges then {Pn} is bounded.
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(d) If E r:;;;. X and if P E X is a limit point of E then there is a sequence {Pn} in E such

that Pn --+ p.

(e) If the range E of the sequence {Pn} is infinite then Pn --+ P if and only if P is the

limit point of E .

Proof: (a) Assume that Pn --+ p. Let E>O. Since, Pn --+ P, there exists a positive integer N
\

such that

.Hence every neighbourhood of p contains all but finitely many terms of {Pn} .

Conversely assume that every neighbourhood of p cor ains all but finitely many terms of

{Pn}' Let E>O. By our assumption, NE(p) contains all but finitely many terms of {Pn}· So,

there exists a positive integer N .rch that

Hence Pn --+ P .
I

(b) Suppose p, pi E X such that Pn --+ p and Pn --+ p'. Suppose p 7:. p'. Put

2 E = d (p, pi) . Clearly E> O. Since Pn --+ p, there exists a positive integer N, such

that

Since Pn --+ pi , there exists a positive integer N 2 such that n » N 2 ===> d (Pn' pi) <E.

Let n be a positive integer such that n> Nl and n> N2 . Now,

2 E=d(p,p')-::;d(P,Pn)+d(Pn,p')<E+E =2 E, a contradiction. So, p= p'.

(c) Suppose {Pn} converges. So, there exists P E X such that Pn ~ p. So, there exists
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a positive integer N such that

Clearly, d(Pn'P )~M for all n~l.

Hence, the range E={Pn/n~l} is bounded i.e. the sequence {Pn} is bounded.

(d) Let E ~ X and let PEX be a limit point of E. To each positive integer n ,

n

Choose a point Pn in this set. So, to each positive integer n , Pn E E, Pn =F P and

d(Pn'P )<1. Now we show that Pn ~ p.n

1
Let E> O. Choose a positive integer N such that N <E . For n ~ N ,

1 1
<-~-<E

n N

Hence Pn ~ p.

(e) Suppose the range E={Pn/n~l} of {Pn} is infinite.By (a),

Pn ~ P <=> every neighbourhood of p contains all but finitely many terms of {Pn}

o <=> every neighbourhood of p contains infinitely many points of E.

<=> P is a limit point of E .:

To study the sequences in rn.k, we study the relation between converqence-on one hand
and the algebraic operations on the other. First, we study the sequences of complex numbers.

7.1.8 Theorem: Let {sn} and {In} be sequences of complex numbers such that s; ~ sand

In -s t . Then
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(a)

(b)

(c)
1 1

- ~ -, provided sn =F 0(n=1,2, .....) and S =FO.sn S .

Proof: (a) Let E>O. Since sn ~ S, there exists a positive integer Nl such that

Since, In ~ t , there exists a positive integer N2 such that
.' '...

'~. ".'

Put N= Max {N1,N2}. Now,

n ~ N~I(sn +tn)-(s+t)1

E E
<-'-+- = E2 2

Hence, sn +tn -s s s t

(b) Let E>O. Choose El such that

0< E-I < Min f. ~E. ' (I I II )}r{z 2 s + t +l:

Since s~ ~ S , there exists a positive integer N, such that'

Since tn ~ t , there exists a positive integer N2 such that



;.
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< E (by the choice of El)'

11

2
S E·

(c) Let E>O. Choose EI such that O<El<---
2

Since sn ~ s, there exists a positive integer N] and Nz such that

and

11
=> Isl--Isl <Isn 1<Isl +-Isl2 2

1 1 .Is-snn ?N=> --- ::::1-. ,-
sn S sn-s

9
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1 1
Hence -----)--

sn S
)

The above theorem can also be stated as follows.

7.1.9 Theorem: Suppose {sn}, {In} are complex sequences and lim sn = s, lim tn = t . Thenn~oo n~oo

(a) lirn (sn +In)= s+l;
n-+oo

(b) lim cSn = CS, lim (c+sn)=c+s;
n-+oo n~oo

(c) lim sntn=st;
n~oo

(d) lim _1 =~ id d O' ( -1 2 ) d 0,prOVI e .'In 7= n-" ..... an S 7=n~oo sn S

7.1.10 Theorem: (a) Suppose xn Em" (n=1,2 ) and

Then the sequence {xn} converges to x=(al, a2, ,ak) ifandonlyif

lim aj;n=aj(j=I,2, .... ,k)
n~oo

(b) Suppose {xn}, {Yn} are sequences in mk, {,8n} is a sequence of real numbers

and xn ----)-x, Yn ----)-Y, fJn ----)-fJ . Then

lirn (xn +Yn ) = X +Y Jim xn' Yn = x y, lim ,8n xn = ,8 x
n~oo 'n~oo n~oo

Proof: (a) : Assume that xn ~ x in mk. Fix j such that l:S::j:S:: k . Now, we show that

lim aj,n = aj.
n~oo

/' Let E> O. Since xn ----)-x in mk, there exists a positive integer N such that
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1

{

k 2}2
ie "/a. -a·1 <E.. £... I,n I.

i=l

Hence

Jim a . =a ,J,n Jn~oo

Conversely, assume that

-
Jim a , =a , (f . 12 0n~oo J,n J or J=, , ,Jr)

Now, we show that xn ~ x. Let E>O. Put El =1.Jk. Clearly El >0. By our assumption,

to each j with 1:::.;j :::.;k , there exists a positive integer N j such that

n>N·=>la. -a./<El- J J,n J
--

1 1

{ }- [ ]-k 2 2 k 2 2
= ~ laj,n-ajl < . ~ El

J=1 J=1

1

= LtJE%,)r = E
Hence xn ~ x in mk.



Y =(Yt,r2, .·.· ..... ,rk).

Xn ~ X, Yn ~ Y=> lirn aj,n =aj, Hm rj,n =rj U=1,2, ,k)
n~~ n~~ .

'.

(by Theorem 7 .1.10 (i))

(i)

iii) lim/3naj,n=/3aj. (forj'=12 k)
x~co ' "."

(iii) lim aj,n r j =aj· r j (for J'=1 2 k)' and hencen~~ ' ., ... ,

k k
lim L aj,n' rj,n = L aj rj (By Theorem 7.1.9(i))

n=oco j=l j=l

=> lim (xn+yn)=x+Y, lim /3nxn=f3x
n~~ n~~

o liand im xn,yn=x'Y
n~~

Now, we give the definition of a subsequence

7.1.11 Definition: Let {Pn} be a sequence. Let {nk} be a sequence of positive integers such

that nl <n2 < Now, the sequence {Pn
k
} is called a subsequence of {Pn}' If {Pn

k
}

converges then its limit is called a subsequential limit of {Pn} .

7.1.11.1 Note: Every sequence is a subsequence of itself (clear), Consider the following·example

in the metric space <C (or m.2).

7.1.12 Example: Let Pn = ( -1 r .The sequence {Pn} can be written as -1, +1,-1, + 1, .

Cleearly, the constant sequences {-I} and {+ I} are the cnvergent subsequences of {Pn}' The

set E of all subsequential limits of {Pn} is E = {-I, + I} .
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7.1.13 Example :Let Pn =in . Clearly, {Pn}. has the convergent constant sequences {i}, {-I}, {-i}
and {I}. So, the set E of all subsequential limits of {Pn} is E = {I, -1, i, - i} .

7.1.14 Theorem: Let (X,d) bea metricspace. A sequence {Pn} in X converges to a point P
in Xif and only if every subsequence {Pn} converges to P.·

Proof: Let {Pn} be a sequence in X. Assume that Pn ~ P in X . Let {Pn
k
} be a subsequence

of {Pn} . Now, we show that Pl1
k

~ P . Let E> O. Since Pn ~ p, there exists a positive integer N

such that

I1::::N =>d(pl1' P )<E

Since {Pnk} is a subsequence of {Pn} , we have that

PI <112 < .

Clearly, 111:::: 1. Now,

Continuing this process, by induction we have that

11k ::::k for each positive integer k . Now,

Hence Pl1
k

~ P . Converse is clear since {Pn} is 9 subsequence of itself.

7.1.15 Theorem: Every sequence in a compact metric space contains a convergent subsequence.

Proof: Let {Pn} be a sequence in a compact metric space (X, d) . Let E be the range of the

sequence {Pn}.
Case (i) : E is finite: Then there exists a point P in E which is infinitely many times repeated in

the sequence {Pn}' Thus, {Pn} has the constant subsequence which is convergent..
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Case (ii) : E is infinite; Thus, E is an infinite subset of the compact set X . By theorem 5.1.9, E
has a limit point p say. So,

Let Pn] be a point in this set. So, Pn] E E, P (/:.Pn]' d(p, Pn] )<1."
<,

Since p is a limit p~int of E, p is a limit point of E -{Pl>P2, , ,Pnl}'
So,

N! (p)n(E-{Pl,P2" ,Pnl)) - {p},c ¢
2

Let Pn2 be a point in this set. So,

Clearly, nl <n2 . Continuing this process, after choosing Pnl' Pn2' " Pni-1 in E such

that

P :;t:. Pn (J = 1,2, , i-I) ;
J

,r;· ~, "

We choose Pn. as follows. Since p is a limit point of E, p is a limit point of
I

Choose a Pn, in this set. So,
1

! \ 1
P '* PYI" d( V, ""'J; ji <> tii-l «n.,

, . 't
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Th~S, we have a subsequ~nce {Pni} of {Pn} such that

1
Now, we show that Pnr ~ P . Let E> 0 . Choose a positive integer k such that k < E . Now,

Hence Pn· ~ p. Hence the theorem
I

7.1.16 Definition: A metric space X is called sequentially compact if every sequence in X
contains a convergent subsequence.

In view of the definition 7.1.16, the Theorem 7.1.15 can be stated as follows.

7.1; 17 Theorem : Every compact metric space is sequentially compact.

7.1.18 Theorem: Every bou~~ed sequence in ]Rk contains a convergent subsequence.

Proof: Let {xn} be a bounded sequence in IRk. So, the range E={xn/n21} of {xn} is bounded.
I .

By Theorem 5.1.13, there exists a k - cell I such that E s; I. By Theorem 5.1.12, I is compact.

Thus, {xn} is a sequence in the compact metric space I. By Theorem 7.1.17, {xn} contains a

convergent subsequence. Hence the theorem.
\ .

7.1.19 Theorem: The set of all subsequential limits of a sequence {Pn} in a metric space is

closed.

Proof: Let E be the range ofa sequence. {Pn} in a metric sapce (X, d) . Let E* be the set of all

subsequential limits of {Pn} . To prove that E* is closed, we show that E* contains all of its limit

points. Let q E X be a limit point of E* . To prove that q is in E* it is enough to prove that q is a

limit point of E (by Theorem 7.1.7 (d)).

Let E >O. Since q is a limit point of E* , there is a point p in E* such that

•
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Since P EE*,

for some Pn- Clearly, Pn t:.q and

So, the set

as it contains Pn,' Thus, every neighbourhood of P contains a point of E other than q.

Hence q is a limit point of E. Hence the theorem.

7.1.20 Problem: Let {Pn}, {qn} be two sequences ina metric space (X,d) such that Pn ~ P

and qn ~ q. Prove that d (Pn' qn) ~ d (p, q) in the metric space (m., d) .

Solution: Let E>O. Since Pn ~ P and qn ~ q, there exist positive integers NI, N2such that

d(Pn' qn )-d(p, q )~d(Pn'P )+d(p, q)+d( q, qn )-d(p, q)

=d(Pn, p)+d(q,qn);

d(p,q)-d(Pn,qn):S; d(p,'Pn) + d(Pn,qn)+d(qn,q)-d(Pn,qn)

and hence

/d (Pn' «; )-d (p, q)/ <d (p, Pn)+ d (q, qn).
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Now it is clear that

n::::N=>ld (Pn' qn )-d (p, q )I<E.

7.1.21 Problem: Let {Pn} be a sequence in a closed subset E of a metric space X . I.fPn --').P

in X , then pEE.

Solution: Suppose Pn --').P . Let S be the range of {Pn} . If S is finite, then P repeats infinitely

many times in the sequence {p}. So, pEE.

Suppose S is infinite. By Theorem 7.1. 7(a) p is a limitpoint of S and hence p is a limit

point of E (since S <;;;;; E). Since E is closed, p EO E.

7.2 ISHORT ANSWER QUESTIONS
7.2.1 : Define convergent sequence.

7.2.2: Define bounded sequence.

7.2.3 : Is every bounded sequence convergent?

7.2.4 : Is every convergent sequence bounded?

7.2.5: Give an example of an unboundedsequence.

7.2.6 : Is the range of the sequence {~} in (IR, d) finite?

7.2.7: Is the range of any constant sequence finite?

7.2.8 : Prove or disprove the statement - The range of any convergent sequence is finite.

7.2.9 : Prove or disprove the statement - the range of any convergent sequence is infinite.

7.2.10: Let Ebr/the range of the sequence {Pn} in a metric ~pace X.Underwhat circumstances,

does the limit of the sequence {Pn} coincide with the limit point of E.

7.2.11 : Prove or disprove the statement - The convergence of a sequence depends on the metric
space to which it belongs.

7.2.12 : Prove that the sequence {Pn} where Pn = ( -1 r in (IR, d) is not convergent.
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7.2.,13 ; Prove that the sequence {Pn} where Pn = ( -1 r in (c, d) is not convergent.

7.2.14: Prove that the sequence {Pn} where pn =in in <Cis not convergent.

7.3 MODEL EXAMINATION QUESTIONS
7.3.1 : Define convergence of a sequence. Prove that the limit of a convergent sequence is unique.

7.3.2 : Prove that every convergent sequence is bounded. Is the converse true? Justify your answer.

7.3.3 : Define the range of a sequence. Let {Pn} be a sequence in a metric space, X . Let E be

the range of sequence {Pn}' Let P EX. If E is infinite, prove that Pn ~ P as n ~ 00 if

and only if p is the limit point of E .

7.3.4: Prove that in a compact metric space, every sequence contains a convergent subsequence.

7.3.5 : Prove that the set of all subsequential limits of a sequence {Pn} in a metric space is closed.

7.3.6: Prove that every bounded sequence in IRk contains a convergent subsequence.

7.4 EXERC~SE

7.4.1 : Prove that for the sequence {.'In} of real (complex) numbers,

lim Sn =s=> lim ISn 1=Isl
n~oo n~oo

7.4.2: Compute lim (0n2 +n -n)
n~oo

7.4.3 : Show that the sequence {xn} in TIt is convergent if and only if -1 < x ::;1_

7.4.4: For any sequence {sn} of reals, consider the arith~etic sequence {In}, where

t = S] +S2 +- - --- --+Sn
n n

Prove that sn ~ s as n ~ 00 implies tn ~ S as n ~ 00. Further prove that there are

divergent sequences {sn} which in this manner give rise to convergent sequence {tn} .
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7.4.5 : If {an} is a sequence of real numbers such that

prove that

I
7.4.6: If an >0 and lim an =f, show that lim (al «: ..·..··..,anY;; = loge.

n~~ n~~

7.4.7 : If Xn +I= ~ k + xn, where k, xl are positive, prove that the sequence {Xn} isincreasing or

decreasing according as xl is less than or greater than the positive root of the equation x2 - x - k = 0

and has in either case this root as its limit.

7.4.8: If sl =J2, and 8n+1 =~2+Fn (n=1,2, ) , prove that {sn} converges and that sn <2

for n=1,2, ..,..

. . 1 ( )7.4.9: Let {xn} be a sequence of reals such that xl >0, x2 >0 and xn+l ="2 xn, -+-7n-} .:, ;'

Prove that the sequences

, (l!. '

are one a decreasing and the other an increasing sequence, and they converge to the

1
same limit - (Xl + 2X2) .. 3

7.4.10: Let {Pn} be a sequence in a metric space (X,d). Let P E X . Prove :

Pn ~ P asn ~ 00 if and oniy if d (Pn, P) ~ 0 as n ~ 00 in ill..'

7.5 ANSWERS TO SHORT ANSWER QUESTIONS
7.2.1 : See Definition 7.1.2

7.2.2: Yes (See Theorem 7.1.7 (c))

7.2.3: No (See Example 7.1.5 (t), 7.1.5 (d»
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7.2.4 : See Definition 7.1.4

7.2.5: See Example 7.1.5 (b)

7.2.6: No

7.2.7 : Yes. The range of any constant sequence is a singleton set.

7.2.8 : "The range of any convergent sequence is finite" is false. See Example 7.1.5 (a).

7.2.9 : "The range of any convergent sequence is infinite" is false.

Example: any constant sequence.

7.2.10 : When the range E of {Pn} is infinite.

7.2.11 : Yes. The sequence {~} converges in the metric space (m, d) to 0; but it does not

converge in the metric space (IR-{O}, d).

11'-2.12: Suppose {Pn} converges in (IR, d) to p say. Let O<E<1. Then there exists a positive

ii rteqer N such that

n'2N ~d(Pn' P )=IPn - pl<E

So, Il-pl<E and Il,+pl<E. Now,

2=1-p+l+p::;jl-pj+jl+pj<2E=:>1<E, a contradiction to e c l . Hence

. {Pn} is'not convergent.

7,2.13: Answer lssarpe as that of7.2.12
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7.2.14: Assume that {Pn} converges to p say. Let O<E <1. So, there exists a positive intege,r N.
such that

So, 11-pl<E, 11+pl<E, li+pl<E andlp-il<E.

~ 1< E , a contradiction to E< 1.

Hence {Pn} does not converge.
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Lesson -8

8.0 INTRODUCTION,
In this lesson, we study the notion of Cauchy sequence; and we observe that every,

convergent seqoence is a Cauchy sequence (see Theorem 8.1.2). Furhter, we study the concept

ota complete metric space and we observe that the metric space IRk is complete (see Theorem
8.1.5). We also study Cantor's Intersection Theorem.

. 0 .'

8.1 CAUCHY SEQUENCES :

8.1.1 Definiti~n: A sequence {Pn} in a metric space (X, d) is called a Cauchy sequence if the

following condition (called Cauchy .ndition) is satisfied.

For every E>O, there exists a positive integer N such that

, .
The following theorem gives several examples of Cauchy sequences.

8.1.2 Theorem: In a metric space, every conv,ergent sequence isa Cauchy sequence.

Proof: Let {Pn} bea convergent sequence in a metric space X . So, there exists P E X such

that Pn ~ p. Let E> O. So, there exists a positive integer N such that

Now,

Hence {Pn} is a Cauchy sequence.



Centre for Distance Education
8.2 Acharya Nagarjuna Univp ·ty

8.1.2.1 Note: The converse of the Theorem 8.1.2 is not true i.e. every Cauchy sequence need not

·1'
be convergent. We know that the sequence {Pn} where P» =- in (m., d) converges to O. By

n.

Theorem 8.1.2, {Pn} is a Cauchy sequence. So, {Pn} is a Cauchy sequence in (0; 1] but not

convergent in (0, 1].

8.1.3 Theorem : A Cauchy sequence in a metric space is convergent if. and oJ"llv if it has a
convergent subsequence.

Proof: Let {Pn} be a Cauchy sequence in a metric space (.\:,41). Assume that {Pn} has a

convergent subsequence' {Pnk} say. Let Pnk ~ P: Now, we show that Pn ~ P . Let E>°.Since

{Pn} is Cauchy, there exists a positive integer NI such that

Since Pnk ~ p, there exists a positive integer N2 such that

Put N = Max {NJ, N 2 }. Let n> N . Let k be such that k eN .

Hence Pn ~ P . Converse is obvious (as {Pn} is a subsequence of itself).

8.1.4 Theorem: Every Cauchy sequence is bounded.

Proof: Let {Pn }be a Cauchy sequence in a metric space (X, d). So, there exists a positive

integer N such that



Clearly,

Hence the sequence {Pn} is bounded.

In note 8.1.2.1, we have seen that the converse of theorem 8.1.2. i.e. "Every Cauchy

sequence is convergent" is not true; but it is true in the Euclidean space mk .

8.1.5 Theorem: In the Euclidean space mk , every Cauchy sequence is convergent.

Proof: Let {Pn} be a Cauchy sequence In IRk. Let S be the range of the sequence {Pn}' If S is

finite, then, there is a term p say in the sequence {Pn} such that Pn = P for infinitely many n .

Thus, {Pn} has the constant subsequence {p} which is convergent. By theorem 8.1.3, {Pn} is

convergent.

Suppose S is infinite. By Theorem 8.1.4, S is bounded. We know that every bounded

infinite subset of IRk has a limit point (by Theorem 5.1.15). So, S has a limit point p say in IRk

Now, we show that Pn ~ P . Let E> O. Since {Pn} is a Cauchy sequence, there exists a positive

integer N such that

Fix n such that n ~ N :&fnce P is a limit point of S , N E (p) contains infinitely many points
2 J ~

of S and hence we can cheese 'a point Pm in N E (p) with m ~ N . So,

2
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Hence Pn ~ p. Thus, every Cauchy sequence in IRk converges.

Now, we recall the definition of diameter of a set. (Definition 4.1.37)

8.1.6 Definition: Let E be a subset of a metric space (X,d). Let S={d(x,y)jx, y E E}. The



'!
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diameter of E, denoted by diam E , is defined as the Supremum or least upper bound of S.

i.e. diam E = sup S (orlub S)

8.1.7 Example: Consider the metric space (m2, d).

For any x, y in E,

d (x, y) = i Ix- yll ~ Ilxll + Ilyll ~ 1+ 1 = 2

Further, x=( ~-l~-o},-y-={-l,O~ ace in E such that d (x, y ) = 2 .
o

So, diam E = 2.

d(x,y)=llx- yll

=II(X} - Yl, x2 - Y2)11

+1 (1,1)
- 1

/ +1
(-1, -1) - 1

o

For any x, y in E,

/

Clearly, x=(-l,-l) and y=(l,l) are in E and d(x,y)=distancebetween x and yis 212·

8.1.8 Theorem: For any subset E of a metric space (X,d), diam E = diam If

where E is the closure of E .

Proof: Let E be a subset of a metric space (X, d) . Since E ~ E, diam E ~ diam Ii;. (since
/

the set S= {d(x,y)jx, y E E} is contained in the set T~ {d(x,~)/X,YE E}).

'\0



Let E>O. Let p.q e E. By Theorem 4.1.35, there exist points x,Y in E such that

So, d(p,q)~d(p)x)+d(x,y)+d(y,q)

<E+diamE

Hence diam If :::;E + diamE

Since E is arbitrary,

diam E :::;dian E.
o

Hence the Theorem.

8.1.9 Theorem: Let {xn} be a sequence in a metric space (X, d) . For each positive integer n ,
write 0

Then, {xn} is a Cauchy sequence if and only if

lim diam En = 0
n

Proof: Assume that {xn} is Cauchy sequence. Let E>O. Choose EI such that O<EI <E . Since'. - '

{Xn} is Cauchy sequence, there exists a positive integer N such that
- • o' " ~.'I '

()

Fix n such that n ~ N . Now,

o

and hence

Thus

ne N => diam Z; <E
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Hence Jim diam En = 0
n---j.oo

Conversely assume that lim diam En = O. Let E> O. So, there exists a positive integer N
n

such that

n e N>:» diam En <E.

For n?N, m e N,

Hence {xn} is Cauchy sequence.

8.1.10 Theorem: Let {Kn} be a decreasing sequence of non-empty compact sets in a metric

space X such that

Jim diam Kn =0.
n---j.oo

00

Then n K; contains exactly one point.
n=l

00

Proof: Clearly, the sequence {Kn} has F.I.P. By Corollary 5.1.8.1, K = n Kn"* ¢ Suppose
. n=l

K contains more than one point. Then diam X c-O (Let X,YE K be such that x"* y. So,

O<d(x,y)sdiamK. Since lim diam Kn =0, there exists'~ positive integer N such that
n

n?N ~diarri s; -cdiam K,

00

a contradiction (since K cK n for all n implies diam K sdiam K n for all n). Hence n K n
n=l

contains exactly one point.

8.2 COMPLETE METRIC SPACES

8.2.1 : A metric space (X, d) is called complete if every Cauchy sequence in X converges.



8.2.2 : Let (X,d) be a metric space. Let Y (7:- ¢)~ X. Y is called complete if (Y, d) is complete.

8.2.3 Example: By theorem 8.1.5, mk is complete. In particular m and a::(=m2) are complete .

.
8.2.4 Theorem: Every compact metric space is complete.

Proof: Let X be a compact metric space. Let {Pn} be a Cauchy sequence in X. Let

En = {Pm/m:2:n} . By Theorem 8.1.9,

lim diam En = 0
n

By Theorem 8.1.8, lim diam ~n = 0 .
n

Clearly, each En is a closed subset of X . By Theorem 5.1.5, each En is compact. Furhter,

for all n> 1. By theorem 8.1.10,

contains exactly one point P say. Now, we show thatpn ~ p.

Let E>O. Since

lim diam En = 0 ,
n

there exists a positive integer N such that

n:2:N =>diam En < E.

Now, n:2:N => Pn E En c En,

=>d(Pn'P)s diam En <E (since PEEn for all n:2:1)

<E

Thus,' every compact metric space is co_mp~ete.
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8.2.5 Theorem: Any closed subset of a complete metric space is complete.

l .
Proof: Let Y be a closed subset of a complete metric space X . Let {Pn} be a Cauchy sequence

in Y. So, {Pn} is a Cauchy sequence in X. Since X is complete') Pn ~ P for some P in X.

"Since Y is closed, P E Y, (by problem 7.1.21). Thus Pn ~ P in Y. Hence Y is complete.

In view of theorems 8.2.4 and 8.2.5, we have many examples of complete metric spaces.
The following theorem analogous to theorem 8.1.10.

8.2.6 Theorem (Cantor's Intersection Theorem) : Let {Fn} be a decreasing sequence of non-

empty closed sets in a complete metric space (X, d) such that diam Fn ~ O. Then

00

n Fn contains exactly one point.
n=l

Proof: To each positive integer n , choose a point xn in Fn :

{Xn} is a Cauchy sequence. Let E>O. Since diam Fn ~ 0, there exists a positive integer

N such that
..
n~N=>diamFn <E,

Now,

Hence {xn} is a Cauchy sequence.

Since·X is complete, xn ~ x for some x in X. Fix n ~}.

Clearly, the sequence {xm}m=n n+l is in the closed set Fn and converges to x in X., ,.....

By problem 7.1.21, x E Fn . Thus x is in every Fn i.e.

00

XE n Fn
n=l



~-------...,;;;,;,----~1 89 x= ccauctly S. & Complete M.s·b

Now, we show that

aon Fn
n=l

contains exactly one point. Let x, y be points in

such that x:t:y. So, d(x,y»O and

d( x,y)~ diam F, for all n 2: 1

Since diam Fn -) 0 , theJ%exists a/positive integer N such that

n 2:N ~ diam Fn <cf ( x, y) , a contradiction to d ( x, Y ).~ diam Fn for all n .

ao

Hence, n Fn contains exactly one point.
n=l

8.2.6.1 Note: Cantor's Intersection Theorem fails if we drop the hypothesis diantFn -) 0 . See

the following example.
o

8.2.7 Example: Consider the metric space (IR, d). We know that this is complete. To each

positive integer n , let Fn = [n, 00] . Clealry, {Fn} is a decreasing sequence of closed subsets of m.
, , .

and diam Fn = 00 (for any n 2: 1). Clearly, diam Fn -) 0 fails' and 0

aon F =A.nor.
n=l

So, in the hypothesis of Cantor's intersection theorem, the condition diam Fn -) 0 can not

be dropped.

8.3 SHORT ANSWER QUESTIONS \
8.3.1 : Is every convergent sequence a Cauchy sequence?

8.3.2 : Is every Cauchy sequence convergent?
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8.3.3 : Is every Cauchy sequence bounded ?

8.3.4 ~Is every convergent sequence bounded?

8.3.5 : The diameter of the set
\

E={x=(XI' X2) E m2 /lxd~2, IX21~3} in the metric space (m2, d) is _

8.3.6.: Let sn=(-lt(n::::l).ls {.('.1} a Cauchy sequence in m.

8.3.7 : Is every metric space complete?

8.3.8: Is every complete metric space compact?

8.4 MODEL EXAMINATION QUESTIONS .

8.4.1 : Prove that every Cauchy sequence in IRk is convergent (or) prove that mk is complete.

8.4.2 : let {xn} be a sequence in the metric space (X, d) . To each positive integer n , let

Prove that {xn} is a Cauchy sequence if and only if diam En ~ a as n ~ 00 .

I'

8.4.3: State and prove Cantor's Intersection Theorem.

8.5 EXERCISES
t

8.5.1 : Prove: If {En} is a sequence of closed and bounde,d sets in a complete metric space and

if

00

lim diam En = 0, then n En contains exactly one point.
n-'>W n:::1

8.5.2 : Suppose that X is a complete metric space, and {Gn} is a sequence of dense open

00

subsets of X. Prove 8aire's Theorem; namely, nGn is non-empty. (In fact, it is dense in X). (Hint
1

: Find a shrinking sequence of closed neighbourhoods En such that ~1 C G; and apply Exercise
8.5.1).



8.S,? : Suppose that {Pn} and {qn} are Cauchy sequences in a metric space X . Prove:
I

(a) The sequence {d (Pn, qn)} is a Cauchy sequence in IR.

(b) The sequence {d (Pn,qn)} converges (since ill. is complete).

8.5.4: Let (X,d) be a metric space. Let G' be the set of all Cauchy sequences in X.

{Pn} ~{qn} if and only if n~oo d(Pn' qn) = 0. Provethat-isanequivalencerelation

on G'.

(b) Let X* be the set of all equivalence classes. If P E X* , Q E X* , {Pn} E P, {%}E Q ,
define

which exists (by Exercise 8.5.3). Show that t:.(p, Q) is independent of the choice of

{Pn} E P and {qn}E Q (i.e. if {Pn}, {p~} E P and {qn}, {q~}EQ then

lim d (Pn' qn) = lim d (p~, q~)) .
n n

Prove that ,:i is a metric on X*. -.

(c) Prove that (x*, ,:i) is a complete metric space.

(d) To each P E X, let {p} be the constant sequence (and hence Cauchy sequence in

X) so that {p} E G' . Let Pp be the element in X* containing the constant sequence

{p}. Prove that t:.(pp,Pq )=d(p,q) for all p,q in X. In other words the mapping

¢:X ~ X* defined by ¢ (p) = Pp is an isometry (i.e. a distance preserving mapping

. *of X into X ).

(e) Prove that ¢(X) is dense in X* and that ¢(X)=X* if X is complete.

By (d), we may identify X by ¢(X) and thus, X can be embeded in X*. We call X*
as the completion of X .

, "
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(f)· If (Xl> dl) is a metric space such that (X, d) can be isometrically embedded as a

dense subs pace in (Xl, dl) , prove that (x*, ~) is isometric to (Xl, dl) .

8.5.5: let X be the set of all rational numbers; define d ;X x X ~ m. by d (x, y) =Ix- yl. Then d
is a metric on X . What is the completion of X ?

8.6 ANSWERS TO SHORT ANSWER QUESTIONS
8.3.1 : Yes. See Theorem 8.1.2
8.3.2 :No. See the Note 8.1.2.1
8.3.3 : Yes. See Theorem 8.1.4
8.3.4: Yes. See Theorem 7.1.

8.3.5: Jl3

8.3.6: No. To each n;:::O:l, let En={sm/m;:::O:l}={-l, I}. Clearly diamEn=2 for all n . So,

lim diam En = 2:;t:0. By Theorem 8.1.9, {sn} is not a Cauchy sequence.
n

,Direct Proof: Suppose {sn} is Cauchy. Let O<E <1. So there exists a positive integer N such

that

We can choose n.m e N such that sn=-l, sm=1.So, ISn-sml<E means 1-1 -ll<E. i.e.

2 <E a contradiction. So, {sn} is not Cauchy.

8.3.7 : No. Consider the examples (0,1], [0,1) (with respect to the usual metric d) .
.

8.3.8 : No. Consider the example m.. This is complete but not compact as there is no finite sub

coverforthe open cover {( -n, n)}n=I,2, .....

REFERENCE BOOK :
Principles of Mathematical Analysis, Third Edition: McGraw - Hill International Editions: Walter·
Rudin.
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Lesson - 9

NUMERICAL SEQUENCES

9.0 INTRODUCTION
In this lesson, we study the notion of a monotone sequence and the necessary and sufficient

condition for a monotone sequence to be convergent (see Theorem 9.1.3). We also study the
upper and lower limits of a sequence (see Definition 9.1.5); their properties (see Theorems 9.1.6
and 9.1.7) and their relation when the sequence is convergent (see Theorem 9.1.10). Further, we
study the convergence of some special sequences (see Theorem 9.1.12).

n<n+l i.e. sn<sn+l foralln;

I
\

\

\

I
\

\

\

\

I

9.1 NUMERICAL SEQUENCES :

9.1.1 Definition: Let {sn} be a sequence of real numbers. We say that {sn} is called.

(i) monotonically increasing if sn ::;sn +1 for all n ;

(ii) strictly monotonically increasing if sn <sn+l for all n ;

(iii) monotonically decreasing if Sn2:Sn+l for all n ;

(iv) strictly monotonically decreasing if sn > .'In+1 for all n ;

(v) monotonic if either it is monotonically increasing or monotonically decreasing.

9.1.1.1 Note: Clearly. any monotonically increasing sequence {sn} is bounded below by sl; any

monotonically decreasing sequence {sn} is bounded above by sl'

9.1.2 Example: (i) If sn =n then {sn} is a strictly monotonically increasing sequence since

1
(ii) If sn =2: then {.~n} is a strictly monotonically decreasing sequence since

n

Sn >sn+l for all n .

9.1.3 Theorem: Let {SI1} be a monotonic sequence. Then {sn} is convergent if and only if it Is

bounded.
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Proof; We know that every convergent sequence is bounded (See Theorem 7.1. 7(c)). Now, we
prove the converse in two cases. '\ \ \

\ '.

Case (i) : Suppose {sn} is monotonically increasing i.e. sn Ssl1+1 for all n . Assume that {sn} is

bounded. So, it is bounded by k. i.e. the range E={sn/n::::: I} is bounded above by k. Clearly,

E;f.¢ . By the least upper bound property of m., lub E exists. Let S be the lub E. N~w, we show

that sn ~S.

Let E>O Clearly S-E<S. Since S is lub E, S-E is not an upper bound.of E. So, there

exists sN such that sN iS~E i.e. s-E<sN' Now.

Hence sn ~s..

Case (ii) : Suppose {sn} is monotonically decreasing i.e. sn :::::sn +1 for all n . Assume that {sn} is

bounded i.e. the range E={sn/n:::::l} is bounded. So, E is bounded below. Thus, E is a non-

empty subset of lR bounded below. By the greatest lower bound property of m., glb E exists in

m.. Let t= glb E. Now, we leave sn ~ t as an exercise.

9.1.4 Definition: Let {sn} be a sequence of real numbers. We say that
" ,;

(i) lim Sn =+co (or Sn ~+co) if for every real M ,there exists an integer N such that
n

n:::::N => sn>M

(ii) lim sn = - co (or sn ~ - co ) if for every reall\,{ , there exists an integer N such that
n· '

9.1.4.1 Note: Let {sn} be a sequence of real numbers. In view oftheorern 7.1.7(a), sn ~ S inm.

is equivalent to every neighbourhood of s contains all but finiteiy many of the terms of the sequence

{sn} . Actually, we have no right to define neighbourhood of + a: in m. or neighbourhood of - co in



lR (since +00 ~lR and -00 ~lR). Roughly speaking, if we define the neighbourhood of +00 in IR
as the interval

(a, + 00) = {x ElR/a<x}

where a Em, then, the above definition of Sn ~ +00 is equivalent to "every neighbourhood

of + 00 in m c~ntains all but finitely many of the terms of {sn}".

9.1.5 Definition: Let {sn} be a sequence of real numbers, Let

, ..b

Put s' = lub E,

The numbers S *, s* are called the upper and lower limits of the sequence {sn}. We use

the notation

lim sup sn =s* lim .inf sn =s*
n--)oo ' n--)oo

*' -,
9.1.6 Theorem: Let {sn} be a sequence of real numbers. Let E and s havethesame meaning

. ~

as in Detlnitlon 9.1.5. Then s * has thetollowinq properties:

(i) s" E E

(ii) If x> s* , there is an integer N such that n e N => sn < x

More over, s*· is the only number with the properties (a) and (b).

Proof: (a) Case (j) : s * = + 00: Then E is not bounded above; hence the sequence {sn} is not

bounded above. So, there is a subsequence {snk } of {sn} such that snk ~+oo. So, s*=+oo E E· .'

Case (ll) : S* is rea! : Then E is bounded above, and atleast one subsequentiallirnit exists B ..

Case [iii] ~ s* =- 00 : Then E contains only one element namely -00,. and there is no

subsequential limit. Hence, for any real M , sn >M holds for atrnost finite number of values of n.;
• ,h"·



(b) : Suppose there is a number x such that x> S * . Suppose the conclusion does not hold.

So, sn ~ x for infinitely many n . To each positive integer k, there is a natural number nk such that

snk ~ x Without loss of generality, we can assume that nl <n2 < Thus, {snk} is a

subsequence of {sn}. Let

~~ce~n~tr~e~f~or~D~is~ta~n~ce~Ed~u~c~at~io~n~~~~~~-'~~~~~~~~A~h~~N~2'~~~~~= 9.4__ c arya aqarjuna University ,

So, Sn ~-oo. SO, s*EE· Thus we have proved that s* EE in all cases.

Then yOEE . So, y:s; s* Since each snk ~ x, we have that y ~ x(>s*), a contradiction

Hence there exists a positive integer N such that

Uniqueness of s" with the properties (a) and (b) : Clearly s" has the properties (a) and (b).

Suppose z has properties (a) and (b). Since z has property (a) i.e. Z E E, we have that z z.s",

Suppose z -:;I:. S * i.e. z <S * . Choose x such that z <x < S * . Since z has property (b), there exists

a positive integer N such that

So, every sub sequential limit of {sn} is less than or equal to x i.e. x is an upper bound of

. . * * . . * . *E. Since S =lubE, S :s;x , a contradiction to x<s . Hence z=s .

Now, we state a theorem similar to the above theorem corresponding to s, and we leave

the proof as an exercise.

(a) S* E E

9.1.7 Theorem: Let {sn} be a sequence of real numbers. Let E and s* have the same meaning

as in Definition. Then s, has the following properties.

(b) If x<s* , then there is a positive integer N such that

n?N => x<sn'



Moreover,' S* is the unique number with properties (a) and (b),

9.1;8: Consider the example 7,1 ,5(f), The set E of all subsequential limits of {sn} is E = {-1, 1},

So S* = 1: S* =- 1 . H~re {sn lis not convergent

Pr60f : Exercise. \ .

9.1.9 Example: \J..et (~} be the sequence of all rational numbers in the metric space (IR', d) .

. Then,' the set of ~II S'ubs~~entialli~its of {sn} is E = lR . So, S* = +00, S* = - 00 . Here, {sn} is not

convergent,

9.1.10 Theorem: A sequence {sn} of realsis convergent if and only if

lim sup sn = lim inf sn i.e. S * = S* .n-joOO X-joOO

Proof: Let {sn} be a sequence of real numbers. Assume that {sn} is convergent i.e. sn ~ S for

some S E IR . So, every subsequer lof {sn} converges to S only. So, the set E of all SUbsequentiab

!imits is E~{s}. So, supE=inf E~s\. That is .

lirn sup .\'n = rim inf = s
n-joOO n-jooo

Conversely assume that
,

lim sup Sn = lim inf Sn = S (say).
\n-jooo n-s-»

,I * ;
r.e. S = s* = s .

Now, we show that sn ~s as n~oo.

Let E> 0 . Now, s ~E ::::S = S* . By Theorem 9.1.7, there exists a positive integer NI such that

n"?N}, =>s-f<sn

Now, s+c> s"ocsi<. By Theorem 9.1.6. there exists a positive integer N2 such that

i

Put N=Max{N1, N2}. Clear!y,



----- - n?N =>S-E<Sn <S+E

i.e.lsn -sl< E.

Hence sn ~ S as n ~oo

9.1.11 Theorem: If sn :::;In for n> N ,where N is fixed, then

lim inf sn:::; lim inf tn
n~oo n~oo

lim sup Sn :::; lim sup t;
n~oo n~oo

.
Proof: Let sn ::;tn for n e N . Let

a= lim inf sn>
n~oo

f3 = lim inf In
n~oo

a-fJ
We have to prove that a s; f3 . Suppose a i f3 i.e. a> fJ . Put E=-2-' Now,

a - E < a=>.3 a positive integer Nl 3

a+f3
i.e. -2-<Sn. (By Theorem 9.1.7).

Since f3:= lim inf tn' there exists a subsequence {Ink} of {In} such that Ink ~ f3 as
n

k ~ 00 . So, there is a natural number N2 such that

_ - _ a+f3 - a+f3 ..
snk :::;Ink <-2-- and snk >-2- a contradiction. So a:::; f3.

a+f3
i.e. /3 - E<tnk </3 +E = -2-'



Similarly, we can prove the other.

SOME SPECIAL SEQUENCES

9.1.12 Theorem:

(a) I. 1
If p>O then im -=0

, n~oonP

(b) If p>O then lim ~ p =J, n~oo .

(c) lim rr;;. = -1
n~oo

(d) If p> 0 and a is real, then

na
lirn = 0

n~oo(l+ pr
(e) If 1x 1<1, then lim x" =0

n~oo

. Proof: (a):Let p>O. Let E>O. Choose-a positive integer N such that

which is possible by the4!Pl;fChimedianproperty of real numbers. For n> N,

1
_1__ 01 = _1_::; _1_<.E
nP nP NP .

Hence, the conclusion.

(b) : Let p > 0 . If P = 1, then the conclusion is obvious since each term of the sequence is 1.

Case (i) : Suppose p> 1:Put xn = iP -1 .Then xn > 0 and by binomial theorem,

p-1
:::::>O<xn~--

n



1· l' P -1 °0::; rm Xn::; rm --= ,
n-':>oc 11-':>00 n

. . 1 . p-l
Since lim -=0, we have that hm--=0,

n-,:>oon 11-':>00 n

Hence, lim x, =0 i.e. lim t{P = 1
n n-':>oo

Case (ii) : Suppose p «) : So, l>l. By case (i),
p

. li 1 1r.e. rm nC =
11-':>00 ~ P

and hence

lim rfP = 1
11-':>00

(c): Put xn =~ -1. Clearly, Xn;:::O for all n . Now,

n(n-l) 2= l+n xn + xl1 + (by binomial theorem)
2

n(n-l) 2
?: xn

2

'~
.' 2
So, 0::; xn ::; --

n-l
(n2:2) .

Clearly, J n~1->0 as n -> 00. Hence xn -> 0 as n -> 00

i.e. lim ~ =1
n-':>oo

{NOW,we directly prove that xn ~ 0 as n ~ 00 . Let E >0 . Choose SlPosi'tiveinteger N (> 2)
such that

••



Now,

Thus, xn -+ 0 as n -+ co ].

(d): Let p:O and a be real. Let k be a positive integer such that k » a. For n i-Zk ,

(n> 2k).

Hence, the conclusion.

Since a -k <0 na -k -~ 0 as n -+ 00 (by (a».,

1 1 .
(e): Let Ixl < 1. Then N>l. ~,~:Ixl:=~+P for~ome e>» and hence

1

Now, lim I x In = lim 1 = 0 (taking a=O in (d»
n-?oo n-?oo (1+Pr

Hence the conclusion.

9.2 SHORT ANSWER QUESTIONS :
9.2.1 : Define a monotonic sequence.
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9.2.2 : Give an example of a monotonic sequence which is not bounded.

9.2.3 : Suppose a monotonically increasing sequence converges. What is the relation between th
limit of the sequence and its range?

9.2.4 : Consider the sequence {sn} given by

1 1 1 1
1,-1, -, - -,~, --, .

2 2 3 3

write S *'and S*.

9.2.5 : Consider the sequence {sn} .

1 1 1 1.. 1 1.
2' 3' 22' 32' 23' 33 , .

*Find sand s*.

9.2.6 : Let {sn} be a sequence such that lim sn = S .' Write the values of S * and s*.
n~ct:J

9.2.7 : L~ {.~n} be the sequence of all rational numbers in (0, 1) . Write s* and s*.

9.2.8: lim '<[;; =
n~ct:J

.' . na

9.2.9: If p>o and a is real then lim -(1 )n =
n~OC) +p

• 1,.. ,.

~.3 MODEL EXAMINATION QUESTIONS
9.3.1 : Define a monotonic sequence. Prove that a monotone sequence is convergent if and only
if it is bounded.

9.3.2 : Let {Sn} be a sequence of real numbers. Define the upper limit s* of the sequence {s~}.
Prove the following:

(a) There exists a subsequence of {sn} converging to s * .

(b) x= s" implies there exists a positive integer N such that



(c) s * is the unique number with properties (a) and (b).

9.3.3 : Prove that a sequence {sn} of reals converges if and only if both the upper limit s * and the

lower limit S* of the sequence {sn} exist and are equal.
',,:

9.3.4 : Prove the following:

(a) lim 'iP =1 (p>O)
n-+CXJ

(b) If p> ° and a is real then

9.4 EXERCISES

lim sup (an +hn):::;; lim sup an + lim sup hn·n-+CXJ . n-+CXJ n-+CXJ '

S2m-l 1
9.4.1 : Let {sn} be the sequence defined by sl = 0, s2m = 2 ,s2m +1 = '2 + s2m .

9.4.2 : Find the upper and lower limits of the sequence {sn}.

9.4.3 : Let {an} and {hn} be two real sequences. Prove that

lim inf (an + hn) 2': lim inf an + lim inf hn
n-+CXJ n-+CXJ n-+CXJ

9.4.4: Prove theorem 9.1.7.

9.5 ANSWERS TO SELF ASSESSMENT QUESTIONS
9.2.1 : See definition 9.1.1

9.2.2: Put sri =n. Then {sn })s monotonically increasing; but not oounded.

9.2.3: The limit of the sequence is lub of its range.
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9.2.4: s* =8* = 0

9.2.6: s* =8 = S*

9.2.7: s* =1, s* = 0

9.2.8: 1

9.2.9:0

9.6 REFERENCE BOOK :
, Principles of Mathematical Analysis, Third Edition, McGraw - Hill International Editions

Walter Rudin

Prof. P. Ranga Rao



Lesson - 10

SERIES

10.0 INTRODUCTION
In this lesson, we study the convergence of a series, Cauchy criterion for and the tests of

convergence of a series-namely, comparison test, Root test and Ratio test.

In this lesson, we study the convergence of a series, Cauchy criterion for convergence of a
series and the tests of convergence of a series-namely, comparison test, Root test and Ratio test.
Further, we define the number eand observe eas a limit of a sequence (see Theorem 10.1.14)
and we prove that e is irrational. Furhter, we study the Leibnitz theorem. We also study the absolute
convergence of a series and Riemann's theorem.

10.1 SERIES

10.1.1 Definition: Let {an} be a sequence of reals. If p and q are integers with p ~ q , we write

q
L an for ap +ap+l + ··.+aq.

n=p

10.1.2 Definition: The expression

al +a2 +a3 + .
or, more concisely,

00

L an is called an infinite series or just a series.
n=l

10.1.3 Definition: Consider the series

n

Put s = al +a2 + +a = L ak
n n k=l

(i) The sequence {sn} Is called the partial sum sequence of the series
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.(ii) If {sn} converges. to some S , then we say that the series

'. 0

00

L an converges to S and we write
n=1

00

o 2: an =S·
n=l

If {sn} is not convergent, then we say that the series
o

00

L an diverges.
n=1

00

10.1.4 Theorem: If L an converges thus lim an :::0
n=1 n

00

Proof : Suppose L an converges. So, the partial sum sequence {sn} (where
n=1

o

Sn =al +a2 + +an) converges (to S say). So,

Iimzz, =lim(sn -Sn-l) = n
n n

= lim Sn -hm sn -1 = s - s = 0
n n

00

-;0.1.5 Theorem (Cauchy's Criterion) : The series 2: an converges if and oly if for every t » 0 ,
/ n=1

.ere is a positive integer N such that

me. n e. N =>1Iak < ',
Ik=n

Sn =al + a2+ +an ) converges. So, {sn} is aCauchy sequence. So, for every t >0 there is a

00

Proof: Assume that the series L an converges. So, the partial sum sequence {SI1} (where
n=1



;;;(~~~A~n~·al~YS~i~S~)E.~~~~~~~~~~;~~) ~~~~~~~~~~~~~-heriesE
\,

'''.x,

'~.positive integer Nl such that

Put N = Nl +1. Then

m
m en e N':» I ak =ISm-Sn-ll

k=n

< t (since n e N= Nl + 1 ~ n-l ?:. Nl)

Conversely assume the condition. Let t >0 . So, there exists a positive integer N 3.

m t
m en e N~ L ak <-

k=n 2

Now,

m
m > n e N ~ ISm -snl= L ak

k=n+l

00

Thus, {sn} is a Cauchy sequence. Since m. is complete, {sn} converges i.e. L an
n=l

converges.

00

10.1.5.1 Note : Theorem 10.1.4 can also be proved using Theorem 10.1.5. Suppose L an'
n=l

converges. By Theorem 10.1.5, for every t >0 there is a positive integer N such that

m
m z n ?:. N ~ L ak < t

k=n

and hence n?:.N~lanl<t (taking n+m e N'),

Hence, an ~ 0 as n ~ 00 .
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10.1.6 Example: Consider the series ~,;.ClearIY, --+0 as n-+oo.But ~l-;; diverges (i.e.
fl ... ! n n=

not convergent) (See Theorem 10.1.11).
In view of Theorem 9.1.3 concerning monotonic sequences, we have the following.

10.1.7 Theorem: A series of non negative terms converges if and only if the partial sum sequence
is bounded.

00

Proof: Let L an be a series of non-negative terms (i.e. an?:.O for all n). Let {sn} be the partial
11=1

00 n
sum sequence of I an. So, sn = I ak . Since an ~ a for all n . the sequence {sn} is

n=1 k=1

monotonically increasing. Now,

00

I an converges <=> {Sn} converges
n=1

<=> {sn} is bounded (by Theorem 9.1.3)

Now, we prove the comparison test.

10.1.8 Theorem: (a) If lanl$Cn for n e No, where No is some fixed positive integer, and if LCn

converges then I·an converges (infact Ilanl converges).
;.# .

(b) If an ?:. d; 2': 0 for n 2': No, and if Idn diverges then Ian diverges.

00

Proof: (a) : Assume that Ian I $cn for n> No and suppose L cn converges. Now, we prove that
n=1

Lan converges.

00

Let I> 0 . Since L en converges, there exists a positive integer N such that
n=1

m In

m e ne N>» I Ck <I i.e. I Ck<t
k=n k=n



m m m
=> L ak ~ L \ak\~ L ck <I

k=n k=n k=n

00

Hence, I an
n=l

00 )

converges (of course L Ian I converges) (by Theorem 10.1.5).
n=l I

I
converqes, then I dn(b): Let an ?:.dn?:.O for n ?:.NO' Suppose Ldn diverges. If Lan

converges (by (a». a Contradiction. So, Ian diverges.

Now, we, consider the geometric series.

10.1.9 Theorem: If O~x<l, then

00 1
" x" __L...J I-x'

n=O

If x ?:. I, the series diverges.
"

/ Proof: Suppose O:s; x-c 1 : Let sn = 1+x+ x2 + + x" . Then

I_xn+l
S =---
n I-x

Since x" ~ 0 as n ~ 00 , we have that

I I
. 1
im Sn=--

n~oo I-x

00

So, I x
n

converges and
n=O

\ j fxn~_l

'S~U') Qsne=.xD--1 '. IT' -hXen', 2. n S' th
sn=I+x+x +·········+X =n+I. Ince sn ~oo as n~oo, e

'~ /

00 '-~

series L: xn diverges."" ~.,~
n=O



~~c~en~t~re~D~i~st~an~c~e~E~d~u~ca~t~io~n~~~~~~C::10.~6jE~~~~~~~CA~' C~h~a~ry~a}N§a~ga~r~jU~n~a~U~ni~v~er~si~ty'.....

Suppose x »I : Then sn =1+x+x2 + .. · .. ·+xn
~ n+l for all n . Since n+l ~oo as

n~oo,

lim s; =00

n

00

So, {sn} diverges and hence L x" diverges.
n=O

.--.-

10.1.10 Theorem: Suppose al ~ a2 :2a3 :2 :20 . Then the series

00

L an converges if and only if the series.
n=l

00I 2k a k = al +2a2 +4a4 +8as + converges.
k=O 2

/

Proof: Let

For n<2k, Sn~al+(a2+a3)"'" +(a2k+ ..... +a2k+l_l)

2 k::;;al+2a2 +2 a4 + ·+2 a2k

= tk . ---------------- (1)

1 2 2k-1:2 - al +a2 + a4 + + a k2 . 2

1
=:'«2 .

i.e. 2sn :2tk --------- (2)

Now,

00

I an converges <=> {sn} is bounded (by Thoerem 9.1.3)
n=l

... <



"":..~,

~~~~A~n~al!YS~iS~)~~~~~~~~~~;~)~~~~~~~~~~~~~C~S~er~ie~SO·~~· ~.

<=> {tk} is bounded (by (1) ~nd (2))

00

<=> L 2k a2k converges (by Theorem 9.1.3)
k=O -

1
10.1.11 Theorem: Lp converges if p > 1 and diverges if p::::l.

n

Proof:
,1 . ~ 1

If p s: 0 then Jim - = a) and hence L.. p
n nP n

p> O. Clearly,

diverges (by Theorem 10.1.4). Suppose
'" ~

Consider the series

1
Clearly 21- p < 1 if and only if 1- p<O i.e. p » 1. By Theorem 10.1.10, L -P converges if. n

and only if p> 1.

10.1.12 Theorem: If p >1, then the series

00 1
L P ,converges; if p::::l, the series diverges.

n=2 n(log n) -
Proof: Clealry,

1 1
--- > (for all n»O
n(log n)P (n+l) (log(n+l))P

Consider the series

00 1
= L

k=l kP (log 2)P
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1001= L
(1og2)P k=l kP

The given series converges if and only if the series.

1 00 1
(log 2)P k~l kP converges (by Thorem 1.1.10).

if and only if p> 1 (by Theorem 1.1.11)

THE NUMBER e .

10.1.13 Definition: e =
00 1
L-

n=on!

where n!=1· 2·3 n(if n:::::1) and O! = 1.

Note: Let

n1 1 1 1 11 1
S = L - = 1+1+-+--+ + < 1+1+-+-+···· ..+--
n k=ok! 1·2 1·2·3 . 1·2·3 .. ···n 2 22 2n-1

<1+1+1=3.

Clearly, I: ~I is a series of non negative ter~s ..'So, its partial sum sequence {sn} is
n=O .

. monotonically increasing. Since·sn<3 for alkh, we have that {sn }'is bounded, By Theorem 9.1.3,

00 1
{sn} converges and hence the series L I converges, we denote this bye, Clearly, 2 < e < 3 ,

n=on,

In the following theorem, we prove that e can be defined by means of another limit process.

. ( l)n
10.1.14 Theorem: nI~oo 1+;;. = e

n 1 (1 )nProof: Let sn = L -kl and tn = 1+-
k=O . n



.,'aAnalysis)

By Binomial Theorem,

[12 ()nn n-l 1 n-2 1 . 1t =1 +n·1 .- + n ·1 . - +·······+n -n q C2 ) Cnn n n

1 1 1::::;1+1+- +-+ ..... +- = S
2! 3! n! n :

So, lim s_up in-::::; Jim sn=e (by Theorem 9.1.11).
n-too n-too

If ne m,

Thus, e:S; lim inf tn:S; lim sup tn :s; e
n-too n-too rn .

In '21+ 1+ ~! (1 - ~) + + ~! (1-~)(1-~} -(1-r- m;1)
Letting n -) 00 , keeping r 'ixed, we have

1 1
lim inf In '21+1+-+·····+- = s

n-too 2! m! m .

Now, letting m -) 00 , we have that

e:S; lim inf tn
n-too

So, that e= lim inf tn = lim sup tn.
n-o«: n-s-» . .

Jim tn =e
'1..'il::

(by Theorem 9.1.10).

Hence, {In} converges and

00 1
10.1.14.1 Note: '-(:-)t {.'Iii} be the partial sum sequence of L n ,. Since e = I~,we have that

11=0 11=0 n!

lim.v; = e. Now,
n
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1 1
0< e -Sn = + + .

(n-fl)! (n+2)!

= n!n

10.1.15 Theorem: e is irrational

Proof.: Suppose e is rational. So, e = P where p, q are positive integers, q 1:; 0 . By the above
q

note 10.1.14.1.

1
O<q! (e -Sq) <-

q

By our assumption, q !e is an integer. Since

"( 1 1 Jq!s =q! 1+1+-+ +-
q 2! q!

o 1
is an integer, we have that q! (e -sa) is an integer which lies between a and - i.e. between a and. q

1, a contradiction. Hence e is irratianal.

I

10.1.16 'Theorem (Root Test) : Given Lan' put a= lirn sup Ian1-;; . Then
n~oo

o

(i) if a < 1, Lan converges
o

(ii) if a> 1'L an', diverges

(iii)

Proof: (i)

if a = 1, the test gives no information.

Let a <1. Choose f3 such that a < f3 <1. Since f3 >a , there exists a positive integer

N such that

o

I .

n ~ N => P > Ian r;;

o



Since 0</3 <1, the series I/3n converges (geometric series). By comparison test, Ian
converqes.

(ii) Let a> 1 . Since a = }!.:oo sup Ian I , there exists a subsequence {ank} of {an} such

1

that {r:lnk }~- -~ a as k ~ 00 . Since a> 1, Ian I> 1 holds for infinitely many n. So,

lim an:;::' 0 . By Theorem 10.1.4 I an diverges (i.e. not Convergent).
}1->cn

1] . 1
CC:'I1::ijer the series L--;;-and I---.Clearly a for both the series is 1. But I- is

n~ n n

00 1
diverqent and I.--'::;- is convergent (see Theorem L p converges if p>l). So,

,'1-' n=] n

this test gives no information when a = I .

/., I t

diverqes if :~.:.':~_LI~ I for n ~ no where no is some fixed positive integer.o an

la i 'Ial' . C "+]1 1 ,. 11+1 h . . f .If 11111 iru ----.---;.; :::.:urrr sup -- ,t e testqiv= s no In ormation.
11---';00 I an I r1---';CXJ an·

.. 1<711+11 .
..rne that.::~~ ~;:,ii' i-;~I< 1. Choose a number.fl such that

.eJrGr;~, .;;e eXiS'S e positive integer N such that

an+ i i
11:;' "'v- -. --'J' </3

an



IaN +1\ <,slaNI,

laN+21 < ,OlaN+ll < ,02
1aNI
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In particular,

00

'"' an '"'Since 0<,0 <1, z: jJ converges. By Comparison Test (by Theorem 10.1.8), L;an
n=!

converges.

(b) : Assume that there exists a positive integer no such that

Now, we show that an +0 as n ---* 00. Suppose an ---* 0 as n ---* 00 (Exercise 7.4.1). So,

lanl~IOI = 0 as n~CXJ (Exercise 7.4.1). So, the monotonically increasing sequence

lana I, Iana +11," convergence to O. We know that ev~ry monotonically increasing sequence

of reals if converges, converged to the I u b of its range. So, Ian I= 0 i.e. an = 0 for ne no . This is a

Contradiction. So, an -+ 0 as n ~ 00. Hence the series diverges.

(c) : We know that the series

.'

(i)
1L - is divergent and

11

1
(ii) I 2" is convergent.

11

For both the series, it is clear that

u an+l 1Hn -- =
11-';00 an

So, this test gives no information in this case.



1 1 1 1 1 1-+-+-+-+-+-+ .
2 3 22 32 23 33

10.1.18 Example: Consider the series

Here ( )

n
. . ~ a:?+l .. 2

lim inr -- = lim - = 0
n~oo an n~oo 3

lim inf ~an ~ lim 2~ 1 ~ ~
n~oo n~oo 311 ,,3.'

lim sup ~an ~ Jim 2~ 1 ~ ~
n~oo n~oo 2n ,,2'

lim sup_a_n_+_1 = lim (~)n = + 00

n~oo an n~oo 2

The root test indicates the convergence; the ratio test does not apply.

10.1.19 Example: Consider the series

1111111
-+1+-+-+-+-+-+-+············
2 8 4 32 16 128 64

1· . f an+l 1
where im ill --=-

n~oo an 8'

an+l
lim sup--=2 but

n~oo an '

lim ~ =!
n~oo 2

Root test indicates the convergence, where as ratio test does not apply:

Note: The ratio test is easier to apply than the root test as it is easier to compute ratios than nth
roots. Inview of the following theorem 10.1.20, whenever the ratio test shows convergence, the
root test also shows convergence; whenever root test is inconclusive, the ratio test is also
inconclusive.



10.1.20 Theorem: For any sequence {Cn} of positive numbers

C
1· . f n+lrm III -- ~

n~<X) Cn

lim inf nrc!:j n,
n~<X)

nr;::;- . Cn+1lim sup~Cn ~ lim sup --
n~<X) n~<X) Cn

Proof: Now, we prove the second inequality. Let

If a=+a then it is clear. Suppose a is finite. Choose p such that P >a .So, there exists

a positive integer N such that

In particular,

CN+1 ~ PCN,

so that lim sup ~ Cn ~ P -------------------- (1)
n~<X)

by Theorem 9.1.11.

Since (1) holds for every p >a, we have that

lim sup ~Cn ~ a.

Similarly, we can prove the other.



q q-l
L an bn = L An (bn-bn-1) + Aqbq - Ap_1bp.

n= p n=p

SUMMATION BY PARTS

1O~1.21 Theorem: Given two sequences {an}, {bn} , put

if n?O; put A-I =0. Then, if 050p50q, we have

q q-l
Proof: L an bn = L (An - An - I) bn + Aq bq

n=p n=p

q-l q-l
= L An bn - L An b., + 1+Aq bq

n=p n=p-l

q-l q-l
= L An bn - L An-l bn + Aq bq

n= p n= p

q-l q-l
= L Anbn- I An bn+l-Ap-lbp +Aqbq

n=p n=p

q
= L An (bn -bn+1) - Ap-1 bp + Aq bq.

n=p

10.1.21.1 Note: The conclusion of the above theorem 10. 'i.21 is called "partial summation formula".

This is useful in the investigation of the series of the form Lan bn, particularly when {bn} is

monotonic.

(a)

(b) bo>h..>·························-Vl- ,

10.1.22 Theorem: Suppose

The partial sums An of Ian form a bounded sequence;



z: I

(c)

Then Lan bn converges.

Proof: Since {An} is bounded, there exists a positive number M such that IAnISM for all n .

q-l .
= L An (bn -bn+I)+Aqbq .: Ap-l bp

n=p

Let t > O. Since lim b.; = 0 , there exists a positive integer N such that
n~~ .'

q
Now, q> p > N -=> I an bn

n=p

By Cauchy criterion(10.1.5), Ian bn converges.

10.1.23 Theorem (Leibnitz) : Suppose

o

q-l
s M L (bn -bn+l)+bq+bp

n=p o

(c) lim en= 0 . Then "en converges.n~~ L.

(b) C2m-1? 0, e2m so (m=1,2,. ·.-).

Proof: Take an =( -ij", bn = len I· Now, the partial sum sequence {An} of Lan is bounded

(since An =-1 or 1). Clearly,



Since lim en = 0,
n-too

we have that

Lan bn converges
I '

lim bn =0.
n-too

By Theorem 10.1.23

i.e. Len converges.

ABSOLUTE CONVERGENCE

10.1.24 Definition: The series L an is said to converge absolutely if L IanI converges

Theorem: If l:an converges absolutely then l:an converges.

Proof: It is clear that

m m·
L ak ~ L lakr

k=n k=n

Now the theorem follows from Cauchy's criterion.

or

I an converges absolutely

, => Llanl converges (by definition) ,
o
=> for every t >°,there exists a positive intege? N such that

m
"m e n e N':» L lakl<t

k=n
(by Cauchy criterion)

m m
, => l: ak ~ l: lak I < t"

k=n k=n

=> Lan converges (by Cauchy criterion 10.1.5)



n
en = L ak bn-k

k=O
(n=O ,I 2 ), , ,
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1
Note: The converse of this theorem is not true. We know that the series I- is diverqent. By

n

(-It
Leibnitz theorem, I-- converges.n

ADDITION AND MULTIPLICATION OF SERIES

10.1.25 Theorem: If Ian =A, and Ibn =B, then

L C an = C A for any fixed c .

n n
Proof: Let Lan =A , I bn = B, An = I Gk, Bn = I bk .

k=I k==I

~ So lim An =A, lim B; =B
, n~oo n~oo

Then, lim (An +Bn) = lim An + lim Bn = A +Band
n~oo n~oo n~oo

lim CAn = CA.
n~oo

as {An+Bn} and {CAn} are partial sum sequences of I(an+bn) and ICan
respectively.

00 00

10.1.26 Definition: Given I an and I bn , put
n=O n=O

00 00 00

We call the series I C; as the product of the series L an and I: b; .
n==O r;=() n=O



00 00

. " an z" "b n10.1.26.1 Note: Consider the product of the power series L- and L- n z i.e.
n=O n=O

=(ao +alz+a2 z2 + ) (bo +b1z+b2z2 + )
.•.

2=cO + clz +c2z + .

The product defined in the definition can be obtained from this by taking z = 1 here.

00 00

10.1.26.2 Note: Consider the series Lan, L bn.
n=O n=O

n n 00 00

Let An =L ak> Bn =I bk (n =0,1,2, ) . Let I Cn be the product of I an and
k=O k=O n=O k=O

00 (-It 1 1I--=1--+-- ·
n=o~n+l 12 13

00 00 00L bn . S~ppose L an = A and L bn = B i.e. lim An = A and lim Bn = B . We do not have
k=O n=·O n=O n n

n 00

C; = I Ck :;t:An Bn . Now, the question is - Is L Cn =AB? Now, we show that the series
k=O n=O

00L en may diverge. Consider the following.
n=O

10.1.27 Example: Consider the series

By Theorem 10.1.23 (i.e. Leibnitz's Theorem), this series is convergent. Consider the product
of this series with itself and we obtain

00 [00 (-lr]( 00, (-lr]ICn= I- I-
n=() n=O ~n+ 1 n=O ~n+l
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n 1
Here, Cn= (-lr I -,=====

k=o)(n-k+l)(k+l)

--.. n 2 2(n+ 1) ( 1 J
We have ILnl? L -- = = 2 1--

k=On+2 n+2 n+2

So, C; -It ° as n -+ 00. Hence, the series diverges.

10.1.28. Theorem: Suppose

ao

(a) L an converges absolutely,
n=O

(b)

(c)

(d)

n
en = I akbn~k (n=O,I,2, -)

k=O

ao

Then L Cn=AB
n=O

(briefly, the product of two convergent series is convergent whenever the convergence of at
least one of these two series is absolute).
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Proof: Put

n n n
An= L ak> Bn= L bk>Cn= L ck> f3n=Bn.LB

k=O k=O k=O .

Now,

C; =ao bo +(ao q +al bo)+··· +(ao bn +al bn-1 + ·+an ho)

=AnB +ao f3n +ad3n-l + ·+anf3o

=AnB+Yn

where Yn =ao /3n +al Pn-l + ··+an /30·

We have to show that Cn ---+ AB . Since An ---+ A ,we have that AnB ---+ AB . To prove the

conclusion, it is enough if we prove that

lim Y n =0
n~oo

00

Put a= L lanl.
n=O

00

Let t>O. Since L bn =B, we have
n=O

lim Bn =B i.e. lim /3n =0
ri--vco J1~00

So, there exists a positive integer N such that

n;:::N=>If3nl<t.

::;Ipo an +..... ···+f3n an-NI +tlan-N-ll+· .... +tlaol

=/poan +············+PNan-N/ + t(/an-N-l/+·····+/ao/;



•

Keeping N fixed, and letting n ~ a ,we have

lim s~plrn I ~ fa
n~oo '

since ak ~ 0 as k ~ 00 . Since t is arbitrary, we have

lim sup Irn I = 0
n~oo

and hence lim rn = 0 '''-,
n ~'"

We now state the theorem (followiri~) due to Abel without proof.",
10.1.29 Theorem (Abel) : If the series Ian ,\2::bn' Ic; converge to A,B, C respectively and

C =ao b + +a bo (n=O 1 2 ) then\C = ABn n n , , , " .

REARRANGEMENTS
10.1.30 Definition: Let {kn} , n = 1,2,,' be a sequence of positive integers in which every

00

positive integer appears exactly once. Put a~=alq (n=1,2, ). We say that L a~ is a
n=l

rearrangement of Lan .

10.1.30.1 Note: Let L a~ be rearrangement of I an . Let {sn},. {S~} be partial sum sequences

of Lan and La~ respectively. These two partial sum sequences are entirely different.Thus, we

are led to the problem of determj51ing- under what conditions all the rearrangements of a convergent
series will converge and whether the sums are"same.

10.1.31 Example: Consider the series

00 (-1r-1 1 1L = 1--+--··············
n=l n 2 3

Clearly, this series is convergent by Leibnitz theorem and we know that this series is not
absolutely convergent. Consider the fearrangement of this series " .

o
o

('



,11111111
1+---+-+---+-+---+··········

3 2 5 7 4 9 11 6

00 (-lr-1
in which two positive terms are always followed by one negative term. Let s = I ~--'---

n=l n

1 1 5 1 1 1
Then, s <1--+-= -, since -- +---->0 for k:::::l.So,

2 3 6 4k-3 4k-l 2k

1 1 1s3 <05'6<s9 < .

where s~ is the partial sum of the rearrangement. So,

1· 1 1 5im sup 5n >53 =-
n~oo 6

5
Thus, this rearrangement - even if it converges to t then t =1= 5 ( infact t ~"6>s )

10.1.32 RiemanK,s Theorem: Let I an be ,a sequence of real numbers which converges but

not absolutely. SL~pose

14 c'; ..

Thet, there exists a rearrangement I,a~ with partial sums s~such that

lim inL~~=a,Olim sups~=/3
fJ~~.I) n~oo

Proof: Let }D ;o_lanl+~ifl_q Janl-an (n=l 2· ... ·····)
n 2' n 2 ' , .

Then Pn -qn = all' Pn +q,; =Ianl, Pn :::::0, qn:::::O.The series IPn' Iqn - both must

diverg8

'l,)f.;; wise at:;c~;::stone of these two must converge.

:Ui-:,Jose both LPn and Iqn are convergent. So, I/an/= I(Pn +qn)=IPn + Iqn
is ccnverqent, a Contradiction.



N N N N
L an = L (Pn - qn) = L Pn - L qn
n=1 n=1 n=1 n=I'

Suppose'IPn diverges and 'Iqn converges. Since

and the divergence of I Pn ' we have that I an diverges, a Contradiction. Similarly, even if LPn

converges and I qn diverges we have a Contradiction.

Hence, both 'I Pn and 'I qn must diverge.

Let II, P2, ·.· denote the non negative terms of 'I an in the order in which they occur,

and let Q], Q2,"""" be the absolute value of the negative terms of I an ' also in their original

order. The series 'I r; and LQn differ from I Pn, I (jn only by zero terms and nence divergent

Now, we construct sequences {Inn}' {kn} such that

which is clearly a rearrangement of Ian satisfying the requirement.

- Choose real valued sequences {an}, {.Bil} such that

Let mI, ki be the smallest positive integers such that
(

R] +F2 + ..... +P. -°1-02 - ..... - OJ,' <a··rill ~ ~ ~\I!'

P,I +F2 + P - 01 - - 0- -';-P . I +- ....••.... + P,·/I), > /32,
Inj ~ .. -."1 I!I;',-,

Let 1n2, k2 be the smallest positive integers suc't that

R1+F2+ ·+P -°1-"",- 0,. +P. I+ -v P:> -0,. 1- _-0,. <a"ml - -'''1 ·1Il1+· . 1//2"-"1+ -"2 L'

and continue this way. This is possible since I t; and I·O!, diverge.



Let Xn, Yn uenote the partial sums of {he serie s

11 +P2 + +Pml -Q1 -Q2 - Qkl +Pml +1 + +Pm2 -Qkl +1 - -Qk2 + .

which is a rearrangement of Lan ending with the terms Pmn, - Qkn respectively. Then

(since m; and kn are least positive integers with their respective choices).

Since I an converges, an ~ 0 as n ~ 00 . Hence Pn ~ 0 and Qn ~ 0 as n ~ ~.' Since

fln ~ fl and an ~ a as n ~ 00, we have that xn ~ fl and Yn ~ a, (by (1)

It is clear that no number less than a or greater than fl can be a subsequential limit of the

partial sum sequence {s}J } of the series.

~esubsequences of {s~} and hence,

Jim sups~ = f3
II-}oo

10.1.33 Theorem : If I:!, s a series of complex numbers which converges absolutely, then

ellery rearrangement of ~ "; converges and they all converge to the same sum.

Proof: Let Lan be a sequence of complex numbers converging absolutely. Let La~ be a
;

rearrangement of Ian. Let .\'11 and '~';1 be the nth partial sums of the series Ian and Ia~
respectively. Let t > 0 . Since IOll converges absolutely there exists a positive integer N such

that

m
m 2': n 2': N => L lai I < t .

'i'=/1

Since I a~ is a rearrangement, we havethat dh = akn (n= 1,2,····.···)·. Choose P such

that the integers 1,2, "" , N are all contained in k}, k2' ." , kp. Then, if n » p, the numbers'

al,' " aN will cancel in sn - S:1 and hence 15/1 - s~ I::;; t . Since {Sn} converges, we have that
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s~ also converges and converges to the same limit of {Sn}.

10.2 SHORT ANSWER aUEST\ONS

1
10.2.1 : Forwhatvalues of p, the series Lp converges?

n

10.2.2 : Does lim an = 0 imply the convergance of Lan ?
n

10.2.3 : State Root test

10.2.4 : State Ratio test

10.2.5 : State Comparison test.

co

" xn
=?10.2.6: When Os x-cl, 6 .

, n=l

10.2.7 : Define the number e .

10.2.8 : Prove or disprove the following statement: Every series converges absolutely.

10.3 MODEL EXAMINATION QUESTIONS
1. State and Prove Cauchy criterion for series.

f: xn =_1_
I-xn=O

2. If I an converges, prove that lim an = O. What can you say about the Converse?
n

Justify.

3. Define the Convergence of series. If O:s: x < I, prove that

co 1
4: Prove that the series ~ p converges if p >1 and diverges if .p s: 1.

n=l n

lim (I+-.!.Y = e
n~oo n)

/ 5. Define the number e and prove that



6. State and Prove Root test.

7. State and Prove Ratio test.

8. State Root test and Ratio test. Prove that the convergence of a series by Ratio test
implies the convergence of the same by Ratio test. Give an example of a series which is
convergent by Root test and the Ratio test is in conclusive.

9. State and Prove Leibnitz's Theorem.

10. Define - rearrangmenet of a series. If Ian converges absolutely, Prove that all

rearrangements of L an converge and converge to the sum Lan'

11. Let L an be a series of real numbers which converges but not absolutely. Let a, f3 be

numbers such that

-00 :::::;a < /3 :::::;00

Prove tha: there exists. a rearrangement L a~ with partial sums s~ such that

Jim inf .,}; = 0, 11m sups~ =/3
/1-") f .-)XJ

10-4 EXERCISES

'10.4. 'i :.Test the converger Ice of ;he series Lan if

(a)

(b J- r:
, n+l-vn

(In'=---' .o'

n

(c)

10.4.2 : If == an is a series of !';(jrl";"98tive terms such that L an Converges, prove that the series

,~J~;'.~
l -- Converges .

...:•.• .I l/

.~0-,<,:;' . if > : (in converges and if ::-Ic sequence {hn} is monotonic and bounded prove that I an hn



(a) (i) " anc: l+a
n

diverges.
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n

10.4.4: Suppose Ian diverges, an >0 and put sn = I ai . Prove the following:
i=1

(ii) . " anc: divergessn

(iii)
"anc: 2 converges

Sn .

(b) What can you say about

10.4.5 : Suppose I an converges, an > 0 and put

(b) " an .c: ~ Converges.-i»

Prove the following:

(a)
a 0I zn. diverges
rn

Prove that the Cauchy product of two absolutely convergent series converges absolutely.

10.·S.ANSWERS TO SHORT ANSWER QUESTIONS

~1..0.2.1: p>l

1 1
.-10.2.2: No. Clearly, lim - = 0 and the series L- diverges.

n400 n . n

10.2.3 : See statement of Theorem.



10.2.4 : See statement of Theorem

10.2.5 : See statement of Theorem

. xl
10.2.6: /(l-x)

10.2.7: See definition

00 (-It . . .
10.2.8 : No, Consider the L --. We know that this series converges (by Leibnitz theorem)

n=l n .

1
and this series does not converge absolutely (since I- is divergent) .. : . n
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Lesson: 11

LIMITS OF FUNCTIONS AND CONTINUOUS
FUNCTIONS ON· METRIC SPACES

11.0 INTRODUCTION
In this lesson the notion of limit of a function from one metric space into another is introduced.

If.X and Yare metric spaces and E <:;;;;; X and f maps E into Y and p is a limit point of E , then

lim f (x) = q if and only if lim f (Pn ) = q for every sequence {Pn} in E such that Pn * P forx~p n~oo. .

all nand lim Pn =: P is proved. Next the continuity of a function from a metric space into a metric
- n~oo

space is defined. It has also been proved that if X and Yare metric spaces, E <:;;;;; X and f maps

E into Y and if pEE is a limit point of E, then f is continuous at P if and only if

;~p/ (x)= / (p) . Further it is proved that a mapping / of a metric space X into a metric space

Y is continuous on X if and only if /-1 (V) is open in X forevety open set V in Y.

11.1 LIMITS OF FUNCTIONS:

11.1.1 Definition: Let (X, dd and (Y,d2) be metric spaces; suppose Ec;;;,X; f maps E into

Y and P is a limit point of E . If there is a point q E Y with the property that for every E> 0, there

exists a 6>0 such that d2(f(x),q)<E for all points xEE forwhich 0<d1 (x,p)<Ci, then we

write f (x ) ~ q as x ~ P ,or lim f (x) = q .
x~p

11.1.2 Note: Suppose X =Y =m andd1 (x, r) = d2 (x, y) =Ix- yl for all x, yEm and also

suppose E <:;;;;; m, p is a limit point of E. Then f: E ~ m is said to have a limit as x ~ p , if there

is a q E m satisfying the condition: for every E > 0, there is a 6> 0 such that II( x) - ql <E for all

xEE with O<lx-pl<Ci.

11.1.3 Example: Suppose /: m ~ m is defined by



if x=t:- 2

if x=2 . Then lim f(x)=4:
x~2

Let "E>O. Take 0 =E. Then for any x with 0<lx-21<0

If(x)-41=lx+2-41 =lx-21<0 = E.

:. lim f(x)=4
x~2

11.1.4 Theorem: Let (X,dd and (Y,d2) be metric spaces and EcX and 1maps Einto~

and P be a limit point of E . Then lim 1(x ) = q if and only if lim f (Pn ) = q for everyseCluenc.e»
x~p "X~OO' " .

{Pn} in E such that Pn =t:-p for all nand lim Pn = P .
x~oo

.. , /

Proof: Given that X, Yare metric spaces and E ~ X and 1maps E into Yandpis a limit

point of E.

Suppose lim I(x)=q
x~p

Let {Pn} be any sequence in E such that Pn =t:-P and }~ooPn = P

Let E>O. Since !~pf(x)=q, there exists a 0>0 such thatd2(f(x),q)<E if xEE

and O<d1(x,p)<0 --------------- (1)

Since Pn =t:-P and lim Pn = p, there exists a positive integer N such that
n-~oo

Then, by (1), d2 (I (Pn), q) < etor all n ~ N .

.'. lim I(n)=q.
n~oo

Conversely suppose that !~p f (x) =t:-q .

Now we will show that there exists a sequence {Pn} of points in E such that



Pn:- P, J~<X)Pn = P does not imply limo f (Pn ) = q.
n-+oo

Since lim f(x)*-q,thereexists E>O such that for every 0>0, there exists a point
x-+p

xEE(dependingon 5) with d2(f(x),q)~E but O<d1(x;pj.o. This implies for each 5n=~
n

(n=l, 2, ), there exists a point Pn E E such that di (f(~n)' q) ~ E but O<d1 (Pn'P )<5n .

Consequently lim f (Pn ) *- q .
n-+oo

Now we will show that Pn ~ P for all n and Jim Pn = P .
n-+oo

Since 0 <d1 (Pn' p) <: ~, we have Pn ~ P for n = 1,2, .
. n

1
Let E> O. Choose a positive integer N such that N < E. Now for. all .n ~ N, consider

This implies d1 (Pn, p) < E for all n ~ N and hence Jim Pn= P .
n-+oo

Thus there exists a sequence {Pn} of points in E such that Pn *- p, lim Pn = P butn-+C1J

lim f(Pn)~q .
.n-+C1J

11.1.5 Corollary: Suppose f is mapping of a metric space (X,dl) into a metric space (Y,d2).

If lim f (x) exists in Y, then it is unique.
x-+p

Proof: Suppose lim f (x) exists in Y .
x-+p

Suppose lim f(x)=ql and lim f(X)=q2' where ql,q2 EY.
x-+p x-+p
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- Let {Pn} be any sequence C;f points in X such that Pn :;t:. P and }~coPn = P . Then by the
./

above theorem" lirn f(Pn)=qI and lim I(Pn)==q2' So {/(Pn)} is 0, sequence of points in
. n~co n~co

Y such that lim 1(Pn) == qI and lim 1(Pn) == q2 _Since limit of a sequence is unique, we have
n~co n~co .

11.1.6 Definition: Let X be a metric space and let 1 and g be complex valued functions

defined on X _Now we define f x.g, I g, Ii as follows:

Let XEX. Define (/±g)(x)==/(x)±g(x)

and

Ig ( x) ==1(x ) g (x)

I (x) == I (x) if g ( x):;t:.O.
g g(x)

11.1.7 Definition ; Let / and g betunctions defined from me-tric space X into mk . Then we
define

(I ±g)( x)= I( x) ±g( x)

(/·g)(x)==/(x), g(x)

and (..l/)(x)=..l/(x) for any real ..l and for all XEX. If 1and g are real valued functions and

if I(x)~g(x) for atl XEX, wewritef~g·

11.1.8 Theorem: Suppose (X,d) is a metric space and I,[? are complex valued functions

defined on E ~ X . Suppose P is a limit point of E . If lim 1(x) == A and lim g (x) == B , then
. x~p x~p

Jim g(x) = B, then
x~p

(i) lim (I +g)(x) == A+B
x~p

(ii) lim (/ g)(x) == A B
x~p



(iii) lim (fJ(x) = A provided B *0
x~p g B

Proof: Since lim f (x) =A, by Theorem 11.1.4, we have lim f (Pn ) = A for any sequence
.' x~p n~oo

{Pn} of points in E with lim Pn = P and Pn *P for all n .
n~oo

'". Since Iim g ( x) = B, by Theorem 11.1.4, we have
x~p

lim g(Pn)= B for any sequence {p~} of points in E with lim Pn = P and Pn *P for all n .
n~oo . n~oo

(i) Suppose {Pn} is a sequence of points in E such that Jim Pn = P and Pn * P forn-+oo

all n .

= lim f(Pn)+ lim g(Pn)=A+B.
n~oo n-+oo

Therefore lim (f -(-g)( x)= A + B
x-+p

(ii) Suppose {Pn} is any sequence of points in E1 such that lim P» = P and Pn* P
n~oo

for all n .

(iii)

Therefore lim (f g )( x) = AB
r~p \

Suppose {Pn} is any sequence of points in E such that lim Pn= P and Pn * P
n~oo \

for all n .
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Therefore lim (fJ(x)= A .
X~OO g B

11.2 CONTINUOUS FUNCTIONS

11.2.1 Definition: Suppose (X,dd and (Y,d2) are metric spaces, E eX, pEE and f maps

E into Y . Then f is said to be continuous at p if for every E> O. There exists a 0> 0 such that

d2 (f (x), f (p )) <E for all points x E E for which d1 (x, p) <0. If f is continous at every point of

E, then f is said to be continuous on E .

.11.2.2(J)efinition : Let (X,d) be a metric space and Es; X. A point pEE is said to bean

isolated point of E if there is a neighbourhood N S (p) of P such that N S (p) has just one point

p of the set E.

That is No(p) = {x. E E/d(x, p)<5}={p} and

o
{x E E/O<d(x,p)<5}=ifJ

Therefore if P is an isolated point of E, then the condition, in definition 11.2 1,

d2 (/( x), f(p ))<E for all x E E with d1 (x,p )<0 holds obviously. Hence if pEE is an isolated

point of E j' then f is continuous at p .

11.2.3 Example: Define f: IR ~ IR as

if x -j: 2

if x=2

Then lim f (x ) = 4 . But f (2) = 0 . So f is not continuous at x = 2 .
x~2 .

/



--C Analysis ) ~ CL. F. C.on Metric Spaces);-

11.2.3 Example: Define f:IR~IR as f(x)=x+2 for all xEIR. Then lim f(x)=4 and is
. x~2

equal to f (2). So f is continuous at x = 2 .

11.2.4 Theorem: Let (X, d1) and (Y, d2) be metric spaces, E eX, and f maps E into y . If

pEE is a limit point of E, then f is continuous at p if and only if lim f (x)= f (p).
x~p

Proof: Consider f is continuous at p if and only if for each E > 0, there exists a 6> 0 such that

d2(f(x),f(p))<E for all points xEE for which d1(x,p)<6 if and only if lim f(x)=f(p)
, x~p

(': p is a limit point of E).

11.2.5 Theorem: Suppose (X, d1), (Y, d2) and (Z, d3) are metric spaces, E <:;;;; X , f maps E

--rnto y, g maps the range of f, f (E), into Z and h is the mapping of E into Z defined by

h( x) = g(f (x)) for all x E E. If f is continuous at a point pEE and if g is continuous at the

point f (p) , then h is continuous at p .

Proof: Suppose f is continuous at pEE and g is continuous at the point f (p ) .

Let E>O. Since g is continuous at f(p), there exists an 17>0 such that

d3(g(y),g(f(p)))<E whenever d2(y,f(p))<17 and YEf(E) ---------(1)

Since f is continuous at p , there exists a 6 > 0 such. that d2 (f (x), f (p ) ) <17whenever

d1 (x, p) <6 and x E E --------- (2).

Suppose x E E such that d1 (x, p) <6. Then consider

(from (1) and (2)}.

Thus for E> 0, there exists a 6> 0 such that

Therefore h is continuous at p .



.,...--,"'Centrefor Distance Educatioil',,<::;~~~~,....-------.,-
~.' -----,- --I.,. 1~.8F-----~

. In the above theorem, h is called the composition of 1and g and we write h~ go f .
(Acharya. Nagarjuna UniversitiE

11.2.6 Theorem: Suppose (X,d) is .··c·)tic space and 1, g are complex valued functions

defined on X. If 1 and g are both cc . ;0 !~'('" at p E X, then 1+s. 19and Ii (if g(p) *0)

are continuous at p EX.

Proof: Suppose (X,d) is a metric so .". ,',,:! f,g are complex valued functions defined on X

is continuous at p . So f +g, fg and <:,,'2 continuous at p .
r.~ .'

Case (ii) : Suppose p is a limit point of X .

By theorem 11.2.4, 1is continuous at p if and only if lirn f (x)= f (p) and g is
x~p

lim g( x)= g(p). Then by theorem 11.1.8,
x~p

continuous at p if and only if

lim (1+g)(x)= 1(p)+ g(p) = (1+g)(p)
x~p

..f +g is continuous at p . (By theorem 11.2.4)

Consider lim (1g)(x) = 1(p)g(p)=(1g)(p) (By theorem 11.1.8)
x~p

By theorem 11.2.4, fg is continuous at p.

Suppose g (p) * O.

Consider lim (1J{x) = 1{(P)) = (1J(p) (By Theorem 11.1.8)
x~p g g p. g

f . .
By theorem 11.2.4, - IS continuous at p .g

11.2.7 Theorem (a) : Let ii,h .....,ik be real functions on a metric space X , and let 1be the

mapping of X into IRk defined by f(x)=(fi (x), h (x),. .... ·,fl( (x)) (XEX);



then / is continuous if and only if each of the functions /1, [i.:': ik is continuous.

(b) : If / and g are continuous mappings of X into m.k, then / +g and i g are
continuous on X .

Proof: Given that f is mapping of a metric space (~,d) into m.k defined by

/(X)=(/l(X), h(x), ·····,/k(X)) where ii,h,········,ik are real valued functions defined on

X.

(a) : Assume / is continuous on X .

Let x E X and let ~ > O. Since / is continuous at x , there exists a 5> 0

such that I/(x)- j(y)I<E ~henever d(x,y)<5.

[

k 2Jh
=> i~/fi (x)- Ji (y)1 < E for d(x,y)<5.

=>Ijj (x)- jj (y)I<E for d(x,y)<5 and for 1~i~K ..

=>Ji is continuous at x for l..:;,i":;'n .

Since x E X is orbitrary, jj is continuous for 1<i <k .

Now, we will show that / is continuous on X .

Let x E X and let E> O. Since each jj is continuous at x, there exists a 5j > 0

such that I..ti(x)- jj(y)l<lk whenever d(x,y)<5j for l..:;,i..:;,k.

Take 5=min{51,52, .... ·,5k}.

Suppose d(x,y)<5. Then d(x,y)<5jfor l~i~k. /.

=>!./i(x)-./i(y)!<lk forl~i~k.

2 (k 2J E2
Consider !J(x)- /(y)1 = lj~ljj(x)- jj(y)1 <k T=E2
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~ If(x)- f(y)I<E.

Therefore / is continuous at x ,

Since x E X is arbitrary, f is continuous on X .

(b): Suppose / and g are continuous mappings of X into IRk , where f and g are

defined by f(x)=(f1(X), hex), ,!k(x)) and

g(X)=(g1 (x), g2 (x),. .... ·,gk (x)) with ii,h,....·,/k; g},g2,"',gk are real

valued functions defined on X .

Since f and g are continuous on X , by (a), each h is continuous on X

and each gj is continuous on X. Then by Theorem 11.2.6, fi +gj and fi gj are

continuous on X for l-;;,i-;;,k .. Since (f+g)(x)=
((.Ii+gd(x),(h+g2)(X), .... ,(ik+gk)(X») for all XEX, by (a), f+g is

k

continuous on X. Since h gj is continuous on X for l:S;i <k , we have .L h gj is
1=1

continuous on A;" and hence f· g is continuous on X .

11.2.8 Example: Every polynomial with complex coefficients is continuous at-every point of Q::

For, let p(x)=ao +a1 x + ·+an x" where ao, a}, ·,an are complex numbers.

Consider p:Q:~ Q: as a function.

Define J: Q: ~ Q: as J (x) = x for all x E q: . Then I is continuous at every point of Q: for if

E>O is given, taking t5 =E, for all x E<C with o<lx-al<t5 we have

II (x) - I (a )1= Ix - al < t5 = E. =::? J is continuous.

~12(x)=I(x) lex) =x2 is continuous.

In (x) = x" is continuous.

It is easy to verify that every constant function is continuous.



Therefore 10 (x) = «o

fi (X)=alX = all (x)

h(x)=a2x2 = a2l2 (x)

In (x) =an x" = an I" (x) are all continuous on <C.

Hence 10 (x)+ fi (x )+ +In (x) = p (x) is continuous on <C. :

Thus every polynomial is a continous function.

11.2.9 Definltion : Suppose I:A ~ B is a mapping where A and B are any two sets. For any

TcA,f(T)={/(x)lxET}is called the image of T under f. For any VcB, the set

{x E AI I (x) E V} is called the inverse image of V und~ I and is denoted by 1-1 (V). That

is 1-1 (V) ={x E AI j(X)E V}.

11.2.10 Theorem: Suppose f: A ~ B is a mapping. Then for every set V c B ,

Proof: (i) Consider x E f- I (Vc) <=> X E A and I (x) E VC

Iii) Suppose t E l(f-1 (V)) = {f(x)/ x E j-I (V)}.
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::::>t=/(xo) for some xoEA with I(XO)E V

::::>1 E V .

. 11.2.11 Theorem: A mapping I of a metric space (X, d1) into a metric space (Y, d2) is continous

on X if and only if 1-1 (V) is open in X for every open set V in Y .

Let V be an open set in Y .

?roof: Let I:X --?Y be a mapping.

Suppose I is continuous on i .

. Now we will show that ev: 'I point in 1-1 (V) is an interior point of it.

o-et xEf-I(V). T;"'e" f(X)EV. Since V is an open set in Y, there exists E>O such

that NE (I (x))~ V . ~inCf' ! is continuous on X, I is continuous at x . Then there exists a

0>0 such that d2(/(=).'/(Y))<E whenever d1(z,x)<5. This implies I(Z)ENE(/(x)) ,

whenever zEN b (x). Thnt is, f (z ) EV whenever zEN s (X) That is Z E /-1 (V) whenever

Z ENc5 (x) and hence Nt'~) r- 1-1(V)

.'.x is an interior point of /-1 (r -) . Hence /-1 (V) is open in X .

Thus there exists d > 0 such that x E Ns (x)c/-1 (V) .

Thus /-1 \V) is open in X whenever V is open in Y .

Conversely suppose that /-1 (V) is open in X for every open set V in Y.

Now we will show that I is continuous at every point of X .

Let PEX and let E>O Now )\'E(/(P)) is an open set in Y. By our supposition,
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j-l(NE(/(p))) is an open set in X and pE/-I(NE(f(p))). Then there exists 6>0 such

that No (p) ~ I-I (NE (/(p ))). This implies J(No (p)) <;: NE (J(p)). That is, if d1(x,p )<6,

then d2 (f(x),f(p))<E. This shows thatf is continuous at p. Since p E X is arbitrary, f is

continuous on X .

Thus / is continuous on X if and only if /-1 (V) is open in X whenever V is ope~ in X .

11.2.12 Corollary: A mapping of a metric space X into a metric space Y is continuous if and

only if /-1 (V) is closed in X for every closed set V in Y .

Proof: Let f: X ~ Y be a function. Let V be any closed set in Y . Consider I is continuous on

X if and only if /-1 (vc
) is open in X (by Theorem 11.2.11) if and only if (1-1 (V) r is open in

X (· ...r1(vc
) = (.rl (V)r) if and only if 1-1(V) is closed in X

Thus f is continuous on X ifand only if I-I (V) is closed in X for every closed set V in Y.

11.2.13 Problem: If f isa continuous mapping of a metric space X into a metric space Y,

prove that f (E) ~ f (E) for any subset E of X .

Solution: Suppose f is a continuous mapping of a metric space X into a metric space Y and

E <;: X. Now I (E) is a closed subset of Y containing f (In. Since f is continuous on X , by

corollary 11.2.12, /-1 (/ (E)) is a closed set in X and .r.; c::~: (-1(/ (E) ) . Since E' is the smallest

closed set containing E, we have E~/-l (f(E»). TillS i";'!nlies f(E)~ f(E). Thus for any sub

set E of X , f (E) c f (E) .

11.2.14 Problem: Let I be a continuous real function on a metric space X. Let Z (f) (the zero

set of j)bethesetofall PEX at which f(p)=O. Prove that Z(f)isclosed.

Solution : Given that f is a continuous real function on a metric space \:' and

Z(f)={p E X / f(p )=O}.
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Claim : Z(1) is a closed set,

Let y be a limit point of Z (1) in X . Then by a known theorem, there exists a sequence

{xn} of points in Z (1) such that xn ~ y. Since 1 is continuous, by Theorem 11.1.4, and Theorem

11.2.4, we have 1 (xn) converges to 1(Y). This implies f(Y)=li~f(xn )=0 (.,' xn E Z (1) for

all n) and hence Y E Z (f). This shows that Z (1) is a closed set in X .

11.2.15 .Problem : Let 1and g be continuous mappihgs of a metric space.X into a metric

space Y and let E be a dense subset of X . Prove that 1(E) is dense in j (X). If g (p) = f{p)

for all p e E, prove that g (p ) = j (p ) for all p E X (In other words, a continuous mapping is

determined by its values on a dense subset of its domain).

Solution: Given that j and g are continuous mappings of a metric space X into a metric space
\

Y and E is a dense subset of X .

Claim: j(E) is dense in j(X). Thatis, I(E)=/(X). Clearly f(E)~/(X).
~

Let Y E j (X) . If Y E j (E) , then y EI (Ej .

Suppose Y fE I (E) .1n this case we will show that y is a limit point of j (E) .
!.{ ,./

Since Y E j(f), y= j(x) for some x EX. Then x e.E,
/

Since E is;dense in X, x is- a limit point of E. Then by a 'known result, there exists .a/ ~
sequence {xn} of points in E suelilr-:that {xn} converges to x Since j 'is continuous and

{xn} converges x , by a known result, {f( xn)} converges to j (x) . Now {I (x'n)} is a sequence

of points in 1(E) such that {I (xn)} converges to y. This implies Y E Ie E) . This shows that

I(X) ~ j(E) and hence j(E) = j(X).

Suppose j(p)=g(p) for all pEE,

Now we will show that j(x)=g(x) for all XEX.

Let x EX. Since E is dense in, X, there exists a sequence {xn} of points in E such that



{xn} converges to x , Since j and g are continuous on X, we have {j (xn)} converges to

j(x) and \g(xn)} converges to g(x). Consider f(x)=li~f(xn)=li~g(xn)=g(x)

..'.j (x) =g (x) for all x EX.

11.3 SELF ASSESSMENT QUESTIONS

11.3.1 : When do you say that a function j from a metric space into a metric space is continuous?

11.3.2 : Show that the function j: IR~ IR defined by f (x ) = x + 2 for all x E lR is continuous at

x=2.

, 11.3.3 : Let 1 be a continuous real function on a metric space X. Let Z (I) be the set of al

P E X at which j(p )=0. Show that Z(j) is closed.

11.4 MODEL EXAMINATION QUESTIONS

11.4.1: If (X,dd and (Y,d2) are metric spaces and Ec;;;,X and.if 1maps E into Y and pis

a limit point of E , then show that lim f (x) = q if and only if lim j (Pn ) = q for every
x~p n~oo

sequence {Pn} in E such that Pn 7: P for all nand lim Pn = P .n~oo

11.4.2: Suppose X, Y and Z are metric spaces and j maps X into Y and g maps Y into

Z and h is the mapping of X into Z defined by h( x) = g(j( x)) for all x EX. If j is

continuous on X and g is continuous on Y, then show that h is continuous from
XintoZ.

1104.3: Show that a mapping f of a metric space X into a metric space Y is continuous on X

if and only if 1-1 (V) is open in X for every open set V in Y
)

11.4.4: Let j and g be continuous mappings of a metric space X into a metric space Y and
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let E be a dense subset of X . Prove that f (E) is dense in f (X) . If g (p ) = f (p) for

all pEE, then prove that g(p)=f(p) forall pEX.

11.5 EXERCISES

11.5.1 : Suppose f is a real function defined on IR which satisfies l~o[f (x +h) - f (x - h)] = 0

for every x E IR . Does this imply that f is continuous?

11.5.2 : If f is a re:l! continuous function defined on a closed set E c IR. Prove that there exist

continuous real functions g on IR such that g ( x) = f (x) for all x E E .

11.6 ANSWERS TO SHORT ANSWER QUESTIONS
For 11.3.1 see definition 11.2.1

For 11.3.2, see example 11.2.3

For 11.3.3, see problem 11.2.14
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Lesson - 12

CONTINUITY, COMPACTNESS
AND CONNECTEDNESS

12.0 INTRODUCTION
In this lesson the behaviour of continuous functions when they are defined on compact sets

or connected sets is discussed. It is proved that if f is a continuous mapping of a com~act metric

space X into9i metricspace Y, then f (X) is compact. It has also been proved that a continuous

1 - 1 mapping of a compact metric space onto a metric space is a homemorphism. Further the
uniform continuity of a function from a metric space into another metric sapce is defined. It is also
proved that a continuous mapping of a compact metric space into a metric space is uniformly
continuous. Further it is proved that continuous image of a cconected set is connected.

12.1 CONTINUITY AND COMPACTNESS :

12.1.1 Definition: A mapping f of a metric space X into IRk is said to be bounded if there exis~s

a real number M such that II(x )I-::;M for all x EX. ~

That is f: X ~ mk is bounded if the image f (X) is a bounded set in mk

12.1.2 Theorem: Suppose f is a continuous mapping of a compact metric space X into a

metric space Y . Then f (X) is compact.

Proof: Suppose X· is a compact metric space and f: X ~ Y is a continuous mapping. Let

{Va} ,1 be an open cover of f (X) in YO. Then f (X) sUVa. Since f is continuous on XaE . aE~

and Va is open in Y for each a E ~ , the inverse image r' (Va) is open in X for each a E ~ .

Also it is clear that X c U 1-1 (Va)' This implies that {1-1(Va)} is an open cover for X .
aeb: . aE6

n
Since X is compact, there exists aI, a2,· ....,an E~ such that X c U j-l(Va.). This implies

i=I I
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n
l(X)~ U Vai . Therefore l(X) is compact.

1=1 .

This theorem can also be stated as "The image of a compact metric space under a
/ /

continuous mapping is a compact metric space Or the continuous image of a compact metric
space is compact". .

12.1.3 Theorem: If 1is a continuous mapping of a compact metric space X into mk, then

1(X) is closed and bounded. Thus, 1is bounded.

Proof: Suppose 1is a continuous mapping of a compact metric space X into mk. Then by

theorem 12.1.2, 1(X) is a compact sub set of mk . Since every compact subset of m~ is closed

and bounded, 1(X) isclosed and bounded.

o
This implies there exists a real number M such that 11(x )I-::;,M for all x EX. Therefore

1is bounded.

12.1.4 Corollary: If X is a compact metric space and 1is a continuous real valued function on

X , then 1(X) is bounded.

M = sup 1(p), m = inf 1(p). Then there exist points p, q E X such that f (p) =M and
PEX PEX

Proof: Taking k = 1, the corollary follows.

12.1.5 Theorem : Supoose 1is a continuous real function on a compact metric space X and

l(q)=m.

Proof: Let X be a compact metric space and 1be a continuous real function on X·. Then by

theorem 12.1.3, 1(X) is closed and bounded. Since 1(X) is bounded, we have sup f (x) and

inf 1(x) exist in m. Since f (X) is closed in m, by a known theorem, sup f (X)E f (X) and

infl(X)El(X). This implies supj(x)=j(p) and inf j(x)=f(q) for some p,qEX.
XEX XEX

Thus there exist p, q E X such that M =f (p) and m =f (q). '

12.1.6 Note: The notation in the above theorem means that M is the least upper bound of the set

of all numbers 1(p) , where p ranges over X and that m is the greatest lower bound of this set
of numbers.



--: Analysis ) ~I ( C. C. & ConnectednesS);;-

12.1.7 Note : The conclusion in the above theorem may also be stated as follows. There exist

points p and q in X such that / (q )::;;/ (x)::;; / (p) for all x EX, that is, / attains its maximum

( at p) and minimum (at q) .

12.1.8 Theorem: Suppose / is a continuous 1-1 mapping' of a compact metric space X onto

a metric space Y.Thentheinversemapping /-1 defined on Yby f-I(f(x))=x (XEX) isa

continuous mapping of Y onto X .

Proof: Suppose / is a continuous 1-1 mapping of a compact metric space X onto a metric

space Y . To show /-1 is continuous, by theorem 11.2.11, it is enough if we show that / (V) is

open in Y for every open set Vin X . Let V be any open set in X . Then vC is a closed subset

of X . Since every closed subset of a compact metric space is compact, we have Vc is a compact

subset of X. Since lis continuous on X, by theorem 12.1.2, /(vc) is a-compact subset of Y.

Since every compact subset of a metric space is closed, we have / (vc
) is closed in Y . Since /

is 1-1 and onto, /(V)=(/(vc)f. This implies /(V) is open in Y. Thus /-1 is continuous.

12.1.9 Definition: A one - one, onto function / of a metric space X onto a metric space Y is

said to be a homemorphism if both / and /-1 are continuous.

12.1.10 Note: By theorem 12.1.8, a one-one, onto continuous function f on a compact metric
space is always a homemorphism.

12.1.11 Definition: Let f be a mapping ofa metric space (X,dl) into a metric space (Y,d2).

We say that / is uniformly continuous on X if for every E> 0 there exists a Ii> 0 such that

d2(f(p), f(q))<E for all p and q in X forwhich d1(p,q)<8.

Consider \I(x) f(y)1 = 12x-2yl = 2Ix.- yl < 2·8
E

=2·-= E
2

12.1.12 Example: Define t ill.~ ill. as / ( x) = 2x for all x E ill. . Then / is uniformly continuous.

E
For, let E>O. Take 0=-. Suppose x,yEill. such that Ix-yl<8.. 2
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=>If(x)- j(y)I<E whenever Ix- yl<o .. j is continuous.

12.1.13 Note: Every uniformly continuous function is continuous but the converse need not be
true.

For,suppose I is a uniformly continuous function from a metric space (X, d}) into a

metric space (Y,d2).

Let E>O. Since j is uniformly 'continuous on X, there exists a 0>0 such that

d2 (/(x), J(Y))<E whenever d1(x,y)<o . ------------ (1)

Let x EX. Let Y E X such that d} (x,y )<0. Th'en by (1), d2 (/(x),/(Y) )<E. Therefore

I is continuous at x . Since x E X is arbitrary, we have I is continuous on X. Thus every
uniformly continuous function is continuous.

In general the converse is not true. For, consider the following example.

1 '
Define J:(O,l)---+IR as I(x)=~ for all xE(O,l). First we show that I is continuous.

E x2
Let E>O and xE(O,l). Choose a 0>0 such that 0<-1--+EX

2
EX ( ) 2 2Consider 0 <-- GO l+E X < EX GO <E x -OEX
l+.e X

'(" 0G 0 <E' '~ - 0) X G < E ----------- (1). x(x-o)

Suppose YE(O,l) such that Ix-yl<o. Then x-o<y<x+o.

1 1 1
G-,- <- <-- -------------(2)

x+o Y e-s

I I 1 1 y-x Iy-xl 0
Consider j(x)-/(Y) = - - - = - = -- <-

x Y xy xy xy



< x{x-8) <E (by (1) and (2)).

This shows that / is continuous at x and hence / is continuous on (0,1) .

Now we will show that 1 is not uniformly continuous on (0, 1).

If possible suppose that 1 is uniformly continuous on (0,1) .

Then for E= I, there exists 8> 0 such that

I/( x)- l(y)I<1 whenever Ix- yl<o -----------~1)

1
Since 0> 0, there exists a positive integer N such that N <0 . Consider

1 1 1 1---- = <-<8
N N+I N(N+I) N

1 1 ' 1 1
Now - --E (01) such that --- <8.

N' N+I, ' N N+I

r ( 1) (1 JThenby(1), / N -/ N+l <1

=> IN- (N +1)/ < 1 ~ 1-11<1 => 1 < 1, a contradicfion.

So, ! is not uniformly continuous.

Thus 1 is a continuous function but not uniformly continuous.

12.1.14 Theorem: Let 1 be a continuous mapping of a compact metric space (X,d}) into a

metric space (Y,d2). Then f is uniformly continuous on X.

Proof: Given that f is a continuous mapping of a compact metric space X into a metric space Y .

Let E> O. Since 1 is continuous on X , for each p E X there exists a positive number 0p

such that «« X with d} (p, q) < 8p implies that d2 (/(p), I(q))<~.
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Write Vp={QEXjd1(P,q)<Ot}.Then Vp is aneighbourhood of p and hence an open

subset of X.

Now r;f7= {Vp / P EX} is a class of open sets in X . It is clear that r;f7isan open cover for

n
-X. Since X is compact, there exists PbP2'··,Pn E X such that X ~ U Vp. ----- (1)

i=l I

Take 0 = ~ min {O 0 .~.... 0 } . Then 0> 0 .2 PI' P2' , Pn

Now let p, qE X be such that d} (p, q)<o . By (1) , there exists an integer m with l:5m:5n

such that P E Vpm. This implies d1 (P,Pm)<
0

~m . Also dl (q,Pm)~dl (p, q)+dl (P,Pm)

o .,
<0+ ~m :50Pm. Then d2(f(p), f(Pm)) < 7'i and d2(f(q),f(Pm))<7'i.

Consider d2(f(p), f(q)):5 d2(f(p), f(Pm))+d2(f(Pm), f(q))

<Yz + Yz = E. => d2 (f(p),f(q))<E.

This shows that f is uniformly continuous on X .

12.1.15 Theorem: Let E be a non-compact set in m. Then (a) there exists a continuous function
on E which is not bounded.

(b) there exists a continuous and bounded function on E which has no maximum.

If, in addition, E is bounded, then

(c) there exists a continuous function on E which is not uniformly continuous.
/

Proof: Given that E is a non-compact subset of m. Since E is a non-compact subset of m , then

either E is bounded and E is not closed or E is closed and E is not bounded or E is not closed
and not bounded.

Case (i): Suppose E is boundedand E is not closed. Since E is not closed, there exists a point·

Xo Em. such that Xo is a limit point of E and Xo ~E.

1
Define f:E ~IR as f(x)=-- forall XE E.

x-xo



Then f is continuous on E.

Now we will show that f is not bounded. That is, f (E) is not bounded. Since Xo is a limit

point of E, there exists a sequence {xn} of points in E such that xn ~ Xo as n ~ 00 . This implies

Xn - Xo ~ 0 as n ~ 00 and consequently ~ 00 as n ~ 00 .
xn -xo

1
Let M >O. Since -- ~ 00 as x ~ 00, there exists a positive integer N such that

Xn - Xo >M for all J1 ?:. N . This implies f (xn ) >M for all n ?:. N. Therefore f (E) is not bounded;

i.e. f is not-bounded.

Next we will show that f is not uniformly continuous on X. First we show that

f (No (Xo) n E) is not bounded for all S > O. Let S > 0 be any real number. It is clear that
·0

No (xo)n E is bounded. Now we will show that Xo is a limit point of N6 (XO) n E . Let r > 0 . Put

rl =min{r, o}.

Consider Nfj ( xo)n(En No (xo))\{xo} = ~'1 (xo)n\{XO }*¢

(: Xo is a limit point of E)

This implies that Nr(xo)n(EnNo(xo»)\{xo}=¢ and hence Xo is a limit point of

No (xo)nE.

Since xo~E,wehave xo~EnNo(xo).So EnNo(xo) isa bounded set and Xo isa

limit point of No (XO) nE such that Xo (l: No (xo) nE. Therefore by the above arguement,

f( No (xo)n E) is not bounded. Since S>O is arbitrary, f( No (xo)n E) is not bounded for all
I

0>0.

Let E>O and 0>0. Let xENo(xo)n~.}henXEE and Ix-xol<o andlx-xo!>o
... ~



(·:xO~E).
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Take r=o-Ix-xol. Since f(Nr(xo)nE) is notbounded, there exists tENr(xo)nE

1
such that If(t)l~ E+ ..

Ix-xol

Now It-xol<r and tEE. This implies that It-xol+lx-xol<o and hence Ix-tl<5.
,

Also If(t)I-lf(x)l;:::: t , Thus there exist x, tEE such that Ix-tl<o and

If (x )-f (t)I~E.

So (a) and (c) are proved.

Therefore f is not uniformly continuous on E.

1(b)Defineg:E~masg(x)= 2 tor att x s E.
1+(x-XO)

Then g is continuous on E.Also o<g(x)<l for all xEE.

Now we will show that sup g(x)=l .
XEE

This implies g is bounded.

Clearly 1 is an upper bound of {g( x) Ix E E} .

Let p be any upper bound of {g( x)jx E E}.

Now we will show that p ~ 1.

If possible suppose that p <1. Then 0 <p <1. Now we will show that there exists x E E

such that g(x» p. Take E= J ~ ~1. Since Xo is a limit point of E, NE (Xoln EI{Xo}*¢· Choose

x ENE (xolnEI{xo} Then x E E and Ix~xol < E = J ~ ~ 1 =>lx~XoI2 < ~ ~1



l' 2=> - >l+!x-xO!
. p

1 .
=> 2>P=>g(X»P

l+(x-xO)

Thus there exists x E E such that g (x) >p , which is a contr9diction to the fact that p is

an upper bound of the set {s (x) /XE E} . Therefore p 2:: 1. H.enc~ .~~~g ( x ) = 1.

-,
. This shows that g has no maximum.

Thus if E is bounded, then (a), (b) and (c) are proved.

Case (ii) : Suppose Eis not bounded.

(a) Define f: E ~ m. as f (x) = x for allx E E . Then f is continuous on E and f i~ not

bounded on E .

So (a) is proved.

X2
(b) Define h:E ~ m. as h( x) =--2 for all x E E.

l+x

Then h is continuous on E . Since h (x) < 1 for all x E E, h is bounded. Now we will

'show that h has no maximum. For this we will show that sup h ( x) = 1..
XEE

Since h(x)<l for all x E E, we have 1 is an upper bound of {h( x )/x EE}. Let p be any

upper bound Of{h (x) /x E E}. If possible suppose that p <1. Then 0 <p <1.

Now we will show that there exists ·XE E such thath( x) >p .

Since E'is not bounded, there exists x E E such that

Ixl>J P=:,x2 >L =:,(!:"p)x2 >p
1- P 1-P

/ ' ,
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2 .X
=> -1 2 > P => h (x) > P, which is a contradiction to the fact that p is an upper

+x

bound of {h(X)/XEE}.

Therefore 1:::;P and hence sup h ( x) = 1
. XEE

Thus h is no maximum.

12.1.16 Note : (c) Would be false if boundedness were omitted from the hypothesis.

Example: Let E be the set of all integers. Then E is a non-compact subset of m. which is not
bounded. Then every function defined on E is uniformly continuous. For, let j be any function

\

from E into nt. Let E>O. Choose 6 such that 0<6<1. Suppose x,YEE such that Ix-yl<6.

Then x = Y . This implies /J (x) - j (y)\ = 0 < E. Hence j is uniformly continuous on E .

12.2 CONTINUITY AND CONNECTEDNESS :

12.2.1 Theorem: If j is a contnuous mapping of a metric space X into a metric space Y and

if E is a co~nected subset of X , then f (E) is connected.

Proof: Suppose j is a continuous mapping of a metric space X into a metric space Y and E

is a connected subset of X .

Claim: j(E) is a connected subset of Y.
-,j

If possible suppose that f (E) is not connected. Then there exist non-empty subsets A
and B of Y such that j (E) = AU B and An B = ¢ and An B ~ ¢ .

..

,;, GUH =[Enj-l(A) Ju[ Enj-l(B) J
=En[j-l(A)Uj-l(B)] = Enj-l(AUB)=E

.'. E=GUH

Since A and Bare non-empty, we have G *¢ and H * ¢ . Now consider



Now we will show that G <;;;;; 1-1 (-:4)

Let x E G => X E En 1-1,( A) => X E E and I (x) E A

=> I(X)EA(: A <;;;;; A)=>x E 1-1 (-:4)

Therefore G <;;;;; 1-1 (-:4) .

Since:4 is a closedset in Y and since I is continuous, by corollary 11.2.12; 1-1 ("Ii) is

a closed set in X .

Since I-I (A) is a closed set containing G and G is the smallest closed set containing

G we have G<;;;;;I-1 (:4) .

. This implies I(G)~ A .

Next we will show that I (H) = B .

Let y E I(H) . Then y =I(x) for some x E H .

So I(H)~B.

Let y E B => Y E I(E) => y= I(x) for some x E E.

I •

=> X E 1-1 (B) and x E E=>x E Enf-l (B)

=>XE H => j(X)E j(H)=> Y E/(H)

So B c I(H) and hence f(H)=B.

Next we will show that Gn H =¢.

If possible suppose that G nH ;;t. ¢ .Then choose x E G nH

~XEG and xEH~xEG and I(X)E/(H)=B.
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=> I(X)E A:nB=>AnB:;t: ¢, a contradiction.

So OnH =¢.

Similarly we can show that onH;'¢.

Therefore E=OUH such that OnH =¢ and OnH =¢.

Thus E is the union of two separated sets; which is a contradiction to the fact that E Is

connected. This contradiction arises due to our supposition j (E) is not connected. Hence I (E)
is connected.

12.2.2 Theorem: Let f be a real continuous functi(:>non the closed interval [a, b] . If f (a) < fib)

and if c is a number such that I (a) <c < f (b) ,then there exists a point x E (a, b) such that

j(x}=c.

Proof : Given that j is a continuous real function on the closed interval [a, b]. Suppose

l(a)"</(b) and c is a number such thatf(a)<c < f(bL

By a known theorem, [a, b] is connected. Since f is continuous, by theorem 12.2.1, f[ a, b]
is connected subset of R. Then by a known theorem, I[a, b] is an interval. Since

f(a)<c<f(b)and f(a),f(b)Ef[a, b), we have cEf[a,b)=>c=f(x) for some xE[a, b].

12.2;3 Note: Theorem 12.2.2 holds if I(a»f(b).

12.2.4 Definition: If I is defined on E , then the set {(x, I(x) )/ x E E} is called the graph of j .

, 12.2.5 Problem : If I is a real valued function defined on a set E of real numbers and if E is

compact, then show that f is continuous on E if and only if the ~raph of j is compact.':

Solution : Suppose j is a real valued function defined on a set E of real numbers and also j
··f

suppose that E is compact.' ,

Claim: f is continuous on E if and only if the graph of f is compact.



Suppose j is continuous on E. Then by theorem 12.1.2, j(E) is compact. Since the

product ofa non-empty family of compact sets is compact, we have EX j (E) is compact. Since

every closed subset of a compact set is compact, to show the graph of j is compact, it is enough

if we show that the graph of f is a closed subset of EX f (E) .

Write G={(x,j(x))/xEE}. Then G isthegraphof f. Let (x,Y)EEXf(E) beali~it'

point of G. Then there exist a sequence {(xn,f(xn))} of points in G such that

lim (xn, f (xn)) = (x, y) . This implies lim xn = x and lim f (xn ) = Y . Since f is continuous andn n n
lim xn = x, we have Jim j (xn) = f (x) . Since the limit of a sequence is unique, we have f (x) = y .
n n

We will show that f is continuous.

Therefore (x, y) = (x, j (x)) E G. This shows that G contains all of its limit points and hence

G is a closed subset of EX f(E). Consequently G is compact. That is, the' graph of f is
compact.

Conversely suppose that the graph G of j is compact.

Since G is compact, by a known result, G is closed and bounded. Let x E E. Let {xn} be

a sequence of points in E such that {xn} converges to x , Now {(xn' f(xn))} is a sequenceof

points in G. Since G is bounded, {( xn, j (xn ))} is bounded. This impliej that {f (xn)} is bounded.

Then lim sup f (xn) and lim inf f (xn) exist. So let 00 = lim sup f (xn) . Then there exists a sub

sequence {f (xnk )} of {f (xn)} such that f ( xnk ) converges to 00.

Since {xnk } is a subsequence of {xn} and {xn} converges to x, we have {xnk } converges

to x, Then {x, a} = lif (XI7k' f (xnk )). Now {( xnk' f( xnk ))} is a sequence of points in G such

that (x, a) = li~ ( xl1k,f ( x17k ) ). This implies that (x, a) is a limit point of G . Since G is closed,

(x,a)EG and hence (x,a) = (x,f(x)).
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Therefore (x,/(x)) = lim sup(xn,/(xn)).
n

Similarly we can show that (x, / (x)) = lim inf (xn, / (xn))
n

Therefore (x, / (x)) = lim (xn,f (xl1)). Consequently
n

li,~ / (xn) = f (x). So f is continuous at x . Since x E E is arbitrary, / is

continuous on E.

Thus f is continuous on E if and only if the graph of f is compact.

12.2.6 Problem: Let J = [0, 1] be the closed unit interval. Suppose f is a continuous rnappinq of

! into I .Prove that / ( x) = x for atleast one x E I .

Solution: Given that 1= [0, 1] be the closed unit interval and f is a continuous mapping of I

into [ .

Define g:l-+ffi. as g(x)=x-f(x) for all XE[O,l]

. (T(rJ) < 0 < u(l).. 0 \ __---..: -- <."'"I

Since f is a continuous function, we have g is also a continuous function.

Consider g(O)=O-f(O)::; 0 and g(I)=I-f(I)~O C: O::;f(O) and /(I)-s;1) .

If g(O):.::O, then o-.i(o)=o=>.fi~·O)=O,

If g (J) = 0, then 1- f (1) = 0 => f (1) c.:: 1.

Suppose g( 0)<.0 <.g(l) . Then; by theorem 12.18, there exists x t:: (0,1) such that g( x )=0

n',is irnplies(-f(x)=O and hence /(x)::-.::x.

-;'l,llS, in any case, f (y) =- x for some x E I .

'..~iJlt.;,~n : l.et (X, (/] ), (Y, d'L) ;:;nd (Z, (h) be metric spaces. Suppose f: X -+ Y and g: Y -+ Z

'.2. T Pro+Iem : Show that a uniformly continuous function of a uniformly continuous function is
, ;ir-:;I':;=:Yc ~:itinuous.
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are uniformly continuous functions.

Claim: g 0 f: X ~ Z is uniformly continuous.

Let E>O. Since g:Y ~ Z is uniformly continuous, there exists 1]>0 such that

d3 (g(Yd, g(Y2))<E whenever d2 (Yl,Y2)<1], ----------- (1)

Since f:X ~y is uniformly continuous, there exists a 0>0 such that

d2 (f (xl), f (x2 ) ) < 1] whenever dl ( Xl, x2 ) < 0 .

Therefore go f: X ~ Z is uniformly continuous.

12.2.8 Problem: If E is a non-empty subset of a metric space (X, d) , define the distance from'

XEX to E by

PE (x)= inf d (x,z).
ZEE

(a) Prove that PE(x)=O ifand only if xEE -.
(b) Prove that PE is a uniformly continuous function on X, by shC3wing that

. '\
iPE (x)-PE (y)1 ::;d (x,y) for all X E X, Y EX.

Solution: Suppose E is a non-empty subset of a metric-space (X,d).

Define PE ( x) = inf d ( x, z) for all x E X
. ZEE

(a) : To show PE (x) = 0 if and only if x E E .

Suppose x E E.

Now d(x,x)=o

If xEE, then O::;PE(x)::;d(x,x)=O=>PE(x)=O.'

Suppose x E E. Since x E E, x is a limit point of E. Then there exists a sequence {xn}
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of points in E such that lim xn = x .
n~oo

Let E>O. Since lim xn = x. there exists a positive i~teger N such that d(x~',';~~lor".~!)
n=vo: , , "", "'" ",

n2N.
-

Now O~PE(x)~d(xn,X)<E for all n2N.

Since E> 0 IS arbitary. We have PE (x) = 0 .

Thus if x E E , then PE ( x) = 0

Conversely suppose that PE ( x ) ='0 .

Let E>O. Since PE(x)=o there exists )lEE'such that d(X,Y)<E. This implies

YENE(X),

This shows that NE ( X ) nE =F ¢J for any E> 0 and hence x E E .

ThusXEE if and only if PE(x)=O:

(b) To show PE is uniformly continuous on X .
_. ' . .' "J I: .~ .

Let E> O. Take 6=E. Suppose x,Y E X such that d(X,y)<6 .

Consider PE (x ) ~ d ( x, z) for all Z E E
. ,

~d(x,y)+d(y, z) for all zEE.

'~PE(x)-d(x,y)~d(y,z) foral! ZEE.

~ PE (x)-d(x,y) isa lower bound~f {d(y,z )!z E E}.

~PE(xy-d(x,y)~ PE(Y)~ PE(x)-PE{y)~d(x,y)<6=E.
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Similarly PE(y)-PE(X)<E

Hence, PE is uniformly continuous on X .

12.3 SHORT ANSWER QUESTIONS

12.3.1: When do you say that a map~~ngl of a metric space X into m.k is bounded?

12.3.2: Define a homemorphisrn o{atIDetric space into another metric space.
----".:.,- -/

12.3.3: When do you say that a function f of a metric space X into a metric space Y is uniformly
continuous?

12.3.4: Is every uniformly continuous function a continuous function? Justify your answer.

12.3.5: Is every continuous function a uniformly continuous function? Justify your answer.

12.4 MODEL EXAMINATION QUESTIONS

12.4.1 : If f is a continuous mapping of a compact metric space X into. a metric space Y , then

show that f (X) is compact. (Equivalently show that continuous image ora compact

metric space is compact). . '.

12.4.2 : Show that a continuous 1-1 mapping of a compact metric space X onto a metric space

Y is a homemorphism.
. ,. ".. ,:!t:,-l -., , . .

12.4.3 : Show that a continuous mapping of a compact metric space X into a metric space Y is .
uniformly continuous.

12.4.4: Let E be a non-compact set in m.. Then show that
-",:

(a) there exists a continuous function on E which is not bounded.
:;. !

(b) there exists a continuous and bounded function on E which has no maximum.

(c) If, in addition, E ~sbounded, then showthattheteexists a continuous function on E
which is not uniformly continuous.

12.4.5: Show that continuous image of a connected set is connected. \.

12.4.6 ; Let f be a real continuous function on the closed interval [a, b] . If. j±:!) <f (b) ~nd if c is
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a number such that 1 (a) <c<1 (b) , then show that there exists a point x E (a, b) such

that 1(X) = C .

12.4.7: If 1is a real valued function defined on a set E of real numbers and if E is compact, then

show that 1is continuous on E if and only if the graph of 1is compact.

12.5 EXERCISES
12.5.1 : Let 1be a real uniformly continuous function on thepounded set E in m. Prove tha~f

is bounded on E . Show that the conclusion is.false if boundedness of E is omitted from
the hypothesis.

12.5.2: Suppose 1is a uniformly continuous mapp~g of a metric X into a metric space Y . Therf

prove that {f (xn)} is a Cauchy sequence in Y for every Cauchy sequence {xn} in X .

12.S.3 : Let E be a dense subset of a metric space X and let 1be,A uniformly continuous real

1I \ function defined on E . Prove that 1has a continuous extension from E to X .

12.5,4 : Call a mapping 1of a metric space X into a metric space Y open if 1(V) is an open set
, 0

in Y whenever V is an open set in X . Prove that every continuous open mapping of m
is monotonic. . "

12.6 ANSWERS TO SHORT ANSWER QUESTIONS'
For 12.3.1, see definition 12.1.1

For 12.3.2, see definition 12.1.9

For 12.3.3, see ~efinition 12.1"t1
~., J

For 12.3.4, see nste 12.1.13
\For 12.3.5, see note 12.1.13
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DISCONTINUITIES OF
REAL FUNCTIONS

Lesson - 13

13.0 INTRODUCTION

Through out this lesson f (x) denotes a real valued function of real variable. In this leson

the discontinuityof first kind and the discoutinuity of second kind aredefined. It is proved that if f

is a monotonically increasing tunctiondefined on (a,b), then j(x+) and f(x-) exist at every

point x of (a,b). It is also proved that if f is monotonic on (a,b), then the set of points at which f
is discontinuous is at most countable,

13.1 DISCONTINUITIES

13.1.2 Definition: Let f be a real valued function defined on (a ,b ) . Let x be a point such that

if:S; x < b , A number q is called the right hand limit of j at x if j (t n ) ~ q as n ~ 00 , for all sequences

{tn} in (x,b) such that tn ~x and we write j(x+)=q, ~?'

13.1.1 Definition: Let f be a function from a metric space X into a metric space Y . If f is not

continuous at a point x E X, then we say that f is discontinuous at x .

13.1.3 Definition: Let f be a real valued function defined on (a,b). Let x be a point such that

a <x s b. A number p is called the left hand limit of f at x if f (tn ) -» P as n ---'}00, for all

sequences {tn} in (a,x) such that tn ---'}x andwewrite f(x-)=p,

13.1.4 Note: If xE(a,b), then limf(t) existsifandonlyiff(x+)=f(x-)=limj(t).
t~x" t=s x

13.1.5 Definition: Let f be a real valued function defined on (a,b). If f is discontinuous at a

point x E (a,b) and if f( x+) and f( x-) exist, then f is said to have a discountinuity of the first

kind or a simple discontinuity at x . In this case either f( x+):;t:r;x -) (in which case the value of

f(x) is immaterial) or j(x+)=j(x-):;t:j(x).
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13.1.6 Def.Irlition: Let f be a real valued function definedon (a,b) , If f is discountinuous at

xE(a,h) and if either f(x+) or f(x-) does not exist, then f is said to have discountinuity of'
second kind.

13.1.7 Definition: Let f be a real valued function defined on (a,b), Then f is said to be

monotonically increasing on (a,b) !fa<x<y<himplies<that f(k):f{Y) and f is said to be

rnonotohically decreasinq on (a,lij iLa<x<y<b implies that f (y):s;}' (x) , f is said to be a
monotontc function if it is either monotonically increasing or monotonically decreasing.

13.1.8 Theorem: Let f be a monotonically increasing function defined on (a,b). Then f( x+)

and f(x-) exist at every point x of (a,b).Moreprecisely,

sup f(t)=f(x-):::;}'(x):=:;f(x+)= inf f(t)
a-ct-ex , x<t <b

Furthermore, if a c x-c y cb, then f(x +):=:;f(y-)
i

Proof >I..et f be a monotonically increasing function defined on (a,b.) ,

Let x E (a,h). Since f is monotonically increasing, we-have' f(t)i;f( x) for all t such that

a-ct-:x. This implies {f(t)/a «t <x} is bounded above byJ{x). Since IR ·~as least upper bound

property, {f(t)/a <t <x} has a least upper bound, say A . The~ A:S:f(x) .

Now we. will show that A= f(j~v)'

Let E>O. Then. A~E is notan upper b~und of {f(t)/a<t<x }. This implies there exists to
such that a<to -cx and

A-E<f(to):S:A ~-------~-----(1)

Take 6=x-to. Then 6>0. Suppose to<t<x. Since f is rnonotonically increasinq.we have

f (to):=:; f (t):=:; A ------------ (2) '. .. .

From (1) and (2), we have A-E</(t)<A+E whenever x'-C! «t-:x. This implies /f(I)- A/<E

for all t -such-thatx-t5 <t <x and hence Jim f(t)=A. Thus f( x- )=A .
. t~x-.-
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That is, fCx-)= sup J(t).
. a<t<x

Next we will show that j(x+)= inf Jet); , ' x ct cb

.'" .---- -...!.~ ;--.

Since 1 is monotonically iricreaslnq, f(x)~/(t) for all t such that x ct «b , This implies

• .that {/(t)/x<t<b} is bounded below by j(x). Since m has greatest lower bound property, .

{j(t)/x<t<b} has a greatest lower bound, say A.

N.?w, we will show that A = j (x +)

Then j(x)~A.

Let E:>O.·:-r:~en A+E is not a lower bound of {j(t)/x<t<b}. T~is implies that there exists

to such tf::lat-x-<-Itr<band "o
A~ 1(to) <A+E ----.:----------------- (3)

- ....-----
Take 5=to -xThen 5>0. Suppose x<t<to·

Since j is monotonically increasing, we have

o .
A CS;j(t):Sj (to) -------------------- (4)

From (3) and (4), we have A-E</(t)<A+E whenever x-ct-cx+o . This implies jJ(t)-AI<E

foraH t such that x<t<x+c5 and hence lim j(t)=A. i.e.:if{x+)=A. Thus j(x+)= inf j(t).
,t~x+ x ct cb, ,

Hence sup j(t)=j(x-)CS;j(x):Sj(x+)= inf j(t)
a-ct-ex x ct cb

. ~extwe_willshowthat l(x+)~I(Y-) if a c x-c y-cb .

Suppose a.c.x-c y-cb , Then by the above

j (x +)= inf j (+)= inf j (t) -------------- (5)
x<t<b, x ct c y

.and . I(Y~)= sup I(t)= sup /(t) (6)
a ct c.y x-ct c y
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From (5) and (6), we have f(x+) = inf f(t) s sup f(t)= f(y-)
x ct-c y x-ct c y

Thus if a-cx-cy cb, then j(x+)sf(y-l

13.1.9 Note: The above theorem also holds for monotonically decreasing functions.
!

13.1.10 Corollary: Monotonic functions have no discountinuities of the second kind.

Proof: Let j be a mon~tonic function defined on (a,b). Then by theorem 13.1.8 (if j is

monotonically increasing) and by note 13.1.9·(if jis monotonically decreasing), j(x+) and j(x-)
exist at every point x E (a,b) . So j has no discountinuities of second kind.

13.1.11 Theorem : Let j be monotonic on (a,b). T~en the set of points of (a,b) at which j is
discontinuous is atmost countable.

Proof: Given that j is monotonic on (a,b). Suppose j is monotonically increasing. Let E be the

set of poiOts at which j is discontinuous. If E is empty or finite, then E is atmost countable.

Suppose E is not finite. In this 'case we will show that E is countable.
~

Let xe: E . Then j is discountinuous at x , Since j is monotonic, by corollary 13.10, j
has discontinuities of first kind. This implies j(x+), j(x-) exist and j(x-) < j(x+). Then choose

a rational number rex) such that j(x-)<r(x)<j(x+). Thus if XE E, then there exists a rational

number rex) such that j(x-) <r(x)<j(x+).

Write T = {r (x)/ x E E}. Then T ~ Q , the set of rational numbers. Since Q is countable, T
is also countable.

Now define j:E~T as j(x)=r(x) forall xEE. Then clearly j is a function.

Suppose Xl, X2 E E such that Xl 7:. x2. Assume xl <x2 .

Then by theorem 13.1.8, j(Xl+)sj(X2-)' This implies that
I

j(Xl-) < r(xJ}<j(Xl +)sj(X2 -) <r(x2)<j(x2 +)

:.r(xl):;tr(x2) and hence j(xJ}:;t j(X2)'

Thus Xl 7:. X2 implies that f(XI):;t f( X2}
':~

Consequently j is one - one.



Clearly / is onto.
." ,"

Therefore f: E ~ T is a bijection and hence E is countable ( ...T is countable).

So E is atmost countable.

Now if / is a monotonicaly decreasing function, then -f is a monotonically increasing

function, then the set of discontinuities of -/ are the same, we have the set of discontinuities of /
is atmost countable. Thus the set of discontinuities of a monotonic function is atmost countable.

13.1.12 Definition: For any real c, the set of real numbers x such that x>c is called a

neighbourhood of +00 and is written (c, + co) . For any real c, the set of real numbers x such that

x <c is called a neighbourhood of -00 and is written (-co, c) .

13.1.13 Definition : Let / be a real function defined on E. We say that / (t) ~ A as J ~ x ,

where A and x are in the extended real number system, if for every neighbourhood U of A there

is a neighbourhood V of x such that EnV is non-empty and such that f(t)EU for all

tEEnV,t:;t:x.

13.1.14 Theorem: lim J(t)=A, where A and x are extended real numbers if and only if
t~x

lim J(tn )=A for all sequences {tn} in E such that tn :f. x and tn ~ x .
n~CI)

Proof: Suppose lim f(t)=A .
t~x

.Let {tn} be any sequence in E such that '{n ~ x and 'n ~ x .

Let U be any neighbourhood of A . Since lim J(t)=A, there exists a neighbourhood V of
t~x

x such that V nE:;t:¢ and f (t)E U for all t E V nE and t :;t: x . Since Tn ~ x, there exists a positive

integer N such that tn E V for all n ~ N. This implies /(tn) E U for all ne N and hence

lim J(tn )=A
n~oo .

Conversely suppose that lim f(tn )=A for all sequences {tn} in E such that tn :;t:x and
n~oo

If possible suppose that Jim f(t):;t: A . Then there exists a neighbourhood u of A such that
t~x· .

for every neighbourhood V of x, there exists a point tEE for which / (t) e U and t E V.
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CaSeli) : Suppose x =+ 00 . Let n be a positive integer. NOW!(n, (0) is a neighbourhood -of 00 . Then

thFr~ exists' In E E such that f (In) E U and In E (n,oo) . T~erefore {tn} is a sequence of pOinttn ,~
t ,

1f ;uch that 'n -';00, 'n 1;00 and }:~f(tn) *A. . .._.,

~~se (ii) : Suppose x = -00. Let n be any positive inteJer. Now, (~, - n) is a neig hbourhood 01

'-~\' Then there exists 'n E E such that f(tn) EU and tf E (-00, - n). Therefore {tn} is a sequence

of ~\)ints in E such that In ~ =oo as n ~oo and tn *100 andlim f(tn)*A.
\ '., ,,', .__-:_ ! n~oo

/ . . . I ! 'i( I 1)
.-Cas~ (iii) : Suppose x is a real number. Let n loe !any positive integer, No/"" =: x+;; is a

'ff:

neighbQUmood 01 x .Then there exists InE E su6h t~at 1(In) "U and In +H,x+~) Therelore

-{tn} ISa sequence of points In E such that In ~x as n-foo and tn,,:;t.x J;nnd liin f(tn)*A.
n~oo,

I -
Thus in any case there exists a sequence {in} of points in E such/that tn 1; x and (n ~x

!
- and lim f(tn )*A~::which is a contradiction to ~ur supposition. This contradiction arise-s due to.
. . n~oo _ _ I, ! I I I . .

I
our assumption lim /(t)* A .

t~x

Hence lim J(t)=A.
t~x

!

13,1,15 Problem: Deline 1:(0,2) -->Dl.as I(x)~l il O.<.x-Cl!and l(x)t2 ill <x<2. Then show

that 1 is continuous at every paint x ~ 1 and 1 h~s a discitinuity 01 Ilrs!t kind at x ~1

.' Solution : First we show that 1 is cantin ~ous at every x E (r'2) such tpat x pl·

Let x E (0,2) such that X..=;>O 1 and let E>O.

Then 0<x<1 or l<x<2

Suppose O<x<l. Choose 0 such that 0<0 <min{x,I~X}. Thenl~<x-o <x<x+o <1.

. \...
Suppose YE(6~rsuch that Ix-yl<o. Then xit<Y<X-fO .;Jhi~'VhplJe·s-O<y<l ..

. , ." i I,

C()risiderif(x)~ f.(y)1 = 11-11= O<~.



So, in this case, 1 is continuous at x

Suppose l<x<2. Choose 15 such that 0<15 <min{x-l, 2-x}

Then l<x-t5<x<x+t5<2.

Suppose YE(O,2) such that Ix-yl<t5. Then x-t5<y<x+t5

This implies 1<y <2.

Consider I/(x)- l(y)1 = 12-21=O<E
So, in this case also 1 is continuous at x

Thus 1 is continuous at every point x E (0,2) such that x oj:. 1.

Next we will show that 1 is discontinuous at x=l.

Let {tn} be any sequence in (1,2) such that tn ---* 1.

Then /(1+)= lim /(tn)= lim 2 = 2. So /(1+)=2.
n~oo n~oo

Let {tn} be any sequence of points in (0,1) such that trt ---* 1.

Then /(1-)= lim /(tn) = lim 1= 1. So f(J-)=l
n~oo n~oo

I',

Therefore 1(1+) and /(1-) exist and /(1 +)oj:. 1(1-). So f has a discontinuity of first

kind at x=l:

13.1.16 Problem: Define f:IR~ IR as !(x)=~ if xis a rational number and I(x)= ° if x is an

irrational numbers. Then show that / has a discontinuity of second kind at every point x E IR .

Solution : First we show that f is discontinuous at every point x E IR .

Let x E IR and let O<E<l.

Let 15 be any real number such that 15>0 .

Case (i) : Suppose x is a rational number.

Choose an irrational number y such that x-t5<y<x+t5. Then Ix-yl<8.

Consider I/(x)- /(y)I=II-OI=l>E

Caselii) : Suppose.x is an irrational number.
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Choose a rational number y such that x-o <y<x+o . Then Ix- yl<o.

Consider I/(x)-j(y)1 = IO-II=I>E

Thus in any case, for O<E<I, for any 0>0, there exists y E (x-o, x+o) such that

/I(x)- I(Y)/>E .

. This shows that 1 is discountinuous at x .

Hence 1 is discontinuous at every point x E IR .

, Next we will show that 1has a discontinuity of second kind at every point x E ill. ,

Let x E IR. For each positive integer n, consider (x,x+~) , Choose a rational number rn in

(x,x+;). Then {rn} is a sequence of rational numbers such that rn -t x (since nl:oo( x+~ )=x

1
and x-cr; <x+-).

n

Consider lim I(rn)= !im 1=1. So {rn} is a sequence of rational numbers in (x,oo) such
n~oo n~oo .

that rn'-t x as n -t 00 and }:oo1(rn ) = I. Let {sn} be a sequence of irrational numbers such that

. 1
x<sn< x+-;;. Then \Sn} isa sequence of irrational numbers in (x,oo) such that .'In -t X as n-'-+oo

and ,1im I(·\'n) = lim 0 =0 ,n~oo n~oo

Thus {'I1} and {.'In} are two different sequences in (x, (0) such that rn -t x and sn -t x as

n-too but Jim l(sn)=O*1 ~ Jim I(rn), This shows that I(x+) -dces not exist and hence f
n~oo n~oo '

has a discontinuity of second kind at x . Hence 1 has a discountinuity of second kind at every point

~ in TIL

13.1.17Pr?blem.: Define f:m,~ mas I(x)==x if x is rational and l(x)==O if x is irrational. Then

show that f is continuous at x ==0 and has a discontinuity of the second kind at every other point
in ill. ,

Solution: First we show that f is continuous at x ==0 ,

Let E>O, Take O==E,



»>:

---( Analysis ),/ ~)j~~~~~~~3CIDS0~D~i=S.-..<:C~o~n.~R~e~al~F~u~nc~t~io~ns~E:S.,,

Suppose y E m such that ly-01<5=>lyl<E

Consider /!(y)- 1(0)( = /!(y )-o( = /!(y)( = IYI or a according as y is rational or y is

irrational. This implies that [/(Y)- 1(0)[ <E,

Therefore 1 is continuous at x=O.

Suppose x E m such that x", O. For each positive integer n , consider (x,x+~): Choose

( 1)a rational number In in lx,x+; . Then {rn} is a sequence of rational numbers in (~,oo) such that

Consider lim 1(1'n) = lim "n = X
fl-:>oo n-~oo

/
I

/
rn ~ x as n ~ 00 .

For each positive integer n , choose an irrational number sn in( x,x+~). The~ {sn} is a

sequence of irrational numbers in (x,oo) such that .s·n ~x as n~oo and lim I(sn)= lim 0=0.
n~oo n~oo

So {rn} and {sn}aretwodifferentseqLiencesin (x,cb) such that r~~x and sn ~x as n~oo but

lim l(sn)=O",x= Iim J(rn), This shows that J(x+) does not exist and hence 1 has a
n~oo n->oo

discontinuity of second kind at x , Thus 1 is continuous at x=Oana f has a discontinuity of

second kind at every point x'" 0 .

13.2 SHORT ANSWER QUESTIONS

13.2.'1: When do you say that a real valued function 1 defined or. (a,b) has a discontinuity of

first kind?

13.2.2: When do you say that a real valued function 1 defined on (a,b) has adiscontinuity of
second kind?

13.2.3 : Define f: ill. ---j- ill. as 1(x) = x if x i~ rational and 1(x) = o '. If x is irrational. Then show

that f is continuous at x=-O. ,,- =::
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13.3 MODEL EXAMINATION QUESTION·C;;

13.3.1: Let f be a monotonically increasing function defined on (a,b). Then show that

f (x +) and f (x -) exist at every point x of (a .b ) . More precisely,

sup f(t)=:f(x-)s:;.r(x)::=;f(x+)= inf f(t)
a c.t « x x-ct «h.: .

<,

13.3.2: Let f be monotonic on (a,b). Then show that the set of points of (a,b) at which f is
discontinuous is atmost countable.

13.3.3: Define f:(O,2)~lR as' f(x)=lifO<x::=;ll and f(x)=2 if l<x<2. Then.show that f is

continuous at every point x *J and f has a discontinuity of first kind at x=-l.

13.3.4: Define f: m ---+ m as f (x) =: 1 if x is a rational number and f (x) =0 if x is an irrational

number. Then show that f has a discontinuity of second kind at every point x Em.. .

13.4 EXERCISES

13.4.1 : Suppose X , Y and Z are metric spaces and Y is compact. Let f map X into Y ; let g

be a co.ntinuous one - to - one mapping of Y into Z , and put h( x)= g(f( x)) for all x EX.

Prove that f is uniformly continuous if h is uniformly continuous.

1. For 13.2.1, see definition 13.1.5

2. For 13.2.2, see definition 13.1.6

13.5 ANSWERS TO SHORT ANSWER QUESTIONS

".-,",

3. For 13.2.3, see definition 13.1.7 ;."
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Lesson - 14 _

THE~LEMA/N'N - STIELTJES INTEGRAL ~../
,- /---' -

THE DmF.INITION AND EXISTANCE OF THE
c1 1- INTEGRAL' -

I '

14.0 INTRODUCTION
In this lesson, the Riemann integral of a bounded real valued function is defined. A necessary

and sufficient condition that a function to be Riemann integrable is proved. It is also proved that

every continuous function defined on a closed interval [a,b] is integrable over [a,b ] . Further it is

proved that if f is monotonic on [a,b] and if a is monotonically increasing and continuos on

[a,b], then fE}_(a).

~ -

14.1 THE DEFINITION AND EXISTANCE OF;JHE INTEGRAL-- -- "

14.1;1 Definition: Let [a-£J be an interval. By a partition Yof [a,(J, we mean a finite set P of

points xo, xl> x2,· .. ",~xn ~ch--thcft a==xo < xl < <xn-l <sn ==b..

Put Sx, =Xi -xi-I, lS::iS::n .

Clea!tt, Sx, is the length of the sub interval [X{,,-J,Xi]
- .

14.1,2 Definition: Let f be a bounded real valued function defined on [a,b]. Corresponding to
- : 0-:

each partition, P={xo,xJ, ,xn-i,xn} of [a,b] , we put Mi~SUp\{f(x)/Xi-ls::X~xd, a'n'd

mi == Inf {f(X)!Xi-I ~x~xd, lS::iS::n

n n
U(P,-f) == I Mi ~Xi; r(p,f) = I mi ~ Xi

i=( i=1

b

Put-':f:Ldx == Inf U(p,f) ------.---------- (1)
a
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b

and J f dx = Sup L(p,f) --------------- (2)
a

-
b

where the In! and the Sup are taken over all partitions P of [a,b]. f f dx is called the
a

b
upper Riemann integral of f and f f dx is called the lower Riemann integral of f over [a,b]. If

!!.

b b
f f dx = f f dx , then we say that f is Riemann integrable over [a,b] and we denote the set of
a !!.

b

all Riemann integrable functions by :o/l and we denote the common value of (1) and (2) by f f dx
a

a

b
Qbyf f(x) dx .

14.1.3 Theorem: The upper and lower Riemann integrals always exist for every bounded function.

Proof: Let f be a bounded real valued function defined on [a,b] . Then there exist two numbers

m and M such that 0

m:;'f(x)~~U for all xE[a, b].

Let p={XO,Xl,"···· ..... ,xn} be antPl3rtition of [a,b] and

put mi = Infimum {f(X)/Xi-l:;' x:;, xd and

M, =Supremum {f(X)/Xi-l:S:X:S:Xi} for l:S:i:S:n.
'-.

n n n n
L m L1 Xi :s: L mi L1' Xi :s: LMi L1 Xi s LM L1 Xi and hence
i=l i=l i=l i=l

m(b- a ):;'L( P,f):;'U~P,f)5,M (b-a)



( Reimann Integral:::E

This shows that {L(P,f)!Pis a partitio/1 Qf[o, bJ} and {U(P,.I)/p isapartitiol1of[a,hl}

are bounded sets. Therefore

Sup{L(P,f)/P is a partition of[a,bJ} and

Inj {U(p, j) / P is a partition of [a, b J} exist. That is

b b
f j dx and f j dx exist.
a a

Thus the lower and upper Riemann integrals of a bounded function always exist.

14.1.4 Definition: Let j be a bounded real valued function defined on [a,b] and let a be a

monotonically increasing function on [a,b] (Then a is bounded on [a,b]). For each partition

P= {XO,Xl>X2, .... ··· .. ,xn} of [a,b] , we write D.ai = a (Xi ) - a(xi-d. Since a is monotonicaly

increasing on [a,b], Sa, ~ 0 for l$;i $;n .

n n
U(P,f,a)= 'LMiD.ai and L(P,f,a)= 'LmiL\ai

i=l i=l

The sums U(P,j,a) and L(P,/,a) are respectively called the upper and lower Riemann

- Stieltjes sums of 1with respect to a corresponding to the' partition P .

b
Now, define f fda = Inj {U(P,j,a}/ Pis a partition of[a, b]}

a

b
and f / d a = Sup {L(p,/,a)/ P is a partition of [a, b]}

b

Then f f da is called the upper Riemann - Stlelties integral of I with respect to a over
a



b
[G.b] and J f cia is called the lower Riemann - Stieltjes integral of f with respect to a over [G,b].

b b b

If f f da = f f da , we denote the common value by f f da
a a

hh

or ff(x) da(x). ffdq is called
a aa

h

Riemann - Stieltjes integral of f with respect to a over [a.h]. If ftela exists, that is,
a

b b ,
Jf da = f f da ,we say that f is integrable with respect to a, in the Riemann sense.
a £!:

We denote the set of all Riemenn - Stieltjes integrable functions with respect to a by

Pll(a).

No~ethat, by taking a (x) = x for all x E [a, b) , the Riemann integral is seen to be a special
case of.(if~~·Riemann - Stieltjes integral.

14.1.5 Definition: Let P be a partition of [a,b ]. A partition p* of [G.h] is called a refinement of

P if p* contains P (i.e., if every point of P is a point of P*).

Given two partitions 11 and P2 of [a,b], we say th~t r' is their common refinement if

p* = Pl UP2'
,

14.1.6 Theorem: If r: is a refinement of P. then L(p,f,a)-:;'L(F*J, a) and U(p*,f.a)

-:;'U(P,f, a) .

.Proof: Let P={XO,XI,'" ..,xn} be a partition of [a,b] and p* be a refinement of P.

First suppose that p* contains just one point more than P . Let this extra point be x * and

* { *}suppose X;_l<X*<x; for some i such that l-:;,isn. Then P = xO,xk·· .. ·,x;_),x ,x;'····,xn .



'~,",-c'---~_~
~--i~'{~A~na~IY~S~iS~)~~~~~~~~~;~)I~~~~~~~~~C~~Re~im~a~n~n~ln~te~g~ra~I})--~

and W2==Inl {/(X)/X E [x*, xi ]}

Consider L(P*, I, a )-L(P, I, a)

W2[a(xi) - a( x*)] +" '''+mn !:J.an- :± mi Sa,
1=1

= (Tfl - mi ) [a (x*) - a (xi-1 )] +(W2 - mi )[a (xi ) - a (x*)] ~ 0

That is L(P*, r. a )-L(p,j,a):::: 0 and hence L(P,j,a) s;L(p*,j,a),

If p* contains k points more than P , we repeat this reasoning k times and hence we

have L(P,f,a) s;L(P*, I, a).

Similarly we can show that U(p*, I a) s;U(P,f,a).

b b

14.1.7 Theorem: flda=·flda.

Proof: Foranypartition P of [a,b], L(P,j,a)s;U(P,j,a)

Let p* be the common refinement of two partitions '11' and P2 of [a,b]. By theorem 14:1.6,,
~

-. r L(J1 ,I,a) ~ L(P*,!, a) < U(p*, I, a) ~U(P2,I,a)

Then,L{Pl, I; a) S; U(P2, f, a) --------(1)

If P2 is fixed and the Supremum is taken over all 11 in (1), we have

bSI da s;U(P2, f ,a) (2)
a

\
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If the infimum is taken overall P2 in (2), we have

b b

Sj da s Sj =.
14.1.8 Theorem: j E fn(a) on [a ,b] if and only if for every E>0 there exits a partition P of [a, b ]

such that U(P,j,a)-L(P,j,a) <E.

Proof: Assume that for each E >0, there exists a partition P of [a,b] such that

U(P,f,a)-L(P,j,a) <E.

Let E>O. Then there exists a partition P of [a,b] such that

U(P,j,a)-L(P,j,a) <E ------------ (1)

b b
By theorem 14.1.7, L(P,j,a)s f j da s: f jdasU(P, r.a)

q a

b b
Then O~Sjda- SjdasU(P,f,a)-L(P,f,a)<E (8y(1))

a f'!.

b b
This implies O~ f j da - f j da-ce

a a •_ •. I

~,~~/:t b b

Since E>O is arbitrary, we have f j da = f j da
a q

Therefore j E fn(a) .

Conversely assume that j E fn{a)

b b b
Then f j da = Jf da = f j da .

q. a a



b

Let E>O. Then I j da+% is not a lower bound of the set {U(P,f,a)/ P is a partition of [a,b]}.
a

b

Now I j da -7"i is not an upper bound of the set {L(P,j,a)/ P is a partition of [a,b]}.
a

b
Then there exists a partition Fi of [a,b] such that U(ll,f, a) <f j da +7i. --------- (2)

a

b

Then there exists a partition P2 of. [a,b] f j da-7i <L(P2,f, a). This implies that
a

b .

Ij da /L(P2,j,a) +7"i ------ (3).
a

-,
Let P be the common refinement of Fi and P2 . Then by theorem 14.1.6, and by (2) and

(3), we have

b
U(P,j, a):sU(ll,j,a) <I j da+7"i< L(P2,j,a)+E:SL(P,j,a)+E .

a

This implies that U(P,j,a) -L(P,/,a)<E.

Thus forgiven E>O, there~xistsapartition P of [a,b1 such that U(P,f,a)-L(P,f,a)<E.

14.1.9 Theorem: If U(P,f,a)-L(P,f,a) <E for some partition P of [a,b] ahd for some E>O,

then U(p~j,a)-L(p*,j,a)<E for any refinement p* of P.

Proof: Suppose P is a partition of [a,b] such that

U(P,j,a)-L(P,j,a)<E for some E >0.

Let p* be any refinement of P .
. Thenby theorem 14.1.6,

L(P,j,a) ~ L(P*, t,a) ~U(P*, j, a)::; U(P,J,tx)

This implies that U(P*, J, a)-L(p*,f,a)<E



~c~en~tr~e~fu~r~D~is~ta~nc~e!Ed~u~ca~ti~on~~~~~14.i8~~~~~~~~A~ch~ar~ya~Na~ga~~~'u~na~U~n~iv~er~sit~YE

14.1.10 Theorem: If U(P, j, a)- ur.],« )<E for a partition P={XO,Xl,'X2, ,X/1} of [a,b] and,

•.. /1

for some E>O and if si,ti are arbitrary points in [xi-l,xd, then I If(sd- f(ti)1 L'la, <E .
i=l

Proof: Suppose U(P,f,a)-L(P,f,a)<E for a partition P={XO,XI, ....,X/1} of [a,b] and for some

E>O. Let si,ti be arbitrary points in [xi-l,xd.

1\ .
.:~>

.;;.

Then mj~j(sd~Mj and mj~j(td~Mj. This implies that j(sd,j(tdE[mi,Md for

1<i ~ n . This implies that If (Si)- /(ti )15, Mj - mj for 15,i s;n .

n 'n
Consider L Ij (Si ) - j (Ii )1L'lai ~ L (Mj - mj ) L'laj

i=l i=l
-'-F~

n n
=LMj Sa, - Lmj Sa, = U(p,j,a)-L(p,j,a)<E

i=! . i=!

n
Therefore I if (Si ) - j (ti )1 Sa, <E.

i=l

14.1.11 Theorem qjf jE mea) and U(P,/,a)-L(P,i,a)<E fora partition P={XO,XI, .... ,Xn} of

[a,b] and for some E>O and if ti lsan arbitrary point in [xi-l,xd for l~i~n, then

n b

Lj(ti)llai - f j da <E.
i=l a

Proof: Suppose j E 9'l( a) .

Assume U(P,/,a )-L(P,/,a )<E fora partition P={xo,xJ, ,xn} of [a,b 1 and for some

E>O and tiE[Xi-l,xd for l~i~n.

.-. " .



n n n
Then I mi ~ai :(L f (ti) ~ai <IMi ~ai' This implies that

i=l i=l i=]

n
L(P,f,a) s; Lf(td1wis;U(P,f,a) ---------- (1)

i=l

-
b b b

Since f E??ll( a), we have Sf da= Sfda' == Sf da. This implies that
Q a a

a

b
L(P,f,a)s; Sf das;U(P,f,a) ----------- (2)

From (1) and (2), we have

n bLf(ti )~ai - Sf daS;U(P,f,a) - L(P,f,a)<E (By assumption)
i=l a

b n
and Sf da= L f(ti)~ais;U(P,f,a)-L(P,f,a)<E (By assumption)

a i=l

n b
Therefore - E< L f(ti )~ai - f f da <E and hence -J;(~

i=l a

n b
If(ti)~ai- ffda <E

i=l a

14.1.12 Theorem: If f is continuous on [a,b], then f E ??ll( a) on[ a,b].

Proof: Suppose f is continuous on [a,b]. Let E >0.

Since a s: b;3nd a is monotonically increasing on [a,b] , we have a (a )~a (b) . This implies

that a(b )-a( a)~ 0 .
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E

(b) () . Then 71>0.
a -a a +1

Since f is continuous on [a,b] and since [a,b] is compact, by Theorem 12:1.f4, j is

uniformelycontinuouson [a,b]. Then there exists 6>0 such that Ij(x)-j(t)I<Tb --------- (1),

whenever X,tE [a,b] and IX-II < 6.

Since 6> 0, by Archimedean principle, there exists a positive integer n such that n6 >b -a.

i(b-a)
Write xi =a+--- for 050i50n .

n

Then P={XO,XI, ,X/1} is a partition of [a,b] such that Sx, =Xj -Xj-l <6 for 150i50n.

Then by (1), If(x}- f(t)l< 'n~----------- (2)

Write mi =/nf {f( x)j x E [Xi-I,Xj]}

. and M, =Sup{f(X)/XE[Xi_l,X;]} for 150i:::;n.

Since j is continuous on [a,b] , f is also continuous on [Xi-l,Xi]. Then by theorem

12.1.5,thereexists Pi,qiE[Xj-l,X;) such that f(p;)=mjand f(qi)=Mi for J:::;i50n

If(Pi )-f(qi )1< 71 -------- (3)

Consider IMi -mil =If(pd-f( qi)1 < 'fb for 150 i 50n(By (3»

/1 /1

Consider U(P,f,a)- L(P,f,a) = IMi i3.ai - Imi i3.ai
. i=1 i=1

n n n
= "L (Mi -mi) l'1ai :::;"L 'Tb 1'1 aj = '11 "Ll'1ai

i=1 i=1 i=1
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[

. E(a(b)-a(a))
= 'rh (a(b )-a(a)) = a (b )-a (a)+ 1<E.

So for given E>O there exists a partition P of [a,b] such that U(P,f, a) -L( P,f, a) <E.

Then by theorem 14.1.8, f E :9l(a)

Thus every continuous function on [a,b] is Riemann Stieltjes integrable over [a,b].

14.1.13 Theorem: If f is monotonic on [a,b) and if a is monotnonically increasing and continuous

on [a,b] , then f E :9l(a)

Proof: Suppose f is monotonic on [a,b] and a is monotonically increasing and continuous on

[a,b] .

First we show that to each positive integer n, there exists apartition P={XO,Xb .....,Xn} of

a(b)-a(a)[a,b] such that Llaj=a(xd-a(Xj-d= for l~i~n.
n

Let n be a positive integer.

a(b)-a(a)
Put 5 ,

n

Write Cj=a(a)+io for l~i~n.

Then C1 = a(a)+5; C2 =a(a) + 25, .. · ·

Cn =a (a) +n5 = a (a) +a (b) - a (a) = a (b) ,
I

- '

Since a is continuous on [a,b] and a(a)<q <a(b), by Theorem 12.1.18, there exists'

xl E(a,b) such that a(xt}=q.

Now Cl=a(xt}<C2 <a(b). Again by Theorem 12.1.8, there exists x2 E(Xl,b) such that

a(x2)=C2'

Continuing in this way for i=3,4, .. ·, ..,n-l, we have x3,x4,"''',xn-} such that

Put x,o=a
- ./'

and xn =b. Then P={xo,xJ, .... "xn} is a partition of [a,b ~atld
'.-------
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n

a(b)-a(a)

a(b)-a(a)
Therefore 6.ai-= for 1:::: i:::: n .

n

So for each POSil!Veinteger n , we have a partition P={XO,Xb" ""xn} of [a,b ] such that

a(b)-("Ja)
6.ai=:= - lor l::::i::S;n --;----------- (1)

n

Let E>O.

Since f is monotonic on [a,b], we have either f is monotonically increasing or
monotonically decreasir.q.

n E>(a(b )-a( a)) (/(b)~ t(,

Thi " (a(b)-a(c)) ( ~/I \ f( )) . (2)ISImp les- J V 1-- a <E --------------
n

Case (i) : Suppose 1 is mom v-nically increasing, Then I( a)::::/(b),

Since E>O, by AI ..h:me "1an principle, there exists a positive integer n such that

For this positive integer n , by (1), there exists a partition P={xo,x},'" ..,xn} of [a,b] such

a(b)-a(a) i
that Six. = for 1< .< ,-.I _l_n

n

n /1

Consider U(P,f,a)-L(P,f,a) = LMi 6.ai - L mi 6.ai
i=l i=l

Since 1 is m~notonically increasing, we have mi = / (Xi- d and M, =1(xd' for 1:::: i ::s; n '
1

) .'
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~( a(b ):a(a)) . i~ (J(Xi)- j(xi-Il)

=( a(b):a(a) )(/(b)- l(a))<E (by (2»

Therefore U(P,j,a) - L(PJ,a)<E.

Case (ii) : Suppose j is monotonically decreasing.
o

Then j(b)5j(a).
.t.~.t- J

Since E>O, by Archimedean principle, there exists a positive integer n such that

-'.-( a....:........:(b)_- a--=-( a-,--,-)) (I (a) _ I (b) ) ~ (3)
n

For this positive integer n , by(1) there exists a partition P={XO,Xl,····,xn}of {a,b] such
o

a(b)-a(a)
that Sa, = for 1::; i ::;n .

n

Since I is monotonicaliy decreasing, mi=I( xd and M, = I( xi-d for 1::;i s:n .

n n
Consider U(P,I,a) - L(P,I,a) = LMi !J. ai - L mj !J.aj

i=l i=l·

(
a (b) --a (a) ) 11 (() ) •.

= n _ ·i~ f xi-l -f(Xi) .

=( a(b ):a(a) )(/(a)- j(b ))<E (by (3»

Thus in any case, for E>O, there exists a partition P of {a,b] such that

U(P,f,a) - L(P,j,a)<E

Then by-theorem 14.1.8, IE gc( a)
.'""



14.1.14 Theorem: Suppose f is bounded on [a,b], f has only finitely manypoints of discontinuity

on [a,b] and a is continuous at every point at which f is discontinuous. Then f E m(a) .

'Centre for Distance Education 14.14 Acharya Nagarjuna University

Proof: Suppose f is bounded on [a,b] and f has only finitely many points of discontinuity on

[a,b] and a is continuous at every point at which f is discountinuous.

Let E>O. Put M =Sup{lf(x)l/xE[a,b]}.

Let E be the set of points at which f is discountinuous. Then E is finite. So let

E={CbC2""''',Ck} and assume that cl<c2 <"",<ck.

E
Write EI . Then E} >0.

a(b)-a(a)+4kM +1

o
Since a is continuous at Cj, there exists OJ >0 such that la(cj)-a(x)I<El whenever

ICj'-xl<Oj for j =1,2,. .. ·,k --------- (1)

Now we wi" show that [u ) , v) ] 's are disjoint intervals.

For this, it is enough if we show that v j <u j+l for 1::;j: k .

This implies v j <c j + O~ <c j +1- O~ < U j+l and hence v) «u )+1.

This shows that [u r- v.i ] 's are disjoint.

I

~ I

I
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k k
Consider I (a( v j )-a(u j))< I 2 E1 = 2k EI

i=) ;=1

" ."'; .

So, {[Uj, vj J/1::;; j s k} is a finite class of disjoint intervals such that [Uj, v.d~[ a,b ] and

this class covers E and the sum of the corresponding differences a (v j ) - a (uj) is less than

2k E] . Also it is clear that every point of En [a,b] lies in the interior of some [Uj, v j J.

Write K=[a,b]\( U (Uj,Vj)]
1=1

It is clear that K is compact and f is continuous on K .

By theorem 12.1.14, / is uniformly continuous on K . Then there exists a 0> 0 such that

If(s)-f(t)I<E1 whenever s.t e K with Is-tl<5.

Now form a partition P={xo,X)," ",xn} of [a,b] as follows: Each "! occurs in P. Each

Vj occurs in P. No point of any segment (Uj ,v;.) ?ccurs in P . If x;-1 is not one of theUj , then

;'.1

Assume xi) = v j .for 1::;; j ::;;k .

Therefore for any r E {I, 2," .. ", n} . xI' 7= xi) implies that xI' 7= Vj and xr-J 7= Uj .

Let r E {I,2,····· ..,n} \ {il ,i2,.······ .,ik}' Then Xr-l, x; E K and IXr -xr-ll <5 (by the definition of P ).

Since f is continuous on [Xr-l, xI' ] • by theorem 12.1.5, there exist sr,t r E [Xr~ 1, xr ] such

that f(sr )=Mr and f(tr )=mr. Consider \sr -tr\::; h' -Xr-l\<S. This implies that

I/(sr)- f(tr )1<El' Consequently M'; +ni; = IMr -mrl<El'
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Consider ~ail =a(xi1 )-~(Xil -1) = a(vl) - a(u} )<2El

- - - - - - - - - - - - - -" - - - - - - - - - - - - - - - - - - - - - -

n n
Consider U(P,I,a)-L(P,I,a)= IMiSa, - I mi ~ai

i:::} i:::1

n
= :L (Mi -mi )~ai = :L(Mr -mr )~ar +

i:::l

r E {1,2, ,n} \ {il,i2,'" ·,ik }

+:L(Mr -mr )Llar <El·.i Llai+K.2M.2 El
i=l

~El (a(b)-a(a))+4kM El <El ((a(b)-a(a))+4kM +1) = E

Thus for E>O, there exists a partition P of [a,b] such that U(p, /,a)- L( P, f,« )<E. Then

by theorem 14.1.8, IE ~(a).

14.1.15 Note: If I and a have a common point of discontinuity, then I need not be in :o/l(a) .

1
Example: Define a:[-l, l]~m. by a(x)=O if x-c O and a(x)=l if x>O and a(O)=2' Let I bea

bounded function on [-1,1] such that I is not continuous at O.

Now we will show that I~~(a) on [-1,1].

It is easy to verify that a is discontinuous at O. So a and I are discontinuous at O.

If possible suppose that IE R (a) on [-1, 1].

Let E > O.
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Since j E :o/l(a), there exists a partition P ={xo, xl, .... , xn) of [-1, 1] such that

U(P,f,a)- L(P, j,a) ~ 7i ------------(1)

Now, either OEP or O~P .

Suppose O~P. Then Xj_l<O<Xj 'for some i such that l::::i::::n·

Then l1a) =0 for 1:::;j :::;i -1; l1a) =0 for i +1 :::;j s;n .

and Sa, =a(xj )-a( xj_I)=1-0=1

n
Consider U(P,j,a) = IM) .6a) =Mj

)=1 ..

n
and L(P,j,a)= L mjt::..aj=mj.

)=1

By (1), we have M, -mj =U(P,f,a )-L(P,f,a )<;;;. ----------(2)

Choose 0 such that 0<0 <min{xj, -Xj....:d. Then Xi-l <-6 < 6 < xi'

Suppose xE[-l, 1] such that Ix-01<6. Then -6<x<0. Consequently Xi-l <x<Xj . This

implies that mj:::;j (x) <M, -------------(3)

Since Xj-l <O<Xj, we have mj :::;j(O)::::Mj .------------ (4)

From (2), (3) and (4), 11(x)- 1(0)1 «t«, -mj <E.

Therefore 1is continuous at 0, which a contradiction to that fact that .f is net continuous 'at O.

Suppose 0 E P . Then Xj = 0 for some i such that 1::::i ::::n .
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Consider ~(Mi +Mi+I)--=~(mi +mi+I)=U(P,j,a)-L(P,j,a) <7i (By (1))
'I

This impiies that (Mi -md+(Mi +1=m. +d<E ---------- (5) .

Choose 0 such that 0<0 <min{-xi-l,Xi+d. Then Xi-l <-0 <0 <xi+l.

Suppose x E [-1,1] such that Ix-OI<o . Then -0 <X<o . This implies that Xi-1 <x<xi +1.

If(X)- f(O)I:::: Mi+l-mi+l <E (By (5)).

Therefore f is continuees at 0, which is a contradiction, So in any case we have a
contradiction,

Hence f ~Pll( a) or. [--1, 1J.

14.1.16 Theorem : Suppose fEgc(a) on [a,b] , .'11::::f(x)::::M for all xE[a,b], ¢ is continuous

on [m,M] and h(x)=¢(f(x)) on [a,b]. Then h e Pll(a) on [a,b].

Proof: Suppose fEgc(a) on [a,b], m::::f(x)::::Mforall xE[a;b], ¢ iscontinuou~on [m,M]

and h(x) = ¢(f(x)) on [a,b]. ,_

Let E>O.

,
i

Since ¢ is continuous on [m,M] , we have¢ is bounded on [m,M]~ So put
i



I¢ (s) --¢ (t)1 <El-----------j1)

k=Sup{¢(t)jt E [m,M]}. Write El = () (E) . .a b -a a +2k+l

Since ¢ is continuous on [m, M] and since [m, M] is compact, we have ¢ is uniformly

continuous on [m, NI]. Then there exists 6">0 such that I¢(s )-¢ (t)1 < EI whenever s, t E [m,M]

with Is-tl<6"o.

Choose 6 such that 0<6 <min{6o,Ed

Then for any s.t e [m,M] with Is-tl<6", we have

Since fE!n(a)on [a,b], there exists a partition p={xo,xJ; ,xn} of [a,b] such that

,,(P,f,a) - L(P,f,a) <6"2 ---------- (2)

Write Mj=Sup{f(x)/XE[Xi-l,xd} and mi = Inf{f(x)/XE[Xi-l,xd}

for 1s is n (since h is bounded).o
Put A={i E {1,2, ,n}/Mj -mj <6"} and

B={i e{1,2, ,n}jMj -mi ~6"}. Then AU B=.{.1,2, ,n} .

Let x,YE[Xj-J,xd. Then msmjsf(x)sMjsM and msmisf(y)sMjsM. This implies

that f(X},f(Y)E [m,M] and If(x)- f(y)lsMi -mi'

Next we will show that i E A implies that Mt - m7 s El . Suppose i E A and x, y E [ Xi- i. xd

Then If(x)- f(y)lsMj -mj <6" and f(X),f(Y)E[m,M]

This implies that I¢(./(x)) - ¢(./(Y))« El (By (1))

Consequently !h ( x ) - h (y)1 <E1 ------ (3)

17
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Consider M; -m; = Sup {h(x)jx E [Xi-I, xd }-Inf {h(y)jy € [Xi-I, xd}

=Sup{h( x)j X E [Xi-I, xi ]}+Sup {-h(Y )j Y E [Xi-l,Xi]}

=Sup{h(x)-h(y)jx, yE [Xi-I, X;]}::;El (By (3))

So i E A implies that .'vi; -om; ::;EI ---------- (4)
- ~~.~ ••. :.. '''.:".:>':';'

Next we will show that i E B implies that M; '- m;~;2k . Suppose i E B .
I ,

=!¢(fiX»)-¢(f(y»)!::; I¢(f(x») 1+ !¢(f(y))l::; k + k = 2k

Therefore M; -m; = Sup{h(x)-h(y)jX,YE [Xi-I, Xi]}::; 2k ------ (5)

Consider 8I Sa, = I 8Aai ::;I (M; -·m; )Aa;
iEB iEB ieB

n 0::;L (Mi ~mi )Aai =U(P,f,a) - L(P,j;a) <82 (By (2» .. ,
i=1

/"

This implies that 8 L~ai <02 and hence L Sa, <8 --------- (6)
ieB ieB

n
Now consider U(P,h,a)-L(P,h~a) = L (M; - m:)Aai

o i=1 .
:". "'~-

- " (M~ -m~)D.ao + ~ (M* - m*') A a'-L..J 1 I I L..J I I I

ieA ieB .

::;El L tsa, + 2k L fiai (by (4) and (5))
ieA ieB

n
::;El' L Aai +2k· L Sa, <El (a(b)- a (a»+2ko

i=l <"'\ ieB
.; .j"., ~

<El(a(b}:..:. '2kEl =El (a(b)-a(u)+2k)

(By (6»

,,' '"i";"-
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<El (a(b)-a(a)+2k+l)±:E.

So for given E>0 , there exists a partition p. o~ ta, b) ':I\..\cn \\\a\

U(P,h,a)-L(P,h, ~}~Ei3~d hence h E PIC ( a) on [a,b].

14.1.17 Problem: If f (x) = 0 for all irrational x and f (x) = 1 for all rational x, prove that f ~ mon

[a,b] for any a c b .

Solution: Let a,b be real numbers such th,Fl:ta-cb .

Let f :[a,b ]-j>m be the function defined by

f (x )= 0 if; is irrational and

f(x)=lif x is rational.

Let P={XQ,Xl, ,xn} be any partition ot[a,b].

Write M, =Sup {f(x )/ x E [Xi-l,xd} and mi =inf {f( x)/ x E [Xi-l ,xd} for 1::; i ~ n .

.' '.. '-

n n
Consider U(P,/)=~Mi f:i.Xj 7=<b -.11'and L(P,f)= L mi f..xi =0

i=l i=1 .

b '. II ~ .~.:.

Then Jf dx=Sup{L(P,f)/ P is apartition of [a,b ]}=0.;.

b
and f f dx=Inf {U(PJ)/p is a partition?~ [a,b ]}=b-a

a

b b
Therefore Jf dx-e f f dx and hence f ~mon[a, b]

~ a

. b
14:1.18 Problem: Suppose f'2 0, f is continuous on [a, b] and f f( x)dx=O. Prove that f(x)=O

a

for all x E [a, b] .



b
Solution: Suppose I?O, I ~scontinuous on [a,h] andf.f(x)dx~O:.

a

If possible suppose that I (c ):;t: 0 for some C E [a, b ) . Then I (c) > 0 . Since I is continuous

on [a,b], I is continuous at c. Then there exists 0>0 -such that I/(x)-/(c)l<f(c)_--------- (1),

whenever xE[a,b] with Ix-cl<o.

Nowwe will show that l(x):;t:O for all x E (c~o, c+o). If possible suppose that f(x)=o for

some x E (c-o, C +0). Then Ix-cl<o .an\dby (1), I/( x )-:-/( c)1</( c) ~

Since f(x)=o, we have f(c)<f(c), a contradiction.

So f(x):;t:O for all XE(C-O,C+o).

Since f?O on [a,b), we have f(x»O for all XE(C-O,C+o)

c+oh
This implies f f(x)dx>O and hence ff(x)dx:;t:O; a contradiction. So I(x)=Ofor all

c-b Q

14.1."19 Problem: Suppose a increases on [o,h) and a-cscb and a is continuous at s, f(s)= 1

b

and l(x)=O if x:;t:s. Prove that IE?n(a) and that fIda =0.
a

Solution : Let P={xO,xI, ,xn} be any partition of [a,h] . Then xi-) «s ~xi for some i such that

1~i ~11. Write Mj = Sup {I (x)/ x E [Xj-l, Xj]} and

Inj=lnl{f(x)/xE[Xj_l,Xj]} for l~j~n.

Then M j =0 for 1~ j ~ nand j :;t: i and M, =1 and Inj:=O for 1~j ~ n .

Now L(P,f,a)=O and U(P,f,a) =M; t3.ai =d(Xi )-a(x;_d~O

b
Therefore ffda=Sup{L(P'/,a)/P is apartitionof[o,h]} = 0

a
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-
b

and 5J c;/ex= InJ ~u\P ,j,c:x)J r is a partition of\a, h1) ?:o
a

. b

Now we will show that f f da =0.
a

a a

- -
b h

If possible suppose that f fda z-t), Choose E such that O<E~f f da .

Since a is continuous at s, ttiere exists 6>0 such that CI<s-6 <.1'<.1'+6 <0

and la(s)-a(x)I<~ ------- (1)
2

whenever Is-xl<6 .

( 6
Take Xu =CI, Xl =s-%, x2 =s +'2-, x3 =b . Then P={XO,XI,X2,X3 j is a partition of [CI,b) and

Clearly MI =0, M2 =1,M3 =0.

"'~'

Then by (1), !a(s)-a(xl )I<?i.

Then by (1), la(s)-a(x2)1 < 7i
Consider a(x2)-a(xd = la(x2)-a(xdl

Therefore a (X2) - a (XI) <E --------- (2) .



3 ;-
Consider U(P,f, a) = LMrt5.ai"=M2 !5.a2=a(x~)-a(x1)<E '(By (2)) ,

i =1" '" "

Thus there exists a partition P of [a,b] such that

-
b

U(p,f,a)<f fda, which is a contradiction,
a

~.•...
b b b _.J

SO, f f da=O a.ndhence f fda= f f da=O
a a a t.: •.

b ,. ":', ,

Consequently fEm(a) on [a,b] and ffda=O
a

14.2 SHORT ANSWER QUESTIONS
14.2.1: Define the upper Riemann infegraland 10wef"Riema~nint~gral'of a bounded function r ,

defined on [a,b]. . ",
-. ~. ".

b b

14.2.2: Show that f f da-; f f da
q, a

, . '

14.2.3: If f(x)=O for all irrational~ x and f(x)=l for all rationals x, provethat j ~mon [a,b]
"; 1 'J: . .,' : .

for any a «b , , "

" '

14.3 MODEL EXAMINATION QUESTION'S

14.3.1: Show that fE9"l(a) on [a,b] if and only if for every E>O there exists a partition P of

[a,b] such thatU(P,f,a) - L(P,f,a)<E.

14:3.2 :If f is continuous on [a,b] then-show that f E 9"l( a) on [a,b] .

14.3.3: If f is monotonic on [a,b], and if a :'js monotonically increasing and continuous on

[a,b] , then show that fEme a) .
........•. .~.....
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,14.3.4: Suppose 1 is boundedon [~)], 1 has flnitelymany points of discontinuity on [a,b] and

a is continuous at every point at which 1 is discontinuous, then show that 1E m(a) .

14.3.5: Suppose a increases on [a,b] and a cs cb and a is continuous at s , I(s) =1 and

b
l(x)=O if x= s . Prove that IEm(a) and that flda=O,

a

..... (' -.

14.4 EXERCISES

14.4.1: Define 1':[-1, 1]~m as P(x)=O if x<O and p(x)=lif x>O, Let 1 beaboundedfunction

defined on [-1,1], Show that 1E m(p) if and only if 1(0 +)=1(0) and that then

'1
f IdP = 1(0).
-1

14.5 ANSWERS TO SHORT ANSWIiR QUESTIONS
For 14.2.1, see definition 14.1.2

For 14.2.2, see theorem 14.1.7

For 14.2.3, see problem 14.1.17
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Lesson - 15

PROPERTIES OF RIEMANN ..
STI_ELTJES INTEGRAL

15.0 INTRODUCTION

In this lesson the properties of Riemann - Stieltjes integral are studied. If 9t (a, b) denotes

.he set of all real-valued functions f defined on [a,h] such that f E R(a) on [a,h l,then it is provod

that f +g and cf are in 9t (a, b) for any f ,g E 9t (a, b) and for any real number c. This

shows that 9t (a, b) is a vector space over the field of real numbers. Furhter it is proved tl .at if

b
a-cs «b , f is bo~ded on [a, b], -j is continuous at sand a(x)=l(x-s) , then f I dx = I(:;) .

a

15.1 PROPERTIES OF INTEGRAL
, . b

15.1.1 Theorem: If fi E rPl(a) and /zIti, :YC( a) on [a,h], then .Ii + .12 E rPl(a) and f (Ji+h)da
~, a

b b
,~f.f1 cia t- fh da

(; .

Proof: Suppose ftErPl(a) and /zErPl(a) on [a,h].

Put !=Ji +h·

Let E>O.

Since ft E m(a) and I: E m(a) , by Theorem 14.1.8, there exist partitions 11 and P2 of

[a,b] such that

U(Pj,.fi; a) - L(I.L ii,a) < 7i and U (P2,h, a) - L(P2, .12, a) < 7i
Let P be the common refinement of 11 and P2 . Then by Theorem 14.1.9,



Centre for Distance Education 15.2 Acharya Nagarjuna University

U(P,fi, a) - L(P,/r,a) <Yz ------- (1')

and U(P,f2, a)- L(P,f2,a) <7i -------- (2)

Suppose P={XO,xJ> ,xn}. Then

Inl {f( x)/ x E [Xi-I, xd} ?Inl {fi (x)/ X E [xi-J,xd} + Inl {h (x)/ x E [Xi-I, xd} --------- (3)

and Sup{/( x)/ XE[ xi-I, xd}:=:;Sup{.ti (x)/ x E [Xi-I, xd+Sup{h (x)/ XE [Xi-I, Xi]}} ------- (4)

From (3) and (4), we have

L(P,II, a) + L(P,h, a) :=:;L(P,/,a):;'U(P,f,a):;'U(P,.li,a)+U(P,h,a)

This implies U(P,I, a) - L(P,f, a) :;'U(P,'/i,a) - L(P"/i,a)

+ U(P,f2,a) - L(P,h,a)<7i+7i =E (By (1) and (2)).

Thus for E>O, there exists a partition P of [a,b] such that U(P,f,a)-L(P,f,a)<E.

Theie fore IE fn(a) That is fi + hE fn(a) .

b b b

Next we will show that f (./i +h)da = f II da+ f/~ da
a a a

Let E be an arbitrary positive real number.

b b b
Since fi,h E fn(a) on [a,b], f.li da= f.li da + J.Ii da and

a a

\.' "

b b b
f h da = f h da == f h da

a a

b ,
For 1=1,2, f I} da+7i is not a lower bound of the set {u(r,I}, a )/p is a partition of[a,b J}.

a

b
Then U (Pi' Ii' a) < f Ii da + 7'i for some partitions Pi of [a, b] for j = 1, 2. -------- (5)

a

Let P be the common refinement of l} and P2 .



-I

I
b

Then U(P,fj,a) S U(Pj,fj,a )<f fj da + 1z for }=1,2.
a

b
Now I I da s U(P,I,a)~U(P,fi,a)+U(P,h,a)

a

b b
~U(l1,Ji,a) + U(P2,12,a)<fJi da + ~+ f 12 da + ~ -------- (5)

a a
.~ -- ~

b b b
., This implies II da ~ I.Ii da + I 12da+E.

a a a

b b b

Since E>O is arbitrary, we have f f da ~ f.li da + f 12 da ~--------(6)
a a a

b

For j=l, 2, I I} da -Ji is not an upper bound of the set
a

b
{L(p,lj' a)/P is apartitionof[a,bl}. Then Ilj da-~ <L(Pj,fj,a) for some

a
, .

parfltionsP, of [a, b] for j=l, 2 ~•..•--------- (7).

Let P be the common refinement of Pt and P2 . Then

b : .-'f I} da :-7'i <L(Pj, I}, a) ~L(P, r,.«) for }:1, 2, ...
a

b b b

This implies that f Ji da -7i + f 12 da - ~ < L(P,fi, a) +L(P, Ii. a) ~L(P,f,a) ~ f f da
a a a

b b b
Therefore f.li da + Ih da - E< I Ida

a a a

.•.:' .

.,..
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a a a , .
"

b b b

From (6) and (8), f f da = fii da + fh da
a (1 . a. ,i

b b b

Thus SUi +h)da = fiI da + f h de '.>

a a a
I ./~

15.1.2 Theorem: If f E T1l(a) on [a,b ] and c is any constant, then cf E m(a) on [a, b] and

b b
f cf da = cf f =.
a a

Proof: Suppose f E 9'l( a) and c is any constant.

If c=O, then clearly cf E T1l(a) ,
o

Let E>O.

Suppose c» 0 .'

Since f E T1l(a) on [a,b] , there exists a partition P={XQ,Xb ·,Xn} of [a,b] such that
o

V(P, f,.a) -L(P,f,a)<%.,

Write Sup {f( x)/ x E [X'i~1>xd} = M;
,

and Inf {f(x)/x E [Xi-I> xd} = mj for 1~i::;n·

Consider Sup{(cf)(X)/XE[Xj-l' Xj]} = Sup { c f(X)/XE[Xi-l> Xi]}

e Sup{(ef)(X)/XE[Xi-i> ~d}"; eMi

Similarly, Inf {( e f)( x)/ x E [Xi-I>X;J} = c mi for 1~ i ~ n

. n n
Consider U(P,cj,a)-L(P,cf,a)=LcMj flai - LCMj flexi

i=1 i=1



;;;;;0;;( Analysis >-== . i===(~~) ( Prop. Reimann Integral );;z;

=cjIM;t>a; - Im;t>a;}=c{u(p,f,a)-L(p,l,a)} <c.~ =E

li=l i=l 2

Therefore U(P,cj,a)-L(P,cl,a)<E for some partition!P of [a,b] and hence

C/Em(a).

So in this case cI E m(a)

Suppose c<o then -c>O.

Since IE.m(a), there exists a partition P={xQ, Xl, , ,xn} of [a,b] such that

U(P,f,a)-L(P,f,a) < ~.
-c

Consider Sup {(c 1)( x)j X E[ Xi-I, Xi]}

=Sup{c I(x)/x E [Xi-bXi]} =-c Sup {- I(x)j X,E[ Xi-I,';:i]}

=- c- -Inl {/(x)/ X E[ xi-I, Xi]} = c.mi

This implies ui», cI,a) = c L(P,f,a)

Similarly we can show that L(P, c/,a) = c U(P,I,a)

Consider U(PA"c/,a}- L(P~ cl,a) = c L(P,f,a)- c U(P,f,a)
'- .. ) \.~,

=-cTU(p I a)-LIp I a)J<-c. E =EL \...t." \ ' ,
-c

Therefore U(P,cl,a)--L(P,cl,a)<E tor eorne partition P of [a,b] and hence

C/E Pll(a)

Thus in any CF';.,e C fE f.171( a)

b b

Next we will she, that f cfda =cJ/da
a a

b b b
Since f E g~(a), '.'J{~ have f I da zz JI da = f Ida

a a a



b ' b

If C=O, then clearly f c j da = c f j da
a a

~ b E
Since cjE fPC(a) , we have fcj da = f cj da = f cjda

a ~ a

Suppose c > 0 ,

Then U(P,c j,a) = c . U(P,f,a) and L(P, c f,a) = c . L(p,f,a), for any partition P of [a,b] ,

b b
Consider f cj da = Jcj da = Inj {U(P,cj,a)/P IS a partition of [a, b]}

a a

=Inj {c U(P,f,a)/P is a partition of [a, b]}

b

=c Inf {U(P, I, a)/ P is a partition of [a, b]} = c f J da
a

b b

SO, in this case f cf da = c f f da
a a

Suppose c-cO

Then U(P, cj,a) = cL(P,f,a) and L(P,cI,a)=cU(PJ,a) for any partition P cf [(I,b] ,
/"

b 'b
Consider f cf da = f cf da =3up{L(P,c j,a)/P is a partition af[a, b]}

,a a

= Sup { c- U(P, j, a)/P is a partition of [a, b]}

= - c- SlfP{ -c U (P, j, a)/ P is a partition of[a,. bJ}

= - c- - Inj { V (p, j, a)/ P is a partition of [c, hn
b

= c.lnf{ U(I', I, a)/P is a partitior (,f [,' Ii} ==", f.f :hl.



b b

Therefor~ Je f da = ef f da
. a a

.'b -e . b"

Thus in any case f cf da = cf f da
a a

-.. b b

15.1.3 Theorem: If .fi,h EPlC(a) on [a, b] and Ji (x) sh (x) on [a,b], then f Ji da sf J: =.
. . a a

Proof: Suppose iI, hE m(a) on]«, b] and .Ii (x)sh (x) on [a,b].

Let P={xo, Xl> ... ",xn} be any position of [a, b].

Write M, =Sup{Ji (x)jx E [Xi-I, Xi]) and

Ni =Sup{h(~)jxE[Xi-J,xd} for l~i <n . ~<

Since fi(x)sh(x) fore ,(E[a,b],wehave fi(x)sf2(x) for all XE[Xi-l,xd for1sisn.

Then M, sN, for 1s i < n . This implies that

U(P,Ji, a) sV(P,h, a)

b b
Consider f fi da = {fi da s:U(P,iI, a) 5 U(P,h,a)

a a

b

This shows that f Ji da is a lower bound of {uir, h, a) j P is a partition of[ a, b]}
a .'''''''.

b b b

Therefore f Ji da s f J: da = f J: da (since hE rJIl(a) on [a, b])
a a

b b

Thus J11 da 5 Jh da
a a

15.1.4Theorem:lf fE:o/l(a) on [a,b] andifa<e<b, then fEm(a) on [a,e] andon [e,b]
/ .

and
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ebb
f j da + f j da = f j da
a c a

Proof: Suppose jE91l(a) on [a,b] and a-cc-cb .

Let E>O

First we show that there exists a partition P of [a, b] such that

C E P and U(P,f,a)-L(P,j,a)<E.
:r'

Since j E91l( a) on [a,b], the~.eexists a partition Q={xo,xx, ."" ..----.,xn} of [a,b] such

that U(Q, j, a) - L(Q, j, a) < E .~;~ , ....

Since c E [a, b] , we have either c = xi or xi -1 < C < xi for some i such that 1s i sn .

If c=x., then C E Q. SO Q is a partition of [a, b] such that C E Q and

U(Q;f,a) - L(Q, j, a) <E ..

Suppose Xi-l « c c x., Then P={xo,Xl> .."...,Xi-l,C,Xi,""""""xnl' is a partition of [a,b]
which is a refinement ofQ .

'y'

Then, by theorem 14'.1.6. L(Q, I,a) 5L(P,/, a) 5 U(P, j, a) 5 U(Q, I.a)

This implies that U(P, j, a) -L(P, I, a) 5 U(Q, I,a) - L(Q, j, a) < E ..

SO there exists a partition P of [a, b] such that c E P and, U(P, f"a) -L(P, f, a) < E.

Assume that the above partition P={XO,'Xl>...." ..,xn} and xio = c for some io such that

15i05n' .
.'

Write Ql ={XO,XI, .....,XiO} andQ2 {Xio' xio+I,.·--....",xn} :
I

Then Ql is a partition of [a, c] and Q2 is a partition of [c, b ] .

Write j/[a, c] =.Ii and f j[c,b] = I: .
. .. . .

Write .Mi =Sup {j(x )/x E [Xi-I, xd} and mj = Inj {j( x)/x E [Xi-I> Xi]} for 1<i S 11·

n .~ n \ .
Consider U (P, fa) = LMi ~ ai = LMj Sai + L M'i ~ ai

;=1 i=1 i=io +1



~ Analysis ) ~
~)

= U(Ot, lI,a) +U(Q2, 12, a)

Similarly L(P,j,a) = L{Ql,.Ii,a) + L(Q2' jz,a)

Consider U(P,f,a) - L(P,f,a) < E. This implies that

U(Ql- ft, a) - L(Ql,.Ii, a) < E and

U(Q2' 12, a) - L(Q2' jz, a) < E.

That is U(Ql>/,a) - L(Q}, /,a) <E on [a, e] and

U(Q2' J, a);- L(Q2, J,a) < E on [e, b].

sytheorem14.1.8, fEm(a) on [a,e] and fE9'l(a} on [c,b].

'"'"_'_7 '''-
C Prop. Reimann Integral ~

b c b

Next we will show thal Jf da = J / da + J / da
a a C

Let E>O

Since f ~9C(a) I ther:~exists a)partition P={Xl, X2,········,Xri'} of [a, b] such that

uir., ,) ,L(P,f,a)<E -----.---- (1)

without 10S$ of ger,F;;,:,:c '.j we' may assume that C E P and's'uppos-e Xi = e for some' io'o

such that 1~ iO ~ 11 ,

Then Ql is.a partition of [a, c J aMd,Q2 is a partition of [c, bIsuch that p == Ql UQ2 .

b
Now f f doc ~ U (p,/,a) < L(P, I, a) + E (8y (1))

a

c b

= L(Ql' I,a)+ L(Q'}., I, a) -1-C' i. J f do: + Jf dc~ +E

(1 C

h c h

This l'rl1'''I;;:.s [,-, rt J't da < J' f da ' ' ,. . l.... • >.J' ~.', ~ "

, I
(./r' . ~

(l a
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b c b
Since E > 0 is arbitrary, we have J I da :;:;JI da + J I da --------- (2)

a a c

b
Consider S [ da e:L(I', I,a) > U(P, I,a) - E

a

=U(Ql> I,a) +U(Qi, I,a) - E

c b;:::J f da + JI da - E

a C

b c b

This implies that J I da ;:::J I da + J I da - E

a a c

b c b
Since E>O is arbitrary, we have f f da e: f Ida + f Ida ---- (3)

a a C

b c b

From (2) and (3), J Ida = J Ida + J Ida
a a C

b

15.1.5 Theorem: If IEg'l(a) on [a,bland if I/(x)I:;:;M on [a,b], then flda

~M[ a{b) - a(a)].

a

Proof: Suppose IE 9'l( a) on [a, b] and \f (x)I:;:;M on [a, b]. Since I ErIt(a) on [a, b] , we .

b b b

have f I da = f I da= f I da .
a a

Let P = {xo, xl> ,xn} be a partition of [a, b].

Write Mj=Sup{/(x)/XE[Xi-l>xd} and

mj=ln/{/(x)/XE[Xi-l>xd} for l~i~n·



--C Analysis ) ~ ( Prop. Reimann Integral ~

Since Ij(x)I~M for all xE[a, b1, we have -M ~j(x)~M for all xE[a, b]. This irffP1i~S'

that -M ~j(x) ~M forall XE[Xi-l, xd for l~i <n and hence -M s m;~Mi ~M for l~i s n »

b b b
Consider L(P, j,a)~ f j da = f f da = f Ida s ut», j, a) -------~---------(1)

a a

n n n
Consider L(P, j,a) = L mi~ai ~. L(-M)~aj = -M· L ~ a,

i=1 i=1 j =1

This implies L(P, j,a) ~ -M.(a(b) - a(a») ------------(2)

n n n
Consider U(P, I,a) = IMj aa, s IM ~aj ,oM· I ~ai = M(a(b)- a(a»

i=1 i=1 i=1

This implies U(P,f,a)~ M(a(b)-a(a» ------'"CT-------- (3)

From (1), (2) and (3), we have

b
-M(a(b) - a(a» s f f da ~M(a(b)-a(a») and hence

a

•I bf f da ~M(a(b)-a(a»
a

15.1.6 Theorem: If jE971(ad and jE91l(a2) on [a,b], then jE?3it(al+a2) on [a,b] and

b b b
f f deal +a2) = f f dal +f f da2 .
a a a

Proof: Suppose j E mead and j E 971(a2) on [a,b]. Let E>O.

Since f E fn(a j) on [a, b] for }=1, 2 there exist partitions Pj of [a, b] such that

u( Pj' f,a j ) - L( Pj' f,a j ) < 7i -------------------(1)
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Let P be the common refinement of PJ.and P2'

Then by theorem 14.1.6, {(Pj' f,aj)::; L(P, f,aj)::; u(p, f,aj)::; U(Pj' f,aj) for

j=l, 2.. This implies that

u(p, f,aj)'- L(P, f,aj)::; U(Pj, f,aj) - L(Pj, f,aj) <,~ for j=l, 2 ------------- (2)

Assume P={xo, Xl, ,xn}
-,

n
Consider U(P,f,al +a2) = 'LMj L1(al-+ a2)

i=l

n
= :LMi ((al +'a2) (Xi) -:-(al + a2) (Xi -1))

i=l

n -
= LMi[al(Xa-tlx2'(Xi )-al (Xi-I) - a2 (Xi-I)]

i =1 -

n n
= LMi t.ali-+ :LM( t.a2 i = ui», f,al) + U(P, f, a1)

i=l i=l

Therefore U(P,f,al +a2) =U(P,f,ad+U(P,f,a2)'

Similarly L(P, I, al +a2) = L(P,I,al) + L(P,f,a2)

Now consider ui}, f, ai +a2)'- L(P,f,al+a2) =

So, for E>O there exists a partition P of [a, b] such that

U(P,f,al+a2)-L(P,f, Cxl+a2)<E and hence fE97l(al+a2)'

b b b

Next we will show that f I deal +a2) = f f dal + f f da2 .
a . a a
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b b b
Since I~rn(al+a2)' weha';e fId(al+cXi)= fId(al +a2)= ffd(ai'+a2)

a !!. a

;.

b
Consider Jf d (al +u::d == Irf{U(P,f, al +a2)/P is a partition of [a, b])

a

::0 Inf{U (.P,f, ad + U (p, .r,a2)/ P is a partition of [0, b)}

~.!J4 {U (r, I, al)/ P is a partition of [a, b]}

+111l {U (p, j, a2)/ P is a partition of [a, b ]}

b b
:= f I rial + f I da2 .

a a

b b b

Therefore f j d (al +a2)?:: f I dal + f I da2 ----..------------- (:5)
a a a

b

Consider Sf d(al +a2) =Sup{L(P, I, al +a2)/ P is a partition of( a, b]}
a

= Sup{L tr.], al) + L(P,f, a2)/ P is a partition of [a, b]}

sSup{L(P,j, ad/Pis a partition of( a, b]}

+Sup{L(P, I, a2)!P is a partition of [a, b]}
..' .

b b
= f j dal + f I da2

a a

b b b

Therefore f I d(al +a2) :::;f I dal + f fda2 ------------- (4)
a a a

From (3) and (4),

b b b
f j d (al +a2) = f j dal + f I da2
a a a



a a
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15.1.7 Theorem : If IE geXa) on [a, b) and c is a positive constant; then IE 9'l (c a) and

b b
fId(ca)=cfIda.

Proof: Suppose IE gee a) on [a, b] and C is a positive constant. Since c >0 and a is

monotonically increasing, Ca is also monotonically increasing .
. ---.:

Let E>O

Since IE:o/l(a) .there exists a partition P={xQ,xJ, ,Xn} of [a, b) such that

E
U (P, I, a ) - L (P, I, a) <- ---------- (1)

c

11 n
Consider U(P, I,ca) = :LMi tJ. c a, = :LMi (Ca(xi )-ca(xi -1))

. i=l i=l

Therefore U(P,j, ca) = cU(P,j,a)

Similarly L(P, j, cay = c L(P,I, a) c

Consider uir.], ca) - L(P, I, ca) = c [U(P,f, it)':" L(P-~.j',a)J

.i

n . n

=c:LMi(a(xi)-a(xi-l))=C :LMjb.ai =cU(P,I,a)
i=1 i=1 ..

E ..
<C-=E (By (1))

c

So for E >0 , there exists a partition P of [a, b] such that

U(P,f,ca)-L(P,f,ca)<E and hence IE9'l(ca)

b b

Next we will show that f j d (c a) = c f j da .
a a



b b ~

Since !Efn(ca) ,we have Jfd(ca)= ffd(ca)= ffd(ca)
Q' • Q Q

b b, ,

~, Censider If d(ca) = If d( ca) = Sup [L(P,f, ca)/ P is a partition of ]a, b]J .
Q

. I

= Sup {c.L(P,f,a)/ P is a partition of [a, b]}

"i., b
=c .Sup{L(P,f,a)/P is a partition of [a, b]} = c f 1da

a

b b

se. I fd (ca) = c. If da
a a

15.1.8 Theorem: If f E :o/l(a) en [a, b] and g E :o/l( a) en [a,b] , then

..

(a) fgEm(a)

b b
(b)I/IE PIl(a) and flda :::;fl/ida.

a a

Proof: Suppese f E m( a) and g E m(a) en [a, b]

(a) First we shew that 12 E PIl(eX) , Since f is bounded, we have n:,~/ (x ):::;M, fer all x E (CI, bJ fer
f J "., .• ," ,.1.... .

seme real numbers' m and M .'.

Define¢:[ m, M] ~ IR as ¢(t) = 't2 f~?all 't~[';;':'Mr

Then ¢ is continueus en [m, M] .

Write h=¢of. Then h(x)=¢(/(x)= (/(x))2 =/2 (x) far all xE[a,b].

This implies h = /2

By Theerem 14.1.16, hE m(a) and hence /2 E m(a) .

Since t,g e m(a) en [a,b), bytheerem 15.1.1', f +gE PIl(a) ,
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By theorem 15.1.1 and by theorem 15.1.2,1 -g Em(a).

22·
Therefore (I +g) + (I -g) E m(a) and hence Ig E m(a)

(b) Define ¢:[m, M]~IR as ¢(t) = ItI for all t E [m, M]

Then ¢ is continuous on[m,M].

·15',1.9 Definition: The unit step function I is defih~d by I-~()_=r if xS; 0
if xc- O .

Write h=o o f .Then h(x) =¢(/(x») =1/(x)l= 1/1(x) for all xE[a, b]. This implies h=1/1

But by theorem 14.1. "', hE 971( a) and hence II IE 971( a) . Choose c = ± 1

b

so that cII da ~o
a

b r b b b
Therefore JIda = c JIda = JcIda S; Il/lda (Since cf S; III)

a a aa

b b

So, I Ida :; Il/lda .
a a

15.1.10 Note: I is continuous at every point x:j; O. I is not continuous at x =0 .

15.1.11 Theorem: If a « <b', I is bounded on [a, b], I is continuous at sand a(x)=I(x-s) , .
. . \

b

thenflda=/(s).
a

Proof: Suppose a cs cb , I is bounded on [a, b] and I is continuous at sand a(x)= I(x-s),
for all x E [G, b] .

If xs;s, then a(x) =/(x-s) =0



If X> S , then a (x) =1 (x - S) = 1.

Clearly a is not continuous at x=s .

First we show that 1E :o/l(a) on [a, b].

E
Let E>O. Put EI='4'

Since 1 is continuous at s , there exists a 0>0 such that I/(t)- l(s)1 <EI whenever

IE (a,b) with IS-II<o. That is lJ(t) - l(s)1 < El whenever a c s=S «t cs+d <b ------------ (1)

s
Write Xo =a, Xl =s, x2 =s+:-, X3'= b . Then

, 2/,
f

P={XO,Xl, x2, X3}is a partition of [a, e].

Consider a(xo) = a(a) = l(a-s) =0

a(xI) = a(s) = l(s-s) =0

a (X3 ) = a (b) = 1 (b - s) = 1

Consider ~al = a(xt) - a(xo) =0

~a2 = a(x2) - a(xl) =1

~a3 = a(x3) - a(x2) =1 -1 = 0

Write M, = Sup {f(X)/XE[Xi-l, xd} and mi = Inf{f(x)/XE[Xi-l, xd} for i=l, 2, 3.

Then U(P, l,a)=M2 and L(P, I,a) = m2 .

Consider -L(P,f,a) = =m: = -lnf{/(Y)/YE[Xl, X2]}

= Sup {-fCv )/ Y E [Xl, X2]}

Now consider U(P,f,a) -L(P,I,a)=



=2 El = Ii <E --------------- (2, :

Thus for E>O, there exists a partition P of [a, b] such that

U(P, j,a) - L(P, I,a) < E and hence IE fPl(a).

b

Next we will show that f Ida = I(s).
a

Let Pbe the partition as above. Then ui», I,a) =M2 and L(P, I,a) = m2·

Consider L(P, I,a) = m2=ln/{/(x)/xE[Xl>X2]}~I(s)

~Sup{/(X)/XE[Xl> X2]} =U(p, I,a)

This implies L(P, I,a) s/(s) 50 U(P, f,a) ------------(3)

b

Also we have L(~, I,a) s f I da ~ U(P, j,a) ----------------(4)
a

b

From (3) and (4), we have j(s)- f f da sU(P, j,a) - L(P, I,a) < E (By (2».
a

b

This implies that I(s) - f I da <E
a "

b

Since e>O is arbitrary, we have J Ida = I(s).
a

00

15.1.12 Theorem : Suppose Cn;:::O for n=1,2, , L Cn converges, {sn} is a sequence of
n=l

'00

distinct points in (a, b) and a (x) = L en 1 (x- sn) . Let I be continuous on [a, b] .
n=l



b 00

-, Then f Ida = I c; I(sn).
a n=l

00

Proof: Frist we. will s{ibw that I CnI(x-sn) converges.
n=l

00 00 0 ~

Since I c; converges, by the comparison test, I c; I( X-Sn) converges.
n=l - n=l"

o
Next we will show that a is monotonically increasing. Suppose X,Y E [a, b] such that x sy.

Then x-sn~y-sn for all n . This implies I(x-sn)~I(y-sn) and hence

00: 00

_ LCnI(x-sn)~ LCn I(x-sn)
n=l n=l

-, ,.'

That is; a(x)sa(y). So a is monotonically increasing. Since I is continuous on [a, b)

by theorem 14.1.12,IE m(a).

00

Since a<sn for all n , a(a)= L CnI(a-sn)=0
n=l

00 00

Since sn <b for all n,a(h) = L Cn I(b-sn) = L Cn.
n=l -n=l

Since I is continuous on [a, b), I is bounded on [a, b).

So put M =Sup {1/(x)l/x E[a, b]}.

b 00

Now we will show that f I da= LCn j(sn). That is, we have to show that the sequence
a n=l

00 b

of .partial sums of the series I C; I( Sn) converges to f I da .
- n=l a
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E
Let E >O. Write El =M +1

00

Since I Cn converges, there exists a positive integer N such that
n=l

00I Cn <El (1)
n=N+l

N 00

Put al (x) = I C, I (x - sd and a2 (x) = I C, I (x - sd for all x E [a, b) . Then a = al +a2
i=l i=N+l

and al,a2 are monotonically increasing on [a, b].

Since f is continuous on [a, b] , by theorem 14.1.12, f E m(al) and f E m(a2) .

For i=1,2, Put I, (x) =I(x-Si), for all xE[a,b].

Since a < si «b and f is continuous at si and f is bounded on [a, b) , by theorem 15.1.11, .•

b
f f d Ii' = f (Si) for i = 1,2, ---------------- (2).
a

By theorem 15.1.6 and theorem 15.1.7

00

Consider a2(b) -a2(a) = I CJ(b-sd
i..» + 1

00

L c, <El (By (1»
i=N+l

b
By theorem 15.1.5, ffda2 sM(a2(b)-a2(a))<MEl

a



b N b b

Therefore J J da - I,c, J(s;) = JJ da - JJ dal
a i=1 a a

.~.

b

= f J da2<M EI «M +l)E] = E.
a

b n
This implies that f J da - :L C, f(sj) < E for all n ~ N .

a i=l

b n
Thus for given E > 0, there exists a positive integer N such that f J da - :L c,J (Si) < E

a i=1

for all n e N:

00 b

. This shows that the sequence of partial sums of the series LCnI(sn) converges to f J da ...
n=1 a

b 00

Hence If da= L Cnf(sn).
n=1a

15.1.13 Note: Let J:[a, b]~ m. be defined by I( x) =k for some constant k and for all x E [a, b].
b

Then fEmOn [a,b] and If(x)dx=k(b-a).
a

For, let P={xo,xJ, ,xn} be a partition of [a, b]. Write

Mi=SUP{J(X)/XE[Xi_J,Xj]} and mj=InJ{/(x)/XE[Xi_l,Xj]} for l::;i::;n. Then Ms=k and

n n n
m.=k for l:S;i:S;n. Consider U(p,f)= LMj/::"xj = Lk/::"xj =k· ISXj =k(b-a).

j=1 i=1 i=1

Similarly L(P,J)=k(b-a)

Therefore U(P,/)-L(P;/)=O<E for any E>O and hence lEmOn [a, b].

b
Consider k(b-a) = L(P, f):S; I f(x)dx :s;U(P,f)= k(~;-~ •.

a



b

Therefore f f(x)dx = k(b-a)
a

15.1.14 Theorem: Assume a increases monotonically on [a, b] and a' E ?n on [a, b] . Let f 'be

a bounded real function defined on [a, b]. Then f E :o/l( a) if and only if fa' E :o/l. In that case

b b
ffda= ff(x)a'(x)ax.
a a

Proof: Suppose a is monotonically increasing on [a, ~] and a' E :o/l on [a, b] and also assume

that f is a bounded real function defined on [a, b] .

Let E>O.

Since a' E :o/l, there exists a partition P={XO,XI, ,xn} of [a, b] such that

U(P, a') - L(P, a') < E -------------- (1).

Since a' exists, a is differentiable on [a, b]. Then a is continuous on [a, b] and a is

differentiable on (a,b). This implies a is continuous on [Xi-I, xi j and a is differentiable on (Xi-l,Xi)

for 1:s; i sn . So by mean value theorem, there exists a point t, E (Xi _}, Xi) such that

Sincr, " is bounded on [a, b] :-Put M = sup {If (x)1/ XE [0, b n.
Now we will show that U(P, f, a):s; U(P, fa') +M E

ui», fa'):S; ut); t, a) +M E

L(P, f,a):s; L(P,/a') +M E

L(P, fa'):S; L(P, f, a) +M E

Let si E[Xi-l>Xd for 1~ i s; n . Then by theorem 14.1.10 and by (1),

n .
L Ja'(sd-a'(tdJl1xi <E --------------- (2)
; =1 .

Inn'
Consider li~lj(Si )Lla; - i-E j(s; )a'(s; )L'1x;



n n
= I f(Sda'(ti)fl Xi - I f(Si )a'(Si )flXi

i=l i=l .

n
= L f(sd [a'(td-a'(sdJ flXi

i=1

n n
.~I I!(Si )lla'(ti )-a'(Si )Iflxi ~ IMla'(ti )-a'(Si )Iflxi

i=l i=l

n
=M· L la' (td -a' (Si )1 fl Xi<M E (by (2»

i =1 ,..-

n n
This implies that I f(Si )flai ~I (fa')(Si )flXi +M E ------------ (3)

i=! i=!·

n n J

and L (fa')(Si )f1xis L.I ,sdflai +M E ------------- (4)
i=1 i=l

Write M; = Sup {(fa')( x)/ x E[xi-l ,xd} for 1~ i ~ n .

n n
Then from (3), Lj(Si)L'wi~ 'L(ja')(sdt.xi+ME

i=1 i=lr:

n
~ IM; flxi +M E = U(P,fa')+M E

i=l

n
This implies that L j(sdflai ~U (P,f a')+M E --------------- (5)

i=l

n n
Then from (3), L(P, j,a) = L mi flai ~ L j(Si )flai

i=! i=l
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n
~ L (ja')(sj )dxj +M E

i=l

n
This implies that L(P, j,a)-M E~ L (ja')(si) Sx, -------------- (6)

i =1

Therefore inequalities (5) and (6) are true for any Sj E [Xi-l,Xj] for 1~ i~n .

n .
Consider U(P,j,a)= LMj i\aj =Ml i\al +M2 i\a2 +..... ····+Mn i\an·

j=l

n
= L Sup {j(x)i\adx E [Xj-l,xd}

j=1

Therefore U (P, fa )=sup{.± f( Sj) i\aj Isj E[ Xj_},Xj J} -----~-~------- (7)
1=1 Ie .

Similarlay L (P, fa') ~ In( t~/f a')( s;}"a ifi E [xi-i- X;]} ------- (8)

• f._

From (5), U(P,j a') +M E is an upper bound of
0,

ttf(Si )"ai fiE[Xi-l, X;]} and

from (6), L(P,j,a)-M E is a lower bound of the

{
~ (ja' )(sdi\Xj I Isj E[Xj_l,Xj J},
1=1 0/"

. From (7) and (8;. U(P,j,a)~U(P,fa')+M E and L(P, j,a) -!vi E~L(P, ja')

Therefore U(P,f,a)~U(P,ja')+M E -------------- (9) .
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L(P, j, a)s L(P, ja')+M E------------- (10)

Similarly from (4), we can show that

ui); ja')s U(P, j, a)+M E -------------- (11)

and L(P, j a')s L(P, j, a)+M E -------------- (12)

Now we will show that jE:o/l(a) on [a, b] if and only if ja'E:o/l on [a,b].

Suppose f E :o/l( a )on [a, b]

E
Let E>O. Put EI =--

2M+l

Since a' E :o/l on [a, b] , there exists a partition PI of [a, b] such that

U(Pl> a') - L(Pl, a') < El

Since j E :o/l( a) on [a, b) , there exists a partition P2 of [a, b) such that

U(P2,j,a)-L(P2,j,a)<EI·

o Write P =11 U P2. Then P is a partition of [a,b] and P is the common refinement of PI

and P2. Then by theorem 14.1.6,

U(P,f,a)-L(P,j,a)<El and u(p,a')-L(P,a')<EI

This implies that P satisfies (9), (10), (11) and (12) for E}. .

Consider U(P,fc$ SU(P,j, a) +M EI

L(P,j, a) ~ L(p,j(i) +M EI

From the above two irlequaliUesi U (P,f a') - L (P, fa')

sU(P',j, a) -L(P, j a}+M EI+M EI <2M EI+El =E

Therefore, for E>O, there exists a partition P of, la, b] such that U(P,fa') -L(P,fa')<E

and hence fa's: mon [a, bl
].

Conversely suppose that fa' E 9t on [a,b].

Let E>O. PiJt EI= ._E_
2M+l

Since a' E 97l on [a, b] , there exists a partition 11 of [a, b] such that

U(Ji,a') -L(Ji,a')<EI
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Since f a' E mon [a,b], there exists a partition P2 of [a, b] such that

U(P2,fa') -L(P2,fa') < EI

Write P=P1 UP2. Then P is the common refinement of Pj and P2' By theorem 14.1.6,

U(P,a') - L(P,a')<EI and U(P,la')-L(P,la')<El'

This implies that P satisfies (9), (10), (11) and (12) for El'

Now consider U(P,I,a)-L(P, l,a)~U(P, I a') - L(P, I a')

Thus, for E>O, there exists a partition P of [a, b] such that U(P, I,a) - L(P, I,a) <E

and hence IE m(a) on [a, b] .

b b "~ b

Now we will show that f Ida = f(1 aI)tx)dx= f I( x) a'( x)dx
a a a

Let E>O. Put El =~
M+l

Since a' Em. on [a, b], there exists a partition Q of [a, b] such that

U(Q, a') - L(Q, a')<EI'

Let S be any partition of [a, b] . Put P =SUQ . Then P is the common refinement of Sand

Q and U(P,a') -L(P,a') s U(Q,a') - L(Q,a') <El'

Now P satisfies (9), (10), (11) and (12) for El'

b

Consider f f da s ut», I,a) ~ U(P, f a')+ M EI
a

sU(S,I a') +M EI <U(S,fa') +M El +El

=U(s,Ja')+E.

b

This implies that f f d a < U (S,f a') +E for any partition S of [a, b] .
a

b
Consider f J da '2L(P, j,a) '2 L(P, ja') - M El

a

19.
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?:. L(S,ja')-M El >L(S, la')-M EI-El

=L(S,I a')-E

b
Therefore f Ida> L( S,I a') - E for any partition S of [a, b]

a•
b , b

Now f I da - E ~ Inl {U(S,la')/S is a partition of(a, b]} = f (ja')(x)dx
a a

b b
and f Ida + E?Sup{L(S,la')/S is a partition of [a, b]) = f(la')(x)dx

a a

b b b
Therefore f I da-E~ j(la')(x)dx:S: f I da+e

a a a

b b

This implies that flda-f(/a')(x)dx-:S:E
a a

b b

Since E>O is arbitrary, we have f Ida = f (Ia')(x) dx
a a

15.1'.15 Theorem (change of variable) : Suppose ¢ is a strictly increasing continuous function

that maps an interval [A,B] onto [a, b] . 'Suppose a is monotonically increasing on [a, b] and.

IE :?ll( a) on [a',b], Define fJ and g on I[A,B] by

fJ(y)=a(¢(y)), g(Y)=f(¢(Y)).

B b

Then g E :?ll{fJ) and f gdfJ = f Ida
A a

Proof: Since f E :?ll( a), j is a bounded function and so I[ a,b] is bounded. -.

Since ¢ is onto, g[A,B]=f(¢[A,B]) =f[a, b]. This implies that g[A,B] is bound~,_and
hence g is bounded. . . ~ ",

Let Yl,Y2 E [A,B] be such that Yl :s: Y2 . Since ¢ is increasing on [A, B], ¢(Yd~¢(Y2) .

Since a is increasing on (a, b J I we have a(¢(Yl)) :s:a(¢(Y2)), This implies that iJ(YJ):S:f3(Y2 )
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and hence f3 is monotonically increasing on IA, BJ.

Next we will prove that ¢(A)=a and ¢(B)=b.

Clearly ¢( A) E [a,b]. This implies that as ¢(A).

Since ¢ is onto and a E [a,b], there exists Y E [A,B] such that ¢{y)=a

If A<y, then ¢(A)<¢(y) (since ¢is strictly increasing).

This implies that ¢(A)<a, a contradiction.

So, A=y and hence ¢(A)=a.

Similarly we can show that ¢{B)=b.

Let Q={YO,Yl, ,Yn} be a partition ot ]A, B]. Then Yo =A,Yn =B and Yo 5Yl 5 5Yn'

This implies that ¢(A) 5 ¢(Yd5 :S ¢(Yn) =¢(B)

Take xi = ¢(Yd for O~i ~ n .Then

a=xO 5xI 5 5 xn =b. So P={xQ,XJ, ,xn} is a partition of [a, b] such that ¢{Yi )=x,
for 05i 5n.

Conversely let P={xo,Xl> ,xn} be a partition of [a, b] .
.,

Then a=xo 5xl 5 sxn =b.

Since¢ is onto, for each xi, there exi~_t~~i E [A,B] such that ¢(Yi )=Xi. This implies that

¢ (YO) =a and ¢ (Yn) =b . Since ¢ is strictly increasing, we have ¢ is one - one."'

Since ¢(A)=a and ¢(B)=b, we have A=yo, B=Yn'

Also A= Yo 5Yl 50 5 Yn =B

So Q={YO,Yl, ...,Yn} is a partition of [A,B] such that ¢(Yi )=Xi for 05i 5 n.

Next we will prove that i[ a,b]= g[ A,B) .

Let x E/[ a, b]' Then X= f(y) for some Y E [a, b). Since ¢ is onto, there exists t E [A,B]

such that ¢(t)= Y .

Consider g(t)=i(¢(t)) = i(y)=x . This implies that x E g[ A, B].

So f[a,b]~g[A,B]

Let YEg[A,B]. Then y=g(t) for some (E[A,B].



Now ¢(t) E [a,b]. 'This implies that f(¢(t))Ef[ a, b]

Since g(t)=f{¢(t)), we have g(t)Ef[a,b] and so YEf[a,b].

Hence f[a, b ]=g[ A,B]

..Let P={xO,Xl, ,xn} be any partition of [a, b]. Then there exists a partition

Q={yO, Yt> 'Yn} of [A, B) such that ¢(Yd=Xi for O~i <n . This implies that

f[ Xi-l,xd = g[Yi-l,yd for 1~i ~ n .

Write M, = Sup {f(x )/x E [Xi-l,xd} and mj =Inf {f( X)/XE [Xi-bXd} and

Ni=Sup{g(Y)/YE[Yi-byd} and ni=Inf{g(Y)/YE[Yi-byd} for l~i~n.

For l~i~n, consider M, = Sup{f(x)/XE[Xi-l,xd} = SUpf[Xi-l,xd =Supg[Yi-byd=Ni.

This implies that M, =N, for 1~i ~ n .

Similarly mj =ni for 1~i ~ n .

n n
Consider U(P, f,a) = LMi f'lai = LMi (a(xi )-a(xi-l))

i=l i=l

n n
=LNj (a(¢(Yi ))-a(¢(Yi-d)) = LNi (.8(Yi) - .8(Yi-d) =U(Q,g,.8)

i=l . i=l

Therefore U(P, f,a) = U(Q, g,.8).

Similarly we can show that L(P, f,a)= L(Q,g,f3)
.;

Let E>O

Since f E m(a) , there exists a partition P of [a, b] such that

U (P,j, a) - L (P, f, a) <E ------ (1)

Since P is a partition of [a, b) , by the above facts, we have a partition Q of [A,B] such that

U(P, f,a) = U(Q,g,.8) and L(P, f,a) =L(Q,g,fJ).

Then by (1), U(Q,g,J3)-L(Q,g,f3)<E.

Therefore g E r?l(!J) on [A, B] .
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b
Consider f jda=Sup{L(P,j,a)/P is a partition of[a, b]}

a

=Sup {L(Q,g,/3)/Q is a-partition of [A,B]}

B

= f g dfJ
A

b B

Hence f f da = f g d B
a A

/

15.2 SHORT ANSWER QUESTIONS
b b

15.2.1: If fi,!2E:o/l(a) on [a,b] and .fi(x)Sf2(x) on [a,b], then show that ffldasfhda.
. a a

o
15.2.2: Define the unit step function I and show that I is continuous at every point X:F 0 .

.. I

15.2.3: Let f:[a,b]~rn. be defined by f(x)=k for some constant k and for all xE[a,b]. Then

b

show that fER on [a,b] and ff(x)dx=k(b-a).
a

15.3 MODEL EXAMINATION QUESTIONS ; .

15.3.1: If f E m(a) on [a, b] and if a-cc cb , then showthatj' E m(a) on [a, c] and on [c, b]

ebb

and f f da + f j da = f f da .
a c a

15.3.2: If a-:s «b , f is bounded on [a,b], f is continuous at sand a( x) ~ 1(x-s), then show

b
. that Jf d a = f (s) .

a

15.3.3: Suppose ¢ is a strictly increasing continuous function that maps an interval [A, B] onto



[a, b] and a is monotonically increasing on [a, b] and 1E P1l(a ) on [a, b]. Define p

and gon [A,B] by p(y) =a(¢(y)), g(y) =1(¢(Y)). Then show that gEP1l(P) and

B b

f g d B = f 1=.
A a

r , ,

15.4 EXERCISES

15.4.1: Suppose f is a bounded real function on [a, b] and 12 E -fIlon [a, b]. Does it follow that

1E P1l? Does the answer change if we assume that 13.E P1l?

15.5 ANSWERS TO SHOR:T::ANSWER QtJESTIONS
For 15.2.1, see theorem 15.1.3

For 15.2.2, see definition 15.1.9

For 15.2.3, see note 15.1.13
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Lesson - 16

FUNDAMENTAL THEOREM OF INTEGRAL
CALCULUS AND RECTIFIABLE CURVES

16.0 INTRODUCTION
. --.".~.'

In this lesson, it has been shown that integration and differentiation are, in certain sensa,
inverse operations. The fundamental theorem of calculus and integration by parts are proved. Also
the integration of vector valued function is studied. Further rectifiable curve is defined and it is

proved that every continuously differentiable curve on [a, b] is rectifiable.

16.1 INTEGRATION AND DiFFERENTIATION

16.1.1 Theorem: Let f be a real valued function defined on [a, b] such that f E Pll on [a) b] _For

~
a ..sx..s b , put F (x)= f J (t )dt . Then F is continuous on [a, b] ; further more, if J is continuous at

a

a point xo of [a,bl.then F is differentiable at xo and F'(xo)=J(xo)·

Proof: Given that f is a real valued function defined on [a, b 1such that J E fPl on [a, b] . Also

x
given that for a s; x 5: b , F(x)= f J(t)dt .

a

Since f E ~ on [a, b], f is bounded on [a,b]. Then there exists an M such that

/f(t)/..sM for all tE[a,b].

Let E>O. VVrite O=_E_. Then 0>0.
M+l

Let x,YE[a, b] such that x<Y and Ix-yl<o.

x y
Consider IF(x)-F(y)1 = f J(t) dt - f J(t)dt

<,

a a
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y Y
=-Jj(t}dt = Jl(t)dt ~M(y-x) (By theorem 15.5)

X X

=Mlx- yl<Mo «M +l)o=E

So for E>O, there exists 0>0 such that IF(x)-F(y)I<E, whenever Ix- yl <8.

This implies that F is uniformly continuous and hence F is continuous on [a,b] . Suppose ',

f is continuous at a' point XoE [a, b]. Now we will show that F is differentiable at Xo and

F(t)-F(xo)
F'(xo)=f(xo). Defin~ h(t)= t-xQ tor all t such that a<t<band t;!.xo·

Now we show that lim h(t)= f( -o) .
t~Xo

Let E > O. Since f is continuous at XO' there exists a 0> 0 such that If (xo) - f (t)1 < E

whenever t E [a, b) with Ixo - tl<0 . -------------------- (1)

Suppose 0<11 -xol<o . Then Xo-0 <t<xo +0. This implies that either Xo-0 <XO<t<XO+o
or Xo-0 < t<Xo < Xo+0.

Suppose Xo-0 < t<XO < Xo+0.

I I F(xQ)-F(t) -f(xo)Consider h. (t)- f(.xo) Xo - t

Xo t
=_1_ f f(u )du - f f(u )du - f(xo)(xo - t)

Xo- t a a

1 Xo
=- f f(u)du - f(xo)(xo-t) .

XO- t t

Xo Xo 1 Xo .
=_1_ f f(u)du - f f(xo)du=- f (j(u) - f(xO))du

xo-t xo-t tt t
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1
< - E (XO - t) = E (By (1»xo-t

Therefore Ih(t)- l(xo)I<E

Similarly we can show that if Xo ~o<XQ <t<XQ +0, then Ih(t) - I(xo)! < E.

. F(t)-F(xo)
So lim h(t)=/(xo). That is 11m t I(xo).

t-Ho t~xo -XO

This shows that F is differentiable at XQ and F' (xo) = I (xo ) .

. 16.1.2 Theorem (The fundamental theorem of Calculus) : If IE ?n on [a, b] and ifthere is a

, b

differentiable function F on [a,b] such that F'=!, then Jf(x)dx=F(b)-F(a).
a

Proof; Suppose IE:9l on [a, b] and suppose F isa differentiable function on [a, b) such that

F'=!.
Let E be any positive real number.

Since f E 'Pll on [a, b] ,there exists a partition P = {xo, xl, ,xn} of [a, b] such that

U(p,f) -L(p,/)<E ------------ (1).

Since F is differ~ntiable on [a, b], F is differentiabl~ on [Xj-l, Xj] for 1::; i ::;n . This implies

that F is differentiable ~n (Xi-I> Xj) and F is continuous on (~i-l' Xi] for 1::;j ::; n . By Mean value, '

theorem, there exists tj E(Xi-1,Xj) such that

F(x;)-F(Xj_I)=F'(td(Xj-Xj_l) for l::;i::;n ..

Since F'=I on [a,b],wehave F(xj)-F(Xi_J)=/(tj)I1Xj for l::;i::;n.

n n
Now L I(tj )I1Xj = L (F(xj )-F(Xi-l») = F(b)-F(a).

i=1 i=1

n \ n n 1

Therefore L(P, f) = Lmi tlxi S;L I(t; ),1 X; < 2:>'I1i /~ Xi = U(P, f),
i=1 j",1 i"'J
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So L(P, f}5,F(b)-F(a) 5, U(p,f) ----------------- (2)

b
Also L(P,!) 5, f f(x)dx 5,U(P,f) ------------------- (3)

a

b
From (1), (2) and (3), F(b)-F(a)- f f(x)dx < E

a

b

Since E > 0 is arbitrary, f f(x)dx = F(b)-F(a).
a

16.1.3 Theorem (Integration by parts) : Suppose F and G are differentiable functions .on

b

[a, b], F' = f E Wl and G' = g E Wl. Then f F(x) g(x) dx =F(b )G(b) - F(a)G(a)
a

b
- f f(x) G(x) =.

a

Proof: Suppose F and G are differentiable functions on [a, b] and F' = f E m and G' = gEm.
Define H on [a,b] as H(x)=F(x)G(x) tor all xE[a, b].

Since F and G are diff~rentiable on [a, b], H is also differentiable on [a, b] and

H' =F'G +G'F =fG + gF.

Since G is differentiable on [a,b]. G is continuous on [a,b]. Then by theorem 14.1.12,

GER. Therefore fGE m. Similarly gFE m. By theorem 15.1.1. fG + gFER. That is! H'E Wl.

b

Put h=H' . By theorem 16.1.2, f h( x )dx = H (b)- H (a) .
a

I

b b
. But f h(x)dx = f(f(x) G(x) ., g(x) F(x)) dx

a a
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b b
= S f(x) G(x) dx + S g(x) F(x) =.

a a

b b

Therefore f f(x) G(x) dx + f g(x) F(x) dx =F(b )G(b):- F(a)G(a)
a a

b b
and hence f g(x) F(x) dx=F(b)G(b) - F(a)G(a) - f f(x) G(X) dx .

a a

16.1.4 Definition: Let II, h,······,jk be real valued functions on [a, b] and let r-u; h, ,Ik)

bethe corresponding vector valued function of [a, b] into IRk. Let a be monotonically increasing

function on [a,b]. We say that fEm(a) on [a,b] if fjE mea) on [a,b] for l~j~k.lfthisis
the case, we define 0

b (b b Jffda= flIda,·········,ffkda
a a . a

16.1.5 Theorem: If f,g~'m(6") on [a,b], then

(i) f +g e 9'l(a)

(ii) CfE m(a) on [a, b] fo~very constant c and

b b b b b
f(f+g)da - ffda+fgda and fCfda=·cffda.
a a a a a

Proof: Suppose f =(fI,h, ,jk) and g=(gJ,g2,· ..,.,gk) are vector valued functions of [a, b]

into IRk and f,gE:o/l(a) on [a,b]. Then fiEm(a) on [a,b] for l~i~k and giEm(a) on

[a, b] for 1~ i sk .

By theorem 15.1.1, fi+ gj E?Jll(a) 6n [a,b] for l$i$k and

o

b --8-- ----=:» -.~.."~
f(fi+gdda=ffida+ fg; dafor l~i~k.
a a a
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Since f+g=(.Ii+g},h+g2, ,ik+gd and .~+gjER(a) on (a,b] for l:S;i:s;k, we have

l+gER(a) on [a,b] and

Thus we have proved (i)

Let c be any constant

b b
By theorem 15.1.2, c fi « 9"l(a) on [a,b] and fCfida =cffi da for l::;i:s;k.

a a

Since c 1= (c II, ch,·.....,cfk), we have c IER(a) on [a, b]

b [b b b)
and f c f da = f c.li da, f c 12 da, ,f c fk da

a a a . a

[

b b . b J bo~ cf IIda, c f I: da, ..-..,.:<,:: .. :,c f Ik da =c f f da
a .q .: a a

i

Thus we have proved (ii)

Similarly we prove the following Theorem by using theorem 15.1.4, Theorem 15.1.6 and
Theorem 15.1.7.

16.1.6 Theorem: Let f bea vector - valued function of [a, b] into mk .
(i) If fE9"l(a) on [a,b] and if a-cc cb , then fE911(a) on [a,c] and fE911(a) on

b c. b

[c, b] and f f da = f Ida + f Ida
d a c

(i i) Iff E 9ll (al ) and
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b b b
f I d (al +a2) =f I dal + f I da2
a a a

(iii) If IE :o/l(a) on [a, b] and c is a positive constant, then IE :o/l(ca) and

b b
fld(ca)=cflda
a a

Theroem 16.1.1 is also true for vector-valued functions.

16.1.7 Theorem: If I and F map [a,b] into !R.i,if IE:o/lon [a,b] and if F'=/, then

b

f I(t) dt = F(b)-F(a).
a

Proof: Suppose f =(fi, Ii, ,fk) and F=(Fi,F2, ,Fk) map [a, b] into IRk and f E 'm on

[a,b] and F'=/.

Then ii E :o/l on [a, b] and F/ = ii for 1::;; is k .

b
By Theorem 16.1.2, fii(x)dx = Fj (b)-Fj (a) for lsisk.

a

b [b ~ b b)
Therefore f I(x) dx = I Ji (x)dx, I h (x)dx, ,I fk (x)dx

a a· a a

=(Fi (b )-Fi (a), F2 (b )-F2 (a), .' ,Fk (b) - Fk (a))

=F(b)-F(a)

b
Thus fI( x)dx = F(b )-F( a)

a

16.1.8 Theorem: If f maps [a, b] into IRk and if IE:o/l( a) for some montonically increasinq'

b b

function a on [a,b], then IflE PJ(a) on [a,b] and If da sIlflda.
. a a
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Proof: Suppose 1=(/l>h, ,jk) maps [a, 1,] into JPlk and suppose IE:o/l(a) on [a,b) for

some monotonically increasing function a on [a, b]. Then Ii E :o/l(a) on [a, b] for 1s i sk and

III = (fi2 +/f + +If)~·

Since Ii E :o/l(a) on [a, b] , by theorem 15.1.8, i? E :o/l(a) for 1:::;i ~ k . Then by theorem

k
15.1.1, II? E gc(a).

i=l

Since x2 is a continuous function of x , by a known theorem, the square root function is

continuous on [O,M] for every positive real number M ' ..

Since I II = (fi2 ~ if + +If)X, by theorem 14.1.16 we have /II E gc(a) on [a, b].

b b

Now, we will show that I J a ~~II II d~
a a

b
Put Yj = f /j da for L.Co.J <k and write Y=(Yb Y2, ·,Yd

a

b ;. k b b[ k J
Then we have y=flda c: .. IY!":: =.I J-] =-: LYj f/jda = f IYj Ij da

a ;=.01 j=c.[ a a j=1

k
By the Schwarz inequality, L Y j fj ():::;I."i 1/ (t)J for all t E [a, b].

i= 1

b

Bytheorel~ 15.1.3IyI2 ~IYlfl/lda -.-----. (1).
a

bib .
If y=O, then trivially f / do: sfilida .

a I a
t

If y;tO, then divide (1) by IYIon both sides. Then we have
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a

b b b

Iyl::; II!l da - Thatis, I! da ::;JI!I=.
a

16.2 RECTIFIABLE CURVES
':-.

16.2.1 Definition: A continuous mapping r ot an interval [a, b] into mk is called a curve in mk. In

this case we some times say that r is a curve on [a, b] .

If r is one - to - one, ris called an arc. If r (a) = r (b), r is said to be a closed curve.

"\r ".

We associate to each partition P={xo, xt>.: ,xn} of [a, b] and to each curve r on [a, b]
the number

n
I\(P, r) = Llr{xd - r(xi-dl.

i=l

The dh term in this sum is the distance (in mk) between the points r( Xi-I) and r( Xi) .

Hence 1\ (P, r) is the length of a polygonal path with vertices at r ( xo ), r (=i). ,r (xn) in this order ..
\

This polyqon approaches the range of r if Ipi ~ 0. Hence the following definition is reasonable.

16.2.2 Definition: Let r be a curve on [a, b J. We define the length of r , denoted by I\(r) , as

I\(r) = sup {I\( P, r)/ P is a partition of [a, b]}

W-e say that r is rectifiable, if I\(r) is finite.

In the case of continuously differentiable curv~s, i.e. for curves r whose derivative r' is

continuous, I\(r) is given by a Riemann integral.

16.2,3 Theorem : If r is continuously differentiable on [a, b), then r i~; or-ctittable and

b
/',(r) = flr'(t)ldt .

a

Proof: Suppose r is continuously differetentiable on [a,b], Let P={XO,Xl, ,xn} be any
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Xi Xi
partitionof [a,b].Considerjr(xd-r(xi-dl= f r'(t)dt::; f Ir'(t)ldt tor Ls r s »: (By theorem

Xi-) . Xi-)

n n Xi b
15.1.8) This implies that I\(P,r) = Ilr(xd-r(Xi-dl::; I f Ir'(t)1 dt = flr'(t)1 dt

. i=l i=l~_) a

b
So for any partition P of [a, b], I\(P,r)~ fjr'(t)1 dt .

a

b
Consequently I\(r)::; Jjr'(t)ldt ------------ (1).

a

Let E>O. Write El = 2{(b-a)+1)
E

Since r is conttnueustydifferentiable on [a, b], r' is continuous on [a, b], Since [a, b] is

compact and r' is continuous on [a, b], r' is uniformly continuous on .[a, b]. Then there 'exits

0>0 such that jr'(s) -r'(t)1 < E} whenever s,t E [a, b] with Is-tl<o ------------ (2)

Let P={xo, X}, ,xn} be a partition of [a, b], with L1xi<0 ~:'i1::;i s; n (See theorem 14.1.12).

If tE[Xi_l> xd, then.!r'(t)1 ~"'r'(t) - r'(xd+r'(xdl

~Ir':(t) - r' (xdl + Ir' (xdl < Ir' (xi) I+ El ----- (By (2))

Xi
This implies that J Ir' (t)1 dt ::;Ir' ( Xi )1 LlXi + E} L!Xi

xi-)

Xi Xi
=.f r'(Xi)dt +E}LlXi = f [r'(t)+r'(xd-r'(t)Jdt + EILlXi

Xi-! Xi_)

Xi Xi
:s; f r'(t)dt + f [r'(Xi)-r'(t)Jdt +E}LlXi

'xi-l xi-l
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b n xi

Consider flr'(t)ldt = L f Ir'(t)1 dt
a i=lxi_1

n n
s l:lr(xi) -'r(x(_I)1 + 2Ell:~Xi = I\(P, r)+2EI(b-a)

i=l i=l

b

Therefore Jlr'(t)ldt::; I\(r) + E<,
CI

• b
Since E>O is arbitrary, Jlr'(t)ldt sl\(r) --------- (3)

a

b
From (1) and (3), Jlr'(t)1 dt = I\(r).

a \.

b

Hence r is rectifiable and I\(r) = flr'(t)1 dt
a

16.3 SHORT ANSWER QUESTIONS
16.3.1 : State the fundamental theorem of calculus.

16.3.2 : Define a curve - when do you say tl'1ata curve is rectifiable. ?

1~.4 MODEL EXAMlNATION QUESTIONS
1·6.4.f : State and prove the fundamental theorem of calculus.

16A2 : Suppose F and G are differentiable functions on [a, b], F' = f E g{ anrl G' = g E !no

b b
_SJloW th~t):F(-x)g(x)dx = F(b )G(b )-F(a )G(a) - Jf(x) G(x)dx .

20.
a a
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16.4.3: If r is continuously differentiable on [a, b 1, then show that r is rectifiable and

b
A(r) = flr'(t~ dt

a

16.5 EXERCISES

16.5.1 : Let r1,r2, r3 be curves in the complex plane" defined on [0, 21r] by

Show that these three curves have the same range, that '1 and ~ are rectifiable, that the

length of '1 is 21r, that the length of ~ is 41r and that r3 is not rectifiable.

16.6 ANSVVERS TO"SHORT ANSWER QUESTIONS
For 16.3.1, see theorem 16.1.2

For 16.3.2, see definition 16.2.1"and definition 16.2.2.
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Lesson - 17

UNIFORM CONVERGENCE • I

17.0 INTRODUCTION

Uniform convergence is the fundamental notion required for study of spaces of continuous

functions. If K is a compact m~tric space, then C(K), the linear space of all (bounded) complex

valued continuous functions on K, is a complete metric (hence Banach) space with respect to the
uniform metric defined by

d(f,g) = sup{lf(x)-g(x)l/x E K}.
Convergence in this metric is nottling but uniform convergence. This notion is also connectd..' .' " ~:. .

with compactness in C (K).

This lesson provides an introduction t.osuch a fundamentat concept in Analysis.SNe-deflne
uniform convergence of sequences and series of functions' on a set E, obtain Cauchy general
principle for uniform convergence of sequences and series of functions, derive a sufficient condition
for uniform convergence of a series of functions, namely the famous Weierestrass M-test and
provide a number of examples that will be useful for further Analysis of the topic.

Let us recall that a sequence {an} in ~ is convergent if there exists a number" a ", called

the limit of {an} and denoted by lim an' if for every positive real number E there corresponds a
,". I

positive integer N(E) depending possibly on E such that

Ian - al < E for n z N (E) .
We further make the observation that the inequalities < and :-;;is the above definiton may

be replaced by any of < and :-;;.

When the an Is are the values fn (x) where {fn} is a sequence of functions defined on a

common domain E and x E E , the limit ciepends naturally on x and thus defines a function of x.

The N (E) also depends on x and is now to be written as N (E, x) as it depends upon E> 0 as

well 4S x EN. There is another possibility as well. The N (E) may not change with x . In this

context we thus have to distinguish between pointwise convergence in which case the N ( E) is
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dependent on x and uniform convergence where N (E) is independent of x .We 'now state the

definitions of these two types of convergence. In what follows, we mean by a function we mean a
(real or) complex valued function. .

...

17.2 DEFINITIONS

Let E be a set, {fn} a sequence of functions defined on E and f be a function defined on

E and f be a function defined on E. We say that
"

(a) {fn} converges to f pointwise or converges pointwise to f on E if for every x E E ,

lim f., (x) = f(x) i.e.

if for every positive number E and x E'E , there correspcil,d~ a positive 'integer N (E, x)
depending on E and x as well, such t8a1.." "~I ' t, i."; .(

Ifn (x) - f (x)1 < E whenever n 2 N ( E, x) .
.~,"

In this case we say that f is the pointwise limit of {fn} on E and write lim"fn ~ f

(pQintwise).., ,',.....J:>.

When there is a f defined on E such that {fn YConverges pointwise to f on E we

.simply say that {fn}: con~erges pointwise - without '~XPliCitly mentioning the limit
" ~.;' ( - ;. ~

function f.

(b) Let sn (x) = fl (x) + + fn (x) for x E E . If the sequence of functions (called

(X)

the partial sums of L fn (x) converges pointwise to the function f( x), we say that
n =L

(X)

the series 2: fn (x) converges pointwise to rand write
n=!

(X)

"f - fL" n-
n=1

(p.w.) or (pointwise)

(c)' we say that {fn} converges uniformly to fon,E .iffor every positive num,ber E there

corresponds a positive integer N ( E) such that



In this case we say that f is the uniform limit of {fn} and write lim fn (x) = r (x)
on E-

or lim fn = f uniformly on E ,

00

(d) We say that the series L fn converges uniformly to f on E if the sequence of
n=1

, . ~ . '

partial sums {sn (x)} defined in (b) above converges uniformly on E to f (x) .

_ i.e. forevery po~i.ti':',enumber E there corresponds a positive integer N (E) such that
• • 1 ,I -, ',. I " ., ~.I '~". ' .' - .'

ISn (x) - f (x)1 < E whenever n 2 N (E) and x E E .

17.3 REMARKS

It is clear that if {fn} converges uniformly to f on E 1 then {fn} converges to f pointwise

on E. However pointwise converqence does not imply uniform convergence. Let us keep in mind
..' . . ~ 'J-, :.' -. -. . ,.' -'

. that for substanticiating failure of uniform convergence of a _s~quence {fn} to f on a set E we
.. . . ~:. ' ..,':~' •.... :~. - ~,.~. .' . -'. - -'- .

have to search for and find an E> ° such that for every positive integer K 1 there is a positive

integer nK >K such that

for at least one x in E.

144EXAMPLE :

Define fn (x) ~ xn on [0,1]. Then fn (0)=0 and fn (1) = 1 for every n 21. So

limf, (0) = 0 and limf., (1)=1 .

1
If O<x<1 and y=~ then y >1 so y-l =-h>-O and

x - -
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1 """""""""""""""""""""""""""""""1

o 1

n 1· . ()Thus X < nh <E for all n z N E, x.

1 1 1
If E> 0 nh <E when n> h e ' Thus if N( E, x) is any fixed integer> hE and n ~ N( E,X) then

n 1x < nh <E .for.all n 2': N( E, x).

This implies that lirn fn (x) = Iim x" = 0 if O<x<l.

( .) {
o if 0 ~ x <1

Write f x ==
1 if x=1

it is now clear that {fn} converges pointwise to f on [0, 1]. However the convergence is

not uniform because if it were there would exist a positive integer N 1 corresponding to E=.!. so
2 2

that jfn (x)- f(x)j < t for all n 2': ~l and all' XE [0,1]. We write N for N ~ . Then
- 2
2

/

IfN (x)-f(x)1 < ~ for all x in [0,1] "/ <,



, ~--C~~A~n~al~YS~i~S~)~~~~~~~~~~~))~~~~~~~C_~U~n~jf~or~m~C~o~n~~~~~e~nc~e~-~I~~~

"

This is a contradiction.

This contradiction implies that such a N = N1 corresponding to E=.!.. does not exist.2 2
17.5 EXAMPLE:

n
for n ~ 1 for x E IR and sn (x) = L fK (x) .

K=1

For x:;t: 0

,

Since 0< ~ <'I, lim ( 1 2 In =0
I+x n l+x
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Clearly lim sn (0)=0.

{
o if x = 0

If We define f by f (x) = .
1+ x2 If x';t 0

00'

then I fn (x) = lim Sn (x) = f(x) .
. n=l n

.o,

.Thus the series converges pointwise on ill. to f. We prove t~at the convergence is not

uniform on IR. Suppose on the contrary that the convergence is uniform on IR. Then {sn (x)}

would converge uniformly to f on ill.. Then corresponding to E = ~ there would exist a positive
2

integer N such that for n 2::N .

. . 1
In particular when n = N and x:;t: 0, sN (x)= Nand f{x )=0.

(1+x2)

1 1
so that N < -for all x:;t: 0 .

(1 +x) 2

=> (1+ x2 )N >2 for x:;t: 0

. [I ]h=> Ixl> 2 N -1 for all x:;t: 0 .



This is impossible.

Hence the convergence is not uniform on IU .

We now prove an analogue of Cauchy's general principle for uniform convergence.

17.6 Theorem: Let {fn} b~ a sequence of functions defined on E. Then {fn} converges

uniformly to some function defined on E if and only if corr-esponding to every positive number E

there exists a positive integer N ( E) such that ",'

for all positive integers n, ill each ;:::N ( E) and all x E E

Proof (=» : If {fn} converges uniformly to f on E and E > 0 there correspondsa positiveinteqer

N (E) depending on ~ so that Ifn (x) - f (x)1 < ~ for all n 2 N (E) and all ~ E E ~

E E
<-+- = E2 2

. '."

Conversely assume that the condition holds.

That is for every positive number Ethere corresponds a positive lnteqer N (E) .such that
~t ! ;

for all n, ill both 2 N ( E) and all x E E

Then "if x E E' {fn (x)} is a sequence of numbers that satisfies Cauchys general principle

for convergence, So there exists a number depending on xfo which {f~(x)} converges. We
..---

denote this number by f (x) as this depends on x , Clear·ly f{ x) is uniquely fixed with x . So
..•...

x ~ f (x) defines a function on E such that f (x) = lim fn (x) "if x E E ~
. " n
I

/
We show that the convergence, is uniform.

/
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Since f (x) = lim fn (x) , for every positive integer m

If(x)-fm (x)1 = limlfn (x)-fm (x)l·
n

Now let E >0 . By the converse hypothesis there corresponds a positive integer N (E)

such that

Hence lim Ifn (x) - fm (x)1 <E for all x E E and m z N (E)
n

=> If(x)-fm (x)1 ~ E for all xEE and m~N(E).

This implies that {fm} converges uniformly to f on E !.

17.6 COROLLARY:

00

The series I fn converges uniformly on E If and only if for every positive number E there
n=l

corresponds a positive integer N(E) such that Ifn+1(x)+ +fm(x)I<E for all m>n~N(E)

and all x E E.

17.7 PROOF:

If m > n and x E E

Sm (x)-sn (x) = fn+1 (x)+fn+2 (x)+ ·+ frn (x).

The rest is direct application of 17.6 to {sn (x)}.

17.8 REMARK:

(i) If {fn} converges uniformly on E to f and A c E then {fn} converges uniformly

to f on A.

(ii) If {fn} converg~~ uniformly to f on E and also on F then {fn} converges uniformly

to f on EUf.



17.9 THEOREM:

A sequence of functions {fn} defined on a set E converges uniformly to a function f

defined on E if and only if the sequence of numbers {Mn} defined by

Mn = sup {Ifn (x )-f (x)l/x E E} converges to 0.,

Proof : If lim Mn = 0 and E >0 there exists a positive integer N (E) such that 0 < M, <E for

n~N(E).

Also this holds good for all x E E and n ~ N ( E) {fn} converges uniformly to f on E.

Conversely if {fn} converges uniformly to f on E and E >0 there exists a positive integer

N ( E) such that Ifn (x) -=- f ( x)1 < ~ for all n ~ N (E) and all x E E .

Hence for n ~ NE, 0 <M, = sup {Ifn (x) - f(x )I} s ~<E . This is true for every E> 0 so

that lim M, =0.

17.10 COROLLARY:

A sequence {fn} of functions defined on a set E converges to a function f on E uniformly

if there is a sequence of numbers {An} such that

Ifn (x) - f (x)1 < An for all x E E and all nand lim An = 0 .
/

17.11 WEIERSTRASS M-TEST FOR UNIFORM CONVERGENCE:

Let {fn} be a sequence of functions defined on a set E and {Mn} be a sequence of

00

numbers such that Ifn (x)1 ~Mn for all x E E and all positive integers n . Then the series L fn (x)
. n=1

00

converges uniformly on E if I Mn converges.
n=!
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00

for n ~ 1. Since .L M, converges, given E> 0 there exists a positive integer N (E) such that for
n=1 .

Thus for m > n ~ N ( E) and x E E

ISm(X)-Sn (x)1 = IfiHI (X)+ +fm (x)1

::;lfn+1 (X)I+ ·:+lfm (x)1

/
::;Mn+l +r .. · .. +Mm

=ISm -Sn I< E

Hence by 17.7 2:fn (x) converges uniformlyon E to some function defined on E.

17.12 EXAMPLE:

2 +n ~ () \. .Let 'fn (x) = ( -1 t~. Then L.. fn x converqes.uniformly on every bounded Interval
n , n=1

but does not converge absolutely for any x .

If I is any bounded interval, there is a positive real number K such that Ic [-K, K] so

that Ixl ::;K\f XE I .

(_I)n x2 (_I)n 00 (-It
fn (x)= +--. Since 2: -- is a convergent series of constant

n2 n n=1 n

00 (-1)" x2
terms, uniform convergence of L 2

n=1 n
On I

1(-1)" x21 K2
Ixl::; K so that 2 ::; 2' The series

n n

00 K2 , 00 ( It 22: 2 is convergnet, hence by Weierstrass M - test 17.11 the series 2: - 2 x converges
n=ln n=1 n



00

uniformly on I. This implies that L fn (x) converges uniformly on 1 .
n=l

For any x Em

00 x2 00 1, 00

Since L 2'converges and L ;-diverges, L Ifn (x)1 diverges.
rr=I n n=l n=l

17.13: Let fn (x) = x 2' Then {fn} converges uniformly.
. lt-n x

For any x E IR , and positive integer n ,

I I x I 1=> fn (x)1 = 2 s-; /
I-i-n x 2"n

Since lim 1/ = 0, by 17.9 {fn (x)} converges uniformly to O.
z-i«

17.14 EXAMPLE:
'sv

o if x <_1_
n+l

. 2 1t'f 1 1
SIll - 1 --::; X ::; -

x n+ln

o if x>!
n

Then {fn} does not converge uniformly but converges pointwise to a function and L. \fn \

converges absolutely but not uniformly.
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If x::S;0 fn ( X ) = 0 \I n so f ( x) = lim fn ( X ) =O. II X > 0 there is a pointwise integer N \

111
such that N < X so that ~ ::s; N < X for n z N. For such n fn (x) = 0 hence f (x) = lim fn (x) = 0

for x > 0 . Thus' {fn} converges pointwise to the zero function on m..

, 1 '
If the convergence were uniform, for E = '2 there would exist a positive integer N such

1
that Ifn (x )1 < - for n z N and all x E m.

2

1 1
1 1 1 1

In particular fN (x) < -2 foral! XEm.. However for x=--l ,-- < x <~ so
N+- N+I N

2

If x > 1 fn (x) = 0 \I n ~ Ilfn (x)1 = 0

If x = 1 f1 (x) = 0 and also fn (x) = 0 for n > 1.

1 1
If O-cx-c 1 there is a unique positive integer m such that --::s; x<- for this mrn+I m

fm (x) = sin2
1t while fn (x) = 0 for other n.
x '

00 -

In this case I Ifn (x)1 = sin2 ~ .
n=1 x

00 00

Thus the series L Ifn( x)1 converges absolutely for every x , but I fn (x) does not
n=1 n=1

converqe uniformly as this would imply uniform convergence of the sequence {fn} to O.



17.15 PROPOSITION:

If {fn} and {gn} are uniformly convergent sequences of functions defined on a set E,

then {fn + gn} and {a fn} for any number a are uniformly convergent on E .

Proof: By Cauchy's general principle for uniform convergence, for E> 0 the correspond positive

Ign(x)-gm(x)I<~ for n>m~N2and all xEE. If N(E)=max{N],N2} then for

n > m ~ N (E) and all x E E

E E
<-+- = E2 2

Hence, again by Cauchy's general principle for uniform convergence, {fn + gn} converges

uniformly on E .

Also lafn (x)-afm (x)1

< ( 1+ lal) E for n > m ~ N (E) and x E E .

Since E> 0 is arbitrary, it follows that {a fn} converges uniformly on E.

17.16 EXAMPLE:

The sequence {~} converges pointwise to the zero function on IR but the convergence is e

not uniform on IR.

If E> 0 and I~I< E whenever n > 1:1, this gives pointwise convergence to the zero function.
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On the other hand, given E> 0 and any positive intege~ N , I~ I> E if Ixl> N .E . Hence the

converg,ence is not uniform on m.~ .
17.17 PROPOSITION: ,/

Suppose {fn} and {gn} converge uniformly on E and there exists aM> 0 su~h that,
,

Ifn (x)i~ M and Ign (x)1 ~ M for all n and x E E, Then {fn gn} converges uniformly on E,

Given E> 0 ~ positive integers N1, N2 such that

Ifn (x)-fm (x)l< 2~ for n > mz N, and xEE and

Ifn (x)gn (x)-fm (x),gm (x)1
,

~Ifn (x)(gn (x)-gm (x))! + !gm (x) (fn (x)-fm (x))!

=Ifn (x)I·lgn (x)- gm(x)1 + Igm (x)1 ifn (x)-fm (x)1

E E
<-M+-M=E

2M ·,2M

Hence {fn gn} converges uniformly on E.

17.18 SHORT ANSWER QUESTIONS

17.18.1 : For a sequence of numbers {an} prove that the following are equivalent.

For every positive number E there corresponds a positive integerN( E) .

(a) Such that Ian I::::E whenever n ~ N(E)

(b) Such that Ian I ~ E whenever n ~ N(E)
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(C) such that lanl ~ E whenevern > N(E)

(d) such that lanl ~ E whenever n > N (E) .

17.18.2: Show that uniform convergence of {fn} and {gn} on a set E does not necessarily

imply that of {fn gn}

17.18.3: If {fn} converges uniformly on E and F ~ E, {fn} converges uniformly on F.

17.18.4: If {fn} converges uniformly on A and also on B then {fn} converges uniformly on

AUB.

17.18.5: Let fn (x)= (nx) for x E IR and n E IN where, for any a Em..
n2

[ a] is the largest integer not exceeding a and (a) = a - [a] .

00

Show that L fn (x) is uniformly convergent.
n =1

17.19 MODEL EXAMINATION QUESTIONS:

17.19.1 : Define pointwise and uniform a convergenceof'a sequenceoffunctions. Show that

{n:+ I} converges pointwise, but not uniformly on (0, 1) .

~-

17.19.2: Show that a sequence of functions {fn} defined on aset 'E converges uniformly to a

function f defined on E if and only if

sup {Ifn (x)- f(x)l/x E E} ~ 0
17.19.3 :

17.19.4:

State and prove Weierstarss M - test on uniform converqence.of a.series-of functions.

Discuss (i) uniform convergence and (ii) absolute converqenceor '

2i
00 2
~ (_l)n x +2 n ( )L for x E -00, 00

n=1 n
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17.19.5 : Discuss the uniform convergence of{f~} on [0, 1] where fn ( x) = x" for n ~ 1 and

x E [0,1].
17.20 ANSWERS TO SHORT ANSWER QUESTIONS:

/
/

17.20.1 : a ~ b ~ c: clear.

For c => d, given E> 0 choose N(~) 31anls ~ for n > N(~). Clearly lanl s ~ <e-,

for n :2: N (~) , this N (~) works. For d ~. a given E> 0 , for N 1 (E) satisfying d and

write N(E)=l+Nl (E). This new N(E) works.

1
17.20.2: Let fn (x )=x \f n E IN and x E IR and gn (x) = n \f n E IN and x E IR.

See 17.16.

17.20.3: If E> 0 and N (E) is a positive integer such that

. then since FeE the above inequality holds good for x E F and n z N ( E)

17.20.4: If E> 0 and Nt> N2 are positive integers such that
.. ~~

and Ifn(x)-fm(x)I<E for xEB and n c-m c-Nj

then we write N( E)=max {N1, N2}.

For n>m;=::N(E) and xEAUB then either xEA or xEB. In the first case

Ifn (x) - fm (x )1< E since N ( E) ~N 1 and in the second case the inequality holds such

N(E);=::N2·



17.20.5 :
1 00 1

Clearly 0 s fn ( x ) s2 and L. 2 converges. Apply Weierstrass M - test.
. n n=l n

17.21 EXERCISES:

17.21.1 :

{
o if x=O

and f(x) = .
1+x2 if x:;t: 0 '

00

Show that L. fn (x) converges pointwise to f on m, but not uniformly.
n=l

17.21.2 : Let fn (x) = smnx }J;;. x E m and n E IN

gn (x) = J;;. cos nx .'and

Does {fn} converge uniformly on m .?

Does {gn} converge uniformly on m?

17.21.3: Prove that every uniformly convergent sequence of bounded functions is uniformly

bounded. More precisely. Let {fn} converge, ~niformlyon E. If Vn:3a Mn >0 such

that Ifn (x)1 ~ Mn "i/ n showthat 3aM > 0 such that Ifn (x)1 ~ M "i/ n E IN and x E E.

17.21.4 : Construct sequences {fn} {gn} which converge uniformly on E but such that {fn gn}
does not converge uniformly.

00 1
17.21.5: Consider f(x) = L. 2

n=l l+n x

Show that the series converges pointwise if 0 < x < 00 .

Show that the series converges absolutely and pointwise if -1 < x < 00 and x= 0 .
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Show that the series converges pointwise if __ 1_< x -c '-1 2 V n,EN.
n2. (n+l)

, ", . '1
Find E em. consisting of all x 3 hm 2

n l+.n x

!•• r~"r \ ("' .

"'~..'

=0

Does this sequence converge uniformly on E ?
, ; .' , .
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Lesson - 18 :'

UNIFORM .CONVERGENCE • II

18.1 INTRODUCTION

One natural question that arises in connection with sequences of functions is that if a

property is possessed by each member of a sequence {fn} and f (x) = lim fn (x) V x does f
n

have the property? This property may be, for example bounded ness, continuity, integrability or
differentiability.

In this lesson we study this aspect. Pointwise convergence is not strong enough for
inheritance of these properties by the limit function where as boundedness, continuity and integrability
can be obtained by f under uniform convergence. Differentiation needs more assumptions besides
uniform convergence. We provide a number of examples that focus more light on various
possibilities.

UNIFORM CONVERGENCE AND CON.TINUITY :
18.2 THEOREM:

Let (X, d) be a metric space,E c X and {fn} be a sequence of continuous functions

defined on E. If {fn} converges uniformly to f on E then f is continuous on E.

Proof: We show that f is continuous at every point of E. Let x E E and E> O. Since {fn}

converges uniformly to f, there is a positive integer N(E) such that

Ifn(Y)-f(Y)I<~ for n~N(E) and all YEE ---------(1)

Since fN(E) is continuous at x, there a 8 > 0 such that

If Y E E and d(x, y) < 8
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E E E
< - +- +- = E

333
by (1) and (2)

Hence f is continuous at x.

This is true for every x E Ehence f is continuous on E.

18.3 COROLLARY:

Let (X, d) be a metric space, EcX and {fn} be a sequence of continuous functions

OC!

defined on E. If the series I fn converges uniformly to f on E then f is continuous on E.
n=1

Proof: Let sn(x)=f](x)+ +fn(x) for n z l and xEE. Then {sn} is a sequence of

continuous functions defined on E, which converges uniformly to f on E:

By 18.2 f is continuous on E.

18.4 EXAMPLE:

1
Consider the series 2:)n of exercise 5 in lesson 17. Where fn (x) = 2 (x E IR)

l+n x

Since n2x+l = 0 <=> x= -~ the common domain for the sequence of functions {fn} is
n

D=IR\{-~ Inl;:::l}\f kEIR and k »I write Llk = m -(-k, k) = {xEIR/lxl;:::k}.
n nEZ \," -, \

-,

1Ifn (x)1 s 2' for XE Llk'
, n [k -1) .

00 1 '. 00

Since the series I 2" is convergent, I fn converges uniformly and absolutely on ~V'
n=]n 'n=]



(X)

Since fn is continuous on ,1k 'II n ~ 1, the sum of the series I fn is continuous on
n=l

,1k'll k c-l .

i Clearly the series diverges when x = 0 .

Let E be any compact subset of D\{O}n[-I, 1]. Then there exist positive numbers a
I .

and b such that a cb and a:-:;Ixl:-:;Ibl if xEE.

If xEE, 11+n2xl~n2Ixl-l~n2a-l ~ n2 ~ for n~~.
!

a 1
.Since I 2"' is convergent,

n=l n

I fn (x ) conveges uniformly and absolutely in E. Sinc~ each fn is continuous in E, so

is the sum function.

That uniform convergence is only a sufficient condition for inheriting continuity by the limit
functions from a sequence of functions is evident from the following.

18.5 EXAMPLE:

1
Let fn (x ) = -- for 0< x < 1.

nr +I )'. ,

If O<x <1 and E> O·

1 1 1
Ifn (x)1 = nx+l :-:;n(x+l) < E if n> (x+l)E

so that lim fn (x) =0 (p.w.) .

The sequence {fn} of functions as well as the limit function are continuous. However the

. ' ' 1
convergence is not uniform for, if it were so for E = '2 there would crrespond a positiveinteger N

1 -
such that 0:::;fn (x ) < '2 for all x such that 0 < x < 1 and all n ~ N.
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. 1 1 (1 )In particular we would have -- < - V XE (0, I)' which would imply that (0 l)c - 1 .Nx+1 2 ' - N'

which is impossible.

18.6 DINI'S THEOREM :

Let E be a compact subset of a metric space (X, d) f and fn (n;::: 1) be continuous

functions defined on E and suppose that fn (x )~fn+l (x) for x belonging to E and n ~ 1 and

lim fn (x) = f (x ) 'for every x E E . Then {fn} converges uniformly to f on E.
n .

Proof: Let gn (x ) = fn (x ) - f (x ) for x E E and n ~ 1.

{fn} converges to f uniformly on E if and only if {gn} converges to 0 uniformly. Moreever

each gn is continuous on E and lim gn (x ) = 0 V X E E. Thus it is enough if we show that {gn}
n

converges to 0 uniformly on E.

Let E> O. Since Iim g., (x )=0 when XE E,3 a positive integer N( E, x) such that

E' E
0::; gn (x) <'2 for n z N( E, x). We write N(x) for N( E, x). Then gN(x) <"2' Since gN(x)

is continuous at x , there exists a c3 > 0 (depending on x) such that

The set J (x )= {y/ y E E and d (x, y) < 6} is clearly open in E. The family {1(x ) / x E E}

is an open cover of the compact space E so that there exist finitely many x in E, say xl, x2,······, xr
r .

such that E = U J (Xi) .
i=l

Let N(E)=maximufl1 {N(xd,.·····,N(xr)}. Clearly N(E) depends on E only. If yEE

:3ai (1::; i::; r) such that Y.E J (Xi).
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~ gN(Xi) ( Xi) - ~ < gN(Xi) (y) <gN(Xi) ( Xj) + ~

it follows that

In particular if n~N(E),n~N(xi)Vi, l s isr so that for all YEE O~gn(Y)<E

whenever n ;:::N (E) .

Thus {gn} conveges uniformly to 0 on E.

This completes the proof.

CHANGE OF ORDER OF TAKING LIMITS
18.7 THEOREM :

Let (X, d) be a metric space, E c X. x a limit point of E, {fn }'a sequence of functions

defined on E, converging uniformly to a function f defined on E and suppose that for each n

lim r,(t ) = An. Then {A }converges and '\
t-4X n

lim An = lim f (t )
n-4OO t-4X

In other words lim lim fn (t)= lim lim fn (t),
n-4OO t-4X t-4X n-4oo

We divide the proof into four steps.

Step 1 : {An} is a Cauchy's sequence and hence converges,

Proof of Step 1 :Given E> 0 , by Cauchy's general principle for uniform convergence, there exists

a positive integer N 1' such that
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)fn (t) -fm (t)) <~
2

for n?:Nl> m?:N1 and ~
//

Since lim fn(t) =AnVn it follows that for n?:N1 and m?:N1t-e-x

Hence {An} is a Cauchy sequence and hence converges.

Step 2: If A=limAn and E> 0 there exists a positive integer N and a <5(x »0 such.that

(i)

(ii) IAn-AI< ~ and
3

(iii)

Proof: Choose positive integers N2., N 3 such that

Let Nemax = {N], N2}. For this N (i) and (ii) hold.

Since lim fN (t) = AN, there exists a <5( x ) >0, such that (iii) holds.
t-H

Step 3 : Limit f (t) = A.
r-e-x

Proof: Given E> 0 choose 8(x) >0 and a positive integer N satisfying (i), (ii) and (iii) of step2.

If O<d(t,x )<<5(x) and tEE.
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\f(t)-A\ ::;;\f(t)-fN (t)! +!fN (t)-AN!+!AN -A!

E E E
< - +-+ - = E by step 2333 .

Hence limit f( t) = A.
t-s-x

18.8 COROLLARY:

If (X, d) is a metric space, EcX and {tn} converges uniformly on E to f and fn IS

continuous at x E E for every positive integer nthen f is continuous at x.

Proof: We may assume that x is alimit point of E .

f(x) = lim fn (x) = lim lim fn (t)
n . n t-tx

== 1im lim fn (t) = lim fn (t)
r-e-x n-too t-e-x

. 1
18.9 EXAMPLE: Let fn (x) = .

(1+x2f
For x:t: 0 limf., (x) = 0 since 0<_1_<1.

n 1+x2

when x=O~ limf., (0)=1 '
n

{
o if x:t: 0

Hence f(x) = lim f., (x)= .
1 If x = 0

For every n , lim fn [r) = 1 (since fn is continuous on lR)
t-:-+O

so that lim lim fn (t)=l
n-too t-:-+O

Also Jim lim fn ( t) = 1im f( t ) = 0 .
t-:-+O n-:-+oo t-:-+O
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UNIFORM CONVERGENCE & INTEGRATION
18.10 THEOREM:

If fn (n ~ 1) are R.S. integrable on [a, b] with respect a monotonically increasing function

a defined on [a, b] and if {fn} converges uniformly to f on [a, b] then f is R.S integrable with

respect to a on [a, b] and

b b
lim ffn da = Jf do;

11 a a

Proof: Step I: f is bounded.

Corresponding to E= 1, there is a positive integer N such that

IfN(x )-f(x)1 < 1 for all xE[a, b].

~ !f(x )1-lfN (x)1 ~ If(x )-fN (x )1< 1 V XE [a, b]

~ If (x )1 < 1+ IfN (x )1 < 1+ M \-I X E [a, b]

where M is an upper bound of IfN I on [a, J].

Step II: Ifg and h are bounder; functions »nd

g(X ):Sh(x)V xE[a,b] then

,.,
-

b b b b
fgda ~ fhda and fg da ::s; fhda

a a

For any partition P = {a = Xo < <xn = b} of [a, b] with

m; = g.l.b {h(x )/Xi-I ~x~ xd and



M; = l.uob.{h(x )/Xj-l :Sx :Sx d for 1:Si:S n, we have mj:S m] and M, :SMj 0

n n
Hence L(P, g, a) = L mj ilaj :S L m; ilaj '" L(P,h,a) and

i=l i=l

n n
U(P,g, a) = L Mj L\ai s I Ml Ll Ul =U(P,h,a)

i=l i=l '

This is true for every partition p of a [a, b] so

b b
fgda = sup {L(P, g, a)/P}~ sup{L(P,h, a)/P} = Ih da

- -
b b

and similarly f g dos f f do; 0

a a

b b
Step III : fER (a) and lim f fn da = f f do,

a a

Since {fn} converges uniformly to f on [a, b], given E> 0 there corresponds a positive

integer N (E) such that

~f(x)- (E )<fN(x)<f(x)+ ( E )forn~N(E)andxE[a,b]
21+a(b)-a(a) 2 l+a(b)-a(a)

b( J b b{ }E E
f - da:S fn da :S f + da

~ by step II,!l 2(1+a(b)-a(a)) 1 1 2(1+a(b)-a(a))
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b b b
:::;> Jfda - E< Jfn da < Sf do; + ~ for n2N(E).

2!! !!!!

b b
=> f fn do; - f f da < E for n 2 N (E) .

~ !!

b b
=> lim I fn da = If da . '

!! !!

- -
b b

By symmetry lim f fn du = If de .
a a

-
b b

Since ffn da = Ifn da, tb~ limits on the I.h.s. are equal. So,

!! a

- -
b b b b
If da = lim Ifn da = lim Ifn da = If da,
!! !! . a a

=>f E R( a) and

b b
If do; =lim jr, da
a a

18.11 EXAMPLE:

Let (Q n [0, 1] = {f1' f2,······, rn," .. } be an enumeration of the set of rational numbers
\
in [0, 1].

Define fn on [0,1] by

{
Oif xE{r] ..... r}f (x) = . , , n

n 1 otherwise



C Uniform Convergence ~

{
o if XE {f] r2 ..... r ······}and

and f (x ) = '" n- .
1 otherwise .. .

Since fn has a finite number of discontinuities with value 0 namely at f],.·· .., fn and ist at

I
other x, fn is Riemann integrable on [0, 1] and Jfn dx = 1.

o

If x E [0, 1] and is not rational, fn (x ) = 1 V n, so f (x ) = lim fn (x ) == 1
n

If XE [0, 1] and is rational, say x =ra- fn (rK)= 0 for n ~ K so

f(fK) = lim fn (fK)=O.

{

Iif x is irrational

Th f(x) = andus . ° if x is rational

It is known that f is not Riemann integrable.
.>

Conclusion: If {fnJ converges to f p.w. but not uniformly it is possible that feR (a) even though

. fn E R (a)V n where a is any monotonically increasing function on [a, b] .

'18.12 EXAMPLE:

f;(x)=nx(1-x2)" for n z l and 0::; x::; 1. Clearly'fn is continuous and
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1 2-4---< x
(1+x2 r n (n - 1)

2
=> °~fn (x ) ~ ..,. for 0 <x < 1 and n ~ 2 .

n(n -l)x-'

~ lim fn (x ) = 0 V X E [0, 1) .

Conclusion : If limfn (x ) = f (x ) p.w, but not uniformly it is a possible that fER (a) when

fn E m(a)V n but yet

b b
ff.da ::j:. lim ffn da

. n
a a

18.13 EXAMPLE:

2 ( 2)nfn (x) = n x 1- x fo.rC:f.'1il..,~ 1 and 0::;; x ~ 1 . As. in example- 18 above for each n, fn

continuous, hence Riemann integrable and

b n2 . b
jr, (x)dx = so. that hm-ffn dx = r:t)

2n+2a a

Also Jim fn (x )= ° for every x so lim fn is Riemann integrable.
n

Conclusion: If {fx} converqes to. f p.w but-not uniformly, it is possible that f E nr(a) when

b
I'll Em ( a) V n even though lim f fn da does not exist in m.

n a
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18..14 COROLLARY:

_ 00

If fn E R (a) on [a, b] for n~1 and the series L fn converges uniformly to f on [a, b]
n=1

then fER (a) on [a, b] and

boobf f do. = L f fn de,
a n=1 a

Proof: Write sn (x ) = fJ (x ) +.....+ fn (x ) for x E [a, b] and n ~ 1. Then sn E ffi.(a) for n ~ 1

and {sn} converges uniformly to f on [a, b]. Then by 18.16 fEffi.(o.) on [a, b] and

b boob
ffdo. =limJsndo. = L Jfndo. ..
a n a n=1 a

18.15 SHORT ANSWER QUESTIONS:

18.15.1 : 1· l' 1 n nFind rm rm -- and nn im
n~oo x~O nx +1 x -e-O n~oo nx +1

1

18.15.2 : Let (x ) = x - [x ], the fractional part of x where [x] is the largest integer not

exceeding x .

Discuss the uniform convergence of f (x ) = :f::~::(nx ) (x EIR ). Find all discontinuities.. 2 .
n=O" n

of f.

18.15.3 : Let fn (t) = nt (t E IR) .

Does {fn} converge uniformly on

. (a) IR (b) [o.,~] where a < ~ ?

18.15.4 :

00

Power Series : Show that if L an x
n

eonverqes absoIUtel:' in (-R.:, R) then lthe
n=O ·..·M:·

L

22
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series converges uniformly and absolutely in [-R + E, R- E] for 0 <E< 2R and that

the sum function is continuous in (-R, R).
18.16 MODEL EXAMINATION QUESTiONS:

18.16,1: Define uniform converqer cc of a sequence {fn} of functions to a function defined on a

set E.

Give examples of a sequence of functions that converges

(a) uniformly (b) pointwise but not uniformly.

18.16.2 : Show that if {fn} is a sequence of functions defined on E and f is a function defined

on E then {fn} converges uniformly to f on E .

If and only if {sup {Ifn (x )-f(x )I/XE E}} converges to zero.

18.16.3 : State and prove Weierstrass' M-test.

n x2+n
18.16.4 : Discuss the uniform convergence and absolute convergence of L(-1) --2-

n

18.16.5 : Show that if each fn (n ~ 1) is continuous on a metric space X and {fn} converges

uniformly to f on X then f is continuous on X.

18.16.6 : Show that if each fn (n > 1)E R (a) where a is a monotonically increasing function on

[a,b] and {fn} conv~.rgcs uniformly to f. then f e R[u] on [a,b] and

b b
lim Ifn da = If du

a a

18.16.7 : The sequence of functions J __ 1_, converges to 0 on (0, 1).
Lnx+tJ

Is this convergence uniform? Justify your answer.

18.16.8: Let (X,d) be a metric space; E c X. x a limit point of E, and {fn} a sequence of

functions defined on E. State a set of sufficient conditions under which
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lim Jim fn (t) = Jim Jim fn (t)
. t-e-x n~oo n~oo t-e-x

holds and prove the result.
18.17 ANSWERS TO SAQ'S :

Jim __ 1 _ = 1=> Jim Jim 1 = 1
x~o nx + 1 n~oo x~o nx +1

1 1Jim = o=> Jim Jim = 0
n~oo nx + 1 x~O n~oo nx +1

18.17.2: Since the set of discontinuities of [x ] is the set Zof integers, the set of discontinuities

of [n, x ] for each n z 1 is the set {: 1m E z}. Moreover 0 s (n x ) ::::;1 \j n E IN

.: 00 (nx)
and x ,..-m. Hence 2: -2-, converges uniformly. The sum function f is continuousn=O n

at the points of continuity of each fn. Hence the set of discontinuities of f is precisely

the set (Q of rational numbers.

18.17.3: For tcll1: {1(n-m)tl/n:2:1, m:2:1}= {KltV~:~}'
It is impossible to find a N(E) corresponding to any E>osuch that Kltl<E for

" -, '";. \

18.16.4: If 0 <E< 2R, and Ix I::::;R- E, by comparison test 2:lanl (R- Et converges. So,

Lan x n converges uniformly and absolutely in [-R + E, R - E].

By 18.2 continuity follows in [-R + E, R - E] .

If Ix I<R, j E> 0 31x I::::;R- E so continuity follows in (-R, R).

18.17 EXERCISES:

18.17.1: Discuss the uniform convergence of the sequence {fn} defined by



Centre for Distance Education 18.16 . Acharya Nagarjuna Univer~~

m
18.17.2: Let sm n = --. Find lim lim sm nand lim lim sm,n.

, m+n m~oo n~oo' n~oo m~oo

18.17.3: Show that every uniformly convergent of bounded functions is uniformly bounded i.e.

Ifn (x )1 ~ M for a fixed M> 0 and all x and n z 1 .

18.17.4: Suppose {fn} is uniformly convergent on E and each fn is a bounded function. Show

that [r,2
} converges uniformly on E.

18.17.5: Suppose {fn} is a sequence of boundedfunctions a~d {f/} converges uniformly.

Does it imply that

. (i) {fn} converges uniformly to f

(ii) {Ifn I} converges uniformly to f. Justify

18.17.6: Suppose fn ~ f uniformly on ill. and gn ~ g uniformly on ill.. Does it follow that

gnofn ~ gof uniformly on IT{? Why? .

18.17.7 : () {
o if x ~ 0 {} . ( ),Let I x =. and xn be a sequence -ofdistlnct 'real numbers in a, b
1 if x > 0

.' ".-',

00

and I ICn I be a convergent series.
n=!

00 •...~( •

Prove that L cn I (x - xn) converges uniformly and that the sum function is
n=l

continuous outside (a, b).

18.17.8: Show that the function f ~gefined in SAQ 2 is Riemann integrable in [a, b] V a <b.

(Hint: First prove for [n, n + 1] where n is an integer) ... . .

REFERENCE BOOK :

Principles of Mathematical Analysis - Walter Rudin (3rd Edition)

Lesson writer:

Prof. L Ramabhadra Sarma
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Lesson - 19

UNIFORM CONVERGENCE - III

19.1 iNTRODUCTION

In this leson we concentrate our attention on differentiability of a sequence / series of
differentiable functions. It is interesting to note that uniform convergence is not enough for the limit
function to inherit differentiability from the sequence of functions. Every term of a uniformly convergent
sequence of functions may be differentiable. Nevertnless the limit function may not possess derivative

,
at all. Even if the limit function is differetiable it is possible that limf~ ::j:. (limfn) .

;n this lesson we establish the result lim f~ ::j:. [Iim fn)' under extra hypothesis. Using some
results of previous lessons on uniform convergence we also establish the existence of a nowhere
differentiable continuous function on m.

UNIFORM CONVERG~NCE AND DIFFERENTIATION .
We now consider the following question.

Do differentiation and limiting process commute under uniform convergence? More
. ./

specifically suppose {fn} is a sequence of functions defin~d in an open interval I and fn ~ f

uniformly on I. If each fn is di.fferentiable at a does it follow that f is differentiable at a and
r.,

ff (a) = lim f~ (a) ? The following examples throw some light on this aspect.

19.2 EXAMPLE:

. 1 ' '
Since lim r = 0 and [sinnx] ~ IVxEm &ri~l {fn} converges uniformly to O. (by 17.9).

n '\In ,

Als~ f~(x) = j;; cosnx

when x =2K7t where K is a fixed integer, f~ (x) =Fn
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so lim f~ (x ) = <X).

Thus f'(O);t:limf~ (0)
n

19.3 EXAMPLE:

2. I-nx
In 17.13 we proved that {fn} converges uniformly to 0 on m. . Clearly f~(x) = 2 '

[J+nx]

so.thet lim f~ (0)= l;t:f'(O).
n

19.4 EXAMPLE:

Define a sequence of polynomials recursively as follows on [-1, 1].

po(x)=lxl·

1.

2. (

. I\tl!x, 2
Ixl-p (x)~lxl' l--I I < - if Ixl<ln . 2 ) n--I - .

{pn (x )} converges uniformly to Ix I on [-1, 1]

Proof (1) : Ix1-Pn+1(x)

3.



( Uniform Convergence ~ m:::E

(1) holds when n = O. Assume for n.

S· pI,. \ < 1 1<1mce 11 ~., )- X - I

Ixl+Pn(x)
so that 1- I ~ 0 I so that

2

Thus (1) holds for all n and x in [-1, 1).
I

~ (2)· From (-'1',1') i;-I> P (x) >P (x '»0
, ., I ,- i" 1-- &1+1 ' - n -

Ixl+Pn+1(x) Ixl=>1- ·~1--
2 2

- I I( Ix IJnIxl-Pn+1 (x) < x 1-'2

As the inequality holds good trivially when n == 0 I it holds for all n ~ 0 by induction.
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For the second part of the inequality put .~:;:: a .
2

;'(I-an )[I+[~} +······+a"J (binomial theorem)

~ (l-af(l+na)

>(I-af a(l+n)

so that (1- ar < ( 1) and hence
n+T a

2a(l-a f <_2_.
n-i-I

(Ix IJn 2
i.e. Ixl 1-"2 < -n+-I

(3) : The sequence of polymomials {p n (x )} converges uniformly to Ix I on [-I, 1].

. 2
Proof: By (2) 0 ~ Ix I - Pn (x ) < - for all n ~ 0 and x E [-1, 1] .

. n+I

Since lim _2_ = 0 by 17.10, {Pn (x)} converges uniformly to °on [-1, 1]
n-e l

19.5 REMARK:

We now make the following observations. The sequences offunctions under consideration
in examples 19.2, 19.3, and 19.4. Converge uniformly on their respective domains. All these are
differentiable.

In example 19.2 the limit function is differentiable at 0, but f' (0) = lim f~(0) does not hold
. n



because lim f~(0) exist. In example 19.3, limf~ (0) and f'(0) exist but lim f~(O);t f(O). \n
example 19.4 the limit function is not differentiable at O.

In view of these observations one thing is clear. Inheritence of differentiability the limit function

and deduction of f' (x ) = lirn f~ (x) require stronger hypothesis than mere uniform convergence.

We now prove the following theorem.

19.6 THEOREM :

Suppose {fn} is a sequence of functions each of which is differentiable on [a, b], the

sequence of derivatives {f~} converges uniformly to a function g on [a, b] and for some x in

[a, b]. the sequence {fn (x )} converges.

Then {fn} converges uniformly on [a, b].

If f=lirnfn then f is differentiable on [a, b] and g=f', i.e. lirnf~ (x) = (lirnfn (x))'.

We divide the proof into three steps.

Our proof is based on 18.7.

Step 1 : {fn} converges uniformly on [a, b].

Proof: Since {fn (x)} converges, given E> 0 there exists a positive integer N, such that

Since {f~} converges uniformly on [a,b] there exists'-~ 'positive integer N 2 such that for

t s]a, b]'n 2:: N2 and m~N2'

If~ (t) - f:n (t)1< 2(b~ a) ----------------(2)

If as y < z s b, by the mean value theorem applied to fn -fm on [y, z], ::1tE(y,Z)3

so that
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E E
< Iz - yl' < - f N N- 2(b-a) - 2 ,Qrn z 2,m~ 2-----------(3)

Let N =max{NJ> N2}. From (1) and (3) we get for t E [a, b] and. n ~ N, m ~ N .

E E
<-+- =E

2 2

Hence by Cauchy's general principle for uniform convergence, {f;.} converges uniformly

on [a, b].

Let f (t )= lim fn (t) for t E [a, b] .
n

Step 2 : Fix y E [a, b]" Let E=[a, b] - {y}.

Define .n and • on E by

,I, (t) _ fn (t)-fn (y) ,h() _ f(y)-f(y)
'I'n - t and 'I' Y - t-y -y

Then {.n} converges uniformly to • on E.

Proof: Given E> 0 choose a positive integer N as in (3) of step (1). For tEE, n ~ Nand m ~ N

E< .
-2(b-a)

Thus {~n} satisfies Cauchy's criterion for uniform convergence and hence converges
l

uniformly on E.



Since lim fn ( t) = f ( t) for t E [a, b]

lim $n ( t) = $ ( t) for tEE and the convergence is uniform on E.

Step 3 : f is differentiable on [a, b] and g = f' .

Proof: Our proof makes use of 18.7.

Again fix y E [a, b] and-let E=[a, b]\{y}. Clearly y is a limit point of E. The sequence

{$n} and the function <I> defined in step 2 satisfy condition of uniform convergence :.

{$n} converges uniformly to $ on E. Also for every n ~1.

\
B.y '\18.i lim t; (v) exists and

. n~C/O

" I

g(~r') = limf~ (y) = lim Ht)= lim t( t)- f(y)
II t~y t~y t-y

Hence f is differentiable at y and f' (v) = g (y) .

This is true for every Y E [a, b] and f'(y) = g(y).

19.7 COROLLARY:

C/O

Suppose fn (n ;;:::1) is differentiable on [a,b] and the series L f~ converges uniformly on
n==1

C/O C/O

[a, b] with sum g . If for some x E [a, b] the series L fn (x ) converges, then the series I fn
n=1 . n=1

converges uniformly on [a, b], the sum function f (x) of this series is differentiable and

f' (~) = g (x ) for all x in [a,b] .
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Proof: Let sn (t) =f1 (t) + ..... " ..... "+fn (t) for t E [a, b] and n 21 . Then each sn is differentiable

on [a, b], {s~} converges uniformly to g on [a, b] and {sn (x )} converges.

Hence by 18.14 {sn} converges uniformly on [a, b] and the sum function f is differentiable

on [a, b] and satisfies f' (x ) =g (x ) for x E [a, b]. From this the corollary follows.

19.8 EXAMPLE OF A NOWHERE DIFFERENTIABLE CONTINUOUS FUNCTION:

\ Is eve.ry continuous function differentiable? The absolute value function defined by
"-

$ (x.) = Ix I is a handy example for a negative answer. After all zero is the only point at which the

function is not differentiable. Could this set of points of nondifferentiability be infinite. The answer is
yes! Extend the above function $ periodically with period to IR .

/,/ . /\/\J/\/\
Then what can you say "~\out th, set of points of nondifferentiability of a continuous funcu, ..'>

A lot couid be said. We will be cell:..mt with providing an example of a nowhere differentiable continuous
function IR. This, we do by ma: :ng use ,..' uniform convergence. We first prove the following.

19.9 LEMMA:

Define H x ) = Ix I if -J s x::; 1 and

Hx + 2) = $ (x ) if x E IR .

Then IH S ) - $ (t)1 ::; Is - tl for s, t in IR.

Proof: Let k be an integer.

If s = 2 k <p( s - 2k) = <p( 0 ) = 0 while

Ifs=2k+l,<p(s) =<p(s-2k) =<p(1) =1
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If sE(2k-l, 2k+l), <I>(s)=<I>(s-2k) =s-2k since O<s-2k<1

If sE(2k-l, 2k) <I>(s)=<I>(s-2k)=2k-s since -1<s-2k<O

Since 0 ~ <I>(s) ~ 1\j s, 1<1>( s) - <I>( t )1~ 1 \j s, t in m

in particular, if Is - tl > 1, 1<1>(s ) - <I>(t)1 ~ 1< Is - tl

Thus it is enough to consider the case Is- tl ~ 1 .

Let s E m, t E m 8J1ds < t, O~ t -s = It -sl~1.

Then both Sand t may lie in between two consecutive integers or may have one and only
one integer in between them, we consider various possibilities that arise in this context. The K
that occurs hereunder is an integer.

Position of sand t 1<1>( s) - <I>( t )1

(i) 2k - 1~ s < t < 2k 1(2k-s) -(2k-t)1 = Is-tl

1(2k-s)-(t-2k)1 = l(t+s-4k)1

I(s - 2k) - (t - 2k)1 = Is - tl

(ii) 2k -1 ~ s < 2k < t ~ 2k + 1

(iii) 2k < s < t ~ 2k + 1

(iv) 2k ~ s < 2k + 1 < t ~ 2k + 2 I(s - 2k) ': (2k + 2 - t)1 = Is+ t - 4k - 21

In case (ii) s < 2k < t ~ t - s = Is- tl .

~I<I>(s)-<I>(t)1 = l(t-2k)-(2k-s)1 <t-s = Is-tl·

In case (iv)

;<1>(s)- <1>(t)l= 1-(2k-+ 1-s)+(t - 2k + 1)1<lt - s].

Thus in all the possible cases we have 1<1>(s ) - <I>(t)1 ~ Is- tl·

Among the above four cases, which exhaust all possibilities, equality occurs when s, t lie
between consecutive integers while the inequality is strict when one and only one integer lies in
between sand t .
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Notation: Fix x E 1Rand an integer m .

(m 1 m J (m m IJClearly atmost one of the intervals 4 x -"2' 4 x and 4 x, 4 x +"2 contains an

integer. Let ()m be ±.!.. 4 -m so that 4m x and 4m (x + ()m) do not have an integer in between
2

them.

For each n z ° write

~ (4n (x + ()m ) - ~ ( 4n x ))
I'n = ()

m

We now prove the following

19.10 LEMMA:

{
o if n > m

Yn =
4mit rr= m

4o-m
Proof: If n > m 4n om =±-- which is an even integer so that

I 2 .

4m
Since there is no integer between 4m x and 4m x +-- 2 '
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and

This completes the proof of lemma 2.

THE FUNCTION f AND ITS CONTINUITY ON lR :

00 (3)0 .
The geometric series 2: 4' is convergent. Since 1$ (x )! s I'llx E IR, by Weierstrass

0=0

M-test the series "~.( ~r $(4" x ) converges uniformly on m. Since $ is continuous, $( 4"'X)
.is continuous for every n ~ 0 so that by 18.2 the sum function f defined by

f{--l- ~(3)nJ,(40X)' .
\' i - L. I 4' 'I' IS continuous on IR.

n=O\ /

NON DIFFERENTIABILITY OF f :

. f(x+8rn)-f(x )1
19.11 Lemma: Let XE IR. Then lim s: = ex) ,

m-e-co Urn . I I,

Ii

rn (3)0 .
= L 4' Yo

n=O
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I
i

=
2

'. 1- 3m +1 I1-m f(x+om)-f(x) = 00
Since 1m -- = 00,m 2 m om

Consequence: Since lim om =0,
m

_ f(x+h)-f(x)1
~~o h I does not exist as a real number.

Hence f is not differentiable at x. Since this holds \:j XE IR, f is not differentiable at any

point of IR, i.e. f is no where differentiable.

19.12 SHORT ANSWER QUESltONS :

00

19.12.1: Show that if L fn
n=1

/ 00

is a series of functions, each fn is differentiableon [a, b], L~ (x )
. / ~/-

00 " /- 00

converges for some X~E [a, b] and L f~ r converges unifO~IY on [a, b] th;n L fn
n,=1 / n='I

converges uniformly on [a, b] and

19.12.2 :

00

Show that .L fn (x ) = f (x ) \:;j x E TIt; Each fn is differentiable but f is not differentiable at 0_
n=O
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.•9.12.j = Derive g =[' in 19.6 using 18.10 under the assumption that f~ is continuous for every n ' ..

19.13 MODEL EXAMINATION QUESTIONS:

19.13.1: Show that if {fn} and {f~} converge uniformly on [a, b] lim fn = f and lim f~ = g then

f is differentiatiable on [a, b] and f' = g .

00

19.13.2: Show that if I an xn converges in (-R, R) and has sum f (x) then f is differentiable
n=O

00

and f'(x)=I:nanxn-I forxE(-R,R) .
. n==I

x
19.13.3: For n ~ 1 and XE IR put fn (x)::::: 2 .

I+nx

Show that {fn} converges uniformly on IR.

Is it true that [Iim fn)' = lim f~ on m ? Justify your answer.

19.14 ANSWERS TO SAQIS :

n
19.14.1: Apply 19.6 to the sequence {sn} of partial sums: sn = L fi .

i=l

19.14.2 :

. (1+x2f -1

Take the limit with respect to n to the sequence {sn} of partial sums, sn = ( 2 )n-1
l+x

19.14.3 : Since each f~ is continuous, by 18.2, g is continuous By 18.10 'II Y E [a, b] .

y y
lim f f~ ( t ) dt = f g( t ) dt (*)

x x

N
W

If f'{y] =Iim fn(Y) V YE[a,b] then from (*)
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y
f (y ) = f (x ) + Jg (t) dt (* *)

x

Since the R.H.S. in (* *) is differentiable so is L.H.S. and we get f'(y)=g(y).
19.15 EXERCISES:

19.15.1 :
00

Show that if. f (x ) = L an x" (- R <x <R) then f possesses derivatives of all
n=O

orders and that

f(k) (x) = f bn xn-k where bn = n(n-1) ...·.··(n-k+1)an.
n=k

. f(k) (0)
In particular show that aK = 11r \t k ~ 0 .. tk

19.15.2:
3 5 ( )nX X -1 2n+1

Show that the series x-- +-+.. x + .
. 3 ! 5! (2n + 1)!

converges uniformly in IR. If the sum is denoted by s(x ) sow that

2 4 ()n, X X -1 2n
s (x). =c(x) = 1-2T+4T+ .....+ (2n)! x +....

19.15.3: Show that C2 (x ) + S2 (x )= 1 for all x.

REFERENCE BOOK :

Principles. of Mathematical Analysis - Walter Rudin (3rd Edition)

Lesson writer:

Prof. 1. Ramahhadra Sarma



Lesson - 20

SPACES OF CONTINUOUS FUNCTIONS

20.1 INTRODUCTION

The space 'if? (X, lR) of all real valued continuous functions is one basic example and

model in Functional Analysis and measure theory. This lesson is devoted to learn some basic

properties of 'if? (X, K) where X is a compact metric space and K = a: or lR. The notonion of

uniform convergence is closely connected with convergence in <ir(X, IK). We also study

equicontinuity of a family of functions which is helpful in characterizing compact subsets of

'iP(X,lR).

We finally learn Weirstrass approximation theorem for continuous functions by polynomials
which are comparatively easy to handle because of their smoothness ..

Let X be a set. We consider the collection g of all complex valued functions on X and

define pointwise operations as follows. Let f E g, g E g and a E <C.

Pointwise addition f +g: define for x E X

[f +g)(x )=f(x )+g(x )

Pointwise multiplication f g : Define for x E X

(fg)(x)=f(x) g(x)

Pointwise scalar multiplication: Define for XE X

(af)(x)=af(x).

It is easy to verify that, g is a vector space over <C.with pointwise addition and scalar
multiplication. Moreover g is a commutative ring with unity with respect to pointwise addition and
multiplication.

When f and g are continuous so are f +g, fg and a f for every a E <Cso that the space

consisting of all complex valued continuous functions on a metric space X is a subspace of g.

When f, g E g and a E <Cand f,g are bounded so are f + g, f g and a f so we have the
following.
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20.2 LEMMA:

If X is a metric space, the space <tP(X) of all complex valued bounded functions on X is

a vector space.

When X is a compact metric space, every continuous function is bounded. In this case,

<tP(X) is precisely the vector space of all complex valued functions on X and the word 'bounded'

becomes redundant. In what follows X is a compact metric space.

For f E 'iF (X) define Ilfll = sup {f Ix 1/x EX} and call Ilfll by norm of f or simply norm f.
20.3 LEMMA:

For f,g E <tP(X) , a E <C

(i) Ilfll ~ 0 with equality if and only if f (x ) = 0 V X EX

(ii) Ilf + gll :5llfll + Ilgll

(iii) II~fll =Iaillfil

Proof: Since If(x )I~OV XE X,llfll ~ O.

Since 0 :5If (x )1 :5llfll V x E X, Ilfll = 0 ¢7 f (x ) = 0 '\f x E X
Also for XE X

....",;
·I(f E g)(x )1= If(x) + g(x)1

:5lf(x)1 + Ig(x)1

~llfll+llgll

Since this is true for every XE X, Ilf + gll :5llfll + Ilgll

Finally when a = 0 af == 0 and so Ilafll = Ilallllfll = 0 .

In the general case Ilafll == sup{laf(x )I/XE X}
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= sup{lo.llf(x )I/XE X}

= 100Isup{lf(x)1/xE X}

~ 100111fll·

The completes the proof of lemma.

LEMMA: The space ~(X) is a metric space with respect to the function defined by

d(f, g) = Ilf - gll·

Proof: From (i) of lemma 19.3 Ilf - gll2:0 with equality if and only if f - g = 0 i.e. f = g so that

d(f, g}2:0 and d(f,g)=O if and only if f = g.

From (ii)oflemma 19.4 for any f,g,h in Cfr?(X),as f-g and g-h belong to '(f?(X).

d(f, g) + d(g, h) = Ilf - gll+llg - hll2: Ilf - g + g-hll = Ilf -hll = d(f,h)
'.
"

This implies triangle inequality for d .

Finally for f,g in ~(X) by (iii) of lemma 19.4

d( f,g) = Ilf - gll = II-l(g - f)11== Ilg- fll = d(g, f)

Hence d is a metric on <if?(X).
\ '" '

20.4 THEOREM :

Let X be a compact metric space and d be the metric on '$'(X) defined by

d(f, g~,=llf - gll=sup{lf(x )-g(x )I/XF X}.

Let {fn} be a sequence in '(f?(X) and f E 'iP(X). Then

(i) lim d(in,f) = 0 if and only if {fn} converges to f uniformly on X.
n
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(ii) {fn} is a Cauchy sequence in 'tf(X) if and only if {fn} satisfies Cauchy's critenon

for uniform convergence.

Proof: Assume that d(fn,f) ~ 0 as n ~ OC!

Given E> 0 there is a positive integer N (E) such that

~ {fn} converges uniformly to f on X.

Conversely suppose {fn} converges uniformly to f on X.

Given E> 0 there corresponds a positive integer N (E) such that

=> sup {Ifn (x )-f(x )I/XE X} ~ ~ <E for n ~ N(E)

=> lim d(fn,f) = O.
n

Assume that {fn} is a Cauchy sequence in 'tf(X). Given E> 0 there is a positive integer

N(E) such that

d(fn' fm)<E for n>m~N(E)

=> sup {Ifn (x )-fm (x )I/x E X} <E for n > m ~ N( E).

~lfn(x)-fm(x)I<E for n o m z Nte] and all XEX.

~ {fn} satisfies Cauchy's criterion for unifor~ convergence.
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Conversely assume that {fn} satisfies Cauchy's criterion for-uniform convergence. Then

given E> 0 there is a positive integer N (E) such that

=> d(fn, fm)= sup {Ifn(x )-fm (x )I/XE x] s ~<E for n > m ~ N(E).

20.5 DEFINITION :

The metric d on 'IF(X) defined in 20.4 is called the uniform metric.

20.6 THEOREM :

The metric space <tP(X) of all bounded continuous functions on a metric space X· is

complete with respects to the uniform metric defined by

d(f, g) = sup{lf(x )-g(x )I/XE X}

Proof: Let {fn} be a Cauchy sequence in 'IF(X) . We prove

(i) V XE X {fn (x)} converges.

(ii) the limit function f (x) is continuous on X and bounded.

(iii), the convergence of {fn} to f is uniform on X,.

Proof of (i) : Since {fn} is a Cauchy sequence in 'IF(X) given E> 0 there is a positive integer N

depending on E such that d(fn, fm)<E for n > m ~ N

=> {fn (x)} is a Cauchy sequence in <1:,henceconverges.

Proofof(ii): From (1) Ifn(x)-fN(x)/<E for n z N and all XEX. Letting n~co we get

If(x )-fN (x )I:::;E. Since fN is continuous, fN is uniformly continuous hence there exists a

8>.0 such that IfN(X)-fN(y)I<E if x, y belong to X and d(x,y)<8. For such x, y.
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If(x )-f(y)1 ~ If(x )-fN (X)I + IfN (;~)-fN (y)1 + IfN (Y)-f(y)1

<E+E+E = 3E. I
Hence f is in fact uniformly continuous on X.

Proof of (iii) : {fn} converges uniformly to f on X .

From (1) given E> 0 there is a positive integer N such that Ifn (x) - fm (x )1 <E for

m > n ~ N keeping x and n fixed and letting m ~ 00 we get

Since this is true for every x E X and n ~ N it follows that {fn} converges uniformly to f

on X. Since uniform convergence is equaivalent to convergence in ~(X) with respect to d it

follows that {fn} converges to fin (~(X) , d)

20.7 DEFINITION:

Let {fn} be a sequence of functions defined on a set E. We say that {fn} is pointwise

bounded on E if for every x E E , there is a positive and real number ~ (x ) depending on E such

that Ifn (x)1 ~ <I>( x) \:j n z 1; i.e. \:j XE E the sequence of numbers {fn (x )} is bounded.

We say that {fn} is uniformly bounded on E if there is a positive number M such that

Ifn(x)I~M for all XEE and n z l .

20.8 THEOREM :

Let E be a countable set and {fn} , a sequence of functions defined on E such that {fn (x )}

is bounded for every x in E. Then there is a subsequence {fnK} such that {fnK (x )} converges

for every x in E.

Proof: We use the fpllowing :

(a) Every bounded sequence in <Chas a convergent subsequence

(b) Every subsequence of a convergent sequence is convergent.
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Arrange the elements of E in a sequence {xn}. Obtain a sequence of sequences

{fn,D}' {fn,d, ,{fn,K}-· .. · with the fol/owing properties:

(d) {fn,K+d is a subsequence of {fo,K} VK ~ 0 and

(e) {fo,K (XK)} converqes for every positive integer K .

This can be achieved by induction as follows. When K = 0, {fo, D (Xl)} being a bounded

sequence, contains a convergent subsequence {fo,l (xd}. if {fn, K-d is a subsequence of its

predecessor such that {fn,K-I (XK-I)} converges replace xK-I by xK' Then {fn,K-I (XK)}

being a subsequence of the bounded sequence {fn,K-I (XK)} is itself bounded, hence contains a

convergent subsequence {fo,K (XK)}'

By induction this holds good for all K . We thus have a sequence of sequences {fn, K / n ~ I}
satisfying (c) (d) (e).

Write SK for the sequence {fl,K, f2,K, .. · .. ·,fn,K ..... }.

Let S be the sequence [f11,f2 2,f3 3,·· ..,fK K, ..... ]. ", " ,

obtained by picking up the K th function from SK .

We show that the sequence

converges for all xK in E.

Clearly S2 is a subsequence of 81, S30f S2 and so on and in general SK is a subsequence

of SK-I' Hence



Centre for Distance Education 20.8 Acharya N;tgarjuna University

is a subsequence of {fK,K, fK+J,K, fK+2,K }

is convergent, the subsequence

{f2,2 (X2) f3,3 (X2),'" .. fK,K (X2) .... ·} being its subsequence, is convergent hence

The arrangement hold goods for every K .

which is convergent, is itself convergent and hence

obtained by adjoining f1,1 (XK)'· .. ·· ',fK-1, K-J (XK) at the beginning to (*) is convergent.

As this holds for all K, the proof is complete.

20.9 DEFINITION :

A family sr of complex valued functions defined on a subset E of a metric space (~,d) is

said to be equicontinuous if for every E> 0 there corresponds a () > 0 (depending on E) such that

If(x )-f(y)I<E for all fEY and x,y in E.

~ REMARK: If sr is an equicontinuous family defined on E every f ~ff is uniformly continuous
on E.

20.10 EXAMPLE:

Let f: m -,.1R. be any continuous function.
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x
Define fn (x ) = - for n ;?: 1 and x Em., n

and gn (x ) = nx for n ;?: 1 and x Em.

The sequence {fn} is equicontinuous on IR.

since Ifn(x)-fn(Y)I~lx-YI for all n z I while {gn} is notequicontinuous because for

2
any 8 > 0 and n > "8 .

Ign (x )-g(y)l=nlx-yl = ~o>1 when y=x +%.

UNIFORM CONVERGENCE IMPLIES EQUICONTINUITY
FOR SEQUENCES
ZO.11 THEOREM:

Let K be a complete metric space and {fn} be a sequence of continuous functions on K .

If {fn} converges uniformly on K then {fn} is an equicontinuous family in 'tP(X).

Proof: By uniform convergence '\I E> 0 there corresponds a positive integer N ( E) such that

!fn (x )-fN (x )!<~ for n z Nand XEK". Since fN is continuous on K, fN is uniformly continuous

as K is compact so that there is a 00 > 0 such that

!fN (x )-fN (y)I<~ whenever x,y belong to K and Ix-yl<oo. For such x,y

and n z N·

EO E E<-+-+-
3 3 3·
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Ifj(x)-fj(y)I<E for d(x,y)<Oj and l s is Nv-L. If 8=minimum of

{Ob 02,····,oN-l andoo} then

Ifj(x)-fi(y)I<E for all i and x, y in X3d(x,y)<0.

This implies equicontinuity of {fn} on K. The proof is complete.

Question: Does equicontinuity imply uniform convergence for sequences in y?(K) ?

that the answer is no is evident from SAQ 4.

20.12 THEOREM:

If (K, d) is a compact metric space and {fn} is a pointwise bounded sequence in 'tf (K)

which is equicontinuous on K , then {fn} is uniformly bounded and contains a subsequence which

converges uniformly on K.

Proof Uniform boundness : Since {fn} is continuous on K , corresponding to E= 1 there exists

a 8 > 0 such that

Ifn (x )-fn (y)l<l for all nand x,y in K 3d(x,y)<o.

If V;r = {v/y E Kand d(x, y )<O}, the family {vx /XE K} is an open coverforthe compact

space, hence contains a finite subcover say VX1 ' VX2 , ....•.. , VXr .

r
Since Kc U Vx' XE K => 3ai 3XE Vx

i=l I I

Since d(x, xi )<0, Ifn (x )-fn (xi)1 <1 for all n.
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=> \fn (x )\-\fn (Xi)\ <1 for all n

=>Ifn (x)I<1+lfn (Xi)1 ~ l+Mi' Let M=Max(l +Mj). Hence V XE K, and n z 1.

This implies that {fn} is uniformly bounded.

UNIFORM CONVERGENCE OF A SUBSEQUENCE:

Since K is a compact metric space, K has a countable dense subset E.

If E> 0 by equicontinuiy of {fn} :Ja<5 > 03

Ifn(x)-fn(y)1 <~ if x,YEK and d(x,y)<<5 ----------(1)

Since E is dense in X for every x in K ::3a p e E .:.-:1(x, p] < <5. Thus the collection of

neighborhoods each of radius <5 and centered at a point p of E is an open cover of K and hence

has a finite, subcover {SPI ' ..... SPr} where

Since E is countable and {fn} is pointwise bounded there is a subsequence {gd of{fn}.

such that {gi (p)} converges for every pEE. In particular {gn (Pi)} converges. Hence given

E> 0 there is a positive integer N ( E) such that for n z mz N ( E) and 1 ~ i~r .

---:-----
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E E E<-+-+-=E333

Since this is true for all x E K {gn} converges uniformly on K.

WEIERSTRASS' APPROXIMATION THEOREM
20.13 THEOREM :

If f is a complex valued continuous function on [a,b], there exists a sequence {Pn} of

polynomials such that

lim Pn (x ) = f (x )
n

uniformly on [a, b]. If f is real, the Pn may be taken real.

Proof: We divide the proof into 4 steps.

Step 1 : We may assume that a=O, b=l and f(0)=f(1)=0.
\

F-r()of of Step 1 : Suppose for every complex valued continuous function g on [0, 1] satisfying

g (0) = g (1) = 0, there is a sequence {Qn} of polynomials such that l~m Qn (x ) = g (x ) uniformly

on [0, 1].

Let f:[a, b]~<C be any continuous function such that f(a)=f(b)=O

[0,1] ~ >[a,b] f ><C
g

Define Ht)=(b-a)l +a

~: [0, 1]~ [a. b] is continuous, one - one and onto.
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and its \I1:[a, b]~[O, 1] defined by \I1(t)=(b-a)t+a is also one - one, onto and
continuous.

g =fo~:[ 0, 1]40: is a continuous function satisfying

g(O)= f(~(O)) = f(a)=O and g(1)=f(H1)) =f(b)=O

So there is a sequence {Qn} Of polynomials such that

lim Q; (x) = g(x) uniformly on [0,1)
n

=> 'If E> 0 there corresponds a positive integer N (E) such that

If tE[a, b], \I1(t)=XE[O, 1] so

IQn (\11(t»)- g(\I1(t))l< E for n2::N(E) and tE[a, q,]

Since \I1=~-l and fo<\>=g, f==g o w . We now write Qn 0\11=Pn·

Clearly each Pn is a polynomial on [a, b] and

limPn (t) = f(t) uniformly on [a, b].
n

Now let f :[a, b] ~ <C be any continuous function.
-"I I

Then the function g:[a, b] ~ 0: defined by

g(x )=(f(x )-f(a))-(x-a). ---O..f(b-"--)-_f('--'-.a)
b-a

is defined on [a, b], continuous and g (a) = g (b) = 0.

f(b)-f(a)
Also f (x ) = f (a) + (x - a) + g (x ) .

b-a I
I

!
/
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II [o, (x)} is a sequence of polynomials SUCh!ha.\

lim Qj, (x) = g(x) uniformly 0 [eji, b]
n ,!
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and
f(b)-f(a)

Pn(x)=f(a)+(x-a) b-a +Qn(x)
\.

then Ipn (x )-f(x)1 = IQn (x )-g(x)1
/

so that lim Pn (x ) = f (x ) is uniformly on [a, b].
n

This completes the proof of step 1.

n 1
'. Step 2 : If Qn (x ) =en (1- x2 ) (n 21) and f Qrt (x ) dx ~ 1, then en <fn

-1

Proof of Step 2 : for any positive integer n and x E [-1, 1]

(1- x2 r+I 2 (1- nx2 ) (1- x2 ) = 1- (n+ 1)x2 +nx 4 2 1- (n+ 1)x2

so by the principle ot ,a,thematical induction, it follows that
•.• ', 'j •

(1- x2 ) 2 1- !1~~;for n 2 I and x E [-1, 1]

1 1 n

Hence 1= f Qn (x) dx = en' J( 1- x2) dx
-1 -1



l/Fn
~n r /. 2)dx> L. '-'n J V - n x

o

= C _4_ > Cn
n 3~ Fn

If 0<0<1 and E(o) = {x/o~lxl~l}

o ~ 1- x2 S; 1- 82 so that

(
n) 2 n(n-l) ~42n 2

since 1+0 = 1+ 11 8 + 0 + + (5 >n~-
, 1· 2

=> lim Qj, (x) = 0 uniformly on E(8).
n

This completes the proof of step 2.

Step 3 : Construction of the sequence of polynomials .:,)n} .

24.
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Define f (ii) == O..if x ~ ° or x ~ 1. Clearly f -is continuous on m ..

1

Write Pn (x) = J f(x +t)Qn (t)dt, for XE[O, 1].
-1

-x. I-x 1
Then Pn (x) = f f(x+t)Qn (t)dt + f f(x+t)Qn (t)dt + f f(x+t)Qn (t)dt.

-1 -x l+x

If -1.::;t ~ -x , x + t ~ ° so f (x + t) =°
If l-x~ t s 1, x + t ~ 1 so f ( x + t) = 0. Hence

I-x 1

Pn (x) = J f(x+t) Qn (t)dt = Jf(s)Qn (S-x )ds.
-x 0

Where ao (s), al (s),······· a2n (s) are polynomials in s involving binomial coefflcients and

powers of s only,

2n 1
Pn (x) = L (Xi xi where (Xi = fai (s) f(s)ds.

i=O 0

Thus Pn (x) is a polynomial in x and the coefficients are real when f is real valued.

Step 4: Uniform convergence of.{Pn} to f on [0,1].

Proof of Step 4 : Let M>O be 3If(x)I<MVxE[0,1].lf E>O choose 53 Odkl and

If(x)-f(Y)I<~ if x, YE[O, 1] and /x-y/<5.

Since lim Qj, (x )=0 uniformly on E(8),
n ;

1'(

:3 a positive integer N (E) 31Qn ( t)1 < 8~ for n ~ N (E) and tEE (s) .



Analysis '20.17 Spaces of Continuous functions

s 1
AlsoO:S; fQn(t)dt:s; fQn(t)dt=l;

-8 -1

Now for o s x:s;1.

1 1
Ipn(x )-f(X)1 = f f(x+t)Qn (t)dt - f f(x )Qn (t)dt

-1 -1

1

= f{ f (x + t) - f (X )} Qn ( t ) dt
-1 ,

••
1

5 flf(x+t)--f(x )IQn (t}dt
-1

~ 8 1
= f If(x+t)-f(x )IQn (t)dt+ f If(x+t)--f(x )IQn(t)dt + flf(x+t)- f{x )IQn (t)dt

-1 -8 <5

-8 8 1
S2M f Qn (t)dt + f ~ Qn (t)dt -1-2MJQll (t)dt.

-1 -0 0

I
<2M-~(1-8) +:: [o (t)dt +2M.~(l-8)

8M 2 n I 8M\
-1

E E E
< -+-+- = E424 c· 0<8 < 1)

This is true for all x E [0, 1] and n ~ N (E) .

Hence limPn(x)=f(x) uniofrmlyon [a, b].
n

20.14 SHORT ANSWER QUESTIONS:

20.14.1 : If {fn} is a sequence of continuous functions converging uniformly to a function f on

a metric space (X, d) and lim x, =X ,then lim fo (xo) = f(x).
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20.14.2 :

20.14.3 :

20.14.4 :

20.14.5 :

20.14.6 :

20.14.7 :

Give an example of a sequence of continuous functions which are bounded but not
equicontinuous.

Give an example of a sequenceof bounded functions that converge pointwise but not
uniformly.

Does equicontinuity imply uniform convergence for sequences of functions?

1. .

Show that if f is continuous on [0, 1] and f x" fn (x ) dx = ° V n ~ 0 then f (x ) = °
o

foral! x in [0,1].

Using Weierstrass approximation theorem prove that V· real number a > 0 there is a

sequence of polynomials {Pn (x)} such that {Pn} converges uniformly to Ixl on

[-a, a] and Pn (0)=0.

1 n
Find c, such that f c, (1- x2) d.x = 1.

-J

20.15 MODEL EXAMINATION QUESTIONS :

20.15.1 :

20.15.2 :

20.15.3 :

20.15.4 :

20.15.5 :

If K is a compact metric space, fn E Yr?(K) (ri21) and {fn} converges uniformly

then {fn} is equicontinuous on K.

if K is a compact metric space, fn E <tr(K) and if {fn} is pointwise bounded and

equicontinuous then {fn} is uniformly bounded on K .

If K is a compact metric space, fn E ~(K) and if {fn} is equicontinuous and

uniformly bounded then prove that {fn} contains a uniformly convergent subsequence

If {fn} is a pointwise bounded sequence of complex functions on a countable.set E

then {fn} has a subsequence {fn, K} that converges for all XE E .

State and prove Weiestrass approximation theorem
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1
20.15.6 : If f is continuous on [0, 1] and f x" dx = 0 for n 2:: 0 , prove that f (x ) = 0 .

o

20.16 ANSWERS TO SHORT ANSWER QUESTIONS IN 20.14

20.14.1: Given E>O choose a positive integer N(E) and o>03Ifn(Y)-f(Y)I<~ for

n 2::N(E) and YE X and !f(x )-f(Y)! <~ for YE X and d(x,y) < O.

20.14.2 :

lim fn (x ) = lim ? = 0 for 0::; x::; 1 and
n n (1 \-

l+l~-nj
(1'. .

limfn. ---I = 1
n \n)

,'..

For 0 ~ x ~ 1 lim fn (x) = (:)
n

Also {fn (x )/n 2::I} is bounded '1/ x -= [0, 1]

20.14.4: See example 17.17.

,
(see 18.18).

','

1
20.14.5: If f is continuous on [0, 1] andifJf{x )xncLy = 0 for n2::0, then f(x )=0 on [0,1].

o
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PrQof : Since f is continuous, so is If I·
,

By Weierstrass approximation theorem :I a sequence {Pn} of polynomials such that

li~ Pn = f uniformly on [0, 1] . Since each Pn is bounded on [0, 1] and f is bounded.

Pn f ~ Ifl2 ~niformly on [0,1].

1 I
Hence IPnf ~ flfl2 .

o 0

1 I I I
f P;1 ( t ) f \t) dt = ao If (t ) dt + a 1 Jt f (t ) dt + +a K f t K f (t ) dt

000

= 0 by hypothesis

1 1
;+>lce 0= lim fPn (t)f(t)dt = flf(tt dt·

n 0 0

Since If (tt z ° V t E [O~~] and is continuous

it now follows that f(t)=O on [0,1].

20.14.6: By Weierstrass approximation there is a sequence of polynomials P~ such that

{p~ (x )} converges uniformly on [-a, a] to Ix I. Then lim p~ (0) = p* (0).
n

If Pn(x)=P~(x)-P~(O),{Pn} converges uniformly on [-a, a] to Ixl anc

Pn (0)=0.

1

( 2)n J20.14.7: Let Qn (t) = Cn I-x . Find c, if Qn (x) = 1.·
-1



f x2K dr = [X
2K

+
1

]' ::: _2 _
_ ) 2K +1 _12K +1

1 (nJ 2 (nJ 2 K (n J 2 n 2=> C
n

= 2 - 1 3" + 2 5" + +(-1) K 2K +-1+ +(-1) 2n +1

=> Cn = {l_.!.(n]+.!.(n]+ +(-lt}·
2 3 1 5 2 2n + 1 .

20.17 EXERCISES:

20.17.1 : If f is a real continuous function on IR and the sequence { fn} defined by fn (t) = f (nt)

is equicontinuous on [0, 1] wh-at conclusion can you draw about f?

20.17.2 : Let {fn} be uniformly bounded on [a, b] which are Riemann integrable. Put

t
Fn .(t ) = f fn (x )'dx .

a

Prove that there is . subsequence {Fn K} which converges uniformly on [a, b].

20.17.3 : Let {fn} be a equicontinuous sequence of functions on a compact set K which is

pointwise bounded. Prove that {fn} converges uniformly on K . "

20.17.4 : Define the notion of uniform convergence for mappings on a metric space X into a

metric space Y~. Prove that {fn :(X, d) ~ (Y, p)} conv,erge uniformly iff lim Mn =0

where M, = sup p(fn (x), f(x )).
xeX
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20.17.5: Show that if fn :(X, d) ~ (Y, p] is continuous for n ~ I and {fn} converges uniformly

to f:X ~ Y show that f is continuous. I

"':.~'i. " .', , \

20.17.6:' E;xtend the notion of equicontinuity when the codomain is a metric space. Prove that

if'{fn lis any sequence of continuous functions defined on a compact a metric space

K in,to the ~uclideun space ill.K that converges uniformly on K then {fn} is
equicontlnuous.

"

20.17.7 :'" Using SAQ 7 evaluate

1
Rn (x) = ft Qn(t-x)dY for n=O, 1, 2, 3, 4·

o

Also evaluate Pn for n = 0, 1,2,3,4 where

Pn is defined as in example 19.3.

20.17.8 :
2

Find Sn(x)=JtQn(t--x)d.x for n=O,1,2,J,iL
o

We know these facts from VVeierstrass apprtJ:<'rr:a~;cn. Is S!l restricted to [-1, 1]

equal to R, ?

20,17.9 : r- h • h t if f' '.' ! Co .,! • r J1 ~ I .j ,,vi ow u i3 ! _ is con •.H1UOUS on l J, IJ ana J x .l \), ) u.,
a

,~O for II ~ 1 then f (x )=0.

REFERENCE BOOK :

Principles of Mathematical Analysis - Walter Rudin (3rd Edition)

Lesson writer:

Prof. 1. Ramabhadra Sarma



Lesson - 21

ADDITIVE SET FUNCTIONS

21.1 INTRODUCTION

The Lebesgue integral is developed to overcome some difficulties that arise in Riemann's
theory of the integral, some of which are pointed out in the lessons on uniform convergence.

In this lesson we develop some tools required for the development of Lebesgue Theory on

mY (p 21).

We begin with the notion of a ring of sets and an additive set function. We consider the

family ifp of elementary sets in 1RP , generated by the intervals in JR.P , show this isa ring and then

define the Lebesgue measure on ~fp.'·/'.7e3;80 show that the Lebesgue measure is regular.

in this lesson and t(;8 sUy:;·squcnt ~8s:;onswe write 0 for the empty set and 0 for the zero

element in lR' .

For any sets /',.. RA _.Bc:{x j\ c: /" Jnd x~ B}

n
If X is any set. 21"1':.1 A s;; X, A '- sj;:,:"ds for X - A .

we mean a subset I of ,JR.' with the following
-oproperty:

It:s ', 'ee' :'Q~ the er\j;.,;, ·::octCi ond tne singleton set {ai. for any a E JR.' are intervals. If an

interval ! h :-:'c:.~::dedat"} :idirn'_:rn ! =-a while supremum l::=)~ thDn I is one of the sets

(a, b),(a,bj. [c;, b'l ;?,nci[a, bJ, .iJher'':'E;achoftheseset~ccn':.l":~~DF.ji! or !)<,.;:,c~e(:naandbanci

the inclusion of a and b is indicated byihB appropriate Closed bracket l orlt;, JWhde the exclusion
is indicated by ( or ).

In the 3r::qlY~i'.j1/e consider these fOUf types of i,·;tsrv<:lIs Oi',' /Vi such by an interval in m'we
mean one of ::;b0:iC:~ rour sets.
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21.1 SAQ:

If I and J are intervals in m.' show that In J is an interval in m' and I - J is the union of

atmost two intervals in IR' .

21.2 DEFINITION :

A subset of mP is called an interval if it is of the form 11x 12x······· xl where each. P

Ii (1:::; i:::;p) is an interval in IR' .

21.3 SAQ:

If land J are intervals in mP then so is InJ,and I-J is the union of a finite number of

intervals in m P .

21.4 DEFINITION :

A subset E of IRP is called an elementary set in IRP if E is the union of a finite number of

intervals in mP. The collection of eiementary sets in mP is denoted by ~P and when there is no

ambiguity we drop the suffix p and simply write $' for 7Fp .

Examples: ' (1,2)U(3, 4)U(-6, -5) is an elementary set in IR' .

(0, 1)x[~,2] is an interval in m2.
I -:

(3, 7) x (5, 6) U (-5, - 4) x [10, 11] is an elementary set in IR2 Which is
not an interval.

21.5 REMARK:

Clearly the collection c# of all intervals in mP is contained in $'. From SAQ 21.3, it follow

that '$ contains finite intersections of members of cff , finite unions of members of oY and th
difference of any two members of r)/ .

21..6 PROPOSITION :

(i) 0 E if;

(ii) 'if is closed under finite unions and finite intersections

(iii) A E '$ and B E 'iff ~ A - B E 'iF .



Proof of (i) : The empty set a is an interval in m' hence 0 = 0 x 0 x-v-x O ( p tirne-

is an interval in m.P , so belongs to 'it .

mj
(ii): If Aj,·······,An are in '$ and Aj = U Ijr (1~ j ~n}, where

r=1

where n, ml,····· ", mn are positive integers

n n (mj Jthen U A j = U U I i is in 'iF ,
j=I j=} r=1 .r

n
and n Aj

j=l

K
= U C, where each C, is the intersection of a finite number of

r=1

intervals chosen from the representation of each A j and

n
K=ml .. · .. mn. Hence .n Aj E 'iF.

J=1

(iii) : Finally if A E 'iff and B E '$ there exist intervals II," "', In and J1> , Jm

in m.P such that
/

/n m
A = U I, and B = U Js so that

r=1 s= l

m m m n
A - B =, A - U Js = n (A - Js) = n U (r, - Js)

8=1 s=1 . s=1 r=1

By SAQ 3, I,- Is E '$ so by (ii) A - B E 'iff .

21.7: If A E *'p then A is the union of a finite number of pointwise disjoint intervals in mP.

'.

n
Let A= U I·,

,-I J
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I j = I j] X ..... x I jp for I < j ~n where each I jk is an interval in m' with end points, say

a jk ~ b jk . Arrange these end points ir. increasing order. For each k, I ~ k ~ p these 2n

consecutive numbers generate (2n -1) intervals, which become nonoverlaping by allowing the

common end points of adjacent intervals into one of them only, say for definiteness into the left

interval. These (2n -1) intervals in the r th coordinate axis for I < r ~ p generate (2n -l)P intervals

in mP which are disjoint because the common edges are included in only one of the adjacent

intervals in mP. Clearly A is the union of a subcollection of these (2n -l)P pairwise disjoint

intervals in mP.

SYMMETRIC DIFFERENCE :

For any sets A, B the symmetric difference

S(A, B) is the set (A-B) U (B~A).

21.8 SAQ : For any sets A, B, C

(i) S( A, A )=0

t .«: C)(ii) S(A,B)=S(B,A)=S\A', B

\

(iii) S(A, C) ~ S(A, B)U S(B, C).

21.9 SAQ : For any sets AI, A2' BI and B2 each of the following sets is a subset of



RING OF SETS'

21.10 Definition: A family 91 of sets is said to be a ring if A E 9f., B E :Jf. => AU B E .9f. and

A-B E.9i'

.W is said called a c- ring if .9f. is a ring of sets and is closed under countable unions.

co
. A <0 f >1 U A U.ol.B. 11 E :'71 or n - ~ n E.n

11 = 1

21.11 SAQ:

If .9? is a ring and' A E .'J1) and B E .:Jf' => An B E .9f'. Further 9f is closed under finite

co

unions, i.e. for any positive integer n and any sets Ai, 1<i< n in .'}i?, U Ai E.'lf .
n=l

21.12 SAQ : If :DJf is a cr ring then ?:n is closed under countable intersections; i.e. if An E 9? for

00

n ~ 1, n An E 91 .
n=1

. REMARK: The definitions do not guarantee that a ring or a c ring of sets is necessarily non empty.

However if '!!If is nonempty, ?~ must contain the empty set because for any set A E 'PI(, A - A = $ .

Since the empty ring or empty o ring i~ of no interest for us, we consider nonempty rings
and nonempty rr rings only. Thus we may ass'ume that all our rings (o rings) contain the empty
set.

21.13 PROPOSITION :

The collection 'iF of elementary sets isa ring.

Proof: Follows from proposition 21.6.

21.14SAQ:

?F2 is not a o ring.

21.15 PROPOSITION :

Let ~ be a ring of sets and {An} be a sequence of sets in .7(. Then there exists a

sequence {Bn} of sets in 'PI( such that
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(ii) Bn n Bm = 0 if n *- m ar.d

(iii)
00 00

U n, == U An.
n=1 n=1

n+l
Proof: Write BI =A1 and for n> 1 Bn = An - U Ai· Clearly Bn E 9l( and Bn cAn for every

i=1

m-l
n:2:1.lfn<m,xEBn=>xEAn=>xE U Ai=>x~Am' ThusBnnBm=Oifn<m and hence

i=1 .

when n e m .

00 00

. Finally to prove (iii) it is enough to show that U An c U Bn. If X E AI, X E Bl .
n=1 n=1

If X E An for some n > 1 then we choose the smallest such n, so that X ~ Ai for 1::;i< n .

00 00

=> XE Bn. This shows that U An ~ U Bn.
n=1 n=1

ADDITIVE SET FUNCTIONS
21.16 DEFINITION:

If :1{' is a ring and ~ : :en -j> IR U {± oo} is a function, ~ is called a set function on 9'i'.

Asetfunction <!> defined on a ring of sets ~ is said to be additive if ~(AUB) =~(A)+HB)

Whenever A and B are disjoint sets in ?J?

~ is said to be countably additive if for every sequence {An} of sets in :?J1l which are

00

pairwise disjoint and whose union U An E ~~ ,
n=1



( Additive Set Function!> ~

21.17 REMARKS :

(1) If ~ i~ an additive set function defined on a ring '!Jl(, and A, B are disjoint then

~(A) + ~(B) isdefinedsottlat ~(A), ~(B) are, if infinite, both +<x:> or both -00.

(2) If ~ is countably additive and {An} is any pairwise disjoint sequence of sets in '!Jl(,

00 00 00

whose union U An is in 9i(, then since U An = U (A
Gn

) for every
n=1 n=1 n=1

rearrangement of {A~J ol{An}, !,HAn)~I$(Au,) ~ {Q/n J
so that the series converges for all rearrangements which implies that the series
converges absolutely or else diverges to +00 or -00 .

(3) We shall assume that the range of an additive set function ~ contains atmost one of

+co and -00 and is not {oo} or {-oo} .
21.18 THEOREM :

Suppose ~ is an additive set function defined on a ring .'P/(. Then

(a) ~(O )=0

(
n J n .

(b) <I>i~1 Ai = E <I>( Ad for every fillite collection of sets {AI> , An} in m which

are pairwise disjoint.

(c) AI c A2, AI, A2 belong to ?A ~ $(AdS:~)(A2) if <I>(A)2 0 '\j A E Yf..

(d) ~(Al UA2)+<I>(A1 nA2) == <I>(A1)+<I>(A2)V Al and A2 in m·
Proof:

(a) Since <I>is additive ~(O) = HOUOH.(O)+HO). Since the range of ~ is not {oo}
or {-oo} , it follows that <1>(0)=0.

(b) The proof is by induction on n . The statement holds good when n == 1. Assume that

(b) is valid for n -1. For any n pairwise disjoint sets AI •.... ·,An in ;~,



By additivity of $

'(n 1 l/ /n \1$ ,U (Ad)' = '$ Arul .U Ah.J I
1=' . \1=2})

n
= (~(AI-J+ 2: $(Ad·

i=2

By induction, (b) holds for ail n .

$(A2)= $(A] U(A2 - Ad) = ¢(A, )+$(A2 -Ad

If$(A)~Oforall A E;1YA' , 'HAd=$(A2)

If O~$(A2)<CX)' then HAd, <HA2)' <p(A2 -Ad arefinite hence

$(A2)-<l>(A,) = $(A2 -Ad·

(d): If AI E 91 and A2 E ,-/t. then A2 -AI' t\2 nAl are in p/( andby.the additivity of $
we have

$(A] UA2),= $(AIJ+$(A2 -AI) and

<l>(A2-A,)+$(A2 nAd=<l>(A2) so that



.,.:....:.....:...~.~-..~..

HA2 -Al»~(A2 nAd are both finite so ~(Al UA2)<oo, hence cancelling

~(A2-Ad we get (d).

21.19 THEOREM :

Suppose ~ is a countably additive set function defined on a ring 0? of sets and {An} is a

sequence in :'n such that

(i)· An c An+1 \In and
00

(ii) A= U An E YR. Then
n=l

lim~( An) = ~(A)
n

n n 00 00

ifni=ffi,UBj=UAj=AnVnandm:tn. Also UBn= UAn=A.
i=l i=l n=l n=l

?F
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n
= lim I ~(Bi)

n i=1

= lim ~(,UBi]
n 1=\

= lim ~(.UAi]
n 1=1

I This completes the proof.

LEBESGUE MEASURE
21.20 DEFINITION:

If I is an interval in IR' with end points a, b where a < b . We define measure of I as its
length:

m(l) =b-a

If 1=1\ x 12x ."" .. xlp isan interval in mP we define

21.21 REMARKS:

(i) When p=2, 1=1\ xI2 is a rectangle in the two dimensional Euclidian plane anc

= Area of the rectagle 1 .

(ii) When p=3, 1=11 x 12x I3 is a rectangular parallelopiped and its measure

m(I)=m(Id m(I2) m(I3) is the volume of I.



m(I2) ,/

(iii) If an interval Iin mP is divided into a finite number of pairwise disjoint intervals in
/

ImP, say

m
m(I) = L m(Ir)

r=l

~~- - - - .• - ..•......•.......' .
"

"

/ ;

m (11)

21.22 DEFINITION:

If A E '$ is the union of pairwise disjoint intervals 11, , In in IRP we define the Lebesgue

measure of A by

n
m(A) :::L m(Ij)

j=l

21.23SAQ:

n
m (A) is independent of the choice of the decornposmon A =.U Ij.

J=l

21.24 PROPOSITION :

The Lebesgue measure is additive on <S' •

- Proof: Let A E ~, BE 'Wand AnB=O. There exist collections {I" .... ·,In} and {Jl,· .. ·~'Jm}
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n ill

of intervals inm.P, such that IjnIk = JrnJs=o for j:;t:k and r:;t:s, A= U Ij and B= U Jk
j=l k =I

Since AnB=O, {II,' .. ···,In, JI,'···,Jm} is a collection of intervals in m.P every pair in which is

disjoint and whose union is AU B. So

m (A UB) = ill (11) + +m (In) +m (J1) + +m (Jm )

= m(A)+m(B).

21.25SAQ:

(i) If {A I,....,An} is a pairwise disjoint collection in *'

(ii) If {A1,·····,An} is any collection of sets in IF then m(.u AiJ.~ ±"m(Ad
1=1 i = I

21.26 DEFINITION :

A nonnegative additive set function ~ defined on iF is said to be regular if for every A E (!
and E> ° there correspond sets F and G such that F ~ A ~ G, F is closed and G is open in

m.P and

m(G)-E ~ m(A)::::;m(F)+E.

21.27 PROPOSITION :

The set function ill defined in 21.26 is regular.

Proof: That m is additive is proved in 24.

(i) Let I. be any interval in m.p. Then there exist intervals 11," ... , Ip in m.' such that

1=11 x xIp. Let aj, bj be the end points of Ij and aj s: bj. Write Cj = bj -aj.

Define f and g on [0, 00) by

f (x ) = (ci + x) (c2 + x) ..... (cp + x ) - m (I)



(

~--C~~A~n~al~YS~iS~)~~~~~~~~~~))~~~~~~~(~Ad~d~it~iv~e~S~et~F~un~c~tio~n~s~~~

and g(x)=m(I)-(c]-x) (cp-x)

Clearly f and g are continuous on [0, (0) and

[(0) = g(O) = 0 since m(I) = cI c2 ······cp

Since f and g are continuous at 0 (from the right) it now follows that given E> 0 there

exists a 8> 0 and a r1>O such that If(x)1 < E if 0:::;x:::; 6 and Ig(y)I<E if 0::;;Y::;;11·

Clearly G is open and F is closed in IRP, G, F are intervals and since

Fr ~ IrcGp FcIcGo

so that m(?)-m(I) = f(8)<E

p
and similarly m(F) = on (Cj -11) = g(11)+m(I)

J=1

0,1'

so that m(I)-m(F) = + g(11)<Eo

Thus, m( G )-E<m(I)<m(F)+E 0

Hence m satisfies the regularity condition for intervals.

(ii) Now let A be any element of '$ I so that A can be written as the disjoint union of

intervals 11,0 .... , In in mPo If E> 0 I for 1~ j ~n there exist, sets Gi: Fj such that G j is open, Fi
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n n'
G = U G j is an open set, F = U Fj is a closed set.

j=1 j=1

E n
=>m(G)-E <m(G) - -< L m(lj) = mj A}.

2 j= l '.

Similarly

E {n } Em(F)+E> m(F)+- =L m(Fj) +-
2 j= l 2

(since Fj nFj = 0 if i ::I; j ).

n '
> L m(lj).= m(A).

j=1

This completes the proof.

21.28 EXAMPLE:

Let a be a monotonically increasing continuous function defined on m., For any interval I
with end points a, b, a :::::;b define

~(I) = a(b) - a(a)

. n

If A E ~ and A is the disjoint union of intervals II,'" .r, ,define ~(A) = L ~(I j).
r=l

(1) ~ is an additive set function •.m $i.

Let A, B be disjoint elementary sets in $I, :3 disjoint intervals 11," .., In such that



':,i •••. ~ .•

n m

A=.U Ij and disjoint intervals 11,·····,Jm such that B= U Jk. Since AnB=O, IjnJk =0 for
j=] k=l

n m .

1~ j ~n, 1::;k::; m . So ~t(AUB) = L fl(Ij)+ L fl(Jk) = fl(A)+fl(B)
i=l k= I

(2) !.1 is regular: Let I be any nonempty interval with end points a, b where a::; b .

Then I = [a, b]. Since a is uniformly continuous on [a, b] given E> 0 there exists 0> Osuch

that

XE I,y eI,Ix-.yl<o > o~ la(x )-a(y)1 < ~.

[ 0 oJ" (0 0)Let F= a+-, b-- ,and G= a--, b+-
2 2 2-;:. 2 '

Then F is a compact set, G is an open set, F c T c G and"

!.1(F) = a( b-%) - a( a+%).

I1(G) = a( b+%) - a( a-%)

and !.1(I) = a(b) - a (a) .

Hence I1(G-I) =a( b+%) -a(b)-( +-%) -a(a)J

Similarly !.1(I - F) <E

If A E $I and A is the disjoint union of intervals II,····' In and E> 0, for 1:::;j :::;n . Choose

open interval G j and closed interval Fj such that Fj c I j c G j and
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fl ( Gj )< fl ( Ij ) + 2: ' fl ( Ij )~ fl (Fj) + 2:

n n
F = .~ Fj is a compact set, G = .U Gj is an open set

j=] J= l

n E
Also fl( A - F)~ L fl(I j - Fj) ~ "2 <E This completes the proof.

j=l

21.29 SOLUTIONS TO SAQ'S :

SAC 1 : If I and J are intervals in ffi.' with end points a, band c, d respectively a ~ b, c ~ d then-,

the end points of InJ are max {a, c} and min {b, d} .

When I~ J, 1-J = 0

When In]=0, I-J =1

When J c I I- J, a ::;c ::;d ::;b so I- J = A U B .

Where A, B are intervals with end points a, c and d, b respectively. The remaining cases

can be handled in a similar way.

SAQ 3: Let 1=11 x·· .. ·· .xIp' J =J1 x···· ... xJp' where L, Jr are intervals in m'.

p
1- J = U Ar\ where

r=1

Ar =Ir - Jr and Ar = Is for s"* r (see exercise 2)
r s



SAQ8:

S(A, A) = (A-A) U (A-A) = OU 0 = 0

S(A, B) = (A-B) U (B-A) = S(B, A).

Since A-Cc(A-B)U(B-C) it follows that

S(A,C) c S(A,B)US(B, C).

SAQ9: Verify (AI UA2)-(BI U B2) s (AI-BI)U(A2 -B2)

(AI nA2)-(BI n B2) c (AI -BI )U(A2 -B2)

(AI-A2)-(BI - B2) c (AI -BdU(A2 -B2)

The required inclusions follow.from the above inclusions.
-,

SAQ 11 : AE rn, BErn =>AnB = A-(A-B)E m·

If A Ern, Al :::At UAI Ern. If Al E::n and A2 Em by definition Al UA2 E 97(. Assume

n+l
that for any positive integer'n > 1 and any (n-l) sets AJ. .. ···,An-I in 97(, U Ai E fYl. Now if

i=I

i n (n J n
AI"" ·,An are any n sets in rn i~I Ai = Al U i~2 Ai E ~ because i~2 Ai E;J7Cby assumption.

By mathematical induction the union of any n sets in :en is in PJ( ., '

00 00

SAQ12: n An =AI- U AI-AI
n= l n=I

SAQ 13 : iF2 is not a o ring of sets: Let A=INx{l}, 'NhE:re IN is the set of natural numbers. If

00 .

An = {(n, I)}, An E iF2Vn and A = U An. We show that A ~ ~2, there would exist a finite
n=I

n
number of intervals 11>· .. ·, In in iF2 such that A = U Ij we may also assume that each Ij is

j=I

nonemptyand Ij =Bj x Cj where Bj and Cj are intervals in IR . Since Ij is nonempty Bj and Cj

/
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are both nonempty intervals in m. so that either both Bj and Cj are singletons or at least one of

Bj and Cj is uncountable. If both Bj and Cj are singletons for every j, Ij would be a Singleton

set for every j so that A would be finite, which is false, If for some j one of Bj and Cj is

uncountable, the corresponding I j would be uncountabie and hence A would be uncountable and

this is also false. Thus A cannot be written as a finite union of intervals in m.2 so that A ~ $2 .

The proof for ~p (p 2 3) is similar.

n m
SAQ 23 : If A E 'iff , A = .U Ij = U J r

. J=1 r=1

where lb····· In are pairwise disjoint intervals and J" ... ", Jm are disjoint intervals in mY,
for each j, 1~ j ~ n

m
Ij =IjnA= U (IjnJr)

r=1

For each r, Ij nJr is an interval in m.P and since the Jr's are pairwise disjoint, so are

IjnJr's

By (iii) of remark

m
m(Ij) = Im(IjnJr),

r=1

m m n
Similarly I m(Jr) = I I m(Ij nJr).

r=1 r=1 j=1
Since the sums on the r.h.s. are equal it follows that

n m
Lm(Ij) = Lm(Jr).
j=1 r=1

SAQ 25 : Follows from theorem 18.
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21.30 MODEL EXAMINATION QUESTIONS :

21.30.1 : Define an elementary set in mP (p ~ 1). Show that the class '$ of all elernentarv sets

in mP is a ring.

21.30.2 : Define the Lebesgue measure on 7Fp . Show that this measure is additive.

21.30.3: Show that the Lebesgue measure defined on the elementary sets in mP is regular.

21.30.4: Define a regular measure. Show that ~L(I) = a (b) - a (a) where I is any interval in

m' with end points a, b( a::S; b)' induces a measure ~ on ~p and that ~ is regular.

21.30.5 : Show that if ~ is a non-negative additive set function defined on a ring of sets Yf and

AI, A2 belong to ~,

21.31 EXERCISES :

21.31.1: Show that ?Fp (p 2: 2) is not (J ring.

n
21.31.2: Show that (AI xA2 x- ... xAn) - (Bl x ..... xBn) = U C,

i=l

•
'where C = C x x C. C- = AI'-BI' and CiJ, -AJ· for i =t:- J'.

I 11 In' Ii

21.31.3: Show that if a E IRP , m ({a}) = O. Deduce that

m(F) = 0 if F is any finite subset of mY.

21.31.4: Let 8(A)=O if O~A and 1 if OEA where A~IR'. Show that 8 defines a measure

o~nthe ring ?Fp of elementary sets in mP.

21.31.5: Show that the empty set ~ is an interval in mP.
/
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21.31.6 : Let a be monotonically increasing on JR'. Define

F([a, b)) = a(b+)-a(a-)

~l([a,bD =a(b - )-a( a -)

~([a, b]) = a(b-)-a(a+)

and ~((a, b)) = a(b-)-a(a+)

Show that ,Ll indcues a measure in a natural way on $J which is regular (see example 28).

REFERENCE BOOK:

Principles of Mathematical Analysis - Walter Rudin (3rd Edition)

Lesson writer:

Prof. 1. Ramabhadra Sarma
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Lesson - 22

OUTER MEASURE AND MEASURABLE SETS

22.0 INTRODUCTION

This lesson is devoted to study some properties of set functions. Starting wtih an nonnegative

"additive finite regular set f~nction /l on the ring t of elementary sets in mP we define the outer

measure /l* for every subset A of mP. We study some properties of this outer measure Il '" that

are natural consequences of some properties of u We then identify some subsets of IRP with
special properties and call them measurable sets. We show that the class of measurable sets is
a cr algebra, containing all open sets, hence closed sets and consequently "Borel sets" which

*constitute the smallest Ci algebra containing all open sets. We also show that the restriction of ).l

to the a algebra m(~l) of all measurable sets is a regular measure.

Let /l be a finite nonnegative finitely additive and regul:>r set function defined on the ring 'l.

Bya countable open cover of a set A c IRP we mean a countable collection of sets {En} in ~

ao
such that En is open for every n ~ 1 and A ~ U En·

n=1

22.1 DEFINITION:

The outer measure induced by /l is defined by

fl' (A) ~ inf {'!:t (Eo) jr Eo}, a countable open cover of A from *}
22.2 PROPOSITION :

(non negativity)

(monotonicity)

(Extension)
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(iii) If {An} is any countable collec~ion of sets in IRP

(countable subadditivity)

Proof: (i) \IE E 'i:, ~(E)~O so ~* (A)~ 0

(ii) If {En} is any countable open cover 'lor B from '$ and A c B then so is it for A· so that.

00

I-l* (A) ::;.L ~l (En) . This is true for every such {En} hence I-l* (A)~ I-l* (B).
n=']

)

(iii) Suppose A E '$. If E> 0 , by the regularity of I-l,there is an open set G and a closed

set F3F~AcG and FE '$, GE '$ ~(G)~~(A) + E. Since A~GE '$,

~* (A)~I-l( G )~~(A)+E. Since this is true for every E> 0 it follows that ~* (A)~~(A), we now

show that ~(A) ~ ~t*(A). -----------(a)

If E> 0 there is a countable open cover {En} of A from '$, such that

E
By the regularity of A , there is a closed set F in 'it :) F c A and I-l(F) + 2> I-l(A) . Since

00

Fe A, F is bounded, hence compac.. Since Fe A c U En' there is a finite subcover of F say
n=l

k
Since FeU Ek, by countable subadditivity.

n=l
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This is true for every E> 0 so /-1(A)~/-1* (A) ----------- (b)

00
(iv) Let {An} be any countable col!ection of sets in ffi P and A = U An. If /-1*( An) = 00

n ==1

OCJ

for some n then L!-t * (An) = 00 ~ /-1 >I< (A) _
n=1

Assume that /-1>1< (An) <00 for every n . If E> 0 for every n ~ 1, there is a countable open

00

cover of En from '$, {En,k /k ~ I} , such that L!-t * (En,k )</-1* (An)+ :
k=I - 2

00 oo{OO }
Since A= U An c U U En,k

n =1 n==1 k=1

the collection {En,k / n ~ 1, k ~ I} is a countable open cover of A from 't so

/-1 >I< ( A ) S L /-1>1< (En,k )
n,k

OCJ

= L /-1*(An)+E
n==1

Since this is true for every E> 0 it follows that
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o:
j-l* (A) ~ L j-l* (An )

n=I

Recall that in lesson 21 we defined the symmetric difference of S by

S(A, B) = (A-B)U(B-A) and proved that for any subsets A,B,C of mP

S(A, A)=O

S(A,B) = S(B,A) and

S(A,C)eS(A,B)US(B,C). '\

We have also established that for any sets A1,A2, BI, B2 in mP
I each of the sets

S(A) UA2' Bl UB2), S(A\ nA2,B\ nB2) and S(A1-A2,B] -B2) is a subset of

S(AI,BI )US(A2,B2)·

We now define the distance between A, B with respect to j-l* by d (A, B) = j-l* (S (A, B))

22.3SAQ:

If A, B, C are subsets of mP then

(i) d(A, A)=O

(ii) d(A, B) = d(B, A) nd

(iii) d(A,C) ~ dj A, B)+'d(B, C)

22.4SAQ:

If A],A2, BI and B2 are subsets of mP then each of

d(A] UA2,B\ UB2), d(A] nBt> A2 nB2) and d(AI-A2, B1-B2) is less than or equal to

G(A] UBI, A2 UB2)'

22.5 PROPOSITION :

If AemP and BemP andatleastoneof j-l*(A) and j-l*(B) is finite then
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Proof: Assume O:~j.A.'" (B) ~~t(A)

Then /-1'" ( A) = /-1'" ( s(A, 0))

~ ~,~(S(A,B)) +/-1*(S(B,O))

=d(A, B)+/-1*(B)

(SAQ 22.3)

~/-1* (A)-/-1* (B) ~d(A,B)

=>1/-1* (A )-/-1* (B)I ~d(A,B).

22.6 PROPOSITION :

The class 9J1F (I-l) is a ring.

Then 3{An} and {Bn} in 'iF such that

Iim df Aj,; A) = lirnd(Bn' B) == 0.
n n

Since ~ is a ring An UBn E ~ \in·

5:d(An' A)+d(Bn,B). Hence lirnd({An UBn), (AUB)) = 0.
n

Hen ce A UB E 9J1F (I-l) -------------------- (1)

=> Hrn d(An -Bn' A-B )=0
n

l..6
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=> A - B E rrnF (!l) ---'-.,----------------(2)

Hence from (1). and (2) => 9J1F (Il) is a ring.

22.7 PROPOSITION :

Il* is additive on 9J1F(Il) .

.3 sequences {An}, {Bn} in '<F such that

limd(An,A) = limd(Bn, B)=O
n n

Since 11l* (A)-Il* (B)I :s;d(A, B) for any A,B in IRP it followsthat

Also since lim d(An UBn, AUB) = limd(An nBn, AnB)=O
n n

We get as above

lim u * (An Us,)=!-l* (AU B) and lim !-l* (An n Bn) =!-l* (An B)
n n

and !-l= !-l* on '<F we get by taking limits as n tends to ~,

22.8 PROPOSITION :

9J1(!-l) is a (J ring and !-l* is countably additive on m
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Proof = Let A E 9Jl (~L). Then A can be written asa countable union of disjoint sets in 9J1F (~)

OC)

say A= U An, where An E 9J1F(Il) for every n and An nA~ =0 when n=f:. m. Since fl* if
n=l '

countably subadditive,

OC)

~l*(A) ~ L Il* (An) ------------ (a)
n=l

n
Since U Ai c A for every n ~ 1, and { Ai } are disjoint,

i=l

OC)

This is true 'v'n, so Il* (A) ~ L Il* (An) ------~-- (b)'
, n=1

OC)

From (a) and (b) , Il* (A) = ~ Il* (An) ~------------- (1)
n e l

, ." OC)

Now suppose that Il* (A)<oo and A= U An where An nAm =0 if n * m and each
n= l

,
,,-, ,

n ~
Put Bn = U Ai· Then S(A, Bn) =A-l3n = U Ai·

i= 1 i=n +1

(

OC) )
= Il* U Ai

i=n+l

..
OC)

= 1: fl* (Ad'
i=n+l



00

Since Il* (A) = I ~t(Ai) converges it follows that
i=1

lim dj A, Dn) = O. Hence A E 9J1f (~l) -----------..- (2)
n

countable additivity of Il* on 9J1 (Il) :

00

Let An E 9J1(Il) vn, A= U An E9J1(Il) and An nAm = 0 if n -::F m ,
n=1

00

Thenbyl:i! fL*(A) = I~l*(An).
n=I

If i-L* (An) < W for some n then I.h.s = r.h.s. = 00.

00

(i) Il* (A) =L: ~l* (An)· Hence Il* is countably additive on DJt (Il) --------------- (3)
n=1

Finally to prove that 9J1(f.l) is a a ring, let {An} be any countable collection of sets in

00

9J1(Il). Then for every n, An = U An k . Where An,k E 9J1f (Il) \i k ~ 1. Hence
k=1 '

l \ I'

00 00

A= U U An k
ri=I k= l ,.

The collection {An,k / n ~ 1, k ~ I} is a countable family of sets in 9J1f (~l), hence

A E m ( Il) ------------ (4)

00 00

Let A = U An & B = U Bn· Where An E 9J1f (Il) U 13n E 9J1f (Il)\in ~ 1. Then
n=1 n=1
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00

An nB = U (An nBm) E 9J1(I-l)Vn
m=l

Since An and AnnB belong to 9J1F(I-l),An-B=An-AnnBE9J1F(I-l).
. -

00

Thus A - B = U (An - B) E 9J1(I-l) ------------ (5)
n=1

From (4) and (5) it follows that m(l-l) isa c ring.

22.9 PROPOSITION :

~t is regular .

.;~ Proof: Let A E 9J1(I-l) and E> O. By the definition of I-l* (A), there is a countable collection

00 00
{An} of elementary open sets such that A~ U An and 1-l*(A)+E> L 1-l*(An). If

n=1 . n=I

G = U An' G is open, A c G and I-l* (G) = I-l*( U An J ~ II-l* (An) < I-l* (A) + E .
n=I n==l n= I

Since G ~ A C F= GC c A and F is a closed set., -

Since I-l* (pc) < I-l* (A c) + E, it follows that

22.10 SAQ: 9J1(I-l) contains all open sets

22.11 SAQ: The intersection of any family of o rings of subsets of a set X is a o ring.
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THE BOREL FIELD: ,
.' -

The smallest o ring IB containing the class G of all open sets in mP"is called the Borel

field ~nm P . Elements of IB are called Borel sets. Every interval I = II x," ... xlp where I j = (a j' bj)

for every j is an open set. Hence IB contains all intervals of this type.

Further IB contains all singleton sets. Hence IB contains all intervals hence every elementary

set is a Borel set. Further every Borel set is J.! measurable for every J.! because m(J.!) i,s a

c algebra containing every open set in mP. Since mP is an open set mP E IB . 'Since IB is a o

algebra it now follows that every closed set in mP E IB . Since IB is a cr algebra it now follows that
every closed set is in IB .

22.12 PROPOSITION :

If A E 9]1(J.!) then there exist Borel sets F and G in mY' such that F ~ A ~ G and

J.l(G-A) =J.l(A-F)=O.
.

Proof: Since J.! is regular, '\I positive integer n, there exists Fn' Gn such that Fn is a closed set,

00 00 00

and G = n G n E IB and A - F = A - U Fn = ,n A - Fn sot hat 0 ~ ~l(A- F) < J.l(A - Fn )
n=1 ( , n=l n=l

1<-'\In 2:1
n

00

Similarly G":"A ~ n (Gn -A) ~Gn -A '\In so that
n=l

Hence ~l(A-F)=O.

1
J.l( G - A) ~ J.l( G n - A) <- . As abovewe get ~l( G - A) = 0 .

n "

22.13 SAQ: If A E m (J.l), A is the union of a Borel set and a set of J.! measure O.

22.14 SAQ : The Cantor set p has Lebesgue measure zero. (This is an example of an uncountable
set whose measure is zero).

22.15 MdoEL EXAMINATION QUESTIONS:
, :*,' - \.- ..-.

22.15.1 : Show that the outer measure J.l' induced by a non-negative additive finite set function J.l

on E is countably subadditive.
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22.15.2 ; Describe the class 9J1F (/.l) when J...l is a finite nonnegative additive set function on 'i! and'.

show that 9JlF (}l) is.a ring.

22.15.3 : Show that the outer measure J...l * corresponding to a finite nonnegative additive set function

is additive on 9J1F (~l) .

22.15.4: Describe the class 9J1(J...l)and show that 9J1(J...l)is a cr ring.

22.16 SOLUTIONS TO SAQ'S :

22.3: (i) SeA, A) = O=>d(A, A) =J...l*(S(A,A))=J...l* (o)=r

(ii) S(A,B) = S(B,A)=>d(A,B)=J...l* (S(A, B)) = J...l"(S(RA)) = d(B,A) and

(iii) d(A, C) = J...l*(S(A,C))

~ J...l*(S(A, B) U S(B,C))

~J...l*(S(A, B)) + J...l*(S(B,C))

= dCA, B) +d(B,C)

deAl UA2' Bl UB2)

= J...l*(S(AlUA2' B1UB2)) ~J...l*(S(AJ>Bd US(A2' B2))

~J...l*(S(AI> BI')) +J...l*(S(A2' B2))

= d(AJ> Bd + d(A2' B2)

deAl nA2, Bl nB2) =J...l*(S(AI nA2, B1nB2))

~J...l*(S(A], BdUS(A2 UB2))

~ J...l*(S(Al' Bd) + J...l*(S(A2' B2))

= d(A], Bd + d(A2' B2)

d(A] -A2' B] -B2) = J...l*(S(A)-A2' B1-B2))

22.4:

\'-:.-!
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~ ~* (S(A1,B1 )US(A2,B2))

~ Il* (S(A1,Bd)+ Il* (S(A2,B2))

= d(A1,B1) +d(A2 +B2)'

22.10; It is clear that 9J1(Il) contains all intervals 1=11 x .... xlp and in particular all intervals I

where each Ij is of the form (a j' bj ), a j::; bi It is a fact in topology that every open set in mP is
/

a countable union of intervals of the above type, i.e. of. the type I[ x······ xIp where each

Iy= (aj, bj). Hence m(ll) contains ail open sets.

22.11 : Let {Aa/aE~} is any family of c rings of subsets ofa set X and

A E ()9/, B E cPl => A E oWa, BE ()S!la for every a Eli=>

AUBEQs:;fa and A-BEQs:;fa V aE~

=> AUBE cPt and A-B EQxf·

For any countable collection {An} in Q9/, An E cP"la 'I:j n 2 1 and a E L'i, so that

n An E QS7/a 'I:j a E L'i and hence n An E QS7/ .
nzl nzl

Hence r:9I is a c ring.

22.13: Let AE9J1(Il) and F a Boreiset such that F~A and Il(A-F)=O, we have

A= FU(A:-F).

a:
22.14: We know that the Cantor set p= n En where each En is a disjoint union of 2n closed

n > l

1 . (2)n
intervals each of length ~ . Thus m(En) = "3

Hence O,;m(P)'; m(En)<GT- Since li:(~r=O itfo IIows that m(P)=O.
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22.17 EXERCISES:

22.17.1 : Show that every open set in m' is a countable union of pairwise disjoint open intervals.

22.17.2 : Extend 1 to m P where p 2:1.

22.17.3 : Given a set X and a collection &' of subsets of X I Show that there is a "smallest" cr
algebra cr( ("'9') containing rff' in the sense that

(i) c (0'1') is a c algebra containing d1' and

(ii) 0'( cY') ~C[/! for every o algebra cd containing rff' .

Hint: a(rY') = n{r:>s1u/a E il} where {cdu/a E il} is the collection of all a algebra.s

containing o'f .

22.17.4: Show that IB contains all singleton sets. Deduce that every interval in mP is a Borel set.
consequently show that every elementary set is a Borel set.

22.17.5 : Show that IB is the smallest o algebra containing all closed sets in mP.

22.17.6:Showthatforevery ~,thecollection z={A/~(A)~O} isa c ring.

22.17.7: Show that every countable set in mP has measure zero.

22.17.8 : Let 8 be the measure defined on 'if: ~ mP by

if OEA
if O~ A'

Find 8* mF(b) and m(8).

REFERENCE BOOK :

Principles of Mathematical Analysis - Walter Rudin (3rd Edition)

Lessonwriter:

Prof. 1. Ramabhadra Sarma



Lesson - 23

INTEGRAL OF A MEASURABLE FUNCTION

23.0 INTRODUCTION :

In this lesson we introduce the notion of a measurable function on a measurable space and
develp the theory of integral of a measurable function. We also study some elementary properties
of the integral and integrable functions.

23.2'DEFINITION:

Let X bea set, gf( a (J ring of subsets of X and J1. a countably additive, non negative set

function defined on gf( . Then (X, o1l, I-l) is called a measure space. If (X, oR, I-l) is a measure

space and X E gf(, (X,od, J1.) is called a measurable space, A set E c X is said to be

measurable if E E g4{ and ~L(E) is called the measure of E with respect to J1..

Examples:

(1) If m is the Lebesgue measure on nt' and 9J1 is the class of all Lebesgue measurable

functions then (R,9)1, m) is a measurable space.

(2) If X is an uncountable set, ~ the collection of all atmost countable sets (i.e., finite
or coutnable sets in X and ~ is a (J ring of subsets of X ' Define for E c X,

J1.(E)= number of elements in E if E is finite,

= OCJ if E is infinite.

Then (X, <?f, J1.) i a measure space but not a measurable space.

23.3 PROPO ITION:

Let (X, Q/It, ~L) e a measurable space and f be an extended real valued function defined

on X . The following are equivalent.
, .

f~~cwarl; aEffi.', {x/f(x»a} is measurable.(1)

(2) for every a E nt' {xl f (x) :;::a} is measurable.
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(3) for every a E IR' {xl f (x) < a} is measurable.

(4) for every a E IR' {xl f (x) ::s: a} is measurable.

. 1
Proof: (1) ~ (2) : Let a be any real number. For any x E X, f (x) ~ a if and only if f (x) > a --

n
for every positive integer n so that

Since {xlf (x) > a - ~} is measurable 'If positive integer nand G/It is a c - ring

n~l{x/f(x»a-~} is measurable. Hence {x/f(x)~a} is measurable. Thus (1)~(2).

(2) ~ (3) : Let a be any real number. Clearly

{xl f (x) < a} = X - {xl f (x ) ~ a}

Since {x/f (x) ~ a} is measurable and X is measurable. Thus r.h.s. is measurable. That

is I.h.s is measurable. Thus (2) ~ (3) .

(3) ~ ( 4) : for any a E IR' ,

{xl f (x) ::s:a} = ~ I{xl f (x) < a + ; }

for each n ~ 1, {x/f (x) < a + l/n} is measurable. Thus (3) ~ (4) .

(4) ~ (1) : for any real number a,

{xl f (x) > a} = X - {xl f( x) ::s:a}

Since {xl f (x) ::s: a} and X are measurable and (X, G/It,!J.) is a measurable space,

XEQ4{ and so x-{x/f(x)::s:a} is measurable.

Thus (4) ~ (1). This completes the proof.
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23.4 DEFINITION :

An extended real valued function f defined on a set is said to be measurable with respect

to the measurable space (X, GIt, /-l) (or simply measurable with respect to /-l) if for every a E ffi.'

{x/f (x) > a} is measurable. A measurable function f on X with respect to (X, G4t, f.l) is also

called simply measurable.

Note: When a measurable space (X, G4t, IJ.) is fixed we use the words measurable set and

\ measurable function without specifying the measurable space .
.,

.,I In the sequel (X, G4t, IJ.) is a measurable space.
I
I
J 23.5SAQ:

If f is measurable, so are IfI and -f.

( Proposition: If ~fn ~ is a sequence of measurable functions X the functions f and F defined by, )

f (x) = inf fn (x) and F( x) = supf', (x) are measurable.
nz l n2:1

Proof: For any a E ffi.' , f (x) < a ~ fn (x) < a for some n z 1.

00

Hence {x/f(x)<a}= U {x/fn(x»a}
n=1

Since fn is measurable \;j n :2: 1, {x/fn (x) > a} is measurable, hence the set on the r.h.s.

is measurable.
'i'

So {x/f (x) < a} is measurable. This being true for every real number a, it follows that f is

measurable.

For any real number a,

F(x»a if and only if· fn(x»a for somen . Hence

00

{x/F( x) > a} = n~I {x/fn (x) > a} since {x/fn (x) > a} is measurable for every n , the set on the

r.h.s., hence the set on the I.h.s. is measurable. Hence F is measurable.
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23.7.1 COROLLARY:

If {fn} is a sequence of measurable functions defined on a mesurable space (X,GI/, J.l) ,

f = lirn inf fn and F = lirn sup fn then f and F are measurable.

Proof: By definition f( x) = inf sup fk (x). For each n and x EX. Let gn (x) = sup f', (x) . Then
n~1k~n , k~n.

by 23.6 gn is measurable. Hence f = inf gn is measurable by 23.6 again. By symmetry F is
measurable.

23.7.2 COROLLARY: If {fn} is a sequence of measurable functions on a measurable space

(X, oft, I-!) and f (x) = lirn fn (x) for x E X then f is measurable.
n

Proof: Follows from corollary 23.7.1" and the fact that

f (x) = inf sup fn (x) = sup inf fd x)
n~j k~n n~1 k~n

COROLLARY: If f is measurable so are f+ and C .

Proof: Recall that f+ (x) = max jf'{x}, o] and C (x) = -rnin{f(x), o]. Now it is clear from

23.6 that f+ and C are measurable.

23.8SAQ:

Prove directly that f is measurable so are f+ and f ".

23.9 THEOREM:

If f and g are real valued measurable functions on a measurable space (X,g.{(, /.l) and

F:mxm~m is continuous then the function h defined on X by h(x)=F(f(x),g(x») is

measurable.

Proof: We use the fact that every open set in m2 is a countable union of "open" intervals. i.e.

intervals of the type Ix J where I,J are open intervals in m' ,

For every a E m, the set G = {(XI' x2)/F(xj, X2) > a} is an open set in m' x m' since F

is continuous. Since every open set is a countable union of "open" intervals in m2 , 3 sequence of
00

open intervals in R' {In} and {Jn} such that G = U In x Jn .
n=1
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Now h (x) > a <=> F (f (x), g (x)) > a

~(f(x), g(X))EG

<=> ( f (x), g (x )) E In X Jn for some n.

CI)

<=> XE U C'(In)ng-'(In)
n='

00

Thus {x/h(x»a} = U CI(In)ng-l(Jn)
n=1

Since f and g are measurable, by exercise C 1 (In ) and g-'(1 n) are measurable for

CI)

every n , so that n~/-I(In)r -'(In) is measurable. Hence {x/h(x»a} is measurable

'\j a E ll.' . Hence h is measurable. This completes the proof of the theorem.

23.10 COROLLARY:

If f and g are real valued measurable functions defined on a measurable space (X, GA, I-l)

then so are f + g and fg .

Proof: The functions F,G defined on ll.' x ll.' by F(X"X2)=X, +x2 and G[x, X2) are

continuous. Hence F(f,g)=f+g and G(f, g)=fg are measurable.

23.11 SAQ:

Prove directly that if f and g are real valued measurable functions on a measurable space

(X, g,.{{, I-l) then so are f + g and f· g .

Definition: For any set E c X, the characteristic function XE (called Kai E) is defined by

( ) _ {O if x \l E
XE X -

1 if x E E.
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23.12 PROPOSITION :

If E c X, XE is measurable if and only if E is measurable.

Proof: For any real number a < 0

XE ( x ) > a ¢::> x E X so that {xl XE ( x ) < a} = X. If 0 ~ a < 1, XE ( X ) > a ¢::> x E E

so that {xl XE ( x) > a} = E and if a > 1, XE ( x) ~ aVx E X so that {xl XE (x) > a} = O. Since the

sets 0, E and X are measurable XE is measurable conversely if XE is measurable then for

o ~ a ~ 1, {xl XE (x) > a} is measurable so that E is measurable.

DEFINITION :A real valued function s defined on a measurable space X is said to be simple if its
range is finite.

23.13 PROPOSITION :
r:

. .A real valued function s is a simple function if and only if three exists a positive integer n

and measurable sets EI E and C1 •..••.•. C in JR' such that, , n ' 'n

n

S= ICi XEi
i=1

Proof: If s is asimple function with range {C1,······· ", Cn} and E, = {xis (x) =c.] ' then it is clear

n n
that E, nE j = 0 if i "* j and X = U E, and s( x) =I C, XE (x) for every x EX.

I I .
n= i=l '

n r"S~.
Conversely if each E, is measurable s = L C, XEj is simple.

j=1

23.14 DEFINITION :

n n ,.'

If s is simple function and s = I C. XEj where U E, = X then the above representation of
i=1 n==I

S is called the canonical representation of s .

23.15 PROPOSITION :

A simple function s is measurable iff the sets>·· .', En in the canonical representation

n

S = L C, XF, js measurable.- --I

I



23.7 Integral of a Measurable Function

Proof: If s has range {C], C2,.·····, Cn} and E. = {xis (x) = c.] then S is measurable ~ E, is

measurable Vi. Conversely if each E. is measurable XEj is measurable for every i hence s is

measurable.

23.16 PR0';"1QSITION :

Let f be a real valued function defined on a measurable space X. Then there is a sequence

{sn} of simple functions such that sn ( x) ~ f (x) as n ~ 00 for every x EX. If f is measurable,

{sn} may be choosen to be a sequence of measurable functions. If f is non-negative, { sn} may

be choosen to be monotonically increasing ..

Proof: First suppose that f (x) ~ a for every x EX. For each n ~ 1 and 1~ i ~ 2n .n ] Write

{ Ii -1 i }
Enj= x 2Il~f(x)<2ll andFn={x/f(x)~n} and define

n2ni-I
a sequence of functions {sn} by sn = ~ 2n XEni + nXFn .

i-1
Clearlry sn assumes the value 2n in Eni ' 1~ i s n2n and n in Fn. Hence sn is simple

for every n since Eni (1 ~ i~n 2n) & -Fn are measurable.

i-1 i
IfxEE .,-~f(x)<-

n1 2n 2n

2i - 2 ) 2i~--<f x <--. 2n+1 - ( 2n+1

~ (i)x E En+12i_1or (ii) x E En+12i

2i - 2 i-1
In case (i) f(x)=--1 =-. 211+ 2n

. i-1 2i - 2
so 5n (x)=2n = 2n+1 = 5n+1(x)
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(..) f () 2i-1In case II x = 2n+l

i-1 2i- 2
so 8n (x) = - = --1 = 8n+1(x)

2n 2n+

If f(x)~n+l, 8n+1 (x)=n+l> 8n (x)

If n ::;;f (x) < n + 1, 8n+1 (x) = n + 1> n = 8n (x)

Thus 8n (x) ::;;8n+1 (x) vn, so that {8n} is monotonically increasing.

If x E X there is a positive integer N such that

N-l::;;f(x)<N.

i-1 i
If n>N and -~f(x)<-

- 2n 2n

I I I i-II i i-: 1.f(X)-8 (x) =f(x)-- < - - - =-
n 2n 2n 2n 2n

Since lim _1 = 0 itfollows that lim 8n ( X ) = f (x ) .
n 2n n

If f is measurable each En,i arid Fn are measurable so that 8n is measurable for every n .

If f is an arbitrary function then f is the difference of two non-negative functions f+ and

C; f = f+ - C. If {8n} and {tn} are sequences of simple functions such that lim sn = f+ and
n

lim tn = C and un = 8n - tn' then {un} is a sequence of simple fun~tion~ and
n _

lim un = limj s., -tn)=lim8n -limtn
n n n n

27 This completes the proof.



INTEGRATION :

We consider a measurable space (X,G4t,J..!)

23.17 DEFINITION :,

(a) If S is a non-negative simple measurable function assuming the values

C1'C2'······,Cn, where c,>0 Vi if E,i ={x/f(x) ~ c.]. We define

n

IE(s)=LciJ..!(EinE) for every EEg,((,
i=l

(b) If f is a non-negative measurable function defined on X , we define the Lebesgue
integral of f with respect to J..!over E E g,(( by

Jf du = sup IE (s)
E

where the supremum is taken over all nonnegative simple measurable functions S::; f .

(c) If f is any measurable function, E E g,(( and if one of f f+ and fC is finite weE E
define

[f du = ff+ - [r
E E E

If both the integrals f r+' and [r are finite, we say that f is integrable or sum mabie on in
E E

the Lesbesgue sense with respect to J..!and write, f E ~(J..!) on E.

We write :z for :z [m}, mbeing the Lebesgue measure.

n ,

23.18 PROPOSITION': If S= LCi XEi where C, >OV i and E1, .... ·,En are pairwise disjoint
i=1

, n

measurable sets then for every E E G4,IE (s) = LC, J..!(Ein E).
i=l

n

Proof: Let S = L Ci XEi where C, > 0 V i and E, nEj = 0 for i :t j and each E, is measurable.
, i=1
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Let {d], .... ·",dd be the subset of {C},··· ", Cn} such that dj :;t: dj if i :;t: j and each C, in some

dj and viceversa so that Range s= {db······, dk}. If Fi= {xl s(x) = dj} then E is the union of

those E j for which Cj = d i: If this union is Fj =Ejl U······ UEjn

(."d. =C· )• 1 Je

"~±c~~(EjriE)
j=l

,:, !,,' .,'" \" .'. ',-

'--
n

Thus IE(S)=LCj~(EjnE).
j=1

REMARK: The difference between definition 23.17.a and proposition 23.18 is that the C, in (a) are

all distinct where as the C, in 23.18 are not necessarily distinct.
"',,"":.

23.20 PROPOSITION :

Assume that sl, s2 ar~ non-rieqative simple and measurable functions defined on X and

sl (x):S s2 (x) \fx EX. Then for every E E Gil, IE (Sd:SIE (S2) .

n m
Proof: Let sl (x) = LC, XEj (x) and s2 (x) = ~ dj XFj (x) be the canonical representations so

1=1 J=I

that Cj > 0 and dj > 0 Vi, j; E, ={ X/SI (x) =cd and Fj-= {X/S2 ( x) =dj} are measurable sets. If

Eo ~ (,91E;J and Fo~(g/j)'then 'I (x) ~ 0 on Eo and "( x) ~ 0 on Fo, Further



Analysis 23.11 In~egr~1of a Measurable Function

n

Now IE (Sl) = 2>if.!(Ei nE)
i=l

, ,

....
n In

= L L Cif.!(Ei n ~j n E)
i=l j=O .,;,

. !.- .:.! .:n In

~L L dj f.!(EinFj nE)
i=l j=o

111

= Ld. f.!(F nE).I J
j=l l:,'

'.', :

=IE (S2)

23.21 COROLLARY:

If s is a non-negative simple measurable Junction 0Ji X then f s= IE (s). ,
" E

Proof: If 0 ~ sl ~ sand sl is a non-negative simple measurable function then V E E g${

Hence fs du = sup IE (sd ~ IE (s)
E SI

Further IE (s) ~ fSdJ..! since s s; s
E
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This gives TETs) = [s du ' ....-
E

23.22SAQ:

If f is measurable and bounded on E and if J.l(E) < OJ then f E 2'(~) on E.

23.23SAQ:

If f and g are in 2'(~) onEand f(x)::=;g(x) VXEE then jfdJ.l::=;jgdJ.l.
E E

23.24SAQ:

IffE2'(~L) on Ethen CfE2'(J.l) OnE VCEIR and jcfdJ.l=cjfdJ.l.
E E

23.25SAQ:

If J.l(E) = 0 and f is measurable then f f du = 0 .
E

23.26SAQ:

If f E 2'(J.l) on E, "c:!4 E g4( and A ~ E .then f E 2'.(J.l) on A.

23.27 PROPOSITION :

If s is a nonnegative measurable simple function defined on a measurable space
00

(X, GA, J.l) and {An} is a sequence of pairwise disjoint mesurable sets and A = U An then
n=1

00

f s du = L f s du
A n=1 An .

Proof: First assume that s is acharacteristicfunction, say s = XE where E E g4(. Then

fSdJ.l = fXE d~L=J.l(AnE). Similarly Vn f s du = J.l(An nE).
A A . -c ; . An

OCJ

Since An E = U (An n E) and {An nE} is a sequence of pairwise disjoint measurable
n=1

sets,
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00

~(AnE)= L. ~(An nE).
n=I

00

Hence f sdu = I f sdu -----~------- (1)
A n=IAn

. ',.".

Now let s be a nonnegative simple measurable function assuming the values CI,······,Cn

n

on the disjoint measurable sets E\, E2,···· ", En respectively and ci > 0\7' i so that s =I Ci XE ..
I

i=\

n

Then f sdu = L>i f XEj dIJ.
A i=1 A

;\ ::

23.28 THEOREM :

If f is a nonnegative measurable function defined on a measurable space (X, Qt((, ~) then

the set function ~ defined by ~ (A) = f f du is finitely additive.
A

Proof: Let AI, A2, .... ··, An be pairwise disjoint measurable sets, if ~(Aj )=00 for some j I then

00 ~~(Aj)~;rd~'; ) f ~{9/i) ,;00

. J U Aj
i=1

~. ~' ~.~ -;'.' .? •. ·i~.> ••

Thus in this case



;iEentre for Distance Education) CAcharya Nagarjuna University~,

Now assume that ~ (Ai) <00 for every i. 1~ i~n . Given E> 0 there exist nonnegative

simple measurable functions sl,.·· .... , sn such that 0 ~ si ~ f and

Let s = max {SI'····· .., sn} . Then s is a nonnegative simple measurable function, 0 ~ s ~ f
and

Hence ~(i91Ai) = ) f du z f sdu = ~ 1s du

UAj UAj I

j=! j=!

n

?> L J fd~-E
i=l A.

n
= 2:<I>(Ad-E

i=1

This being true for every E> 0 , it follows that

For any nonnegative simple measurable function s~
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n

o ~ s ~ f, J s du = L J s du
n i=l Ai

UAi
i=1

n n

~L f f du = L~(Ai)
i=1 A, i=1

This being true for every such s , it follows that

From (1) and (2) it follows that

22.29 THEOREM :

If f is a nonnegative measurable function defined on a measurable space (X, G4t, !-1) then

the set function ~ defined on G4( by ~(A)= f f du is countably additive.
A

00

Proof: Let {An} be any sequence of pairwise disjoint sets in g4( and A = U An'
n=1

If O::=:;; s ~ f and s is a nonnegative simple measurable function,

00 00

f s du = I f s du ~ L f f du .
A i=l Ai i=l Ai .

00

This is true for every AE01io it follows that ~(A)= ffdJ.l = sup fs du s L~(Ai)
A A i=1

00

= I$(Ai).
i=l

n

On the otherhand for every n , U Ai ~ A ,
i=1
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to, ) fdj.l': {~IA} ~HA;)
U Ai

i=l

This being true for every n, we get

00

HA)= Sf = IHAi)
A i=1

Hence <P is countably additive.

23.30 COROLLARY:

If f E fZ (/-1) then the set function <P defined on 01( by <p (A) = f f du .is-countably additive.
A

ft+Proof: Since f E :z (J.1), f" and C are nonnegative measurable functions such that and
A

f C are both finite for every A E 01( .
A

If <PI (A) = f f+dJ.1 and <P2 ( A)= f C dJ.1 for A E GIt .;
A A

<PI and <P2 are nonnegative, finite countably additive set functions on g,.{( . Hence <P = <PI - <P2
is a finite countably additive set function.

23.31 COROLLARY:

If (X, GIt, J.1) is a measure space, A Eg,,((, BEg,,((, Be A and J.1(A - B) = 0 then for

every f E :z (J.1) ,

. Proof: By additivity of f f dJ.1 = <P ( A ) , we have
A

f f du = f f du + J f dJ.1
A B A-B
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Since Jl(A-B)=O, I f du= O
A-B

So I f du = If du
A B

23.32 THEOREM :

Let (X, G4t, ~) be a measurable space, E E G4t and f E 2' (~) on E. Then If IE 2'(~)on

E and

Proof: Let A = {xl x E E, f (x ) ~ O} and

B = {xl x E E, and f (x) < O}

Then AEG4t, BEfG4t, AnB=O and E=AUB. Since fis measurable, so is If I· By

the additivity of the integral Ilfl du = Ilfl du +. .flfl du = I f+ du + I C du < co .
E A B A A

Since f ~ If I and -f s If I '

If\~~~ Ilfldu and - Ilfldu ~ If du
E .' E E E

Hence f f du ~ flfl du .
E E

23.33 THEOREM :

Suppose f is measurable on E and g is measurable on E, Ifl~ g and g E 2'(/-1) on E.

Then f E 2'(~) on E.
<,

Proof: Since f is measurable so are r'. C and /f/. Also f+ s /fl ~ g and C ~ /fl ~ g so that f+
and C belong to 5l' (!-!) on E.
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23.34 SOLUTIONS TO SAQ'S :

00

SAQ 5 : {xl f (x) = oo} = n {xl f (x) > n}
n=1

SAQ6: {x/lfl(x»a} = {X/lf(x)l>a}

= {xl f (x) > a}U{xl f (x) < -a}

{xl (-f) (x) > a} = {xl f (x) < -a}

SAQ8: For any a, {x/c1(x»a}= {xjmax{f(x),O}>a}

= {xl f( x ) > O} if a < 0

= {xl f (x) > a} if a > 0

This set is measurable since f is measurable.

The proof for measurability of C is similar.

SAQ 11 : For any a E m' ,

{xl f (x ) + g(x ) > a } = {xl f (x) > a - g(x )}

= U ({ x/r'(x) > q}n{x/g(x) > a-q})
qEQ

Since Q is countable and f ,g are measurable it follows that f + g is measurable.

To prove measurability of f,g it is enough to prove measurability of f2 since

fg = (f + g)
2

- ( f - g)
2

4
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<=>f(x»Ja or,f(x)-Fa

Measurability of [2 is now clear.

SAQ 22 : With out loss of ger,erality we may assume that O:s;f (x) :s;M \I x E E. If s is a non-

negative simple measurable function and O:s;s(x) :s;f (x) for x E E then o s s(x) :s;M for x E E .

So by exercise and the hypothesis that ).l(E) is finite IE (s ):S;M).l(E).

This is true for every such s so

.'.i~..: ",:,'
f i du sM).l(E)
E .

Hence f E .2'().l) on E.

SA'Q',23: Sinse f+ +g':S;C +g+ 'we may assume that O:S;f:S;g on E. In this case every

nonneqative simple measurable function S3 S( x) :s;f (x) \Ix E E satisfies s(x) :s;g (x) on E.

So that IE (s):s; f g . Hence I 'fr':s; f g
E E E

. . . . s
SAQ 24 : If c > 0 and f 2:: 0 then O:S;s :s;cf <=>0 :s;- :s;f .

c

Thus f cf du = sup {IE (s )/0 :s;S:s;cf} where the supremum is taken over all nonnegative
E

simple functions.

• :.>

=c sup{I( S)/O:S; S:S;f}

= c f f du
E
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SAQ 25 : The statement is trivially true when s is simple.

Extend for nonnegative measurable function first and then the general case.

SAQ 26 : Verify for nonnegative f.

'. '~'.\

23.35 MODEL EXAMINATION QUESTIONS :

~. Show that if (X,g,/(, I-l) is a measurable space and f is measurable then. show that If I ,is;~
'. -; .' '.. .

measurable.

2. Show that if f and g are real measurable functions so is f +6 .
• I ~

3. If f is a nonnegative measurable function defined on (X. GIlt, I-l) show that the set function

A ~ f f du is countably additive.
A

4. If f and g are nonnegative measurable functions defi~edon a measurable.speoe»

(X, g,/(, 11) show that,., " , ,.~,.' ..,

VEEG4l, f(f+g)dg= ffl~t+ fgdll.
E E E

.: ..

.': ~

f f du
E

23.36 EXERCISES: , ' .
. ~ ", •..;.. -v. r " :::....

1. If X is an uncountable set, the collection 'iF of all subsets E of X such that E is atmost
countable is a c algebra and if

I-l(E) = the 'number of elements in E if E is finite

= if) otherwise

(x, <if, 11) is a measure space which is not a rneasurable space.,

2. Prove directly that if f and g are measurable then so are max {f,g} and min{f,g}.· '.
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3. If fis measurable show that 'II interval (a,b)cm', C'{(a,b)}={x/a<f(x)<b} is

measurable.

Deduce that for every open set 0 ~ IR, C! (0) is measurable.

4. If f is measurable and C E IR' then show that cf is measurable.

5. If 0 ~ s(x) ~ M'II x and s is a nonnegative measurable simple function then 'II E E G41,

6. If s is a nonnegative simple measurable function, E E g;f( and c is any real number then

7. If f is measurable on X, f (x) ~ 0 A E G4l and B E G4l and A c B then f f du ~ f f du .
A B
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Lesson - 24

CONVERGENCE THEOREMS

24.0 INTRODUCTION:

In this lesson we prove some convergence theorems for Lebesgue integral which do not
have counterparts in Riemann integral. We also obtain a criterion for a bounded function f defined

on [a, b] to be Riemann integrable on [a, b] and that every Riemann integrable function defined

on [a, b] is measurable and L.ebesgue integrable.

24.1 LESBESGUE'S MONOTONE CONVERGENCE THEOREM :

Let (X, GIt,fl) be a measurable space, {fn} a sequence of measurable functions such

that O:Sfn(x):Sfn+1(x)Vn21 and XEE where E is a measurable set. If

lim fn (x) = f (x) V X E E then lim Jfn du = Jf du .
11 nEE

Proof: By hypothesis fn (x) :Sfn+1(x) 'l/x E E so

Jfl1 du :s Jfn+1 du
E E

Since lim fn (x) = f (x) for x E E, fn (x):S f (x) 'l/x E E so
11.

Since {If,} is monotonically increasing and bounded above in the extended number

/' system,

O:S lim Jfn :Sf f:S 00·

nEE

Let a = lim ffn . Then a:S If
11 E E ..
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To prove that f f ::;a. Let 0::; s ::;f on E and S be any simple measurable function.
E

For any C E (0,1) write En = {x:x E E and fn (x) ~ cs(x)}

Since fn+I(X)~fn(x),EncEn+I'IJ'n and since limfn(x)=f(x)=supfn(x) and
n n

............... .~_ : 00

0< c < 1, so that 'IJ'x E E :3 N 3 C f (x) < fN (xl-sO....~~atx E En hence E:::i U En.
----- n=1---------- ~-.

Since En c E'IJ'n

Jr, du 2: J In du 2: c J s du
E En En

~ c z c lim
'n

f sdu
En

Write FI = EI and -Fn = En - En-I for n > 1. Then {Fn} is a sequence of pairwise disjoint

n
measurable sets such that 'lJ'n En = U Fn. Hence by countable additivity,

K=!

(1) n

J S du = ~ I s du = lim L J s du
E n=1 F n i=1 p-n I

=lim
n

J sdu
n
U Fi
i=!

=lim J s du
n En

Thus a 2: c fSdJ.!
E

/
/

This is true V s . So a 2 c Jf
E



This is true 'If CO)O < C < 1 so a ~ f f du

This completes the proof.

24.2SAQ:

If SI' S2 are nonnegative simple measurable functions and E E G/I( then

f(SI +s2)d~ = JSI du + JS2 du
E E E

24.3SAQ:

00

If {En} is a sequence of measurable sets in (X, g,{{, u}, En c En+1vn and if E = U En
n=1

. then

ffd~= lim f f du
EnE n

24.4 PROPOSITION :

If fl' f2 are non-negative measurable functions on (X, g,{{, f.!) and E E G/I( then

f(fl +f2)d~= ffld~+ ff2 du
E E E

Proof: When s1' s2 are simple the equality holds from S~Q 2.

In the general case let {sn} and {to} be sequences of non negative simple measurable
'\

functions such that

(i) O's s, :$sn+l onEand limsn(x)=fl(x) for xEE and
n

(ii) 0:$ tn :$ tn+1 on E and lim tn (x) = f2 (x) for x E E
n . .

Write un = sn + tn . {Un} is a sequence of non negative simple measurable functions such

that

,-O::S;un:$un+1 and limun(x) =(fl +f2){x) on E, so that by the monotone
n

convergence theorem

28'
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Hfl +f2)dll = lim fUn du
E n n

=lim fSn du + lim ftn du
n n

n n

= ffl dw+ jf2 du
E E

24.5 PROPOSITION :

If fl' f2 belong to 2'(Il) on E and f = f\ +f2 then f E 2'(Il) on E and

jfdll= jfl du + jf2 du
E E E

Proof: When fl and f2 are both non negative the equality holds from proposition 24.4.

Suppose f1 ;:::0 and f2 ~ 0

Put A = {xjf( x);::: o] nE, B={ xjf (x) < o}nEon A, f, f1' - f2 are non negative. Hence

by 24.4.

ff)dll= f(f-f2)d~l= ffdll+ j-f2dll
A A A A

= J f du - j f2 du
E ,A

so that j f du = Jfl du + J f2 du -----------------(1)
A A A .

on 8, -f, f1' -f2 are non negative. Hence by (1)

f( -f2) du = j f) du + f( -f) du ----------- (2)
B B B

From (tjand (2) we get the required equality,

In the general case we write for i= 1 and 2.



--.( Analysis ) ~~~~~~~~~~C~c~o~n~ve!.!r].g!!en~c:!e~T~h~eo~r:!e~m!.s ~E~

B. ={xjx E E, fj (x) < o]

Then in each Ej, f! has constant sign as well as f2.

Hence f f du = f f! ~I-!+ f f2 du for i= 1,2,3, 4
Ej Ej Ej

Adding these four equalities we get

ffdl-!= ff!dl-!+ ff2dl-!
E E E

24.6 COROLLARY:

If {fn} is a sequence of non negative measurable functins each defined on a measurable

00

space (X,GIl,I-!), E E GIl and f( x)= L fn (x) for x E E then
n=!

00

f f du = L f fn du
E n=l E

Then {sn} is a monotonically increasing sequence of nonnegative measurable functions

converging to f for x E E. Hence by Monotone convergence theorem,

. ff = lim fSn
EnE

n

= lim L ffj du
n i=! E

24.7 FATOU'S LEMMA:

Let (X, GIl, I-!) be a measurable space, {fn} a sequence of nonnegative measurable

functions, E E Q,I( and
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f (X) = lim inf fn (x) (xEE)
n

then f f du ~ lim inf ffnd
/-- E. n .

Acharya Nagarjuna University

Proof: For each positive integer n and each X E E write gn (x) = inf {fi (x )/i ~ n} . THen each

gn is measurable arid for XEE gn(X)~gn+l(X). Moreover gn(x)~fn(x) and

liminf f gn du ~ lim inf f fn du.
n EnE

24.8 EXAMPLE:

Of a sequence {fn} for which strict inequality holds in Fatou's lemma.

Let X=[O,l] E=(~' 1J

( ) _ {O if x ~ E
g x - .

1 if x E E

f2K (x) =g(x) if x E X and

f2K+l(X)=g(1-X) if XEX.

. 1 i '.

Then for °~x < '2' f2~ ex) = °
and f2K+1 (x) = 1

1
and for - < x ::;1

2

f2K+l(x) = °

For any x E X, and n ~ 1, inf fK (x) = ° soK~n .



, 1

liminffK(, )=0. Hence fliminffn(x)dx=O,
non

I t

But ffn (x)dx = Jfn (x)dx =~ if n is even
o 1

..•
L

!

~,. . 1..! n ( X ) dx = - If n IS odd.;) 2

I

So that lim ffo (x )dx = ~
, no' , 2

24.9 LEBESGUE'S D01J!!INATED CONVERGENCE THEOREM :

Let (X, 9'It', ~) be a measurable space, E E Q#, {fn} a sequence of measurable functions

such that limf; (x) = f (x) on E. Ifthere exists agE;Z (~) on E such that
n

Ifn (x)i ~ g (x) on E for n ;;::1 then,

Proof.: Since Ifn (x)1 ~ g(x )Vx E E, fn E ;Z(~), fn + g > 0 pn E and also lim(fn + g) = f + g.
n

Hence by Fatou's lemma

f( f + g) du ~ lim inf f fn + f g du
EnE E

=> f f du ~ 1im inf f fn du
EnE

Since (g -fl1) is non negative, measurable and-as abovethatlim (g -fn), = g -f, it follows
n

as above that f(g - f) du ~ 1im inf f(g - fn) du ..
EnE
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Hence If du > limsup -ffn du
EnE

Hence lirn I fn du = If du ,
nEE

24.10 COROLLARY:

If fl(E) < 00, {fn} is a sequence of measurable functions which are uniformly bounded on

E and fn ~ f as n-~ 00 on E then lim f fn du = Jf du .
nEE

Proof: By hypothesis :3M > 0 ;) Ifn ( x )1:::;M for all n ~ I and x E E .

Since j.l(E) < oo,the constant function g(x) =M(x EE) is integrable on E. Hence by the

dominated convergence theorem the ?onclusion follows.

COMPARISION WITH RIEMANN INTEGRAL:

We now make a comparison between the Riemann integral and the Lebesgue integral.

24.11 EXAMPLE:

The ruler function XE where E is the set of rational num~ers in [0, 1] is Lebesgue integrable

because the set E is measurable but not Riemann integrable since for any partition P of [0, 1] .

As is evident from the above example it is clear that the Lebesgue integral includes a larger
class of functions as against the Riemann integral. Besides this limit operations can be handled
with more ease in Lebesgue theory when-compared to the Riemann integral.

We fix the measure space [a, b] and consider the (J additive algebra GIt of Lebesgue

measurable sets in [a, b] and the Lebesgue measure m on GIt .A notion that is of most importance

in Lebesgue integration is what is known as "almost every where" which is simply denoted bya.e.

we say that a property P holds almost everywhere in a set E c X, measurable with respect to a

measurable space (X, GIt, j.l) if and only if the set A of all x E E for which P doesn't hold is of

measure zero. For example we say that the measurable functions f and g are equal a.e. on E if

P ({ xl x E E, f (x) i:- g ( x)}) = 0 _We can easily prove the following.



;;;;;;-=-r~:' i.J.A~n~a'~YS~iS~·J)~~~~~~~~~~)l ~~~~~~~~ Convergence Theorems E

Theorem A : Let m be the Lebesgue measure on m.' and {fn} an increasing sequence of

nonnegative measurable functions such that fn (x) ~ fn+1 (x) '\j X E E where E E g"f(

and lim f, (x)= f(x) a.e. on E.
n

then lirn f fn drn = f f drn
nEE

Theorem B.: If E E g4( and {fn} a "sequence of measurable functions on m' and

f(x)=liminffn (x) a.e. on E then ffdrn ~ lirninf ffn.
n E . n . E

Theorem c:: If E E g,(t and {fn} a sequence of measurable functions such that lim fn (x) = f (x)
n

a.e. on E and if there exists a gE.2'(m) on E a.e. on E Ifn(x)l:::;g(x) a.e. on E then

lim f fn dm = f f dm .
nEE

24.12 EXAMPLE:

If f(x)~O and ffdJ.l=O, show that f(x)=O a.e.
E

.\' ,
<Xl • - ,

and Eo= U EK so that Il(Eo)=lirn J.l(EK)
K=I K

We claim that !-l(EK) = 0 \j K . If !-l(EK) > 0 for some K, we would have

0= ffdJ.l2 J f du z ~ J.l(EK»O, '3 contradiction.
E EK

Since J..t(EK) = 0 \j K~l, J..t(Eo)=O. Clearly

X E E - Eo => f (x) = O.
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24.13 (i): If f is Riemann integrable on [a, b] then f E.2' (m) on [a, b] and

.. !; ';f":

b

R Jf{x)dx = J f dm
a [a,b]

(ii): If f is a bounded, real valued function on [a, b1then f is Riemann integrable on [a, b]

if and oniy if f is continuous a':e, on [a, b],

Notation: To distinguish the Riemann integral.from the Lebesgue integral we fix R before
Riemann integral.

Suppose that f is bounded, Since

b

R Sf dx =sup L(p,f) and
i! P ,,/

b
RJfdx =Inf U(p,f) I

a P

for each positive integer K We can find a partition of [a,b] ,

('I) (K) _ (K) <~ \-I'x: x: I· _ vI
1 1- K

(ii) PK+1 is a refinement of PKVK and

b ' ,

(iii) O::;RJfdx - L(PK,f) ::;~ and·
~

. b 1
O:sU(PK,f)~ ffdx~K

a
: ;.

" t'



b b
so that limL(PK f) = If dx and lim U(PK f)= If dx

K K
!Ic a

Wherem~K) = g.e.b{f(x)/x~)<x::;x~K)}and

- , n (K)
Clearly UK =f(a)X{a} +IMi XAj and

i=1

r

where A· =(x~K) x~K)J'. '
I I-I' I

Since {a} and Ai are measurable.

fLK dm = f(a) m{a} + ±m~K) m(Ai)
i=1

=L(PK,f)

Similarly UK is a simple measurable function and

r DK dtn = ±Mf ~i =;. U(PK,f)
[a,b] " i=1 ~,'
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For every X Era, b] and K ~ I

where L(x) = limLK (x) and U(x)=lim UK (x).K K
Clearly L, U are bounded and measurable.

By the monotone convergence theorem

b bf L elm = R f f (x ) dx and f U dm = R f f (x ) dx
[a,b] ~ [a, b] a

If f is Riemann integrable L (x) = U(x) = f (x) a.e. so that f is measurable (exercise

24.1) and in this case

ff = fL = [u so that f(U-L)dm=O

Hence f is continuous a.e. on [a, b]

On the other hand if fis continuous a.e. on [a, b]

U = L = f a.e. on [a,b] so that

b b.

f f = f L = f U = R f f dx = R f f dx
[a, b] [a, b] [a, b] !! a

so that f is Riemann integrable.

24.14 SOLUTIONS TO SHORT ANSWER QUESTIONS:

SAQ 2 : If 5), 52 are nonnegative measurable simple functions and E EM then

f sl du + J82 du = f( 81 + 82) du .
E E E

Proof: Let sl assume the values c., ,cn where Cj * Cj V i* j.c, > OVi and

E = {X E E/8) (X ) = c, } .



n

Then f sl du =I Ci J.! (Ei n E)
E i=1

"

Similarly
mfS2 d~l= Idj Jl(~i nE)

E .i=I

Where dj>····· ·,dn are the distinct values assumed by s2, dj > OVj and

~i = {x E E/ s2 (x) = dj} .

The sets Ei n Fj are pairwise disjoint and

This implies that f(SI +s2)dJl = I(Cj+dj) ~l(Ej hFj)
E i,j

= ~Cj Jl(Ei) + ~di~l(~i)
I J

{SI du + {S2 du
E E

SAQ 3 : If {En} is a sequence of measurable sets in (X, g,/{, J-!), En ~ En+1 V n and if E = U E.
, n:2:1

then {f du = lim {f du for every nonnegative measurable f~~~tion f.
EnE

n , ' __._... .

The set function ~(A)= ffdJl is' ~ouh:tably additive. IfE'll ~En+IVn, En EMVn and
A

00

E = U En write F) = E) and Fn = En -- En-1 for n > 1, Then FJi are pairwise disjoint anr
n=1

00 00

U Fj = En and E = U Fj •

n=l i=l
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CI)

Hence HE)= I ¢(Fn)
n=)

,
',

24.15 MODEL EXAMINATIONQUESTIONS:

24.15.1 :" State-and prove Monotone convergence theorem.

24.15.2: State and prove Lebesgues dominated convergence theorem.

24.15.3: State and prove Fatou's Lemma.

24.15.4: Show that ~ff(x) ~ 0 on E and Sf du = 0 then f = 0 a.e. on E.
E

24.15.5: Show that in IRP, if A ~ Band m(B) = 0 then A is measurable and m(A) = 0

24.15.6: If f = f) + f2' f1 E.2'(~)on E and f2 E2'(~) on E show that f E2'(~) on E and

Sf du = ff) du + ff2d~
E E E

24.16 EXERCISE.~ : .

24.16.1: If E ~ 8.' is any measurable set, f;g functions -iefmed on E, f is measurable and

f = g a.e. on E show thatg is measurable.

24.16~2: Prove Theorem A

24.16.3: Prove Theorem B

24.16.4: Prove Theorem C

24.16.5: In 24.13 Let E={xfK)/O:::;i:::;nKandK~l}. If x~E, a s x s b show that f is

continuous at x if and only if U ( x ) = L(x) .



~
24.16.6: If {En} is a sequence of pairwise disjoint measurable sets E= U En and f is a

n=1

a:

nonnegative measurable function, show that f f du = 'L f f du .
E n=1 En

24.16.7: If f Idu = 0 for every measurable subset A of a measurable set E show that f (x) = 0
E

a.e. on E.

24.16.8: If {fn} is a sequence of measurable functions on m' show that

{x/li~n fn ( x) exists in IR'} is measurable.

24.16.9: If f E :z (!-l) on E and g is bounded and measurable on E show that fg E :z (~) on E.

24.16.10: Let f, (x) = {~
if Ixl~n

iflxl>n

show that lim fn (x) =0 uniformly on m' and that f fn dm = 2 V n ~ 1
n ~

(compare with 24.9)
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Lesson - 25

THE SPACE .z2(fJ)

25.0 INTRODUCTION:

Let (X, g,/{,).!) be a measurable space. The space £2 (fl) consisting of all measurable

functions of X such that fl f 12 du < 00, called the space of square integrable functions, is the
x

most fundamental object in 2'P -theory. This lesson provides an introduction of this space. We

discuss how we can treat this as metric space, show that the continuous functions on [-7t, 7t] are

dense in £2 on [-7t, 7t] and establish completeness of this metric space.

We define (i) orthogonal system (ii) complete orthogonal system and show that a complete
orthogonal system acts like a "basis". In the process we prove Riesz-Fisher theorem and also take
up its converse.

25.2 INTEGRATION OF COMPLEX VALUED FUNCTIONS:

Let (X, g,/{, fl) be a measurable space, f a complex valued function defined on X, real

part f = u and imaginary part f = y. We say that f is measurable if and only if u and Yare
measurable.

If E E g,.{{ , we say that f is integrable over E, in symbols f E £ (~L) on E, provided f is.

measurable and flfl du < 00 . In this case u and Yare measurable and lul :::;~u2 + y2 = If 1 so
E

that u E 2' ().!) on E and similarly Y E 2' ().!) on E. The integral of f on E is now defined by

f f du = f u du + i f v du
E E E

25.3 SAQ : If f E 2' ().!) on E then If IE ;:;l' ().!) on E and f f du :s; flfl du .
E E

25.4 DEFINITION :

Let (X, <YIt, J.-l) be a measurable space. We write £2 ().!) for the collection of all measurable
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functions f : X ~ <c such that flfl2 du < 00 . If 11 is the Lebesgue measure we write ;Z2 for ;Z2 (11) .
(

h
We write Ilfll ~ { Jlfl' dJ.!} ,

We call this, the ;Z2 (11) -norm of f or simply norm of f.

25.5 SCHWARZ INEQUALITY:

If f E :z2 (~L) and g E :z2 (11) then fg E :;z2 (11) and

flf gldll ~ !lfl!!lgl!
x

Proof: For every real number 'A, (If( x)1 + 'Alg( xt) 2: 0 \Ix EX·

So 0 s f(lfl + 'Algl2 )dll = flfl2 du + 21., flfllgl du + 'A2 flgl2 du
x x x x

= IIfl12 + 2'A flf gl du + 'A211g112
x

=>( llf gldJ.!r $llfll'llgll'

=> flf gl du ~ Ilfllllgll
x

"

25.6 TRIANGLE INEQUALITY:

If f E:z2 (11) and g E:;z2 (11) then f + g E £2 (~L)and Ilf + gll ~ Ilfll +Iigll·

. 12 f 2Proof: Ilf + gl = If -7- gl du
x



= f(f+g)(f+g)dll
x

= f f f du + f( f g + f g) du + f g gdu
x x x

25.7 PROPOSITION :

(i) Ilfll ~ 0 with equality if and only if f = 0 a.e.

(ii) Ilefll = leillfil V e E <C
Proof: (ii) is clear. In (i) we need only to verify that

.
Ilfll = 0 =>f (x) = 0 a.e. on X

Ilfll= o=> flfI2d~lo-::0 =>f2(x)=O a.e. on X
x

=>f(x)=O a.e.

25.8 SAQ : Define a relation - on £2 (11) by f ~g if and only if f (x) = g (x) a.e. on X (i) This

defines an equivalence relation which satisfies

25.9 SAQ : (i)Z2 (11) is a vector space
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(iii) For f E2,2 (u), Ilf -:-Nil = inf {Ilf + gillg EN} defines a norm on the quotient

space 22(1-1 )/N

(iv) For f ,g E £2 (1-1), .W - gl2 du = 0 Q f = g a.e.

25.10 REMARK:

We identify functions in £2 (1-1) if they are equal almost every where; i.e. we consider the

Quotient space £2 (1-1)/N and choose a representative function in each coset. With this

identification 2'2 (1-1) is a metric space where d(f , g) = Ilf - gll·

25.11 SAQ:

Show that £2 (1-1) is a metric space with respect to the distance defined by

d(f,g) = Ilf - gll

25.12 THEOREM :

The continuous functions form a dense subspace of £2 on [a, b) with respect to the
metric d, defined in 25.10.

Proof:

Step 1 : We first show that if A is a closed subset of [a, b] there is a sequence {gn} of continuous

functions that converge to XA in the £2 metric defined in 25.11.

Defined g on [a, b] by g(x) = inf{lx-yl/YEA}.

If x, y E [a, b] and Z E A

Ix-ZI ~ Ix-yl + Iy-zi

:::;> g (x) -I x - yl ~ Iy - zl \I z E A

~ g(x) -Ix - yl :s;g(v)

~g(x)-g(y) < Ix-yl By symmetry



( The Space ,Z2(j.l.)E

g (y ) - g (x) ~ Ix - yl

Hence Ig(x)- g(y)1 ~ Ix - yl

Hence g is continuous on [a, b]

We now define a sequence {gn} of continuous functions that converge to XA pointwise.

1

Write gn ( x) = • ( ) (x E [a, b] and n ~ 1)
l-i n t x

Since t is. continuous and t(x)~O on [a, b] gn is continuous O~gn(x)~l for n z l

and x EO [a, b].

If x E A, t (x) = 0 so gn (x) = 1 and lim gn (x) = 1= XA (x)
n

if x E A, t ( x ) > 0 so for 0 <E< 1

1 (1 )0<',7 (x)<Ewhen n>--l--lon t(x) E

so that lim ~n, ) = 0 = XA ( x) if x E A
n

I',

Ilgn -xA112 = f (s, -XA)2(x)dm
[a,b]

= f g~ dm = 0 (''"gn ~ XA = 1 if x E A and XA (x) = 0 if x E A)
[a.b]-A

by the Dominated convergence theorem.

Hence lim l!gn -xAII = O.
n

"jhus XA is in the closure of the set of continuous functions on [a, b] in the metric space 5[2.

Step 2 : We show that for every measurable set ,f.. I Xf\ is in the closure of the set of continuous
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functions in Z2 norm

If A is measurable and E> 0 there is a closed set F ~ A such that m (A - F) < ~ .

Since F is a closed set, by step 1 ::3a gn sequence {gn} of continuous functions such that

li~ Ilgn'- XFII= 0 so that ::J a positive integer N( E) 311gn -XFII < ~ for n ~ N( E).

Hence XA = lim gn in Z2 . This completes the proof of step 2.
- n

Step 3: If .f is a simple measurable function then f is in the closure of the collection of continuous

functions on [a, b] in :z2 .
Proof: There exist measurable sets E\,··· .., En and scalars C\,······, Cn such that ci '* OVi and

n

f = ICi XEi
i=!

\
For each i:3 a sequence {g~i)} of continuous functions on [a, b] such that

n .' .

If gn = L ci g~), gn is continuous on ra, b] and
i=!

Ilf - gn II~ ~ ICiIllg~i) - XEj II
1=1

Since the sequence on r.h.s. converges to zero,

lim Ilf -s.] = 0
n



The proof of step 3 is complete.

Step 4 : If f :2:0 and f E :z2 then there is a monotonically increasing sequence of simple measurable

functions such that {sn (x)} converges to f pointwise on [a, b]. Since

f( x)= lub sn (x),O slf(x)-sn (x)12 s f2 (x) for x E [a, b].
n .

Hence from Lebesgue's Dominated convergence theom it follows that

lirn Ilf -snll = 0
n

Proof of step 4 is complete.
/

///

Step 5 : If f is a real valued function tn,,;£2 then f is the limit of a sequence of continuous

functions on [a, b] in :z2 .
Proof: Write f+ = f v 0 and C = (-f) v 0 . Then f+ and C E 5£2 and are nonnegative. So there

exist sequences {un} and {v n} of continuous functions on [a,b] such, that

Since f = r+ - C, li~nIlf - fn II= 0 where fn = un - v n . The sequence offunctions. {fn} is

clearly a sequence of continuous functions.

Step 6 : If f is any complex valued fW~'ll).~tionin 9:2 then f is the limit of a-sequence of continuous

functions in :z2 .
Proof: Let f\ = real part of f and f2 = imaginary part of f. Then f\ E Z2 and f2 E Z2 . By step

5 there exist sequences of continuous functions {un} ,{V n} which are real valued and

lirn un = f\ and lim v n = f2 in the Z2 - metric.

If gn =un + iv n : gn is continuous and lim gn = f in :z2 .
This completes the proof.

\
25.13 DEFINITION: We say that a sequence {<I>n} of complex 'valued functions defined G.

measurable space-CX,-G4l, J...l) is orthonormal if



)
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{
o if n * m1<\>n~m du = 1 if n = m

Observation: If {~n} is orthonormal, <\>nE:;z2(~l) on X for every n.
I

25.14 DEFINITION:

If f E :;z2 (I-l) and {~n} is an orthonormal sequence in :;z2 (Il) the sequence {cn} defined

by

Cn = ff(t) ~n(t)dll ----------(1)
x

is called the sequence of Fourier coefficients of f.

00

We write f ~L cn ~n

n=1

and call the series on the right hand side, the Fourier series of f with respect to {<\>n} .

25.15 SAQ : Let {<\>n} be an orthonormal set in :;z2(Il) , f E :;z2(Il) and {sn} be the sequence of

partial sums of the Fourier series of f :

n
sn (x) = LCi <\>i(x) where ci is defined by (1)

i=1

n .

If for every choice of {fn} in a: we write tn (x) = 'Lfi ~'i,tx]
, i=1

then Ilf - sn 11:<::;Ilf - tn II \in with equality if and onty if cn = fn vn .

25.16 BESSELS INEQUALITY:

If {~n} is an orthogonal sequence in5Z2 (Il) on X and f E :;z2 (Il)" has the Fourier serie

\
t~en f ICn 12 :<::; IIfl12 . In particular lim cn = 0

n=1



n

Proof: If sn = :LCi~i
i=1

n 2 2
= L ICi I ::; Ilfll

i=1

f <Pi ~j d~l=O if i* j and
x

= 1 if 1 = J

Letting n ~ 00 we get

IICn 12 ::; IIfl12
n=1

In particularlim Cn = 0
n

25.17 DEFINITION:

f :IR ~ <c is said to be periodic with period a if f (x + a) = f (x) for all x Em.. ~-, .

25.18 DEFINITION :

Bya trigonometric polynomial we mean a function of the form

n .

P (t) = L cK el~~,i.,:(t E IR) -
K=-n

where n ~ 0 is an integer and <x E <Cfor -11 ::; K ~ n .

25.19 DEFINITIONS:

By an algebra of complex valued functions on a set E we mean a vector space cd of
functions on 'E sati~fyin~ the condition that cd is closed under multiplication of functions i.e. if

fEGd. gEGd and h(x)=f(x)g(X)VXEE. then hEG9f:Gd is self adjoint if

fEcd:::>fEQ9{·

cd separates points in E if x E E, Y E E, x * y::::> f (x) * f (y) for some f E G9f.
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25.20 REMARK:

It is easy to verify tha the collection efT of all triqonometric polynomials is an algebra which
is self adjoint and separates points.

25.21 SAQ:

Suppose f is Riemann integrable on [<1, b]. Then for E> a there corresponds agE :z2
on [a, b] such that g is continuous and Ilf - gl12<E on [a, b].

25.22SAQ:

Suppose g is continuous on [-n, n]. Then for E> a there is a trigonometric polynomial

p (t) such that

If ( t ) - p( t )1 <E V t E [-n, n]

25.23 Theorem: Suppose f E £2 on [-n, n]

00 n

f( x) ~ L Cn ein
x and sn (x) = L cK eiKx for n ~ a

n=-oo K=-n

Then (i) lim Ilf - Sn II= 0 and
n

00 2 1 1( 2
(ii) L lenl = - f If I dx

n=-oo 2n -TI ..

Proof: If E> a there is a continuous function g such thatltf::-' gll < ~ and we may choose g so

that g( -n) = g( n). By SAd 25.22 there isa trigonometric polynomial P of degree, say, N such that

By SAQ 25.151Ig-sNII ~ Ilg-pll

Hence Ilf - sN II ~ -Ilf - gll + Ilg - sN II

~ Ilf - gll + Ilg - pll



E E
<- +- = E

2 2

This completes the proof of (i)

Since Illfll-llsn 111 s Ilf - SnII, from (i) it follows that

lim IisnII = Ilfll, hence
n

00 2 N 2 2
Hence L ICnI = lim L ICnI = lim Iisn II

-00 ._ n -N n

2 1 7t 2
= Ilfll = 21t J If( t)1 dt

-7t

This completes the proof of (ii).

25.24 THEOREM ~

The space .2'2(~) is complete, that is if {fn} is a Cauchy sequence in .2'2 (~) there

exists f in .2'2 (~) such that {fn} converges to f in .2'2 (1-1).

Proof: Let {fn} be any Cauchy sequence in .2'2 (I-!-) .

Choose positive integers {n K} such that

/

Since llK+; >llK we have IlfnK+1 -fnK II < ~K "\I K ~ 1. We show that the serie

00

L IfnK+1 - fUK I converges a.e. on X and consequently {fnK} cnverges a.e. on X.
K=I
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If g E£2 (11) , by Schwarz inequality.

(X)

By 24.6 L Ig(x )llfnK+1 (x) - fnK (x)1 converges a.e. on X.
K=I

Choosing g(x) to the characteristic function of a set E of finite measure fl(E) > 0 we

conclude that

(X)

L IfnK+1 (x) - fl1K (x)1 converges every where on any set of positive finite measure.
n=1

This implies that the above series converges a.e.
.-- ~ . i

25.25 THE 'RIESZ-FISCHER THEOREM:
- \ • ~;. , / !, .. ,

J Let {~n} be an orthonormal sequence on a measurable space (X. alt ~l)and {en} b~ a

\' (X) 2

sequence of complex numbers such that L ICn lis convergent. Then there is a f in £2 {Il) on
n=1

(X)

X such that f ~ L cn ~n and
11=1

if we put sn := c1<P1+ "+cn<Pn, limllf - s ,:i = 0
n

/111
Proof: Clearly Iisn - Sm 112:= I Ci ~i for 111 > n .

i=n+1

2

III III 2
= L f L Ci <Vi du

i=n+1 X i=n+I



( The Space g>2.(Jl}E

m 2
= Lied

i=n+l

00 2
Sicne l: ICiI is convergent, the sequence of partial sums is a Cauchy sequence so that

n=1

given E> O::l N, EN 3

2. m 2Iisn - Sm II ~ l:ICi I < E2 for n > m ~ N E
i=n+I

and hence Iisn -smll <E for n > m ~ N( E)"

Thus {sn} is a Cauchy sequence in ,2'2 (Il) on X.

Since £2 (Il) on X is complete, :3 f E£2 (Il) such"that

lim Ilf - Sn 11;'0"
n

By Cauchy criterion, given E> 0 there is a positive inteqer N (E) such that
J"

By Fotou's theorem

=> IlfnK - fll ~ E fornK ~ N ( E) ---.----~----- (* -)

\
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Since fl1K E.2'2(~l) on X, it follows that f E,2'2(~) on X.

From (* *) {fI1K} converges to f in ,2'2(~).

• f' ~ ,

Where nK is choosen to be so that nK ~ N (E) .

Hence lim f', =f.in .2'2(~) on X.

This completes the proof.

For any n,K E IN with n > K

11

f sn $K du = LCi $K du = cK
x i=1

= f f $K d~- f sn $K du
x x

= f( f - sn ) $K du
X

s; Ilf - sn 1111<i>KII

= Ilf -sl1ll

(Schwarz inequality) .

Since limllf - snll·= 0, it follows that
n

f f <i>Kdu =cK and this holds \:j K E IN
x

','

.
'\ This completes the proof .



25.26 DEFINITION:

An orthonormal set {~n} on a measurable space (X, g,((, ~l) is said to be complete if

f E.£2 (~) and for every K, ff~K du = 0 then Ilfll = 0 i.e. f( x) = 0 a.e. on X.
x

25.27 EXAMPLE:

. {eint I. }..j2.;; / n E Z is cornp'ete :z2 on [-7t, 7t] .

25.27 THEOREM:

Let (X, g,((, ~L) be a measurable space, {~n} a complete orthonormal set on X and

f E£2 (u]:

if)

If f ~ L cn <Pn then
n=1

if) 2 2
Proof: By Bessel's inequality, L ICnI ~ Ilfll .

n=1

00 2
Hence the series Lien I oonverges.

n=1

//' " 2·? 2
Wr~te S =CI "'I +·······+C '" Then lis II =lcll- +······+Ic I-' n 'I' u'Pn : n Ii n .

a:

By Riesz-Fischer theorem there exists g E £2 (~l) such that g ~ L cn ~n and {llg - sn II}
n=1

converges to 0,

Since Illgll-llsn III ~ Ilg - sn II

lim Iisn II = Ilgll
n
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00 00

Since f ~ L cK ~K and g ~ L cK ~K ,
n=l n= l

CK = f f ~K du = f g ~K du
X X

=> f( f --g) ~K du = 0 \7 K ;?1
x

=> f f ~),dl-1= f g ~K du
x x

Since {~K} is complete, it follows that Ilf - gll = 0

," 2 00 2
so that flf(tf du = flg(t)1 du = Llcnl

x X n=!

This completes the proof.

Conclusion: Let (X, ell, 1-1) be a measurable space and {~n} be a complete orthonormal system

00 2
on X. If f E£2 (1-1), by theorem 25.28 the series L ICn I < 00 where {cn} is the sequence of

n=!

002
Fourier coefficients. On the otherhand, if L ICn I is any convergent series of positive terms then

n=!

i 00

byRlesz-Fischer theorem, there is a f E £2 (~l) such that f ~ L cn ~n .
..,' n=l

Moreover this correspondence between ..£2 (1-1) and the space .e2 consisting of all

sequences {cn} such that f ICn 12 is convergent, is one-on~ and onto. Thus we lay identify ;
n=!

£2 (!-cl:'~ith .e2 which is called the infinite dimensional Hilbert space.
'·1 .
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25.29 SOLUTIONS TO SHORT ANSWER QUESTIONS :

SAQ 25.3 : If f f dJ.1= 0 the inequality holds trivially. Otherwise let c be such that c f f du = f f du .
E E E

Then Icl = 1. If g= c f = u +iv where u and v are real valued functions then

If du = c If du = Jc f du
E . E E

= Ig du = f udu + i Iv du = f udu
E E E E

since If du is real.
E

But f ud/-1::; flul d/-1::; f ~ u~+ y2 du = flc fl du
E E E E

Hence f f du ::; flfl du
E E

SAQ 25.8 : We verify that f ~g and g ~ h ~ f ~h , the other two being clear.

f ~g ~ /-1 ({ xl f(x ) =F g ( X ) } ) = 0

g ~ h ~ /-1 ( { xl g (x) =F h (x )}) = 0

f( x) =F h (x) => f (x) = g (x) and g(x) =F h (x) or

f (x) =F g (x) and ,t,(x) *h (x)

so that {x/f( x) =F h( x)}c {x/f (x) = g( x)}n{ x/g(x) =F h(x)}

U {xl f (x) =F g(x)}n {xl f (x) =F h (x)}. \
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Since both the sets on the r.h.sare subsets of sets whose measure is zero, the set on the
left side has measure we verify (ii). (iii) is clear.

=> {x/f) (x)+ f2 (x) =F g) (x)+ g2 (x)} C {x/f) (x) =F gl (x)} U {x/f2'( x) =F g2 (x)}

SAQ25.9 :

(i) From the trianqle inequality and 25.7 (ii) it follows that Z2 (11)' is a vector space.

(ii) From SAQ 25,8 it follows that N is a linear subspace of Z2 (11) .

(iii) Follows from 25.6 and 25.7.

SAQ 25.11 : Triangle inequality and symmetry of the distancefollow from SAQ 25.7 (ii). That

d(f,g)20 is clear while d(f,g)=O if and only if f v-g i.e. f=g in the sense of remark 25.10.

n

SAQ 25.15 : Let f g stand for f g du and L for ~
x 1=1

n
Th~f~ du = ff~'~~i = L~ff~i. = Lei ~

~~ "

fltnl2 = ftn ~

,,-,. '

= fLfi ~i L~ ~j

= l:~>i ~ f<!>i~j
I
I

Hence flf-tnI2:::: f(f-tn)(f-~)

= flfl2 - 2Real ff En + fltnl2



~--C~'~An~'a~IY~SiS~)~~~~~~~'~;~)'~~~~' ~'d=h(~'~"~'('_'-IT~he~,S~"p~'a~ce~'~Z~2~(~~)~'~~'

= nf21- 2Real ~::Cj~ +,Ilrl

-:

f 2 f 2 2 2=:;, If - tn I :2: If I - I ICi I while equality occurs if and only if Ilrj -Cj I = 0 I

equivalently rj = CjVi .

, ' " . 2
SAQ2S.21 : Choose a parition P={a=xo <XI <······<xn =b} such that U(P~f)-L(P,f)<~

, 2M

where m > If(x)IVx E [a, b]. "
, '

Let M. and ffij, be the bounds of f in [Xi-:-I' xi 1 "W,itl! ffij:::; M, " 0:::; is n] ~n~
',:,:' .

Ax, = Xj - Xj_1 . Then the function g defined by 1 .", 'i:; '; • " • > - • ~: • (~ "i ~

f {x, I) [(x')get) = 1- (Xi -t) + -' ,_I (t-Xj_l)
Ax, .6.X·" ,1 I' ;i, "',

, "
;i; ,'. "';":-

is continuous on [Xj_l, Xj] since (Xj - t) and· (t ~ XH) ., ',"':,'

are continuousand g(Xj_r+)=g(Xj':'I-)= f(xi-d' '

, -,",

t: ...,

X· I
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Hence

~ 2M(U(P, f) - 2(P,f))

=> Ilf - s] <~.

SAQ 25.22 : [-n, n] is a compact metric space. The trigonometric polynomials form a self adjoint

algebra of continuous !Vncti6ns' on [-n, n] that separates points and vanishes at no point. Then by
,. J

"Stone's/generalizatio'ri or Weierstrass approximation thebrem* giverlE> 0 and f, there exists a
trigonometric polynomial Psuch that for

tE[-n, 1t], If(t)-p(t)I<E

25.30 MODEL i:XAMINATION QUESTIONS :

25.30.1: State and prove Schwarz inequality in :;z2 (IJ} on x .

25.30.2: Show that the characteristic function XA ota measurable set A is in the closure of the

set of continuous functions in 5£2 [a, b] "
~... ~..

25.30.3: Define (1) orthonormal set and (2) complete orthonormal set on a measurable space

X . Show that {~ /n E z} is a complete orthonormal set in 9:' [-n, nl

* Stone's generalization of Weirstrass theorems: Suppose cd is a self adjoint algebra of complex continuous

functions on a com pact metric space K. r:d separates points on Kand cd vanishes at no point of K.Then cd is

dense in K. i.e. given E> 0 and f E 'if(K,<I:) the metric space of all complex valued continuous functions on K. there

is a g e Q9{ such that for all x E K .'

If(X)- g(x)1 <E

For further details see principle of Mathematical Analysis - Walter Ruddin P. 168



25.30.4: If {~n} is an o~honormal set in £2 (Jl), f E 5!2(Jl), f ~I Cn ~n and. {dn} any
n .

sequence of numbers. Show that for every n ,

n n
f - " c. "'. < f - " d. "'.L..., I '1'1 - L..., I '1'1

i=l i=1

25.30.5: Derive Bessel's inequality ..

OCJ

25.30.6: Suppose f E £2 on [-1t, 1t] and f ~ L
n=-co

n

If sn (x) = ICKeiKx, show that
-n

25.30.7: Show that the metric space £2 (Jl) on X is complete.

25.30.8: State and prove Riesz - Fischer theorem.

25.31 EXERCISES:

.25.31.1: Show that for f, g in 5£2, Illfll-llglll ~ Ilf - gll·

25.31.2: Prove that { ~ /n E z} is a complete orthonormal set in Z, [-n. n1 .

25.31.3: If Jl(X) < 00 prove that, flfl2 du-ceo => flfldJl<oox x
25.31.4: Let E = {sin tix] n 21} . Show that E is a closed and bounded subset of £2 on [-1t, 1t]

but not compact.

25.31.5: Prove that we may assume that g ( 1t) = g ( -1t) in 25.23.
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25.31.6 :

~. ,

{

inx I. } ,... ~.'
Prove ~ / n ~ 0 is an orthonormal set in ;Z2 [-1(, 1(] which is not complete •..:

25.31.7: Show that an orthogonal set in 22 on X is linearly independent
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