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UNIT·'·
LESSON-I

INITIAL VALUE PROBLEMS FOR THE HOMOGENEOUS
LINEAR DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS

1.0 Introduction: Lessons 1 to 6 devoted for the linear differential equations with variable

coefficients. In this lesson we study the initial value problems for the homogeneous linear

dfferential equations with variable coefficients. We state the existence theorem for solutions

of these initial value problems and establish the uniqueness theorem.

1.1 Linear differential equations with "'!triablecoefficients:

1.1.1: Definition: A Linear differential equation ot: 61:~~rI~-~with variabie coefficients is an equation

of the form

-where are complex

valued functions on some interval 1.

Throughout the lessons 1 to 6 we take aO(x):;t:Oon I. By dividing by ao we can obtain an

equation of the same form, but with ao replaced by the constant 1. Thus we consider the

equation

/n) + a1 (x) /n-I) + +an (xj y =b(x) . ---------- (I)
"',

(n) (n-1)Let L(y) = Y +al(x)y + +an(x)y ---------- (2). Then (I) can be written as
./

L(y) = b(x). If b(x) = 0, for all x E I, then the equation becomes L(y) = 0 and is called a

• homogeneous equation. If b(x) =f. 0, for 'some x E I then L(y) = b(x) is said to be non-

homogeneous equation.

It may be noted that L is an operator which maps a function ~, which has n derivatives on I

into the function L( ~ ) on 1. Whose value at x is given by:

(n) , . (ri-I)
L(~)(x)=~ {x)+al(x)~ (x}+ ..... +an(x)~(x).

1.1.2 Definition: A function ~ on I which has n derivatives on I is said to be a solution of (1) if /

L( ~) = b.

Through the lessons I to 6, we assume that a ,a ..... a and b are complex valued continuous .. 1 2 n . ,

thnctions on some real interval I and L(y) denotes the expression (2).
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1.1.3 Initial value problems for the Homogeneous equations: An initial value problem for

L(y) = ° is a problem of finding a solution <!>of it satisfying ~ (xo) = ()(I, <I>I (xo) = ()(2 , .

,.
J. (n-I) (xo) -- ()(n. Where x- i I b d . t t'I' ere Xo IS some rea num er an ()(1, ()(2 , •..... , ()(n are gIven cons an s.

In many cases it is not possible to find a solution of (1) interms of elementary functions, but it

call be proved that solutions always exist. V\,'c shall 110\\ assume the following existence

theorem (the proof of which will be discussed later) and proceed further.
'TI.4 Theorerr~: Existence Theorem: .

Let a., <12 ' , .... an be contnuous functions on an' interval i containing the. point xo.
'"

If ()(I, ()(2,··· .., ()(n are any n constants, there exists a solution <I>of

L( ) - (n) () (n-1) (). I . fy J. t!-. IY - Y +a1 x y • + +an x y=U on sans ing 'I' (xo) = ()(I, 'I' (xo) = ()(2,

J. (n-l ) _......... 'I' (xo) - ()(n·

1.1.5 Note:

i) The solution exists on the entire interval Iwherea., a2 , ..... a~ are continuous.

ii) Every initial value problem has a solution.

Neither of these results may be true if the coefficient of y(n) vanishes some where in 1. (See

the following example).

1.1.6 Example: Consider the equation x/+y=O, the coefficients of this equation are continuous for

all real x. The initial value problem xyl;+-y=O, y(l)=l has the solution <1>1'where <1>1(x) = ~.
, x

But this solution exists in (0, I) but not at x=O. That is the solution does not exist for all

real x.

If <!>is any solution of xyl+y=O, then x <!>(x)=c where c is a constant. Therefore at x=O, only

the trivial solution exists (c=O), This implies that the initial value problem x/+y=O, y(O)=UI,

has a solution only for Uj=O. Thusneither of the results mentioned in (i) and (ii) of the not are

true.

To demonstrate the uniqueness we need the following estimate for 1I<I>(x)ll,

\~~ 2 I .~ I· 12 liwhere II <!>(x)r \i<l>(x)1 + <l>i(x)1 + ....+iq/n-1)(X)jl 2.
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1.1.7 Theorem: Let bi , b2-; ..... , bn be non-negative constants s~ch that \a j(X)\ ~ bj for all x E I,

I ~ j ~nand k == I + b, + b., + ..... + bn. If xo is a point in I and ~ is a solution of L(y)=O 'on I- .

[hell li~(xo)lle-'kl x-Xo! ~ 11~(x)" ~ ii~(xo)lleki x-xol for all x E I.

Proof: Since ~. is a solution ofL(y)=O, we have L( ~ (x) = 0 \;f x E I.

i.e. <l>(n)ex)+a,ex)<l>(n-I)ex)+ ..... +a (x)<l>(x) ==0.
11

. (n) _ (n-I)
t.e, <l> (x)--a1(x)<j> (x)- ..... -a (x)<j>(x).

n .
-:. i"

Therefore l<I>n(x)1 s la1 (X)I/<I>(n-I) (x)/ + .•...+ I:~(x)H<I>(x)1

j.e.l~n (x)1 S bl/<l>(n-')(X)I + .... + b
n

!~(x)/ Let u(x) = 11~(x),,2.

. _I 12 II 12 1 (n-I) 12.. U( x) - <1>(x) + <l>(x) + .... + <l>. ( x ) .

I
!

. - II (n-I) (n-I)
t.e. u = <l><l>+ <l><l>+ ..... + <I> <I> .

This implies,

lu I(X)1 ~ 1<1>1(X)II~(X)I + /<I>(X)II<I>l(X)1+ + 1<I>(n-1\X)/I<I>(n) (X)I·

= 21<l>(x)II<l>'(X)I + 21<l>'(x )11<l>"(X)I + + 21<1>11-'(X)II<I>n(x)l· t~lal = 1a I)

s 2/<l>(X)/I<l>1(X)I + 21<l>1(X)II<l>'1 (X)I + 21<1>(11~ ,~)(X)II<l>(11-I\X)!

+ 2b,I<I>(11-')exf + 2b21<l>(n- 2) (X)II<I>(n-I) (X)I + + bn /¢:x)12 + bn /<1>(11-1)(X)J
2

.

(',: 21bllcl ~/b/2 + /e/2 for any numbers b and e).

= (1+Zbj+bj+ .... +bn) I <l>en-1) (X)1
2

+(1 + bn)/ <I>(x)/2 + (2 + bn -1 )I<l>(l) (X)1
2

+ ....

..j.. (2 + b2)/ ~(n.2>Cxl.

This implies that Iu 1ex) r~~k u(x),
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,Therefore,

1.4 I V'P. for the Homogenous

-2k u(x)~ul(x)~2ku(x)--------(1)

Consider the right inequality. It can be written as u 1 - 2ku sO

=> e ~2kx(ul -2ku)s 0

=> (e-2kx u(x»l ~ 0

If .. -2kx -2kxo. x >XO, integrating from Xoto x, we get e " u(x) - e u(xo)~ 0 , or .

2k(x-x .) "
u(x) ~ e () u(xO)

o
te. HCx) II~ II$(xO) lIek(x-xo) (',: u(x) = 11$(x)112). The left inequality of (l) similarly yields,

II<l>(xO)IIe-kS'-xO) ~11<l>(x)11for X >XO.

. Therefore 11$(xQ) IIe -k (x -xo) ~ II $(x) II ~ II $(x.O )llek(x - xO) for x >xo.

Again considering (1) for x < Xo, together with an integration from x to Xo gives,
o

"<l>(xo)" e~x-xo) ~ II<l>(x)II~e - k(x - xo) 114>(xo)IICx<xO). Therefore, for all X EI, we get

II$(xO) IIe-kl:- =o] ~ IIqJ(x) II~ II <!J(xO)lieklx - xol .

Hence the theorem .

. 1.1.8 Remark: IfI = [a, b! and aj are continuous (I ~j ~ n) then they are bounded and there always

exi~ finite con.stants bj such that la j (X)I s; b j for all x E I, I ~j ~n.

1.1.9 TI~eol'ein: Uniqueness Theorem,: Let X(J E I and let lXl , lX2 , ..... , lXn be any n constants.

Then there is at most one solutio; ofL(y)=O on I satisfying $(xo) = lXI,<j>I(xO)= lX2, .

$(n-l)CxO) = lXn ------- (1)

Proof: Let $ and 1.jf be two solutions ofL(y)=Oon I satisfying (1). Putting c = $ -1.jf.

We prove that cr(x)=O for all x E I. Even though.au I ~ i ~ 11) are continuous on I, they need

not be bounded on I. Hence we cannot apply Theorem 1.1.7 directly. Let x E I, x '* Xo and let'

J be any closed and bounded interval on I such that x E J and Xo E J. Then aj{1 ~ j ~n) a~

bounded.o
i.e. /Ia.(X)I~ b (I ~j ~ n), x E J.

J J

Applying theorem 1.1.7, we get
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L(J)=L(~-\jI)=L(~)-L(\jI)=O and (J(xO)=~(xO)-\jI(x'O)=a.l-a.l =0. Therefore by

theorem 1.1.7, we getllcr(x)~=OVx in 1. Thereforecr(x)=O~~(x)=\)l(x)since x IS

arbitrary, <j>(x)== \)lex) for all x E 1. Thus the theorem is proved.

1.2 ~hort Answer questions:

l-:T.t State Existence theorem for nthorder linear homogeneous differential equation.

1.3 Model Examination questions.

1.3~1 Let b, , b2 , ..... , b, be non-negative constants such that [aj(x)! :::;;bj for all x E I, 1 :::;;;s nand

k = 1 + b, + b2 + .. ~ : + b., If Xois a point in I and ~ is a solution of L(y)=O on 1. Then

1.3.2 -bet I be an.jnterval containing a point Xo and let 0.1 ; 0.2 , an be any n-constants, Prove

that there is atmost one solution <j>·oft~e equation. L(y)=y(n)+al(x) /n-I)+a2 (x) y(n-2)+ .

+an(x) y = 0 on I satisfying ~(xO)=0.] ,<j>1(XO)=a.2, .....<j>(n-I\~o )=a.n .

1.3 Answers to short answer questions.

For 1.2.1, see the statement of theorem 1.1.4.

Lesson Writer:
V Siva Rami Reddy,

/}fJ. College for 'Women, ,Tenali. .
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LESSON-2
SOLUTIONS OF THE HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS

WITH VARIAP.LE COEFFICIENTS
,/

2.0 Introduction: This lesson deals with the solutions of L(y)=O, we prove that the set of all

solutions of L(y)=O is an n-d!mensional linear space.

2.1 Solutions of the homogeneous linear differential equations

2.1.1 First we note the following:

Any linear combination of solutions of 1)y)=0 is again a solution of L(y)=O.

For, suppose that ~l , ~2 , ..... ~n are an: n-solutions of the nth order linear differential

equation L(y)=O and CI • C2 , ..••• CII are any n constants then

Therefore 311\' linear combiuation of solutions of L(y)=O is again a solution of L(y)=O:

2.1.2 Detinition: The functions ~I' (Pl, , <Pn defined on an interval I are said to be linearly

independent if the only constants CJ, C2, , C, such that C1 ~1(X)+C2 ~2tX)+"",+Cn

Qn(x)=O for all x E I, ar= the constants CI=C2= =C,,=O.

:: .1.3 Theorem: There.. \ ist I I linearly independent solutions of L(y)=O on I.

Pl"Oof: Let Xo be.' '<,II' in I. By [he existence theorem. there exists a solution <PI of L(y)--O

such that <PI(xo)= I. UI I (X0)=O, , <p/"'i) (xo)=O. In general for each i=l, 2, , n there is a

, solution <Pi satisfying <Pi(; ; I (xo)=}, <Pi (i·I) (xo)=O, j:;i:i.

Now we show that the solulion.s)l, ~2,""" ~Il are linearly independent on I.

Suppose there are cl1!hUinh . ',. C. en such that C <P.iCx)+C"<I>"(x)+ +C, ~II(X)=O

for all A E I.

Differentiating we gel

C1 ~: lex) + C <P21(X) + ...

CI <PII I(X) +. C'c <l>/i,<),

+ C, ~"I(X)=O

+ C' I '1(' ')'-~f'....... "(,),, X ..f

., ,!,' ) ( ., c A, (:J'!' ( ,) + C ', (11-1) ( '- D for II" IC1;'il:'}+2'1'2' x i« "(V,, X!·"(OlaXE.

'('2=" .... =C,,::-O. Thus the solutions e.. fill, .... ·• <PH are linearly

- 1 .1
_ 101



Proof: Let <p(xo)=a\,'<pI(xo)= a2, <p(II'I)(xo)= an.

Consider the function 'Jl=al~l + a2~2 + + an~n then

L('V) = L(a.l~l + a.2~2 + + unl\>n

() (.: ~i is a so\ut\on ofL(y)=G) for each i=L, 2, .... n)

Now \jJ (xo) = al <1>1(xo) + a2 <1>2(xo) + .... + an <l>n(xo).

= al (.: $1 (Xc)=} , $2 (Xc)= ..... =$n (xo)=O)

\jJ1(xo) = al <1>1I(Xc) + 0.2 <P21(XO)+ + an <l>nl(xO)

.............. ~ ~?.... (d>?I(xo)=L <b,I(Xo)=<b11(xo) <P...!("o)=O)

\jJ(n-l)(xo) = an. Thus \1' is a solution of L(y)=O and (\jJ("o)= a), \V' (xo)= 0.2 , ..

,\jI(n-l)(xo) = Un) has the same initial conditions at Xc as $. /

By uniqueness theorem $ = \jJ. Therefore $ = 0.1 $1 + 0.2 $2~+ + an $0'

The theorem is proved with the constants C, = ai (1 :s; isn).

Hence the theorem.

,2.1.5 Solution Space: Let S be the set of all solutions of L(y)=O. If $1, $2 E S, then we have seen

that CI$I + C2$2 E S, for any constants CI and C2. Therefore S forms a linear space called the

solution space of L(y)=O. It has n-linearly independent solutions <PI.<P2' ..... , <Pnand every

solution of L(y)=Ois a linear combination of <1>"<1>",..... , <Pn.

Therefore B={<p" <1>2,..... , <l>1l}is a basis for S and the dimension ofS is n. By theorem 2.1.4,

it is clear that the functions $1> $2, : , $0 satjsfy the initial conditions. $i (i-I)"(xo)=l ,

$i (i-I)("0)=0 G:t:i), 1 s i :S;n, I s j sn, and forms a basis of S. Thus S is a linear space.

2.1.6 Problem: Consider the equation yll + ~yl + ~y = ° fon x > 0. Show that a) there is a
x x

solution of the form xc" where r is constant. b) Find two linearly independent solutions for,

x > 0, and prove that they are linearly independent.

c) Find the two solutions $1, $2 satisfying.

<PI(1) = 1, <P2(1) = 0

<I> I' ( I ) = I, <1>1'( I ) = I.

Solution: Givenequation is L(y)= yll + ~yl + --3Y = 0, x >0 ~ (1).
, ,x x

Let bsassume that the solution of (l) is of the. form xrthen we have

(x r) I I + ~ (x r ) I __ ,1_ x ~ = 0
x x2

=>r(r-l)xr-2 +rxr-2 _xr-·2 =0



( Solutions of the Homogenous

=>(r(r-l)+r-l)xr-2 =0

; ", .=> (r2 _1)xr-2 = ° (.: Since x > ° =>x,r-2 > 0)

=>r2-1=0

«.

.'. r=±1.

The two solutions are s:', x'.

To show x·l:x are linearly independent.

Let CI, C2 be two constants S.t. CI X·
I+C2

o
1

C1(-2)+C2 =0.x .

x=O differentiate with respect- to
•

Again differentiate with respect to 'x' C2( x23J = 0

'x ', we get

0-·

I . ,
Hence x, - are linearly independent.

x

From (a), x, !..are solution of(1).
x

So the solution is ~I (x) = 2.x + _1_. Similarly, we try ~2'
2 2x

2.1.7 Problem: Consider the equation L(y) = yll <t- alex) yl + a2(x) Y = 0, where a], a2 are

continuous functions on some interval J, anda, has a continuous derivative there.

a) If~· is a solution of [Jy)=O. Let <j>= u\jf, and determine a differential equation for u which
···.u

will make tVthe solution of an equation in which the first derivative term is absent.

b) Solve this differential equation.

e. a 2
.h '11' fv the eouati . II () 0 h 1 ajc) Showt at w wi sansry tne equauon.y +o; x y= ,were a=a2----.T .24

Solution: Since <j>is a solution of L(y)=O, we haveo!' + al~1 + a2<j>= 0. Let <j>= U\/f. Then

\'~ /\1 + \[Il(2ul + a.u) + \[I(UII + a.u' + a-u) = 0.

The required differential equation for u which makes the solution of an equation in which the

first derivative vanishes is 2u1+alu=0.

b) 2ul+alu=O

ul a~_= __l.
U· 2
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, _ f a I(t) dt
Integrating on both sides, we get u= Ce 2

2u1
c) We have al =--

u

1
11 al al 1u :--u--u2 2
II I I I 2u 81 al u al al-=-----=--+-'
u 2 2u 24

(
II I 1

\jf satisfies the equation yll + uu- + a I : + a2 Y = O.

2.2 Short Answ~rquestions:

2.2.1 Prove that any linear combination of n solutions ofL(y)=O' is again a solution of L(y)=O.

2.3 Model Examination questions:

2.3.1 Find two linear independent solutions of the equation (3x-l)2 yll+ (9x-3) /- 9y = a for x > .!..
3

2.4 Exercises:

exp[ - J:(t)dt] (Here let a be2.4.1 The equation yl+a(x) y=O has for a solution $(x)

continuous on an interval I containing xo). This suggests trying to find a solution of

L(y)~ y"+a,(x) y'+a, (xjy=O of the form $(x) ~exp[J:(t)<lt} where p is a function to be

determined. Show that $ is a solution of L(y)=O if and only if p satisfies the first order non-

linear equation yl= _y2- al(x)y - a2(x).

2.5 Answers to sbort answer questions:
For 2.2. I. see note 2.1.1.

2) Lesson Writer:
V Siva Rami Reddy,

JMJ Collegefor women, Tenali.



LESSON-3
THE. WRONSK\"N "NO l\NEAR lNDEPENDENCE

OF THE SOLUTIONS OF THE HOMOGENEOUS EQUATION

3.0 Introduction: In this lesson we define the wronskian of any n solutions <Pl,<P2, , <pnand

show that any set or n solutions of L(y)=O on an interval I is a linearly independent set if and

only if their wronskian does not vanish on 1. Further some results involving wronskian are

established.
\

3.1 Linear independence of the solutions of the homogeneous equations:

3.1.1 Definition: The wronskian W(<!>l,<P2, , <pn)ofn functions <Pl, <P2, , <pnhaving n-I

derivatives on an interval I is defined to be the determinant function

W(<pl. <P2, , <pn)=

....... <pn

....... $01

<Pl!n.l} <P2!n.l} <Pn!n.l}
Its value at any point x E 1 is W«<pl, <P2, , <pn)(x).

3.1.2' Theorem: If <1>1,$2, , $n are n solutions of L(y)=O on an interval I, they are linearly

independent ifand only ifw($l, $2, , $n) (x) '* 0 for all x in 1.

Proof: First suppose that W(<pl, <P2, , <pn)(x) '* 0 V X E I.

If there are constants C I, C2, ..... ; Co such that

CI<PI (x) + C2 <1>2(x) + + CI1 <1>11(x) = 0 for all x E 1---- (I)

C1 <1>11(x) + C2 <1>21(x) + + C, <l>n1 (x) = b
} ---- (2)

C1 <l>1(n.l>Cx)+ C2 <l>2(n.l)(x) + + Cn <l>o(n.l)(x)=O for all x E I.

For a fixed x E I the equations (1), (2) are n linear homogeneous equations satisfied by C],

.........................................................

C2 Cn. The deter-minant of the coefficients is w( <1>]'<1>2, : , <Pn)(x) which is not zero.

Therefore there is only one solution to the system (l), (2).

i.e. CI=C2= ;= Cn = 0

Hence <PI,<P2' : , <1>"are linearly independent on r.
Conversely. suppose that $1, <1>2 $11are linearly independent on I. Suppose there is

an Xo i~ I such that w( <Ph <P2' , <!>11)(xo)=O. Then this implies that the system of n linear

equations

---- (3)

CI <1>1(xo) + C2 <1>2(xo) + + Cn <l>n(XO) = 0

C, <1>11(Xo) + C2 <1>21(Xo) + + Cn <l>nl(Xo) = 0

C '" (n-I) ( ) + C '" (n-I) ( ) + r C '" (n-I) ( )-0I '1'1 X 2 '1'2 X ' n 'l'n Xo -
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; has a solution CI, C2, .... C, where not all the constants CI, C2, •... Cn are zero.

Let CI. C2, •.•. C" be such a solution, and consider the function IfI=CI~I+C2 '~2-17..... +C, ~n'

Then L(IfI)=O,since ~], ~2' " ~nare solutions of L(y)=O. 1
From (3), we have lfI(x.o)=O, IfII(Xo)=O, IfIn-I(Xo)=O.By the uniquenesstheorem lfI(x)=O '",

•
for all x E I. Since not all C, (1 ::; i ::;11)are zero, ~], ~2' , ~n are linearly dependent

on I, a contradiction. Therefore our assumption that there is a point Xo E I such that

W(~l' ~2' , ~n) (xo)=O is false. Hence w(~], ~2' , ~n) (x):j: ° 'tj X E I.

Hence the theorem.
\.

3.1.3 Theorem: Let o., ~2' , ~n be n linearly independent solutions ofL(y)=O on an interval I.

If ~is any solution of L(y)=O on I, it can be represented in the form ~=CI~I+C2 ~2+" ...+C, 4>n,

where (I. (2 ... "c" are constants. Thus any set ofn linearly independent solutions ofL(y)=O

on 1 is a basis for the solutions of L(y)=O on I.

Proof: -We have by theorem 3.1.2
."

~], ~2' .... ~" are linearly independent on I if and only if w(~], ~2' .... ~n) (x) :j:° for all x E I.

Let 4> be any solution of L(y)=O and Xo be a point in r.
Suppose that ~ (xo) == ai, ~I(XO)= a2, , ~(n-I\xo) = an·

Consider the following system of n linear equations in C], C2, .... Cn.

CI~I (xz) + C2 (Pz(Xo)+ + C, <Pn(xo) = al

" C1 ~II (Xo)+C2 ~21(Xo)+ + C~"'nI (xo) = a2

----(I)

CI ~1(n.I)(x)+ C2 ~2("-1)(x) + + C, ~n(n-I)(xo) = an

There is a unique solution for CI:C2, .•.•. C·. '

Since the determinant of the coe~!icients of C], C2, •••. C, is W(<P'i-<..<P2'.... ": <Pn)which is not

zero. With these C), Cl, .... , C", we take IfI= C1<PI+C2~2+..... +C, ~nwe observe that

i) tji is a solution of L(y)=O (Since ~I' ~2' , ~" are solutions of L6y)=O)

ii) lfI(xo)=a], IfII(Xo)=a2, ..... lfI(n-l)(xo) = an. (From the equations of «»'.
By the uniqueness theorem, we have IfI= <p.

Thus for any solution ~ of L(y)=O, there exists a unique set of n constants such that
,

~ = CI~I+C2 ~2+..... +Cn ~n i.e. any solution of L(y)=O is a linear combination of n linearly

independent solutions ~], ~2' , ~n. Therefore any set of n linearly independent solutions

ofL(y)=O on I is a basis of the solution space ofL(y)=O.Hence the theorem.

3.1.4 Theorem: Let ~1' ~2' '.~n be n solutions ofL(y)=O on an intervall and xs be any point in

I. Then w(~,. ~,•......• ~,,)(x) ~ w(~,. ~2' ......• ~")(xo) exp[ - J;' (t) dt}
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P~oof: We shall give the .proof of theorem whe~n=2 and the~ giveproofof.theorem 'i~~thej
general case.

Proof of the theorem when n=2.

. $1 $2 . " .. ,
In this case wC$"$2)= $)1 $2) =$,$2'1-$2$,.

wl($" $2) = $1 $2' + $1 $211 - $2' $11 - $2 $111
;= $1 $211 - $2 $111.

Since $" 4>2satisfy y"+al{x) y' + a2(x)y =.0, , .•,

We get <p,1I= -&,$/':" a2$, • r f•.

<l>211=-31<P21-32$2' /i.··

:. w'($" $2) = $,(-al<l>2' - a2 <P2)- <p+3,$,' - a2 <1>,).

= - a,($, <1>2'- <1>2<1>,')= - a, w($" ~2)

=> w(~" <1>2)satisfies the first order differential equation/+al(x)y=O
" "',; .

. ( J
its solution iSW(<PI,<P2)(X)=C expl- fal(t)dt •

~ »o

puttingx ~ "', we get C ~ w(~"~,)(x;,) ex{!: J (')d'lO '0 ,

. = w( <I>,,<I>i)(Xo), . ,.

:. w(<p" <P2)(X)=C eX/l- Ja1Ct)dt] .

Xo ( 'I.

.. =W(<I>,,<I>2)(XO) exp - Ja1(t)dtl.
Xo ;

. .a :.. '." -. ';. ~..: '-,'f ! : ••' . .: ~ {- , '1

: ~.

.~'"'-' . .
-, t· •. J;;'

'l

Hence the theorem when n = :2. ,;.;

Proof for a general n: Let us write w for w($" <V2, .. ;;; .. , $n).for convenience, Wekl'\Sw that

the derivative w' is a sum Of n determinants. ,
;,'

w' = VI + V2 + + Vo where Vk differs from w only in its kth row, and the kth row of Vk is

obtained by differentiating the klh row ofw.

I 'I<PI ··<Pn
1 1<1>2· · $n ,

Thus wI= <1>111 $n I I +
:;"1

.....,; u....•;..

!$)(n-D :..$n (n-I)

- •• .r••••••.••.• :••••• '•• ~••• r-:)'

<Pl....' · ·;·· .. ·..!!>n <P1·.. ·, .•.... · : !!>n
II' '11 1 , "I<1>1 .: .. ·..~n. $1 · $n

"Ii' ." 11 '.'. If· 11
1/l1 ·.. · · $0 + .; + $1 · $n

We see that the first (n-L) determinants VI, V2 , .•..... , Vo_' are ·all zero, since they each have
,. .i .. ".. '. . L ; .r , : . ''''; ~':.

two identical rows. Since <p), <P2' ...•.. , $0 are solutions ofL(X)=O we have

r..~n)__ tf...(n-l) tf... ('=12 -. ),
!ill - aI'I'1 .•... an'l" 1 " ..... , n ,
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Therefore \\-) =

I\ll ················· ••········,·······~n
1 1

cJ>1············································cJ>n

cJ>1(n'-2) cJ>n(n,-2)

n-I n-I
- "a . .h,U) -" a ,,/, (j)L... n:-,]o/ .... L... n-Jo/n

j=O j=O

The value of this determinant is unchanged if we multiply any row by a number and add to

the last row. Multiplying the first row by an , the second byan.1, ..... , the (n-l yh - row by a2

and adding these to the last row, we get

<I>! , ., <I>n.
I IcJ>1 cJ>n .

1w = =-alw
cJ>1(n-2) ~ ~.~n (n-2) , .

- al~l(n-l) - al~n (n-l)

~wl+alw= a
Thus w satisfies the linear firstorder differential equation yl + al(x) y = 0 and therefore

. w(x) = C eXPl~ loa, (t) dtJ putting x ~ '" we ge~:(",) = C.

Therefore w( x) = w( x,) expl~Joa, (t) dJ

Hence the theorem.

3.1.5 Corollary: If the coefficients ak of L are constants,

- '. __ -al(x-xo) ('" "')( .1r': - ,-' then w(cJ>J,$2, , cJ>n)(x)- e." " w o/\""'I'n xO) ,

- - -~-'-;roorSince at, a2 , an are constants, we have w(x) = ~(x~) expl- Ja] (t) dtJ
\~ ,;. '; Xo

I

= w(xo) exp( -al (x - xO»'

7,,1.6 Note: The n solutions <1>1.<1>2., ..... ,'<P1l of L(y)=O on an interval I are linearly independent if
-'" -
and only if w(cJ>1"cJ>2'_ .... , cJ>n)(Xo) :t: 0 for any particular Xo in 1.

. For, by theorem 3.1.2, <Ph ~2' ~.. ,<Pn are linearly independent on I if and only if

W(<I>bcJ>2'.. ~... , <Pn)(x) :t: 0 for all x' E 1.

6 exp( ~ Xfa,( t) dt} w(~,.$';....: ~")(,.,;)" 0 for any", E I. (By theorem 3.14)

¢:> w(<I>t.~2,-"'"'' <1>0)("0) :t: 0 for any "0 E 1.
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3.1.7 Problem: Consider the equation L(y) = yll+al(x)yl+a2(x)y = 0 where a., a2 are continuous on

some interval I. Let </>"4>2and \jJ" \jJ2 bases for the solutions of L(y)=O. Show that there is a

non-zero constant k such that w(\II" \112)(x) = k w(~" $2) (x),

Solution: Let {</>)'</>2}be a basis for the solution of L(y)=O. Let {\jJ), \jJ2} be another basis for

the solution of L(y)=O. Therefore there exists constants C" d"C2,d2 such that \II1=CI</>1 + C2</>2

and \jJ2=dl</>1+ d2h.
Consid~r w(\jJ" \jJ2) (x) = \jJ1(X) \jJ2\X) - \jJ2(X) \jJ11(X).

= (C,</>i + C2</>2)(d, </>1'+d2</>21)- (CI </>1'+C2</>2') (dl</>I + d2</>2)'

" = C,</>, d, </>11+ C1d2 </>1</>21+ C2d'</>2</>11+ C2d2 </>2</>21- Cldl</>I</>II~,Cld2</>2</>ll-~~
C2d I</>I</>21- d2C2</>2</>21.

= (Cld2 - C2dd (</>1</>21- </>2</>11)
///'

"'= k(W(</>1</>2»where k = Cld2 - C2dl:

Hence the problem.

3.1.8 Problem: Consider the equation

L(y)= yll+al(x) y' + a2(x) y=O

Where a., a2 are continuous on some interval I. Show that a., a2 are uniquely determined by

any basis </>"</>2for the solutions ofL(y)=O ..
Solution: Given that </>h</>2are two Linearly independent solutions of L(y)=O then we have

L( </>~)=Oand L( </>2)=0

.. </>1"+ al(x) </>11+ a2(x) </>1=0

-: </>2"+ al(x) </>21+ a2(X) </>2=0

~ (1)

~ (2).

Multiplying equation (l) by </>1and equation (2) by </>2and subtracting

We get (</>I\I </>2- </>2\I </>I) + a, (x) (</>2</>11_</>1</>21)=0

</>\ </>2

</>1" </>2"

-W(</>\,</>2)

multiplying equation (1) by </>21and equation (2) by </>11and subtracting, we get

(</>,11</>21- </>11</>211)+ a2(x) (</>,</>21-</>2</>11)=0.

<1>11 <1>21

</>111 </>211

w(</>l><P2)

Thus a and a2 are uniquely determined.

3.2 Short Answer questions:

• '.2.1 Define wronskian 01'</>1.</>2 </>".
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3.2.2 If the coefficients ak ofL(y)=O are constants, then

W(<Ph<!>2, , .$n) (x) = e -a] (x-xO)W($l ,$2 $n)(xO).

3.2.3 Prove that the n solutions $]' $2,. .. , $n of L(y)=O on an interval I are linearly independent iff

w($1>$2, ... , $11)(xo) *0 for any particular Xo in 1.

3.3 Model Examination Questions:

3.3. I Let <!>Ii<!>2 <!>Ilbe 11 solutions of /")+al(x) /n-I) + a2(x) /n-2) + + an(x) y = ° on an

interval I and let Xobe any point in I then show that w; $ •• $2,. :. , $,) (x) ~ exp( - Y:I(t) dtJ
W(</>]'</>2,'",</>n)(XO)'

3.3.2 If </>1.<!>2,... , <P1lare n solutions of L(y)=O on an interval I, then show that they are linearly

independent if and only if W(</>h</>2,'" , </>n)(x) * ° for all x in I.

3.3.3 Consider the equation L(y)= yll+al(x) yl + a2(x) y=O, where alex) & a2(x) are continuous

functions on I. Let </>]'</>2and \If], \lf2 be two basis for the solutions of L(y)=O. Show that there

is a non-zero constant k such that w(\If], \lf2) (x) = k W(</>I'</>2)(x).

3.4 Answers to Short Answer questions:

For 3.2.1, See Definition 3.1.1

For 3.2.2, See Corollary 3. 1.5

For 3.2.3, See Note 3.1.6

Lesson Writer:
V. Siva Rami Reddy,

J.MJ. College for women, Tenali.



LESSON·4
REDUCTION OF THE ORDER'OFAHOMOGENEOUS EQUATION

-
4.0 Introduction: If one solution ~I of the equation L(y) = /n)+al(x) /n-I)+ ..... + an(x) y=O is

known then it is possible to reduce the order of the equation by one. The idea is the some one'

as employed \n the vari.ati.on of constants method. We wish to find all solutions ~ of L(y);=O

of the form ~ = u~\, where u is some function. When n=2, the second solution ~2 of L(y)=O

can be obtained.

4.1 . Reduction of the order of the homogeneolls equation:

Suppose we have a solution ~I of

L(y) = y(n)+al(x) y(n-I)+ ..... + an(x) y=O with <l>1(X):t= 0. If <I>= U<l>hwhere u is some function,

is a solution ofL(y)=O, then

(u~dn) + a!(u~dn-I) + ..... + an-I (U~I)I + an(u<l>I)=O

i.e.[lI(Il)<I>1 + nClll(Il-I)~11 -t- •.•. + lI<1>lll]+ a I[U(n-l)<I>i +n-ICll1(n-2)~ll + .... + U¢I(n-I)] +

. . 1 I
........ +an-I[wpl + u <l>tJ+an u<l>l=0.

i.e. <1>1u(n) + ..... +[n<l>l(n-I)+(n-l)al <l>1(n-2) + .... +an-l <l>JJu1+

[~l(n) +al <l>1(n-l) + ..... +an-I <1>1+an~JJlI =0 -jo (I)

Since <1>1is a solution ofL(y)=O, the coefficient of u is zero. Putting v=u', the above equation

becomes a linear equation of order (n-I) in v.

,h (n-1) [ ,h (n-1) en-I),h (n-2) ,h ] 0 (1)'1'1v + ..... + 11'1'1 +al '1'1 + ..... +an-1 '1'1 V= -----------

4.1.1 Theorem: Let ~I be a solution of L(y)=O on an interval I, and suppose <I>!(x):t= 0 on L If

V2, V3, ..... , V n is any basis on I for the sol utions of the linear equation (1) of order (n-I), and

if Yk = lIL (k = 2,3....n) Then <I>!,U2<1>1,.... lIn<l>lis a basis for the solutions of L(y)=O on I.

Proof: If <1>1is a solution of L(y)=O, and <I>= u<l>!where 1I is a function, is a solution of L(y)=O

then we get equation ( I) where v = II I.

The leading coefficient or (I) is <PI. Since <l>1(~:)j:. a on I, the equation (I) has (n-l ) linearly

x
independent solutions, say V2, V3, ..... Vn. If Xo is some point in I and Uk(X) = J Yk (t) dt 1

XO

(k=2, 3, .... , n). Then Yk = u~ (2::; k ::; n) and <I>!,U2~!.. , ..un<l>1 are solutions of L(y)=O.

To show <l>J,1l2~!..... Un~1are linearly independent.
.'

Suppose we have constants Cj, C2, ..• C, such that C1<l>J+C2,U2<1>J+ + Cnun<l>J=O.

-jo (2)
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iff .. . C I C· 1 0DI terennatmg we get 2112 + + nUn =
i.e. C2,V2 + .....+ Cnvn=O.

_ Since VI, V2, ..•.. , vn are linearly independent on I, we have C2 = C3 = ..... =C, = O.

Substituting in (2) we get C1=0.

Thus ~"U2<1>,..... ull<l>,are linearly independent on l.By theorem 3.1.3, {~"U2$1 ..... Ur.$I} isa

basis for the solutions oft(y)=O on I.

Hence the theorem.
I

In the case when n=2, the equation (1) for v is a first order linear differential equation and can
I

be solved explicitly. The. expression for the second solution is given in the following'

theorem. I . I

4.1.2 Theorem: If <P' is a solution of L(y) = y' '+al(x) y'+a2(x) y=O ~ (1) on an interval I and. I .
<PI(X):tO on Ithen a second solution of (!) on I is given by

exp r - !a I(t)dt 1ds ,
L <o J

x I
<l>2(X) = <PI (x) J 2

xo [<1>1(s)]

The functions <P1><P2form a basis for the solutions of (l) on I.

Proof: Since <1>1is a solution of (1) on I, we have <PI11+ al $1 I + a2 <PI= O.

Consider L(u<j>I)= (U<j>,)11+ a,(u<j>I)1 + a2(u<pI)

= U"<PI + ?1I1<j>11+ 1I<P111+ a!ul<p1 + alu<j>11+ a2u<p1

= u I1<p1+ ul(2~II+al<l>J + U(¢I"+al<Pll+a2<P1)

= U'I<j>1+ u'(2<j>,'+a,<P,),

Taking u such that L(u<pI)=O and ify=u! then we ~~~ <Plyl + (2<j>,'+al<l>I)Y = 0 ~ (2)

The above equation is a first order linear differential equation. which can be solved explicitly

(since <l>1(X)*O011 I). Multiplying the above equation by <PIwe get

cj>12yl+ (2cj>i cj>II+ a, <1>12)v = 0

=> <P12vl + 2<pI <PI IV + a'<P12v = 0

~ (3)

x
.. [<P12(X) vex)] exp [ f al (t) dt] = C where Xo is a point in Iand C is a constant,

xo
is a solution of(3).

x
=> <p?(x)v(x) = Cexp[- f al (t) dt]

xo
.,/ / I x ..

7'v(x}= ? exp[- f a I (t) -.ll)
<Pl-(x) xo
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=> vex) == 21 exp[- j al (t) dt] is a solution of (2) or (3)
~l (x) xo

x I x
:.u(x)= f 2 2exp[-fa1(t)dt]ds. Thesecondsolution~2of(1)isu~I

xO [~1 (s)] xO

x I x
"'~2(x)==~I(x) f 2 exp[-Jal(t)dt]ds.

xO[~1(S)J =o

From theorem (4.1.1) ~h ~2 from a basis for tl~e solution space of (1) on 1.0

4.1.3 Problem: Find a basis for the solution space of the differential equation

yll - ~y ==0, (0 < x ~oo) given that ~I(X) = X2 is a solution.
x

Solution: Note that ~I(X) *" ° for XE(O, 00). By theorem Lb 1.2, there is another independent

s~IBtion ~2 of the form ~2 ==U~I' Then X2UII+(4x) u' ==O.

Putting u' ==v we get X2vI+ 4xv=0

i.e. XVI+ 4v ==° ~ (I)

solution is v exp [ f idtJ ==C
xo t

\

=>v exp ~Og t 4t = c

=> v ",;X-4 is a solution for (1)

1
:.u1=v=4

x

I
u ==---

3x3.

Since any constant times a solution is a solution, we may c800se for a second solution,

:. X2,X-I form a basis for the solutions on (0, ex».

4.1.4 Problem: Solve X2yll_7xyl+15y==O,<Pl (x) = x3 (x>O).

Solution: The given equation is X2yll':7xyl+15y=O

II 7 I 15
::::;> Y --y +-y==O

x x2
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which is In the form yll+al(x) yl + a2(x) y=O.

7 . 15Here al(x) = - - , al(x) r!' - -'.
x x2

The function <Pl(X)= x3 is a solution (verify).

We note that <!'I(X)"*0 on (0, (0). By theorem 4.1.2, there is another independent solution ~2

of the form U~I' Then x3 u" + (2X3 _~x3 ) ul=-Oputting u' = v we getx' vl+(2x3-7x2) v = O.

1 (X7) 1 7= -exp - f-dt =-,.X =x.
x6 at XO

x2 -
. u=-.. 2

~2 = U~I= x5 (Taking out constants)

Hence the solution of the given equation is ~(X)=CI X3+C2x5 for some constants ~), C2•

4.2 Short Answer questions:

4.2.1 If ~I is a solution of L(y)=yll+al(x)yl+a2(x)y=0 on an interval I and ~I(X) "*0 on I, then write

I the formula to find the second solution ~2 ofL(y)=O on I.

4.3 Model Examination Questions:

4.3.1 Let <PIbe a solution of L(y)=O on an interval I and suppose that <PI(X)"*0 on I.

Ifv2, V3, ..... , v, is anybasis on 1 for the solution of the linear equation.

~, v(n-')+ ..... + [n ~I(n-') + (n-1) <p,(n.')+ ..... + an.'] v = 0 of order (n-l) and if VkC:U~for

k = 2,3, ... !1. Then o., U2~)' ..... , u, <P'is a basis for the solutions of L(y)=O on an interval I.
,

4.3.2 One solution of X2ylll_3x2y'+6xy' -6y=0 for x > a is <PI(X)=X,Find a basis for the solutions for

x > O.

4.3.3 Solve x2yll_ 7x/+ 15y=O, ~l(X)=X3.

4.4 Exercises:

4.4.1 A differential equation and a function ~1 are given in each of the following. Verify that the

function <1>1satisfies the equation and find a second independent solution.

a) 2 II 1+ -O.h()-x y - xy y - ''I'I X - x

Answer: <P2(X)= x log x

(x > 0)

?
b) yll - 4xy' + (4x1

- 2) Y = 0, <PI(X)= eX
-

/
.1

:\Ih\\er: <P~(.\)0" \ c'
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c) xy!' - (x+ 1) v' + y= 0, ~l(~)= eX (~> 0)

Answer: <i>2(X)= -x -1

d) (1- X2) yll - Zxy' + 2y = 0, <i>l(X) = X (0 < x < 1)

x (X+l)Answer: (hex) = - log -- -l.
2 \. x-I

e) yll - Zxy' + 2y = 0, (!>J(x) = x (x> 0)

x 2 2
Answer: (l>2(x) = x J C et dt.

I

4.5 Answer to short answer questions:

For 4.2.1, see theorem 4.1.2.

" .

" Reduction of the Order ).[~--------------------~

( ,

Lesson Writer:
V. Siva Rami Reddy,

J.MJ. College for women, Tenali.

,~ " .' ;'



,'cr LESSON-5
, ,SOLUTIONS OF THE NON-HOMOGENEOUS LINEAR DIFFERENTIAL EQUATION

WITH VARIABLE COEFFICIENTS

5.0,.1 Introduction: Let a., a2, , an, b be continuous functions on an interval I and consider the

non-homogeneous linear differential equation

L(y) = y(l1)+ al(x) y(n,l) + + an(x) y = b(x) -; (1)

If \jJp is a particular solution of (1) then we prove that any solution of (1) is of the form.

\jJ = \jJp+ CI<PI+ C2<1>2+ + Cn<l>n,where CI, C2, , C, are constants and {<Ph<1>;, , <l>n}

is a basis for the 'solution space ofL(y)=O. The form of \jJp is derived.

5.1 Solutions ofthe non-homogeneous Linear Differential Equations:

5.1.1 Theorem: Let a., a2, ..... , an and b be continuouson an interval I and let <p],<1>2,... " <l>nbe.a

basis for the solutions of L(y)=O. Every solution' \jJ of L(y) = b(x) can be written as

n
\jJ = \jJp + I Ck <l>b where \jfp is a particular solution of L(y) = b(x), and CI, C2, " .. " C, are

k=!

: ..-'. ,., .constants. Every such \jJ is a solution of L(y) = b(x). A particular solution \jJp is given by

n ' x Wk(t) bet} .,
\jJp = L <l>k(x) f " dt, where w(<PJ, <\>2, .... , <Pn) IS the wronskian of the

k =I 'xo w(<Pl,<P2, .... ·<Pn)(t)

basis <1>1,<1>2,.. '" <l>nand Wk is the determinant obtained from W(<I>h<1>2," .. , <l>n)by replacing the

klh column «<I>k,h I , ,<I>k(n-I» by column (0,0, , 1).

Proof: If\jJp is a particular solution of(1) and \jJ is any solution of(1) then

L(\jJ - \jJp) = L(\jJ) - L(\jJp) = b(x) - b(x) = 0

Thus \If - IIII' is a solution of the homogeneous equation L(y)=O. Therefore \jJ - l!fp is a linea

combination of <1>]'<1>2,.. '" <1>"(Since {<I>I,<1>2,".:, <l>11}is a basis for the solution space (

L(y)=O).

n
:. \jJ - \jJp= ICk <Pk, where CI, C2, .... Ck are constants.

k=!

n
This implies that any solution \jJ of'( 1) is of the form \jJ = \jJp+ I Ck <Pk.

k=l
"

Thus we see that the problem of finding all solutions of (1) reduces to finding a partieu

solution % of (I), unless b(x)=O on I. We shall now allow C], C2, .... C, to be functic

n
lIj,lI2, , u, on 1. So that \jJp is a solution of.(1)in the form I,Ck <l>k.

I
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-~: ~p ~U'I~I+ U2~2 + + un~n is a solution of (I) ..

1 1 1 I I 1 _ 1
If ul <?I+u2 <?2+ +un <?n =0 then\llp =ul~l +u2$2 + +un$n .

·1111 11and if ul $1 + u2 $2 + + un $n = 0, we have

11 ,1.11 11 . 11
~p = ul'l'l + u2~2 + + un~n .

Th 'f ! 1 I· fyUSI ul ,u2 , ,un sans

1 1 1ul ~I +u2 ~2 + +un ~n =0

--- (2)

U I A. (n-2) + u I A. (n-2) + + u I A. (n-2) = °1 '1'1 2 '1'2 n vn

u I A. (n-I) + u I A. (n-I) _ + u I A. (n-1) = b
1 '1'1 2 '1'2 i •••• • n +n

We see that \lip = Ul~1 + U2~2 + + un~n
1- ,1.1 ,1.1 ,1.1

\jfp - UI'I'1 + U2'1'2 + + un'l'n
I

( n - l) _ A. (n -I ) tI. ( n-I )" (n-I )
\11P - LI I '1'1 + L1? 't'? + + U 11 Iji n

(n) _ A. (n) tI. (n) tI. (n) b
~p -uI'l'1 +u2'1'2 + +un vn +

:. \lip is a solution of (I). The whole iproblem is now reduced to solving the system (2) for

I I !u!,u2, ·un

The determinant of the coeffyle~ts is w( ~J, -$2, .... , $n), which is never zero. (': ~J, ~2' .... , $n

are linearly independent s~)L.ltions of L(y)=O). Therefore there exists a unique solution for

d .... rl fI -! tI. A. b - --"1" I I (i A. A. I A. (n-i»)eterrnmant obtameo irom \o\'( lil" '1'2, 'I'll) Y rep acrng t re co umn l.e''I'k> 'I'k , ·'I'k

by column (0, 0, I). If Xo is any point in I, we take for ~ u, the functions given by
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Hence the theorem.

5.1.2 Problem: Find all solutions of yll --~y = x(O < x < (0).
x2

Solutions: We have already seen in Problem 4.1.3, that a basis for the solution space of

L(y)=O is given by c!>1(X) = X2, c!>2(X) = x·I,

A solution \jIpof the non-homogeneous equation has the form\jlp= u\x2 + U2X·1 where UI and U2

satisfy the equations.

x2ui+x-lu1=O

I 1 I2x lIj-2U2 ==X

x

-\
x =-3

2x - x-2

o
1

3

I xand U I == '---~~-'-
-3

x2 0

1 2x x x3
u2=~-= 3

X x4
:. u\ = - and U2 = --

3 12

4
. I I" X 2 x -1So the partrcu ar so ution IS \jfp = - x - _.- x

3 12

3x
3 12 4

constants C), C2.

5.2 Short Answer Questions:

5.2.1 Write the formula for the particular solution .ofthe nth order non-homogeneous equation.

5.2 ., Find the particular solution of



( MoSc.Mathematics __ ---' 5.4 [ Solutions of the Non-HOmOR'en~

5.3 c Model Examination Questions:

5.3.1 Let b be continuous on an interval I, and let ~j, ~2' .. ; .., ~n bea basis for the solutions of

L(y)=O on I. Prove that every solution \.If of L(y) = b(x) can be written as \.If = \.Ifp + CI~I +
o /

C2<J>2+ + Cn<J>n,where j\.lfp is a particular solution of L(y) = b(x), and- CI., C2, ••••. , C, are
/

.~onstants.

5.3.2 One solution of X2 yll_ 2y=0 on ° < x < 00 is .<J>I(X)= X2. They find all solutions of

X2yll_ 2y = 2}. - 1 on ° < x < 00.

5.4 Exercises:

.5.4.1 One solution of x' yll- 2y=0 on °< x < 00 is ~I(X) = X2. Find all solutions of x' yll_ 2y = 2x-l
----------

on ° < x < o: ,

~4.2 One solutic n of X2/ 1- xyl+ y = 0, (x> 0) is <PI(X)= x. Find the solution \.If of X2/ 1- xy'r+y=x '
o

satisfying \.If(1)=1. \1,1(1)=0

Answer: y(x) = X2 - 2'b log x.

5.4.3 a) Show that there is a basis ~h <J>2for the solutions of x/y!' + -lxy' + (2+X2) Y = 0, (x> 0) of
o

the form <!>i(X)= &1 ~X) , <!>lx) = \.If 2 ;X) .
x x

b) Find all solutions <6fxV 1 + 4xyl + (2+X2) Y = X2for x> °
Answer: a)l!>l(x) = x·2 Cos x, <!>2(X)= x·2 Sin x.

b) ~(x) = CIX·
2 ~os X+ C2 x·2 Sin x + I - 2x.z, C), C2 are any constants.

5.5 Answers t'tl short answer gues~!!:ms:

Here w(<!>!,<!>2'..... , ~n) is the wronskian of the basis ~I' ~2' ..... , ~n and Wk is the determinant

th . 1 (n-·l)
?Stained from w( ~J, ~2' ..... , <!>n)by replacing the k column (~k> <!>k'· .. ·<!>k ) by

(0,0, ..... , 0,1).

For 5.2.2, see problem 5.1.2.

Lesson Writer:
V Siva Rami Reddy,

JM.J College/or women, Tenali.



LESSON .•6
'. . I
HOMOGENEOUS EQUATIONS WITH ANALYTIC COEFFICIENTS

6.0 Introduction: In this lesson, the existence theorem for analytic coefficients is proved

6.1 Homogeneous equations with analytic coefficients:

6.1.1 Definition: If g 'is a function defined on an interval I containing a point Xo, we say that g is

analytic at Xo if g can be expanded in a power series about Xo, which has its radius of

convergence a positive real number. That is, g is analytic at Xo if it can be expressed in the

form

00 kook
g (x) = ICk(x -xO) ~ (1) where Ck are the constants and the series ICk(X - xO)

k=O k=O
converges for Ix - xo 1< ro, ro > 0 .

Recall that one of the important properties of an analytic function g is that all of its

derivatives exist on Ix - Xo I< ro and they may be computed by differentiating the series (1)

term by term. Thus, for example g '(x) = ~kCk(X -xO)k-l
k=I

00 k-2
Ik(k -I) Cdx - xo)

ic=2
and the d'ifferentiated' series converges on

l;x- xol < rO also.

If the coefficients a., a2, , an of Lty) == yen) + a) (x)y(n-I) + ;+ an (xjy at Xo, it follows

that the solutions of the differential equation are also analytic at Xo. in fact solutions cart be

computed by a formal algebraic process. We shall Illustrate this by means of an example.

6.1.2 E!J(ample: Consider the equation

4(1)

Here al(x)=O, a2(x)= -x and hence a" ai are analytic' for all real Xo.

Now we try to find a solution of (1) in the series

4>(x)=Co+C,X+C2X2+ = ~Ckxk
k=O

4>'ex)= tkCkXk-1
k=1

4>11(X)= ~k(k-l)CkXk-2
k=2

3 = ~ (k+1)(k+2)Ck+2 xk
k=O
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CIJ

Also x th('x) =: )'c. xk+1'1', _~ k
k=O

CIJ k
L Ck-l x

k=1

CIJ

.'. ~"(x) -- x ¢(x) = 2c2 + I[(k + 2)(k +I)Ck+2 -Ck_dxk .
k=1

In order for I/> to be a solution of(1) we must have <j>ll(X) -~ <j> (x) = O.

CIJ

i.e. 2c2 + L[(k + 2)(k + 1)Ck+2 - ck __dxk = 0
k=l

comparing the coefficients of I ikely powers of x, we get 2C2 = 0

(k+l)(k+2) Ck+2 - Ck-l = 0 ~ (2) for k =1,2, .

Now for k = 1 from (2) we have 3.2. C3 == Coor C3 == _I-Co
3.2

putting k = 2 in I:) we get C: = 5'.l
4..- , ••.•. ..• 4.3

continuing in this way we see that

C5 = ~2 =0
5.4

C - C3 Co
6 - 6.5 6.5.3.2

C
7

= C4 CI
7.6 7.6.4.3

It can be shown by induction that

T' - Co ( - 1 2 )L3m - m - , , .
2.3.5.6 ....(3m -1)3m

CI _
C3m+1 =-- (rn - 1,2, )

3.4.6.7 ...3m(3m + I)

C3m+2=0 (m=O, 1,2, )

Thus all the constants are determined in terms of Co and CI. Using all these in the expressior

for ~ (x) and collecting together terms with Coand CI as factor, we have

[
x3 x6

] r x4 x 7 ]- <P(x) = Co 1+-+ + ..... I-C1lx+-+ . + ..... 3.2 6.5.3.2 4.3 7.6.4.3

x3 x6
Define <PI(X) = 1+ - + + .

. 3.2 6.5.3.2

x4 x7
</h(x) = ] +-+ +.................. -4 (3)- 4.3 7.6.4.3
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--)-(4)

We have shown in a formal way, that «> satisfies for any two constants Co and Ci. In

particular the choice Co=l, C)=O shows that ~I satisfies this equation and the choice Co=O,

C!=l implies «>2 also satisfies the equation.

We shall now describe the convergence of the series defining <PI(x) and <P2(X). It will be seen

by the ratio test that both the series converge for all finite x.

For example, let LIS consider the series for <PI(X).

00 x3m
Writing <PI(X)as <PI(X)= 1 + L ----

III=1 2.3.5.6 (Jrn -1)3m

YJ

=1+ Idm(x).
m=l

W . tl t dm+1 (x) x3m+3 2.3.S (3m - I)(3m)e see 1a =. x -----'-----''--'----'-
dm (x) 2.3.5.6 .....(3m-l)(3m)(3m+2)(3m+3) x3m

~ Idm+l (x) = IxI3 __
I dm (x) (3m + 2)(3m + 3)

which tends to zero as m --)- 00, provided only that Ixl < 00. Hence the series for <PI(X)

converges for all finite x. Similarly we can show that the series for <P2(X)also converges for

all finite x. Thus the functions <PI,<P1given by (4) are solutions of the equation /1- xy=O on

-00 < x < 00. We have

<PI(O)= I,

<PI1(0) = 0,

<P2(0)= 6
<P21(0) = I

and therefore W(<PI,<1>2) (0) = 1 "* O.

Hence <PIand <P2are linearly independent solutions of (I).

The method illustrated by this example works in general when the coefficients are analytic

and always yields a convergent power series solution for any initial value problem. We shall

now state and prove a result on this.

6.1.3 Theorem: (Existence theorem for analytic coefficients)

Let Xo be a real number, and suppose that the coefficients a], a2 , , an in

L(y) = in) + a.tx) in-I) + + an(x) y = 0 have a convergent power series expansions in

powers of x - Xo on an interval Ix - xal < ra, ro> O. If aI, a2, ..... , an are any n constants,

there exists-a solution 4) of the problem L(y)=O. y(xo) = 0,1, y'(xs) = 0,2 /n-I) (x,,) = an

x k I
\ ith a power serie« cxpar : ion <lJ(X) = .L Ck (x - "0) that converges for IX- xol < rO .

k=O
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Proof: We shall now give i proof for the case when n=2 ~liH,xo=O. -All the essentlalideas

6.4

"'-
appear in this case. We shall make use of two results concerning power series. The first is

that if we have two power series ICk xk and
k=O

00

(k=O, 1,2,3, ) and if the series I C k x k converges for Ixl < r , for some r > 0, then the
k=O

senes
Xl k
L C k x ,also converges for Ixl < r . Th is is usually called. the comparison test for

k=O
, I.;

00

convergence. The second result is that if a series Ia k x k ~ (1) is converg~nt for Ixl < I'0 ,
k=O

then for any x, Ixl =: r < to : there exists a constant M > ° such that

~ (2)

Now consider the equation

L(y) = yll+a (x) yl + I:i(x) y = 0 ~(3)
. ,

Where a, b are functions with series expansionsa (x) = IUk xk , b(x) = If3k xk ~ (4)
k=O k=O

Which converge for Ixl < ro for some ro> 0. We are required to produce a solution of (3) in

, - . 00 . . ...

the form of a convergent power series for Ixl < rO say <j>(~) =ICk xk ~ (5), wl~ich satisfies
k=O

<I>(O)=a, <I>'(0)=a2 for any given constants a, and a2. If the series in (5) is co~vergent,we have

Co =,f{), C1 = a2 and the constants Ck for k ~ ,2 will satisfy a recursion relation. From (5) we

ha~e <j>1(X) = ~(k +l)Ck+l xk and <j>11(X) = . ~(k + 2)(k. + 1)Ck+2 xk ~ (6)
k=O. k=O' .', '.

From (4) we obtain a (xH'(C') ~ (k~oak xk) C~~k+1)Ck +IXkJ

00 [00. . ",.... J kI>' .I do\(-jCJ + l)Lj+l .x '
k=O j=O . .

,~ (7)

/

( 00 kJ ( 00 kJ
and b(x) <I>(x) ~ ...' k~~~ x k~oCk x .. '

= ~ ( f f3k - j C jJ x k
k=O' j=O .

~(8)
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. Adding (6), (7) and (8) we get

oo[ .k' ,: k 1
L(~(x))= I (k+2)(k+I)Ck+2 + I Uk-j(j+I)Cj+I,+ I ~k-'C" xk =0

, k =0 ' , j=O. j=O J J

which implies that

'," ' k •
(k+2)(k+I)Ck+2 = -.I [Uk-j (j+I)Cj+l +~k-jCj] fork=0,I,2, .

J=O '
~ (9)

00

Now we have to show that the series I Ck x k ~ (10) with C, for k ~ 2 given by (9) is
k=O

, 'c~nv~rgent rorlxl < fO.' To do this we make use of the two results concernirig power series

we mentioned earlier.
Let r be any number such that ° < r < roo Since the series in (4) are convergent for Ixl = r. We

can find a constant M > ° sllch that' Iuj Irj ::;M, I~j Irj ::;M , j = 0, I ,2, using these in (9)

~ (11)

, ) ...et us define C~ = ICol, C} = ICllandC~ for k ~ 2 by
~~ . '" .

~k +-2)(k + I) C~+2 = ~- .I [U + I)C~+I + c~]rj + M C~+I r, (k=O, 1,2, ) ~ (12)
r ]'=0 . . . "'. ' ,

comparing (12)with (11 )we s~e by induction that 1(\1::; Ck, Ck ~ ° (k=O, 1,2, ) ~ (13)

, '", 'OCl, k, .
we shall now investigate for what values, of x the series 'LCk x ~ (14) is convergent.

, . k=O

From (12) we find that (k+l)kCk~l= ~l ~il[(j+I)Cj+l +cjJrj+M'ckr
r 1=0

From these

expressions we obtain

I M k-2r. i 1) j [I)' I 2
r(k+l)kCk+1 =1(-2 .I leJ+l)Cj+1 +Cj r +MkCk_1 r+MCk r

r J=O ' ,

I I . I I C1 .2
=k(k-I)Ck-MCk_Ir+MkCkr+MCk_Ir+M kl
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= [k(k -1) +Mkr+Mr2] C~.

1 k+ll 2
Ck+1 x = [k(k-l)+Mkr+Mr J/xl .

c' xk r(k+l)k
k

Hence

Wh ieh tends tolxl as k ~ CfJ. Thus by ratio test, the series (14) converges for Ixl < r. This
r

implies that the series (10) converges for ixl < r , and since r is any number satisfying O<r<ro,

we see that the series (10) converges for IXI~-!() This completes the theorem,

6.1.4 Problem:

Find two linearly independent power series solutions of the equation yll_ x2y=0 ---+ (1)

For what values p:'x do the series converge?
OCi

Solution: Here a.=O, a2= - x' are analytic on R. Let us assume that y = LCn xn is a power
n=O

series solution of (I). Then
I OCJ n 11 OCJ

Y = ICn+l (n + I)x and y = ICn+2 (n + 1)(n + 2)xn

n=O n=O ..
OCJ 2 OCJ

using these in (i) we have L(n + 2)(n + 1)Cn+2 xn - x LCn xn = 0
n=O 0 0 n=O

i.e. I(n + 2)(n + \)Cn+2 x" - ICn xn+2 = 0
n=O n~O

OCJ OCJ
i.e. 2C2 +6C3x + I(n + 2)(n + I)Cn+2 xn

- ICn-2 x" = °
n=2 n=Z

i.e. 2C2 +6C3x+ I[(n+2)(n+l)Cn+2 -Cn_2]Xn =0.
n=2

Equating the coefficients of likely powers of x, we get 2C2==0, 6C3=G and

(n+2) (n+ 1) Cn+2 - Cn-2 = 0, n = 2,3,4, ~ (2)

Hence C2=0, C3=0 and for n = 2, 3, 4, From (2) we have

1
C4 =-...•- Coj.4

I
C5 =- Cl

4.5

C6 =0

C7 =0

I .
Cg =--- Co

3.4 7.8
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1
Cq::' Ct. C/O =0. ell =0 .

'\.58.9

\

Hence the power series solution of (1) is

Y=CO[1-;--I-x4 -t- 1 x8 -;-.....J+c11 x+_l_x5 + 1 x9 + ...JJ
3.4 3.4.7.8 'j L 4.5 4.5.8.9

[

(JJ I l [(JJ x4k+l 1
=Co 1+ I' .. x4k '+Cl x+ I

k=I 3.4.6.7 (4k -1)( 4k) J k=I 4.5.8.9 .4k(4k + 1)

-.

(JJ x4k
Thus, the functions </>1and </>2defined by </>I(X)= 1+ I4 (3) and

k=I 3.4 (4k -1)4k
-x: x4k+1

<Mx) = x + I -_. ---- -4 (4) are solutions of (I).
k=1 4.5.8.9 ..... .4k(4k + I) J

They are hnearly independent, since W(</>I,<1>2)(0) = I~~I=1 i:: 0 .

Observe that the series for <l>1(X)and <l>2(X)given respectively by (3) and (4) converge for all

real x.

6.1.5 Problem: Compute the solution <I>ofylll- xy=O which satisfies <1>(0)=1,<1>1(0)=0 and </>11(0)=0.

00

Solution: Let <I>(x)= ICn xn be a power series solution ofylll_ xy=O -4 (1)
n=O

00

Substituting into this, <I>(x)= I Cn x n
n=O

(JJ 00

wehave I (n+3)(n+2)(n+l)Cn+3Xn -x I Cnxn =0.
n=D n=1

00 00
i.e. 6C3 + I (n + 3)(n + 2)(11 + I)Cn+3 "n .- I Cn-J x" = O.

n=' n=1
:.

00

i.e. 6C3+ 2:;[(n+3)(n+2)(n+I)Cn+3-Cn_dxn ==0.
n=l

Comparing the coefficients of likely powers of x, we get C3=0, and

(n+3)(n+2)(n+ I) Cn+3 - Cn•1 = 0 (n = 1,2,3, .. , .... )

1
For n=l , we have 4.3.2 C4 = Co (Or) C4 =-- Co

2.3.4

-4 (2)

1
For n=2, we see that 5.4.3 C5 = C1 (Or) C5 = -~.',- C1 continuing in this way we obtain

3.4.5

1.3.2C6 = .__c_.~ C}
6.5 ..4.3.2 -
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5
Cs =- CO,

8!
C - 2.6 C

9 - 9! I

C. - 1.2.3.7 C2
to - 1O!

CII - 1 C7 = 0-11.10.9

C _~5.9 C
12 - 12! 0 /i·

C 2.6.10 C
13 =-- T-;-etc.

13!

:. The complete solution of (1) is

.h() C [1 ~ 5.9 ..... (4n-3) 4n] C [ ~ 2.6.10 ..... (4n-2) 4n+l]'t' x = 0 + L... X + 1 x+ L... X +
. n=I (4n)! n=I (4n -I)!

[
2 6 6 6.7 10 ]C2 x +-x +-. -x + ....

. 6! 1O!

Now we have to determine the particular solution $ of(1) satisfying $(0)=1, $1(0)=0, $11(0)=0

<1>(0)=1implies that C()~l, <1>'(0)=0implies that C,=O and <1>11(0)=0implies that C2=0

H I . d I . ',h() 1 ~ 5.9 (4n -,3) 4nence t te require so unon IS 'f' X = + L... . x
n=1 (4n)! .

6.2 Short Answer questions:

6.2.1 When do you say that a function is analytic at a point Xo in an interval I?

6.3 Model Examination questions:

6.3.1 . State and prove existance theorem for analytic coefficients.

6.3.2 Solve (1 - X2) yll - 2xyl +a (cc+l ) y=0, where a is a constant.

6.3.3. Find two linear independent solutions of'y'l-xy's-y=O.

6.4 Exercies:

'6.4.1 Find two linearly independent power series solutions of the following equations. For what

values do the series converge?

a) yll- xy' + Y= 0

OC) x2n
Answer: $,(x) = x, $2(X)= L --' ---

11=0 11!211(211 -I)

A () 1
~ (-I)k1.5.9 ....(4k-3) 4k

nswer: <PI x = + L... . x
k=O 3.4.7.8 ....(4k -1)4k
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cr:J (-1)k2.6.10 .... (4k-2) 4k+l
~2(X) = x + L . x

k=l 4.5.8 ... .4k( 4k + 1)

Centrefor Distance E~ucatio!il6.9

T) (-I)kS.17 (9k-IO) 3k
Answer: ~I(X) = I + k~l 2.3.5.6 (3k -1)3k x

. OCJ (-I)k2.11.20 .... (9k-7) 3k+l
~2(X) = x + L x

k=l 3.4.6.7 ... .3k(3k + 1)

cr:J (_l)k x2k
Answer: ~I(X) = L (2k)! Cos x

k=O

co (_I)k x2k+l
'"() L Sin x
'1'2 x = k--O (2k + I)!

All series converge for all real x.

OCJ k.
6.4.2 Find the solution ~ of yll+(x_I)2 y' - ~)(-I )_Y = 0 in the form ~(x) = 1+ k~;k (x -1) which

satisfies ~(1)=I, </>'(1)=0 (Hint: use the suostitution x - I=t)

00 (_I)k+l (x _1)3k
Answer: <j>(x)= I

k=O 3k k!(3k -I)

OCJ -

Find the solution ~ of (l+x2) yll + Y = 0 of the form ~(x) = LCkXk, which satisfies ~(O)=O,
k=O ~

6.4.3

Answer: </>(x)= x + I (-15
k

(2.3 + 1)(4.5 + 1):.:~:«2k - 2)(2k -I) T 1) x 2k'+1

k=l (2k + l)!

: 6.4.4 The equation y"+ eXy = 0 has a solution ~ of the form ~(x) = ICkXk which satisfies
n=O

</>(0)=1.</>1(0)=0. Compute Co, C1, C2, C1, C4, c.
<j>(k)(0)

(Hint: Ck = and </>1'(x) = - eX </>(x))
k!

1 1 1Answer: Co=l, CI=O, C2= -- C3= -- C4=0 C
5
= _

2' 6' , 40 .
•

6.5 Answers to short answer questions:

For 6.2. I, see definition 6.1.1.

Lesson Writer:-
V. Siva Rami Reddy,

J.MJ. College for women, Tenali.
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LESSON*7
FIRST ORDER DIFFERENTIAL EQUATIONS

7.0 Introduction: In u.. ,1, .on, we consider the general first order equation yl= f (x, y) ~ (l),

where 'f' js some contiuc. ; .. .unction. Only in rather special cases it is possible to find

explicit analytic expressions for [i,L' solutions of (l). We have already considered one such

special case, namely, the linear equation. [ '" g(x) Y + hex) ~ (2), where g, h are continuous

on some interval I. Any solution v •• of (2) can be written in the form

x .
<!> (x) = eQ(x) fe-Q(t)h(t)dt+CeQ(x)

xo
x

-~ (3) \·l.,~n' Q(x) = fg(t)dt, Xo IS in I,
xo

and C is a constant.

In next section and lesson-8, we indicate procedures which can be used to solve other

important special cases.

7.1 First order Differential Equations:

7.1.1 Definition: A differential equation of first order may be written asF (x, )\ \ "I (x)) = 0

(or) lex) = t(x. y(x» (or) / = f(x, y) where F (or) f is a given continuous funcuo. This

differential equation associated with an initial condition say y(Xo) = Yo is called an initial

value problem (or IVP for short).

7.1.2 Definition: A solution of the initial value problem yl = f(x, y), y(xo) = Yois any continuous

function on some open interval T which satisfies the given differential equation together with

the initial condition all L

7.1.3 Definition: We say a solution <!> of y'= f (x, y); y(xo)=Yo is unique if every other solution

agrees with x as far as both are defined.

Only in some special cases it is possible to find explicit analytic expressions for the solutions

of (7.1.3). One such special case is a linear equation. The general form of a linear equation is

yl = g(x) Y + hex) ~ (1) where g,h are continuous on some interval I. Any solution <I> of (1)

x

can be written in the form $(x) = eQ(x) Je-Q(t) h(t)dt +CeQ(x) ~ (2)

x
Where Q(x) = f g(t)dt, XoE I and C is a constant.

xo

It should be noted that, in particula ~.. mples, the integral occuring in equation (2) may be

difficult to evaluate. They may even be impossible to evaluate in terms of elementary
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functions. Thus even though (2) exactly represents the unique solution of (1) with Y(Xo)=C, it

may not be easy to interpret the result.

7.1.3 Problem: Solve the Initial value problem.

yl +.!.y = 3x, y(2) = 3
x

~ (1)

which is ill the 10rl11ol/ = g(x) y + htx ). y(xo) = Yo. Here g(x) = - ~ and hex) = 3x·are
x

continuous in the intervals (-00,0) and (0, 00). Hence x may take I= (0,00). We multiply the

1
J-dx

differential equation in (1) by the integrating factor e x = x, to obtain xy' + l.y = 3x2

d ?(Or) --(xy) = 3x-
dx .

integrating both sides from Xo= 2 to X, we get x y(x) - 2y(2) = x3
- 8.

Since y(2) = 3, we have x y(x) = x3
- 8 + 6 = x3

- 2 for x > O.

7.1.-1 Definition: A differential equation / = f(x. y) is said to have the variables separated if f can

be written in the form f(x, y) = g(x) , where g and h are functions of singles variables. In this
hey) "

case we may write the equation f(x, y) = g(x) as hey) dy = g(x) => h(y)dy= g(x)dx .
h(y) dx

We shall now describe the validity ofthe method of solving separable equations.

7.1.5 Theorem: Let g and h be continuous real valued of functions of x and y respectively defined

on the respective intervals [a, b] and [c, d], satisfying the equation hey) v' = g(x) ~ (1)

If G, H are any functions such that G' = g, H' = hand C is any constant such that the relation

H(y) = G(x)+C defines a real valued differentiable function <I> for x in some interval I

. contained in a::; x ::; b, then' <I> wi II be a solution of (1) on I.

Conversely. if <I> is a solution of (I) on L it satisfies the relation H(y) = G(x)+C on I, for some

constant C.

Proof: Suppose G, H are functions of x and y satisfying the relation

Y . x

fH'(u)du = fG'(t)dt (Or)
Yo Xo
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Y x
Jh(u)du = J g(t)dt, for some Xo E [a, b) and Yo E [c, d). Also assume that the relation

YO xo
v x
}h(u)du = fg(l)dl defines implicitly a differentiable function ~ for all x E I ~ [a, b).

YO =o
(In fact we say that a relation F(x, y) ==C defines a function ~ implicitly for x in some interval

I, if for each x in I, there is a y ==~(x) such that F(x, ~(x» ==C). Then this function satisfies

, $(x) X

jh(u)du ==[gt tjdt for all x E I ~ (2).
YO xo

Differentiating (2) gives h(~(x» ~l(X) = g(x) .

This shows that ~ is a solution of (l) on I.

Conversely suppose that ~ is a real valued solution of (I) on I containing the point Xo. Then

we have h(<jl(:-;» <jl;(:\)~' g(x) for all x E I.

. x ' 1.' x '. .
Integrating this form Xotoxwe get jh(~(t»<I> (t)dt== fg(t)dt,xEI

XO XO
x

Letting tr= ~(x), then(3) reduces to ~(xo) h(u)du == f g(t)dt.
xo

x 1 ~ 1 ;':'. _fl.:, -'
(or) fH (u)du ==J G q~}l~~.. " ' ,:

<!>(xo) xO'

which implies that H(<j>(k»),;; ~(x)+ C~'fle~C = H(<I>(xo»- G(xo).

Thus the theorem is complete': , \~.,'

7.1.6 Problem: Solve the following differential' ~q,u~tions for their real valued solutions.
, I

i)
. 21 x+x

Y =2
y-y

,. '

, ii)
122 2Y x: x Y -- 4x '

'I

Solution:
, 2

. i) The given equation is yl = x + x2 can bewritten as
. .' idy 2 y-y ,.,

(y/',,; y,) - ==(x + x ) \
\. _J.' . dx

=> (y-l)dy ==-(x+x2)dx.,

Integrating onboth sides we get
y2 y3 x2 x3 ,
---==-+-+C (Or)
2 3 2 3
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3y2 - 2y3 = 3x2+2x3+C], the required solution.

The given equation is yl =x2l- 4x2 can be written as 1 dy = x2
y2 _22 dx

ii)

·1 2
2 2 dy = x dx

Y -2

Integrating on both sides, we get log IY-21= 4x
3

+C, for some constant C the required
y+2 3

solution.

7.1.7 Problem:

i) Show that the solution <I>of y' = l which passes through the point (xs, Yo) is given by

<I>(x)= Yo
1 - 'Y0 (x - xo} ,

ii) For which x is <I>a well-defined function?

iii) For which x is <I> a solution of the problem v' = v'. y(xo) = Yo.
I ' I .'

S I . ' .) The zi . , b . . 1 dy 1o utIOU: 1 e given equation can e written as -2 - =
y dx

Let <I>be a solution or the given equation 011 some interval I. Then we have -) 1_ d~= 1on
. ~-(x) dx

, -1
integrating we get -'(<I>(x»-' =x + c i.e. <j>(x)=--

, x+c

, / 1
Since the solution passes through the point (xo, Yo), we have Yo = ~(xo) = ----

'. . xo +C

=:> C == xoYo + 1 Hence ~(x) ==
Yo

1
xoYo +1x- .

Yo

i.e. ~(x) = Yo , the required solution.
1-yo(x - xo)

ii) From (i) we notice that <I>(x)= ° for all real x if yo =.=0. Thus <j>is well defined for all x, if-
, 1

Yo='=O.If Yo 7:- 0, <I>is well defined as long x 7:- Xo+ - .
Yo

iii) If Yo > 0, $ is well defined for all x if x E ( - co, Xo + :0] .
,

If Yo< 0, <I> is well defined for all x if x E (xo +_I_,ooJ .
. Yo
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7.1.8 Problem:

Solve the Initial value problem y! = 1+ y2, y(O) = 1.

Solution: The given equation can be written as _1_, dy= 1
1+ y" dx

, 1 dy
Inleg.raling. with respect to x from 0 10 x. we get r- _.-- -- dx = X

J I + v' 'dxo -

y(x) 1
Using the substitution y(x) = u. we see that f --2 du = x i.e. Tan -IU)tx

) = x
-! l+u
1

T -t (x ) nan V x - -. = x.- . 4

7t
y(x) = Tan(x +--)

4

3n n
We notice that y(x) IS defined as long as - - < x <-4 4 Hence y(x) defined by

ITvt x ) = Taru x + ._) is the r ~ue solution of the Initial Value problem. since every solution
- 4

rt
that exists is given by y(x) = Tan(x + -). 4

7.1.9 Problem: Find all real valued solutions of the following equations

a)

b) vv' =x

c)
eX-Y

.1Y =--
1 +e'

Solution:

1 '=> -dy = x· dx .
y

( ,
.' X 3 C l~-+c x

in'e~ratll1!! on hoth Sides. we ~et lo!.':.V = --- + i.e y = e = Ce 3'- '. •... '-- ~. "'\,

b) Given equation is yyi = X => Y dy = x dx

'/ X2 C. ) ? . • •

integrating on both sides, we get z:- = - + - i.e. v: = x-+C, the required solution,"'. 2 2 ?
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d\ c ,\,:

=> =
dx J +t'

7.1.10

eX
:::;> e"d" = ---,..lx

1+ex

Integrating on both sides, we get e" = log(1 + e') + C, the required solution.
1,<

a) Find the solution of v' = Zy 2 passing through the point (x.; Yrl)' where Yo > O.

b) Find all solutions of this equation passing through (xo, 0).

Soiution:

a) The Given equation is v' = 2y ;'2 => y'I'2 dy = 2dx

.... y = (x +C)2

Since the solution passes through the point (x.; Yo),
)

We have Yo = (x, +C)-

-X·.'.l..'X· r'~l'-':-.(i • .;....(~.,.,

.'. C2 + 2xoC + x~ - Yo = 0

C = - Zx, ± J4x~ - 4~~ ~~Jo = -xo ± Fa
2

.- . i--- -' . ~v . \/)11' x"+vYo

Therefore <!>(x)= (x - xo + .JY'~')2. (x 2 Xo - Fa)
<!>(x)=-(x -Xo+..[i;,)2, (x <xo-.jY;;)

b) The solution y = (X+C)2 passing through (Xo, 0).

Now 0 = (xo+C)2 => Xo = - C

<!>(x)= (x - xof

7.2. Equations reducible to variable separable form:

A function f defined for real x, y is said to be homogeneous of degree k if f (tx, ty) = tk f(x, y)

for all t. x. y. In case f is homogeneous of degree zero we have f (tx, ty) = f (x, y), and then

we say the equation yl= f (x. y) is homogeneous, (Unfortunately this terminology, which is

rather standard, conflicts with the use of the word homogeneous in connection with linear

equations). Homogeneous differential equations can be reduced to variable separable form by

taking the substitution y -= lIX in yi= f t x, y). Then we obtain
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1 f( f(l ) \ f(l,u)-u h'xu + U= x, ux) = ,u and hence u = , w ich is an equation for u with
x

variables separated. '

7.2.1' Problem: Find all real-valued solutions of the following equations:

a)
1 x+yY =--

x-y

b)
X) + x

c)

d)

. -2yj

Y+xe Ixyl =-'-- _
x

S I· ) G' " 1 X + Yo utlOn: a uven equation IS Y =--.
x-y

1 1Put Y = ux then y = u + xu

1 x +ux 1 1+ U
Therefore y = ~ II + Xli =

'\--llX l-L1

1 l-i u 1+u2

~xu =---U=---
l-u l-u

. 1- u d . 1 d inz on b h id~ -- u = - x Integrating on ot Sl es, we get
1+u2 x

Sl-U--1 SId----:cUU == - X
1+u2

X

~ f~u - f-U-du= f~dx
1+u2 1+u2 x

-I 1 1 C~ Tan II - -Iog(l + u -) = log x +
')

~ Tan-t)-~IO{l+ ~:)=logx+C
~ lTant) = IO{l+ ~}210gX +C

~ 2Tan-I(Y J = log(x2 + y2)+ C
x/

2

b) Given equation is yI = Y ?

xy+x:
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Put Y= ux then v' = u + xu I , X

U2X2
u+xu' = =

x(ux) + X2 u-e.l
. 2 . 2 2

~ xu: = _u__ u = u - u - u =
u+ I u+I

~ ( u: 1) du = _ dxX

Integrating on both sides, we get u +. log u = - log x + C

u

u+ l

~ + IOg( ~ J = -log x + C

~r+logy-logx = -logx +C
x

~r+logy =C
x

y + x log y = XC., the required solution,

o "I X2 + xy + y2
c) Given equation IS y = >2

Put Y = ux then yl = u + xu'.

I X2 + x(ux) +(U:x:)2
u+xu = 2

X

J 1
~ ----- du = --dx

1+ u' X

Integratingon both sides, we-get.Tanlu-=legx+rC

Tan -I ( ~) = log x + C

-2y/
Y -l- xe, Ix

d) The Given equation is yl = :=-.'------
X

Put Y= ux then yl = U.+xu'
-2ux/

ux+xe r«.", u + xu' = . = u+.e-2u

x

~ xu' = e-211

4 1~r:211 du = -dx
x
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e2l!

Integrating on both sides, we get - = log x + C
2

~e2U =Zlog x+C

2y

~ e x = 210g x + C , the required solution.

7.2.2 . I a,x+b,y+C,
Remark: The equation y = where a., b., CJ, a2, b2, C2 are constants(C],C2a2x+b2y+C2 ..

not both zero) can be reduced to a homogeneous equation.

Letting x = E + h

Y = II + k, where h, k are constants,

I a.xv-b.y +C. . dn a.e +b.n+fa.h-r b.k-r-Cj )
y = . reduces to -=. ~ (*)

a2x+b2y+C2 de a2E+b211+(a2h+b2k+C2)

Ifh, k satisfy a.h + b.k + CI = 0 }

a2h + b2k + C2 = 0

and

(**)

The equation (*) becomes homogeneous. If the equation (**) have no solution, then

alb2 - a2bl = 0, and in this case either the substitution u = a.x + bjy + CI (Or)

u = a2x + b2y + C2, leads to a separation of variables.

7.2.3 Problem: Solve the following equations.

I x+y+2
a) y = .

I X + y-I

I 2x+3y+l
b) v =----

- x-2y-\
I x+y+l

c) V =----
- 2x+2y-l

S I· ) The zi .. I X - Y + 2o utlOil: a e given equation IS Y = ---=--
x+y-l

dy dY
·Letx=X+h y==Y+kthen -=-

, dx dX

dY (x+h)-(y+k)+2

dX (x + h) + (y + k)-1

If h, k satisfy h - k + 2 = 0

h+k-l=O

x-y+h-k+2

x+y+h+k-l

. 1
Solving these two equations we get h = - -- .~ 2

3k=-
2

dY X- Y hi h i H .. , - = --. - w Ie IS a omogeneous equation.
dX X+Y

dY dV
PutY=UX then -=V+X-

dX dX

V+XdV = X-VX = I-V
dx X+VX I+V
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.' de l-U . 1-2U-U2

=>X- ·---U=----
dX 1+ U 1+ U

=> 1+U dU = dX
1-2U-U2 X

. b h ·d f I+U 2dU-- fdXIntegrating on at SI es, we get .
1-2U-U· x

1 " 1

=> --- log(l- 2U - U-) = logX + loge
2

=> log(1-2U - U2)+21ogX = log C'?

=> (1-2U-U2)X2 =C-2

=> x' -2XY - y2 =C

( 1)2 ( 1)( 3) ( ")f=> x +2 -2 x +2 y -2 ~lY -~ = c, the required solution.

b) Similar to above

. '.. I x+y+l
c) The Given equation IS Y = --'----

2x+2y-l

=> 1+ dy = du
dx dx

Put x + Y = u /

. du 1- u+I
.. dx - - 2u-1

du =~+l = u+I+2u-l =~
dx 2u-1 2u-l 2u-1

2u-l
=>--du=dx

3u
.'

. 2 1
Integrating on both sides, we have ~ u -.~ log u = x + e.' ..,
=> 2u -log u = 3x+e
=>2x + 2y-log(x + y) = 3x+C

:. log(x + y)+ x -2y = C, the required solution.

7.3 Short Answer Questions:

7.3.1 Solve yl = x2i - 4X2

7.3.2 Find the solution of yl = 2y~ passing through the point (Xo, Yo), where Yo > O.

7.3.3 Find the solution of y' =i
7.4 Model Examination Questions:

7.4.1 a) Show that the-solution <I> of yl = / which passes through the point (xo, Yo) is given by
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, \-.' .,

b) For which x is ~ a well-defined function?

c) For which x is ~ a solution of the problem v' = l,y(xo) = yo ?

... -:,

7.5 Exercises: ..• .;

7.5.1 Solve the following equations:

1 2x+3y+l
y =

X - 2y-1
1.

>, !
<.J .

2.
I x+y+lY =

2x+2y-l

7.6 Answers to short answer questions:

For 7.3.1, See problem 7.1.6 (i)

For 73.2, See problem 7.1.10 (a)

For 7.3.3, Seeproblem 7.1.7 0)

. , ( ;.

.1'
.- ~.

7.7 Reference .Book: \ .

An Introduction to ordinary differential Equations - Earl A. Coddington, Prinlice Hall

Mathematics Series.

I .

Lesson Writer:
Mr. V. Siva Rami Reddy,
J.M.J. College for women,
Tenali.
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Lesson - 8

EXACT EQUATI·ONS',

8.0 INTRODUCTION
In this lesson, we study the notion of an exact differential equation and a nessasary and

sufficient condition for an equation

M(x,y)dx + N(x,y)dy =0

to be exact (see theorem 8.1.5).

.,-.
8.1 EXACT EQUATIONS

8.1.1 Definition: Suppose the first order equation y' = f (x, Y )is written in,the form

, M(x, y)
y = - N (x, y) , ---------------- 8. 1 .1 (1)

or,equivalently,

M(x, y) + N(x, y) y' = 0

or equivalently,

M(x,y) dx +N(x, y)dy = 0

where M, N are real valued functions of x, y defined on some rectangle R . The equation

8.1.1 (1) is said to be exact in R if there exists a function F having continuous first partial derivatives

in R such that

aF =M aF =N
ax 'ay in R.

8.1.2 Theorem: Suppose the equation

M(x, y) + N(x, y)y' = 0 ------------- 8.1.2 (1)

is exact in a rectangle Rand F is a real-valued function such that
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aF' aF
- == M, - = N ------------ 8.1.2 (2)ax ay

in R . Every differentiable function ¢' defined by a relation

F(x, y) = c, (c = constant),

is a solution of 8.1.2(1) and every solution of 8.1.2(1) whose graph lies in R arises in this way,

Proof: By hypothesis,

aF aF ,-(x, y) +-(x,y)y = 0 ------------- 8.1.2 (3)ax ay

Suppose ¢ (y = ¢(x)) is a solution on an interval I.

So,

, ~;

OF(x, ¢(x)) + of (x, ¢(x)) ¢'(x) = 0 ------------ 8.1.2 (4)
ax a¢

. for all x in I. Put ct>(x) = F(x, ¢(x)). Then 8.1.2(4) says

cI>'(x) = 0,

and hence

cI>(x) = C .."

i.e., F(x, ¢(x))~~ c

where c is constant. Thus, the solution ¢ is a function given implicitly by the relation-

F(x, y) =c.

Suppose ¢ is a differentiable function on an interval I impli.citly given by

F(x, y) = c.

where c is constant, So,

F (x, ¢(x)) = c ------------ 8.1.2(5).
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Differentiating on both sides of 8.1.2(5), we have 8.1.2(4) and hence 8.1.2(3) whichis nQthing
bu 8.1.2(1). So, 8.1.2(5) is a solution of 8.1.2(1).

8.1.2.1 Note: In view of Theorem 8.1.2, the problem of solving an exact equation 8.1.2(1)!s reduced ,
to the problem of determining a function F satisfyinq 8.1.2(2) such that

8F 8F
M (x, y) dx + N (x, y) dy = Ox (x, y) dx + ay (x, y) dy = dF = 0 -------------- 8.1.2'.1 it} :

Thatis if 8.1.2(1) is exact, then its left hand side is an exact differential of-a function F.
Some times, on multiplying both sides of 8.1.2(1) by some function, the equation becomes exact;
in this_case such function is called integrating factor.

Some times the function F in 8.1.2.1 (1) can be determined by inspection. Consider the
following. ' ,

8.1.,3 Example: Consider the equation

I XY =--
Y

This can be written as

xdx + Y dy = 0

Clearly, the left hand side of this equation is the d\fferntial of (x2 + y2 )/2. Thus, any

differentiable function which is defined by the relation

X2 + y2 = c (c = constant), is a solution.

8.1.3.1 Note: The equation in example 8.1.3, does not make sense when y = O. In fact it is a
special case of an equation with variables seperated. Indeed any such equation is a special case
of an exact equation. Consider the following

8.1.4 Example: Consider the equation

g(x)dx = h(y)dy.

Clealry,

F(x, y) = G(x)- H(y)

where G'= g, H' = h is a solution.

The following theorem gives a necessary and sufficient condition for an equation to become
exact.



8.1.5 Theorem : Let M and N be two real valued functions which have continuous first partial
derivatives on some rectangle

R : Ix -xol $ a, Iy - yol5, h.

Then, the equation ,

ut«, y) dx + N(x, y)dy = 0 --------------- 8.1.5 (1)

is exact in R if, and only if,

aM aN
Qll = ox ----------------8.1.5 (2)

. in R

Proof: Assume that 8.1,5(1) is exactSo, ther exists a function F which has continuous first
partial derivatives such that

of --M of N'-= InR.Ox ' 8y

Since !VI and N have continuous first partial derivatives, F has continuous second partial
derivatives and hence

=

i.e.
oM
oy

oN= ox .. --.
Conversely assume that 8.1.5(2) holds in R . To prove that 8.1.5(1) is exact, we have to find

a function F .satisfying

of =M of = N
ox ' oy

If we had such a function F , then

F(x,y)-F(xO' Yo) = F(x, y) - F(xo, y) + F(xo, y)-F(xo, Yo)

x of Y of
= f a;(s, y)th + f 8y (xo'!) dt

Xo Yo .
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x Y
= J M(s, y)ds+ J N(xO,t) dt -----~---8.1.5 (3)

Xo Yo

and F(x, y) - F(xo, Yo).= F(x, y) - F(x, Yo) + F(x, Yo) - F(xo, Yo)

Y of x of= f -(x, t) dt + J -(s, Yo) dsOy ax
Yo Xo

Y x
= f N(x, t) dt + f M(s, Yo) ds 8.1.5 (4)

Yo xo'

Define F by

. x Y. '. .'
F(x, y) = J M(s, y) ds + J N(xo, t) dt ---------8.1.5 (5)

Xo Yo

Clearly, F(xo, Yo) =0 and

of- (x, y) = M(x, y)ax
for all (x, y) in R . From 8.1.5(3) and 8.1.5(4), we have that

Y x
F(x, y) = f N(x, t)dt + f M(s, yo)ds -------------8.1.5(6)

Yo Xo

(since .F(xo, Yo) = 0) and hence

of .
-(x, y) = N(x, y)
Oy

for all (x, y) in R . Thus, we have found F .

Q.1.6 Example: Consider the equation

:,"/.
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This is of the form M dx +N dy = 0, where

M (x, y)= 3x2 -2xy, N(x, y)= 2y-x2

Hence,

By theorem 8.1.5, the given equation is exact. To find an F we could use either of the two

formulas 8.1.5(5) and 8.1.5(6), but the following way is often simpler. We know that there is a F
such that

8F =M
Ox '

·8F-=NOy

So,

: (x,y)=M(x, y)= +3x2 -2xy.

For each fixed y,

F(x,y)=x3 _x2 y+ j(y) ---------------8.1.6 (1)

where j is a function of y alone (and hence f is independent of X). Now,

8F .
-(x, y) = N(x,y)Oy

i.e., _x2 +f'(y) =.2y- x2

Thus, a choice of f is given by j(y)= y2 . Writing this j(y) in8.1.6 (1), .
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Any differentiable function ¢ which is defined implicitly by a relation

x3 _x2y + y2 =c

will be a solution of the given equation.

8.1.6.1 Note: Consider the differential equation

M(x, y) dx + N(x,y)dy=O L 8.1.6.1 (1).

If 8.1.6.1 (1) is not exact, if may be possible to find a function Ji (x, y) such that

Ji(x, y) M(x,y)dx + Ji(x, y) N(x; y)cry = 0

"is .exact ----- in this casezz (x, r) is called integrating factor.'

So, we have that

a a'
By (Ji(x, y) M(x, y)) = ax (Ji(x,y) N(x,y))

. ,(aM" _ aN] = ~aJi _ M aJi
I.e. Ji By ax ax By

8.2 SHORT ANSWER QUESTIONS
8.2.1 : Define exact equation.

8.2.2 : Give a necessary and sufficient condition for the differential equation

.... r i

M(x, y)dx+N(x,y)dy =0 to be exact.

8.2.3: Define integrating factor.

8.2.4 : Write the integrating factor of the equation
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8.2.5 : Write (obtain) an integrating factor of the equation

(xy3+Y)dx + 2(x2 y2+x+y4)dy = 0

8.2.6 : Prove that the equation ( 2y3 + 2) dx + 6xy2 dy = 0 is exact.

8.3 MODEL EXAMINATION QUESTIONS
8.3.1 : Define an exact differential equation. -

Let M , N be two real - valued functions which have continuous first partial derivatives on
some rectangle

R :Ix - xol :<:;; a, Iy- Yo 1:<:;; b

Prove that the equation

M (x, y) dx + N (x, y) dy = 0 is exact it, and only if,

aM aN=ay ax'
8.3.2: Prove thatthe differential equation

(3X2 - 2xy ) de + (2y - x2) dy = 0 is exact and solve it.

8.4 EXERCISES

8.4.1 : The equuationsbelow are written in the form M (x, y) dx + N (x, y) dy = 0, where M , N
exist on the whole plane. Determine which equations are exact there, and solve these.

(a) 2xydx + (x2 +3y2) dy = 0

(d) cosx cos2 y dx - sin x sin 2y dy =0
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(f) (x+y)dy + (x- y)dy = 0

8.4.2 : Even though an equation M (x, y) dx +N (x, y) dy = 0 may not be exact, some times it is

not difficult to find a function u , no where zero, such that

I u(x,y)M(x, r) dx + u(x, y)N (x,y) dy=I) is exact. Such a function is called an
I.

inttrating factor.

/ Find an integrating factor for each of the following equations and solve them.

(a) (2y +2)dx + 3xy2 dy = 0

(b) cas x cas y dx - 2 sin x sin y dy = 0

(d) (eY + x eY ) dx + x eY dy = 0

8.4.3 : Consider the equation M (x, y) dx + N (x, r)dy = 0 , where M , N have continuous first

partial derivatives on some rectangle R. Prove that a function u on R , having continuous first
partial derivatives, is an integrating factor if, and only if,

(aM ON]. au au
u -- - - = N - -!v! - on R (Hint: see Note 8.1.6.1)

oy J%. ax Oy

8.4.4 : (a) Under the same conditions as in exercise 8.4.3, show that if the equation

M(x, y)dx + N(x, y)dy = 0

has an integrating factor u , which is a function of x alone, then

. 1 (OM ON] .
P = N ~)l - ax is a continuous function of x alone.

(b) If P is continuous and independent of y, show that an integrating factor is given by
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u(x) = eP(X)

where p is any function satisfying p' = p .

8.4.5 : (a) Under the same conditions as in exercise 8.4.3, show that if

M (x, y) dx + N (x, y) dy:::: 0 has an integrating factor u , which is a function of

y alone, then

'.

1 (ON OM]
q= M ax - ay i~ a continuous function of y alone.

(b) If q. i~ continuous, and is independent of x , show that an integrating factor is given by

where Q is a function such that Q' = q.

8.4.6 : Consider the linear equation of first order

y' + a(x)y = b(x),

where' a,b are continuous on some interval I .

(a) Show that there is an integrating factor which is a function of x alone.

(Hint: Exercjse 8.4. 4)

(b) Solve this equation, using an integrating factor.

8.5 ANSWERS TO SHORT ANSWER QUESTIONS
8.2.1 : See Definition 8.1.1

aM aN
8.2.2: Oy = e;.
8.2.3 : See Note 8.1.6.1.

1

8.2.4: M = xy2 _ex2, N = _x2 y.

oAf aN
ay- ax = 2xy -(-2xy) = 4xy.
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aM aN
---ay ax 4xy 4

N
= = - - (= a function of x only)

_x2 y x

= p(x) say.

fp(x)dx f- ~ -4
Integrating Fact (I.F.) = e' = e = x

(Here we have used exercise 8.4.4)

8 2'5' 3 ( 2 2 4)... M =xy + y, N = 2 x Y +x+ Y

aM '- = 3xy2 +1,
Oy

aN aM 2---=xy +1
ax ay

1 (aN aM J xy2 + 1 1 "
So, M ax'- Oy = xy3 + Y = Y = q(y) (= a function of y alone) .

.'. I. F. = ef q(y) dy =e1ogy = y (by exercise 8.4.5)

8.2.6: M =2y3 +2, N =6xy2

aM 2 aN 2, ,).
Oy = 6y , ax = 6y . So, the equation is exact.
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Lesson - 9

THE M'El:HQ,D, Olr S,U:CCE·S.S,IVE
AP'P;RO~.IMA"FlO·N;S

9.0 INTRODUCTlON
In this lesson, we study the successive approximations to a solution of a given initial value,

problem.

9,.f THE METHOD~os SUCCESSIVE, APPROXIMATIONS
Consider the general problem offindinq.soutions.of the equation

y'::: f (x, r).--------9::1(a)

where fis any continuous.real valuedfunctlen defined on some-rectangle

R:lx-xol ::;;a, Iy- yol::;; b (a; b > 0), inthereal. ex, y)- plane. Our object is

to show that on some interval I contalnlnq xb there is.a solution ¢ of 9.1 (a) satisfying

By. this we mean there .is a.real valued tunetion 1r satisfying9.1(b) such that the- points

(x, ¢(x)) are in R for x in I, and.

¢' (x) :::f (X,l ~,( x)) for all X· in I .Such a function ¢ is called a solution of

the initial value problem

y' = f(x,y), yexo).= Yo --------- 9:1(c):

Our first step will be to-show that-the initial vajue.probjerrrts-equlvalent to an integral equation,
namely, .

x

y = Yo + f f (t; y) dt ------~----9.1 (d)
Xo

on I ..Bya solution of this equation on I ,we mean a reaf.continuous function ¢ on
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I such that (X, ¢ (n)) is in R for all x in I , and

x
¢(x) = Yo + f f (t, ¢(t )) dt 9. 1 (e)

Xo

for all x in I .

9.1.1 Theorem: A function ¢ is a solution of the initial value problem 9.1 (c) on an interval I if, and

only if it is a solution of the integral equation 9.1 (d) on I .

Proof: Assume that ¢ is a solution of the initjal value problem on I .Then,

¢' (t) = f (t, ¢(t )) -------------- 9. 1.1 (1)

on I . Since ¢ is continuous on I , and 1is continuous on R , the function F defined by

F(t) = 1(1, ¢(t))
i'

is continuous on I .Integrating 9.1.1 (1) from Xo to x, we obtain

x
¢ ( x) = ¢ ( xo) + f 1(I, ¢ ( t ) ) dt ,

since ¢(xo)= Yo, ¢ is a solution of9.1(d).

Conversely assume that¢ satisfies 9.1 (e) on 1-. Differentiating,

¢'(x) = f(x, ¢(x))

for all x in I (by the fundamental theorem of integral calculus). Moreover, ¢(xo) = ,Yo·

Hence, ¢ is a solution of the initial value problem 9.1 (c).

9~1.2 Definition: Consider the problem of solving 9.1 (d)

x
i.e. Y= Yo + f f(t, y)dt

I. .
Define ¢o by ¢o ( x) = Yo . This satisfies the illitial condition ¢"a( io)= Yo butdoes not satisfy

9.1 (d). Now, we compute

5
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x
~(x)=Yo+ J !(t, (/JO(t)) dt

x

= Yo + f J(t, YO)dt

Now, we define (/J2 by

x
¢2(X)=YO + fJ(t,¢t(t))dt

:'.'

Having defined (A, we define (/Ji+l by

x
¢i+l (x) = Yo + f J(t, ¢i (t)) dt

Thus, we have the functions -- (/Jo, ¢t, (/J2, we call these functions as successive
. approximations to a solution of the initial value problem 9.1 (c).

We no~ show that there is an interval I containing Xo where 'all the functions

f>K (K = 0, 1, 2, ) defined in the definition 9.1.2 exist. Since J is continuous in R , there exists

M> Osuch that .

iJ(x,y)i ~ M

for all (x, y) in R. Let a = min {a, b/ M}. Now we prove that all ¢K s are defined on

Ix-xol~a.
9.1.3 Theorem: The successive approximations tPK' given in the Definition 9.1.2, exist as. / ~ ,.

continuous functions on

I :Ix-xol ::;a =Min {a, blM} ,

and (x'¢K (x)) is in R for x E I .Indeed ¢K satisfy
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I¢K(X) - YOI ~ Mlx-xol ---------- 9.1.3 (1)

for all x in I.

Proof: Clearly, tPo is a continuous function on I and

ItPo(x) - Yol = Iyo - yol = 0 ~ Mlx-xol·

for all x in I .We have

x
<11 (x) = Yo + f I(t,yo)dt

Since lis continuous on R, the function Fa defined by Fo (t) = I(t, Yo) is continuous

on I .Thus <11 is continuous on I and

x
1<11(x) - yol = f f(t, yo)dt

x
~ flf(t, yo)ldt

~ Mlx-xol, which shows that <11 satisfies the inequality~9:-t.3{1).

Clearly, \

x '<"

<11 (t) = Yo + J Fo (t) dt.
XO'

-,

Assume that the theorem has bean provedtor the functions tPa, <11, ' , tPn .We'pto~e

that it is valied for ¢n+ 1. We know that (t, tPn (t )) is in R for t in I . Thus the fUl'JCti'o~Fn giV~nbY', .

Fn (t) = f (t, ¢n (t)) exists tor r in I . It is continuous on I since f is.9'nti~uouS on R,

and tPn is continuous on I .Therefore tPn+1, which is given by
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x

¢n+l(X) = YO+ f Fn(t) dt
~, ,

Xo

.' . ',. - .~;'~.:':' .

exists as a continuous function on I ,Moreover,
, , .\

',-.0") :

x

l¢n+l(X) - Yol = fFn(t)dt ~MIX-Xol
Xo

/
for all x in I .Hence the theorem by the principle of mathematical induction.

9.1.3: 1 Note: Our next step is to show that the successive approximations converqe on I to a
solution of our initial value problem, In order to do this, we must impose a further restriction on t
We discuss this in the next lesson - 10,

9.1.4 Example: Consider the initial value problem i ,"
,

y' =3y+l, y(O)=2

(a) Show that all the successive approximations ¢o,'¢b';"""~":'~' exist fpr.,all x.
, , ~

(b) Compute the firstfour approximations ¢o, ¢I, ¢2, rh· to the solution.

(a) : Clearly, ¢o (x) = y( 0) = 2 exists as a ccrrtlnuousfunction 'for ~II x' .We have

x
¢I (x) = Yo + f /(t, ¢o (I)) dt (here fl(x; y)!:::; 3y+ 1)

x
= 2 +f f (t, 2)dt

o
; .

x
=2 + f7 dt

o

= 2+ 7x

which exists as continuous function for all real x . Similarly, we can show that ¢2, ¢3, .
exist as continuous functions for all real x .



(b) : First approximation ¢o is defined by

¢o (x) = y(o) = 2,

,x , , ,
Now, ¢I (x) = y(O) + J f(t,¢o(i))dt

o

x
= 2 + f f (t, 2) dt

o

. x
i>' .: \', .~<- ;""::::i2"+'J(3"x 2+ 1) dt '

i' .• ''''''!-l;:L'r'~~':'''.:I ':(.t:"··: ~ ':;-~~~~o-~·~··,·-'-.i', ....

. "'/ .'

x
= 2 + J 7 dt = 2 +7x ,

o

X
".J:'f, ,), ", (0) f f"'( ';/",f"')'d' .... 'L ¥'2\x, i;;::-y, . + : t ,:;n ~t)· 't : . '.

o
• : " '~.". ~ •• ; ~.::; -r • , . /',

x
= 2.+::J (~¢i(t)--t:il) dt

o·

x
= 2 + f(7+21t)d{\, '.

o

21 2=2+7x +-x2 ' ,

x
rh (x) = y (0) + f f (t, ¢2 (t)) dt

o

x
= 2 +J(3¢2 (t) + l)dt

o

L-
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21 2 21 3= 2 + 7x+-x- +-x2 2
9.1.5 Example: We, now find the first four approximations ¢o, ¢J.,ch, ¢>3 for the initial value problem

y' = xy, y (0) = 1.

¢o ( x) = y (0) = 1;

x
¢J.(x)=y(O)+ ff(t,¢o(t»)dt

o

x
= 1 + ft¢o(t) dt

o
(here J(x,y)=,q)

, x

= 1 + f t dt
o

X2
=1+-'

2'

x
¢2(X) = y(O)+ f J(t, ¢J.(t)}dt

·0

x
= 1 + f t ¢J.(t) dt

o

X2 x4
=1+-+-'. 2' 8'

x
¢>3 (x) = y (0) + S J (t, ch (t») dt

..~ 0



x ( t
2

t
4 J= 1+ f t 1+...:.......+ - dt

o 2 8

, .'

9.2 SHORT ANSWER QUESTIONS
9.2.1 : State an initial value problem

9.2.2 : Define successive approximations of an initial value problem y' = f (x, y), y (xo) = Yo .

9.2.3 : Write down the first approximation for the !VP :

9.2.4 : Write the second approximation for the IVP :

y' = 3Y +1, y (0) = 2

9.3 MODEL EXAMINATION QUESTIONS
9.3.1 : Obtain the first five successive approximations for the initial va'ue problem:

9.3.2 : Define successive approximations of an initial value problem and find the first three successive
approximation? for the initial value problem

9.3.3 : Define the successive approximations fJo, ¢>J., for the initial value problem:

y' = f(x, y), y(o) = Yo

Further, determine the interval I such that

(x, fJi (x)) E R

)¢i (x) - Yo) s; Mix - xa I for all x E J and i = 0,1,2, ... (where M Is some constant)
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9.4 EXERCISES :
9.4.1 : For each of the following problems compute the first four successive approximations

¢o, ¢l', fl, ¢3:

(b) y' = 1 + xy, Y(O)=l

(c) y' = y3, Y(O) = 0

9.4.2 : (a) Show that all the successive approximations for the problem

y'=y2, Y(O)=l exist for all real x .

(b) Find a solution of the initial value problem in (a). On what interval does it exist?

(c) Assuming that there is just one solution of the problem in (a), indicate why the successive
approximations found in (a) cannot converge to a solution for all real x ,

9.4.3 : Consider the problem

(a) Compute an upper bound M for the function f (x, y) =x2 + y2 on R.

(b) On what interval containing 0, will all successive approximations exist, and be such that

their graphs are in R ?

9.5 ANSWERS TO SHORT ANSWER QUESTIONS

9.2.1 : y' =J(x, y), y(xo) = Yo

9.2.2 : See Definition 9.1.

9.2.3 : The first approximation ¢o is given by

¢o(x) =y(O)=O forall x .

9.2.4 : (i) ¢o (x) = y (0) =2 for all x
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x
(ii) ¢I (X) =y(O)+ Jf(t, ¢O(t)) dt

o

x
= 2 + f(3¢o (I) + l)dl

o
\

x
= 2+ f7 dt

o

= 2 + 7x
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Lesson - 10

THE LIPSCHITZ CONDITION

10.0 INTRODUCTION
In this lesson, we study the concepts - Lipschitz condition, Lipschitz constant.

10.1 THE LIPSCHITZ CONDITION

10.1.1 Definition: Let f be a function defined for (x, y) in a set S . We say that f satisfies

Lipschitz condition on S if there exists a constant K > 0 such that

If(x, ») - f(x, Y2)1 ~ K IYl - Y21

for all (x, Yl), (x, Y2) in S. The constant K is called Lipschitz constant.

If f is continuous and satisfies Lipschitz condition on a rectangle R, then the successive

approximations converge to a solution of the initial value problem on Ix- Xo I, ~ a . Before proving

this, let us remark that a Lipschitz condition is rather mild restriction of f

10.1.2 Theorem : Suppose S is either a rectangle

Ix-xol ~ a,ly- yol ~ b , (d, b > 0) or a strip

_and that f is a real valued function defiend on S such that: exists and is continuous on S.

Sup' ose there is a constant K >0 such that .

:(x,y) ~ K

for all (x; y) in S. Then f satisfies Lipschitz condition on S with Lipschitz constant K.
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Yl -

Proof: !f(X,Yl) ~ f(x, Y2)! = f: (x, t) dt
Y2

YI Of
:$ f -(x,t) dt

Y2 Oy

for all (x, yd, (x, Y2) in S . Hence the theorem>

10.1.3 Example: Consider the function

Now, we show that f satisfies Lipschitz condition on S and we determine Up~chi~
constant.

For any (x,y) E S,

: (x, y) = Ix2 . 2 cas Y ( - sin y) + 1·sin 2
-

~2+1=3.

By Theorem 10.1.2, f satisfies Lipschitz condition and the Lipschitz constant is 3.

10.1.4 Example: Consider the function

f(x,Y) = xy2 on the set"

Of (x, y) = 12xyl ~ 2,
Oy' .



for any (x, r)E S. By Theorem 10.1.2, j satisfies Lipschi~ co~dition and Lipschitz constant

is 2. . .
.', c'

Take S : I x I ~ 1, I y I < 00 .

Then, : (x,y) = 12xyl = 2lxllyl.
Clearly,

Of .
0' (x, y) is not bounded (as it tends to 00 as y tends 00 for a fixed x with 0<Ixi~l).

So, J does not satisfy the Lipschitz condition.

10.1.5 Example: Consider the function

2

J (x, r) = Y 3 on the rectangle

R: I x I ;£ 1, IYI ;£ 1 .
, ..

Let Y1 >0.

2

jJ(x, ») - J(x,o)1 y?!....-=------,--:-----,----=---~ - -
:.,' IY1 -01 Y1

// \,
,

which is unbounded as Yl -+ 0 . So, f does not satisfy Lipschitz condition on R.

. Of .
Note: In the examples 10.1.3 and 10.1.4, 0' (x, r) exists and is continuous at each (x, y) in the

domain of the definition. That is why we have considered : (x, y) .

10.2 SHORT ANSWER QUESTIONS
10.2.1 : Define Lipschitz condition and Lipschitz constant.

10.2.2 : Assume the hypothesis of Theorem 10.1.2, what is Lipschitz constant ?
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10.3 MODEL EXAMINATION QUESTIONS .

10.3.1 : Define Lipschitz condition, Lipschitz constant. Show that the function j defined by

I (x, y) = x y2 satisfies Lipschitz condition on

R:I x I ~ 1, I y I ~ 1

butnoton
,

S:lxl ~1, Iyl< 00.

10~'3.2 : Verify whether the following functions f satisfy Lipschitz condition on the set Smentioned.

(a) f l x, y) = x2 cos2 Y + Y sin2 x, on S:I xl ~ 1, Iy 1< 00.

(b) f i x, y) = 4x~ + y2, on S:lxl ~ 1, Iyl ~ l.

10.4 EXERCISES:
10.4.1 : By computing appropriate Lipschitz constants, show that the following functions satisfy

Lipschitz conditions on the set S indicated.

(a) I(x, y) = 4x2 + y2, -on S : Ixl ~ 1, Iyl ~ 1

(b) I(x, y) = x2cos2 Y + y'sin2 x, on S: jxj ~ 1, jyl < 00

(c) I(x, y) = x3 e-xy2, on S:? :s; x:s; a, I yl < 00, (a>~)

(d) f i», r) = a(x)y2 +b(x)y + c(x) on S:lxl ~ 1, Iyl ~ 2

(a, b, c are continuous functions of x on Ixl ~ 1 )

(e) f(x,y) = a(x)y +h(x), on S:lxl ~ 1, Iyl<oo,

(a, b are continuous functions on Ixl ~ 1) ~" ..". "., .,
".",.
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10.4.2: (a) Showthatthefunction j given by

1

f(x, y) = y2

does not satisfy Lipschitz condition on

R: Ixl ;£ 1, O:s;y :s;l.

(b) Show that the function f defined in (a) satisfies Lipschitz condition on any rectangle of
the form

R: Ixl ;£ a, b s. y ;£ c (a, b, c > 0)

10.4.3: (a) Show the function f given by

f (x, y).= x21yl satisfies Lipschitz condition on

R: Ixl ;£ 1, Iyl;£ 1.

8f
(b) Show that oy does not exist at (x, 0) if x=,t:O.

oj .' ;
10.4.4: Show that the assumption .nat oy be continuous on S is superfluous in theorem 10.1.2.

(Hint: For each find x , the mean value theorem implies that

off (x, YI) - f (x, Y2) = Oy (x, 1]) (YI ~ Y2)

where 1] (which may depend up on x, YI, Y2 ) is between YI and Y2'

10.5 ANSWERS TO SHORT ANSWER QUESTIONS
10.2.1 : See Definition 10.1.1.

10.2.2: K

REFERENCE BOOK
Earl. A. Coddington: An Introduction to Ordinary Differential Equations; Prentice Hall, India.

Lesson Writer:

Prof. P. Ranga Rao.



Lesson - 11

CONVERGENCE OF THE SUCCESSIVE
APPROXIMATIONS'

11.0 INTRODUCTION
In lesson 9, we have defined successive approximations to a solution of an initial value

problem. In this solution, we prove that these successive approximations converge on a particular
interval 1 to a solution of the initial value problem.

11.1 CONVERGENCE OF THE SUCCESSIVE APPROXIMATIONS

11.1.1 Theorem (Existence Theorem) : Let f be a continuous real valued function on the rectangle

If(x,y)1 ~M

for all (x, y) in R. Further suppose that f satisfies Lipschitz condition with constant K in

R . Then the successive approximations.

x
9k+l(X) = Yo + f f{t, 9k(t)) dt (k=O,1,2,: .:: )

Xo

converge on the interval

I:lx-xol ~ a = Min{a, Yu}
to a solution 9 of the initial value problem.

y' = f(x, y), y(xo) = Yo on 1.

Proof: We divide the proof into four parts:

(a) convergence of {¢k (x)}: Clearly,
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So, the sequence {¢k (x)} is the partial sum 'sequence of the series.

CJ:)

¢o ( x) + L [¢p .( x ) - ¢P -1 (x) ] -------------- 11. 1 .1 (1 )
p=l .

Hence to show that the sequence {¢p ( x)} converges, it is enough if we prove that the

series 11.1.1 (1) converges.

By theorem 9.1.3, the functions ¢p all exist as continuous functions on 1 , and for each'

xEI, (x, ¢p(x)) E R. Further,

1¢I(X) - ¢o(x)I~Mlx-xol----------11.1.1(2)

for all x in 1 . Writing down the relations defining ¢! and ¢2 and subtracting, .we obtain

x
1¢2(X) - ¢i(x)1 = f [/(t, ¢i(t)) - I(t, ¢o(t))] dt

Xo

x
. ~ flf(t,¢!(t))-/(t,¢o(t))1

x
~ K f l¢i (t) - ¢o (t)ldt

(since 1 satisfies Lipschitz condition, we have that for any (X'Yl)' (X,Y2) in R,

x
~ KM f It-xoldt

IXO

(by 11.1.1(2»

Thus, if x~ xo, then

x

1¢2(X) - ¢l(x)1 ~KM f (t-xo)df
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The same in valid even if x ~ xo .
Now, we shall prove by induction that

M KP-l IX-XoIP
I~p(X)-~p-l (X)I ~ I -------------11.1.1(3)p.

for all x in I .

We have already proved this for, p= 1and p == 2. Assume this for p = m. Now, we prove
i

this for p =m +1. Let x ~ -o (The prootin similar when x ~ xo)· Using the definitions of ~m+l' ~m'
we have

x
I¢m+l(x), - ¢m,( x)1 = I' f [1 (t, ¢m (t)); - 1 (t, ¢m-l (t)) ] dt

x

~ f If(t'~m(t)}- f(t~m_l(t))ldt
" Xo

x
~ K J I~m (t)'-~m_l.(t)ldt

(since f satisfies Llpschltz.oendition)
~c

K M Km-1 x
< f (f.- xo)r:z dt

m!

_ M Km (x_xo)m+l
- (m+l)!

Thus 11.1.1 (3) holds when p = m+ 1. By the principle of.mathematical induction, 11.1.1 (3)

holds for all p = 1,2, .

Now, for any x E !,
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I 1

M kP Ix-xolP
¢p (x) - ¢p-l (x) ~ K 'p+_. __

for p = 1, 2, Hence

M .T(::;-e' a. - K

So, the series 11.1.1 (1) converges absolutely and uniformly on 1 and hence the sequence

{¢p (x)} of successive approximations converges to a limit ¢( x) (say) for each x E 1 .

(b) Properties of the limit ¢ :

For any xl> x2 in 1 ,

~ Mlxl-x21

(since If (x, y)1 ~ M for all (x, r) in R).

which implies that - by letting p ---7 OC! ,

I¢(xl) - ¢ (x2)1 ;:;:;M IXI - x21 ---------------- 11.1.1 (4)

This shows that II x2 ~xl =>¢(X2)~¢(Xl)" and hence f is continuouson 1. Also,

letting Xl =x, x2 =xo in 11.1.1(4), we have

I¢(x)- Yol;:;:;Mlx-xol (for any x in I)

which implies that (x, ¢(x)) in R for all x in I
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(C) Estimate for I¢(x) - qJp(x)1 :

Nuw,

00

I¢(x) - ¢p(x)1 = I [¢q(X)-¢q_l(X)]
s=r+)

,,00

;£ L' I¢q(x) - ¢q-l (x)1
q==-p+l

M 00 '(Ka)q
s; - "- K Z: ,

q==-p+l a:

« M (Kat+l

= ,K (p+l)!
00 (Ka)q
I ,

q==-O q.

M (Ka)P+l Ka
=K' (p+l)! e ------------11.1.1(5)

Let Ep = (Ka't+1 /(p+l)!. Then =r:: 0 as p ~ 00, since Ep is a general term of the

series for eKa. In terms of Ep , 11.1.1 (5) can be written as

(d) The limit ¢ is a solution: To complete the proof, wemust show

x
¢ (x) = Yo + f f (i, ¢(t)) dt --------------- 11.1.1 (7)

for all x in I. The right side of 11.1.1 (7) makes sense as ¢ is continuous on I , f is

continuous on R and thus, the function F on I defined by

F(t) = /(t, ¢(t))

is continuous on I. Now,
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x
¢p+l(X)=YO+ f.l(t,¢p(t)}dll":'

• 1 ,;' • v "

and ¢p+l (x )~?(X)}lS;P ;7,m. Thus, toyrqye J1 ..1J(7),. yve r.n,\J.~t.sho»,thatfor each
. • ',.' . .; ~,....'" ~ . , ,_" ~ 1:-' . _,' :

XEI,

x . . x, . . .". . . ..;; .•.
f .I(t, ¢p (t))dt ~ f .I(t, ¢(t))dt (p ~oo)-----'~--'11-.1:1(8)' .

we have

x x
f .I(t, ¢(t))dt - f .1(/, ¢p (t))dt

( "

x
~ f 1.1(/, ¢(t)) - .I(t, ¢p (t))ldt

xo
t. .,: .

x
~ K f I¢(t) - ¢p (t)ldt

, i .

(since .I satisfies Lipschitz condition)

(by 11.1.1(6»

which tends to 0 as p ~ 00 (since Ep ~ a as, p ~ (0) for each x in 1. Thus, we have

proved 11.1.1 (8). Hence the theorem.

11.1.2 Theorem: The P'h successive approXimati~~' ¢; is the solution ¢ of the initial value
problem of Theorem 11.1,1 satisfies

.; ~ , :::

Proof: The proof of this theorem is included in the proofof theorem 1:1.1'.1.
",;- ;



Differential Equations 11.7 Successive Approximations

11.1.3 Example: Consider the initial value problem , .
; j ".

y' = 1+.y2, Y(O) = 0 ----------11.1.3(1)

.. ;:;:; (a) UsTngseparation of\;ati~bl~s·."fln"d·the sq!utioncP 'ofthis·prbbfem. On'what interval does

cP exist?

(b) Show that the successive approximations cPo, cPl:, ¢2, .... exist for all real x .
\.:", ,: J -. j '. • • c { •

(c) Show that cPp( x) --+ cP (x) for each x satisfying'

Ixl ~ ~
Now we answer these (a), (b) arid (c)

(a): 11.1.3(1) can be written as

y'
--=1
1+ y2 .

ini~resting with respect ~o x from 0 to x, we have

. ,\ \

Letting u = y (s) , 't,.,

y(x) d '
f 'u

-'2=x
o J.:+?!. .

',' I

[
-1 JY(X)

i.~: Ta~, u O .. =x.

i.e. Tan-1 y(x) = x
,

i.e. y(x) = Tanx ..

y(x) is defined for ~ E(-"~, ;] i~~. ., ~<x<~.

(b) : Here, y' == 1+y2 = f (X; y). Clearly,
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¢o(x) = Y(O)=O;

x
¢I (x) = f(I +O)dt = x;

o

and hence each ¢p (x) exists for all real x and in a poly nomial in x.

1
(c) : For any ] x, y) in R (i.e. I x I ~ "2 and I Y I ~ 1)

!/(x, Y)! = 11 + y21 ~ 2

Take K =2. For any (x, Yl) and (x, Y2) in R,

!/(x, Yl) - j(x, Y2)! = Iyf - Y~I
I

= IYl +Y211Yf - yil

s:(ly11 + IY21) IYl - Y21

= 21Yl- Y21·
So, I satlsfles Lipschitz condition and Lipschitz constant is K = 2. In view ofthe existence

theorem,

for all x in (- ~.' ••
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~1.2 SHORT ANSWER QUESTIONS

11.2.1 : State the existence theorrne for the convergence of successive approximations of an initial
value problem -

y' = f (x, y), y (xo) = Yo

11.2.2: Write the first three successive as pronimations <Po, ¢t, <P2 of the initial value problem

y' = f(x, y), y(xo) = Yo

11.2.3: If <Po,¢t, are the successive approximations of the initial value problem

y' = f (x, y), y (xo) = Yo ,

and if If (x, y)1 ~ M for all (x y) in the rectangle

R:lx-x~l~ a, IY-Yol~ b (a, b » 0)

and if f satisfies Lipschitz condition on R , then for any x in I ,

I<pp (x) - <Pp-l (x)1 ~ T \

.where.Z'r= .

11.3 MODEL EXAMINAT!ON QUESTIONS,:
11.3.1 : State and prove the existence theorem of the successive approximations.

11.3.2: Consider the initial value problem:

y' = 1 - 2xy, y(o) =0.

(a) Solve this equation as it is a linear equation let us solution be <p.
(b) Consider the problem on the rectangle

. ~;!

If f(x, y) = 1 - 2xy, show that
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If(x, y)1 ~ 2

. . . 1
for all (X, y) in R and that all the successive approximations to the solution exist on I x I ~ '2 r

and their graphs remain in R .

(c) Show that f satisfies Lipschitz condition on R with Lipschitz constant K =] .

(d) Show that the approximation ¢2 satisfies

1
I¢(x) -¢2 (x)1 < 0.01 for Ix I~ '2'

11.4 EXERCISES
11.4.1 : Consider the problem:

y'=1-2xy, y(O)=O.

(a) Since the differential equation is linear, an expression can be found for the solution.
Find it

(b) Consider the above problem on

If f (x, y) = 1- 2xy , show that

If(x, y)1 ~ 2 ((x, y) in R),

I
and that all the successive approximations to the solution exist on I x I ;; '2 and their graphs

• I

remain in R.

(c) Show that f satisfies Lipschitz condition on R with Lipschitz constant K = 1, and
therefore by theorem 11.1.1, the successive approxirnaricns converge toa limit (solution) of the

. 1
initial value problem on I x I ;; '2 .

(d) Show that the approximation ¢2 satisfi~5
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1
I¢ (x) - ¢2 (x)1 ~ 0.1 for I X I ;£ "2'

(e) Compute ¢3 .

11.4.2 : Consider the problem

y' = 1 -t'.?, y(O) =0

(a) Using separation of variables, find the solution¢ of this problem. On what interval does

¢ exist?
. .

(b) Show that all the successive approximations ¢o, ¢J.,¢2, exist for all real x ,

1 '
(c) Show that ¢k(X)~¢(x) for each x satisfying Ixl~2' (Hint: Consider

, 1 1
l(x,y)=1+y2 on R:lxl~2,IYI~I. Showthata="2)'

11.4.3 : On the square e

R:I x I~1, y~ 1, let f be defined by

f(x, r) =0, if x=O, IYI ~ 1,

= 2x, if 0< x ~ 1, -l~y<O,

4y . ,l

=2x---;:-, If o<lxl~l, x2 ~y ~ x2
\ ;

= -2x, if 0<lxl~1, x2s:yS:l.

(a) Show that f is continuous on R , and II(x, y)1 ~ 2 on R .

(b) Show that this f does not satisfy Lipschitz condition R .

(c) Show taht the successive approximations ¢o, «. .....for the problem.

y' = lex, y), y(o) = 0 satisfy



(d) Prove that neither of the convergent subsequences in (c) converges to asolution of
the initial value problem. (Note: This problem has a solution, but the above shows that
it cannot be obtained by using successive approximations).

11.5 ANSWERS TO SHORT ANSWER QUESTIONS
11.2.1 : See statement of theorem 11.1.1

11.2.2 : Write

x
¢p(x)== Yo+ f /(/, ¢P_I(t))dt for p==O,1,2.

Xo

M Kp-1Ix-x IP
11.2.3 : T == 0 where K is Lipschitz constant.

I 'p.

REFERENCE BOOK
Earl. A. Coddington: An Introduction to Ordinary Differential Equations; Prentice Hall,lndia.

\
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Lesson - 12

NON LOCAL EXISTENCE-OF SOLUTIONS

12.0 INTRODUCTION
In lesson - 11, Theorem 11.1 is called local existence theorem since it guarantees a solution

I .
only for x near to xo. There are many cases when a solution to the initial value problem exists on

the internal Ix - xo I ~ a and in such cases we say that a solution exists non-locally.

Consider the linear equation

y' + g(x)y = hex) ----------- (12.0(a))

The solution exist on every interval where g and h are continuous. Suppose g and hare

tontinuous on the interval Ix - Xo I ~ a and that there is a constant K (> 0) such that
! .I

Ig(x)1 ;£ K (Ix-xol;£ a)
We can write 12.0(a) as

y'= f(x,y) = - g(x )y+h(x)

For any (x,y) in the strip

Thus, f satisfies Lipschitz condition on tile strip S_instead of a rectangle R. By looking
carefully at the Theroem 12.1.1, we can show that there exists a solution on the entire interval

Ix-xol;£ a.

12.1 NON LOCAL EXISTENCE OF SOLUTIONS

1.2.1.1 Theorem: Let f be a real-valued continuous function on the strip
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(a>O),

and suppose that j satisfies on S a Lipschitz condition with constant K> O. The

successive approximations {¢k} for the problem.

y' = .I (x, v). y (xo) == Yo -----~--------- 12.1.1 (a)

exist on the interval Ix - Xo I ~ a , and converge there to a solution ¢ of 12.1.1 (a).

Proof: The successive approximations are given by

x
¢k+l (x) = YO+ f .I(t, ¢k (t))dt, (k=O, 1, 2, .....)

" .'

We can establish the existence of each ¢k by induction as in theorem for

Ix-xol ~ a.

Define Fo on [xo - a, xa +a] by

Fa ( x) = f (x, Yo)

Since J is continuous on S, Fa' is continuous for Ix-yeo I~ a. .;a,nd hence bounded on

[ Xo - a, Xo +a]. S--:,there is a constant M such that
1 '

Iro(xjl = Il(x, Yo)1 ~ A~

The proof of conve. qe ::e of {¢k (x)} follows from p,.:l. (a) of theorem 11.1.1 as
. ~'

I x I
"l¢dx)-6o(x)! =1 ~ ./(t, Yo)dtl'"" , I"

" Xo

~ T If (t;Yo)ldtl ~ 'M Ix~xol. "
Xo I
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Let ¢ be the limit of the sequence {¢k} (On Ix- Xo I~ a ).

Now,

k
i¢k (x)- yol == I[¢; (X)-¢;-l (x)] .

; = 1

K
.~.L I¢f (x) -r ¢I-l (x )1

;=1

M( Ka )=- e -1
K I

(where a=!x-xol)

= b (say) ----------- (12.1.1(b))

for anyxsucbthat Ix~x() I~a.Takjnglimitask'~ 00 in 12.1.1 (b), we have

I
r

I

I
R:lx-xol~ a, ·Iy- Yol~ b ;

there exists N >0 such that

IfCx,Y)I~N

for all (x, y) in R. For any Xl> x2 in the interval Ix-x()l~ (f ,
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/ X2

I¢k+l (xd-¢k+l (x2)1 = f 1(t, ¢k (t))dt
xl

and hence, as k ~ 00, we have that

so that ¢ is continuous (in fact uniformly continuous) on the intecr:val Ix-xol~ a. The
remainder of the proof is a repetition of parts (c) and (d) of the proof 0; Theorem 11.1.1 with a

v-·

replaced by a and M by N .

12.1.1.1 Coi~lIary : Suppose 1is a real valued continuous function on the plane Ixl < 00, Iyl <00 ,

which satisfy a Lipschitz condition on each strip

for any PQsHive number a. Then every initial value problem

hasa solution which exists for all x in lR.

Proof:leT X -be a real number. Then there exists a number a>O. Ix-xol~ a. - .. '. --.I ,-

i.e. x E [xo -a, Xq +a] . For this a, 1 is continuous
....,;:;

i.e .

Xo -a s xsxo +a on

[ Xo - a, Xo +a] X iR ( = f; say). By hypothesis, 1satisfies Lipschitz conditon on the strip

C'=arty, ,f;c Sb' So, 1satisfies Lipschtiz condition on ~. Thus, the hypotehsis of

Theorem 12.1.1 in satisfied. Hence, there exists a solution ¢ to the initial value problem.

12.1.2 Example: Consider the initiail value problem
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using corollary 12.1.1.1, we show that this problem has a solution for all real x , Let

Clearly f is continuous on IRx IR . Consider the strip

Forany (x, r) in Sa'

4 2
df(x ) = y +3y
d ,y 2
Y (1+y2)

- x2 siny

By theorem 12.1.1, f satisfies Lipschitz condition on Sa, with Lipschitz constant.

By corollary 12.1.1.1, there is a solution ¢ to the given initial value problem which is definec
for all real x.

12.1.3 Example: Consider the function f on IR2 = IRx·JR. 'defined by f (x, y) = y2 .

(a) Now, we observe that f does not satisfy Lipschitz condition on any strip

but satisfies the same on any rectangle.

Let a>O. If Yl >0, then

which is unbounded on Sa as Yl ~ 00 and is clearly bounded on the rectangle.
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infact bounded by b (i.e. The Lipschitz constant is b).

(b) Consider the initial value problem:

I

y' = f(x,y)=y2, Y(1)=-1

Now, we solve this problem.

dy =y2. dy d. 0dx I.e. ---+ X=
a: y2

on Integrating,

1'1
-+x = C i.e. y=--y C-x

which is a solution of y' = y? (provided x 7:- C ).

. 1 1
If Y(I)=-1 then -1=-- i.e. C = 1. So, y=-- is a solution. Thus, solution of this

C-I I-x

initial value problem exists when x 7:-1 .
(

12.1.4 Example: Let

f( x, y)= cos '~~(Ixl <1)
1- x

(a) Show that f. satisfies Lipschtiz condition on every strip

Sa : Ixl~ a(O<a<I), y < 00.

(b) Show that every initiai value problem

y' = f(x, y), y(O)=yo

has a solution which exists for Ixl<1.

Ans : (a) : Clearly, f is continuous on the strip

Ixl<l, Iyl < 00
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Now, for any (x, y) in Sa'

Qf( ) _ -siny
8y x,y - I-x2 and hence

81 1
ay (x,y) ~ l-a2.

In view of theorem 12.1.1, f satisfies Lipschitz condition with Lipschitz constant

1s; =--2
I-a .

(b) Since f is continuous on every strip Sa and satisfies Lipschitz condition on Sa' by

Theorem 12.1.1, the initial value problem

y' = fl.», y), y(o) = YO (IYOI<oo)

has a solution which exists for jxj <1.

'l~ SHORT ANSWER Q~ESTJONS
12.2.1 :'St~ non-local existence Theorem.

12,2.2 : Conside~ction f (x, y) defined by

. cosy (j j '~~f(X'Y)=--2 x<])""-
l-x -,

Let 0 <a <1. Prove that f satisfies LiP~~Z conditon on the strip. ;--..,

12.3 MODEL EXAMINATION QUESTIONS
12.3.1 Consider the equation

7
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Show that j satisfies Upschitz condition on' the strip Sa' and hence every initial value
rroblem

y' = j (x, y), y (xo) = Yo has a solution which exists for all x E IR .

12.3.2 : State and prove Non-local existence Theorem :

12.3.3 : Suppose j is a real value continuous function on the plane

such that j satisfies Lipschitz condition on each strip

where a is any positive real number. Prove that every initial value problem

y' = j(x, y), y(xo) =Yo

has a solution which exists for all real x .

'12.4 EXERCISES
12.4.1 : Consider the equation

y' = j(x) p(cosy) +?"(x)q(siny)

where t, g are continuous functions for a" real x and p, q are polynomials. Show that
every initial value problem for this equation has a solution which exists for all real x.

12.4.2 : Let j be a real valued function on the strip

and suppose that j satisfies a Lipschitz, condition with constant K ( > 0). Show that the
I

successive approximations

¢o (x)= Yo,
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x

¢k+l(X) = YO+(X~XO)Yl + f (x-t)f(t'¢k(t))dt
Xo

( k = 0, 1,2, ) ,

exist as continuous functions on the whole interval I: Ix - XoI~ a , and converge on I to a

solution ¢ for the initial value problem

y"= f(x, r). y(xo) = YI; Y'(xo)= YI

12.4.3 : Prove that the corollary to theorem 12.1.1 for the initial value problem

y" =f(x, r), y(xo) = Yo, Y'(xo) = Yo

12.4.4 : Let f be a real valued continuous function on the strip

and suppose f satisfies a Lipschitz condition on S with constant K >0. Show that the
successive approximations.

¢o (x)=O,

sin J1..x . x

f
sin J1..( x-I) ( )

¢k+l(X)=--+. ft,¢k(t)dt (J1..>0) (k=0,1,2, ).J1.. 0 J1.. .'

exist as continuous functions on I :Ixl~a , and converge' there to a solution rjJ of the initial

value problem.

y" + J1..2Y = f(x, y), y(O)=O, y'(O)=l.

(Hint: See exercise of Lesson 11) (Note: The existence of a solution to the initial value
problem can be demonstrated by applying exercise 12.4 to the problem

y" =f(x, y) - J1..2y, y(O)=O, y'(O) = 1

12.4.5 : Prove the corollary to Theorem 12.4.1 for the initial value problem

y" + J1..2Y = f(x, r). y(O)=O, y'(O)=l.
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12.4.6 : Let g be a real valued continuous function on I: I x I ~ a , where a> 0 . Consider the il;)itial

value problem

y" +A2 Y = g(x)y (A ~ 0), y(O)= 0, y'(O)=l (*)

(a) Show that there is asolution¢ of ("'), on I ano give an integral equation which ¢

also satisfies.

(b) If ¢ is continuous for all real x, show that there is a solution of (*) for all real x

(Hint: see exercises 12.4.2, 12".4.3, 12.4.4. and 12.4.5).

12.5 ANSWERS TO SHORT ANSWER QUESTIONS
12.2.1 : See statement of the Theorem 12.1.1.

12.2.2 : See example 12.1.4.
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Lesson - 13

APPROXIMAT-IONS TO SOLUTIONS
AND

UNIQUENESS OF THE SOLUTIONS

13.0 INTRODUCTION

Consider the initial value problem

y' = f (x, v), y (xo) = Yo

(where f is a continuous real valued function on a rectangle

R:lx-xol~a, Iy-- Yol ~ b

satisfying Lipschitz condition) on an interval [ containing Xo _ In this lesson, we show that

the soiution of this problemon the interval [ is unique.

13.1 APPROXIMATIONS TO SOLUTIONS AND UNIQUENESS OF
THE SOLUTIONS

13.1.1 Theorem: Let f, g be continuous real valued functions on the rectangle

R:lx-xol~ a, IY- Yol~ b, (a, b > 0)

Suppose f satisfies Lipschitz condition on R with Lipschitz constant K. Suppose ¢ and
If/ be solutions of the initial value problems:

Y' = f(x, y), y(xo) = Yl --------------13.1.1 (a)

and y' = g(x, y), y(xo) = Y2 -------------- 13.1.2 (b)

respectively on an interval [ containing Xo with graphs contained in R. Suppose there

exist positive constants E, 8 such that

If(x,y)-g(x,y)1 ~ E (fora" (:::,y) in R), ------------13.1.1(c)
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and !Yl - Y2! ~ 0 ----------- 13.1.1 (d)

Proof: Since rjJand If/ are solutions of 13.1.1 (a), 13.1.1 (b) respectively, we have that

x
rjJ(x) = Yl + S /(t, rjJ(t))dt

x
If/ ( x) = Y2 + f g(t, If/ (t) ) dt

and hence

x
IrjJ(x)-lf/(x)I"= Yl- Y2 + f [/(t, rjJ(t))-g(t, If/(t))Jdt

x
~ IYl- Y21+ S [/(t,¢(t))- g(t,lf/(t))Jdt

x
+ f [/(t,lf/(t))-g(t,lf/(t))]dt

x
~5+K f 1¢(t)-lf/(t)ldt +Elx-xol---------1,3.1.1 (f)

(Using 13.1.1 (c), 13.1.1 (d) and using the fact that f satisfies Lipschitz condition with

Lipschitz constant K and for x ~ xo)·

x
Let E(x) = f IrjJ(t)-lf/(t)ldt

For x;Sxo,
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E'(x)-K E(x) ~ S + E (X-XO) ----------- 13.1.1 (g)

This is a first order linear differential inequality which may be solved in the same way we

solve first order linear differential equations. Multiplying 13.'1.1 (g) by e -K(x-xo} and replacing by
the dummy variable t •we get

i /.,

Integrating from -o to x , we have

-K(x-xO) ,() 5 ( -K(X.,-xo)) E [ ( ) ] -K(x-xo)' Ee " E x ~ - 1-e +- -K x - Xo -1 e " +-'
K 'K2 K2'

since E(xo)=O. Multiplying both sides of this inequality by eK(x-xo), we get

( ). S (K(X-XO) ) E [K( ) l E K(x-xo)E x ~ - e - 1 - - x - Xo +1 +- e ,
K K2. J K2 "

Thus, we ha\fe proved the conclusion when x ~ xo. A similar proof holds when x ~ xo.
Hence the conclusion.

13.1.1.1 : Corollary (Uniqueness thoerem) : Let f be a continuous and satisfy Lipschitz condition
on

R:lx-xol ~ a, Iy- Yol~ b (a, b » 0)

If ¢ and If/ are two solutions of the initial value problem

y' = f (x, Y), y (XO) = Yo on an interval J containing Xo then ¢ (x) =If/ (n) for all x in J .

Proof: Taking g = f and Yo = Yl = Y2 in Theorem 13,1.1, we see that we may choose E= 0, S = °.
By Theorem 13.1.1, ¢=lj/ on J.

13.1.1.2 Remark: In addition to continuity, some restriction on f is required inorder to qurantes
uniqueness. Consider the following.

13.1.2 Example: Consider the initial value problem



I 2

y' = 3y3, y(O)=O'

2

Here l (x, r)= 3Y 3 . Clearly, l is continuous on the (x, y) plane. Consider the functions

¢ and !jI defined by .

¢(x )= x3 , !jI ( x ) = 0 ( -00 <x <00 )

Clearly, both ¢ and !jI are solutions of the problem. That is the initial value problem has no

unique solution. We can easily observe that l does not satisfy Lipschitz condition on any rectangle
containing the origin (see ).

13.1.1.2 Corollary: Let l be continuous and satisfy Lipschitz on R. Let gk (k = 1,2, ) be

continuous on R and assume that there exist constants Ek such that

Il(x, y)- (1, y)1 ~ Ek

-'

for all (x, y) in R , where Ek ~ a as k ~ 00· Let Yk ~ Yo as k ~ 00 . If !jIk is a solution of

on an interval I containing Xo and ¢ is a solution of

y' = lex, r). y(xo) = Yo

or I ,then

for all x in I .

Proof: Inview of theorem 13.1.1, .

where K is Lipschitz constant Since Yk ~ Yo and Ek-+O as k ~ 00, we have

k
lim !jIk (x) = ¢(x), for all x E I .

. -+00
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13.1.2 Example: Consider the initial value problem

y' = xy+ ylO, y(O)=~
10

1
(a) Show that a solution for this problem exists for Ixl ;£ 2" .

(b) For small Iyl ' the given problem can be approximated by the problem

1
y' =xy, y(O)=lO

compute a soluton of this problem and show that its graph IS in the rectangle

(d) Prove that I¢ (x) -If (x)l:s 5:0 [ e1xl-l ] /.
/

. 1 I 1 I 1Solution: (a) Letg(x,y)=y'=xy+ylO For any (x,y)In R:\xl:s-, y-- :s-;
. 2 10 10

:s ~x~ + (~)10
2 10 10

1 1 1
=-+- ="-

10 10 5

Hence, as in the main existence theorem,

a=min{ a, ~}
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,! 1
Since g is continuous on Rand Ig(x, y)1 < 5" on R, there exists a solution If! of the

given I v P on [ - ~, ~ ] .

(b) Clearly, the solution of the I v P is given by

We have

I 1 I 11 x
2/2 1 I¢(x)-- = -e --

, 10 10 10

= _1 [el/8 _ IJ < _1
10 10

Hence the graph of ¢ lies in R .

(c) Clearly, the function f is given by

, 1
f (x,y) = x Y is continuous and satisfies Lipschitz condition with Lipschitz contact K =2 on

;:r'i;

1 I 1 I 1k=lxl::;- y--::;-
2' 10 10

By Theorem 13.1,1,

I¢ (x) -If! (x )1~ 0 + f (x, y )~ g (x, y) (eK jxl_l )

,~2IylO[elxl/2 -1J1

:> 2c~r [el>1/2 - 1]
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= ~ [e1xl/2 - 1J/105

(d) We have

= (e1xl/2 +1) (e1xl/2 -1)

13.2 SHORT ANSWER QUESTIONS
13.2.1 : State uniqueness theorem concerning the solution of the J v P .

y' = f(x, y), y(o) = Yo.

13.3 MODEL EXAMINATION QUESTIONS

13.3.1 : let f be continuous and satisfy Lipschitz condition on the rectangle

(a, b>O) . , '

If ~ and If/ are two solutions of

y' = f(x, y), y(xo) = Yo

on an interval J containing xo, prove that ¢(x) = If/ (x) for all x in J .
<,

- 13.3.2: consider the initial value problem

-.
-, Y' =~y+ ylO, Y(O) = l~ .



1
(a) Show that a solution If/ of this problem exists for !xl:::::"2.

(b) For small Iyl ' this problem can be approximated by the problem

y' = :xy, y(o)= 1~

1
Compute a solution ¢ of this problem, and show that its graph is in R for Ixl::::: "2 .

13.4 EXERCISES :
13.4.1 : Consider the problem

y' = Y+AX2 siny, y(O) =1,

~here A is some real parameter, I}vl:::::l.

(a) Show that the solution for the problem exists for Ixl:::::] .

13.4.2: Let 1 be a continuous function for (X,y,A) in R:lx-xol::::: G, Iy- Yo I:::::b, IA-Aol::::: c,

where a, b, C > 0 , and suppose that there exists a constant K >0 such that

I_. lh!
0/ ....,;

for all (X,Yl,A),(X,Y2';") in R, hl'SUPPQSei,.'at~ exists and there is a constant

L > 0 such that

\
31 I--:::;-(x, y, A)I :::::L

lOA

for all (x, y, A) in R. If ¢A represents the solution of

y' = f(x,y, A), y(xO)=YO' show that
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for all x for which ¢;." ¢j.l exist.

13.5 ANSWERS TO SHORT ANSWER QUESTIONS
13.2.1 : See the statement of corolary 13.1.1.1.

REFERENCE BOOK
Earl. A. Coddington: An Introduction to Ordinary Differential Equations; Prentice Hall, India.
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Lesson - 14

SYSTEMS OF DIFFERENTIAL EQUATIONS

14.0 INTRODUCTION
Consider the system

Yi=11(X, Yl, Y2,··· .. ·····'Yn)
Y2 =J: (x, Yl, Y2,··········'Yn)

-------14.0(a)

of n ordinary differential equations of first order where the d~'rivati~es yi, Y2 " : , y~: appear
explicitly. The system 14.0(a) car J represented as

Y'=1(x,y)

where 1=colC/i,h,'" ", 1n) in a given complex-valued vector function defined in some set R in

the (X,(YI,Y2,······'Yn)) space, x is real and YI, Y2,·····'Yn are complex.

14.0.1 : Consider the sytem 14.0(a) of n ordinary differential equations. If there exist n differentiable

functions ¢1., (h,." ", 9n on some interval I such that for any x in I ,

(a) (x, ¢I (x), ¢2(X), ······¢n(x))ER

(b) ¢lex) = 11(x, ¢l(X), ¢2(x),·· .. ··'¢n(x))'

92 (x) = I: (x, ¢1. (x), 92 (x),. ·····,9n (x))

9~ (x) = 1n (x, ¢1. ( x), 92 (x ) , , 9n ( x) ) ,
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then we say that(¢!, (h,.·····¢n) is asolutionofthe system 14.0(a).

One of the most famous system of the type (14.0) results from Newton's second law of

motion for a particle of mass m . Using rectangular coordinates (x, y, z) , their law is usually written

as

m x" = X, my" = Y, nz" = Z ---------- 14.0(b)
,

Here differentiation is with respect to the time t , and x" , y", z" represent the acceleration

of the particle in x, y, z directions respectively, where as x, y, z represent the forces activity on the

particle in these directions. In general, X, Y, Z are functions of t, x, y, z, x', y', z' .To see how the
system 14.0(b) can be viewed as a system of type 14.0(a), let us make the following substitutions
in 14.0 (b).

, , ,
x ~ Y4, Y ~ Y5, z ~ Y6 .

Then 14.0(b) is equivalent to the following system of sin equations

,
Yl =Y4
,

Y2 =Y5

Y3 =Y6

Y5 =~Y(X'Yl'Y2'" "',Y6)m

1
Y6 =-Z (X,Yl>Y2," "',Y6), which is of type 14.0.

m

Note: An equation of the nth order

/n) = f(x, Y, y', Yn,·····Y(n-l)) ---------- 14.0(d)

may also treated as a syste of type 14.0(a). To see this, in 14.0(d), we substituts

, , - (n-l)
Yl = Y, Y2 = Y 'Y3 = Y2,······ Yn = Y .
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Then the system 14.0(d) in equivalent to the system

,
Yl =Y2

,
Yn-= Yn

Y;1- =.1 (X,Yl,Y2,····· ',Yn)

which of type 14.0 (a)

14.1 AN EXAMPLE - CENTRAL FORCES AND·PLANETARY MOTION
We now discuss an intensity example of a system of equations which gives a model for the

motion of planets about the sun.

14.1.1 : An example.- central f-orces and planetary motion: Suppose a particle of mass m moves
in a plane, and subjected to a force which is directed along the line joining the particle with origin,
and which has a magnitude dependinq only on the distance betweent he particle and the origin.
Then, we say that we have a central force. The functions x, y (of the time t) which describe the
path the particle taken. satisfy, according to Newton's second law,

rnx" = ~F(r),)
14.1.1(a)

my" = Y F(r)
r

where r = ~ x2 + y2, and IF (r)1 represents the magnitude of the force on the particle when

it is at a distance of r units from the origin.

The system 14.1.1 (a) is equivalentto a system of four first order equations in x, y, x', y' .
However, since F is a function of r alone, it is advantageous to introduce polar - coordinates.

x=rcose, y=rsine

The components of acceleration in the radial and angular directions are given by

r"-r(e,)2,2r'e'+re"
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respectiely. Since the components of the force int hese directions are F (r) and 0, equation

14.1.1 (a) are replaced by
/

m[rll- r(B,)2] =rF(r),}
m[2r'B' + rB"] =0

14.1.1 (b)

. I
Upon multiplying the second equation in 14.1.1 (b) by - , we have

m

and hence

14.1.1(c)

where h is constant. The equation 14.1.1 (c) has an interesting geometrical meaning. The

area A (t) transversed by the line segment from the origin to (r (s), e(s)) as s goes f,rom to tot
is given by

t .
A(t) = f ~r2(s)B'(s)ds

2 'to

since the element of area in polar co-ordinates is

1 2dA =-r dB (see figure)
2

(nt), 8(t))

8) o
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since r2 O' = h we see that,

A(I)=±h(t-tO) -------------.14.1.1 (d)

Thus, if h oF 0 , the line segment from the origin to the particle sweeps out several areas in
equal times.'

Now supposing that h>O, let us analyse the first equation in 14..... (b). Now, we introudce

a function u defined for B of the form () (t) by

1
v (B ( 1)) = - ------------ 14. 1.1 (e)r(l)

Then

r'(/}= - 2 1 [dV (B(t))] e'(t)
v (e(t)) de

:T'

= -h~~(e(t)) ,

and

where we have used 14.1.1 (c). Thus, the first equation in 14.1.1 (b) becomes the following
equation for v :

Now, we assume that F (r) inversely proportional to r2, and that the force is directed

towards the origin (the inverse square law of Newton). Thus, let k be a positive constant such that

F(r) =- km or F(~ 1= - Kmv2
r2 v)

Thus, 14.1.1(e) becomes



d2u k
-2 +u = 2 ----------14.1.1 (g).ao h

All solutions of this linear equation may be written in the form

ku(B)='h2 +B cos(B-w),
:.) ~.'.:

where B, 111 are constants. Using the definition of v, 14.1.1 (e) can be written as
:, .

2/
h/K

r= K ----------14.1.1 (h)
1+ e cos (B - W J

,\,

Bh2 h2 0 h . 141 1., h - . -'" --.h
where e =K' For K > an9 e ?: 0 t e equation .. IS t e equatlbn'~f~:comc VIII!

one focus at origin, with eccentricity e, this comic is an ellipse, parabole or hyperbola according as

o ::;e::; 1, e> 1 respectively. . ,

Let us analyse the case when the comic is an ellipse having major and minor semi axes

a, b . See the following figure. Then 2a must be the sum of the largest and smallest values that r
can assume, namely

The eccentricity is related to a; b via b2 = a2 (I--:-e2) .and hence ','

2
2 h a .

b = - ---------- 14.1.1 (I)
k

,','

-- _"0

01
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(

Now, the area of the ellipse is nab, and this is related to the time T required for hte
particle to transverse the ellipse once by

1-hT= nab
2

2
2 4n 3 ..T = -. a ----------~14.1.1 U)

k

Kepler, on the basis of observations of Tycho Brahe on the motion of the planets about the
sun, deduced his famous three laws of planetary motion:

(1) the line segment from the sun to a planet sweeps out equal areas in equal times,

(2) the planets move along ellipses with the sun as a focus,

(3) the squares of the periods are proportional to.the cubes of the major axis of the
ellipses.

If we idealize the motion of a planet about the sun as a plane motion, with sun fined at origin
and exerting an attractive central force on the planet (thought of as a particle of mass m ), then, we
see that Newton's second law implies that the motion of the planet is governed by the system of
equations 14.1.1 (a) Kepler's first law is a consequence of the central force assumption. His

1
second and third laws then result from the assumption that the central force is proportional to 2.. r

Newoton discovered that Kepler's first two laws imply the inverse square law. Indeed, it
was this that led Newton to the formulation of his famous law of universal gravitation. The first law

r2 a = h

implies that there is no force 'acting perpendicular to the line segment from the origin to the particle
i.e. the second equation of 14.1.1 (b) is valid. Hence the particle is acted by a force which acts in

the radial direction only. If F(r, e)'is the radial component of this force at (1', e), we have

equation

m[r" - r(e,)2] = F(r, e) --------------------- 14.1.1 (k)

as the analogue of the equation 14.1.1 (b). Inroducing u as in 14.1.1 (e), we see that 14.1.1 (k)
implies the following equation for u :

d 2V + V ~ _ F (~, IJ ) 14.1.1 (l)
de2 m h2 u2
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Now Kepler's second law implies that r is related to via an - equatin of theorem 14.1.1 (b)
with 0::;;e > 1, and then u will satisfy the equation 14.1.1 (g). A comparison of the equations

14.1.1 (9) and 14.1.1 (.e) shows that

or that

F(r B) = _ km, 2 .
r

Thus, F depends only on r according to Newton's square law.

14.1.2 Example: A particle of man m moves in a plane, and is attatched to the origin with a force
proportional to its distance r from the origin. Then, if

(k>O) ,

the equations describing the path of the particle

/I X () 1 /I YF()mx= ~ F r ,Ka = --2' my = - r reduced to
r' I-a r

X" = _k2 X, y" = _k2 y.

Show that the path of the aprticle is an ellipose if it satisfies the initial conditions

x(O)=a, x'(O)=O, y(O)=O, y'(O)=b (a,i>,O, b>O)

Solution: Clearly, the solution of the equation

X" = - K2 X is

x(t)= AcosKt + BsinKt

x'(t)= -AK sinKt + BKcost

x'(O) ="8 =>B=BK => B=O (since K *0).

x(O)=a=>a= A.

Hence,

x (t ) = a cos Kt ----------------- (1)

/
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I ~,' .•J

Similarly, we can prove that

t*~€~';:'-.". 'b~-.'·t ' ;";' '-. .' .

yet) = - sm Kt ------------- (2)
K

On eliminating t from (1) & (2), we have

• ,.f ,',' ~'

b .. " . , .. ' ..
which is an ellipse with a and K as the length of the semi major axis semi 'major axis t

respectively if K > 1, we have their rolls interchanged if K <1.

. 14.2 EXERCISES
~ ' , \ ~..'!.' ';- -, ~

14 ...:.'1 : Aparticle.rnass m moves ina verticle plane nearthe surface of the earth, and is acted on,
by the force of gravities alone. The equations for the motion assume the form . i

-,;. t"

mx"~O, my"=-mg

where ~ is constant.
,: .' , -! , ~ .:'

Find the solution of these equations satisfying
! '.

x(O)=O, y(O)=O, x'(O)=u() cosa,

y'(O)=uOsina,yvhen uo>Oand a are constants, O<a<ff.
. . 2

(b) Show that the particles path in a parabola.

(c) Compute the vertex of this parabola and the time required to each :~:.; vertex.

REFERENCE BOOK. ,
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Lesson 15

SOME SPECIAL FUNCTIONS

15.0 INTRODUCTION
There are a number of problems which led to rather special types of second order equations,

or systems of such equations. We consider two of these types in this lesson.

15.1 SOME SPECIAL EQUATIONS
15.1.1 Type (1) : The equation is of the form

y" = l (x, y') ----------------------- 15.1.1 (a)

, " ~--.,:::;~ ..•./ ;:i.\ ~: .~. ~~
This second order equation has an f which is independent of y, and hence re~allYa first ~

order equation in y'. Indeed, this equation is equivalent to the system of two equations offirst,t
order. ",.;' .,'~

y' = z ; z' = lex, z) -------------------~---15.1.1 (b)

in that ¢ will be a solution of 15.1.1 (a) on an interval I if, and only if, the functions ¢ and ¢'
satisfy the system 15.1. 1 (b) on I. Now, the system 15. 1.1 (b) can be solved by first solving the
first order equation----

z' = lex, z)
-,

for ¢/ , and then integrating to obtain ¢.

<, Now, we consider the follpwing example

15.1.2 EX)~Ple : Consider the equation

xy" - y' = 0 --------------------- 15. 1.2 (a)

Let y' = z. Then the equation 15.1.2( a) becomes

xz'-z=O
I,

.' ,

rz z
i.e. - - - = 0

z x

which is aflrst order IineaP""equation. Clearly, the solution of this equation is given by. .
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¢'(x) = c x (x>O)

where c is any constant. Thus,

2
¢(x)=cx - a

2

where c, d are constants.

Now study the equation which is of

~.3 Type (2) : The equation is of the form

y" = it». y') --------------15.1.3 (a).

Here f is independent of x , and the strategy is some what different than in Type (1).

Suppose we have a solution ¢ of 15.1.3 (a) and there is a differentiable function IJI, defined for all

y of the form y =¢ (x) , such that

¢'(X) = 1JI(¢(x)).

Then ¢ would be a solution of the first order equation

dy ()dx = IJI Y -------------------- 15.1. 3 (b)

Also,

¢"(x) = ¢'(x) ddlJl(¢(x)) = 1JI(¢(x)) ddlJl(¢(x)) and more over
y y

¢"(X) =f(¢(x), ¢'(x)) = .t(¢(x), 1JI(¢(x))).

That IJI must satisfy the equation

for a/l y =¢ (x) , and hence must be a solution of

z dz = t t». z)
dy 15.1.3 (c)
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Now, we consider the ex.ample

15.1.4 Exampie : Consider the equation

" (,)2Y Y = Y

and suppose we seek a solution ¢ satisfying

¢(o) = 1, ¢'(O) = 2

So, y" = (y,)2 (y;i: 0)
y

= f(y, y').

This is of the form Type (2). Let y =¢ (x) be a solution of the given equatin and If/ be a

differentiable function such that

¢,(X) =If/(¢(x))

on some interval I . Thenw satisfies the equation

z- dz = f(y,z) = ~
dy Y

On solving this equation, we have

If/(Y) = cy where c is constant. So, ¢'(x) = If/(¢(x)) =c ¢(x)

on solving this equation, we have

¢(x) = K eCx

where K, c are constants

¢(O)=l=>K=l
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Hence ¢(x) = e2x is a solution of the given equation

15.1.5 Example: We now solve the equation

Put y'= z. Then the given equation can be written as

z'__ =ex
i.e. l-z

On integrating, we have

10g(z-l) + eX =c

. +C-ex C _ex
I.e. z -1= e = 1 e

where C1 ~ec (here C is constant and hence C1 is constant).

. l' +C - eX C _exI.e. z - . = e = 1 e

Hence y=x+C1 fe-ex dx.-+:.C2

15.1.6 Example: Find the solution of

2
y"= l+(Y')

which satisfies ¢(O)=O, ¢'( 0)=0.

Let y' =Z. SO the given equation can be written as

z'=1+z2

,
. _z_=1I.e.

1+z2
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On integrating, we get

z=tanx+C1

where C1 is constant. That is

Y'(x)=tanx+C1

On integrating,

where C2 is constant

y(o):::f:o=> C2=0,

y'(O)=o=> C1=0.

Hence the required solutione is given by

¢(x) = log secx

for all x in (_ 1C 1C).2 '2

15.2 SHORT ANSWER QUESTIONS

15.2.1 : If the equation y" = f (x, y'), write down the substitution ~hich we have to do. -

.s

15.2.2 : In solving the equation v" = f (y, y') ,write down necessary substitution.

15.3 MODEL EXAMINATION QUESTIONS .. :,. ~

15.3.1 : Solve (a) y" + y'= 1

(b) y2 y" = y'

15.3.2: Solve (a) y y" + 4(y,)2 =0
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(b) y" +K2 y=O

15.3.3: Solve (a) y" + eX.y' = eX

(b) y" ='y y'

15.4 EXERCISES

Hj.4.1 : Suppose that j is a continuous function on an interval [XO - a, Xo +a]. Show that the

solution of the initial value problem.

y" = f(x), y(xo) = a, y'(xo) = 13
can be written as

X

¢(x) = a +P ( x - xo) + f (x - t) j (t ) dt

15.4.2 : (a) Let f be a continuous function for Iy - Yo I;::; b (b >0) , and consider the equation

y" = j(y).

Show that the equation 15.3.3 (b) has a solution 1fI, in this case given by

Show that the equation 15.3.3 (b) has a solution 1fI, in this case given by

y

1f12(y) = 1f12(YO)+2 f f(t)dt
Yo

(b) Consider the special case

y" + siny = 0,

which is an evaluation associated with the oscillation s of a pendulum. If ¢ is a solution

satisfying

¢(O)=O, ¢,(O) = 13(> 0),

show that ¢ satisfyies the condition
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(c) Solve the equation (*) in the case K = 1.

(d) Can you solve this equation if K -:F 1 ?

15.5 ANSWERS TO SHORT ANSWER QUESTIONS

15.2.1.--: Z= y'.

15.2.2 : To find ¢(x) such that

¢'(x) =VI(¢(X))

REFERENCE BOOK
Earl. A. Coddington: An Introduction to Ordinary Differential Equations; Prentice Hall, India.

Lesson Writer:
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Lesson 16

COMPLEX N- DIMENSIONAL SPACE

16.0 INTRODUCTION

Let <c be the set of all complex numbers. Let n be a positive integer. Let

i.e. cr::n is the set of all n - tuples of complex numbers. NOw,we definethe following

(i) Two complex numbers Y = (YI ' ... ", Yn) and z = (Zh .... , zn) are equal and we write

y=z if,andonlyif Yi=Zi(lS;is;n);

(ii) The binary operation + on <e is defined by

for any Y=(Yl, Y2,'" .., Yn), Z =(Z1> z2,'" .., zn) in <e
, ' ." " .

(iii) Define the scalar multiplication' : <ex<e11
~ <e by

for any C E CC and (YI, Y2," .., Yn)E <en

Now, we hav~ state the'f~lIo~/;ng theorem with out proof.

16.0.1 Theorem: (cr::II, +) is a vector space over the field of complex numbers (cr::, +,- ) .
Proof: Exercise

16.0.1.1 Note:

(i) : () = (0, 0, ..... ·,0) (n -tuple) is the identity element in <en with respect to '+'.

(ii): If Y = (YI, Y2, ..... , Yn) is in c", then the inverse of y with respect to + is given by



which is, infact, (-1) Y

16.0.2 Definition: If Y = (Yl> Y2,.····, Yn) is in <en then \'\Ie define the magnitude or the length of the

vector or theorem of Y denoted by II Y II is defined by

n

Ilyll = L:IYil
i=!

where I z I (for any z E <e) denotes the absolute value of z ,

We assume that we know the properties of real numbers.

We can easily prove the following theorem (and so we leave it as an exercise).

16.0.3 Theorem : <en is a normed linear space with respect to the norm given in the definition
16.0.2 in the sense that

(1) II y II ~ 0 for any y in <en

(2) II Y II = 0 if, and only if y=O

(3) II c yll = Icillyll for any c in q: and y in <en

(4) Ily + zll ~ II y II + II z II for any x, y, z in <en .
Proof: Exercise

In view of theorem, we have the following

16.0.4 Theorem: Defined :<e11 x <en ~ m by d (x, y) = Ilx '- yll.

Then (<en , d) is a metric space.

Proof: Exercise
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16.1 COMPLEX N·DIMENSIONAL SPACE

In section 16.0, we have observed that <en is a vector space over the field <e of complex

numbers, further <en is a normed linear space and hence a metric space. So, we can take of the
concepts - convergent sequence, Cauchy sequence etc.

16.1.1 Theorem: Let {Ym} be a sequence in <en where

Ym = (Ylm, Y2m'" .. ", Ymn) (m:=: 1,2,. .... )

1· -'f d I ·flim)l. =)1. f . 12trn YIII - Y I an on y I /11/ / or I:=: ..... n .tn I In ,'t ')

Proof: Exercise

16.1.2 Definition: Let ¢ be function defined on an interval 1 with values in <en . Then, we can

define functions ¢1, ¢2, .. · ..,¢n on 1 with values in <C such that

¢ ( x ) :=: (¢I (x), ¢2(x) , ..... , ¢n ( x)) (x E J) .

In this can we write

and we call ¢i as the ith component of ¢ (1 :::;i :::;n) .

16.1.3 Definition: Let ¢ be a vector valued function with components ¢1>¢2, .... ''''¢n (i.e.

¢(X)=(¢l (x), ¢2 (x)" .. ",¢n (x)(x E 1)). We say that

(i) ¢ is continuous on 1 if each ¢i is continuous on 1.

(ii) ¢ is differentiable if each ¢i is differentiable on 1 and we write the derivative

of ¢ as ¢' = (¢{, ¢2,. .... ·'¢:1)·

16.1.4 Example : Define'¢:[O, I]~ <c2 by



Then

16.1.5 Definition: If ¢=(¢I, ¢2," ...,¢n) is continuous on interval c s x s d , then we define the

integral of ¢ over [c, d] as the n - vector.

d (d d d Jf¢(x)dx= f¢l(X)dx, f¢2(X)dY, , J¢n(x)dY
c c c c

n
16.1.6 Theorem: Let 9: [c, d] ~ <Cn with components ¢I, 92, .... ·,¢n . Then

d d
f ¢(x)dx ~ fl¢(x)ldy
c c

Proof:

d· d Id! ¢(x)dY = ! ¢I (x)dx + .... '''+I!¢n (x)dY

d d
sfl¢I(x)dxl + + fI9n(x)ldx

c c

d

= f[l¢l (x)l+ +I¢n (x)l]dY
c

d
= fl¢(x)ldx

c

16.1.7 Example: Let ¢: [0, ]] ~ <e2 be defined by

9)
So,
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and hence

115=-+-
3 2

"

16.2 SHORT ANSWER QUESTIONS

16.2.1 : Suppose y, z, ware in (C3 given by

y=(8+i, 3i, -2), z=(i,-i, 2).

. Compute (a) y+z (b) y-z (c) Ily + zll (d) Ily - zll

16.2.2 : Let ¢: [0,4] ----t (C.3 be defined by

Compute (a) ¢(1), (b) $'(1)

16.3 MODEL EXAMINATION QUESTIONS

16.3.1 : Let ¢ be the vector valued function for all real x by

Compute the following:
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(a) ¢(1)

(b) ¢'(x), ¢'(2)

1
(c) f ¢(x)dx

-1

1 1

(d) Verify that f ¢(x)dx ~ f 1¢(x)ldx
-1 -1

16.3.2 : For each i , 1~ i ~ n, let ei be the vector with lasits ith componentarid 0 for its other

components. Thus,

el = (1 0 0) e2 =(0 1 0 0) , ." " , , , ,

...... en = (0,0,. ..... 1).

(a) If Y=(Yl, Y2, Yn) prove that

16.4 EXERCISES
16.4.1: Prove Theorem 16.0.1

16.4.2: Prove Theorem 16.0.2

16.4.3: Prove Theorem 16.0.3

16.4.4: Prove Theorem 16.0.4

16.4.5 :If ¢ is a continuously differentiable vector valued function defined for real x in an interval

a ~ x :;::;b , the values of ¢ are in IRn, show that:

(a) ¢' has values in mn
,,>', '.s ,~'-t,.'} ,./

(b)
x
f ¢(t)dt is in IRn for each x , a s: x ~ b
a

1

Ilyll =(Yl Yl + Y2 Y2 + +Yn Yn) 2
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(where )Ii stands for the conjugate of Yi),

the positive square root being understood. This is called the Euclidean length of y .

(a) : Show that

Ilyll ~ IYI ~ ~ Ilyll
(Hint: Show that

Use the inequaiity 21allbl ~ lal2 + Ib12
)

(b) : Show that a sequence {Ym} (m = 1;2;· . : ... ) in (Cn is such that

(as m -) (0)
/

:/

if and only it I!Ym - Yn 11-) 0 (mn -) (0)

16.4.7: Forany Y=(Yl,Y2,······'Yn)' Z=(Zl,Z2,·· .. ·'zn) in (Cn deflne the inner product j--.e to
be the number given by

y. z = YI zi +Y2 z2 + +Yn zn

(a) Show that z Y = (y.z) .
"

(c): Show that if c is a complex number,

(cy).z=c(y.z)=y.(c z)

(d) Show that IIyI12 = y. y

(e) Prove that

(This is called the Schwarz inequalitiy. Hint: If z = 0, the result is obvious. If z:;t:. 0 ,

let u = )fzll. Then Ilull= 1, use the fact that
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,.,
Ily _(yo u)ll~ ~ 0). '

16.4.8 : Show that the Euclidean length satisfies the same rules as magnitude, namely:

(i) Ilyll~ 0, and Ilyll = 0 if, and only if y = 0,

(ii) lie yll = leillyil', for any complex number c,

(iii) Ily + zll ~ Ilyll + Ilz!!

(Hint: Interms of the inner product IIyl12= y. y. Use Schwarz inequality of Exercise 16.4.7)

16.5 SHORT ANSWER QUESTIONS

16.2.1 : (a) y+z=(8+3i, 2;, 0)

(b) Y - z = (8, 4i, - 4 )

(c) Ily+zll = 18+3il +12il+IOI

=8+4+4 = 16

16.2.2: (a) ¢(1) = (1, 1, i)

(b) ¢'(x) = (1, 2x, 4ix3)

¢' (1) = (1,2, 4i) ,

REFERENCE BOOK
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SYSTEMS AS, VECTOR EQUATIONS

t7.0 INTRODUCTION
Consider the following system of first order equations: '.i '

yi = Ji(x, Yb Y2,"", Yn)-

yi = h (x, Yb Y2,' "', Yn)

--------- 17.0 (a)

and assume that +'1 12 t, are given complex valued functions d efin ed-for.J I,., '. J1

(x, YJ, Y2, .. · ",YrJ in some set R, where x is real and Y1, Y2,' "',Yn are complex, We can

assume 'that fi is a function x and the vector

Therefore we write

Similarly, we can write each /; as

Put f = (Ii, /2" ....,/;1) and define

f(x, y) = (.fl(x, y), /i(x, Y), ,fn(x'y))

It we let y' = (Yl, y2,·······, y~) the the system 17.0 (a) can be written .as



. y' = f(x,y) -------- 17.0 (b)

This (17.0(b)) is a vector differential equation.

17.1 SYSTEMS AS VECTOR EQUATION
17.1.1 Definition: Consider the system of equations 17.0(a), equivalently 17.0(b). A solution of
his system is defined as vector valued function

which is differentiable on a real interval I and such that

(i) (x, ¢(x)) E R for all x in I .

(ii) ¢'(x) = f (x, ¢(x») for all x in I .

,7 .1.2 Example : Consider the system of two equations

1 2· 2
YI = x +YI +Y2 "t,

1

Y2 = YI +Y2 - YI Y2 .

Let Y=(Yl, Y2)' Then

. 1 2 2fi (x, Y) = fi (x, Yl, Y2) = Yl = x + Yl + Y2 '

1
h (x,y) = 12 (X,Yl>Y2) = Y2 = Yl +Y2 - Yl Y2

Hence

f (x, y) = (.Ii (x, y) h (x, y»)

. (1 1)If we write Y' = YI, Y2 then

Y' = I(x, y).
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17.1.3 Example: Consider the system of equations

/ I I

Yl =Y2, Y2 = - Yl .

This can be written in the form 17.0 (b) as:

1
Yl = Y2 = .Ii (x, y) ,

I

Y2 = --YI = 12 (x, Y)

Where .Ii (x, y) = .Ii (x, Yl, yz) = Yz,

12 (x, y) = 12 (x, YI, Y2) = - Yl,

and hence

y' = f(x, y)

i.e. (Yi,Y2) = (.Ii (x, Y),iz(x, y))

=(Y2' - Yl) .

Take ¢(x) = (sin x, cas x) ( X E (-00, (0)).

Clearly, ¢ is a solution of the system y' = f (x, y) .

l'l1.4 Definition: A vector valued function f defined on some set S ~ lR x <Cn is said to be

;c8ntinuous on S if each of its components is continuous on S. We say that f satisfies a Lipschitz

condition on S if there exists a constant K >0 such that

Ilf(x, Y) - f(x, z)lls; Klly-zll

for all (x, Y), (x, z) in S. The constant K is called Lipschitz constant for f on S.

17.1.5 Example: Consider the function f defined by

f(x, y) = (3x+2Yb Yl- Y2)

on S: /xl<oo, /yl<oo. For any (x, Y), (x, z) in S,
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1(J(x,y)- f(x,z)11 = 11(3x+2Yl> Yl- Y2) - (3x+2z1' Zl-Z2)11

= \\(2(YI-Zl), (YI-Zl)-(Y2 -Z2))\\

::;2IYI-Zll + IYI-Zll+IY2 -Z21

::; 3IYI-Zll + 31Y2 -Z21

Here the Lipschitz constant K = 3.

17.1.6 Theorem: Suppose f is a vector valued function defined for (x, r) in a set

S:lx-xol:s; a, Ily- Yoll~ b (a>O, h>O),

or S:lx-xol::; a, Ilyli<oo (a>O)

W
If, for each i = 1,2,' .. ",'n, ::\.. exists, is continuous on S and there is a constant K > 0

, UA/

such that

Of. (x, y) ~ K ----------- 17.1.6 (a)
U_\./

for i = 1,2" .... , n and for all (x, y) in S, then f satisfies a Lipschitz condition with Lipschitz

constant K on S.

Proof: The proof of this is a direct consequence of that of Theorem 10.1 : in Lesson 10, Let (x, y)
be apy points in S. For any real number s, 0::; s ::;1 ; define a vector valued function F by

F(s) = f(x, z+s(y-z)), (0::;s::;1) ---------17.1.6(b)

Since (x, y), (x, z) are in S, we have

Ix~xol::;a, Ily- Yo II::;b, Ilz-zoll ::; b

and Ilz +s (y - z )11 ~ (1- s) Ilzll + s Ilyll
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~llzll + Ilyll
< 00.

Thus, all the points (x, z + S (y - z )), 0 ~ s < 1 are in S and that the function F given by

17.1.6(b) is well defined. Using the fact, if G (s) = J (x, g (s)), that

G' (s) = aj (x, g(s)) dg (s) .
8g ds

So, F'(s) = (Yl-zd: (x, z+s(y-z)) + .

IIF'(s)11~ Klly-zll, (o~ s ~1) ------------17.1.6(c).

Note that F(l) = J(x, Y), F(O) = J(x,z) and that

1
J(x, Y) - J(x, z) = F(l) - F(O) = f F'(s)ds.

o

So, Ilf(x,y) - j(x, z)11~ K Ily-zll·

This completes Theorem.·

17.1.7 Example: Consider the system of two equations

Y1 =aYl +bY2}
, ---------- 17. 1.7 (a)

Y2 =cYl +dY2

where a,b, c, d are constants.

(i) If this system is written as y' = f (x, y) , what is f?
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(ii) Show that I of (i) satisfies a Lipschitz condition for all (x,y) where x is real and

Y is in ee2·

(iii) Show that I of (i) is linear in Y .

Solution : (i) System 17. 1.7 (a) can be written as

[YI ]' = [a b] [YI l
Y2 c d Y2J

(ii) For: any real x and y, Z in ee2 ' we have

11/(x,y)- I(x, z)11

= II(aYI+bY2,CYl +dY2) - (aZI +bz2, cZI +dz2)11

= Ila(Yl- Zl) +b(Y2 -Z2), C(YI-Zl)+d(Y2 -Z2)11

::;la(Yl-zd+b(Y2 -z2)1+IC(YI-zd+d(Y2 -z2)1

::; laIIYl-zll+lbIIY2 -Z21+lcll(YI -ZI)1 + IdllY2 -Z21

= (lal+lcl) IYI -ZII+(lbl+ldl) IY2 -Z21

::;K Ily - zll
--- \

..... ,.

(iii) Forall real x and y,Z in ee2 and complex numbers a, f3 we have

I (x, aY + f3 z) = [a b] (a Y +f3 Z )
. C d

=a[a _b]y+p[a b]z
c dc, d
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= a[a h][Yl] + IO[a b]1 zl ]
c d Y2 c d lz2

=a J(X,y) +jJ J(X,Z)

Hence, J is linear in Y .

17.1.8 Example: Find a solution ¢ of the system

satisfying ¢(O) = (1,2).

Solution: Soving yi = YI' we have

where c is constant.

Now, the second equation becomes

I xY2 =ce +Y2'

I • I X
r.e. Y2 - Y2 = c e

I.F (Integrating Factor) = e-x. So,

d ( -x) -x xdx Y2' e . = c· e . e =c .

Hence, Y2e-x =cx+d,where c,d are constants. So, Y2=(cx+d)e-x.

Now, ¢(O) =(1,2) implies c= l, d=Z: Thus,

¢(x)=( e", (x+2)ex
) is the required solution.
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17.2 SHORT ANSWER QUESTIONS
17.2.1 : Consider the system of equations:

, 2 2
Yl =x + Yl + Y2

Y2 = Yl +Y2 - y, Y2 .

Put these equations in the form y' = f (x, y) .

17.2.2 : Define solution of the system y' = f (x, y)

17.3 MODEL EXAMINATION QUESTIONS

17.3.1: Find a solution ¢ of the system

yj =Yl,

Y2 = Yl +Y2

satisfying ¢(0) = (1, 2) .

17.3.2 : Find a solution ¢ of the system of equations

r
Yl = Yz,

satisfying ¢(O) = (1, -1)

17.3.3 : Find a solution ¢ of the system

, 3x
Y2 = Y1 + Y2 +e

satisfying ¢(O) = (0,0). (Hint: Let Z= Yl +yz)

17. 4 EXERCISES

17.4.1 : Let f be the vector - valued function defined on
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;'i? :Ixl~ l~IYI~l

(a)

~(b)

Find an upper bound M for If (x, y)1 for (x, y) in R
- ,

~T

Compute a Lipschitz constant K for f on R _

17.4.2 : Let f be a vector valued function defined for (x, y) in a set S, with x real, y in <en .

(a) Show that f is continuous at a point (xo, Yo) in S if, and only if

If (x, y)- f (xo, Yo )/-+0

as

(b) Show that f sr fies a Lipschitz condition on in S if, and only if each component

of 1satisfies Lipchitz condition in S.

17.5 ANSWERS TO SHORT ANSWER QUESTIONS

17.2.1 : See example 17.1.2. Clearly, l(x,y) = (11 (x,y), 12 (x, y))

= ( xZ +YI
Z +Yz, Yl +yz - Yl yz ) .

17.2.2 : See Definition 17.1.1

; ~..
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EXISTENCE AND UNIQUENESS OF
SOLUTIONS OF SYSTEMS

18.0 INTRODUCTION
Let f be a continuous vector valued function defined on

R:lx-xol~ a, Iy- Yol~b (a, b > 0)
We know that an initial value problem

y' = f i x, .v). y(xo) = Yo ----------- 18.0 (a)

is the problem of finding a solution ¢. of y' = I (x, y) on an interval I containing Xo suet

that ¢(Xo ) = Yo . If

the problem 18.0(a) written out becomes

If f is continuous on R. the problem 18.0(a) always has a solution on some interval

containing xo. If, in addition, I satisfies a Lipchitz conition on R r this fact may be demonstrated
'", ,

exactly as in Lesson - 9 by introducing the successive approximations ¢o, rh,······, where

¢o (x) = Yo

x
¢i+l (x) = Yo + f I(t, ¢i (t))dt

Xo
(i=O 1 2 ), , ,
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consider the following.

18.0.1 Example: Consider the problem

y(o)=(o, 1)

Here, J(x, y) = (Ji (x,y), 12 (x,y)) = (yi, Y2)

= (Y2 - Yl)'

¢o(x) = (0, 1)(=yo)

x

¢l (x) = Yo + f J(t, ¢o (t))dt
o

x
= (0,1) + f (1, O)dl

o

x
=(0, 1) + f(I, O)dt

o

=(0,1) + (x, 0) = (x,l),

x
¢2(x) = Yo+ fJ(t,' ¢(t))dt

o

x
=(0, 1) + f (1,-t)dl

o

(

. 2 '\

=(0,1) + x. -~ I. 2)
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x
~ (x) = (0, 1) + J f (t, q)2 (I)) dt

o

X( t
2 J=(0,1)+ ll-2,-t dt

= (x - x
3

1- x2 J
3! ' 2

Continuing this process, we can observe that q)i (x) exist for all real x and

where q) is the solution of the problem.

18.1 EXISTENCE AND UNIQUENESS OF SOLUTIONS OF SYSTEMS
18.1.1 Theorem (Local existence) : Let j be a continuous vector valued function defined on

and suppose j satisfies Lipchitz condition on R. It M is constant such that

if(x,y)i;;;; M

for all (x, y) in R. Then the successive approximations {¢i}, (i = 0,1,2, ..... ) given by

18.0 (b) converge on the interval

J:lx-xols a = Minimum {a, ~},

to a solution ¢ of the initial value, problem

\
i

Proof: The proof is the same on that of theorem 11.1 of lesson 11 with y, J,¢ replaced by the\

vector y, I, q) ."

y' = f(x,y), y(xo)= Yo, on I.

10
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18.1.2 Theorem: If f satisfies the same conditions as in Theorem 18.1.1, and K is a Lipschitz

constant for f in R , then

Proof: This is an analogue of Theorem 11.1.1 of Lesson 11 and the proof is the same.

18.1.3 Theorem (Non-local existence) : Let f be a continuous vector valued function d~fined on

and satisfy there a Lipschitz condition. Then the successive approximations {¢i} for the

problem

y' = f(x,y), y(xo)= Yo (IYol < (0)

exist on the interval Ix ., Xo I ~ a , and converge there to a solution ¢ of this problem.

18.1.3.1 Corollary: Suppose I is continuous vector valued function defined on .:

where a is any positive number. Then every initial value problem

y' = I(x,y), y(xo)=Yo,

has a solution which exists for all real X.

18.1.4 Theorem (Approximation and Uniqueness) : Let f and g be two continuous vector
valued functions defined on

R : Ix-xol~ a, Iy- Yol~b (a, b > 0)

and suppose f satisfies a Lipschitz condition on R with Lipchitz constant K. Suppose

¢, If! are solutions of the problems.

y' =f(x, y;, y(xo) =YI

y' = g (x, y), y (xo) = Y2

respectively, on some interval I containing xo. If for E, 6 ~ 0 ,
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If(x,y)- g(x,y)1 ~ E

for all (X, y) In R , and

IYl- Y21~ 0,

then 1¢(x)-If/(x)l~ 0 eKlx-xol + ; [eKlx-xol -lJ for all x in I. In particular, the

problem

y' = f(x,y), y(xo)=yO

has atmost one solution on any interval containing xo.

Proof: The proof of this theorem is analogue of Theorem of lesson 12.

18.1.5 Exampl~ : Consider the system of equations

, 3
Y2 = Y2 +x Y3

, 2 xY3 = x Yl - Y2 + e Y3·

Show that every initial value problem for this system has a unique solution which exists for
all real x ,

Solution: Here \

y' = f(x,y)

i.e. (yi, Y2, Y3) = f(x,y) =

Let b > O. Fix a real xo. Clearly, f is continuous on

(i=1,2,3, .....) .

For any (x,y),(x,z) in Sa'

Ilf(x, Y) - f(x, z)ii
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\

=11(3(YI-Zl)+X(Y3 -Z3), (Y2 -Z2}+X3 (Y3 -Z3), 2x(YI-Zl)-(Y2 -Z2)+eX (Y3 -Z3))ll

=!3(YI-Zl)+X(Y3 -Z3)!+!(Y2 -Z2)+.X3 (Y3 -Z3)! ~ !2X(Yl-7d-(Y2 -Z2)+eX (Y3 -Z3)!

So, I is a Lipschitzian with Lipschitz constant

on Sa for any a> O.

Hence by the existence and uniqueness Theorem, every initial value problem

Y' = I(x, Y), y(xo) = Yo

has a unique solution which exists for all real x ,

18.2 SHORT ANSWER QUESTIONS

18.2.1 : Assume the hypothesis of Theorem (Local existence) 18.1.1. Write down the interval I on
which the successive approximations converge to a soluton of I.V.P.

Y' = f (x, Y), Y ( x, 0) = Yo
18.2.2: Consider the 1.v.P.

"
Express this problem in the form y' = f (x, Y), Y (xo) = Yo

18.2.3 : State local existence thoerern for the initial value problem: y' = f (x, Y), Y (xo) = Yo .



Theory of Differential Equations 18.7 Existence... Solutions of Systems

18.3 MODEL EXAMINATION QUESTIONS
18.3.1 : Consider the inltial value problem

, 2 1Y1 = Y2 + ,

(a) If this problem is denoted by

y' = f(x, r). y(o) = Yo,

what are .I and Yo ?

(b) Show that there exists

(i) a positive constant M such that

1.I(x,y)1 ~M

and

(ii) a Lipschitz constant K

on R: Ixl~l,Iyl~ 1.

(c) Compute the first three successive approximations cPo, (h, cP2'

18.4 EXERCISES
18.4.1 : Prove Theorem 18.1.1.

18.4.2 : Prove Theorem 18.1.2

18.4.3 : Prove Theorem 18.1.3

18.4.4 : Prove Corollary 18.1.3.1

18.4.5 : Prove Theorem 18.1.4

18.4.6: Considerthe initial value problem

, . 2 1
Y1 = Y2 + ,
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, 2
Y2 = YI '

Yl(O) =0, Y2 = O.

(a) If this problem is denoted by

Y' = f(x, Y), y(O)=yO

what are f and Yo?

(b) Show that the f of (a) satisfies the conditions of Theorem 18.1,.1 on

R:lxl~l, IYI~l.
Compute a bound M , a Lipschitz constant K and an a.

(c) Compute the first three successive approximations ¢o, ~, (h.
18.4.7 : Consider the system

Y2 = EYI +Y2,

where E is a positive constant.

(a) Show that every solution exists for all real x .

(b) Let ¢ be the solution satisfying ¢(0) = (1, -1) , and let 'f/ be a solution of

, ,
YI = Yl, Y2 = Y2

satisfying !jI (0) = (1, -1) . Without solving the original system show that

(as E ---+ 0) for each real x .

(c) Find all solutions of the original system.

(Hint: If ¢ is a solution show that !jI( x) =e-x ¢(x) satisfies

(d) Find the solutions ¢ and 'f/ of (b), and verify the conclusions in (b).
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Existence ... Solutions of Systems

18.4.8 : Show that all solutions with values in ffi,2 of the following system exist for all real x :
y{ = a (x) cas Yl + b (x) sin Y2 ,

Y2 = c (x) sin Yl + d (x) cas Y2,

where a, b, c, d are polynomials with real coefficients.

'18.5 ANSWERS TO SHORT ANSWER QUESTIONS

18.2.1: I: Ix-xol~ a = ffiin{ a, ~}

18.2.2 : Let Y = (Yl> Y2)

f(x, y) = y' = (yi, yz) = (Y2,- Yl)'

y(O) = (YI (0), Y2 (0)) = (0,1)
18.2.3 : See statement of Theorem 18.1.1.
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Lesson - 19

THE ADJOINT EQUATION·
.'

19.0 INTRODUCTION
In this lesson, we define the adjoints of first and second order linear differential equations;

and we study the self-adjoints of these equations. Particularly, it is shown that, every first and
second order linear differential equations can be put in their respective self-adjoint florms, under
certain conditions on the coefficients of the equations considered.

19.1 FINDING ADJOINT AND SELF-ADJOINT OF FIRST ORDER

LINEAR DIFFERENTIAL EQUATION
We consider a first order linear differential equation

ao(x)y'.+ al(x)y= j(x) 19.1(1)

where ao, a6 ' al and j are continuous functions on al"!interval I and ao ( x) *- 0 for all x in I .

Let us first find integrating factor of 19.1 (1).
-

If z is an integrating factor of 19.1 (1) on I ,then after multiplying 19.1 (1) by z , it becomes
exact, so that

z(x)[ «o (x)y' + al (x)yJ = [r(x)y]' for some r(x).

On equating the coefficients of y' and y on bothsides, we get

z(x) ao(x) = r(x)

z ( x) al (x) = r' ( x)

19.1 (2)

19.1(3)

These equations lead at once to the differential equation

( z ( x) ao ( x »)' - z (x ) al (x) = 0 19.1(4)

since it is a first order linear homogeneous differential equation, by solving 19.1 (4), we obtain the
inegratingfactor z of19.1(1).

From 19.1(2),
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Hence

z'(x) aO(x) + z(x)ab (x) = z(x)al (x).
This implies

z' (x) + ~( ) (aO( x) - al (x)) z (x) = 0aO x 19.1(5)

A solution z of (19.1 (5» is given by

_f(ao(x) - at (x))dX
z(x) = e ao(x)

_ f at (x) dx
=_1_ e ao(x)

aO(x)

Hence the function r is known from (19.1 (2)), and it is given by

_ f at (x) dx
r ( x) = e ao (x )

19.1.1 Definition: We write

Ll (y) = ao (x) y' + al (x ) y
I

and Ml(z)=-(aoz) +(a,z).

M; (z) is said to be the adjoint of Ll (y) .

The differential equation Ll (y) = 0 is said to be self-adjoint if L (v) = - Ml (y)

19.1.2 Theorem: The differential equation Ll (y) = 0 is self-adjoint if and only if 2al ( x) = ao (x)
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=aO(x) y +aO( x) y' - al ( x) y

19.1.3 Remark : By theorem 19.1.2, the differential equation Ll (y) = 0 is self-adjoint if and only if

Ll (y) =0 can be written in the form

1ao ( x) y' + - ao ( x) y = 0
2

19.1.4 Theorem: The differential equation Ll (y) = 0 can always be put in the self-adjoint form by

writing it as

g (x) y' + al (x) g (x) y = 0
ao (x)

2f aJ{x) dx

where g (x) = e aD ( x)

Proof: We have the differential equation

L1{y) == ao (x)Y'(x)+ al (x)y =0.

Dividing throughout by ao ( x) and multiplying by g(x) , we get

By theorem 19.1.2, this equation is self-adjoint if and only if

al (x) g (x) _ ' ( )
2 () -gx.

aO x

g'( x) al (x)
That is g(x) = 2 ao (x),

2f elJ (x) dx
This implies g( x )=e ao(x) Hence the theorem follows.
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19.2 FINDING ADJOINT AND SELF-ADJOINT OF SECOND ORDER

LINEAR DIFFERENTIAL EQUATION
We consider a second order linear differential equation

19.2(1)

where ao, at), ao, aI, aL a2 are continuous functions on an 'interval I , and ao (x ~:;t:0 for

all xEI.

Let us find integrating factor of (19.2(1)).

If z is an integrating factor of (19.2(1)) on 1 , then

for some functions k and m .

On equating the coefficients of y", y' and y , we get

ao(x)z(x) = k(x) 19.2(2)

al (x)z(x)=k'(x) + m(x)

and a2 ( x ) z ( x) = m' ( x) .

19.2(3)

Using these equations, we have

,
(a1 (x) z(x)) = k"(x) + m'(x)

= (ao (x) z (x))" +a2 ( x) z ( x )

" ,
So that M 2 (z) == (ao (x) z ( x )) - (a) (x) z ( x» + a2 ('x) z ( x) = 0 19.2(5)

By solving (19.2(5)), we obtain the integrating factor z of Ll y )=0. Once z is known, it is

easy to evaluate k and m from (19.2(2)) and (19.2(4)) respectively.

19.2.1 Definition: The expression M 2 (z) in (19.2(5)) is called the adjoint of I./). (y) .

. When L2 (y) ==M 2 (y), the equation
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0. (y) == ao ( X ) y" + al (X) y' + a2 ( X ) y = 0 is said to be self -adjoi"nt.

19.2.2 Theorem: The differential equation ~ (y) = 0 is self-adjoint if and only if al (x) = ao ( x).

Proof : ~ (y) = 0 is self-adjoint <=> ~ (y) = M 2 (y)

" I

<=> ao y" + al y' + a2Y = (aOy) - (a, y) + a2 Y

" 2 I I "' I=ao y + ao y + ao y - a} y - a} y + a2 Y

This completes the proof of the theorem.

19.2.3 Theorem: If the differential equation 0. (y) = 0 is self-adjoint then it is of the form

,
(r(x)y') + p(x)y='O 19.2.3(1)

where r(x) =ao(x) and p(x) = a2(x).

Proof: L2 (y) = 0 is self-adjoint <=> al (x) = ao (x) for all x E I (by theorem 19.2.2)

Hence ~ (y) = 0 becomes

ao ( x) y" + ao ( x) y = O. That is (ao ( x) y')' +a2 (x) y = 0 .

That is

(r(x)y')' +p(x)y = 0

where r ( x) = ao ( x) and p (x) = a2 (x) .

19.2.4 Theorem: Let r, r' and p are continuous functions on an interval I and r ( x) >0 for all

XE I ,then the equation

(r(x) y')' +p(x)y = 0

Can be written in the form
,.

a (x ) y" + b ( x) y' + C ( x) y = 0
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wherea(x)=r(x), b(x) = r'(x) and c(x)=p(x) foral! xEI.

Conversely, every equation

a(x)y" + b(x)/+c(x)y = 0 19.2.4(1)

where a, b, c are continuous functions on an interval I and a( x) > ° for all x E I ,can be

written in the form

,
(r(x)y') +p(x)y=O, thatis in self-adjoint form.

Proof: First part is clear.

For the second part, dividing through out by a (x) and multiplying by g (x), we get ',.

g ( x ) y" + b ( x) g (x) y' + c(x) g (x) y = 0 .
a(x) a(x)

19.2.4(2)

If this equation is in the self-adjoint form then by theorem 19.2.2, we have

b(x)g(x) _ '()
a(x) =« =i.

This implies

g'(x) _ b(x)
g(x) - a(x)'

fb(x) dx
Hence g( x) = e a(x) 19.2.4(3)

NOW, (19.2.4(2» becomes

, c(x) g(x)
(g(x)y') + Y =0a(~)

It is of the form

,
(r(x) y') + p(x)y = 0
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fb(x)dx
where r(x) = g(x) = e a(x)

b(x)

( ) _ c(x) g(x) _ c(x) f""a(x)dX
and P x - a(x) - a(x) e

19.2.4.1 Note: Theorem 19.2.4 is not true for generai linear differential equations of order higher
than the second. .

19.2.4.2 Remark: When al (x) = Of or all x in! , then the equation (19.2(1» may be put in self-

adjoint form simply by dividing through by ao (x) .

19.3 EXAMPLES
19.3.1 Example: Put the differential equation

x2 y" + X y' + y ), xc-O 19.3.1(1)

in self adjoint form.

Solution: Comparing (19.3.1(1)) with (19.2.4(1)), we have a(.:t) =x2, b(x)=x and c(x)=l.

Dividing through by x2),,.'f",e get

1 y'y" +-y' +- = 0
x x2

Multiplying throughout by

fb(x):/x
g(x) = e a(x) .

. fdx
=e x = x

(using (19.2.4(3))

We get

x y" + y' + ~y = O.. x

That is (x y')' + ~ y = 0 and this equation is in self-adjcint form.
x
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19.3.2 Example: Find functionsa] x ),k( x) and m( x) such that
jl

I

z(x)[ x2 yIP - 2xy' +2yJ == ~ [k(x)y' + m(x) y]. 19.3.2(1)

and hence solve

X2 yIP - 2xy' + 2y =0,X>O.

Solution: Based on the theory discussed in 19.2, by comparing (19.3.2(1)) and 19.2(1),we get

we find z(x) satisfying M(z) = O.

That is, (ao z)" - (a,z)' +a2z = 0

That is, (x2 zr +.(2XZ)' + 2z = 0

Hence x2 zIP+ 6x z' + 6z= 0 19.3.2(2)

This is Euler's 'equidimensional equation'.

[The general form of 'Euler's equidimensional equation' is x2 yIP + P x y' + gy = 0 where.

p, g are constants. To solve such equations, we use the charigeof independent variable given by

x =i transforms it into an equation with constant coefficients, and we know the method of solving
it. ]

Let us solve 19.3.2 (2) ..

. t
Put x = e . Then t = In x .

dz dzdt ldz-=_._=
dx dtdx xdt
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Substituting these expressions in (19.3.2(2)), we get

19.3.2(3)

a second order linear equation with constant coefficients. On solving it, we get e -21 e -31
. ,

are solutions of (19.3.2(3)). Now, by substituting t -In x, we have

1 1
i.e., zl (x) =2 and Z2 (x) =3";and are linearly independent.

x x

Let z(x)=~. Then using the expressions 19.2(2) to (19.2(4)), we get k(x) = 1 and
x .

2m (x) = - - . This information would enable us to solve the diffrential equation.
x

X2 y" - 2xy' + 2Y = 0 ,

An equaivalent form of this equation with these k and m is given by

(we obtain this equation by substituting the values k and m in the given equation).

This implies

, 2Y - -y = - cl
x

(Cl is a constant)

An integrating factor of this first order linear differentic:1 equation is

2 .
-f-dx 1-21nx

e x = e =2'
x

Thus
1 ,2 1

- Y - -y = -Cl -2
x2 x3 x
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. (1). 1
That is X2 y = - cl . X2 .

y cl
Hence 2 = - + c2, <z is a constant.

x x

This implies y(x) = cl X + c2 x2.

19.4 SHORT ANSWER QUESTIONS
19.4.1 : Show that the differential equation

where ao and al are functions on an interval I such that ao, ab and al are functions on

. an interval J , is self-adjoint if and only if 2al (x) = ab (x) for x eI .

19.4.2 : Which of the following differential equations are self-adjoint?

(i) 2xy' + Y = 0 (iii) 2(sinx)y' + (cosx)y = 0(ii) xy' = Y

19.4.3 : Show that the differential equation

where ao, ab, ao, al, ai and a2 are continuous functions of I with ao ( x) 7:0 for all x in

I, isself~adjointifandonlyif al(x) = a6(x) torall x in I.

19.4.4 : Put the differential equation

x2 y" + x y' + y = 0, x> 0 in self-adjoint form.

19.5 MODEL EXAMINATION QUESTIONS .
19.5.1 : Show that the differential equation

\

ao ( x) y' +al (x) y = 0 is self-adjoint if and only if 2al (x) ::::ab (x) .

19.5.2 : Show that the differential-equation

11

! I
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J

can always be put in the self-adjoint form by writing it as

L

19.5.3 : Prove that if r, r' and p are continuous functions on an interval I and r (x ) >° for all '

x E I ,then the equation

(r( x) y')' + p( x)y = ° can be written in form

a(x)y" + b(x)y' + c(x)y = 0, where a(x) = r(x), b(x) = r'(x) and'

c ( x) = p (x) for all x E L

Conversely, prove that every equation a (x) y" + b (x) y' + c (x) y == °
where a,b,c are continuous functions on an interval I and a(x»O for all x'EI can be

written in the form

(r(x)y')' + p(x)y=O, i.e. in the self-adjoint form.

19.5.4: Put the differential equation

, x2 y" + xy' + Y = 0, x>O in self-adjointform.-

I

19.5.5 : Find functions z (x), k (x) and m ( x) such that

, z ( x) [x2 y" - 2xy' +2Y] ==![k (x ) y' + m (x) y ], and hence solve

X2 y" - 2.xy' +2y = 0, xc-O

19.5.6 : Put the following differential equation in self-adjoint form.

(I-x2 )y" -' 2xy' + (n2 +n)y = 0, I x 1< 1.

19.5.7: Find functions z(x), k(x) and m(x) such that



z ( x) [y" - )l] ==![k ( x) y' + m (x ) y ].

19.6 EXERCISES
19.6.'1 : Put the following differential equations in self-adjoint form.

(a) xy" - y' + x2 Y = 0, x » °

(b) k(x) y" + m(x)y = 0, where k(x»O.
.. " m(x) _

Answer: (r') + k (x) y - 0

(c) y" - 3y' + 2y = °
, (x2 -n2JAnswer (xy') + . x . y = 0

19.6.2 : Find functions z (x), k (x) and m (x) such that

(a)
d -.

z (x ) [y" +y] == dx [k (x ) y' + m (x) yJ
\, .

. Answer: when z(x) =sinx, we have k(x )=sinx, m(x) = -cosx

when z(x) =cosx, we have k(x )=cosx, m(x) = sinx

(b) dz(x)[y" - y]==-[k(x)y' + m(x)yJ
dx

Answer: when z(x) =ex, we have k(x )=ex, m(x) = _ex
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when z(x) =e-x, we have k(x )=e-x, m(x) = e-x

(c)
dz(x)[y" + 3y' +~y] =-[k(x)y' + m(x)yJ
dx ,

Answer: when z ( x) = eX , we have k ( x) = eX; m (x) = 2 eX

when z (x) = e2x , we have k (x) = e2x; m (x) = e2x

19.7 ANSWERS TO SHORT ANSWER QUESTIONS
19.4.1 : Proof of Theorem 19.1.2

19.4.2 : (i) Here ao (x) = 2x; al (x)::: 1 and satisfies ao (x) = 2al (x) . Hence 2xy' + y :::0 is self-

adjoint.

(ii) Here ao ( x) -= x; al (x )= -1 and

ao (x) =1 -:f. 2 al (x) = -2. Hence

xy' = Y is not self-adjoint.

(Ill) ao (x) = 2 sin x; al (x)::: cos x and satisfies ao (x) :::2al (x). Hence

2 (sin x) y' + (cos x) y :::a is self-adjoint,
" J

19.4.3 : Proof of theorem\19.2.2:

19.4.4: Solution of example 19.3.1

, 19.8 REFERENCE BOOK
Walter Leighton - An Introduction to the Theory of Ordinary Differential Equations - Wadsworth
Publishing company, Inc. 1970.

Lesson Writer:

Dr. G. V.R. Babu.



. Lesson - 20

ABEL'S_ FORMULA

20.0 INTRODUCTION
In this lesson, we derive Abel's formula and we use it to obtain second linearly independent

solution of the second order linear differential equation when one of its solution is known. Also, we
review the method of reduction of the order ofa second order linear diffeF8ntial equation, that you
might have already studied. -

20.1 REDUCTION OFTHE ORDER-OI7 A DIFFERENTIAL EQUATION -
A REVIEW

20.1.1 Theorem: If a solution Yl (x)::/. 0 for all. x E I ~f a second order linear differential equation

a(x)y" + b(x)y' +c(x)y=g_--",~------------ 20.1.1(1)

. where a (x):j.. 0 for all x E I, a, b, c are continuous functions on an intervaTJ-is known,

then a second linearly independent solution is given by

Y2 (x) = Yl (x) f 2
1

exp [- f b ((x) dxJ dx
Yl(X) ax

( ) " b(x) I c(x)
Proof: Since a x ::/.0 for all x E I , we have y +-( )y +-, -)y = 0 (from 20.1.1 (1)). For

. a.x" atx

b(x) c(x) .
simplicity, we write P (x) = -( ) and Q (x) = -( ), so that the given equation reduces toa x a x -

y" + p(x)y' +Q(x)y = 0 ----------- 20.1.1(2)

Since YI is a solution of 20.1.1 (1), which in term YI is a solution of 20.1.1 (2).

The following is the method of order of reduction of 20.1.1 (2).
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Y2+ P (X) Y2 -+ QY2 = 0, ------------ 20.1.1 (3)

and we try to discover the unknown function v ( x) . We have

Y2 = v yi +v' Yl

" "2 I' "Y2 = v Yl + v Yl +V Y

By substantially thee expressions in 20.1.1 (3), and rearranging, we get

v(Yl +Pyi +01) +v" Yl +v/{2Yi +PY1) = ° -------20.1.1(4)

Since Yl is a solution of 20.1.1 (2), equation (20.1.1 (4)) reduces to

v" YI +v' (2yi +PYI) = 0 ----~~------- 20.1.1 (5)

Put u =V' . Then (20.1.1 (5)) becomes

u' YI +u(2Yi +Pyd=O.

It is a first order onear differential equation so that the order of the differential equatior
20.1.1 (2) is reduced by one and this imples

u' y'_=_2_1 -P
u Yl

This implies

log u = -2logYl - f Pdx

1 )Thus v' = u = 2 exp ( - f P dx .
Yl

'0':

I - 1 -f Pdx
Hence v =u =2 e. dx .

. YI
--------------- 20.1.1 (6)

Thus Y2 =V Yl

f 1 -fPdx dx=Yl -eyf --------------- 20.1.1 (7) -



We now show that Yl and Y2are linearly independent. For this purpose, we consider

w( .) - Yl Y2Yl, Y2 -, ,
Yl Y2

=
Yl f 1 -fPdx

Y12e dx
Yl .

1 -fPdx If l-fpdxdx-e +Yl-e
Yl' Yt

'-fPdx I f 1 -fPdx '1 f 1 -fPdx'= e + Yl Yl - e - Yl Yl 2 e dx
Yl2 Y. 1

-fPdx=e -:f::. 0,

So that YI and Y2 are linearly independent on I .

Hence, a second linearly independent solution of 20.1.1 (2) is given by 20.1.1 (7), and hence .'

f
-f b(x) dx

Y2 (x) == YI (x) ~ e a(x) dx
Yl

/ is a second linearly independent solution of 20.1.1 (1).
\

20.1.1.1 Note: The case, when Xo E! is a zero of Yl is discussed in section 20.3.

20.1.1.2 Example: Given that one solution of

y" - xy' + y = 0 -------------- 20.1.1.2(1)

is x , find a second linearly independent solution.
. . ~/

Solution: We have given that Yl (x) = x is one solution of (20.1. 1.2( 1)).

Let Y2 = Yl (x) v (x) be a second solution of (20.1.1.2(1)), where v has to be determined.

Thus Y2 = x v

1 ,Y2 = v + x,:
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/I 2' /IY2 = V + xv
Substituting these expressions in equation (20.1.1.2(1)) we get

(~V" + 2 v') - x (v + x v') + x v '= 0

This implies

u;'v'. Then xu' + (2-x2)u = O.

It is a linear differential equation of order one in u . It has a solution

~.

Put

X2

U (x) = _1_ eT ,on any interval not containing the origin. Hence
x2

~ 2
x x1 --

v(x) = f2 e 2 dx
1 x .

Thus

Y2 (x) = xv(x)

Observe that Yl and Y2 are linearly independent solutions of (20.1.1.2(1 ».

20.2 ABEL'S FORMULA

20.2.1 Theorem (Abel's Formula) : If u and v are any two solutions of a self-adjoint linear differential
equation of the form

.--- (r (x) Y')' + P (x)y = 0 ----------- 20.2.1 (1)

where rand p are continuous functions on an interval I and r (x) >0 for all xin I .Then
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r(x)[u(x)v'(x) - u'(x)v(x)J==k ------------ 20.2.1(2)

whre k is a constant.

The Identity (20.2.1 (2)) is known as 'Abel's formula'.

Proof: Since u and v are solutions of (20.2.1 (1)), we have

(r(x) u'(x»)' + p(x)u(x) = 0 ------------20.2.1 (3)

(r(x)v'(x»)' + p(x)v(x) = 0 ------------ 20.2.1 (4)

On multiplying (20.2.1 (3)) by - v( x); and (20.2.1 (4» by v( x); and adding, we get

u(x)[r(x) v'(x)]' .: v(x)[r(x) u'(x)]' == O.
,

On integrating this identity from a to x , and using integration by parts, we get

x
[u(x) r(x)vi(x)J: - J u'(x) r(x)v'(x) dx

a

.~ x
- v( x)r( X)U'(x) +1v' (x) r( x) u' (x) dx = c,

a

where c is an integrating constant. This implies

r(x)[u(x)v'(x) - u'(x)v(x)] = c + r(a)[ u(a.)v'(a)'- u'(a)v(a)]
so that

r(x)[u(x)v'(x) - u'(x)v(x)] = k ,

where
.,

k = c+ r( a)[ u(a)v' (a)- u' (a) v(~)J, a con~tant.
r

This proves Abel's formula.
. ,

20.2.1.1 Remark: From Abel's formula, we have r (x) W (u, v) (x) = k ,
"\ -

where W (u, v) is the Wronskian of the two)OlutionS_'l{ and v of (20.2.1 (1». Hence
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k=O ¢:> W(u,v)(x)=O for.all X in I

¢:> U,v are linearly independent on I .

20.3 METHOD OF FINDING SECOND LINEARLY INDEPENDENT
SOLUTION OF A SECOND ORDER LINEAR DIFFERENTIAL
EQUATION WHEN ONE OF ITS SOLUTION IS KNOWN, BY USING
ABEL'S FORMULA.
Let us consider a second order linear differential equation (20.1.1 (1)), i.e.,

a(x)y" + b(x)y' + c(x)y = 0

where a, b, c are continuous functions on an interval I and a (x) > 0 for all x E I .

We write it in self-adjoint form

(r (x) y')' + p( x) y = 0 ------------ 20.3(1)

c(x) (b(X) J
and p(x) = a(x)exp fa(x) dx by theorem 19.2.4.

Here we observe that r (x) >0 and rand p are continuous on I .

If Yl (x):;t: 0 is a known solution of (20.3(1)), then we find a second linearly independent

solution Y2 of (20.3(1)), that satisfies the Abel's formula. That is

r(x)[Yl(x)y1(x) - yl(x) Y2(X)] = 1 ------------ 20.3(2).

That is, Y2 is a solution of

1 '
1 Yl 1Y2 - -Y2 =-.

YI r Yl
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I

Th·· ,. rY2J - 1ISImp tes - - --2
YI r YI

On integrating both sides, we have

(Y2) =.J_1 dx
Yl aryl·

This implies

x dx
Y2 (x) = Yl (x) f () 2 ( ) ------- 20.3(3)

ar x Yl x

except possibly at the zeros of Yl (x). "

Let Xo be a zero of YI. Then

Jim Y2 ( x) = lim
X-+Xo X-+Xo

1- dx
a rex) yf(x)

1

YI(X)

1

= lim
X-+Xo

rex) Yf(x)
yf (x)
yf (x)

(By using L' Hospital's rule)

]
= - ----------- 20 3(4)I' .r(xo) YI (xo)

Here we observe that ylexo) :j; 0, for if yl( xo) = a then by (20.3(4)),



Hence (20.3(3)) with Y2 (xo) defined by (20.3(4)) provides a second solution of (20.3(1))

on the entire interval I
\

Clea~IY Yl and Y2 are linearly independent, since the quotient.

Y2 xf dx
-Y = () 2 ( ) is not identically constant.

1 arxYlx .
. I'

20.3.1 Example: Given that one solution of y" - xy' + y = 0 is x , find a second linearly, independent
solution by using Abel's formula.

Solution: Let us first transform the given differential equation into its self-adjoint form.

By corresponding the given differential equation with (20.1. (1)), we have a (x) = 1, b (x) = - x

and c( x)= 1. From theorem 19.2.4, the self-adjointform of the given differential equation is

,
(r(x)y') +p(x)y=O

(
where

If Yl (x) = x is a solution of the given equation, then its second linearly independent solution

Y2 (x) satisfies Abel's formula so that

r (x) [Yl y~ - yi Y2] ; 1.

/ - x2 [ ]. \ 2 1 _I.e., l' . X)/2 - Y2 - 1.
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X2

This implies xy~ - Y2 = e2

This implies Y2 = f e ~ dx
x x

X2

e 2 .
Y2 (x) = xf-2 dx

x
Thus

At x=O,

Thus the two linearly independent solutions of the given equation are

and Y2 (x) = {Xf x12 eX; dx if n'O

-1 .. if x=o

, ~ v : \20.3.1.1 Remark: The domain of the solution is not mentioned in examples (20.1.1.2) a~ (20\3.1).

In example (20.1.1.2), the solution Y2 is given on an interval not containing the origin,.Jy ereas in
\

example 20.3.1, the solution )12 is given on the entire real time.

20.4 SHORT ANSWER QUESTIONS
-,

20.4.1: Given that one solution of y" - xY' + Y = 0 is x , find a second linearly independent s6·ILI,ti~n
on an interval not containing the origin, by using the method of reduction of order.

20.4.2: State Abel's formula.

20.4.3: In Abel's formula, r(x)[ u(x)v'(x) - u'(x) vex)] = k, k constant, where u, v are
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solutions of (r(x)y')' + p(x)y = 0.

Then show that u and v are linearly independent if and only if k =°.
20.4.4: Given that one solution of y" - xy' + y =° is x, find a second linearly independent solution

on the real line by using Abel's formula.
/

20.5 MODEL EXAMINATION QUESTIONS
20.5.1: If u and v are any two solutions of a self-adjoint linear differential equation of the form

(r (x) y')' + p (x) y = 0, where rand p are continuous functions on an interval

[a, b] and r ( x) > ° for all x in I , then prove that

r(x)[u(x)v'(x) - u'(x) v(x)] =k, where k is a constant (or)

state and prove Abel's formula related to self-adjoint linear differential equation of the form

(r(x)y')' p(x)y=o.

20.5.5: Given that one solution of y" - xy' + y = ° is x ; find a second linearly independent solution
by using Abel's formula.

20.5.3: Given that x +1 is a solution of

y" - 2 (x + 1)y' + 2y = 0; find the general solution.

20.5.4: Find the general solution of the differential equation x4 y" - x2 y' + xy = 1 (x> 0).

20.6 EXERCISES-

20.6.1: Given that one solLiton of y" +a2 y = ° is sin ax , find a second linearly independent solution

by using Abel's formula.

Answer : cos ax .
-

20.6.2: Given that one solution of y" -4/ +4y =0 is e2x, use Abel's formula to find a second
linearly independent solution.

Answer: x eX

20.6.3: Given that one solution of y" - 2ay' + a2 y = ° is e'" (a 7: 0) , use Abel's formula to find a

second linearly independent solution.

Answer : x eax
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20.6.4: Given that x +1 is a solution of yIP - 2( x +1)y' -+ 2", = 0 I find the general solution.~
.' # ',:>' '~.-

x-I ( +1)2
Answer: cl (x+ 1)+C2 (x+ 1) f 2 e x dx

o (x+ 1)

20.6.5: Find the general solution of the differential equation x3 y" - xy' + y = 0 (x »0) .

(Hint: Guess one solution).

1

Answer: clx+c2 xe x:

20.6.6: Use exercise 20.6.5 to solve the differential equation x4 y" - x2 y' +xy = 1 (x>o).

. 1

Answer: A particular solution is -1 + ~ x -1. The general solution is c1x + <: x e-;: + _1 - 1.
2 2x

1

20.6.7: One solution of x2 y" + xy' + ( x2 - ~) y = 0, x> 0 is x 2 sin x. Find the general solutior

Sill X cosx
Answer: cl Fx + c2 Fx

20.7 ANSWERS TO SHORT ANSWER QUESTIONS
20.4.1 : Solution of example 20.1.1.2

20.4.2: Statement of theorem 20.2.1

20.4.3: Remark 20.2.1.1

20.4.4: So'lution of example 20.3.1

"

20.8 REFERENCE BOOK
Walter Leighton - An Introduction to the Theory of Ordinary Differential Equations - Wadsworth
Publishing company, Inc. 1970.

Lesson Writer:

Dr. G.V.R. Babu.



Lesson - 21

THE RtCCATI EQUATION

21.0 INTRODUCTION
In this lesson, we introduce Riccati differential equation and a method to find its solution.

21.1 RICCATI EQUATION 'I

Consider the selfadjoint differential equation

(r(x)y')' + p(x)y = 0 --------------- 21.1(1)

where rand p are continuous functions on an interval I = [a, b] With r (x) >0 on [a, b].

r( x)y'
Let us substitute z= , y:t:O in (21.1(1)). Then (21.1(1» becomesy

That is

I

(yz) + p(x)y = 0

y'z + yz' + p(x)y = 0

or

,
z' + 2:.- z + p (x) = 0

y

That is z' + _1_ z2 + p(x)= 0 (21.1(2»
r(x)

Equation (21.1 (2») is called a Riccati Equation.

The equation

z' :~(x)z + b(x)z2 + c(x) = 0 -------------- 21.1(3)

where .a, bane c,are continuous functions on an interval I =. [a, b] , is called the general

/ Riccati equation.. ,
>i::quation (21.1 (3)2 is only apparently more general than equ?tion (21.1 (2». Since the

substitution

,'·x' '

1a(x) dx
/ '_~ J/, Cz"'Y _. 1 ~ .".> •

W .~:- 'z- e~l". - -.;..,...-_~~-~-----21, 1(4)
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in (21.1(3», reduces to

w' + q(X) W1 + p(X) = 0 ------- 2'\ .'\(5)

x
-f a(x) dx

where q(x) = b(x)e a and

x

f a(x)dx
p(x) = c(x) e«

For; by differentiating w of (21.1 (4)), we get

x x
f a(x)dx f a(x) dx

w' = z' e a + Z a( x) e a

x
f a(x) dx

= z' e« + a(x) w(x)

x

-fa(x)dx
i.e., z' = w' e a - a(x)z

Substituting it in (21.1 (3», we get

x
-f a(x)dx

w' e a - a(x)z + a(x)z + b(x)z2 + c(x) = o·

x x-f a(x)dx -2f a(x)dx
~ w' e a + b(x)w2e a + c(x)= 0

x x
-fa(x)dx fa(x)dx

~w'+b(x)w2e a +c(x)ea =0

i.e. w' + q(x) w2+ p(x) = 0

If b (x) == 0 in (21.1 (3)), then the equation is linear and it is immediately integrable.

If b (x) ;j= 0 on any subinterval of [a, bJ in (21.1 (3», then we employ the substitution (21. 1(4»
12
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.to reduce (21.1 (3)) to the form (21.1 (5».
,

The substitution L then reduces (21.1 (5» to the form (21.1 (1», where r (x) = _(1 ); for,
Y . q x .

,
. substituting qw = L in (21.1 (5», we get

Y

(qI . Yy'J' 1 (Y'12+ q. y) + p(x) = 0

, 2 .

l'1 ,) 1 1 1 (,)2 1 (Y') ( )i.e. - Y - - - . - Y + - - + p x = 0
'q Y y2 q q y

i.e. (r( x) y')' + p( x)y = 0 where r (x) = _1_, which is equation (21.1 (1»
, q(x). "

Here we observe that we have made the successive substitutions

x

f a(x) dx
w =z e«

and

,
yqw=- y. , ·t- ";

These may be replaced by
,

L = bz, since
y

x

, fa(x)dx
L = qw = qz e a = b ( x) z .
y

21.2 EXAMPLES

~1.2.1 Example: Study the solutions of the Riccati equation w' - w2 - 1 = 0 ------- 21.2.1(1)

.-~
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Solution: The given equation is in the form (21.1 (5» where q (x) = -1 and p (x) = - L

y' ,
Put qw = -, y:;t: O. i.e., -w = L; then

y y

-w' = ( ~]' so that (21.2.1 (1)) becomes

This implies

i.e.,
y"

- - - 1 = O. Hence y" + y = 0
.y

Its general solution is

y (x) = cl sin'x + (;2 cos x

The null solution (Cl =C2 = 0) leads to no sotution w of the given Riccatie equation

(21.2.1 (1». All other solutions y provide solutions.
, .

y c} cos X - c2 Sin X
w = - - = - cl :;t:0, c2:;t: 0

Y cl sin x+ <: cosx

The choice cl = 0 leads to the particular solution w = tan x .

21.2.2 Example: Study the solutions of the Riccati equation

z' + z - eX z2 - e-x = 0 -------------- (21.2.2(1»

Solution: Comparing (21.2.2(1» to the general Riccati equation (21.1 (3», we have

a(x) = 1, b(x) = _e-x and c(x) = - e-x

b . . fa(x)dxsu stltutlng W = ze = z eX , " .

i.e., z= w e-x so that ;, = w' e-x - we-x in (21.2.2(1» we get
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This implies w' - w2 - 1 = °.
Now, from example 21.2.1, its solution w is given by

w(x)= -

Hence z= we-x

__ -x cl cosx- c2 SIll X 0 0
- e. , C] * ,C2 * .

C] SIll x + c2 cos x

21.2.2.1 Observations : The method explained above enables us to find an infinity of solutions of

a Riccatiequation (by varying the constants cl, <z (parameters)). Now the first question is :

(i) may there not be solutions of the Riccati equation other than those o'xtained in this
way?

The second question is :

(ii) The solutions obtained in the above examples contain two arbitrary constants cl and

c2 . As the Riccati equation is a first order differential equation, we expect only one

arbitrary constant in the solution. Why is it happening?

Let us first deal with the second question. By the method of this lesson, we shall be led to
solutions z of (21.1 (3)) fo the form

Cl U'(x) + c2 v'(x). z(x) = - j(x) ----------- (21.2.2.1(1»
cl U (x) + c2 v (x)

where j (x) * 0, cl, c2 ar~ 'not both zero, and U (x) and v (x) are linearly independent

solutions of the related linear differential equation (21.1 (1». By taking cl = ° (hence <z* 0) in
(21.2.2.1(1)),we get the solution

j(x) v'(x)z = - -'----''---'-,.--,-''---!...
v(x)

For all other solutions given by (21.2.2.1 (1», cl *0, and (21.2.2.1 (1» may accordingly written

in the form

u'(x) + kv'(x) ~z=-J(x) . -----------(21.2.2.1(2»
. u(x) +kv(x) .
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C2
where k = - is an arbitrary constant.

cl

This shows that the solutions depend essentially on one arbitrary constant. The exceptional

f (x) v' (x ) . ,
solution - v (x) may be regarded (and commonly is) as being obtained from (21.2.2.1 (2))

when k is equal to infinity.

21.2.2.2 Remark: The form (21.2.2.1 (2)) yields a.Usolutions.

21.3 A THEOREM ON THE SOLUTION OF w' + q(x)w2+ p(x) = 0

If z is a solution of (21.1 (3)) then w (x) defined by (21.1 (4)) is a solutih of (21.1 (5)) and

conversely. We then have the following result.

21.3.1 Theorem: If q (x) *O·and p (x) and q ( x) are continuous on the interval a s; x::::;b, every

solution w (x) of (21.1 (5)) may be written in the form

1 cl u'(x) + c2 v'(x)
-- . ----------------- 21. 3. 1(1)
q(x) CIU(x) +c2 vex)

where cl and c2 are constants, not both zero, and where u (x) and v (x) are linearly

mdependent solutions of the differential equation
," i

(q( ~) .y) + p (x) y = 0 -----------:- 21.3.1 (2)

Conversely, if U (x) and v (x) are linearly independent solutions of (21.3.1 (2)) and if cl and

c2 are any constants, not both zero, the function (21.3.1 (1)) is a solution of (21.1 (5)) on any interval

in which cl u ( x) + c2 v ( x) * 0 .

Proof: Let w be an arbitrary solution of w' + q (x) w2 + P (x) = 0 .

Put w = ~ . ~'; i.e., y = ef q(x) w(x) dx
q y

Then



Differential Equations 21.7 The Riccatti Equation .

(1 'J' 1 2= q Y Y - qw .

This implies (~ y) + p(x)y ~O.
,

This shows that r= ef q(x) w(x) dx (s a solution of (21.3.1 (2». Hence y is a linear

contribution of the linearly independent solutions u ( i) and v (x) of (21.3.1 (2». Hence

Differentiating, we get

q(x) w(x) efq(x) w(x)dx = cI u'(x) + c2 v'(x).

1 cl u' ( x) + c2 v' ( x)
Therefore w(x) = -( ) . ( ) ( ) .q x cl U x + c2 v x

Conversely, we assume u (x ) and v (x) are two linearly independent solutions of (21.3.1 (2».

L'(x) .
Let L (x) == cl U (x) + c2 v ( x) '* 0 on a s x s fJ· Then m (x) q (x) L ( x) is a solution of

(21:1 (5», for consider

m' ( x) + q (x) m2 (x) + p (x) =

(
L'(x) J' ( . L'(x) J .

q(x) L(x) +q(x\ q(x)L(x) + p(x)
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_ (L'( X)J' 1 1 (L' (x)j2 1 (L'(X))2
- cj(x) L(x) - q(x) L(x») + q(x) L(x) + p(x)

, (L'(X)]' 1.= -- --+p Xq(x) L(x)' ()

= 0 (since L( x) is a solution of (21.3.1 (2»

This shows that

L'(x)
m(x) q(x) L(x)

_ 1 cl u'(x) + c2 v'(x)
- q(x) CIU(X)+c2 vex)

is a solution of w' + q (x) w2 +P (x) = o.

21.4 A SOLVED PROBLEM

Show that if z, z}, z2 and z3 are any four different solutions of the Riccati's equation

Z' + a(x)z+b(x)z2+c(x) = 0 then show that
- .' l", l

Z-Z2 z3 - zl-- . = constant.

Solution : From hypotheses, we have .

Z' + a(x)z+b(x) z2 +c(x) = 0

zi + a (x) zl + b (x) zl + C ( x) = 0 .

On subtracting second equation from the first one, we get

, .

(z - Zl) + a (x) ( Z - zl ) + b (x ) ( Z - Zl) (z + Zl) = 0

(z-zd' +a(x)_l_ + b(x) (z+zd = 0
i.e. (z-zd2 z-zl z·-zl
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That is

(Z-Zl)' 1 2b(x)zl
Hence - -a(x)-- - = b(x).

(Z-Zl)2 Z-Zl Z-Zl

1
i.e. U = --,is a solution of

z-zl

u'-(a+2bz1)u=b

Similarly,

1 1
U2 = and u3 =. are solutions of u' -( a+ 2b Zl)U =bz2 - zl z3 - zl

U-U2 _ z-z2 . z3 -Zl
Now u3-u2 z-zl z3 -z2

Observe that

(U-U2)' -(a+2bz1) (U-U2) =0

and (U3-U2)' - (a+2b Zt}(U3 -U2) =0

On integrating both sides, we get

log(U-U2) -log(U3 -U2) = log c

U-U2 .~ = c (a constant)
u3 -u2

Z2-z z3 -zl
That is -- . = constant

z-zI z2 -z3

This solves the problem.
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21.5 SHORT ANSWER QUESTIONS
21.5.1: Transform the differential equation

(r(x) y,y + p(x)y = 0

where rand p are continuous functions on an interval 1= [a, b], r (x) > 0 on [a, b],
into Riccati equation.

21.5.2: Solve w' - w2 -1 = 0

21.5.3: Solve that if u (x) and v (x) are linearly independent solutions of

(-, _1_' y'J' + P (x) Y = 0, and if cl and c2 are any constants,not both zero, then
,q(x)

the function

m x __ 1_ cl u'(x) + c2 v'(x)
( ) - q(x) cl u(x) + c2 vex)

is a solution of w' +q(x )wZ +p( x) = 0 on any interval I in which cl u( x) + Cz v(x) ~ 0,

21.6 MODEL EXAMINATION QUESTIONS

21.6.1: Transform the differential equation (r (x) y,y + p (x) Y = 0, where rand pare

continuous functions on an interval 1=[ a, b] into Riccati equation.

21.6.2 : Write the general Riccati equation and study the solutions of the Riccati equation

, x Z -x 0z+z-e z -e =

21.6.3 : If q (x) ~ 0 and p and q are continuous functions on an interval [a, b] then prove that

every solution w of

w' +q (x) w2 +P (x) = 0 may be written in the form

1
q(x)

Cl u' ( x) + Cz v' (X )

cl u(x) + Cz vex) ------------------ (A)

"-

where cl and <z are constants, not both zero, and where u and v are linearly independent
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solutions of

(qtx) y-) + p(x)y = 0 ------------------ (8)

Conversely, if u and v are linearly independent solutions of (8) and if cl and .c2 are any

constants, not both zero, then prove that the function (A) is a solution of

w' + q(x)w2 + p(x) = a on any interval in which cl u(x) + c2 v(x) = O.

21.6.4 : Find all solutions of z' + z2 - z - 2 = 0

21.6.5 : Find all solutions of x2 z' - 2xz + x2 z2 +2 = 0 .

21.7 EXERCISES
21.7.1 : Find all solutions of the following Riccati equations

(a) Z' + z2 -1 = 0

-x -x
cle -C2e

Answer: x-x
cle +C2e

"t

(b) z'+z2-z-2=O

(c) z' + z2 - 2z + 2 = 0

(Cl-C2)sinx + (cl +C2)COSX
Answer:· . .

cl SIn x +c2 cos x

(d) ·2 z' - 2xz + x2 z2 +2=0

Cl +2c2 x
Answer: 2

Cl,X+ C2 X

(e) x2 z' - 3xz + z2 +2x2 = 0
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(Cl -C2)X sin laglxl + (Cl +C2)X cas laglxl
Answer: . 1 I I 1 I I. cl SIll og x + c2 cas og x

21.8 ANSWERS TO SHORT ANSWER QUESTIONS
21.5.1: See section 21.1. The equation (21.1 (1)) is transformed to (21. 1'('2){':; ',> " ,
21.5.2: Example 21.2.1

21.5.3: Proof of the converse part of theorem 21.3.1.

21.9 REFERENCE. BOOK
Walter Leighton - An Introduction to the Theory of Ordinary Differential Equations -
Wadsworth Publishing company, Inc. 1970.

Lesson Writer:

Dr. G.V.R.Babu.



Lesson- 22

GREEN'S· FUNCTION

22.0 INTRODUCTION
In this lesson, we define Green's function and show that it provides a particular solution of

the nonhomogeneous linear differential equation of second order. Examples are provided to illustrate
the procedure. We derive Lagrange's theorem and Green's theorem.

22.1 GREEN'S FUNCTION AND GENERAL SOLUTION OF 2ND
ORDER LINEAR DIFFERENTIAL EQUATION IN TERMS OF
GREEN'S FUNCTION

22.1.1 Definition: We consider the differential equation

ao ( x) Y" + al ( x ) Y' + a2 ( x) Y = f (x) -------------------------------- (22.1.1 (1))

where ao, a}, a2 and f are continuous functions on [a, b] and ao (x):;i: 0 for all x in

I' [a, b].
The corresponding homogeneous equation of (22.1.1 (1)) is

ao (x) Y" +al ( x) y' + a2 ( x) Y = 0 --------------------~- (22.1.1 (2))
.-

Let YI, Y2 be linearly independent solutions of (22.1.1 (2». Let Xo EO [a, b]. Define the

function G (x, t) by

1 YI (x) Y2(X)
= aa (t) W (Y1, Y2)( t) YI (t) Y2 (t) , Xo ~ t ~ x -------------------- (22.1.1 (3))

He:--i' c, W (Yb Y2) denotes the WrorJskian of YI a d Y2; and we observe that
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The function q( x, t) defined by (22.1.1 (3» is known as 'Green's function' for the

homogeneous equation (22.1.1 (2».

22.1.2 Theorem: A particular solution of (22.1.1 (1)) is

xf G (x, t) j (t) dt, and the general solution Y of (22.1.1 (1)) is
Xo

x
y(x) =cIYl(x)+c2Y2(x) + f G(x,J)j(t)dt ------------- (22.1.2(1)).

Xo

Where Yl and Y2 are linearly independent solutions of the homogeneous equation (22.1.1 (2).

Proof: L.et Y be an arbitrary solution of (22.1.1 (1)). Let Yo be a particular solution of (22.1.1 (1»,. .

and consider the function

z ( x) = Y (x) _. }'o ( x ) .
Then z is a solution of the corresponding homogeneous equation (22.1.1 (2». Hence z

can be written 8S

z (x) = ci YI (x) +c2 Y2 (x), where cI, c2 are constants.

We now find Yo (x) by using the method of variation of parameters, in terms of Green's

function. For this purpose, we determine functions ul and u2 'such that,

Yo (x) =c: ul (x) YI (x) + u2 (x) Y2 (x)

where ul and u2 are satisfying

ul( x) Yl (x) +u~ (x) Y2 (x) = 0 ---------------------- (22.1.2(2))

substituting Yo in (22.1.1 (1)) and using (22.1.2(2», we get

u{ (x) y{ (x) + u~ (x) y~ (x) = J (x) ----------------- (22.1.2(3)/
. ~(~.

On solving (22.1.2(2» and (22.1.2(3)) for ut (x) and u~ (x) ,we get
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1 Y2 (x) f(x)
Ul (x) zz - ao ( x) W (Yl )'2)( x) and

ul (x) = _ Yl (x) f(x)
ao (x) W (Yl Y2) (x) ,

where W (Yl, Y2) is the Wronskian of Yl and Y2; and since Yl, Yi are linearly independent
solutions of (22.1.1 (2», it never zero. Hence

U2 (x) = - J Yl (t) f(t) dt
, Xo ao (t) W (t)

where we are denoting W (Yl> Y2) (t) by' W (t); and the point x = Xo may be any

convenient point of I. Hence a pr 'icular solution of (22.1.1 (1)) is

Yo (x) = ul (x) Yl (x) + u2 (x) Y2 (x)

== _ Y (x) J Y2 (t) f(t) dt + Y (x) J Yl (t) 1(t) dt
1 ao (t) W(t) 2 aO (t) W(t), Xo ,xo

x\ . , ~ f G(x, t) f(t)dt

Therefore, the general.solution of (22.1,,1(1» is
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x
y(x) = CI YI (x) +C2Y2(x) + f G(x,t)j(t)dt

Xo

22.2 OBSERVATIONS :

For each t . the function G (x, t) is a solution of the equation (22.1.1 (2».

Proof: We have

G (x t) tz: _ 1 YI (x) Y2 (x)
, ao(t)W(t) YI(t) Y2(t)

= - ao(t)lw(t) (YI(X) Y2(t) - Y2(X) YI(t))

Let t e I be fixed.

Consider

= ~ ao(t)lw(t) {ao(x)(Yi(x)Y2(t\},- Y2(X)YI(t))

+aI (x)(Yl (x) Y2 (t) - y~ (X)Yl (t))

+ a2 (~)(Yl (x) Y2 (t) - Y2 (x) YI (t))}

=- ao (t)1 Wet) {Y2 (I) (ao (x) Yi( x)+ al( x) YUx) + a2 (X)Yl (x))
I

- Y2 (t){ao (x) Y2 (x) + al (X)Y2 (x)+a2 (x) Y2 (x))}

= 0 (since Yl> Y2 are solutions of 22.1.1 (2». '

22.2.2 Observation :



;;;;;(.·l3lfferenitiitiaiiTl~EqquuiiiatTOio:mns;:~E~~~~~~~~

Gx(t, t) == ~ G(X,1)1 = 1
Ox x==t ao(t)

Proof: Gx(t, t) == ~ G(x,t)1
Ox x==t

I
=---

ao (I) .

22.2.3 Observation: When X=l, G vanishes; i.e. G(t, t) = O.

Proof: Clear from the definition of G .

22.2.4 Observation: The particular solution

( Green's Function E

x
Yo (x) = f G (x, t) j (t) dt of equation (22.1.1 (1)) is the unique particular solution

xo

Yo (x) of (22.1.1 (1)) that has the property that Yo (xo) = Y6 (xo) = O.

x
Proof: We have Yo (xo) = f G(x, t) j(/)dl = 0 and

xo

x
Y6(x) = G(x, x) j(x) + f Gx(x,t)j(t) dt and hence

. yb (xo) = G (Xo, X) j (XO) = 0 I and hence by the existence and uniqueness of

solutions, this observation follows.
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22.3 EXAMPLES :
If two linearly independent solutions of the homogeneous equation (22.1.1 (2» are known,

G( x, t) can be constructed from (22.1.1(3», and then (22.1.2(1» provides the general solution of

. the non homogeneous equation (22.1.1 (1» for any function j which is continuous on [a, b]. We

follow the procedure to construct particular solution of (22.1.1 (1». The following examples illustrate
the above procedure of finding general solution of (22.1.1 (1».

22.3.1 Example: Find the general solution of

y" - 3y' +2y = j(x) ( -00 < x: < (0) ------------ (22.3.1 (1»

where j is a continuous function; and then evaluate the general solution of (22.3.1(1»

when j(x)=x.
Solution: Consider the hqmogeneous corresponding to (22.3.1 (1». That is

y" - 3y' + 2y = 0 (-00< x < (0) -------------------- (22.3.1 (2»

It is easy to see that

Yl (x) =ex and Y2 (x) = e2x

are linearly independent solutions of (22.3.1 (2». Comparing (22.3.1 (1» to (22.3.1 (2», we have

ao(I) = 1; al (t) = -3; a2 (t) =2;

Now

By(21.1.1(3»,

= e2(x-t) _ e(x-t), Xo ~ t ~ x.

Now, from theorem 22.1.2, the particular solution Yo of (22.3.1 (1» is given by

x
Yo (x) = fG(x,t)j(t)dt

o
13
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= J( i(x-t) - e(x-t))1 (t)dt
o

where we have taken Xo = 0 .

Thus the general solution of (22.3.1 (1)) is

y (x) = cl Yl (x) +c2Y2 ( x) + Yo (x )

=Cl eX + c2 e2x + J( e2(x-t) - e(x-t)) 1(t)d~ ,
o

where Cl, C2 are constants.

when 1(x) = x, Yo becomes

() Xf( 2(x-t) (X-f)) d X 1 2x x'3Yo x = e - e t t = - e +-e +-+-.
() 4 2 2

Thus, when 1(x) = x, the general solution of (22.3.1 (1» is given by

( )
x 2x x 1 2x x 3Y x = cl e + c2 e - e + - e + - + - (or)

4 2 2

() k x k 2x x 3
Y x = 1e + 2 e +"2 +"4 ' where

1
kl =cl ~ 1 and k2 =c2 +"4

22.3.2 Example: Given the differential equation

y" -4y' + 3y = 1(x), (-00 < x < 00) ----------- (22.3.2(1))

Find two linearly independent solutions of

y" -- 4y' + 3y = 0 ------------------------ (22.3.2(2»

Complete Green's function G (x, t) and then compute the particular solution

x
fG(x, t)1(t)dt
o
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of (22.3,2(1)) when (a) j(x) ;=3; (b) j(x) =x. Check your answers. What is the

general solution of (22.3.2(1)) in each case?

Solution : It is easy to see that the two linearly independent of (22,3.2(2)) are Yl (x) =ex ;

Here a.o(x) = 1, -00 < x < 00.

et e3t

1 / 3e3t

G(x, t) = - ao (t) W (Yl, Y2)(t)

=k( e3(x-t) - e(x-t)) ,

Hence the particular solution.

x
Yo (x) = fG(x, t)j(t)dt

o

(a) j(x) =3. Then
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.. ( 3x ' '. J_3.e -1 1 x-- +)- e
2 3 .

=±( e3x -3ex + 2)
Hence the general solution is

(b) j(x) =x.

1. x 1 x= - e3x f t e-3t dt - - eXf t e-t dt
2 0 2 0 '

we have

X. ft -3t dt _ x -3x 1 -3x 1e - - -e - - e +-
o 3 9 9

and

XJ t e-t dt = - x e-x - e-x + 1
o

() 1 3x [ x '-3x 1 -3x 1] 1 x [ -x -x ]Hence Yo x = -e -- e - -e +- --2 e -x e -e + 1. " . 2 3 9 9

x 1 (3x' x. 1 1 x= - - + - e + - +- - - e
6 18 18 2 2 2
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1 2 1 3x 1 x=-x + - + -e - -e
3 9 18 2

Therefore the general is

x 3x 1 2 1 3x 1 x= ci e + c2 e + - x + - + - e - - e
. 3 9 18 2

x 3x 1 2= ki e +k: e +-x +-
3 9

I where ki = ( ci - ~) and k2 = (C2 + /8).

Note: Checking of particular solution is a solution of (22.3.2(1» in each case is left as an
exercise.

22.4 LANGUAGE THEOREM

2~.4.1 Theorem (Language Theorem) : Let L (r) =- aa (x) y" + al (x) y' + a2 (x) y

where aa, ab, ao aI, ai and a2 are continuous functions and ao (x):;t: 0 on [a, h]. By

(19.2t5)), let M(z) = (aa (x)z)" - (al (x) z)' + a2 (x)z be the adjoint of L(y). Then

v L(u) - u M(v) =- ~P(u, v)
dx

where P(u, v)= u[ al v - (ao v)'J+ u'(ao v).

Proof: Let us consider

. ..\.

vL (u ) - uM (v) = v aa u" + v al u' + v a2 u

-u[(ao vf-(alv)' +a2v]

=u' al v + u (a, v)' -:-(u (ao v),), + u' (ao v)' + v ao u"
,

=(u(al v))' - (u(aa v)') + (u'(aa v))'



Differential Equations Green's Function22.11

d= -P(u, v)
dx

I

where P(u, v) = u(al v - ao v') +u'(ao v).

22.5 GREEN'S FORMULA:
22.5.1 Theorem (Green's Formula) :

Let L(y) = aoy(n) + aly(n-l) + .. · .. +an-ly' + anY, where \:

[a, h].

L(y).

b b
Then f [ v L (u) - uM (v) Jdx = [p (u, v) Ja , where

a

Proof: As in the case of Lagrange theorem (Theorem 22.4.1), it can be shown that

. . d
vL(u) -uM(v)= dx P(u, v}.

Now, by integrating from x=a to x=b we get
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b b d
~[vL(u)- uM(v)}tx = ~dx P(u, v)dx
a Q

i =[P(u,v)J~

This formula is known as Green's formula.
'"!. '..• ~"

22.6 SHORT ANSWER QUESTIONS
22.6.1 :. Show that the function y given in (22.1.2(1» is a solution of (22.1.1 (2».

22.6.2: Define Green's function.

22.6.3 : For each I, the function G (x, I) defined by (22.1.1 (3» is a solution of (22.1.1 (2»;
; , .

1
22.6.4 : Sh.owthat Gx(/, I) = -(-)'

. ao I

22.6.5 : State Lagrange's theorem.

22.7 MODEL EXAMINATION QUESTIONS

22.7.1 : Define Green's function. Show that a particular solution of

ao (x) y" + a1 (x) y' + a2 (x) y = f (x) --------------------- (22.7.1 (1»

x

is f G(x, I) /(t) dt andthegeneralsol~tion y of(22.7-1(1».
xo

x
y(x) =c1Y1 (x) + c2Y2 (x) + f G(x, t)/(t)dt

where Yb Y2 are linearly independent solutions of the homogeneous equation

ao (x) y" + a1 ~x) y' + (12 (x) y = 0 ------------------- (22.7.1 (2»

and G is the Green's function associated with (22.7.1 (2)).

22.7.2 Find the general solution of
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y" - 3y' + 2Y = j (x) , ( -00 < X < (0) --------------- (22.7.2 (1))

where j is a continuous function; and then evaluate the general sotuticns of (22.7.2(1))

when j(x) =X.

22.7.3: Given the differential equation

y" + y = j (x), -00 < x < 00;

compute Greens' function and then compute the particular solution. Find general solutions

when (a) j(x) = 3; (b) j(x) = X. \

22.7.4 : Given the differential equation

/" +4y'+ 4y = j(x), -00 < x < 00,

Compute Greens' function and then compute the particular solution. Find general solution
when

(a) j(x)=3; (b) j(x)=x

22.7.5: Given the differential equation

X2 y" - 2xy' + 2y = j(x), l:S;x<CYJ

compute Green's function and then compute the particular solution. Find general solution
when

(a) j(x) =3
\

(b) j(x) = x

22.7.6: Given the differential equation

4X2 y" + Y = f (x), 1 :S; x < CX)

compute Green's function and then compute the particular solution. Find general solution
when

(a) j(x) =3 (b) j(x) = x

22.7.7: L(y) == ao (x) y" + al (x) y' + a2 (x)y.
where ao'- ao, ao, aI, ai and a2 are continuous functions and ao ( x) -;j:. 0 on [a, h]. Then

prove that
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dv«u) -M(v) == -P(u, v)
dx

i

where P{u, v) = u[ ai v - (ao v)'] + u'(ao v)

and 1\1 is the adjoint of L .

22.7.8: State Green's formula.

22.8 ANSWERS TO SHORT ANSWER QUESTIONS

22.6.1 Hint: Differentiate twice the given function y in (22.1.2(1)) and {hen substitute in (22.1.1 (2)).

22.6.2 : Write the definition 22.1.1.

22.6.3: Write the proof of observation 22.2.1.

22.6.4: Write the proof of observation 22.2.2 .

. 22.6.5 : Write statement of Lagange's theorem 22.4.1.

22.9 REFERENCE BOOK
Walter Leighton - An Introduction to the Theory of Ordinary Differential Equations -
Wadsworth Publishing company, Inc. 1~70.

Lesson Writer:

Dr. G.u« Babu.



)Lesson' - 23

OSCILLATION THEORY FOR ·LINEAR
DIFFERENTIAL EQUATIONS OF

SECOND ORDER

23.0 INTRODUCTION
Oscillation theory for linear differential equations of second order is to be discussed in

lessons 23 to 30. Ti'le self adjoint form of linear differential equations of second order arises
naturally in mechanics; it has a central role in the Calculus of Nariations. The student will observe
its use throughout the lessons from 23 to 30 as we study the behaviour of solutions of the linear
differential equation of second order.

In this lesson, we introduce the concept of oscilatory solutions of second order linear
differential equation. Also we study the zeros of the equation.

(r( x )y')' + p( x)y :::0 (A)

where rand p are continuous, and r (x) >0 on an interval I ,which is a named theorem.

known as 'The sturm separation theorem'. In fact, this theorem tells us that if u and v are
. linearlyindependent solutions of (A) then between two consecutive zeros of u , there will be precisely
one zero of v . We also derive some consequences of the sturm separation theorem.

23.1 SELF-ADJOINT LINEAR DIFFERENTIAL EQUATION OF
SECOND ORDER
A self-adjoint linear differential equation of second order is a differential equation of the form

~ (r (x) v') +p( x) y = 0 --------------- (23.1 (1))

where rex) and p(x) are continuous and r(x»O on an interval I
The results will apply to the differential equation

a(x)y" +b(x)y'+c(x)y = 0 ------------ (23.1(2))

wher~ a(~»O, and a(x), b(x) and c(x) are continuous on the interval] because, as

we have seen in lesson 19, (theorem 19.2.4) that equation (23.1 (2)) can be put in"self-adjoint form

" 1 {x b(x) }
by multiplying both members of the equation (23.1 (2» by the function a (x) exp L a (x) dx .
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Then

, J [b(X))
. a(x) c(x)

r(x) = eX() dx and p(x) = -" -dx)
a(x)

Let us now recall the Abel's formula whose proof was given in lesson 20.

23.1.1 Abel's Fonnula : If u and v are any two solutions of a self-adjoint linear differential equation
of the form (23.1 (1»), then

r( x)[ u (x) v' (x) - u'( x) v( x)] == k , -------------------(23.1.1 (1»

where k is a constant.

<23.2 THE NUMBER OF ZEROS ON A FINITE INTERVAL

23.2.1 Theorem: If r ( x ) >° and r (x) and p (x) are continuous on the interval a s: x ::;b , then

the only solution of equation (23.1 (1» which vanishes infinitely often on this interval is the null
solution.

Proof: Suppose y (x) is a solu~ion of (23.1 (1)) which has an infinity of zeros on the interval [a, b].
Let Z be the set of all zeros of the solution y (x) on the interval [a, b]. Since [a, b] is a bounded,

infinite subset of real numbers, by Bolzano - Weierstrass theorem, Z has a limitpoint, say x* on

the interval [a,b]. Hence the exists a sequence {xn}:=l in Z with Xn=F-x* (n=O,1,2, )

and xn ~ x* as n ~ 00. Since y is continuous and y (xn) = °"f,9rall n = 0, 1, 2, itfollows

that y (x*) =°.
Also,

,
r'!.- . y(x) - y(x*) ,( *)

hm =y x
* *x~x x-x

Since y' (x*) is known to exist, we evaluate the above limit by letting x tend to x* through

,( *) 0the members of the sequence xo' xl> x2, , Then y x =

Hence the solution y (x) of (23.1 (1» has the following properties at x * of [a, b].
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y( x* )=0 and y,( x*) = O.

Thus by the existence and uniqueness thoerem, it follows that Y (x) = 0 s for all x in [a, b].

Thus y( x) is the null solution.

Hence the theorem follows.

·23.2.2 Definition: If the differential equation (23.1 (1» has a non null solution that vanishes infinitely
often on I then the solutions of (23.1 (1»are said to be oscillatory on I .

23.2.3 Definition : Let u: I -» JR, we say that Xo E I is a simple zero of u if u (xo) = 0 and

u'(xo) = O.

23.3 THE STURM SEPARATION THEOREM
We now prove a fundamental result due to sturm, which is now nown as the sturm

separation theorem.

23.3.1 Theorem: (The Sturm separation Theorem)

If u (x) and v (x) are linearly independent solutions of (23.1 (1)) then between any two

consecutive zeros of u (x) there will be precisely one zero of v (x) .
The following lemma is helpful in proving theorem 23.3.1.

23.3.2 Lemma: If two solutions u (x) and v (x) of (23.1 (1)) have a common zero they are linearly

independent. Conversely, if u ( x) and v (x) are linearly independent solutions, neither ot them

identically zero, then if one of them vanishes at x = Xo ' so does the other.

Proof of the Lemma: Suppose u(x) and vex) are solutions of (23.1(1)). Then by Abel's

formula (23.1.1 (1)) we have

r (x) [ u ( x) v' ( x) - UI ( x) V ( X) ] == k

where k is a constant.

Let Xo be the common zero of u(x) and v(x). If x=xo in Abel's formula, we get k=O.

That is, the Wronskian of u (x) and v (x) at x = Xo ' vanish and hence they are linearly dependent.

This proves the first part of the Lemma.

Conversely, suppose u (x) and v (x) are linearly dependent solutions of (23.1 (1)). Hence

there exist constants cl and c2, not both zero such that
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Cl U ( X) +C2 V (X) = 0 .

Since we have neither u (x) nor v (x) is identically zero, we must have both C1 and c2 are

different from zero. Thus, if u (xo) = 0 then v (xo) = 0 also.

This prove sthe lemma.

Proof of the Sturm Separation Theorem: It show be noted that not all self-adjoint linear differential
equations of the form (23.1 (1)) admit a nonnull solution that vanishes twice/on I .

.---------~-:~--------:::~--------/' Xo Xl'"

Fig. 23(i)

Suppose that x=xo and x=xl be two consecutive zeros of u(x) (see Fig. 23(i» and let

Xo < xl' Since - u (X) is also a solution of (23.1 (i) with the sr.i\ne zeros of u (x) , we may assume

without loss of generality that u ( x) >0 for X E ( xo, Xl)'

Since u (x) is continuous, and xo, Xl are zeros of u (x) , we have u (xo +h) > 0, and

U(XI +h)<O when h i-t), and

u(Xo +h)<O, and U(XI +h»O when h-ci).,

U( Xo +h) - U( Xo ) U( Xo +h) .
Therefore = > 0

hh

U(Xl + h) - U( Xl) U( Xl + h)
~~-----''---------'---=- = < 0 fo r a" h

h h
and

This implies u'(xo) ~ 0 and u'(xo)::::; o.

If u' (xo) = 0 then, since u (x) is asolution of (23.1 (1» with u (xo) = 0, by the 'existence

and uniqueness theorem u (xo) == 0 on 1,which is not the case. Thus u' (xo) > O. With the

same reason, u' (Xl) <0 .
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If V (Xo) = 0 then by lemma 23.3.2, u (x) and v (~,) are linearly dependent, a contradiction

(since u (x) and v (x) are linearly independent). Therefore v (xo) =i=- O. We assume without loss'

of generality that v ( xo) > 0 .

By Abel's formula, we have

rex) [u(x) v'(x) - u'(x) vex)] == k ,

where k is a constant. Substituting x = Xo in this equation we get k < 0, since r (xo) > 0\\

u'(xo»O and v(xo»o.

Now, by substituting x = xl '

But u(xd < O. Thus

r (xd u' (Xl) V ( Xl) . 0

Since U'(XI) < 0 and r( xd > 0 it follows that v( Xl) < 0 .

Hence v (xo) > 0 and v (xd <0. Since v (x) is a continuous function, it must have atleas~,:
\

one zero between xo' where v (x) is positive, and Xl, where v (x) is negative. This means that

v (x) must have at least one zero x * (say) between Xo and Xl'

We now show that v (x) vanishes at most once between xo and xl'

Assume that v (x) vanishes at two points x *, x** in (xo, xd. By the argument above,

with the roles u(x) and vex) reversed, we get that between x" and x** there must be at least

one zero of u ( x) , a contradiction to the fact that xo, Xl are consecutive zeros of u ( x) .

Therefore, there cannot be more than one zero ofv (x) in (xo, xd. Thus there exists

, precisely one zero of v (x) between two consecutive zeros of u (x ) .
The proof of the Sturum separation theorem is complete.
More generally, we have the following result.
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23.3.3 Theorem : Let u( x) and v (x) be functions of class Y!!' on [a, b] and suppose that

u(a) = v(b) =.0, v(x):;t: 0 on (a, b). If

w (x) =u (x) v' (x) - v( x) u' (x) :;t: 0 on [a, b] then u (x). vanishes precisely once on (a, b) .

Proof: Without loss of generality, we may assume w ( x ) > 0 on [a, b] and v ( x ) > 0 on (a, b) .

Then, since v (a) = v (b) = 0, it follows that a and bare consecuritve zeros of v (x). Since

v(x»O on (a, b), we have v'( a) > 0 and v'(b )<0 (as in the proof of theorem 23.3.1).

We have

w(a) = u(a) v'(a) >0 and web) = u(b) v'(b»O. Since v'(a»O, it follows that

u.(a»O; and since v'(b )<0, it follows that u(b )<0.

Since u is continuous, u takes every value between u (a) and u (b ) at least once. Therefore

u (x) must vanish at least once in (a, b) , say at a. If a is not simple then u (a) = u' (a) = 0 anr'

hence w( a )=0, which is not possible. Thus the zero a E (a, b) of u is simple.

Assume that u (x) has a second zero fJ on (a, b). By the same argument as above,

with the roles of u(x) andv(x) interchanged, we get a zero of v(x) on (a, fJ), and

(a, fJ) G (a, .b) , a contradiction to the fact that v ( x):;t: 0 on (a, b). This shows that u ( x) has

precisely one zero on (a, b) .
This completes the. proof of the theorem.

The following corollary is an immediate consequence of the theorem 23.3.3.

23.3.4 Corollary: If v (x) has an infinity of zeros and if w (x) of:. 0 on [a, b) then

(i) u (x) has an infinity of zeros on [a, b) also;

(ii) the zeros of both u (x) and v (x) are simple;

(iii) the zeros of u (x) and v (x) separate each other. Here b may be finite or infinite.

Note that if b=oo, and if w(x) is eventually (for x sufficiently large) of one sign, the

conclusions of the corollary are valied x sufficiently large.
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23.4 A FUNDAMENTAL LEMMA
The following result is of fundamental importance in many oscillation studies. It is the

complementary to theorem 23.3.3.

23.4.1 Lemma: Let usu (x) and v( x) be functions of class Yf' on [a, b] and suppose

U (a) = u (b) = 0, and let v (x) ~ 0 on [a, b]. Then there exist constants cl and c2, not both
I .

zero, such that the function clu (x) + c2 V (x) has a double zero on (a, b)
Proof: ronsider the function

w(x) = u(x)v'(x) - u'(x) v(x)

Suppose without loss of generality that v (x) >0 on [a, b], and that x = a and x = bare

consecutive zeros of u(x), and hence u(x»o on (a, b). Therefore, we have u'(a»O and

u'(b)<O.

Case (l) : Suppose that the zeros of u (x) are simple.

Then w(a) = - u'(a) yea) (since u(a) = 0 and u'(a) ~ 0)

and web) = -u'(b)v(b) (since u(b)=O and u'(b)~O)

Therefore w(a )<0 and w(b »0.

Since u, VE?!l', we have u.u' and v, v' are continuous on [a, b] and hence w(x) is

continuous on [a, b]. Therefore w (x) must vanish at some point Xo of (a, b). That is,

It follows that there exist constants cl and c2 not both zero such that

Cl U ( xo) + c2 V ( Xo ) = 0

cI u'(xo) + C2V'(XO)=O

That is, the function clu (x) + c2 v (x) has a double Zero at x = Xo .

CaSE! (ii) : Suppose the zeros of U (x) are not simple.
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Then we can choose a constant c > 0, small enough that the curve y = c v (x) cuts the

curve y = U( x) in at least two distinct points (Fig. 23(ii)). Let x = a be the smallest and x = fJ be

the largest of such points. Then

cv(a) == u(a) and cv(fJ) = u(fJ)

Further, cv'(a)<u'(a) and cv"(fJ»u'(fJ). This is clear geometrically and is reaaily

a,glied analytically) since u, v EW',

y = cv(x) (\id )y'''u(x)__ V~-"-
-~ -+~
ao. bl}

Now

w(a) == u(a) v'(a) - u'(a) v(a)'

= cv(a) v'(a) - u'(a) yea)

= v (a) [ cv' (a) - u' (a)] < 0

(since u(a»O and cv'(a)<u'(a)).

Now w ~fJ)= v(fJ) [c v' (fJ) - u' (ft) ] > 0

Since Vol is continuous on [a, b], there is a point Xo E (a, fJ) such that w (xo.) == O.

Now the conclusion of theorem follows by case (i).

Note thatfrom (23.4.1 (1)) that if cl where zero, then c2 *- 0 and v (XO) == 0 , contrary to the

hypothesis. Accordingly, we may conclude that cl :;':0 and the conclusion of the theorem may be

given as there exists a constant k such that ttie function u (x ), - k v (x) has a double zero on

(a, b) , for k may be taken as - c2 . Geometrically, the lemma may be interpreted to mean that
cl

there exists a constant k with the property that the curves y == k v (x) and y = u ( x) are tangent at

a point x = Xo of (a, b) .
14
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23.5 SHORT ANSWER QUESTIONS

23.5.1: Prove that between every pair of consecutive zeros of sin x, there is one zero of

sinx + cosx.

23.5.2: Construct an eample of a differential equation in the form (23.1 (1)) such that no nonnull
solution has more than one zero [thus, there are equations (23.1 (1)) to which Sturm's
theorem does 110tapply].

23.5.3 : Show that between every pair of consecutive zeros of sin log x there is' a zero of

cos log x.

23.6 MODEL EXAMINATION QUESTIONS

23.6.1: If r (x) >0 and r (x) and p (x) are continuous functions on the interval a s; x <b , then

prove that the only solution of the equation

(r(x) y')' +p(x)y = 0

which vanishes infinitely often on this interval is the null solution.

23.6.2 : Define oscillatory solution of (r (x) Y')' + P (x) y ='0 . State and prove Sturm separation

theorem.

23.6.3: Let u(x) and vex) be functions of class Yfj" on [a, b] and suppose that

v(a) = v(b) = 0 and vex) 7:. 0 on (a, b). If w(x) = u(x) v'(x) --vex) u'(x) 7:. 0 on

[a, h] then prove that u ( x) vanishes precisely once on (a, b) .

23.6.4: If u(x) is a solution of (r(x)y')'+p{x)y=O such that u(xO)=U(XI)=O and

. U(x»O (XO.<X<XI), prove that.u' (XO) > 0 and that u' (xd<O.

23.6.5 : Prove. that betweenevery pair. of consecutive zeros of sm x there is one zero of

sinx + cosx .

26.6.6 : Show ~hatbetween every pair of consecutive zeros of sin log X there is a zero of cos log x .
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23.7 EXERCISE

23.7.1: Find a self-adjoint differential equation which has the solution rex) Y'(x) where y(x)
is any solution of

(r(x)y'Y + p(x)y = 0

Answer: (~ z) + U) z = 0

23.8 ANSWERS TO SHORT ANSWER QUESTIONS

23.5.1 : Let u(x) =sin x + cosx

and vex) = sinx

Clearly, u, v E ~' ([ 0, Jr]);

Also v (0) = 0 and v (Jr) = 0 and v (x ):;t: 0 on (0, Jr) .
Now

w(x) = u(x) v'(x) - vex) u'(x)

= (sin x +cas ~) cas x - sin x (cas x - sin x) .
•

=sinx cosx + cos2 x - sin x cosx + sin2 x

= 1 :;t: 0 on [0, 7r] .
Thus, by theorem 23.3.3, the conclusion follows.

23.5.2: The equation (23.1 (1» is of the form (r (x) y,y + p( x)y =0 ..

Put r ( x) = 1for every x and p (x) = -1 for every x . Then the equation reduces to

y" - y = 0; y(O) = 0, .y'(o) =1; and its two solutions are u(x) = e", vex) = e-x

Then the equation reduces to

y" - y = 0; y(O)=O, y'(O) = 1; and its two solutions are u(x) = e", vex) =e-x

Therefore, the general solution is

( )
X ' -xy X = cI e + c2 e
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y (0) = Cl +C2 = 0

Y'(O) =cl-c2 =1

By adding these two equations, we get

1
2cI = 1. This implies c] = "2 ;

1
Hence c2=- -

2

Thus y(x) = ~[ex _e-x].
This Y is anontrivial solution of y" - Y = 0, which has exactly one zero x=O.

23.5.3: Write u (x) = cos (log x)

vex) = sin (logx)

Also, v (x):;t: 0 on (1, e7Z").

w(x) = u(x) v'(x) -vex) u'(x)

1 2 1 . 2 1 r 7Z"J= -cos (log x) + -sm (log x) = - :;t: 0 on Ll, e
x x x

Hence, by theorem 23.3.3~ u (x) vanishes precisely once in (1, ell
:).

Now by using corollary 23.3.4, since v has infinity of zeros and w(x):;t: 0 on m. it follows

that u has infinity of zeros on m. and the zeros of u (x) and v (x) separate each other.

23.9 REFERENCE BOOK
Walter Leighton - An Introduction to the Theory of Ordinary Differential Equations -
Wadsworth Publishing company, Inc. 1970.

Lesson Writer:

Dr. G. V.R. Babu.
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THE STURM COMPARisoN THEOREM

24.0 INTRODUCTION' ""~
In this section we continue the study of solutions of differential equation~Hhe form

"

~r(x) y')' + p(x) Y= 0 ~'"

where r (x) >0 , and r ( x) and p ( x) are continuous on the closed interval a $x $b .

The student will recali that the Sturm separation theorem asserts that between two
consecutive zeros of a solution of 24.0(1) there appears one zero of every linearly independent
solution. Thus, speaking roughly, the number of zeros on an interval of any solution of 24.0(1) is
about the same G.S the number of any other possesses. Thus, the solutions of 24.0(1) oscillate
with the same rate of oscillation.

On the other hand, it is clear that solutions (for example, sin 2x) of

y" + 4)' = 0 --------------------- 24.0(2)

Oscillate more frequently (that is, have more zeros) on the interval 0$x $2n than do the
solutions of

y" + ,Y = 0 --------------------- 24.0(3)

on that interval. Atypical solution of (24.0(3)) is, of couse, sin x .

The Sturm comparison theorem compares the rates of oscillation of solutions of two
equations.

(r(x)y')' +p(x)y = 0 ----------------- 24.0(1)
, .

(r(x) z')' + p(x)z= 0 ---------------- 24.0(5)

where r( x »0, r( x), p( x) and PI (x) are continuous on a $ x <b .

24.1 THE STURM COMPARISON THEOREM

24.1.1 Theorem (Sturm Comparison Theorem}: If a solution y( x) of 24.0(4) has consecutive

zeros at x = Xo and x = xl (xo <Xl) , and if PI (x) ~ P (x) with strict inequality holding for at least
/
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one point of the closed interval [XO, Xl] , a solution Z (x) of 24.1 (5) which vanishes at x = Xo will

vanish again on the interval Xo <x<xI'

Fig. 24(i)

Proof: Suppose without loss of generality that y( x »0 for all x E (xo, xd, and that

y'(xo»O, y'( xd<O , and z'(xo) > O. Since y( x) and z( x) are solutions of equations 24.0(4)

and 24.0(5) respectively, we have the identities

(r(x) y'(x))' + p(x)y(x) == 0

(r(x) z'(x))' + PI (x)z(x) == 0

Multiplying 24.1.1 (1) by - Z (x) ; and 24.1.1 (2) by Y (x) ; and adding we get

, ,
y(x) (r(x) z'(x)) -'-~(x) (r(x)y'(x)) + y(x) z(x) (PI (x) - p(x)) = O.

Integrating both sides over [Xo, xd, we get

Xl

[y(x) rex) z'(x)J:~ - J y'(x) rex) z'(x) dx - [z(x) rex) Y'(x)J:~
Xo

Xl Xl

+ f z'(x) rex) y'(x) dx + f (PI (x) - p(x)) y(x) z(x)dx = 0

(Here integration by parts formula is used)
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XI

+ Z ( xo) r (XO) y' (XO) = - f (Pl' (X) - P ( X )) y (X) Z ( X) dx

since XO, xl are zeros of y (x) and / vanishes at xo, we have

XI

r(xd Y'(XdZ(XI) = f (PI (X) - p(x)) y(x) z(x) dx --------------- 24.1.1(3)
Xo

Now suppose z(x»O on (xo, xd. Since y(x»O on (XO' xd and PI(X) 2 p(x) on

(xo, xd and PI (x) 2: P (x) for atleast at one point of (xo, Xl)' the integral in 24.1.1 (3) is positive.

Since r (xd > 0, the left hand members of 24.1.1 (3) is non-positive. This is a contradi~tion.

(Here Z(Xl) 2: 0). Therefore z(x) < 0 at some point of (XO' xtl.
This completes the proof of the Sturm comparison theorem.

24.1.1.1 Note: Under the hypothesis of theorem 24.1.1, further if y (x) vanishes again at x = x2 >Xl

with PI (x) > P (x) on (Xl> X2), it follows that z (x) will vanish at some point on the interval

(Xl> X2)' For, consider a second solution zl (x) of 24.0(5), defined by the conditions

zl (x) = 0, z] (Xl) = 1. As in.the proof of Sturm comparison theorem, zl (x) has a zero x3 on the

interval (Xl> X2)' Now by applying Sturm separation theorem, w.~conclude that Z (x) has a zero

on the interval (Xl, X3), (see Fig. 24(i)).

24.1.1.2 Note: Sturm comparison theorem says that, the larger is p(x) of 24.0(1), the more

rapidly the solutions of 24.0(1) oscillate (see Fig. 24(i)).

24.1.1.3 Example: If nonnull solutions y (x) and z (x) , respectively of the equations

XZ" + z' + xz = 0

vanish at X =1, which solution wi" vanish first after x =1?
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Solution: First we put both the given differential equations in the form of self-adjoint linear diffprential
equation.

We have

X2 }~ + xy' + (x2 -1 )y= ° -----------24.1.1.3(1)

Comparing 24. -l.·i .:J( '1) with the differential equation

u \ x') y" + b ( x) y' +C (x) y = °,

a(x)~ 0 (:" (0,00), b(x) and c(x) are continuous on (0,00).

1
Multiplying 24.1.1.3(1) by a(x)

Xfb(x) ~(x)
a(x) dx J "2 dx

eO , i.e. _1_ eolx = ~ = ~ weget
? 2'x: x x

X2 -1
xy" + y' + -- y = °

x

i.e. (r(x)y')'+p(x)y=o wherer(x) =x>o 01') (0, 00) and
~~

X2 -1p(x)=-- on (0,00)
x

The second equation is

xz" + z' + xz = ° .
This can be written as

(xz')' + xz = o.

I

Itis oft/::le form (r(x)z') +PJ.(x)z = °



where r ( x) = x and PI ( x) = x. on (0, (0) .

Here we observe that PI (x) > P (x) for all x E (0, (0) .
Now by applying the Sturm comparison theorem, the solution of the second differential

eo.ration vanishes first after x=l.

2!t2 A GENERALIZATION

24.2.1 Theorem: If p(x) and q(x) are continuous functions on the interval [a, b] with

P {x) =j q (x) , if z (x) is a non null solution of the system

z" + q(x)z = 0, 1
z(a) = z(b) = OJ 24.2.1(1)

b

and if I[l' (,.) ....q( x) ] z2 (x) dx ?: ° ,a ncnnull solution y( x) of the system
a

Before p;ov;r:~Jthe theorem ~2':;.2.·' we ::~~iO(;i...C'·· \:-:sfoHo~vingtwo lemmas 24.2.2 and 24.2.3.

24.2.2 Lemma : !f two differenU:;: i'. -'('.;:;;~~c:n:i
. ,
t , ~;')y') + a(:c)y := o , ---~~..---------- 24.2.2(1)

(t{X}ZI)' + b(x)z = 0, ----..----------- 24.2.2 (2)

where r(x»O and, rex), a(x), and ii(X) are continuous on J, .iave acornrnon solotlon
\

u(x) 1=0, then a(x)=b(x) on 1.

Proof: Since u(x) is a common solution of 24.2.2(1) and 24.2.2(2), we have

[rex) u'(x)J' + a(x) u(x) == °
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[r(x) u'(x)]' + b(x) u(x) == 0

This implies

[a(x) - b(x)] u(x) == 0 for all xEI.

Since u (x) i= 0 on I .it follows that

a (x) .: b (x) == 0 for all x E I .

Thus

a( x) == b( x) for all XE I .

Hence the lemma.

24.2.3 Lemma: If y (x) and Z ( x) are functions of class '&" on I ,wtih y( x) ;:j: 0 there, and if

y(x) z'(x) - y'(x) z(x) == 0 on I

then z ( x ) == c y (x), where c is a constant.

Proof: By hypothesis, we have

(~J'= zy - y'z = 0
Y 2 'Y ,

This implies ~ == c on I ,and the lemma is proved.
Y'

We now prove theorem 24.3.1.

Proof of theorem 24.2.1 :
Consider the identities

z [ z" + qz]== 0, }

z2" ' ----------------- 24.2.1 (3)
--[y + py]==Oy .

"
on [a, b]. Note that the quotient L is continuous on [a, b], when defined suitably at aY "

zero of y .Adding the identities of 24.2.1(3), we get
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z (" ") ( ) 2- yz - zy = p - q z
y

That is

z (' ')'.( ) 2- yz - zy = p-q Z
Y ,

On integrating from a to b we get

b ,bJ!"(yz' - zy') dx = J(p - q )z2 dx -------------------- 24.2.1 (4)
aY , a

Assume that y( x )*0 on (a, b], and integrating left hand member of (24.2.1 (4)) by using

integr,~tion by parts, we ge,t". ,;

[!"(YZ' - iy,)]b _ S(z' - .z .)/J2 dx = S(p_q)z2 dx
y a a y a

This implies
1 '>",

Z«b» (Y(b) z'(b) - z(b) y'(b») - z«a»[y(a) z'(a) - z(a) y'(a)]
y b y a .

b( )2 b- f z' -:; y' .~ = f (p~ q)z2 dx -------- 24.2.1 (5)
a a

z
The ratio - remains finite at x=a by L'Hospital's rule.y

Thus 24\3.1 (5) becomes

,', '

b( J2 b- J z' - ; y' dx = J(p - 'i)Z2 dx zo (~y (hypothesiS)------------- 24.2.1 (6)
a a '

Hence the integral

is positive; other wise z (x) = cy (x) by lemma 24.2.3.
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Thus 24.2.1 (1) and 24.2.1 (2) have a common solution. Now, by lemma 24.2.2, it follows

that p( x )=q( x), a contradiction.

Therefore y ( x) must vanish at some point of (a, b) .

z
Suppose now that y( x )7=0 or. (a, b) and y(b) =0. The ratio - in (24.2.1 (5» is finite at

y

both x=a and x=b, by using L'Hospital's rule. Thus 24.2.1 (5) becomes (24.2.1 (6» and proceeding

further, we get a contradiction.

Hence y (x):= 0 for some x E (a, b)
The proof of the theorem is complete.

24.2.1.1 Note: Theorem 24.3.1 is a generalization of theorem 24.2.1 (Sturm Comparison Theorem)

when r(x)=l.

24.2.1.2 Remark : An important special case of theorem 24.2.1 occurs when q (x) = A 2, where

)" is a positive son stant. .

In this case, from 24.2.1(1), we have z(x) = sinA(x-a) and

b
f [ P (x) - q (x) ] z2 (x) dx =
a

This implies

;rra+-·
Af p(x) sin2 ),(x--a)dy ~

a

;rra+-
(, (p(x) - A2 )sin2 A(x-a)dx~ O.
a

7ra+--
),

f A2 sin A (x - a) dx
a

7ra+--
}o 2 [1 _. cos 2..1, ( x - a)]

= f A dx
2a

7r

= 1!.2 [x- Sin2A(X-a)]a+~
2 21!.

a
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A 2 st 7rA .=2 .A =2 . (24.2.1.2(1»

Put t = ;c(x~a) then (24.2.1.2(1)) becomes

A') .. t . 2 1 7rAJ pl-- + a sm t· -:;-dt ::::-
o A A 2

2 () .12. t .27rA
I.e.. ~ p A +a sin t 2:-

2
- ------------------ 24.2.1.2(2)

Hence, if q (x) = A 2 then the condition

b
Hp(x)-q(x)] z2(x) dx 2: 0 of theorem 24.2.1, becomes
a

.. A (t '\. 7r/l2
I.e. f p -+a) 8m2 12: -- --------- 24.2.1.2(2)

o A. 2

Hence, if q (x) = A2 then the condition

b
f[p(x)-q(x)]z2(x)dx2: 0 of theorem 24.2.1, becomes
a

A (t \ n:~2f p -+a Isin2 t 2:-'-.
o A) 2

24.2.1.3 Example: Consider the differential equation



y" + X2 Y = 0, y (0) = 0 .

Here p (x) =x2 , a = O. By comparing with theorem 24.2.1,

we have

rc
b ' ··2 .

f [p (x) - q (x )] z2 (x ) dx = f (x2 - A2) sin 2 A x dx 2': 0 .
a 0

Carrying out the indicated integration in as in note 24.2.1.2, we have

214 27r-3
.IL ~ ,

6

That is, a non null solution y (x) of the given dif.ferential equationhas a zero on the interval

1

7r (27r2-314
O<x<- where Ao = I

Ao 6 )
After simplication we see that y (x) has a zero on the interval

; ,,¢,;

(0,2.44).

24.3 SHORT ANSWER QUESTIONS·"
24.3: 1 : State Sturm comparison theorem, ,

24.3.2: Writethe siqnificance of Sturm comparison theorem.

24.3.3: Show that if p (x ) ~ 0 on [a, b] , no nonnu/l solution of

(r( x) y'Y +.p( x)y = 0 .

can have more than one zero on [a, b].
24.3.4: Iftwodifferential equations.

, . . , .:. . ; , '~

(r(x)y'Y + a(x)y = 0

(r(x)z;Y + b(x)z = 0

where r ( x) >0 and r (x ), a (x) a~d b (x) are continuous on I ,have a common solution

u(x)~ o. Therrshowthat a(x)=b(x)on I.
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24.3.5 : If y (x) and Z(x) are functions of class ?;f" on I . with Y (x) * 0 there. and if

y(x)Z'(x) - y'(x) z(x) == 0 on I

then prove that z (x ) == c y (x), where c is a constant.

24.3.~ : Write the statement of theorem 24.3.1 using note 24.3.1.2.
24.3.7 : Write the differences between the Sturm separation theorem and the Staurm comparison
theorem,

24.4 MODEL EXAMINATION QUESTIONS
24.4.1 : State and prove Sturm comparison theorem.

24.4.2 : If non null solutins y (x) and z (x) . respectively of the equations.

x2 i' + xy" + (x2 -1}y = 0

xz" + Z' + xz = 0

vanish at x = I. which solution will vanish first after x = 1 ?

24.4.3 : Are the solutions of thedifferential.equatior,

(2x+l)y" + (x+l)y = o oscillatory on the interval (0, oo)?

24.4.4 : If p (x) and q (x) are continuous on the interval [a, b) with p( x )¢q ex). if ~ ( x) is a
nonnull solution of the system

z" + q(x)z = 0

z (a) = z (b) = O. and if

b . . \

f[p(x) -q(x)Jz2 (x)dx 2 O. then prove that a normuu solution y(x) of-the system
a

y" +p(x)y =0

,Y ( a) = 0 has a zero on the interval ~ < x < b .

24.4.5 : Find an upper bound for the first positive zero of a solution y (x) 9f the differential system
.' . "



y(O)=O.

24.5 EXERCISES
24.5.1 : Which of the following differential equations posses the more rapidly oscillating solutions

on the interval (1, (0) .:

X2 y" + xy' + Y = 0,

y" + y = 0 ?
Answer: The second equation.

24.5.2 : Are the solutions of the differential equation (2x + 1)y" + (x + 1)y = 0 oscillatory on the

interval (0, (0) ?

Answer: Yes
24.5.3 : The solutions of the differential equation

[
2 J' 1X , ..' ,

1+ x2 y + x SIll;- Y = 0 are oscillatory on the intervai ~.l,(0). Estimate roughiy

the number of zeros a nonnull solution has on the interval (1 ~)Ir, 201r)

Ahswer: 10 or 11

24.5.4: Using theorem 24.3.1, find an upper bound for the first positive zero of a sorution y (x) of

the differential system

(a) Y"+(4+x2)y=O

y(O)=O;

Y(O)=O;
(c) y" +xy = 0

Answer:

y(O)=O.
(a) 1.48
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. . .j6 ,
(b) zero of solution is - exactly.

2

(c) 2.7

24.6 ANSWERS TO SHORT ANSWER QUESTIONS
24.3.1 : Statement of Sturm comparison theorem, 24.2.1

24.3.2 : The larger of p (x) of

I

(r(x)y') + p(x)y = 0, -------------~------ 24.4.2(1)

The more rapidly the solutions of (24.4.2(1)) oscillate.

24.3.3 : Compare the nonnull solutions of
I

(r,( x) y,) + p(x)y = 0

with the nonnull solutions of

(r(x)y')'=O
by using Sturm comparison theorem, conclusion follows.

24.3.4: Proof of the lemma 24.3.2.
24.3.5: Proof of the lemma 24.3.3.
24.3.6 : Sturm separation asserts that between two consecutive zeros of solution of

I

(r(x)y') +p(x)y = 0, ----------------- (24.4.6(1))

r (x) > 0, r (x) and p (x) are continuous on the interval a :s; x:s; b , there appears one zero \

of every linearly independent solution .:

On the other hand, Sturm comparison theorem says t~flt the I;arw~rls p (x) in (24.4.6(1»,

the more rapidly the solutions of (24.4.6(1» oscillate.

24.7 REFERENCE BOOK
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Lesson Writer:
~, -", .." . , '.

Dr. G.KR. Babu.



tEjsson - 25

THE STURM - PICONE THEOREM
AND_

,~
••• "'1

THE BaCHER - OsGOOD THEOREM

25.0 INTRODUCTION
The Sturm - Comparison theorem may be generalized to more general pair of self adjoint

linear differential equations. This is done in Sturm Picone theorem. The Bocher - Osgood theoem
is established, regarding the amplitudes of the oscillation of solutions. The Bocher-Osqood theorem
for a self-adjoint differential equation is also established.

25.1 THE STURM - PICONE THEOREM
25.1.1 Lemma (Picone Formula) : Consider the self-adjoint differential equations

. [r(x)y']' + p(x)y=O ---------- 25.1.1 (1)

['1 (x)yJ +PI (X)Z=O ---------- 25.1.1 (2)

where r ( x) and rl ( x) are positive, r ( x), P ( x), rl ( x ), PI ( x) are continuo~s on an interval

[a, b].

If Y and Z are nonnull solutions of 25.,1.1(1) and 25.1.1 (2) respectively, then for x E (a, b),

. efxcept posslbly at the zeros of y (x). Formula (25.1.1 (3» is known as 'Picone formula'.
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Proof: Assume y:t=O on [a,b]. From25.1.1(1)and25.1.1(2),wehave

Z [(r1 (x) z' (x))' +PI (x) z (x) ] = °

<[(r(x) y'(x»), +p(x) y(x)] = 0

By adding these two equations, we get

.1'

This implies

z [ ( ) , , J' " z , , z- r} x zy-ryz -r}yz -+ryz- =
y y y

Thus

z [' ']' ( )" z ( ) 2- rl z Y - r Y z = rl -r Y z. -+ P- PI z
Y Y

By using integration by parts, we get

),

Hence

=[":'(rl zy - ry'z )]X -: (25.1.1 (4»
y a'

Let us now simplify LHS of (25.1.1 (4)).



The Sturm - Picone TheoremDifferential Equations 25.3

x x .
= f[ (r1-r )Z,2 +(p -pdz2Jdx + f -;-[y2 ,2 - 2r y y' z z' + y,2 Z2 Jdx

a"· aY"

Now, from 25.2.1 (4) and 25.2,1 (5), clearly Picone formulatol ows.

25.1.2 Theorem: Let y ~nd z be.two nonnull solutions of 25.1.1 ( ) and 25.1.1 (2) respectively,
satisfying the conditions ."

y(a)= 0 } --------------. (25.1.2(1))
z(a)=z(b)=O .

b ""
If f[Crl-r)z,2 + (P-P1)z2]dx> 0 --------------(25.1.2(2))

a

Then y (x) must have a zero on the interval (a, b) .

Proof :,Under the hypotheses ofthetheorem, by using b in place of x in Picone formula, and

assuming y(x):;to on {a, b], we 'get
:."ij r

= 0 (since z(a) = z(b) = 0) ------------ (25.1.2(3))
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z
The ratio - is well defined on [a, b] and by using (25.1.2(2)) in (25.1.2(3)), we immediatelyy

get a contradiction.

Z· .
Similarly, if g( b) = 0,. the ratio y would be continuous on [a, b] and (25.1.2(3)) yields ~

contradiction.

Hence for some Xo E (a, b) , we have y ( xo) = 0 .

This completes the proof of theorem 25.1.2.

25.1.3 Corollary (Sturm - Picone Theorem) : If 'i (x) ~ r (x) and p (x) ~ PI (x) with strict inequality
, .

holding in each of these conditions at at least one point of the. interval then the solution y (x) must

vanish on (a, b).

Proof: Follows from theorem 25.2.2.

25.2 THE BOCHER - OSGOOD THEOREM
Consider the differential equation

y" + p (x) y = 0 ------------- (25.2(1))

where p (x) is positive and of class «f' on the interval T=;: [0, (0). H p' (x) ~ 0 on I then

p (x) ~ p (0) >0, and every solution of (25.2(1)) vanishes infinitely often on I I, by Sturm comparison

theorem. It follows from a result due to Bocher and Osgood that under these conditions, the
amplitudes of the oscillation of solutions never increase as x increases on I

25.2.1 Theorem (The Bocher - Osgood Theorem): Suppose that p (x) ~ 0 on 1=[0, (0) , and

let y(x) be an arbitrary solution of (25.2(1)). If x=a and x=b are two consecutive zeros of

y' (ox), t~en Iy ( b )1 :::; Iy (a )1·

Proof: First we observe that if p' (x) == 0 for a :::;x s b , then p (x) is constant on this interval and

Iy( b)1 = Iy( a )1· The theorem is accordingly true in this case. We may then proceed with the proof

when p'(X):t:O on [a,b].
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Since y(x) is a solution of (25.2(1)), we have

J y"(x)+p(x)y(x) =0 ------------ (25.2.1(1»

T e Sturm - Picone Theorem

[a, b], we get

On multiplying both sides of (25.3.1 (1» by 2y' (x) and integrat the result over the interval
I

b b , .
y,2 (x) la + fp(x) [y2(x)] dx = 0 ----------- (25.2.1(2)

a I

b b
i.e. y,2 (b) - y,2 (a) + p(x)y2 (xt - f p'(x) y2 dx = 0

a

Since y' (a) = y' (b) = 0, it follows that

b
p(b)y'(b) - p(a)y2(a) = fp'(X) y2(x)dx ----------- (25.2.1(3»

a

Suppqse now that y2 (b) > y2 (a). Then from (25.2.1 (3», welhave

I
b

p(b)y2(b)- p(a)y2(a) = fp'(x)y2(x)dx
a

b
<y2 (b) f p' ( x) dx

a

=y2 (b) [p (b) - P (a) ] '

so that

- p (a ) y2 (a) < - y2 (b) P (a )

i.e. p(a) y2(b) < p(a) y2(a)

\
\

i.e. y2 (b) <y2 (a), a contradiction, to our supposition.
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,'herefore y2 (b) S; y2 (a) .

i.e./Y(b )/~ /y(a )/.
!, ,.This completes .the proof of the theorem.

25.2.1.1 Remark: Geometrically, the view of the Biocher - Osgood theorem will looklike as.in F,ig. I \1

25(i) _ . . .\ L

b--------O~-4--------aL-------~----~r---~~----~x
y(b)

y(a)- -

'.

y

.', ..

'-

Fig. 25(i)

25.5.2 Theorem (The Bocher - Osgood Theorem for Self-adjoint Differential Equations) :.

Suppose that r ( x), p (x) are function~ of class ?I' 'on 1=[0, OCJ) and that p (x ), and

I

r (x) are positive. If (r (x) p (x)) ~ 0 on I then for any solution y (x) of

(r(x) yl(X))' +p(x)y(x) = 0 --.,-----------(25.2.2(1»

We have /y (b)1 s; Iy(a)1 where x = a and x = b are the consecutive zeros of y' ( x) on I .

Proof: We use the transformation

"r "
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__ 1_ dy. . ()'() d- r(x)dt' r.e. r x y x = d.

and (r(. x) y'( x))' = _d
2
_y. _dt

dt2 dx

d2 Y 1=--.--
dt2 rex)'

Now, the equation (25.2.2(1)) becomes

y + r(x) p(x)y =0.

We see that the conditions of Booher - Osgood theorems 25 3.1, will be met if

d-(r(x) p(x)) ~ 0, 0 < t s Todt

00 d
where To = l r(:) ~ 00

We have

d ,~.,
-(r(x) p(x)) = (r(x)p(x)) - = (r(x)p(x)) -r x)~ 0,
dt dt

,
since (r (x) p ( x)) ~ 0 an.d r (x ) > 0 .

Hence the conditions of B.ocher - Osgood theorem 25.2.1 lre satisfied. Therefore the
conclusion of the theorem follows.

, .

25.2.1 Note: From theorem 25.2.2: it follows that if [r (x) p (x) J' ~ 0 th n the solutions of (25.2.2(1))

are bounded. When this inequality is reversed, the solutions are no necessarily bounded. The
following result is, however, note worthy.

25.2.3 Theo~em : If r (x) and p (x) are positive and of class CV!' on I and if (r (x) p (x))' < O:

the products r( x) p (x )y2 (x) and r2 (x) y,2 (x), where y (x) is solution of (25.2.2(1 », are

bounded.

Proof: Let y be any solutio.n of (25.2.2(1)). Then (r(x)y')' +p(x) = o.
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Multiplying both sides of this equation by 2ry' and on integrating for x E (a, b), we get

i.e. (r(x) y'(x))2 - (r(a) Y'(a)l + (r py2)J: - f(r(x) p(x))'y2(x)dx=0
"a

(Here we used integration by parts).

Therefore..

a

where c2 = (r ( a) y' (a ) ) 2 + r ( a) p ( a) y2 (a) > 0

since (r(x) p(x))' ~ 0, it follows that each of (r(x) y'(x))2 and rex) p(x) y2(X) is

less than c2. " I"

'!ilus the theorem is proved. "" I

25.3 SHORT ANSWER QUESTIONS
25.3.1 : Show that the Picone formula is true by differentiating the sa e, by assuming the hypotheses
of lemma 25.1.1. •

25.4 MODEL EXAMINATION QUESTIONS
25.4.1 : State and prove Picone formula.

25.4.2 : Let y and z be two non null solutions of

" ,
(r(x) y,) + p(x)y = 0

h(x) y')' + PI (x) z = 0 respectively, satisfying tHe conditions

y(a)=O
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z(a) = z (b) ~ 0 .

Here r(x) and rl(x) are positive, r(x), p(x), ;1(x), PI (x)'are; onti~uousonaninte~al

b
If f[h ~r)zl2 +(p- PI) z2Jdx > 0

a

then prove that y (x) must have a zero on the interval (a, b) .
25.4.3 : State and prove Bocher - Osgood theorem.
25.4.4 : State and prove Bocher - Osgood theorem for selfadjoint differe I tial equations.

~ ,
25.4.5: If r( x) and p( x) are positive and of class W' on 1 = [a, bland i (r (x) p( x)) s 0, then

• '. "1 •...

prove thatthe products r (x) P (x) y2 (x) and r2 (x) y'2 (:x) are bounded where y (x) is a solution

of the selfadjoint differential equation
, ..

(r(x) y'(X)) + p(x) y(x) = o.
25.5 EXERCISES
25.5.1 : Find a differential equation in the form

(rC x) y')' + p( x)y = 0

which has the solutions ~ sin x, -k- cas x, a constant, and show hat the Bocher - Osgood
x x

theorem for self-adjoint equations (Theorem 25.2.2) appli,es when a I 1. Also,. show that the
conclusion of theorem 25.2.2 is valid for the function

~ sin (x - a) , for a 2:: o.
x

Answer : (x2a yl)' +[x2a +d(a-l)x2a-2']y=o .
. I·

25.5.2 : Find a Inear differential equation of third crder that is satisfied by t e square of an arbitrary
solution of equation

yl( + p(x)y = 0

Assume that P (x) is of class W'

Answer: z" + 4pz' + 2p'z = 0
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25.6 ANSWERS TO SHORT ANSWER QUESTIO~S
2~.3.1 :Since y and z are solutions of (25.1.1 (1» and (25.1.1 (2»/ respectively, we have

r(x) yIP+ r'(x) y'+ p(x)y = 0 -------------- 25.6(11 ,
,

r1(x) zIP+ r{(x) z' + PI (x) z = 0 -------------- 25;6(2)

Let us now consider 25.1.1 (3). 'J -
x x [ , ,]2, f[(lj-r)z,2 +(P-PI)z2}ix+fr yz -yz
a a y

=[; (I\Y z' -r y' z)I
On differentiating the above equation, we get

and on simplifying, we see that

,2,

('" " )' z ( " " )' 0 .z r1 z + r1z + Plz - y r y + ry + py = ~,te

which is true, by using, (25.6(1» and (25.6(2».

25.7 REFERENCE BOOK
Walter Leighton - An Introduction to the Theory of Ordinary £DifferentIal Equations -
Wadsworth Publishing company, Inc. 1970.

Lesson Writer:
Dr. G. V.R. Bahu.



Lesson - 26

OSCILLATION ON A HALF - A IS

26.0 INTRODUCTION
In this lesson, we develop a fundamental theorem that will provide a ufficient condition for

the solutions of an equation.

, .

(r(x)y') + p(x)y = 0

that vanish infinitely often on the interval 0 < x < 00.

26.1 A SPECIAL PAIR OF SOLUTIONS
Consider the differential equation

(r(x)y')' + p(x)y = 0, ------------ (26.1.(1»

where r(x»O, and rex) and p(x) are continuous on some inte all =[a, (0).

We recall that if Yl (x) is a solution of (26.1 (1», a second linearly independent "",II Ition

Y2 (x) of (26.1 (1» is given by (Lesson 20, section 3)

. x

f dx
Y2 (x) = YI (x) () 2.().

Or x YI x

For each zero x = Xo of Yl (x) , we define

The solution Y2 (x) will then be defined for all x::::: a .

These results are needed in our subsequent discussion.
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26.2 OSCILLATION ON A HALF-AXIS

26.2.1 Theorem: Let r (x) be positive, and suppose that r (x) nd p (x) are continuous on the

interval 0 <x < 00. If the two improper integrals

00 d. 00.f -=- = +00, f p(x)dx = +00, ------------ (26.2 1(1))
1 rex) 1

then every solution y(x) of (26.1(1)) vanishes infinitel often on the interval Lc x-;co .

Similarly, if the integrals

1 dx 1f- = +00, f p(x) dx = +00, ---------------- (26 .. 1(2»
or(x) 0

every solution of (26.1.1 (1)) vanishes infinitely often on th interval.

Proof: Assume that some solution y (x) of (26.1 (1)) is nonoscillat ry, then by the Sturn separation

theorem, all (nontrivial) solutions are nonoscillatory, and there exi ts a real number a> 1 such that

y (x) *- 0 on [a, (0) .

rex) y'(x)
Put z (x) = () ,a 5, x < 00 .

Y x

,( .) _ (r (x) y' (x ))'
Then z x - .r )y~x

r(x)y,2(X)
y2 (x)

= - p(x) - z2 (x) (since y(x) is a solution f26.1(1))
rex)

Therefore z satisfies

, z2(x) __ .
z (x) + ( ) + p(x) - O. --------------- (26.2.1(1 )r x

Integrating from a to x (x> a) , we get
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XZ2(X) ,'x .
Z(X) + { rex) dx.= z(a) - {P(X)dx -------------(26.2.1(2»

Oscillation on a Halt-axis

For x sufficiently large, say x ~ b > a, the right hand member of (26.2.1 (2» is negative

Accordingly, z (x) is negative, for x~ b , and

[ ]

2
2 x z2 (x) .'

z (x) > !r (x) dx ----------:----- (26.2.1 (3»

x z2 (x)
Write lex) = f-- dx

a rex)

Thus from (26.2.1 (3», we have.-
x I'(X) x dx

Thus 1'12 (x) dx ~ I r(x)'

/
/. /I 00 dx

This is a contradiction to the fact /hat { r (x) = + 00

Therefore, our assumption is fal~e.

This shows that every solution (26.1 (1»)vanishes infinitely often on the interval (1, 00).

The second part of the theorem can be proved similarly .

.26.2.1.1 Example: Consider the differential equation

, .y" + a2 Y = 0 (a:;z': 0) .

It is of the form (r(x )y')' + p( x)y ~O where r( x) = J, p( x)=,/ . Here r( x»O, 't( x)



00 dx 00

and p( x) are continuous on (0, 00). Further, f -( ) = +00 anr f p( x) dx = +00. Thus the
1 r x 1

conditions of the theorem 26.2.1 are satisfied. Therefore all the olutions of the given equation

vanish infinitely often on (1, (0). This was already known to us, si ce a solution of the differential

equation is sin ax . \

26.2.1.2 Example : Consider the differential equation

On comparing this equation with (26.1(1)), yve have r(x)= x and p(~) =!, Here we
x·

observe that, both the conditions (26.2.1 (1» and (26.2.1 (2» are s tisfied. Therefore, by theorem

26.2.1, all solutlcns of the given differential equation, vanish in!.init~IY~ften on (1, 00) and also »n

(0, 1). It IS easy to venfy that sm log x IS a solution of this dlffe~l ntial equation on the interv=

(0, (0).
26.2.1.3 Remark: If we were to c6nsiderthe differenital equation

a2
y" +- Y = ° ----------------(26.2.1.3(1))

x2

We would note that

OOdx . 00

J -( ) = + 00, f p(x) = ~+oo '819'
1 r x 1

The test would fail. Since the differential equation is of Eule type, we may solve it. It will be

2 1
seen that solutions are oscillatory (that is, h~ve an Inflnityof zero on (1, (0), when a >4' and

. . 2 1
are nonoscillatory when a :s;; 4 .

-- -.. x dx .
The reason the test fails: is ';"·~l for this equation [r (x) = 1J the integral Ir (x) becomes

infinite too rapidly. To overcome this difficulty, we transform equatio .'(26.2.1. 3( 1» by means of the
substitution
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1

Y=X2 z

2 1a --
and obtaining (xz')' + 4 z = 0 --------------:-- (26.2.1.3(2))

x

solutions z of (26.2.1.3(2» will be OSCillatory if and only if solutions y of (26.2.1.3(~) are
oscitatory, Theorem 26.2; 1 applied to (26.2.1.3(2» yields the result that the solutions of (26.2.1.3(2»

2 1 .21 .
and hence those of (26.2.1.3(1)) are OSCillatory if a >4"' If a =4"' al~solutions of (26.2.1.3(2))

~n9 of (?9.4.1.3(t)() are nom)s(;illatory. It follows then from the Sturm comparison theorem that all
.' 1

~olutipns of bqth equatlons ~Iso are nonscillatory when a2 <"4 .

~tis frequently helpful, tf the test Oftheorem 26.2.1 fails to appply to an equation in the form
(26.1.(1»'wetr" the substitution.

, 1

y=(~)2 z

an~ to attempt to apply the test giv~n by the theorem to the resulting differenital equation in z .

F9r completeness-of the theory , we add the following result.

26.2.2 Tt\eqr~{n : Every nonnull solution of equation (26.1 (1» has at most a finite number of zeros
on tl;lE;!intervC!1a s x < 00 , if

x7~ < +00 and h~{x) dx <M, a s x s;»:
ar(x) " a

whef~ .M is any positive constant.

TM~prQQU~ ~eyoA~ ..th.e S,c08.~:?,nais omitted.

~6.3,OS:CPl4L;~TI'ONS<:OF THE ~ESS.EL EQUATION

2" , (2 2) 0x y +XY.+ X - n y = --------;:----------(26.3.(11)
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where n is a constant. In this section, we show that every solution y(x) of (26.3.(1)) is

oscillatory on (1, (0).

Put Y ( x) = u ( x) v (x) in (26. 3( 1», where u and v are twice d fferentiable functions. Then

Let y( x) be a solution of (26.3.(1» .

This implies

I

If 2x2 v' + X V = 0 then 2x v' + v = 0

dv 1
This implies - = --dx

v 2x

1
Thus v (x) = J; ---.:-----------(26.3(3))

Hence v'(x)=- 21x vex)

v"(x) = _![XVI(X ~ vex))]
2 Xk

1 [3 ] 3-- --vex) = -vex)
2x2 2 4x2

substituting these values in (26.3(2)), v> get

16
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X2 V u" + (% V ( x) - ~ V ( y) + (X2 - n2) V) u = 0 .

This implis

[
1 n

2
Ji.e u"+ -+1-- u=O.. , 2 2

4x X

i.e. u" + (1 + 1- 4n2 J u = 0 ------------------ (26.3(4»:
4x2

Now our aim is to show that everynonnull solutionof (20.3(4)) has infinitely many positive -
zeros.

The equation (26.3(4)) is of the form (26.1.(11)) with rex) = 1, and

[ I-4X2Jp(x)= 1+ 4x2 .

00

Clearly, f r(x) dx = +00

1

00 X[ 1- 4x2j
Now, f ¢(x)dx = Iim f 1+ 2 Idt

1 x~oo 1 4t)

= lim {(X-I) + (1-4x
2
) (_!)X}

x~oo 4 t
" 1

= lim {(X -1) + (1- 4n2) (1- !)}
X~OO 4 X
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=+00.

Thus all the hypothes of Theorem 26.2.1 is satisfied and he ce every solution u (x) of

(26.3(4)) is oscillatory.

Now, since y(x) =v(x) u(x)

1= r u(x)"X .
1

and Fx is nonoscillatory and u(x) is oscillatory, it follows th t Y (x) is oscillatory.

Thus every solution of Bessel's equation is oscillatory.

26.4 SHORT ANSWER QUESTIONS
26.4.1 : Prove the final statement of theorem 26.2.1.

26.4.2 : Showt hat sin (log x) is a solution of

, 1
( X y') + - y = ° on (0, 00) .

x

26.5 MODEL EXAMINATION QUESTIONS

26.5.1 : Let r (x) be positive, and suppose that r (x) and p (x) ar continuous on the inteval

0< x < 00. If the two improper integrals

00 dx 00

f -( ) = +00, f p(x)dx = +00
1 r x 1

then show that every solution y (x) of

(r(x)y')' + p(x)y = °
vanishes infinitely often on the interval 0 < x < 00.

26.5.2 : prove that all solutions of y" +a2 y = 0 (a"* 0) are oscillato on (1, (0) .
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26.5.3 : Showt hat the substitution y = u (x) z in the differential equation

(r(x)y'Y + u[(ru')' + pu Jz = 0

26.5A :Test the equation

." ( 1 J 'xy + 1+-- Y +Y = 0
logx

for oscillation of solutions on the interval (2, 00) .

26.5.5: Show that all solutions of the equation

(xq y')' + xq y = 0 (q constant) are oscillatory on the interval (1, 00) .

25.5.6 : Prove that every solution of the Bessel's equationj . x2 y" + xy' +( xf - n2) y = 0, n

constant is oscillatory.

25.6 EXERCISES

25.6.1 : Show that solutions of the differential equation xP y" + k2 Y = 0 (p constatn; k2> 0)

are oscillatory on the interva~ ('1, (0) if and only if either p <2 or p = 2, k2 >~ .

)

Hint: Consider separately the. following cases: p s: 1, 1< P < 2, p = 2, P > 2 .

25.6.2 : Show that the substitution y =U (x) z in the differential equation

(r (x) y')' +p (x) y = 0 yeilds the equation

25.6.3 : Show that all solutions of the equation

,
(xq y,) +xq Yr = 0 (q constant) are oscillatory on the interval (1, (0).
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. n ( 1/, °25.S.4: Test theea.uatlon xy + 1+ log x)Y + Y =

for oscilaltion of solutions on the interval (2, 00) .

25.6.5: Prove that if 7[xp(x) - .~]dX = +00 the solutions of y" + (x)y=O are oscillatory on
1 4x

(1, 00). Show that the solutions are monoscillatory on (1, 00) if 4x2 P (x -1::::;° for x large. Assume

that p (x) is continuous on '[1, 00].

26.6.6 : Prove that if

}[x p(x) - _1 ] dx = +00,
o 4x

the solutions of Y" + P (x) y = ° are oscillatory on (0, 1]. Sho that if 4x2 p (x) -1 S; 0, for

x positive and sufficiently small, the solutions are non oscillatory n (0, 1). Assume p (x) is

continuous onJ. 0, 1].

26.7 ANSWERS TO SHORT ANSWER QUESTIONj
26.4.1 : The solution is similar to the proof explained in the proof of throrem 26.2.1

26.4.2 : Write y = sin (log x). It is trivial to see that this y (x) satisfie .

I 1
(xy') +- Y =0 on (0,00)

x

26.8 REFERENCE BOOK
Walter Leighton - An Introduction to the Theory of Ordinary Differential Equations -
Wadsworth Publishing company, Inc. 1970.

)

Lesson Writer:

Dr. G. V.R. Babu.



Lesson - 27

TWO TRANSFORMATIONS ON A SELF
ADJOINT DIFFERENTIAL EQUATION

27.0 INTRODUCTION
It is frequently useful to transform an equation of the type

(r (x )y')' +p (x )y = 0 ---------- 27.0 (1)

into an equation of the form

y" +p(x)y = 0 ------------ 27.0(2) .. ,

Here we assume that r (x), r' (x), r" ( x) and p (x) are continuous, and r (x) > 0 in [a, b].

In this lesson, we illustrate the two commonly used transformations.

27.1 THE FIRST TRANSFORMATION
Consider the differential equation 27.0(1); i.e.

(r(x)y'Y +p(x)y = O.

Put y=u(x)z, (u(x»O) in (27.0(1)).

Then by using y' = u'z + U z'

and y"=u"z+2u'z'+uz",

from (27.0(1)), we get

r'(u'z + U z,) + r(u"z+ 2u' z' + uz") + puz = O.

That is

r u" z + 2ru' z' +r u z" + r'u'z + r'uz' +pu z = o.

On multiplying by u and simplifying, we get
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(see exercise 26.6.2 of lesson 26).

1

Let ru2=1 oru=(r(x)) 2

Then from (27.1(1)), we have

z" + p(x)z = 0 where p(x)=u[(rul
)' + pu J.

27.1.1 Remark: In section 27.1, we used the transformation y=u (x)z , and itwas a transformation

of the dependent variable.

27.2 THE SECOND TRANSFORMATION
An equation of the type (27.0(2)) can also be obtained by transforming the independent

variable. In this case, we put

X

f
dt

t= - ------------ (27.2(1))
a r (t)

Therefore

dt 1=
dx r(x)'

Since r (x) > 0, t is a strictly increasing function of x , and equation (27.2(1» also defines

x as an increasing i,unction of t·. We call this function get) . Then,

y' = dy = dy. dt = _1_ d~. = _l_y
dx dt dx r (x) dt r (x)

and ( I)' d.1 ( . ) dt .. 1"r y = -y = - - y - = y--
dx G" dx r(x)'

Now the equation (27.0 (, ) becomes
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I
- ji+ py = 0;
r

i.e. ji+rpy=O;

where the product rp in (27.2(2)) means

, rp = r (g(t )) p (g(t ) ) .

27.3 EXAMPLES
27.3.1 Example : Solve the differential equation

X2 y" - 2xy'+(2+x2)y = 0, (x>O) ------------ (27.3.1(1))

Solution: The given differential equation is of the torrr.

a(x)y".+ b(x)y' + c(x)y = 0

where a(x) = x2, b(x)=-2x; c(x) = 2+x2.
)

To put (27.3. 1(1» into self -adjointform, multiply (27.3.1 (1» by a: x) exp [ f ~i:jdxJ
1 (2X J 1 1 1i.e. - exp f--dx = -. - = -. Then we get

x2 x2 x2 x2 x4

( 2J1 " 2, 2+x-y --y + -- y=O
x2 x3 x4 .

It can be written as

lxl2 y) + (
2 ::2Jy= 0,-----------(27.3.1 (2»)

which is of the selfadjoint form

I

(r(x)y') +p(x)y= 0,
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. . 1 2+x2
where r(x)=2 and p(x) = -4-'

x x

1

2
By ~sing a ~ransformation of the dependent variable, that is y =U (x) z = (r (x)) z = xz

in (27.3.1(2))

we get z" + p (x ) z = 0 , where

=1

Thus n.e transformed equation is

z" +z=O.

We know that sin x and cas x are two linearly independent solutions of this equation.

Suppose that zl (x) = sin x and Z2 (x) = cos x . Thus the two linearly independent solutions of

the given equations are

YI (x) =xsinx; and Y2 (x) =X cos x .

27.3.1.1 Remark: By applying the second transformation 27.2(1) and proceeding as in section
27.2, we get the transformed equation of (27.3.1 (1)) as

ji+

2
3

2+(31)

9t2
Y = 0 --------- (27.3.1.1 (1))

In this example, the transformation Y =U (x) Z of the dependent variable led to all. easy
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. solution of (27.3.1 (1)),while (27.3.1.1 (1)) appears to be less interesting. In practice, however, both
transformations are useful, and either may have advantages over the other in a given situati~n.

x dt
27.3.2 E~ample : Employ the transformation t = f r (I) to solve the differential equation

where r ( x) >0 and continuous on the interval [a, b].

x dt .
Solution: By substituting t=!r (I) , proceeding as in the section 27.2, the given differential equation

becomes

1.. 1 0- y +-y = .
r r

Since r >0, it follows that y + Y = o.

We know that its solutions are Yl (I) = sin I, and Y2 (t) = cos t, and are linearly

independent. Thus, the two linearly independent solutions of the given equation are YI (x) = sin x

and Y2 ( x) = cos x where x =g (t) , an increasing function of t

27.4 SHORT ANSWER QUESTIONS
27.4.1 : Transform the equation

( 1 'J _(2 + x2 J - 0-Y + -- Y-
x2 x4

into the form

2

3
2+{3t)Y+ Y = 0

9t2
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27.5 MODEL EXAMINATION QUESTIONS
27.5.1 : By"using suitable transformation, transform the equation

(r(x)y')' +p(x)y = 0

into an equation of the form

y" + p(x)y = 0

where r, r', r" and p are continuous and

r(x»O on [a,b].

27.5.2 : Solve the differential equation

27.5.3: Transform the equation

by means of y=u(x)z, u(x).>o,

and thus find two linearly ,independent solutions of the equation.
,

27.5.4: Solve the differential equation

u'(x) z" - u"(x)z' + u,3 (x)z =0
...-.:~

where u' (x) >0 and u" ex) is continuous on an interval a < x <h .

27.6 EXERCISES
27.6.1 : Transform the equation

X2 y" - 2mx Y' + [m(m+ 1)+x2 Jy = 0 by means of y=u (x )z, u(x»O, and

. thus find two linearly independent solutions of the equation.

Ans: x'" sin x, X"'I cas x .

27.6.2 : Solve the differential equation
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u' (X ) z" - u" ( x) z' + U,3 ( X )z = 0 ,

where u' ( x) >0 and u" (x) >0 is continuous on an interval a < x <b .

Ans, : cl sin u (x) +c2 cas u ( x)

27.6.3: Use (27.1 (1)) to solve the differential equation
\ .

(w2 (x) Y) + w (x) [ w" (x) +w (x) JY = 0,

where w(x) * 0 and of class Yf/" on [a, b].

sm x casx
Ans: cl w(x) + c2 w(x).

27.6.4: If u'( x»O, w( x)*O and u{ x) and w( x) are of class Yf/" on (a, b) , show that linearly

independent solutions of the differential equation

[w~ (x) y'J.' + I(w:(x)]' +u'(x) W(X)] w(x)y == 0 are
u (x) l u (x) .

sin u (x) casu (x)
and --'--'-

w(x) w(x) .

27.6.5 : Show that the linearly independent solutions of the differential equation

sin x" cos x"
are --- and , provided n * 0

xln xnJ

27.6.6: Use the result in Exercise 27.6.5 to solve the differential equation

27.6.7 : Use the result in Exercise 27.6.5 to solve the differential equation
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Z7,6,8; Bya suitable choice of the function u (x), transform the differential equation

y" - b(x)y' + c(x)y = 0

by means of the substitution

y= u(x)z

into a differential equation of the form

z" +p( x) z = O.

Here assume b' (x) and c (x) are continuous on an interval [a, b] .

27.6.9: Given the differential equation

y"+ b(x)y'+c(x)y = 0 ---------- (27.6.9(1))

where.b (x) and C (x) are continuous on J = [a, b], show that every solution that vanishes

at a point x = Xo of I is a constant multiple of the solution

Y2 (xo) Yl (x) - Yl (xo) Y2 (x) ---------- (27.6.9(2))

where Yl (x) and Y2 (x) are any linearly independent solutions of (27.6.9(1)). Then

considering Xo as a variable parameter, show that

~ [Y2 ( xo) Yl (x) - Yl ( Xo ) - Y2 (x) ] = Y2 ( Xo ) Yl (x) ...:yi (Xo ) Y2 (x)COCo _
is a solution of (27.6.9(1)) linearly independent of (27.6.9(2)).

27.7 ANSWERS TO SHORT ANSWER QUESTIONS
27.4.1 :The given equation is of the form

(r(x)y')' +p(x)y = 0

()
1 2+x2

where r x =2 and p(x)=--4-'
x x
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x dt x 2 x3

Put t =J-( ) = Jt dt = -
Or t 0 3

and using the procedure mentioned in section 27.2, we get

r/x)Y+PY =0

[
2+X

2Ji.e. x2 Y + ~ y = 0

[
2+X2 J

i.e. Y+ 7 Y= 0

Hence,

2·

3
2+(31)Y+ y=O.
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Lesson - 28

MORE ON OSCILLATION

28.0 INTRODUCTION
In this lesson we present a necessary and sufficient condition for the solutions of a self-

adjoint differential equation

I

(r(x)y') +p(x)y=O

where r (x) >"0 , and r (x), p (x) are continuous on the interval 1=[a, 00), to be oscillatory.

28.1 A THEOREM ON OSCILLATION
28.1.1 Theorem: A necessary and sufficient condition that the solutions of

I

(r(x) y') + p(x)y = 0, ------------- (28.1.1(1))

where r(x»O, and r(x), p(x) are continuous on I=[a, 00), be oscillatory ts tnat there

exist a function u ( x)"* 0 of class 0::' on I for which the following conditions hold:

\

OOd OO[ ]f --;- = + 00, f u (r u') I + pu dx = + 00

a ru - a
------- (28.1.1 (2))

,Proof: If v (x) and w (x) are solutions of (28.1.1 (1)) then
\ .

r v" + r'v' + pv =0

and rw" + r'w' + pw =0.

».



+r(v2 +w2)w[rw" +r'w' + pw]

2 ( 2 ·,2 ,2 2 2 ' ,) . .=r v w +v w - vv ww (since v and ware solutions of

(28.1.1(1))

= [r(vw' -v'w)J2

where k = r (v w' - v' w) .

Thus u (x) is a solution of the differential equation

3 [ , ] 2ru (ru') + pu =k ,a S x < 00 (28.1.1 (3))

with k=r(vw' -v'w).

Thus, when v (x) and W (x) ate linearly independent, we have k = r w ( v, w) :f:. 0 on I , and

thus u (x):f:. 0 on I. Hence v (x) and w (x) cannot have a common zero.

It may be noted conversely that the differential equation (28.1.1 (3» with k = 1 , namely

ru3 [(ru')' +puJ =1,

. v(x)
always has a solution u (x);f::.0 on I [replace v ( x) by k 'for example].

If II (x) ;f::. 0 is any function of class <C'on I ,and if we make the substitution y = u (x) z in

(28.1.1 (1», then we get the diffrentiai equation
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(ru2z')' + u[(ru')' + pUJz = 0 ------------------ (28.1.1(5)) (see 27.1(1»

If u ( x) is such that

(ru2)u [ (n/)' +pu J = 1 ----------------- (28.1.1 (6»

Then two linearly independent solutions of (28.1.1 (5)) are

Clearly (28.1.1 (6)) is same as (28.1.1 (4». Therefore, the solutions of (28.1.1 (1» are
oscillatory on I if and only if the solutions of (28.1.1 (5)) are oscillatory on I .

It follows that, if the solutions of (28.1.1 (1» are oscillatory, then there exists a function

u (x) ~ 0 of class cr::' on I such that

00 d 00 [ Jf ~\ = +00, and f u (ru')' + pu dx = +00.
a r(x)u (x) a

Conversely, if there exists a function u (x) ~ 0 of class cr::' on I such that

00 dx 00,f 2 =+oo,and fu[(ru')+puJdX=+OO
a r(x)u (x) a

then by theorem 26.2.1 , the solutions of (28.1.1 (5» are oscilaltory on I . Hence the solutions,

of (28.1.1 (1» are oscillatory on I .

This completes the proof of the theorem.

28.2 EXAMPLES

28.2.1 Example : Find the criteria for the existence of oscillatory solutions of y" + P (x) y = 0 ,

where p is continuous on [a, (0) .

Solution: By comparing the given equation

y" + p (x) y = 0 -------------------------------(28.2.1 (1))

17)

I
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with the equation (28.1.1 (1)), we have

r(x}=1. We take i1=1.

Then the conditions (28.1.1 (1» become

<Xldx <Xl

f 2=+00, and f u(u"+ p u [dx = +00·
1 u 1

Set 11 = xa. Then these conditions become

<Xl dx <Xl . .

f ~ = +00, and f[a(a-l)x2a-2 + x2a P(x)Jdx = +00 ---------- (28.2.1(2»
1 xl'

,I

From the first condition in (28.2.1 (2», we have 2a ::s; 1. 1 neretore, if there exists a constant

1
a ::s; - such that

2

oo

f[a(a-l)x2a-2 + x2a p(x)Jdx = +00,
1

then by theorem 28.1.1, it follows that the solutions of (28.2.1 (1» are oscillatory.

1
28.2.1.1 Note : ~nexample 28.2.1, in particular a="2' then the solutions ofy" + p( x)y =0 are

oscillatory on [1,00) if

r I ,/""

co [ 1 ] If xp(x)-- dx';+oo. (see exercise 26.6.6)
1 4x

28.2.2 Example: Show that the ~olutions of y" +(sin x) y = 0 are oscillatory.

Solution : On comparing

y" +(sin x) y = 0

with (28.1.1(1»,. we have p(x)=sinx, and dX)=I. Let us take a=l. The conditions

(28.1.1(2» become
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ood 00f ~ = +00, and ju(u"+pu)dx=+oo.
1 u I

Set u (x) = 2 +sin x. Then clearly the first condition is satisfied.

The second condition becomes

00 /J (2+sin x)[ :...sin:-x+sin x {2+sin x) Jdx=+oo
1

This condition will be satisfied if

X.

lim f sin x(il +sin x )dx = +00,
X-4OO

1

which is readily verified.

Thus by theorem 28.1.1, the solutions of

y" +(sin x) y = 0 are oscillatory.

28.2.3 Example: Showthat the solutions of the differential equation

"k 0y +-Y=
x3

(I :<s;x<oo) ------'-(28.2.3(1»

are nonoscHlatory on fl, 00)

k
Solution: On comparing (28.2.3) with the equation (28.1.1(1», we have r( x)= 1 and p( x )='3'

. x

By choosing u ( x) =..Ix , we have for sufficiently large x ,
,
\
i- ( k) J../!'

11 11"+ x
3

II <0, so that

00 [ , ] 00 ( k·)JlI (ru') + pu dx == J u u"+311 dx-cti
1 l' x

Thus by theorem 28.1.1, solutions of (28.2.3(1» are nonoscillatory on [.L 00).
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The fol/owing theorem is an immediate consequence of (28. i .1(5)).
, '

·28.2.4 Theorem : If there exists' a positive function u (x) of class <1:" en (a, 00) .sucn that

\ (r u')' + pu « 0 for x large, then the solutions of (28.1,1 (1)) are nonoscltlatory on that intervai...

28.3 SHORT ANSWER QUESTIONS

~ 28.3.1": Show that the solutions of y" +(sin x) y = 0 are osciliatory.

28.3.2: Discuss the oscillation of solutions of y" +(COS_4X) Y = O.

28.4 MODEL EXAMINATION QUESTIONS
28.4.1 : Prove that a necessary and sufficient condition that the solutions of

(r(x)y')' -+ p(x)y =,0

where r (x) >0, and r (x), p (x) are continuous on J =I a, 00) , be oscillatory is that there

exist a function u (x )*0 of class (C' on J for which the following conditions hold: I

00 dx
J-=+oo

ru2 '
a

.1U[(I'U')' + pu JdX:= +00

a

28.4;2 : Find the criteria for the existence of oscillatory solutions of y" + p (x ) y = ° ,where p is

continuous on [a, 00) .
,

28.4.3: Showthat'the solutions of y" +(sinx)y = 0 are oscillatory.

28.4.4 : Show that the solutions of the differential equation

. k
y"+3'Y = 0, (l:Sx<oo),

x

k is a positive constant, are nonoscillatory on [1, (0),

28.5 EXERCI~~S
t.
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\28.5.1 : Show that the solutions of the differential equation

. [1 k]yW + -2 + 2 2 Y = 0 (c s x s (0)
4x· x log x "

1· 1
are oscillatory for k > - and nonoscitlatory for k ::;- .

4 4

28.5.2 : Show thatthe solutions of (xP y' )'+k2 xfi .v= 0 are oscilaltory on [1, <X)) for every constant

f3 , and each k =t: 0 .

28.6 ANSWERS TO SHORT ANSWER QUESTIONS
28.3.1 : Solutions of example 28.2.2.

~8.3.2 : The solution will be like that of examples 28.2.2. Verify the condition (28.1.1 (2)) of theorem
28.1.1 with suitable u .
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Lesson - 29

LIAPUNOV'S INEQUALITY AND
GRONWALL'S -INEQUALITY ,

29.0 INTRODUCTION
In this lesson we prove famous inequalities namely Liapunov's inequality and Gronwalls'

inequaHty.

29.1 LlAPUNOV'S INEQUALITY

29.1.1 Theorem (Liapunov's Inequality) : If p ( x) is continuous on the interval 1= [a, b] and if

there exists a solution y{ x) ¥ 0 of the differential equation

y" + p (x) y = 0 ------------- (29.1.1 (1))

that has two zeros on I ,then

b·
4fp+(x)dx~ -... b=a

a
--------- (29.1.1 (2))

where p.; (x) = ~[p( x)+lp(x)IJ.

Proof: Consider the differential equation

y" +p.; (x) y = 0 ---------- (29. '\.1 (3))

We·have p+(x)~ p(x) on [a, b].

Suppose that there exists a solution y (x) of (29.1.1 (3)) such that

y(a)=O=y(c)

with y(x»o on [a, c]c I I
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Since y" = - p ; (x)y ~ 0 on (a, c), fet x=( be a point between a and c at which

y ( x) attains its absolute maximum. (We' note that since y" (x) ~ 0 on (a, c), y (x) possesses

no relative minima on that (open) interval; it may posses a line of relative maxima, however). Draw

the two chords that connect the point p (I, Y (t)) wtih the points (a, 0) and (c, 0) , as shown in the

Fig. 29(i).

p(t. y(t))'?~l~. . ~.: , ",

- ~~::~_~_____.:~ L _
a t ~ b , \

Fig. 29(i)

, Then

It follows that

y'(a)- y'(c» yet) + y(t).
t+a b-t

That is

_ y' (c) - y' (a) >b - a
yet) (t-a)(b-t)

Thus

C C b1 f n 1 f <, , -a
yet) aY (X)dX1!y(t);P+(X)Y(X)dX > (t-a) (b-t)

'!I/',F" /'/

Since y(x)<y(t) fora" xE(a, c), we have

1 C C
yet) J p+(x) y(x)dx < Jp+(x)~x

a " ' a

Thus we have, from the above two inequalities
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This implies

b 4 b-a 4
jp+(X)dx>-;sincec )( )2:-;b-a. t-a b-t b-aa

with the equality only if t is the mid-point of (00, b) .

This completes the proof of Liapunov's inequality.

29.2 EXTENSION OF LlAPUNOV'S INEQUALITY TO THE
GENERAL SELF-ADJOINT EQUATION
In this section, we extend Lipaunov's inequatlity to the general self-adjoint differential equation

(1' (x) Y')' + P (x) Y = 0 -~------- (29.2(1))

where r ( x ) >0 , and r ( x), p (x) are continuous on J .

x dx
Put 1= f -( ) in (29.2(1)), then we get. r x

a

y+r(x)p(x)y = O. -------- (29.2(2»

If a solution y (x) of (29.2(1» has consecutive zeros x = a and x = C , then there is a solution

y, (I) of (29.2(2)) with consecutive zeros at I ~ 0 and at I ~ In ' where to ~!rt) .
According to theorem 29. 1.1 applied to (29.2(2» we get

'0 4f r ( x) P -t1 ( x ) dt > - .
o to

\.. x dx
Evaluation of this inteqral by means of the substitution t =f- yields- . dx'

a
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c ~ c _J- Jp, (x)dx > 4 ---------- (29.2(3»
a r (x) a

This is the Liapunov's inequality for the self-adjoint differential equation (29.2(1)).

29.2.1 Note: The number 4 in (29.1.1 (2)) and (2\~.2(3)) is a "best" constant, in the sense that it
cannot be replaced by a larger number.

\
29.3 GRONWALL'S INEQUALITY

In this section we develop a generalization and an extension of what is known as Gronwall's
inequality. This inequality is frequently used to establish the uniqueness of a solution of a system
of differential equations.

, )
29.3.1 Theorem (Gronwall's inequality) : Suppose that u (1) and v (1) are continuous and e (t)
is of class (C' on an interval 1= [a, h] .

If v(t)~O and e'(t)~O on I, and if

t
u(t):::; e(t) + f vet) u(t)dt (a:::; t :::;h), (29.3.1 (1))

a

t
then u(t)::; e(t) exp fv(t) dt ---------- (29.3.1(2»

a

when e( t) is a constant, a (29.3.1 (2)) becomes Gronwalls' inequality.

t
, Proof: Set q(t) = f vet) u(t) dt ,

a

then q'(t) = v(t) u(t):::; v(t)e(t) +v(t)q(t) ------- (29.3.1(3))

Thus q'(t)-v(t)q(t),:::;e(t)v(t).

(by (29.3.1 (1))

Mu Itiplying both sides of this ineq uality by exp [ - !v (t) dt] (and chang ing t to s) we have
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!{q(s) ex+ tV(t)dt]},; C(s)v(s)exp~ -1v(t)dt ]

Integrating both sides of this inequality from a to i, we get '. ~
>."'1

That is

q(t) ,; t c(s)v(s) exp[t v( r) d( r)] ds , since q(aH

Using integration by parts and applying (29.3.1 (1)), we have

Since c' (s ) ~ ° on I , it follows that

[
/ ] t [t] r .

U(f)::; c(a) exp f v(t)dt + f e'(s) exp f v(t)dt ds s: e(t)exp f v(t)dt.
a a a a '

"This computes the proof of the theorem.

29.3.2 Theorem: If v(t)~ 0, c'(r)::;o on I ,and if

t
u(t)2 c(t)+ f v(t) u(t)dt, then

a

t .
U(t)2C(t) exp f v(t) dt ------- (29.3.2(1))

a

If e(t) is a constant c, then
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t
U(t) ~ c exp f v(t) dt.

a

Proof: The proof is strictly analogous to the proof of theorem 29.3.1. In place of (29.3.1 (3)) we
have

q'(t)~ u(t)c(t)+v(t) q(t)

The inequality (29.3.1 (4)) becomes

and because v(t)~O and c'(t)~O on I, we have

U(t)~c(a)exp[f v(t) dtl+ f c'(s)expf f v(t) dtJdS,
a J a La

and (29.3.2(1)) is then immediate.

29.4 AN EXAMPLE

29.4.1 Example: Suppose that a function U (I) satisfies the inequality

t
U(/) ~ t+ f u(t)dt,

o
t ~ 0 --------- (29.4.1 (1))

. '.\

Then prove that

Solution: On comparing (29.4.1 (1)) with (29.3.1 (1)), we have c(t) = t, t ~ 0; v(t) = 1, t ~ O. Thus

by using Gronwall's inequality (29.3.1 (2)), we have

U(I) ~ C(I) exp OV(I)dt)
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(i.e.) U (I) ~ 1 expO dl) = 1e' ------------ (29.4.1 (2»

-
Observe that the solution et -1 of the differential equation u' - u = 1. Clearly satisfies

(29.4.1(1». Thus substituting U(f) =et -1 in (29.4.1(2», we get

et - 1 < t e' t > 0 .- ,-

29.5 MODEL EXAMINATION QUI;STIONS
29.5.1 : State and prove Liapunov's inequality.

29.5.2 : State and prove Grcnwall's inequality.

29.5.3 : Suppose that a function u (t) satisfies the inequality.

t
U(f)::::; t+fu(t)dt, t?:.O

o

Then prove that

i-1 < t et t ?:. 0- ,
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