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LESSON L LEGENDRE'S EQUATiON

1.1 INTRODUCTION:

Many real world problems are represented approximately by differential equations which

may not be solved exactly. Approximations might enter due to lack of knowledge of the exact

natural laws governing the behaviour of the reed world or due to the non-availability of exact

methods of solving certain equations.

There are several exact methods available for solving lil~ear ordinary differel~tial equations

with constant coefficients. But in the case of linear differential equations with variable coefficients

the scope is limited. However, if the coefficients ao' a" a2 and b of the differential equation ao(x) y"

+ alex) + a/x), y = b(x) have convergent power series expansion, then a solution in terms of power

series can be ascertained. For example, let us consider the equation (I _x2) y" - 2xy' + n(n+ 1) y = O.

n E 1+. This is known as the Legendre equation and it arose when the Laplace equation was solved

in spherical coordinates by the method of seperation of variables. In this lesson we solve the

legendre equation by the series solution method due to Frobenius.

1.2 Legendre's equation and its solution:

Consider the Legendre's differential equation (l-x2) y" - 2xy' + n(n+ I) Y= 0- (1.1) where
. -2x

n is a non-negative integer. Ifwewrite this equation as y" + p{x) y' + Q(x)y =0, then P(x) = - .. -) ,
11(11 + 1) .. .. . e. V x-

Q(x) = 1_ X2 and they are well defined ';It x = O. Since P(x) and Q(x) are expressible III terms of

power series about x = 0, we note that x = 0 is an ordinary point for the Legendre equation (I. I ).

We can solve equation (1.1) in series either in ascending powers of xor in descending

powers of x for - I<x<l. We shall now obtain the series solution in descending powers of x.
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1 dy 00 k-r-l
Then Y. = - = L (k-r) arx _

'dx r=O

yll =d
2
{= I (k-rj(k-r-ljarx

k-r-2
,', dx r=O

J. substituting these expressions in equation (1.1), we get
.J ••

2 00 k k ) k-r-2 00 k k-r-1(l~x ~ L are -r)( -r-l X ' ' ~2x L are -r)x '
r=O r=O

00 k-r
. + n (n+l) L arx = °

, 'r=O

C1J, k-r-2 { ,} k-rL , a r [(K - r )(k - r ~ 1)x, . -+: n( n +1)- (k - r)( k: - r + 1 x ] = 0
r=O' "

,01
.'~ ar[(k ~ r)(k +r: -l)xk- r- 2 + {n2(k- r)2 +n~(k-r)2 }xk ~r] = 0
r =0 " \ ,

01'

00 •. ' k-r-2 f' } k-rL Grl(k-r)(k-r-l)x ' +t(n-k+r)(n+k-r+l x ]=0 (1.2)
r=O '

since equation (1.2) is an identity, we can equate the coefficients of different powers of x to
zero.

Equating the coefficient of xl(, the highest power of x, to zero we get ao(n-k)(n+k+ I) = 0,

This is 'called the indicial equation.

"sincea; *- 0\11 -k~ ° or 0+ k + 1= 0.

Ifn- k = 0, then n = k.

if;) + k +- 1 = Octhen k > -(n+l) 0.3)

Ifwe now equate the coefficient ofx k-\ to zero in equation (1.2), then a\(n-k+l) (n+kj=O.'



\.
. .' '(', ,

since (n .. k + 1) =F 0 and ( n + k) =F 0 by\?-i11UeOf equation K1.3), we-have al =0
\ . . r. \

Eq uating the coefficient of xk-r in equation (1.2)Jo zerorwe get
"!" :

. -l .
ar_~ (k - r + 2) ( k - r + 1) +( n - k + r) ( n + k iJr+d) a,: ="\0

(k - r + 2)(k - r + 1)
=> Ll/,= - (n _k + r)(n + k -r:+ Ifa/,,-~ ,. " 'j: ••.;.'.•...<.". (L4) . '!/.,

nutting r = 3 i~ eqliri~ioIl (l.4)'we"gef .
-:- :

: ~ • - • r, f ." ~.'

((, =_ (k-I)(k-2) a=O' = .
.' (1")( k 2 1... , since a 1 0n-(+-, n+ - . .

'I' "

-':i' .., r

Similarly, putting r = 5, 7, and noting a
l

= a
3

= 0 we find that a
l
=a: =a.,~ --=O- (.15)" ,'" ",:" ~< ,0: .1 '~ .' f :,: .....;.

To obtain a~, a
4

, a
6

' we consider the following cases: .s f :._'

Case 1 : k =;: p.
,1 -,; "". to';

In this case, fromequation (1.4), we have

(n- r+ 2)(n - r + 1)
(f,. == ~-- ... ;,' ,,:.: _-.,.,a,.":"J . ~.. 1/

r(2n - r + 1)" .' -, "",
"we now put r = 2,4,6, ..... in succession to get

. ~.; .. _." . - to ': ..;.., "

i'
~ !

-' " .:

" J -' > • ~. •

, "~. ,,'.' ,,: t" L

and so on, .

Substituting these values of a 's together with the values of a 's given by equan; ' \ 1.5) in the
11 11 , .

~,~ ~,. I .: ; " . , " ;

00 k-r
equation Y = L arx. 1./ r=O ,,/

[
'. .( 1)'· •. - 1)( - '1)( , -·3) .1, ']'<n n-, - , ,n n.... n .•....n>. ·.. n,."".I; .. ·.r.; .. ,- a xl1· ' x' ,11 2 .!:L,' . ( "". .." <'.. .. 'x' ,'..... '4-' .... ,..... ' .. , .". '1' (j')' <Y - . . -'. . .y...... ()

.0. 2(n-l) , . 2.4(2n-1)(211-3) I ..... .,\ .~ , ,"..
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This forms onesolution for t~1eLegendre differential equation (1.1)

ease 2.: k=...;(n+l)

In this case, from equation (1.4) we g;

(n+r-lXn+r)
a =- a
r r(2n+r+l) r-2

Putting r = 2, 4, 6, ..... in succession, we have

(n+1)(n+2)a =- a
2 2(2n + 3) 0

. (n+3)(n+4)
a =- a
4 .' 4(2n+5) 2

(n + l)(n + 2)(n + 3)(n + 4)
2.4(2n+ 3)(2n +5) aO and .so on. In this case,

y = -n-I . -n~3 -n-5
RO X + a2 x + a4 x + ....

= [
-n-l (n+l)(n+2) .-n-3 ]"o x + 2(2n+3) x + ... (1.7)

This forms the other (second) solution for the Legendre's equation (1.1)

1.3 Legendre's function of/tile first kind and second. kind:

The solutions of the Legendre equation are called the Legendre functions. We have two
Legendre functions denoted by P (x) and Q (x) corresponding to the choice of ao and k.

11 ·n

1.3.5 (2n -1)
If we ehcose a0 =. /..' and k = n, n is a positive integer,

Ln

then from equation (1.6) we have

P (x) = 1.3.5 (2n-l)[ "_11(11-1) 11-2 ]
II X X . X + .

Ln 2(211 -1) -

~(-l( (2n-2r)! xn- 2r
n=O 2n r!(n-r)!(n-2r)!
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n n-1
where, N = 2 if n is. even and N = 2 if ri is odd. In this case, Pn(x) is a terminating series and

QivcsLegendre polynomials for different values of nand P (x) is called the Legendre function of
~ ~ 11"

the first kind.

n!
If we choose ao = 1.3.5 (2n+l) and k = -(n+l), n is a positive integer then the

solution obtained from equation (1.6) gives the second solution denoted by Q (x).
n

n!
Q(x) =------------

n 1.3.S (2n+l)

_11_1 (n + 1)(n + 2) -11-'
X + -x .+

2(2n + 3)

(n + l)(n + 2)(n + 3)(n + 4) _1/:',
----------------- X - + .....

2.4(2n + 3)(2n + 5)

............. (1.9)

Since n is a positive integer, Q (x) is a non-terminating series and is called the Legendre's function
11 . .'. .

of the second kind. Since Q (x) is a non-polynorninal and P (x) is a polynomial, we can conclude
11 . 11

that P (x) and Q (x) are linearly independent and together form the two linearly independent solutionsn . 11 ...,

of Legendre equation (1.1). Hence the general solution of the equation (1.1) is

y = CI P)x) + C2 Qn(x), where C
I

and C2 are J.r1·bitraryconstants

1.4 Generating function for Legendre's polynomials:

We now show that P (x) is the coefficient of h" in the expansion of
11

(1 - 2xh + h2 ) -1/2 in ascending powers of h when Ixl ~ 1and /hl:~.l

We have the binomial expansion for- It I < 1 ,

I 3

( _ )-~_ ~. U2I t -1+ t+ I + .2 2! .
. 1 1 1.3? 1.3.5.,
= = + - t + -F +----/' + .2 2.4 2.4.6

since \x\ :::;I and \h\ < 1 we have



1 J _ 2 T3 () _/ : 12)2 - 1.3 (2k -I) 7 _/ /1 k '= 1+-(_xh-h )+-,_X 7-/1 + +- (_X 1- 1 ) + .
,:i ;,;2', ,2;1 ,C';,.t; ,' .• ': , ' 2:4 .....~....2k, '", '

-_ l+~ 1.3 (2k-I)(J_x_17_111)k 110)Z: ( .
k~1 2.4 .Ik

1,.", 1 l»)k ! k.... I k..JIIlCC (2x 1 - 1- = 1 (.!.X -- 1)

hk[(2x)k -k(2x)k-lh+ k(k-I)(2x)k-1h1 +' ,+C-I)khkJl
, '2! " -, .',

'V-A- have from equation (1.10)
I'; _. ' ,

1 ~ 1.3 (2k-l) (2)k k(2 )Ic-lh_ 2 -1I2_ [ + L, + x - x(I - Txh - h ) -, -:-1 i ' , 2 4 21(." 1K=I· /1•

,~_:~(~(l)(2x)k-2h2 + +(-ll hk] (1.11)

The coefficient of h" in the Rli~,.qfeqLlation. 0,. ll). is,, " ,',
. ~ • _,' • •• •• • 4 ..,. , ; ..•. I:'. : ," • . , I ":"'~

1.3 (2n-3) (n~:1)(2x}n-.~ \ '"
2.4 (2n -2) \ ,"', " -

"-
1.3.....(2n-5)( -2)( -3)(2 )n-4 '+ ' n n x + .
2.4 .... (2n-4)

(;~·-i3t-... (2n-l)[ .n n(n-l) ,n-2 n(n-l)(n-2)(n"":3f>i"':"4' l (x)
x - x + ' x + - P x

n! 2(2n-l) 2.4(2n-1)(2n-3) n

1.3 (2n - I) (2x)n
2.4 (211)

" .. ,

We observe here that P,(x), P/x), -re the coefficients ofh, h2, in the expansio» of

", ~i',:. I

In bet we note that Po(x) = I, P,(x) = x, P2(x) ~ 1/2(3x2- I), P/x) = 1/2(5x3-3x),
P/.\) = 1/8 (35x"-30x2+3). etc are first few Legendrevpolynomials. Thefunction (1 - 2xh + h2) -1/

~ is called the generating function of the Legendre polynomials. This is useful in obtaining the
rccurr.mce relations and in evaluating integrals involving P,,(x) in the subsequent discussion.
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.~' 1.5 'Examples:

1.5.1. :Example :Show that P (Ij=I and P (-x)=(~ltP (x), Hence deduce thiitp (-I)=(-Iyl .
I! I! I! 11

>:fllution :

From generating function, we have forjx] :::;1, Ihl < 1

::.;

. "

00 - n
. 1 btai ~ h D (1)putting x = .' we 0 tam ". VI

n=O
::::( 1-2h + h2) -1/2

~ (I-:-h)'I' '.= 1'+ h + h2 + ..'..:+hii'+ ....

. . .'
.. : .. ,.J;;. ~ . ,.,' " ,.' •

Lquuling the coefficient of h" on both sides of the aboveequation.we have PIP)=L

.vlso (I + 2:-.:h + h2)'1/2= [ ] -2x(-h)+(-h)2TJ12

00 11 .
= ~ (-h) Pn(x) ,

11=0

"

' (1.12)

, .., .~. ' . -~:..

~ hl11J (-x)
'nh=O

From equations (l.12) and (1.13) we have

... ,



~A~c~ha~r~ya~N~ag~a~~~un~a~U~n~iv~e~rs~it~Y~~~~~8~~~~~~C~e~nt~re~f~o~r~D~ist~a~nc~e~E~d~u~ca~t~io~n/

Equating the coefficient of h'' on both sides ofthe equation we get,

P (-x)=(-I)IlP(x)
11 11

(1.14)

Deduction: rut x = I in equation (1.14) we get P.,( -I) = (-I t (

1.5.2. F:xamplc :

(_l)n 12 n!
Show that P (0) = 0, for n acid and Pn (0) = n r ]2- for n even.

11. 2 l(n/2)!
Sol.utioll :

We know that.

P ( ,) = ~~_.5: (2n -1) [ .n _ n(n -1) .e-: ]n x , x)x + .11! 2(2n-l

When n is odd i.e .. n = (2m + 1). we have

l
'x2m+l_ 11.3.5 [2(2/11 + 1)-1) - ,

P " (x )= (2/11 + 1)! (2m + 1)(2171 +J -1) ,2177+1-2
211'"' ' , 2{2(2111+1)~'\ + _

Pullin" x = 0, we get P (0) = 0e 2111+1 '

i.e .. P (0) = 0 when n is odd11 ,

00 n
Also.we have L h Pn(X)=(1-2xh+h2rI/2

n=O
00 n
L h, p,/O) = (l+h2tI/2 =[1 _ (_h)2j.1/2

11=0

_ 1. /)2 1.3_12)2 ~3.5·(_12)O L~~:)"..(2r-l)(_h~)r-1+-(-1 +-( 1 + 7 +.....+ + ....
2 2.4 2.4.6. 2..4....2r
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It can be seen that all powers ofh on the R.H.S. of the above equation are even. Hence equating the
coefficient of h21110nboth sides we get :

P (0) = 1.3.5.~..(Zm -1) (_1)m = (:::-l)m (2m )!
2m 2.4.6 2m . 22m (m!.)2

. (_1)n/2 n!
When 11 is even, i.e, n - 2m, then Pn (0) = n r . ]2

2 L(n/2)!

,'.5.3. 'Ex~lInple: -1 < P (cos{}:')< 1- n -

Solution: From the generating function of the Legendre's polynomial, we have

Substituting cos () for x we get

(J - 2(cos{}) Z +22) -1/2

=

=

which attains maximum when {} =0

00 n
Hence L Z Pn(l) = [(1-Z)(l-Z)r"2 = (I_Z)"1 = 1 +,Z +Z2 + +Z" + , .

n=O

Equaling the coefficientof Z" on both sides we get P,i(1)=1. Hence maximUIU'vaitie.QfP,/cos{) )=1

Silnilary we can show that minimum value ofPn(co&8) = -L -Hence the result.

2



S;A.Qs:

1. n(n+ 1)
Prove that pIn (1) = 2

, 2.
, , n~n+ 1)

Prove that pin (-1) = (_l)n-I' 2

.,
J.

-: . (-:1)n'(2n)!
Prove that P2n'(O) = 2n 2

' 2 (n!) ~

1.6' SUMMARY:

In this lesson, the Legendre's differential equation was solved by the Frobenius series solution
method. When n is an integer, one of the series solution has finitely many terms only. These
solutions are known as Legendre polynomials. The other series solution is non-terminating. As
such these two solutions are linearly independent and thus form a basis for the solution of the

1.3.5 .... (2n-l)
Legendre's equation. By choosing ao = ' " and k = n, we obtained P (x) called the

n. n ,

, n!
Legendre function ofth~ firstkindBy choosing ao = 1.3.5 ..... (2n + 1) and k =-(n+ 1), we obtained

Q (x), called the Legendre function of second kind. The generating function for Legendre's" .' ,

polynomial was derived and this is useful for obtaining recursions and for evaluating integrals
involving P (x).

n

1.7 Model Examination questions:

1. Deline Legendre's polynomial P (x). Show that it satisfies the equationn
, (J _X2) yll- Zxy' + n(n+ 1) y=O.

,')L..'

(l + sin~)
1 1.,' log 2

Prove that I+ - ~ (cos e) + - Po (cos e) + = e
2 3 - . sin(-)

2

,e =F. 2nn

"~

1-Z2 00 '

3. Prove that 2 3/2= :2>{2n+l)Z
n
pnx

(1- 2xz + Z ) n=O



.. r7Jp ( B) B 1.3.5 (2n-l)
.4:. Show thatD n c~s cosn = 2.4 2n

6. Ifn is a positive integer, show that fo Pn(cosB)cosn()dB = f3(n+ ~+ ~)

7. Show that the general solution of Legendre's equation (l-x2)i' - 2xy' + n(l1+ l)y = 0, where n is
a positive integer is y = A P (x) + B Q (x) where P (x) and Q (x) stand for their usual meaningso 0 00·

Prof. K. Rama Mohana Rao
Andhra University



LESSON - 2 : LEGENDRE~SEQU.ATION

r .

2.1 INTRODUCTION:

In the earlier lesson we have considered the Legendre's differential equation and obtained a
series solution for it using the method ofFrobenius. The solution of the Legendre equation denotpd
by fn(x) and Q)x) were called the Legendre functions. In this lesson we shall derive the Laplaces

first and second integral for Pn(x) and-establish the orthogonality property of Legendre polynomials.
We shall also derive the Legendre series for t{x) when f isa polynomial and expand f(x)iI1 a series

. of Legendre polynomials.

2.2 Laplaces first integnll for P (x) :
!!

1 TC[ ~ . . ]n.
I'roposition : If n is a ~ositive integer, th~X) ~ iT J x ± x2 ~ Leese d¢

Proof :We know from elementary calculus that,

Let a = 1 - Zx andb = Z .J X2 - I

Substituting these values in equation (2.1) and rearranging terms we get:

orTC ~ Zn Pn(x) = 'f[(1- Zt)-1 d¢] where t = X ± ~x2 -1 cos¢
n-O O· .

OOn TC 22
TC L: Z Pn(X) = J(l+Zt+Z t +......)d¢i.e.,

n=O . 0.. .

• ~. r.
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J[ 00 00 J[

f I (Zt)n d¢ = IZn f tnd¢
On=O n=O 0

.: ,~-.. • i .

Equating the coefficient of zn on both sides of this equation, we get

or

lCPn(X) = i[x±~x2-1COS¢r dijJ
0. . . /

Pn(x) = ~ i[x±~x2 -I cosqlr dql
o

Hence the result.

2.3 _ Laplaces second integral for P ill
!!

Proposition: If 11 is a positive integer, Then

p (x) = l f 1 - d¢n [ .. ]n+ 1
J[ 0 x±Jx2 -1 cos¢

, .

Proof: From integral calculus, we know that

J[ 1 J[

I d¢ = . if 2 b2. a ± b cosd. . J 2 2' 1 a > -ora -b

Substituting these values in equation (2.2a) we get

- 112 7r[ ~ 2 . ]- 17r(1-2XZ+Z2j = J -i+ZxiZ X -lcos¢ d¢
. 0

(2.2)

(2.1a)
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or

7r
J[-l + ZmJ-1d¢ where OJ = + ~ 2_1 ~o x r; x cos'f'

00 .

we know that (I - 2xZ + Z2fl/2 = L ZI1 Pn (x)
11=0

, 1[ 00 I 1[ -1
Hence Z L ZI1 Pn(x) = f( -1+ Zm) d¢

11=0 °
= 1(Z (v)- 1(1- _1_) - 1d¢o Zm

00 1 J[ d¢

= 11:: 0 Z n+ 16m n + I

00

HenceL J[ p (x)
I1=OZI1+1 n

I I f . 1 .. d¢
I1=OZI1+10[ ~ 2 ..JI1+1x ± x -1 cos¢

1
Equating the coefficient of· n + 1 on both sides of this equation, we get,

Z

~ j. 1 . d¢
1C O[ ]11+1

Pn(X) = x±~x2 -lcos¢



Note: In equation (2.2) if we replacen by -(n+l)We get'

, '. -.!.. j '. >
1. ~n drjJ

~:r 01x±.Jx2 -1 COS¢]p -(x)-
-(n+ I)

= J.. J(x ± ~x2 -1 cos¢)n d¢
7f 0
P. (x) by Laplaces first integral.

: n .=

2.4 . Orthogonal properties of Legendre Polynomials .

Thco rem-: Let m, n be integers. Then

1
f Pm (x)Pn (x)dx = 0, if m * n

-1

2
= _.- ifm = 11

2n+l' .

This result can also be stated as } Pm(x)P~ (x)dx ~ 2:+ 1 0mn where 0mn is the Kronecker
-1

delta defined by :

5mn

I, if 111 = n

0, ifm * n

Proof:

Case 1 :. 111 *n

Since P (x) and P (xj.satisfy the Legendre's differential equation.we have
m n ".
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(l-x2)P II -2x P 1+ m (m + Ifp= 0
·.111 111., 111 (2:3)

•
(l_X2)p II - 2x pi + n (n+ 1)p=O

11 .. 11 . n
(2.4)

Multiplying equation (2.3) by Pn(x). equation (2.4) by Pn(x)and subtracting the latter frpm the
former,

(l_X2) [P (x) pll (x) - P (x) P \I(x)] -o2x [P .(x) pi (x)- P (x)pl (x»)
. n m m n n ... nr 111 n. .

+ [m (m+l ) - n(n+ I)] P (x)P (x) = 0.• . m n

d .
or(1-x2

) dx[Pn(x) pl
l11(x) - pln(x)Pm(x)] -2x [.I\(x) plm(x) - Pm(x)pl ..(X)]

== [run+I}. m(m+l)] P (x) P(x). m n·

\

Integrating both sides of this equation w.r.t. x between -Iand +1 we get,

1
(n - m)(n + 111 +1) f Pm(x)Pn(x)dx

. -1
=0

,1

Hence f Pm(x)Pn (x)dx = 0, if 111 :;tn
-1 .

Case 2 : Let rn = 11. In this case we show that

We have from the generating function:

00

( 1 - 2xh + h2)""2 = L h" P (x)
n=O n

00

( ) - 2xb + h2rl/2 = L. hill P (x)
m=O III



Acharya NagmjunaUniversity' , Centre for Distance Education,

From these two equations we get,

(1- 2xh + h2) -\ =
I h2n[p (;)F+2 I hm+n.p (x)p (x)

n=O n n=O m n,
m=O
n:f:om

Inregratingboth sides of this equations w.r.t. x between -1 and +1 we get

For In = 11, this equation reduces to

. 1 1
f 2 dx

-1 (1- 2xh + h )

~Io ll+h
2

_2Xh]1
2h g I

-1

~[Iog(l- h)2 -I.og(l + h)2]
2h '

1
h [log (1 + h) - log (l - h) ]

= ~l(h-h
2
_+j{_ )_C_h_ h2 - h

3
- )]

h 2 3 2 3 '

=

2 CX) h2n +]
- L
h n = 0 2n+l
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Ejquati ng the coefficient of h211on both sides of this equation we get,

Ihxl dx=2
-1 n 2n+ 1

2.5 Legendre series for f(x) when f is a polynomial:

Theorem: If f is a polynomial of degreen, then

since P (x), is also a polynomial of degree n,II

Let P (x) = b x" + b Ixl1-I+.....+blx+b(), b :;to 0II 11 11- II

We sh~ll now consider [(x) - (: n J PII(x)
. n .

(2.5) .

If ftx) - [ : :J P,,(x) = 0, then f(x) " f :: JP,,(x) and the result follows from the orthogonality

relation.

I~f(x) - [abnJ. P (x) '" 0, then let it be equal to g I(X),11 . ~. n

Where g I is a polynomial of degree n- 1.11-
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In this case let Cn b . So that we can write f(x) = CnPn(x) + gll_1(x)
n

- ;, .. ,:

If we take gll_I(X) in the place off(x) in equation (2.6) and proceed as above, we obtain

(J (x)=C P (x)+u (x)
ell_I 11-1 n-I ~1l-2 ......... (2.7) i

-' - ~

usiru; equation (2.7) in equation (2.6) we get f(x) = C P (x) + C p (x) + g (x)'- II n II-I u-l n-2
continuing this procedure recursively, finally we obtain f(x) = C P (x) + C. p (x) + + C P (x). II n . 11- I II-I.. ~:... :0 0,'

J1
L C P (x)s s

s=O
........ (2.8)

Multiplying equation (2.8) by l\(x) and then integrating w.r.t. x from -1 to + 1 ,we get

I n
I l(x)P (x)dx = LeI P (x)P (x)dx'k s s k-1 . s=O-1

......... (2.9)

By the orthogonality relation of Legendre polynomials we know that

I ?
J ? (x)? (x)dx= - (5

s k 2k + I sk-1
;:

1 [ 2 \
Hence equation (2.9) reduces to }(ex)Pkex)dx = Ck2k + IJ

1 1
orC = (k+-) ff(x)Pk(x)dx

k 2 -1
....... (2.10)

Special case:

(\) Suppose f lS an even function. We know.that P k(x) is even when k is even and is odd when k 1~
odd. As such f(x) Pk(X) is even when k is even and is odd when k is odd.

a .
Hence ifk is odd, equation (2.10) gives Ck=O, since fG(x) dx == 0 ifG is odd .. -. ~'

-a
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If k is even, only those Ck with even suffixes remain or survive.

(ii) Suppose f is an odd function. In this case, by following a similar arguni.ent, it can be shoJn
that only those Ck's with odd suffixes survive.

I

2.6 Expansion of f(x) in a series of Legendre polynomials:

Let us assume that the given function f canbe expanded in a series of Legendre polynomials

00

t~x)= I C1 Pk(x)
k =0 (

(2.11)as

Where Co' C I' C2, ..... Cs are constants. Multiplying both sides of equation (2.11) by PJx)
and integraii ng both side w.r. t. x from -1 to +1 we get

1
Jt(x)P/x) dx

-I
(2.12)

nut hy orthogonality property, we have

_2_5
2r + 1 kr

Where (5kr' = 0, it'!-, =f::. r

=I,ifk=r

Using this result in equation (2.12) we get ,

1 [ 2)ft(x)P.(x)dx=C.
I I 2r + 1-I

=>c =r
(2.13)
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~2.7_ Examples; .
EX~\lnJ)le : Expand f(x)= x2 in terms of the Legendre polynomials Po(x),P lex) Pix), etc'2.7.1

r§o\ution : , Since )(2 is a polynomial of degree 2, from the Legendre series, we have

=
2
L CrPr(x) = C P (x) + C P (x) + C,P (x)r=O . . 00 I I ~ 2

where C.r .

1 1. 2"
(r +-) fx Pr(x)dx

2 -1
(2.14)

.,-'
. (

We know that Po(x) = 1, P ,(x) = x, P2(X) = 112 (3x2-1 ) etc. Now, putting r = 0, 1, 2successively in
equation (2.14) we have: .

C 2

5 1- J
2-\

x 2(3x2 - 1) dx
2

, [" 3 Jl1 x
- 27_(

. .J1
= ~[X44 -I

= ~(3x5 _ x3]1
4 5 3. -1

1
3=

. . 1 1 2
~ fx dx
2_1

.. '~- r ,

313 .
- fx dx
2_1

= 0

2
3

Substitutingthese values of Co' C1' C2' in equation (2.14) we get

2.7.2. Example: Expand [(x) =!x! for -1 ::: x::: 1 in a series of Legendre Polynomials

Solution: .:We have shown that [(x) can be expanded in a series of Legendre Polynomials as

t(x) =
00

L C P (x)r r
r=O

(2.15)

where Cr

1
ff(x)Pr (x)
-1



.r-:

e C
r

(r +~J ff(x)P .(x)dx + ff(x)P (X)dXl. 2 r r
,-1 . 0 .

. (2.15)

Putting r =0, 1, 2, 3, in succession in equation (2.15) we get,

1 [0 1 J2' f(-x)PO(x)dx + fxPoix)dx
-1 0

=

1 [OIl
:,}- }; dx + 6 XdXJ

= = ~(~+~J= 1
2 2 2 2

=

c,

~1_l(3X4_x2Ju +[3x4 --:-x2
J
l]

4 ·4·2 . A 2. -1 0
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C,
-'

7 r 0 (5X 4 - 3x21 . 1-- f dx+f
2 -1 2 J 0

7[ 5 3 0 5 3 0 ]- -(x -x) +(x -x )4 -1 -1 o

Similarly we can calculate C4, Cs' .... and so 011. Subsituting these values ofC's/in'equatiofi (2.15)

1 5
we get Ixl = 2 PO(x)+ 8 P2(x)+ .

2.7.3 Example:

, 1 7r '
Sh th t P (cose') = - f (cose + i sine cose)nde

ow a n 7r ', 0

, 1 7r{ ~2 }n
Deduce that P (x) = - f x+ x +Lcos e' de

I nO '

Solution:

From the Laplaces first integral for P (x) with positive sign we have "
11 ,

P (Cos e) = ~ f (cosB + i sinB cosB)n ao
11 '" ()

v

We now put 11 = 1 and take the positive sign in Laplaces first integraiso that
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SAQs:

1
l. If f(x) is a Polynomial of degree less than k, .prove that J f(x)Pk (x)dx;;;::0 .

-1

2. Expand (x4_ 3x2+ x) in a series of the form ICrPr(x)

-4 10 8
(Ans: X4_ 3x2+x = -Po(x)+~(x)--p)(X)+-P4(X))

5 7 - 35

3. Expand f(x) = 2x + I, 0< x :::1
= 0, -1 :::x < ° jn a series of Legendre polynomials

(Ans : t~x)
7 5 7

Po (x) + - PI (x) + - P, (x) - - P" (x) + .... )
14 8 - 16

2.8 Summary:

In this lesson, we have obtained the Laplaces first and the second integral for P (x) when n__ . • 11

is a positive integer and established the orthogonality properties of Legendre polynomials. We also
derived an expansion of fix) in a series of Legendre Polynomials and exemplified the same for

t{x) = x2 and f(x) = lxI, for -1 ::: x ::: 1.

2.9 Model Examination questions:

1. Expand [(x) in a series of Legendre polynomials of

(a) f(x) = 1/2, ° < x < 1
- 1/2, -I < x < I

(Ans: C = O,ifr is even C =
r r

(b) f(x) =x, O<x<l
= 0, -1 < x < 0
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I] 5.
(Ans : f(x) = 4 + 21J(x)+16P2(x)+ +CrPr(x)+ ,

where c, = (r +~)ixPr (x) dx)

I Obtain the first three terms in the expansion of
nx) =O.if-\<x<O

= x, if 0 < x < \ in terms of Legendre's polynomials

00 I 2 00 C2
3. If t{x) = L CrP,. (x). obtain the Parsval's identity: f[f(x)] dx = L (! ,I' ),'

n = 0 _ I r = 0 ":",+,.

Illustrate this case. by taking ttx) = :(1 - 3x2 + x.

,

3)



LESSON 3 LEGENDRE EQUATION2,
RECURRENCE RELATIONS AND RODRIGUE'S FORMULA .. ".. ,

3.1 INTRODUCTION :-

In the preceding discussion, we obtained two linearly independent solutions for the legendre
differential equation which are termed as the Legendre function of the first kind (Pit' (xj) and the
lcgcndre function of the second kind (QIl (x)). Intenns of these polynomials (solutions), we now
cstab] ish a few recurrence relations and derive the Rodrigue's formula for Pit (xjwhich serves as a J
representation for the Legendre polynomial.

3.2 Recurrence relations :-

We shall now establish some recurrence relations involving Legendre Polynomials:

3.2.1 Prove that (2n+ 1) x PI! (x)= (n+ 1) P
n
+

1
(x) + n P

II
_1 (x), for n:~ t.

Proofi- We have from the generating function

, ......•. (3.1)
'.

Di [Icrentiating both sides w.r.t. h, we get , "

I ( 2 )- 3 / 2 00 n 1=- J-2xh+h (-2x+2h)= L nh - P (x)
~ "n~ n= J "

(
2 )- 112 ? 00 n -1

i.e., (x-h) J-2xh+h '=O-2xh+ic)= L nh1"""Pn(x)
n= 1 '

00 ( 2),0011_1or (x-h) L: hnp (x)= 1-2xh+h L nhl P (x)
n '1 nn=1 n=

J1'i.e. (x-h)[PO(x)+hFJ.(x)+ +h Pn(x) l=

(1- 2xh + h2)IJ (x) +2hP2 (x) + +n hn-1 Pn(x)+(n+ 1)hn+ Pn+ l(x)+.~.]

Eq uati ng the co-efficient of h'' on both sides of this equation we get.
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xPn(X) - r.:~(x) = (n +l)Pn+ l(x)- 2xnPn(~)+ (n-l)Pn _lex)

or (2n+l)xP (x)=(n+l)P +l(x)+nP l(x)n n n-

Hence the result.

3.2~2. Proverhatrtl' (x) = x pi (x) ~pi I(X)
n n n-

Proof: Consider the equation (3.1) and differentiate both sides w.r. t. h: Then

.(x-h)(l-2xh+h2)~3/2 = I nhn-l Pn(X) ....(3.2)
,.,.:, n=O

Differentiating equation (3.1) w.r.t. X we get

or ... (3.3)

From equations (3.2) and (3.3) we have

hI nhn-lPn(x)=.cx-h)I hI1P~(x)
11=0 11=0

i.c. I{PI (J) +.7'hP2(x)+ + hn-1 nPn (x)] =

(x - h)[P6(X) + hPI1(x) + + hl1P~(x) + J

Equating the co-efficient of h" on both sides of this equation, we obtain

Hence the result.

3.2.3 Provethat(2n+l) P (x) = P]+l(x)-p1 lex)
n n n-

Proof :- From the recurrence equation --------- (3.2.1) we have
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(2n+1) X P (X) = (n + I)P lex) + nP lex)
n ~ n+' n-

Differentiating both sides of this equation w.r.t. X"

(3.4)

, "'1'0111 the r~cllrr~n~e rel~tion (322) we have

or

x P I(X) = n.P (X)' +pl (x)
n n n-l

Eliminating xP~ (x) from equations (3.4) and (3.5) we get

(2n+l) [nPn(x) + pln_I(X)] + (2n+l) Pn(X) = (n+l) pln+I(X)+ ..P\'_I(X)

(2n + 1Xn +l)Pn(x) = (n + l)P~ + 1(x) + nP~ -1 (x) - (~n~ l)P~-:-1 (x)

r.e. (2n+l) (n+l) Pn(x) = (n+l) pln+l(x) - (n+l) pln_I(X)" ",

(2n+l)P (x)=pl+l(x)-p1 lex)n n n-

(3.5)

or

Hence the result

3.2.4. provethat(n+l)Pn(x)=P~+l-xpA,(x)
" ' • I .~ •

Proof ;. Let us consider the recurrence relations (3.2.2) and (3.2.3~)

;', .

\; ..,'\

n P (x) =x P I(X)_ P II(X)n n n-

,(2n+l)Pn(x)= P~+I(x) __P~..,;.l(x)

Subtracting the first equation from ,the second one .we get .,'

(n + l)P (x) = pI 1 -xpAex)n ,n+
Which is the required relation

.. '. '. :)

Proof ;- Replacing n by (n-l ) in the recurrence relation (3.2.4) we get
" t

r , '.. .,_,'-.1
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np· '(~) = pI (x) - xpI . (x)
n-! n n-!

Multiplying both sides of the recurrence relation (3.2.2.) with x we get

nxl? (x) = x2 pI (x) - xpl (x).. n ,n n-! .
Subtracting e·quation(3.6) 11-0111 equation Equation (3.7)

----------- (3.6)

--------- ( 3.7)

n(xP·Cx)-P . 1(x»)=(x2~11pl(x)n n- j n

····(!-x2)pl(x)=n(P (x)-xP (x»)
n n-l n. .

or

) .

3.2.(, Prove that (1 ~ x2 )PJ.(x) = (n+ l)(XPn (x) ="; +1(x»)

Proof :- From recurrence formula (3.2.1) we have .

or (n + 1) X Pn (x)~ nxPn(x) = (n + l)Pn + I (x)+ nPn.-: 1(x) .

i.e. (n+l)(xP (x)~P l(x»)=·n(P. "-l(x)-xP (x»). n 11+ n . n ..

Also fronr recurrence relation (3.2.5) we have

(I-x2 )p~{x) = n( Pn-l (x) -xPn(x»)

From equations (3.8) and (3.9) we obtain

(1- x2 )pA(x) == (n + l)(xPn (x) - Pn + 1(x))

. Which is the required relation
t' i

3;2.7. Beltrami's Result:-

Prove that (2n+l{ x2 -l)pl'(x)=n(n~'l)(P l(x)-P lei»). \ . n n+ n-
Proof :.- . From recurrence relation (3.2.5) we have

----- (3.8)

---- (3.9)
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(1- x2 )p~(x) = n(Pn -1(x) -xPn(x))

~ -xPn(X) = [( 1_:2 )p~(x+ Pn-I (x) -------- ( 3.10)

RCCCL rcnce relations (3.2.6) gives

(1- x2 )pA(x) = (n + 1)(xPn (x) - Pn + 1(x))

Using equation (3.10) in equation (3.11) we get

----- (3.11)

or

( 2) 1 . r (1- x21 1 - . jI-x Pn(X)=(n+I)(n_l(x)- n {n(X)'-Pn-i-'I(X) ." ,',

(l-x2 )[1+ n:1 ]p~(X) = (n+ 1)(Pn -I (x)- r.,lex)) .

. _(x2 -1)(2n+l)pA(x)='n(n+1)(Pn_1(X)-Pn+1(;))

(2n + lZx2 -1 )pA(x) = n(n+ 1)(Pn+ 1=:': -1 (x) 1;

I,·'.",

or

This Result is known as the Beltrami's Result.

Rodrigues formula for P ill
!!

• ",,' I r

We shall now establish a representation for the Legendre Polynomial P (x) known as the
11

Rodrigue's Formula

Theorem : 1 d
n (? )nProve that P(x) = ---- x--l

2n ,Ln .. n. UJ(,

(
2)n dy (2 )n -1

Let y = X -1 Then dx = n ~ -1 (2x)

01' ( x2 -1): = 2nxy

Differentiating this equation (n+ 1) times w.r.t. x using Leibnitz's rule, we get

Proof :-
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y(x- -1) + (n + l)y. 1(2x) + n(n +. , n + .'., 1.2 Y}1(2)-2n lx+(n+l)y =0n+ n '
11+2

(3.11 )l.C.

dny
where y denotes --

II d nx

· dv
Let}'n = u (x) . so that Yn + 1 (x) = dx and

Substituting these results in equation (3.11) we get
; , '

')

(1- x2) d-v _ 2x dv+ nin + l)v = 0
d·2 dxx

Observe here that this is the Legendre's Equation for which Pn(x) is a solution.

Hence V = C P (x), where C is a constant.
n

[
n ]" .d V .

d
;1 = C p (x)

X 11
or

Puuirn; x = I. Since P (I) = I, we have\... . Il [d

n :J =C
dx X= 1

Also Y = (x2 _1)n = (x + l)n (x'-l)11

------:-- (3. ]2)

Di tfcrentiating this equation n times w.r.t. X, using the Leibnitz's rule we get,

/

. 11-1 ( d ( .' 1)11)n(x-l) + +n - x+
. , dx

, . ,i •
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(x - I) 11n!+ 11(n!)( X + 1)n( X -I)11- I + + n.ni X + I) 11- I n! (x -I) + (x + 1)n n!

Putting x = 1 in this equation,

(d
n YJ = ')11 '= C11 - 11. ,

.dx x=l.
. [dn JSince d _~ = C,

x x=1
by equation (3.12)

Hence
1 d n ) 1 dl1

P, (x)=--' _J =__ (x2_1)n
11 I. 11 «n d J1C ex 1. 11! x

This formula for P (x) is known as the Rodrigue's formulaIl

J.4 Exampll's

3.4.1 Example:- If P (x) is a Legendre Polynomial of degree n and a is such thatIl

PIl( a )=0, then show that Pn _ I(a) and Pn + I (a) are or opposite signs.

Solution: From the recurrence relation J.2.1. we have

(211+ l)xP (x) = (11+ l)P 1 (x) + I1P 1 (x)n 11+ 11-
Since PIl( a )=0 by Hypothesis, by putting x = a in the above equation, we obtain.

(2n+IXx·O.=(n+l)P j(a)+I1P I(a)
11+ 11-

PI1+1 (a) == __ 11_
PI1-1(a) 11+1 .or ---------- (3. I 3)

Since n is a positive integer, the ratio on the RHS of equation (3.13) is always negative.

Hence it follows that Pn + I(a) and PJ1-l-1 (a) are of opposite signs.

3.4.2 . Example: Show that

m " +1
I(2r + I)P (x)P (y) = ~[p ) (x)P (y) - P (x)p) (y)]

1"=0 I" I" X-Y m+ 111 m 111+ .

Solution: From recurre-nce relation (3.2.1) we have

(21" + l)xP (x) = (I" + l)P 1 (x) + rP 1(x)
. I" 1"+ 1"-

(2r + l)yPr (y) ~ (r +1)Pr + 1(y) + rPr - 1(y) . ----- (3.15)

----(3.14)

and
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Multplying equation (3.14) by PI' (Y) and equation (3.15) 'by P r(x) and subtracting one from

.the other we get

(2,.. + I)(x - y)p I' (x)p r (y) =
(r + I)[Pr + l(x)~, (y) - Pr +1(y)P,)x)] + r[Pr -1 (x)~, (~) - Pr -1 (y)P,,(x)]. .... (3.16)

Putting r =0 1,2 m-l, m in succession in equation (3.16) and adding the equations we get
m . , .

(x- y) I(2r+1)Pr(x)Pr(Y) =(m+l)[P "I(X)P (y)-,P I(Y)P (x)lJ
r=O - m+ m m+ m

or

Deduction:- Putting y=1 in equation (3.17) and using the fact that

Pm(l) = Pm+1 (1) = Pr(1}= 1 we obtain:

~(2r+l)p (x) = m+1 {p l(x)-P (x)
0" r X-)! 111+ mr= 1

. ,"I ,.

. 11" m
3.4.3. Example :- Show that Pn (x) + Pn + 1 (X) = r ~b2r + I)Pr (x)

Solution :- from the recurrence relation (3.2.3)we have

(2n+1)p (x)=p1 1(x)-p1 lex)n n+ n-
Putting n = 1,2,3, n is succession in this equation we obtain

3Pl (x) = pi(x) -Pd (x)

5P2 (x) = Pj (x) - Pi
l(x)

7P3 (x) = pl(x) - pi (x)

(2n - 1)P (x) = pi (x) - pI (x)n-l n >: n-2

(2n+l)P (x)=pl (x)_pl (x)nn +1 n-l
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;Adding these relationswe get

JP1 (x) + 5P2 (x) +.~ ;/+ (2n + l)Pn(x) = -pJ (x) .; pl(x) + P~(x) + P~+ 1(x),
. i .

Since Po (x) = I, and Pl(x~ = x, We have P6(x) = 0, pl(x):::: 1 = PO(x)

Hence 3P,(x)+SP2(x)+ :.. +(2h+1)Pn(x) = -PO(x)+p1n(x)+p1n+1(x)

or Po (x) + 3Pl(x) +'fP2 (x)+ +(2n + 1)Pn(x) = P~ (x) + P~ + 1(x)

I(2r + l)P (x) = pl(x) + pI + 1(x)
r=O r n nI.e.

Hence the Result , , , ~.'

3.4.4. Example: Obtain the first four Legendre Polynomialso .
Po (x), PI (x) P2 (x) and P3 (x)

Solution :- From Rodrigues formula we know that

Putting n =0,1;2,3, in succession in the above formula we obtain PO(X)=I,

1 d 2--(x -1) =X
2dx ,

2
_I _,~(x2 _1)2
222! dx2

1 d2 4 ?--, (x -2x- +1)
8dx2

=

1 2-(3x -1)
2

3
~(x2 ~1)3
dx3

1

23 L3



I" .-(5xJ - Jx)' -
2

Similarly for n =4, .following the sarne procedure-we get " : -
I

.1

3.4.5. Exainple :- Show that
I
J Pn(x)dx=O'l1:;tO

-1

, ,
I"
: ,<:1,

Solution :- From that Rodrigues formula, we have 1,'

1
J P (x)dx

-1 n .

, dn-I'
I)- f . ' . (x2 l)nIt erentiatmc 1 -

o dxx-
dn-1 [. n]

~ dxx-1 (x + ~)n(x -1) using. Leibl,litz's rule we get

==

l_d_/~-=-ll(X+l)nJ',(~-1)n+nCl dn~~ (X+l)'l_d.;X-lr + : +
dX . dxX-L. : dx _ .

= .n !(x+lXx-'I)n+ +(x+ltn!(x-l)
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o , When x = -1, or +i

Hence,
1
f P (x)=O, n e O
-I n ,

, "

J
3.4.6 , EXilmpJc:- Show that' f xPn (x.)Pn:"'1 (x)dx

, -1
Solution:- From the recurrance relatiori (3.2.1) we 'have

2n
= 4n2-1

, :,

n + 1 P' (x) + n p , (x)
2n + 1 n + 1 '211+ 1 n -1 •

Multiplying both sides of this equation by Pn-I (x) and then integrating w.r.t. x. from
~1 to +lwe uetc-

I
J xP (~\':)P I (x) dxn n-
-i

= n + 1 t P,' I(x) P 'l(~)'dx ~f" ,n ", } [p I(X)]1. dx
211 + 1 _ 1 n + n - , 2n + 1-1 ' n-

n ,1 ? .

= 0 + 2n+1 }Yn-I(X)r dx

From the orthogonality relation for legendre Polynomials we have '

1
f P (x) P (x) dxm n. -,'I ' ,

. ,
=,

0,

2
2n+ I ;if mv.r

; ;"

I
Hence f xPn (x)Pn -1 (x) 9X' =

-1',' "

'\.• ""r,

, n [ 2 ' ]"0+-'---'- .
". 2n + L',2{n'-I)fl

',' :; . ~. 2n
?4n- -I

.\

Hence the result.



Ach,arya Naqarjuna University ·37 Centre for Distance Education :E

(i)

·r"', '
(xm P (x)dx, n '

~l
= o

(ii)
1 n :f x P (x)"dxn ..

- 1

2n+2(n!)2

- (Zn + I)!
• ~ 0'

Solution :- (i) By Rodrigues formula for Legendre.Polynomials, we have

I
fxlll P (x) dx

_I 17

. '. . " ,

_ (-l}/n If' .111~1Dn-1 ( .2 .:..\.')l1d' •_ ,,, x. . . x . xn ." .,' '" .2 11! -1 .

, (Since the first term vanishes)

lntcgr.uing the RIISagnin·~v.r.t. x and substituting the limits we get

,;. "' i

'" .: ... : ;",.'

I .
, f x/11 P (dx)
.:...i 11 ,

Continuing this process m terms in succession we get

I
f.\17l P (.\1) dx

_I n
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(ii) In this case, since m = n

Putx=Sin e Thendx=CosO de

Then

. ,

. l"j':,' ',' •. ~" -'". .

,I,

( 1)111, ]1- . m. [DI1 -111-1 (x2 _1)11
21111! ·-1

0, Since 111 < n

(_1)11 11! Joxl1-11DI1~11 (x2 _1)11 dx
211n! -\

n
1 2 ') \ .---:- 'f cos~J1+ 0 dO

211-1 0

"". ~.
r(I1+I)r(~). ,.-

2fi12+3)
. .' l'

, ,2~-1

11! 1,_ •

211 ,(211+ 1)(211-: 1).: 3. 1
: • ~ .t,'

, • 0' 2n(211 --:-2) .4.2
2(11!) (2/1+ 1)(2/1)(2/1-1)(211-2) .....•. .4.3.2.1

(2.11)[2(11~ 1)} (2.2)(2.1)
2(n !) , (211+ I) !

')11 ,• _ /1.

2(11!) (211+ 1)!
'..
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'2n+1(n1)2
=

(2n+l)!
Hence the Result

SAQS:

i) Show that
1f P (x)dx

.-I n 0, n.is evenn...i!

(n.-I)!(-I) 2

= n,(n+l] ,(n-2] ~riis6dd'2,--!--'
,2 '1 ,

(Ans: 0)

~..

(ii)
1 3 "

Evaluate fx P 4 (x) dx,
-1

1
Show that f Pn (x) dx
, -1

, 2, if n= a'(iii)

o ifn ~ 1

(iv)
1 ,,2 2

Prove that [x P (x) dx =
-1 n

131---+ +~--
8(2n-l) 4(2n -+ I) , 8(2n +3)

(v) Using Rodrigues formula, Prove that p~ + 1(x) - P~ + l (x) = (2n + l)Pn (x)

3.5 Summary:

, In this, lesson,' we have established a few recurrence relations for. the Legendre,

Po lynornials Pn (x) and derived the Rodrigues for Pn (x) which gives a representation for the I

.Legendre Polynomials.

3.() Model Examination Questions:

l. 1 2 1 1 '
Prove that J(l-x )Pm(x) Pn(x)dx =

-1
a,'if· m e n

=
2m(m+l)

, if
(2m +1) , m=n
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2.
1 . '

Prove that x/" (x)=nP (x)+(2n-3)P 2(x)+(2n-7)P 4(x)+ .n n n- n-

1
Hence show that [x Pn (x) P~ (x) dx

-1

2n---
2n+l

") .
I .,2

Prove that f[P~(x) J dx
-1 n+l

n

5.

dn
Prove that tne function y = -n (x2 _l)n satisfies the Legendre's

dx
differential equation (I-xl) yll-2xy.' +n(n+ l)y = 0

Iff is contineous in [ -1,1 ] f(n) (x) denotes the n - tit derivation of f and

P (x)n
1· dn

---- (2 l)n
2n I n x -n. dx

1 '.
Show that ff(x)Pn(x)dx=

-1

Show that when Izl < 1 ,

-1
1 -

22'f(1-2zx+x) P (x)dxn
-1

(2n + 1)

?n_z
=

7. Show that

8.

Also show that the last term of the series is 3 P1 or Po according as n is even or odd.

I 1
Prove that I(2k+l)P, (x)

k = 0 tc
o

Prof. K. Rama Mohana Rao
Andhra University



LESSON 4 : LEGENDRE FUNCTIONS - 4

-to f\bBOCIATED LEGENDRE FUNCTIONS AND LEGENDRE FUNCTIONS OF THE
SECOND KIND.

4.1 INTRODUCTION:

Legendre polynomials have several important applications in physics and these applications
depend on the number of special properties which Legendre polynomials possess. These polynomials
may be introduced either through a solution ofa Legendre differential equation or through a generating

function. Laplaces equation v:« = 0 in spherical polar coordinates can be written as :

2
o(2ou) 1 o('eou) Iou- r - +--- Sin - +---::--or ar sineae ae sin2eae2

The solutions of this equation, obtained by the method ofseperation.ofvariables, is known
as the Associated Legendre's equation. Solutions of the associated Legendre's equation, denoted by
pill (x ) 311dQIll (x) are called Associated Legendre functions of the first and second kind.

11 0 11 0 0

4.2 Associated Legendre functions:

1nr
The differential equation, (l_X2)yll - Zxy' + [n(n+ 1)- --) ] Y= 0 (4.1)

1- x:
•

n.m are integers is known as the Associated Legendre equation.

Theorem: If u is a solution of the Legendre equation

2 d'» dy 0

(I-x )-1 -2x-+n(n+l)y=U
dx' 0 dx

(4.2)

dmu
then (I - x2)m / 2 d xm is a solution of the associated Legendre equation (4.1)

Proof: Since u is a solution of the equation (4.2), we have

; d2u du
(l - x - ) -) - 2x - + n(n + l)u = 0 (4.3)

dx- dx
Differenuating equation (4.3) m times w.r.t. x using Leibnitz's rule, we get

d111+Z
0 dfn+1 f dm+1 dm}; [m? 0 u 0 u 0 U U 0 c U

(i-x-) 0 .0 +mc1(-2x) 1 +mc2(-2x)-2 . 1 +mo

-- +11(n+I)-m=O
, d 111+ 2 d ,,111 + 0 °d ill + d m d xx 00.' x x

4
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t'" + 2 a'" + I" dmz!'I( U U ,'. 0'i e (l-x-) -2(m+l)x, 1 [n(n+l)-m(m+I)] , = (4.4)
.. , I rn+ ? d m+ d .m

(X x· x
dllll/,

Put -. -I-II =:: o . Then equation (4.4) reduces tod,

" ',d2v ' do [ ]v(l-x-)-, -, -2(m+l)x-+ n(n+l)-I11(ln+l) =0
dx' , dx

(4.5)

? " , _ , du _ 1 .2)'11I/2dZ 1 .2 -111I/2)-1 'ZNow let Z=(I··x-\,II/-v,sothat(l-x-) III/-'l;:vand--( -.\ -+m( -x ) xc
I ' ~ ~

J d~v (1 .2)_III12d.
2

Z+2 (I X2)'-(1II/2J-IX
d.Z, +' Z(I 2)-111I/2)-1ann --? =:: - X --? m - . -, m - x .

dx' dx' dx

Substituting these values in equation (4.5)we get

'?) {(I 2,)-11I/2d? Z 2' :(1 2')-(11I/2)-1dZ 'Z(I ,~')-(11112)-1(l-x: '-x --? + m -x .x-+m -x .
~- ' ~ ,

{(I ?)' -11I/)dZ Z(I )-(III/))-I}
.+[m(m+2)x2Z](l-x2r(ml2)-2.}-2(m+l)x =: -dx·+mx -x' .

+ { n (n + I) -m (rn + 1) } (l_x2)'!1l/2Z =:: 0

, 2 [ 7 J2 - m 12 2 d Z dZ 171- ) _
or (I-x) [(I-x )-2-:-2x-+{n(n+I)- ~-I JZ] =:: 0

. " dx dx I-x-

d
2
Z dZ ( m' )'i.e .. (l-x2

)--, -2x-+[n(n+I)- ~'-2 ]z=O
-- dx' dx I-x

, u
, . dmu

This implies that Z =:: (l_x2ynl2 V = (l_x2yn/2 -- forms a solution of the associated Leuendre
. dxm ~'

, 2 d?ydy , (, m' ,)
equation(l- x )-, - 2x-, +[n(n + 1) - --, ]y = 0
, ' dx" dx I-x-

Definition: The associated Legendre function otthe first kind, P'" (x) is defined by
n

, d!JI,

P'" (x) = (l_x2)m/2 -,-P (x) m>O. pmn(x) thus defined, satisfy the associated Le,_(,Je,ndreequation-:
n dx" 11 <r» - ~

(4.1 )
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•.•. • '., III /., 1.. d m+n " , .
The Rodriguesformula for Pllln(x) IS defined by Pllln(x)= (1- x ') . - 2" n!dxm+1I (x ' -1) ".

which is defined for values of m such that rn + n> 0 i.e., m> - n.:- -

Using the definition of the associated Legendre function of the first kind and the methods
described to derive the various properties in lessons 2 and 3, we can derive the following results
analogously:

1. P'" (x) = 0 ifm > 11and pO (x) = P (x)
11 ,. n n

4.

1 )(11 + )'fp 11/1/ (x) P "' .'(x)dx - - I . m. 5,
1 1/. - (2n' + l)(n' _ m) "" where 0,:", is the Kronecker delta

(2n+ 1) X Pllln(x) = (n + 111)Pllln_l(x) - (11 - m + 1) Pllln+,(x)

)1- x2 pm n(x) = 1. [pm + 1 (x)- pm-l (x)]
2n + I n +1 .. n -1

+ 1 2mx m"":lp 111 (x)_· P m(x)+[n(n+l)-m(m-l)]P . (x)=O
n I 2 n n

-v1-x .

; .-,:-;"

, .

"

5.

4.3 Legendre funcrion of the second kind

The Legendre function of the second kind denoted by Qn(x) is defined by

Q (,)_ . n1 .[ -n~l (n+1)(n+2) -n-3 ]x - x +. X + .
n 1.3.5 (2n + 1)· .. 2(2n+ 3)

_ (2.4;6 2n)n1 [,-n-1 (n+1)(n+2) -n-3· ]- x + X .+ .
1.2.3 ...2n(2n+ 1) . 2(2n +3)_

= 211(n!)2 [x -(n+1) +(n+1)(n+2}x-(n+3) + ] .
(2n+1)! 2(2n+3) ..

This forms a solution for the Legendre's equation in descending powers of x, all the powers of x
being negative.

4.3.1 Recurrence relaHons for 0 !!l
u

-.We shall now derive a few recurrence relations sati~fied by the Q (x). n
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I. Q I +I(X) - 01 I(X) = (2n+l) 0 (x)
II 11- Il

. 2n(n!)2 [-n-1 (n+1)(n+2) -n-3 oj
We know that 0 (x) = X + X + .

Il (2n+1)! 2(2n+3)

C~ 217(n!? [x-I1-1 + (~+1)(n+2) x-n-3 +: ..... ]
(211 + I)! 2(2n + 3)

21111! [0 ') ,-1'1-1 (n+2)! ,-11-3 (n+4)! ,-11-5 J
= (:211+ I)! (/1. x X + 2(211+3) x + 2.4(2n+3)(211+5Yx + .

211(11!) [(I1!)x-(I1+I)+ (~+2)! x-(n+2+1)
(211 + I)! 2(211 + 3)

(11+4)! -(n+4+1)
+ 2.4(21'1+3)(211+5) X + ...~..]

211(11!) 00 (n+2r)!x -(n+2r+1)

(211 + I)! r ~ 0 2.4.2r(2n + 3) (2n + 2r -1)

11 co ( 7) , - (n + 2r + I)2 (11!) 11+_r .X
L r 0

(211+1)! r=02 r!(217+3) (211+2r-l)
(4.6)

Differentiating equation (4.6) w.r.t. x we get

o - (n + 2r + 7)
I ,=_ 2n(I1!) I (11+2r+l)!x ~_

Q n(x) (2 + 1)' 2r "(2 3) (02 7, -10)n . r=O 1. 11+ 11+._1

Replaci ng n by (11-1) we obtain

(4.7)

-(n+2r+'1)
2n-1(11-1)! ~ (n + 2r)!x 0 <-

Qln-I(x) = - (2n-1)! rr=02 r!(211+1) (211+2r-1)

=. 211(11!) I (n+2r)!x -(n+2r+1)

(2n)! r =' 0 2r r!(2n + 1) (2n + 21' - I)
(4.8)

Similarly by replacing 11 by (n+ I) in equation (4.7) and on simplification we get
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-(n+ 2r +3)
I _ 2n n! ~ (n+2r+2)!x . --

Q n+ lex) - - (2n)! ~_ 'Ir '(2 1) .('1 2 - 3)I - 0 ~ r. n + ~n + } +
From equations (4.6) and (4.8) we have

-2nn!
QI (x ) + (2n+ l)Q (x) = -.--

. 11-1 11 (2n)!

(4.9)

-(n+2r+l) n -(n+2r+l)~ (11+2r)!x (2n+l)2 n! CIJ (11+2r)!xI I ---- .
r + ( rr==02 (r!)(2n+l) ... (2n+2r-1) 2n+1)! r==02 (r!)(2n+3) ... (2n+2r-1)

')11 ,_ 11.
[

CIJ ( +.2 ~)' ,-(n+2r+1)I n 1.X.

r==O2r (r!)(2n + 1)(2n + 3) .... (2n -+- 2r + 1)

- (n + 2r + 1)
~(n+2r)!x ]

. r == 0 2r (r!)(2n + 1)(2n + 3) ... (2n + 2r -1)

(2n)!

') n ,_ n.
[

CIJ ( +2.)' -(n+2r+l) ]" n r.x, .
~ . {(2n+l) - (2n+2r+l)}

r=O 2r (r!)(2n + 1)(2n + 3) .... (2n + 2r + 1)

CIJ ( 2)' - (n + 2r + 1)(_? ) ]n+ r . x _r
.L 'r

r=O 2 r!(2n+l) ..... (2n+2r+1)

(211)!

2nn! [(2n)!

n-2 n!
(211) !

-en +'h+l)
[

CIJ ( n + 2r)! x . - ]
I r-1 .r=O 2 (r-1)!(2n+1) ..... (2n+2r+1)

[

CIJ . (n+2r)!x-(n+2r+l) ].
0+ I r-l

r=O 2 (r-l)!(2n+l) ..... (2n+2r+l)(2n)!

l.ct S = 1'-1 then the RHS reduces to

-2nn! CIJ (n+2r+2)!x-(n+2r+3)
-(2~1)!· L r, ?_ "'" =Qln+1(x) (by equation 4.9)1'=0 2 r.(211+1) ..... (211+_1 +.J)

Hence the result.
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(2) (2n+l)x QI (x) - (n+l) QI (x) = n QI (x)
11 n-I n+1

Solution: From equations (4.7) and (4.8) we have (2n+l)x Qln(X) - (n+l) Qln_l(x)

211 1 00 ( 2- 1)1-(11+2r+2)
(2 1) n. 11+ 1 + .x

= - 11+ x L:
. '. (211+ 1)! r = 0 2r rf(2n + 3) ... ;... (2n + 2r + 1)

2n 1_00 ( 2)1 -(11+2r+1)
::....( 1)( 1) 11., n+ r .x-- n+ - -- L: .

(211)!r=0 2r r!(2n+l) ..... (2n+2r+l)

_ 21111! 00 (11+2r+1)!x-(11+2r+1)(211+1)
.I . +

(2n)! r = 0 2r r!(2n+ 1) (2n + 2r + 1)

11 -(11+2r+l)2 n! f (11+2r)!x (n+l)(211+~r+l)

(211)!r = 0 2rr!(211 + 1) (2n + 2;~+ 1)

J 11 1 00' ( 2 ) 1 - (11+ 2r + 1) (2 )- _ 11. W + r. x nr= L: -,---' -~-------
(211)!r = 0 2r r!(2n + 1) (2n +2r + 1)

. '211 1 00 (2-)' -(11+2r+l)'- n.n 11 + I . X

=' (2n)! r: 0 2r
+: 1(r -.1)!(2n + 1) (2n + 2,-:.+ 1)

..
11 l -(11+2r + 1) 1-2 n!n 00 (11+2r)!x+0

= J 1 L ,.-1 .. ' . .
(_n). r=02 (r-l)!(2n+l) (2n+2r+l)

_1121111!00 (n+2r+2)!x-(n+2r+3)
= I

(2n)! r = 0 2r r!(<2n+ 1) (2n + 2r + 3)-:

o
1 .

= n. Q n+I(X).

',' ;,

Proof; Consider n Q no/x) - (2n+l) xQn (x) as LHS we have from equation (4.6)
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LHS
1 -(n+2r)n2n- (n-I)! 00 (n+2r-1)!x .

I --r-----------
(211-1)1 r=02 r!(2n+l) ..... (2n+2r-l)

(2n+l)x2nn! 00 (n+2r)!x-(n+2r+l)
- . (2 1)' I -r------· ---

n+ . r=02 r!(2n+l) ..... (217+2r+l)

2n -1 n!(2n) 00
. I
(2n+l)! r=O

-(n+2r)(n+2r-1)! X (2n+2r+l)

2r r! (2n + 3) (2n + 2r -1)

n -(n+/r)
(2n+1)x2 IJ! I (n+2r)!x -

. (2n + 1)! r = 0 2r r! (2n + 3) (2n + 2r + 1)

-(n+2")(n+2r-l)! X 0

=
211 n!' 00

L
(2n+ l)! r=O 2r r! (2n + 3) (2n+ 2r -1). X 0

X[n(2n + 2r + 1)- (2n + l)(n + 2r)]

-(n+2r) ,
(n + 2r -I)! X (-2r)(n+ 1)

r2 r! (2n + 3) (2n + 2r + 1)
=

2nnl 00
--_0'- L
(2n+ 1)!r = 0

2nn! I -(n+21;-1)! (n+1).x-(n+2r)

(2n+1)!r=O 2r-l(r-l)!(2n+3) (2n+2r+l)

n r -(n+21') 0 l- (n + 1)2 nL 0 + .I (n + 2r -1)! X '.' .:

2 +1' . r-l(n ). _r = 12 (r -1)!(2n + 3) (2n +2r + I)

n~ I .-(n+2r+2) l-(n+!)fc (n!)?n+2) I (n+2r+!)!x . .
(2n+2). r=02rr!(2n+l) ..... (2n+2r+3)

-(n~1)2n+l(n+l)! I }n+2r+l)!X-(n+2r+2).

(2n + 3)! r=O 2 r!(2n + 5) (2n + 2r + 3)

- . - (n+I) Qn+I(X)' by equation (4.6) .
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Hence (n+l) Q,,+I(x) + n Q".I(X) _= (2n+l) x Qn(x)

Proof: We know that Q (x) is a solution of the Legendre's differential equation,
n

~·[(1-X2)dY]+n(n+l)Y = 0
dx dx

d [ 21 ]Hence - (I-x) Q n(x) =-n(n+l)Q (x)
dx n

(4.10)

Integrating both sides of equation (4.10) w.r.t. x from x to 00 we get

[
1 2 1 ..JOO 00

i.e., Qn (x)-x Qn (x) =-(n+l) fQn(t)dt
x x

Since- 01n(x) = 0 we get~ - x=oo

t •••• (4.10(a»

By recurrance relation (1) w~ have, Qln+l (x) - Ql n-l (x) = (2n + I)Qn (x)

Integrating this relation w.r.t. x between the limits x to 00

[Q l(x)-Q l(x)E = f(2n+I)Qn(t)dt (4.1O(b»n+ n- x x

Since [Qn+l(x) L=oo = [01'1-1 (X)L=oo = 0 , we have from equations (4.·10a) & (4.10b)

(1- x2) Qln(x)= - 1'1(1'1+ 1) [Q . lex) - Q ·l(x)]
2n+l n+ n-

or (2n+l)(1-x2
) Q11l(x) = n(n+1) [Qn_'(x) - QII+J]

Hence the result.



Complex Analysis & Special Functions
& Partial Diff.E uations

Legendre's Equation-4

5. X QI (x) - QI (x) = n Q (x)II II-I II
From rccurrance relation (3) we have (n+l)Q I(X) - (211+1)x Q (x) + nQ I(X) = 011+ 11 11-

Differentiating this equation w.r.t. x we obtain

(4.11)

From rccurrance relation (1); we have

QI (X)=QI (x)+(2n+l)Q(x)11+I 11-1 11

-
Substituing for QIII+I(X) from this equation in equation (4.1 I) we get

(n+l) (QI l(x)+(2n+l) Q(x)}-(2n+I)[xQI (x)+Q(x)]+nQI I(X)=O11- 11 11 11· 11-

I.e.. (211+1) QI l(x)-(2n+l)xQI (x)+(2n+l)nQ(x)=O11- 11 11

or QI (x) - x Q I (x) + n Q (x) = 011-1 11. 11

6. QI (x) - X QI (x) = n Q (x)II II-I II-I

Proof: From recurrance relation (I) we have Q I11+I(x)- Q 111-1(x) = (211+I) QII(X)

X QI (x) - X QI (x) = (211+1)x Q (x)11+1 11-1 11 (4.12)

From rccurrunce relation (3) we have

(n+ I) Q I(X) + 11Q I (x) - (211+1) x Q (x) = 0n+ 11- 11 (4.13)

Using equation (4.12) in equation (4.13) we obtain

(n+1) Q11+I(X)+ n Q11-1(x) - [x Qln+I(X) - X Qln-I (x)] = 0 (4.14)

lrom recurrance relation (5) we have

n Q (x) = X QI (x) - QI (x)11 11 II-I

=> (4.15)



using equation (4.15) in equation (4'.14) we obtain

'XQI (x)- QI (x)+nQ (X)-XQI (X)+~QI (x)=o
11+ 1 11 11-1 n+I, n-I

SAQs:

1. Show that (x2-1) QI (x) = nx Q (x) - n Q 1(x) ( Hint : Use recurrance relation (5) )
11 , 11 n-

2. Showthat(x2-1)QI (x)= (n+l)Q Ix-(n+l)xQ (x)
11' 11+ 1\

( Hint: Use rec.irrance relations (5) and (6) )

Theorem: Ifr (x) is a solution ofihe Legendre equation (1_>.:2) v'' - Zxy' + n(n+l)y = 0 and
11

Q 'lx) = C P(x) I(l 2)p2 ( )' then its complete solution is given by C1P (x) + C,Q (x ),
11 11 -x n x ' , 11 ~ 1\

dx

where C I' C2 and C are constants.
Pr()()f:

Let y = u(x) PIl(x) be the complete solution of the Legendre equation (l_x2h:II-2xyl+n(n+ I )y=O

d . d d
Then di = u(x)d; Pn(x) + Pn(x) dx u(x)

d2v ~2 , d du d2u

d
j= u(x) d~2 (Pn(x))+ 2

dx
(Pn(x)) dx + Pn(x)-1_2-

X X G~
Substituting these values in the ,;Legendre equation we get

{

? ' ') }2 d-", d du d r u(i-x) u(x)-P,(x) + 2-,-P (x) -+ P (x)-
dx2 n dx n dx n (be 2

_ 2x {U(X)!!.-P (x) +P (x) du }+n(n+I)U(X)P (x)=O
dxn ,n dx n

2 { d 2u dc.: du } 2' d 2
(I-x) P (x)-, 2 + 1.-' P (x) - +(l-x )u(x)~2 Pn(x)

n dx dx n dx 'dx:i.e.,

I

-2xu~P (x)-2xP (x)du+n(n+l)u(x)P (x)=O
dx J" n dx n
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, 2, { d -; 'du d }, 2 d 2
(or) (I-x) P(x)- + 2- -P (x) +u[(l-x )-Pn(x)

, n dx2 dx dx n dx2 '. ' ,

{
2 }2 d u . du d, du

(I-x) P(x)-2 + 2- -P (x)., -2xP (x)-' =0
, n dx dxdxn. n dx

, ,

i.e.,

Since Pn(x) is a solution of Legendre eq~ation ; Dividing this equation throughout by

1 d2u 2 dPn(x) 2x '
(l-x2)Pn(x) duldxandrearrangingwe get d%x dx2 + Pn(x) dx '(1-x)2 =0

.'. du ' 2
011 integration we get, log dx +2 logPn(x) +log(I-x )=logk

IOg{dU p2, (x) (l-x2)}=logk
dx n(or)

kdu 2 2 du
=> dx P n (x) '(I-x) =k, => dx =(1-x2)p2 n (x)

'.. Kf ,'dx. +C
on intezration we get u(x) = (1- x2 )p2 (x) 1where K and C Iare arbitrary constants

, n ':
Hence the complete solution of the Legendre's equation is

y

dx
- ClP (x) + K P (x) f 2 2
- n n (I-x)P n(x)

K dx
C1Pn(x)+-CPn(x)f 2 2 '

C , .(1-x)P n(x)



(. Acharya Nagarjuna University , :.EF ~~~~-52 ~ Centre for Distance Education)

Hence the Proof.

4.4 Christoffel's second summation formula.

From the recurrance relations ofP (x) and Q (x) we haven n

(2r+1) x P (x)r

, (2r+1) Y Q/x)
(r+1) Pr+l(x) + r Pr-I (x)

(r+1) Qr+I(Y)+ r Qr-I (y)

Multiplying the first equation by QrCY)and the second equation by P/x) and then subtracting one
from the other we obtain,

Putting r = 1, 2, 3, , n in succession in this equation we get the following n equations,

" " " "
" " " "

(2n-l)(x-y) Pn_l(x) Qn-I(Y) = n [Pn(x) Qn-I (y) - Pn_l(x) Qil (y)]

- (n-l) [Pn_l(x). Qn-/y) - Pn_2(x)Qn_I(Y)]

(2n+ 1)(x-y) Pn(x) Qn(y) = (n+ 1) [Pn+l(x) Qn(y) - Pn(x) Qn+1 (y)]

- n [Pn(x) . Qn-I(Y) - Pn_l(x)Qn(Y)]

Adding these n equations we get,

nr:: 1 (2r+ l)(x-y) P/x) Q/y) = (n+ 1) [Pn+l(x) Qn(y) - Pn(x) Qn+1 (y)]

- [PI(x). Qo(Y) - PaCX)QI(Y)]

= (n+ 1) [Pn+l(x) Qn()I) - Pn(x) Qn+1 (y) ]

- [x Qo(Y) - { Y Qo(Y) - I} ],
sincePI(x) =x and Pacx) = 1, QI(Y)=Y' QoCy)=l
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n
i.e" 2:: (2r+l)(y-x.) P (x.) Q ('1) = 1- (n+l) (P 1(X.)Q (y) - P (x] Q +' (y) 1r = 0 r r n+ n n n ,

n . 1
or I (2r+1) P,(x) Q.(Y) = -[ 1- (n+1) {P I(X) Q (y) P (x) Q (y)"l]r - 0 ,I X - y. n+ n - n n+ I J

This equation is known as the Christoffel's second summation formulas,

Examples:

4.4.1 Example: Prove that (x2_1) r Q (x) pi (x) - P (x) QI (x)] = C
11 n n n

Solution: We have the Legendre's differential equation, (1_x2) v" - Zxy' + n(n+ l)y = 0.

We know that P (x) and Q (x) are solutions of this equation. Hence.n . n
I

(l-x2)P 11_2xpl (x) + n(n+l)P(x) = 0,
n n n

and (l_X2)Q 11_2xQI (x) + n(n+l)Q(x)=O.
n n n

(4.15)

(4.16)

Multiplying equation (4.15) by Q (x) and equation (4.16) by P (x) and subtracting one from then n
other. we get, '

(I_X2) [ P II (x) Q (x) - QII (x) P (x)] - 2x [pi (x) Q (x) - QI (x) P (x)] = a
11 n 11 n n n -n 11'

d
Le., dx { (l ~X2) [pln(X) Qn (x) - Qln(X) P,/x) ] } = a
Integrating, we get (l_X2) [ Q (x) pi (x) - P (x) QI (x) ] = Constant (C)

11 u n n

or (x2-1) [ Q (x) pi (x) - P (x) QI (x).] = C
n n n n

4.4.2 Example: Prove that

(i) n [ Qn ex) Pn.l(x) - Pn)x) Qn(x)] = (n-l ) [Qn.1 (x) Pn./x) - Qn.2(x) Pn)x)]

(ii) n [ Qn(x) Pn./x) - Qn.1(x) Pn(x) ] = -1



Solution: (i) We have from the recurrance relations,

(2n+l) x Pn(x) = (n+l)Pn+l(x)+nPn_1 (x)

(2n+1) x Q/x) = (n+l)Qn+l(x) + n Qn-l (x)

Replacing n by (n-l) in both these equations,

(2n-l)x Pn_l(x) = n Pn(x) + (n-l) Pn-2 (x)
(2n-l) x Qn_l(x) = nQn(xj+ (n-l)Qn_2 (x)

(4.17)
(4.18)

Multiplying equation (d.L'Z) by Qn_l(x) and (4.18) by Pn_l(x) and subtracting-one from the other,

or n (Q/x) Pn-I (x) - Qn_l(x) Pn (x) ) =m-I) [Qn_l(x) Pn-2 (x) - QnJx) Pn-I (x)]
(4.19)

The equation (4.19) may be written as t = t I and this gives t I == t 2 = == 1) = [2· = tl11 11- n-I1-·

Thus we have t = tl which implies from Eg. (4J 9) that11

or n [ QI1(x) Pn_I(X) - Qn)X) Pn (x) ] = Q/X) - x Qo (x) (4.20)
. (Since Pox) = 1 and P1(x) = x)

x : .x-t l 1· x +J
But we know that Q,(x) - x Qo(x) = 2Iog-·-1- 1 - X - log--· =·-1

x+ 2 x-I

Hence from equation (4.20) we get,

or
1
n
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4.4.3 Example:
, I , (x + IJ 3xProve that Q ex) = - P2(x) log ~- - -'

" 2, 2' x-I 2

Solution: FrOill recurrance relation (3) from Qn(x).
We have (11+I) Q I(X) = (2n+ 1) x Q (x) - h Q .tx)n+ n n-I

Replacing n by 1 in this equation,

3x Q/x) -Qo (x)

[
X x + 1 ], 1 x + 1

3x, '--:- log-- -1 - - log-'-'
2 ,x-l 2 x-I

2
3x -1 log x + 1_ 3

,2 x-I
x+J

P2 (x)logx_1-3x

'1· x+J 3
2 P2 (x) log x -1- 2 Xor

SAQs:-.
(2n -1)x

i) Prove thatl\(x) Qn_2(x) - Qn(x) Pn_2Cx)= n(n -1)

dn+1
ii) Show that n+lQn(x)s

~- - dx

ii i) Show that pill (x) = 0, if m >n
n

4.5 Summan' :

•Solutions of the Associated Legendre's equation (1- x2 )yll - 2x/ +[n(n +1)~ -r m
2
2]y = 0,

nand 111 are integers are known as Associated Legendre's functions. Alsociated Legen~::: functions
are widely used in wave mechanics, such as solving the Schrodingeh equation. ' ;
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In this lesson, we have also established a few recurrance relations for the Legendre function
of the second kind, denoted by Q (x) and derived the Christoffel's second summation formula.. n

4.6 Model Examination Questions:

1. Define Associated Legendre's Polynomials and prove their orthogonality relation.

2. (_l)m Cn - m)! pmn(x)
Show that P?" (x) =

11 (n+m)!

"I
.J.

1 00
Prove that -- - I

Y-x m=O
(2m+l)P (x)Q (y)

m m

4.
lIP (x)

Show that Q (y) = - J In dx, y > 1
m » 2 -1 (y-x)

Using the definition of Q)x), obtain the value of Q()(x) and Q I(X)5.

Prof. K. Rama Mohana Rao
Andhra University.



LESSON -5
BESSEL FUNCTIONS - 1

5.1 introduction:
r

The Bessel functions, denoted by In(x) were first introduced by Bessel in 1824 whil
discussing a problem in dynamical astronomy. They arise also in the Bernoulli's investigation c
oscillations of hanging chains and in the Euler's theory of Vibrations of Circular membrane. Thes
functions satisfy the Bessel differential equation:

d2. 1 d n2
~ + -'-- ~+ (l--)y=O
dx2 x dx x2

which arises in boundary value problems of mathematical physics. The solutions of the Bessel
differential equation are known as Bessel-functions of order n .

. 5.2 Bessel differential equation and its solution:

The differential equation xiyll + xi + (x2_n2) y = 0 (5.1)
is called the Bessel equation of order n, n.being a non-negative constant. We shall now solve
equation (5.1) to obtain a series solution, using the Frobenius method.

We shall assume the solution of equation (5.1) in the form of a series,

00

y = L C xk + "', C :;t 0
m=O m 0,

Then yl= . ~ C (k+m) xk+m-l and
'0 mm=

o
Substituting for y, yl and i 1 in equation (5.1) we get,

00 0

yll = L C (k+m)(k+m-l) xk+m-2
m

m=O

.@&2. ~ C (k+m)(k+m-l) xk+m-2 + x ~ C (k+m) x~+m-lm m. m=O . m=O.

5)
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I C [(k+m)(k+m-1)+(k+m)-n2]xk+m +I C xk+m+2 =0oc m . m
. m=O m=O

I.e., ~. C (k+m+n)(k+m-n)xk+m + ~ C xk+m+2 =0m m
m=O m=O

(5.2)

Equating to zero the coeffici'ent of x", the smallest power of x, we get the indicial equation,

Co (k+n) (k-n) = 0 => (k+n) (k-n) = 0, since Co ;;j;. 0,

Hence k ~ n, and k = -n are the roots of the indicial equation, Now equating the coefficient of x'""
to zero We get,

C1 (k+n+l) (k;.n+l) = 0, so that C1= 0, for k = nand k = -Tl,

Again equating to zero the coefficient ofx k+m we obtain Cm{k+m+n) (k+m-n) + Cm_2= 0

1
or C = (k )(. k ) C111 . + m + n n - - m. 111-2

(5.3)

Putting m= 3,5,7, in succession in equation (5.3) and using the fact that C1=O,we find

that C1 = C3 = Cs = = O.

Putting m = 2, 4, 6, ..... in succession in equation (5.3) we obtain

1
C =2 (k+2+n)(n-k-2) CO'

1 1 1
(k + 4 + n)(n - k - 4) C2 = (k +4 + n)(,?- k -4) .(k + n +'2)(n - k - 2) CO' and so onC =2

. k+m
Substituting these values of c.'s in the assumed series solution y = I CmX we get

I

kr . x2 x4 Jy=C x 1+ + . + ...o (n + k + 2)(n - k -2) (n+ k+ 2)(n- k - 2)(k + 4+n)(n-k -4)

(5.4)
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Replacing k by n and Co by 'a' in equation (5.4)

We obtain Y, = a x'' ll-4(;: n) + -4-.8-.(-1-:-:-)-(2-':+--'-n+...] (5.5)

Replacing k by -Tl and Co by 'b' in:equation (5.4)
, .

l
2 4 1b -n 1 X XY = X - +.' + ...

2 4(1- n) 4.8.(1- n)(2 - n) (5.6)We get

1
We now consider a particular solution of equation (5.1) by fixing the constant a = 2nr(n + 1) 111

equation (5.5). In this case the obtained solution is called the Bessel function ofthe first kind and
of order n. We denote this solution by J (x). Thusn

. n' l 2 . 4 l'X X X·
Y = J (x) =. 1- + +...

1 n . 2nr(n +1). 4(n +1) 4.8.(n + 1)(n+ 2)

. '" 1 (J2r +n
= L:(-ll . ~

/';0 r! r(n + r + 1) 2

1

(5.7)

If we now subtitute 2nr(n +1) for the constant b in equation (5.6) we obtain another solution for

equation (5.1):

Y2=J_
n
(x)=IC-1l 1 (xJ2r-n

/';0 r! f( -n + r + 1) 2
We know that [' (x) ~ 00, as x ~ 0 or a negative integer and r (x) is finite other wise. Suppose

. that n is not an integer. Since r is always an integer, the factor r(-n + r + 1) in equation (5.8) is
always finite and non-zero.

(5.8)

For 2r < n, equation (5.8) shows that Jjx) contains negative powers ofx. But from equation
(5.6) we observe that J (x) does not contain negative powers ofx. Also, for x = 0, J (x) is finiten n .
where as J)x) is infinite. Hence one of them can not be expressed as a sonstant multiple of the
others. As such we can conclude that J (x) and J (x) are two independent solutions of the Besseln -n
equation (5.1) when n is not an integer.



Hence the general solution of the Bessel's differential equation can be expressed as
y = C I In(x) +L2 J_n(x),where CI and C2 are arbitary constants. The solutions of Bessel differential
equation are called the Bessel functions.

5.3 Bessel Function of the second kind and of order n

Suppose that n is an integer. Then we observe that Y2given by equatin (5.8) fails to give a
solution for positive values of nand YI expressed by equation (5.7) fails to give a solution for
negative values of n. This suggests us to obtain one another independent solution of the Besse~'

equation by assuming that y = rf,(x) J (x) as the second solution, when n is an integer'f' n

Let y = rf, (x) J (x)'P n

Then yl = ¢ I(X)In(x) + ¢ (x) Jln(X) and v'' = ¢ II(X)\(x) + 2¢ I(X)Jnl(x) + ¢ (x) JII/X)

Substituting these values of y, y I and y II in the Bessel's differential equation (5.1), we get,

X2 ( ¢ II(X) In(x) + 2 ¢ I(X)Jln(x) + ¢ (x) JI11;(X))

+ x(¢ I(X)J (x) + ¢(x) JI (x)) + (x2_n2)¢ (x) J (x) =0n n . n

or ¢ (x) { X2Jll (x) + XJl (x) + (x2_n2)J (xj}
n n n

+ X2 rf,Il(X) J (x) + 2X2 rf,1 (x) JI (X)+ Xrf,I (x) J (X)=O
'f' n 'P 11 'P n

Since J (x) is a solution for the Bessel's differential equation, the sum in the braces is zero. Hencen

the above equation reduces to X2¢ II(x) J (x) + 2X2 ¢ I(x) J I (x) + X ¢ I (x) J (x)=O
. n n n

Dividing both sides of this equation withx/ rf,I(X)J (x). We get,.'f' 11

¢ 11X + 2J 1n (x) +~ = 0
¢ lex) J (x) xn

or dd (log¢l(x))+ 2 dd (logJ (x))+ dd log(x) = 0
X X n X

~ ![xIog¢1(x).Jn
2(x)]=O

On integrating this equation w.r.t. xwe get log(x¢l(x) J2 n (x))'= logC2
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or

r
. ---2

¢l(x) = J2 (x).x
n

(5.9)

Integrating equation (5.9) w.r.t. x we get

c
- . I 2 d +Cx 1¢(x) =x.J2 (x)

n

Hence the assumed second solution of the Bessel's differential equation is

Y=¢~X)Jn(X)~rI ~2 . dx+c1JJ (x)
J (x).x nn

f 1 dx
C1J (x)+ C2J (x) J2 ()n n x x

n

dx
C1J n (x) + C2 Yn (x) where Yn(x) = Jx J2 (x)

n
The function Y (x) given above, is known as the Bessel function of the second kind and of order n.n .

This is called the Neumann's function. This is a second independent solution of the Bessel's
differential equation.

Bessel's equation or order zero:

The equation xy' + y' + xy = 0 is known as the Bessels differential equation of order zero.
One solution of this equation is given by y ~ Jo(x) where

The second solution denoted by YaCx)is called the Bessel function of the second kind of order zero
and is obtained fromYn(x) by putting n = 0. Hence the complete solution of the Bessel's equation
of order zero is given by, y = C,Jo(x) + C2 Yo(x); C, and C2 are arbitrary constants
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5.4 Rccu"j'ance relations for J ex) :
!!

We shall now derive a few recurrance relations for J (x) and discuss some of their application:n

1.
d n n

Prove that --x J (x)=x J (x)
dx n n-:-1

. 00 r 1 (X)2r+n
We have by definition ofJ)x), J n (x) = L (-1) Wf 1) :;-

r=O r. ,n+r+ "-
PJ"()()f:

d d CIJ 1 l· ')' 2r+ n
r·, , _xn J x =_. Ixn .. -1 r ~
Ihen d n () d l L ( ). Ir( 1.) 2 }

. X x r=O r.n+r+

00 (-I( 1 d 2(r+n)L x
r=O r!r(n+r+l) 22r+n dx

~ (-1(2(r+n) x2r+2n-l
= r=O r!r(n+r+1)22r+n

00 (-1{2(n+r) xn x2r+n-1

= r~O r!(n+r)r(n+r) 22r+n

(-1(
r!

1 .r:
r(n+r) ;

xl1 J (x)
n-l

2.
d{ -n '} -n, f)·Prove that -- X J (x) = - X J (x

dx n· n+ 1

Proof:
d { _ n } d 00 ( -1( X - n ( x) 2r + n

We have - x J. (x) = - L
dx n dxr=O r!r(n+r+l) 2 .

00 ( -1) rId (x )2r
r ~ 0 r! rr» + r -+ 1) . 2 n dx \ 2
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00 (-1(2r)x2r-1
= I

r = 0 r!T'(n + r + 1).22r + n

00 (-1{ x2r-l 1
= I .
. r=l Lr-l r(n+r+l) 22r+n-1 '

Now put r = III + I. Then the summation shifts to m and m varies between 0 and 00

d {-n }- -x J (x)
dx n

-X-n ~ (-1)/11 (~__J2m+n+!
m=O m!f(m+n+2)

_x-n I (-1)" (X2-)2r+I1+~.
r = 0 r! F(» + 1+ r + I)

= - X -n J (x) , by the definition of J . I (x)
n + 1 11+

J. Prove that J1n(x)=Jn_1(x)_n J'n(x) (or) xJ1n(x)=-nJ (x)+xJ . lex). x n n-

Proof:
d

From recurrance relation (I) we have - xn J (x) = x'' J lex). . dx n n-

" n xn - 1 J (x) + xn J 1 (x) = xn J (x)
i.e., n n . n-1

dividinl!,throughoutbyxl1-'weg,et n J (x)+xJ1 (x)=x J lex)~ 'n n }1-

or x J 1 (x) = -n J (x) + x J 1(x)n n }1-'

4. ProvethatJI (x)=nJ (x)-xJ lex)n n n+

Proof:--- From recurrance relation (2\ we have ~ (x - n J (x)) = - x ~}1 J 1(x). ~ n n+
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i.e.,

Dividing this equation throughout by x-11 we get,

-nx-1 J (x)+ J1n(x)=-J lex)n n+

or
1 nJ n(x)=-J (x)-J +l(x). x n n

1
5. P(~ve that 2J n(x)=Jn~l(x)-Jn+l~x)

,,'I> roof: -,
From recurrance relation (3) we have

\ Jln(x)=J l(x)_n J (x)
n- x n

From recurrance relation (4) we have

Jin(X)= n J (x)-J lex)x n n+
Adding these equations we obtain

2J 1n (x) = J 1(x) - J 1( X )n- n+

5.5 EX~lInplcs :

5.5.1 Example: Show that:
(i)' J (x) =t-l )" J (x) for any (positive or negative) integer n.

-11 11

(ii) J (-x) = (_1)11 J (x) for any integer n.
11 11

Solution: (ijLet n be a positive integer. we have

CIJ

J (x)= L-n r=O
(
X2~)2r - n(-1/ 1

r! I" (-n + r + 1) (5.10)

o
Since n is an integer, for r = 0, L 2, , (n-I) it follows that r (-11 + r + I) ~ 00 and

. 1
--O~-- 0
f'(-n+r+l) ~ .

Hence the summation on r in equation (5.10) must be from 11 to CIJ , so that
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co
J_n(x)= .2::

r=n

1 (x
2
}]'2r - n(-1 )r

r! r(-n+r+l)

Let 111 = r - n so that r = m + 11; 111 = 0 when r = n, and 111 -7 CD when r -7 CD. Hence

co
J (x)= 2::-}1

1'11=0

1 (X)2(I11+n)-n(_1)I11+n
(m+n)1 ['(111+1) 2

1 (X)2m+n(_l)m(_l)n
r(m + n + l)m! 2

co
(_1)11 I

1'11=0

(_1)111 1 (~2x)2111+n
m! rCm+I1+1)

= (_1)11 J (x)n
Suppose that n is a negative integer. Let Jl be a positive integer so that n = -po Then by case (i) : .

J (x)=(-l)PJ (X),sothatJ (x)=(-lrPJ . (x)-p p p -P'

But since p = -Tl , we have J _ n (x) = (_J)11 Jn (x)

(ii) Suppose that n is a positive integer - ,

CD

we know that Jn (x) = I
r=O

1
( )

n + 2r
(-I)'" x

r! r(l1+r+l) 2

co
Hence J (- x) = In

r=O

1 (-2X)n+2r(-1/ .
r1['(n+r.+1)

(_I)n ~ (-ll 1 (~•...)n+2r
r=O r! r(n+r+1)

since (-1 ir = 1

Let n be a negative integer, say n = -111, where 111 is a postive integer

Then J (x) = J (x) = (_1)111 J (x), by (i)
n -m 111
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Replacing x by -x we get

.J (-x) = (-l)l11.T (-x)
n " 111

= (_1)111 (_1)111 JI11(x), (By (ii))
= (_1)111 J (x) = (-1 )2111(_1)'11 J (x)

-m -111
=(_1)-111.1 (x) = (-It.l(x)-111 " n

Hence J (-x) == (-It .l(x) for any integer 11.
n" n

5.5.2 " Example: Show that (i)
~

-
2

J (x) = -- cas x
-1/2 n x

(ii) J (x) ~ J 2 sin x
-1/2 " 1[ x

Solution:
{i) we have by definition:

x
n

[ 'x2 x4 1
Jl1(x) = 2nr(n+l) 1- 2.2(n+l) + 2.4.22~(n+1)(n+2)+·····

I
Putrinz n = -. in equation (5.11) and simplifying we get,

'" 2

(5.11 )

" x - Ii [x2 x4 l .
J 1(x)= h "1--+ -... ~ 1- ""1 1.2 1.2.3.4 " = - cos X since r (-)= r:

2 2 2 r (-) n x "' 2 '\In
2 .

" 1
(ii) Putting n = 2 in equation (S.U)

J 1 (x)= 1 xli [l_L+ x4 -- ...1" h 1 1.2.3 1.2.3.4.5
" 2 2" r (1+~)

2
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5.5.3. Example:

Solution: 2.( (x) = J 1(,\) - J +I(X)
n n- n

By recurrance relation (5) we have

Di Ilcrcntiating equation (5.12) throughout w.r.t. x we get
2 J II (x) = .I I (x)'--=-:rr-~(X)-

n n-I 11+1

Replacing n by (n-I) in equation (5.12) and n by (n+1) again in equation (5.12) we get

2.11 I(X)=: 2(x)-J (x)
ll- l'l- n

2.1 I (x) = .I (x) - J (x)
n+1 n 11+2

Substuting in equation (5.13) we get

or

1
2 .J II (x) = 2 (J 2(X) - J (x) -
'II 11- 11

4.111 (x)=.J (x)-2J (x)+ J . (x)
11 11-2 11 11+2

PUlling n = 0 in equation (5.14) we get

4 J II o(x) = J_/x) - 2 Jo(x) + J/x)
= (_1)2 J?(x) - 2 Jo(x) + J2(x) ,since J (x) = (-It J (x)_ ~ n

or 2 JIIO(X) = J2(x) - J()(x)

5.5.4 Example:

x
jxn+1 J (x)dx=xn+1 J (x)If n > -I, show that n n + 1o

Solution: By recurrance relation (I) we have

~[xn J (x) ]-= xn J (x)
dx n n-l

Replacing n by (n+ I) in equation (5.15) we get

~[xn+l J (x)]=xn+1 J (x)
dx n+ 1 n

Integrating equation (5.16) w.r.t. x from 0 to x we get

(5.12)

(5.13 )

(5.14)

(5.15)

(5.16)
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or
x

xn+l J (x)= fxn+1 J (x) dx
n+1 0 n

5.5.5. Example:
x 1-n -n

Showthatforn>1, fx . J l(x)dx= -x J (x)o n + 2n r(n + 1) n
Solution: By recurrance relation (2) we have

. I '.
d ( -n ) -n- x J (x) =-xJ (x)
dx n . n+l

Integrating equation (5.17) w.r.t. x from 0 to x we get

(5.17)

( )
x x

x - n J (x) = - fx - n J (x) dx
n 0 0 n+l

or

x
=-fx~nJ (x)dxo n+ 1

J (x)n
But Lt -11

x+-s O ·X

1 xn 2 1
Lt n [1- '. x. + ] - ---c-:J7,----

x~Ox 2nr(n+l) 2.2(n+l) - 2 r(n+l)

1x-n J (x)- ----
Hence . n 2nr(n+1)

x
- fx-n J (x) dx

n+lo

or
x
Jx - nJ lex) dxo n+

1

5.5.6. Example:
- Zsin nJr

Prove that J (x) JI (x) - JI (x) J (x) = ----
11 -11 11 -11

Solution:
Jrx

We know that In(x) and J-n(x) are the solutions of the Bassel's equation
x2yll + xy' + (x2_n2)y= 0

Hence
.

X2J II (x) + X JI (x)-+ (x2~n2)J (x) = 0
11 11 11

.
(5.18)
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ancl x2 J II (x ) + x.r I (x) + (x2_n2) J (X) = a
. -11 . -11 -11

... I- (5.19)

Multiplying equation (5./ R) by J)x) and equation (5./9) by .1/x) alld subtracling aile iroin the
other we get,

X2 [J II (x) J (x) - J (x) J II (x) ] + x [J I (x) J (x) - J (x) J I (x) ] = 0
11' -11 11·11 n -11 11-11

1
or J II (x) J (x) - J (x) J II (x) + - [ J I (x) J (x) - J (x) J I (x) ] = a (5.20)

11 .-11 n -11 X 11 ·11 n-11

Now let J I (x) J(x) - J (x) J I (x) = u (x)
11 -11 11 . -11

Then u I(X) J II (x) J (x) - J (x) J II (x) - J I (x) J (x) - J (x) J I (x)
11 -11 11 -11 11 -11 11-11

J II (x) J (x) - J (x) J II (x)
n -11 11-11

Substituting the values ofu(x) and u'(x) in equation (5.20) we get,

1 1 du dx .U (x)+-u(x)~-+-=L'
X U X

Integrating w.r.t. x we get,
c

log u + log x = log C ~ u(x) =-
x

or J I (x) J (x) - J (x) J I (x) = .£

11 -11 11 -11 X (5.21 )

i.e.,

1 [n-l (n+2) xn+l. (n+4) xn+3 l
2nr(n+l) nx - 4(n+l) + 4.8.(n+l)(n+2) + ....JX

c
(5.21 )

X
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('oll1p~lril1g the coefficient of I Ix on both sides of equation (5.21) \\L' find that

n n
---------+ = C
2nr(n + 1)2- n['( -n + 1) 2-n r(-n + 1)2n['(n+ 1)

c = 2n =( 2 J 2sin nr: . '1[-:) n['(n)['(l-n) If/, =---;smcen['(n)r(l-n)=.
/smnJl' f[ sm nzr

Hence from equation (5·.21) we get

2sinnll' .
./In(:-<)J_n(x) - In(x) JI)X) = ---

f[X

-2sinnlf
or .I (x).I1 (x) - JI (x) J (x) = -~--

II -n n -n , f[ X

5.5.7 j·.xample:

d [ 2' 2 ',[n 2 n+ I? ]Show that dx J n(~)+J n+l(x)_ = 2 xJ n(x)-xJ-n+1(x)

Solution: From recurrance relation (3) we have J
1
n (x) = - n J n (x) + J n '-1 (x)

x
"

'1 -(n+l) ,
Replacing n by (n+1) in this recurrance relation we get J n + 1(x) = x J n + 1(x) + J n (x)

(5.22)

Also. we have ~lr-J2 n(x) + J2 n + 1(x)] = 2 J n(x)J1 n (x) + 2 J I (x) ~ JI, (x)
dx n+, n+ 1

(5.23)

From recurrance relation (4) we have Jl (.~) = n J n(x)- J, (x),, ,n x 11+1'

t Ising equation (5.22) and (5.24) in equation (5.23)

(5.24 )

dl-'2 '2 'l' [n ]
\I,L' obtain -- J n(x)+J n+l(x) = 2J (x) -J (x)-J l(x) +

dx n x n n+

2J +1(X)[_11+1 J l(x)+J ex)], n x n+ n
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SAQs:

1f /2
1. Show that J J1[x.J1/?(2x)dx=1o -

2n
Establishtherecurrancerelation: In_1(x)+Jn+1(x)= X In(x)

-.
-).

d
Show that dx J O(x) = - J I(x) (Hint: Use recurrance relation (2))

. Show that all roots of J (x) are real.
11

4.

5.6 Summ~lI-V :

The Bessel differential equation of ordern i.e., x2y'l + xy' + (x2_n2) y = 0 was solved for non
integral n and its general solution was expressed as a linear combination of two independent solutions
.1 (x) and J (x) as y = C,J (x) + C2l (x). When n is an integer, a second independent solution of the

11 -11 11, -11 .,

Bessel equation was obtained by assuming y = rjJ (x) J (x) and this solution was expressed as.a
,11

, dx
linear combi-nation of J (x) and Y (x) = J J? ( ')' The function Y (x) is called the NCUI1l' 1111'S

11 n X -n x n

.function, is the Bessel function of the second kind and of order n.
established in terms of the Bessel functions.

Pi few recurrance relations
I

5.7 Model Examination questions:
/

1
xn f(l-t2)n-I12 cosxt dt

1. Show that In(x) =_....:::0----;- _

2n-1 rn/2)f(n +1/2)

)

..,
_L

b 1 [ 2 2 ]Prove that J JO(x) J1(x) dx = '2 J 0 (a) - J 0 (b) ,
a



4. Determine the values of a and b for which d~ (Jn (x))~ a J n-l (x) + b J n+l (x)

(Ans : a = 112 ,_b = - 112)

5.

6.

Evaluate fx3 J3(x)dx

Show that:

(i) :x ~Jl(x)}=xJO(x)

(ii) J2(x)-Jo(x)=2Jlloex)

(iii) J2(x) = ]lloex) - lix J1oex)

Show that J ex) = 0 has no repeated roots except at x = O.\ n
\

7.

8.

9.

Prof. K. Rama Mohana- Rao
Andhra University.



LESSON 6: BESSEL FUNCTIONS -2

6.1 Introduction

In the earlier lesson we have solved the Bessel's differential equation of order.
n, n being a non-negative constant al]J;I.-oi5Gined a series solution using the Frobenius method.

When n is not an integer, we obtained two linearly independent solutions J}1 (x) and J -}1 (x).

However. when n is an integer. we learnt that Jn(X)and Yn(x) form two linearly independent

solutions of the Bessel equation. We have also established a few recurrance relations involving the
Bessel functions and their first order derivatives. In the discussion that follows in this lesson we
shall define the generating function for the Besse! function, establish the orthogonality property of
Bessel functions and obtain the Fourier - Bessel series expansion for f(x)

6.2 Generating function 1'01' In (x)

Thcorcm:- For any positive integer n, JI1 (x) IS the co-efficient of z11 in the

{x(_ 1)1
expansion of exp "2 L. - z J

Proof :- Consider e~p {~ ( z - ~)}
xz X I-(-)z -

e 2 . e 2

r (XJ (X)2 z2 (X)11 zl1 0 1=ll+ 2 z + 2 2t, + + 2 11! + ~

l (,) ('j2 -::2 ., ()11 -I1J--X -] X Z . 11 X Z \
1- 2 z + 2 -. 21+·,····+(-1) 2 ~+ (6.1)

The coefficent of zl1 in in the product on the RHS ofequation (6. J) is obtained by multplying

the coefficient of zl1, zl1+1, zl1+2 in the first bracket with those of the coefficients of

zO . z -I -z - 2, in the second bracket respectively. Hence the co-efficient of zl1 is

B)
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(
x)n I (X)n+2 1
2 n! 2 (n + I)! + (~r+4 (n+~)1 21+ .

I (-ll ~(x)n+2r
r=Or!(n+r)! 2

= (-l( (x)n+2rI --
r!r(n+r+l) 2

J (x)
n

The Co efficient of z - n in the product on the RHS of equation (6: 1) is obtained by multplying the

coefficient of z - n , z -n-.:l in the second bracket with those of the coefficients of zO,

2, 22 in the first bracket respective~y. Thus the coefficient of z - n is
, !

(
x)11 (_I)n + (xJn+l (_I)n+l (x) .r (_I)n+2 (x)2
2 17 ! "2. (n+1)! "2 +,2.. (n+2)! 2! 2' + : ,

•

or J (x)
11

= (_l)n co efficient of z - n

In particular the coefficient of zO in the product on the RHS of equation (6.1) s

obtained by multiplying the coefficients of zO, zl, z2 in the first bracket with the co-efficients

z 0 .z - I , z - 2 , in the second bracket respectively. Hence the co-efficient of z 0 is

=
x2 x4

1--·+22 22.42 - .

We observe here that the coefficient of
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z0 , (z - z - 1), (z 2 + z - 2 ) , , (z n + (-1) n z n )., .

. lex) lex) 1 (x) . . Iale o· 1 - , , n respectively.

Hence equation (6.1) gives

x 1
-(z--)

e2 Z

[zn + (-'l)n? - nJ J n (x) + ,

=

{
X 1 } .

Iknee exp 2" (z - z) is called thp generating function of Jn (x}

6.3. Expansion of Trigonometric functions interms of Bessel functions:

I~csult :- Prove that

C,osx = J0 (x) - 2J 2 (x) +.2J 4 (x) + .

211 (x) - 213 (x) + 215 (x) + .S1I1 X

1>••001' : From the generating function of J n (x) we have

x 1.L.(z.,- -)
e2 z

Put Z eiB Then

x 1
-(z--)

e2 z
x (eiB _e-iB)

e2

= J (x) + iB - iB J (x) + ( 2iB + - 2iB)J (-)+O. (e - e ) 1 e. e . 2 x .

. JO(x) + (2isinB) J1(x) +( 2cos2B) J2(x)+ .

=

or )x sinB =e

i.e. cas (xsinB)+isin(xsinB)

= {JO(x)+ 2(cos2B) J2(x)+2(cos4B)J4(x)+ .... }+

i[2(Sin B)J 1(x) + 2(sin 3B)J 3 (x) + ]
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Equating the real and imaginary partson both the sides of this equation we obtain ..

cas(xsin B ) 10(x)+2(cas2B )12(x) + 2(cas4B )J4(x)+ .

(2sin B ) J1 (x) + (2sifi31TJ Jjtx)+ .

(6.2)

(6.3)and .sin(xsin B )

1[
Putting B = 2 in both sides of the equations we get

(6.2) and (6.3)

cas x J O(x) - IJ 2 (xt1=-2J 4(x) - .

211 ~x) - 2J-fx) + 215 (x) - .: ._and SIO x

6.4 Orthogonality of Bessel Functions

We shall now establish the orthogonality property of Bessel Functions through the following theorem.

Theorem i- If A i and A j are the roots of the equation J n (Aa) = O,then

a
f xJ (A.X) J (A .x)dx - 0o n l n ] - , if A i 1:- A j

a 2-J I(A.a) A .2 n+ I l
-A.- J

. Proof :- Suppose that i1=jancl A jaI1d A j be unequal roots of the equation In(Aa) = 0

Let u(x) = Jn (Alx) and vex) = 1n (AjX) ---- (6.4)

Then we can verify that-4(x) and vex) satisfy the Bessels' equation:

x2yll +- xi+ C(J 2 X2 _x2 )y = 0 (Since they are Bessel functions)

i.c., x2ul1 + xul +-(A:2iX2 - n2)u

x2vlI + xvI + (A2 jX2- n2)u =

o (6.5)

and (6.6)
o

Multiplying equation (6.5) by o and equation (6.6) by u and subtracting one from the other we get

o



'., .d(v 1 vI)
J.e.X- u-u +

dx
(uul~uul); xCAf- A~)UU

d J II}or --- lX(v U - uu )
dx _ ..

I

X(A ? -A ~) uu
J ,1

(6.7)

'Integrating equation (6.7) w.r.t. x between 0 and a we get

[ 1 1 Jax(uu -uu ) 0
a

(A ? ~ A ~) f x uu dx, J. 1 0

Substituting for u and u from equ~tion (6.4) we get

a
(X? - A ~) I x J (A .x) J (A .x) dx

.I IOn l n}

{x[J (A .x»)l (A .x) -) (A.x»)l (A .X)]}a
n) n I ,nl nJ '0

a[J (A .a)Jl (A .a)-) (..1,.a)J1 (A .a)J'
n . J 11. 1 n 1 n J

0; Since )n(Aa)=O,for A = A iand A = A j

Since A- rt: A .i ,this implies that

a
[x In(A iX) )n(A jX) dxo . 0, ---(6.8)·

Case 2 : Suppose thatj = i, i.e. the roots of Jn (Aa) = 0 are equal. Then multiplying equation

(6:5) with 2u I we get

2 '
. 2x2u1z) 1+2xu1 +2(A,?x2-n2)uu1 =0

~ [x2u
12

_n2u2 +A.2X2u2]-2i2 x u2
'1 1

~ .
= 0or

--- (6.9)

Integrating equation (6.9) w.r.t.x. from 0 to awe get



[
·2 ]a

x2u1 - n2u2 +;,/x2u2 0

.J (2 .a)= 0 this
11 ISince u (x ) = J,/2 iX)

Equation reduces to

and

a
2/L~ fxJ2(/L.x)dx

IOn I
_ .7 [{JI (2 .X)}2]- a- n I

x=a
(6.10)

Replacing x by (2i x) in the recurrance relation

d ) n J ()-J (x = -J (x) - + 1 x we (Jetdx n x n n I:>

. 1 '

d J (2 x)
d(A.x) n i

I

:[ 1
n .J J~(A.x) - J +1(A.x)

A.X I 11 I .
I

or
1- ,I 1 '2 . (A.X)i 11 I (

11 J .~ In(2.x) -J 1(2.x)
A.X I n+ I

I . .

i.e., = (n] J n(2.x) - 2.J +1'(2.x)x i I I n I

Hence [V~(,\X)ll=a [tJn (AjX) - A/n + I (AjXfl =a

. P-A.J (Xa)p, :ince In(2ia)= 0
I n+l I .' .

2/J~+1{2ia) ....(6.11)

Using equation (6.11) in equation (6.10) we get,

a .
. ' '). . ?

22.- f x J -(A.x) dx
'0 11 I

a
(.)1" Ix J2(2.x) dxon,

2«.J2 l(Xa)
2 n+ "\

.... (6.12)

\ .



combining the equations (6.8) and (6.12) we have

- a

J X In(A.X) In(A.X) dx =o l 1 .
o if A.:;t:A.

, 1 .1
2a 2 1 . 1 ~-J (/L.a) If A. = AJ.2 n+l I I

Note: This result can also be stated alternatively as :

a
f x In(A.x) J (A .x)dxo In]

a2 2 s:J (A a) u ..2 n+l i lj

when 8ij = 0, if i =I- j
= I, if i = j

6.5 Fourier - Bessel expansion for f(x)
Thcorcm r- If f(x) is defined for all x in the intervel [ 0, a] and has an expansion of the form

00
L c.} (Xx)

. 0 I n I
1=

f(x) = --- (6. I 3)

where Ai are the roots of the equation In (Aix) = O. then for each i. ci is given by

C.
I

a
2 f x I(x) J (Xx)dxo n I

Proof :- Consider equation (6.13) and multiply both sides by x J,/AjX) we get

00

I c. x J (Xx) J (A .x)
. 0 I 11 I 11)
[=

Integrating both sides of this equation w.r.t.x. from 0 to a we get

a
f x f(x)J (A .x)dxn )o .

rxJ a
L: c. f xJ (Xx) J (A .x)dx. 0 IOn I J1) .

[=

a2 2
c)' - J 1 (A .a)

2 n+ J

Replacing j by i we obtain

af, A a2 2
X t(x) In ( iX) dx = ci J 1 (Xa)

o 2 n+ I
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c.-r

a
2 J x [{x) J- (A.x) dxn Io

2 2a J I(A.a)n+ I

Because of its similarity to a Fourier series, the series of the type (6.13) is called a Fourier - Bessel
senes.

6.6 Examples:

6.6.1 Example: Using the generating function for Jn (x), show.that In( ~x) =( _l)n In (x)

Solution :- we have from the generating function for Jn (x)
"-. ..

00

I::I1Jn(x)
11 =-00

x 1-(z--)
e2 z

Replacing x by -x in both sides of this equation, we get

00
I::I1JI1(_X)

11 =-00

x 1
--(z--)

e 2 z

x 1-(-z+-)
e2 z

x I .
~(-z~-)

e2 -z

=
00

I (-z)nJn (x)
·n=oo

IX)

I(-l)n (z)n Jn(x)
J1 =-00

(6.14)

EqLwling the co-efficient of Zl10n both sides of the equation (6.14) we get
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6.6.2
. \.'

Ex~'mple : Show thnt

(i)
"~ fcos(nB-xsinB)dB

" 0
for any integer n

(ii)
1 "- fcos(xsinB) dB
"0 .

Solution :-

1 "- fcos(xcosB) dB
.·"0 .

We have from equation (6.2) and (6.3)

=

cas (xsinB )= JO(x)+2 (cos2B ).J2(x)+2(cos4B ).J4(x)+ --- (6.2)

sin (xsinB )= 2(sinB )J1(x)+2(sin3B ) J3(x)+........ (6.3)

Multiplying both sides of equation (6:2) with cos2mB .. and integrating w.r.t. B from 0 to JT we
g.et

IT

fcos(xsinB) cos 2mB dB
o

" st
J (x) [cos 2mB dB + 2 J (x) f cas 2B cos 2m B dB

o 0 2 0

l[ 2
.+ +2J2m(x) feos (2mt))dO+ .

o

=
l[

o + 0+ + 12m.(x) 6(l+cos4m~)dB

. + (I + .

Similarly we can show that

l[

fcos(xsinB) cos (2m + 1)8 dB

o
o

.Multiplying both sides of equation (6.3) by sin (2111+1) B and integrating W.r.t. B from 0 tOl[ we
:et



Jr
. Jsin(xsinB )sin (2m+I)BdBo .

Jr
= 2JI(x) JsinB sin (2m+i)BdB+. 0

;[

2J,~(x) fsin38 sin(2m+l)8d8+ .- 0
Jr

+2J2 I(x) fsin2(2m+lfJdB+ ....m, 0

7r .
=O+O+·· .. ·+J2 lex) f[l-cos(2m+I)O}iO+O+ ....

m+ 0 .

= Jr J2m+1(x)

In a similar manner we can show that
Jr
[sin (x sin B) sin 2m B dBo - o

Jr
Hence, f cos(2m B - x sin B)d& =

o
Jr Jr
[cos 2mB cos (xsmB)dB + Jsin2mB sin(xsinB)dB= Jr J2m{x)o 0 -

Jr
and J[cas(2m + 1)8 - xsinB]dB

o
Jr
J[cos(2m + I)B cos(xsinB]dB +
o
Jr
. J[sin(2m + I)B sin(xsinB}iP
o
Jr J2m+1 (x)

Hence for all positive integral n, we have
Jr
.[cos (n e - xsin e )de
o

Jr J (X)n

sURPose that n is a negative integer. Then we can write n =v-m where m is a positive
integer. Now

Jr
Jcas (n e --x sin B )d Bo .

7r
J[eos(=mt) - xsin B)]d(j
o
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. 0
- fcos(-m(Jr-¢)-sin(Jr-¢)d¢

if B = (Jr - ¢ )

=
Jr
JcoS[-nlJr +.( m¢ - xsin ¢)] d¢
o
Jr

. f {casm.r.cosf lll¢ - xsin ¢) + sin I11Jrsin (m¢ - xsin ¢) }d¢
o

Jr
(_l)m. f cas (111¢ - xsin ¢) d¢

o
Jr J (x)

-/71
Jr J (x)

11

7r
Hence. for all integral values of n we have Jeos(m B - xsin B)dB = 7r Jn (x)

.. . 0

(ii) We have cos(xsin B) = JO(x) +2 cos2B J 2 (x) +....

Jr Jr Jr Jr

Jcos(xsinB)dB = JO(x) f dB+2 J2(x) J cos2Bd8+ 2J4(x) J cos48 d8+ ;
o . 0 0 0

Jr
we know that f cas pB dB = 0, ifp is an even integer.

o
J[

Hence J cos (x sin ()) dB
o

=

1 Jr
JO(x) = - fcos(xsinB.) dB

Jr 0

Replacing fI by (~ - {}) in equation (6.2) we get

or (6.15)

cos(x cas B) = .To (x) -2cos28 12(x)+2cos4B 14 (x)+ .
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Integrating both sides of this equation w.r.t. e from a to IT we get

J[

J cas (x cas 0) eo
o =

Jr Jr
JO (x) Jd0 -2J2-(x) Jcos20 d0 + .

o 0
JrJO(x)

or
1 Jr

[cosix cas e )d e
o (6.16)

From equations (6.15) and (6.16) the.result (ii) follows

6.6.3. Example:- Expand the function [(x) =1, a < x < a in a-series of the form

LC. JO(Xx) where X are the roots of the equation JO(A a)=oI I' . I .'

Solution: . The Fourier - Bessel expansion for f(x) =1, is given by

00

I=11x)= . I ci JO(A/) where JO(Aia) = 0
1=0

Here ci is given by C.
I

a x/ex) J 0 CALx) dx
2 f -- 2

o a2 J} (Aja)

a x JOCA..x) dx
2 f I.

2 2 . since f(x) =1.. O· a J1 (Aj a)' . , --- (6.17)=

1) -dtLet /'vix = t So that dx = A... Then
I

a
J x JO (A.x) dxo I

=
1 aA.

I

A? J t J0 (t)dt
. I 0

1 ak
12 f I ~.~ J1 (t) ~t

/'vi 0 dx
by reccurance relation (1)
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1
12 [a,.1,.Jl(,.1,.a)~O]

/l.,. l l
I

Since J1(0)= 0,

(6.18)

Using equation (6.18) in equation (6.17) we get

C.
I

2
aA.J

1
(a,.1,.)

l l
; r

co nscq lien t Iy

- ~ > •

SAQS:

(i)

00 J (x)
J n

Show that dxo x
=

n

( i i )
00

Expand x in a series of the form I c JI(A x)
r= 1 r r

in the interval 0::; x ::;.1. where )cr are the roots of the equation J} (AIa) ~ 0

(iii) show that J0 (x)

00 (-l( x2r2::2 rr =: 0 (2 r l)
(1.7 Summary:

'~,The generating function for the Bessel Function Jn (x) was defined and the trigonometric

functions Cas x and Sin x were expanded interrns of Bessel functions J0 (x). J1(x) The

orthogonality property of Bessel functions was established and a Fourier - Bessel.seriesexpansion

for f(x) was obtained.
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6.8 Model Examination questions:

~ r( 1) (xJn fcos(xsin¢)cos2n¢ d¢
;rr n+- 2 0 .. 2

1. Prove that Jn (x)

2.
x .-ax

if a> 0, Prove that f e J0 (bx)dx· =
o

3 Using the generating function for Jn (x), show that

00

J (x + Y) = L J (x) J (x)n r n-r
r =-00

4. If n is non - negative, show that
I
b

00

5. Expand x2in a series ofth form L CrJO(Arx)
r = 1

in the interval [ 0 , a] where AI' are the roots of the equation J0 (Aa) = 0

(Ans :-

6. If a and 13 are the roots of the equation J0 (x) = 0, show that

1
f x !0 (a x) J0 (13 x) dx
o

1 2 ~
= - J (a) U aj32 1

7. If a and 13 are the roots of the equation J0 (x) = 0, then Prove that

1
f x J (a x) J (13 x) dxo n n 0. a -:f. 13

8.
00 2 JO(anx)

Prove that ~ --;;- J. (a )
n-l n 1 n

1.

Proof K. Rama Mohana Rao, .
Andhra University



LESSON - 7: TOTAL DIcFFER ENTIA L EQUATIONS

7.1' lNTRODUCTION :

An ordinary differential equation of first order and of degree one involving three variables

, is expressed in the form' P + Q dy + R dZ = 0 where P Q R are functions of x y z and xis the. dx' dx: , , ,': ' , ,

independent variable. In terms of differentials, this equation can be written as

P dx + Q dy + R dZ = 0 (7.1)

Equation (7.1) is called a total differential equation. It can be integrated directly if there exists a
function u (x.y.z) whose total differential du is equal to the L.H.S. of (7.1). In other cases, equation

, '

(7.1) may notbe integrable. We shall now find the- condition which P, Q, R must satisfy in order
that equation (7.1) may be integrable.

7.2 Condition for the integrability of the total differential eguationP dx + Q dy + R dZ=O

Theorem:
A necessary and sufficient condition for the differential equation P dx + Q dy + R dz=O to be
integrable is that:

"

p(aQ _ aR)+Q(aR -~)+R(~- aQ)=O
o z ay ax a z ay ax

Proof: Suppose that the condition is necessary: consider the differential equation
/p dx + Q dy + jt dz = 0, where P, Q, R are functions of x, yand z that admit first order partial
derivatives. Assume that equation (7.1) has an integral: u (x, y, z) = C (7.2)
Theil the total differential du must be equal to P dx + Q dy + R dz or a multiple of it by a factor
A (x.y,z). From equation (7.2) we have:

au au au
-dx+--dy+-dzax oy azdu (7.3)

au au au
Since LI (x, y. z)= C is the integral of equation (7.1), P, Q, R must be proportional to a';' a y' a z

au/
. /DxIe ,-,--''" p

oui. ~?u/ '/~ u~a ou_= --y = ~ = A(X y,z) (or) -- )cP,
Q R " ax

au all
= AQ, = AR' ...(7.4)oy OZ
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From the first two equations of (7.4) we have

~(AP) =
oy

o (0 U) = 02 U
oy ox oyox

~(AQ)" = ~[Ou] = 02 U
ox ox oy oxoy

o "" 0
Hence -(AP) =-(AQ). 'o x .a x

A OP + P OX= A oQ+Q OA
i.e., 0 y "0 y 0 x 0 x

A [OP _ oQ]=Q OA_ P OA
~ "0 y ox oxoy

Similarly we obtain:

(7.5)

and

A (oQ _ O~J=R OA_ Q OA
o Z 0 Y 0 y OZ

A (OR _ OP)=p OA_ R o...l
OX oz· oz ox

(7~6)

(7.7)

"Multiplying equations 7.5, 7.6 and 7~7by R, P and Q respectively and adding, we obtain

(7.8)

Equation (7.8) is the necessarycondition for the integrability of equation (7; 1)

Conversely now suppose.that the coefficients p,.Q arid R of equation (7.1}satisfy the equation
(7.8). We have-to IToo-prove that an integralof equarierrfc.l ) can be found; This is equivalent to
showing that, if we Jake--P I :. p-P, Q;::; Ii Q and RI'=::'p R, where J1 is a function of x, y, z then
the same condition-(7.lthi~satisfied by ~_I-' QiR~.~

"""-" "

-

We may now''-YlthQut loss of generality, re-gar-dP_d~ + Q sly as an exactdifferential, for if
that is not exact differential we can make it exact by multiplying equation (7.1) by the integrating~-a§

--
OJf __

-oP"

oy (7.9)factor JI ex, y, z) . Then -

Let V= fPdx+Qdy (7.10)
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Then
av av .
-dx + -dy =Pdx+Qdyox oy .

"\

. . OV. av
and hence P = --;-, Q = -;-
. uX .uy
From equation (7.4). we have

.,..., (7.11)

oP
oz

. o2y aQ _ a2 y
azax' az - azay

using equations (7.9) and (7.11) in equation.(7.8) we obtain

o V [ 0
2 V _ 0 R] + a v[a R _ a2 v ]_0

ax ozoy oy oy ox ozox

. av ~[av -R]- av ~[-r+ aVJ=oox oy az . oy ox a z

or

oV
axoV
ay

~(OV -R)
ax az -0
~(OV -R) -
ay az

. (av J'This suggests that a relation between V and a z - R exists which is independent of x and y.

. .(3V JConsequently 3 z - R -can be expressed as a function of z and v atone. Hence we can take

(OV -R)
O~ ¢ (z, V) (7.12)

using equation (7.l1) and (7.12) we get

ov oV oV
= a x dx + 0 Y dy+ ( 3 z -¢ ) dz

OV av 3V
= (- dx + -dy + (-dz) - ,I.. dzax ay oz 'f'

=dV-¢ d z,

Thus equation (7.1) may be written as d V - ¢ dz = 0, which is an equation in two variables. Its
integral is of the form F (V,z) =0. Hence the condition (7.8) is sufficient.

P clx + Q dy + R dz

7)



Thus equation (7.8) is a necessary and sufficient condition for the equation (7.1) to have an integral

Geometrical Interpretation:

~ -+ -+ .....• .

If F= P i + Q j +R k and P, Q, R, are functions of x, y, and z, then the total differential

equation Pdx + Q dy + R dz = ° can be written as F. dr = 0 ~.... (7.13)

if equation (7.13) is not exact, we can find an integrating factor such that A i: = 0 is exact.

This equation has a solution of the Form F (x.y, z) = C (7.14)

Equation (7.14) represents a family of single parameter surfaces

..7.3 Examples:

7.3.1. Example: Verify the conditions of integrability for the equation.

(y - z) (y + Z - 2x)dx + (z - x) (z + x - 2y) dy + (x - y) (x + Y - 2z) dz = 0

Solution :Comparing the given equation with the standard form P dx + Q dy + R dz = 0, we have

Hence

P = y2 _Z2_2x (y - z)
Q = Z2- X2- 2y (z - x)

. R = X2- y2 -2z (x - y)

ap
a y = 2y - 2x;

a Q = 2y.- Zx :ax '

ap
= 2x - 2zaz

aR
- =2x-2z·ax '

aQ
- = 2z-2yaz
aR
a y = 2z - 2y

aQ 8R
Since '0 Z = 0 y ,

aR ap ap e o
a x = 0 z and '0 y = 0 x

(
OQ OR] (OR

We observe that P a z - a y .+ Q a x -

Hence the condition for integrability is satisfied.

OP) +R (oP _ 8Q]=o
o Z 0 yo x
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7.3.2. Example:
Verify the condition of integrability for the equation (cosx+e'yjdx + (ex+zeY)dy+ eY dz = °
Solution: Comparing the given equation with the equation Pdx + Qdy + Rdz = 0, we have

P = cosx+eXy

Q=ex +z eY

R= eY

oP='ex oP = 0o y 'az

aQ =eY aQ =ex
oz ' ox

Then

oR =0 aR =eY
ox ' oy·

. Substituting these values in the condition for integrability, we have

. (cos x - e" y) (eY- eY)+ (eX~ ZeY) (0-0) + eY(eX-e)= a
Hence the condition for integrability is satisfied and the given equation is integrable.

7.3.3~ Example: Show that condition of integrability is satisfied by the equation:

. 2 dx 2 dy 2 . dz(z + z )cos x - - (z + z )-+(1- z )(y - smx)-. =0 and find its solution.
. dt dt dt

Solution: We shall rewrite the given equation as

(z +z2)cosx dx - (z+ z2)dy+(1- z2)(y-sinx)dz = 0

i.e., z(1+ z)cos x dx - z(l- z)dy+(1 + z)(1- z)(y-sinx)dz = 0
or z cosX dx - zdy + (1- z )(y - sin x )dz = 0 (7.15)

on comparing this equation (7.15) with the equation P dx + Q dy + R dz = ° we have

P = Z cosx, Q = - z arid R = (l-z) (y-sinx )

oP ap
Then a y = 0, a z = cos x

aQ e o
-=-1 -=0

. az 'ax



oR oR
- = - (l-z) cas x, --;-= (I-z)ox uy

Substituting these values in the condition for integrability we have
z cas x (-1- (J-z) - z( (z-l ) cas x - cas x) + (1 - z) (y - sin x) (0 - 0) = 0, which is satisfied.

_ ... cos xdx=dy (I ) _
We shall now wnte equation (7.15) 111 the form . - --1 dz-Osmx- y z
So that the complete solution can be determined. Integrating equation (7.16) we obtain

(7.16)

log ( sin x - y) - log z + Z = log C
i.e., log (sin x - y) - log z - log C = - z

or sinx - y = C Z e -7.

This is the required solution.

7.3.4. Example: Determine the curves' represented by the solution of the equation:
ydx+(z-y)dy+xdz=O (717)

that lie in the plane 2x - y - z = 1

Solution: Here P = y, Q = (z - y) and R = x and we can see that the condition for integrability
is not satisfied. Hence the given equation cannot be integrated directly.

Differentiating the equation 2x - y - z = I we get 2 dx - dy - dz = 0 (7.18)

Multiplying equation (7.18) by x and adding the obtained one to equation (7.17) we obtain

(2x + y) dx + ( z -y - x ) dy = 0 (7.19)

From the equation of the given plane 2x - y - z = I we have z = 2x - y - 1. Hence substituting for z
in equation (7.19) we get .

(2x + y) dx + ( 2x - y - I - Y - x ) dy = 0
or (2x + y) dx + (x - 2y - I) dy = 0
i.e., 2x dx + (y dx + x dy) - 2y dy - dy = 0 on integrating this equation we get,

Thus, we find that the solutions of the given differential equation are the sections of the surface:

X2 + xy - y2 - y = C by the plane 2x - y - z = 1
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7.4 Solution by inspection:

Sometimes we may rearrange the terms of the given equation and / or divide the equation by
a suitable function of x, y, z so that the obtained' equation may contain different parts which are
exact differentials. In such cases, we proceed to find the solution directly and we do not need to:
explore or verify the condition of integrability. However, in many cases, the following list willll€fp
us to re-write the given equations in the exact differential form:

l.

2.
. xdy-ydx =d(tan-1Yx)

x2 + 2 xy

-y d:; x dy = d (log Yx)'1oJ.

4.
x dy + y dx d (1 )--'----'--- = og xy

xy

5.
x dx + y dy = d(!1 (2 2 ))2 2 . og x + y .

x + y . 2

6. 2xydy; y2dx~ d(y2 / x ) .
x

x dy + Y dx = d ( xy)
y2 dx + 2xy dy = d (y2X)
2 (x dx + Y dy ) = d (x2+ y2) .
xy dz + xz dy + yz dx = d (xyz)

Examples:

Solution: Dividing the given equation throughout by X2y2 we get,

(1 y ZJ (1 Z xl (1 IJ--2--~ dx+ ---~ --~ dy+ -+- dz=O
y x x- x y- y- x y

y dx - x dy x dy - y dx x dz - z dx y dz - z dy 0
Rearranging the like terms we obtain 2 + 2, + 2 + 2 =

y x x y



If this equation isexpressed in exact differential form, we get d( ~) +d( ~) +d( : ) + {~ }.1iil

"·x y z z"
oil Integration we get - + ~ + - + - = C. y x x y ,

<,

=> X2+ y2 + Z (x+y) = Cxy, C is a constant

7.5.2 Example: Solve (y - z) ( y + Z - zx) dx + (z-x) (z + x - 2y) dy + (x-y) (x + Y - 2z) dz =°
Solution: The given equation is inthe standard form of the exact differential
P dx + Q dy + R dz = 0, where

P
Q -
R

(y - z)( y + Z - 2x)
( z - x) ( z + x -2y)
(x - y)( x +y - 2z)

oP'- =2x -2z'oz '

" .),

Then
OP
8 y = 2y - 2x;

8Q
-=2y-2x'ox '

oQ '
- == 2z-2y'OZ '

oR
o y = 2z - 2y ;

oR
- =2x -2zox

oP 8Q oQ
Since 8 y = .8 x ' 8 Z . =

oR 8R 8P
oy , ,0 x . = 8 z ' the given equation is exact.

We now re-write the given equation as,

(l dx + 2 xy dy) ~.(Z2dx + 2 zx dz) + (Z2dy + 2xy dz) - (x2 dy + 2xy dx)
+ (x2 dz + 2zx dx) _(y2dz + 2zy dy) = 0·

(or) d (y2x) - d (Z2x) +d (Z2y)- d (x2y)+ d (x2z) - d (y2z) = 0, on integration we get

y2X_Z2X + Z2Y- X2Y+ X2Z - y2Z = C, C is a constant

7.5.3 Example:

Solution: The given equation is not in the standard form of a total differential equation so we
convert it into the standard form by rewriting it as ( x dx + Ydy)2 - (z dzi = 0.

(or) ( x dx + Ydy + Z dz ).(x dx + Ydy - zdz) =0
. . I
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Hence:x~dx + Y dy + Z dz = 0 (or) x dx + Y dy - z dz = 0

Integrating these equations we obtain·

~ (x2 + y2 + z2) = C1,

I.e.,

. 1 2 2 2
2 (x + Y - z ) = C2 ; C" C2 are constants

(2 + y2 + z2 = C,

x2 + y2 - z2 = C2'

7.6 Homogeneous equations in x, y and z

Ifin a total differential equation P, Q, R are homogeneous functions of x, y and z then such
an equation will always be integrable. We adopt the following systematic procedure to solve such
equations.

Step 1 :

Step 2

. Step 3

Step 4

. " .

. Compare the give equation with the standard form P dx + Q dy + R dz=O
and identify P, Q, R

Verify the condition for integrability :

p(a~_ aRJ+Q(aR _ ap)+R(ap -:aQ]=oaz ay ax az ay ax
1

Calculate 0 = Px+ Qy +Rz. If this is non-zero, then Px +Qy +Rz IS

taken as the integrating factor of the given equation. We multiply the given
equation by liD. We find the total differential of D i.e, d(D). Then add and
subtract d(D) to and from the numerator of the equation, obtained after
multiplying the given equation with lID~ Several terms in the resulting
equations will then be exact differentials. We then integrate this equation.

. While re-grouping the terms here, we keep in view the list of exact differential
forms given in section. 7.4 ~

If D = Px + Qy + Rz = 0, then the procedure outlined in step 3 is not applicable.
Then we adopt the following procedure.:

Put x = zu, and y = z v , so that dx = z du + u dz, dy = z d v + v dz

We substitute these values in the given equation.
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Case : 1 : If the coefficient of dz is equal to zero, then we get an equation in the two variables
u and v only. By regrouping the terms properly, we integrate the equation.

Case: 2 : If the coefficient of dz 7:. 0, then we shall be able to seperate z from. u and V The

. .. fl (u,U )du+ f2(u,u )du dz
resulting equation will be of the form: f() +-= 0u,u z
Denote fCu,v) by G and find d(O). Add and subtract d(O) to and from the numerator.
Write the equation in proper form and then integrate. After integration, u and v are
replaced by x/z and ylz respectively to get the desired solution inx,y and z.

We shall now illustrate this procedure with a few examples.

7.7 Examples:

t 0"

7.7.1. "Example 1 : . Solve (YZ+Z2) dx + xz dy + xy dz = 0 (7.20)
Solution:
Comparing the given equation with the standard form of the equation P dx + Q dy + R dz = 0, we
find P= yz +Z2, Q= - xz and R = xy,

oP
o y =z,

oP
- =y+2zo z '

8Q
-=-zox '

8Q
-=-xoz
oR
-=xoy

r:

observe that the condition for integrability is satisfied. Let x = uz and y = v z

Then dx =u dz + z du; dy = v dz + z dv .
Substituting these values in equation (7.20), we get

(v Z2+ Z2) (u dz + z du) - uz2 (v dz + z d v) + U U Z2 dz = °
or (u + 1) Z3du - U Z3d u + (u + 1) U Z2 dz ::;:0 (7.21 )

Dividing equation (7.21) throughout by ( U + 1) U Z3

du dv dz .
We get _. - _.- + - = 0 on Integration -we get log u - log (u + 1) + log z ::;:log C

u v+ 1 z
or u z = C (v + 1), C is a constant.
But II = xlz, and v ::;:ylz. Hence we have (xlz) z = C (ylz+ 1)

i.e., xz ::;:C(y + z), which is the required solution
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7.7.2 Example: 2 ??Solve (y + yz) dx + (xz + z") dy + (x ' - xy)dz = 0

SolutiOli : Here we have P =s' + yz, Q = xz + Z2and R = X2 - xy, observe that the conditions of
integrability aare satisfied by these P, Q and R (Verify).

Si nee the given Equation is homogeneous, put x = ZU, Y = z u so that
dx = z du +u dz and dy = z d u + U dz

Substituting these values in the given equation, we get

(u 2 + u) z3 du + ( u + I)z3 du + [ U (u 2 + u ) +u (u + I ) + U 2. - U U ] z2 C\Z = 0

or z3 [ (u 2 + u) du + ( U + 1 ) d u ] + (u +1) (u 2 +u )] Z2 dz = 0

Dividing this equation throughtout by zJ ( U + 1 ) (u 2 + U ) we get, .

. du + d u + dz = 0
u+l u2+u z

.. du (1 1) dz
or u.+ 1 + u - u + 1 du + --; = 0

. on Integration we obtain log (u +1) + log u - log (u + 1) + log z = Jog C, C is a constant

1.e., .. (u + 1) u z = C( u + I) (7.22)

Substituting u ~ xlz and u = ylz in equation (7.22) and simplifying we get ( x +z)y = C (y + z) .
. which is the required solution.

7.7.3. Example : Solve z2dx + (z2-2yz)dy + (2y2~yz-xz)dz = 0

Solution : Here P = z2, Q = z2 - 2 yz, R = 2y2 - yz- xz and the condition for integrability is
satisfiedjverify). Since the given equation is homogeneous, put

x = zu, y = z U so that dx = z du + u dz ano y = z d u + U dz

Substituting these values in the given equation, we get,

z2(zdu+udz)+z2(1-2u)(zdu + u dz)+z~(2u2- u -u}dz=O

t.e.,

zdu+(l-2u)zdu +(u+ u -2u:2+2u2.., u -u)dz=O

z du+ ( 1 - 2 u ) z d u = 0 ::=:> du + (1-2 u ) d u = 0 on integration we get u + U - v2 = C,. .

.. or
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C is a constant upon substituting for u and u in this equation we get xz + yz -i = C z2, which is the
desired solution.

7.8 General solution of P dx + Q dy + R dz = 0 by considering one of the variables as
constant.

The given equation is set into the standard form P dx + Q dy + R dz = 0 and we verify the
condition for integrability. Ifit is satisfied, then we consider one of the variables, say z as constant
so that dz = O. We then integrate the reduced equation P dx + Q dy = 0 and take the arbitrary

constant of integration by ¢ (z). Now differentiate the integral just obtained w.r.t. x, y and z and

compare it with the given differential equation to determine ¢ (z).

We shall now exemplify this procedure by two illustrations.

7.9 Examples:

7.9.1 Example: Solve ci -+- yz) dx + (z2 + zx) dy + (y2 - xy) dz = 0 (7.23)

Solution: The given equation is in the standard form with P =l + yz, Q = z2 +zx and R = y2
- xy. We find here that the condition for integrability is satisfied. If z is considered as constant, then
equation (7.23) reduces to :

dx + dy =0
z(z+x) y(y+z)

Noting that z is a constant and then integrating, we get,

~ f~ + ~ rr ~- _l_}IY = a constant say ¢ (z)
z x+z zJly y+z

or log ( x + z) + log Y - log (y + z) = ¢' (z)

I.e"
)I(X + z )
y + z = ¢ (z) => y (x + z) - (y + z) ¢ (z) = 0 (7.24)

Differentiating this equation (7.24) we obtain:

y (dz + dx) +(x +z) dy - [ (y + z) ¢ I (z) dz + (dy + dz) ¢ (z) ] = 0

or y dx + [ X +z - ¢ (z) ] dy + [ Y - (y + z) dz ¢ I (z) - ¢ (z) ] dz =0 (7.25)

Comparing equation (7.25) with the equation (7.23) we get,
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? )z: +ZX y -xy----- = ---"---~---
Z + X - ¢ (z ) y - (y + z) ¢ I (z) - ¢ (z)

. .. y 2 + yz z 2 + zx .. ..
Since the relation . = ~.( ) reduces to equation (7.24), It does not provide us with. y z + x - If' z-

y2 + yz
any (new) useful information. Hence we take y

y - (y + z) ¢1 (z) - ¢ (z)

( y + z) [ y - (y + z) ¢ '(z) - ¢ (z) ]

y2 + yz - (y + zi ¢ '(z) - (y + z) ¢ (z)
y2 + yz - (y + ~)2 ¢ I(z) - y(x + z),(in virtue of equation 7.24)
y2 _xy _ (y+zf y2 ¢ '(z)

Hence (y+zi ¢ '(z) = 0 => ¢ I(Z) => ¢ (z) = C

From equation (7.24) the required integral is : y ( x + Z ) = ( y + z) C.

7.9.2. Example : . Solve 3x2 dx + 3y2dy - (x3+ y3+ e2z)dz = 0 (7.26)

Solution: The.given equation (7.26) is in the standard form with P = 3x2, Q = 3y2 and R =

- (x3+y3+e2z). We can see that the condition of integrability is satisfied. We now treat z as constant,
so that dz = O. Then equation (7.26) reduces to 3x2 dx + 3y2dy = O. On integrating this equation w~
obtain:

XJ+y3 = ¢ (z), where ¢(z).is a constant of integration (7.27)

Differentiating equation (7.27)

3x2dx + 3y2dy -¢ '(z) dz = 0 (7.28)

Comparing equation (7.28) with equation (7.26) we get

(7.29)

In virtue of equation (7.27) equation (7.29) become

¢ (z) + e 2·z= ¢ '(z) or ¢ '(z) - ¢ (z) = e 2z (7.30)

Equation (7.30) is a linear differential equation. Its solution can be seen to be ¢ (z) = e2z+ (
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Substituting this solution in equation (7.27) we get

x3 + y3 = e 2z + C e", which is the required solution.

7.10· Method of finding solution using Auxiliary equations

Consider the given equation in the standard form P dx +Q dy + R dz = 0 (7.31)

Assume that the condition for integrability is satisfied,

Then P (oQ _ 0 R) + Q (0 R _ 0 P) + R (oP _ 0 Q) = 0
oz oy ox o z oy ox .

Comparing equation (7.31) with (7.32) we have

(7.32)

dxdy dz
--=-:::------=-==- = = --==:--=-c=-eo 0 R oR 0 P oP 0 Q
----- ---- ---oz oy ax oz oy ax (7.33)

Equation (7.33) are called the auxiliary equations. Let u = Cp and V = C2 be the integrals obtained
by solving these equations. With these values we formulate the equation A du + B du ~0

(7.34)

Comparing equations (7.31) and (7.34) we find the values of A and B. Putting these values of A
and B in equation (7.34) and integrating it, we obtain a relation and we substitute the values of u
and V in that relation. We then obtain the required solution.

Note: This method fails in case the given equation is exact, for, in this case,

oP oQ
=oy ox'

eo oR=OZ oy'
oR oP

=ox oz

7.11 Examples:

7.11.1 Example: (7.34) -

Solution: Here P = 3x2, Q = 3y2 and R = _(x3 + y3+ e2z).

From theconditioll for integrability we have,

p(oQ _ OR) +Q(o R _ OP.)+R( OP - 0 Q]
oZ oy ox oz oy ox

= 3x2 ( 0 + 3y2) + 3y2-e-3x2-0) _ ex3~ y3+ e2z)(O_O)
=> 9 X2 y2 _ 9 x2 y2 = 0

o
(7.35)
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comparing equation (7.34) with equation (7.35) we get,

dy dz

-3x2 0 3x? dx + 3 y2 dy = 0

Hence x3 + y3 = const = u (say)

Also dz = 0 ~z = const = V (say)

Substituting these results in the equation A du + B d V =0,

We (Jeto (7.36)

Comparing equation (7.34) and(7.36) we have

Hence A= 1, B = - (u + e2V )

Consequently A du + B d V = 0
d u -

-',. du - ( u + e2V ) d V = 0 or - - u = e 2 V which is a linear- - dv - ,

equation, Its integrating.factor = e - f du = e- u.

Hence the solution is ue- U = f e- Ue+2u +C

or ue-u =e'? +C ~ u== e2u+Ceu
- or xJ +i = e 2z + C e z, which is the required solution.

(

7.11.2 Example: Solve x Z3 dx - z dy + 2y dz = 0 (7.37)

Solution:

Comparing equation (7.37) with P dx + Q dy + R dz = 0, we have P = xz', Q = -z.iand R =2y.

Hence equation (7_37) is integrable if the condition for integrability is satisifed,

I.e., xz' (-1~2) + (-z) (0-3XZ2) + zy (0) = 0 (7.38)

-COI~lparing equations (7.37) and (7.38) we get the auxiliary equations:

dx dy dz= =
-3 -3xz2 0 or
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From the last ratio we have dz = 0 or z = U, (say)
From the firsn~o ratios, x z2 dx = dy (or) 2x u2dx - 2 dy = 0

Integrating, X2u2 - 2y = U ,(say) (or) x2z2 - 2y = v

Therefore, A du + B du = 0 becomes A dz + B (2 XZ2dx - 2 dy + 2 ZX2dz) = 0

(or) 2B XZ2dx - 2B dy + (A + 2Bx2z) dz = 0 (7.39)

Comparing equations (7.37) and (7.39) we have, xz ' = 2 B XZ2,-z = -2B, 2y = A+2x2ZB

1 1
Therefore B = -z = -u and A, 2 2

Hence A du + B dv = 0 gives -u du + 1/2 u dv = 0 (or) ~2(~u)+d: =0
u =Cu2Tntegrating, - 2 logu + log U' -age (or)

i.e., x2z2 - 2y = Cz2., which is the required solution:

-SAQs:

1. Verify that the conditions of integrability is satisfied by the following total differential
.equations.

(i) (yz + Z-2)dx - xz dy + xy dz = 0
(ii) 2 (y + z) dx - ( x + z) dy + (2y - x + z) dz = 0

If. Solve the following total differential equations

(i)
- yz xz -1
2 2 dx= 2 2 dy-tan (y/x)dz=O (Ans: z tanl fy/xj= C}

x +y - x +y .
(y dx + x dy)( a - z) + xy dz == 0 (Ans: xy = C (a-x) )(ii)

III. Solve the following equationsby the method of inspection:

(i) z (y dx - x dy) = y2dz
(ii) _X2dx2 + y2 dy2 - Z2072 + 2xy dx dy = 0

(Ans: x - C y = y log z)
(Ans : )(2 + y2 + Z2 = C I

X2 + y2 _z2 = C
2
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IV. Solve the following homogeneous total differential equations:

(i) (2xz - yz) dx + (2 yz - xy) dy - (x2 - xy + l) dz = 0 CAns: x2+y2_xy= Cz)
(ii) z(y + z) dx - z (t-x) dy + y (x' - t) dz + Y (y + z) dt = 0 (Ans: xz + yt = c (y+z) )

V. Solve the following equation using the auxiliary equations method:

z (z - y) dx + (z + x) z dy + x (x + y) dz = 0 , (Ans : z (x + y) = C (x + y))

7.12 Summary :

A necessary and sufficient condition for the integrability of the total differential equation was
established. A systematic procedure to solve the homogeneous equations in x, y and z was laid and
a simple method of finding solution using auxiliary equation was presented.

7.13 Model Examination Questions:

'1. Show that the equation 3y dx + (z-Jy) dy + x dz = 0 is no~ integrable. Prove that the
projection on the xy plane of the curves that satisfy the equation and lie in the plane
2x + y - Z = a are the rectangular hyperbolas X2+ 3xy - ..j2- ay = C.

xy+z
Find fey) so that the total differential equation - --dx - z dy + f(y)dz = 0 is

x
2. (i)

. integrable
(ii) Hence solve it (Ans : (i) f (y) = k (y+L) (ii) Zk = c (y+ 1) )

3. Solve the following equations by the method of inspection:
(i) 2yz dx + zx dy - xy (l +z) dz = 0 (Ans : x2y = Cz eZ

)

(ii) (2x3y + 1) dx + X4dy + x2 tan z dz = 0 (Ans : x2y - IIx + log see z = C)
(iii) 3x2 (y + z) + (Z2+ x') dy + (2yz + x3)dz = 0 (Ans: x3 (y + z) + yz2 = C)

4. Solve the following total differential equations:
(i) z ( Z - y) dx + Z (z +x) dy + ~ (x + Y) dz = 0 (Ans : z (x + y) = C (x +z))
(ii) (X2y- y3 _y2Z)dx + (xl - x3 - x2z) dy + (x2y2+ x2y) dz = O.

(Ans: x2+ i + z(x+y) = c.xy)
(iii) (2xyz + y2z + yz2) dx + (x2z +2xy + 2xyz + xz2) dy + (x/y+xy'+Zxyz) dz = 0

(Ans : xyz (x +y +z) = C)

5. Solve the following equation_using the auxiliary equations method
(l + yz) dx +(xz + Z2)dy + (y2_xy) dz = 0 (Ans : (x + z) y = C (y + z ) )

Prof: K. Rama Mohana Rao
Andhra Universitv.



LESSON - 8 PARTIAL DIFFERENTIAL EQUATIONS

8.1 INTRODUCTION:

Partial differential equations arise in a variety of problems in science and Engineering when
the number of independent variables involved in the problem under discussion is greater than or
equal to t~o. In such cases, any dependent variable is likely to be a function of more than one
variable so that it possess partial derivatives w.r.t. several variables, instead of ordinary derivatives
w.r.t. a single variable. Usually the independent variables are scalars - for example pressure,
temperature. density or vectors like velocity, force etc. The task of a mathematician is

(i) to formulate the partial differential equation from the given physical problem and
(ii) to solve the mrthernatical problem, if a solution exists uniquely, by enforcing the

initial and / or t.oundary conditions.

We shall now consider the formulation of a partial differential equation and learna few
methods of solving a first order partial differential equation of the linear and non-linear type.

S.2 Formation of Partial Differential Equations:

It has already been stated that a partialdifferential equation is one which involves p, 'al
derivatives and which contains more than one independent variable. The order ofa partial differei.
equation is the order of the highest derivative occuring in it. For example,

02 02x-+x-· =22
OX oy

? ')
0- 2 _ C2 0- 2

o {2, - ax2

0
2

v + 0
2

v + 0
2

v = 0
o x2 0 y2 0 z2

are partial differential equations. Equation (8.1) is the first order and the dependent variable z is
considered as a function of two independent variables xand y. Equation (8.2) is an equation of
second order involving two independent variables x and t and the depedent variable z being a
function ofx and t. Equation (8.3) is also of second order but it involves three independent variables.

(8.1 )

(8.2)

(8.3)

In the discussion that follows, z is taken as dependent variable and x, y as independent
variables, so that z = fix.y). We shall adopt the folIowing notation:

. 2' 2
o 2 s;s:
--2 = r, 2=t~--
ox .8y

8z
-8"· =p.X ..

02
= q,oy = s.

axoy



Centre for Distance Educa~.. : Arh;:HV8 N8Cl8rilJn8 l Inivarsitv... _. '-" J - .• _,,_.J- ..... _ .... _. - .'J )~§~SCif'\'" IV;')

'-------------------------/
We shall now form the Partial differential equation by (i) the elimination of arbitrary constants (ii)
elimination of arbitrary functions from the given relation involving three or more variables.

8.2. t By elimination of arbitrary constants:
I

Let LIS consider the equation x2 + y2 + (z-cr' = a2
, a, c are arbitrary constants (8.4)

This represents the set of all spheres whose centres lie on the z-axis. Differentiating (8.4) w.r.t. x

3z
we obtain x+ p (z-c) = 0, p = -3 .

x
By differentiating (8.4) W.r.t. y. we find that

(8.5)

y+q(z-c)=O;
oz

q = oy (8.6)

(8.7)oj)' eliminating the arbitrary constant c from (8.5) and (8.6) we get y p - x q = 0

Equation (8.7) is a first order partial differential equation representing the set of all spheres with
centres on z-axis. Thus by starting with an equation F (x, y. r.. a. b) = 0 and eliminating in a
syslL'l11(llicway the arbitrary constants a and b. we obtained an equation f(x, y, z, p, q) == 0 we shall
nl)'vv gcneralise thisequation. '

Consider the equation Ftx, y, r; a, b) = 0 (8.7)

Where a 'and b are arbitrary constants. By regarding z as a function of the independent variables x
and y and d ifferentiati ng (8.7) w r.t. x and y partially we get,

of +poF =0ox oz
of +qoF =0
o y 0 Z

(8.8)

(8.9)

Eliminating a and b from equations (8.7), (8.8) and (8.9) we obtain a first order partial differentia
equation ofthe form l(x, y, z, p. q) = 0 (8.10)

Wl' call equation (8.7), the primitive or complete solution of the equation (8.10).

In gen .....ral. if the number of constants to be eliminated is just equal to the number or
independent variables, the partial differential equation obtained after the elimination of arbitrary
constants will be of first order. However, if the number of constants to be eliminated is more than
till' number ofindependent variables contained in the given equation. the resulting partial differential
equation will be cf order greater than 0111:.

n.
Of
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8.2.2. Example: Form the partial differential equation by eliminating the arbitrary constants
from the equation (x-a)? + (y-b)? + Z2= 1 (11)

Solution: Differentiating equation (11) partially w.r.t. x we get,

oz
2 ( x - a) + 2 z a x = 0 ~ (x - a) + z p = 0

Di fferentiating equation (II) partially w.r.t. x we get

oz
2(y-b)+2z oy =0

(12)

(y - b) + z q = 0 (13)

eliminating a and b from equation (11), (12) and (13) we obtain:

x-a = -zp
y-b = -zq

and (_Zp)2 + (_zq)2 + Z2= I
or Z2 (p2 + q2 +1) = 1

o

This is the required partial differential equations.

S.23. Example: Form the partial differential equation by eliminating the arbitrary constants

x2 y2 .
'a' and 'b' from 7 +"2 = 2z

a- b
(14)

Solution: Differentiating equation (14) partially w.r.t.x and later w.r.t. y we obtain:

2v oz 1 1 GZ q
-~ = 2-- =:> -0::: - =
b2 a y' b2 yay y

oubSlituting these values in equation (14) we get x p + y q = 2 z, which is the desired partial
differential equation.

8.2A Eliminating arbitrary functions:

We now formulate a partial differential equation by the elimination of arbitrary functions

¢ Irorn the equation ¢(u, u) = 0 , where u and u are known functions of x.y and z.

Consider the equation ¢(u,u) = 0 (15)
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\\!C treat x and y as independent variables x and.z as a dependent variable.

So that
az
-=pax '

az
a y =q,

ax
-=0ay ,

C)V
-' =0ax

Differentiating equation (15) partially w.r.t, x and y respectively, we obtain

(16)

(17)

U iIIIinating aart and ~ ¢ from equations (16) and (17) we get the determinant equation.
u uu '
au au
-+-pOx oz
au ou
-+-q
Oy 840,

au au
-+-pOx azou ou
-+-q

- (}y, Oz.
o

. ,.(,3 u all) (a u au) '('au' au) (a u au)
IC' '-'-+p,- -+q- - -+-q -+p- :--=0, .. Ox oz ay o z lay oz ox oz (18)

Equation (18) 011 simplication gives a partial differential equation of the form P p + Q q = R ...(19)

auou Ouou
-----ayaz azayWhere p =

Q
a u a u a u au
------azox oxoz
auovauou
-------oxoy oyox

Equation (19) is a first order partial differential equation in p and q which is also in the standard
form f (x. s- r: p, q) = O.

R

8.2.5 'Example: Form the partial differential equation by eliminating arbitrary functions from
the equation xyz = ¢ ( x+ y + z) , ,;' ,

Soitition : The given equation is xyz = ¢ (x + y + Z ) (20)
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Differentiating equation (20) partially w.r.t. x and later w.r.t. y we get,
yz + xyp = ( 1 + p) ¢ 1 (x + y + z)

zx + xyq = ( 1 + q) ¢ 1 ( x + y + z)

Eliminating ¢ 1 (x + Y + z) from equations (21) and (22) we obtain:

(21 )

(22)

xyp+ yz 1+ p
-'-=--'-- =
xyq+zx 1 +q .

Simplifying this equation we get, p x(y-z) + q y(z-x) = 'z(x-y)

V/hich is the desired partial differential equation.

8.2.6 Example:
from the equation

Form the partial differential equation by eliminating the arbitrary functions
z = f (x + it) + g (x - it).

Solution: Let z = [( x + it) + g ( x - it) (23)

Differentiating z partially W.r.t. x and t we get,
cJz
- = [I ( X + it) + g I ( X - it)ax (24)

Dz
at if I ( X + it) - i s' ( X - it) (25)

Again differentiating equation (24) w.r.t. x and (25) w.r.t. t partially "/C get
;:)'u- Z

--, = f!' (x+it)+gll (x-it)a x '
(26)

a:' z " II . 'I I • ) a" Z.. I' . (" (.)--,.= i~t (x + It) + i-g·' (x - It = ---, ,111 virtue or equation L)at- ax- .
a" z a2 z

Hence the desired partial differential equation is --, + --, = 0 which is of second order.ax- at-

8.2.7 Example: Form the p .tial differential equation by eliminating the arbitrary function
from the equation F ( x + y + Z, X2, y2 - Z2) == 0

Solution:
, , 2Let x + y + z = u and xw+ Y" - z = u (27)

Then the given equation becomes F ( u, u) = 0 (28)

i)i l"i'crcl11iating equation (28) partially W.r.t. x we get
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of (OU+pOU)+OF (OU+pOU)=o
au ax a z ··ov 'ox oz

From equation (27) we have

au

(29)

au
ax 2x.

au au
-=1 -

}az ' ay
au au
--2 - =-2zay - y, az (30)

= 1.

of . of
Substituting these values in equation (29) we get. -;- (l + p) + -;- (2x - 2pz) = 0 ... (31). uu uV

Differentiating equation (28) partially w.r.t. y we get

~(au+qauJ+oF[aU+qauJ=o
a LI a y a z au. a y a z ((32)

Substituting the results of equations (30) in 'equation (32) we get

of of
- (1 + q) + - (2y - 2zq) = 0au au

of of
Eliminating -;-and -;- from equations (31) and (33) we get.uu uV

(33)

1 + P 2x-2pz
I+q 2y-2pz

(l + p) (2y - 2qz) - ( 1 + q ) ( 2x - 2pz ) =:: 0

o

=>

on simplifying this equation. we obtain, ( y + z ) P - ( x + z ) q = x - y. This is the desired partial
di fferential equation which is of first order.

8.3 Linear partial differential equatio'n of first order - Lagrange's equation:

A differential equation involving only first order partial derivatives p and q is called first
order equation. If the degrees ofp and q are one. it is called a linear partial differential equation of
first order, otherwise it is non-linear.

A linear partial equation of first order of the form P p + Q q =:: R (34)

oz oz
Where P. Q. R are functions of x, y, z and p = -;-, q =:: -;- is-known as Lagranges equation.

uX uy
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In Section (8.2.4) we have shown that by the elimination of arbitrary functione(u, u )=0 ,.;
where 11 and v are functions of x, y, z we obtained a partial differential equation of.the form. "f~

Pp+Qq=R (19)

Q =

au au au au
-----
a y a zo z a y

au au o'u au
-----
oz ax ax o z
au au au au
-----
ax oy oyox .-.-, .

Where p

R

Hence ¢ (u, u) =,0, is the general solution of equation (34), ¢ being any arbitrary function:

Now suppose u = a, and u = b, where a and b are constants, so that

au au au-dx+-dy+-dz=0
ax oy oz

au au au
-dx+-dy+-dz=Oax ay (Jz

By Applying the method ofcross-multiplication to these equations, we obtain:

" :"

" : ,,,.
.--,

dx dy dz
all au au au au au au au au au a'Lia'V

-.- -.--.- ., -_ ..-. - ------ ---- -- -- -.----~-~-
oy az az ay az ax ax az ax ay oy ax
dx dy dz

or = by virtue of equation ,(19)r Q R , .....

The solution of these equations are u =a and u = b. Hence ¢(u,u) =0 is the general solution of

d x d 1) d z
Pp + Qq = R where II = a and u =b are the solutions of p = Q' = R
!lema!"\{ : We adopt the following working procedure to solve the equation Pp + Qq =R..

dx dy dz
Step I Form the subsidiary equation p = Q = R
Step 2 Obtain any two solutions u = a and u = b, where u and u are funcnons

of x, y, z and a, b are constants
Write the general solution as ¢ (u, u) == 0 or u = f( u ) or U ~ feu)
where the function f is arbitrary.

Step 3



SA. Examples:
8.4.1 Example: Solve ( p - q ) z = Z2+ ( X + y i
Solution: The given equation can be written as p z - q z = Z2 + (x + Y )2

Here P = z, Q = -z and R= Z2+ (x+y)".

dx dy dz
I-knee the Lagranges subsidiary equations are -.- = -. =. 1 ( + ·)1..... Z -z z+ x y

Considering the first two ratios: dx-> - dy (or) dx + dy = 0

Irueuratinu we get x + y = C where C is a constant
to to I' 1 '

d _ Zd z
considerinu the first and the last ratios, x -, ,...... z " + C-I ., since x + y =C1

Integrating this equation we get x = ~ log(z2 + C2l) + C2 where C
2

is a constant.

1· .
Hence the general solution is: ¢ [x + y, x - "2iog(Z2 + (x + y)2] = 0

8.4.2 Example: Solve (x2 - yz) P + (y2 - zx) q = Z2 - xy

Solution: Here P = X2- yz, .Q = y~ - zx and R =Z2 - xy

dx dy
---
y2-zx

dz
Hence the subsidiary equation for the given equation is: 2x -yz

dx-dy dy-dz d z-dx
Then = =

(x- y)(x+ y+z) (y-z)(x+ y+z) (z-x)(x+ y+z)
considering the first and the second ratios we get,

clx - cly dy - dz
. = => log (x -y) = log (y -z) + log C1x-y y-z

or (
.t-y) x-ylog -- = logCI => --. = C1y-zy-z

. z-x
Similarly considering the last two ratios and simplifying we get -'- = C2. y-z

Hence the general solution can be expressed as :
\

. (x - y z - xJ'¢ .-,- =0
y-z y-z
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8..1.3. Example: Solve the equation (x2 - y2 - Z2) P + 2xy q = 2x z

Solution: I ~ ~ ~[- ere P = x~ - y~ - z: , Q = 2xy. R = 2x z. Hence the subsidiary equations are:

d x dy d:
= ="} J ') ""\ 2x--y--z- LXy xz

From the subsidiary equation (35) each fraction is equal to

(35)

x d x + Y dy + Z dz
x(x~ + y2 + Z2)

From the second and third ratios of equation (35) we have,

(36)

dy
y

dz => log y =Iog z+Iog C, (37)=
z

Also.
xd x + y dy + Z dz
x(x2 + y2 +Z2)

I J J J(Z x-+y-+z-
2xz which on integration gives z = C2 ••••• (38)

J J Jx: + y- + z:
From equations (37) and (38), the general solution can be written as ¢ ( y/z, ) = a

z
or x2 + y2 + Z2 = z f (ylz)

8.5 Integral surfaces passing through a given curve:

In the preceding section we have discussed the method of obtaining a general solution of the
equation Pp + Qq = R. We shall now discuss the method of utilising the general solution for
obtaining the integral surface that passes through a given curve.

Let Pp + Qq = R be the given equation. Assume that the subsidiary equation give the
independent solutions:

¢ I (x,y,z)=C1 and ¢2(x,y,z)=C2 (39)

Suppose we wish to find the integral surface passing through the curve whose equation is paramatric
form is given by :

x = x(t), y = yet) and z = z(t) (40)

where t is the parameter.
Then equation (39) can be expressed as :

¢ I [ x(t), yet), z(t) ] = C1

¢ 2 [ xu), yet), z(t) ] = C2• } (41)
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By eliminating the parameter t from equations (41), we obtain a relation i)~volving C1 and C2" We
then express the general solution with the help of equations (36) in the form F( ¢ "¢ 2) = o.

8.6 Examples:

8.6.1 Example:

Find the integral surface of the differential equation (x - y) y2p + ( Y - x) x2q = (X2+ y2) Z passing
through the curve xz = aJ, y = o.

Solution: Comparing the given equation with the standard form we get
( x- y ) y2 = P, ( y _ x) X2= Q, and (x2 + y2) = R

Then the Lagranges subsidiary equations become,

dx dy .dz---- = = ----,--...,-
y" (x _ y) (y _ x) x" Z (y2 - x")

Considering the first and the second ratios we get,

(42)

(43)

By choosing 1, -1, 0 as the multipliers, each ratio of equation (42) is equal to

d x-dy d z
=y2(X_ y)+X"(X- y) zex" + y")

or
d x -:-dy _ dz
x- y z x-y=C z. 2

x-y
--=C

z 2 (44)

(45)by hypothesis the given curve is xz = a3, y = 0

Using equation (45) in equations (43) and (44) we get,

xJ = C and x = C'z so that X4= C C z"2 . , 2 (46)

Using the values ofC, and C2 from equations (43) and (44) in equation (46) we get,

or X4= (x ' + y3) (x - y). This is the equation of the required surface.
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8.6.2. Ecxample :
Obtain the integral surface of the equation X(y2+Z)p - Y(X2+Z)q = (X2_y2)Z. which contains the
straight line x + y = 0, z = I.

The auxiliary equations for the given POE become

dx d y d z

y(y2 + z) - y(x2 + z) z (x2 _ y2)

x dx+y dy
From the first two ratioseand the third ratios we have (2 ?)z x - y-

Solution:

(47)

dz

.., 1 2 2 L;.
Integrating this equation we get "2 (x + Y ) = z + 2 C2

=> X2-yl- 2z=C2 (48)
Similarly by multiplying each of the ratios ofeq (47) with xyz, summing them and integrating we

(49)

The parametric representation of the line given by x + Y= 0, Z= I can be taken as x = t,y = -t, z = 1
Substituting these values in equtions (48) and (49) we get

._t2 = C and 2t2 - 2 = C
I 2

(SOa)

Eliminating t from the equations(50a.) we have the relation 2C I + C2 + 2 = ° (SOb)

Hence the desired integral surface is written using equations (48) (49) and (SOb) as:
o

X2+ y2 + 2xyz - 2z + 2 = 0

8.7 Su "faces orthogonal to a given system of surfaces

Suppose we are giveri a one-parameter (C) family of surfaces characterised by the equation:

'f(x, y, z) = C (51)

Suppose we wish to find a system of surfaces which cut each of the given surfaces (51) at right
angles. Then the direction ratios of the normal at (x, y, z). to the surfaces (51) which pass throug]-

(
of of Of]

. that point are 0 x ' 0 y , 0 z
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Let the surface z =.¢ (x, y) , (52)

Cut each surface of (51) at right angles. Then the normal at (x.y.z) to the surface (52) has the

direction ratios [: ~::; ,-I J, i.e., ( p, q, -I).

Since the normals.at (x, y, z) to the surface (51) and to (52) are at right angles, we have

ar af af af af afp-+q---. =0 (or) p-+q-=-ax oy o z ax oy az (53)

This is of the form Pp + Qq = R

Conversely, we can easily verify that any solution of equation (53) is orthogonal to every
surface represented by equation (51).

8.7.1. Example : Find the surface which intersects the surfaces of the system
z ( x + Y != C (3z + J) orthogonally and which passes through the circle X2 + l = 1, z = 1.

Solution:
z(x+y)

The given system of surfaces is f (x, y, z)= 3z+ 1 = C

~ a f z
Therefore,' -. - = --,a x 3z+ 1

af =_z_
a y 3z+ 1

. a f 3z+ 1-3z x+ y-.-=(x+y) =-------'-
oz (3z+1)2 (3z+l)2.

The required orthogonal surface is the solution of

af af ofp-+q-=-o ». oy o z
z( 3z + 1) P + z ( 3z + 1) q = x + y

i.e.,
z z x+ y-- p+ --q = ----,-

. 3z+1 3z+1(3z+1)2

(54)or

Lagranges auxiliary equations for the equation (54) are

dx dy dz
---= ---
'.(3z +.1) z(3z + l) x +y

From the first two ratios we get dx - dy = 0, so that x - y = C I

(55)

Also, choosing x, y and -7. (3z + 1) as the multipliers, each of the ratios of equation (55) is equal to

x dx+ ydy-z(3z+1)c1r

o
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lienee any surface that is orthogonal to the given system has the equation of the form
.\ I ,:' - :2/' - 7.'- '-~ \1' (x-y).

To obtain the desired surface passing through the circle \2 + i =, I, z = I we have to choose
. \1' (\-yl "-::'. Hence the required particular surface is x ' + i-2z3 - Z2 =-2

K.K SUllllnary :

In this lesson, we have discussed the method of formulating a partial differential
cqu.uion by cliruination of arbitrary constants and also by elimination or arbitrary functions. We. ,
h'I\\.' solved the lirst order linear partial differential equation of the form Pp + Qq =R - known as

dx dv dz
1.'I~r'ltlgL's equation - by forming the subsidiary equation 'p = -Q- == -R' The general solution is •

~.'\J1rl·sscd as rjJ (/I, l)) = O. We have also discussed the method ofutilizing the general solution
towards obtaining the integral surface that passes through a given curve.

SAOs:

I. IJilllindLc the arbitrary constants indicated in brackets from the following equations and for
the partial di fferential equations

(i )
( i i)

z = ax + by + ab ; ( a, b)
,IL + b = (12 x + b ; ( a. b)

(Ans : z = px + qy + pq)
(Ans: pq= 1)

lrom the partial differential equation by eliminating the arbitrary functions.

(i)

(ii)
z == f (y / x)
Z ::= X + Y + f (x, y)

(Ans
(Ans

px + qy = 0)
px - qy = x - :.

-; Sulvc the following equations by Lagranges method

(i)

( i i)

p+- q = 1 (Ans

(Ans

rjJ (x - y, x - z) = 0)

rjJ (x / z, y / z) = 0)xp + yq = Z
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8.9 Model Examination papers:

I. Form the Partial Differential equations by eliminating the arbitrary constants I arbitrary
functions

(I)
(2)
(3)

(4)

(5)

(6)

z = ax + a2 y2 + b
z = a e pl sin px

z = ax + by + a2 + b2

z = xy + f( X2 + y2)

f(x2 + i +z2, z2 - 2xy) = 0

z =:' y2 - 2f( lIx + log y)

(Ans
(Ans

(Ans

(Ans

(Ans

(Ans

: q = 2y p2)
: 02Z/ ox2'I-a2z/ ot2 = 0)

z = px + qy + p2 + q2)
') 7'py - qx = F - x ')

p - q ::::( y - x ) Iz )
') 7 0.px" + qy:= _y-)

2. Solve the following first order partial differential equations:

.J.

2.
,.,
~.
4.

5.

6.

7.

8.

9.

10. : ¢ [(x-y)(y-z).(x-y).

(x+y+z) 1/2I:= 0 )

¢ I(l+xj:' - (l+y)2

1/2(x+y+z)] = 0 )

x2p + iq = (x + y ) z (Ans l ¢ [(xylz). (x-yj/z] =-=0)
(x2 _ y2 _ yz) P + (x2 - i-zx) q = z (x-y) (Ans ¢ [z -x + y, (x2_y2) / z] = 0)

Find the surface which is orthogonal to the one-parameter system z = cxy(x2+l)
and which passes through the curve x2 - i = a2, z = O.

') ') ? ') ? 7 ,,) "(Ans : (x-+y-+4z-)(x--y-)- = a;(x-+y-)

(Ans

(Ans

(Ans

(An'i

p tan x + q tan y = tan z
? ')

(yz I x) p + x zq = y-

Z (Z2 + xy) (px - qy) = X4,

P - 2q = ')x2 sin (2x + y)

x (y2_z2) P + Y (z2_x2) q = Z (x2 _ y2)
') 7

(y-zx) P - (x+yz) q = x + y-

yp - xq = 2x - 3y

(y+zx)p - (x + yz) q=x2-l

(y + z)p + (z+x)q = x + y

(Ans

(Ans

(Ans

(Ans

(Ans

(Ans

l1. ( 1+y) p + (l+x) q = z (Ans

12.

13.

14.

: ¢ (I Ix-l Iy. 1Iy- J /z}=O

sinz/siny == ¢ (sinx I siny):

¢ (x-'_y-'.x2_Z1) =: 0)

¢ (xy, x~-z~-2xy Z2)= 0)

¢ (2x+y, x3 sin(y+2x)-z)cc·d)

¢ (x2+/+z2, xyz) = 0)

¢ (x1_y1+z1. xy -"7.) = 0)

¢ (.'(2+y2. 3x+ 2y-+'z) := 0)
7 7 'J'. ¢ (x-+y--[. xy + z) ::"0)

Prof K. Rama Mohana Rao
Andhra University.



LESSON:. 9 NON-LlNEAI~ PARTIAL DIFFERENTIAL EQUATIONS OF ORDER ONE

lJ.1 INTRODUCTION

DZ
'vVehave al ready learnt that. eq uations of the type f (x, y, z, p, q) = 0 where p = -",-.

. ox

('"z
q o.~·~-- me called partial differential equations of first order. If the degrees ofp and q arc one. it is

termed LIS linear partial differential equation of first order, otherwise non-linear. The complete
solution ofsuch non-linear equation contains only two arbitrary constants and a particular integral
Gill he obtained by giving particular values to the constants.

The general method of solving such first order non-linear partial differential equations is
cul lccl the Charpit's method. Before taking up this method we shall know some special methods of
solving them by classifying these equations into various standard forms.

9.2 Equations in the standanl form I :

In this section. we shall cr sider equations in the standard form F (p, q) = 0 i.e .. equations
containing p and q only.

An integral of the equation F ( p. q) = () (1)

is given by z = ax + by + c, (2)

Where a and b are conneted by the relation f ( a. b) = 0 (3)

()Z
Since p = -- = a.ax

OZ
and q > oy = b, they can be substituted in equation (3) to get F(p.q) == O.

1I'\\c solve equation (3) for b, we can express b as a function ofa. say b = ¢ (a). Substituting this
\L1II1C 01' b in equation (2) we obtain the complete integral of (1) as.

z = ax + ¢ (a) y + c (4)

The general integral is obtained by !aking c = \jf (a) in equation (4). where is an arbitrary function.

and eliminating a between

z=ax+¢(a)y+ ~f (a)

and 0 = x +y ¢ '(a) + ~f '(a).
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9.3 Examples:

'9.3.1. Example:

-Solution : We shall reduce the given equation to the standard form by expressing it as :

(: : ~):+(~: ;)' ~I (5)

dx ,dy , 'dz .
We now set - = du, - = d u and - = d OJ, so that u = logX', u = log y and OJ == log Z,

X Y z

(
aOJ)2 (aOJ)2 aOJ am

Then equation (5) becomes au' + au = 1 or p2 + Q2 = 1, Where P = au; Q = au

The complete solution (integral) is OJ =au + b u + C (6)

, Where a2 + b2 = 1 or b = .J 1 _ a 2

lienee equation (6) become OJ = au + .)1- a2 U + C

or logz = a log x + .)1- a2 log y + C

9.3.2. Example: Solve p2 _ q 2 = 4

Solution: The given equation is of the form f(p,q) = O. Hence its complete integral is given by
z. = ax + by + C, where a2 - b2 = 4. '

Therefore, The complete integral is z =ax + .)a? - 4 Y + C

To obtain the general integral, put C = \jf (a). Then z = ax + .J a2_ 4 Y + \jf (a) (7),

Differentiating partially w.r.t. a we get 0 = x + Ja2 _ 4 Y + \If '(a)

By eliminating a from equations (7) and (8) we obtain the general integral.
o

a
(8)

9.3.3 Example:
o
Solution: The given equation is not in the standard form 1. However, we can reduce itto the
standard form through the following substitution : Put u = x + y and u = xy

Find the complete integral of (y- x) (qy - px) = (p-q)"

az
Then p=,-ox =

az au o z au-+-'-au ox au ax
az az
-+y - - P+yQau au



~c:om:p:le=X~A~.n~3r~'iY~S~iS~&is~p~eC@ia~I~Fu:n:ct:io~ns~~~~~(J120)~~~~~__ ~jN~0~n-~li~ne;a~r~D~iffe~r~en~ti;al~~__ ~
<; & PartialDiff.Er uations '-" E uationsofOrder one

az
Where P=-,au

az
Q=-au

az au az au-+-au ay au oy
az
---+au

oz
--xau P+xQ

oz
Similarlyq = -;-uy
Then p - q = (y - x) Q and

qy - px = py + xy Q - Px - xy. Qy PC y - x )

Substituting the values of(p-q) and qy - px in the given equation we get (y-xip == (y-xiQ:'. => p:c:Q:
The complete integral is z = au + b u + C where a = b2 i.e., Z = b2(x+y) + bxy + C

904' Equations in the standard form - II

We. shall now consider equations which do not contain x and y explicitly - i.e., equations of
the Iorm f(z. p, q) = o. To solve such equations, we put t = x + ay, where a is any arbitrary constant

.vssumc that z = z(t). Then

oz az at oz dz
-=--=-=-
ax at ax at dt

oz c z at oz dz
-=--.-:=a~-=a-
oy at ay at dt

dz dz
Then I( 7.. p. q) = 0 becomes f (z, dt ' a dt ) = O. which is an ordinary differential equation.

p

q

. uz oz
<olvinu 1'01' -- we get :::l t = ¢ .tz, a)

1::' at ()
dz

0\'---- = ¢ ('I.. a)
dl

dz
¢(z,a) = dt, which can be easily integrated.

r a z
I l, 111",: J rjJ(::. (I) = f dt or F (z, a) = t + b. where b is a constant of integration.

1.(,.. F(z. (1) =:\ + ay + b which is a complete integral.

9.5 Examples:

9.:;.1. E:xamplc:
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Solution:

1
-1'1 ' ('" ') 2 2 (') ') 1 ± -r:=:::=:::;::=ren z: pz + q- = p z z-+a- = or p = I 2 <, 2

z\j a + z

Also dz = p dx + q dy = p dx + ap dy = p (dx + a dy)
dx+a dy+. .'

(or) dz= - 122
z\j a + z

. I) 2 2
or dx + a dy = ±"2 a, + Z (2z) dz

1 (a2 +z2)3/2
Integrating, x + ay + b .= ± 2~-- (g)--~

or 9 ( x + ay + b)2 = (a2 + Z2)3, which is the complete integral

9.5.2 Exam,.,l2tc:

Solution: Let u = x + ay, so that

o z ozou o z. dz
-=--=-=-
ax au ax au du

p

q
OZ ozou OZ dz
-=-.-=Q-=Q-

ay au ayau du
Substituting these values in the given equation, we get,

9[( dz ]2 z +a2( dz J21 =4
du du

I.e.,

II1(q~r<lting both sides of this equation we get (z + a2) 3/2 = U + C, where C is a constant.

lienee the required complete integral is(z + (2) 3/2 = X + ay + C.

9,1
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9.5.3. Example:

Solution:
dz dz

Let u= x + ay so that p '= - q = a -" , du ' du

2r(dZ)2 2(dZ]2l ,2Then the given equation reduces to Z du' +a du + 1 = C

or

i.e.,

or
+ du

- ~1 +a2

U
+--;===
- ~1+a2 +KInteuratinc both sides we get JC2 2.:::- b -z

or

This is the required complete integral.

9.6 Eguations in standm-d form III

In this section we consider equations in which z is absent and the terms containing x and p
can be seperated from those containing y and q.

r.e., Equations in the standard form f,(x,p) = f2(y,q)

Then solving for p and q we get

p = ¢ (x,a) and q = ~I (y,a).

GZ GZ
But dz = :;- dx + -;- dy =

ux .oy p d~lq dy

l
= ¢ (x.a) dx + ~I (y,a) dy.
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on integrating. z = f ¢ (x, a) dx + f~f (y,a) dy + b

This is the desired complete solution involving two constants a and b.

9.7 I~xamples :

9.7.1 Example; S I
'., .,

o ve IT + q- = x + y

Solution:---- The given equation in the standard form is p2 - X = Y - q2 :::: a (say)

Then p2 a+x p

Y-(f => q

Theil dz = p dx + q dy = .J (/ + x dx + Iv - (f ely

,. :2, 3/2 2 ' 3/2
On intcuration we uct z > (c1+X).· + (v-a) +bb :::-... ") "'). ~

J J

This is the complete integral of the given equation.

9.7.2. Example:

Solution: The given equation is scperablc. It can be expressed in the standard form as

q = a (say)
y

Then. p =
~

~~.-
a

) x and q = ay
I+x-

Substituting these values of p.q in dz = pdx + qdy we get

elz I-a,?- x dx + ay dy
l+x-

Integrating of this equation.

z

Where a. b are arbitrary constants. This is the complete integral of the given equation.
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9.7.3 Example: Solve z ( p2 - Z2 ) = X - Y (9)

Solution: To express the given equation in the standard form we shall re-write it as

(JZ _~~)2_(JZ '~~J2:::x - Y (l0)ax ay
Put JZ dz=du, u == u(~, y) .

2 vThen -- z -'2 = U apart from additive constant. 3 '

au 2 3 112 az JZ az
-"-- = .. z •..__ ._- =ax 3 2 ax ax
au 2 3 112 az JZ az

---- ::: _ ... Z ------.- =ay 3 2 ay ay
Equation (10) can be written as,

i.e.,

(h;r
(:;f y

[~~r-
(£)2 _x

x-y

. [ )?. au -Leta~; '. (~~/~J2
ay y; 'a' is a constant.- x = a

au au
du = -_._- dx + -- dy = ,Ix + a dx + r:),;-~~-a dyax ay -vY

. . 2 3/2 2 ' 3/2 . .
Integrating. u = -3 (x + a) +3'(Y + a) + b , b IS a constant.

Since u = 1I (x.y),

.~ z3/2::: _?(x+a)3/2 +2_(v+a)3/2 +b
3 3 3 -

3/2 3/2 3/2 3b
or z.::: (x + a) + (y + a) +'2 - (x + a)3/2 + (y + a)3/2 + C,wherc C == 3b12



9.8 Equations in the standard form IV : Clairauts type
. ;

Suppose the given first order P.D.E. equation is of the clairauts type.. in the form z = px +qy + f(p,q)

We now show that the complete integral of this type of equations can be expressed as : .

z = ax+by+f(a,b) (12)

Where a, b are arbitrary constants.

Differentiating equation (12) partially w.r.t. a and b we get,

of of
x - = 0 and y -. - = 0. oa ob

Eliminating a and b from equations (12) (13) (14) we get the singular integral,

(13,14)

Let b = ¢ (a).' Then equation (12) becomes,

z = ax + ¢ (a) y + f [ a, ¢(a) ] (15)

Differentiating partially w.r.t. a we get

o = x + Y ¢ I (a) + f I ( a,¢ (a)) (16)

Eliminating a between equations (15) and (16) we get the required general integral.

9.9 Examples:

9.9.1. Example:
/

Solve z = px + qy + pq

Solution: The given equation is in the standard form of z = px + qy + f(p, q). Hence its
complete integral shall be z = ax + by + ab, where a, b are arbitrary constants ./ (17)

o
Differentiating equation (17) partially W.r.t.a and b and equating the obtained expressions to zero,
we get x + b = 0 and y + a = 0 (18,19)

Eliminating a and b from equations (17) (18) & (19)

We obtain b = -a and a = -y so that, Z = -xy - xy + xy = -xxy, which is the singular integral.
To obtain the general integral, put b = f(a). Then,

z = ax + f(a) y + a f(a) (20)
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Differentiating equation(20) partially w.r.t. a and equating the obtained expression to zero, we have

x + Y f '(a) + f(a) + a f '(a) = 0 (21)

. The general integral is now obtained by elil~1inating 'a' between equations (20) and (21).

9.9.2. Example: Solve 4 xyz = pq + 2p x2y + 2q xl.

Solution: The given equation is not in the standard form. To convert it to clairauts form,

put x =.J;;. and y = -IV. Then,

a z = a z. a u = 2fu a z
ax au ax aup =

r: az
Similarly q = 2-vu -au
Substituting, for x, y, p and q in the given equation.

au az az az
z = u-+ v - +- -au au' au' auWe get

or z= u P + u Q + PQ (22)

This equation is in the standard form IV.

The complete solution is given by z = au + b u + ab

I.e., z = ax2 + by2 + ab (23)

Differentiating this equation (23) partially W.r.t. a and b and equating the obtained expressions to
zero we get, X2 + b = 0 and y2 + a = 0 (24,25)

. Eliminating 'a' and 'b' from equations (23)(24) and (25) we obtain the singular integral

To find the general integral, let b = f(a), where f is arbitrary. Then z = ax2 + f(a) y2 + af(a).
(26). '

Differentiating equation (26) partially w.r.t. a and eliminating a between the obtained equation and
. .

equation (26), we get the general integral.

9.10 General method of solving a non-linear equation of first order: Charpit's m~thod :
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We shall now discuss the Charpit's method of solving a first order non-linear partial
differential equation. This general method is applied when the given the equation can not be reduced
to any one of the four standard forms discussed earlier .:

Let the given equation be f(x, y, Z, p, q) = 0 , (27)

Since z depends on x and y, we have

oz ozdz = - dx + _ .. dy = P dx + q dyox ay
To solve equation (27), we consider an auxiliary function ijJ (x, y,Z, p, q) = 0

(28)

(29)

Differentiating equation (27), first w.r.t.x and then w.r.t. y we get

af af ar ap ar aq
= 0-+-p +-.- + -,--

ax az ap ax aq ax
af af af ap af aq

= 0and -+-q +-.-+-,-
3y oz op oy oq oy

(30)

(31)

Similarly differentiating equation (29) first w.r.t. x and later w.r.t. y we obtain

a¢ + at/Jp + a¢ ap + a¢ aq = 0
ax az ap'ax aq'ax

~ + a¢ q + 8¢ .!lE + 8¢.~ = 0
oy oz op oy oq oy

(32)

and (33)

a .
Eliminating a; from equations (30) and (32) we get

(
~ a¢ _ a¢ af) + (£1 a¢ _ a¢ £1)p + (£1 3¢ _ 3¢ £1) ~=o
a x a p a x 3 paz a paz a p 3 q a p 3 q 0 p a x (34)

aq
Eliminating 0 y from equations (31) and (33) we obtain

, (~ a ¢ _ 3 ¢ ~ I+ (£1 a ¢ _ a ¢ a f J q + (~ a ¢ _ a ¢ ~~J_ap.= 0
o y a q a y a q ) a z 8 paz a q a p a q a p a q a y (35)

dd eouati d) I I' 0 q 0
2

z 0 Pd' lif I .We now a equations (34) an (35 , use t re re atiou a x = a a = - an 'simp I y t te equation
x y ay ,-



Non-Linear Differential ) .
E uations of Order one;..:..;....;;~---

Complex Ananlysis & Special Functions
~~~&~pa~rt~ia~ID~iff~.E~u~at~io~ns~::~~~~~~128

by rearranging the terms, we get

(Of +p Of) D¢ + ·(Of +q ~J.O¢ +
ax az ap ay az aq

or

(~ a f af)a ¢ ( a fJ a ¢ (8 fJ 8 ¢ - 0Pr::: -q- -+ -- -+ -- --
8p 8q 8z ... 8p.8x 8q 8y

(
_~)- 8¢ + (_ 8f) 8¢ + (_ p~

8p 8x 8q 8y 8p
_q £!) 8¢

8q 8z

+ (8 f + p ~) O~ + (l!! + q ~J.a ¢ = 0
8x 8 z 8 p . 8 y 8 z 8 q (36)

We note that equation (36) is a linear Lagrange equation ¢ as the dependent variable and x, y, z, p,
q as in dependent variables. Hence we write the subsidiary equations.

dx _ dy _ dz = dp = dq _ o¢aT -aT ---=8-:::"f---=8-=-f8 f 8 f 8 f 8 f 0
- ...--- ---- - p---q- --+ p--- -+q---

8p 8q ··8p 8q 8x 8z 8y 8z
(37)

These equationsG'Z) are known as theCharpits equations. Once an integral ¢ (x, y, z. p, 'I) has
been found; the problem reduces to solving f~r p, q and then integrating equation (28) by the already
known methods. We note here that not all of the equations (37) need be used, but we choose the
simplest of the integrals so as to. solve for p, q easily.

9.11 Examples:

9.11.1 Example:

Solutioll : • _ 2 2 _Let t(x, y, z, p, q) - (p + q ) Y - qz - 0 (38)

ar er ar e r 8f
Then 3p = 2py, 8 q = 2 qy - z, 8 x = 0, 8 y = p2 + q2, 8 z =-q

Substituting these values in the Charpits subsidiary equations (37) we get

dx

-2py
dy= --'-~

z-2py
dz dp= ----~---------=. :2 . ')

-2p y+qz-2q-y -pq

Taking the last of the two ratios we have p dp + q dq == 0 => p2 + q2 = C2 (39) .

We now use equation (39) In equation (38) to solve for p and q. Then C2y = qz so that q = C2y I z
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c !?---~
Substituting this value of q in equation (39) we obtain p = - 'V z : - c-y-

z

.. c I 2 2 2 C2 v
Hence dz = p dx +q dy = -, -V z - C Y dx + --~ dy

Z z

or

or

Integrating both sides we obtain ~ z2 _ C2 y2 = ex + d

or Z2 = (ex + d)2 + C2y2

This is the required complete integral.
(40)

To obtain the general integral, we replace d by rjJ (e) in equation (40) so that

(41)

Differentiating partially w.r.t. C we ge:

-2ey2=2[Cx+rjJ(C)] [x+rjJ \C)] (42)

Eliminating C Ji..om equations (41) and (42) weobtain the general integral.

9.11.2 Example: Solve 2 zx - px2 - 2q xy + pq = 0

Solution: Given that f (x, y, z, p, q) = 2 zx - px2 - 2qxy + pq = 0 (43)

The Charpits subsidiary equations are

dp _ dq _ .dx . _ . dy dz
2z-2qy 0 x2_q 2xy-p p2x+2xqy-2pq

From the second ratio we have dq = 0 => q = a

2x(z - oy)
Substituting q = a in equation (43) we get p = x2 _ 0
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2x(z-ay) dz-ady 2x dx
Hence dz = p dx + q dy = 2 dx + a dy (or) 2x - a z-ay x-a
Integrating. log (z-ay) = log (x2-a) + log b or z - ay = b (x2_a2) which is the complete integral.

9.11..3. Example: Find the complete integral of the equation p xy + pq + qy = yz

Solution:
-

Here f (x, y, z, p, q) = pxy + pq + qy - yz = 0 (44)

Then the Charpits auxiliary equations are :

dp

o
dq q dz

(px+q)+qy -p(xy+q)-q(p+y)
dx

- (xy+ q)

From the first ratio we have dp = 0 => p = a

y(z - ax)
Substituting p = a in equation (44) we have a xy + aq + qy = yz (or) (a+y)q = y(z-ax) => q= a+y

Now dz = P dx + q dy = a dx +
y(z - ax)

a+y
dz -a dx

dyor z-ax

Integrating log (z-ax) = y - a log (a + y) + log b

i.e., log ( z- ax) + log (a + y)" = logb + Y (or) (z- ax) (a + y)" = b eY which is the complete integral

SAQs:

I. Find Complete integral of the following equations:

I. (Ans : z = ax + ~a2 -J y + C)

(Ans : z = ax + (k/a) y + C )2. pq = k

II. Find the complete integral and the singular integral of the following equations.

I. (Ans: S.I.: z = xy
C. L : z= ax + by + ab )

(Ans: S.l.: 4z + X2 + l = 0

c.i.: Z.= ax + by + a2 +b")

z = px + qy + pq

2. z = px + qy + p2 + q2



IlL Find the complete and singular integral ofthe following equations :

1. /Ans : S.1.:z=O
CJ. :

(Ans : S.l. : z = 0
c.I. :z2_a2 = (x+ay+b/)

2.

IV. . Find the complete integrals of the following equations using Charpits .nethod,

1. q = px + q2

2.

(Ans: Z = _x2 ±[X~x2+4a+2aIOg{x+~x2+4a,}+aY+b]
42.

1
(Ans: az= -'2 (y+ ax) (dy+adxipx + qy+ pq = 0

9.12 Summary:

The integral ¢ (x, y, z, a, b) = 0 whicI?has as many arbitrary constants as there are independent
variables is known as the complete integral of the first order partial differential equation
t~x. y. z; p. q) = O. A particular integral of this equation is obtained by giving particular values to the
constants a, b in the complete integral. By eliminating a, b between the equations:

o¢ or/> .... .
¢ (x, y, z: a, b) = 0, 0 a = 0, and 0 b = 0, we obtain a relation between x, y and z and,

this gives the singular integral of the considered differential equation. In some cases, the singular
integral may be obtained from the complete integral by giving particular values to the involved
constants.

If in the complete integral of the given r artial differential equation 9 (x, y, Z, a, b) = 0, One
. , .

of the constants, say b, is a function of the other. i.e., b = F(a). Then we have ¢ (x.y, z, a, F(a)) = 0

This equation represents one of the families dfthe surfaces given by the system ¢ (x, y, z, 2,b) = 0
.The general integral of the given equation is obtained by eliminating 'a' ~etween

. a¢
¢[(x, y, z, a, f(a)]=Oand -;-=O~ Since other relations may appear ir, the process of getting the.' ua
singular integral, it is necessary to test that the 'equation of general integral satisfies the given
differential equation.
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In this lesson we have considered first order non-linear partial differential equations, in
which the degree of p and q is other than one. Initially we began our discussion (study) with four
standard forms to which many equatioris can be reduced and for which a complete integral can be
obtained either by inspection or by other simple methods. Finally we discussed the general method
of solving the given equation with two independent variables, known as the Charpit's method, to
solve equations which can not be reduced to any one of the standard forms.

9.13 Model Examination Questions:

1. Find the complete integral of the equations:

(I) (Ans: z = a lo~ r + )1 _ a2 () + C
r = ~x2 _ y2, () = tan" (y/x))

CAns : z = ax + ~ 1_ a 2 y+ C )

(Ai1S :z=ax+ ~a+a2 y+C)

(Ans: z = ax = 3a2y + C)

(2) p2 + q2 = 1

(3) p2 + P = q2

(4) q = 3 p2

II. Find the complete and singular integrals of the following equations:

1. z = px + qy _ p2q (Ans: c.I. z = ax + by - a2b
S.l. : Z2 = X2 y)

') z == px + qy - 2 ~ pq CAns :c.1. : z = ax + by - 2 Jab
S.L : xy = 1 )

..., Z2 (p2Z2+q2) = I (Ans : C.I. : 9(x+ay+bi = (Z2+a2)3.i.

S.l. : No singular integral)

Ill. Prove that the complete integral ofz = px + qy + ~p2 + q2 + 1 represents all planes at unit

distance from the origin.
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1.

2.
(Ans: (x+ay+b)2=4az)
(Ans: 4a (z-a) = 4 + (x+ay+bj/)
(Ans: az = (x+ay+br')
(Ans: z = a tan (x+ay+b))

..,

.).

z=pq
pt l+q") = q(z-a)
z = p2 _q2
Z2 p2 + q2 = p2q4.

V. Find the complete iritegrals of the following equations:

1.

2.

(Ans: 2 az = a2x2+ y2 + b)

(Ans: Z2= ax2 ±~ y2+b)

(Ans: z=alogx+2aJY+b)

(Ans : (2z - al- 2bi = 16 ax)
(Ans: 3z = 3ay + 2(a+x)3/2 + 3b)

..,

.).

pq = ay

p2y (1+X2)= q X2

X2p2= Y q2

q = xy p2
. p2 = q+ X

4.
5.

VI Apply the Charpits method to find the complete integral of the following equations:

l. P = (z + qy)2 (Ans: yz = ax + 2 .JOY + b).
2. (p2 + q2) Y = qz (Ans: Z2_a2y2= (ax+b )2)
.., -yz p2 = q (Ans: Z2= 2ax + a2l + b ).).

4. q = 3p2 (Ans: z = ax + 3a2y +b)

Prof. K. Rama Mohana Rao
Andhra University.



LESSION - 10 PARTIAL DIFFERENTIAL EQUATIONS OF SECOND ORDER

10.1 . INTRODUCTION:

So far we discussed various methods of solving first order partial differential equations. In
the discussion that follows, we shall confine ourselves to the linear partial differential equations of)
second order. A study of such equations is of great practical interest since they arise frequently in'

a2¢ 1 a¢ _ ,;
several problems of mathematical physics. For example, the equation --2- = k -a called theax Z
one dimensional diffusion equation, is applicationally interesting. Before taking up the method of
solving such equations, we shall first consider those equations that can be reduced to linear equations
and thereafter discussthe method of solving equations by Lagranges method and finally consider'
the canonical forms.

10.2 Given equation reducible to a linear equation:

A partial differential equati-n is said to be of second order if it contains atleast one partial
derivative of second order and nc. ~ of the order greater than two. The most general form of a

az
second order partial differential equation is given by F (x, y, Z, p, q, r, s, t) = 0, where p = a x ' q=

? 2 2a z a- zap a zap _ a q ~ a q
a y . r = 8 x 2 = 8 x ' s = 8 x8 y = 8 y - 8 x and t = 8 y2 = 8 y

10.3 Example: Solve t - qx = X2

Solution:
aq

The given equation is -8 - xq = x2. This equation is linearin q and y, if x is treatedy ,
as constant. The integrating factor is given by e- x] dy = e- XY .

Hence the solution of the given equation is :

q e ,xy 2 xy= [x e -. dy + ¢(x) -xv .
- x e - + ¢(x)

I.e..
8z
8y

X)!= -x+e' ¢ (x)
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Now integrating w.r.t. y, treating x as a constant.

We obtain
xy

z = - xy +_e_ ¢(x) + f(x) which is the required solution.
x

10.2.2. Example: Solve yt - q = xy

Solution:
oq q

The given equation can be written as -a - - = x, which is a linear equation offirsty y
order.

1
- J-dy

The integrating factor = e Y Hence the solution of the given equation is
y

1
q. Y

az
ay

=
xJ- dy + ¢(x) (or) q=y.xlogy+y¢(x)y

= x Y log y + Y ¢ (x)I.e..

212
Integrating again w.r.t. y, treating x as constant, we obtain z = (x log x) L --xy2 + L ¢ (xj+fix)

2 4 2
This is the required solution.

10.2.3. Example: x s + q = 4x + 2y+ 2

Solution: The given equation can be re-written as x aa q +q = 4x + 2y + 2.
x

or
a q 1 2y 2
-+-q=4+-+-ax x x x

(1)

dx
which is a linear equation. The integrating factor J- logx

e x =e =X

The solution as now obtained by multiplying the equation (1) with the integrating factor and
integrating both sides with respect to x.

J ( 4+ 2: + ~) x dx + f(y)i.e., x.q 2X2+ 2xy + 2x + i1y)

or
az 1- = 2x + 2y + 2 +- f(y)ay x



ComplexAnantysis & SpecialFunctions PartialDifferentialEquations
~~==&~pa~r~tia~I~Di~ff.iE~qu~a~tio~n~s::::~~~~~(113~6~~~~~ ~~o~f~S~ec~o~nd~O~r~de~r~~__ _/

. 1
Integrating w.r.t. y we get z = 2 xy + y2 + 2y + - f f(y)dy + F(x)

x
or xz = 2x2y + xy2 + 2xy + ¢ (y) + F(x); where ff(y)dy = ¢ (y)

10.3 Equations solved bv Lagrange's method:

In this method, the given equation is.first integrated w.r.t. one of the variables and is put in
the standard form of Pp + Qq = R. The Lagrange's subsidiary equations are then written and solved
to obtainalinear equation. The required solution is then obtained by solving the linear equation, as
has been done in section (10.2) we shall illustrate the method with a few examples:

10.3.LExample: Solve p + r + s = 1

.. az ap aq
Solution: The gIven equation expressed as - + - + - = Iax ax ax
Integrating this equation w.r.t. x, we have z + p + q = x + fey) (or) p + q = x - z + fey)

ax ay dz
The Lagrange's subsidiary equations are -1- = -1- = x - z + fey)

From the first two ratios, we have dx = dy on integration we get x - y = C I

d z d z
Considering the last two ratios we get d y -: z = x + fey) or d y + z = CI + Y + t~y) ,

This is a linear equation, for which the Integrating Factor is ef dy = eY .

Therefore, z eY - f [CI+y+f(y)]eydy+C2
C I eY + f [y + f(y)] eY dy + C2

C I eY + ¢ (y) + C2

C
I
+ e-Y ¢ (y) + C

2
e-Y

x - y + e-Y ¢ (y) + e-Y ¢ (x-y), which is the required solution.

or z

x
10.3.2. Example: Solve s - t = "lL.'

Y

Solution:
a p o q _ x

The given equation can be written as, a y - a y - yi

x
Integrating w.r.t. y we get p - q = - y + ¢ (x).



~~~C137~~~~'------------------------ '----------------Acharya Nagarjuna University Centre for Distance Education

ax ay dz
Then the Lagranges subsidiary equations are -1= ~ = - x Iy + ¢(x)

'n1king the first two ratios we get dx + dy = O i.e., x + y = a, 'a' is a constant.

x
Considering the first and the last ratios we have dz = -- dx + ¢(x) dxy

x
dx + ¢ (x) dx

a-x

(1.- _a_) dx+ ¢ (x) dx
a-x

Integrating we get. z = x + a log (a -x ) + ¢ (x) + b

ur z a log ( a-x' ) -+- ~J ( x) -+- b ; (x) = x + ¢ (x)

=, (x + y) logy + ~ (x) -+- f ( x + y). This is the required solution.

t 0.3.3. Example: Determine the surface satisfying r + s = 0 and touching the curve z == 4X2

along its section by the plane y ,= 2x -/- I

Solution: '1~1' .. a p + a q 0. 1e "tven equation IS - - = .
b OX OX

Inlcgraling w.r.t. x we get p -/-q = t~y).

ox o y dz
TilL' I ,;lgr~lngcs subsidiary equations are ---1 = -1- = fey)

From the Ii rst two ratios we get dy = dx => Y - x = C 1

lrorn that last two ratios we have dz = f{y) dy => z = ¢ (y) -+- C2

lienee the xolution z = ¢ (y) -l- F (y - x) (J)

Now
oz

p = -- = - [<'1 (y-x)
AX
Oz

C] = - = ¢ I (y) + F 1 (y - x)Dy

1 1
1'1'\1111 /, =, 4x-+ y- we have p = 8x and q = 2y (2)

I r ( 1) touches (2) along its section by the plane y = 2x + 1, then the values of p and q for any point
n v =: 2:-.: + 1 must be equal i.e .. -F 1 (y - x) = 8x (3)

/0
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and ¢ I (y) + FI (y - x) = 2y (4)

y = 2x + 1 (5)

from (3) and (5) we have - FI (y - x) = 8 (y - x-I)

1
or - F (y - x) = 8 [ '2 (y - X)2 - (y - x) ] + a I

i.e., F ( y - x) = - 4 (y - x)2 -l S (y - x) + C

11'\)111 (.1) and (,~) we have 8x + 2y

¢ (y) =

8
- (y - 1) + 2y = 6y - 4
2
3y2 - 4y + b

l

The required surface is now obtained by substituting ¢ (y) in equation (1)

i.e.,
o

Z = 3l- 4y + bi - 4(y - x)2 + 8(y - x ) + C
~ ~ Cz = 4x~ + y~ .. 8xy + 8x - 4y - (6)or

lqunting the values of z from equations (2) and (6) we get C = -2.

The required solution is z = 4x2 + l- 8xy + Rx - 4y + 2 = 0._

IO.-L Differential Cononical Forms:

We shall now consider equations of the type Rr + Ss + Tt + f (x,y, Z, p, q) = 0 (7),
where R., S, T are continuous functions ofx and y possessing continuous partial derivatives of n-th
order. By changing the independent variables to u, U by the transformation u = u (x.y) ,U 0--= U

(x.y) we shall show that the given equation (7) can be transformed into one of the three cononical
forms which are easily integrable. Now,

a z a Z au az au
p=---=-.-+-,-~ au ax au ax

az az au az auq=-=-,-+--,-
oy au ay au ay

. 2 .
a z a (oz) (au a au a )(au az .au az)":>= axlax = ax'au + ax'au ax'au + ax'au
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Similarly

22 2 2 2
= ~(oU) +2 a z au au + ~(ou)

ou2 AX '. ououox ox Bv2 ax

a z 02u 0 Z 02u
----+---ouox2 ouox2

v
0
2

Z 0 u 0 u + 0
2

Z (0 U 0 u + 0 U 0 uJ
ou2 ox oy ouou ox oy oy ax

v2z ouou OZ 02u OZ 02u
+------+- +----au20x8y ouoyox ouoxoy

s

and
2 [J2 2~ OU +2 0 Z ou ou

a u2 a y au a u a yay=

02
Z (ouJ2 OZ 02 u . OZ 02 u

+0 u2 a y +0 u 0 y2 +a u a y2

Substituting these values of p, q, r, s, t in equation (7) and simplifying we get.

) 2 20- Z 0 Z 0 Z 0 Z 0 Z
A --2 + 2B + C --2 .+ F( 1.1, U, z, -;- , -;-) = 0

o u ouou OU o u uU (8)

('OU)2 ouou (ouJ2
where A=R - +S -- +T -,ax oxoy., oy (8(a»

B=R_(~OU +~S[OU ou+ou OuJ+T au au
£7XOX 2 ax oy oyox oyoy

" l'au)2 au au (auJ2C=R - +S--+T-ax ax o y oy
OZ OZ

and F ( u, o . z, -;- , -;-) is the transformed form of f (x, y, Z, p, q)uU uU
We now determine 1.1 and u so that the equation (8) reduces to the most simple form. The

method of evaluation of the desired values of u and u become easy when the discriminant S2-4RT

ofthe quadratic equation RA 2 + S A + T = 0 ..... (9) is either positive, negative or zero every where.
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We shall now discuss these three cases seperately.

Case 1 : S2- 4RT > 0
In this case the roots A I and A 2 of equation (9) are real and distinct.

. au au
We choose u and u such that a x = Al a y (10)

') "(a uJ2Therefore A = (RA ~I + S A I+ T) a y = 0; where A I is a root of RA 21 + S A I+ T = 0

dx = dy = du
SimilarlyC = O. The Lagranges auxiliary equation for the equation (10) are 1 - A 0

1
From the third ratio we have du = 0; u = CI, CI is a constant.

, " dy
From the first and second ratios we have dx + Al = 0

Let f,(x,y) = C2 be the solution o~ equation (11).

(11)

.Therefore; the s~lution of equation (l0) can be taken as u = f, (x,y).
)

dy au du
Similarly if f2 (x,y) = const is a solution of dx +A2 =0, then the solution of a x = ,.1,2dy can be

taken as u = f2(x,y).

1 (au au au auJ2
It can be shown that AC - 82= 4 (4 RT - S2) a x a y - a y a x '

1 '(8 u a u a u a u J 2
A =0 = C and 82 = -( S2_4RT) - -, ---' -

, 4 ax ay ayax '

Also, since S2-4RT > 0, it follows that 82>0. Hence we may divide both sides of equation

, a2
(8a) by it with A = 0, C= 0 and using the above facts, equation (7) takes the form z_

, 'auau

az az
¢(u, U, z, -;-,-, -;-). This is the canonical forin of equation (7).

uU ()V



10.5 Examples:

, '2 2' oz 20'z
10.5.1 Example: Reduce the equation --2 + X --2 = ° to canonical form

ox oy ,
Solution: The given equation can be written as r + x2t = ° (12)

Comparing equation (12) with the equation Rr + Ss + Tt + f( x, y, Z, p, q) = 0, we have R=!,
S = 0 and T = ,\2,

(

Hence R A. 2 + S A. + T = 0. for our case become A. 2 + X2 == 0, giving A. ,= i x , and A. 2= - i x

Also,
d)' d V
--'-' +A = 0 become -' + i x = °
dx I dx

dv dv
-' +A = ° become -- - i x = °dx 2, d x

, 2 . 2
IX IX

Integrating these equations we get y + -2- = C,' Y - -2- = C2, Where C" C2 are constants,

To reduce equation (12) to canonical form, we change the variables x, y to u, u respectively by

, 2 . 2
I X . I X

taking 1I = Y + ,-- and u = y - --,2 2
1

If 1I = a + i fJ (say) and u = a - i fJ (say) then we have a = y and fJ = 2 x2, Then

p
OZ
ox
oz
oy

OZ oa OZ ofJ--+----
oa ox ofJ ox
OZ oa OZ ofJ--+----
oa oy ofJ oy

Dz
xofJ

oz
oaq

r

==

OZ 02 z
?--+ X - 2ofJ ofJ
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a (a zJ
ay ay

a (a z)
ay aa

a2 z
2aa

Substituting these values in the given equation, we have ~,

o

i.e., =
1 a z

-~2a j3

or
1 az

- 2 j3 a a ' which is the required cononical form.

10.5.2 Example:
a2z a2 z a z

Reduce the equation (n-l r' -- - y2n --2- = n In-' - (13)
a x2 a yay"

to canonical form and find its general solution.

Solution: The given equation canbe written as (n-I)2 {- y2n t - n y2n-' q = 0 (14)

Comparing equation(14) with the standard form Rr + Ss + Tt + f {x, y, z, p, q) = 0 we have,
R = (n-li , S = 0, and T = _y211

1 u

The quadratic equation R A 2 + S A + T = 0, becomes (n-l)2 A - y211= 0, so that .IL = ± (n _1) Y

Hence A )= (n - It' yl1 and A 2= - (n - If'yl1 are the two distinct real roots.

dy -d y. 1 /I

-+,1,1 = 0 becomes -- + --y = 0 and
dx dx (n-l)

dy A d y 1 /I

dx + 2:= 0 becomes d x - (n -1) ~ = 0

Integrating these equations we get x - y -11+'= C,' and x + y -11+'= C
2
' C I' C2 are constants

To reduce the given equation (13) to canonical form, we change the independent variables x, y to u
u by taking u = x - y -11+'= C I' V = x + y -u+l

p
az
ax =

az az-+-au au



q
8z
oy (8 zo ZJ'(n-l) v" ---

8u 8u·

r o (Oz)ox ox (
0 0 ).( 0 Z 0 Ul

= ou + ou ou + ou)

t 8 (8 zJ
oy' oy

8
oy fl(n-l) y-n (8Z -~)J.

oU OU'

= -n tnv lj y ?"! (oz _ oZ)+(n_l)y-n ~(oz...: OZ)\
OU OU .' 8y au OU

(
8 Z 8 Z 1

-n(n-l)y-n-I ou - ou"j+ n(n-l) y-n .

=
. ( 8 Z 8 z)' 82

Z
-n (n -1) -n-I ( ---. + (n-1)2 y-2n ( --

. . OU OU OU2

. 02 z 02 Z
-2 +-- )

ouou ou2

2
Substituting these values of q, r, t in equation (13) and simplifying, we obtain 8 z = 0, which is

. 8u8u
the canonical form of the given equation.

8z
Integrating this equation again w.r.t. U we get au = F(u).

On integrating this equation again w.r.t. u we obtain z = JF(u) du + G(u) = H(u) + G(u) (Say)

Hence the solution of the equation (13) is z = H (x - y -n+l) + G (x + y.n+l)

Case 2 : S2 - 4RT = °
In this case, the two roots of the equation (9) i.e., R A 2 + S A. + T = 0, would be real and equal. We
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au _ A au
take u, as. in easel i.e., a x-I a y giving u = flx.y). Weconsicler u to be a function of x,y

which is independentofu. Then, as in case 1 we have A = 0, B2 = ° since S:!-4RT = ° and hence
B= O.

Substituting A = 0, B = ° in equation (8) and dividing the equation: throughout by C (,* 0) we get

a2 z 0 z 0 z
o u2 = ¢ (u, u , z, 0 u ' 0 u )

This is the secondcanonical form of equation (7)

10.5.3. Example: 0
2

z (a2
z JReduce the equation. 0 x2 + 2 0 x 0 y

02 z
+ --')- = 0 to canonical form

oy"'"

and hence solve it.

Solution: The given equation is r + 2s + t = °comparing this equation with equation (7) we get
R== I, S = 2 and T =1 so that R22 + S A + T = ° gives A 2 + 2 A + 1 =0.

o v' oy
Hence A. = -J , -I and -0 - + A. = 0 become - - 1 = O.

x ox
integrating we get x - y = c

l
' c

i
is a constant. To reduce the given equation to the canonical form. we

transform x, y to u, u by taking u = x - y, u = x + y.

p
oz
ox
oz
oy

o z o z-+-o u o u '
o a a
-=--+-.ax au au

q =
o z : o z

--+-au ou'
o
ay

o 0
au au

r

Similarly, 2( a
2

z J 02
z

aUDU + DU2

s
o [0 Z \

ox 0 y J
2 ?o z 0- z

--+--- ou2 ou2
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I C a2 z

Substituting the values of r, s, t in the given equation and simplifying, we get -·-2 = 0 which is the. . -' aU
required cononical form.

Integrating wr.t. V
oz

we get 8 = Ftu) and on further integration w.r.t. U we get
. u

u F(u)+G(u), F(u), G(u)arearbitraryfunctionsofu

Hence the required solution is Z = (x+ y) F(x-y)+ G(x- y)

10.5.4 Example :- Reduce the equation

2 02Z 02 z 2 02 zY ---2xy +x -·-2
ox2 0 xo y 0 Y

to canonical form and solve it.

=

15)

Solution :- The given equation is
•

---(] ~)

comparing equation (16) with equation (7) we get R = y2, S = -2xy 'T = x2 so that

RA2 + SA + T = 0 gives y2 A2 - 2xy-l + x2 = 0 or (YA - x)2 = 0

x x dy dy x
.A, = - ,- and -d + A = 0 becomes -d +-

y y x x Y
oTherefore,

l.C. 2y dy + 2x dx = 0, Integrating we get x2 + y2 = c1

To reduce equation (15) to the canomical form we transform x, y to U, v, by taking u =x2 + y2

and choose u = x2 _y2 ; which is independent of u

r ~(~) _ ~[2X(OZ + oz)].o x ox 0 x . 0 U 0 U
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(oz oz) 42(02z 2 02z ·02zJ2 -+- + X --+ +--
OU o u l Ou2 OUOU ou2.

= 3 (3 z)
3y oy = ~(2Y(~-~))

oy OU OU

(
0 z az) a ( a z a z)

2 0 U - 0 U + [2y a y- a U - au ]

(
2 2 2 J

(
3Z 3.z) 4 2 ~-2 3 z ~2 --- + y +

. a u a u a u2 a u a u a u2

2 a (oz az)
y ax ou - au

(a
2 z a2 zJ'

4xy au2-au2··

02 z
Subsituting these values in equation (16) and simplifying we get --2 =0, which is the requireday

,

.. az
canonical form. Integrating this equation w.r.t. U , we get -a = F(u) on further integrationU .

u we get z = u F(u) + G(u). Hence the required solution of equation (15) is given by

w.r.t.

z =

Case 3 : S2 - 4RT < 0

In this ca. ~ the roots of the equation R A 2 + S A + T = ° are complex and we have a similar
discussion as in case (1). Hence proceeding as in Case (1), we find that equation (7) reduces to the
form

a2 z
---
3u3u

and U in this case are complex conjugates. To obtain a real canonical form, we apply transformation

az az
</J (u, u ,z, au' 3 u) ..... (11) but the variables u

1 1
u = a + ijJ and V = a - if3 ' so that a = 2" (u +u) and f3 = 2" (u - u) (18)
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Now
oz oz 3a 3z 3/3----+----
GU-oaoou ofJou

OZ 1 (az oazJ
Similarly au = 2 aa +1 a fJ

02 z
-----ouau

o (0 z)
au au

= (
2 ) J1 3 z t- ,--- + --------

"4 aa2 a fJ2
"- \

Substituting these values in equation (17), the transformed canonical form of the given equation
become

az
Z., ---"Iaa'V [ a, /3,

a2 z 2 a2 z
1005.5. Example: Reduce the equation --2- + x --2- = 0 to thecanonical form.ax ay
Solution: The given equation can be expressed as r + x2t = 0

-Comparing this equation with equation {7) we have R =1, S = 0, and T = X2, so that R A='+ S it +
T = 0 become A 2 + X2 = 00

Therefore, A = ± ix and A I = i x and A 2 :x: -i x.

dy dy
-- + A =0 become --+ix=O
d x I d x

dv
-0 +it =0
d x 2

dy
---ix=O
dx

become

1 1
Integrating these equations we get y + "2 i X2 = C" and y - "2 i x2 =0 C2

To reduce the given equation to cononical form we transform x. y to u, U to a, If by taking

J 1
- ? °fJ d - 2 °fJU = Y + 2' I x- = a + I an U = Y - "2 I X = a - I

1
Solving a, j3 we get a = y and j3= 2" X2.
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OZ OZ 'oa OZ oj3
- --+--.P aX oa aX oj3 aX

OZ OZ oa OZ oj3
q -- - --+--. --

oy oa oy oj3 oy

a a- -oy oa

a (a z) 8 ( 8z Jr () X a X ax Xa j3

Partial Differential Equations .'\
of Second Order ./

oz
X a j3

OZ
oa

\

oz .+x(~(~J)~+~(~)~J
oj3 oa oj3 o x oj3 oj3 OX

=

o (0 zJ
oy oy

o (0 z)
oa oa

Substituting these values of rand t in the equation r + x2t = 0, we obtain

a z _2 02
Z 2 02 z

oj3 + X 0j32 + X oa2 =0 (or)
02 z 02 z I 07--+-- - ---_.
oa2 a j32 - 2j3 Da

This is the required carnonical form of the given equation.

10.6 Classification of second order partial differential equations:

Depending on the cononical form, the partial differential equation of type (7) is classified
into 3 types.

(i)
. . 02 z 02 z

It is hyperbolic if S2 - 4RT > O. The one-dimensional wave equation --2 = --2-
ax a y

2
is hyperbolic with the cornonical form a z, = O.ouou
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(ii)
'02 z a z

It is parabolic ifS2- 4RT = O. The one-dimensional diffusion equation --2- = ~y
.~ 8x y

is parabolic, being already in canonical form.
It is elliptic if S2 - 4RT < O. The two-dimensional haramonic equation

82 z 82 z
--2- +--2- =0 is elliptic and is also in the canonical form.
8x 0 y

(iii)
/

SAQ's:
/_-------

1. Solve the following equations by inspection or by Lagranges method.
o

1. s+t+q=O (Ans: z e" - F(x) = ¢ (x-y) )

2. P + r x = 9x2 v' (Ans: z = x3 y3 + fey) log x + ¢ (y))

'"' s=2(x+y) (Ans: z = x2y + xy2 + f(x) + ¢ (y))-'.

II. Find a surface satisfying t = 6x3y and coBtaining the two lines y = z = 0 and y = 1 = z
(Ans : z = );3 y3 + Y( 1 _x3))

III. Reduce the following equations to canonical form and hence solve them.

1. x2 (y -1) r - x (y2_1) s + y(y-l) t + xy P - q = 0

28z .
(Ans: =0; z = F(xy) + 1 + (e/x) }

OUOU

( 82 zJ (0 z)
2. X2 r - 2xy s + It -xp + 3yq ~ By / x (Ans: u la v2 + 2 au ~ z, z ~ y / x +

x2 F(xy)+ 1 + (xy))
10.7 SUMMARY:

In this lesson we discussed the method of inspection for solving partial differential equations
of second order. The constant of integration involved in the resulting solution consists of an
arbitrary function of the variable which is considered constant during integration of the given equation.
However they can be determined if some geometrical conditions are specified. Then we obtain
surfaces which satisfy the given geometrical conditions.

By a suitable change of the independent variables, we have shown that the equation
~r+Ss+ Tt+f (x. y. Z. p, q ) = 0 can be transformed into one of the three canonical forms, which are
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easily integrable. Finally the second order par'ial differential equations were classified by their
canonical forms intothree types - hyperbolic, parabolic and elliptic according to S2-4RT>0, =0 or
<: 0 respectively.

10.8 Model Examination questions:

1 . Solve the following equations:

(i)
(ii)
(iii)
(iv)
(v)

(vi)

(vii)

xys = 1
t = sin xy
r = 2y2.
log s = x + Y
x2 S = sin y

(Ans : z = logx + log y+ f(x) + Fty)
(Ans : z = _lIx2 sin xy + y f(x) + Ftx)
~Ans : z = x2y2+x fey) + Fry)
(Ans : z = e+Y + f(x) + Fry)

(Ans : z = f(x) + F(y) + IIx cos y)

x2
(Ans: -log y + axy + f(x) + Fry)

y

(Ans : z = f(x) + F(x) eXY - sin y)t - xq = x cosy + sin y

2. Snow that the surface oft, ..olution satisfying the equation r= J 2X2+ 4y2 and touching the
plane z = 0 is z = (x2+y2)2

3. Reduce the following equations to canonical form and solve them.

(i) (y-1)r-(yZ-l)s+y(y-l)t+p-q=2ye2"(l-y)2

2
(Ans: G Z = 2 o , z = (x + y) y2 e2x+ F(x+y) + H ye2')

GUGU
(ii) x(xy-l)r-(x2y2-1)s+y(xy-l)t+(x-l)p+(y-l)q=0

o2z .
(Ans : = 0, z = F .(yeX

) + 1+H( x eY) )
ouou

(iii) xyr - (X2_y2)S - xy t + py - qx = 2 (x2_y2)

o2z u2 -1
(Ans: 0 U 0 U = (lJ2 + 1)2; z = - xy + F(x2+yZ) + H (y/x»

Prof. K. Rama Mohana Rao
Andhra University.



LESSON-H LINEAR PARTJAL DIFFERENTIAL EQUATIONS WITH CONSTA~,T
COEFFICIENTS

11.1 INTRODUCTION

A partial differential equationwhich is linear with respect to the dependent variable and its
derivatives and in which the coefficients are merely constants is called a linear partial differential
equation with constant coefficients. In the most general form it is expressed as

(

:jrl .,. an'7' an 1 [ an - 17 . a17 - 1'7 )(_ _ . z ~ _
A --.- + AI + + A -- + BO + + B I .

:) .n ;) .n-Ia na 11 a n-l . n- an-Iex ox y y.x y

(
oz oZl -,

+ + MO-+M1-)+N =./(x,y)ox ox z (1)

Here 1\,A I', , All' Bo,· ,BIl.1,·..··,Mo, M, N, are all constants

a a 0"
If we take 0 = a-;:' 01

= 0 Y , DDI = a x a y in equation (I) then it gets transformed to

(A r)Il+A 01l·101+ +A D111)+13 DIl.1+B DIl.2D + +13 111-1')+(I 1 .... Il 0 1 1 .... l 11.10 . . ...

(MoO+Mpl)+N) z = f(x,y)

or more briefly FeO,OI) z = f(x,y) (3)

Ir all the derivatives appearing in equation (1) are of the same order, then such an equation.
is called a linear homogeneous partial differential equation with constant coefficients. It is expressed

as (A))11 + 1\DIl.101 + .... + All DIn) z = f (x.y )

Ifall the derivatives in equation (I) are not of the same order, then we call such equation, a
non-homogeneous linear equation with constant coefficients.

We shall now discuss the methods of solving Iinear partial' differential equation.

11.2 Solution of linear partial differential equations: The complementarv runclion :

As is the case with ordinary linear differential equations, the complete solution of equation
(3) is expressed as the slim of (i) the complementary function and (iijthe particular inteura'
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\
Let z = ¢(y + mx) be asolution.of equationF(D,DI) z = O. Then

Dz

II
II

and Dlz

II

=
oz
-
ox

a2. z._-
ox2
II
II

anz
--
oxn

oz
oy =
II

"

onz
=oyn

rri7jJ I(y + mx)

/

m2¢ II(y +rnx)

II
II

¢ I(y + I11X)

II

"

Is ar+s7
Dr D z = - m r ,f, r + s (y + mx)Also Of'a xra yS

. Substituting these results in the equation F (D,D I) z = 0 we get,

~D DI)Z = (A mil + A 11111-1+.... + A I11+A) "/'1I(Y+I11X) = 0., 0 .1 . 11-1 11 Of'

which is satisfied only if A()ml1 + Alm
l1-l+ .... + A I m+A = 011- 11

This equation is known as the auxiliary equation. Note that it can be obtained by writing m for 0
and I for 01 in the equation F(D,DI) = O.

11.2. t When the auxiliary equation has unequal roots

If the auxiliary equation has In' distinct roots 1111,1112'..... , 11111,then the complementary function
or equation (3) is obtained .as follows: . .
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Thet)
. a Z GZ

[) - 111 [) I = -- - 111 a y = O. r = I. 2 n
r a x r

(or)

dx dy dz
The subsidiary equations corresponding to the Lagranges form are -i- - --,;-;- 0

r

Conxidcring the first t\VOratios we have dy + mdx = 0 (or) y + mix = C J"

lrom the last rc lotion dz = 0 => z = C
2

. Hence z == rjJ r(Y + Il\X) is the sol ution of (D - mD Ijz=O
lhl'I', the complementary function of equation (3) in this case is :

Working rule fOI- finding the complcnH~ntan' function (C.F) :

Consider the givcn equation F(D.DI) z. == 1'(x.y) Factorize F(D.DI) into linear factors otthc
Iorrn (bl) - aD I).

Corresponding to each distinct factor (bD-aDI
) the part (or contribution) for C.F: is taken as

<Ii (by+ux )

11.2.2. \\fhCH the Cluxilian' equation has (equal) ,'crcated l'llOts :

Let us consider the equation having two equal roots i.e, (D-llIDI)2 z = O. Then putting
(])_I\1\)I)I. =~ u ill this equation. we have (D-1110') u = O.

Therefore.

or

Ll == ¢ I (y + mx)

(0-11'101) z = ¢ I (y+rnx) p - mq ~" ¢ I(y+mx)

Then the subsidiary equations corresponding to this Lagrangian form of equation is

dx dy dz

From the first two ratios. we have.
dy + m dx = 0

From the first and the third ratios we have,

I 1
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Hence the solution becomes z = x ¢ /y+mx) + ¢ ,2(Y+l11x)

In general, if a factor in the auxiliary equation repeats itself for 'r' times, then (O-mDIy"z=O
aud in this case,

z = x ¢ /y+mx) + ¢ /y+mx) + + X r-I ¢ r(y+mx)

Working rule for finding the complementary function:

(i) Factorize f(O,OI) into linear factors of the form (bO-aOI). Corresponding to each of tile
non-repeated factor (bO-aOI), the part of the C.F is taken as ¢ (by+ax)

(ii) Corresponding to a repeated factor (bD-aDlt\ the part ofthe,C.F'is taken as
¢ I(by+ax) + x¢ /by+ax) + + x'"" ¢ m(by+axY

(iii) Corresponding to a non-repeated factor 0, the part of CF is taken as ¢ (y).

(iv) Corresponding to a repeated factor om, the part of C.F is taken as
¢ I(y) + x¢ 2(y) + x2,¢ /y) + .... + X m-I ¢ m(y)

(v) Corresponding to a non-repeated factor 01, the part ofC.F is taken as ¢ (x).

(vi) Corresponding to a repeated factor DIm, the part ofC.F is taken as

¢ I(X)+ y¢ /x) + y2,¢ /x) + .... + Ym-I ¢ m(x)

We shall now solve a few problems by applying these working rules.

11.3 Examples:

1t .3. t Example:
a3 z a2z a"'z

Solve ax3 -3 ax2 ay +2 ax ay2 =0

Solution:

The auxiliary equation for the given differential equation is (D3_ 30201 + 20 Dl2 )z=O

From this equation we get 0 ( 0-1) (0-2) z = O. Here all the factors are non-repeated. The part of
the C.F corresponding to these factors are ¢ I(y), ¢ /y+x), ¢ 3(Y+2x). Hence the required solution

is z= ¢ I(Y)+ ¢2(Y+X) + ¢3 (y+2x).
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11.3.2 Example: Solve r + t + 2s = 0

Solution: We recall that ifz is a function of the variables x and y, we employed the following

a z 3 z 32 z a2z a2 z
notation. p = ~h'q = 3 y and r = ax 2' s = 3 x 3 y , t = 0 y 2

Following this notation, the given equation turns out as,

a2 z a2
Z 32z

--+-" -+2 " =0
ax2 ay2 ax ay .

a a
]fwe let D = a x and DI = a y , thisequati.on becomes (D2+D'2+2DD') z = 0 or (D+D')2Z= 0

Then the auxiliary equation is (D+ 1)2=0, so that D = -1, -1. Hence the solution (C.F) is

z = ¢ I (y-x) + X ¢ 2 (y-x),

11.3.3. Example: Solve 2r + 5s + 2t =0

Solution: The given equation can be expressed as (2D2 + 5 DDI + 2 D12)z ~ 0

Then the auxiliary equation is '2 m2 + 5m + 2= 0,

i.e., (m+2) (2m+ 1) = O. Hence m = -2 or -112.

Hence the required solution is z = ¢ I (y-2x) + ¢ 2 (y - x/2)

o

ll.3.4. Example: Solve 2~ . - 40 3 + 16 t = 0

Solution: The given equation can be written as (25D2 - 40DD' + 16 D12) z = 0

The auxiliary equation is 25m2 - 40m + 16::;::0 i.e., (5m-4)2 == O. Hence m = 4/5, 4/5

4 4
Hence the required solution is, z = ¢ I (y + 5' x) + x ¢ 2 (y + 5' x)

or z = ¢ ,(5y + 4x) + x ¢ i 5y+4x)
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11.3.5. Ex~m1ple :
04-z 04 z

Solve ox4 - oy4 =0

The given equation can be expressed as (D4 - D '4) Z = O.Solution:

Its auxiliary equation is m" - I = 0, (or) (m-l ) (m+l) (m2+I) = 0

Hence Il1 = 1, -I ± i. Hence the required equation is

11.3.6. Example:
04Z 04z oz

Solve 3 - 4 2 2 + 4 :::l X :::l y3 = 0ox 0 y '0 x 0 y u u

Solution: The given equation can be expressed as DDI (D2
_ 4 DDI + 4 DI2) = 0

or DDI(D-2Dlf = 0
lienee the auxiliary equation is 111m' (111-2)2= O.

Then the required solution is given by z = ¢ ley) + ¢ /x) + ¢ 3(y+2x) + x ¢ 4 (y+2x)

11.4. The particular Integral

Before we take up the general method of finding the particular integral (P.I) of the equation
F(D,D I) z =f (x.y) we shall discuss a few special cases when t{x,y) bears the following two special
forms :

Special case 1 : When f(x,y) is a funCtion of ax + by

We shall apply a simpler method for finding the particular integral.

Let f~x,y) = ¢ (ax + by)

Then D ¢ (ax + by)
D2¢ (ax + by) =

a ¢ '(ax + by)

a2 ¢ "(ax + by) and so on.

Also. D' ¢ (ax + by) = b ¢ '(ax -+- by)
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Dl2 ¢ (ax + by)b2 ¢ '!(ax + by) and so 011.

Where ¢ I, ¢ ", ..... are derivatives of ¢ w.r.t. ax + by.

Hence F(O,OI)¢ (ax + by) = F(a,b) ¢ (11) (ax + by) ifF(O,OI) is of degree n.

__ 1_' 1 ¢(n)(ax+by) = 1 ¢ (ax+by)
F(D,]) ) F(a,b) ifF (a, b) :;t: °i.e.,

'. _ 1 ¢(n)t
Put ax + by - t. Then F(D,D1)

Integrating n times w.r.t. t we get

1
= F(a, b) ¢ (t)

__ I ¢ (t) = 1 f
F(D,Di) F(a,b) f f A-.(t)dtl1

If' , where t = ax + by

11.4.1. Working procedure:

To obtain the P.I of the equation F(O,O') z = ¢ (ax + by), where F(D,OI) is a homogeneous

function of 0,1)1 of degree n, we put ax + by = t, integrate ¢ (t) W.r.t. t, 11 times we shall then put 'a'

for 0 and 'b' for 01 in F(O,OI) to get F(a,b). Then P.I. = F(a,b) x (nth integral of ¢ (t) w.r.t. t)

Where t = (ax + by).

Case 2: Special case when F (a,b) = 0

When F(a,b):;t: 0, we have seen in case (l) that the particular integral can be obtained as :

F( D, Dl) ¢ (I) = F(~, b) J J J ¢ (t) dt ". with the notation explained therein.

However ifF(a,b) = 0, we observe that this method fails. In this case (bD-aDI) must be a
factor ofF(D,DI), so that we can write F(O,OI) = (bO-aOI) f(O,OI).

dx dy dz
If (bD - aOI)z:=: ¢ (ax + by), the subsidiary equations are: b = - a = ¢ (ax + by)

·1· .
From the first two ratios we get ax + by = C, C is a constant.

From the first and the last ratios we have
1
-¢(ax+by)dx=dz
b .
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1
or -;;¢(C)dx=dz

- Integrating we obtain x ¢ (C) = x ¢ (ax + by)=z
b b b

Hence F(D,DI) z = (bD - aDI) [(D,DI) z = ¢ (ax + by)

1 1
--~1 ' - 1¢ (ax + by)
bD-aD f(D,D)z

1 x - b
-----:1:- - ¢ (ax + y)
f(D,D ) b

1 x
---1:- - \jf (ax + by)

f(D,D ) b

where \1' (t) = f J ¢ (t)dtll,
Now differentiating F(O,DI) = (bD - aDI) f(D,DI) w.r.t D we get

b f (D,OI) + (bD-aDI) f'' (D,OI)

So that F'(a.b) = b f (a,b) + ¢

I \1'. - x (ax+bv)
Fl(D,DI) ,I lence z =

Worl\:ing Proccdun~ :

(i)

- 1
\\11 t'( b) a I t 1 ¢ (ax + by) by differentiatinu F(-O,_DI)w.r.t, _I.) :In(-1V\ ten a . ., = , eva ua e F(D, D ) ~ ~

1 l' ¢ (ax + by) = x 1 I _ 1 rjJ(ax + by)multiply the expression by x so that F(D,D ) F(D,D )

(ii) If FI(a,b) = 0, differentiate FI (01)1) again w.r.t. D and multiply by x so that

__ d. (ax + bll) = x2 1 ,I. (ax + bv)I If" J IllY' ,In generalF(D,D F (D,D) L

1 ¢ (ax + by) = X 11 () 1 ¢ (ax + by)
F(D,DI) F n (D,DI)
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Cas\' J : When f(x,y) is of the form x'" y'\ 111and n being non-negative integers.

llere we have two alternatives.

(i) Ir n < m. we expand F( D,D') in ascending powers of 0 '/0.

(i i) Ir 111< n we expand F(D, D') in ascending powers of DID'.

It may be noted that one might arrive at two different solutions for a considered problem

I
_ .._-_ ....._.--,-----_._--

WII(:11 F(D, DI) is expanded in these t\VOpossible ways, However. this variation in the solution

can be absorbed in the arbitrary functions occurring in the complementary function of the solution.

11.5 F,xampks :

11.5.1 Example: Solve (D~ +-3 DO' +-2 DI2 )z = x+- y

Solution: The auxiliary equation of the given equation is m~ + Jm +-:2= 0 i.c .. ~1l1+-I )(1l1+2)"~O
So that m = -I, -2.

l lcncc the complementary function = rjJ ley-x) +- rjJ /Y - 2x)

I
--------- (x +- .y)

')

D2 +3DD1 +2DI-
Particular integral

1 ')
I I .f f u do: where u = x +-y

1•...+3.1.1 + 2.1~

.' I I . 3
--u6 6

I -,
-(x +- vr'36 ."

lienee the required solution
1. -,

¢ I(Y - x) + rjJ /y - 2 x) + 36" (x +- y).) .
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11.5.2 Example : Solve (02 + 2 001 + Dl2 ) Z = e 2x+3y.

Solution: The auxiliary equation for the given equation is 1112 + 2m + I = 0 so thpt 111 = -1, -1
Hence the-complementary function = ¢ I(Y - x) + x ¢ /y - 2x)

1 2x+3ye
The particular integral = 2

D2 +2DDl +Dl

1 u 2
2 2 f f e du

2 +2.2.3.+3
\

where u = 2x\+ 3y.

1 2x+3y. . , ')+'
25 e , since the integral ot c~x .') with respect of .

2x+ 3y carried twice gives e2x+3y.

Hence the complete solution = 1 2x + 3y
d, (y _x) + x d, (y - x) + - e
'f/ I 'f/ 2 25

11.5.3. Example: Solve r - 2s + t = sin (2x+ 3y)

Solution:

In terms of 1::> and 01
, the given equation can be expressed as (0-2 DOl + D12) z = sin(2x+3y)

The auxiliary equation is m2 - 2m + 1 = o.

~ ·m = 1; I

Hence the complementary function = ¢ I(Y + x) + x ¢ 2(y + x)

1
The particular Integral

D2 -2DD1 +D12

2 . 1 2 f f smu du.2
2 -2.2.3.+3

Sin(2x + 3y)=

where u = (2x+ 3y)

Hence the complete integral =

~ [-sin(2x + 3y)]
I

¢ I(Y + x) + x ¢ /y + x) - sin (2x+3y).
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a2z a2z
Solve --2- + --2- = cas mx cas nyax ay

Solution: The given equation can be written in terms ofD and DI as

(D2+ D12 )z = cosmx cosny.

Its auxiliary eqution = m2 + 1 = 0, so that m = ± i.

11.5.4. Example:

The complementary function = ¢ I(Y+ i x) + ¢ 2(y - i x)

1 cos mx cos ny
Particular integral

o

=
1 I

D2 + D12 ["2 [cos (mx + ny) +cos (mx-ny)] ]

1
2

cos (mx + ny)} +1. { 1 2
2 D2 +Dl

CDS (rnx- ny)}

1
2

1
2 2 (-cos(mx+ny)-

m +n
. 1
2 :2 (-cos(mx-ny)

m +n I

I-1
cos mx cos ny

m2 +n2

Hence the complete integral
cosmx cos ny

¢I(y + ix) + ¢ 2(y - ix) - 2· ?
m +n--

lL5.5. Example: Solve (D3 - 4D2DI + 4 D D12 ) z = 4 sin (2x+y)
o

Solution: The auxiliary equation for-the given equation is nr' - 4m2 + 4111= Oor m(m-2)2 =0

Hence m = 0, 2, 2 and the C.F. = ¢ ICy)+ ¢ 2(2x+y) + x¢ l2x+y)

1----'-------:2:-. 4sin (2x+ y)
D3 -4D2Dl+4DDl

Particular integral
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If D = 2, D I = I is substituted in the denominator 011 the R.H.S, the denominator vanishes. .Hence
we mutliply the numerator by x and differentiate the denominator w.r.t. D. Then
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P.I =

1 J

--------2-·4sin(2x+y)
.x. 3Jj2 _ 8DD1 + 4DDI./

The denominator vanishes again if we substitute D = 2, and DI = 1 Hence by repeating the aforesaid
procedure we obtain.

P.I.
. 2 1
x l ' 4sin(2x+y)

6D-8D

4X2
= . fSin(2x+y)d(2x+y)

6.2 - 8.1

_X2cos (2x+y)

Hence the complete solution z = ¢ I(Y) + ¢ zC2x+y) + X ¢ 3 (y+2x) - X2cos (2x+y)

11.5.6. Example: Solve 4r - 4s +t ~ l o.log (x+2y)

Solution: Re-writing the given equation intermsofD, DI we get

(402 - 4001 + D12 ) z = 16 log (x+2y)

The auxiliary equation is 4D2 - 40 + 1 = 0 or (2D-lY = o.

lienee D == 1/2, 112 and C.F. = ¢ (2y+x) + X¢ 2(2y+x)

Particular integral =
____ 1 16Iog(x+2y)

4D2 -4DD1 +D12

=
16 1 log(x+2y)

(~D-Dl )2
o

16x
log(x + 2y)

= 2(2D-D1)2

2x210g (x+2y)

Hence the required general solution:· z = ¢ 1(2y+x) + x ¢ 2(2y+x) + 2X2 log (x+2y)
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11.5.7. Example: Solve (02 - 2DOI + D12) z = 12 xy

Solution: The auxiliary equation for the given equation is D2 - 2D,+ 1 = 0, so that 0 = 1,1.
Hence the C.F = ¢ I(y+x)+ x¢ /y+x).

The particular integral
-------=-2 12xy
D2 -2DD1 +Dl

1
12. -----2-xy

D2[1~ ~ J

~~. (1-~rxy

~~ . (1 + 2 ~ + .. ) xy

~~. (XY+ ~X)=

= 12 ( X"jD2' xy+2. 2
•

[
x3 x4 J12. v-+-~ 6 12

Hence the general solution z

2xJ Y+ X4.

¢ I(Y+x) + x¢ 2(Y+X)+ 2xJy'+ X4.

11.5.8. Example: Solve (202 - 5 ODI + 2 D12) == 24 (y - x)

Solution: The auxiliary equation for the given equation is 2m2 - 5111 + 2 = 0

l.C.; (2111-1) (111-2)= 0, so that J11= 112, 2

The complementary function = ¢ \(2y+x) + ¢ /y+2x).
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The particular integral 2 24(y - x)
2D2 - 5DD1 + 2DI

1

1
24(y - x)

= 24 ( 5D
1

D
1

' J-1

- 1--+- (y-x)
D2 2D D2 .

12 30
-(y-x) + -(y-x)
D2· D3

=

Hence the general solution is z = ¢ 1(2y+x) + ¢ ly+x) + 6x2y + 3x3.

11.6 General method for finding the particular integral:

Let F(D,D I) be a homogeneous function of D and D I. Now consider the equation.

(D-mDI)z= ¢(x,y)

dx. dy dz
The .Lagranges subsidiary equations are -1- = - = r!. ( )- m 'f' x,y
From the first and second ratios we have y + mx = C.

From the first and third ratios we have dz = ¢ (x,y) dx i.e., dz = ¢ (x, C-mx) dx

Integratingz = f¢ (x, C - mx) dx

1

( I¢ (x.y)
Hence z = D-m DI f¢ (x, C - mx) dx , and C is to be replaced

by (y+mx) after the integration is carried out, for, the P.I should not contain any arbitrary constant.

Suppose that in the given equation F (D, DI) z = ¢ (x,y), F(D,DI) is of the form:
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Particular Integral (P.I) =

In this case, the P.I is evaluated by a repeated application of the above method.

11.7 Examples:

11.7.1 Example: Solve (02 + 2DD' + bl2 ) z = 2 cos y - x sin y

Solution: The auxiliary equation for the given equation is m2 + 2m + 1 = °
Hence the complementary function = ¢ ,(y-x) + x ¢ /y-x)

1

=> 111=-1,-1

The particular Integral

__ 1_"-1 f[(2cos(C + x) - x sin (C + x) dx]
D+D'

since C = Y + 111X= Y - A. "

=
1

--- [(2sin (C + x) + x cosI C +~) - silnC + x)]
D+DI

The complete solution z

1 1 [sin(C+x)+xcos(C+x)]
D+D
Jsin(C+x)+xcos(C+x)dx '

- cos(C+x) + x [sin (C + x) ~ (- cos (C+ x)]
x sin (C+x)
x S1l1 Y

¢ ley-x) + x¢ 2(y-X) + x sin y.

11.7.2. Example: Solve (02 - 00 I - 2 D12 ) z = (y - 1) e>'

"Solution : The auxiliary equation is 1112- m - 2 = 0 i.e., (m - 2) ( m + 1) = 0, since 111= 2 or -1

Hence the c.F. = ¢ ,(y+2x) + ¢ ley-x)

Particular Integral
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(D-2D1)

1 f
(D-2D1)=

(x+a-l) eX dx,
Since y -x = a.

(D - 2Dl ) [ (x - 1) e + (a - 1) eX]

1
( x + a - 2) e:\

1.(y-2)ex

(D-2D1)

f (b-2x-2) eXdx,

( b - 2 ) f eX dx - 2 f
(b - 2) eX- 2(x-l) eX

since y = x + a

x
X e dx

(b - 2x) e:\

xye

The general solution z

SAQs:

I. Find the complementary function for the following linear partial differential equations.

1. (Ans : z = ¢ /y+ax) + ¢ :/y-ax) )

(Ans : z = ¢ ,(y+2x) + x ¢ /y+2x) + ¢ /y) )~ l' ?(0"-40~D + 40 D1- ) z = 0

a4z a4z a4z
--+--=;
a x4 a y4 - a x2a y2
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II. Solve the following equations completely.

1.

2.

(D2+3DDI+2 D12) zv x +y

r-t=x-y

2r - s - 3t = 5 eX
-Y

(Ans : z = ¢ I(y-x) +¢ iy-2x)+1I36(x+y)3)

(Ans : z = ¢;(y+x) +¢ iy-x)+x/4 ()t.-y)2)

(Ans :z = ¢ I(y-x) +¢ i3x+2y) + x eX
-Y)

= ¢ ley-x) + ¢ iy~2x)-7 /6 x2+3/2 x2y)

..,

.J.

4.

III. Solve the following equations:

1. . r + s - 6t = y cos x (Ans : z= ¢1(y+2x)+¢ ly-3x)+sinx -}cosx)

2. (Ans : y = ¢ l(y+2x) +¢ 2(y-2x)+

x log y + Y logx + 3x )

11.8 Summary :

A partial differential equation that is linear w.r.t. the dependent variable and its derivatives
and in which the coefficients are merely constants is called a linear partial differential equation
with constant coefficients. It is expressed in the form F(D,D') = f(x,y). The auxiliary equation for

this equation is obtained by writing 'm' for D and 'I' for DI in F (D, DI) = o and the complementary
function is obtained by solving the auxiliary equation. A few rules of working for finding the
complementary function are given similarly a few simple methods of obtaining the particular integrals. .

are also discussed before discussing a general method of finding the same. The general solution of
the considered equation is expressed as z = C.F + P.I.

11.9 Model Exumination Questions:

I. Solve the following homogeneous equations:

1. (4D2+12DDI+9 D12) z= 0

2. (D3-6D2D'+11 D12 -6 D13)z =0

a4z a4z a2z..,---+ -- = 2 ----
.J. a x4 a y4 a x2a y2

(Ans : z = ¢ ,(2y-x) +x ¢ /2y-3x»

(Ans : z = ¢ ,(x+y) +¢ /2x+y)+¢ 3(3x+y) )



II. Solve the following equations:

1. (D2_2DDI+ D12 ) z = tarux+y)

a2v a2v
2. --2 + --2 = 12(x+y)

a x a y

(Ans :z =¢ I(Y+x)+x¢ iy+x)+x2/2tan(y+x)

(Ans : z =¢ I(y+ix)+¢ iy-ix)+(x+y)3 )

3.r - s + t = sin (2x+3y)

. 4. (D2_a2 12) z = x
D·

5. r + (a+b) s+ ab t = xy

(Ans : z =¢ I{x+y)+x¢ 2(X+Y)-:sin (2x+3y»

(Ans : z =¢ I(y+ax)+¢ iy-ax)+x2/6 )

(Ans : z =¢ I(y-ax)+¢ 2(y-bx)+
116x3y-1I24(a+b )X4))

6,- (D2+DDI-6 D12) z = ysinx .

7. (D3-4D2D1+4D D12 ) z = cos (y+2x)

~

(Ans : z =¢ l(y-3x)+¢ iy+2x)-(ysinx+cosx)

(Ans :z =¢ I(y)+ ¢2(y+2x)+¢3(y+2x).x

+x2/4 sin(2x+y) )

(Ans : z =¢ l(y+2x)+¢)y-3x)

+ 1/4(x3-13/8) sintx+y)

Prof. K. Rama Mohana Rao
Andhra University.



LESSON -12 NON-HOMOGENEOUS LINEAR PARTIAL DIFFERENTIAL
EQUATIONS WITH CONSTANT COEFFICIENTS

12.1 INTRODUCTION:

We have discussed several cases for finding the complementary function as well as particular
integral to obtain the general solution of a homogeneous linear equations, in the preceding lesson.
But there exist linear partial differential equations that are not homogeneous that is F(D, D') is not
necessary homogeneous when we consider equations of the form F(D,D') z =tt x.y). In such cases
I: (I).D') mayor may not be reducible into linear factors. We shall deal with these cases now.

12.2 Complementary function corresponding to linear factors.

Let F (D,D') z ,= f{x.y) .... (1) be the linear partial differential equation. where
F(D.L)') is not necessarily homogeneous. Suppose that F(D,D') can be expressed as product of
linear factors.

We shall now obtain the C.F. corresponding to the first factor.

(2)

This i~;ofthe Iorm of Lag ranges linear equation. so that the subsidiary equations are:

dx dy dz
-=--=--

1 -1111 a1z

Consicining the first and the second ratios we have on integration. y +- mix .,=-, Ct'

dz
Considering the first and the last ratios we have - = al dx

z
a x=> Ion z = a x + lou C .or z = eel'

e- I' b;> 2

lienee the complementary function of equation (2) is z = ea:\ ¢ (y + 111 IX )

By gcneralising this situation, it can be shown that the solution of equation (I) will be
(

12
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In case there are any repeated factors of the type (D-m D,-a Yz = 0, then the corresponding solution
can be obtained as

Note: IfF(D,J)') is expressed asa product of non-repeated factors of the form (bD- aO'-:C), the
part of the C.F. is taken as e cx/b ¢ (by + ax) for each non-repeated factor. Corresponding tc
a repeated factor (bD-aD'-Ct\ the part of the C.F is taken as .

ecx/b r ¢ ,(by + ax) + x ¢ 2 (by + ax) + + xl11-'¢ l11(by+ ax) ]

We observe here that if the format of the linear factor change, the corresponding contribution of that
factor for the complementary function also varies accordingly. Thus,

(i) Corresponding to a 1inear factor (aD'+C), the part of the CF is taken as e-cy/a ¢ (ax)
In case (aD '+C) repeats for m times, the C.F. is seen to be
e' cy/a [ ¢ ,(ax) + x ¢ 2 (ax) + + x'"" ¢ m(ax) ]

(ii) Corresponding to a linear factor (bO +C) the C.F is ecx/b ¢ (by)

(iii) Corresponding to a non-repeated factor (bD-aD') the part ofthe CF is taken as
¢ (by+ax). Corresponding to a repeated factor (bD-aD')J11,the part of the CF is

taken as ¢ /by + ax) + x ¢ 2 (by + ax) + + xl11-'¢ J11(by+ ax)

(iv) Corresponding to a factor D', the C.F. is taken as ¢ (x) corresponding to a factor

Dim, the C.F. is taken as ¢ ,(x) + y ¢ 2(X)+ y2¢ 3(x) + .... + y 111-'¢ m(x)

12.3 P~'rticular Integral of non-homogenous Equation F(D,O') z = f(x,y)

In the case of non-homogenous linear equations, the particular integral can be obtained in
the same way, as in the case of linear equations with constant coefficients. We shall now enlist a
few cases now, for the sake of ready reference.

(I) When f (x.y) = eax+by.

1 ax+by
In this case F(D,D1) e

I ax+by
F(a,b) e .jirovided that fia.bj e O

Thus we substitute 'a'for D and 'b' for D'
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1 ax+bv----'--- e -»

-lowever, if fta.b) = 0, then F(D,n.1)
ax+bv 1=e

F(D+a,D1 +b)

(2) When f(x,y) is of the formSintax+oy) or Cos (ax+by)

ln this case the particular integral is taken as,

-'-'._._-.--~ ') sin(ax +by) = 2 1. 2 sin(ax + by)
F(D2,UDI,D1-) F(-a ,-ab,-b . '

Provided that F (_a2, -ab, _b2) * ° '
1 1

S' '1 I - - 2 cos(ax+by) - 2 . 2 cos(ax+bv)11111 ar y ') 1 1 - .J. - F T)-,DD,D ) F(-a ,-ab,-6' ,

Provided F (.:, -ab, _b2) * °
>_ . 1 sin(ax .j- by) _

If F (_a2
, . _,b,- : -:-0,we may express F(D2 ,DDl ,D12) -

I .it ax+by). ------ e -
Imaginary part of F(D2,DDl,D12).

Similar expre;sic:an be made for f(x,y) == cos (ax+by) also.

(3) When f (x.y) "- x'" v", where m and n are positive integers, then

1 ,;, n
x "y

F(D,Dl) =

The R.H.S is evaluated !1yexpanding [F(D, D') r' in ascending power ofD'/O or DID' or D and,
orO' as the case may t .:according to the different situations discussed in lesson - 11.

(4) Whenf tx.y) =;: e' ,+by. g(x,y), then

t ax +bv) 1 ().------ e -.g(",y = g x.y
F(D,Dl) F(D+a,D1 +b)

and is simplified by applying an appropriate rule discussed in ]-3.
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We shall now apply these' results to some problems and solve them .
•

12.4 Examples:

a2:: az az
12.4.1. Example: Solve --+---- = xyaxay ax ay
Solution: Transforming the given equation into the standard form we get (DD I+D-D 1-1 )z=xy

i.e.. (DI+l) (D-I) = xy

Particular Integral

Hence the complementary function z = e~ rjJ ICy)+ e-x rjJ 2(X)

1
. . xy

(D -1)(DI + 1) -

- (1-0rl (1+01)"1 xy

-[(I-0+D2+ ..... )(I-DI+ .....)]xy
- xy - y + x + 1. (by-case 3) .

z

Hence the complete solution z = e' ¢ /y) + e" ¢ 7(X) - xy - y + x + 1.- . , .

12.4.2. Example: Solve (02 + 001 -t::DI .. 1) z = Sin (x+2y).

Solution: The given equation can be expressed as CD+1) (O+OI-I)z = sin (x+ 2y).

Hence the complementary function z = e-x ¢ 1(y) + ex ¢ 2(y-x).

Particular integral 2 - \ Isin(x + 2y)
(D +DD +D -1)

2 1 1 sin(x -:-2y)
-1 -1(2)+D -1

= / sin(x+2y)
(D -4)

Dl+4 .
? sin(x+2y)

D1- -16

(01+4) ~ sin(x + 2y)
. (-2) -16=
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-1
20 (DI+4) sin (x+2y)

1
- 20 [2 cos (x+2y) + 4 sin (x+2y) ]

I I
Hence the required general solution : z == e-x¢ ICy)+ eX¢ /y-x) - 10-cos(x+2))-Ssin(x+2y).

12.4.3. Example: S I ~ 2 12 1 x+? V»«a: -D -3D+3D )z=xy+e· r-

Solution: The given equation can be expressed as (D-D') (D+DI-3)z = xy + e\+2y.

Hence the complementary function = ¢ I(y+x) + eJx ¢ 2(y-X).

The particular integral corresponding to xy x:

P.ll
1·---:-----,---xy

(D-Dl)(D+Dl-3) .

. -l( D1J"":I(D+D1J-l
-. 1--.- .1-. xy3D· D .. . 3 .

;~[1+~ +H.J[l+D~DI +[D~Dlr +.}Y

;~(I+~ +... ) (1+D~D' +2~DI+.}v
-1 (l+D +DI +DI +Dl +2DDI+ ....._Jxy
3D 3 3 D 3. 9 .

-1 (x2 Y xy x
2
x
3

2X)--+-+-+-+-3 2 3 3 6 9
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Particular integral corresponding to ex+2y.

1 x+ 2y .--------e
(D+ DI -3)(D- Dl)

1 . x'+2y-~-----'-e
(D +DI - 3)(1- 2)

- x + 2y 1 1
e . 1 .

D+I+D +2-3

- x + 2y 1 1
e 1 . D .

D (1+--)
Dl

-x+2y _1_ (1 D )-1
e l' + 1D D

. -x +2y-y e
Hence the complete solution z =\ ¢ t(Y+x) + e3x ¢ 2(Y-x) - y ex+2y:,1I~4 (6x2y+6'xy+6x2+ 3x3+4x)

=

~12.4.4.Example: Solve (D2-DD1+D1-I)z =Costx+Zy) + eY

o

Solution: The given equation can be expressed as (D-I) (D-D1+I) = cos (x+2y) + eY

The complementary function =' e"¢ /y) + e-x ¢ (y+x)

Particular integral corresponding to cos (x+2y) is

1
2 1 1 cos( x + 2y)

D -DD +D -1

1
2 1 cos(x + 2y)

-1 -{-I(lX2)+D -I}
1

-I cos(x + 2y)
D

~ sin(x + 2y)2 0

Par8cular integral corresponding to eY =

1 O.x+ly. e

o

P.l2 (D - DI + I)(D -1)'
1 .. _1 eO.x+ ly

(D-D1+I)-1

Y 1-e .
(D+O)-(D1+1)+1 (

1J-1
y 1· D

-e D' 1- D .1

-e/.x

Hence the complete solution z = eX¢ I(Y) + e-x ¢ (y+x) 112sin (x + y) - x eY
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SAQs:

1. a2z
Solve 2 a x a y

a2z az
+ --2 -3 -8 = 5 cos (3x-2y)

8y Y
(Ans : z = ¢ I(X) + e3x/2 ¢ 2(2y-x)

+ 1110 [4 cos(3x-2y) + 3 sin(3x-2y)] )

2. Solve (D2_D12 +D+3DI-2)z=ex-Y-x2y

(Ans: z =e-2x ¢ /x+y) + eX¢ 2(y-x)-1/4 eX
-Y + 112(x2y+xy+3x2/2+3y/2+3xTLl/4)}

12.5 Special case: When F(D,D1) cannot be resolved into linear factors. .

Suppose F(D~D')is such that it cannot be resolved or factorised into linear factors inD and I

0' i.e., F(O,D') is irreducible. Then the techniques for finding the complementary function discussed
in Sec.12.2 dd not help us. In this case, we have to seek a trial solution, usually taken as ehx+ky.We
then substitute this solution in the given equation to obtain a relation between hand k.: A general
solution - which serves as a complementary function to the given problem - is then written .using
this relationship with some arbitrary constants. This procedure is to be repeated corresponding to
each non-linear factor ofF(O,OI) and.the so!ution is then compiled. Following examples illustrate
this method.

12.6 Examples:

12.6.1 Example: SolvetDi-D'jz= cos (3x-y)

Since F(O,O')= (02-0') is irreucible, we assume that z = A ehx+kyis the complementary function

This is held only if h2 - k = 0 and k = h2

Hence a more general solution, which is the C.F. is taken as z = LA ehx + h2 Y

The particular integral z 2 1 . I .Cos(3x --y)
D -D
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1
, 1 .Cas(3x - y)

-9-D

(D1 9)
--=---cos(3x- }')2 ,.
Dl -81

(Dl-9)= ----cos(3x- V)
-1-81 -

_1 (sin(3x - y) - 9cos(3x _y)]
82

Hence the complete solution z = "'A" hx + h 2y _I [sin(3x -y) - 9cos(3x - y)]
_ L.. e + 82 ' '

-----

Example 12.6.2.
82 02

Sl ~ _-Z_ + x+zo ve 2 - 2 - Y e -ax az

'Solution:
, a a

Since .x and z are the two independent variables we put D = -;- and D I ::=: -0' --- (0
, u x . z

transform the given equation into (D2_DI2_I)y = e x+z.

Let the trial solution be y = A ehx+kz

Then substituting this solution in the given cquation Adr-kc-I) ehx+kz = Oiwhich holds if h~-k2_! :,C
or 11 = See f} and k = tan f).

Hence the complementary function is taken as

y I A eX Secf} + z tan e ;A and e are arbitrary constants

P.1.
1

(1-1-1)

Therefore, the general solutiony= IA eX SecB+ztanB _ex+z
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12.6.3. Example:
•

,~olutiOJl : The given equation can be rewritten as (202-01)(02-01) z = 0

The CY 1 corresponding to the factor (02-D I) is L A e hx + h
2 Y (follows from example 12.6.1)

Tn line! the C.F
2

corresponding to (2D2-01) consider (202_DI)Z = O.
\

Let the tria] solution be z = B e lIX + uy

i lcucc the C.F2 can be taken as z = B eux+2u2y where Band u arc arbitraryconstants.

'rhus the general solution of the given equation is given by z = CF
1

+ CF
2

...,

L Aehx+h"-y+2: B

12.7 Equations reducible to linear form with constant coeffidcnts :

i\ partial differential equation of the form F(xO, yJ)l) = f (x.y) having variable coefficients
can sometimes be reduced to a linear equation with constant coefficient by suitable subsitution.

Fur instance let x = ell and y = e U so that u = log x. and u = log y.

o a
Denoting -;- and -;-' respectively by D and DI, it can be shown that

ull uU

In general
m nx y

al7'l+ 11

axilla yll

a III nn ay ------
noya X III

These subsi tution when affected to the given equation, we see that if red uccs to ;)11 eq ua Ii on ha \' ing
constant coefficients. which can be solved by the methods discussed so far. The I'nllo\yinl,!,examples

illustrate the procedure.
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12.8 Examples:
178

12Jtl Example:
2a2z 2 a2z

Solve x --2 - y --2 = xy. ax ay
Solution: Let x == elland y = e U so that u = log x and u = log y .

a
X'-=Dax '

a2
x2 --2 =0 (0-1)ax

a
Y-=01ay ,

2 a2
.Y --2 = 01(01_1),ay

a DD> .__, [) I=, _._._
au au

with thesesubsitutions, the given equation is transformed to [ O(D-l )-D I(D I_I)] z =, c U' U .

i.e., (D-OI) (D+DI-I)z = e U+V, which is a linear equation with constant co-efficients

The complementary function is given by :

z ¢) u +u ) + ell¢lu -u )
¢I(log x + log y) + x¢ 2(1ogx -log y)

fl(x.y) + x f2 (y/x).

1
.. Particular Integral

.'(D - pI )(D + Dl -1)

1 1 eU+u
D-D1 'I + 1-1

I
---
D-D1

xy logx.

The cornple= solutionz= f/xy) + x fly/x) + xy log x.

] 2.8.2. Example: Solve x2r -It + xp - yq = log x

Solution: The given equation can be expressed as

2 a2z . 2 a2 z a z a z
x .--.--y --+x--y---=logxax2 ay2 ax oy
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Let x = ell, and y = e U so that 1I = log x, v = log y. . - .'\

a
Therefore, x -a = D,

x

a
y a y= 0',

2 a2 2 a2z,
x --2 = 0(0-1) and y --2 = n'rt 1)ax ay

Subsuturmg these expressions in the given equation we get [D(O-I)-OI(DI_'I)+O~OI] Z = L1.,

i.e., (D~1_D;1~)2z = u (~r) . (0-01) (O~DI) Z = U

Complementary function P1(U+U )+¢iu -u)

¢ l(log x + log y) + ¢ /log Y - log x)

¢ l(log x.y) + ¢ 2 (log y/x).

Particular integral
ou

u 1 ./
_(Iogx)2
6

Compkte solution z = ¢ I( log xy ) + ¢ ilog (y/x» + 1/6 (log xl

x2 a2
4 a2z 4v2 8

2
z 8z,

Solve --2 - xy + - --i + 6y - = X') )'4.
8x oxoy oy oy.

12.8.3. l~xamplc :'

Solution:
8 8

Putting x = ell, y = eU, D = 8 U' 01 = 8 U

a 8 a2 82 82
So that.x -a-x. = 0, y 8 y = 01

, x2 --2 = 0 (0-1'1 X)' = 001, ),2-.-) =ol(D'_I)-- a x ." 8 x8 y 8 y-

in the given equation, we obtain [D(O-l) - 4DDI+ 4 D'(D'-l )+60'] z = e'", e 4 U,

i.e., (0-201
) (0-201-1) z = e3u+4U,

o
Complementary function = = ¢ I ( V +2 u ) +e 1I ¢ 2( U +2 u )

¢ ,(log y + 210g x) + x ¢ 2(log y + 2log x )

¢ ,(log x2y) + x ¢ 2 (log x2y)
. f,(x2y) + x t~ (x2y)



Particular Integral
_________ 1____ e3u+4u

. (D-2D1)(D-2D1 + 1)

=
____1 e3u+4u

(3 - 8)(3 - 8 -1)

_1 e3u+4v=
30 .

1 3 4
Hence the general solution z = fl(x

2y) + x f2 (X2y) + 30 x y

SAQs:

I. Solve s + p - q = z + X\'

2.

"..J. Solve r - s + P = I

4,

S,

Solve yt - q = xy.

Solve (x2D2 - y2 D12) z = x2y.

CAns: z = flCx) + l t~ (x) + 112 xy2 log y)

CAns: z = x¢ ICY/x)+ ¢ /xy) + 112 x2y)

12.9 Summary:

In this.lesson, we discussed some methods of finding the complementary function of a non-
homogeneous linear partial differential equation F(D,O I)Z = f (x,y) where F(D,D I) is not

homogeneous function of 0 and ];)1. Since FCD,DI) is not always resolvable into linear factors. If
F(D.D I) is expressed as product of linear factors of the form (bD-aD I-C) , the part of complementary' '.
function is taken in a specified form depending on the form (structure) of the non-repeated or
repeated factor, When 'F(O,pl) cannot be resolved into linear factors, we apply a trial method with

. a trial solution. corresponding to each non-linear fact;r of F(D,D I), we get a general solution ofthe

form z = I A ehx+kh2{ where A and h are arbitrary constants and this is the complementary

function, The methods of finding particular integrals of non-homogeneous equations are similar to
those of the linear, equations with constant coefficients and they are dealt with here under four
broad cases.
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11.10 Mode! Examination questions:

I. Soble the followinu non-homogeneous equations:'-- '--

I, (D-DI-l) (0-01-2)z = sin (2x+3y) (Ans rz= e~¢ I(x+y) + e2\¢ :lx+y)+
1/20 sin(2x-1-3y)

(D+I) I_I) (D+2D 1-3)z = 4+3x+6y (Ans : z == e~¢ I(x+y) + e3~¢ /y-2x)+x+2y+ 6)

")

(Ans : z == '\~ hx -/-(11"- -I)v
L. A e .

+X2 _ 2y - X2)' +- 4)

·t I")' 1") . .., )(. --D + ) z == cosix-Jy k 2x -/-ky
(Ans : z = L A e ..

+1/82 [ sin (x-3y) -/-9 cos(x-3y) J

II. Solve the following equations by reducing them into linear equations:

I.

" 'I 'J 2(x ' 1)-+ 2xy DO +r DI )z = 0 (Ans : z = ¢ (y/x ) + x ¢ 2(y/x) )

, ?
xr - 3xy s + 2y- t + px + 2 qy = x + 2y

4, CAns: z = ¢ I(xy)-I- ¢:/ 'j/x »

I
")

1 aza~z
), - --

') 'I - x3 axx- a x "

'1
1 a'" z 1 a z-----

y2 a y2 - y3 a y

(Ans : z = ¢ l(x2+i) + ¢ 2( i~-x2) ')

Pmf. K. Rama Mohana Ran
Andhra University,



LESSON-13 NON-LINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER

13.1 INTRODUCTION:

We have already learnt that a partial differential equation is said to be of second order if it
contains at least one partial derivative of second order and none of order higher than two. The most
general form of such equation is given by F (x, y, Z, p, q, r, s, t) = O. We have learnt a few methods
of solving linear equations with constant coefficients in the earlier lesson. In this lesson we shall
derive a second order non-linear partial differential equation Rr + Ss + Tt = V - called the uniform
non-linear equation and also the equation Rr+Ss+ Tt+u(rt~s2) = V, called the non-uniform non linear
equation. We shall learn how to obtain the integrals of such equations and also know the monge's
method of solving such non-linear equations of order two.

J3.2Derh·ation of a second order non-linear partial differential equation;

A second order partial differential equation c. n be derived by the elimination ofan arbitrary
function from a partial di fferential equation of first order. Let us consider two known functions:

u
u ( x, y. z; p. q )
u ( x, v. Z, p, q )

(I)
(2)

u

w ich ':lre connected by the relation II = ¢ (~)
partially w.r.t. x and y, so that

OliO 1I 0 1I (=lU 1 [0 u 0u a u a I)]-~+p-+r-+s-=¢ (u).-+p-+r-+s-ox OZ op aq ax oz ap oq

.... (3) we now differentiate equation (3)

(4)

and all au au au J iuu au au au]-+q--+s-+I-=¢ (u)---+q-+s-+t-ay 3z op 3q J3y 3z ap 3q (5)

Eliminating ¢1 (u) between equations (i -md (5). we find that terms in rs and st cancel out leaving

an equation of the form. Rr + Ss + Tt + L ·t - S2) = V (6)

Where R, S, T, U and V involve p,qand th: partial derivatives of u and u w.r.t. x, y. z. p, q

In particular if u or u happens to be functii-n of x, y, z only and not of p or q, then

u ~ ( ~~ 0 u _ 3 u a U J
~\cpaq apcq will vanish (7)
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In such case, the desired equation reduces to Rr + Ss + Tt = V (8)

This is a non-linear equation, since the coefficients R, S, T, and V are functions of p, q as well as
x.y, z. This form of equation is known as the uniform non-linear equation, where as equation of
Type (6) is known as non-uniform non-linear equation.

We note here that an integral of the equation of either type (6) or type (8) will be of the form
(3), which is itself a partial differential equation of first order. It it is possible to determine one or
two such first integrals, known as intermediate integrals, from which equations (6) or (8) can be
derived, then the values ofp and q may be determined. By substituting the values ofp and q in the
identity dz = p dx + q dy, the complete integral of the equations of the types (6) or (8) may be
obtained.

In the discussion that follows, we shall develop a procedure forobtaining such 'intermediate
Integrals' .. One such method that can be applied to solve a majority of the equations is known as
'Monge's method', We shall now discuss it with reference to equations or type (8).

13.3. Monge's method of integrating Rr + Ss + Tt = V

As has been outlined in the earlier section, we shall first determine the intermediate integrals.

op op
We know that dp = ---dx + -;- dy = r dx + s dyox vy

oq o q
and dq = ;:;- dx + ;:;- dy = s dx + t dy

uX u Y

(1)

(2)

dp - s dy dq - s dx
These equations give r = and t = (3)

dx dy
Eliminating r, t from the equation Rr + Ss + Tt = V with the help of equations (3) we get

(
dp - s dY) 7' (dq - s dx JR + Ss + = Vdx dy

'J d 'J(R dp dy + T dq dx - V dy dx ) - S (Rdy" - S dy dx + T x~) = a (4)or

Any relation between x, y, Z, p, q which satisfies equation (4) must also satisfy the two equations :

R dp dy + T dq dx - V dx dy = 0
R dy2 - S dx dy + T dx2 = 0

(5)

(6)

Equations (5) (6) are called the Monge's subsidiary equations and these simultaneous equations
give LIS the desired intermediate integrals.
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Case 1 : Suppose the quadratic equation (6) can be factored into two linear equations in dx
and dy of the form: dy - il11 dx = 0 and dy - il12dx = 0 (7)

From the equation dy - ml dx = 0, combined with (5) and if necessary with dz == p dx + q dy

will give us two integrals of the type ul == ul(x, y, z, p, q) and u == u I(X, y, z). Then ul = nUl) will
be a first integral of the given equation. It is called the Intermediate integral.

By considering the second equation dy - m2 dx = 0 and adopting the similar procedure, the
other Intermediate integral, u2 == f( u) can be obtained. From the two intermediate integrals, we
can obtain the values of p and q interms of x and y. By subsituting these values in the equation dz ==

p dx + q dy and integrating it, we can obtain the complete integral of the given equation Rr + Ss +
Tt = V.

Case 2 : Suppose the equation (6) is a perfect square. Then ml = m2 and we get only one
intermediate integral of the form Pp + Qq = R. We solve this equation by applying
the Lagrange's method.

We shall now solve a few equations that can be identified by these two cases:

13.4 Case 1 : Type 1 :

Here we consider equations of the form Rr + Ss + Tt = V which lead to two factors and the
second intermediate integral can be obtained from the first one by inspection.

13.4.1 Example: Solve t - r see" y = 2q tan y.

Solution: Given that - r see" y + t = 2q tan y (I)

Comparing equation (1) with the equation Rr + Ss + Tt = V, we find that R = -sec'y, S = 0, T = 1,
and V = 2q tan y.

Hence Monge's subsidiary equations are:

R dp dy + T dq dx - V dx dy = 0
R dy2 - S dx dy + T dx? = 0

(2)
(3)

Substituting the values of R. S, T and V in equation (2) and (3) we get

- Sec'ly dp dy + dq dx- 2q tany dx dy = 0
- Sec4y dy2 + dx ' = 0

(4)
(5)
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Equation (5) can be factorised as (dx - sec/y ~ee2y dy) = 0

so that. dx - see2y dy = 0
and dx + sec/y dy= 0

(6)
(7)

From equation (6) we have dx = sec/y dy. Substituting this value ofdx in equation (4) we get

-:dp + cos/y dq--2q siny cosy dy =~-

(or) dp - (cos/y dq - 2q sin y cos y dy) ~ 0

i.e., dp - d (q cos/y) = 0
Integrating we get. p - q cosy = C, (8)

Integrating equation (6) we get x - tany = C
2

(9)

From equations (8) and (9), one integral of equation (I) can be taken as
p - q cos~y = f~x-tany) (10)

From equations (7) and (4), the other integral of equation (l) follows:
pi q eos\ = g (x + tal' \ (11)

I I
Solving equations (10) and (11) for p and q we find that p = 2- (f+g), q = "2 (g-f) sec/y .... (12)

Also dz pdx+qdy

I 1"2 (f+g) dx + "2 (g -f ) sec/y dy

. I 2
f ( x - tany ) ( dx - sec/y dy) + - g(x + tany) (dx + see y dy)

22·
integrating. Z -- _ F (x-tany) + G(x + tany)

13.-1.2. Example: Solve pt - qs = q3.

Solution: Here R = 0, S = -q, T = p and V = q3, Then the Monge's subsidiaryequations will be

q dy d~+ P dx2 = t1
and P dq dx - q' dy dx =, 0

(I)
(?'-)

From cqu.itiou (I). dx= O or q dy = - P dx ..
lienee" C-. C1 and dt. == p ..': + q dy =0 i.e., .Z = C1. V'::,::-reC \' C2 are arbitrary constants.

dq
III -- \.', .md -l d" .~-, (\. then ,,;clll::'tion (2) reduces to p dq + q2p dx=O or ~ + dx = 0

<j
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-1 .o z 1
Integrating we get - + x == C: == ,h (z) say (or) a y = q = .~( .)q -' 'I' (X -'I' Z

Jntegratipg w.r.t. y we obtain y = xz - f ¢ (z) dz + F(x)

Hence the required solution is y = xz + ff(z)F(x)

Case t : Type 2 :

Suppose that we are able to obtain two factors as in Type 1 but the inspection method fails
to provide us with another integral of a given differential equation. In this case we start with only
one integral by putting it in the form Pp + Qq = R and apply the Lagrangesmethod. We now
illustrate this technique with a few examples.

13.4.3 Example: Solve q (1 + q) r -( p + q + 2 pq) s+ P ( 1 +"p) t = 0 ( 13)

/ Solution: Comparing equation (13) with the equation Rr + Ss +Tt = V, we find that R = q(l +q),
S = -( p + q + 2pq), T = p (I +p), V = O.

The Monge's subsidiary equations are:

and
R dp dy + T dq dx - V dx dy = 0
R dl- S dx dy + T dx2 = 0

(J 4)
(15)

Substituting the expressions for R, S, T and V in equatioas (14) and (15) weobtain,

and

(q+q~) dpdy + (p+p2) dq dx = 0
(q+q2)dy2+(p+q+ 2pq) dx dy + (p+p/) dx2 = 0

(16)

(17)

EquationI 17) can be factorised into (q dy + P dx) [ (1+q)dy + (p+ l)dx] = 0
J

So that q dy + P dx = 0
and (1+q) dy -+ (l+p )dx ~ 0

q dy = - p dx (18)
(19)

In view of equation (18) equation (16) may be written as (l +q) dp (qdy) - (l +p) dq (-pdx) = 0 .

w~ )l0W divide this equation by q dy ( or its equivalent -p dx) so that,

( 1+ q) dp - ( 1 + 0) dq = 0
dp dq

or -- - -.- =0
1+ p l-;-q

,.'1cgr:ltil1g: log ( I + p) - log ( 1 + q) = log CI"
1+ p

(or) - =C
1 + q I

(20)

; (21)/\ !-;o dz = p dx + q dy = 0, in virtue of equation (18). Hence z = C).



From equation (20) and (21) we find that one integral of equation (I 3) is 11+ P =f(z) or- +q
1+p=( 1+qjftz) or p - fez) q = fez) - I.

This equation is of the form Pp + Qq = R. Hence the Lagranges auxiliary equations are

a>. dy dz dx + dy + dz
= =---=--~--

~f(z) f(z)-1 0

Hence dx + dy + dz -- 0 => x + y + z .; C
3
.

(22)

(23)

From the first and third ratios of equation ·)2) we get dx - [ [(z)-l rl dz = 0

Integrating we get x + F(z) = C4. (24)
from equation (23) and (24) we have x + F(z) = G(x+y+z). which is trr.: required general solution.

13.4.4. Example; . Solve y2r -2ys + t = P + 6y

Solution:
. dp - s dy dq - s dx

Since r = t =dx' dy

dp - s dy dq - s dx
~he given equation is y2 ( I ) - :2ys + d P +6yex y

., ? 2 2 2 I.or) y- dpdy + dq dx - (p+6y) dy dx - s- (y dy + 2y dy dx + dx ) = 0 (25)

Hence Monge'ssubsidiarv equations are: .

l dy dp + dq dx - (p+6y) ty dx = a
and y dy + dx = 0

(26)
(27)

Integrating equation (27), l + 2x = C
1

Substituting the value ofy dy from equation (27) in (26) and dividing with by-dx, we have.

y dp - dq + (p.'f,y) dy =, 0
or (y dp + P dy ) -.Iq + 6y dy = 0

Integrating. we have py - q + 3l = C;

Hence the intermediate integral is py.- q+ 3~2 = f cl + 2;,)
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dx dy dz
The Lagranges subsidiary equations are y = -=1 = _ 3y2 + fey" + 2x)

dy dz
The first two ratios give y2+2x = C

1
• Using this in the lastratio, we have -=1 = _ 3y2 + f(C,)

or dz=[3l-f(CI)]dy.

Integrating, we get z = yJ - Y f (C,') + C
3
.

Hence the solution z = y3 - Y f(y2+2x) +¢ (i+2x)

13.5' Case 2 : Type 3 : i .

Ifthe Monge's subsidiary equation has R.H.S. as a perfect square, it gives only one distinct
factor. In this case we obtain only one intermediate integral, which is expressed in the form Pp+Qq=R

13.5.5. Example: Solve y2r + 2xy s + x2 t + px + qy = 0

Solution: Given that lr + 2xy s + X2t = -( px + qy) (28)

Comparing equation (28) with Rr + Ss +.Tt == V, we get R = y2, S = 2xy, T = X2; V = -(px+qy)

Mange's Subsidiary equations are:

R dp dy + T dq dx + V dx dy = 0 (5)
R dy2 - S dx cly + T dx2 ,,; 0 (6) .

Substituting the expressions for R, S, T, V in equations (29) and (30) we get the Monge's equations
of Equation (28) : .

i dp dy + X2dq dx + ( P,x + qy ) dx dy = 0
l dl -2xy dx dy + X2 d'x2 = 0

< (29)
(30)

From equation (30) we have (x dx - Y dy)2 = 0 so that, x dx - y dy = 0 (or) x dx = y dy '(3n- ~

Hence-equation (29) may be written as y dp (y dy) + x dq (x dx) + P dy (x dx) + q ax (y dy) = 0
", " . .

., s ;

Dividing.throught by x dx or its equivalent y dy,

we ge~, y dp + x dq + P dy + q dx = 0 (or)(y dp +p dy) + ( x dq + q dx) = 0

Integrating we obtain y p -I- x q = CI" (32)
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Integrating equation (31), "2 x' - "2 y- = C/2.

-(011--- x 2 '- l-= c; (33)

From equation (32) and.(33), one of the integral of (28) is y P + x q = F (x2 -i).-~

dx dy dz
== =Since this is ofthejorm Pp T Qq = R-itsLaw~nge's auxiliary equations are y x F(x2 _ y2)

FI"()111 the first two ratios we have x dx - y dy = 0 so that Xl - y2 = C2.

'faking the last two factors and using equation (33) we obtain

dv

~y2 +C2

dz
F(C2)

dy
or =0.

I 1-, .
Integrating, Z - F(C2) log [y + ,p:- + (.2 ] = C

3
·

i.e.. Z - F(X2~i) log[ y +'J y2 +" x2 - y? :1= C3.

or 7. - P(x2_yZ-) log(x+y)= C,'
, -

Hence-the" general solution is z - p(x2-l) log (x + Y ) G (x2-i\

135.2. Example: Solve ir - 2ys + t = p:~ qy (33)

Solution:
;

The Monge's subsidiary equations for the equation (33) are:

l dp dy + dq dx - (p+6y) dx dy = Q
i dy2 + 2y dy dx + dx2 = 0 (or) (y dy + dxf = 0

(34)

(35)

From equation (-35), y dy + dx = 0 or dx '- -y dy (36)

Substituting for __~x from (36) in equation (3~) we obtain:

. ') - '
. y~ dp dy + dq (-y dy) - (p+6y) dy (-y dy) = 0

l.C.; y dp -.~iq + (p+6y) dy = ,0 (or) (y dp + pdy) -,dq + 6y dy = 0

Integrating, yp - q + 3y2 = Ct. (37)
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1 .
Integrating equation (36), x + "2 y2 = C/2 or y2 + 2x = C2. (38)

From equation (37) and (38) we can write one integral of equation (33) as y p - q + 3y2 = F(i+2x)

or yp - q = F(y2 + 2x)- 3y2 which is in the standard form Pp + Qq = R. Hence the Lagranges

dx /dy dz
auxiliary equations become -y /= =I = F' (2 2) 3 2. y+x-y'

From the first two ratios, we find y dy + dx.= 0 (or) y2 + 2x = C2.

(39)

(38)

From the last two ratios, using equation (38) we obtain: dz + [ FCC,) - 3y2 ] dy = 0. . ~
Integrating, z +y F(C2) - y3 = C3. (or) z + y F (y2 + 2x) - y3 = C

J
..

Hence tne required solution is z + Y F(y2 + 2x) - y3 = G( i + 2x)

13.5.3. Example: Obtain the integral of q/r - 2pqs + p2t = 0 in the form ofy +x fez) = F(z)
I

Solution: . For the given equation, the Monge's Subsidiary equations are
q2 dp dy + p2 dp dx = 0 (40)

and q2 dy2 + 2pq dx dy + p2dx2 = 0

or (q dy-r p dxr v O i.e., qdy=-pdx (41)
Hence, in view 01"(41), equation (40) becomes q dp (qdy) - pdq (-p dx) = 0 dividing throughout by

qdy or its equivalent p dx, ONe t'lnd q dp - p dq = 0
dp dq=or p q

p
Integrating -= C I.q
From equation (41) dz = pr'x + q dy = 0,

. .. P
~ence one integral of the given equation is q = fez). (or) p - f (z) q = O. This is of the form

dx dy dz
Pp+Qq == R. Hence Lagranges ouxiliary equations for this equations are y = _ f (z) = 0.Hence

- .

dx dy
dz = 0, so z = C2. From the first two ratios -1 = _ fez) (or) dy = -f(C2) dx

Integrating y + x f (C2) = C3 (or) y + x fez) = C3.

Hence the required integral is y + x fez) = F(z).
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13.() Case 3: Type 4 :

- Suppose that the Monge's subsidiary equation R dyl - S dx dy + T dx2 = 0 has the R.B.S.
such that it is neither a perfect square nor it gives two factors. In sllcSi>case, we cancel 1:1CtO["Ssuch
as-dx, dy, p, .... etc and an integral of the given equation is obtained. This integral is then integrated
by a known method (lesson -10). We ssal! now illustrate this case with a few examples.

13.6.1. Example: Solve z (qs -pt) == pq~:

Solution: Given that z ( qs ~pt)= pq2., (42)

The Monge's subsidiary equations for equation (42) are - zpdq dx - pq2 dxdy =-0 ... (43)
and - zq dx dy - zp dx2 = 0 (44)

Dividing equation (44) by - z dx and (43) by -p dx we obtain:

z dq + q2dy = 0

q dy + P dx = 0 => dz = 0
o

dq dy-+-2 C =0
q 1

-c=>z- I' .

Hence C1 dq + q2 dy = o (or)

_.l+L=C
Integrating, C 2q 1 (or)

1 y--+-=c
q z 2

1 Y
Hence one integral of equation (42) is - q +;- = fez) (or)

dy y-, --=-f(z)
dz z "

This equation.is linear in y and z if x is treated as constant. Its integrating factor is

1 d
e 52 Z = e -logz = .l

z
, 1 ' "
Hence its solution is y/z = -f- f(z)dz+ G(x) (or) y Z-I = F (z) + G (x)

z
r.e., y = z F(z) + z G(x)

13.6.2. Example: Solve (q + 1)$ ={p+1) t

Solution: From the given enuatio» Ufp' find that R = 0, S = (q+ I), T = -(p+ I) ancl V == O.
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Hence Monge'ssubsidiary equations afc

- (p + 1) dq dx = 0
and - (q=t-l) dx dy - (p+ 1) dx2 = 0

or dq = 0 and (q~.+1 ) dy- (p+ 1) d~.-=O·

l.e.,- dx + dy + P dx +q:-dy = 0

or "" dx + dy + dz = 0, since p dx + q dy = dz

Integrating we get, x + y + z = C" " . Also dq = 0 =>

f( x+y+z).Hence an integral of the given equation is q = f (x+y+z) (or)

Integrating this equation partially w.r.t. y. we obtain,

z = F(x+y+z) + G(x), where F, G are arbitrary functions.

13.6.3. Example: Solve ( x - y) (xr '"xs - 'y.S:..yj')== (x+y) (p-q)
~~- ~

dp - s dydp - s dx
We firstsubsitute r = dx alid'"t= dy in the given equation. to obtain

•

Solution:

the following Monge's subsidiary equations.

x ( X - y ) dp dy + y ( x- y ) dq dx - (x + y) ( p .,qj:di.oy =0
and xdy' + ( X + y) dx dy + y dx2 = 0

(45)
(46)

"-:---
From equation (46) we obtain, x dy + Y dx = 0 => xy~~ ~f'

and dx + dy = 0
(47)
(48)

In view of equation (47), equation (45) can be written as.

- y (x-y) dp dx + y (x-y) dq dx - (p-q) (-y dx2 + y dx dy) = 0

I.e., (x -y) ( dp-dq) - (p-q) (dx-dy) = 0

dp-dq dx-dy
or p-q x-y

lntegrating we get p - q = C2 (x - y)
,

Hence one integral of the given equation 1;' y - q = ( x- y) f (xy), which in the Lagranges form.



dx dy dz. f (xy )(y dx + x dy -/-dz)
llence the subsidiary equations are -1- = =l = (x - y)f(x.y) = 0

From the first two ratios we have x + y = C.
. .'

From the last ratio, we get dz = f{xy) d(xy) (or) z=F1(xy)+const.

Hence the complete integral is z = FI(xy) + F2 (x -I- y)

SAOs:

Typc t: ( 1)
(1)

Tvpe 2: (1 )
(2)

T"Pl' 3: (1 )

(2)

Tvpc;l : ( 1 )
(2)

1.3.7 Summ:lI"Y

Solve the following equations using the Monge's method:

r - t cos'x + p tanx = 0
~r = a~t.

(Ans : F(y-sinx) + G(y-l-sinx)]

(Ans : z ~ F(y-ax) -I- Gty+ax};

. .

2x2r -,5 xys + 2it + 2(px + qy) = 0 (Ans: z + F(x2y) = G (x/) )
(x - y) (xr - sx .~ys + yt) = (x + y) (p - q)

(Ans: F(xy) + z = G(x+y))

(I +q2) r - 2(1+p+q+pq)s + (I +p)2t = 0
(Ans : y + xF (x+y+z) = Gfx+y+z i)

x2r + 2xys +y2(t) = 0 (Ans : z + F(y/x) = y G(ylz»)

pq = x (ps - qr)
pt - qs = ({

(Ans : F(z) = log x + G (y) )

(Ans : y= xz - Ftz) + G(x) )

In this lesson we have derived asecond order non-linear partial differentia) equation
Rr-/-Ss+Tt=V. called the lIni'form non-linearequation and also Rr+ Ss+Tt+U(rl-s2) = Y, called tile

non-uniform non-linear equation. The integrals of these equations are of the form u '" ¢ (u ).
which is itself a partial differential equation of first order. We have developed a procedure "or
obtaining the intermediate integrals for those equations of the type Rr + Ss + Tt = V, using the
l\illlllgl"S method by writing the subsidiary equations. The solution for the considered equation is
oht.uncd using the Lagrange's method.
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1~.8 M.odel Examination Questions:

z-

Solve the following equations using Monge's method_:

1. ________(Ans: z = F[y + at l+b) x] + G [y+a(l-b)x])

2_ rx2 .•3s xy +2ty2 + px + 2qy = x+ 2y (Ans : y = F (x+z) + G(z) )

.,
... Y. (Ans : yz = (xy)3/2F(y/x) + Gtxy)

4. (r - s) y + (s -:-t) x + q - p = 0

5. (Ans : z = xyjQgJ( + x F(y/x) + G(xy) )

6. x2r - 2xs + t + q = 0 (Ans : F (y+logx) + x G (y+logx) )

7.
\
(Ans . y .....:eo" F~~ G(x) )

8.

Prof. K. Rama Mohana RHO
Andhra University.



LESS()N-14 NON - UNIFORM NON - L1NEAREQUATIONSOF SECOND ORIlER-
MONGE'S METflOD

14.1 Intmduction:

1n lesson 13. a second order partial differential equation was deri ved by el iminatingan
I

arbitary function from a partial differential equation of first order.J3Y considering two known

functions u. v of x.y, z; p and q which are connected by a relation u =/ ¢ (u ), we derived an
\

equation of the form R,. + Ss + Tt + U (rt - s2) = V known as a 1101'1-unit~rll1 non -linear equation
.! .

i /
In particular if 11 orv happenstobe a function ofx,y, z only (and l10t ofpor q). we formed

that the derived equation will be reduced to Rr + ss + Tt =V, known af uniform non-linear equa-
tion. In the last lesson. we have discussed about four types of solving such equationsrcategorised

i ~. , ' .

into two broad cases- depending on whether I1lI =1712 or 1711'f':- 1712,
/\~/

In this lesson we shall discuss the Monge's method offinding a solp{;SJito the lion ~uniform
. , / I'

non-linear equation Rr + Ss + Tt + U (r/ - s2) = V through a c1assiflc~tiqn1into thr~c types. we
shall first derive the Monge's subsidiary equations and obtain the intermediate integrals.

14.2 Monges subsidiary equations and the intermediate, integrals.

Consider the equation R,. + Ss + Tt + U (rt - s2) = V ..:(1 ) where R,S,T, U and V are func-
Iii /

tions ofx.y. z: p and q we know that : dx + ~; dy ~ rdx'+sdy

dp-sdyor r = -'-------'-
dx

similarly
aq aqdq=-dx+-dyax ay sdx+t dy

dq-sd-r:
or = t

dv .

SUbstitlitin.g these vUIL.les•• ., t in equation (.1) we have., .,.-.~' ". ./

R(dP-SdY) (dq-SdXJ {dP-SC(V dq-,s(ix \ 2} /'+ S" T +lLJ t--r-t \ - -- = Vdx '-f 4:- dy dx c(v) i. ' '
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. I- Lej

(R dp dy+T cfq\dx+U dp dq- V dx dY)-s(R dy2 -S dx dy +T dx2 +U dp dx+ V dq d.y)=S.)

l-Ienee the the Monges subsidiary equations are

R dp dJ!.+T dq dx+U dp dq- V dx dy == 0 --- (2)

.~an~I':'(_Ray2-S dx dy+T dx2 +V dpdx~V dq dy ) = 0 --- (3)

Here we notice that the presence of the factor U dp dx + U dq dy in equation (3) stalls the process
of factorising it. So we shall now try to factorize .

? ?( R C(V - - s dxdy + T dx - + U dp dx +U dq dy

+,1. (R dp dy+T dq dx+U dp dx=V dq dy) = 0
--- (4)

for some multiplier A to be determined later Equation (4) can be expressed after rearrangement or
terms as

/') ') .

R (~r- +T dx": - (S +,1. V)dx+dy+U dp dy- V dq C0;+A. R dp dy+A. T dq dx +,1. U dp dq = 0

--- (5)
l:.et LIS suppose that the factors of (5) are

I 1 A.
(If. dv+ m T dx+ kU dp) (dy + -dx + -dq) = 0 where k and m are constants --- (6)

I . 111 k

:.:~mparing the co-efficients in equations (5) and (6) we get ~ + IllT = -(S + A V) .

RA
k

- I RA
TI1c last two relations in equations (7) give 111 -:

U

k = m and u (7)

which when substituted in the first give ,1.2(UV +RT)+ )'VSU + U 2 o (8)

called the .it equation. In general .it will be a function ofx,y, Z, p and q. If Al and A2 are assumed

to be the two values of A satisfying the quadratic equation (8), then the factors corresponding to
these values will be.

R~. U U.(Rdv + --- Tdx + lV1dp)( dy + -..-:--dx +- dq) = U
- U 'R~ R
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or (U dY+A1T dX+A1 U dp) (U d1:+A1R dY+A1 U dq)

RAI
as m = k = --

U

o.

(9)

similarly corresponding to ,.1,2 we obtain

o (10)

[0 get intermediate integrals in the form u = feu ) one of the factors from equation (9) is to

be combined with a one from equation (10). In a similar way the left over pail'S will give rise to
another intermediate integral. However, in order to obtain proper solutions, we combine the factors
in the following manner:

U dy+~T dX+A1 U dp 0 l
J

and U dX+A2R dY+A2 U dq 0 } r-

U dY+A2T dX+A2 U dp 0

and U dX+A)R dY+AI U dq 0

(11 )

(12)

If the total differential equations (11) and (12) are integrable, we get intermediate integrals,
from which p and q can be determined. These P and q when substituted in dz-::;"p dx + q dy and after
integration give the desired genera) solution.-,

we shall now exemplify the Monge's method of solving the equation (I) by considering
three types (1-3) : we begin with examples where in the A-equation has equal roots. In this case,

. we proceed with only one intermediate integral.

14.3 Examples of Type 1 : A-equation having equal roots

14.3.1. Example: Solve 2r+teX -(rt-s2) 2ex

Solution:- comparing the given equation with the standard form

Rr + Ss + Tt + U(rt - s2) V

we have R =2 S = 0 T = x U = -I and V = 2 x. 'J, e 'J" . e

Hence the A-equation A 2(UV + RT) + A SU + U2 G

yields A 2(2ex - 2ex).+ 11.-(0) + 1= 0, which can't.be solved.
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.. Here
dp - s dyr=~---=-

dx

dq - s dxt = --=---
dy

The Monge's subsidiary equations are

2dpdy+ex dqdx-dpdq-2eX dx dy o (A)

and dl+exdx2 - dp dx - dq dy = 0

From eqaution (A) we have ( 2 dy - dq) (dp - eX dx)= 0

=>2 dy -dq = o => 2 Y-=-9 = a, , where a is a constant

Simi larly. dx - eX dx = 0 => n - eX ~ b , where b is a constant

q = 2y-a and p = b+ex

substituting these values of p and q in dz = p dx + q dy

we get dz = (b+e") dx + (Zv-a) dy dy

Integrating we-get z = eX+.dx + y2 - ay + c

which is the required solution.

'J14.3.2. Example: Solve 2s + irt - s ~) =.1,

Solution: .Comparing the given equation with the eou~tinn

R,. + Ss + Tt + U (rt - s 2) = V, we have R = 0, S = 2, T = 0, U = 1, and v = 1 --- ( i3)

Hence the, A-equation becomes A2 + 2A + 1 = 0, so that Al = A2 = -1 and we have equal

values of A· Hence we have only one intermediate integral given by

and U dx+Z: R dy + A2 U dq 0,

r.e., dy - dp =0 and dx-dq =0 (In virtue of equ 13)
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Integrating, y - p = C I and x - q = L2

Hence dz p dx + q dy

(ydx + x dy ) - c1 dx - c2 dy

d (xy) - c1dx - c2 dy=

Integrating, Z = xy - CIx - C 2 Y + c3, which is the desired solution.

14.4 Examples of Type .2 : x -equation with different roots

14.4.1. Example: Solve r+3s+t+(rt-,,2) = 1,

Solution:

Comparing the given equation with the standard form, we find that R == 1, S = 3, T = 1, U= 1,V = 1,

Hence the A.--equation A.2 (UV + RT) + ASU + U 2 = a
become 2A 2 + 3;J; + 1 = a which gives Al =-1 and ,.1,2 = - 112 (distinct roots)

The first system of integrals are given by

U dy + Al T dx + Al U dp = a
U dX+A2R dY+A2 U dq= a

zz-dy=dx=dp

-:::::> dy - 2dx + dq

a
o

Integrating y - x - p = constant and y - 2x + q = constant

Hence the first intermediate integral is given by y - x - p = I} (y - 2x + q) =.!i (a), say

similarly the second intermediate integral can be seen to be

I2(f3) , say

From the relations a = y - 2x -+ Cj and 13= x - y - 1./

- fJ - a ~x 'and y = I2 (13) -II (a)
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so that dx = -dJ3 - da and dy =

Then from the first intermediate integral we have P =~ - x - I] (a)

and from the second intermediate integral q = x - y - fJ

Substituting these values of p and q in dz = pdx + qdy

we obtain dz = b;- x - I] (a)] dx + (x - Y - fJ)dy

or [-(X - y)(dx - dy) - 11 (a ){- dfJ - da}- f3{/2 (fJ )dfJ - J/(a )da} ]

Integrating, z = - ~ (x - y)2 + J 11 (a )da - f fJ Id (fJ)dfJ + fJ II (a)

= - ~ (x - y) 2 + F
J
(a) + F2 (fJ) - fJ .12 (fJ) + fJ 11 (a)

which i~ the required $0Iuti011.

14.-1.2 Example:

Solution:
Solve r+4s+t+rl-sL = 2

( .omparing the giyen equation with the standard form

Rr+Ss+Tt+U(rt-s2) = Vwehave·R = I,S= 4, T= ), U=I,andV=2 ---( 14}

The A.--equation. v.ith these values substituted become 3A.-2 + 4A + 1= 0

so that AI = -1 ; (I5)

The two intermediate integrals for the given ec.uation are given by the following sets:
\

(16)

and

( 17)
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\)sing the resuus 0\'(14) and (\ 5)\n Eq's (J6) and(17) we get
•

dy - dx - dp = 0 or dp -+- dx - dy = 0
(1:\ - 1/3 dv - l.'3dq = 0 or dq + dy - 3dx = 0 (16 a)

and dv - II] dx - 1/3 dp = 0 or dp + ,-,x - 3 dy = 0
dx - dy - tlq =, 0 or dq + \.Y - dx = 0 ( 17(1)

lnicgrating equa.ions 16(3) we get p'+ X - Y -, Cj, q + y - 3x = C2
Integrating equations 17(a) we get p -+- x - 3) -' c3 ' q + Y - x = c 4

Th LIS the lwo integra Iso f .he gi ven eq nations are

P -I- x -y --, It q+y --'x) and p + x -]y = F (q -+- Y -x) (J 8)

No\\ let C] + y -~\ = a and q + Y - x = fJ (19)

and p + x - 3y = F( fJ ) (20)

I
So lvi ng cquuions ( 19 I lor x we get x = - (/3 - a), ~ 2 (21 )

similarl ,' sol\ing equat..ms (20) for y \VC have y = ~Lr(a ) -- F(fJ)]

From cq ( i t:) we gd p = y -X + f (a)

From eq ( ! f; \ we have q . : X - Y + fJ

Also Iro:n ,.J (21) dx = ~-(dfJ - da)
. 1.

--- . (22)

and from c.:ql\:?2) (()I = ~l{'l(a)da-Fl(fJ)dfJ ]

: icncc _ dz = ,- dx + q dy

ry -lr -I- / (a ) ] dx -t (x - y + fJ ) dy

vdx + xd; - xdx - yry + f(a ) dx + fJ dy. I .
d(xy)-xdx- y~v+ f(a) ~(dj} -cla)+ fJ ~ [I1{a)da- fl (fJ)dfJ] by t:q(23)

d(J) - xdx= J'eI\,+ ~ [f(a) d,li+,8 fl(a) da ] - Hf(a) d a +,8 "I(,8) d,81
I

I

(23)

=
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or 2 dz = 2d (xy) - 2x dx - 2y dy +d [13 f (a)] - f (a) d a - 13F\ 13) d 13 \

or 2 dz r=

2xy- x2 - y2 + 13 f (a)- f f{a) cia - 13 FI (13) dj3

2xy - x2 - y2 + 13 [f (a) - F (13)] - If (a) cia + IF (fJ) clI3

Integrating 2z =

Let J1' (a) cia = ¢ (a) and IF (13) dj3 =4-{ 13) (25)

so that f (a) = ¢ I( a) and F (13) = ~ I (13) (26)

using (25) and (26) in equations (21). (22) and (24) .

we have 2x

, and 2z

= 13- a ;2y= ¢ I( a )-~ I( 13)
= 2xy - X2 -l + 13 [ ¢ I( a) - ~ I( 13 )]- ¢ (a)+ ri~ (13 )

This is the required solution in the parametric form with a. 13 as parameters and ¢. rtJ

as arbitrary functions.

14.5 Examples of Type 3 :

In case we fail to obtain a solution for an equation of the form Rr+Ss+Tt+U(rt-s1):==V with
the earlier methods discussed in 14.3 and 14.4, we proceed with the method of type 3. Here. ill

place of the usual ul = f(ul), we obtain an integral of the given equation in the linear form

111 ==!nUl + n , we t!1en integrate this form by Lagranges method to obtain the general solution

involving two arbitrary constants 111,n. This method, thus gives the desired solution in more gen-
eral form. for problems which were considered in Types I and 2. We shall nov illustrate the
procedure with a few examples.

14.5.1 Example: Solve qrx+(x+ y)s+ pyt+xy(rt-s2) I-pq

Solution :-. comparing the given equation with the standard form of the equation

Rr + Ss + Tt + U (rt - s2) = V we find that R = qx, S = x + y, T = p y,

U = x y and V = 1- pq with these values of R, S, T. U ancl V the 2 -equation becomes

[xY(l-pq)+qX(PY)]A2 +xY (x+ Y)A+x2y2 =0

or ),2 +(x+y)2++xy=O ~(>I.+x)(2+y)=0,
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so that Al = -x and ..1,2 =-y

. we have one intermediate integral given by Udy + A1Tdx + Al Udp =: 0
o

Udx + ..1,2Rdy+ A2Udq = 0

i.e, xy dy - x py dx - X2 Ydp = 0 => -dy + (p dx + x dp) = 0
xy dy - yq x dy - Y 2 Xdq = 0 => -dx + (q dy + Y dq) = 0

Integrating, -y + px = ci

Hence one intermediate integral may be taken as

or
px - y = m ( qy - x) + n or
px - 111qy= Y -111X+ n, 111,nare artibitary constants.

dx dydz
The Lagranges auxiliary equations for this equations are - = -- =. +0

. X - my ° y - /11X n --- (27)

dx dy
From the first two ratio's, we have /11- + -0 = 0x y

m-Integrating 111log x + log y = log c1 or x y = ci (28)

1
choosing m,-,I

o!YJ
as multipliers in equation (27), each of the fraction = !(m dx + dy + dZ)n m

(29)

. dx
From the first fraction of equation (27) and t29) we have _0 - =

x n

or
1 dxdz +m dx + - dy - n --

In X o

Integrating, z + mx+ Z. - rllog x = c2m
(30)

From equations (28) and (30), the required general solution is z + mx + ~ - n log x = ¢(xm y),
m

¢ is an arbitrary function.
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14.5.2 Example: Solve (rt - s 2) -:-s (sinx + siny) = sinx smy~. . .

Solution: Here R = 0, S = - s (sinx + siny) T = 0, U = 1, and V == sinx siny

I Ience the A -equation becomes

,,12 (sinx siny) - A (sinx + siny) + 1 = °
so that AI = cosec x and A2 = cosec y

Then one of the intermediate integrals will be sinx dy + dp = 0 and siny dx + dq = ()

Since these are 110tintegrable, we consider the other intermediate integrals:

siny dy + dp = 0 _ and sinx dx + dq = 0

Integrating p - cos y = a, and q - cos X = b, where a, b are arbitrary constants.

l Ience we can write p - cos y = f (q-cos x) which cannot be further integrated unless we know f. So
let us suppose that the arbitrary function f is linear, i.e., p - cas y = m (q - cosx) + n where m,n are
constants.

Lagranges subsidiary equations for this equations will be

dx dz
- IJ1 cas y - 111cas x + n

From the first two ratios we have, Y + mx =c1 y = (c1- mx)

dx
Prom the first and last ratio's ,-1-

dz
cos( C1 - mx) - m cas x + n

or dz = [COS(Cl - mx) - mcosx +n]dx .

, 1 . ( ') '.Integrating, Z = - - Sl ll c1 - mx - m sm x + ItX -+ c2111

or /11:; + sin y + m2 since - mnx ~l11c2 ' which is the required solution.



Complex Ananlys-s & Special Functions
& Partial Diff. E uations

Uniform Non-linear equ8lil;ilS of~
second order monge's method _~

SAQS: Solve the following equations by the Menges method

1. r + t - (rt - s2) = 1

2.

2 2CAns: 2z=c1x+2c2y+x +y +C3)

')
31' + 4s + t + rt - s" = I

(Ans: 2z=2clx+2c2y-x2_-3y2+4xY+C3)

I .

3. 3s+rt-s2=2 ..
(Ans:z=xy+ /3[ ¢IICa)- 4--1(/3)_ ¢(a)+ 4-- (/3)]

4. s2-rt=a2.

(Ans:2ax= fJ-a,2ay= ¢ l(a)-~I(fJ), 2azo=-2a2xy+ fJ[¢I(a)-~I(jJ)]

- ¢(a) + r~' ( fJ )1

5. Solve 2r+lex -(rl-s2)= 2ex

(Ans : z=ex + y2 +nx+¢(y+mx)

6. Solve2.s+(rt-s2)=1

(Ans: z = xy-nx+¢(y+mx)

14.6 Summa,'y

The no n-un ifcrm , non -linear partial differential equations

Rr + Ss + Tt + U(rt - s2) = V , is solved by applying the Monges method through a classi fication
into3 types. In the process of obtaining the solution, we derived the Monges subsidiary equations
and obtained the intermediate integrals. When two values of A are equal, we got only one interme-
diate integral, which together with one of the integrals, gave the values ofp and q suitable to solve
ell'::co P dx + q dy. If suitable values of p and q could not be obtained from the two intermediate
integrals, for integration in dz == p dx + q dy, we take one of the intermediate integrals and one ofthe

integrals from 1.12 = "z- u2 = b2." Substituting the values of p.q in dz = p dx I- q dy and integrut-
ing. we get the solution. Anintegralof more general form is obtained by assuming tl·ll.~arbitrary
function occuring in intermediate integral to be linear and integrating by Lagranges method.
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14.7 Model Examination questions :-

I. Solve z (1 +q2) r - 2 P q z s + z (1 +p2) t + Z2 (s2-rt) + 1+ p"-+ q2 = 0

2 2 2 2, 2+ )(Ans: Z = C1X+ c2y-x - y c3

2. Solve 5r + 6~+ 3t + 2(rt - x2) + 3 = 0

(Ans: 4z = 6xy-3x2-5y2 -2c.1x-2c2y+c3)

3. Solve 2pr+2qt-.4pq(rt-s2)=1

3 3
(AI.1S : 2 23z =3c"l +2(x+cl) +2(y+c2)

4. Solve 7r-8s-3t+rt-s2 =36

(Ans : 2x = fJ -a , 2y = ¢ lea) _,-J-,I(fJ), 2z= 3x2-7y2-lOxy+ fJ [¢ '(rz )- ,..~ I( fJ )J
+,-J-,(fJ) - ¢ lea) I

5. S()]veqr+(p+x)s+yt+y(rt-s2)+q=O

I 2 c
(Ans: z= cx- 2x +F(y)+G(c)

(J. Solve 5r + 6s + 3/ + 2(rl - s2) + 3 = 0

(Ans : 4z = 6xy - 3x2 - 5y2 - 2nx + ¢(y + I11x) )

7. Solve (7" + bs + ct + d(rt- s2) = h , a,b,c,d and h are constants

(Ans :dz = -~ cx2 - ~ ay2 + lfl2XY + c3x + F~n2 - Tn,}v + c3}+ k

Solve z(l+q2)r-2pqzs+z(l+p2)t+z2(rt-s2)+1+q2 =0

(Ans : z2 +x2 + y2-2nx=¢(y+mx))

i).

Prof. K. Rama Mohana Rao
Andhra University



Unit - 3 ANALYTIC FUNCTIONS

Lesson - 15

COMPLEX NUMBER SYSTEM

15.0 OBJECTIVE OF THE LESSON

After going through this lesson, one should be able to (i) observe that the complex number
system is a field, that cannot be ordered (ii) note that the Real number system can be regarded as

a subfieldof the complex number system (iii) calculate the nth roots of a non-zero complex number
(iv) describe lines and half planes in the complex plane and (v) explain the extended complex plane
and the stereographic projection.

15.1 INTRODUCTION:

Thecomplex number system (a:) is introduced and suitable addition and multiplication are

defined on a: to get a field. Absolute value of a complex number is defined and that enables to

define a metric on <C. Nonzero complex numbers are represented in polar form and that fecilitation

to obtain nth roots of a non-zero complex number. An element, denoted by 00 , is adjoined to <Cto

obtain extended complex number system a:oo' Finally stereographic projection is discussed and

that results in the identification of a:oo with the unit sphere in m3 (the three dimensional real
space).

ill. denotes the real number system and for any positive integer n mil denotes the set of,
ordered n -tuples of real numbers.

15.2 REAL NUMBERS:

The set of all real numbers is denoted by m. We know that (m, +, .), where + is the usual

addition and· is the usual multiplication of rea!s, is a complete ordered field.
I

Now, we study the complex number system.

15.3 THE FIELD OF COMPLEX NUMBERS:

An ordered pair (x, y) , where x, yare real numbers, is called a complex number.
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The set of all complex numbers is denoted by <r:.

We define, binary operations EBand 0 on <r: as follows.

Where + and • have their usual meanings.

When there is no confusion, we write xl x2 etc .. instead of xI . x2 etc. Also, we write + and

in stead of EBand 0 ready and one has to understand the operation properly.

It is routine to observe that (<r:, EB,0) is a complete field (0, 0) and (1, 0) are the additive

and multiplicative identities respectively, in <r:.

We identify the real number X with the complex number (x, 0). With this identification, we

can regard IR as la subset of <r:.

Denoting (0, 1) by i , we observe that any complex number (x, y) can be written as,

(x, y) = (x, 0) EB(0, y) = (x, 0) EB{(O, 1) 0 (y, O)J

=(x, 0) EB{i O(y, O)} = xEB(i 0 y)

:::::x+iy (with the convention) .

.Je observe that P =iOi = (0, 1)0(0, 1)

= (-1, 0) :::::-1

Hence the equation z2 + 1= ° has a solution in <r: but not in IR.. .

If z = X + iy E <r: then x is called the real part of z and y is called the imaginary part of z
and are denoted by Re z and 1mz respectively.

If z = x + iy E <r:" then x - iy is called the (complex) conjugate of z and is denoted by z

We observe that (2') = z.

If z = x + iy E <r: then Jx2 + y2 is called the absolute value of z ar.o is denoted by Iz!.
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. We observe that Izl = I-zl = Izl = l-zI,

Iz12= zOz, Re z ~ Izi and Im z~ Izl·

Further Rez = Re z = (z+z)/2 and

+Im F = Im Z = (z-z)/2i

Izl=O <=> z=O <=> Rez = 0 = lm z ,

Izl20 for every z E <C

If z=x+iy *- 0 then
1

=
z

15.3 OBSERVATIONS:

The followinq can easily be verified. For any z1> z2 E <C,

(iii) zl = z1 ¢=> Im zl = 0 ¢::> zl is real.

15.4 POLAR REP~ESENTATION :

Let 0 *- Z = x + iy E <C.This z has polar coordinates (r, e) where x = r cos e, y = r sin e .

So r =Izl and e is the angle between the positive real axis and the line segment from 0 to z . 'e' is

called an argument (amplitude) of z. We observe that if 'e' is an argument of z , then for any
>

integer k, (e + 27rx) is also an argument of z .

We denote cis e = cos e + i sin e
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15.4.1 OBSERVATION:

If zl,······'zn are non zero complex numbers and Zj =rj cis B (.1=1, ······,n) then

z] z2 ······zl1 = h r2····rl1) cis (BI +B2 +········+Bn)·

11
Hence IZ] z2······· znl = Iz]llz21····· ·lzl1l and an argument of (Zl z2 ..... 'ZI1) is ~ arg z j .

J=l

Taking zl =z2 =·······=zn =,Z =r cos B, we get that

'Zn = r" cosnB for any positive itneger n . Also, we observe that

z(r-lcis(-B))=l~ z-1 =r-1cis(-B)=>z-l1=r-ncis(-nB). Thus zn=rncisnB holds for

any integer n .

From this, we get De Moivre's formula.

15.4.2 nth ROOTS OF A NON-ZERO COMPLEX NUMBER:

Let 0=1= a E <Cand n be a positive integer. The problem is to find complex numbers z such

that z" =a = lalcisB where B is an arg (a). So zl1=lalcis(2k1r+B) where k is any integer
( ,

, X . ('2k ff+B) , (2kTr+B)
~z=lal CIS n and we observe that n aredistinctfork=O,l, (n-l).

{I l1/n. . (2kTr +d) . ( )}Thus a CIS n . k = 0,1, , \n -1 are the (distinct) solutions of z" = a. Hence

there are n (distinct) nth roots for any non-zero complex number 'a' (n being any positive integer).

15.4.3 EXAMPLE:

Find the solutions z 4 = 1+ i .

1+ i = .J2 ( cos: + i sin : )

= J2[cos(2rTr+:) + i sin (2rTr+ :) ] (r being any integer)



Complex Analysis 15.5 Complex Number System

I

"8 [ ( 8r + 1) 7r ( 2r + 1) 7r]
Z= 2 cas + i sin (r=0,1,2,3)

16 16

15.4.4 SELF ASSESSMENT QUESTION

Find the solutions of z2 = - 9 .

15.4.5SAQ:

Find all the solutions of z4 + z2 +1 =0.

15.4.6SAQ:

Find the square roots of -15 - 8i .

15.4.7 SAQ:

n isaninteger ~2 and z=cis27r/n. Showtht l+z+z2+ .... ·+zn-:-I=O

1S.4.8SAQ:

Find the fourth roots of -1.

15.5 LINES AND HALF PLANES IN THE COMPLEX PLANE:

Any straight line L in the complex plane <Cis uniquely determined by a point on L and a
direction vector.

Hence if I a I is a point on Land b is its direction vector then

L={ZE<C: z= a+tb, tEIRL
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Since b is not the null vector,

z-a
Z E L=> -b- is real. Hence

L divides <r: into two half planes given by

and

15.5.1 EXAMPLE:
/

/

, Find the equation of the line passing through the complex numbers zl and z2'

Solution: Let L be the line joining zl and z2 and z be any point on L. It follows that the complex

numbers (z - Zl) and (Zl - Z2) have the either the same arguments or their arguments differ by

1C depending on the position of z with respect to zl and z2'

z

z

Hence
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\
\ ,

15.6\fHE EXTENDED COMPLEX PLANE AND ITS
c

SPHERICAL,REPR7SENTATION

We know that ;~o XzI exists and = 00. To discuss such situations, we 'introduce extended:

complex plane by introducing co in <C. We denote <Coo = <C U {oo} .

We introduce a distance function on a::::oo to discuss continuity properties of extended

complex valued functions.

We exhibit one - to - one and onto correspondence between <Coo and the unit sphere in m3 .

N(O,O,l) .

z

Let N = (0,0,1). We identity a:::: with {(XI,X2' 0): xl, x2 E: IR}. Now for each Z E a::::

consider the straight line in m3 through z and (0,0, 1) . This intersects the sphere in exactly one
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point say Z ( -::j:. 0, 0, 1). We associate to (0,0,1) (he pain' 00 of <Coo. Thus <Coo is represented as

the unit spheres.

Denote z = x + iy and Z = (Xl, x2, X3) be the corresponding point on S .

The line through N (0, 0, 1) and z =X + iy::::(X, y, 0) is given by {(1:- t) x,(l-t) y, t : t E lR}.

The coordinates of Z are obtained by finding the points of intersection of this line with the
'.

unit sphere. So t E IR should be such that

t=l gives N. So, for t-::j:.l,

2 z+z
=>xl == (l-t)x= 2 X = 2 .

Izl +1 Izl +1

Izl2 -1
x3=t =---- 2Izl +1"

Converse I]', if the point Z = (Xl, x2, X3) (-::j:. N (0, 0, 1)) is given then the point z in the

complex plane is obtained from the relation (Xl> x2, X3) = ((1- t) x, (1- t) y, t)

. Xl +i x2
Hence z=x +zy= ---

I-x"! oJ
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Thus the correspondence between the points of <C and the points of the unit sphere, except
for the point N (which we call as north pole) are obtained. We associate 00.

This correspondence between the points of <Coo and S is called the stereographic projection.

15.6.1 WORKED EXAMPLE:

For the points -1, - 4 - 5i find the corresponding points on the unit sphere.

Solution: Denote z = -1= x+iy~ x = -1, y= 0. The corresponding point on the unit sphere is

(Xl> X2, X3)' Where

2x 2(-1) 2y ° Iz12_1
XI = 2 = -- = -1, x2 = 2 = - = 0, x3 = 2 = °

Izl +1 1+1 Izi +1 1+1 Izl +1

so the point on the unit sphere is (-1,0,0).
Denote z=-4-5i = x+iy=>x=-4, y=-5

The corresponding point on the unit sphere is (Xl, x2, X3) , where

2x -8 -4 2y -10 -5
Xl = = -- =- Yr =--- =-- = -

Izl2 +1 41+1 21' Izl2 +1 41+1 21,

(
4 -5 20)

So, the corresponding point on the unit sphere is -21' 21' 21 .

15.6.2SAQ:

For the point 3 +2i in <C,find the correspodinq point on the unit sphere.

15.6.3 WORKED EXAMPLE:

(1 1 1) -
For the point 2"' - 2"'.J2 on the unit sphere find the corresponding point on <C.
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Sol ution Denote X:( xl> x2, X3) = G, ~ ' ~} The correspond in9 po ints in c is

(I-i)= -~::::-,---,-
J2(J2-I)·

15.6.4SAQ:

( 1 1 1)
For thJ point J2 ' - J2' - 2" on the unit sphere, find the corresponding point o~, <C.

15.6.5 DISTANCE FUNCTION ON <Coo :

Let z, z' be points in <C and Z =(xI' x2, X3)' Z' =(xi, x2' X3) oethe corresponding

point in m3 . We define the distance d (z, z') between z and z' in <Coo tobe the distance between

the corresponding points Z and Z' in IR3 . i.e.

(since Z, Z', lie On the unit sphere)

= ( 2 )( 2) l(1+ Izn {I+ Iz'12
) - ( z+z) (z' + ;- )

l+lzl .1+lz'l .

+(Z-Z)(Z'-Z') -(Izf -1) (Izf -I)}
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~ ( 2)( 2) [zz + z' 2- z z'-zz'J1+lzl 1+lz'l

~ (1+lzI2)(1+lzf) [( Z>: z') (;~z')J

~ Hz12) }+IZ'12) [( Z>: z') (z ~z')J

4 1 '12
= (1+lzI2) (1+lz'12) z- z

So

15.6.6 OBSERVATION:

For z' '* 0
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=> d(z,oo) ~ Hznli
I

15.7 MODEL EXAMINATION QUESTIONS :

2

15.7.1 : For any complex numbers zl, z2 show that

(i) IZI + z21 :::; Izd + IZ21

(Ii) IlzII-lz211:::; IZJ -z21:::; IZJI+lz21

15.7.2: zl =2+3i and z2 =3-2i; evaluate

2
2z1 +z2 +4-2i

, Zj - 2z2 +7+ 3i

15.7.3: Prove that

15.7.4 : Find the square roots of .J3 + 3i

15.7.5: Express 16-J2 i in polar coordinates.

15.8 SOLUTIONS TO SAQ'S AND M.E.QS (HINTS)

15.4.4: Z = x + iy ~ x2_ y2 = -9, 2xy = 0 ~ x = 0 or y = 0 observe that

y,,: 0 ~ x = 0 ~ y=±3i~ Z = ±3i

15.4.5: Roots of z4 + z2 +1 = 0 are the roots of i-I = 0 omitting 1 and -1; z6 =1 ¢::> z = cis

k~ (k=O,1, ,5) k=O~z=1 and k=3~z=-1. So the roots are

(i) cis ~ (i) cis 2~ .. (i) cis 4;= cis ( - 2;), (i) cis 5; = cis (-~)
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SO X2 +rx2 = -15 => X4 +15x2 -16 = °

so roots are 1-4i, -1+4i

15.4.7 : Z =F 1=> ( z -1) =F 0, z" -1 = (Cis 21[) -1 = 0. So

1 2 n-J °=> +z+z +········+z =

15.4.8 : z4 = -1 = cis 1[ = cis (2r + 1)1[ (r=0,1,2,3)

. (2r+1);{ ( )=>z=C~ r=01234 ' , ,

15.6.2: z=3+2i=>x=3,y=2.lzI2 =9+4=13.

So the point is ex, 7j, %)
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J ."

::::;IZI-Z21+IZ21

=>IZll-IZ21::::; IZI-Z21

Further -{IZll-lz21} = IZ2 -zll = IZI -z21

So max[lzII-lz21, - {IZII-lz21}]::::; IZI -z21

=>IIZtl-lz211 ~ IZI -z21
",

j2Z1 +z2 +4-2i 2 2(2+3i)+(3-2i)+4-2i
15.7.2: . =. .. . . ,'. "zl-2z2+7+31 .(2+3t)~2(3-.-21)+7+31

'0", ,.-' 1 i,"f

, , . r, ; ~ . ...'

=111+2iI2 = 111+2iI2 = 121+4 = 125
3+10i 13+10i12 9+100 109

1;;
2 J3±13+9 2 3J3 3 4=> X = 2 => x =-2- => x = ± )S

2 2
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3~ .
So roots are ± 1/ (J3+ 1)

2/2 ..

15.7.5: J6-fii = J8 (cose+i sine)

~cosO = F~, sinO= -~, 0 = -%

k being any integer.
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lesson - 16

i.POWER-- .SERIES

16.0 OBJECTIVE OF THIS LESSON

After going through this lesson, one should.be able to (i) define a power series about apoint
in <c (ii) define the radius of convergence of a power series about a point (iii) calculate the radius of
convergence of a power series and (iv) derive the formula for the radius of convergence of a power
series (about a point in <c).
16.1 INTRODUCTION:

Power series is an important topic in complex Analysis. We observe that to each power
series, a circle is associated, called the circle of convergence, such that the given power series
converges absolutely inside the circle of convergence, does not converge outside the circle. On
the circle, the behaviour of the power siries is zig zag. There are power series such that (i) the
series converges at every point on the circle of convergence (ii) converges at no point on the circle
of convergence and (iii) converges at some points and does not converge at some other points on
the circle of convergence. This concept is useful to introduce 'Analytic functions'.

16.2 CONCEPTS OF CONVERGENCE ETC.

We, first consider the following elementary concepts:

16.2.1 DEFINITIONS: A sequence {zn;n=l, 2, , and o] of complex numbers is said to

. converge to a complex number z if and only if (iff) to each E> 0 there exists a positive integer N

(depending on E) such that /zn - z/ <E for all n ~ N . (It can be shown that such a Z is unique, if

exists).

We say that Z is the limit of the sequence {zn} and we write this as lim zn = Z (we read
n~oo

this as lim zn exists and = z).
n-,>oo

{Zn; n=1, 2, } be a sequence of complex numbers and sn =zl +······+zn for

n = 1,2,······ If the sequence {sn} (of complex numbers) converges to (a complex number) z and

00 00

we write this as L zn = Z (sn is called the nth partial sum cfthe series L Zn)
n=1 . n=1
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n
(we have lim sn = lim Iar = z).

n~oo n~oo r=l

00 00

A series L zn' of complex numbers, is said to converge absolutely iff Llznl converges
n~ n~

(in m or to some real number; in fact to a non-negative real).

16.2.2 THEOREM :

00 00

Absolute convergence implies convergence. (i.e. if I Zn converges absolutelythen I Zn
n=1 n=1

converges; Zn S being complex numbers).

00 00

Proof: Let I Zn , zn being complex numbers, converge absolutely. Hence, by definition, Ilznl
n=1 n=1

00

converges (in m). Let L IZnl= A (say). Now, to each E> 0 there corresponds a positive integer
n=1

N such that

n
Ilzrl-A <E. whenever n e N
1'=1

n 00

i.e. IIZ,.I- LIzI'I <E whenever nc..N.
r=1 r=1

00

~ 2:: IZrl
r=n+!

00

= 2:: IZr I <E whenever n 2 N ---------(i)
r=n+!

Denote Sn = zl + + Zn (n being any +ve integer).

For m > n c.. N, consider

m ri
ISm - Sri1= I Zr - 1>1'

1'=1 1'=1

m 00

:::;;I IZrl:::;; I IZrl < E (by (i»
r=n+l r=n+1
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Hence {sn} is a Cauchy sequence in the complete metric s~ace <c with the usual metric).

Hence {sn} is a convergent sequence (in <1:).So there exists a z in <c such that sn ~ z as

00

n ~ 00; this implies L zn converges and has the sum z.
n=l

16.2.3 REMARK:

The converse qf 16.2.2 is false in view of zn = (-1 r+1/ n (n being +ve integer). From Real

00 001 1 00

Analysis, we have L(-1 r+1
/ n converges; but L (-1r/n = L 1/n diverges.

n=1 n=l n=1

For, further development we recollect the following concepts of Real Analysis.

16.2.4 DEFINITIONS:

Let {an} :=1 be a sequenc~ real numbers. Then

li~ an = Urn inf an = lim [sup{an, qn+1>..... }]
n~oo n~oo n~oo

and

(If b; = sup {an, an+l'····} for n = 1,-2"" then {bn} is a decreasing sequences of reals. If it

is bounded below then Jim b.; = g.l.b of {bn} ; otherwise this is -00; Thus lim a~ exists. So is the
. n-'fOO

case with lim an)'

16.l POWER SERIES:

We now study about power series in <c.
.'

16.3.1 DEFINITION: Let {an;n = O,I,2, .... } and Zo be complex numbers. A series of the form

00

L'an (z - Zor (z E <c) is called a (complex) power series about zo.
n=O

00

16.3.2 WORKED EXAM,PLE: Show that the power series L z" (z E <1:) about '0' (origin) converges
n=O
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iff Izl < 1.

(This series is known as geometric series).

00

Solution: Let sn be the (n + 1)th partial sum of th.e series L z" (z E <1:). So
n=O .

We know that, if Izl < 1, zn+l ~ 0 as n ~ 00

00 1./
Hence Eo zn converges to /(l-z) if Izl<1.

Iflzl > 1, Izln+l ~ 00 as n ~ oo=> zn+l +0 as n ~ 00 and if Izi = 1, Izln+1 = 1 and so

n+l 0z --1+ as n~oo.

00

Hence L: z" does not converge if Izl ~ 1.
n=O

So izn converges (to 1~z) iff Izl < 1.

OCJ

16.3.3 THEOREM: Consider the power series L an (z - Zor ,where an's and Zo are complex
. n=O .

Yn
numbers and z E <1:. Denote A= Jim sup lanl and define

n~oo

{

l/ A if 0 < A <+00

R = 0 if A=+oo
+00 if A = 0

Then, we have the following:
(a) The power series converges absolutely in
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(= ~ if R = +00and <P if R = 0)

. (b) If 0 ~ R < +00, the series does not converge for Iz - zol > R (infact the terms of the series

become unbounded and hence the series diverges)

(c) elf r is such that 0 < r < R (=> R > 0) then the series converges uniformly on B (zo, r) =
(

{z E <1:: Iz- zol~ r}
Further R is unique satisfying (a) and (b).

Proof: Under the given conditions, if R ~ 0, Clearly B(zo, R) = cp. Let R > O. Select z such that

Iz - zol<R, choose a real r with Iz- zol < r < R (such a selection is possible). Since

v v .
1 1. I Iin . In 1/->R=hmsupan ,thereexistsapositiveinteger N such that IanI <7r for nz.N. Since
r. n~oo .

Iz -zol/r < 1, we nave that :L(lz - zol/r r converges. Hence, by (i), follows that :Llan (z - zorl
converges =>I a~ ( z - Zor converges absolutely whenever Iz - Zo1< r and this is true for all

r < R => L>n (z - Zor converges absolutely for all z E B( zo; R). This proves (a).

Let 0 ~ R < +00 and z E <I: be such that Iz - zol < R select real r such that

1 1. Yn
Iz-zol>r>R=> -<-=hmsuplanl (with the convention fR=+oo when R=O) =>

r R n~oo

Yn 1 I IIanI > -;. for infinitily many n ; => an (z - Zor I > (lz - ZoIrr for infinitely many n .

Since Iz~zfr > 1, lan(z-zorl~+oo as n~oo

Hence the terms of the series become unbouncsc and so I an (z - Zor diverges for all

z E a:: with Iz - zol > r > R. This is true for all r > R => Lan (z - Zor does not converge (in fact

diverge) for all Z E a:: satisfying Iz - zol > R .

This prcves (bJ.



Let R > 0 and r be such that 0 < r < R. Let p be such that 0\< p < R. As in t,~e proof of

(a) there exists a positive integer, say No, such that

..• C·Let Z E a:: be such that Iz - zol ~ r

(by (ii))

00

Since jp < 1, by Weierstrass M-test follows that the series E an (z - Zo r converges

uniformly on B (zo, r )={ z E a::/lz - zol ~ r} . This proves (c).

Since lim sup is unique follows that such R is unique ..

This completes the proof of the Theorem.

00

16.3.4 DEFINITION: Given the power series Lan (z - Zo r, where a/ and Zo are (fixed)
n=O

complex number and Z Ea::. Denote R =). 1. (in the extended real number system)
lirn suplanln

n~oo

1/
/n

(that mean we take it as +00 or 0 according as limsup lanl is 0 or -t.oo). Then R is called the
n~O'.)

radius of convergence of the power series and the circh {z E a::: Iz - Zo 1= R} is called the (i) circle

of convergence of the power series.

16.3.5 REMARK: In view of 16.3.4, the theorem 16.3.3 can be re-stated as follows. Every power
series converges absolutely inside its circle of convergence, does not converge outside the circle
of convergence but converges uniformly on the closed discs inside the circular disc of convergence
(The behaviour of the series on the circle of convergence cannot .be specified) (see exampk.
given under)

We, now give an elegant formula for the radius of convergence of a particular class of
power series.



00

16.3.6 THEOREM: Consider the power series I an (z-zof (z E <c), a/andzo are (fixed)
n=O

complex numbers. If limlan~ ,I exists and is positive and finite then the radius of convergence,
n'-"OO / an+l .

R, of the power series = lim Ian / In.-.,oo / an+l

Proof: Under the given hypothesis, dentoe 11 = lim lan{ I.n'-"oo / an+l

Suppose R < o: Since z E <C and r > 0 such that

By definition, the exists a positive integer N such that

=> Ian I r" 5, A for n e: N -------------(ii)

1

nl 1 1 n(lz-zoIJn (lz-zoIJnNow, an (z - ZO) = an r rs' A r for n e N (by (i))

Since Iz ~ zol <1 follows that 1(12 ~ zolJ converges and hence, by comparison test,

00

follows that I qn (z - Zof converges (absoutely) and this is a contradiction (by a known Theorem)
n=O
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since /z-zo/ > R.

Hence our supposition is false and => a ::;R .
~

Now, suppose that 11 < R . Select Z E <Cand s > 0 such that 11 <: s < Iz - zol -< R .

In this case also there exists a +ve integer No, such that lan/an+ll < sfor n e No

1 1 00 (I _ I)nz-~ Z ~
Since > 1 follows that 2:

S n=O S

that (by (iii»).

diverges; hence by comparison test, follows

00

l: an (z - Zor diverges and this contradicts the fact that Iz - zo/ "< R (by a) known theorem;
n=O

i.e. Theorem 16.3.6)

~ 11 < R is false ~ 11 = R .

This completes the proof of the Theorem.

16.3.7 EXAMPLE:

00 z"
Find the radius of convergence of 2: -( Z E <c)

n=! n

J< l
ax I n+l 1Solution: In the usual rotation, an = . l n = 1,2" .... ) and hence n a = -- = 1+- ~ 1 asn n+! n n

n ~ 00. Hence the radius of convergence of the series is '1'.



16.3.8 EXAMPLE:

00 ~n/
Find the radius of converges 'of .~ z/l!1 (z ~ <r:) .

- ~~

Solution: In the usual notation, an =h (n =. 0,.··)

Hence the radius of convergence of the series is '.;.00 '.

(That is the series converges over <r:, in fact it is eZ
)

16.3.9 EXAMPLE:

Find the radius of convergence of

00 I

(ii) ~ z" / n2
,;=1

Solution: (1·) In the usual notation an =:; 1 for n zr; 0,···· s ~ ='1 ~ 1 as n ~ 00. Hence the
Qn+l

radius of convergence of the series is 1.

(2'. In the usual notation, an = 1/2 (n = 1,2, .... )
• J ~n

i" : {I'l+lf !i 1\2
...IL.:.· .._.. . =11+-1 ->1 as n-i>OO.

! 2 . :
(-",!-t'i n 11)

-{ene-:; F,e r:3dilj" of convercence of ti Ie powerseries is 1_

16.3.1' EXA~VlPLE:

.00

" n n;-=ind.he radius ~t convergence ·:·f L. ' Z
n.=1

z;:: <c) .

S._.ution : lr. the usual notation, an = n' n = _.;..,.. ")
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Yn
~ Ian I = n ~ +00 as n ~ 00. Hence, the radius of convergence of the power

(
- Yn .

series is R = 1 lim lanl = 0 (~ The series convergence only at z = 0).
n~CL)

\16.3.11 OBSERVATIONS:

CL)

(i) The series I z" (z E Q:) has the circle of convergence the unit circle {z E Q::lzi= I}. This
n=O

series converges at no point on the circle of convergence; on the circle of convergence,

for any z, Izl = 1~ Izll1 ~ Ias n ~ 00 ~ z" ~ 0 as n ~ 00 .

CL) . /

(ii) The series I z% (z E Q:) has the circle of convergence, the unit circle. z = -1 lies on
n=\

the circle of convergence and E(-1r In converges. z = 1 lies on the circle on

CL)

convergence and I Yn diverges. Thus, on the circle of convergence, the series converges
11=\'

at some points and does not converge at sonie other points.
I

(iii) The series Iz" /2 (z E Q:) has the circle of ~onvergence the unit circle. At every point of
n=\ /n:

the circle of convergence Izn / n21= 1/n2 and I 1/n2 converges. So, the given series

converges (absolutely) on the circle of convergence.

16.4 SELF ASSESSMENT PROBLEMS :

16.4.1 SEa: Test the convergence of

~( in2/ 3)
(i) ,~ e n

co
(ii) L (cos in)/2/1

n=! .

16.4.2 SEa: For what values of z ,the foil owing series converges:

CL) 2

(ii) I »" Z"1 (p -;.~0)
11=1

CL)

(iii) L n!zll
n=O



16.4.3 SEQ : Find the radius of convergence of

~ n n. (ii) L.,-z
n=12n

. 00

'" 2
n

z"(iii) L.,
n=1

00

16.4.4 SEQ :If R is the radius of convergence of I an z" , determine the radius of convergence of
n=O

00

(iii) .L nn an zn
n=O

16.5 MODEL EXAM1NATION QUESTIONS :

16.5.1: Define the radius of convergence of a power series. If R is the radius of convergence

00 n. an' .
of L an ( z - Zo ) and lim -- exists s = e then show that R = e .

n=O n~oo an+ 1

16.5.2 : Prove that every power series converges 'absolutely inside its circle of convergence
and does not converge outside the circle of convergece.

16.5.3: Give examples of power series that converges (i) at every pt. on the circle of
.conyergence (ii) at no point on the circle of-convergence (iii) at some pts and not at all

I points on the circle of convergence. .

16.5.4 : Find the radius of convergence of

00

(i) I 2-n z"
n=O

00 .

(ii) I z~
n=O

00

16.5.5 : If R is the radius of convergence ofL an (z'- zo r, find the radius of convergence of
n=O

00

(i) I (sc" -1) an z" (sc being a +ve integer)
n=O

00

'" an 11(ii) L.,--z
n=I(~)2

16.6 HINTS TO SAQ AND MEQ'S

.2
eln 1

16.4.1 : (i) -3 = 3 => The series converges absolutely
n n
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en +e~n en
(ii) eosin = eoshn = ;:::- =>" 2 2

cas in 1 (e)n e~;::: 2" 2" . since 2";::: 1 follows that the series does not converge (In fact t,he,

series'is a real seri,es and it diverges to +00)

Yn (Yn JP
16.4.2 (i) : InP I = ": ~ 1 as n ~ 00 ,

So the series converges absolutely for Izl < 1.
f.

(ii) : Ipn'l
Yn ~ 1p n14 0 or 1 or +«> according as Ipl < 1 or 1 or >1. Hence the series

converges absolutely for all z E <C whenlpl < 1, converges (absolutely) for Izl < 1 when Ipl = 1,

converges only at z = .0 when Ipl :> 1 .

(...) n' 1 S di f ' ,III : . =-- ~ .0 as n ~,oo, ' 0 the ra IUS0 ~onv;~rgence of the power senes
(n+l)! n+l '

is 0, Hence the series converges only at z =.0.

I I

Yn
16.4.3: (i) Inn = n ~ +00 as n ~oo. SoR =0.

, I 1/

, ,
- 7n

.. n /1 n 1
(II) - = - ~ - as n ~ 00. So R = 2 .

2/1 2 2

16.4.4 (i) : li,m lanl
Yn

= ~ (with the usual convention)

'16



R
So the radius of converges is 3.

- a'~ (- Yn J ( 1 JYn. (ii) lim ~ = lim Ian I lim ~

= ~ lim (_1 / ~J= ~ lim (_1 ) = 0
R In+l, ~ R n+l .

The radius of convergence is -too.

So, the radius convergence of the series is 'a'
16.5.1 : See (16.3.4) and (16.3;6)

16.5.2: See (16.3.3).

16.5.3 : See (16.3.11)

Yn .
16.5.4: (i) ITnl n = 2-1 :::; Ji => R = 2.

{
I if n ="l!for some non -ve integer k

(ii) an = 0 other wise

- Yn
Hence lim lanl = 1=> R = 1.

16.5.5 : (e -1) ~ k" as n ~ 00. So
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So the radius of convergence is R/ k .

(ii)
_ Yn 1 Yn

= limlanl lim --2
(lfl)

I 2
=~. lim (l!!) =~ lim 1 =0

R (In+l)2 R (n+l)2

The radius of convergence is +00.
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Lesson - 17

ANALYTIC FUNCTIONS

17.0 OBJECTIVE OF THIS LESSON:

After going through this lesson one should be able to (i) define an analytic function (ii) give
examples of analytic functions (iii) prove important fundamental properties of analytic functions
and (iv) discuss about cauchy-Riemann equations and derive useful consequences.

17.1 INTRODUCTION:

In complex analysis, the theory of Analytic Functions plays a very important role to develop
the subject. First, the concept of differentiability is considered and otherwords analytic functions
are considered. It is observed that analyticity is a stronger condition than differentiability. Also, it is
established that the truth of Cauchy-Riemann equations. Mainly a necessary condition but not a
sufficient condition for a (complex) function to be analytic (at a point) with some extra condition the
analyticity of the function can be obtained. Finally we observe that the real and imaginary parts of
an analytic function are harmonic functions; with this we calculate either the imaqinarv part or the
real part of an analytic function when the other is known.· .

17.2 DIFFERENTIABLE FUNCTION

17.2.1 DEFINITION:

G be a a nonempty, open subset of <C and f: G ~ <C. Let Zo E G. f is said to be

differentiable at Zo iff

lim
z~o

(ZEG-{ZO})

f (z ) - f (zo) exists
z-zo

(We know that the limit is unique). The limit is called the derivative of f and Zo and is

denoted by I' (Zo ) .

If I is differentiable at every point of G then we say that I is differentiable on G .

17.2.2 THEOREM:

G is a nonempty subset of <C. Zo E G. I: G ~ <C is differentiable at Zo then I· is

continuous at zo .

Proof: Under the given hypothesis, since I is differentiable at zo, f' (zo) exists and is finite. So,
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--+ I'(zo) (0) = 0 as z --+ Zo

=> lim I (z) exists z = I (zo) . Thus f is continuuous at zo.
z~zo

17.2.3 REMARK:

The converge of Theorem (16.3.2) is false. For, consider l(z)=lzl for every zE<c.lt is

trivial that f is continuous on <C, in particular, it is continuous at Zo = 0 . But, for z:;i: 0 and z is

real, say x, consider.

I(z)- 1(0) f(x)- f(O) !xl
---'-~--'--'- = = -

z-O x-o x

B --+ 1 as x --+ 0 + 0 and B --+ -1 as x --+ 0_ 0 . So f (z ) - f (0
) does not tend to a limit

x x . z-O

as z --+ O. Hence I is not differentiable at '0'.

Thus differentiability at a point implies continuity at that point; but continuity at a point need
not imply differentiability at that point.

17.3 ANALYTIC FUNCTION:

17.3.1 DEFINITION: G is a nonempty open subset of <Cand f :G -> a::. f is said to be analytic

on G iff f is continuously differentiable on G (i.e. I' exists on G and f':G --+ a:: is continuous).

17.3.2 NOTE:

It will be shown that f is differentiable on G => f is infinitely differentiable on G (=> T
has continuity of f' Oil G is reduntant).

17.3.3SAQ:

G is a nonempty, open subset of <Cand I, g:G --+ <Care analytic. Then, show that,

(i) for any complex numbers 'A, /-L,('A f + /-Lg) is analytic on G and

(ii) (f-g) is analytic on G and, for all ZEG, (/g)'(z)=I'(z)g(z)+f(z)g'(z).
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(iii) If G1 is the set of pts in G where g"* 0 (observe that G1 is open in <C), then % is

analytic on G1 and, for any z E G10

(%)'(z)= g(z)J(z)- f~Z)gl(Z)
g [g(z)]

17.3.4 OBSERVATIONS:

(i) Any constant function on a nonempty open set G in <C is analytic on G °

(ii) The identity function on a non-empty open set G is analytic on G °

(iii) implies that

(iv) Any complex, polynomial function is analytic on <C- A, where A is the set of zeros
of the genominator.

17.3.5 OBSERVATION:

A complex function I defined on a nonempty, open set C =: I,:: is differentiable at Zo E G iff

lim I(z)- I(zo) exists Z = I'(zo)
Z-Ho z-zo

(ZEC-{ZO})

~ given E> 0 there corresponds a 8 > 0 such that

I_I--'.(---,z)_-_I----'(---'zo~)_ I' ( zo) < E whenever Z E G with Iz - Zo 1<8
Z-Zo . .

for Z E G with 11( z ) ~ a as Z ~ Zo °

17.3.6 THEOREM:

(Chai Rule) G), G2 are nonempty, open subsets of <C; Ji is analytic on .G1 ;

.f\ (Gd c G2; 12 is analytic on G2 ° Then (fz 0 Ji) is analytic on G1 and

(/20fi)'(zo) = 12(Ji(ZO)) Ji'(zo) for all Zo EGlo
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Proof: Under the given hypothesis; let Zo E G1 . Now fi is differentiable at Zo . So, for all Z E G1 '

Since 12 is differentiable at Wo = fi (zo) for all W E G2 '

I(W)- 12 (Wo) = (w -Wo) [/2 (wo)+ g(W)],} ..
~(ll)

where g(W)~O as W ~Wo .'

fz (fi (z))- fz (fi (zo)) = {fi (z)- fi (zo)} [/2 (wo)+ g(W)]

= (Z - Zo ) [fi' ( Zo ) + 11( Z) ] [12 (fi (zo) ) + g (Wj ) ]

=_(z - Zo) [fi' ( Zo) + 11 ( z ) ] [12 (fi (zo) ) +g (fi (z ) )]

= (z - zo)[fi'(zo)+ y( z)] [/2 (fi (zo)) + y(f1 (z)) ] ~------ (iii)-

Since fI is differentiable at Zo follows that jj is continuous at zo' Hence

z ~ Zo ~ fi (z) ~ fi (zo) = Wo. Henc~ 11 (z) ~ 0 and g{fi (z)) ~ O. Hence (iii) gives

(/2 0 fi )(z) - (fz 0 fI )(zo) = (z - Zo ) [ f\' (Zo) 12 (f1(Zo ) ) + K (z) ] '

where K ( z) = Ii (fi (zo) ) 11 (z ) +fi'(Zo) g (f1(z ) ) + 11 ( z ) g (fi (z ) ) ~ 0 as z ~ Zo

Hence (/20 f1) is differentiable at Zo and

(/2 0 fi )'(Zo) = 12 (f1(Zo ) ) f\' (Zo) .

Since fi' is continuous at Zo and /2 is continuous at Wo follows that (fz 0 fi Y is

_ continuous at 20 and this is true for all 20 E G1· Hence (/20 f1) is analytic on Gl .



17.5 Analytic Functions
OJ' •

, 17.3.7 DEFINITIQN : .

A (complex valued) function f defined on A ~ a:: is said to be analytic on A iff f is

analytic on an open set G:» A ( => f is analytic at a point Zo E a:: iff f is analytic) (=> f is

differentiable in 9 nbd of zQ ).

We now prove that every power series represents an analytic function inside its circle of
convergence. The converse of this result will be provide in a latter unit. This result has significance
only when the radius of convergence of the power series is positive.

17.3.8 THEOREM:

00

Let the complex power se~~is L an (z - Zo r (z E a::::) has radius of convergence R > 0 .
n=O

Then

(a) for each integer K ~ l, the series

00L n(n-l) ... (n-K+1)aK(z-zof-K (ZEa::::)
n=K

has the sameradius of convergence R.

(b) The function f defined by

00 \

f(z) = L: an (z-zof,z E B(zo,R)= {z E a:::::lz-zol<K}
n=O

is infinitely differentiable on B ( zo, R) .

Further the Kth derivative of f, (K = 1,2, ... ) , if

(K) 00 n K .f ( z) =L: n{ n -1) ... (n - K +1)(z - zo) - 'If Z E B (zo, K)
n=K .

(=> f ..is a.n~lytic on B (zo, R) and term by term differentiation is valid)

__ 1 f( n) ( ) {') }(c) (In - ~ Zo for all n E 0,1, _,'" .

,
Proof: Under the given hypothesis, we prove (a) for K = 1 and the cases K = 2,'" follow
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from the p receedings ones. Without loss of generality we can assume that Zo = O. Since R is t~
rdius of convergence of the given power sereis, we have" , ' .

1 _ . Yn .
- - lim sup Ian I -------------- (I)R " .

Let R' be the radius of convergence of the derived series

00 00

I nan zn-l = I (n + l)an+1 z" (z E <c) . So
n=l n=O

1 Yn
R' = limsup I(n+l)an+d

Yn
= limsuplan+lI ------------(ii)

Yn
(since (n+l) n ~1 as n~oo)

" ,

00

So by (ii), R' is the radius of convergence of I an+l zn.( Z E <c) as well.. .' n=O . '.'.... '. . ... :'

For any z E <C ,

00 00

". n "nZ L" an+1 z +ao = L" an z
n=O n=O .". 't

So Izl<R' =>

00 00 00

I an zn s I Ian -: ::;laol+I Ian znl
n=O n=O n=O

=Iaol+/z/ f la~+l znl<+oo (by(iii»
~O .

Hence foUows that R'::; R .

At z = 0 both the series converge. Let 0 < Izl < R . Now

..
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<+00 (by (i».

Hence R:::;R' and so R' = R. This proves (a)

Now, we have, for z E B(O;R)

00

j(z)= I an -":
n=O -

00 n
define g(z) = L nan zn-1; «; (z) = L aK zK ,

n=O K=O

00

s, (z) = I ak zk (n being any nonnegative integer).
k=n+l

Let WE B(O;R) and rEm be such that JWI<r< R. Now WE B(O;r). Select 31 > 0

such that B(W;8d c: B(O,r). (This is possible since Wis an interier point of B(O;r)).

Let z E(W,8d\{W}. Now

J(z)- J(W) -g{W) = [Sn (z)-sn (W) _ s~ (W)] + [s~ (W)- g(W)]
z-W z-W

+[Rn(Z)-Rn(W)] --------- (iii)
z-W
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(X) I 'K-l K-2 . K-2 :r /(-1= I laKI z +z W +·,,··,,+zW +W I
K=n+l

~I laKI {lzIK-1 +lzI
K

-
2!WI+··· +lzllwIK-2 +IW(-l}

K=n+1 .

(X)

s L laKIKr K-I (-:lzl&IWI<r) -------- (iv)
K=n+1

(X)

Since r < R, follows that I KlaKlr
K

-
1

<~ wheneever n ~ N1·
K=I

So (iv) ~

Rn ( z ) - Rn (w) E
< - for all n ~ N, ---------- (v), z=W 3

(

Since lim s~ (W) = g(W), there exists a positive integer N2 such that
n~(X) .

Is~(W)- gC.w)1 <~ for all n ~ N2 --------- (vi)

Since s~ (W) exists there exists a 82 > 0 such that
/

Sn(Z)-Sn(W) , ( ) E .'
I-'-'--~---'-'--'--~ - Sn W <- for 0 < Iz - Wi <82 --------- (vii)

z-W 3

)

Now for n e N and O<lz-WI<8,

... j(z)-f(W) . E E E(l)-(vn) => - g(W) <-+-+-=E
Z-W 3 3 3

=> f'(W)=g(W) and (b) follows by induction on K.

Clearly f(a)=ao .and by (b), f(K) (a) = LK aK (K = 1,2,3,,,·)



=:;, an = f( n) ( a )It!!. (n = 0, 1,.· -). This proves (c) and the Theorem.

~- 17.3.9 C.OROLLARY:

a:

Let R E (0, + 00) be the radius of convergence of the power series L an (z - Zor (z E <c)
n=O

co

and iJ Z ) = I an ( Z - Zo r for all Z E B ( zo; R) . Then j is analytic on B ( zo; R) .
n=O

- .

~:::.:: Proof: By Theorem 16.3.8 follows that j has derivatives of all orders on B (zo ;R) . Hence follows

..~:t'hatI is analytic on B (zo; R) .

17.3.10 OBSERVATION:

=r~i::r:~~:~Jh·:.~:~:
~. -:

00

In the previous lesson we observed that I z" II!!. converges for every Z E <C. We denote
. n=O

the sum by exp( z). By corollary (16.3.9) follows that the exponential function is analytic on <C.

Now, we consider the following.

-c'. 'i41.4DEFINITION:
-s

. A nonempty, open, connected subset of the complex plane is called a region in <C.

17.4.1 THEOREM:

Let G be a region in <C and f:h~cr.. be such that f(~)=u(x,y)+it)(x,y) for all

~~;~~~;:~='i-~;YEG. If j is analytic on G thenu and v have first order partial derivatives at any point

(x, y) where Z = x+ iy E G and further

~<f~ .
. "cProof: Let j, u, v and G be as in the statement. Let Z E G be such that j is differentiable at z

So

au av au av- = - and - = - - at (x y)ax ay. ay ax '

/'(z) = lim j(z+h)-f(z)
h-'?CIJ h (° ::f. hand z +h E G )

. Suppose h is real and Z = x + iy . So
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'() . j(x+h+iy)~j{x+iy)j z = lim ---'---'-----"---'-
h~O h

, .

= lim {u(x+h,y)- u(x,Y)}+i{u(x+h,y)-u(x,y)}
h~O h

. u(x+h,y)-u(x,y) .' u(x+h,y)-u(x,y)= lim + 1 lim ----'----"----'---'-
h~O h h~O h

~(~>;~t y) ---------- (i)

Suppose h is purely imaginary, say h = i h' where h' is real. So

() . j(z+H)- j(z)j' z = lim "----''----'----'-----''------'--'-
h'~O i h'

= lim {u(x,y+h')-u(x,y)}+i{u(x, v+h:)-u(x,y)}
h'~O i h'

. u( x,y+ h') - u( x,y) .' u( x,y + h') -u( x,y)
= lim - 1 lim

h'~O h' h'~O h'

~ ( : =i :; ty) ----------(ii)

(i) & (ii) =>

au au au (1)

ax = Oy and Oy = - ax at (x, y)

.: :i::"<- /~.
!-.'

.,
.'4.01

.",.'

17.4.2 NOTE :The relations in Theorem (16.4.1) are called the Cauchy Riemann (C.R)equations:·c.···

17.4.3 OBSERVATION:

The truth of C.R. equations at a point (XO,Yo) is a necessary condition put not a sufficient· ..

condition for a function f (z ) = u (x, y) + iu (x, y) to be diferentiable at the point zo = Xo + i Yo .

This we conclude by the following.



17.4.4 COUNTEREXAMPLE:

Let 1(z ) = ~Ix ;:1 for \;j z = x + iy E <r:. We ':'lOW show that 1 the C.R. equations are satisfied

at (0, 0) but f is not differentiable at 0 = 0 + iO .

Write 1= u + i v ~ u (x, y) ~ ~Ix yl and u (x, y) = 0 for all (x, y) E m2. Now for any x * 0 ,
.~

u(x,O)-u(v,O)=O-O =o~(au) exists x=O.
x-o x. ax (0,0)

au au au
illr1y Oy =0= ax = Oy at (u,O). ThusC.R. equations are satisfied at(O,O).

r
< )

Now.for z e O, z=x(~y=O)

I(z)- .r(v) vrx:or -0 .
. = = 0 -+ 0 as z = x -+ 0 -------- (I)z-O x

)

For z = x + ix, x> 0

f(z)-/(u) M -0 1) ."----'-~---'-~ = = -- ~ ---:;t: 0 as x -+ 0 + -------(II)
z-O x+ix l+i l+i

(i) and (ii) ~ f is not differentiable at '0'.

17.4.5 EXAMPLE:

Show that f defined on <r: by /(z)=lzI2 is differentiable only at z=O (origin).
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Solution: Given that f( z) = Izl2 \fz =X+ iy E'a:::. Denote f = u + iv ~ u(x,y) = Izl2 =x2 + y2 and

au au
u(x,y)=0\f(X,Y)ETI?2. Now, if (x,y):t=(o,O) atlest one of ax =2x, ay =2y differ from the

corresponding au = 0, - au = °.Hence f is not differentiable at any z:t= °.When Zo = v, consider
ay ax

for z :t=°

1 is differentiable at '0' and f' (0) = °.
17.4.6 OBSERVATION:

The above function is such that it is differentiable only at origin. So there is no neighbourhood
of origin where the function is differentiable. Hence, it is an example of a function which is
differentiable at a point but not analytic at that point.

17.4.7 SELF ASSESMENT QUESTIONS:

17.4.7.1 : Show that the following functions are nowhere analytic.

(i) (a) f (z) = Z (b) 1(z) = z - z \f z E a:::

(ii) f (z) = 2x + ixy2V z = X + iy E <C

(iii) 1(z ) = (exp x) (exp - iy) = ex-iy = eZ V z = x + iy E <C

(iv) f (z ) = .xy + iy V z = x + iy E a:::

(v) f (z ) = eY . eixV z = x + iy E <C

17.4.7.2 SAQ : Show that 1 defined on a::: by 1(0) = ° and I( z) = (z)2 /2 for z:;t: 0, the CR

equations are satisfied at (0, 0) but f is not differentiable at (0,0) .
We now prove a sufficient condition that ensures analycity of a function.

17.4.8 THEOREM:

G is a region in <C and u ,v are real valued functions with continuous partial derivatiives on



17.13 Analytic Functions

G (regarded as a subset of IR2 ).If Cauchy-Riemann equations are satisfied on G( c IR2) then

f = U +i v is analytic (differentiable) on G(c a::).

Proof: Let G,u, v and f ·be as in the statement of the Theorem. Let Zo = Xo +iyo E G. Since G

is open there ~xists~n r>O such that B(zo, y) = {zE<c:lz-zol<r}~G. Let

0"* h = s + it E B (0; r )-~( Zo +h) E G . Now

U(Xo +s, Yo +t)-u(xo, Yo) = [u(xo +S, Yo +t)-u(xo, Yo +t)]

+ [ u (xo, Yo + t) - u ( xo, Yo )] ------- (i)

By mean value Theorem for the derivative of a functionot one variable of reals, there exist

s), tl with ISII<[sl and Itll <kl·w,ith

U(.xo+s,JlO;l;-t).-.U(.XO,yo+t.) = s ux(xo+s), yo+t)}
and -------- (ii)

u(xo,Yo +t) ;-;:u(xo,Yo) = t Uy(XOi.YO+t))

(where uX' Uy, have their usual meaninqs). .• '

For any (S,t)E~2\-{(Q,O)} with s+itEB(O,.~)define

So, by (i) and (Ii), ' .' .'

Sinc~-:fsij':<:,lsl~ls+it~and Itj·1< ItI ~ Is+ itl and It)I<ltl ~ Is+itl and uX' uy are continuour

at (xo', yo) followsthat (frarn~fiii»:, .

. ~(s, t), '; .. :
lim .'exlsts',\S' == 0 (by (11)),--------- (IV)

s+it=so: S + It
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So,

where ~ satisfies (iv), similarly

where ~f is such that

. ~(s,t)
lim exists = 0 -------- (vi)
s+it S + it

Now

./(zo +h)- /(zo) _ {u(xo +S, Yo +t)-u(xo,Yo)}+i{u(xo +S, Yo +t)-u(xo - Yo)}
h s+U

SUx (xo, Yo) -/-tuy (xo, Yo) -/-~(s,t) -/-i {sux (Jio,Yo) + tUy ((xo,Yo) + u( s,t ))}
=

S' + it

s{ Ux (xo,Yo) -/-iux (xo, Yo)} + it{uy (xo, Yo) - iuy (xo,Yo)} +<I>(s,t)+i<l>(s,t)
=

s + it

s {ux (xo, Yo) + i Ox (xo, Yo)} +il {ux (xo, Yo)+ iux (xo, Yo)} -/-H s, t )+i\jJ( S, t)
=

s + it
(Since C-R equations are ,satisfied)

( ). ( ) ~(s,l)+i\jf(s,t)
=ux xo,.J\) +lUy xo,Yo+- ,.'(

S -/- I.

. <p(s,t)+i\!'(s,t) ," .
Since -----.-~-->O as ss it ~O (by(IV) and (VI)), by 16.3.6.1Of the prevrous

S +i] ..

lesson follows that f is differentrable at ::" and t' ( ': ):. II, (.\"0' yl) ) + i u, (xo· Yo) .

Since Lit and Ux are cotmuous at (x().Yo) follows that r is continuous at Zo This is true

for all Z E G . Hence f is analytic on (; This completes the proof of the Theorem.

(By C-R equations, observe that t ' (':0) is also ,- \ ! (\".1 i') iu, ( \11' Yo ))

17
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17.4.9 COROLLARY:

G is a region in <C and I:G ~ <C is analytic such that I' = 0 on G. Thus I is G
constant.

Proof: Let I and G be as in the statement. Let I = U + i v . Now, by Theorem 16.4.8 follows that

f'(z~=ux_(x,y)+iuAx'Y)=Vy(x,y)~iuy(x,y) for every Z=X+iYEG. Since /,=0 on (J-

follows that Ux = "» = Ux = uy = a on the connected set G( C:.lR2). Hence u and u are

independent of x y

=> u is a constant and u is a constant on G ( ~ lR 2
)

\

. => f is a con~tant on G. This proves the result.

·7.4.10 DEFINITION. .

A complex valued-function f defined on <C,i.e. f: <C~ <Cis said to be an entire function
__ I

if and only f is-analytic (differentiable) on <C.

17.4.11 SEl.F ASSESSMENT QUESTIONS:

Prove that the following are entire functions.

(i) I(z) = eiz V Z E <C

(ii) /(z) = sin z v Z E <C

(iii) f (z) = 4x - y + i ( 4y + x) Vz = x + iy E <C

(iv) f (z) = ( z3 + z) eZV z E <C

17.5 HARMONIC FUNCTIONS:

17.5.1 DEFINITION:

A function ~ defined on a non-empty set G ~ lR 2 is said to be harmonic iff ~ has continuous,

d d rf I d . ~ d n2,h a2~ a2~ a r=secon or er pa ra erivatives an v 'I'= -2 + -2 = on I.J (1:1isequation is called Laplaceax ay
(potential) equation).



Centre for Distance Education 17.16 Acharya Nagarjuna University

17.5.2 EXAMPLE:

f = u + iu is analytic on a nonempty, open set G ~ cr:. Then u and u are harmonic on

Solution: Let f = u + iv be analytic on ~:f. G (open) ~ cr: ~ f has derivatives of all orders on

G ~ u and u have partial derivatives of all orders on G (C JR2). Since f is analytic on G, u

au au au av
and u satisfy C-R equations on G. So ax = By and 0/, = - ax on G.

Thus u is harmonic on G. Similarly u is harmonic on G.

This means f is analytic on G ~ Ref and Im f are harmonic on G ~ m 2 ..

17.5.3 DEFINITION:

If f = u + i v is analytic on ~:f. G c cr: then u is called a harmonic conjugate of u on G
(Note that -u is a harmonic conjugate of u since if u-iu).

17.5.4 THEOREM:

Let G be a nonempty open disc in JR2 or JR2. If u: h ~ JR is harmonic then u has a

harmonic conjugate on G .

Proof: Let G = B(O;R) (0 < R:::; +00) and u: G ~ JR be harmonic. Let u: G ~JR be defined by

y
u(x, y) = fux (x, t)dt +<I>(x)\j (x,y) E G.

o

(where ~ is specified in due course).

Now follows that

y

uAx,y) = Juxx(x,t)dt + ~'(x)
o
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y'., .',,,

=- fUyy(x,t)dt+~'(x)
o ! '.'

. . , .

=-Uy (x,y) + "» (x,O) + $' (x)

We select ~ such that ~'(x)=-Uy (x,O). So

y x

u(x,y) = fux (x,t)dt - fuy(s,O)ds
o '0'

~ uy = Ux and u; = -u~ on G)

17.5.5 EXAMPLE: . " ~ ~ 1;. fl.

Show that u(x,y)=excos y V (X,Y)Em2 isharmonic(on m2/ Find'ananalyticfunction
, .' "_l:

f whose real part is u .
I. ... " : ....

Solution: Given that u( x,y) = eX cos yV( x,y) E m2
. '. ~.

So ux(x,y)=excusY'=?uxx(x;'yt=excosy, ,', .
., .:' : ~ '1

Uy (x, y) =_ex sin'y S u:ry{x, y) = _ex. cas x

A harmonic conjugate u of u on IR2 is

t,

y x

u( x,y) = fex cost dt - fOds
o 0

= eX'S!1-1 i+c, where cisa-real constant.

.'.f (z) eX cos y + i {eXsin y + c}

\:. -<
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17.5.6 SELF ASSESSMENl'--QUESTIONS:

Show that the following are harmonic and find their harmonic conjugates.
\

(i) u(x,y)=2x(1-y) '-, V(X,Y)Em2

3 }
, "

(ii) u(x,y) = 2x-x + 3xy V(X,Y)Em2,

(iii) u(x,y) = sinhx siny V(X,Y)Em2

(iv) u (x, y) = y / x2 + y2 V(X,Y)Em2-{O}" .,

17.6 MODEL EXAMINATION QUESTIONS:

1'1.6.1 : Define an analytic function .
.,,- , "

17.6.2: State and prove chain-rule

17.6.3: Show that every power series represents an analytic function inside its circle of
convergence.

. ';.
17.6.4: State and derive C-R equations.

17.6.5 : Show that the truth of C-R equations is a necessary condition but not a sufficient conditin
for a complex function to be analytic at a point. '

17.6.6: State and establish a set of sufficient conditions for a complex function to be analytic at
a point.

17.6.7: If f ;'sanalytic ona region G in <r:: and i' = 0 on G show that f is a constant on G.

17.6.8: Define a harmonic function.

17;6.9: If f is analytic on a region G, show-that the Re(f) and Im(f) are harmonic on

17.6.10: u is harmonic ona non-empty, open set G, in m2. Show that u has a harmonic

, conjugate on G .

17.7 HINTS TO SAQS AND MEQS :

17.3.3 : (i) ZEG. Select O::.ohE<C3(Z+h)EG,. Now

(Af + flg) ( Z + h) - (Ai + Ilg) (z) = A f (z + h) - f (z) + II g(Z + h) - g(z)
h ' h r h
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-) 'AI'(2)+ ~g/(z)

(ii) (f.g)(z+h)-(f·g)(z) = f(z+h)- f(z). g(z+h)
h h

+ g(z+h)- g(z) f(z) -) j'(z)g(z)+ g/(z)f(z)
h

as h -) 0 (.: differentiability => continuity)

(iii) For any z E G ,

(fJ'(z) = (/'~J'(z) = j'(z)._(1 ) + I(Z)[ -g/(Z~J
g g g Z {g(z)}

17.4.7.1 :

(1) (a) 1'= u + iu => u( x,y) = x and u( x,y) = -y 'V"( x,y) E m2

au 8u() 2- = 1 "* -I = - y x, Y E IR => f is no where analytic in <C.ax ay -

(i) (b) f=u+iv; u(x,y)=o, u(x,y)=2y,ux =0"*2=vy.

(ii) u(x,y)=2x, u(x,y)=xy2. Ux =2=2xy=uy =>xy=I(i)

"» = 0 = _y2 => Y = 0 -) (ii) . (i) & (ii) C.R. equas are satisfied at no (x,y) E m2 .

(iii) u(x,y)=excosy, v(x,y)=-exsinyV(x,y)EIR2

Ux = uy => cos y = 0, uy = -ux => siny = °=> C.R. equations are satisfied at no

(iv) Ux == Y = 1= uy; uy = x = -0 C - R equations are satisfied only at (0, 1) => f can be

differentiable only at °=> f is now where analytic.

(v) u(x,y) = eY cosx, u(x,y) = eY sin x; Ux = uy => sin x =0;

"» = -ux => cosx = °=> now where satisfied.
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-----

(1 .)3-:-1 .3. .~ -. = (-1) =1 as Z=X+1X~O
1+ 1

17.4.11 :

(i) 1= u + iv => u(x,y) = e-Y cosx, u( x,y) = e-Y sin x'if (x,y) E IR2

Ux = -e-Y sinx = uY' uy = -e-y cosx = -ux and these areall continuous in any

nbd of (x, y) => 1 is entire

(ii) u( x,y) = sinx cosxy, u( x,y) = cosxsinhy'if (x,y) E IR2

(iii) u(x,y) = 4x- y, u(x,y) = 4y+x; Ux = 4 = uY' "v = -1 = -ux=> .

(iv) J; (z) =:z3, 12( z) = 2 and 13 (z) = e-z'ifz E <Care entire (prove)

=> 1 = fi + 12+ 13 is entire.

y x

= f2(1-t)dt- J2s ds = 2y- i _x2 +c, c is a real constant
o 0

17.5.6 :

(i) V2u = 0 + 0 = 0 =:> u is harmonic.

y x

u(x,y)= fux(x,t)dt- fuy(s,O)ds
o . 0

y x

= f[ 2(1- y) J(O,() dt + f(-2x )(s,O) ds
. ° °

Uy (x,y) = 6yx, uY.Y (x,y) = 6x =:> V2
u = 0
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y x
u(x,y) = f( 2-3x2 +3t~ )dt- fOds = 2y-3x2y+ y3 +c (real constant)

o 0

(iii) Ux (x,y) = cosh x siny, uxx(x,y)= sinhx siny

uy(x,y)=sinhx cosy, uyy(x,y)=-sin hxsin j .

V2u = 0

y x

U ( x, y) = Jcos hx sin t dt - f sin hs ds = - cos hx cos y + c
o 0

(iv) ux(x,y)= V2u=O etc.

. R ( .) 2 . 2 1 21z = x + zy ~ y = e -zz ,x +y = z

y (.,.-rJ [-izJ x2 2 = Re -1 ~ Im -2 = - 2 2 +c (real constant,
x + y Izl Izl x + y

17.6.
17.6.1 : See definition (17.3 ..1)
17.6.2: See theorem (17.3.6). .

17.6.3: See corollary (17.3.9)
17.6.4: See theorem (17.4.1)
17.6.5: See theorem (17.4.1) and counter example (17.4.4)
17.6.6: See Theorem (17.4.8)
17.6.7: See corollary (17.4.9)
17~6.8 : See definition (17.5.1)
17.6.9: See e~ample(17.5.21. .
17.6.10: See theorem (17.5.4)
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Lesson - 18

STANDARD FUNCTIONS &
ANALYTIC FUNCTIONS AS MAPPINGS

18.0 OBJECTIVE OF THIS LESSON : ~
After going through this lesson one should be able to (i) observe that the complex exponential

function has the same properties as that of the real exponential function and so are the complex
trigonometric functions (ii) define a branch of complex logarithmic function (iii)mention the properties
of certain anaiytic functions and (iv) prove that any analytic mapping j defined on a region preserves

angles, both in magnitude and direction at any Zo of G where I' (zo) ::f:. O.

18.1 INTRODUCTION :

The complex exponential function has an extra property, namely that it is periodic with
period 2ni. This leads to the fact that the complex logarithmic function is a many vlaued one. This
leads to the fact that the complex logarthmic function is a many valued one. There by, we consider

various branches of this function and observe that any two differ by a multiple of 2ni. Further the
mpping properties of certain analytic functions lead to the fact that for any pair of open, connected

sets G, n in <C there is an analytic function on G such that I(G) = n .
18.2 COMPLEX EXPONENTIAL FUNCTION:

We have already introduced the complex exponential function in the previous lesson (see
17.3.10). Now, we consider the following.

18.2.1 THEOREM:

CX)

Let j(z)= L zn/W = eZ(exp z) for VZE<C. Then
n=O

(i) I is entire and I' = I on <C.

(iii) eZ::f:.O for all ZE<C and e" =l/ezVzE<C.

I

(iv) eZ = e' for all Z E <C ;
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and lezi = eRe(z) for all Z E 0: and

Proof: Given that f( z) = eZ = f z~ '\Iz EO:.
n=O

Clearly by 16.3.8, f is entire and by Theorem (17.3.8) (c),

Thus I' = I on 0:. This proves (i).

Let zl EO:. Define g: 0: -)0 0: by g (z) = eZ . eZ\-Z for all Z EO:. Now, follows that for any

Z EO:, g' (z) exists = eZ . eZ\-Z2 + eZ (_eZ1-Z) = eZ . eZ\-Z - eZ . eZ\-Z = O.

Since 0: is connected, by a known result (17.4.9) follows that g is a constant (on. 0:). So

eZ. eZ\-Z = g( z) =g( 0) = eZI '\I z E 0:(.: eO = 1)=> eZ\ .eZ2 = eZI e(z2+zd-Z
l = eZZ+ZI

=eZI +z2 '\IZl' Z2 E <C. This proves (ii).

Since eZ _ is defined for all Z EO:, follows from (ii) that, for any Z E 0:, eZ • e -z = eO = 1 =1= 0 .

=> eZ =1= 0 for all Z EO:. This proves (iii)

00 1
Since all the coefficients inL I~ z" all real, we get that,' for any Z E <C .

n=O l!!

- 001 001- 001 -

eZ = I -z" = I -(zn) = I -(zr = eZ

n=O ~ n=O ~ n=O ~

This proves (iv).
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- 2

= e2Rez = (eRez
)

This proves (v) and that the result follows.

Now, we consider the following.

18.2.2 DEFINITIONS:

For any z E a::, we define

• 00 n z2n+l z3 z5
smz = 2: (-1) = z--+ --+ ....

n=O I( 2n + 1) ~ ~

and
00 2n 2 4
'" ( )n Z Z zcasz= L -1 - = 1--.-+--+ ....

"n=O ll!! _~ l1

(observe that each of the series on the RHS has radius of convergence +00)

Since each of the power series, considered above, has radius of convergence +00 follows
that the complex sine and cosine functions are entire. It is easy to prove the following:

18.2.3 SELF ASSESSMENT QUESTIONS :

For any z E <C
,

(i) (cas z) = - sin z ;

(ii) (sin z)' = + cas z

(iii) cos z = (eiZ + e-iz )/2
(iv) sinz=(eiZ -e-iZ)/2i
(v) sin2 z+cas2 z = 1

(vi) eiz = cas z + i sin z

Before we consider complex logarithmic function, we introduce the follo"Jing.
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18.3 PERIODIC FUNCTIONS :

;8.3: 1 DEFINITION:

A'(cornplex) function f defined on <Cis said to be a periodic function iff there is a complex

In :--.<;( .YJ such that f (z +!#) =I (z) for all z E <C. g: is called a period of f.

We observe that this property is enjoyed by complex exponential function but not by real

H.3.2 OBSERVATION :

'Since'exp(27ti)=e27ti =1 follows that exp(z+27ti)=exp(z) for all ZE<C. Hence, the

.omolex exponential function is aperiodic; function with a period Zni , (
f

Further if ,!ffE<C be such that exp(z+h1)=exp(z) 'liZE<C such that
• I • "

.\(<; }:.:1=> exprtt' = lexp2ff1 = 1 <=> eRe;v = 0 <=> Rerff = O· So r'j): = i'A for some 'A E IR and
;

i <'::»'v is a multiple of 27t. So A = Znk , where k is any integer. Thus {2 tiki: k is an integer}
. \

~c~q'.i?nceof periods of complex exponential function. \

'f:e now consider complex logarithmic function .

•~ CO!~lPLEX LOGARITHMIC FUNCTION :
• '1-

:34.1 Dl:F!NITION: .,

Let (i be a region (non-empty, open, connected set) in <C.Let f :G ~ <Cbe a continuous

-i.nction such that, Z = expf( z) for all Z E G . Then f is called a branch of the logarithm on G.

(since exp » 0 follows that 0 ~ G )

. P.4.2 THEOREM:

Let (~- be a regionin.<Cand .f .be a 'branch of the logarithm on G I H continuous

. '.':.;t:on g : c, .~ <Cis also ~ ?ranch of the logarithm if and only if there is an integer K such that

. c; / +,21ti I,' (that means any two branches of the logarithm differ by a multiple of 21ti).

Pr')cf :Let! be a branch of the logarithm on the region G. Let k be an integer. Defining:

,t; . G -) <C by ~ (z) = f (z) + 27tik for \jz E G. Clearly g is continuous on G. Further, for any

z E G, exp g (:. ) :c:cxp(f(z) +27tik ) =exp f( z) exp(27tik) =exp f( z)

(since exp{( 27tiK) = 1);= z ; by hypothesis. Hence y is also a branch of the logarithm on G.
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Conversly assume that j .and g are branches of theIoqrarithrn on fl. $0, for any .

zEG, z=expg(z)=expj(z)=> for any zEG, z=expg;z) =e~Bj(z)::::::>.fpra~y,z?G,th£e

is an integer kz such that g (z) = j (z) + 21tikz' Since the function h :G ~.(C defined by

h (z) = [g (z) - f (z )J/2ni, for every z E G, is continue ".,: nd is integer valued on the connected

set G follows that h is a constant. Thus k, is the sam: lor all Z E G. Demote kz'::::k . So there

exists an integer k such that- g ( Z ) = f (z) + Zttik for all Z E G .This proves the result.

18.4.3 REMARK:
-',:: ."

From Theorem (18.4.2) follows that if one branch of the logarithm on a connected, open set

is known then all the other branches are determined. In fact if j is a branch of the logarthm on (J

then {f + Ztiik : k is an integer} is the. set of all branches of the logarithm on G, where G is <1

non-empty, open, connected subset of (C.

No~we show the existence of one branch of the loqarithrnon a non-empty, open, connected

set G , where 0 ~ G .

,18.4.4 RESULT:

\ There is a branch of the logarithm on a non-empty, open, connected sub set G of (C with
Oil G.

/
Proof: Let G = <C - {r E,JR/r .::;o} (The complex plane with a slit (cut alonqthe non positive real

. . . .J,., ,: ~

axis), Clearly G is a non-empt, open, conncted subset of <C. Any .z E G can uniquely be written as
,. ", - ,

z=rei8 where r=lzl and SE(-1t, 1t). Define f:G~([;' -by·f(z)=lnr+iSVz=rei8 EG
1),. . ,

"

(r==lzl,-n<8<n). Let {zn;n=1,2, ... } be a sequence in G such that zh-*,zEGas n~fX) .

Let zn =rn ei8n and z==rei8 where Iznl==rn(n=1,2, ..... ), r=lzl" eneE(-n,n))., Since

IlznI-izil (= Irn - rl) .::;IZn - zi follows that r/1 ~r as .» ~ CfJ ~ In rn ~ In r ~s n -t co . Since

Yn cis dn = Z /1 -7 Z = r cis e as n ~ 00. So f (zn ) = In rn '+ idn -7' In r + is = f (z ) as n ~ co . Th us

f is continuous on G. For any Z == rei8 E G,

exp(f(z)) =exp(lnr+id) = exp(inr).exp'(i6)

is= re = Z

Thus f is a branch of the logarithm on G.
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18.4.5 DEFINITION :

Let G = a::::-{r E IRjr ~ o}. Any Z E G can uniquely be written as z = rei8 where r = Izl
and S E (-1t, 1t). Define f: G -) <t: by f (z ) = In r + is for every z = r ei8 E G. Then f is called

the principal branch of the logarithm and is denoted by log.

(Any branch is given by {10g+2nik:kis an integer}. This srt is denoted by Log).

Now, we discuss about the analyticity of a branch of iogarithm on a nonempty, open..

connected subset G of a:::: with 0 Ii!: G .

18.4.6 THEOREM:

-Let G and H be non-empty, open subsets of <t:. Let g: G -) (J:and h: H -) <t: be'

continuous such that g(G) c H hog = I, the identity function on G. If h is differentiable on H

and h' (s(z ) ) ;t: 0 for all z E G then g is differentiable on G and g' (z ) ~ ~, (g (z )) f~r every

Z E G (=> h is analytic on H => g is analytic on G).

Proof: Let G,H,g and h be as in the statement of the theorem. Let Zo E G. Since G is open,

there exists a O;t: ho E c such that Zo + 170 E G . Now h (s (Zo) ) = Zo and h (s (Zo + 170 ) ) = Zo + 170 .

Since ho ;t: 0 follows that g (zo) ;t: g (zo Tho) . Further

(zo + 170 ) - Zo h ( g ( Zo + 170 ) ) - h ( g ( Zo) ) g (Zo + 170 )- g ( Zo)
1= 170 = g(zo + 170)- g(zo) . . 170 ------- (i)

Since g is continuous on G follows that g (zo + ho) -) g (zo) as ho -) 0 and so, by

hypothesis,

. h(g(zo +ho))-h(g(zo)) .
lim ( lL) () exists 1= h'lg( zo)l;t: 0 ------ (ii)ho~o g Zo + "0 - g Zo

(i) & (ii) imply that

This is true for all Zo E G. Hence follows that 'g is differentiable on G and
/
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g' (z) = (1 ( )) V Z E Gh' g z .

This completes the proof of the Theorem.

18.4.7 COROLLARY:

Any branch of the logarithm on a non-empty, open connected subset G of <1:-{O} is

analytic and its derivative for any z EGis Yz .
Proof: Let g be any branch of the logarithm on a non-empty open connected subset of <1:- {a} .:

By definition g is continuous and exp (g ( z ) ) = zVZ E G . Since exponential function is entire and

[exp] ;:j:. 0 on <1: follows that (by the previous Theorem) that g is analytic on G and for any

v - 1/ - 1/
zEG,g'(Z)= /(exp)'(g(z)) - /expg(z)-lz' Thus the result follows.

18.4.8 EXAMPLE:

If z), z2 E <1:, (i) cas (z) + z2) = cas z) cas z2 - sin z) sin z2;

Solution: Let z), z2 E <1:. We know that

=(cas z) cas z2 - sin z\ sin z2) + i [cas z\ sin z2 + sin zl cas Z2] ---- (i)

Replacing z), z2 by -zl' - z2 and we get·

exp{-i( z\ + Z2)} ~ {cos( -zl )cos( -Z2) - sin( -z\ )sin( -Z2)} +

i {cos( -zd sin( -z2 )+i sin( -zdcos( -Z2)}

=( cas z\ cosz2 - sin z, sin Z2)-

i (cas zl sin z2 + sin z\ cas Z2) ----------- (ii)
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(i) + (ii) =>

(i) - (ii) =>

18.4.9 DEFINITION:

G is a region in <Cwith 0 ~ G. f is a branch of the logarithm on G and bE <C . Define

g:G~<C by g(z)=exp(bf(z))V zEG. If b isanintegerthen g(z)=zbVZEG. If we write
,

g(z) = zb (z E G) we understand it as exp(blogz)V z E G, log being the principal branch.

18.5 ANALYTIC FUNCTIONS AS MAPPINGS:

We first consider the following:

18.5.1 DEFINITIONS:

. (i) Let [a, b] be a bounded closed interval of reals and G be a region in <C. Any continuous

map r: [a, b] ~ G is called a path in G;

(ii) A function r: [a, b ] ~ <C is said to be diffrentiable on [a, b] iff for every t , in [a, b] ,

r(t+h)-r(t)
lim exists; the limit is denoted by r' (t) and it is called the derivative of r
h~oo h .

and t (at t = a, we take right limit and at t = b we take left derivative).

(Observe that, if r = r] + ir2' where r] =Re r and R2 = Im r , then r' (t) exiss iff (if and

only) rl'(t) and r2(t) exist for any tE:[a,bJ and in this case r'(t)=r{(t)+ir2(t).

(iii) A path r in the region G (i.e. r: [a, b] ~ G is a continuous map is said to be a smooth

path in G iff r is continuously differentiable on [a, b] (i.e. r' (t) exists for all t E [a, b]
and 1":[ a, b] ~ <C is continuous).
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(iv) r is said to be piecewise smooth in G iff there exists a partition P (a = to < tl < .... < tn = b)

of [a, b] such that r is smooth on each sub interval [tj_l, tjJ of ([a, b]) for j = 1,····n.

18.5.2 OBSERVATION :

Let r: [a,b] ~ G be a smooth path in G and r'(to) * ° for some to E (a,b) . Then r has

a tangent line at the point Zo = r (to) . This line passes through the point Zo in the direction of the

vector r' (to) (or the scope of the line is tan (arg r' (to)) .

18.5.3 DEFINITION:

Let [a, b] be a bounded, closed interval of reals and G be a region in a:::. Let

rl' r2 :[a, b] ~ G be smooth paths such that for some tl; t2 E[a, b], rl (tl )=r2 (t2) = Zo (say)

and r{(td * 0, r2(t2) * 0. Then the angle between rl and r2 at Zo is defined to be

arg r2(t2)-argrl'(t).

18.5.4 DEFINITION:

Let G be a region in a::: and f: G ~ a:::. Let Zo E G. f is said have angle preserving

property at Zo iff the angle between two curves through Zo in G i~ sam~- as the angl~~etween the

curves f (lj ), f (r2) (throught f (zo) ).
18.5.5 DEFINITION:

Let G be a region in a:::. A mapping f: G ~ a::: is calr~d a conforni~1 m~pping' at Zo E G iff

I/(z)- l(zo)1 .
f preserves angles at Zo and _L~ I I exists.

~~-o z -zo

18.5.6 THEOREM:

Let G be a region in a::: and f: G ~ a:: be an analytic fu~ctio~. 'Then f is conformal (~

preserves angles) at each point Zo E G where f' (zo) * 0.

Proof: Let G, Zo and f be as in the statement of the Theorem. S~p'po~e r is a srnoth path in G .

Now f~lIows that <J= for is also a smooth path in <l: and d(t)=f'(r(t)) r'(t) for all

r e Domain tr }. Let zo=r(to) and r'(to)*O and /'(zo)*O. New follows that <J'(to)'*O and
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arg c' (to) =arg/' (zO)+ argr' (to)

~ arg a' (to) - arg r' (to) = arg f' (zo) ---------------- (i)

Let rl' r2 be smooth paths in G with rl (td = r2 (t2) = zo where tl E Dom(rd and

t2 EDom(r2)' Further f{(td:;t:O:;t:rHt2)· Denote a1 =lorJ' a2 =r>». Also suppose that rJ

and r2 are not tangent to each other at Zo ; that is suppose that r{ (tJ ) :t:- ri (t ). Now (i) gives that

(ii) says that given any two paths through zo; I maps these paths onto two paths through I (zo)

and, when f' (zo) :;t: 0 I the angles between the corresponding curves are preserved both in
magnitude and direction.

Since I is analytic on G I follows that

. I/(z)- l(zo)1
hm . I I exists.

z~zo z -zo

Thus f is conformal at the point Zo where f' (zo) :;t: O. This completes the proof of the

Theorem.

18.5.7 EXAMPLE:

Discuss the transformation w = f (z) = z2'1/Z E <I:

Solution: Given that f :<I: -7 <I: is such that f (z) = z2 '1/ Z E <I:. I' (z) exists 1= 2z'l/z E <I:. So

I is entire and f' (z ) :t:- 0 for all z:;t: 0 . So I is conformal at all z:t:- 0 .

Write z ~ x + iy and W = U + i v . So

(i) Consider x = xl (> 0). It is transformed into the curve given by
~t

U = ;12 - y2 and v =·2xtY.
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Eliminating y we get that

------~--------~4---------X

y v

2(x] , 0), u

Thus the line x = xl is transformed into the parabola \.l = -4X1
2

( u - X12) by means of f.

Also x = -xI is transofrmed into the same parabola.

Let 0 < xI < x2; the region between x = xI and x = x2 or between x = -xl and x = -x2 is

transformed into.the region betw~en tl = -4xl ( u - X12) and u2
= -4x2 ( u - X2

2
).

~. -' " ,.. / .
,"/" , -,

y

" ,- " " ,. ,,. ./ " .. , ./

(' , (' (' (' r........ , '

.' , " , .' .' " ,. " ,: ,:..:..~.,'+-----+------!:,:,:.:..:..:.~," / .. , .
.", <," "

.. ,. ,. ", .
x = -x2 .r.:>: x = X<»« - 1

/ /' ,. "

x

,',',',' / "j
" , .... " ,...........
" " ,. , .. ,

, I ••••••••

Consider the case when x2 ~ 00 ; we get that the half plane to the right of x = xl or the half

plane to the left of x = -xl is mapped into the region which is exterior to v2 = -4xl (u _XI2).
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i
" ,;' ". " "

/////"

" ,/ " " /
/////"

,/ ,/ " ". "
,/ ,; I' ,/ " .-

" ". ". " ,,-" " ,;' ,;' ". .-
,/ ,/ " " /

//////, ./ / " ".
//////

;' " " " ".
, ",. " ;' " i

" ,/ " " "
--/ ,," #" " +----+---1:.' ></ ></:- ~

" .; ./ ./ ,,-
/////"

/~/' /~;'~/.~;:'

u
, , " /

/ " . .
, " " "

/' ,
/' /' ,..

/' /' /'

", ", /'
./ /' /'

7/ ) / /'(x,;,Oy /
/ / /'

./ /' /'

/' /' .".
/

" "./. " .. " '"

Consider the case when xI ~ 0 ; we get that the half plane to the right of x = 0 .or to the left

of x = 0 (i.e. Re( z) > 0 or Re( z) < 0) is transformed into the W - plane with a cut (sht) along the

-ve real axis (u ~ 0) in theW-plane.

XI ~ 0 ~ u = 0 and u ~ 0 .

/

, i

<. r 0"

I I
1 1 I

I 1 1 1
I / / / 1

I / 1 1 / /
I

1 / 1 1 1 /
1 I~ ,~ . /.' . I I / I I / /. . . I.....t:: :::> / / I I

I I /
/ / I / / I

/ I / I /
I /

/ / I / I
/ /

I / 1 I 1
/ 1// / I I

/ / /
/ I / /

/ I I
/ / / 1 / /

I / I r U
/ I

I I 1
/ I

/ I I
/ 1

/ / I
/ /

I 1 /
I/

1 / I
1 / I 1

I· /
/ 1 /

1 /
/ / 1

I. ./
1

~/
11

/ /
I

I

. 2 ( 2) . 2 ( 2)The region between v = -4xl u - xI and u = -4x2 U - x2

Similarly y = y\ (> 0) or y = - ;iis transformed into the parabola v
2
· = 4Yi 2 (u + y\2 ) .

(ii) (a) Consider the ctrclewith' a 'origin as"c~~tre and r(> 0) as radius; i.e.

Izi = r => r eiS , 0 ~ 8 < 7t . Now w = z2 =:r2 e2ie~lwl ~ r2 ; 0 ~ 8 < 7t => 0 ~ 28 < 27t .
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y=y 1

--------------4--------------7 X

v

------~~----t------+_----___7U

(

SO IZI = r transformed into Iwl = r2 described with.

(b) The sector {zE<I::a<argz<p}(p-a<n) is transformed into the sector

{w E <I::2a < arg w<2P}.

,/

/
/. /. )-

/ / / /
/ /. /. ,/ ,/

/j//',/
------------j;E--T-~,L.-.."..--7"_.~ /. /.

/' /. / / /.
,/ /. /. /. /.

/ / / /'
Q~> ./ /. ,/ "

.... ~ /'/ /.
Q

/.

,/

18.5.8 EXAMPLE:

,t'

Discuss the transform~ti?n w = exp ( z ) = e.z,Vz E <C.

11/ argw = 2P
'/ ,
./

/. ./
/. /. /.

/. /. ,/
/ /. /. ,;

/. /. /. /.
/ /. /. /. /.

/. /. /. /.
/. /. /.

'" ,/ ,/ ./
/. /. /.

/. /.
/.

argw = 2a

Solution: Given that J: <C~<C is such that J(z) = e~'\i'zE~. J' (z) exists 1= eZ'v'zE ~. Sc

f is entire and f' (z) =t- 0'11z E <C. So f is conformal on <I:.
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(1) Let z = x + iy and w = peie

(i) consider the line Y = YI (0 < YI < 21t) . As x varies from -00 to 00, eX varies

from 0 to 00.

So the line Y =YI (0 < YI < 21t) is transformed into the half ray cp = YI;

y
v

Y=Jj

.------f----~ X

---+-H--~------~u

So the region YI < I (z ) = Y < Y2 (Y2 - YI < 1t) is transformed into the Wedge shaped region

in the w plane bounded by the radial lines cP = YI' cP = Y2;

,,- ,,-
/ ,/' ,

./ ./ ,
./ ./ ./

~~~~-----~u

v

The region between Y = 0 and Y = 1t is mapped into the upper half w -plane.
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v

Similarly, the region between y = 0 and y = 2n is mapped into the W -plane with a cut (slit)

along the positive real axis (O to 00).

(2) Consider the line x == xl ~ P == eX
\ ~ Iwl == p == eX

\ • Thus the line x == xl is transformed into the

v

y

----+--------+------~X
1L------t-------7 U
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Similarly, the region between x = x) & x = x2 is transformed into the region between the

concentric circles Iwl = eX) , Iwl = eX2 .

The line x = 0 is transformed into the unit circle Iwi = 1 XI ~ 00 => eX] ~ 00 .

Hence Re z > 0 it transformed into the exterior of Iwl = 1.

y

---====*-----r----~~~----u-----F---=-=:----==----7X

18.5.9 SELF ASSESSMENT QUESTIONS :

(i) Discuss the transformation w = sin z (z E <C)

(ii) Discuss the transformation w = cos z (z E <r:)

(iii) Discuss the transformation w = z" (n being a +ve integer) for Vz E <r:.
18.6 MODEL EXAMINATION QUESTIONS:

(i) If I (z) = f z~ V Z E c ,show that I is entire and I'= I on c.
n=O

I

(ii) Define a branch of the logarithm on a region G with 0 e G .

(iii) G be a region in <C and I be a branch of the logarithm on G. State and prove a

necessary and sufficient condition for a continusfunction g: G ~ <r: to be a branch
of the logarithm.



Complex Analysis 18.17 Standard Functions & Ahal tic Functlons

(iv) Show that there is a branch of the logarithm on a region G in <Cwhen 0 ~ G .

(v) Define the principal branch of the logarithm.

(vi) Show that any branch of the logarithm on a region G c <C- {o} is analytic and its

derivative is ~ for V Z E G .

(vii) Explain the term" f is conformal at z() E Dom f".

(viii) I is analytic on a region G and I' (zo) ;f:. 0 for some Zo E G show that I is

conformal at Zo .

(ix) Discuss the transformation z ---)z2V z E <C

(x) Discuss the transformation z ---)exp ( z ) V Z E <C .

18.7 HINTS TO SAQ'S AND MEQ'S :

18.2.3.1 :

(i)
00

I(-lt
n=O

Z2n
- = cas z V Z E <C
12nt.=.:..:

00 . _2n-l 00 2'1-1 00 2n+!
=> :L(-lt 2n _£'_=(cosz)'=>(cosz)'=2::(-lt _z_= L(-ltr! ~

n=O ~ n=! 12n -1 n=O 12n+ 1

(ii) sin Z = f (-1 r Z211+1 /12n + 1 V Z E <C =>
n=O

(sinz)' = f(-It(2n+I)z2n~2n+l = f(-ln)z2n/~ =cos Z

n=O n=O

(iii) exp (iz ) +exp ( -iz) = f _(iz_t + f -,--(-_iz),-n
n=O ~ n=O ~

a: (iz )2n ro (-It z2n
= 2 L-- = 2 L = 2 cos z

n=O ~ n=O ~
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=> COSZ = {exp(iz)+exp(-iz)}/2 V ZE<C.

(iv)
00 (izf 00 (-izf

exp(iz)-exp(-iz)= Eo l!! - Eo l!!

(v) (. - J2 (. . J2. elZ + e-IZ elZ _ e-IZ

cos2 z+sm2 z = +
2 2i

=.!.[4eiz ·e-iz ] = 1
4.

(vi) cos z + i sin z ~ [ exp( iz ) +2exp (=iz ) ] + {_ex.....:p~('--iZ~)_~_;~xp=-(;,.....-_iZ~)]

18.5.9 :

dw 1t
(i) dz = cosz = 0 ~ Z = (2n+ 1)2' n being an integer.

Sothe mapping is conformal on a::-{(2n+l);; n E I(integer)}

2 2
W. . . ') u- v
. nte w = u + 1V, Z = x + ly • Y = /\,=> 2 + 2 = 1.

cosh A sinh A

u2
x=a=>--

sin2 a
u2

--=1
cos2 a ..
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(ii) dw = _ sin z v 0 iff Z:;t: nn(n E 1)
dz

So the mapping is conformal on <r:-{nn:n E I}.
Put z = x + iy, w = u + i v . So

u + i v = cos (x + iy) = cas x cas hy - i sin x sin hy

u(x,y)=cosx coshy, u(x,y)=sinx sinhY\i(x,Y)EIR?

x = a (0 < a < n/2) ~

2 2
U V 2. 2

--2:----.-2- = cosh y-smh y = 1
cas x sin x

As y varies from -00 to 00, u > 0 and v > 0 .

So x = a is transformed in to the branch of the hyperbola which is to the right of the

imaginary W -axis. Similarly x = (7t - a) is transformed into the other branch.

(-cas a, 0) (cas a, 0)

w
x=O~u=coshy, v=O

y varies from -00 to 0, u varies from 00 to 1.

y varies from 0 to 00, u varies from 1 to 00.

=> 0 < Re z < ~ is transformed into the right half W -plane wi!h a slit (cut) along

the +ve W - axis from 1 to 00 (taken twice (iii) n = 1, the identity transformation.

dw n-\ { )n ~ 2, - = n z = 0 <=> z = 0 . So the transformation is conformal on a:: - 0 ~m '
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y u

r
·-I~..\-"""""·-~~U)

x

11:
X=-

2

u

·18.60 MEQs
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(ix)
(x)

x

'd .J,
z=rpe' ,w=pel'l'

See (18:2.1) (i)
See (18.4.1)
See (18.4.2)
See (18.4.4)
See (18.4.5)
See (18.4.7)
See (18.5.5)
See (18.5.6)
See (185.7)
See (18.5.8)
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Lesson - ·19

MOBIUS TRANSFORMATIONS

19.0 OBJECTIVE OF THIS LESSON:

After going through this lesson one should be able to (i) realize a linear fractional
transformation (ii) identify a Mobius transformation (iii) understand a translation, dilation, rotation
and inversion(iv) derive certain useful properties of a Mobius transformation (v) define cross ratio
and observe its properties and (vi) state and derive the principles of symmetry and orientation.

19.1 INTRODUCTION :

First we introduce a linear fractional transformation and consider a special and' useful
transformation known as Mobius transformation. It will be observed that the class of all Mobius
transformations form a group under the composition of mappings. Trnaslation, diletion, rotation
and inversion are special types of Mobius transformations. It will be observed that a Mobius
transformation is a composition of the above types of transformations. We introduce cross ratio of

four complex numbers in <Coo and observe that the cross ratio is invariant under a Mobius
transformation. Also we prove that a Mobius transformation takes circles onto circles. Further it will
be observed that symmetric points w.r.t a circle are transformed into symmetric points w.r.t. the
transformed circle under a Mobius transformation.

19.2 MOBIUS TRANSFORMATION:

19.2.1 DEFINITiON:

Let a,b,c,d be complex numbers such that at least one of c,d is not zero. A mapping S

az+b
defined by S(z) = --I for all z E <C with cz + d:I; 0 is called a linear fractional transformation.ez + (1 .

If further ad - be 01= 0 then S is called a Mobius transformation.

19.2.2 EXTENSION :

az+b
Let S be a Mobius transformation, given by S(z) = --d- for all z E <C with ez +d 01= 0 ;

cz+

a.b .c.d E <C.

Define S ( 00 ) = % and S ( -%) = 00 (live observe that, ad - bc:l; 0 => atleast one of a, C

is not zero and at least one of b, d is not zero). Now S: <CO')-7 <Coo.



19.2.3 EXAMPLE:

Show that the set of all Mobius transformations from <Coo to <Coo , under the composition of

mappings is a group.

Solution: We know that the class of mappings from <1:00 to <Coo is a group under the composition

of mappings. Let o~1 be the class of all Mobius transformations (from <1:00 to <Coo), Let S, T Eo/I

az+b () az+p
defined by S(z) = --d- and T z = s: (with ac=bd » 0 and a8-py::;t: 0).

. a+ ~+u

For any z E <1:

(az+P) b

(SoT) (z) ~ S(T(z)) ~ a( ~) +
az+p de -- +
yz+8

(( .+ by) z +(a p + b 8)
= -tea + dy)z +( ep + d8)

Since (aa +by) (ep + d8)-( ap+ b8)( ea+ dy) =

(aeap +'ada8 + bepa + bdy8)-

..( aeap + adpy + bea8 + bdy8) =

.. . ... dz=b .
Let SI(~)= --. - V Z E <1:00 . Clearly SI E cvtl

-ez+a

. ( dz-b )a +b
( )( ) -ez+ a

and So Sl Z = ( )dz +b
e . +d

-ez+a

(ad -be)z
( ) = z V Z E <Coo
ad-be

Inr1y (SI 0 S) = I (the identity transformation on <1:00)'



Hence S-1 exists I = SI E q//t .

This n.li is a group under the composition of mappings.

19.2.4 OBSERVATION:

From (19.2.3) we conclude that S is 1 - 1 and onto from <Coo, to <Coo.

19.2.5 SELF ASSESSMENT QUESTION (S.A.Q.) :

a\z + bl a2z + b2 . ..
SI (z) = , S2 (z) = Iiz E <Coo be Mobius transformations. Show that SI = S2

c]z+dl c2z+d2

if and only if there is a 0 =1=A E <C such that a] = Aa2' q = Ab2, c] = AC2' dl = Ad2.

19.2.6 DEFINITION:

A transformation S: <Coo ~ <Coo is called

(i) a translation iff S(z) = z + b Ii z E <Coo (b E <C)

(ii)

(iii) a dilation iff S (z) = az'li z E <Coo (0 =1=a E <C) and

(iv) an inversion iff S(z) = 1/ Ii Z E <Coo .. 7z

19.2.7 OBSERVATION:

All the transformations in the definition (19.2.6) are Mobius transformations (in the usual

notation, we can show that ad -be =1=0 in all the ones).

19.2.8 THEOREM:

Any Mobius transformation is the composition of translations, dilations and the inversion
(some of them may not be present depending upon the nature of the transformation).

az+b . ( )Proof: Let j(z)=--liZE<C, where a, b,c, dE<C with ad-be =1=0 =:>SEQft .
cz+d

az+b (a) bIf c = 0 then d:;t:0 => S ( z ) = -- = - z + - Ii z E <Coo
d d d
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Thus S is a composition of translation and dilation.

. ( ) a (\ ( he - ad)If c:;t 0, define SI Z =Z +-, S2 Z} = 1.--2- z,
e '- e

=S l( be-ad _1 J
I ,,2 d

" Z+-
e

= be-ad +!!.. = a(cz+d)+(be-ad) = e(az+b) = S(z)
e(ez +d) e e(ez +d) . e(ez +d)

, .'

Thus S is a composition of translation, inversion, dilation and again a translation.

This completes the proof of the Theorem.
::.;::1. ..•.,

19.2.9 DEFINITION:

Let f be a sehrnap on the non-empty sets (i.e. f: S --,)-S) '$ E S is said to be a fixed point

~{S iff S(~f)= if .
'.1.:.

19.2.10 EXAMPLE:

A Mobius transformation has atmost two fixed points, if it is not the identity transformation .

.~ .. ;.. az+ b
Solution: Let S(z) :.:;:--, where a.b. c.d co a::: , ad +bc *° and Z E <Coo. So S is a Mobius

. cz+d

. " , r az+b
transformation. Now, for any Z E <C, S (z) = z <=> -~ -' - = .:.<=>

cz+ '7
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az + b = Z ( cz + d) <=> ( cz2 ) + (d - a) z - b = °.
This is an equation in z , of degree s z . If S '* 1 . So it has atmost two roots => there are

atmost two fixed points to a Mobius transformation.

19.3 THE CROSS RATIO :

19.3.1 Theorem: A Mobius transformation is uniquely determined by its action on any three points '

in <Coo'

Proof: Let S, T be Mobius transformations and z) E <C(J = 1,2,3) be such that S (z) ) = T ( z) )

for j = 1,2,3. Now follows that T-1
o S in a Mobius tran$formati.onsuch that

(S-lo T)( z)) = S-I (T( z))) = z) (J =1,2,3), by hypothesis. So S-I 0 T has three fixed points.

By 19.2.1 follows that S- 0 T = I=> T = S . This proves the Tlryeorem.

19.3.2 THEOREM :

Z2, z3' z4 are three distinct points in <Coo. There is a (unique) Mobius transformationS'

such that S(Z2) = 1,S(Z3) = 0, S (Z4) = 00 .

Proof: Let z2' z3' z4 be distinct points in <Coo. Consider S defined 0'1;1 <Doo by

S(z)= z2 -z4 \tZE<Coo' if z3 =00,
z-z4

In all the cases, S (Z2) = 1,S (Z3 ) = ° and S( Z4) == 00,

Thus S is the required transformation, .
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19.3.3 DEFINITION:

Let z\, z2, z3, z4 are in <Coo and z2, z3, z4 are distinct. Then the cross ratio of z\, z2, Z1' ;4

denoted by (z\, z2, z3, Z4) , is the image of zi under the (unique, Mobius) transformation that maps

z2, z3' z4 respectively to 1,0, CX) •

19.3.4 OBSERVATIONS:

(ii) If T is the (Mobius) transformation and w2' w3' w4 E <Coo with

So (z,I,0,00)=1(z)=z, since the identity transformation maps 1,0,00 on 1,0;00

respectively.

19.3.5SAQ:

Evaluate

(i) (1,-1, 00,°)
19.3.6 THEOREM:

(ii) (O,-I,oo,i) (iii) (0, I, i, 3) .

If ZI' Z2' Z3, Z4 are distinct points in <Coo and z) E <Coo then under any Mobius transformation T.

(Cross ratio is preserved under a Mobius transformation)

Proof: Let z2, z3, z4, zi and T be as in the statement

Let S be the Mobius transformtion that takes z2, z3,z4 to 1,0,00 respy. (l.e.
/

TZ2 = 1, TZ3 = 0, TZ4 = 00). So (Z\>/Z2,Z3,Z4)=SZ\, Denote M = SoT-I.

Clearly M E -:yf( and

M (TZ3) = S (T-1 (Tz3) ) = S (z3 ) = 0,

, :. .:
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.. '. Hence, by definition,
"-."..'<' .' '.

Then the result follows.

Now we prove a result that generalizes Theorem (19.3.2).

19.3.7 THEqREM :

. :, uet ,{ z2' z3' Z4} and {W2' w3' W 4} be triads of distinct points of <Coo' Then threre is a

uniqe, Mobius transformation T such that T (Z j ) = Wj; (J = 1,2,3) .

Proof: Let z2' z3' z4' be distinct and w2, w3, W 4 be distinct numbers in <Coo' Let Sz = (Zl' z2, z3' Z4)

and Mz=(z, WJoW2,W3,W4) V ZE<Coo (S andMexistbydefinition). Denote T=M-1o s.Clearly

T is a Mobius transformation. T(Z2)=M-1(Szz)=M-1(1)=W2, T(Z3)=M-1(SZ3)

= M:,1>(:'O)=W3 and T( Z4') = M~l (SZ4) = M-1 (ex» = w4'

Hence T is a tranformation of the required type. By Theorem (19.3.1), uniqueness follows.
Thus the result follows.

19.3.8 REMARK:

A line in <C can be regarded as a circle in <Coo passing through co , We know that any three
points.inthe plane determine a circle.

We now, present a necessary and sufficientcondition for four points in <CX) to be concyclic.

19.3.9 THEOREM :

Zl, z2, z3, z4 are four distinct points in <Coo. Then these four points lie on a circle if and only

if (the cross ratio) (zJo z2, z3, Z4) is real.

Proof: Let zlo z2, z3, z4 be four distinct points in <Coo. Let S: <Coo ~ <Coo be defined by

SZ-=(Z,Z2,Z3,Z4) for 'IIZE<Coo (-~S carries z2,z3,z4 to 1,O,wrespy). Now



Centre for Distance Education 19.8 Acharya Nagarjuna University

S--:-I (IR) = [ Z E <Ceo : (z, ZI' Z2' Z3) E IRJ . Hence follows the result if the image of IRoo under a Mobius

transformation is a circle.

az+b
Let S ( z) = --b with a,b,e,d E ~ & ad - be =F 0 .ez+

If Z=XEIR and w=S-I(x) then S(w)=x=> S(w)=f(w)

aw+b (aw+b) a w + b
.. ew+d= cw+d = e w + d =

If a e is real then a e = ae ::-::a c=> ae - a e = 0

So (i) becomes

(ad - be) w + (be - ad) w + (bd - bd) = 0

=>aw-aw + 13=0 where a=ad - b e, P=bd- b d ,

=> 2iIm (aw)+~=O=>O

Im( aw)+ ;i ~= 0 => Im( aw)~{%) = 0

=>Im ( a w - i;) = 0 (-,' i; is r~al) -' (H}

=>w lies on the line determined by (ii) for fixed a and ~.

Suppose a e is not real. =>a e - a c =F 0 . So (i) becomes

1 1
2 (ad -be] (be -a d] - bd-bd_Ow + w + '. w+ .-- - - - - -ae-ae ae-ae ae-ae

. 1 12 (be-ad] (be-ad)_ (.bd-bd] 0I.e. w + _ _ . w + _ _ w+ _ ._ =
a c=a c a c=a c a c=a c



)( I 1
2 (bd -b dJ=> w-r w-r - r - ...( ) - - - ---------- (III)ae -ae

(
be -s dJwhere r= . __. ae-ae

11

2 (bd -b dJ (be -s d)(b e-ad)-( bd -b d)(a e-ae)Now r - _ _ = ------'----'-----'-----::----"--------'-
ae-ae lac-aeI2'

(1~12 !e12 -ab cd - a bed + laI2IdI2)- (a bed -Zib ed-abc d + abc d)
=~------------~-~::-------------

I - - 12" ac -a e

Ibl21el2- (be ad +be ad) + lal21dl2=---~---~~---
I - - 12ae -ae

Ibe-adl
2

= '"-------'-~
lac -s el2 ..

be-adtv = _ _ >0 and this represents acircle.ae -ae

This completes the proof of the Theorem .. ' .

19.3.10 THEOREM:

A Mobius transformation takes circles onto circles.

Proof: Let S be a Mobius transformation and I' be a circle in <Coo' Let z2, z3, z4 be distinct points

on rand SZj=wj(J=2,3,4). w2,w3,w4 determine a circle, say I". For any ze<Coo, by

Theorem (19.3.6),

If Z E I", then by Theorem (19.3.9), follows that the L.H.S. of (i) isa real number and so is
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R.H.S. Since w2, w3' w4 E I" , by Theorem (19.3.9), follows that Sz E r'. This is true for all

Z E I' ~ S (r) = I" and this completes the proof of the Theorem.

19.3.11 THEOREM:

rand I" are circles in <Coo'Then, there is a Mobiun transformation R such that R (r) = I" .

Further R takes any three points on I" onto any three points on I" . If Zj (J = 1,2,3) are distinct

points on rand Wj (J = 1,2,3) are distinct points on r' with R ( Zj ) = Wj (J = 1,2,3) then such R

is unique.

Proof: Let rand r' be circles\in <Coo'Let ZjEr and WjEf'(J=1,2,3) be distinct. Let
" .... , •••..• ,..:1.; ,(:: ~\!f

Sz = (z, z2, Z3,Z4) and Tz = (z, w2, l4h, W4)V Z E <Coo· Denote R = T-1 oS . Clead/R'i$ MO"b'ius

transformation. Now R(Z2) = T-1 oS. Clearly R is a Mobius transformation. Now

= T-J (00) = w4' Now by (19.3.10) follows that R(r) = I".

This proves the result except the uniqueness. Let RI be also a Mobius transformatiort SUch

that RJ ( Zj ) = Wj (J = 1,2,3). Now consider the transformation (R1-
1

0 R) . Clearly it is a Mobius

transformation. Further (RJ-
i oR). Clearly it is a Mobius transformation. Further

(R1-
1

0 R)( Zj )=R1-
1 (R( Zj )) = RJ-

1 (wj ) = Zj (J = 1,2,3). Hence (R1-1 0 R) has three fixed points

Zj (J = 1,2,3) . This, by a 'known result, implies that R1-J 0 R = I (the identity transformation on

<Coo)=::> RJ = R. This completes the proof of the Theorem. We can use Theorem 19.3.1).
(

19.4 PRINCIPLE OF SYMMETRY:

We observed that a Mobius transformation maps circles onto circles. Now, the further
problem is about the inside and outside of these circles. For discussing about this, we need the
following:

19.4.1 DEFINITION:
.

*Let T be a circle in <Cooand z2,z3,z4 be distinct points on I' .The points z, Z in <Cooi;are

said to be symmetric points with respect to riff



19.4.2 OBSERVATION:

(i) The definition of symmetry does not depend on the choice of points z2' z3' z4 on r .

(ii) Z E <Coo is symmetric to itself iff Z E F; for Z E <Coo is symmetric to Z <=> (z, z2' z3' Z4)

Now we discuss the geometric significance of symmetry.

19.4.3 PROBLEM:

If r is a straight line, then show that z, Z * E <C are symmetric with respect to r then z, Z *
. *are equidistant from I" and the line through z, Z is perpendicular to I' (when z is not on I"),

$oIution : Let r be a straight line in <Coo. So, it can be regarded as a circle in <Coo through 00. Let
/

z, Z * E <Cand are not on r. Let z2, z3 E r .Now z and z * are symmetric with respect to r if and
only if

( z '. Z2 ,Z3' o: ) = (z, Z2' z3 ' co)

Since z3 is an arbitrary point on I", follows that z and z" are equidistant from each point

on r.
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( * J ( J ( J'
z -z z-z z-z

Also (i) ~ 1m 3 = Im 3 = 1m 3~-~ ~-~ ~-~

~ z and z * lie in different half planes determined by r .Thus the line through z, z * is
perpendicular to I' .

19.4.4 PROBLEM:

If I' isa circle, given by Iw - Zo 1= R where Zo E <C and R > 0 then z, z * E <C are symmetric

w.r.t. r~z,zo,z* are collinear and Iz-zollz* -zol=R2.

Solution: Let r:lw-zol=R(zo E<C, R >0) and z,z* E<c are symmetric w.r.t. I". Let Z2,Z3,Z4

be points on I". Since z,z* are symmetric points w.r.t. I", we have

= (~ + z z z z J (z ~ z + z ) ----------- (i)- - 0' 2' 3' 4 0z -zo

Since a Mobius transformation is one - to - one, it follows that
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2
* R R2 (- - )-1z = -=---=-- + Zo = Zo + Z - Zo

Z -ZO

* R2 (- -- )-1 (* )(- -) R2=> z - Zo = . Z - Zo => Z - Zo Z - Zo =

=>z*=zo+t(z-zo)(t>O)=>z* lies on the line joining z and zo=>z,zo,z* are

collinear and Iz - zollz* - zol = R2 .

19.4.5 THEOREM (SYMMETRIC PRINCIPLE) :

r1 and r2 are circles in <Coo and T be a Mobius transformation that maps r I and r2 .

Then any pair of points symmetric with respect to r1 are mapped by T to a pair of points symmetirc

with respect to r2 .

Proof: Let T,r" r2 be as in the statement of the Theorem. Let z,z* E<C be symmetric points

with respect to T. Let z2' z3' z4 be distinct points on r. Since T is one-to-one follows that

Tz2, TZ3' TZ4 are distinct points on I' 2' By Theorem (19.3.6), since T is a Mobius transformation,

follows that

Hence, by definition, follows that Tz, Tz * are symmetric points with respect to r2' This

crrnpletes the proof of the Theorem.

, \5 ORIENTATION FOR CIRCLES IN 0:::00

We, now, discuss orientation ff'r circles in <Cro. This icacs to distinguish between the interior
.iside) and exterior (outside) of a circle.
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19.5.1 DEFINITION:

An orientation of a circle T (in a:::oo) is an ordered triple (z\, z2, Z3) of points (complex

members) such that each Z j (j = 1,2,3) is in r .

19.5.2 OBSERVATION:

An 'ordered triple (Zl, z2, Z3) of points on a circle I' gives a direction to I"; on I' .

We move from zi to z2 and then z2 to z3 (and from z3 to zl)'

Only two points zl, z2 are given on I' , moving from zl to z2 leads to amibiguity.

19.5.3 OBSERVATIONS:

(i) Let I' = IR and z2, z3, z4 E T = IR . Let T be the Mobius transformation specified by

az+b
Tz = (z, Z2,Z3,Z4) = --d-,a,b,e,d E a:::, Vz E (too. Since T(IRoo) = IRoo ,by Theorem (19.3.9)

CZ+

follOws that a,b,e,d be taken as reals. So

az + b (az +b)( ez + d) (az +b)( ez + d)Tz - -- - - ....:....----'--'---'-
- cz + d - (ez + d) (ez + d) - lez + dl2

_ (aelzI2+bd+adz+bez)

- Icz+dl2

(-: z = Re z + i 1mz => z = Re z - i Im z)

:. ad +bc > 0 => {z E <C:Im(z,z2,z3,z4) > o} isthe upper half planew.r.t. r(':=> Imz > 0)

ad -be < 0 => {z E <C:lm(z,z2,Z3,Z4) < o} is the upper half plane w.r.t. r(-:=> Imz > 0)

Thus {z E a::::lm(z, z2, z3 ,z4}> o] is either the upper half plane or lower half plane w.r.t. r
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according as ad - be > or <0 (Clearly ad - be = det T).

\ (ii) Let I' be a circle in <C and z2, z3, z4 E r. For any Mobius transformation T, by Theorem
(19.3.6),

If T is such that T (r) = moo, then (i) ~

{z E <Coo .Im ( z, z2, z3, Z4) > o} is either T-1 (uper half plane) or T-1 (lower half plaryet,.
19.5.4 DEFINITION:

r is a circle in <Coo and {Z2,Z3,Z4} is an orientation of I". Then

{z E <Coo :Im(z,z2,z3,z4) > o} is called the right side of I' w.r.t. (Z2, z3' Z4) and

{z E <Coo :Im( z,z2' z3, Z4) < o] is called the left side of r w.r.t. (Z2, Z3,.24)'

We now prove the following.

19.5.5 THEOREM (ORIENTATION PRINCIPLE) :

Let T, (J = 1,2) be circles in <1:00 and T be a Mobius transformation such that T (rj ) = r j'

where j, j' E {I,2}, j *- i'. Let {Z2, z3, Z4} be an orientation for Tj . Then T takes the right side /

left side of ri Onto the right side / left side of rj respectively with respect to the orientation

(Tz2,Tz3,Tz4) .

Proof: Under the given hypothesis, for any z E <Coo by Theorem (19.3.6), (Z,Z2,Z3,Z4)

= lTz,Tz2,Tz3,Tz4)' Hence Im( Z,Z2,Z3,Z4) > ° <=> Im(Tz,Tz2,Tz3,Tz4) > 0. So z lies on the right

side / left side of r j if and only if Tz lies on the right side / left side of r}' respectively, with

respective to the orientation (Tz2,Tz3,Tz4) . This completes the proof of the Theorem.

19.5.6 OBSERVATION:

Consider the orientation (1,0, CI)) of lR. For any z E <r:, by the definition of cross ratio.
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[z, 1, 0, 00) = 1(z) = z (1being the identity transformation on <I.:oo)' So the right side of IR w.r.t. to

the orientation (1,0,00) is the upper half plane (in <I.:).

19.5.7 EXAMPLE:

Find an analytic function f: G ~ a: where G = {z E <I.::Re( z) > o} such that

f (G) = D = {W E <C:Iwi < 1}

Solution: We will find a Mobius transformation that taxes the imaginary axis in the z -plane onto

the unit circle in w -plane. We consider the orientation such that G is mapped onto D. Consider the

orientation (-i,O,i) of the imaginary in the z -plane axis. Then {z E <C:Rez > O} is on the right side

of this axis.

(z-O)(-i-i) 2z
For any zE<I.:,(z,-i,O,i) ( )I )=-

z=i ,-i-O z=i

2z z=i (2z)(z +i)
= z-i . z-i = !(z-it

SO, {ZE<I.:: Im(z,-i,O,i»O} ={z~<C:Im(iZ»O}

= {Z E <C:Re ( z) > O}

(": Im(iz) = Re( z)).

Consider the orientation (-i, -1, i) for the unit circle r in the w -plane. D lies on the right

side of r.

. .. (z + 1)(-i -1 )
New.for any ZE<c,(Z,-l,-l,l)=( ")(. )

. Z-1 -1+ 1
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2i Z + 1
=-.--

i-I z-1

() 2z 2i (Z + 1)So, if S Z =-. and T(z)=-. - --. then R=T-loS
z-z z-1 Z-l

that maps G onto D.

19.6 MODEL EXAMINATION QUESTIONS:

(i) Define a Mobius transformation (See 19.2.1).

is a Mobius transformation

(ii) Show that the set of all Mobius transformations from <Coo to <Coo, under the.

composition of mappings is a group (see 19.2.3).
\

(iii) Define (a) translation, rotation, dilation, inversion (see 19.2.6)

(iv) Show that any Mobius transformation is the composition of translations, dilations and
inversions (see 19.2.8).

(v) Show that a Mobius transformation has atmost two fixed points, if it is not the identity
transformation (see 19.2.1 0)

(vi) Show that a Mobius transformation is uniquely II rterrnined by its action on any three

points in <Coo (see 19.3.1).

(vii) Define cross ratio. Show that it is invariant under any Mobius transformation (see
19.3.3 and 19.3.5).

(viii) State and prove a necessary and sufficient condition for four distinct points in <Coo to
lie on a circle (see 19.3.9).

(ix) Show thata Mobius transformation takes circle onto circles. (see 19.3.10).

(x) Show that there is a Mobilis transformation that takes a circle onto a circle (see
19.3.11).

(xi) Define the concept" z, Z * in <Coo are symmetric with respect to a circle in <Coo" (see

19.4.1).

(xii) State and prove symmetric principle (see 19.4.5)

(xiii) State and prove orientation principle (see 19.5.5)

(xiv) Find a Mobius transformation that maps right half plane into the interior of the unit
disc (see 19.5.7).
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19.7 HINTS TO SAQ :

19!~5: SI = S2 ~ SI (0) = S2 (0) ~!!l= b2 ~!!l = ~ --------(i)
~\t dl d2 b2 d2

(i) I (ii) & (iii) ~ ~ =!l = ~ = ~ . The converse is trivial.
a2 b2 c2 d2

-1-0
19.3.5: (i) (1,-1,00,0) = 1=0 =-1

-l-i l+i 1
(I·I·). (0 -1 00 i) = -- = - = 1+ - = 1- i, " O-i i i .

. (0-i)(1-3) 2i 2i(i+l)
(iii) (0 1 1 3), " = (0- 3)(1- i) = 3(i -1) 3(i2 -1)

2(i2+i) 1 . 1 .
= = --(-I+z)=-(1-1)

3(-2) 3 3 .
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Lesson - 20

BASIC RESULTS IN COMPLEX INTEGRATION

20.0 INTRODUCTION

We use the results of complex integration to prove the basic results of complex analysis in
the simplest cases: Cauchy Integral Formula

and

Cauchy's Theorem.

using these, we prove that an analytic functionis infinitely differeniable and it has a primitive in a
sufficiently small neighbourhood of each point. I

We prove Morera's theorem.

We present, finally, a proof of Goursat's theorem.

These two results clarify the notion of differentiability in the complex domain.

20.1 PRELIMINARY RESULTS:

20.1.1 DEFINITION:

Suppose f, <p : [a, b] ~ <I:.

We say that Riemann-Stiltjes Integral of f with respect to <p exists if there is a complex
number a with the following property:

Given £ > 0 it is possible to choose a 8 ( £ ) > 0 such that for any partition

P = a = to < t1 < ... < tn = b

and each choice

if Ilpll<8(£) .

(observe that a is unique).
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Notation: If for a pair of functions f, rp above the Riemann-Stieltjes Integral of f with respect to q:>
exists, we denote it variously hy

b b
I(f,<p), ffd<p, ff, ffd<p, ff(t)d<p(t).

<p a a

We state two simple results. The proofs are routine and are left as exercises. In both .the
integrator q:> is

<p(t)=t

and f is assumed continuous.

20.1.2 PROPOSITION :

(i) Suppose f (t) = A (t) + iB (t)

where A (t), B( t) are real. Then

b b b
ff(t)dt= fA(t)dt+i fB(t)dt.
a a a

(ii) Suppose f' exists and is continuous. Then

bf f' (t ) dt = f (b) - f (a )
a

20.1.3 REMARK:

The integrals on the right hand side in (a) are the usual Riemann Integrals. It is easy to

prove and known that A,B are continuous if f is continuous and A,B are differentiable if f is
differentiable. The result (b) may be treated as a simple generalisation of the fundamental theorem
of calculus. We do not have the mean value theorem of differential calculus for complex valied
functions. The result (b) above may be used in its place when we need only inequality.

It is clear that the integrals on the left exist is part of the assertion.

20.1.4 PROPOSITION :

b b

f f (t) dt ~ flf (t)1 dt, if a < b .
a a
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a

20.1.5 DEFINITION:

Suppose cp:[ a, b] ~ <r: is a function. We say that

cp is smooth or cp is C'

if the derivative cp' of cp exists on [a, b] and cp' is a continuous function.

20.1.6 REMARK:

It is easy to see that if f (t ) = A (t) + iB (t) then f is smooth if and only if A, B the real

valued functions are smooth.

20.1.7 THEOREM :

Suppose f, cp:[a, b]~<r: are such that f is continuous and rp is smooth. Then I(f,cp)
exists and

b

I(f,~)= ff(t) ~'(t)dt.
a

20.1.8 REMARK:

The function f rp' is continuous on [a, b] and so by proposition (20.1.2) the inteqral-on the

right exists.

Proof: Let E > 0 .

We have assumed that cp' is continuous, Therefore Icp'l is continuous and

a

exists and equals some M ,E m.

We have assumed that fis continuous. Since [a, b] is compact, f is uniformly continuous

on [a, b]. Therefore we can find a 0 ( E) > 0 such that for a'lI S',t in [a, b1
2C



Centre for Distance Education 20.4 !,charya Nagarjuna University

If (s) == f ( t )1 < _0_ if /s'- t/ < 8 (0)--------(1)
l+M

Now we let
(

P:a == to < tl < 000 < tn == b be a parition with

For arbitrary s, t in [a, b]. s < t we have

tf rp' ( t ) dt == rp( t ) - cp( s) ;
s

11-1 tk+l -

== L f [f(rk)-f(t)Jcp'(t)dt by (2)
k=co rk

n=] tk+1

S L f [r (t!J - f (t) ] rp' (t )dt by triangle inequality,
k=Q tk

n-I tk+l .

S L f If ( '"Ck ) - f ( t )11<p'(t)! dt by Proposition 2
k=O tk .

< _0_ flcp'(t)ldt by (1)
l s-M a

MS0°--:::;0
l+M

This implies the Theorem.
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20.1.9 DEFINITION:

If ~: [a, b] ---t <Cis a map, by Trace of <p , we mean the set

{Ht):t E [a,b]}

The trace of <!> is denoted by {<!>} .

20.2 MAIN RESULTS:

Before we state the next theorem we introduce some notation. This is to keep the ideals
clear.

'Suppose f: [a, b] x [ c, d] ---t <G is a map. We 'write f (x, v) for f. It suggests that in the

usual terminology, f is a function of two variables, x is the first variable and y is the second
variable. If the partial derivative of f with, respect to the first variable x exists, we denote it by

Dl and D2f

is similarly defined. Thus, if we use the usual notation for partial derivatives, we have

a a
D1f=-f, D2f =-fax ay'

20.2.1 THEOREM (LEIBNIZ'S RULES: REAL.CASE) :

Suppose we denote [a, b] x [c, d] by E, and f: E ---t C is a map.

(a) If f is continuous on E, then for each y, in [c, d]

b

. F(y)= ff(t, y)dt
a

exists and is a continuous function on [c, d].

(b) If D2f= ; f'{x.y) exists and is continuous on E, then F' exists on [c,d].

b
F' (y) = JD2f (t, y) dt ----------- (1)

a
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and is continuous.

Proof : (a) We shall directly prove that F is uniformly continuous on [c, d]. Let c > 0 .
• < '" > •

Since E is compact and f is continuous on E, we can find a o( c) > 0 such that

If( x, y)- f( x', y')I< ( c )
b-a

if ly-y'l<o(c), then

If ( t, Y ) ~ f (t, y')1<,( b ~ ~)

We have

b

IF(Y)-F(Y')I = J[F(t, y)-f(t,y')]dt
a

b
::; Jlf(t,y)-f(t,y')1 dt by proof2,
. a

< c . (b-a)=c. If ly-y'I<.9..
(b--a) - 8

(b) Let E\>O and ao be in [c,d]. D2f iscoritinuouson E .acompact set. Therefore there

is a 0 ( E ) > 0 such that
. .,..

" .-"

• J •. ,
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For a in [e, a] we ha~e

b

F (a ) - F (ao) = f[f (t, a) - f (t, ao )] dt
a

by proposition 1. (b).

Therefore
\ .
! b

F( a) - F( ao )J-( a -ao) fD2f (t,ab)dt
a

b a .
S f f [D2f( t,s) - D2f (t,aonds <it ..

a ao

by a known result. . ,. , ., ~

b a I
s f J ID2f (t, s) -:-D:l (t, ao)1d~1dt
. a ao

by a proposition 2.

This proves (1) and that in turn prove (b).

20.22 REMARK:

\

In the theorem we may replace [c, d] by [c, d] x [c', d'] or by an open set in lRn. The

af
derivative fJy may be replaced by



Centre for Distance Education 20.8 Acharya Nagarjuna University

in case Ucmn we assume this is done.

20.2.3 THEOREM (LEBNIZ RULE: COMPLEX CASE) :

Suppose U is an open set in a::: and

f :[a, b]x U ~ c
is a function with the following properties.

2) For each fixed to in [a,b], f (to, z) defined on U is analytic in U .

3) We denote the derivative of f (to, z) with respect to z by

af
IThe function 8z (t, z) defined on [a, b] x U is continuous: Then

1) For each z in U is the integral

bIf (t, z)dt
a

exists. The function g :U -4 <C defined by

b

g( z) = f f (t, z)dt is contin,~9~s.
a

2) g is differentiable with respect to z and

d ·b af
~(z) = g'(z) = f-(t,z)dtdz aDz'

3) g is analytic in U, that is g' (z) is continuous.

Proof: We derive the theorem from Leibniz R'uiE{:<RealCase.
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20.3 SOME MORE RESULTS:

20.3.1 DEFINITION: Suppose Zo E <C,p> 0,

rp :[0, 2n] ---* C( zo, p) is given by

Suppose f is a continuous function from C (zo, p) to <C.Then we write

f f {wj dw, f f (w )dw for I( f,~).
Iw-zol=p C(zo,p)

20.3.2 PROPOSITION :

If Izl < 1 then

,,
f dw = 2ni

1wI=1w-z

Proof: By definition f dw = 2f1t_._I_ i eis ds .
, IS

Iwl=l w-z ° e -z

So the assertion is

21t eisf -.-ds = 2n .
o els-z .

We note that when z = °,the result is clear. Assume Izl < 1 and set

eis
~(s,t)=. ,sE[0,21t],tE[0,1].e" -tz '

leisl = 1, Itzl = tlzl < t < 1, Therefore ~ is continuous it is differentiable as a function

of t and
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oJ. zeis
'1' = __ -::-

at (eiS - tzt .
Suppose we define

'PI(S)~( .IZ ) forSE[O,271]
·els -tz

Then we notice that

d . (_l)ieiS
~ = 1 Z X -'---'---

ds (eiS -=tzt

Let us set

211:

g (t) = f rp(s, t) ds .
o

Then we have

. 2;:: eis '

g(l)= f-·-ds and
o e" - z

211: eis
g(O) = f isds = 2n.o e

So, the proposition states that g (1) = g ( 0) . We shall prove that g' ( t) exists and is zero on

[0,1]. Then it follows that g(l) = g(O), and the result gets proved.

By Leibniz's Rule
( . , '

2n zeis
g' ( t ) = f. 2 ds

o (els -tz)
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(.) .- ~ -~---O
- l= tz (l-tz) - .

Therefore the result. /

20.3.3 THEOREM :

(Cauchy Integral Formula for Circle). Suppose f is an analytic function in an open set

Uc a:: and for some r > °
B(O,r) c U.

Then for any z in B( 0, r) i.e. forlzl < r

27tif(z) = f f(w) dw
w-z/w/=r

Proof: By the definition

f'{w] 2n f(re
it

) .f --dw = f i r e'l dt.
/w/=r w - z 0 (r eit - z)

We write

and define for (s, t) in [0,1] x [0, 27t]

f (z + S ( reit
- z )). it

g ( s, t) = (. ) Ire
relt - z

r eit - z is neve; zero for t E [0, 27t], Z E <1:,\z\ '* r. So g (s, t) is a continuous

motion on [0,1]x[0,27t]. We define
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2n
h (s) == f g (s, t) dt .

o

We find that h(l) ~ f t(w\ dw and
Iw/=r w-z

= f [z]. 2ni by proposition 2.

If we prove h(1) = h(0) our Theorem becomes proved.

By Leibniz's rule h(s) is a continuous function. We shall prove that h'(s) exists and is

zero on (0, 1]. We have by Leibniz's Rule

~a .
h' ( s) = f - [g ( s, t ) ] dt and by chain rule for f (Z +S ( r e'' - z )) we have

o as .

=f'( z+s( r e" -z))x ir eit

Here f' denotes the derivative of f as a function on U .
Now consider

as a function of t and differentiate with respect to t . Then

d f ( (it )) f' ( (it )) . itdt z+ s re .-z = z+s re -z s-r-t e ,by chain rule
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ag= s-(s.t)as ' .

Thus for s E (0,1]

2n a
h' (s) = f ~ (s,t) dt

o as

12n d [ ]= - f - f(z+s(reit -z)) dt
s 0 dt (

=![ f( z+ s(r - z)) -f( z +s(r- z))]
S

= O.

It follows that h' being continuous on [0, 1] by Leibniz's Rule h' (0) = 0. Thus h is constant

and so

h(l) = h(O) and the Theorem is proved.

It is possible to follow the method of proof in Proposition 3 and prove, using the above

formula, that f (z) is infinitely differentiable, we shall prove a stronger result. This is the basic

result for studying analytic functions in sufficiently small neighbourhoods of the points.

20.3.4 THEOREM :

(1) Suppose f is analytic in Uand .13 ( a, r) cU. Then for z in B (a, r) we have

00

f'{z] = I an (z-a)n
n=O

00

The power series L an (z - ar has radius of convergence ;:::r.
n=O
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_,For any pwith 0 < p < r

1 f f(w)a =- . dw·
. ' n : 27ti . ( )n+l. Iw-al=p w-a

(2) f is infinitely differentiable and

(3)

Proof: We have B{ a,p] c B (a,r].cU. Therefore by the exercise

f(z):;:::~ f f(w) d~.
21t11 I w-zw+at=p

In the above formula, we confine z toB( a.p] . Then we have

Iz - al < Iw - al :;:::p; ,

if we set Iz - al:;:::o, then 0 < (j < 1. We may write
. P

1 1 ,', 1
-w--z:;:::(w-a)-(z-a) :;:::~w-a) . (1- z-a)

w-a

1

== ~(z-ar
L.... ( r"
n=O w-a I

z-al csince -- =-<1.w-a p'

The series converges uniformly as a function of w , on the set

Iwl:;:::p·
Now we use the f6iiowing result:

Suppose gn :[a,b] ~<C is a sequence of continuous functions such that
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' .. <-' ..•. ;;. •• :;' < /", •

converges uniformly to a function g on [a, b]. Then gis a continuous function and we

have

00 b b
L [s, (t)dt= fg(t)dt
n=Oa a

Consider

f(w) 21!:f(a+peiS)..f --dw= f '. irelSd8
w- z (Ie)Iw-al=p 0 \re -z ... .

Let us denote

sup If(w)1 by M(p).Then·
!wI=p

By M-testthe series of functions of eE [0, 2n]
f . , . ~ . . ::'l~ •

converges uniformly to the function of e

f(a+peie)i peie

(r~ie - z) ; , i -.f ~

i!

2n f (a + peiS}peie

Therefore f (ie ) deo re-z
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By the definition

2n ( ,n
ff(a+p~i8).ipei8. z-aJ de. ( ~ )n~o pel -a

= f ( )n f( w)
z-a 'dw

( )
n+1Iw-al=p w-a

f(w)
=(z-ar f·( r+1 dw

Iw-al=p w-a

Therefore we have

o:

f(z) = Lan (z-ar for Iz-al < p
n=O

From the theorems on convergent power series it follows that

(1) f (z) is infinitely differentiable in B (a, p) for p < rand

(2)

. 00 f" (a)
Thus f(z)= I -,-.(z-ar;

11=0 n.

the right hand side converges if there is a p such (hat

Iz-:-al=o<p < r .

Consequently the above series converges in B ( a, r) . That-is the radius of convergence of'

oofn(~) 11L.-,- (z - a) is ~ r if B (a, r) cU.
n=O n.

The theorem is proved.
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20.3.5 DEFINITION :

Suppose U is an open set in \ a::; F, f,:U ~ a:: are two functions. We say that F is a

primitive of f if F analytic in U and
F'=f·

20.3.6 THEOREM :

If f: B( a, r) ~ a:: is analytic then f has a primitive in B( a, r).

Proof: By Theorem 4 we have

00 f(n)(a)
f(z)= L -,-(z-ar

n=O n.

The power series converges in B(il,r). We have for z in B(a,r)

Therefore if 0 $IZ - al = p < r then by comparison test

converges in B(a,r). If we set for Iz-al < r

the results on power series give

(1) F is analytic and

(2) F'(z) ~ f (z) .
The theorem is proved .

. The next Theorem is the other basic result of complex analysis. It is called Cauchy's theorem
for the disc. Here we derive the result asa consequence of Cauchy Integral Formula. If Cauchy's
Theorem is granted, Cauchy Integral Formula may be derived from it.

20.3.7 THEOREM (CAUCHY'S THEOREM FOR DISC) :

Suppose f is analytic in B( a,r), F a primitive of f

<p: [ a, b] -» B (a, r)

is a smooth function. Then
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b

ffdcp = F(cp(b))-F(cp(a)).
a

So, if path cp(a) ~ cp(h)

J.f= 0
cp

Proof: Consider the function

g(t) = F(cp(t))
By chain rule-

g' ~t}= F' (cp(t)) cp'(t )

where F' is-the derivative of F as a function on B (a,r) . So

g' (t)= f(cp( t ))cp' (t).

'By d~f:inition.

b b bf~elm == Jf(cp(t))cp'{t)dt = fg'(t)dt = g(b)-g(a)
a a a

20..3~8.DEFINlnON' OF' POLYGONAL PATH:

.Suppose' t1 < t2 < ... < tn is a sequence of real numbers and z), z2" ", zn is a sequence of

complex num:b.ers, By a pot.y.gona1'pathwe mean afunctlon cp:[ t), tn] ~ <r:: given by

j = 0,1", ",n-1.

" .The.sequences (t]» .... ,tn). and (zJ,. ... , zn) define the polygonal path uniquely. So it may

bedenoted ln many ways~ For example. ,
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For 1< j -cn -1 the right hand derivtive of q> at t j is Zj+l - Zj
t. 1 - t.J+ J

Zj+l-Zj

t. 1 -toJ+ J

derivative and its value is

Zj - Zj_l
the left hand derivative at tj is every other point of (tj' tj+dq> has

tj -tj-l

Thus q> is a piecewise differential map. The map q> on [t j' t j+l ] is

_ t j+ 1 Zj - t j Zj+ 1

- (tj+l -tj)

(Z'+l-Z.)+ t J J

(tj+l - tj)

Therefore q>( t) is of the form a + Bt; that is it is what is called an affine map of simples ...
! . .>;

<p( t) is a polynomial of deqree one. When a = 8 it is a linear map.

The image of <p is illustrated in the figure above. Suppose we define -

\
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Now suppose f is a continuous on the trace of <p. Then we have

f f = f f···+ f f
Y(<I') Y(<I',) Y{<I'n-')

Z2 Zn
= f f + ... + f f

20.3.9 DEFINITION:

By a Triangular path we mean a polygonal Path <p:[ z, (tl ), z2 (t2)' z3(t3)' zl (t4) ]

That is we are given three complex numbers zl' z2,z3 and three intervals

It is to be noted that the first number and the last number of the sequence zl, z2,z3,z4 = zl
are equal.

20.3.10 THEOREM:

Suppose f: B (a, r ) ~ <C is a continuous function such that the integral of f along every

triangular path y(<p) with trance <p={<p}cB(a,r) is zero. Then f is analytic in B(a,r).
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Proof: We shall prove that f has a primitive in B(a, r), say F (z) Then F' (z) being equal to

, f (z) is continuous. It folows that F (z) is analytic. By Theorem it follows that F is infinitely

differentiable. Therefore f is infinitely differentiable. So f is analytic.

Let us set for z E B(a, r)

Z

F(z) = ff(w)dw.
a

_~+h
a~

Let Zo E B(a,r),lzol = ro and Ihl <r-ro. Then Izo +hl <lzol+lhl = r. Then since B(a,r) is

a convex set the segments [a, zo], [a, Zo + h], [zo, Zo + h] are a/l contained in B(a, r) .

We have F(zo +h)-F(zo)

zO+h Zo
= f f(w)dw - f f(w)dw

a a

zO+h a zo zo+h

= f f (w) dw + f f (w ) dw + f f (w ) dw - f f (w) dw by proposition 6.
a Zo zo+h Zo

zO+h

= [ f 1f + f f by remark after proposition 5
a,zo+h, zo,a zo
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zO+h 1
= f f = f f (Zo + th] h dt

Zo 0

Therefore for a < Ihl < r -:-rO'

F(z +h)-F(z ) 1. 1 .
a 0 f ( ZO) = f[f (Zo + th] - f ( iO ) ] dt ~ flf (ZO+ h) - f ( z)1dt

h 0 . . ... 0·· .. .

f is continuous. Givena > a we can choose 8 = 8( 8, xo) > a S.t

If(z)-f(zo)I<E iflz-zol<o and z e Bl a.r}.

If h is S.t. 0< Ihl < min {f, o} we have

1

1f(zo +th)-f(zo)I<E, flf(zo +th)-f(zo)ldt ~ E
O·

and so
F (Zo + h) - F (Zo )

I----'.--=-----'h---'\~ - f (zo) <E if a < h < min {r, 8} .

Thus F is differentiable and P' (zo) = f (z) . The theorem is proved.

20.3.11 COROLLARY:

Suppose U is an open set, f: U ~ a::: a continuous function. If f is such that f f = 0 for
y

each triangular path Y c U with the property that interior of the triangle of the path is also contained

in U then f is analytic.

Proof: The problem is to define interior of the triangle of a triangular path it is indicated by the
figure. One way to define it is

A=z(

The proof is left as an exercise.
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20.3.12 DEFINITION :

A,B,CE a::. L1ABC={AA + IlB+ uCjA-,Il, u ~ 0, A-+ Il+ D= I}

20.3.13 REMARK:

The corollary is called Morera's Theorem. The main argument is the proof of the previous
theorem.

The next result is called Goursat's Theorem.

20.3.14 THEOREM (GOURSAT'S THEOREM) :

Suppose U c a::: is an open set f: U ~ <C is a,differentiable function and the triangle

ABC with its interior is a subset of U . Then

B C A
ff =0; ff + ff+ ff = ff+ ff+ 1f=0

[A,B,C,A] [A,B] [B,C] [C,A] ABC

Proof:

A

Let A', B', C' be the mid points of the sides of the triangle ABC that are opposite the

vertices A, B, C .

Then by remark after proposition 5

(

C' B A' C B' A Jf = f + I + I + f+ f + I f
[A,B,C,A] A C' B A' C B'

Since ~he interior of the triangle A, B, C is assumed to be a subset of U , the segments

[A',B'],[B', C], [C,A'] are contained in U. By remark after proposition 5.

B'

If = ff + ff + ff. - f f
[A,B,C,A] [B',A,C',B'l [C',B,A',C'1 [A',C,B',A'] C'

C' A'

f f - f f
A' B'
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By proposition 5

B' C' A'

- If - If - If = If
. C' N B' [A',B',C',A']

Therefore

If = If + If + If + If
[A,B,C,A] [A,B',C',A] [B,A',C',B] [C,A',C',C] [A',B',C',A']

We consider the numbers

If
[A,C',B',A]

If
[B,N,C',B]

If ff
[C,B',A',C] [N,B',C',N]

We choose one of the which is greater than or equal to the other three. We call the

corresponding triangle Al BI CI· We have

and If ~ 4 If
[A,B,C,A 1 [AI ,BI,CI,Ad

We repeat the construction with the triangular path [AI,BI,CI,Ad and obtain

[A2,B2,C2,A2]. By induction we obtain triangles An B, Cn S.t.

If ~ 4 If
[An,Bn,Cn,AnJ [An+I,Bn+I'Cn+I,An+d
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If ~ 4
n Jf

[A,B,C,A) [An,Bn,Cn,An]

I
~n = ~An Bn C, are closed subsets of <C, ~n+l G.~n and d (~n) ~ 0 as n ~ CIJ by Cantor

Intersection Theorem there is a unique Zo E <C in n~n'
Since ~n C ~ = ~ ABC ,we obtain ZoE ABC; ZoE U an open set. Let 8 > 0 . Then we can

choose a 8 = 8( E,f,zo »0 such that

1) B (zo, 8) c U

2) If(z)-f(zo)-f'(zo)(z-zo)1 ~ 8lz-zol for z is in B(zo,8)

We define r(z) on U by

r (z) = f (z) - f (Zo) - f' (Zo) (z - Zo)

, , 2
Then r (z) is a continuous function on U; f (Zo) (z - Zo), f (z~) (z - zo) are primitives

2

of f (zo) and f'(zo) (z - zo). Therefore for each n .

If = Ir
.' [An Bn c, An] [An s, Cn An]

since f( z) = f(zo)+f'( zo)( z- zo)+r(z) and

ff(zo) = 0
[An ,Bn,Cn ,An)

f f'(zo)(z - ZO)= 0
[AI1,BI1,CI1.An]

Suppose we choose a positive integer no such that
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fr(z)
[Ana' Bno' Cno ,Ana]

:::; flr(z~:::; E flz-zol
[Ana Bl10CnoAnoJ [Ano,Bno,Cno,Ano]

Thus ff :::;E' d(~)(AB+BC+CA) 4!O
[Ano,Bno,Cno,Ano]

Thus If :$ d(~) (AB+BC+CA)E.
[A,B,C,A]

This proves the theorem.

20.3.15 REMARK:

We have called a function f on an open. set Uc a::: analytic if f is differentiable and the
derivative is continous Goursat's theorem says if f is differentiable then the integral of f along?

triangular path in U is zero if the path and its interior are contained in U . Then Morerals Theorem

implies f is analytic. So w~ may say

20.3.16 THEOREM (GOURSAT - MORERA) :

If Uc a::: is an open set, f :U ~ a::: is a differentiable functions then f is an analytic function.

20.4 SAO'S & SOLUTIONS:

SAQ 1 : Suppose cp : [a, b] ~ a::: is given by

. cp(t) =a for all t.

Then prove that I(f, ~f))exists and evaluate it.

Solution: Let P: a = to < t\ < .. ·<tn = b
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This implies that I (f, (j)) exists and is zero.

--SAQ 2 : Suppose <p: [ 0,1 J ~ <C is defined by

t E [o,~J
tE(~' 1]"

Then prove that if f is continuous on [0, 1], I (f, <p) exists and evaluate it.

Solution: Let

There is a unique j s.t.

1
O< J. < n -1 and t. ~ - ~ t.- - J 2 J.

1
Let E > 0 . Since f is continuous at "2 we can find a 8( E) > 0 such that
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and so
//

By our choice of j we have

This proves that

I(f, cp) exists and I(f, cp) = f (~).

SAC 3 : Evaluate the integral

f~
w-l

w=2

Solution: Let us write a for the value of the integral. First we shall write down the integral to be
evaluated". By our conventions the path is

t E [0,271:]

Since cp( t) is smooth by of lesson 1 we have

We have

eit eit (2e-it -1) 2_eit

(2eit-l) (2eit-l)(2e-it-1) 12eit-112

2_eit

5-4cost

2 - cas t . sin t= +1-------
5 - 4 cas t 5 - 4 cos t

sin t 1 d
Since =--log(5-4cost) and 5-4cos8=5-4cos2n

5 -4cost 4 dt
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21t •

f sm t dOt= 0
We have o 5-4cost .

. 2

I
1t 2 - cos t

Thus a = 21 dt .
o 5 -4 cos t

2 - cos t 1(8 - 4cos t ) 1(3 )We have =- =- +1
5 - 4 cos t 4 5 - 4 cos t 4 5 - 4 cos t

1 3 1
=-+-----

4 45 -4cost

. 21t dt 6. 21t dt <, 3. 21t dt
..a = 21 f - +- 1 f = 1tl +- 1 f ---------- (1)

o 4 4 0 5 - 4 cos t 2 0 5 - 4 cos t

21t dt [~
We have I 5 _ 4 t = fo cos 0

1t

+ I
~

3~ 21t

+ I + I
1t 3~ J

dt
5 -4cost

Setting t = n - s , we have dt = -ds, cos t = - cos s and so

1t dt ~ dsf = f--
1t/ 5 - 4 cas t 0 5 + 4 cos s 0

/2 0

Setting t = n + s , we have dt = ds, cos t = - cos s and so

rr

n+2 dt Ji ds15 - 4 cos t = J 5 + cos s

Setting t = 2n - s , we have dt = -ds, cos t = cos s and so
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21t dt . ~ ds

3[ 5-4cost = I 5-4coss
-
2

21t dt ~ dt ~ dt
Therefore f = 2 f· + 2 f ------------- (2)o 5 - 4 cos t 0 5 - 4 cos t 0 5 + 4 cos t

t
We substitute tan '2 = s, Then

2 t dtsee - - = ds2 2
/ ..

- We have

. (I-sf 9+s2

5 - 4 cos t = 5 - 4 2 = 1+ s2
l+s

~ dt 1 ds
and J 5 - 4 cos t = 2Il + 9s2

~ dt 1 dsI 5 + 4 cos t = 2I9 + s2 .

Setting 3s = t we obtain

I 3

f ds 1 f dt 1 - I(3)
. -1 -(\----=-2 :;=-3, '-I -,.t-2':=3' tan - ;o +7S 0 + .

setting s == ~t J we obtain ) .>

I

IJ ds I3

J dt 1 _1(1)
o 9 + s2 = 3' 0 1+ t2 = '3 tan }.



:>i:>i . .. • .
f dt f dt 2( -1(3) - :"'1(1)J 2 1t---+ =- tan +tan - =--o 5 - 4 cos t 0 5 + 4 cos t 3 . .. 33 2

. (3.)(2) . . 2'and by (1) a = 1tl + 21 l"31t = 1tl +1tI = 1tI.

20.5 MODEL EXAMINATION QUESTIONS:

1. Evaluate - f dw
Iwl=1

2. Evaluate f w dw1wI=1 .

3. Suppose o :[0,1] ---* <Cis given by

1o :s; t <--
2

1.. :s; t :s; 1
2

and f (t ) = t . Then evaluate I ( f, <p) .

., "1 _. .
4. Let U= {z E <C:z:;t: O} and f (z) =- i~ U. Then show that f has no primitive in U.

z . .

5. (Abel's Formula) Suppse Lan z" has radius of convergence 1 ~nd Lan ,.
converges to a limit a. Then show that

6. Expand Fz in power series around z = 1·
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7. t E[C,l]

and f is a continuous function on a:: . Then show that

1Jf = (Z2 - Zl) f f (rp ( t)) dt
<p 0

8. State and prove Cauchy's Integral formula for the circle.

9. State and prove Morera's Theorem

10. State and prove Goursat's Theorem

11. Prove that every entire function has a primitive.
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.lesson - 21

INTEGRATION RESULT ON ANALYTIC
FUNCTIONS IN a: AND IN A NEIGHBOURHOOD

OF A POINT

21.0 INTRODUCTION

Suppose U is an open set in <C

B (a, r) c U (a E <Cand r > 0)

and f is analytic function on U. Then f a continuous function on B (a, r) a compact set.

So the function /fl attains its minimum as well as its maximum on the set B (a, i:") .

We consider the following questions.

1. Where does If I attain its maximum and where does If I attain its minimum? In the .

interior. B (a, r) or on the boundary of B (a, r) in U?

2. Suppose f attains a value a. How many times does f attain the value a?

3. Suppose f attains a value a. Is there a 6 > 0

such that f attains a/l the values of B( a;6)? i.e. there a 8> 0 such that

B(a,8) c f(U) ?

21.1 RESULTS:

21.1.1 PROPOSITION (CAUCHY'S ESTIMATE) :

Suppose f is analytic in B(a.r] ana for some M > 0

Jf(z)JsM for all z in B(a,r). Then

\
f(n)(a)\sn! M for n==O 12 ....rn , " .
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Proof: For each p in (0, r) we have

I[(n) (a)1
'-----. --,-' ::::;_1 f [( w) Idwl

n! 211: Iw-al=p (w-at+l

1 M
::::;-. ,-- 211: P

211: pn+l

M= np

Ir(n) fa )1;: {M . }
Thus .. ' . is a lower bound for the numbers ~. 0 < p < r

~ p

Therefore itds JesstlflaB or equal to.the. greatest lower bound of the set i.e.

I[(n) (a)1 M
'------' < - .

n! - r"

2·1.1;2-DEFINITION,:, . , __ .. ' _. c- '.'

Atl anaJyticful'lction om a: .isqalled an entire function.

21'.1.3 THEOR£M(L.IOUVILL.t;'S,·THEOREM) :

Suppose f isa bounded entire function. Then

f(z}= f(0)

forall z i.e .. fis~,.con,staqUunctiqn.

Proef:'f is abounded. Tharmeans.there is an- M ~ ° such that

for all r > 0 and n = 1,2"" . This implies that



Since we have

. f(n) (0)
f(z)= L z"n!

for every z in a::: I we obtain

f (z) = f (0) for all z in CC.

21.1.4 THEOREM (FUNDAMENTAL THEOREM OF ALGEBRA) :

Suppose

is a polynomial of degree n ~ 1 . Then it has a zero, i..e'. there is.atleast one (l in «: such

that P (a) = 0 .

Proof: SupposeP (z) does not vanish at any z in <I:. Then

1 .
f (z) = p (z) (z E 0::) is an entire funeticn. We claim f is lJounded.

Let K > 2 and set

p = nK(1 +Ian-ll + ... +Iaol)

For z#O we have

P () n (1 an-l ao)z =Z +-+".+-
z z"

for Izl~ p we have

22
for j = 0,1,2,"" n -1. Therefore,
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l
an_I+ ... + aol~_l_.n =~;

z z" nK K

Ip (z)1 +" 11- H a~_l + ...<~)J

~lznI11- ~I

So

2If(z)1 ~ pn for Izl~ p.

f (z) is bounded on the compact set B(0, e). Therefore f is bounded. This implies that

P is a constant function. This not possible since n ~ 1. Thus we have a contradiction and the
Theorem is proved.

21.1.5 COROLLARY:

Suppose p(z)=zn +an-l zn-l +"'+alz+aO then there are complex numbers al'····,ar

and natural numbers nI,' ..,nr such that

I"

P(z) = (z - al)"i ...(z - ar )"r .

REMARK:

We may take al,' ..,ar to be different from each other. The consideration of degree gives

Proof: By the above theorem there is an a in <Csuch that P (a)= 0 .

Then by algebra we have

p( z) = (z-a )Pl (z) where



By induction we may assume that

where PI' P2'···· "'Ps are s complex numbers and mj,m2'······,ms are positive integers.

If a = Pj then

() ( )ml ( r'" ( rp Z = z-J31 ... Z-Pj ... z-J3s S

The results is proved.

21.1.6 THEOREM :

Suppose f is analytic on B(a, r) and f is not the constant function f (a) on B(a, r) . Then

there is a positive integer m and an analytic function g (z) on B( a, r) such'that

f (z) - f (a) = (z - at g(z) where g(a);c 0 .

Proof: By Theorem 20.3.4 of lesson 20 we have

00

f(z)-f(a) == Lan (z-ar .
n=l

The power series on the right converges for z in B(a, r) . If all the an are zero then for each

z in B(a,r).

00

I an (z - ar = 0 ;
n=l

this implies f is equal to the constant function f (a) on B(a, r) contrary to our hypothesis.

Therefore there is atleast one n such that an :;.:0 . Let m be the least positive integer such that
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00

We have f(z)-f(a) = L an(z-af
n=rn

00 k

We claim that the power series L am+k(z-a) converges in B(a,r). For
k=O

0< Iz- al = ro < r we have

00

since the series L an(z - ar converges absolutely for Iz- al = ro. Therefore
n=1

00 . k . _ 00., k
I am+k(z-a) converges in B(a,r). If we set g(z) = I am+k(z-a)
k=O k=O

we have g(a) = am ::F- 0 and

f(z) = (z-at g(z) the theorem is proved.

21.1.7 THEOREM : Suppose U is a connected open set in (1), f is an analytic function inU and

z(f) = {z E U/f(z) = O}

1) f is the zero function on U.

2) Thereisan a in Usuchthat f(n)(a)=O forn=O,1,2,···

Here [(0) (a) is f'{a}.

3) z(f) has a limit point Zo belonging to U.

proof: (1) =:>(2) is clear. We may take a to be any point in U.

(2)=:>(3) suppose r c- Ois such that B(a,r)cU. Then for z in B(a,r) we have
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f(n) ()
f(z)=:L a (z-a)" =0

n!

Therefore Zo = a is a.limit point of z (f) .

(3)=>(1).

Let fO > 0 be such that B(zo,ro) cU. Then we have f(zo) = 0 and

00 h
f( z) = f( z) -f( zo)= I an (z- zo)

n=1

If there is an n such that an =1=0 by Theorem (21.1.6) we h.ave

fez) = (Z_ZO)ffi g( z)

where g(z) is analytic and g(zo)=I=O. Then there is some s c-O such that

B(zo,s)cB(zo,ro) and

g ( z) =1=0 for z E B ( zo, s)

This implies that.

z (f) nB(zo, s) = {Zo }

which contradicts our hypothesis Zo is a limit point of z(f). Therefore we must have

an = 0 for n = I, 2· .. This implies that

We define V={zEU/f(w)=O for w e Btz.sjfor some s=s(w»O}

we have proved above that V is a non-empty subset of U .

Claim: V is an open set

Let zl E V . Then thEtfe is an rl > 0 such that
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Let WI be such that

This implies f is zero on B(Wl>rl_sd and so wI EV: ThatisB(zl>rl)CV.

SoVis ~pen.

We claim that V is closed in U.

Suppose a E U is a limit point of V. Suppose B(a,r) cU.

Then f {a] = 0 and

. OCJ f( n) ( a)
f(z)=f(z)-f(a)= I ,(z-ar.

n=l n.

If there is an n such that f( n) (a):;t:0, then by Theorem (21.1.6), we have

f(z)= f(z)-f(a)=(z-at g(z)

where g (a) :;t:O. This implies that there is an ro > 0 such that

g(z):;t:O in B(a,ro);

and so f(z):;t: 0 for 0 <Iz-al <ro.

Since f = 0 on V and a is a limit point of V, this is not possible. This contradiction proves
that

f( n) ( a) = 0 for n = 1,2, ...

This implies that f(z)=O for z e B'[a.r} and so aEV.

We have assumed that U is a connected set. Therefore either V = U or V =~.Since we
have proved that V is non-empty we have

V = U· The theorem is proved.·



Suppose U is a connected open set, f is analytic on U and f is not a constant function.
Then

z(f) = {z eU/f(z) = o]

has not limit points in U. Therefore if f (a) = 0, there is an r > 0 such that
- "'-
-f(z):;t:O if O<lz-al<r.

21.1.9 EXAMPLE:

Consider U = <C\ { O} and f = sin.!. on U.
z

The set

is the set of zeros of f. This set has a limit point, namely O. However a ~ U.

The next result says that If I cannot attain maximum on U, if U is connected.

21.1.10 THEOREM 5 MAXIMUM MODULUS THEOREM.:

Suppose U is an open set in <Cand f is analytic in U. If there is a Zo e U such that

and U is connected, then fez) = f(zo) for all z in U.

Proof:

Choose any p such that 0 < p < ro' By Cauchy Integral formula we have

1 f(w)·
f(zo)=-. f dw

2m I I w-zoZ-ZQ =P

Therefore
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,'1 f'{w]If(zo)l= -," J " dw
27tl, ,,(w-zo)w-zo=p

, 21t

That is 21tlf ( zo)1 s f If ( Zo +pei9 )1 de ;
o '

By our hypothesis

.If (z)1 ~ If (Zo )1 for all z in U" Therefore If (Zo )I-\f (Zo +pe
i9

)\ ~ 0." By the properties

of the Riemann Integral,

21t

f If(zo)I-/f( zo'+pei9 )/d9 ~ 0
o '

21t ' ,

Therefore f {If (zo )I-\f (Zo+pei9 )I} de= 0 "
o

The integrand is anon-negative continuous function. By properties of Riemann Integral we
obtain



This implies f(z)=f(zo) for zEB(zo,ro).

Now consider the function

g (z) = f (z ) - f (Zo )

on U g (z) is analytic on U. We have

g(z)=o for zEB(zo,ro)

By a known result

SAC 2 : If f is analytic and

Jf(z)J=Jf(a)J on B(a,r)

~rovethat f(z)=f(a) for z in B(a,r).

21.1.11 EXAMPLE:

Suppose

'U = B(O,l) UB(2,l)

Define f on U by

f (z) = z for z E B (0,1)

fez) = 1 for z E B(2.1)

Here U is not connected and f is not a constant function.

21.2 FURTHER RESULTS:

21.2.1 DEFINITION:

Suppose U is an open set, f is an analytic function on U, a E U and « Ea:::. We say that

"a is a value of f at a with multiplicity m" or .

II f 'takes the value CI. a~a with mUltlp!jdty:.~ ".
<~,'-: ..
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if f (a) = cx and f (z) - f (a) = [z - at· g (z)

where g is an analytic function on U and g (a) *- O.

21.2.2 DEFINITION:

We say that o. is a simple value of f if

(1) f takes the value o. at some a in U and

(2) At any Zo E U, f (zo) = cx- implies f takes the value cx at Zo with multiplicity one.

21.2.3 PROPOSITION :

Suppose U is a connected open set, f is analytic on U and not a constant. Then [takes

the value f ( a) with multiplicity ~ 2 if and only if f' (a) = 0 .

Proof: Suppose f takes the value f (a) with multiplicity m ~ 2. Then f (z) - f( a) = (z - a)m g (z)

where g ( z) is anlaytic in U. Then

f' (z) = (f( z)- f( a))' =m( z- at-I g( z)+(z-a)m g' (z)

Since m z Z, (m-l)~l and so f'(a)=O.

Suppose a E U and f' (a) = O. Since f'. is not a constant we have by Theorem

f(z)-f( a) = (z-at g(z)

where g ( z) is an analytic function on U such that g then

['(z) = m(z-at-I g(z)+(z-a)m g(z)

Therefore f' (a) = O.implies (m -1) ~ 1 or m ~ 2.

21.2.4 PROPOSITION :

Suppose that f is analytic on B(a,r).and f is not the constant function f(a) on B(a,r)

Then there is an ro S; r, 0 < fO such that f assumes only simple values on

{z: 0 < Iz-al < ro}=B(a,ro)\ {a}.
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Proof: Consider the function f' (z) on B (a, r) . If f' (z] is a constnat on B(a, f) then

f'(z) = f'(a), for z E B(a,r).

Since f is not a constant function f' (a) cannot be zero. Therefore [' (z) :;C 0 for any z in

B(a, r) . By the previous proposition every value of f is a simple value.
I

Suppose f" (z) is not equal to a constant function. Then by Remark after theorem there is

anro > 0 such, that 0 < fa :::::;;r and

[' ( z ) :;to 0 for 0 < Iz - al < ro

By proposition (21.2.2) this implies that every value of f on B( a,fo) \ {a} is a simple value.

The theorem is proved.

We shall now prove that if U is a conected open set and f is an analytic function on U and
not a constant function then f is an open map.

We shall state and prove the main step in the proof as a Theorem.

21.2.5 THEOREM :

Suppose f is analytic in B(a, r) and f is not the constant function f (a) . Then there is a

"b > 0 such that

B(f (a), 8) c f (B(a, r))

Proof: Clearly there is an analytic function g on B(a,r) such that

(i) f(z)-f(a)=(z-a)ffig(z),' ll1ElN and

(ii) g ( a) :;C 0

Since g is continuous we can find an ro> 0 such that

g ( z) :;C 0 for Iz - al s 2fo .

The main ideas behind the proof of the theorem are the following two facts

(a) Since g(z) is never zero on jj (a, 2ro), ~ giis an analytic function on B ( a, 2r,
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therefore

f g' (z)
-( ) dz e O for fl·::::;2fo

/z-a/=r g Z

(b)
f'(w) .J () () = 2mm for fl < 2fo

/w-a/=!} f w - f a

We have f (z) - f (a) = (z - at g(z) ;

f'(z) = (f(z)-f(a))' = m(z-at-l g(z)+(z-a)m g'{z]

f'(z) m g'(z)---,-,....-'--'...,......,...= - + --
f(z)-f(a) z-a g(z)

f'(w) m g'(w)f dw = J dw + f -- dw
Therefore f(w)-f(a) . (w-O) g(w)/w-a/=rj . /w-a/=rj \ /w-a/=rj

= 21tim

Let us set S (a, fO) = {z E <C/lz - al = fO}, and

2~ = d(O, f(S(a,fo)))

S(a, fO) is a compact set and f being continuous f (S (a, fO)) is a compact set. Therefore

there is a WoES(a,fo) such that 2~=lf(wo)l. We have assumed that f(w):;tO on S(a,fo)

therefore fl > O. Let us choose any a in C with lal < S: Then f (w) - a :;t 0 for WE S( a, fO)
because '

If(w)-al ~ Ilf(w)I-lall

=If(w)I-lal since lal<~<2~~ If(w)j

>2~-~

=.11
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f'(w)
Therefore 11 (a)= f () dw is defined. We have

I If w -aw-a=r9

We haave seen above that for Iw - al= ro we have

If (w) -al > Ll and If (w)1~ 2Ll .

211: lal
Therefore III(u) -ll( O)I~J If'(w )1-2 fOde

.- 0 2Ll

We know that n (0) = 2nim, m ~ 1_Therefore if we set

and choose any ex with la - f (a )1 ~ & then

This implies that f(z)-a vanishes in B(a,ro) by (1) above. If f(z)-a is never zero in

f'(z)
.B(a,ro), () is analytic in B(a,ro) and so

f z -u

f'(w)
11( ex) = f dw = af(w'-aIw-al=ro - ,

The result is proved.
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21.2.6 THEOREM :

Suppose U is a connected open set and

is an analytic function which is not a constant function. Then f is an open map.

Proof: Let a E U. Then there is an r > 0 such that

B(a,r) cU.

By Theorem f is not equal to f {a] on B(a,r). Therefore we can apply the previous

theorem and conclude that there is a (3> 0 such that

B(f(a ),8)cf(B( a.r ))c f(U).

Thus f is an open map.

21.2.7 THEOREM :

Suppose f is analytic in --'(a, f) and f is not a constant function. Then there is an r1 > 0,

a 8 > 0 such that

1) an B(a, f)) \ {a} every value of f isa simple value

Proof: By proposition there is an r1 such that 0 < r1 < r every value of f on B( a, r1) \ {a} is

a simple value. By Theorem above there is a 8> 0 such that

f(B( a,r))::::> B( f( a ),8)

The theorem is proved.

21.3 SOLUTIONS TO SAO'S :

SAO 1 : Suppose that f is continuous on B(a,r) = {z: Iz-al ~ r} .

Then Lt f f (t ) dt = f f (t ) dt
P-Hp-er Iz-al=p Iz-al=p
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Solution: Let E > 0 . Since B( a, r) is compact arid f is continuous, f is unifornily continuous on

B(a,r). Therefore we can choose a 8=8(8»0 S.t. for all zlw in B(a,r)

If(Z)-f(w)I<E if Iz-wl<8.

We have

f f(z)dz- f f(z)dz
Iz-al=p Iz-al=r

2n 2n
f f( a + pei6 )ieied8 - f f( a +rei6 )iei8dw
o 0

2n . 2n
~ f If (a + pei8

) - f (a + rei8 )1de < J € = 21tE

o 0

/" .
Since I( r + pei8

) - ( a + rei8 )1= rp28 .

This proves assertion.

SAQ 2 : Suppose that U is a connected open set and f (z) is an analytic function such that

If ( z )1= c a constant for Z E U. Then f (z) is a constant.

. ,
Solution: Let f( z) = u (x, v) + iu ( x, v). Then If (z )1 = c implies

Differentiating with respect to x first and with' y next, we obtain

We obtain for x + iy in U

( Ux v y - uy v x), U = 0, (Ux Vy - Uy v x) V = 0
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,/'

If Ux Vy-Uy Vx * 0 for some Zo = Xo +iyo E U, then, since we have assumed ['(z) is

continuous, Ux:l1y' vx' Vy are continuous and so Ux Vy-Uy Vx * 0 in some neighbourhood

B( zo,c» (xo, Yo). In that neighbourhood u = 0, v = 0. This implies that Ux = uy = Yx = Vy = 0 in

B(zu,o); this contradicts our assumption

Therefore we must have

By Cauchy Riemann equation this implies

2 2 2 2
Ux +uy = 0, v x + V Y = 0,

This gives ['(z)= 0 in U.

Suppose B(a, r) cU.
\

Consider g ( t ) = f (a + t (z ~ a) ) .

We have g' ( t ) = f' (a + t (z - a)) (z - a)

=0

1

and g (1) - g ( 0) = f g; ( t) dt = 0
o

Therefore [( z ) = g (1) = g ( 0) = f (a)

This implies that f(z)'-:f(a) vanishes on B(a,r). By Theorem we obtain

f(z)=f(a).

SAQ 3 : Suppose U is an open set in <C, f: U ~ <C is an analytic function, a E U, ffil' m2 are

non-negative integers g) [z}, g2 (z) are analytic function on U such that



Proof: Suppose we have proved Illt = m-: Then we obtain

If Z::F. a, (z - a) ::F.0 .and so we obtain

gl ( z) - g2 ( z) = 0 zeU\{a}

Since gl' gz are continuous on U we obtain gl (a) = g2 (a) and therefore

So we need only prove Ill! = III2 , suppose if possibte IIII, ::F. Ill2 either IllI < 1112 or m] > 1112'

we shall show Illl < Ill2 is impossible.

This implies that g, (z) = (z - <i. )ffi2-m\ g2 (z) for all z in U, Z::F. a . Again by continuitywe

obtain

ThisImplies gl (a) = 0 since we have assumed (IllZ - rill) > 0··.·Th'is contradicts the

hypothesis g! (a) ::F. O. So Ill! < Ill2 is impossible. similarly Ill! > tri2 is' impossible. Thus

Illl = Ill2 and the Theorem is proved.

21.4 MODEL ExAMINATION QUESTIONS :

1) If U is a connected open set, f is analytic on U and~on'sbmi{n6n~erripty open 'set

V c U, f = i I then

f = i on U

23
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2) Suppose U is an open set in cr::and f is an analytic.function. Show that if U is

connected either f (U) is a single point or an open subset of cr::.

~) Find all entire functions f such that

f (x ) = eX for x ~ 0

4) Suppose f is an entire function such that

Then show that f is a polynomial of degree ~ n .

5) f is analytic in an open connected set U and a E U is such that

If ( a)1s If ( z)1 for all z E U .

Then either f (a) = 0 or f is a constant.

6) State and prove Liovville's Theorem.

7) State and prove Fundamental Theorem of Algebra.

8) - State and prove Maximum Modulus Principle.

9) State and prove open mapping theorem for analytic functions.
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Lesson·- 22

RIEMANN - STIELYIES INTEGRAL

22.0 INTRODUCTION

Suppose f,cp:[ a, b] ~ <I: are functions. Then we have defined I(f,cp) in Lesson 20.

In this lesson we prove that I[f ,cp) exists when rp is a function of bounded variation and f
is;'! continuous function.

It is proved that rp is of bounded variation when <p is a monotonic function and when cp is
a piecewise smooth function.

We prove that when f is a continuous function and cp is a continuous function of bounded

variation, given E > 0 we can find a polygonal path, with vertices on {cp} 1 say I' (8) such that

22.1 PRELIMINARY RESULTS:

22.1.1 DEFINITION:

Suppose rp: [ a, b] ~ <C is 'a function. We say that cp is of bounded variation if there is some

real number K with the following property: For each partition

22.1.2 REMARKS:

(i) A function of bounded variation is a bounded function. Let

P:a=tO<t=t1 <t2 =b. Then

Icp(t)-cp(to)I+lcp(t2)-cp(t)l:::; K

So 1<p(t)-<p(a)I::;K
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(ii) Suppose <P[a, b] ~ <C is of bounded variation. Let u~ denote by ~t the restriction of <P

to [a, t], t E [a, b] .

For a s t:::; b, <Pt:[a, t]~ <t is defined-by

. ,~

Then <Pt is of bounded variation.

J -'..

Sl,Ippose P :a = to <.... < tm = t < b is a partition of [a, t]. Then let a partition P' of [a, b]

be defined by'

P':a = to <...< tm < tm+l = b
,

Then l<pt(td - <Pt(to )1 + ... + l<pt(tm) - <Pt( tm-dl

= l<p(t1) - <p(to)1 + ... +I<p( tm) - <p(tm-dl

:::;l<p(t]) - <p(to)I'+·· '+I<p( tm) -<p( tm-l )1+1<p( t)~ ~(tm)r

:::;K·

(iii) We have for any two complex numbers Z,W

IRez- Rewl:::; Iz- wi:::;IRez- Re wl+IImz- Im wi

·IImz-Im wl:::;lz- wl:::;IRez-Rewl+IImz-Im wi

It follows that <P is of bounded variation if and only if Re <P and 1m <Pare of bounded variation.

22.1.3 DEFINITION :

Let <p:[a,b] ~ <r:: be of bounded variation. Then the numbers

v(<p,P)

for all possible P of [a, b] from a bounded set in ill. Its le~st upper bound is called

The variation of <p on [a, b] and is denoted by V ( <p) .
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~2.1.4 REMARK:

It is clear that for each t.E [a, b]

and V ( <Pt) is a non-negative, non-decreasing function of t we denote V ( <Pt) by

22.1.5 PROPOSITION :

Suppose f: [a, b ] ~ <C is such that
~ ,"

M (f) = sup If ( t )1 < +00
te[a,b]

and rp is a function of bounded variation s.t. I(f,rp exists. Then
\
)

II(f,q»I~M(f).V(q» .

Proof: Let E > 0 . Then we can select a 8 = 8 ( E) > 0 s.t. for all partitions

P:a=to<···<tn =b

l2:f( 'tj)[q>(tj+d-q>( tj)J- I( t,q»1< E if Ilpll<i( E)

SO II(f,<p)I~Llf('tj)II<p(tj+d-<p(tj)I+E~M(f). V(<p)+t..

This implies the proposition.

22.1;6 PROPOSITION :

Suppose q>:[a, b] ~ <r: is smooth then q>is of bounded variation and

b
V (q>) = flq>1 ( t )1 dt

a

Proof: Let
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be a partition of [a, b] , Since q> is smooth we have

tk+lf q>'(t)dt =q>(tk+d-q>(tk)
tk

So we have

n-l n-l tk+!

V(p,q»= IIq>(tk+d-q>(tk)l= I f ~'(t)dt
k=O k=O tk

b

= flq>'( t )1dt .
a

Thus we obtain q> is bounded variation and further

b
V (q»::; fl<p'(t )Idt

a

b

We shall now prove fl<p' (t)1dt s V (<p). For this let E > 0 <P' on [a,b] is given to be
a

continuous, and [a,b] is compact. Therefore there is a 8 = 8 (E) > 0 such that for all s, t in [a,b] .

l<p'( s) - <P'( t)1 < E if Is - tl < 8 .

Let P be any partition of [a, b] . We have

b n-ltk+!

fl<p'(t)ldt = I f l<p'(t)1dt .
a k=O tk

By the mean value theorem of integral calculus there is a "Ck E [tk' tk+l] such that
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~t~

f 1<p'(t)ldt =(tk+1-tdl<p'('tdl= f !<p'(Zdldt
tk tk

tk+l

= J <p'( 'tk ) dt
tk

Therefore

b n-I tk+l
f!<p'(t)/dt = L f <p'('tk)dt
a k=O tk

By a known result we have ) /

;

tkH

<P(tk+l)-<P(td = 'f <p'(t)dt
tk

So, we have

tk+!

/<p(tk+d-<p(tdl- f <p'('tddt
tk

tk+! tk+l

= f rp'( t ) dt - f rp'( 'tk) dt
t~ tk

tk+l

.~ f. [ <p'(t) -<p' ( 'td ] dt
tk

tk+l

s f l<p'(t) - <p'('td/ dt
tk

tk+!~ J sdt if tk+l -tk <0
tk
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Therefore

tk+1 tk+1f l<p'( t )1 dt = f <p'( 'tk ) dt
tk > tk

tk+1

= f <p'('tk)dt -1<p(tk+d-<p(tk)1 + l<p(tk+d-<p(tdl
tk

b

Therefore fl<p'( t )1dt s E +V (P, <p)
a

This being true for all E > 0 we obtain
. .

b '
fl<p'( t )1 dt sV ( <p)
a

b

Thus V(<p) = fl<p'(t)ldt.
a

22.1.7 COROLLARY:

Suppose <p:[a, b] ~ a::: is a piecewise smooth, and

P:a=t~ <t1 <···<tn =b

is such that

Then
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Proof is left as an exercise.

22.1.8 REMARK:

With the notation above we know that

CPo, CPl, ... , <P~-l are continuous functions on [to, td,.· -,[tn-I' tn]

Suppose we define

<p(I) (t.) =!.(<P'·-I (t.)+<P'. (t.)) for J. * 0 JlJ 2 J J J J - .. '

Then we know that

We may conveniently write this as

b

V ( <P) = fl<p' ( t )1 dt
a

22.1.9 THEOREM:

Suppose f,<p:[ a, b] ~ <Care such that f is continuous and <P is of bounded variation.

Then I [f',<p) exists.

Proof: Let P', P be partitions ·of [a, b] and P' be refinement

t . = sk < Sk· 1 < .... < Sk· -I < Sk· = t. 1J J J+ J+l J+l J+
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j=0,1,2,.···,n-l

let to e[to,td,.··,Tn-1 e[tn-I,tn],ao e[sO,sd,al E[SI'S2]'····'O"m-LE[Sm_I'Sm]
choosen arbitrarily. Then

be

= Ar say.

Now let 8>0 be given. Since f is continuous and [a,b] is compact we can find a 8(8) > 0

such that for all s, t in [a, b]

If(s)-f(t)I<8 if Is~tl <8(8).

Suppose now that Ilpll< 8 ( E). Then

m-I
s E L j<p( sr+d - <p( sr)1

r=O

Thus for an intermediary sum [f',<p,P, 't) and another [f',<p,P', 0") we have

I(f, <p, P, t) - (f, <p, P', 0" )1sE V (<p)



Complex Analysis Reim"nn - ~tie(yies Integ~al.

if P' is a refinement of P- and IIPII<8 ( E)

. ~. .", .

Suppose PI' P2 are partitions of [a, b] , P = PI U P2 be the common refinement con~istin9
,. "", .1"'01..,.' .. " ..

of points in either PI or P2 arranged in increasing order. (~,<P,Pl,1:), (f,~,P2,cr),(f,<p,P,u) be

arbitrary intermediary sums.

Then

I(f,<p,PI, 1:) - (f,<p,P2,cr)1 == I(f,<p,PI, 't) - (f, o.P, u) + (f,<p,P, u) - (f,<p,P2,cr)1

~ I(f, <P,PI , 1:) - ( f, <p,P, u )1+ I(f, <p,P, u) - ( f, <p,P2, (J )1

s EV (<p)+ EV (<p) if IIPI II< 8 ( E ) , lip211 < 8 ( 8 ) -

Let us denote the set ~f complex numbers corresponding to intermediary sums of [f',<p)

for p with Ilpll < 8 by

09'(8) :

6/'(8) = {(f,<p,P, r]: Pis a partition of [a,b] with IIPII< 8}

What we have proved is that if a, ~ E cf.1'( 8 ( E») then

Itfollows that the diameter d (Q9'(8 (E) )) of the set dl' ( (5( E)) is less than E· V ( <p) .

For E we choose successively 1 .!. ... ..!.. ...
'2' 'ill'

8(1),8(2), ...,8(m), ... are defined by

8(m+l) = .!.min{8(m),8(-1 )-}.
2 .rn-s l .
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Then we have

<ff(~(m+l)) c <ff(~(m))

d(<ff(~(m))) ~ 2'~'V(<P)

\ The sets <ff(~( m)) are subsets of <C, a complete metric space. By Cantor's Theorem,

there \5 a u~ique complex number a such that

a:

U= n <ff(~(m))
m=I

Since aEG?(~(m)) for any pin G?(6(m)) cG?(6(m)) we have

Inother words if Pis any partition of [a, b] with Ilpll <6 (m) for any intermediary sum of P

say (f,<p,P,'t) we have

This proves that I( f,<p) exists and it is the number a. (Note that a is unique).

22.1.10 OBSERVATION:

--Suppose U is an open set f :U ~ <c is continuous

<PI : [a, b] ~ U, <P2 : [b,c] -» U are of bounded variation and <PI (b )=<P2 (b).

Then ~:[ a, c] ~ U defined by

_<P(i) = <j>2 ( t ) if t E [b, c] is of bounded variation, If drp exists and

Jp:: -¥d<p =.f f + If
-(0- <PI <pz
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22.1.11 PROPOSITION:

Suppose f :[a, b] ~ ~ is continuous and <p:[a, b] ~ ~ is of bounded variation. Then

II [f',<p)1 $ I (lfl-, 1<p1)

b b

is Jf(t)d<p(t) $ JI<p(t)ldl<pl(t)
a a

(we denote

b

I ( f, I<pI)= Jf d 1<p1( t) = J f = Jfd 1<p1
a I <pI

b

by Jf(t)ld<p(t)l)
a

Proof : Let E > 0 . Then we can select 81 ( E), 82 ( E) > 0 such th 1t for any partition

P:a < to < ... < tn = b

'IIf(t:J[ <p(tj+r)-<p(tj)]-I(f,<p)I<E if Ilpll<8t(E)
\

. 12:lf( 'tj )1 [I<pI( tj+d -1<p1(tj) J- I(ifl,I<pI)I<E if Ilpll<02 (E) . '.
~.. ~

:~ , .
Therefore if we choose 8 smin {81 ( E), 82 ( E)} and p. with liPII< (5 we have.

II(f,<p)1 $ L:lf(-rJI<p(tj+1)-<p(tj)I+E

$I If ( t j)1(I<pl(t j+1):-I<pl( t j)) + E ~+p(tJI-t} - <p(t j)1$v( <p/[ t j' t j+l J)

•
This implies the result.
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22.1.12 THEOREM:

Suppose that U is an open set

<p:[a, b] ~ B( a,r) c B( a,r') c U is a rectifiable path,

f :U -~ <C is a continuous function and' E, 0> ° are given.

Then there is a partition

P: a = to < t1 < ... < tn = b

such that

1) IIPII<8 and

2)" if we denotethe polygonal path[ <p(tO),(P(tI)"':';<P(t~)J by r we havE;
.: j... "

f f - Jf <E.
y( <p) r I

22.1.13 REMARKS:

We have assumed that {<p} C B (a, r). The set B (a, r) is convex, therefore ~ in [0,1]

<p(tj)+s( <p(tj+d-<p( tj)) E B( a;r):

l<p(tj )+s( <p(tj~\ )-<p( tj))-al

= l(l-s)[ <p(t})~a J+ s[<p( tj+d - a ]I
~ 1(1-s}( <p(t j) - a )1+ Is( <p(t j+\) - a )1

«l-s)r+s r =r.

The po/ygonai path I" is defined by I"0' rlo· .. ·, I" n-l :

. " (t-t.)· 1

rj ( t) = <p( t j ) + ( t j+1_ Jtj ) ( <p( tJ+1) - <p( t j ) ) : t E [ t j' tJ+ 1j



Complex.Analysis 22.13 Reimann - Stielyles Integral.~

. (t-tj) .
= (1- s) Z j + S Z j+ I where s = ( )

t. I-t·J+ J

This implies that {r}c B(a, r) . Thus Jf is defined.
r

Pr~9f. o.f 22.1.12 : We know that I (f, <p) exists. Therefore there is a 61 = 6( f:) > 0 such tl1~tfor
u . .

any partition

P:a = to < t} < ... < tn = b

i;.
f is a continuous function on U and B (a, r) c U is a compact ~pt T"erefore we can find

~ = ~(8) > 0 such that for all z, w in B (a, r)

If ( z) - f (w )1< 8 if Iz - w] < ~

q> is a continuous function on [a,b] . Therefore we can choose 82 = 82 ( ~) > 0 such that

. for all s,t in [a,h]

Iq>(s ) - q>(t)1 < ~ if Is ~ tl < 82 .

Let us set 00 = min{0,oI,02}

Let p above be such that Ilpll < 00 . Then Ilpll < 6 .

We are going to look at
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We note that

dl" j _ <P( t j+d- <P( t j) _ Zj+I- Zj

ill- (tj+l-tj) - (tj+l-tj) 0

Therefore

We have f(<p(1:j))[ <p(tj+d-<p(tj)]

=(Zj+l-Zj) tTf(<P(1:j))dto
(tj+1 -tj) tj

Therefore



Complex Analysis . 22.15 Reimann • Stlelyies Integral .

= (tj+1-t)[ q>(1:j)-q>(tj)J+(t-tj)[ q>('tj)-q>(tj+dJ

tj+l -t

Iq>( 1:j ) - q>( t j )1 <~, Iq>( 1:j ) - q>(t j+l )1 < ~

Therefore by triangle inequality we have

1rp( 1:j ) - q>(rj (t ) )1 < ~ ,

and so If( q>( ,;j )) - f (r j ( t ))1< E;

< E I<p( t j+l ) - q>( t j)1 :

n-l

hence ~o f (q>(1:j))[ 4>( t j+l) -'<r>{ t j) ] ~ .ff '~''EV(q»
J= r
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Therefore we have

This is clearly implies the theorem. We state a theorem without proof.

22.1.14 THEOREM:

Suppose U is an open subset of a::: ,

<p:[ a, b] ~ U is a rectifiable path, f: U ~ a::: a continuous function.

Then given any pair E,6 > 0 we can find a partition

P:a=to <t} <···<tn =b

such that

1) Ilpll < 0

2) the polygonal path r:[ <p(to),<p(td,···,<p(tn)] is such that {r}c U and

22.1.15 THEOREM :

Suppose U is an open set, f: U ~ a::: is a continuous function with primitive F on U and

<p:[ a, b] ~ U is a rectifiable path. Then

f F = F(<p(b))-F(<p(a))
y(<p)

(This is an analogue of the fundamental theorem, of the integral calculus: If F: [a, b] ~ m
is differentiable, F' = f and f is Riemann Integrable then

b
ff(t)dt = F(b)-F(a)
a
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Proof: Suppose q> is smooth. Then the function g defined by

g( t) = F(cp(t)) is a smooth function with

g' ( t) = F' (q>( t)) q>'( t )

Therefore by Theorem 1 of Lesson 1

b
g(b)-g(a) = fF'(~(t))~'(t) dt = f f.

a y(~)

Suppose next q> is piecewise smooth and the partition

be a partition such that q>j the restriction of rp to [tj' tj+l ] is smooth. Then by the result we

have proved

By proposition we have

Now let q> be any rectifiable curve. Let E > 0 . Then by Theorem there is a polygonal path I"

in U such that

r( a) = ~(a ),r(b) = q>(b)

A polygonal path is piecewise differentiable path. Therefore

If =F( q>(b ))- F( q>(a))
r
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Since s is arbitrary we obtain

Sf = F(<p(b))-F(<p(a))
<p

22.2 MODEL EXAMINATION QUESTIONS:

1. Show that <P(t) = i for t E [0,1] is a function of bounded variation.

2. Show that if <p:[0,1] -) IR is monotonic then <p is of bounded variation.

3. Show that if <p:[a, b] -) IR is a function of bounded variation then

where <PI' <P2:[a, b] -) IR are monotonic functions.

[Hint: Take <PI(t) = v( <P)(t),<P2 (t)= v( <p(t ))-<p( t)]

4. Let <p:[0,1] -) <Cbe such that for all s,t in [0,1]

for some M> 0 . Then show that <p is of bounded variation.

5. Let a = a + ib and ~ = c + id . Then evaluate

6. If <p:[a, b] -) <Cis sn:ooth show that <p is of bounded variation and

b

V (<p) = fl<p' (t)1 dt
a

7. If <p:[a, b] -) U is piecewise smooth and F is an analytic function in U such that

F'(z) = f{z]

Sf = F((~(b))-F(<p(a))
then

(P
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8. Suppose U is an open set, y, o are paths in U :

y : [a, b] --) U, a:[ c.d] --) U and such that

cr( t) = y(a +(b- a)( t -c))' .
·d-c

If Y is rectifiable and f is continuous on U, then show

If = If
cr y
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Lesson - 23

CAUCHYSINTEGRALFORMULA
23.0 INTRODUCTION

In lesson 20 we have proved two important results.

1) Cauchy's Integral Formula

2) Cauchy's Theorem

In the first the path is a circle. In the second the open set is a disc.

In this lesson we extend the results to more general paths and more general open sets.
The key concept is the index of a closed path y with respect to a point z or the winding

number y around z. In these considerations y is assumed to be rectifiable.

The basic result is that when {y}c U and

ll(Y,z)=O

we have Cauchy Integral formula for y. For such a y we write y ~O(U).

We extend the results of Lesson 20. We prove that if U is such that Y ~O(U) for each

closed rectifiable path y in U, then every analytic function f on U has a primitive.

Then for such an open set and every analytic function f on U that never assumes the

value 0, there is an analytic function Log f on U s.t.

eLogf = f·

23.1 SOME RESULTS:

23.1.1 THEOREM :

Suppose y:[ a, b] ~ c

is a closed rectifiable path and z E <C does not belong to the trace {y} of y . Then

f~ = 2ni k for some k E 7l..
y-z
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Proof: We have assumed that z ~.,{y} . This means y ( t) - Z ::f:. 0 for t E [a, b]. Therefore y ( t)_ Z

I

is a continuous function on [a, b]. We have assumed that y is a rectifiable path. Therefore

i

f~
y-z

I dy .
is defined. Let us denote -- by 2ni l1(y,Z)y-z .

. l1(y,z)=_l. I~.
, . 2m y-z

We divide the proof into three steps.

1) y smooth, 2) Y piecewise smooth 3) Y rectifiable

We deal here with smooth case. The other two are beyond the scope of the study.

1) Ysmooth: In this case we have proved that

I dy - bI y' ( t) dt
y-z - a y(t)-z

'. y'( t) .
By our assumption y' (t) is continuous and so y (t}"": Z is a continuous function on [a, b] .

Let us set I', .

S y' (t)
g( s) = f dt

a y(t)-z

Then we know from Riemann Integration that g (s) is differentiable and

,() y' (s)g S =-....:......:..-
y(s)-z

Now consider the function

h(s) = e-g(s) (y (s ) - a)
We have
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h' (s) = -e-,(s) g' (s}(y (s) - a) +e-g( s) y' (s)

= e-g(s) ( -y' (s) +y'(S) ) = 0

It follows that h is constant Thus

h(a) = e-g(a) ( y (a) - z]

= y ( a) - z since g (a) = 0

h (b) = e-g(b) ( Y(b) - z)

= e-g(b) (y( a) - z] since y is closed.

Since y (a) - Z # 0 it follows that

e-g(b) = 1

That is g (b) E 27tilN.

< b y' (t) d
8ydefinition g(b)= f () = f-y

a y t -z y-z

Hence f dy = 21ti k for some k E 'll .
< y-z

23.1.2 PROPOSITION :<, <

Suppose y: [a,b] ~ a::: is a rectifiable path and

< U= a:::\{y}.

b dy( t)
Then U is an open set and f: U ~ c defined by f (z) =!y(t) _ z is analytic function on

U . Its derivative is

f'(z)=f dy(t) 2

< a(y(t)-z)
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Proof: Let us choose some point Zo in U. Then the function of t

y( t ) - Zo is a continuous function on [a, e]. Since Zo g; {y}

y ( t ) - Zo ;z!: 0 for any t in [a, b] .

Therefore y (t) _ Zo is a continuous function on [a, b] and so
1

1(_1_ r. == bf dy(t)
y _ Zo ' a y ( t) - Zo exists. Let us set for Z E U ,

g ( Z ) == J dy ( t) .
a y(t)-z

-We now define ~: U ~ IR by

2~( z) = d( z, {y}) = g.l!.b{lz -y( t )I:t E [a, bn
The function 'Iz - y (t)1 is a continuous function on [a, b] ; it attains its minimum; so there

is a to E [a, b] such that

2~(z) = Iz-y(to)l.

Since z - y ( to) * 0 it follows that

2~(z) > O.

We note that

1 1
2~(z)~lz-y(t)1 and Iy(t)-zl ~ 2~(z)·

We claim that

B(z,2~(z)) c U

That is if Iw - zi < 2~ (z) , then Iw - y (t)1 * 0 for t in [a, b]:
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We have

2~(z)::; 11'(t) - zl::; Iy(t) - wi+Iw - zl

::;Iy(t) - wi+ ~ (z) ;

this implies Iy(t) - wi ~ ~(z), 2~(w) ~ ~(z) and

1 1.,------;- < -
Iy(t)-wl- ~(z),

Let h be a complex number satisfying

f (z +h) - f (z) b dy(t) {11}-
Then h = !-h- (y(t)-(z+h)) - y(t)-z

b 1

= ! dy(t) (y (t ) _ (z + h) ) (y(t ) - z)

and
f(z+h)-f(z) bf () 1--'--~~ - dy t ---

h a (y(t)_z)2

b {. h }= fdy(t) 2
a (y(t)-(z+h))(y(t)-z)

. f (z + h) - f (z) bf dy(t) bf h 1 ()I
Therefore - 2 ::; 2 dy t

h a(y(t)-z) a (y(t)-(z+h))(y(t)-z)'

::;Ihl~(z)(2~(z))2 v(y).

v(y)
=lhI4~3 (z)

1

This proves our proposition .
.~
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23.1.3 COROLLARY:

Suppose y is a closed rectifiable path then l1(r,z) is constant on each connected

component of U= a::: \ {y} .

Proof: 11(r, z] is a continuous function on U. Let V be a connected subset of U. Then the image

of V is a connected subset of a:::. Since 11(r, z) takes only integer values and the only subsets of

71.which are connected subbsets of a::: are subsets having only one point the corollary follows.

23.1.4 COROLLARY:

Suppose Iyl:::;M and Izl > M then

l1(Y,Z)=O

Proof: The set U = {Z E <C:Izl > M} is in the same connected component of a:::\ { y} .

We have

The right hand side tends to zero as z -+ 00 , while the left hand side depends only on U.

23.1.5 DEFINITION:

Suppose y is a closed rectifiable path in a::: and z ~ {y} . The integer

11(y, z) is called The index of y with respect to z or The winding number of y around z.
\

Now we state a Theorem.

23.1.6 PROPOSITION :

Suppose y and o are closed rectifiable curves having the same initial points. Then

(a) l1(y,a)=-l1(-y,a) for a~{y}

(b) 11(y + 0",a) = 11( 'Y,a) + 11(c, a) for a i: {Y} U{cr},
23.1.7 PROPOSITION :

Suppose y is a closed rectifiable curve in <C.Then for z in the unbounded component of
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we have

l1(Y,Z)=O

23.1.8 DEFINITION:

Suppose Y : [a,b] -+ <C is a map. Then -y is a map

[-b, -a] -+ <1: defined by

-y (t) = y(-t).

23.1.9 DEFINITION:

SUPP'ose y, c are maps from

y :[a,b] -+ <1:, o :[b, c] -+ <1: .

Then y + o is defined to be a map from [a, e] -+ <1:

given by

( y + cr) ( t) = y ( t) if a ~ t ~ b

( y + cr) ( t ) = c(t) if b ~ t ~ c
\

23.1.10 THEOREM :

Suppose f is an analytic function in an open set U ~ <1: and we define

F: U x U -+ <1: by

F( Z, w) := f (z) - f (w) if z"* w
z-w

F(z, z) = f' (z) .

Then (1) F is a continuous function on Ux U

(2) For each Wo E U; the function

Fw.,:U -+ <Cdefined by
Ii

Fwo(z) = F( z, wo) is an analytic iunction in U.
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23.2.1 THEOREM (CAUCHY INTEGRAL FORMULA)

Suppose y is a rectifiable path in an open set U c a: such that

YJ(y, z) = 0 for z ~ U ,

and f: U~ a: is an analytic function. Then for z E U\ {y} .

2ni YJ(y,z) [(z)= ff(W) dw
w-zy

Proof: We have proved previously that for each W E U the function

defined by Fw (z) = F (z,w) is analytic in U.

. {f(Z)-f(W)
Recall that F (z; w) = z - W

f'(z)

if z =F- w, z, W E U

if z EU .

We define

by
gl (z) = fF(z, wj dw

y

Sya known Theorem gl is an analytic function on U.

We consider the set

W is an open set We define

by g2(Z)== {(w) dw
w-zy .
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Since II (y, z) is defined only for z g ,{y} , w - z "* 0, W E {y} , we know that g2 isan analytic

function on w. )

We claim that
)

We have

gl{Z)= fF(z,w)dw since zED
y

f(z)-f(w) .= f dw since z E W, Z g {y} and so w"* z
w-zy

= ff(w) uw -27ti f(z)ll(r,z)
w-zy

= Sf(w) dw
w-zy

Thus the function

is an analytic function on D u W .

For z ~ U, we are given that ll{y,z) = 0. Thus a:::\ u c w

Therefore C = U uWand we have an entire function.
/

We claim that g is bounded. To see this we note that {y} , the trace of y is a compact set.'-It is contained in
/

Then for z E a::: \ B ( 0, K + p) we have
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B(O, K)

\

d( Z, {y} );:::p and therefore
,.;,

Iw - z~~Ilwl-lzll ~ IK -Izil ~ p

and so

Ig(z)l:s; {( w) dww-zy

:s; f few) dlylw-z. y

where My (f)= sup If(w)1
we{y}

Thus Igl is bounded on <C\ B (0, 2K) . On the compact set' B (0, 2K) it is clearly bounded.
I

Therefore, g is bounded on <C.By Liuville's Theorem g is constant. Since
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if Izi~ K + p it follows that Ig (z)1 ~ 0 as Izl~ 00 . So g = 0 .
.i->:

Thus g, =0 in U.

Suppose we take z e {r]. Z E U = a::\ {y} . Then

f(w)-f(z)
g, (z) = f w _ Z dw,': Ze {y} , W E {y}

y

= Sf(w) dw _:ff(Z)dw
w-z w-zy y

The theorem is proved.

23.2.2 DEFINITioN :

Suppose U is an open set in <t: and y is a dosed rectifiable path in U. We say that

Y is homologous to zero in U arid write

y ~ 0 in U or y ~ 0(0)

if

With this definition we may state the Theorem we have proved as.
23.2.3 THEOREM :

If U is an open subset of 0:, f 'is an analytic functioh in U , y is a closed rectifiable curve

in U such that y ~ O(U), then

Cauchy Integral Formula is valied tor y :

( ) " -f( w)
2fcill y,z f(z)=J--dw

w-zy

23.2.4 THEORtM (CAUCHY'S THEOREM SECOND VERS10f\!):

Suppose U is an open set in a::: , f is an analytic function in U arid y is a closed rectifiable

path in U such that
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Then

Proof: Suppose we choose an a in U such that

a (to {y}, and set

g(z)=(z-a)f(z).

By Cauchy integral formula we have

O=g(a)=27ti ll(y,a) g(a)

= fg(w) dw
w-ay

= Jf(w) dw
y

= If
y

.23.3 COUNTING ZEROS

23.3.1 THEOREM :

Suppose U is an open set in a:: , f: U ---+ a:: is an analytic function. Suppose that

is the set of all zeros where each aj is repeated as many times as its multlplicity, If

y:[a, b] -+ U is a closed rectifiable path which does not passthrouqh any aj': i.e. aj ~ {y} and y

is homologous zero in U. y ~ 0 then

f'(z) . kJ-( ) = 2m Lll(Y, aj)f Z ' J .y J=-
N
U1
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Proof: Suppose that the multielicity of al is ml. Then we know that

where g) is an analytic function on U and there is an fl > 0 such that

We have

= 1 +...+ 1 +gi (z) 1 ti
( ) ( )" gl (z)' Z _ a) occurs mt· imes.z-at z-al ..

", .-
';J

The only possible zeros of gl (z) are the aj' aj =I:: al. Therefore by" induction on the number

of zeros we obtain

f'(z) 1 1 gi(z)
--= +....+ +--
f(z) (z-ad (z-ad g(z)

Where g is analytic in U and g(z) =I:: 0 for zinU. Thus

g'(z) .
-( ) is analytic in U.g z .

g'{z]
'We have assumed y ~ 0 in U. Therefore by Cauchy's Theorem !g (z) dz = 0

I,

f''{z] . k
Thus we have f-() dz = 2mLTl(y,aj)

" y f Z j=l

The theorem is proved.

23.3.2 REMARKS:

"'- In the above theorem we have assumed that the number of zeros of f is finite.
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It is not necesary to assume this. In the next proposition we shall prove that if y ~ ° in! U

. the set of a in U such that

f(a)=O and 11(y,a)*O is finite. Let us write

z(f)={aEU/f(a)=O} .

Then

/ L l1(y,a) is a finite sum. The theorem may be stated as
aEz(f)

Jf'((Z)) dz = .27ti { L 11(y,a)}
y f Z aEz(f)

23.3.3 PROPOSITION :

Suppose U is an open connected set in ~, f: U --+ ~ is analytic and y is a closed rectitiable

path in U which is homologous to zero in U anddoesnothavean~~int w s.t. f(w)=O, WE{Y}

z(f) = {aE U/f(a) = o} and let

E={aEZ(f)/l1(y,a)*O}.

Then E is a finite set

Proof: Suppose r > 0 is.such that

{y} C B(a, r) .

Then for z ~ B(a, r}, 11(y, z) = 0 since z belongs to the unbounded component of <r::\ { y} .
This implies that

E is a bounded set.

Suppose E is infinite. Then by Balzano-Weierstrass theorem E has a limit point say zo.

By Theorem of Lesson 2, Zo cannot be inU. So Zo belongs to the complement of U. This
implies.
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since we have assumed that 't= 0 in U.

We have a sequence zn in E such that

since Zo is a limit point of E. We know that none of the zn are in {y} .Therefore 11 (y, zn)

is defined. Since 11 (y, z) is continuous on a:::\ {y}

Since zn E E, we have

Thus we obtain a sequence of non-zero integers that converges to zero. This is impossible.
So, E must be a finite set.

Now suppose f: U ~ <Cis a function and we define

z(f,a) = {zE U/f(~) = a}
As an application of the Theorems we have proved above we prove the fol/owing result.

23.3.4 THEOREM :

Suppose U is a connected open set in <C, f: U ~ <C is analytic function which is not a

constant function. Suppose y is a rectifiable closed path in U, such that 't= 0 in U, and y is

defined by y = f 0 y . Then for any a in <C

11(y,a)= L 11(y,a)
aez(f,a)

Proof: Let us set w = <C\ {a} and define g: w -~ <Cby

1g(w)=-. - .., .w-a "
We have

11(y,a) = f~-w-ay
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= f(g 0 f)f' by Theorem.
y

= L 11(y,a) by Theorem.
aEz(t,a)

23.3.5 DEFINITION :

Suppose U is an open subset of a:: I

are closed rectifiable paths in U. Then' we say that the formal sum

Y1+Y2 +"'+Yk is homologous to zero in U and write

or Y1+Y2 +"'+Yk ~ O(U) if for all z ~U

11(Yl' z) + ... + 11( Yk' z) = 0

We define

11('11 +Y2 +"'Yk,z) = 11(Yl>z)+···+11(Yk>z).

23.3.6 DEFINITION :

Suppose f is a continuous function inU and Yl,;<"Yk in U are closed rectifiable paths

We define

We write

f f for f f +...+ f f .
YI+'+Yk YI yk

There is an important extension of Cauchy Integral Formula.

23.3.7 THEOREM (CAUCHY INTEGRAL FORMULA: SECOND FORM) :

Suppose U is an open set in a:: I

f :U ~ a:: is an analytic function and
.---,'.'

YI> Y2' . ", Ym are paths in U such that
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Then for each a in U, a ~ {ydu ..... U{Ym} we have

(211:i t l1(Yk, w)J f{a] = t f f(z) dz
k=l k=lYk z - a

Proof: The proof is similar to the proof of Cauchy Integral formula. The only thing that is needed is
that the set

The complement of

{Y1}U ... u{Ym} is an open set. It is the union of its connected components {Vp} .

Each Vp is a conected set and so is contained in some connected component of

It follows that

Thus we have

m
L 11( Yk> z)as a function of z is a constant function on Vp. Thus the set
k=1

is a union of some subset of Vp 's therefore it is an open set.

. The rest of the proof is left to the reader.

23.3.8 THEROEM :

. The hypotheses kept as in the above theorem, we have
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(n) (m J n! m f(z) .f (a) L TI()'k ,a) = -'. L J n+l dz
. k=l 2m k=l Yk ( Z - a)

Proof: It is similar to the proof of Theorem.

Next we prove Cauchy's Theorem. This Theorem is, together with Cauchy Integral Formula
is the foundation for the subject.

23.3.9 THEOREM (CAUCHY'S THEOREM. FIRST FORM):

Suppose U is an open set, f is analytic in U, Yl'····' Ym are closed paths in U such that

Then

m
L Jf(z)dz=O
k=IYk

Proof: Suppose we take an a in U, a ~ {YI}U .. , U{ Ym} and set

g(z)=(z-a)f(z).

By Cauchy Integral Formula we have

m
0= g( a) = g( a)x 2ni L T1(Yk,a)

k=I

m g(z)
=If( )dz

k-l z-a-Yk

m
= L f f(z)dz.

k=IYk

We have proved in lesson 21 that if U is a connected open set and f is a non-constant

analytic function on U, then fis an open map. That is if Zo is in U, then there is an fO > 0 such

that every value a, la - f (zo)1< fO is attained by f .With thegeneralisation of Cauchy Integra!

Formula we can say how many times f takes the value near zo.
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23.3.10 THEOREM :

Suppose f is an analytic function on B(a, K]) and it is not a constant. Suppose f takes

the value .f (a). with multiplicity m. Then there is a pair of positive numbers r, K such that

1) Ev~ry value of f on B (a, K) is a simple value of f ,with the possible exception of

f(a) .

2) Every a in B(f(a),r) is attained by f on B(a,K)

3) For (X:;t: f (a) and in B (f (a), r] the set

{zEB(a,K)/f(z)=a} has m elements.

Proof: Bya known result there ls a K2 < K1 such that every value of f I assumed on B(a,K2),

except possibly f (a
l
) , is a simple value of f .

,:.

Since a is not a limit point of the zeros of f (z) - f (a), there is a K3 < K1 such that

Rec~1I that S (a, K) = {z E Q:/lz - al = K}. By our choice of K, f (z) - f (a) :;t: 0 for z in

S(a,K). We set

r =d(f(a), f(~(a,K»))

Since S(a,K) is compact the distance risattained at some poin on S(a,K) and

therefore >0.

We are going to prove the r above satisfies the assertion (3) of the Theorem.

We consider the path'

y:[O, 27t] ~ U defined by

y ( t ) = a + K eit and the path c defined by

a(t)=f(y(t»)
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By Theroem we have for a E {O'}

dw _ f'(z) dzlw-a - !f(z)-a

By our choice B ( f (a), r) n{O'} = ~ . Therefore B ( f (a), r) is contained in some connected

component of <C\ {O'} . Therefore

11(O',a) =11 I 0', f(a) Vain B(f(a),r)

We have

f'(z)f dz =m
y f(z)-f(a)

,
by a known result. Therefore we have proved the Theorem.

23.4 SOLUTIONS TO SAQ :

SAQ1 : Suppose O<r<R, U={zE<c:r<lz-al<R}.

U = {z E <C:r:::;Iz - al:::;R}, f:U ~ <Cis continuous and f is analytic on U. Then for z E U

21tif(z)= f f(w)dw_ f f(w)dw
w-z I I w-zIw-al=R w-a =r, l

Proof: Let 0 > 0 be such that

r<r+o<R-o<R

Define Y2 = y(R,o)(t) = (R_O)221tit

Y1 (t) = y(r,8)(t) = (r+o)e-27tit and choose 8 » Os.t.

r+f <lzl< R-o,

We have for la - al :::;r + 0
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11(Y2,a)=11(Y2,0)=1

11(YI' a) = 11(YI, 0) = -1 ; for la - al > R - 8

11(Y2,a) =11(YI,a) =0;

since a is in theunbounded component of <C\ YI and also of <r::\ Y2'

Therefore Cauchy Integral formula form 2 gives

21ti f(z)= f
Iz-al

We note that

Therefore for each 8 > 0 S.t. r + 8 < R - 8 we have

f'[w] . f{w]
21tif(z)= f -.- dw - f - dw

Iz-al=R-o w-z Iz-al=r+o w-z·

By SAQ : Lesson 2 taking limit as 0 ~ 0 + we obtain

21ti f(z) = f f(w) dw - f f(w) dw
Iz-al=k w - z (z-a}=r W - Z

23.5 MODEL EXAMINATION QUESTIONS:

1) Suppose U ={z:<C : z is not a non-negative real number}

Then, show th~t if Y is a closed rectifiable path in U

y~O(U)

2) Suppose U={ZE<r:::Z;t:O}.

Then show that Y(t)= e21tit t E [0,1]

is not homologous to zero In U.

3) Suppose U = {z: 1<1m z < 2} and y is a closed rectifiable path in U. Then

. show that y~O(U)
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4) If f: <C~ <C is a continuous function such that f is analytic in the complement of

[-1, +1] show that f is an entire function.

5) Let V be an openset in <C, fn: V ~ <C an analytic function for each n E IN " If fn

converge uniformly to f in V, show that f is analytic in V // "

23.6 MODEL EXAMINATION QUESTIONS:
1) State and Prove Cauchy's Integral Formula Second Form

2) Prove that eZ is not one-one.

3) Suppose U={ZE<C:Z#O} and

Yl(t)=e-2nit tE[O,I]"

Y2(t)=2e21tit tE[O,I]

/

Prove that
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· Lesson - 24

CAUCHY'S THEOREM · HOMOTOPIC TO LERO PATHS

24.0 INTRODUCTION

In this lesson, we try to find out more about paths Y for which Cauchy's Results hold and

open sets U for which Cauchy's results are valid for every rectifiable closed curve.

Familiarity with topology is assumed in this lesson. The treatment is sketchy.

The basic notion in this lesson is homotopy of maps.

Two theorems are proved.

If Yo, Yl are closed rectifiable paths in U such that Yo is homotopic to YI in U then for

every analytic function f on U we have

f f = f f
Yo YI

If Yo, Yl are rectifiable paths in U such that Yo ~ Y1 (FEP U) then also

If = If
Yo Yl

We define three notions of simply connected open set U. We prove some relations among
them.

The main result all the three notions are the same is beyond the scope of the Lesson.

24.1 PRELIMINARIES:

24.1.1 DEFINITION:

By a change of parameter we mean a map cp from some closed interval [a, b] onto a

closed interval [c, d] such that

i) cp(a) = c, cp (b) = d
ii) cp is strictly increasing:

cp ( s ) < cp ( t) if s < t

and iii) cp is continuous
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24.1.2 DEFINITION:

A path a: [c,d] ~ CL is s~id to be equivalent to a path y:[ a, b] ~ <C if f there is a change

of parameter.

<p:[ a, b] --+. [c,d] such that

a=y·<p

Now we come to the main conceptfor this lesson.

24.1.3 DEFINITION;

We say that a closed path Yo: [a, b] ~ U is homotopic to a closed path YI:[a, b] ~ U in U .

if there is a continuous map

r:[o,l]x[a,b] ~ U such that

r:(o,t) =Yo(t), r(l,t) =Y1(t) for all tin [a,b]

and I' (s, a) = Y(s, b) for all s in [0; 1)

24.1.4 DEFINITION:

We say that a path Yo: [a, b ] ~ U is fixed end point homotopic to a path Y1 : [ a; b] ~ U in

U if there is a continuous map

r :[0,1] x [a, b] ~ U

such that
. (

(1) yo(t) = r(o,t), Yl(t)=r(1,t) for tE[a,b];

Yo(0)=Y1(0),yo(1)=YI(1);(2)

(3) and for all s in [0,1]

Yo(0) = r (s,°)= Y1 ( 0) and

Yo (1) = r(s, 1) = YI(1 )

our main concern is with FEP homotopic paths in an open set U; of special interest are the

.closed paths y which are homotopic to the null path [Y(O)J.
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Before we oroceed f 'her we give som ~examp'es that make us familiar with the idea of
iEP homotopy.

24.1.5 EXAMPLE:

Suppose

define the same curve that is there is a

q>:[a, b] ~ [a, b]
such that <p is a change of parameter and

Then we claim that Yo is FEP homotopic to Yl.

We shall give

r:[o,l] x [a, b] -+ l T

and leave the· details to the reader. We define

r (s, t) = Yo(( 1-s) t + se (t))

We make only a remark. The interval [a, b] is convex, t, <p(t) belong to it and therefore

(1- s) t + srp ( t )

. i
also belongs to [a, b] , and this Yo((1- s) t + s<p(t)) is defined.

The example implies that if paths Yo and YI define the same curve then they are FEP
homotopic to each other

(Notation. If Yo and Yl are paths in U and Yl is FEP homotopic to Yo in U we write

Yo ~ Yl FEP in U).

24.1.6 PROPOSITION :

"~ FEP in U" is an equivalence relation.

Proof: We shall only give the proof that it is transitive. Suppose

YO~YI FEP in U
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and YI ~Y2 FEP in U;

r2 : [0,1] x [a, b] ~ U

/ are maps that give

Yo -YI FEP in U

YI'""Y2FEPinU.

Then define

lrl(28, t)
r(8, t) =

I'1(28 -1, t)

if Os s s 2-
2

. 1
If -ss s 1

2

It is easy to verify that I' gives" Yo ~ Y2 in U"

Suppose now that

are paths such that 'YI(b) = Y2 (b) I we consider

y:[a,c] ~ U

defined by

y ( t) ={Y1 ( t ) if t E [ a, b]
ydt) if tE[b,c]

Because we have assumed YI [b ).= Y2 (b), Y is defined. That Y is continuous can be

proved easily and left as an exercise for the reader.

In lesson 20 and 22 we have proved that if YI' Y2 are rectifiable, then y is rectifiable and for

each f continuous on [a, c] we have
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If == I fl + f f2
Y Y1 Y2

where fl = fi[a,b] and f2 = fi[b,c]

With this in mind we give the following.

We now consider an open set U in <Cand (n + 1)2 points

Z·Jk .

for j=O,l, .. ·,n and k=O,l, .. ·,n. For each [j.k] O~j~n-l,O~k~n-l. We denote

the polygonal path

[Zjk>Zj+lk> Zjk+l> ZjkJ by Ijk' Ijk' is a closed path. We assume now that for

each [j.k]. there is an ajk E <Cand Pjk > 0 such that the four points Zjk> Zjk> Zj+lk> Zj+l k+l .

Zj k+1are contained in B(ajk>Pjk) . Then since B is a convex set we obtain that

Suppose we are givf;n a continuous function f: U ~ <c: . Then f f is defined and we then
fjk

look at the sum

We express the integrals along rjk as sums of integrals of the type

Zjk+l Zjkr f; and f f,
Zjk Zj+lk

By proposition we have
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Zj+lk Zjk Zjk+1

J f + J f = ° and J f +
Zjk Zj+lk Zjk Zj hi

Zjk

J f=O

Therefore as in the case of squares earlier we obtain .

n-I Zj+lO n-I z, k+1 O· Zjn 0 Zo

L f f+L f f+ L f f+ L f f
j=O ZjO k=O Zn,k j=n-I Zj+ln k=n-I Zok+1

n-I n-I

= Iff
j=O k=O -rjk

24.2 MAIN RESULTS:

24.2.1 THEOREM (CAUCHY'S THEOREM"THIRD VERSIO~):

Suppose U c <c is an open set, f: U ~ <cis-an analytio. function, Suppose that:

YO' Y1 : [a, b] -+ U

are rectifiable paths such that Yo (a) = YI (a) and Yo (b) = YI (b) _ Further suppose that

there is a map

r :[0,1] x [a, b] ~ U

with the following properties

1) I" (0, t) = Yo (t)

2) r(1,t)=YI(r)
'.

3) Yo ( a ) = r (s, a) = yJ ( a)

4) Yo (b) = r( s, b) = YI (b)

Then . J f = If
YO Yl

t E [a, b]

t E [a, b]

sE[O,I] .:

S E [0,1]

Proof: All the necessary work is done in the general explanation given before the statement of the
26 Theorem. We shall make use of it in the proof.
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The set X = [0,1] x [a, b] ;s a compact set and r is assumed to be continuous. Therefore

we have

1) r(x) is a compact subset of U

and 2) I": X -7 U is uniformly continuous.

Since r(x) is compact and <c:\U is closed and disjoint fromr(X) we have

d(r(x), <c:\U) = L'l > O.

Since I" is uniform Iy continuous and L'l > 0 we can find a 0 > 0 such that for all (s, t), (s', t')

in X = [O,l]x[a, b]

Ir(s, t) - r( s', t')1 <L'l if Is-s'l < 0, It -t'l < 0

Choose a positive integer no such that

{I b-a}Max .-,-- <0
no no

Define



S· =i t'=a+i(b-a) . 0 1 1J no' J no . J = , ,"',' n - .

We have So = 0, sno = 1, to = a, tno = b. We now define Zjk

Sj + Sj+l I tk +tk+l
Let us denote 2 by Sj' 2 by tk and define

We have

For each (j,k) we denote the polygonal path

Since the verticies of rjk are contained in B ( Z]k, ll) we obtain

{rjk} C B (zJk , L\ ) c: U

Therefore f f is defined, Therefore by what we have concluded earlier
rjk

•

no-I Zj+l0 n-I ZnOk+l 0

L ff+:L f f+2:
j=O ZjO k=O zno k j=n-I

Zjno

f f +
o ZOk

Iff
Zj+l no k=no-! ZOk+l

nO-l no-I

= L f f
j=O k=O r'k.I

We have assumed that f is analytic and the r jk are such that
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Therefore f f == 0 .
rjk

We claim that the sums

no-I Zj+IO 0

Iff and I
j=D Zj 0 }=no-I Zj+l no

Zj no

f f

add upto zero. This is because by (3) of our hypothesis we have

z·O = r(s. a) = r(s. b) = z.J J' J' Jno

and so

Zj+lo

f f +
Zjno

f f = 0
ZjO Zj+1 no

Therefore

n-I zno k+l 0 Zok

I f f+ L f f=O
k=O ZnOk k=no-I ZOk+l

'1 .

We note that

Let us denote th~ restriction of Yo t~ F~,-t~+d b~ YOk and the restriction of YI to [tk' tk+:l

by Ylk. We have
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It follows that

[Znok,Znok+l] U {Ylk}cB(znob il) c tJ

and therefore

ZOk+1

f f= ff,
ZOk YOk

Zno k+!

f f = f f
znOk Ylk

~.'\;

Therefore our identity is

0-1 n-l

L Jf-2: [f=O
j=O t. j=Oyo,

1) J

i.e. f f - f f = °.
YI YO

24.2.2 THEOREM :

Suppose U is an open subset of <I:: co' ci are path rectifiable curves such that

Co is FEP homotopic to ci (U).

Then

1 ~.'

for every analytic function f on U.

Proof: We shall deduce this Theorem from Theorem 1.

We suppose co' c1 are represented by rectifiable paths

Yo:[a,b]~U and YI:[a,b]~U.

Our hypothesis is that there is acontinuous function

r:[o,1)x[a,b] ~ U
satisfying the following conditions.
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1) For all t in [a, b)

Yo(t) = r(o, t),YI (t) = r(l, t)

and,

2) For all s in [0,1]

r(s,a) =Yo(a) =YI (a)

T (s, b) = Yo(b) = Y1 (b)

We shall prove that the closed rectifiable curve CI-1 . Co is homotopic to [co (a) ] ' the null

path at Co(a) .

We shall present the idea behind the proof by means of a diagram first.

For s in [0,1] we define a path <Ps: [a, b] ---7 <C

(0, b) (1, b)~--------------------~

(0, a+s(b-a))I---~--""

(O,a) (s,a) (1 ,a)

<Ps is affine on

[ b - a ] [ b - a ( b - aJ] [ ( b - a ) ]a, a+-
3

-, a+-
3

-, a+2 -3- .' a+2 -3- ,b . It maps the first

interval, second interval, and third interval onto segments [(O,a), (O,a+s(b-a))]
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[( 0, a +s (b - a)), (s, a + s (b - a)) ] and

[( s, a + s (b - a)), (s, a) ] respectively, We shall set

r0 ( s, t) = r 0 <Ps ( t ) .

Then we shall prove r0 gives a homotopy of the closed curve Cl-1 0 Co with [co (a)],

'Ps is uniquely determined by the conditions laid down on it. We have .

tp, ( tHO, a+ 3s (t - a) ) t E [ a, a +( b ;. ) ]

tp, (I) ~ ( b3s• (I -a + (b;a)). a+S(b-a)) t E [a + (b;a), a+ 2(b~a )]

when s=O it is clear that

<Po (t) = (0, a)

and so r0 <Pois [co ( a )]. ,

We define

I'0 (s, t) = r 0 <Ps (t).
l)

for (s,t) in [O,l]x[a,b]. We have proved,·'

I' 0 (0, t) = Co (a) for all t in [a, b] ,

We look at r0 (s, a) and I'0 (s, b) , By our hypothesis.

r(s, a) = Yo( a )

We have ..
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<Ps ( a) = (0, a) and

<Ps (b) = (s,a) and therefore

r0 ( s, a) = r0 ( s, b) = Yo ( a ) = Co ( a )

Now we consider r0 (1, t) .

It is left as an exercise to the reader to check that the r0 (1, t) defines the curve CI-10 co'

(See the definition of r.' 0 Yo ) therefore by Theorem 1.

Jf = J f

24.2.3 COROLLARY:

If U is an open subset of ~, y is a closed rectifiable path in U such that y - O(U), then

y ~ O(U). This corollary is treated as SAQ 1. Its solution is presented after the main text of the

lesson.

In Co 24.3 results in <Coo next we are going to make a definition for that we need some

preliminaries.
, .

,24.3.1 PRELIMINARIES:

(1) We take the symbol 00. We define

we are going to make <Coo a topological space.

For r > 0 we define

It is clear that if [I < r2 then

Denote by B the collection of subsets of a:::oo consisting of
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{B(a,r)} aE<C, r c- O

{B(oo,r)} r > 0

<pand <Coo.

It is checked easily that B is a basis for topology on <Coowhat is to be checked is that if

UI, U2 are any two elements in 8, then their intersection is a union of sets belonging to 8. For

B (a, r], B (b, s) it is done in topoloqv The other cases the verificatlonis imeediate .
.....

We describe the above topology by means of opensets. We call U ~ CCoo an open subset

of a::::oo if either

1) U c a:: and U is an open set in <1::
.. '~:'-

or 2) 00 E U and then

i} there is an r > 0 such that B( oo,r) c U

and ii) un <C is an open subset of q:-

Thus we have a topological space ~oo' If one is familiar with stereographic projection, one

can verify that. <Coo may be identified with Riemann sphere.

We extend the definition of winding number of a closed rectifiable curve around z in a:::: to z

in <Coo'

24.3.2 DEFINITION:

Suppose C is a closed rectifiable curve in cr: _ Then we d~fine

n(C, (0) = 0 .

We have already defined n (c, z) for Z E rt .

24.3.3 PROPOSITION :

Suppose C is a closed rectifiable curve in <C:. Then n (c,) ; <1::00 \ {c} 4 2Z is a continuous

function. __

Proof: We have to check the continuity at 00_
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Let y:[ a, b] ~ a:: be a closed rectifiable path defining C. Set

. A = Rub {Iy ( t )1: t E [ a, bn .
Then 0 ~ A < 00 '. Then the set

{z E <C: Izl> A} is contained in the unbounded component of a:: \ {y} . Therefore

n( e,z) = n(r,z) = 0 for Izl> A.

This implies that

n(y,z)=O on B( 00, ~) and so n(e,) is continuous at 00.

24.3.4 COROLLARY:

n (e, ) is constant on the connected components of a::oo \ {e} .

Proof: The connected components of <Coo \ {e} are the bounded componentsof a::oo \ {e} and

{oo} U. The unbounded component of <C \ {c} . So the result is clear.

24.3.5 DEFINITION :

We say that U is topologically simply connected iff <Coo \ U is connected.

24.3.6 PROPOSITION :

If U an open set in <C is topologically simply connected, then U is homologically simply
connected.

Proof: Let us set E = a::oo \ U . By Corollary n (e, ) is constant on E. Since 00 E E, that constant

must be the integer O. That is

n (e, z) = 0 if z ~ U

That is e ~ o(u)

24.4 SOLUTIONS TO SAQ'S :

, SAQ1 : Suppose U is an open set, y is a closed rectifiable path in U such that y ~ o(U). Then

show that
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11(Y,Z)=O for Z~U.

Solution: Suppose we define on U

1f(w)=.-.
w-z

Then f is analytic in U. By Theorem 1

ff= ff=O
y [p]

where p is the origin of v . By definition we have

. 1 f dw 1 f'n(y,z)=-. -=-, f=O
2m ( ) w - z 2my w y

24.5 MODEL EXAMINATION QUESTIONS :

1. If U is a convex open set, then show that every closed path y in U is ~o(U),

2. If U is an open set and y is a rectifiable closed path in U such that y ~ O(U) then

show that

y ~ o(U)

3. Suppose U = {z E <J:: z is not a non positive real number} and y is a closed path

in U, Show that

4. Suppose that V = a::\ {o} and y is a closed rectifiable curve in V. Then show that

where y:[a, b] -Hl::: \ {a}
lTIE71

and em (Iy (a)l),
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is <p: [O,21t]~<C

given by <p( t) = eimt .

5. Prove that if f is an analytic function in an open set U and y is a closed rectifiable

\ path in U such that y ~ 0 (U), then

If =0
y

6. Let U = {z E <C : z:;t: o} and

y( t) = e2nit

Show that y ~ o(U) is not true.
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Lesson - 25

CLASSIFICATION OF SINGULARITIES

25.0 INTRODUCTION

In this lesson, we study the notion of an isolated singularity of a function and its' types -
namely, removale singularity, pole and essential singularity. Further, we study (i) a necessary and
sufficient condition for an isolated singularity to be removable (see Theorem 25.1.3); (ii) a sufficient
condition for an isolated singularity to be removable (see Theorem 25.1.4) and the relation between
the singular parts of a rational function at its' poles and its partial fractions (See Discussion 25.1.12).

25.1 CLASSIFICATION OF SINGULARITIES :

25.1.1 DEFINITION:

A function f is said to have an isolated singularity at z::: a iff f is defined and analytic in

B'(a;R)=B(a;R)-{a} but not in B(a;R) for some R>O.

25.1.1.1 NOTE:

Isolated singularity of f at z = a may occur either because of the fact that f is not defined
at z = a or f is defined at z = a but not analytic at z = a in addition to that f is analytic in a deleted

Sin z Cos z 1
neighborhood of a. --, -- and - - all have isolated singularity at z = 0 as each of thesez z z .'
functions is analytic at every z *' 0 in <I: and is not defined at z::: 0 .

25.1.2 DEFINITION:

Suppose f has an isolated singularity at z = a. The point z = a is called a removable

singularity of f if there exists an an'alyticfunction g defined in a neighborhood ofa a - B (a;R) say

such that

f(z)=g(z)

for all z in B' (a; R) ,
25.1.2.1 NOTE:

Inthe above definition, we can assume (with out loss of generality) that f is defined and

analytic on B' (a; R) .



25.1.2.2 NOTE:

f has a removable singularity at z::: a means that we define f at z = a (if f is not defined
at z = a ) or f is redefined at z = a (if f is defined at z = a) so that f is analytic at z = a .

Now, the problem before us is -How to determine the removable singularity? The following
theorem gives a necessary sufficient condition for a function f to have removable singularity at
z=a.

25.1.3 THEOREM :

Suppose f has an isolated singularity at z = a. The point z = a is a removable singularity
of f if and only if

lim (z - a) f (z) = 0
Z--7-a

Proof: Assume that f has removable singularity at z = a. So, there exists an analytic function

g :B ( a; R ) ~ <C

such that f (z) = g (z) f: all z in B' (a;R) for some R > O. Now,

lim (z - a) f (z ) = 0 = lim (z - a) g (z)
Z--7-a Z--7-a

=(a-a) g(a)=O

Conversely assume that

lim(z-a) f(z)=O
Z--7-a

Since f has an isolated singularity at z = a, f is defined and analytic in a deleted

neighborhood 'of a - B' ( a; R) say. Define g: B ( a; R) ~ <C by

() {
( z - a) f (z) if z ',-:az -

g ~ - 0 otherwise 0. e. ifz = a)

Cleariy, g is analytic in B' (a; R) and is continuous at z = a (by our assumption). SQ, g is

continuous in B (a; R) .

Suppose we have proved that g is analytic in B (a;R ) , then, since g (a) = 0 , there exists

an analytic function h on B (a;R) such that
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g(z)=(z-a)h(z)

for all z in B(a;R). For any z in B'(a;R),

(z-a)f(z) = g(z) = (z-a )h(z)

and so f (z) = h (z)

Hence f has removable singularity at z = a .

Now, the theorem is complete if we prove that g is analytic in B (a;R). Wff prove this fact
using Morera's Theorem.

Let T be a triangle in B (a; R). Now,we show that

f g = 0 -------- (1)
T

Let 6 be the inside of T together with T . Now, we have the following cases.

Case 1 : a ~ 6: Clearly T ~ 0 (i.e. T is homotopic to zero). By Cauchy's Theorem, (1) holds.

Case 2 : Suppose z = a is a vertex of the triangle T . Let T = [a, b. c,a] (i.e. a,b,c are vertices of

T).Choosepoints x in [a,b]and y in [a,c] and form the triangle T] =[a,x,y,a] andthe polygon

P=[x,b,c,y,x]. Clearly

c

aL--------lx----------~----------------~b

= f g (since p ~ 0 and by Cauchy's Theorem)
Tl
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Let E> O. Since g is continuous at z = a, there exists 8 > 0 such that Iz - al < 8 implies

Ig (z)1 < ~ where e is the length of T. Now, we choose x in [a, b] and y in [a, c] such that the

,triangle TJ = [a, x, y, a] lies in the interior of B (a; 8) , Now,

f g = . f g ~ ~ x length of TJ <E ------------ (2)
T T)

since length of TJ « t .Thus (2), holds for all E> 0 . Hence, (1) holds,

Case 3 : Suppose a lies in the interior of T . Let T =
z

x~--------------------------------~~y
.: [ x, y, z, x] . Consider the triangles -

TJ =[x,y,a,x], T2 =[y,z,a,y], T3 =[z,x,a,z].

Clearly,

Jg= fg+ fg+ [s
T T) T2 T3

= 0+0+0 (by case 2)

Thus (1) holds in all cases. By Morera's Theorem, g is analytic in B(a;R),

Now, we give another sufficient condition for a function f to have removable singularity at
z = a . Consider the following.

~!5.1.4THEOREM :

If f is defined, analytic and bounded in a deleted neighborhood of I a I then f has removable
singularity at z = a .
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Proof: Suppose f is defined, analytic and bounded in B' (a; R) for some R> O. So, there exists

M > 0 such that If ( z)1~ M for all z in B' (a; R) . For any z in B' (a; R) ,

I(z-a) f(z)15Iz-aIM.

So,

lim (z - a) f (z ) = 0
z~a

Hence, f has removable singularity at z = a (by Theorem 25.1.3), we now, consider the
following. '

25.1.5 EXAMPLE:

Consider the function f (z) = sin z/ z (z ::F- 0). Since f (z) is not defined at z = 0 and since

f is analytic at each Z::F- 0 in ,<I:, f has an isolated singularity at z = 0 .

Consider

lim (z - 0)f (z) = lim sin z = 0 .z~O z-)o

By Theorem 25.1.3, f has removable singularity at z = G.

Now, we prove the same in another way. We know that for any z in <G,

00 z2n+!

sin z = L(-1)" ( )
n=O 2n+1!

Z3 z5 z7
=z--+---+···.

3! 5! 7!

So, for any Z::F- 0 in <I:,

sin z z2 z4 z6
--=1--+---+ ..·

z 3! 5! 7!

Define h: <I: ~ <I: by

27
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Thus, h has power series expansion about O. By Theorem 17.3.10, h is analytic in <C.

Clearly, f (z) = h (z) for all z::j:. 0 in q::. So, f has removable singularity at z = O. Infact, if we

define, f(O) = 1 then f is analytic at 0 also and hence f becomes an entire function.

25.1.6 DEFINITION:

An isolated singularity z = a of f is called a pole of f if and only if lim If (z)1= CI':J •
z-tOlJ

25.1.7 DISCUSSION:

Suppose f has a pole at z = a . So,

lim If(z)1 = 00.
z-ta

(i.e. given M>O, there exists a positive number E> 0 such that 0 < Iz - al <E implies

If(z)1 > M) and hence

lim _1_=0
z-ta f (z)

1
So, the function q (z) defined q (z) = f (z) is analytic in a punctured neighborhood

B' (a; R) of a and is bounded in B' (a; R). By Theorem 25.1.4, q (z). can be made analytic in

B (a; R) i.e. q (z) can be defined at z = a so that q is analytic at a. Hence

q (a ) = lim q(z) = lim _(1 ) = 0 .
z-s-a z-s-a f z

(i.e. q has removable singularity at z = a). Suppose q (z) has a zero of multiplicity m at

z=a. So,

q(z)=(z-atp(z)

for some analytic function P (z) on B (a;R) with P (a) =t= 0 . Since P is continuous at a,

1

there exists () > Q such that P (z) =t= 0 for any z in B(a; ()) c B(a; R). Thus P ( z) is analytic in
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B(a; 8) and for any z in B' (a; 8) ,

( z - a) m fJz) = p ~z) (= h(z) say)

i.e. f(z):; h(z)
(z-at

Obviously, (z _a)m f (z) has removable singularity at z = a. Let n be a positive integer

such that (z - ar f (z) has removable singularity at z:; a. For z '* a in B(a; 8) ,

(z-atf(z)= (z-:f ~(z-ar-mh(z)
(z-a) P(z)

Now, (z - ar f (z) removable singularity if and only if (z - ar~m has removable singularity

(since h is analytic in B(a;6),and h(z);eO for all z in B(a;8)ifandonlyif n=-m z O i.e. m s n .

Hence, if f has a pole at z = a then there exists a smallest positive integer m such that '

(z - a)m f (z) has removable singularity at z = a. Infact, if f has a pole at z = a then there exists

a positive integer m and a nonvanishing analytic function h on a neighborhood B(a; 6) of a such
that

., v .

f (z) :; h (z) m (z E B' (a;.3))
(z-a) /

25.1.8 DEFINITION:

If f has a pole at z = a and m is the smallest positive integer such that (z - at f (z) has

removable singular.ity at z = a, then, we say that f has a pole of order mat Z = a.

25.1.9 DISCUSSION:

Suppose f has a pole of order m at z = a. So, m is the smallest positive integer such that

h(z)=(z-at f{z) has removable singularity at z e a , So, h~z) can be defined at z=a. So

that h (z) is analytic in a neighborhood of a. So, there exists R > 0 such that h (z) is analytic in
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B (a; R). Hence h (z) has power series expansion in B (a; R) .

, ct:J

i.e. h(z)""'Lbn(z~a)" (zEB(a;R))
n=O

ct:J ,

i.e. (z~atf(z)= 2:bn(z-a)"(zEB(a;R)).
n=O '

If h (a ) = bo = 0, then

a:
(z_a)m-l f(z) = L bn (z-a)"-l

n=l
( Z E B' (a;R ))

and hence (z - a t-l f (z) has removable singularity, a contradiction to that m is the least

positive integer with (z - a)m f (z) has removable singularity at z = a. So, h (a) ;:f::. 0

i.e. lim (z - a)m f (z) = lim h (z) = h (a) ;:f::. 0 .
z~a z~a .

Since h is continuous at z = a , there exists 8 > 0 such that 6 < Rand h (z ) ;:f::. 0 for any z

in B(a;8). Now, for any z in B'(a;8),

a:

(z~a)m fez) = h(z) = I bn (z-a)"
n=O

and hence
b bl b 00

f(z)= 0 + + ... + m-I +:Lbn+m(z-af
, (z-at (z-at-1 z-a n=O

=R(z)+g(z)

where R('z) == bo, +' bl . + +,bm_1 and'
( )

m-I ... --
. , (z_a)m z-a z-a

00

g(z) = I b~+m(z-a)" .
n=O
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Clearly, g (z) is analytic in B ( a; 8) .

25.1.10 DEFINITION:

If f (z) has a pole of order m at z = a , then we can write

f (z) = R (z)+ g ( z) (ZEB' (a,8) for some 8 > 0 )

( ) bo bI bm-Iwhere R z = + +...+-- and
(z-at (z-at-I z-a

(X)

g( z) = L bn+m (z -a r is analytic in B( a;8)
11=0

R (z) is called the principal part of or the singular part of f at z = a .

25.1.10.1 NOTE:

Let n be a positive integer. Clearly, the function f on cr:: - {a} (where a E cr:: ) defined by

( )
1.

f z ----
. (z-ar

has a pole of order n at z = a .

25.1.10.2 NOTE:
~

If f has a pole of order 1 at z = a , then z = a is called a simple pole of f in which case

(z - a) f (z) has removable singularity at z = a and

lim (z - a) f (z) * 0
z~a

25.1.10.11 DEFINITION:

An isolated singularity of a function f which is neither a removable singularity nor a pole is
called an essential singularity of f.

25.1.12 DISCUSSION:

Consider the rational function r (z) ~ : i~i where p (z) and q (z) are polynomials and



Centre for Distance Education 25.10 Acharya Nagarjuna UniversitY.

q ( Z ) :f: O. Without loss of generality, we can assume that p (Z ) 'and q(z) have no common zeros

(i.e. no common factors). The poles of f(Z) are precisely the zeros of q(z). Clearly, r(z) has a

pole of order m at z = a if and only if z = a is a zero of multiplicity mfor q(z). Clearly, any rational

function with out poles is a polynomial. Since q (z) is a polynomial it has only a finite number of

distinct zeros - ai' a2" ", an say. Let Sj (z) be the singular part of r (z) at z = aj (j = 1,2,.··, n) .

Let fl (z) = r (z) - SI (z). Clearly f2 [z] is a rational function with poles precisely a2, a3'''', an .

Now f2 (z) = rl (z) - S2 (z) is a rational function with poles a3' a4" ", an . Continuing this process,

we have that rn (z) = fn-l (z) - Sn (z) is a rational function with no poles. So, rn(z) is a polynomial

-p(Z) say.

So, p( z) = rn (z)

= rn-I (z) - Sn (z) = .

n
= r(z)- ISj(z)= .

j=1

n

i.e. r(z)=p(z)+LSj(z)
j=1

This is nothing but the partial fractions expansion of r (x) .

25.1.13 EXAMPLE:

Consider the rational function

()
z4 -16z2 + 3z+61

r z =
(z-3)2 (z+4)

N9W,we determine the poles of r( z) and the singular part of r( z) at e~ch pole. Inviewof

the discussion 25.1.12, it is enough if we write partial fractions of r (z) from which we can easily.

write the singular parts of r( z) at each pole.
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C D E
Let r(z) = Az+B+-,- + 2 +--
. . . z-3 . (z-3) z+4

So, (Az+B) (z-:-3)2(z+4) +C(z-3)(z+4) + D(z+4)+E(z-3)2

Comparing the coeffici~nts of Z4, z3,z2,z and constants both sides, we have

A=l···· .... ·· .. ···············,,··········(l)

-2A+B = O· (2)

-2B-15A+ C+E = -16············· ··(3)

}6A-lSB+C+D-6E= 3 (4)

36B-12C+4D+9E = 61······ .··.···.(5).

From (1) and (2), B = 2 . Substituting the values of A and B in (3), we have

C+E=3············(6)

So, C = 3- E· Substituting A = 1, B = 2 and C = 3- E in (4) and (5), we have -

D-7E = -6 .... "" ... (7)

4D+21E = 25·········(8)·

Solving (7) and (8), we have D= 1,E = 1. Hence C= 3 - E =2. Hence

2 1 1r(z)=z+2+--+ 2 +--
z-3 (z-3) z+4

Clearly, the poles of r (z) are, 3, -4. The singular parts of r (z) at z = 3, at z = -4 are

precisely



Centre for Distance Education 25.12 Acharya Nagarjuna University

211-- + and -- respectively.
z-3 (z-3)2 z+4

25.2 SHORT ANSWER QUESTIONS :

25.2.1: Write isolated singular point of the function f (z) defined by f (z) = sin z
z

25.2.2: Is the singularity '0' of the function f (z) = sin Z removable?
. z

25.2.3 : What is the type of the singularity at z = 0 for the function f (z) = cos z
z

25.2.4 : Define removable singularity.

25.2.5 : Define pole.

25.2.6: Define essential singularity.

25.2.7: Define singular part.

25.2.8 : Write the singular part of the function
)

eZ -1
f (z) = -3- at z = 0

z

1
25.2.9: . For the function 2 2 is a pole of order,

(z-2)

(b)

(a) and the singular part of this

function at z = 2 in

25.2.10: Determine the nature of the singularity of the function

1 2
f (z ) = z + 3 - - +. at z = 1.

z-1 (z_1)2

eZ -1-z
25.2.11: Is it possible to define f (z) = 2 at z = 0 so that f is an entire function.

z

25.2.12: Determine the isolated singular points of the function
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2 -
f (z) = z( z~ ~) and determine the type of each singularity.

25.2.13: Write down the order of the pole of the function

f'{z] = log (1+z)
z2

25.2.14: What is the relation between the singular parts of a rational function and its partial
fractions?

25.3 MODEL EXAMINATION QUESTIONS :

25.3.1: Suppose f has an isolated singularity at z = a . Prove that the point z = a is a removable

singularity of f if and only if

lim (z - a) f (z) = 0 .
z~a

Deduce that the function f (z) defined by

cosz-l[( z) = has removable singularity at z = 0 .
z

25.3.2: Define removable singularity. If f is defined, analytic and bounded in a deleted
neighborhood of a , prove that f has removable singularity at z = a. Deduce that the

function [( z) defined by

fez) = z sin.!..
z

has removable singularity at z = 0 .

25.3.2 : Define pole. If f has a pole at z = a, prove that there exists a positive integer m and a

non vanishing analytic function h on a neighborhood B (a; 0) of a such that

f(z)= h(z)
(z-at

25.3.3: Let

[(Z) 1__
- z(z-l) (z-2)'
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(i) Determine the isolated singular points and their type.

(ii) Write down the partial fractions expansion of f ( z ) .

(iii) Determine the singular part of f (z) at each of its pole.

25.4 EXERCISES :

25.4.1: Each of the following functions f has an isolated singularity at z = O. Determine the

nature; if it is a removable singularity define f (0) so that f is analytic at z = 0; if it is a
pole find the singular part.

sinz
(a)

z

cosz-l
(c)

z

(e)
log(z + 1)

z2

z2 +2
(g) z(z-l)

1 :j!';

(i) z Sln-
Z

(b)
COSZ

Z

(d) exp( z-I)

(f)
COS(Z-I)

-Iz

(h)

n . 1
Z Sln-

Z

n
25.4.2 : Show that f (z) = Tan z is analytic in <C except for simple poles at z = 2" + nx , for each

integer n. Determine the singular part at each of these poles. (Hint: Let z = a be a

simplepoleoff(z). So, lim (z-a) f(z)=b(say):;t:O. So,singularparjoff(z) at
z~a

b
z=a is --).

z-a

25.4.3 : If f : G ~ <C is analytic except for poles in G, prove that the set of poles of f cannot
have a limit point.
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25.4.4 : Give the partial fractions expansion of

Determine the isolated singular points of f and determine the nature of each isol~ted

singular point and further, if f has removable singularity at z = a then define f (a) sO.!h.~t

f is analytic at Z= a; if f has a pole then determine the order of the pole and the
singular part at that pole. '

25.4.5: Let fhave an isolated singularity at z = a. Prove that if either

lim Iz - als If (z)1 = 0 ~------- (1)
z~a

or lim iz - als If (z)1 = 00 ------- (2)
z~a

holds for some real s (i. e. S Em.) , then there is an integer m such that (1) holds if s > m

and (2) holds if s < m
-.

. 25.4.6: Let f , a and m be as in Exercise 25.4.5. Show:

(i) m = 0 if and only if z = a is a removable singularity and f (a) ::j:. 0 ;

(ii) m < 0 if and only if z = a is a removable singularity and f has a zero of order -m
at z=a.

(iii) m > 0 if and only if z = a is a pole of f of order m.

25.4.7: A function f has an essential singularity if and only if neither (1) nor (2) (of Exercis~
25.4.5) holds for any real s.

25.5 ANSWERS TO SAQ'S

25.2.1: Clearly, f (z) is analytic at every z::j:. 0 in <C. Infact, f (z) is not defined at z = O. So, f

has an isolated singularity at z = 0 .

25.2.2 : Yes; Since

"
lim (z - 0) f (z ) = lim-~nz = 0
z~o Z-?O
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and by the necessary and sufficient condition given in Theorem 25.1.3.

25.2.3: Clearly, f (z) is analytic at every z* 0 in <Cand

So, f has a pole at z = O. Now

lim z f (z ) = lim cos z = 1 :;t: 0 .
Z~O Z~O

So, f has a simple pole at z = 0 .

25.2.4: See Definition 25.1.2.

25.2.5: See Definition 25.1.6.

25.2.6 : See Definition 25.1.11

25.2.7 : See Definition 25.1.10.

25.2.8: For any z in <I:, we have

Z z2 z3 z4
eZ = 1+ - + - + - + - + ...

1! 2! 3! 4!

For any z:;t 0 in a::: ,

1 1 1 z=--+-+-+-+ ...
I! z2 2!z 3! 4!

Hence the singular part of f [z] at z = 0 is

1 1--+-
I! z2 2! z

Thus, f has a pole of order 2-8t _z= 0 .

1
25.2.9: (a): 2 and (b) [z )2z-2
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25.2.10: Clearly, Z = 1 is an isolated singular point of f (z) and In = 2 is the smallest positive

integer such that [z _1)2 f (z) has removable singularity. So, f (z) has a pole of order '2·

at z = I. The singular part of [( z) at z = 1 is

-1 2--+--~
z-1 (z-I)2

25.2.11 : Clearly, [( z) has an isolated singularity at z = 0 (as [(0) is not defined and is analytic at

every z * 0). We know that for any z E <C,

Z z2 z3
=1+- +- +-+....

1! 2! 3!

So, for any z * 0 in a:: ,

Since the right hand side of (1) is a power series expansion which converges and hence

.. analytic so that f (z) has removabl~ singularity at z = 0 . Obviously, if we define f (0) = ~

then, f becomes an entire function.

Another Method :

Clearly z = 0 is an isolated singular point [( z] . Now,

eZ -l-z
lim (z-O)[(z) = lim ---
Z~O Z~O Z

eZ -1
= lim -- (by L' Hospital's Rule)

z~o 1

=0
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By Theorem 25.1.3, f{ z) has removable singularity at z::::O.

So, we have to define f (0) as

eZ -1-z
f(O)=limf(z)=lim 2

z-)O z->O Z

= lim e
Z

-1 (by L' Hospital's Rule)
z-o-O 2z

eZ
= lim - (by L' Hospital's Rule)

z-o-O 2

1
= 2'

25.2.12: Clearly, z::::0 and z = 1 are isolated singular points of f(z) and

2
f(z)-- z +1 __1-_1.+_2 0 d I fClearly, r.= an z = 1 are simp e poles 0 f.
. z(z-l) z z-l

25.2.13': 1 (one)
" ~ -i- .'

25.2.14: Any rational function r( z) can be written as

r( z) = some polynomial (entire function) + sum of the singular parts of r( z) .

REFERENCE BOOK :

... J.B. Conway: Functions of one complex variable - Second Edition - Springer International
Student Edition.

Lesson writer:

I



Lesson - 26

LAURENT SERIES DEVELOPMENT·

26.0 INTRODUCTION

In this lesson, we study the Laurent series expansion of a function f which is analytic in

the annulus ann (a;Rl' R2) where 0 .s R, < R2 ~ 00 (See Theorem 26.1.4) and we determine the

type of singularity of a function f at the isolated singular point z = a on observing the Laurent

Series Expansion of f in the annulus ann (a; 0,R) = B' (a; R) = punetwred disk with center a ancl

radius R- (for some R>O) (see corollary 26.1.4.1). Further, we study the Casorati-Weierstrass
Theorem (See Theorem 26.1.9). For a function defined in a neighborhood of 00 (infinity), we study
the notion of isolated singularity at infinity and the concepts - removable singularity, pole, essential

. singularity at infinity.

26.1 LAURENT SERIES DEVELOPMENT :

26.1.1 DEFINITION:

Let {zn/n = 0, ± 1, ± 2, ... } bea doubly infinite sequence of complex numbers. We say that

00 00 00

the series L zn is absolutely convergent if both the series L zn and L z_n are absolutely,
n=-oo n=O n=O

convergent and in this case we write

00 00 00

L zn = L zn + L z_n .
n=-oo n=O n=1

26.1.2 DEFINITION :

00

Let un be a function on a set S for n = 0, ± 1,... and let I Un ( s) converges absolutely,
n=--oo

00 00 00

for each s in S. We say that L un converges uniformly over S if both L un and L u_n
n=-oo n=O n=1

converges uniformly on S.

26.1.3 DEFINITION :

- Let 0 ~ RJ < R2 ~ 00 and a be any complex number. Define
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ann(a;RJ>R2) = {zE<C/R\ <lz-al<R2} = The set of all points between the

circles having radii RI and R2 ' centered at a (called the annuius).

26.1.3.1 NOTE :

ann (aj 0, R) = {z E <c/O< Iz- al < R} = B'( a;R) = the punctured disk with center a and

radius R.

Now, we study the most important theorem.

26.1.4 THEOREM (LAURENT SERIES DEVELOPMENT) :

Let f be analytic in the annulus ann(a;R1;R2). Then

en

f(z) = L an (z-ar
n=-oo

where the convergence is uniform over ann(a;f\,f2) if Rl <f\ <f2 <R2. Also, the

coefficients an are given by the formula.

where y is the circle Iz- al = r for any r with R\ < r < R2. Moreover, this series is unique.

I

Proof: If Rl <fl <f2 <R2 and Yl:!z-al=rl, Y2:lz-al=f2 are circles then Yl ~Y2 (i.e. YI and Y2

are homotopic) in ann(a;R\,R2) and hence f g = J g for any analytic function g in
Y\ Y2

ann (a; Rl' R2) (by Cauchy's Theorem) so that the ans are independent of r with R1 < r < R2 .

1 f f{w}f2(z)=-. --dw
2m I I w-zw-a=r2

where Iz _.al < f2' R 1 < f2 < R2. Clearly, this is well defined. By Lemma

analytic in B (a;R2) . Let



~c~o~m~p~le~X~A~na~IY~S~iS~~~~~~~~ 26.3 ~~~~~~~L~a~ur~e~nt~S~e~rie§s~D~e~ve~l~op~m~e~nt~

G = {Z E 11:/IZ - a] > Rd
Define f1: G ~ <C by /

1 f'{w]
fl(z)=--. f -dw

2m I I w-zw-a=1)

where Iz-al > fl' RI < fl < R2. Clearly, f, is well defined and is analytic in G.

Let Z E ann(a;R1,R2) i.e. RI < Iz -al < R2· Choose r" r2 such that RI < fl < Iz-al < f2 < R2.

Let YI and Y2 be the positively oriented circles Iz-al = f" Iz-al = f2 respectively i.e.

YI (t) = a + fleit, "12 (t) = a + f2eit (0 ~ t ~ 2n). Choose a straight line segment A going from a point

on "11 onto a point on Y2 not passing through z , Clearly, YI ~Y2 in ann(a;R}7R2)- Put

Y=Y2-A-YI+A.Then y is a closed curve and y.~O i.e. y is homotoplc to zero. Clearly,

n( YI;Z) = 0 and n( Y2;Z) = 1. For any w not in ann (a;E.t,R2), n( Y; w) = O. By Cauchy Integral

Formula,

f(z)= _1. ff(w) dw
2m w-z

'Y

;;;;;_1 f f(w) dw __1 ff(W) dw
2ni w-z 2ni w-z -

YZ YI

Since f2 is analytic in B (a; R2)! f2 has a power series Which is valid in B (a; R2) i.e.

00

f2 (z) = Lan (z-ar (z E B(a;R2)) ---.,'------- (1)
n=O

a = f}n) (a) = _1 f f(w)dw
where n , 2 . n-i-ln. 1t1 (w-a)-

YZ

28 for n = 0,1,2,,,,
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,( 1: 1 II!zEB 0;- : implies 0 <Izl<- i.e.!_l > R1
Rl RI z]

i.e. I.!.. + a - a: '> R1 i.e . .!.. + a E G . Since f] is analytic in G, g is analytic in B'(O; ~ J i.e
z z . 1

Z = 0 is an isolated si ngularity of g. Now, we show that g has removable singularity at' z =0 .

Let r>R1. Let e(z)=d(z,C) , where C is the circle Iz-al=r. Put

M ~ max {If (wYw E C} (Which exists since f is continuous on the compact set C). Then, for

any z with Iz-al > r,

. I, I 1 ff(w) i
I z =- --dw

. () 2ni w - z I
Yr

Mr
e(z)

Clearly, lim e :) = 00 and hence lim : . =0 •. :
Z~OO z~oo

So, lin: g (z) = lim fl (a +.!..) ="
z~o z~o Z

Thus, g has removable singularity a: L . ,~:nce ~~ g(z) = 0, if w ~ defin-e g(O) = 0

)
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then g is analytic in B(0;_1_J. SO, g has pOIJI_'erseries representation about 0 i.e.
R} .

co

g(z) = LBnzn
n=l

Now, for z E G i.e. Iz-al > RI'

if

= L. n, (z-afn
n=· ~

n= .f.)

'r

= 1. n., (z-ar
n=vco

-1..•., ( )n
= 2.• an z-a

n=v-co
(where an = B_n ) -------------- (2)

Let RI <r< R2. Now

(
lit) 1 it .2rc g - e . - e . 1 dt

=_1_ I r r
') . 1- ( I)L7t1 0 It n+.-- e

rn+! .
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___r" I fl (z) dz . ( " .' it )
where r(t)=a+re-1 (O:::;t:::;2n)

2n r -i(z-a)(_r. )~
z-a

Let n c O:

f2 (z)
Since ( )n+1 is analytic inB (a; R2)z-a

f f2 (z) 1 dz = 0 (by Cauchy's Theorem),
r(z-at+ '

So,
a = __ 1 If I(Z)+f2 (z) dz

n 2' ( r1tl r z-a

1 f(z)dz
= 2niJ(z-at+1

1 f(w)'dw
= 2ni! (w -a y+1 (w~ere y = -r i.e, y:[O,2n] ~ <C is the circle defined by

y(t)=a+reit)j

/



rYJ

= L an (z - ar -----------(3)
n=-rYJ

By the convergence properties of the series (1) and (2) on the proper annuli, (3) converges
uniformly and absolutely on proper smaller annuli.

Now, we prove the uniquness of ans i

Assume that

rYJ

f {z] = L bn (z-ar (z E ann(a;R1,R2))
n=-rYJ

Let m be an integer. Let y be the positively oriented circle with center 'a' and radius 'r'

where R1 < r < R2. Now,

1 f f(w)dw = f: bn _1_. f(z-ar-(m+1)dz =b
m

2ni y (w - a )m+l n=-rYJ 2m y

{since: the value of the integral is 0 for n-(rn+1) :;t: -1 (as (z-ar-(m+l) has a

primitive) and is 2ni otherwise}.

Hence, am = bm . Thus, the series (3) is unique.

26.1.4.1 COROLLARY:

Let z = a be an isolated singularity of f and let

rYJ

f'{z] = L an(z-ar be its Laurent, series expansion in
n=-rYJ

ann(a;O,8){=B'(a;8)). Then:

(a) z = a is a removable singularity of f iff an = 0 for n:=:;-1 ;

(b) z = a is a pole of order miff a_m :;t:. 0 and an' = 0 for n S; -(rn + 1) ;

(c) z = a is an essential singularity of f iff an :;t:. 0 for infinitely many negative integers n .
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Proof: (a) Assume that an = 0 for n .:::;-1. Define g on B (a; 8) by

OCJ

g(z) = I an (z-ar
n=O

Bya known theorem, g is analytic in B (a; 8) . Clearly, g (z) = f (z) for all z in B' (a; 8) . So,

f has removable singularity at z = a .

Conversely assume that f has removable singularity at z = a . So, there exists an analytic

function g on B(a;8) such that f(z)=g(z) for all z inB'(a;8). By Theorem 17.3.10, g has

power series expansion in B ( a; 8). Let it be

OCJ

g(z) = L bn (z-ar
n=O

Since f ( z ) = g (z] for all z in B' ( a; 8) ,we have that an = bn (n ~ 0) and an = 0 for n =s; -1.

(b) Assume that f has a pole of order mat z = a. So, m is the least positive integer such

that (z - ar f (z) has removable singularity at z = a. So, (z - ar f (z) has power series expansion

about, Z = a in B( a;8) i.e.

OCJ

(z-a)ffif(z)= L bn(Z-ar(ZEB(a;8)).
n=O

For any z in B' (a;8) I

fez) = bo + bl + ..... +_bm 1 + ~ b (z-a)n
m m-I ~ n+rn

(z-a) (z-a) z-a n=O .

But
00

f (z) = L an (z - ar ( Z E B' (a;8) )
n=-oo

So, an=O for n.:::;-(m+l). Clearly, bo=a_m:;t:O (otherwise (z_a)m-lf(z) has

removable singularity, a contradiction to that m is the least positive integer such that (z - a)m f (z)

has removable singularity).
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Conversely assume that a_m· *- 0 and an = 0 for n ~ - (m +1) . So,

00

f (z)::;: l: an (z - at
n=-m

(z E B'(a;o))

Define g: B( a;o) ~ <Cby

g(z)::;: a-m +a_(m-I) (z-a)+ ... · ... ··

Clearly, g (z) ::;:(z - a)m f (z) for Z E B' (a; 0); g (z) has power series expansion (which

converges in B (a;0) and hence analytic in B(a;0) . So, (z - at f (z) has removable singularity

at z = a. If j is a positive integer such that j < m , then

(z-a)j f(~)::;: I an (z-ar+j
n=-m

and hence (z - a)j f (z) has no removable singularity (since a_m *- 0 ). So f hasa pole of

order m at z = a .

(c) Assume that f has an essential singularity at z = a. Suppose an *- 0 holds only for

finitely many negative integers n. Then we can choose a positive integer m such that a_m *- 0 and

an ::;:0 for n :-:;:;- (m + 1) . By (b), f has a pole of order m at z::;: a , a contradiction to our assumption

that f has an essential singularity at z.> a .

Conversely assume that an *- 0 for infinitely negative integers n. By (a), f cannot have

removable singularity at z = a. By (b), f cannot have a pole at z = a. So, f has an essential
singularity at z::;: a .

In the following examples 26.1.5, 26.1.6 and 26.-1.7, we first write the Laurent series
expansion about the isolated singular points and then determine the type of singularity in each
example.

26.1.5 EXAMPI.,.E:

Consider the function
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f{z] = e
Z

-1
z

Clearly, f is not defined at z = 0 and f is analytic at every z *O. So f has an isolated

sing~larity at z = O. We, now write the Laurent Series Expansion for f (z) in ann (0; 0, 00). We

know that for any z E <C

0() z" Z z2
eZ = I- = 1+- +- +.....

n=O n! I! 2!

For any z *0 in <r::,

- , eZ -1 1 z z2
f(z)=-·-z- = 1! + 2! +3T+ .

This is Laurent Series Expansion of f (z) in ann (0; 0, 00). Since this Laurent Series
"

Expansion contain no negative powers of z - 0 (i.e. z), f (z) has removable singularity at z = 0 .

26.1.6 EXAMPLE:

Consider the function

f'{z] = Co!Z
z

Clearly, f is analytic at every z *0 in <C and f is not defined at z = O. So, f has an

isolated singularity at z = 0 . We know that for any z in <C,

0() (-lr z2n-
cas z = L -0.......-:-'--:--_

n=O (2n)!

'2 ' 4z z=1-- +-_ .
\ 2! 4!

For z * 0 in <r::,



This i~ the Laurent Series Expansion of f (z) in ann (0; 0, 00) . Clearly, f has a pole of order

4 at z=O.

26.1.7 EXAMPLE:

Consider the function

Clearly, f is analytic at z *- ° in <c and f is not defined at z=O.So, f has an isolated

singularity at z = °"For any z *- ° in a:::,

OCJ 1 1
=L,"--n

n=O n. z

This is Laurent Series Expansion of f (z) in ann (0; 0, 00) . Since this series contains infinite

number of negative powers of z - 0(= z), f has an essential singularity at z = 0.

26.1.8 EXAMPLE:

Consider the function

1f(z)-----
- z(z-l)(z-2)

We now, write all possible Laurent Series Expansions. Clearly, z = 0,1,2 are isolated singular
I

points of f. At each of these points f has a simple pole (This fact is clear). '

Now, we obtain partial fraction expansions for f (z) . Let /
ABC

f(z)=-+-+-
z z-1 z-2

So, 1== A(z-l)(z- 2)++Bz(z- 2)+Cz(z-l)
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z=0=>I=A(-I)(-2) i.e A= 7i
z = °=>1= B( -I) i.e B =-1

z=2=>1=C.2.(1) i.e C= h
Hence f(z)=!.! __ I_+!._I_.

2 z z-I 2 z-2

I : About z:::: °,we have Laurent Series Expansions in

(i) ann(O;O,I) (ii) ann (0;1,2) (iii) ann (0;2, 00)

(i) ann(O;O,l) : Let z E ann(O;O,I) i.e. 0 < Iz-Ol < 1. i.e. °< Izi< 1.

1 1 1 1 1f(z)=-.-+~--.-
2 z l-z 4 l-~

2

1 1 00 n 1 00 (z)n=_._+2:z -_'2: -
2 z n=O 4 n=O 2

1 OO[ l]n=-+2: 1-- z
2z n=O t1+2

2

(ii) In ann(O;1,2): Let zEann(O;1,2) i.e. I<!z!<2

·111111f(z)=-. --_. - - -.-
?77 1 II 7
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, 00 1 1 1 00 Zn
=-~---.--~-L.. n+I 2 L.. 2n+2

n=\Z Z n=O

2

(iii) In ann(O;2,oo): Let zEann(O;2,~·i·-e:'I~r>2~~
" '

<,

1 1 ,1 1'----.--+-.~
z 1-1. 2z 1.-~

z z
--.J

1 1
2 z

1 00 (l)n 1 _00(-,2 )',n._L - + ---=z::.=
Z n=O Z 2z n=O Z

\-n
Z

'---.
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II. About z = 1, we have Laurent Series Expansions in

(i) annfl; 0, 1) and (ii) ann(I;I,oo)

(i) In ann(I;O,l) : Let Z E ann(I;O,I),

So, °< Iz-11< 1. Let u = z-1.

Then °< lul < 1.

Now,
1 1 1 1 1f(z)=-o- ---:- + - 0-

2 z l-z ·2 z-2

1 1 1 1 1.=/0 +_0 __
2 l+u u 2 u-l

1 1 1 1=-.------.--
o 21+u u 2 l-u

Acharya Nagarjuna University
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ICO
0 Ilco

=- I (-u) --~-Iuo
2 n=O u. 2 n=O

1 1 ~ [()O ] n= -- + - L.- -1 - 1 u
. u 2 n=O,

1 1=--+-
u 2 I -2 U

O

n is odd

,. ~

1 coI (z_1)20+1
0=0'

=---
z-1

iii) In ann(l;l,oo) : Let z e annjl.Lco]

------/ ------
-r > /~I--< '\.',,-_

~//I h~"
i.e. Iz -11 > 1. Put u = z -1. Then lul > 1.

1 1 1 1 1f(z)=-·- -- + -.-
2 l-i u u 2 u-l

1 1 1 1 1=_.----+_._-
2u l+..!. u 2u 1-..!.

u u

»-.,.' .

1 co ( 1)n 1 1 co (1)0--I -- --+-2:-
2u n=O u n 2u n=O u
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= L u-(n+l) = Iu-(2n+l)

n iseven. n=1

00 1
= L ( )2n+1

n=1 z-1

III About z = 2, we have Laurent Series Expansions in ann(2; 0, 1), ann(2; 1,2),

ann(2;2,ex) ) .
J

(i) In ann(2;O,1): Let zEann(2,O,1) i.e. 0<lz-21<1. Put u=z-2.

So, °< lul < 1.

1 1 1 1 1
Now [(z)=-·_--+·_·-

, 2 u+Z u+I 2 u

1 1 1 1 1=_.-----+_.-
4 1+~ l-i-u 2 u

2

~ r 1 'l ( )11 1= L-. -- - J -u +-
. ~11+2 2u

n=OLc: -

(f) ( . n r 1 l n 1=" -I) :-- -l,u +-. L-. ~11+ 2u
n=O ..... J

; ..., 11 r" 1 ] 11 1
=- ~(-1) i ·2-n-..-~-1 (z-2) + -2(-z--2-)

n-O-



o

(ii ln ann(2;1,2): Let zEarin(2;1,2) i.e. I<lz-21<20 Put u=z-20

So, 1< lul< 2 0

1 1 1 1 1f(z)=-o_-- +-0-
2 u+2 u+I 2 u

1 1 1 1 1 1=_0 0__ + _0_
4 1+~ u Io~! 2 u

2 u .

~'( ,n+l 1 I I ~ (-It n= L.. -1) --;;-:tT--20 u + L.. 2n+2 u
. n=I U n=O
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(iii) In ann (2;2,00 ) : Let Z E ann (2; 2,00) i.e. Iz- 21> 2 i.e. lul > 2 where u = z- 2.

~,Now, 1 1 1 1 1f(z)=-._--+_·-
2 u+2 u-i I 2 u

1 1 1 1 1 1
=-. -- - -. -- + _.-

Zu 1+l u 1+l 2 u
u u

1 OCJ ( 2 In 1 OCJ ( 1In 1- - L -- - - L -- + -
2u n=O U U n=O U 2

1
U

!
I

I

=I[2n
-
I--l]C-1r· 1 n+l!

n=I -- ", (z - 2)
<;

"
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26.1.8.1 NOTE :

In the above example 26.1.8, the ~jn,gular part of f at.. , .... . -.- ;- .

(i)
1

z=O is-'
2z'

(ii)
1

z = I is --- . andz= l ' ,

1
z = 2 is 2 (z - 2)

26.1.9 THEO~e,M (CASORATI-WEIERSTRASS THEQREM) :

(iii)

If f has an essential singularity at z = a then for ,ev~ry 8 > 0 ,

f( ann (a;,0,8)) = <C

l.e. f(ann(a;0,8)) is dense in <C,

Proof : Suppose f has an essential singularity at z = a .As,s,~m~ that the theorem Is false. So,

there exists 8 > 0 such that

f (ann (~;P,,¢)) =# <C.

29 i.e. there exists W E <Csuch that w is not in f (ann (a; 0, 8)) .
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Hence, there exists an E> 0 such that /'

f( ann ( a;O,8))n B( W;E) = ~

l.e. for any z in ann(a;O,B),f(z)e:B(w;E)

Le.lf(z)-WI ~E for allz E B'(a;B)

, .
,';' .:

1 1
i.e. f(z)- W ~ ~ for all z E B'(a;8).

Without loss of generality, we can assume that f is analytic in B'(a;B) (as f has an

isolated singularity at z = a ).

Define g on B'(a;8) by

1
g(z)= f(z)-w

Clearly, g is analytic and bounded on B' (a; 8). By Theorem 25.1.4, g has removable

singuarityat z = a. By defining

:." .'. :.;;'.-
g(a) = lirn g(z)

Z--7a

g becomes analytic in B (a; 8) .

Case 1: g(a)1=o:g~a) =f(a)-w i.e. f(a)= g~a) +W. Since g(a)1=Oand~g iSCO~itihuou~at

z = ~,t there exists "BI >0 such that B) < Band g ( z ) 1=0 for any z . in B (a; B) ). Define

( Z E B(a;81) ) .

Since g is analytic in B (a; 8)) and g (z) 1=0 for all z in B (a; 8)) ,we have that h is analytic

In H( a; OJ). Clearly; h (z) = f (z) for any z in B' (a;Bd . So f has removable singularity at z = a ,
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a contradiction to that f has essential singularity at z = a .

Case 2 : g( a) = 0 : Suppose z = a is a zero of g of multiplicity m. So, there exists an analytic

function h on B (a; 0) such that

g(z)=(z-a)mh(z) (zEB(a;o))

and h(a):;t:O.Sothereexists 02 >0 such that 02 <0 and h(z):;t:O for any z in B(a;02)

For any z in B' (a; (2) ,

f(z)-w = _1_ = 1
,g(w) (z-at h(z)

Clearly,

lim If(z)-wl = 00.
z~a

Since If(z)- wi ~ If(z)1+Iwl,

lim If (z)1= 00
z~a

Thus, f has a pole at z = 0 , a contradiction to that f has an isolated singularity at z = a .

Hence our assumption is false i.e. the theorem is true.
, i.\

26.2 SINGULARITIES AT INFINITY:

26.2.1 DEFINITION :
: .

• \""" •• 1

Let R > 0 and G = {z E <r:/lzl > R}. Let f: G ~ <r: be a function (i.e. f is defined in a

neighborhood of 00 except at (0). We say that

(a) f( z) has removable si~~Ularity at 00 if f (~) has removable singularity at z = 0";

(b) f (z) has a pole at infinity if f (~) has a pole at z ~ 0 ; in t~is case, the pole of order



Centre for Distance Education 26.22 Acharya Nagarjuna University

at infinity for [( z) is defined as the pole of order at z = D for [( ~) .

(c) [( z) has essential singularity at infinity if [( ~) has essential singularity at z = D.

26.2.2 THEOREM :

An entire function has removable singularity at infinity if and only if it is constant.

Proof: Let f be an entire function, So,

00

fez) = Lan z"
n=O

For any z * 0 in <C,

'(I) 00 1[-. = L an ---;
z n=O Z

Now,

f has removable singularity at infinity

(~) has removable singularity at z = 0

~ an = D(n = 1,2, ) (By Corollary 26.1.4.1 (a))

~ [( z) = ao for all (for all z in <C) i.e. f is constant.

26.2.3 THEOREM :

An entire function has a pole of order m at infinity if and only if it is a polynomial of degree m.

Proof: Let [be an entire function. So,

00

fez) = Lan z"
n=O

For any z.« 0 in <J:,



~omplex Analysis 26.23 - Laurent Series Development '-

(1) <Xl 1
f - = L. an --;;

z n=O Z

Now,

f has a pole of order m at infinity

¢::::> f (~) has a pole of order m at z = °
¢::::> am '* ° and an = ° for n ;:::m + 1

i.e. f is a polynomial of degree m.

26.2.4 THEOREM :

Consider the rational function

()
_p(z)

r z - q(z)

where p(z) and q(z) are polynomials, q(z),*O. Then:

(a) r( z) has removable singularity at infinity if and only if deg p( z)::; degq (z)

(b) r( z) has a pole of order m at infinity if and only if deg p( z) = m+ degq (z).

Proof: Let p(z)=ao+aJz+a2z2+ +a. z", q(z)=bo+bJz+b2Z2+· +b.z", an ,*0,

be '* O. Now,

= ze-n f (z)
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n n-l

(
aOZ + alz + +a

where f z) = e I' n
bo Zf + bl z - + ..... + b,

Clearly lim f'{z] = ~.
1 z~o be

(a) r( z) has removable singularity at infinites.

<=>r (;) has remova,ble ~ingularity at z = 0

. (1-)<=>hm r - exists
z---+o z .

<=>R~n i.e. deg p(z):::;degq(z).

(b) r(z) has a pole of order m at infinity.

<=>r(~)has a pole of order mat z = 0

'. <=>m is the least positive integer such that zmr (~) has removable singularity and

<=>m+R-n=O
i.e. m+f -= n

/

i.e. m+degq(z)=degp(z)

i.e. degp(z)-degq(z)=m.

26.3 SHORT ANSWER QUESTIONS :
,. ",

1 1 '
26.3.1: The Laurent Series Expansion of f (z) = - + ""2 at the isolated singular point z = 0z z

" is _

26.3.2: The Laurent Series Expansion of f (z) at z = 1 is



/

,Complex Analysis 26.25 Laurent Series Development'

f(z) = f ~(z_-1-<--r_-3
n=O n!

Then the type ofsingularity of f (z) at z = 1 is _

26.3.3: Write the type of singularity of the function

00 1
f(z)= L ,n+2 at z= Il

n=O n.z

26.3.5: Write the type of singularity of the function

eZ -1f(z)=-4- at z e O:
z .;.:

1
26.3.6: Let f (z) = (z -1)( z _ 2) (z - 3)

. /'

Write the annulus in which the Laurent Series expansion is to be considered in the
determination of the type of singularity at z = 2 .

26.3.7: State Casorati-Weierstrass Theorem.

25.3.8: Determine the isolated singular points of the function f (z) = Tan z.

26.3.9: Write the type of singularity at·infinites of a constant function.

26.3.10: If an entire function f'{z] has removable singularities at infinity, what can you say

about the function f (z) ?

26.3.11 :'Write down the type of singularity of a polynomial of degree m at infinity.

26.3.12 : Let f be an entire function with pole of order m at infinity. What can you say about
f?

26.3.13 : Write down a necessary and sufficient condition for a rational function' r ( z) = p ((z))
. q z
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to have

(i) removable singularity at infinity

(ii) pole of order m at infinity

26.3.14: State Laurent Series Development Theorem.

26.3.15: State Casorati-Weierstrass Theorem.

26.3.16 : Laurent Series Expansion of the function

1 1 1
f'{z] = 2" + 3" +5 in ann (0; 0,00 ) is

z z z

2.6.3.17 : Write the annulus in which the Laurent Series Expansion of f (z) = exp (_1_) is
, z-1

valid.

26.3.18: Define the annulus aIUl(a;R,R2)

26.3.19 : Is the following statement true?

',ilf f has an essential singularity at z = a then for every 0 > 0, f (ann (a; 0, 0)) is

dense in q::"

26.3.20: Write down the type of singularity of the rational function
"

Z3 +z2 +1
r( z) = 6 5 at infinity.

, z +z +3 ,

25;3.21 : Let

Z6 + z5 + 1
r ( z ) = -z-4 -+-z-3-+-z-+-1

What is the order of the pole of r (z) at infinity?

26.4 IVIODELEXAMINATION QUESTIONS :
26.4.1: State and prove Laurent Series Development Theorem.

26.4.2: State Laurent Series Development Theorem. Write the Laurent Series Expansion of
the function
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1f (z) - ---:------:--:-----
- z(z-1)(z-2)

./

in the annulus ann(1;O,1) and hence determine the type of singularity of fat z =1

and write the singular part of fat z = 1.

26.4.3: State and prove Casorat-Weierstrass Theorem.

26.4.4: Define the isolated singularity of a function at infinity. Prove that an entire function
has removable singularity at infinity if and only if it is constant.

26.4.5: Prove that an entire function has a pole of order m at infinity if and only if it is a
polynomial of degree m.

. 26.4.6: Let r(z) = :~:~ be the rational function (where p(z), q(z) are polynomials,

q(z) :;z': °).Prove that

(i) r(z) has removable singularity at infinity if and only if deg p [z] < deg qjz]:

(ii) r(z) has a pole of order m at infinity if and only if deg pj z] = m+degq(.z).

26.5 EXERCISES:
26.5.1: Consider the Exercise 25.4.1. In each of the problems in 25.4.1 , obtain Laurent Series

Expansion and hence determine the type of singularity at z = °.
26.5.2: Suppose f has essential singularity at z = a. Prove the following strengthed version

of the Casorati-Weierstrass Theorem: If e E <r:: and E> °are given for each 8 >0,

there is a number a with Ie- al <E such that f (z) = a has infinitely many solutions

in B( a;8).

26.5.3: Give Laurent Series Expansion for the function

1
f(z)= (z-1)(z-2)(z-3)

in each of the following annulii.

(a) ann(l;O,l)

(e) ann(3;2,co)

(b) ann(2;O,1) (c) ann(3;O,1) (d) ann(3;O,1)

(f) ann (2; 1,co)
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~6.5.4: Obtain the singular part of the function f [z}. defined in Exercise 26.5.3 at each of its

isolated singular points and hence determine the type of singularity.

26.5.5: Consider the Exercise 25.4.1. Determine those problems of Exercise 25.4.1 for which

z = 0 is an essential singular point; compute (or determine) f({ z E <c/O < Izl < 3})

for arbitrary small values of 3 .

(Hint: See Casorati - Weierstrass Theorem)

26.5.6: Give the Laurent Series Expansion of f ( !Z) = exp ( ~) . Can you generalize this result? ~:

For 0 < Izl < 00 , where n ~ 0

1 1t

a =- feAcost cos nt dt .n ,
7t 0

(b) Similarly, show that

for 0 < Izl < 00, where

1 1t .

bn =- feos (nt-Asint)dt
7t 0

26.5.8: Let G = {Z E <C/O < Izl < I} and let f :G ~ <c be analytic. Let y be a closedrectifiable

curve in G such that n( y;a) = 0 for all' a' in <C-G. What is If? why is it so?
y

26.5.9: Let f be analytic in G = {z E <c/O < Iz-al < r} except that there,is a sequence of poles

{an} in G with an ~ a . Show that for any w in <C, there is a sequence {zn} in G
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with a = Jim zn and w ~ lim f (zn ) .

26.5.10: Determ ine the regions in which the functi 0 ns f (z) ~ (sin ~r' and

. 1

g (z) = f( t - Zr1
dt are analytic. Do they have any isolated singularities ? Do they

o
have any singularities that are not isolated?

26.6 ANSWERS TOSHORTANSWER.QUESTIONS :

1 1
26.3.1: Ifselfi.e. f(z)=-+2z z
26.3.2: Pole of order 3 at z = 1

26.3.3: Essential singularity

26.3.4 : <C(by Casorati - Weierstrass Theorem and f (z] has essential singularity at z = 0 )

26.3.5: Pole of order 3-
26.3.6: ann(2; 0,1)(= B' (2; 1))

26.3.7: See Statement of the Theorem 26.1.9.

1t
26.3.8: z = nn +"2 (n is an integer).

26.3.9: Removable singularity (See Theorem 26.~.2)

26.3.10: f is constant (see Theorem 26.2.2).

26.3.11 : Pole of order m (see Theorem 26.2.3).

26.3.12: f is a polynomial of degreem (see Theorem 26.2.3)

26.3.13: (I) degree p(z) ~ deg q/Z (See Theorem 26.2.4)

. (ii) deg p(z) =degq(z)+ m

26.3.14: See Statement of Theorem 26.1.4.

26.3.15: See Statement of Theorem 26.1.9.

. 1 1 1
26.3.16: f(z)=2"+3+S

. z Z z
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26.3.17 :\ ann (1; 0, 00) ( = B' (1; 00) = Punctured disk at center 1 with radius (0)

26.3.18 : See Definition 26.1.3.

26.3.19: Correct (i.e. True). This is nothing but the statement of Casrorati-Weierstrass
Theorem.

26.3.20: Removable singula rity at infinity since deg p ( z) ,; deg q ( z) where r ( z) ~ : ~: lwhere

p(z)
r(z)= q(z) (byTheorem26.2.4)

26.3.21 : Let r (z) = p ~z )) where p (z) = z6 + z5 + 1, q (z) = z4 + z3 + z + 1. The order of the
q\z

pole of r(z) at infinity is deg p( z) - deg q (z) = 6- 4 = 2.

REFERENCE BOOK :

J.B. Conway: Functions of one complex variable - Second Edition - Springer International
Student Edition.
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Lesson - 21

RESIDUE THEOREM

27.0 INTRODUCTION

In this lesson, we study the notion of residue and Residue Theorem - which plays as important
role in the evaluation of integrals.

27.1 RESIDUE THEOREM :

In this section we study Residue Theorem (see 27.1.2) which plays an important role in the
evaluation of Integrals. We start with the following.

27.1.1 DEFINITION:

Suppose f has an isolated singularity at z = a and let
\

00

f {z] = L an(z-ar
n=-oo

\ .

be the Laurent Series Expansion of f about z = a (i.e. in a deleted neighborhood of a i.e.

ann(a;O,R) for some R>O). Residue of fat z=a 1s defined as ,a_I i.e. the coefficient ot

(z-arl. We denote a_1 by Res(f;a).

Now, we prove the cruicial Theorem which will be useful in evaluating the integrals.

27.1.2 RESIDUE THEOREM:

Let- f be analytic in the region G except tor isolated singularities aI' a2"" ...,an in G. Let

y be a closed rectifiable curve in G not passing through any of the ais such that y ~ 0 in G . Then

1 . n '()
2ni Sf = ~n( y;aj )Res f;aj .

. y J-I .

Proof: Let illj =n(y;aj) (t:S;j:s;n). Choose positive numbers rl, r2'·· .. ·,rn such that no two
...=;;...-~..

disks B ( aj; rj) intersect and none of them intersect the trace {y} of Y and ea~b B(aj; rj) is

contained in G. For j = 1,2,·····, n, define Yj : [0,1] ~ [; by
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Yj ( t ) = a j + exp ( -2 ni m j t ) .

i.e. Yj is the circle centered at aj with radius rj taken mj rounds in the direction of opposite

to that of Y . Clearly, for 1s j ~n ,

Since Y ~ 0 in G and each B(aj; fj ) ~ G , we have that

n

n(y;a)+ In(Yj;a)=Q
j=I

for any a not in G - {at, a2'·· .... ' an} . Since f is analytic in G - {aI.'· .... ' an} ,by Cauchy's
·"theorem, we have that

r
'J! + L J f ------------(1)

j=l t .
J

Fix j such that 1 ~ j ~n . Let

be the Laurent Series Expansion of f about z = ai So,

, ,..

~..' .

(since (z-aj)" has a primitive for n,*-I, we have that f(z-aj)"dz=Ofor'n:t:-I).
Yj



C Residue Theon>':"~

From (1),

1 n 1-. ff=-I-. ff
2m Y j=12m Yj

n

= In(y; aj)Res (f;aj)
j=l

...•, .. ,
,~~, ."_,t. Thefollowinq theorem gives a principle to evaluate the residue of f at z = a, when f has

a pole of order m ~t z = a . '

27.1.3 THEOREM:

Suppose f has a pole of order m at z = a. Let g ( z) = (z - a)m f (z). Then

Res(f;a) = 1 g(m-l) (a)
(m-l)!

1 dm-1= lim (g(z))
{m-l)! z~a dzm-1

, . l

Proof: Since f has a pole of order m.m is the least positive integer such that (z - at f (z) has

removable singularity at z = a. So, g (z) has removable singularity at z = a. Without loss of

generality, w,ecan assume that g is analytic in a neighborhood of a. So, there exists a neighborhood

B{ a;8) of a if1which g( z) has power, seriesexpansion. Let it be

00

g(z) = L bn (z-ar
n=O

[z E B(a;8))

/

For z in B'(a;8) ,
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f(z)= g(z)
(z-at

bO bI bm-I ~ (.)j
= ( )m +-(-)m-I + +--+ L.bm+j z-a -----(1)

z - a z - a z - a j=o

Clearly, (1) is the Laurent series Expansion of f (z) about z = a and

bO 1:: 0 (since m is the least positive integer such that (z - a)m f (z) has removable

~inguJarity). By definition,
• ":." -!" , •

Res.( f;a) = bm-I

(m-l)( )
_ g a _ 1 li (m-I) ( )- - lmg . z(m -1)1 (m -1)1 z~a

dm-I
·1 u z= lm--(m -I)! z~a dzm-I .

~7!:.1.3.1.NOTE:
, 'i' "."

Suppose f has a simple pole i.e. pole of order 1 at z = a. So, 1 is the least positive inteqe:

such that g (z) = (z - a) f (z) has removable singularity at z = a. So, there exists 0 > 0 such thai

co
g(z) = L bn (z-ar

n=O
[z E B(a;o))

For any z in B'(a;o) ,

f'{z]= ~ + bI + b2 (z-a)+·············
z-a

Clearly,

Res(f;a) = bo

=g(a)

= lim g(z)
z~a



~(c~O~m~p~I~~~runa~IY~S~iS~=))~~~~~~~~~

= lim (z - a) f (z)
Z--7a

: Residue Theorem :E

27.2 SHORT ANSWER QUESTIONS:

27.2.1 : Suppose a function f has a simple pole at z = a in an open set G. Find the
residue of f at z = a .

27.2.2 : If f has a pole of order m at z = a then write the residue of f at z = a .

27.2.3: If f (z) =!+ eZ then what is the residue of f at z = 0 ?
, z

27.2.4:
1 1 1

If [( z) = -- + + 3 ' write the residue of f at z = 1.
z-1 (z_I)2 (z-l)

27.2.5 :
1 1 1 6

If [(z)=--+ 4 + 6 + 8 then write (a) the order of the pole of
z-2 (z-2) (z-2) (z-2)

f and (b) the residue of f at z = 2 .

27.2.6 :
I

Write the residue of f (z) == eZ at z = 0 .

27.2.7 : Evaluate

where y is the unit circle y (t) == eit (0 ~ t s 2n) .

27.2.8: Let

00

f {z] = L an (z-ar
n=-co

be the Laurent series expansion of f {z] in B' (a;R). Write down the residue of [,

at z == a.

27.3 MODEL EXAMINATION QUESTIONS:

27.3.1 : Define "Residue!'. State and prove Residue Theorem.

27.3.2: Find the residues of the following function at its poles.

30
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( 1
f(z)= 3 2

(z-I)(z-2) (z-3)

27.3.3: Define residue. Obtain the formula for the residue of a function f (z) at z = a when

f has a pole of order m at z = a. ~

27.3.4: Evaluate the following integral using (i) Cauchy integral formula and (ii) Residue
Theorem.

ff(z) dz
y

where y is the circle: y (t) =: 2eit (0 S t S 21t) and

5z-2
f(z) = z(z-l) .

27.4 EXERCISES:

27.4.1 : In each case, write the pricipal (singular) part of the function at its isolated singular
point and determine whether that point is a pole, an essential singular point, or a removable singular
point.

(a) z exp(~J
Z2

(b) 1+ z
sinz

(c)
z

(d) cosz
z

1
(e)

(2 - z)2

27.4.2: Show that the singular point of each of the following functions is a pole. Determine
the order m of that pole and the corresponding residue B.

I-cos hz
(a)

z3

(b) 1- exp(2z)
z4

exp(2z)
(c) (z-I)2

1 4
(Ans: (a) m=I,B=-2' {b) m=3,B=-3'

2(c) m = 2, B = 2e )

27.4.3 ~ Find the residue at z = 0 for the following functions.

1
(b) zcos(;)

z-sinz (d) cotz sinhz
(a) (c) (e)

z4(I-z2)z+z2 z z4

1 1 7
(Ans : (a) 1 (b) -- (c) 0 (d) (e) -)

2 4'1 6
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27.4.4: Use residues to evaluate the following integrals around (over) the circle

. y (t) = 3eit (0:::; t :::;21t) .
I

exp(-z)
(b) z2 exp(~) z+l

(a) z2 (c) 2z -2z

1t1
(Ans: (a) -21ti (b) 3 I

(c) 21ti)

27.4.5: Let f be a function which is analytic at z = Zo . Show that

(a) if f (zo) = 0 I then z{j is a removable singular point of the function

1g(z)=-;
z-zo

(b) if f (zo) :;C: 0 I then Zo is a simple pole (i.e. pole of order one (i.e. 1».of the

'function g(z) given in (a).

27.4.6: Evaluate

Jf(z)dz
y

where y is the circle: y( t) = 2eit (0:::;t s21t) and when f (z) is

1
(b) 1+z2

1
(c) -

z

(Ans: (a) -21ti (b) 0 (c) 21ti)

27.5 ANSWERS TO SHORT ANSWER QUESTIONS:
If

27.2.1 : See Note 27.1.3.1 or

lim (z - a) f (Z )
z~a

27.2.2 :

27.2.3:

See the statement of theorem 27.1.".

1



27.2.4:

27.2.5:

27.2.6:

·22.2.7 :

27.2.8 :
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1

order = 8, residue = 1

We know that

f (z) = exp ( ~ )

1
So, Residue of f at z = 0 is coefficient of - i.e. 1.z

Jf(z)dz = 21tiRes(f;z = 0)
y

= 21ti·l =21ti

Residue of fat z=L1 i.e. Res(f;a)=a_l'

REFERENCE BOOK :
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(ii) Ruel V. Churchil, James Ward Brown: Complex Variables and Applications - McGraw-
. Hill International Editions - Fifth Edition.

Lesson writer:



lesson - 28

EVALUATION OF INTEGRALS

28.0 INTRODUCTION

In this lesson, we evaluate integrals using Residue theorem. We prove the relevant theorems
---- (1) Theorem 28.1.1, Jordan Lemma (28.1.3) which play an important role in the evaluation of
integrals. We study the procedures of evaluating certain types of integrals mentioned in 28.2.1,

. 28.2.4 and 28.2.6; further we study the evaluation of some special integrals.

28.1 JORDAN'S LEMMA:

In this section, we study theorem 27.2.1, Jordan's inequality (Lemma 28.1.2) and Jordan's
Lemma (Lemma 28.1.3), which play an important role in the evaluation of integrals using Residue
Theorem (27.1.2).

28.1.1 THEOREM :

Let f be analytic except for finite number of singularities which are poles in a::. Suppose

z f(z)~e as Izl=R~CX). Let YR ={zEa::/z=Rei9
, 81 ~8~82} i.e YR is the part of the circle

with center 0 and radius R between the angles 81 and 82 (ofcourse 0::;; 81 ::;; 82 ::;; 2n).

Then

Proof: We can choose Ro such that all poles of f lie in the interior of the circle izl = Ro. Let

E>O.Since zf(z)~f as Izl=R~CX),thereexists R(>Ro) such that

Izl ~ R => IZf(z)-el <E.

Put 11(z) = z f( z) - e . Now, for Izl ~ R ,

f f(z)dz = f l1(Z)+f dz
zYR YR
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= J ll(Z) dz+i£(82 -81) and hence
zYR

E
~ - x length of YR

R

. '11(Z) E
(for any z=Re,8(81 ~8~e2) on YR' ~ ~R)

,

Hence

28.1.2 LEMMA (JORDAN INEQUALITY)
i

1t: 2 sin e
For O~8~-, -~-- ~1.

2 1t: e
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Proof: Define f:[ 0, ;] ~ ill. by

{

Sine if e:;t:°
f(8) = 8

1 otherwise (i.e. 8 = 0)

f'(O) = lim f(8)-f(0)
e~o+ 8-0

1. sin8-8
= 1m -~-

e-so- 82

I' cos8-1
= e~ 28 (by L'Hospital's Rule)

1. -sin8
= e~ 2 (by L'Hospital's Rule)

= o.

For any e:;t:° in [0, ~].

s o (since Tan 8 ~ 8)

Thus, f' (8)s 0 for all e in [0,;]. So, f is decreasing on [0,~] (by Lagrange's Mean

value Theorem). So
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2 sine
i.e. - ~ -e-~1for 0<9<7t

n 2
Another Proof:

y-~~:~ P(~,l)
I

~~I __ ~~------~ E' 2r quat IOn y =-x
'It(e,sin e) ~-----J-.---

__ -;:::-/'!"--- __ ~_----'_--------------:l.....-x-axis
L(e) 1[

2

The points P, Q, Rare (; ,1), (9, sin 9), (9, 2:) respectively (since the equation of OP is

2
Y = - x ). Clearly,

7t

LR~LQ~l

i.e. ~9~sin9~1
n

and hence

2 sin 9 1-<--<
7t - e -

28.1.3 LEMMA (JORDAN LEMMA) :

Let f (z) be analytic except for finite number of poles in the entire complex plane. Suppose

f( z] --+ 0 as Izl = R --+ 00 . For m > 0,

Where YR is the semi circle Izl = R in the upper half plane from +R to -R.

Proof: Let E> O. Since f (z) --+ 0 as Izl= R --+ 00 , there exists Ro > 0 such that R ~ Ro implies .'
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If (z)1 <E. Without loss of generality, we can assume that Ro > lal for any singular point' a ' of

f {z]. Now, R ~ Ro implies

f f (z )eimz dz = If (Rei8 )eimRei9 d( Reie)
YR 0

= If (Rei8 ) eim Re
i9

Rei8 idS
o

~ 11f (ReiS )lleimR( cosfl+i sin G] IR ao
o

7t

= Ilf(Rei8)1 e-mRsin8RdS
o

7t
~ IE Re-mRsin8 ao

o

rt <.
2 .

=2RE fe-mRsm8dS
o

7t.
2 -mR2%

~ 2R E Ie 7tdS (By Jordan inequality)
o

=2RE
e-mR28/7t

7t
2



1tE:::;-
m

Hence the conclusion.

28.2 EVALUATION OF INTEGRALS:

. 28.2.1 EVALUATION OF INTEGRALS OF THE FORM 1f{xj dx Where f(x) = p((x)) :
_~ ' q x

(i) . P(x), q(x) are real polynomials;

(ii) p( x) and q (x) have no common zeros;

(iii) q(x) has no real zeros; and

(iv) deg q ( x ) ;;::deg p ( x ) + 2 .

In this case, we consider f (z) = ~ ~: j .Clearly, the isolated singularities of f are precisely

.the zeros of q (z). Since q (z) has no real zeros, each zero of q (z) lies either in the upper half

plane or lower half plane. Let a], a2' .... , an be the zeros of q (z) (i.e. poles of f) that lie in the

upper half plane (U.H.P.). Choose R such that R > Max {lad/1 :::;i:::;n}. Put y = [-R,R] + YR
\

where 1'R = {Rei9/0::; e::; n} = semi circle in U.H.P. centered at 0 with radius R from +R to~R.

-R a +R
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Clearly, y is a closed curve containing each aj (1 ~ i~n) in the interior of y . By Residue
Theorem,

1 n
-. ff(z) dz = In(y; aj) Res (f;aj)

. 2m Y j=l

Clearly, n ( y; aj) = 1 for 1~ j ~n. So,

n
2ni IRes f(f;aj) = ff(z) dz

j=I y

R

= f f (x ) dx + f f (z) dz --------- (1)
-R YR

Si'1ce deg q ( x) ~ deg p (x) + 2, we have that

\ zp [z)
lim z f (z) = lim 0

. Izl~oo Izl~oo q(z)

By Theorem 28.1.1,

lim f f (z) dz = i.o. (n - 0) = 0R~oo YR

Taking limits on bothsides of (1) as R ~ 00, we have

n 00

2niIRes(f;aj) = f f(x)dx.
j=1 -00

28.2.2 EXAMPLE:

Now, we evaluate

Here the integrand is of the form f(x)= :i:~where p(x) = x2, q(x) = x\+x2 +1.
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(i) Clearly, p (x) and q (x) are polynomials.

(ii) zeros of p( x) are 0, O. Zeros of q (x) are

1 J3. 1 J3. 1 J3. 1 J3.
a, =-+-1 a2 = -- +-1 a3=---1 a4 = ----1

22' 22' 22' 22

So, p (x) and q (x) have no common zeros.

I
(iii) Clearly, q (x) has no real zeros.

(iv) degp (x) = 2, deg q ( x ) = 4. So degq (x ) = degp (x ) + 2 .

This is of the form given in 28.2.1. Consider the function f (z) = p((z!.The poles of f (i.e.
. q z)

the zero of q (z) that lie in the upper half plane are a1 and a3' Choose R > 0 such that

R > Max {Iall, la21} = 1. Put Y = [-R, + R] + YR ' where y R is the part of the circle in the U.H.P.

with center 0 and radius R. Clearly, y is a closed rectifiable curve containing aJ and a3 in its

interior. By Residue Theorem,

27ti [Res(f;aJ) + Res(f;a2)] = If
y

R

= I f (x ) dx + I f ( z) dz ----------- (1)
-R YR

Clearly, z·f(z)~O as Izl=R~oo (since degq(x)2degp(x)+2).

By Theorem 28.1.1,

lim I f (z) dz = i.o. ('it - 0) = 0
R~CX) YR

Clearly, a, and a3 are simple poles of f.

Res(f;aJ) = lim (z-aJ)f(z)
z~al (since z = aJ is a simple pole of f)



2, 3z -2CX1Z
= lim --3 -- (By L'Hospitals Rule)

z~cq 4z +2z

u 3z-2uI= 1m
z~al 2 (2z2 + 1)

I-FJi
- 4.J3 i

Taking limits as R ~ co on both sides of (1),

2 '[l+J3i I-FJi]1tl + =:4FJi 4FJi
00

f f(x)dx
-00

00'f 7tI.e, f(x)dx =_.
'FJ-00

Since f'{x] is an even function,

00f f (x ) dx = 7th
o 2"\/3
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28.2.3 EXAMPLE:

Prove that

This integral is of the form 1f( x )dx where f( x) = p((x)), p( x) = 1, q ( x) = 1+ x2
o . q x

(i) Clearly, p( x) is a constant polynomial, q (x) = 1+ x2. The zeros of q (x)

are +i, - i. The zeros of q ( x) are not real.

(ii) Clearly p(x) and q(x) have no common zeros,

(iii) Clearlydeg q (x) = 2 = 0 + 2 = deg p (x) + 2

p{z) 1
Now, we consider the function f (z) = -( ) = --2 .

q z ls- z

Clearly, the poles of f are precisely +i and - i.Each of these poles is a simple pole of f.

Choose R such that R > 1. Put Y = [- R, R] + YR where YR is the part of the circle Izl = R in the

upper half plane from +R to - R ,

Clearly y is a closed rectifiable curve containing i in its interior. By Residue Theorem

-R o

Jf(z) dz = 2rri Rc-;s(f;i)
y
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i.e.
+R

f f(x)dx + f f(z)dz =2ni Res(f;i)
-R YR

i.e.
R

2 f f (x) dx + f f (z ) dz = 2ni Res (f; i) ----------:- (1)
o YR

Since, degq(x)~degp(x)+2,zf(z)~O as Izl=R~+oo,

we have that

lim f f( z) dz = i.o (n - 0) = 0 ---------- (2).
R~+oo YR

~
-~ Now, Res(f;i)= lim (z-i)f(z)

'~ Z~l
('.: z = i is a simple pole of f)

. 1 1·
= hm -. =---:--------------(3)

z~i Z +1 21

Taking limit as Izl= R ~ +00 on both sides of (1) and using (2) and (3), we have,

R n
ff(x)dx=-.
o 2

28.2.4 EVALUATION OF THE INTEGRALS OF THE FORM :

00 p(x)f -( ) {sinrnx or cosrnx}dx or
q x .

-00

00 p(x)f-( ){sinmx or cosmx}
o q x

where (i) p( x ),q (x) are polynomials:

(ii) p(x) and q(x) have no common zeros;

(iii) q (x) has no real zeros;
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(iv) deg q ( x) z deg p ( x ) + 1 and

(v) rn > O·

Consider the function h ( z ) ~ : i:ie=. The poles of h are precisely the zeros of q. Let

al,a2' ···,an be the zeros of q which lie in the U.H.P. Choose R such that

R > Max {lad/1 ~i ~ n}.

Put Y = [-R,R] + Y R ' where Y R is the part of the circle Izl = R in the upper half plane
,

,(U.H.P.) from +R to- R .

-R o

Clearly, Y is a closed rectifiable containing aI' a2'···' an in it's interior. By Residue Theorem,

n
2ni 2:n( y;aj) Res(h;aj) = Jh(z)dz

i=! y

n +R

21ti LRes(h;aj) = f h(x)dx + f h(z)dz ----------- (1)
j=I -R YR

Now we prove that

lirn fh (z) dz = 0 ----------------- (2)
R··~+oo Y ,

p(z)
Write h(z)=f(z)eirnz where f(z)= q(z). Since deg q(x)zdegp(x)+J

f (z) ~ 0 as, Izi = R ~ 00 .
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f(z)=P(z)
q(z)

By Jordans' Lemma 28.1.3, (2) holds

Taking limits on both sides of (1) as R ~ 00 ,

n 00

27tiLRes(f;aj) = f h(x)dx
j=l -<0

(by (2» ------------- (3)

Equating the real andimaginary parts on both sides of (3), we have thevatues of

00 p(x) 00 p{x)f (x) cas mx dx and f -(x) sinmx respectively.
-00 q -00 q

28.2.5 EXAMPLE:

00 •

fx smmx
Now, we evaluate 2 2 dx (a > 0)

o x +a

(i) p (x) and q (x) are polynomials

('),II zero of p (x) is z = 0 only. Zeros of q (x ) are +ai. So, ,p{ x) and ef(x] have no

common zeros,

(iii) q (x) has no real zero,
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(iv) deg q ( x) = 2, deg p (x) = 1. deg q ( x) = deg p (x) +1

Consider the function -h(z) ~ f(z)eim
" where f(z) ~ :i~\.

Clearly the poles of- h are the zeros of q (z) i.e. ±ai. Clearly, ai is the only pole of h that lies

in the U.H.P. Choose a positive real R such that R > a. Put r = [-R, R] U YR ' where YR is the part

of the circle Izl = R in the U.H.P. from +R to - R.

Clearly, Y is a closed rectifiable curve containing ai in its interior. By Residue Theorem,

-R +R

27ti Re sj h.a i] = fh
Y

, i.'.
R

= f h(x)dx + f h(z)dz
-R YR

Res [h.ai] = lim(z-ai)h(z) (since ai is a simple pole of h)
z-e-ai

z .= lim __ e1rnz

z-e-ai Z + ai

1 -am=-e
2

From (1),
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R

2ni· !e-am = f h(x)dx + f h(z)dz ----------- (2)
2 -R y

R

Taking limits as R ~ co on both sides of (2), we have

00

nie -am = f h (x ) dx
-00

deg q (z) = 2 = deg p (z ) + 1=> : i:~~0 as Izl = R ~ 00 .

By Jordan Lemma, lim f h (z) dz = 0
R~oo .YR

Equating the imaginary parts,

00 •r xsmrnx d _ -am
J 2 2 x r= rte

--00 X +a

Since the integrand here is an even function,

OOfx sin mx d 1 -am
x = -ne

x2 +a2 2o

28.2.6 EVALUATION OF THE INTEGRAL OF THE FORM:

2n n n
JF(cos8, sin8)d8 or JF(cos8, sin8)d8 orJF(cos8, sin8)d8.
o 0 -n

In this case, put z = ei9 = cos 8 + i sin 8 . Then,

!= e-i9 =cos8-isinS, dz = ei9. idS = izdS
z

1( 1). 1 ( 1)cos 8 = - z +- sm 8 = - z --
2 z' 2i z l>,
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Now, 'IT 2'IT ( 1 ( 1) 1 ( 1)J dzJ or J F( cos8,sin8)d8 = J F - z+- ,-:- z-- -.
-'IT 0 Izl=l 2 Z 21 Z 1Z .

We know - how to evaluate this-inteqral.

.28.2.7 EXAMPLE:

2 dS
We, now evaluate f . 2 (a> 0)

o a+sm S

2 d8 2 d8 2 2d8

Ofa+sin2S = f 1-cos28 = f 1+2a-cos28Oa+ 0
2

'IT dt
= II + 2a - cos t (on substituting 28 = t)

1 'IT dt
= - f (since the integrand is an even function)2 1+ 2a -cost-'IT

dz

.: f ~2- 1( 1)Izl=11+2a-2 z+;:
(substitute z = eit)

=i f f(z)dz
Izl=1
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1
where f'{z] =-2-----

z -(1+2a)2z+1

Clearly, the poles of fare

2(1+2a)±~4(1+2a)2 -4

2

= (1 + 2a) ± ~ (1 + 2a)
2

- 1

= (1+ 2a) + 2-Ja2 + a, (1+ 2a) - 2-Ja2 + a

= aI' a2 (respectively say).

Clearly, a2 lies in the interior of Izl = 1 and al lies exterior to Izl = 1. Further f has a simple

pole at z = a2 . So,

1=
4)a2 +a .

By Residue Theorem,

J f(z)dz = 2niRes(f;a2)
Izl=!

-2ni
= 4-Ja2 +a
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7t

2f de __1'. -21tiHence,
o a+sin2e 4~a2 +a

1t
=-==

2~a2 +a

28:3 SOME SPECIAL INTEGRALS:

Now, we evaluate some special integrals.

28.3.1 EXAMPLE:

00 •

fSlllX
We, now evaluate -- dx .

o x

IZ

Let f (z) = ~ . Clearly, f (z) has a pole of order one at z = O. Draw two semicircles of
z

radii Rand r (R > r) with center 0 in the upper half plane. Put Y = [r,R] + YR + [-R, -r] - Yr. Here

Yr is the part of the circle Izl = R in the upper half plane from +R to - R. Similarly, ·Yr. Clearly,

-R -I" o r +R

yis a closed rectifiable curve and f is analytic with in and on y. By Cauchy's theorem,

R eix eiz -r eix eiz
0= f f = f- dx + f - dz + f - dx - f - dz

Y r X Y
R

Z -R X Yr Z

R eix eiz R e-ix eiz
= f- dx + f- dz - f- dx - f - dz

x z x Z
r YR r Yr
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" R ix . -ix
= Je -e

Xr

eiz e+iz
dx + J -dz - J-dzz ' Z

YR Yr

eiz eiz

f-dz- f-dz
z z·

Yr

R . eiz eiz
So,2ifsIllXdx= f-dz- f-dz

r X Yr Z Y
R

Z

Taking limits as r ~ 0 and as R ~ 00 on both sides,

00 • iz iz. f SIllXd l' f e dz l' fed21 -- X = llll - - Hfl - z ---------- (1)
o x r~O Z R~oo Z

Y r YR·

Now, we prove that

eiz
lim f - dz = ni ------------ (2)
z~O zYr

Define g: <I:: - {o} ~ <I:: by

eiz -1
g(z)=-.

z

Clearly, g is analytic in <I:: - {o} . Now,

1im (z - 0) g(z ) = lim (e iz -1) = 0 .
z~o z~o

By Theorem 25.1.3, g( z) has removable singularity at z = O: So, g is an entire function.

By Cauchy's Theorem,



i.e.
eiz -1

J--dz=O
zYr

i.e.
eiz 1f-dz= f -dzz z

Y r Y r

1tJ 1 is· d"= -.-re '1 0

o re1e

1t

=i Jde
o

=in
Hence,

lim J g(z)dz = in
r~O .( Y

r

Now, we prove that

. e~ .
hm J _. dz= 0 ---------(3)

R~+co . z .YR

1
Since - ~ 0 as Izi = R ~ 00, by Jordan Lemma (taking m=1), we have (3) holds.z ,

Substituting (2) and (3) in (1), we have that

28.3.2 EXAMPlE:

Show that

COf·log x dx = 0
o l+x2

To solve this problem, we do not use the principle branch of log z. We consider log z for



Complex Analysis Evaluation of Integrals

z belonging to

28.21

Let f (z) = : ~ :~ . Clearly, 0, ± i are isolated singular points of f (z) and f (z) has a simple

pole at each of the points i, -i. Clearly, i is the only isolated singular point (intact pole of f) that lies

in the upper half plane. Choose r,R such that Ox r c l c R. Let Y=[-R,-r]-Yr+[r,R]+YR

where Yp is the part of the circle in the upper half plane from +p to - P (p = R, r ). Clearly y is a

closed rectifiable curve with in and on which f is analytic except at z = i, interior of v . By Residue
Theorem,

Sf = 27tiRes(f;i)
y

r +R

Res(f;i) = li~(z-i)f(z) (since z=i is a simple pole of f).
Z~l

= lirn R ( z) = R (i)
z~i z i i 2i

.n (Since i~e;~J1-

=
.z
2i

7t
=

4
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-r R
Jf-=: J f(x)dx - J f(z)dz + Jf(z)dz + J f(z)dz
y -R Yr YR

-Jr loglxl+i7t J e(z)dz RJIOgXdx J e(z)
= dx- 2 + 2 + --2dz

-R 1+X2 Y l+ z r l s- x Y 1+z
r R

2RJlog x d ., R
f

dx 'ItSlogr +ie is 'de 'ltflogR +ie R is 'de= -- x + l1t -- - . re 'I + . ' e 'I
1+ x2 . 1+ x2 1+ r2 e21S 01 + R 2enS

r r 0

Rf log x d ,Rf dx ,'ItSlog r + ie is de 'R'ltflog R + ie iSde
= 2 --2 X + 17t --2 -If 2 2iS e + 1 2 2iSe

r l+-x r l+x 01+r e 01+R e

2 ,7t= 7t1-
4

1t2i= - ----------------- (1)
2

We know that

COf dx 1t
-1 2 = 2 (See example 28.2.3).

o +x

Now, we show that

'ltflog p + ie 's (2)p. . -e' de ~ 0 --------
01+ p2e21S

as either p ~ 0 or p ~ 00 .

Let p > 0 . Now,

'ltJlog p + to iSde 'It ei6 de I I'ltJ eeie de I < p Ilogpl1t p1t2
P ·s e ~pllog pi J 2 2·0 + P 2 2·S - I 2/ + / 2/

01 + p2p21 01 + pel 01 + pel I 1- p 1- P

Whether e ~ 0+ or e ~ 00, we have
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Hence, (2) holds as p -) 0 + or p -) 00 .

Taking limits on both sides of (1) as r -) 0 and R -) 00,

co I 2·og X . 7t ". 7t 1
2f--dx + 17t·_-O+O=-

01+ x2 2" 2

CO

f
log x

Hence --2 dx = 0 .
o I-t x

28.3.3 EXAMPLE:

co x-c 7t
Prove that J-dx = -. - (0 < C < 1) .o ls-x SIll 7tC

To evaluate this integral, we must consider the function

f (z) = z-c = exp (-c log z) (= exp f-~f(z) )) , when f is the branch of thelogarithin.

" f(z)
To evaluate the integral, we have to consider the function g (z) = --. Clearly z = -1 is al-r z " .

simple pole of g. If we consider the principal branch of longarithm, then the branch cut contains
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-1. That is why we consider that branch of logarithm f defined on

G = {Z E <r::! z :;to 0, 0 < arg z < 2n}

-.(The branch cut considered here is S =0 or arg z = 0 )

So, f is defined on G by f (rpi8) = log r + is (where 0 < S < 2n). Hence, the f which we

are considering in the definition of f in this f which we are considering in the definition of f in this

f. Choose r,R such that r < 1 < R. Let a> O. Consider the closed curve

Where Y Rand Y r are the parts of the circles Izl = R, Izl = r from BI to B2 (in anticlockwise

direction) and Al to A2 (in anticlockwise direction) respectively as shown in the figure. Here

[A1,Bd = [r eia, Reia], [A2,B2l = [rei(2lt-a) , Rei(2n:-a) J. Clearly, g is analytic with in and on y

except at z = -1 interior to y at which g has a simple pole. Clearly, Y ~ 0 (i.e. y is homotopic to 0)

in G.
Hence

Res(g;-1) = lim (z+l)g(z)
z-e-+I

= lim f'{z]
z~-l

=f(-l)

= exp (-cf (-1))

= e( -inc) (since -1 = leilt)

By Residue Theorem

fg(z)dz = 2niRes(gj -1)
y

2 . -iltC= me
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i.e. J f(z)dz + J f(z)dz - f f(z)dz

AB l-t z I-i z A-B l i z
! I YR 2 2

J f (z) . -i7tc
-- dz = 2m e -------- (1)
l+zYR

Hz) R f(teia )d(teia) . R f(teia)f -' -dz = f .. = eta f . dt
-1+z l+teta l+tet(l.
AIBl t=r r

R -c
- ia(l-c) f t
- e- l+-t-ei-adt ------------- (2)

r

. R f (te(21t-a)i)f f(zldz = J . d(te(27t-a)i)
--I+z ls-t (2r::-a)t I
A2B2 . t=r e

R f(tei(21t-a))
=ei(27t-a) f dt

r 1+ tei(27t-a)

R -c
- i(1-c)(27t-a) f t
- e '(2 _ ) dt --------- (3).

1+ t t 7ta.
r re

Clearly,

1. f {z] R CC
11m f -dz = f-dt ------------(4)
a~O A B 1+ z . 1+ t

1 I t

= e- iZrrc ------------- (5).

Let p > 0 and P *" 1. Let Yp be the part of the circle Izl= p from pe'" to pei(27t-a) . Then



2n-

J
apl-c ei9(1-C)

= '9 de
9=a I+pe'

l-c
< p 2_-I 17tI-p

Clearly

l~c
P

11- pi ~ ° as p ~ ° or as p ~ (X) •

So, lim f f (z) dz = 0 ------------ (6)
p~o l-i-z

or Y p
p~oo

(i.e. (6) holds and p = r ~ () and p = R ~ 00 )

Now taking limit as a ~ 0, r ~ 0 and R ~ 00 on both sides of (1), we have

i.e.
00 t-c d 27ti e-incf- t - ----,--
o l+t - l_e-i2nc .

2i
= 7t. . .e17tC _ e -17tC

7t

sm 7tC

28.4 SHORT ANSWER QUESTIONS :
28.4.1: State Jordan inequality.
28.4.2: State Jordan Lemma.



Complex Analysis 28.27 Evaluation of InteG:'~

00 dx .
28.4.3: While evaluating J-1+-x-2 , we consider the function f (z) where f (z) = _

28.4.4: Let f (z) be analytic except for finite number of poles in the entire complex plane.

Suppose f(z)~O as Izl=R~oo.lf m c-O then

lim f f (z) eirnz dz = --------------------Izl=R~oo YR

where YR is the semi circle in the upper half plane with center 0 and radius R from

+R to-R.

28.5 MODEL EXAMINATION QUESTIONS :

28.5.1: Evaluate the following integral

00 2
f x d

(a) x4 +x2 +1 xo

00 •

fsmx
(b) -dx

o x

28.5.2: Evaluate the following integrals

oof cosx dx
(a)

-00 ( x2 + a 2 )( x2 + b2 ) .
(a >0, b >0)

OOf logx
(b) ·--2 dx

o l s-x

28.5.3: Prove the following

1tf cos28 d8 . = na2

(a) 2 2o1-2a cos 8 + a 1- a

oof logx n
(b) 2 dx =--

o (l+x2) 4.

28.5.4: Prove the following
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ooJ dx 7t

(a) 0 l+x2 ="2

00 -c

fx 7t
b --dx=--

( ) 0 1+ x sin 7tC

28.6 EXERCISES:

28.6.1: Evaluate the folrowinq integrals

OOf dx ( 7t)
(c) ol+x2 =="2

28.6.2: Evaluate the following integrals.

OOJcosx -1 d
(a) 2 x

o X

OOfx sin 2x dx (= 7te-2.[j )
(c) 0 x2 + 3 2

(O<c<l)

oof dx ( 7t)
(d) 0 x4 +1 = 2.J2

00 3 .

(d) f x :max dx (a> 0) (= 7tCosae-a)
-00 x +4

28.6.3: Evaluate the following intefjrals.

,
)

} cas 29 de (2 I)
(a) ol-2a cas 9 +a2 a < (b) j d9 2 (a> 1) (= 17t_

a
a22)

o(a+ cos G]



\ ,

2)
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7t

(C) t de (= 1t Ijoa + sin 2 e 2~ a (a +1)

7t ((2n)! J(e) fsin2n e de = 2 7t
o 22n (n!)

28.6~: Evaluate the following Integrals

(a) l(1ogxt dx (=0)
o l+x

28.29

'27t de
(d) [1 +a sin e

(b) 1 logx dx (= _ 1t)

o (1+x2t 4

00 ax ()(c) f _e_ dx(O < a < 1) __ 1t_
1+ eX - sin an-00

oofsin2 x (7t)
(d) 0 ~ dx =2".

28.6.5: Show that

00 eax 1t
f--dx = -- if O<a<l

-001+ eX sin an

28.6.6: Prove that

21t 1t

f log ~in22e de = 4 flog sinede = -41tlog2
o 0

28.6.7: Find all possible values of

where y is any closed curve not passing through z = 0 .

28.6.8: Suppose that f has a simple pole at z = a andlet g be analytic in an openset containipg
a. Show that

Res(fg;a) = g(a) Res(f;a).
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28.6.9: Let G be a region and let f be analytic in G except for simple poles at aI' a2, . ··,an
and also let g be analytic in G. Show that

1 n
-. ffg = In(y;ad g(ak}Res(f;ad
2m y k=I

for any closed rectifiable curve y not passing through aI' a2, ..., an such that y R: 0 in G.

28.6.10 : Let y be the rectangular path

rl 1. 1. 1. 1 . 1'. J
n+-+m -n--+m -n---m n+--m n+-+m2 ' 2 ' 2 ' 2 '2 .

f
(a) Evaluate the integral .

In:(Z+af2 cot nz dz for a * an integer.
y

(b) Show that

lim f7t ( Z + a) -2 cot nz dz = 0 and deduce that
n~OCl y . r •

(Hint: Use the fact that for z=x+iy,lcoszI2=cos2x+sinh2y and

[sin zl2 = sin 2 x + sinh 2 y to show that I'cotn:zl:::;2 for z or y if n is sufficient by large)

28.6.11 : Using exercise 28.6.10, prove that

28.6.12: Let y be the polygonal path defined in exercise 28.6.10. Evaluate

Jn:( z2 - a2rI cot 1tZ dz for a * an integer. Show that
y
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lim fn(z2 _a2 )-1 cot nz dz =0 and consequently
n~oo y

. 1 ~, 2a
n cot na = - + L 2 2 for a :f:. an integer.

a n=1 a -n

28.7 ANSWERS TO SHORT ANSWER QUESTIONS :

28.4.1 : See Statement of Lemma 28.1.2.

28.4.2: See Statement of Lemma 28.1.3.

1
28.4.3: f(z) =--2

1+z

28.4.4: 0 (by Jordan Lemma).

REFERENCE BOOK :

J.B. Conway : Functions of one complex variable - Second Edition - Sprinqerlnternatlonal
Student Edition.

Lesson writer:



Lesson - 29

THE ARGUMENT PRINCIPLE AND
ROUCHE'S THEOREM

29.0 INTRODUCTION

In this lesson, .we study - Argument Principle (see Theorem 29.1.3). Furhter, we study
Rouche's Theorem (see 29.1.9) and it's consequence - Fundamentai Theorem of algebra (see

, Corollary 29.1.9.1)

29.1 THE ARGUMENT PRINCIPLE AND ROUCHE'S THEOREM :
\

Now, we start this section with the following:

29.1.1 DISCUSSION :

. (i) Suppose f is analytic in a neighborhood of a and a in zero of f of order m. So,

f (z) = (z - at g (z) for same analytic function g (z) in a neighborhood of a such that g (a) :;t: °.
Si~ce g is continuous at z = a , there exists 8 > 0 such ths; g (z:- ;t:. 0 for any z in B (a;8) . For any

z in B(a;8),

f''{z] = m(z-at-I g(z)+(z-at g'(z).

For any z in B'(a;8),

f' (z ) m s' (z )
--=--+--
f(z) z-a g(z)

Clearly, ; &? is analytic in B ( a; 8) .

(ii) Suppose f has a pole of order m at z = a. So, there exists an analytic function

g(z) with g(a):;t:O and f(z)=(z.carmg(z). Since g is continuous at a and g(a):;t:O,there

exists 8>0 such that g(z):;t:O for any z in B(a;8). For any z in B'(a;8),

f'(z) = -m(z-arm-I + (z-arm g'{z] and hence



f'(z) -m g'(z)
--=--+--
f(z) z-a g(z)'

g'(z)
Clearly, g (z) is analytic in B (a; 0) .

Now, we introduce the notion of a meromorphic function to avoid the sentence - "analytic
except for poles".

29.1.2 DEFINITION:

Let G be an open set. Any function defined and analytic on G except for poles is called a

merom orphic function on G.

If f is a meromorphic function defined on an open set G and if we define f (zo) = 00

whenever Zo is a pole of f in G , then f is continuous at each pole in G also. (we leave this as an

exercise).

29.1.3 ARGUMENT PRINCIPLE :

Let f be meromorphic in G with poles PI' P2'·· .. ", Pm and zeros Zl' Z2," .... " zn counted

according to multiplicity. Let y be a closed rectifiable curve in G not passing through anyof the

points PI'P2' .. · ..'Pm, zl,z2, ..... ',zn with y ~ 0, Then

1 f' (z) _ m m..-. f-( ) dz - Ln(y,ze) - Ln(y,pj)
2m y f Z e=1 j=I ,

Proof: By the discussion,

f' (z) n . 1 m 1 g' (z)
- = L:- -L:-+- -----------(1)
f(z) e=lz-ze j=lz-Pj g(z)

where g (z) is an analytic function on G which neither vanishes in G nor has a pole in G.

g' g'{z}
So, - is analytic on G. By Cauchy's Theorem, f-( ) dz = O. From (1),

g. y g z

:v -.

_1 ff'(z)dz=±_1 r-~_f_l f~
2ni y f(z) e=12ni y z-ze j=12ni y Z-Pj
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n m
= In(Y;Zf) - tn(Y;Pj)

f=1 j=l

29.1.3.1 NOTE:

Suppose Y is a simple closed contour in the Argument principle. Then, the conclusion of .
the Argument principle is

1 f''{z] .
- J--dz = zf -Pf
2ni y f(z)

where zf and Pr are the number of zeros and poles in side y respectively.

29.1.4 EXAMPLE:

Consider the function

f'(z)
we, now evaluate !f (z) dz for various chlosed rectifiable curves Ys.

First we compute the zeros of f and the poles of f.

=> Z = i,i,-i,-i

=> -1+ i, -1+ i, -1+ i, -1- i, -1- i, -1- i.

Hence, the zeros of fare i,i,-i, -i and the poles of fare ·-1 + i,-1+ i,-1- i,-1- i (written

according to multiplicity).

(i) Suppose y is the positively oriented circle Izi = 4 i.e. y (t) = 4eit (0 ::; t ::;2n) .Clearly,

all the zeros and all the poles of f lie inside y. By the Argument principle,
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.'

= 21ti[4-6]

= -41ti·

(ii) Suppose y is the circle y (t) = 4e3it (0::; t ::;21t) . (i.e. y completes three complete

rounds in anticlockwise direction along the circle Izl = 4 ). Clearly, all the zeros and poles of f lie

interior to y. By the Argument principle,

1 f'(z) n m
-. f-ctz = In( Yj ze) - In( Y;Pj)
2m y f'{z] e=I j=I

(where zI,.····· ", zn are zeros of f and PI' P2'·······, Pm are poles of f).

4 6
= In (Y; zj) - In (Y; P j )

£=1 j=I

46.
= L) - L 3 = 12-18 = -6
e=l j=l

f'() .
Hence, f-Z-ctz= 121ti

y f(z)

(iii) Suppose y is the positively oriented circle Izl= a (where 1< a < J2) i.e.

Y(t) = a eit (0 ~ t ~ 21t) . Clearly. each zero of f will be inside y and each pole will be out side 't .

So

f'(z) .f-( ) dz =2m[zf -Pf]fzy

(where zf and Pr are the number of zeros and poles inside Y respectively).

= 21ti[4-0] = 87ti
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29.1.5 THEOREM :

Let f be meromorphic in the region G with zeros zI'········'zn and PI>P2,······~'Pm
counted accordlnq to multiplicity. Let g bean analytic function in G and y be a closed rectifiable

curve in G with y ~ o and not passing through any Zj or Pj . Then

Proof : By the discussion 29.1.1, there is an analytic function h on G which neither vanishes on

G nor has a pole in G such that for any z in G-{ZI'Z2'····'zn' Pl'P2'······'Pm}'

f' (Z ) n 1 m 1 h' (z )-=L--L-+-
f'{z] £=1Z-Zc j=l Z-Pj h(z)

and hence

g(Z) ['(z) =± g(z) _Ig(z) + g(z)h'(z) (1)
f'[z] C=1 z-ze j=l Z-Pj h(z)

g(z)h'(z)
Since () is analytic on G, by Cauchy's theorem,h z .

g(z)h'(z)f . dz=O
y h(z)

From (1),

n m

=Lg(ze)n(y;zc) - Lg(Pj)n(Y;Pj)
e=I j=I

(By Cauchy Integral Formula).

29.1.5.1 NOTE :

Argument principle can be obtained from Theorem 29.1.5, by taking g as the constant
function 1 (one).
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29.1.6 EXAMPLE:

Let f(z)=z4_2z3+z2-12z+20 and y be the positively oriented simple circle

Izl = 5 i.e. y( t) = 5eit (0 ~ t ~ 2n) .We now evaluate

f 2 f'(z)
yz f(z)dz

The zeros of f are precisely 2,2, -1+ 2i, -1- 2i . Clearly, all the zeros of f are inside y.

Since f (z) is a polynomial, it is an entire function. So, f (z) has no poles. According to Theorem
I

29.1.5, g(z)=z2

Now,

f'(z)
!g(z) f(z) dz = 2ni[g(2)h(y;2)+g(2)n(y;2)

+g( -1+ 2i) n( y;-I-L 2i)+ g( .:: -'2i)n( y;-I- 2i)]

= 2ni [ 4+ 4+ ( -1 + 2i)
2

+ (-1 - 2i)
2

]

= 4ni ..~.'

29.1.7 THEOREM:

Let f be analytic on an openset containing B (a; R) and suppose that f is one - one on

B(a;R).lf 0 = f(B(a;R)) and y is the circle Iz-al=R then r-1(w) is defined for each win n
by the formula

c1 w =_1_ zf'(z) dz
( ) 21ti!f(Z)-W

Proof: Let W EO. So, W = f(t%') for some t%'E B(a;R). Since f is one - one on

B( a;R ),f( z)- W is one - one on B( a;R). Also, f( z)- W is analytic on (the) open set containing
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13(a; R). So iff is the only zero of f(z] - winside y. Taking g (z) = z, f (z) - w for f (z) in

Theorem 29.1.5,

1 z f'(z)-. f dz=n(y;iff)g(g»
2m y f (z) - w

=g(g') (since n(y;g')=I)

= iff =Cl (w)

29.1.8 DISCUSSION :

Let G be an open set and let f be a rnerornorphic function on G. Let y be a path in G not

passing through any pole or zero of f. Let z E {y} . So, f (z) *- 0 and f (z) *- 00. Since the zeros

and poles can be isolated, there exists a neighborhood of z not containing any pole or zero. Thus,

to each z E {y} , there is a neighborhood of z not containing any pole or zero of f. All such

neighborhoods form an open cover for {y} . (which is compact as {y} is the continuous image of

the compact set [0,1]). So, this open cover has a Lebesgue number 8 say. Choose E such that

0< 2 E< 8. Since y is continuous on the compact set [0,1], y is uniformly continuous. So, there

exists a partition

O=to <t] <····<tn =1 of [0,1) such that for any s,t in [tj-l,tj] (l:::;j:::;n),

Iy (s) - y (t)1 <E.

2 E< 8, B(y( tj-d;E) is contained in some number of the open cover and hence B(y( tj-d;E)

contains neither a zero nor a pole of f .

This holds for j = 1,2, ,n . Hence .U B (Y( t j-l ); E) is a neighborhood of {y} containing
J=I -

neither a zero nor a pole of f. Let fj be the branch of logf (z) on B( r( tj_1); E) (1 ~ j ~n). Since

the lh and (j+ 1fh spheres contain y ( t j) ,we can choose e I'.e 2,····· ..,.en such that
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Suppose, for j = 1,2"" ''',n

Yj = Y1[t t ] = the restriction of y to [t",-I'tJ, J.:IL1j-1, j

f'
Since .e', = -

J f'

f"f f = e j (Y ( tj )) - f j (Y ( tj_1 )) (1 s j s n) ,
y.

J

Hence,

f' n f'f- = L f-f '1 fY J= Yj

=r; (y( tn) )-.e) (y( to))

=t « (y(l))-f) (Y(O))

when y is closed, Y(O)=Y(l) and hence

f'f- = fn (Y(O)) - f) (Y(O))
fy

= 21tik for some integer k.

(since z, and z , are two branches of log f {z] on B(y(O);E)n:a(y(fn_d;E),theydiff5!r
. ,I .

by 21tik for some integer k as we know that "any two branches of loqarithrn-on ,a region? differ

by 21tik, where k is an integer"), , I \~\>\
I . ,

Thus, when y is a closed rectifiable curve, as z traces ou\ y , \~gf (z) c'lang~s by 21tk ,
.~ '

Now, we prove the crucial Theorem,
\
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29.1.9 ROUCHE'S THEOREM :

Suppose f and g are merom orphic functions in a neighborhood of B (a; R) with no zeros

and poles on the circle y = {z/Iz - al = R} . if Zf, Zg (Pf, Pg) are the number of zeros (poles) of f

and g inside y counted according to their multiplicities and if

If (z ) + g(z)1 < If (z )1+ Ig(z )1

on t •then

z, -Pf = Zg -Pg

Proof: Assume the hypothesis of the theorem. So, for any z on y,

If( z) + g( z)1 < If( z)1 +Ig( z)1

i.e.
fez) +1 < fez) +1
g(z) g(z)

(since y contains neither a zero nor a pole of g).

fez) f
Put A = -( ). If A is a nonnegative real number then A + 1< A + 1, a contradiction. So, -

g z g

is a merom orphic function and maps {y} onto n= <I: - [0,00 ). If f! is a branch of logarithm on n,

(
f(Z)) (~)'

then e g(z) is a well defined primitive of (~) in a neighborhood of y. Thus,

(by Cauchy's Theorem).
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__1_~ __1_(
~ 2ni f f 2ni f g

y t

= (Zf -Pf )-( Zg -Pg) (by Note 29.1.3.1)

Hence the theorem. .

Now, we obtain the Fundamental Theorem of Algebra using Rouche's Theorem.
29.1.9 COROLLARY (FUNDAMENTAL THEOREM OF ALGEBRA) :

Let P (z) = ao + al z + +an_1 zn-I + z" be a polynomial with complex coefficients. Then

p has n zeros in a:::.
Proof: Clearly,

. p [z]
lim--=1

Z->CXl zn.

So, there exists R > 0 such that

~Ip(z)-znl < Iznl

~ Ip(z)+( -zn)1 < I-znl

<lp(z)I+I-znl
In particular,

for Iz-Ol = R.

Since p (z) is a potynomtat, it is an entire function. So, it has no poles. Clearly _zn is an

entire function and hence has no poles. The number of zeros of _zn is n (infact all these n zeros

are same and equal to 0) and all these zeros lie inside Iz - 01 = R . By Rouche's Theorem,

The number of zeros of p (z) (inside \z\ = R )

= The number of zeros of the function _zn (inside Izl = R )

= n.
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29.2 SHORT ANSWER QUESTIONS :
29.2.1: State Argument Principle.
29.2.2: State Rouche's Theorem.

29.2.3 : If f( z) = z2 + 1, then find !~{:jdz where y is the circle

1 .
y(t)="2i+e1t (0::;t::;211:).

29.2.4 : Define a meromorphic function.

29.3 MODEL EXAMINATION QUESTIONS:
29.3.1: State and prove argument principle.
29.3.2 : State and prove Rouche's theorem. Deduce Fundamental Theorem of Algebra.
29.3.3 : State Argument principleand evaluate the following integral

f'(z)!f"") dz

Z2 +1
where f (z) = 2 and y is the positively oriented circle with center at 0

(z2 + 2z+2)
and radius a where 1< a < J2 .

29.4 EXERCISES:

29.4.1: Let f be a meromorphic function defined on an openset G . Define f (z) = 00 whenever

z is a pole of f. Prove that f: G ---+ <Coo is continuous (i.e. f is continuous at each
c,

pole).

29.4.2 :
l

Let f be a meromorphic function on an openset G. Show that neither the zeros of f
nor the poles of f have a limit point.

29.4.3: Suppose f is analytic on 13 (0; 1) and satisfies !f (z)1 < 1 for Izl = 1. Find ~henumber of

solutions (counting multiplicaties) of the equation f (z) = z" where nj is an integer

greaterthan or equal a to 1.
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29.4.4: Let [beanalyticin B(O;R) with f(0)=0, ['(O):;t:O and f(z):;t:O for O<lzl~R. Put

p = min {\f(z)l/\z\=R} >0. Define g:B(O;p)~<I: by

() 1 f z f' (z)g w =- dz
2ni y f (z) - w

where y is the circle Izl= R . Show that g is analytic and discuss the properties of g

29.4.5: State and prove a more general version of Rouche's Theorem for curves other than

circles in G.

29.4.6: Is a non constant meromorphic function on a region G an open mapping of G into <C
? Is it an open mapping of G into <Coo ?

/..

29.4.7: Let A> 1. Show that the equation A _ z _ e-z = 0 has exactly one solution in the half

plane {z/Re z > O}. Show that this solution must be real. What happens to the solution

as A~l?

Let f be analytic in a neighborhood of D = B (0; 1). If If (z)1 < 1 for Izl = 1, show that

there is a unique z with Izl < 1 and f (z) = z. If If (z)1 ::;1 for Izl = 1, what can you say

?
29.5 ANSWERS TO SHORT ANSWER QUESTIONS :

29.2.1: See Statement of Theorem 29.1.3.

29.2.2: See Statement of Theorem 29.1.9.

29.4.8 :

29.2.3: The only zero of f that lies interior to y is i. Since f (z) is a polynomial, it is an entire

function. So, f has no poles. By Note 29.1.3.1, the value of the integral is

2ni [zf - prJ = 2ni [1- 0] = 2ni

29.2.4: See Definition 29.1.2

REFERENCE BOOK :
(i) J.B. Conway: Functions of one complex variable - Second Edition - Springer International

Student Edition.

Lesson writer:



Lesson . 30

MAXIMUM MODULUS THEOREM

30.0 INTRODUCTION

In this lesson, we study various versions of maximum modulus theorems (see theorems
30.1.2,30.1.3,30.1.7). . .

30.1 MAXIMUM MODULUS THEOREM :

We start this lesson with the following.

30.1.1 DISCUSSION:
/

Let Q be a subset of <r:. Let a EQ be an interior point of Q. So, there exists 8 > 0 such

that B(a;8) ~ Q. So, there exists ~ EB(a;8) such that I~I> lal. In otherwords, if a EQ is such

that lal ~ I~I for all ~ E Q then a E an = boundary of n .

30.1.2 THEOREM (MAXIMUM MODULUS THEOREM) - FIRST VERSION :

Let f be an analytic function on a region G and let a E G be such that If (a)1~ If (z)1for all

z in G. Then f must be constant.

Proof: Suppose f is not constant. Since G is a region, G is open. By open mapping Theorem,

Q=f(G) is open. Put a=f(a). Then lal~I~1 for all ~EQ. By the discussion, 30.1.1,

a E aQ n Q= <p (since Q is open), a contradiction. So, f must be constant.
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30.1.3 THEOREM (MAXIMUM~MODULUS THEOREM) - SECOND VERSION :

Let G be a bounded QR9n set in <Cand suppose f is a continuous function on G which is

analytic in G. Then

Max {If (Z)t/z E o}

\
= Max {If (z)l/z E 8G}.

Proof: If f is constant, then the conclusion is ciear. Suppose f is not constant. Since G is a ,

bounded open set, G is compact. Since f is continuo,us on G, If I is continuous on G. Since

continuous image of compact set is compact, Ifl(o) ={If(z)l/zE o} is compact. We know that

every compact subset of a-metric space is closed and bounded. So, there exists a E G such that

If (z)1 ~ If (a)1 for all z in G. If a E G then f is constant by Maximum Modulus Theorem first

version, a contradiction. So, a E 8G . Hence the theorem i.e.

30.1.4 DEFINITION :

Let f: G -)- ill. and let a E G or a = OCJ. Then the limit superior of f( z) as z approaches

a denoted by lim sup f (z) or lim f (z) is defined by
'Z-7a Z-7a

lim f {z] = Iim sup {f(Z)/ZEGnB(a;r)}.
Z-7a r-70+

Similarly, the limit inferior of- f (z) as z approaches a denoted by

lim inf f (z) or lim f (z) is defined by
Z-7a Z-7a

lim f'{z}« lim inf {f{Z)/zEGnB(a;r)}
Z-7a r-70+

30.1.4.1 NOTE :

(1) When a = co, B (a; r) is the open ball considered in <Coo.

(2) Clearly,
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lim f (z) = a iff lim f (z ) = Jim f (z ) = a .
z~a z~a z~a

(3) Let G <;;: <C. The boundary of G in <Coodenoted by aooG and is called the extended

boundary of G. We know that aG denotes the boundary of G in <C. Clearly.

When (i) G is bounded in a:: tben aooG = aG

(ii) G is unbounded in a; then doo G = dGU {CIJ} .

30.1.5 LEMMA:

Let f: G ~ ill.. Suppose

lim sup f (z) < M .
z~a

Then there exists f, > 0 such that

0< r < f) ~ f (z) < M for all Z E G n B (a; r)

Proof: Let a = Jim supf (z)
z~a

= lim sup {f (z)/ Z E G nB(a;f)}
r~O+

= lim Xr
r~O+

where xr = sup{f(z)/z E GnB(a;r)}.

So, there exists rl > 0 such that

0< r < rl ~ IXr - al < M - a
=> xr -a -c M>-«

i.e. x, <M

~ f (z) < M for all Z E G nB (a; r)
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30.1.6 LEMMA:

Let f: G ~ m. Suppose

M < lim inf f ( z) .
z~a

Then there exists r2 > 0 such that

'0 < r < r2 => M < f (z] for all z E G nB (a; r) .

Proof: Exercise

Infact we prove Note 30.1.3.1 (2) by using the Lemmas 30.1.5 and 3d\ 1.6.

30.1.7 THEOREM (MAXIMUM MODULUS THEOREM - THIRD VERSION~ :

Let G be a region in <C and f be an analytic function on G. Suppose\here is a constant
M such that

lim sup If(z)1 ~ M
z~a

for all aE8ooG. Then If(z)IS;M for all z in G.

Proof: Let 8 > O. Write

Now, we prove that H = ~ .

Suppose H:;t:~. Clearly, H=lfl-I((M+8,00)) is open (since If I is continuous and

(M + 8,00) is open). Let a E 800G . Since

-

lim sup If (z)l S; M < M +0,
..2:=U- - --

there exists r >O such that

for all z E G nB( a;r) (by Lemma 30.1.5)

Now, we prove that H c G . Let a E H. Then H c G. SO, a E-n. If a E G , it is well and

good. SUPPOSE:a ~ G. So, a E 8G ~ 8ooG. By hypothesis, there exists r > 0 such that (1) holds
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for all z e Gll Bfa.r}. Since aER,HnB(a;r):;t:~. Let zEHnB(a;r)eGnB(a;r). So,

\f(z)\>M+o, a contradiction to (1) as Z belongs to GnB(a;r). Hence aEG. Thus, ReG.

Now, we prove that H is bounded. If G is bounded then H is bounded (since H ~ G).

Suppose G is not bounded in <C:.So, 00 E GroG. By hypothesis there exists r > 0 such that (1)

holds for all Z E G n B (00; r) .

Now,

.Z E B(00; r) ¢:::> d(z, 00 ) < r

2
--=== <ri.e. )lzl2 +1

(without loss of generality we can assume that r < 1).

ZEH=>ZEG and If(z)I>M+o

=> Z ~ B (00, r) (By (1))

'.~ZEBhIFJ
Thus,

H c Ii(0; J r~ -1) and hence H is bounded.

Since H is closed and bounded, H: is compact. Clearly,

H: e {z E G/lf (z)1~ M+ o} .
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If zEoH(~H) then ir(z)\=M+O,(otherwise If(z)I>M+(5 and hence zEHnoH=~

(since H is open, a contradiction).

By maximum modulus theorem second version (applying f to !\instead of G) we have
that _

for any z in H,

If(z)1 ~ Max{lf( w)l/w E H}

sMax {If(w)l/w E oB}

=M+o,

a contradiction to If (z)1 > M + (5 as (z E H ). So, B = ~ .

Hence, If (z)1 ~ M + (5 --------- (2)

for all z E G . Thus, (2) holds for all 0 > O. Hence

If ( z)1~ M for all z in G.

30.2 SHORT ANSWER QUESTIONS:

30.2.1 :

30.2.2 :

30.2:'3 :

30.2.4;

State Maximum Modulus Theorem - First Version.

State Maximum Modulus Theorem - Second Version.

State Maximum Modulus Theorem - Third Version.

What is Minimum Principle?

30.2.5 : If G is an open set in <L, what is the relation between the boundary oG of G in <r.:

and the extended boundary oroG of G in <Lro'

30.2.6 : Let f : G ~ m be a function, where G is an open set in <L and a E G .

(i) Define lim sup f (z)
z-+a

(ii) Define lim inf f (z)z-+a
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(iii) What is the relation between lim f (z), lim sup f (~l-and
z~a z~a .. -' - .

lim inf f (z) .
z~a

30.3 MODEL EXAMINATION QUESTIONS :

30.3.1 : State and prove Maximum Modulus Theorem - First Version

30.3.2:

30.3.3 :

State and prove Maximum Modulus Theorem - Second Version

State and prove Maximum Modulus Theorem - Third Version
"

3j.3.4 : State and prove the Minimum Principle.

30.4 EXERCISES:

30.4.1 : Prove the followinq Minimum Principle. If f is a non-constant analytic-function on a,

bounded open set G and is continuous on G, then either f has a zero In G or Ifj
, \

assumes minimum value on 8G . (Hint: If f has no zero in G, then apply Maximum

1
Modulus Theorem Second Version (30.1.3) to f)'

30.4.2: Let G be abounded region and suppose f is continuous on G and analytic in G.

Show that if th,~ is a constant c ~ 0 such that If (z)1 = c for all z on the boundary of'

G then either f is a constant function or f has a zero. in G.

30.4.3: (a) Let f be an entire function and f is non constant. For any positive real number

c, prove that the closure of the set {z E <c/lf ( z)1 < -l is the set {z E <c/lf ( z)1 ~ c} .

(b) Let P be a polynomial and show that each component of {z E <clip (z)1 < c}

contains a zero of P (Hint: Use exercise 30 2.).

(c) if P is a polynomial and c > 0' show that the set {z E <clip (z)1 = c} is the union

of a finite number of closed paths. Discuss the behavior of these paths as c ~ 00.

30.4.4: Let 0 < r < R and put A = {z E <c/r ~ Iz!:s R}. Show that the~e is a positive number

E> 0 such that for each polynomial P.



i.e. z-I is the uniform limit of polynomials on A.

30.5 ANSWERS TO SHORT ANSWER QUESTIONS:

30.2.1 See statement of Theorem 30.1.2.

30.2.2 See statement of Theorem 30.1.3.

30.~.J . See statement of Theorem 30.1.7.

30.2.4 See Exercise 30.4.1.

30.2.6 : (i) See Definition

(ii) See Definition

(iii) all are equal.
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