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LESSON -1

PRELIMINARIES
< " • - - '; J:.} ... " ~ -:«:

Prerequisites: Notation and set the()reticpreli~nari~s:

We do not attempt.to define a set and assume .familiaritywith the idea of a set.

We understand that' a set consists ofelements. These are objects which make up the set.

The relationship between a set A and an-element x of A is described variously.

Xo belongs to A - x is in A - x is an element of A - A'contains x.

This situation is described bythe symbol x eA.

A set is also described in the form {x : ..... } or {xl :.:.}

The relationship x does not belong to A is denoted by x ~ A.

We a~sume the existence of one andonly one set w;itho.utelements in it. This set is called

the empty set and is denoted by <p.

A set with one element only, namely a is calledasingleton set and.is'denoted by {a}. The

set of natural numbers is denoted by N :.

'J N={1,2,3,4, .. .}

. Ifn EN, In stands for the set {1, 2, ..... n}

If A. B are sets we say that, A and B are equal, in symbols A =B if they have the same
\

elements: A = B if and only if"x E A <=> X E B"

A is called a subset of B equivalently, A is contained in B iffx E A => X E B.

In this case we write A c BiIf A c B and A;t: B we ..saythat A is a proper subset of B

and write A c B or simply A c B.~ ~

If A ~ B we also write B;2 A. A c B is also representedby.B ~. A.
. - ". - -

If A, B are sets "A union B" in symbols Au B isdefined.by

Au B = { x :" .::A orx E B}

,A intersection B, in symbols A n B is defined by

A n B \ {x : X E A and x E B}
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The complement of a setB in a Set A, in .symbols, A - B (or A \ B) is defined by

A 7'" B = {x : x E A and x ~ B}

Note that there is IlO need 1.0 assume thai B <;;; A to define A n Most of the times we

consider complements of subsets of a fixed set X. In this situation, i.e. when A c X we

write 'A r fo~ X - A. . .

Indexed Set:
.', '

f. ~_: .c:
Suppose that I is a set, A is a set and corresponding to each i E I we are "given" a

definite element Xi E A. What we mean by "given" and "how" it is "given", we do not

ask.

", r
. ,

In this situation we say that {x.}, E I is an indexed collection of elements from A or {xihEl

is an indexed family of clements from !\ or [x.] i, I is an in~kxl.'d set of element~ of kit

might happen for some ie I and j Eo I, i '* j, Xi = Xj . If A is a set and n is a positive

integer, the indexed set from A, {x.}, E In is also denoted by {XI, X2,' ..... xn} or

{x/l::;i::;i1}, Where In = {I, 2, ."" n}. The indexed set {Xi }i E rt-Jfrom A is also represented

by {x, / n ErN } or {XIl/ n ~ I} or {XI, X2,X3 .} or {XI, X2, Xn }. A note of
.', I,.. '. . . . .

caution to 'be remembered is that in general. {x I, , xn} 7; {x J, X2, Xn }

We must also keep in mind that the elements in either of the above sets need not

be distinct. Forexample when n > 1,

{(_I)I, (_1)2, '''/' (_l)n} = {- 1, I} and

{ (~1)nh;::.J =7' {,.hl)

'i'-

Arbitrary unions, Arbitrary intersections:

We will be dealing with set~whose elements are subsets ofa given setsay X. We

use the words "class", "family" for such sets, The class of all subsets of X is called the

power set of X and is denoted by P (X),
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SupposeX'is'a.set.tC is a class of subsetsofi X indexed by a setI : C = {Ai h el.

By the union ofthe sets in C or by the union of the indexed family {Adie I we meanthe

set {x : x E A, for some i E I}. This set is denoted by UAi or UA.
, i<;l AEC , . ,

When n is a positive integer and C fAI:.' .... /\IJ Ui\ ,UAi , UAi and AI,
AEC iEI. i=l

U A2 ..... u An - all these symbols are used for the same set namely the union of the sets

'" ",

in C. When the index set I = tN, the symbols UA , UAi , UAi represent the union of
, .".EC" " 'iEN . n=1 ••

the sets inC.

By the intersection ofthe sets in Cor the intersection of the indexed family {Ai}iel

we mean the set {x : x 'E'Ai for every IE n·
, , I " , _ ,.\.! ... ,..', .'

This set is denoted b~nAj ar'nA.
iel AEC

Whcnnisapos.itiveillteger(~nd<::: ,fAI, .. :.. AIl1
n

nA, nAi ,nAj aridA{ (1 A2 r: ...\il An -all these symbols are used for the same
AEC iEI" i=1

set namely the intersection of the sets in C. When the index set 1= tN , the symbols nA,
- A~

'"
nAi' nJ?i
iEN n=l

h . . fh~' . Crepresent tt e intersectiono t ie-sets In .
, • > , '''''-" ,t '"

In these definitions we have not said whether we assume the index set I to be non
! ' , •

empty or not. There is no need to .assume that I is non-empty. Let' us consider the

situation, when I = $. An elemetit x E X is an e~ement of. UAj if and only}f XE Ai for
~ ,',' I' IV ,:' : >

some iE$. However there isnoiin the empty set. Therefore UAi =~
iEq,

i"
,:~ "
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In a. similar wayan element x E X is in nAi if and only if x E Ai for every i E
iEcJ>

~. Equivalently x E nAj if and only if X E A, for some i E ~. However thereis no i in
IE. .

the empty set. Therefore nAi = X
, IE.

These properties are also in accordance with the natural laws:
, ,

The bigger the index set the bigger the union and smaller the intersection and the smaller

the index set, the smaller the union and bigger the intersection.

A set A is said to be finite if either A = <l> or for some positive integer n, A is in

one to one correspondence with In, that is there is a bijection from A onto In. In this case

we say that A is a n-element set and write A = {ar, a2, ..... an} where the a, are precisely'

the elements of A. A is said to be infinite if it isnot finite. A is called countably infinite if
-

A is in one to one correspondence with the set of natural numbers tN i.e. there is a

bijection from A onto tN. A set which is either finite or countably infinite is called

countable. A set which is not countable is called uncountable.

We list out a few properties 01" countable and uncountuhlc sets without proofs.

Facts:

1. A subset of a finite set is finite set.

2. If A, Bare finite-sets so is A u B.
I

n

3. If n is a positive integer and Ai is a finite set for each i, 1 ~ i ~ n then so is UAi .
i=1.

4. A set A is finite iff there is a positive integer m and aninjection from A into 1m•

5. A set A is finite iff there is a positive integer m and a surjection from In onto A.

6. A is countable iff there is a surjection from tNto A.

7. A is countlble iff there is an injection from A into tN. '
I .

8. A subset of a countable set is a countable set.

9. If {Ai h E IN is a collection of sets where A, is a countable \;f i E N then UAi IS a
ieN

countable set.
\
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1.5 Functions: A function consists of three objects: Two nonempty sets X, Y and a

"rule" f which assigns to each x in X a unique y in Y. this y determined by x and f is

denoted by f(x) and is called the image of x under f or the value of f at x. f is called a

mapping or transformation or operator. X is called the domain of the function and

f(X) = {f(x)/xEX} is called the range of the function. A function whose range consists of

a single element 1~ called a constant function.

A function determined by sets X and Y and a rule f which assigns to each x in X a

unique y in Y is usually denoted by f : X ._) Y- Ill' X -.-~.--.~Y. Some times it is also

represented by x ~ f (x) without specifically mentioning x, y. It is also customary to

represent a function by ,its rule f alone without mentioning X and Y or without'

mentioning Y.

A function f is called an extension of a function g and g is called a restriction of i·

if domain of f contains domain of g and f(x) = g(x) for all x in dom g.

If f: X ~ Y is a function for each subset B s Y we define the preimage of B
-I

under f or inverse image of B under f as the set f (B) = {x E X I f (x) E B}. If Y E Y, ,
-I I -I -I U 1 -Iwe write f (y) for f ({y)). Clcarlyf (8)= f (y), It is possible that f (B) = ~

yeB

. -I
If f: X ~ Y is a bijection then 't/ y E Y, f (y) is a singleton set. Thus we have a

-I
rule which assigns to each y in Y a unique dement in X namely f (y). This rule

r' :Y ~ X is called the inverse off.

If f: X~ Y and g : Y ~ Z are mappings we define the product, also called

composition g of: X ~ Z by (g 0 f) (x) = g(f(x) ) for x E X.

For f: X ~ X and n E N we define f" by f 0 fl-I where to is the identity map ix= I defined

byi, (x) = x V X E X.
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Products:

Let A be.a non empty set and n a positive integer, n ~ 2. An ordered n -tuple is a

functionJom In into A and this function. is denoted by the corresponding images in a

"specific" ~ay ~e image 0~ i + \ SU~~~~d;~gthat of i,and all the images bei~g written in

a row witiin round brackets: (a., .... an) where aj is the i~a.g~ of i and is called the ith

component of the n-tuple.
I '

An, orderel2. -t~~le is ca~l~da~ ordered pair, anord~r.ed 3-tup.le, is called an ordered tri~d
and so on. If n' IS a positive mteger and {Ai hE I .i IS a family sets, the product of this

n "

family in symbols TI Ai is defined to be the set of all ordered n - tuples (a., .... an)'
i=1

"where ai E Ai for i ,E II•. ITAi, is also dl:IlPtc
o
d,by ~I x A, X All' If Ai ""A 'tj i, we write

;=1

" ,',n

An,for I1Ai . The mapping pj :ITAi ~ Aj defined by
, ieI." i=1 '

pj (a., .... an) = aj is called the jth projection. ., I ' : ",':, . "," ' , ,
If {Ai}, E I is any family of sets, the collection of all functions f: I ~ UA; such that

\
' ;el

. ' .
ViE I, f(i) E A; is called the product of the family of sets {Ai}. E I and is denoted by

00ITAi' In particular we write I1Ai = I1Ai' An element f E I1Ai is also
ieI ieN. ;=1 ;\,,1, ~' .

represented by (f(i) hE lor {fJel.For j E Ithe mapping Pj:11A; ~ Aj defined by pj
. i("'

({fi}ieI) = fj is called the j-th projection or j-th coordinate function. At times we delete

"the']-th" aJd simply say pr~jecti~nor coo;di'n~te'f~nction. ,:.,', " "', .

Posets:
;"

A relation on a nonempty set A is a subset of Ax A. If R Is a relation on A we

write aRb Whenever (a, b) E, R for convenience. A relation R on a nonempty set Pis
~ i' ". " . ~...~' I : ;

called a partial order relation or partial ordering on P if it satisfies." I ' . . .,.'. ", " ";'" ,',::
(1) Reflexivity: a R a v a E P' ,

(2)AritiSymbetfY: aRb & bRa => a = b '

(3) Transitilty : aRb & b R c ='> a R.c.
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The pair (P, R) is called a partially ordered set or simply a poset. The most commonly
.- .'. '

used symbol fora partial ordering on a set P ;.'1 s; called less than or equal to.

. .

If (P, ~) is a poset, a E P b E P & a *- b and' a ::;b we write a< b.rn this situation

we say that a is less than b. We also use ~ and>, respectively called greater ·than or equal

to and greater than as follows.

If a ::;b we write 'b ~ a and b > a when a < b.

-, If (P, ~) is a poset, x E P and YEP, there is no guarantee that x, y satisfy one of the

following conditions:

x=y, x<y, y<x

For example, the set P (N) is a poset w.r.t. the partial ordering s, defined by A::; B <=>

A ~ B. This ordering is called set inclusion. In this poset the set E of positive even

integers and the set Oofpositive odd integers do not satisfy any of: E'= U,'E c 0; 0 ~ 'E. '

In a poset (P, ::;)elements a, b are said to be comparable (compatible) if a.~ b or b ~ a,

A poset in which every pair of elements is comparable is called, a totally (linearly)

ordered set or a chain.

A subset A of a poset (P ~) is said to be bounded above if there is an element

x E P such that a ~ xf~r every a E A. Any suchx iscalledan upper bound of A.

s : r

An element x E P is called a least upper bound or supremu-m of a subset A of P if
1 .

(i) x is an upper bound .of A i.e. a ~ x "Ii a E A and

(ii) x $ y if y is an upper bound (If A.

A'least upper bou~d ~sabbriviated by Lu.b orsim'ply by i~b.'There is no guarantee
. , J .;\, _'" ~ '. ", ; =, ';' ;; .•'_.'i.' F.- . ,,:.: ,'i~.I; ':_ .~ . L

that a set A c P which is bounded above has necessarily a lub. However A cannot have
'f : B :

more than one least upper bound.
, /, .'

. ;' .-- , ,
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. \. .' . . . . .

The least upper hound of A)$ denoted.by any of: sup A, l.u.b. A or lub A.

A ~ P is said to be bounded-below if..3 ay e P such that y ~ x V X E A. Any such y .
. - ".

is called a lower bound of A in P, y is called a greatest lower bound or infimum of A in

(P~) if

(i) y is a 'lower boundol'A .illY and

(it) z s y V lower bound.z ofAin P.

A sft which is bounded below need not necessarily have a greatest lower bound in

P. Hqweve1r.A,cannot have-more tha» one infimum. The infimum of A is denoted by inf

A or g.l.b, or glbA.

A poset (P, ~) in which every paira, b has both lub and gib is called a lattice, .

A poset (P,~) in which every n,qnempt:y subset has glb and glb, is called a complete

lattice.

i
Zorn's Lcmma:L

We lre frequently cncoutered with situations we can sat;SfYourselves by showing,
the exi'steil1c 'of an eleIi.)ents~(i'sfying preassignedconditions without bothering about

other detail~. The main t~¢htiiquewhich is handyin this context" is the famous Zom'si

lemma. This lemma has severffl equivalent forms such as Axiom of choice, Hausdorff s

maximal condition and so 011. Asnone of.these is established SO far using the existing sett
. \.' .' " . .

theoretic properties and as. the aG"G,~tlfances of.anyof these equivalent statements does not

contradict tl\e theories developed so far these arc 'accepted as axioms. For further details!

see Appendix.

EX~l'lnprcs:. I) (rN., $)

2) A = fin {f}. Define riJ$ n ¢:> 1111 11

3) A = rN"\ p'}. Definem S; 11 <=> n / m.

ZORN'S LEMMA.: Let (P, ~)be a:poset in which every chain has an upperbound. Then

P has a maximal element m in the ~cnse that x E P; m ~ x.implres m = 'S.
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We now fix the following notation:

Z The set of integers.

Q The set of rational numbers

IR The set of real numbers

IR-

The set of real numbers a;) a ~ 0, i.e. non-negative real number

The set of real numbers a :> a ~ O. Clearly 0 E R I n R-

Exercises: Let f : X~ Y be a mapping. Prove the following.

1) If AI ~ A2 ex then f (AI)c f(A2) e Y.

2) If Ai c X for i E I then f (UA;') = UfCAJ and f CnA; ) c nfCAJ.
. lEI lEI lEI lEI

3) Show by means of ari example that fCnA; ) can be a proper subset of nfCA;)
;el ie l

... -1.-1 .
4) If HI C H2 C Y then f (HI) C f (H2)

\ .

.' 5) IfBj c Y \;f j EJ,/!hili i-I (UBj] = UCI (Bj), (1 (nBj] = nr-I (Bj)
.. jEJ jcJ . 1<:1· .. je J

/ . . .

6) Show that V B ~ Y, rl (HI) = {f-I (B)}I

7) Function f: X ~ y and g : X ~ Yare ;aid to be equal: f = g, if V x EXt (x) = g(x).

Show that f : X ~ Y is one-to-one iff there ~Kists rmip'pingg : Y .-; X such that g. f =. .
I I :- . . . ~ ••. :;.. , , ; ~ _ ••.•

i,where ixis the identity function defined on X by ixCt)= t V tE X.

8) Sho~ that f: X ~ Y is onto iff there exists a Ii : ~ ~. X such that f h = iy

9) rrr.x ~ Y is a:mapping show that VB c Y.

Lesson Wrilet: V.J. LAt ,



LESSON - 2

TOPOLOGICAL SPACES - ])E~FINITION

AND SOME EXAMPLES

2.1 Introduction: The word topology, a branch of Mathematics, which is derived from

Greek words has' literal meaning, "the science of position". A topological property is a

property of a "topological space" which is possessed by all topological spaces that are

"homeomorphic" to the space. Topology can be defined as the study of all topological

properties of topological spaces.

If we think of a topological space as a diagram drawn on a rubber sheet a

homeomorphism may be thought of as any deformation of this diagram. A topological

property, then would be any property of the diagram which is invariant under any

deformation. That is why topology is also called a rubber sheet geometry.

In this lesson we start with the definition of a topology on a set, a topological

space, a subspaceof a topological space, the topology generated by a class of subsets of a

set and provide a good number of examples. A special type of topological spaces, called

metric spaces deserve separate attention because of their resemblance with the real line.

We make a preliminary study of these spaces as well.

2.2 Definition: Let X be a nonempty set. A class T of subsets of X is called a topology

on X if it satisfies the following conditions.

(i) The union of every class of sets in T is in T. i.e. if {Ai / i E I} is any class of sets

in T indexed by a set I. Then UAj 0 is in T and
\ ie l

(ii) The intersection of every finite class of sets in T is in it i.e. if C ~ T is any finite

class of sets and G is the intersection of the sets in C then GET.

If T is a topology on X we call the ordered pair (X, T) a topological space.
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I
2.3 Remark: In definition 2.2, condition (i) is described by saying that T is closed under

arbitrary UlliOl1Swhile condition (ii) is described by saying that T is closed under finite

intersections.

2.4 Remark: The empty set is finite and the intersection of a family of subsets of X

indexed by ithe empty set is the universal set X. Like wise the union of a family of sets

indexed bY
r

the empty set is the empty set. Thus if (:' T) is. a topological space, then

~ E T and 4C E T.

2.5 SAQ: Show that condition (ii) of definition 2.2 holds if and only if X E T, and AET,
I .

B E T~AnB E T.

2.6 Ex.mlle: Discrete Topology: .
Let X be a noncmpty set. For T we take the power set P(X) ofX. T is a topology.

This is clJar since P(X) contains all subsets of X and hence is closed under arbitrary
I

unions and finite intersections. This topology is called the discrete topology on X.

I \
2.7 Example: Let X be a nonempty set and T = {<jJ, X}. Clearly T is closed under

arbitrary unions and finite intersections hence T is a topology on X. This topology is

called thelindiscrete topology on X.

2.8 EX.mrle: Suppose X is a nonempty set. We take T to be the class consisting of all

A~X where .

(i) either A = <jJ or

(ii}X/ J is a finite set.
Then T is a topology on X. This topology on X is called the confinite topology or the

topology lof finite complements.

Solution: Let {Ai / i E I} be any family of sets in T.

If UAi I~~then UAi E T by (i) I I.
iEl iEI
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-

If UAi :j;~ thepAi~:j; ~.for some i, .Now
iel

x~·UAi =nCk\Ai) cX\ Aio
iEI iEI

Since X\Aio is flnite,n(X \ Ai) is finite.

UA . fil C··)· ielr . T'
:.;<, ,saIls T n _So 1~ m •• --

Hence T is closed under arbitrary unions.

xvx- ~.SoX e T.

If AI, A2are in T arid AI ("'\A2:;:' cjI then AI:;:' cjI:;:. A2, so X-A\, X...: A2are finite.

Hence X - (AI n A2) = CX- At) u CX-r--' A2) is finite. Hence At ("'\A2 E T. Hence T is
l

closed under finite.intersection.Thus.T is a topology on X.

2.9 SAQ:We ftx a symbol 00 which is different froinevery na!uralr:t~mber and write,

fi= ftJ u {oo}. The set T consists of all Sets A where (i) A c ftJor (ii) A c ftJ,00 E A and

if\ A is a finite subset of ftJ.Then T defines a topology on ftJ.

2.10. SAQ: IfIT\, T2 are topologies oliXitis not necessarily tru~'.that T\uTi is a

topology on X. Give an example. .' .' . .' .

2.1~ ~~: If T .is a to~Ology on X it is not necessarily true t~at T is closed under

arbitra intersections. GIve an example. '. , -.

1 .
I

2.12 Propositi~n: If {T, liE' I} isanyclass of topologies on a nonempty set X and
I

T = nTi then T is a topologyon X Further 1fT is any topology on X such that
, iEI! I .' _ r . -, .... '. .' . .

l '. . \' ' .
.T C T, V I ,E J, then T c T., . .

'I .' . . ".
Proof: T isclosed under. arbitrary unions :.{A;,. I a. e&} c T

I" .. .'.

;=> {Act/a E 11~ 'C V'i EI .... .
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. ·=>A~ uAl cT, Vi E I (·:T; is a topology)
ueLi.

=> A E T, ViE I

=>A ET -
I. .

Tis closed under finite intersections: Ii C:c; T is any finite family of subsets ofX,C ~ T,

ViE!.

=>.G= n A E r, ViE I (since r, is topology)
AeG

,

\

=>GE nTj
ie!

.1
=>GeT 1

I .
Sine Tis closed under arbitrary unions and finite intersections T is a topology on X.

IfTI is a topJlogy on X such that TI ~ r,ViE l,it is clear thatT1 c'T.- '.

arisen of Topologies:

. efinitipn: Let X. be anonempty set and TI, T2 be topologies on X. We say that T I

is w aker ( = coarser) than T2 and write in symbols TI :s: T2 if TI c T2. In this case we

also aythat 11'2is stronger (~finer) than TI and write r2~ T1.

rk: ThF indiscrete topology T= {<I>, X} alone is contained in every topology on X

so th t T is Iweaker than every topology on X. Thus, we may say that the indiscrete

topol gy is the "weakest" topology on X.

Like wise thf discrete topology P (X) consisting of all subsets of X is the "strongest"

topol gy on r as it is stronger than every topology on X.

roPOsjion: Let A ~{Au Ia ~.~} be a colIeetion 0~Ubsets of X. There is a unique

gy T on X such that • . '. .
i

(i) A c T and
I

(ii) T c 1[' for every topology T' containingA.



Topology and Functional Analysis "'i5 . Topological Spaces - Definition and.some example

Proof: Let C be the class of all topologies T' on X containing A. since P (X) E C, C is

nonempty. If T =fl1 T', T' E C by proposition 2.12 T is a topology on X.

Since A ~ T' '1/ I ' E C, A c 1'., .

1fT' is any topology on X such that A ~ T1then T' E C so T ~ T'.

Thus T ~ r:1T' jatiSfies the required conditions. ,

1fT, IS a topology on X satisfying (1) and (11), T, E \..; hence T ~ T,.

Since T satisfies (1) and (ii) TEe hence T, c T.

..ThusT,=T

This proves uniqueness.

2.15 Definition:
1

Given A = {Aa / a EL1} ~ P (X), by the topology generated by A we

mean the topology T which is the smallest topology containing A.
I

T = 11 {I' /T, topology on X,A ~ TJ} .

T is also called the topology generated by A.

2.16 proPo'iti+; Given any collection {Tu I '" E ,,} of topo Iogi es on X there is a unique

topology T on Isuch that .,

(i) Ta c T r a E L1

(ii) If T, is any topology such that Ta ~ T 1 '1/ a E L1 then T ~ T ,. ..

Proof; Let C b~ the collection of all topologies on X that contain Tu for every « E " and

To be the intersection of all topologies in C.

By proposition 2.14 To is the smallest topology on X containing Ta V a E 1'1. Thus To is

he required topology.
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2:17 Theorlm: Let X be a non-empty set and let T(X) be the class of all topologies on X.

Let ~ on T(X) be defined by T 1 ~ T2 iff T I ~ T2 for T I, T2 E T (X). Then (T(X), ::;) in a

complete larice. . . . \ .
Proof: Clearly the indiscrete topology IS the least element and the discrete topology is the

greatest elerLent in (T(X), ~).
I

Let {Ta}a E /j, be a non-empty familyoftopologies on X.

Let A = {T E T (X) / Ta c T \i a E y}.

Let T2 = nT.
TEA

Thus T I and T2 are topologies on X and it is easy to verify that

TI = g.l.b. {lfa / a E ~} and

T2 = l.u.b.g {T; / a E .1}

Hence (T(X), ::;) is a complete lattice.

2.18 Propos1ition: Let T be a topology on a nonempty set X.

Y c X be a nonempty set and

Ty = {V II t /VET}

Then Ty is a topology on Y.

Proof: (1) Ty is closed under arbitrary unions: Let {Ai / i E I} be an arbitrary class of

sets in Tv- Fbr each i E I, :3 Bi E T 3Bi II Y = Ai

Hence ~AI~~(B; nY) ~ (~B;) n Y. Since r is closed under arbitrary unions

I

UBi e r hence UAi E 'ty'

(~) 'tv is c1dsed u~der fintie intersections: Clearly YET y . So it is enough to prove that

A E r, and ~ E Ty => A II BET y' Since A E Tv- :3 AI ET such that
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A=AIIlY.

Similarly B BI E T:3 B = Bj rv Y.

Since A, E T and B, E T, A, 11 B, ET. Hence A 11 B = (Ai 11 BI) 0 Y E Tv

Hence r, i~ ~ +IOgy on Y. "

2.19 .Qefimtiom The topology Tv = {A 11 Y / A E T} IS called the relative topology on Y

and (Y, Tv) is called a subspace of (X, T); If (Y, Ty) is a subspace of (X, T) it is

customary to say that Y is a subspace of X.

In definition 2.15 the toJolOgygenerated by a given family A of subsets of a set X (,. ~)

is described as the smallest topology on X containing the given family A. In the

following problem we provide a characterization for this topology.

2.2? Problem: Let X be a noncmpty set and A c P (X) write '1'1 (A) for the family of

subsets of X each of which is the intersection ofa finite class of sets in A and

T2 (A) for the family of subsets of X each of which is an arbitrary union of sets in A.I . .

Prove that T2 (TI (A») is the topology generated by A on X by providing the following.

1. TI (A) is cloled under ~nite inters~ctions and A ~ T] (A)

2. T2 (A) is cloled under arbitrary unions and A ~ T2 (A)

3 .. T ~ T, (Ti (fl) is a topology on X and A£;; T, (Ti (A))

4. If TI is any topology on X containing A then T is contained in TI.
-, I . "

)

Solution: (1) N~tc that 1'2 (T1 (A)) is the family or all unions of finite intersections of
. . .

sets in A. If A is empty, then TI (A) = {X} and T2 (T](A» = {~, X}. Clearly {~, X} is the

topology generated by A. So, we may assume that A is nonempty. Let A = nC E TI
CeF,

r ,

(A) and B= nC E TI (A) where F(, F2 are finite subsets of A.
CeF2

'..
Then AIlB = n CE ~I (A) becauseF. U F2 is a finite subset of A. Clearly Ac TI ,(~)r

. CeF,uF2 . .

,.;,;
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(2) let {Au a ED} be any arbitrary family of sets in T2(~). For each a:3 a set

Fa~A3Ah= nC.
CeF"

2.8 Acharya Nagarjuna University

Then F =UFcl c A and UAu = U( ucJ = Uc ~ '1'2(A)
. ubt. uet. uet. CeF" CeF

Henc~ I, rf) is closed under arbitrary unions. .

Clearly A r I, (A) .

(3) We claim that T = T2/TI (A)) is a topology on X containing A. Clearly J contains ~

and X. Frohl(2), T is clos~d under arbitrary unions. We show that T is closed under finite

intersectioJs. For this-it 'is enough to show that A E T, BET.
=> A nB 1T ....

Let A = JAi and B = UBj where Ai E TI (A) and Bj E TI (A) for i E I and j E 1.
ie\ jEJ

Then A l"B = U'Cij 'where c., Ai n Bj. Since TI (A) IS closed under finite
, ie l.je J

--int€rsectiois (by 1)

Ai n Bj = fiJ E TI (A) ViE I andj E 1.

Then A n r = UCij E T
I , (i,j)elxJ

SinceT is rlosed under tiniteintersections and arbitrary unions T is topology on X. Since

A <;; II (Arc, I, (II(A» A c I. .

4, Let TI be any topology on X containing A. Since T is closed under arbitrary unions

and finit~ il1tersections, TI (A) ~ TI and hence T = T2 (TICA)) ~ TI ..

..

.This completes the proof.

We now cbnsider special type of topological spaces called metric spaces. A metric on a

setX resembles the distance between real numbers and so several properties of the usual

distance oJ the real line IR may be extended to a metric space.
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2.21 Definition: Let X be a nonempty set. A mapping

d: X x X ~ IR iJ said to be a metric on X if d satisfies.

(i) d (x, y) ~ 0 V x, y in X and d(x, y) = o if and only if x = y

(ii) d (x, y) = d (y, x) V x, y in X (d is symmetric)

(iii) d (x, y}::; d (x, z) + d (z, y) V x,y,z in X (triangle inequality)

If d is a metric on X, the pair EX,d) is called a metric spac~. We also.say that X is

a metric space with metric d.

1 .
2.22 Definitions: Let X be a metric space with metric d. If Xo E X and r > 0 is a real

number, the op~n sphere S, (xo) with center Xoand radius r is defined by .

S. (xo) =; {x I,: E X, d (XI xo) < r}

S, (xo) is also called the open sphere centred on Xowith radius r.

)

The set S, [xo] ={x I x E X, d (x, xo) ::; r} is called the closed sphere centred on xci with

radius r.

G c X is said to be an open set, simply G is open in X if for anyx E G, there exists a real

number r > 0 such that S, (x) c G.

2.23 Proposition: Let (X,d) be a metric space and Td be the class of all open sets in X.

Then Td is a topology on X.

Proof: (l) Clearly ~ and X are in Td.

Td is closed under arbitrary unions: Let {G, I I E I} be any class of sets in Td and

G = UG i . X E G => X E Gi for some i E I: Since G, is open there exists
iel .

r> 0.3 S, (x) C;;;; G, C G. Hence S, (x) C;;;; G. Since this holds V x E G, G E Td.
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I
(2)\Td is closed under finite intersections: Let G, E T, and G2 E Ta. X E G. (l G2 .

=> X E GI rnd also E G2. .

=>Irl > 0 and r2 > 0 :;)Sri(x) ~ o, and Sr2(x) C G2

;=> ISrl(x) (l Srz (x) C GI (l G2. -

. Ifr = min {n, r2} and y E S, (x) then

=> d (x, y) < rj (i = 1,2)d (x, y) <l
=> Y E Sri (x)(i = 1,2)

=> y E Sri (x) r, Sr2 (x) ~ G, (l G2

=> S, (x) c G) (l G2

Since coJesponding to every x EG) n G2 ~ r> 0 :;)Sr (x) ~ G) (l G2, G) (l, G2 E Te-

Hence td iJ closed under finite intersections. This shows that td is a topology on X.

2.24 Defi1ition: The topology r,on X defi~~d in proposition 2.23 is called the topology

on X induced by the metric d or simply the metric topology corresponding to d or the

usual topology on the metric space X. The sets in Td are called the open sets generated by
I

the metric r on the space X.

2.25 Example: the usual topology on the Real line IR.

By Ianopen interval in IR we mean a set of the form (a, b) = {x / x EIR, a < x < b}

where a E IR, b E IR. A closed interval is of the form [a, b] = {xix E IR, a ::;x ::; b} and an

open closed interval is defined to be (a, b] = {xix E IR,a < x ::; b}, and a closed. open
I ' .'. '.

interval is defined to be [a, b) = {x i a ::;'X < b}. The absolute value or modulus of x E IR

is/defined Jy ,
• I

I~I{., x if IX ~ 0

-x if x < 0

Let Tu = {t/G c IRand T::/ x E G,:3 a b > 0:) (x - 8, x -I- 8) ~ G}.

Tu is a tOPilOgy on IR. This topology is called the usual topology on IR.

Verification of the conditions for a topology.
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(i) T u is closed under arbitrar~ unions: Let {OJ / i E I} be an arbitrary class of sets in Tu

and 0 = U 0 i . X EO=> X E OJ for some i E I. Since for any such i, OJ E T 0;-'.3 a 0 > 0 3
iel

(x - 6 x + 6) ~Oi => (x - 6, x + 6) c G. This is true V x E G. Hence GET u-

(ii) TN is closed under finite intersections: let 01 E Tu and O2 E T u

X E 01 n O2 => x E G, and x E O2
=> ::J 61 > ° 3 (x - 61, X + (1) ~ 01, and

02> 0 :3 (x - 82, X + (2) ~ 02.

If 0 = min {oJ, 02},(X - 8 x + 8) c: (x - 8), x + 01) n (x - 82, X + 02) C G. n G2

Thus x E Gl n G2 => :J 8> 0 :3 (x - 0, x + 8) ~ G. n G2.

Hence 01 n O2 E Tu.

Thus T u is a topology on IR.

Consider the real line IR. We define a metric on IR by d (x, y) = [x - yl" This IS called usual;

. metric on IR. Note that the usual topology on IR mentioned above is the same as the

. topology induced by d.

2.26 The Euclidean space IRn
:

If n is a positive integer, IRn stands for the set of all n - tuples (x., X2', .... xn) where

x, E IR for 1 ~ i ~ n. Ifn = I we write 1R1= IR and identify (xi) with xi. n tuples

-x= (x., ... xn) and y = (YI, .... , Yn) are said to be equal if Xi= Yi for 1 ~ i~n.We define

x + y = (x. + y), .... , Xn+ Yn). Ifa E IR we define eX: X = (a xi, ..... , a xn)

We define Ilxll~ ~X12 + X2
2 + + Xn2 and call this the norm ofthevector x.

This norm is called the Euclidean norm on IRn and IRn with this norm is called the

Euclidean space.
Properties of the norm:

.(1) Ilxll~ 0 \7' x E ~n and Ilxll= 0 <=>x = 0

Proof: Ilxll= ~XI2+ ..... + Xn2 ~ 0 and /lx/I= 0 <=>x~ + ..... + x~ =0

<=>X2= °Vi<=> Xi= °Vi<=> x = (0,0, .... 0) = 0 vector.
I .
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(2) lIaxll~LIlxll

1I=II'~k xi + +a'x! ~Ial'(Jx:+ +x!)

=> lIaxlll = lal2 1I~1I2=> IIax II=]«] IIxll .

(3) IIx+ yll j5; IIxll+lIyll V x, y in IRn

Let x = (XI, .... , xn)and y = (YI, .... , Yn).

Then x + y:::=(xi, Yl, , Xn+ Yn)

'SO that Ilx1yI\2= (x, + YI)2+ ..... +(Xn + Yni and. r-r-r-r- _

(l\xlI+I\YI\)2:::=X~+ x~ +Y~ + +Y~ +2 ~x~ + +x~ ~Y~ + +Y~

Hence IIx+~II' -(Ilxll + IIYI1l2~2 {tXi v, - ftx~ ~Y~}

""?" is +jgh t~ show that2 t. x, Yi S~t. xi ~t. yi
This inequality, known as Cauchy Schwarz inequality can be proved directly by

considering the square of the difference. For details see SAQ.

2.27 SAQ (Cauchys' Inequality):
\ .

If XI, ..... xnand Yr, .... Ynare complex numbers

n

Ilxi Yi I ~
i=l

The Euclidean distance, on IRn is defined by

d (~' y) ~ 11\ -yll~ t.(Xi~ Yi)' where x ~ (xi x,) and y ~ (y" y,)

d is a metric on IR

. d (x, y) ~ lit - yll ;0, 0 and d (x, y) ~O ¢o> IIx - yll ~ 0 ¢o> x ~ Y
d(x,y) = '\)1 - y)11= II(y- x)11= d (y,x)
d(x,y) - d(x, z) - d (z,y)·

~ IIx - Y 111(lix - z] + IIz- YIIl S 0

since Ilx - yl\ ~ Ilx - z] + I\z - yl\
'.
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Hence d(x,y) s d/x.z) +d(z,y) Hence this function d satisfies the metric properties. The
r

metric d defined by d(x,y) = IIx- yll is called the Euclidean metric. The topology induced

by the Euclidean metric is called the Euclidean topology on IRn.We now concentrate on

the Euclidean plane IR?

2.28 The Euclidean Plane 1R2:
. "-

1R2= { (x I, X2)/ x, E IR 1 s i s 2} is called the Euclidean plane

Ifx = (XI, X2),y = (YI, Y2);d (x,y) = ~(XI - Yl)2 + (X2 - Y2)2

S, (x) = {y / d (x, y) < r}

= {(yt, Y2)I (XI - YI)2+ (X2- Y2)2< r2}

S, (X) is the open sphere with centre at X= (xj, X2)and radius r.

The open rectangle (a, b) x (c,d) = {(XI,X2)/ a < x, < b, c < X2< d}

An open strip is of the form (a, b) X IRor IRx (a, b).

2.29 The Unitary space e~:/
If n is a positive integer, en stands for the set of all n - tuples (zi, .... , zn) where z, E C V

i, 1 $ i $ n. If n = 1 we write c' = e and identify (z) with z. If z = (z., .... , Zn) and

z' = (z], ..... z:,) ECn, we saythat z = z' when z, = z: for 1 s i $ n. We define z + Zl =

(z, +z:, .... zl1+z~)andfora E e, az=(azJ, ..... ,azn).

For z E en we define Ilzll= JI Z, 12+ + IZn 12 where z = (zi, , zn).

We call1lzll, the norm of the vector z.

As in the case of the Euclidean space IRnwe can show that the norm defined above

satisfies the properties of the norm:

(i) [z] ~ 0 V Z E en and Ilzll= 0 if and only if z = 0

(ii) Iiazil = lalllzil Va E e and z E en and

(iii) V z, z' in en, Ilz+ z'lI $llzll + Ilzlli

Consequently d (z, z') = I/z- zlll defines a metric on en. en with the metric d is called the

Unitary space.
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2.30 problcmJQo ~ {x +iy / x E Q, Y E Q}, then Qo is countable and Z E C E > 0
I \'

=> SE (z)n (Qo \ {z} ) *~.

Solution: Let z = x, + iX2E C, and E >0. Choose al E Q, a2 E Q 3 IXI - ad < ~ and. ~2

,,1">- a,l < ~ Td'X;" a; (i~1,2)

, a = al + i a2 E Qo and [z - al = I(xl - al) + i (X2 - a2)1

I ~
~ J(x, t a,)' + (x , -a,)' < \1;-+;- ~s

Thus a E Se(z)tn Qo and a"::/:.z. Hence a E Ss(z) n Qo \ {z}.

2.31 The spaces IR00 andC 00:

m \ .
We write K""foli all sequences {xn} in KIlJ for which II Xnl2 < 00. The space lR

oo
is called

n=1

We write K for either IR or C and KIlJ for the collection of all sequences {x-} where

xnEK'ifnEtN

the infinite dimensional Euclidean space while Coo is called the infinite dimensional

Unitary space. Ih L~sson 2 of functional Analysis some properties of this space, which is

denoted by 12,a)e studied.

/
There it is provld that

(1) J(oo ('7'.f) is avector space .

(2) ,llxll ~ {t,1LI'r' for x ~ {x-} E K~ (~I') has the properties of a norm i.e. for every

X E Ket;,

IIxll~ 0 and Ilxllr O if and only if x ::: 0

Iia X II=Iallixil r -x E K"" and a.E K and

Ilx + yll ::; Ilxll + lIyll 'if x, y E Koo
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This shows that d (x,y) = IIx - yl[ defines a metric on K"'. It is also shown that K"" is

separable. For details see Lesson 2 of Functional Analysis.

Y.32 Examples:

/
1. Let be any nonempty set. The discrete metric d on X is defined by

I

{
o if x = y

d(x,y) = iu
1 x:;t: y

Ifx E X and\O<r::; 1, Sr(x) = {y E X/d(x,y)<r< I} = {x}

Ifr> 1, S, (x) = {y E X / d (x, y) < r } = {y lYE X } = X

, Consequently, if'v c ?C and x E G, S1 (x) £; G. this implies that the induced topology

T consists of all subsets of X. Since T = P (X), the topology induced by the discrete

metric is the discrete topslogy on X.

For any x, y in lit, [x + yl ::; Ixl+IYI.This inequality' becomes equality when x.y have.the

same sign. Ifx < 0 ::;y < - x

y + x < 0 so Ix + Y I= -x -y S -x + y= [x] + Iyl

If x < 0 < - x < y then 0 < x + y so Ix + yl = x + Y < - x -i- y = [x] + Iyl

The other cases being similar; it follows that [x + yl ::;lx] +Iyl

Now define d (x,y) = [x - yl. d IS a metric on IR (verify)

Ifx EIR and r> 0, S, (x) = {y E ~ / Iy- x I< r} = (x - r, x + r)

A setG c IR is open if and only if V x E G :3 r> 0 with Sr (x) c d i.e. (x ~ r, x + r) ~ G.
,:,' .- 1·' ": ',.. ' . '-;' .•

This topology on IR induced by the metric is precisely the usual topology.

2.33 Problem: SuppostT X is a nonempty set and d: x x X ~ R satisfies
,

(1) d (x.y) ~ 0 for all x, y in X
(2) d (x, y) = d (y, x) for all x, y in X and

(3) d (x, y) = 0 iff x = y

Show that d is a metric 011 X ifI
d (x, z) ~ d (x, y) - d (y, z) for ad x, y, z 111 X iff

d (x; z) ~ Id (x, y) - d (y, z)llor all x, y, z in X
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SOlutionJ Suppose d is a metric on X. Then for all x,y,z in X

d (x, y) 51d (x, z) + d(z, y)

=> d (x, i) ~d(x,y): - d(z,y)

( /'= d (x, y) - d (y, z) by (2)

Assume fhat d (x, z) ~ d (x, y~- d ~y, z) for all x, y, z. Interchanging z and x we get

d (z, X), d (z, y) - d (y, x) usm~ (•..) we get d (x, z) = d (z, x) :: d (y, z)- d (x, y)

Hence d (X, z) ~ I d (x, y) - d (y, z)1 "

Assume Ithatd (x, z) ~ [d (x, y) - d (y, z) I 't;f x, y, z in X , ,

.Then d (r' z) ~ d (x, y) - d (y, z) = d (x,y) - d (z, y) (by 2) , .

=> d (x, z) +d (z, y),~ d.(x, y) for all x, y, z in x

Since th~ triangle inequality holds in addition to (1), (2) and (3) C1 defines ametric on X.
I ' '.

2.34 SAr: Suppose d : X x X ~ IRsatisfies

(1) d (x,x) = Q't;f X E IRand

(2) d (x] y) ~ d (x, z) + d (y, z) for ~lr x, y, z inR. Then d is a metric.

~.3S f,p blem: Let d be a,metric on '{C Define for x, y il¥ X

d ( ~ d(x,y)
I x, Yl ~ 1+dtx.y)

Show t lat d, is a metric on X
Show arso that if S ~(x) = S (x) w.r.to d and

S:I (x) = S, (x) w.r.to dt then S ~(x) = Sd~ (x) for r > 0'
I+r

Solution: Since d (x; y) ~ 0, d, (x, y) ~ ° 'vi x, y in X
> .• ' '. ",

Al~0 d, (x, y) = ° <=>q (x, y) = 0 ¢:> x = Y

d (x, y) = d (y, x) => d, (x, y) = d(x, y)I ' t+d(x,y).

I = d(y,x) =7dt(Y,~)I . l+d(y,x)"

To prore the triangle inequality for d., let a> 0, b > 0, c> ° and b + c ~ a.
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'fh 1 1en - ~--
a b+c

a b+c=> -- ~
l+a l+b+c

b c b C---+ <--+--
l j b t c l-r b r c - l-i-b l r c

Now put a = d (x, y), b = d (x, z), c = d (z, y) where x,y,z are in X and are all distinct.

By the triangle inequality for d we have

d (x, y) ~ d (x, z) + d (z, y)

Hence d, (x..y) ~ dj (x, z) + d, (z, y)

If d (x, y) = 0, the above inequality holds trivially.

If one of dj (x, z) and dj (z, y) is zero, say d (x, z) = 0 then x =, z and in this case lhs = rhs

= d, (z, x)

Hence d j is a metric on X.

1 1
y :t:. X and YES ~ (x) <=>° < d (x, y) < r <=> > -

. d(x,y) r

1 1 1+ r<=>1+ >1+-=--
d(x,y) r r

<=>Y E- S ~)I+r (x) and y :t:. X

Hence S ~(x) = S d~ (x)
l+r

2.36 Problem: Consider the set f\J = rN U {oo }

Define d (m, n) = I~-~Iif m, n ErN·

d (m, (0) = d (00, m) = ~ if me rN
m

and d (00, (0) = 0

Show that d is a metric on N
,.,

F •.•
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I . ,
Solution: WI e verify the triangle inequality only. Let m, n, p E. ttJ

1
1 11 1 1lfm, n, p E ttJ,d (m, n) + d (n, p) = --- + ---
m n n p

1 1
~ --- =d(m,p)m p .

lfp = 00 and m, n E tNd (m, n) + d (m, 00) = I~-~I+ I~-01 ~ I:~01 = d (m, 00)

111
If m, p E rN and n = 00, d (m, 00) + d (00, p) = - + -Imp

1 ,1 1
0-- ~ - - - = d (m, p)

p m p

Ifm=oo,p,nEn.J

d (I 1 1 1 I 11 1 1, n) + d (n, p) = - + - - - = 0 - - + - --
n n p n n p

1~0-- =d(oo,p)
p

The other cases are clear.

2.37 Answers to SAQ's:

SAQ 2.5: I fT is closed under finite intersections, A E T, BET

=> A n BET. As said in Remark 2.4 X E T.

Conversely suppose A E T, BET => An BET and also suppose X E T.

Then T contains the intersection of a family sets in T indexed bythe empty set.

n «n-1) J
If = {A), ..... An} is a non-empty finite family of sets in T then QAi = 0Ai n An

Thus we can apply induction on n. If n = 2 AI n A2 E T by hypothesis. Assume

n-\ n-\

that nAi E T whenever A, E T for 1 ~ i~n - 1. Since.A, E T and A = nAi , then
i=\ i=1
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nnAi = An;1~n E T by induction hypothesis. Hence the intersections of n elements in T
j~ ,

is in whenever it happens for n-I. So by induction this holds for all n E tN.

SAQ2.9: Suppose AI E T and A2ET. If one of AI, A2 is asubset oftN then so is AlnA2

so AI r A2 E T. If co E AI n A2 then tN\ At, ,~ \ A2 are finite subsets of tN. Hence

ftJ \(AI n A2) = (tN \ AI) uetN \A2) is a finite subset of IN. So AIJl A2 E T. Thus T is

closed under finite intersections as tN, the intersections of an empty family lies in T by

, )ndition(2) of this question and by SAQ2.5. That T is closed under arbitrary unions can

be proved as in example 2.g.

SAQ2.1Q,: X = u,2, 3}

TI = { ~. {l}, X }T2 ~ {~. {2}, X}

TI UT2={~,{1}, {2},X}

{1,2} ={l} u {2} e TI UT2 ,

SAQ 2.11: Let U, = {k Ik E tN,k ~ n } u{oo} for n ~1.

Un satisfies (2) of SAQ 2.9 so U, E T \;f n.
co,

{oo} = nUn e T
n=1

SAQ 2.27: .If x., ..... x, and Yl~ .... : Yn are complex numbers, '

n

L;I)(i v, I s
i=l '

".. ' / .•

Solution: We may as~ume thatx, and Yi are non negative rea! numbers so that

, 12 ,2 d 1 12- 2IXi Yi I =x, y., IXi " = Xi an Yi - Yi
.' '- .'.,'". -", " -~. .,.!:' -". . .'

.,-,.',":.
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/I . '".'·'Ii". '_ . ,". - ,: JLX~ y~ - LX; Y; + L(xrY~ -2'XiXjYiYj+X~Y~
i=1 (=1 . i<j ,

=>RHS~LHS

.'( r;'. r. ,.

n

= L (x iY j- x jY i ) 2 ~ 0
i=1 '

- :".

SAQ 2.38:

Put z ~ xt d(x, y) ,; d (x, z) + d (y, z). . -------(1)

=> d (x, Yj'; d (x, x) + d (y, x) ~ d (y, x) since d{x, x) ~ 0

=> d (x, Yj ,; d (y, x)

Interchange x and y so that d Cy, x) :s; d (x, y)
I " ' '

Hence d (x, y) = d (y, x)

I " X'"
Put x = y in (1) above. Then 0 = d (x, x):-:;d (x, z) + d (x,z)

','

= 2d (x, z)
Hence d (I' z);;' 0 'if x, z in X

Hence d is a metric.

\
2.39 Model Examination Questions: ' , .

1. ~efinr a topology on a nonempty set X and a metrie ~nX Show that every metrie

induces a topology on X.

2. Let X be a nonempty set, T == {AI i\cX, A = ~ or X / A countable}. Showthat Tis
~. ,', .• : -.' .'. : . .' • J _." If·· '

a topology on X.

3. Show that the class of topologies is 'a complete lattice with set inclusion.

4. If TI' T2 are topologies on a set X show that T I UI~is not.necessarily a topology on

X. Show also that there is a topologyT onx conta~ning b~th T I andT ~ ~d which, is '

"red in every topology containing T le T,.
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1. Let X be a nonempty set and T be the class of all subsets of X whose complements

are countable, Also let ~'E T. Then show that T is a topology on X.

2. Let Z c Y c X.'If T is a topology on X and Ty, Tz are the relative topologies on Y

and Z respectively show that (Z, Tz) is a subspace of (Y, Ty) i.e. Tz is the relative

topology on Z with respect to the topology Ty on Y.

3. Let X = {a, b c} T = {~, {a}, {a, b}, {a, c}, X}

Show that {X, T) is a topological space.

4. Find all possible topologies on X when

(a) X = {a} (b) X = {a, b} (c) X = {a, b, c}

5. Compare the topologies obtained in

(i)4(a) (ii)4(b) (iii) 4 (c)

6. Call a topological space metrizable if its topology is "Induced" by a metric. Show that

if (X, T) is metrizable then it can be metrizable in infinitely many ways.

Hint: Ifk > 0 show that d(x;y) and K d(x,y) give rise to the same topology.

7.- Let (X, d) be a metric space. Define

ifd(x, y) s 1
if d(x,y) > 1

Does d. define a metric on X.

8. Show that if (X, d) is-a metric space, x E X, Y E X and x * y there exist disjoint open

1 ( d S ( ) . . d . I H': I 0 d(x,y)sp Jeres S, x) an r y contammg x an y respective y. mt et < r < .
2

9. Using 8 show that the topological space{X, T) in exercise'S is not metrizable.

10. Let d(x,y) = [x - yiP where p ~ O. For what values of p does d define a metric on the

real line IR.

11. Show that the relative topology on the set Z of integers as a subspace of the real line

with the usual topology is the discrete topology on Z.

12. Show that the indiscrete topology on a set consisting of at least two elements is not

metrizable.

13. LetB be the collection of all open intervals (a, b) in IR,show that T2 (B) (Problem 20)

is a topology on fR.
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14. Let Bo be jhe collection of all intervals of the form (a, b) where a E Q and. b E Q.

Show that T 2 (Bo) is a topology on IR.

15. Are the to~ologies T2 (B),T2 (Bo) in (13) and (14) equal? Is anyone of them equ~l to

the usual topology? .

16.Letd" d, + mebicson a set X"~. .

Which of the following are metrics on X?

(a) d (x, y)\= (1 (x, y) + d2 (x, y)

(b) d (x, y) = max {dt (x, y), d2 ex, y)}

(c) d (x, y)\= )d~(x, y) +d; (x,y)

'Lesson Writer: V. J. LAL



·LESSON NO - 3

BASIC CO~CEPTSIN TOPOL;OGICAL SPACES

\
3.1 Introduction : In this lesson we study some of the basic concepts of a topological

space. The. terms open set, closed set, closure of a set, dense set, separable set in a

topological space are defined and their properties are studied. The first countability

axiom, the axiom of second countability are also introduced and the famous Lindelof's

.theorem along with simple but important consequences are proved. Separability in, .... . .,

relation to. second countabilityis also discussed.

A neighbourhood at a. point, open base at a point, isolated point, limit point, interior

point, boundary point and other concepts are aiso defined and some of their salient

features are proved.

Inthe process some subtilities in metric spaces in this context are also discussed.

3.2.Definitions :

Let (X,«) be.a topological space. VeX is said to be an open set or simply V is open in X

or V is open ifV e r.

FkX is said to be a closed set or simply F is closed inX or F is closed if its complement

F=X\F is open in X

If AcX, the closure of A; denoted by A., is the intersection of all closed supersets of A

Ie.., A = (1 {F\AcF, F is closed inX}

A is dense in X if A =X, In this case we simply say that A is everywhere dense or A is

dense.

(X,«) is said to be a separable space or X is said to be separable if X has a countable
1

dense subset.
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3.3 Remark: Since the intersection of the empty family of sets (in r) is the space X,

XE't. Since the union of the empty family of sets (in r) is the empty set o, ~E't .
, .

•.•. . \:"

..
Then ~ and X are open sets in x: consequently, ~ and X are closed sets. .

3.4 Exainples : If X is a nonempty set, every subset of X is open in the discrete

topology and hence every subset of X is closed, whereas in the case of the indiscrete, '" . I ,,.. ... ,

topology the only open sets are ~ and X, hence the only closed sets are ~ and X.

3.5 SAQ: If (x.d) is a metric space show that every open sphere is an open set.

3.6 Proposition: The class ~ of all closed sets in a topological space (x,r) has the

following properties .
.J

(i) ~E~, XEL

Oi) AE~, BE~ => AuBE~

(iii) {ANEI} CL => (liEI A, E ~

Proof: (I) follows by remark 3.3

We use De Morgan's laws:

(AuB)1 = A' (l B1 and

If A E~ and BE~ => AI er, BIE't

=>AlnBI E 't

6(AuB)1 e t

=>AuB E ~

Ai EL 'if iE I => Ai I E't \j iEI
I=> Uiel Ai E't.
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3.7 Corollary: The class L of all closed sets in a topological space in closed under

finite unions and arbitrary intersections.

Proof follows from proposition 3.6.

3.8 SAQ : Suppose z: is a class of subsets of a nonempty set X which is closed under

finite unions and arbitrary intersections. Show that

1 'Y = {A /AEL} is a topology on X.

3.9 SAQ If (X,d) is a metric space XEX and re-O, isSr(x) = Sr(x)? Justify your

answer.

3.10 SAQ : In a metric space (X,d) show that {x} is a closed set 'r;j XEX.

3.11 The Closure Operation:

We have defined the closure of a set A in a topological space (X;r) to be the intersection

of all closed sets containing A. The set X is closed as <j>E Y so that the collection of

subsets of X that are closed in (X,«) and containing A is nonempty. Moreover, the

intersection of any class of closed sets is closed so that A is a closed set containing A.

Moreover, A is the "smallest", closed set containing A since every closed set F that

contains A, also contains A.

We will p~..6~esoon that this closure operation assigning A to an arbitrary setA in x
satisfies "Kuratowski closure axioms". We will also prove that any operationon P(X)

satisfying these axioms induces a unique topology on X so that the dosed sets in this

topology are precisely those subsets of X that are invariant under this operation.

3.12 Proposition: Let (X;r) be a topological space the operation A ~ A from P(X) into

P(X), where A is the closure of A satisfies the following:
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K2 :A~A \
\

\

K3: A=A and

~:AuB= AuB.

Proof: By definition, A =(1 {FIF is closed and F;;>A}. So A eF V closed set F;;>A . Ip
- -

particular when A= ~, ~ e ~ since ~ is closed. Then ~ = ~ . This proves K I·

If A eX, then Aen {F/AeF, F is dosed}

HenceAeA

If AeX, then A is a closed set and clearly A <;;:;;A . Hence A ~~A .

Since A ~ A by K2, it now follows that A = A

Let AcX and B<;;:;;X.clearly by K2, Ac A ,

)

BcB so that Au B eA u B. Since Au B is closed,

A u B ~ A u B . Further A u B;;>Au B;;>A.

Since Au B is closed, A <;= Au B . Similarly B e Au B

Therefore A u B c:Au B

Hence Au B = A u B . This process Ka

3.13 Theorem: Let X be a nonempty set. Suppose that with every subset A of X a set

A is associated and that this association satisfies the following .

"Kuratowski closure axioms"

1) 4l=~ I

2) AeA V AeX

3) A=A V AcXand

4) Au B = A u B \I AeX and BS;;;X

. \
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Then there is a unique topology 1: and X such that a set AcX is closed in this topology if

and only if A == A .

Proof: Let 2:={A/ AcX and A= A}
-

Clearly ~ = ~ and XC:X eX so that X =X hence ~E2: and X E2: .

AEL,BEL=>A=Aand B=B

=>AuB=AuB=AuB

We prove that L is closed under finite unions byusing the principle of mathematical

induction on the number of sets. Clearly this holds when n=l and that this also holds for

n=2 is proved above. Now assume that the union of anyn sets in 2: is in 2:.

Let AI, .'.An+1 sets in 2:. Then

n n+l

= UAjUAn+1 = U Ai
1=1 1=1

11 n n+l

since An+l = An-\, (8AJ = 8Ai by induction hypothesis. Hence 8Ai82:. This shows

that whenever 2: is closed under union for n sets, 2: is closed under union for (n+ 1) sets.

Hence by induction 2: is closed under finite unions.

We now show that 2: is closed under arbitrary intersections. Let {A/iEI} be any non-

empty class of sets in 2:. Then Ai = AjV iEI.

Clearly n Aj c n Ai (by 2). To prove the reverse inclusion we first note that AcB
iel iel

=>AuB=B

=> Au B=B => A u B= B, A c B (by 2).

Since nAj C: Ai V ieI, nAi ~ Ai = AjV iEI
id ien

Since this is.true V iEI, nA. c nAj
i\;:'.· JE:i
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This shows that nAi := nA , hence nA. E L. . iel iel I iel I

Thus L is closed under arbitrary intersectioris. By SAQ 3.8, it follows that Y={AIA1EL}

is a topology on X.

A ~ X is closed in this topology

<=> AI EY

<=> (AI)I =A E L<=> A = A

For uniqueness, suppose TO is any topology on X such that A is closed in (X, TO) if A =
..

A , for every subset A of X. Then A is closed in (X, TO) <=> A = A <=> A is closed in

(X, T) :. T = TO.

This completes the proof of the theorem.

3.14 Corollary: Let Y be the unique topology on X obtained from the given operation

A ~ A from P (X) into itself as in the above theorem. Then for any A ~ X, the closure

of A in (X,T) is precisely A.

Proof: For clarity, the closure of A in (X;T) is denoted by A, for any subset A of X.

Note that

;A = n {FIF is closed and F;;;;?A}

= n {FIF=F and F:::>A}

Since A = A and A :::>A,A c A

But A is closed and A :::>A,

Thus A = A as required

3.15 Definition: A neighbourhood of a point x is a topological space (X,T) is an open

set containing x
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A class L ofneighbourhoods of a point x in a topological space (x,Y) is called an open

base at the point x (or for the point x) if every neighbourhood of x contains a member of
-, )

3.16 Example: If (x, d) is a metric space and xeX, the class of all open spheres

{Sr(x)/r>O} is an open base at x because by definition every open set containing x

contains Sr(x) for some r>O

3.17 Proposition: Let (Xvr) be a topological space and A~X. Then A = {x/xeX and

every neighboured of x intersects A}

Proof : Let B be the set specified on the right hand side. Let x EA. and V, any

neighbourhood of x. If V n A = ~, then A~VI. Since V is an open set VI is a closed set

containing A. Hence A c V I.

Since x E A , X E V I so that x (l: V. This is a contradiction so that every' neighbourhood

of x intersects A, hence A c B------------( 1)

Now suppose that xEB. We show that XE A, if x e A then (A)I is a neighbourhood ofx
,

since Ac A , An( A ) 1 =~. This contradicts the assumption that every neighbourhood of x

intersects A. Hence x E A as required. Therefore

B cA. This, together with (1) yields A =B.

3.18 Definitions: Let X be a topological space, A~X. A point XEA is called an isolated

point of A ifit has a neighbourhood V such that VnA ={x}

A point XEX is called a limit point of A if each of its neighbourhoods contains a point of

A other than x

The set oflimit points of A is called the derived set of A and is denoted by D(A)
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3.19 Remark: It is customary to call V\{x} a deleted neighbourhood of x if V is a

neighbourhocd of x. Thus, x is a limit point of A if and only .if every deleted

neighbourhood of x intersects A.

A limit point of a: set A is not necessarily a point of A where as an isolated point of A

must necessarily belong to A.

3.20 Proposition: Let X be a topological space and A be a subset of X, then

(1) A =AuD(A)

(2) A \D(A) is the set of isolated points of A.

(3) D(A) cA if and only if A is closed.

Proof: (1) If x E A , then by proposition 3.17 every neighbourhood of x intersects A so '

.that if x !lA ,every neighbourhood of x unlersects A in a point other than x so that x is a

limit point of a, hence xED(A). Thus A ~AuD(A). On the other hand XED (A) ~ every

neighbourhood of x intersects A in a point other than x so that x EA.

Hence D(A)~A. Since A~A, AuD(A) ~A.

It is now clear that A = AuD(A).

(1) If x c A and x!lD(A) there is a nbd Vofx3V\{x}nA=~ so that by (1) VnA={x}.

Hence x is an isolated point of A.

Conversely if x . is an isolated point of A, then XEA and there exists a

neighbourhood V of X3 VnA ~ {x}so that x !lD(A). This impliesthat x E A \

D(A) ~ A \ D(A) . Thus A \D(A) is the set of isolated points of A.

(2) Since A = AuD(A) and A is closed if and only if A= A, it follows that a is closed

if and only if A=AuD(A) if and only ifD(A)<:;;;;A.

As a consequence we have the following theorem.
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3.21 Theorem : Let X be a topological space. Then any closed subset of X is the

disjoint union of the set of its isolated points and the set of its limit points in the sense

that it contains these sets, they are disjoint and it-is their union

Proof: Let A be a closed subset of X and i(A) the set of isolated points of A. Then

i(A)~A, D(A) cA and by proposition 3.20, i(A)= A \D(A)=A \D(A) so that

i(A)nD(A)=<I> and i(A)uD(A)=A.

3.22 SAQ: Let X be a nonempty set and T={ <1>,x} be the indiscrete topology on X.

Determine {x o} for Xo EX.

3.23 SAQ : Let IN =Nu{ oo} and T be the topology on IN described in problem 25 of

lesson 2. Determine DCA) and A for A ciN

3.24 SAQ : Show by an example that D(A} is' not necessarily closed for a subset A of a

topological space.

3.25 SAQ : Show that if (X, d) is a metric space and A ~X then D(A)is a closed subset

ofX.

3.26 Definitions: Let (X, '0 be a topological space and a be a subset of X. The interior

of A, denoted by int(A) is the union of all open sets contained in A. A point x e A is

called all interior point of A if XEX int (A) ; ie, XEV for some open set V~A;

equivalently some neighbourhood of x is contained in A.

The boundary of A is the set A n A I , where A 1 is the complement of A. x E X is called a

boundary point of A if x is in the boundary of A. Equivalently x is in the closure of A as

well as the closure of its complement A I. It is denoted by D(A).

3.27 Remark : It is clear that x is a boundary point of A if and only if every

neighbourhood of x intersects A as well as its complement AI.
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3.28 Theorem: Let X be a topological space. Then any closed subset of X is the disjoint

union of its interior and its boundary; in the sense that it is their union .

. Proof: Let AcX be a closed set and 8(A)= A Il A I , the boundary of A. When A is

closed D(A)= A Il A I C A, clearly int (A) ~ A. If x E int(A), then some neighbourhood

Vofx is contained in A so that Vr.AI =<1>and sox~8(A)_ On the other hand ifxe8(A),

xEA and every neighbourhood V of x intersects AI so that VetA. This implies that

X~ int(A). Hence int(A) rv 8(A)=<I>.

Clearly if x EA and x is not an interior point of A, every neighbourhood V of x intersects

AI and A so that xE8(A). Hence A=int(A) U 8(A).

This completes the proof.

3.29 Deflnition : An open base for a topological space is X is a class 9.3of open subsets

of X such that every open set in X is the union of a class of sets in m. If m is an open
'. • ; - I

base for X, sets of 8.i are called Basic open sets.

3.30 Proposition : Let (X, T) be a topological space and 93 cT. m is an open base for

(X, T) if and only if x EG EY=> there exists a BE 93 such that x E BcG.

Proof: Let 93 be an open base, XEGET. By definition, there exists a class {B/iEI}~ 93.

Clearly BICG. Thus there exists iel such that xEBi~G and BiE m.

Conversely suppose this condition is satisfied. Let GET for each xEG there exists a BxE

93 c)xEBx~G. {Bx/XEG} c 93 and clearly G= U Bx. Hence ffi is an open base for (X, T)
xtG

3.31 Remark: Let us recall that for any class of sets B, T2(B) is the class of sets that are

unions of members of B. Thus we may rephrase the definition of an open base as follows:

A class of open sets 93 in a topological space, (X, T), is an open base if and only if

T2(93)=y'
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3.32 Examples: Let X be a nonempty set and Td be the discrete topology on X. For each

XEX, let Bx={x}. Then 9~=,{Bx/XEX} is an open base for (X, Td)

Reason: Let us recall that every subset of X is open in the discrete topology. Thus if

Gc;x, G= U n,
xeG

Since BxE 93 \;f XEG, G is the union of a class of sets in ~B.

Hence 93 is an open base for (X, Td).·

3.33 Example: For the real line R with the usual topology Tl" the class B of all open

intervals (a, b) where ae R 'and bE R is an open base

Reason: By definition, G is an open set in the usual topology ifand only if \;f XEG ::J a

bx> 0.3

Ix= (x-bx, x +bx)<;;;;G.

Clearly IxEB and G= U t,
xeG

3.34 Definition: Let (X, T) be a topological space. A cla~s Y of open subsets of X is

said to be an open sub base for (x, y) if the class B = Tl(y) is an open base for (X,T)

where T1(y) confute of finite intersections of members ofY ie~,AET'I(Y) such that A=:-

n F. Elements ofY are called sub basic open sets in (x, y).hY , '.' . /=

3.35 Example: IfaER write (-oo,a) = {x/x e R and x<a} and

'. (a, (0) = {x/x e R and a<x} a<b;

The class Y={(a, bj/ac R, b=co or a=co, ,bER} is an open

Subbase for the real line with the usual topology.

Reason: We know that the class B = {(a ,b)/aER, bER} is an open base for the space R

with the usual topology.
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IfaER and bER, (a, b) = (-oo,b)n(a, (0) E T)(y).

Further (-oo,a) = U (x, a) EY4 and
x-ca

(b, (0) = U (b, x) E Y4
b<x

Thus (-oo,a) and (b, (0) are sub basic open sets.

Hence (a, b) ET)(y).

Thus Be TI (y), since B is an open base, TI (y) is also an open base. Therefore y

is an open sub base for R.

. 3.36 Theorem: Let X be any nonempty set and 't an arbitrary class of subsets of X, then

r can serve an open subbase for a topology on X, in the sense that T2(TI('t» is a topology

onX.

Proof: That T2(T)('t» is a topology on X containing 't is proved in problem 20 of

lesson2. By definition T2 (TI('t» is the collection of all sets which are arbitrary unions of

members ofTI('t) hence T)('t) is an open base for this topology

Thus 't is an open sub base for this topology.

3.37 Example: The collection ~H)of all open spheres is an open base for the Euclidean

topology on R2.

Reason: By definition G e R2 is open in the Euclidean topology if V XEG

:3 an r>O C}XES/X) ~ G. Hence m) is an open base forthc Euclidean topology on R2.

3.38 SAQ : The collection B2 of all open rectangles is an open base and the collection of

all open strips is an open sub base for the Euclidean topology on R2
.
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Countability axiom:

3.39 Definition: A topological space (x, T) is said to satisfy the first countability axiom

or simply be first countable if every point in x has a countable open base (X, T) is said to

satisfy the second countability axiom or simply be second countable if there is a

countable open base for (X, T).

3.40 sAQ : Every metric space is first countable.

Second countability axiom implies first countability aXIOm where as the reverse,
implication does not hold. Moreover a sub space of a first (or second) countable space is

first (or second) countable. These two types of conditions play an important role in,

reducing the "number" of open sets in test cases.

We now prove the central fact about second countable spaces namely Lindelof's theorem

and its conuquence which is mostly used.
3.41 LindelofsTheorem : Let X be a second countable, space. If a nonempty set G of X

is represented as the union of a class {Gx/iEI} of open sets then G can be represented as a
. .

countable union of G, s.

Proof: Let ~ = {Bn/nEN} be a countable open base for X,. Let 10 = {nEN/Bn<;;:G1, for

some isI such that Bn~Gi. Among all such i's we fix one and denote this by in, ie., Bn~Gln

since Jo is couritable. Clearly {Gin/nEJO} is a sub class of {hi / iEI}. We' claim that G =

U Gin. Clearly U GincG,
neJ9 nelu' I

Let XEG. then XEG, for some i. Since P is an open base, there exists an integer nz l such
. .'

thatxEBncGi. ThennEJoandXEBI1~Gi , by the choice of L, Thus xs U Gin
" nEJO

Hence G C U G i . Therefore G= U G i
- nEJO n nElO n

3.42 Theorem : Let X.'bea second countable space. Then any open base for X has a

countable sub class which is also an open base.
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Proof: Suppose (x, r) is a topological space which is second countable and we are given

a basis {V/ iEI} for t , indexed by a set 1. We show that there is a countable subset 10of I.
i·

such that {V/ ieIn} is an open base for 'to
. .

Since (x, 1) is secondcountable, there is a countable open base ~J.i= {Bnl nEN} for r. For

each nEN there is a countable subset 1;1 of I (by Lindelof's theorem) such that B, = U
ieIu

V j. Let 10 = U In. Then 10 is a countable subset of I.
neN ~

We show that V = {V/iE1o} is an open base for t. Let us recall that for any class

Y~P(X), T2(Y) stands' for the 'class of.all sets which are unions ofmembers of Y. Since.
93is an open base for t, T2 (~B) = 'to

Since a, = U VI, Bn= T2 (V).
iEin

Hence Y=T2(B) <;;: T2 (v). Since v C y and Y is closed under arbitrary unions, T2(v) <;;: 'to

hence Y=T2(V)./ Thus v is a countable sub class which is an open base for r.'

Separability and Second Countability :

3.43 Proposition: A second countable topological space is separable.

Proof: Let (X, r) be a topological space with a countable open base {Bnl nEN}.

For each n EJ, choose x, in Bn. The set H={xn/nEJ} is clearly countable. IfxEX and V is

any open set in X containing x, then there exists a nEN :3 xEBpcV. So thatx.e V. thus

every neighbourhood of x intersects H. Hence H = X ie., H is dense in X. Thus X is

separable.

3.44 Remark: In general separability does not imply second countability (see exercise 7)

For metric spaces these two notions are equivalent as is evident from the following

theorem.
.• : I
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Spaces

3..45 Theorem: Every separable metric space is second countable.

Proof: Let X be a separable metric space with metric d and A be a countable dense set.

We may enumerate the elements of A as (a., a2, an..}.

For a fixed n, let ~Bn= {S, (an) / rEQ, r>O} clearly ~Bnis countable. Hence ~B = U ~J3n is
n z l

countable. We show that ~I)is an open base for (X d). Clearly clements of ~B are open

spheres and hence are open sets. If V is any open set andx ev, :3 a O>03So(X)~V. Since

A is dense, :3 an an ESOI3(x). •

Choose rEQ, r.0 3 0/3 < r< 20/3.

Since d(x, an)<8/3 <r, xESr(an).

YESr (an) => d(y, an) < r.

=> d(y, x) c d(y,an)+ d(alh x) <r + '6/3 + '6/3 = '6

,=> YESo(X). Hence S, (an) c So(x).

Thus XE S, (an) e So ex) ~ G.

Since S, (an) E H~n~ ~B,it follows that \;j G EJ and

XEG, :3 a ~J3 E fl) 3 X E BeG.

Hence B is a basis for (x, d)

Since B is countable, (X, d) is second countable.

3.46 Example: The Euclidean space R with the usual metric is separable, hence second

countable.

Proof: We use Archimedean principle which says that if aE~~ and a>O there exists a

natural number n such that n>a.

As a consequence given aER, bER, a<b there exists XEQ:3 a<x<b.

From this it follows that if x eR and E>O,:I YEQ J X-E<y<X so that (X-E, X+E) contains

a point of Q other than x. If V is .a neighbourhood of x, :3 ,an E>O 3 (X-E, X+E) ~ V.

Since (X-E, X+E) contains a YEQ - {x}, YEVnQ-{x}. Hence x is a limit point of Q.

Since this is true for every xER, R ~ Q ~ R. Hence R = Q. Thus R is separable.
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. 3.47 Example: R" with the Euclidean metric is.second countable, hence separable.

Proof: We use the fact that if A I, An are

Countable then so is Arx ... x An. Since Q is separable, Qn = QXQ" .... x Q (n times) is

countable. Let x = (XI, ..Xn) ERn; and v be a neighbourhood ofx. Then :3 E>O .3 SE (x) ~

. E E
V. Choose Yi ( Q.3 Xi - r ,<Yi< Xi+ .r and Xi :;t:Yi·-nx. v n

n 2 1/2
Then y= YI, ..... Yn) E Qn and d(x, y) = {L IXi- Yi I }

;=1

n
< {2: E2/n} 112 = E.

;=1

Thus Y :;t:X and Y E SE (x) e V. Sinc~ every neighbourhood of x contains a point of Qn

other than x, XE Q" . This is true for every xERn so that Rn ~ Qn c.R" hence R" = Qn .

Hence Rn is separable.

3.48 Solutions to short answer Questions:

SAQ 3.5: Let XEX, r>o and v = S, (x), YEV

Then d(x, y) < r. let s = r - d(x, y).

We show that Sr(Y) e Sr(x)

Z E Ss(Y) => d(z"y) < s => d(x, z) e d(x,y) +dty, z).

< d(x, y) +s

= r. .

Hence S, (y) c S, (x). This is true V yE S, (x).

Hence Sr(x) is an open set.

SAQ 3.8 :. Use De Morgan's laws: (n Vi) = u vi and
lEI.. lEI, "

1_ VI(uVi),-n i
lEI lEI

-,
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=> U Vi E 'to
iel _

If! is finite and ViE 't V iE I ; ViI EL V i EI

=> n VII E L
iel

=> (u Vi)l EL => U Vi e r.
iel . iel

- .

SAQ 3.9 :. Let x be a set with at least two points and d be the discrete metric on X. if

XEX, then SI(X) = {x}

Since the topology induced by this metric is the discrete topology every subset of X is

open hence closed. Thus S( (x) = {x}

However SI[X] = {yEX/ d(x, y) < I} = X.,
Thus it is not necessarily true that in a metric space S r (x) = S, [x].

SAQ 3.10·: Let (X, d) be a metric space and XEX. Ifx={x}, {x} is closed. Suppose {xj=X

Then X\{x} :;t=$'\I Y EX\{X}, r = d(x, y»O.

We show that S/2 (y) c x\{x}. This holds since ZE S/2 (y)

=> d(y, z) < rl2. Since d(y, x) = r, z; '# x so ZEX\{X}

Then S/2 (y)c X\{x}. This shows that X\{x}is an open set. Hence {x} is a closed set.

SAQ 3.22: We consider (x, J), J= {$,x}.-

Suppose XoE X. If x EX and X'#xo,then' x is the only neighbourhood of x in X. We have

{xo} n (X\{x}) = {xa}.

Therefore x is a limit point of the set {xs}.

We have {xo}n(X\{xoD =$,

And so Xois not a limit point ofthe set {xs}. {xo} = X.

SAQ 3.23: We consider ~

Suppose A c~ is a finite subset. Then D(A) = $ and hence A =A

Suppose A is infinite.

/
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Consider a neighbourhood V of 00. By definition Vi = tN\Vis finite; therefore there are at

least two points x, y in A which are not in Vi. Thus X, Y EV. At least one of them is

different from 00. Thus An(V\{ oo}) :t:~.

So 00 is a limit point of A.

Let n EtN,Then {n} is a neighbourhood of n.

We have An( {n} \ {n}) = ~

So n is not a limit point of A.

Hence D(A) = {oo} and A = u{oo}.

SAQ 3.24: We consider a set x with at least two elements with the topologyT = {o.X}.

In SAQ 3.22 we have seen that the set X \ {x} is the set of limit points of {x}. Since X

contains at least two elements X \ {x} is not empty and is not equal to x. Therefore it is

not a closed subset of X:

D ({x}) is not a closed set.

SAQ 3.25: Let Z be a limit point ofD(A). To show that zED(A) we have to show that z

is a limit point of A. Let V be a neighbourhood of z. Since z is a limit point of DCA), 3

a y e D(A) n V such that y:t:z. Since y E V :3 an r>o :3Sr(Y)c V. Since d(y, z»O we

may choose r s O<r< d(x, z). Since y ED(A), :3an x E Sr(y)nA:3 y:;t:x. Since x E

S,(y), O<d(x, y) <r<d(y, z) so that x :t: z. Also x E Sr(y) cV. Thus xEVnA and xeez.

Since every neighourhood V of z contains a xez 3 xEA, z is a limit point A. Therefore

D(A) is a closed subset of X.

SAQ 3.38 : To prove that B2 is an open base we have to show that every open rectangle
,

is an open set and for every open set G in R2 and XEG:3 an open rectangle R such that

XER c G. Towards this end it is enough to show that if

R=(a, b) x (c, d) and x=Ixj, X2) E R, :3 a 8>0 :3S.s(x) cR and if r>O and YESr(X) ::I a

rectangle S= (u,P) x (y,8):3 YES ~Sr(x).

Let X=(XI,X2)E(a, b) x (c, d) ~ a<xI<b and c<x2<d.

8 = 12 min { XI-a, b-XI, X2-C,d-x-}. y= (YI,Y2)ESl) (x)
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=> d(x, y) < 8 => (XI-YI)2 + (X2-Y2)< f}

=> I Xl-Yll < 8 & I X2-Y21< 0

=> Yl E (Xl-Ol, xl+8) => a'<xr-S< Yl < xr+S<b and similarly c<Y2<d so that YE(a, l])'. Thus
.j.

So(x) c (a, b) x (c, d).

Again if r>O and Y = (Yl, Y2) E SrCx), d(x, y)<r if 0 = r-d(x, y), So(Y) c Sr(x). The above

argument shows that So (y) contains a rectangle S=(a, b) x (c, d) containing y. Hence YES

c Slx).

I '

SAQ 3.40: Let (x, d) be a metric space and XEX. Then {SlIn (x)/nEtN} is a countable

collection of open sets which form an open base at x. For this let V be a neighbourhood

of x is the induced topology :3 an E>O, E XESE (x) c;:;;; v. If nEtN and n> l/e, then I/n<E

Sl/n(x) C S8 (x) C V. Thus every neighbourhood ofx contains SI/n(X) for some nEtN. This

completes the }.>lOOf. .

. SAQ 3.49: Model Examination Questions

1. Define an open base for a topology 'to Show that given any nonempty family r of

subsets of a nonempty set x there is a unique topology 't on * * * * for which y is an

open sub base.

2. State and prove Lindelofs theorem.

3. Show that every open base of a second countable topological space c0r:ttains a

countable sub family 'which is a base.

4. Define first countable topological space and second countable topological space.

Show that a second countable topological space is first countable but the converse

is not true. Show that in a second countable topologicalspace every open set is a

union of a countable family of open sets.

5. State Kuratowski's closure axioms and prove that any closure operation "_"

satisfying these axioms induces a topology 't on x such that for any subset A of X,

A =A iff X \ AE't.
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6. Show that in a topological space (X;!), for any AcX A = AuD(A) = { XEX /

every neighbourhood of x intersects A}.

3.50 Examples :

1. Let X be a topological space and B be an open base for X such that V XEX,

~ BE ~R:) B:;6Xand XEB. Show that B\ = B-{~. X} is an open base for X.

Give an example of a metric" space which is not (a) separable (b) second

countable.

Is a metrizable space first countable? Justify.

Is Sr[x] closed in a metric space V XEX and r>O.

Show that in any topological space (Xrr) int(A) is the "largest" open set contained

in A- more precisely,

2.

3.

4.

5.

6.

(1) int (A) is an open set, int(A) ~A.

(2) If B is any open set ) B~A, then Bcint(A).

Let ·x be a nonempty set and consider the class 't of subsets of X consisting of the

empty set ~ and all sets whose complements are countable. For definiteness let

X =R, the real line

(l) Is X first countable?

(2) Is X second countable?

(3) Find A when A is the set of even integers.

Answer (1), (2), (3) of exercise 6 where X=z, the set of integers.
.Ii,

Let (X;!) be a topological space, AcX -.Show that A is dense in A when A IS

treated as a sub space of (X;!).

Let Z eYe X and (X, Y) be a topological space. If Z is closed in Y and Y is

closed in X, does it follow that Z is closed in X? Same question with, "open" in

place of "closed".

Show that a subset of a topological space is dense if and only if it intersects every

nonempty open set.

7.

8.

9.

to.
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11. Let (X,«) be a topological space and A~X. Show that the following conditions are

equivalent.

(l) A is closed and has no isolated points

(2) A =D(A).

Definition: AcX is said to be perfect if A satisfies one of the above two conditions.

12.

13.
14.

15.

16.

Let C be the Cantor set in[0, 1] obtained by removing the middle on third at

every stage. Show that C is perfect.

1 - 1
For any Ac (X;];) show that int(A ) = (A) .

Show that A = A iff A contains its boundary.

Let (X;.) be a topological space and A ~ X. Show that boundary of A = <I> if and

only if AE't and A' E1".

17.

Let (X;r) be a topological space. For A c X show that int (A)= $ iff every
:~t.

nonempty open set has a nonempty open subset disjoint from A. Such sets A

(with int A = <1» are called nowhere dense sets.

(a) Show that a closed subset a of (X,1") is nowhere dense iff A' is dense

(b) Consider the real line with the usual topology

(i) Is Q dense?

(ii) Is Q nowhere dense!

(iii) Is Q closed?

(iv) Is Q open?

Show that the boundary of a closed set is nowhere dense. What is the boundary of .'\

Q in R with the usual topology?

Show that the set of isolated points of a second countable space is either empty or

countable.

,.

18.

19.

20. Show that (X,1") is second countable and Y~X is uncountable then D(Y) * $..

Lesson Writer: V.J. LAL



LESSON 4

CONTINUITY

4.1. Introduction:' In this lesson we make a beginning of learning the concept of

continuity which is the most fundamental notion in Topology. We first define continuity

of a function f~om a topological space X into a topological space Y at point x and on X

and study some elementary properties of continuous functions. We then turn our attention

to continuity in metric spaces and establish equivalence of the two definitions in the

context of metric spaces. Finally we establish some basic properties of continuous real or

complex valued functions.

4.2 Definition: Let X, Y be topological spaces. A mapping f: X ~ Y is said to be

continuous at XoE X if for every neighborhood V of f(xo) there is a neighborhood U of Xo

such that feU) c V.

4.3 Example: Let X be any nonempty set. Equip X with the discrete topology. IfY is any

topological ~pace and f: X ~ Y is any map and Xois any point of X, f is continuous at Xo

because every subset of X is open with respect to the discrete topology and in particular
-I

.for every open set V containing f(xo), U = f (V) ~ X is an open set.

4',4 Theorem: Let X, Y be topological spaces and f: X~ Y be any map. The following

are equivalent.

(a) f is continuous at every XoE X

(b) fl (V) is open in X for every open set V in Y.

. -I
Proof: Assume (a) and let V be any open set in Y. If x E f (V), then f (x) E V so that V

is a neighborhood of f(x). By (a) :3 a neighborhood U, of x such that f(Ux) c;;;; V. the set
. -I -I '-1

U = UU x is open X. sincefll.L) c;;;; V for x E f (V), U, c;;;; f (V) for x E f .(V).
xcf-I(v}

,. -1 -I ",
Hence U c;;;; f (V). On the other hand x E f (V) => X E U, C U

-I -I
=> f (V) c;;;; U. thus U = f (V) is open in X. thus (a) => (b).
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Assume (b) and let x E X. If V is any neighborhood of f(x), V is an open set in Y so by
-I

(b) f (V) is an open set in X containing x. Hence f -I (V) is a neighborhood of x. Clearly
-I

f (f TV» = V. Thus fis continuous at x V x E X. Thus (b) => (a).

Hence (a) <=> (b)
4.5 Definitions: Let X and Y be topological spaces and f: X ~ Y be a mapping.

1) fis said to be continuous iffl(G) is open in X V open sets G in Y.

2) f is said to be open if f (G) is open in Y V open sets G in X.

3) fis said to be homeomorphism iffis a bijection and is both continuous and open.

4) f(X) is said to be a continuous image of X if f is continuous.

5) f(X) is said to be a homeomorphic image of X if f: X ~ Y is continuous, one-one and

open.

4.6 Remark: Some authors prefer to define continuity of f in terms of continuity at every'

point ofX. However theorem 4:3 confirms equivalence of these two definitions.

4.7 Example: If X is a nonempty set and 'tj , 'td are respectively the indiscrete topology

and discrete topology on X respectively then the identity map L: X ~ X is clearly a

bijection.
When the domain space X is equipped with the discrete topology every set in X is open

in 'td where as the only open sets in 'ti are $ and X. Thus

(a) If X has more than one point, I : (x, 'tj) ~ (x, 'td) is not continuous.

(b) As mentioned in 4,1: (x, 'td) ~ (X, 'tj) is continuous.

(c) If X has more than one element and x E X, I ({x}) = {x} "* X and is nonempty so that

I : (X, 'td) ~ (x, 'ti) is not open, hence is not a homeomorphism.

4.8 SAQ: Let (X, t) and (Y,O")be topological spaces ..For a mapping f! X ~ Yprove that
.' \

the following are equivalent.

(a) fis continuous
-I(b) f (F) is closed in (X, r) for every closed set F in (Y ,0")

(c)f(A)~ f(A) V AcX.
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4.9 Theorem: Let X, Y be topological spaces, ~J3 an open base for X and a an open

subbase for Y. Then the following are equivalent.

(a) f: X ~ Y is continuous
-I

(b) f (B) is open in X for every basic open set B in Y.
-I

(c) f (B) is open in X for every BEa.

Proof: (a) ~ (b) is clear

(b) ~ (c) since a c T, (a) and TI (a) is an open base for Y.

(c) ~ (a) : Let V be open in Y, x E X and = f(x) E V.

Then since TI(cr) is an open base for the topology on Y,:J BET, (a) such that
,

Y E B c V. since BE TI (cr),:J a finite number of subbasic open sets BI, ..... B, such that

i=1

-I
Since y E B, Y E B, for 1 ~ i~n. by .(c) f (Bi) is open in X 'If i .

-I n n

Hence fin Hi I = n r' (Bi) is open in X.
i=1 i=1

n

Thus ~ E G = nr-l(BJ and G is open in X.
. >j=I·-

Further f(G) ~ rr' (QB;) ~ nr' (B)) <;; B c Y.

Hence f is continuous at x. Since this holds "if x E X, f is continuous on X.

Continuity in metric spaces:

4.10 Definition: Let (X, dj) and (Y. dz) be metric spaces. A mapping f: X ~ Y is said to .

be continuous at x E X if for every E > 0

there is a 8 > 0 such that

y E X, d, (x, y) < (5 => d2 (f(x), fey»~< E
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f is said to be continuous (on X) if f is continuous at every point of X. (compare with 4.5

(1) ).

4.11 Proposition: Let (X, d.), (Y, d2) be metric spaces, 'tj be the topology induced by d, .

If x E X, then the following are equivalent

(a) f: (X, d.) ~ (Y, d2) is continuous at x.

(b) f: (X, 'tJ) ~ (Y, 't2) is continuous at x.

Proof: IfE >0 and x E X we write S~(x) = {y E Y I d, (x, y) < E} and ify E Y we write

S ~(y) = {z E Y I d2 (y, z) < E}

Assume (a) and let x E X, V E 't2 and y = f (x).

Then::J E> 0 3 S ~(y) cV. By{a) ::J8> 0 3

YES ~(x) => d, (x, y) < 8 => d2 (f(x), fey) ) < E

=> fey) E S ~ (f (x) )

Hence f(S~(x)) c;;; S; (f(x)) cV.

Thus f is continuous at x i.e. (b) holds. Therefore (a) => (b)

Conversely assume that (b) holds. Let x E X and E> O.

Then S; (f(x) ) E 't2. Since S; (f (x) ) is a neighborhood of f(x), there exists aGE 't, 3

X E G and f(G) c $; (f(x)).

Since G is open and x E G, ::J8> 0.3 S ~(x) ~ G

Clearly f (S ~(x) ) ~ S ~ (f(x))

Thus d, (x y) < 8 => d2 (f(x), fey)) < E

Hence f: (X, d.) ~ (Y, dz) is continuous at x.

4.12 SAQ: f (X,dl)~· (Y, d2) is continuous at x E X if and only if for every E > 0, there

a 8 > 0 3 f(S~(x)) cB; (f(x))

•
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Remark: Continuity, Inrnetric spaces has a. special property, - namely 'lransform~ng

convergent sequences in the domain into convergent sequences in the codomain along

with limits. To establish this. we need. the definition of convergence of a sequence and; of

a cauchy sequence in a metric space.

4.13 Definitions: Let (X,d) bea metric space, {x-} a sequence in X andx E X: We say

that {x.} is a cauchy sequence in x if for every e > 0 there corresponds Nts) E ftJ such

that

d (x., xm) < E whenever n > m ~ N (e)

(equivalently whenever nz N(E) and m ~ N(E) ).

We say that {x.} is a convergent sequence and x = Iirn x, or {x.} converges to x if for
n

every. E > 0 there corresponds N (el,efft s~ch, that

d (x!!' x): < E wheJ:).ev~rn ;?: N:(?)

4~t4 lJtQp.Qs"tipq: Let (~, d,\)and:(iYc,d2)~~·;m~tti<;.$pa~es..
, :. -, "'" .". ", ", ',,' "-", -, -,;'

A fun<;tiqn"f: X~' y is ~qntin~~u& ~t ~,6i )t. if~n~( onl~ 'jf for: ev~r):.seqpence{Jxn} lQ.X
with lim Xn= X~ lim f(xn)'::;:f.(X)iUiY'

n Ii' -.'

Proof: Assume tharf is continuous atx. E X~l1d 11111, xn.:=x.inX,
'. . .' . r n

If a >. 0; 3 a 3.> 0 3.d2 (f (y), f(x})'<; e wh~ne\l,er ~ E X l;lud:d~ Cy, x).<: 3. Since. li~ Xn= x,

for this (5 > 0 th~r~:ccmespond~ra,positiveimef' NsuB~ that

di (xn, x) < OJ whenevern ;?: N.

H¢npe<:b (fi(xn),t1(x)) < s whenever n ;?:N.

l1enge lil1lf~xnJ!ti f(x) in,Y;.
n

Conversely assume thatv &~q~~n~e{Xi\1}iJ;l)(thatco,IlVergestb x, li~ f(xn) = f(x).

SUl)p~se fiS·UQtqontinuP\lsatx. th~n'tl1er~ is~:posh~venumber;e suchthat whatever

3 >0 we choose, there is at least one XeS,d~mmdil1g:on 8; in ¥ supl}that

dl (XI\' x) < 8 but.d, (f(xeS), f(x)) ~ E
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In particular for every positive integer n, there corresponds an element x, in X such that

This implies that lim Xn = x where as lim f(xn) =F- f(x) as lim f(xn) = f(x) would imply
n n II

that for some N E tN and all n ~ N d2 (f (x.), f(x) ) < 8 which does not happen. This

contradiction yields that f mustbe continuous at x.

4.15 Corollary: Under the above hypothesis f is continuous on X if and only if lim Xn =
n

x in (X, d.) => lim f(xn) = f(x) in (Y, d2).
n

Proof: fis continuous on X if and only iffiscontinuous at every x E X. By 4.14 if x eX,

f is continuous at x iff lim Xn = x in (X, dj) ~ lim f(xn) = f(x) in (X, d2). Hence the
n n

result.

4.16 Example: Let d., d2 be metrics on a nonempty set X and assume that

d, (x, y) ~ d2 (x, y) for all x, y in X. Then the identity map I on X is continuous from

(X, dz) to (X, d.),

Solution: We use 4.15. Let {xn} be any sequence in X, x E X and lim x, = x in (X, d2)
n

in lim d2 (x.; x) = O. Then V 8 > 0
~ i

:3 a N(8) E tN ;) d2 (x., x) < 8 whenever n ~ N (8)

Hence d, (x., x) ~ d2 (x.; x) < 8 whenever n ~ N (8)

So that lim Xn= x in (X, dr) i.e. lim I (xn) = I (x) in (X, dj).
n n

This implies that I is continuous on X.
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Continuity of real or complex valued functions:

4.17 Definitions: In what follows X stands for a: nonempty set. The collection of all

functions from X into K is denoted by F(X). We define the following pointwise

operations on F(X).

Let f, g belong to F(x), a E K and x E X

Pointwise addition'- f + g : (f + g) (x) = f(x) + g(x)

Pointwise scalar multiplication> af: (at) (x) = a . f(x)

Pointwise multiplication: fg : (f g) (x) = [(x) g(x)

WhenK=R

Maximum f & g: - (fv g) (x) = maximum {f(x), g (x) }

(fv g is called f'join g)

minimum f & g: - f 1\ g = (f 1\ g) (x) = minimum {f(x), g(x)}

(f 1\ g) is called f meet-g)
. /

/ .

When K = C and f (x) = fl (x) + i f2 (x) 'where fl (x) E IR & 6 (x) E IR

(real f)

(lm t)

(real f) (x) = f\ (x)

(Imf) (x) = f2 (x)
-

Complex conjugate f : f (x) = fl (x) - i f2 (x)

Absolute f, I~ : I~ (x) = If(x)1= Jf;2 (x) + f; (x)

4.18 Proposition: If X is a topological space and f, g are continuous real or complex

valued functions on X then so are

(i) f + g (ii) a f for any scalar a

Proof: It is enough to establish continuity at each x E X. Fix x.

Let B > O. By the continuity of f and g at x, there exist neighborhoods VI, V2 of x such
I .
. - ~- 0

th~' [fty) - f(x) 1<- ify E VI and I
2

\g(y)-g(x)\< ~ ifyEV2
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V I (I V2 is a neighborhood of x and if y E V I n V2

I f ' E E
( + g) (y) - (f + g) (x) I$If (y) - f(x) I+1 g(y) -g (~)I < ~, + - == E

, .- "., - 2 2""

Hence f + g is continuous at x.

To prove continuity of a f at x, given E > 0 choose a neighborhood V of x such that

,-', ',,-, ' E - ,,'-
If(y)':""f(x) I< " if ye V'

, 1+lal '

For y E, V, I (a f) (y) - (a f) (x) I
= I ex, I I fey) - f (x) I

< lal E-<E'
l+lal

f ;:

Hence a (is continuous atx, ' ,
4.19 Proposition: Let X be a topological space. If f and g are continuous real or

complex valued functions on X then f g is continuous on X.

Proof: It is enough if we establish continuity of f g at each x EX:;

Let x E X. There existneighborhoods V I, V2 of x such that If (y) - f (x) 1< 1 ify E V I
, {

~d Ig (y) - g (x) 1< lify E V2.

VI (I,V2 is a neighborhood of x 'and for y, E Vi (I V2

If(y) I - I f(x) I$ If(y) - [(x) I < I and also
"

Ig(y) I - Ig (x) 1$ Ig(y) - g(x)1 < 1 so that If (y) I < I + 1 f(x} I and Ig(y) I < 1 + Ig(x)1for
\ . . ,""

YEVI (I V2.

Now if s > 0 there exist neighborhoods VI and V2 ofx such that
, ,

E
If(y) - f(x) I<for y E VI and

1+ If(x) 1+ Ig(x) I
S ~ . ,..~., ',(

E '
Ig(y) - g(x) I< 1+ If(x) I+ Ig(x) I for y E U2 ~," . ~..

, .~.", :

Ul,n U2 is a neighborhood ofx and for y E VI (I V2 (I VI (IV:!
-:.l·

\-
, ,

I fey) g(y) - f(x) g (x) I
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s I f (y) II g(y) - g (x) I+ Ig (x) II f (y) - g (y)1
, '

,- 'i . -.~ •. .'-~ ".:. "~ .'
, ,

£, £
«1 +If(x)1) ",.,' +lg(x)'1 ,', ., ,',' : '=£ :

1+ If'(x) I+ Ig(x) I ' 1+ r f(x) I+ r g(x) I
.; .

Hence f,g is continuous at x.
." ,~',:

. 4.20 Propositionr. If f and g are real valued continuous functions on a topological space,
. . . ~,

X then so are f /\ g and fv g.
, "

Proof: Write f /\g = h and f v g = H. ." -; - .' ,

We prove that for every x E X, H is continuous at x.
. \

Given '£ > 0 there exist neighborhood VI, V 2 .of x;

such that If(y) -f (x)"I< E for y E VI, and Ig (y) - g (x) 1<8 for'y"€: V2
'..c.. .•. .' .l:. '"- ':;-_ ':.-': -,:" ,,~~

. ,',

.' ·f ~~-.

f(x) - £ < fey) < f(x) +E and

g (x) - E < g (y) < g (x) + E
'. : .

~ H (x) - s ~ H(y) < H (x) + s

~IH(y)-H(x)I<Eify E V1nV2.

Hence H is continous at x.

Hence H E C (X, IR)

.' "

'~.! ' I .

Continuity of h follows from the fact that V y E' X

h (y) = min {fey), g(y)}

= - max {- f (y), - g (y) }
-: .,' ~".",; .'.

.: i ~.

4.21 Proposition: Let X be a topological space and f : X ~ C be any function on X.

Then the following are equivalent " '

(i)

(ii)

f is continuous
.. .r>, "" .....

.Real.f and Im f are continuous
; .

-
(iii) f is continuous.
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Proof: It is enough to establishthe equivalence at each x E X.

Fix x E X. Write fl =Real f and f2 = Im f.

Then f (y) = f\ (y) + i f2 (y) V Y E X.

Hence I f (y) - f (x) I= I (f (y) - f\ (x) :t i (f2 (y) - 6 (x) ) I

~ {If\ (y) - f\ (x)12+ If2(y) -. f2 (x)12}1/2

Since for any complex number z = a + i p, I z 1,= ~a 2 + p2
,

lal ::::;Izl ::::;lal + IPIand IPI::::;Izls lal + IPI

we have for j = 1,2

Ifj(y) - fj (x) I ::::;If (y) - f (x) I::::;Ifl(y) - fl (x) 1+Iii (y) - f2 (x) I (1)

Iffis continuous at x, given E > o there exists a neighborhood V ofx such that for y e V.

If (y) - f(x) I< E and hence Ifj(y) - fj (x) I< E for j = 1, 2 & Y E V.
I

This implies that f\, f2 are continuous at x.

Conversely if f\ and f2 are continous at x, and f: > 0

There exist neighborhoods VI, V2 for x such that for j = 1 & 2.

I fj (y) - fj (x) 1<~ ify E Vj
2

I

If y E V = V \ nV2then by (1)

[f ty) - f(x) I< ~ + ~ = E so fis continuous at x.
2 2

Thus (i) ¢:> (ii),

Hence (ii) ¢:> (iii) by 4.18

4.22 SAQ: Show that iff: X ~ C is continuous so is I f [,

Also give an example of a function for which the converse fails.

4.23 SAQ: If r is a finite set of continuous real valued functions on a topological space X

and

g(x) = L)i (x), h (x) = inf {f (x) I f E r} and H (x) = sup {f (x) I f E r}
rjEt,

Shows that g, h, H are continuos.
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4.24. Model Examination Questions:

1. If X and Yare topological spaces show that f: X ~ Y is continuous if and only if
-I

f (G) is open in X for every open set G in Y.

2. If (X, d), (Y,cr) are metric spaces, show that f: X ~ Y is continuous if and only if for

every x E X and every sequence {x.} in X such that lim x, = x, lim fn (x) = f (x).
n n

3. If f and g are real valued continuous functions on a_topological space X show that

f v g is continuous.

4.25 Answers to Self Assessment Questions:

SAQ 4.8 a => b Assume that f: X ~ Y is continuous. If F ~ Y is closed then G = FI is
-I -\-\

open in Y. Hence f (G) is open in X. since f (G) = (f (F»I
-I

f (F~losed in X.

b => c Assume that [\ (F) is closed in X whenever F is closed in Y.

If A c X, f(A) is closed in Y. Hence [\ (f(A) ) is closed in X.
_I -- - _ -I -- . ·1--

Since A ~ f (f(A», A c r:' (f'(A) = f (f'(A) since f (f'(A) is closed. Hence

f(f-I (F» c (Cl (F» c F= F.
-- -I -I -- ----I

Hence r' (F) c f (F). Since f (F) c r' (F) it follows that r-I (F) = f (F) so that

f(A) c f(A)

c => b. Assume that f (A ) ~ f(A) Tj A c X. Let F be any closed set in Y. Then

-I
f (F) is closed in X.

-r
b => a. Assume that f (F) is closed in X whenever F is closed in Y.

, -I
If G ~ Y is open then F = G1 is closed in Y. Hence f (F) is closed in X.

Hence f -I (G) = f -I (FI) = (f -I (F))I is open in X.
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. . I
SAQ.4.12 Iff : (X, d.) ~ (Y, d2) is continuous at X-o E X anct-~
there exists, by definition, 0> 0 :3d) (x, ~o) < 0 => d2 (ftx). f(xo) < E,\

=> f (SI) (xo)) ~ SE (f (xo) )

Conversely if V E> 0 there exists 0 >0 such that f(SI) (xo» ~ SE(f(xo)

Then d) (x, xQ)< 0 =>x E So (xo) ) => d2 (f (x), f(xo) ) < E

Thus f is continuous at Xo

r ,}.,.... .',

sA'QA.i2 If f: X ~C is continuous at x, given E > 0 there is a neighborhood ~ of x such

.that

If(y} - f(x) 1< E whenever y E V.
. \

Since I If (y) I - I f (x) I I ~ I f (y) - f (xj] < B whenever y E V it follows that 1\ ~ is

continuous at x.
1

To show that the converse is false

Define f (x) = 1 if x ~ 0

=-1 ifx<O

I f (x) 1= 1 V X E IR soIf is continuousat o.

If 0 ~ x < 0, rex) - f (0) = 0 while

If - 0 <x < 0 [(x) - f(O) =-2

(SAQ 43 '0)

Hence f is not continuous atO

- .

4~23SAQ II't = $ or has just one element in it g, h, H are clearly continuous. Assume

, that 't has at least two elements in it. Let t = {fl, ..... fn} where n > 2 .
., •. I. • •

n

Then g (x) = I((x), h (x) = inf{fl(x), f2(X),... f.lx) {and H(x) = sup {f\ (x), .... F, (x) }
" ·;=1

', n •

Write g'I.~x)= Ifj (x), hi (x) = inf {f (x) 12 ~ i ~ n}
i=2

..• and HI (x) = sup {(x) / 2 ~ i~n}
I

Then,g = fl + gl,h = fl A gl' and H = fl V gl

No;\, apply induction.
i
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4.26 Exercises: ":- ;

1. Let X, Y be topological spaces, Z c X. If f: X ~ Y is continuous show that

a) The restrictiong of f defined by g(x) = f (x) for x E Z is continuous on Z

b) f: X ~ f (X) is continuous.

2. Let Xi Y, Z be topological spaces; f: X ~ Y and g : y~ Z be continuous sho~ th~t ..
! -,< f '.~

g 0 f is continuous. ;

3. Give an example. of a!continuous map which is not open.

4. Give an example of ~n open map which is not continuous.

5. If f: X ~ Y is a bijertion show that f is open if and only if [I iscontinuous~

6. Let n ~ 2; f : IRn
~ lR be mappings for 1 ::;i $ n.

. I
Define f (x) = (f (x), f2 (x), ... .fn (x) ).

. '>

-.-'

Show that f: IRn ~!lRn is continuous if and only if for each I, I s i ~ n, f : IRn ~IR IS

continuous.

7. Prove proposition 4.19.

8. If X and Y topological. spaces write X - Y is there if a homeomorphism from X onto "
.... -.'

Y. Prove the following.

a) X-X

b) X-Y=> Y-X

Because of this symmetry X and Yare said to be homeomorphic if X ., Y.

(c) X - Y and Y/~ Z => X - Z.
. r

Lesson Writer: V.J;LAL



LESSON - 5

SPACES OF CONTINUOUS FUNCTIONS

.5.1 Introduction: In this lesson we continue our study of continuity. The sequence

spaces K" and K" and the function spaces B(X), C(X, K) are defined. These spaces are

complete normed linear spaces. It is also shown that in C(X, IR) equipped with the

supremum norm convergence is equivalent to uniform convergence. Finally some

algebraic properties of the space C(X, Kj.are studied.

5.2 Let X be a nonempty set and K be the field of real or complex numbers. We say that

X is a linear space over K if there are operations + and respectively called addition and

scalar multiplication on X such that writing a x instead of a x we have

(i) (X, +) is an Abelian group, the scalar multiplication assigns to each pair

(a, x) E K x X an element a x E X such that for x, y in X and a, p in K.

(ii) a (x+ y),= ax+ ay

/(iii) (a+p)x=ax+px

(iv) (uB) x = a (P x) and

(v) 1x = x

Elements of X are called vectors and of K are called scalars. IfK = IR,X is called a real

linear space while whenK = C, X is called a complex linear space. Some authors call X a
/

vector space as well. We use both these terms in this lesson and subsequent lessons.

5.3 A nonempty subset Y of a linear space X is called a linear subspace of X if x + y is in

Y whenever x is in Y and y is in Y and a x is in Y for any scalar a and x in Y.

5.4 A nonned linear space is a linear space X on which there is defined a real valued

function called norm, denoted usually by the symbol II IIwhich assigns to each x in X, an
,j •• ,'~

element Ilxllin IRsatisfying.
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IIx II~ 0 and Ilxll= 0 if and only if x = 0

IIx+ YII~ IIx] + IIy IIand

IIa. x II= Ia. Illx II
for x, y in X and a. in K.

5.5 Proposition: For a nonempty subset Y of a linear space X; the following are

equivalent.

a) Y is a linear subspace ofX.

b) a. x + J3yE Y whenever x E Y, Y E Y and a,J3 are any scalars.

c) ax + y whenever x E Y, Y ~ Y and a is any scalar

Proof: Left as an exercise.

5.6 Proposition: If X is a normed linear space and d(x, y) = II x - yll then d is a metric on

X. This metric is called the metric induced by the norm.

Proof: Left as an exercise.

Let us recall that a sequence {xn}in a metric space (X, d) is convergent in X if

there exists x. E X such that lim d (x.; x) = 0, i.e. V 8 > 0 there corresponds a positive

integer N (8) such that d (x., x) < 8 whenever n ~ N (8)

In this case x is called the limit of {x-} and is denoted by lim Xn = x . {x.} is

called a cauchy sequence in (X, d) if for every 8 > 0 there is a positive integer N (8) such

that d (x., xm) < E for n > m ~ N (8), eqivalently for n ~ N (8) and m ~ N (8).

It is not necessarily true that every cauchy sequence in a metric space (X, d) is

convergent. A metric space (X, d) is said to be complete if every cauchy sequence is

convergent in (X, d).



5.7 Anorp;ed linear sp,ace X is said to be a Banach space if it is compiete-whh-respect to
: i" :, ~;, \..... .: , . '" '!.

theinduced metric.

5.8 SAQ: Show that a nonempty subsetA ofanormed linear space X is bounded if and
/

only if there is a constant K such that IIx II~ K V X E A.

Euclidean and Unitary Spaces:
I

Let n be a positive integer and let IRn be the collection of all ordered n - tuples

(x-, X2, ..... xn) where each Xi E IR. An ordered n - tuple is the range of a map x from the
. , >'. ".

set In = {l , ... , n} into IR which is arranged in a row in increasing order of the elements of

the domain In. For the sake of convenience we callan ordered n-tuple simply an n-tuple,

omitting the adjective ordered. Ifx =(Xl, ..... , xn) and y = (Yl, .... , Yn)we say x = y when
;.,;:' .: ;, "',.' .( ., .

Xi= Yi'i/ 'i, 1 ~ i~ nand write o for the ordered n tuple all of whose entries are zero. Ifx =

(x., .... , xn) and Y= (Yh .... , Yn),we write x + Y=(Xl + yr, .... , x, + ~'O) and for a E K we

write ax = (ox., .... , aXn). These operations are called coordinatewise addition and scalar'

multiplicat~n respectively.' With these operations IRIl is a linear space.

The euclidean norm on IRn is defined by
/

~ 1~2----2--------2 _
Ilxl!- "XI +X2 + ..... +xn where x= Ix., .... ;.xn)

5.9 Proposition: 1Rnis a normed linear space with the Euclidean norm.

IIXII~b"

~ Xi=0 'v' i, l.~ i~n
',-.'

~X=O
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n
. a2 LX; = a2 IIx 112so that IIax II= Ialii x II

i=1

We now prove the triangle inequality

Let x = (xj ..... , Xn)and y = Yl, ..... , Yn)be elements of 1R11. Then l' I,

x+ Y= (xj + YJ, .... , xn+ Yn)
" n n n n

So IIx +y 112= L(Xi +y)2 = LX~+ LY~ + 2 LXi Yi
i=1 i';'l i=li=1

.~ ;

(1IxlI+llylli =llxl12 +lIy112+ 2 IlxlllIyll

Thus to ;how that j]x + yll :<;;IIxll + Ilyll it IS enough to verify that .tXiY'/":<;;
" :.,i"'''

~X~+ ..... +x~· ~Y~+";"+Y~

II X II'IIYII' - (t,x,y,)' ;.(...~.' i .'. .,!. _.

..", '-.:

= L(xi Yj -Xj y;)2 ~O
icj

Hence (t,XiYi J' < (11*11lIyll)'

=> I LXi Yil :<;;IIX II IIY II .. "

This completes the proof of the triangle inequality. Thus IRIl is normed linear spa,ce with
0': f" - .-

the Euclidean norm.

5.10 Definition: The space 1R" equipped with the Euclidean norm IS called the
.-?

n-dimensional Euclidean space.



Topology and Functional Analysis 5.5 Spaces of Continuous Functions

We define coordinate wise operations on the space en consisting of all n tuples

(zl' .... , ZIl)where each Zi E e and define the unitary norm by

iI Z II~ ~I ZI 12+ + 1Zn 12 where Z = (z., , zn)

As in the case of IRn, we can show that en is a normed linear space with this unitary

norm. The space en equipped with the unitary norm is called the n-dimensional unitary

space.

11

5.11 SAQ: show that if x = (xi, .... , xn) E K" (K = e or IR) then I Xi I s IIX II $; II Xj I,
j=1

for Is is n.

5.12 SAQ: Show that a sequence {x(k) } in Kn where Xk= (x ~ , .... , x ~) converges to

X = (Xi, .... , Xn) if~nd only if for each 1 $; i $; n, the sequence {Xl(k)} converges to Xi.

5.13 Proposition: The space KIl is complete.

Proof: Let X(k)= (XI(k), ..... , Xn(k»)(k ~ 1) and {X(k)}be a cauchy sequence in K". So given

8> 0 there exists a positive integer N (8) such that

\IX(k)- x(r) II< 8 whenever K ~ r ~ N (8)

By SAQ 5.11 1 X/k) - XI(r)I' < 8 for k z r z N (8)

So {X~k)}is a cauchy sequence in K for 1 $; i 5 n.

Since K is complete, :3 a Xi E K lim X~k)= Xi. Put X = (x., .... , Xn)
k

n

,Since 0 $; IIx(k)- X II$; II X~k)- Xi I and liF IX~k)- Xi 1=0 V i
1=1

lim ~I n(k) -no 1=0 so that;k .LJ 1 1

i=1

lim IIx(k)- x] = 0, i.e. lim X(k)= X in Kil.
k k

Thus every cauchy sequence in K" converges.
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5.14 the infinite dimensional Euclidean (Unitary) space Koo
:

00

The space Koo of all sequences {x.} where XnE K V n, such that ~) Xn 12 < 00, is a
n=1

vector space over K.

Solution: Since Koo is a nonempty subset of the linear space S of all sequences with

entries in K, it is enough to verify that Koo satisfies the conditions of 4.19.

Let x = {x.} E Koo
, Y= {Yn} E K" and a, ~ be any scalars.

00 00

Then 2:1 Xn 12 <00 and 2:IY n 12 < 00
n=1 n=1

00

So by comparison test I 21 x ,Sn I is convergent.
n=1

00 00

Since IIXn 12, IIYn 12
n=I n=1

00

and I2 I x n Yn I are convergent, by companson test
11=1

00~::CIXn + Y n 1)2 < 00
n=1

Hence {x, + Yn} E Koo
; i.e., x + Y E Koo

00 '" 00IIa Xn 12 = lal2 IIx , 12 < 00 since IIXn 12 <00

n=1 11=1 n=1

Hence {a xn} E Koo i.e. a x E Koo

Hence K" is a .subspace of S, hence is a linear space.

2 .
Note: This space KOO IS usually denoted by I. For x E K"':', X = {x.}. IIxll =

{

. }112tlX
I1

12 defines a norm with respect to which Koo is compl~te. For details the reader

/ may refer to the study material on Functional analysis in Paper I Topology and

Functional analysis.
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When K = IR,K" is called the infinite dimensional Euclidean space.

When K= C, K" is called the infinite dimensional unitary space .

. 5~t5 The space B (X):

~r~portion: Let ~ be a nonempty set. The set B(X) of all bounded K - valued functions
.is a Banach space with respect to the supremum norm defined by

II~I= Sup {If(x)l/ x E X}

Proof: Define addition and scalar multiplication on B (X) by point wise operations:

(f + g) (x) = f(x) +g(x) and (a f) (x) = a [(x)

for f, g in B (X), a ~ K and x E X.

V X E X, I (f + g) (x)l= 1f.C,~)+& (x) I
~ If~x)l+ Ig(s)1

$It~l+ jJgll ...... , (1);.

So f + ~.is,bounded, h¢i1i~b~longs,.to ~(¥),

Similarly \j a, E K, 1(0., t1.~x)'1= I~JIf(x) I
=> Sup {ICa.f) (x) 1/ x E){} = S4P { lo.llf~x)1Ix E X}

= la\:Sup {lfe?')1/ x E Xl
= lal:!I,! 61\, (2)

Therefore 0,. f E B(X)i ~n9-~I%){). is: a linear subspace of the' linear space F(X} of all

functions. on X, thus BeX) is' a, lin~~:rspace. with respect to-the. poinr wise.cperations.

(

Verit}.c~ti9n oit}nOrl)l,p·rop~rt~es-(:!
•• , ", -" ' " w," . ~

Tha,t;1\:'f+ g \I ::;;1·lfil\+ Ih~ II~Qidl~ ~F= 1~111~'fisclear from (1) and (2). Itis also

c}earihatW~~11 z-o '<;t..~ E, 4;iso,tha~i\1~140i FinaU~II~I'= o~ r£.(x)I= 0 V XE X.

~f(x)=OVx E X:

~f=O

Hence 1\ II defines a .nerm and thus B(X) is a normed linear space.
r
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Completion: Let {fn} be a Cauchy sequence in B(X). If E > 0 there is aposirive integer

N (E) such that Ilfn- ~nll < E for n > mz N (E)

:::} V X E X Ifn (x) - ~n (x) I< E for n > m z N (E)_ (3)

=> \;j x E X {f, (x)} is a Cauchy sequence in K.

=> {f, (x)} converges in K. Write f (x) = lim £;1 (x) (x E X)
. n

In (3) fix m z N (E) and let n ~ 00

We get If (x) - fm (x) Is E for m z N (E) V X EX (4)

In particular I f(x) 1- IfN(x) I S E where m ;;::N (E)

=> If(x)1 ~ E + IfN(x) I w~ere N = N (E)

This being true V X E X it follows that f is bounded so that f E B (X).

From(4) it follows that IIf-fmll s E for m z N (E)

Hence {fn} converges to fin B(X).
;. ,.,'

Thus B(X} is eomplete.
5.16. Uniform convergencet

DFfiliition: A sequence {fo} of functions defined on a set E with values in IR or C is said

to converge uniformly to a function f defined on E with values in IR or C if for every E>O
.' '

there corresponds a positive integer N(E) such that

[f, (x) - f(x) I < E for all x E E and 11~ N (E)

5.17 Proposition: Let {~l} be a sequence of continuous complex (or real) valued

functions defined on a topological space X. If {fn} converges uniformly to a complex (or

real) valued function f on X then f is continuous on X.
»< ,

Proof: It is required to prove that f is continuous at every xj= X. Fix x E X and let E > O.

Then there exists a positive integer N (E) = N such that Ifn (t~- f (t) I <. :. lor n ;;::Nand. 3

t E X..

By the continuity offN at x, :3 an open set V ofx such that IfN(t) - fN(X)1< ~ for t E V.. . 3

6tl. For t E V.
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Hence f is continuous at x.

5.18 SAQ: If X is a topological spsace and C (X, K) is equipped with the supremum

norm defined by II~I= Sup { If(x)I / x E X}, then a sequence {~1} in C(X, K) converges to

fin C(X, K) with respect to the induced metric if and only if {f.l} converges uniformly to

fon X.

Remark: It is because of the equivalence of the two types of convergence in SAQ 5.18,

the supremum norm is also called the uniform norm.

5.19 Theorem: Let C(X, IR)be the set of all bounded continuous real functions defined

on a topological space X. Then C(X, IR)is a real Banach space with respect to point wise

addition and scalar multiplication and the norm defined. by II~I= Sup {If(x)1/ x E X}

Proof: Let {f.l}be a Cauchy sequence in C(X,IR). Then for every E > 0 there corresponds

a positive integer N(E) such that 11f.,- fmll< E for n > m > N (8) ------- (1)

Ifx E X, Ifn(x) - f.n (x) I~ Ilfn- fmll< 8 for n > m ~ N (8) ...... (2)

Hence {f, (x)} is a Cauchy sequence in IR.Therefore there is a number which we denote

by f(x) such that lim fn (x) = f (x) since this is fixed uniquely V x E X, X -)- f (x) defines a,

function from X into IR.

We show that f E C(X, IR) andlim fn= fin C(X, IR).

Continuity of f: If x E X, and E > 0, from (2)

Ifn(x) - fm(x) I < E for n > m ~ N (8)

Keeping m fixed and letting n tend to 00 we get

If (x) - fm(x) I~ E for m ~ N (8)

This is true V x E X hence {fm}converges uniformly to f on X.
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Boundedness: Corresponding to E = 1 :1 a N\ as per (1) above so that

I fn (x) - fNJ(x) I::; IIfn- fN! II< 1 for n ~ N\.

Letting n ~ 00 we get [fix) - fN (x) I ~ 1and this is true for all x E X.
J

\ => If(x) I-I fNJ (x) I :s; I f (x) - fNJ (x) I ::; 1 for x E X

=> If (x) I ::; 1 + If NJ(x) Isi + II fNJII 'Ii x E X

Hence f is bounded.
Convergence: IfE> 0 by (1) II fn - fmll< E for n > m ~ N (E) and X'E 4X.

=> Ifn(x) - fm(x) 1< E for n > m ~ N (E) and x E X

Letting n tend to 00 we get

!f (x) - ~m (x) I ::;E for m ~ N (E) and all x E X

=> IIf- fmll=Sup {If(x) - fm(x) 1/ x E X) ::;E for m ~ N (E)

Hence {fm} converges to fin C(X, IR)
Since every Cauchy sequence in C(X, IR) converges to an element in C(X, IR);

this space is a complete normed linear space, hence a Banach space.

This completes the proof.

5.20 Definition: By an algebra over K we mean a vector space X over K together with a

binary operation called multiplication with respect to which, the additive group (X, +)

becomes a ring and satisfies

a (x, y) = (a x) y = x (a y) for x, y in X and a in K.

If the ring (X, +, .) is commutative, the algebra is said to be commutative.

If the ring (X, +, .) has multiplicative identity, the algebra is said to have identity.

If K = IR, A is said to be a real algebra and if K = C.

A is said to be a complex algebra .

. 5.21. Definition: If A is an algebra, a nonempty subset B of A is said to be a subalgebra

of A ifB is linear subspace of A and x E B, y E B => xy E B.
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5.22 Theorem: Let X be a topological space and C(X, C) be the set of continuous

bounded real functions defined on X arid Bill = Sup { If(x) I / x E X}
(1) If multiplication is defined point wise (::(X, IR) is a real comm utative algebra with

identity in which

IIf g II ~ IIfilII g II andjll ] = 1

(2) if f ~ g is defined to mean that f(x) ~ g (x) for all x E X, C(X, IR)is a lattice in which

the greatest lower bound and the least upper bound ofa pair of functions f andg are given

by (f ("\g)(x) = min {f (x),g (x) } and

(fu g) (x) = max {f'(x), g(x)}
Proof: Clearly C(X;'IR) is vector space over IR.

That C(X, IR)is a commutative ring follows from the properties of IRsince multiplication

, and addition are pointwise.operations.

The function 1 defined on X by 1 (x) = 1 for.x E X is the multiplication identity in

C(X, IR).

Further-for f, g in C(X, IR)and x E X

I (f g)(x) I,= If (x) I I g (x),I~ IIf II IIg II
so.that Ufg] = Sup {I (fg) (x) I! x E X} s II f II II g II
this completes the proof of (1).

~-Froofo42~ws from !he lattice.properties of lRand 4,29.

.
?23 Theorem: Let CfX, C) be the set of all bounded continuous complex functions

defined on a topological space X. then

(1) C(X, C) is a complex Banach space wiui respect to. pointwise addition and scalar

multiplication and the norm defined by IIf.] = Sup {lf'(x) 1/ x E X}

(2) Ifmultiplication is defined pointwiseC(X, C)is a commutative complex algebra with

identity lin which

" f g " s IIf" " g " and "J "= 1 and
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(3) If f is defined by f (x) == f (x) then f,~ ,f is amapping of the algebra C(?C,,C) into

itself which has the following properties:

(a) f + g = f +g

(b) af = a f

(c) fg = f g

-
(d) f =. fand . ~

-
(e) [f ] = II~I

, ".;

Proof: The proof for (1) and (2) is same as that of C(X, IR).That for f E (:(X, C)>,C!' "

fE C(X, C) is proved.in lesson 4. (a), (b), (c), (d) .need to be'verifiedforevery-xe X
J

and when we take the value at any x we get complex numbers for which (a), (b), (c), (d)

hold good. Since If (x) I = I f (x) IV x E X and f EC(X, C), (e) follows.

This completes the proof.
5.24. Model Examination Questions: ' ,

":"

1. Define an n-dimensional Euclidean space R" and showthat R" is complete. ',-

2. Show that the space C(X, IR)of all real valued bounded continuous functions on a

topological space X is a Banach space.

3. Show that in C(X, IR)where X is a topological space lim Ilf~-'- ~I = 0 if and only if
n , '

,{fn} converges to funiformly on X.

4. Show that if A is an algebra which is a Banach space· and B is a subalgebra 'of ~ then

so is its closure B.

5. Show that the space Kn with IIzll = {I zl12 + + 1z', 12'}"~ is comple~.
S.2S Exercises: , \

I. Prove that a' nonemptysubsetY of a linear space X is a linear subspace of X if and

only if
i

x E Y, Y E Y, a E K, ~ EK => a x + ~ Y E Y

if and only if x E Y, Y E Y, a E K => a XE Y and x + y E Y.
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2. Prove that the space F(X) of all functions X ~ K is a commutative algebra with

identity under point wise operations.

3. Prove that the space S of all sequences of numbers is a commutative algebra with

identity under pointwise operations.

4. Define homomorphism and isomorphism of algebras X, Y over the same scalar field

and prove that if X is a finite set with n elements (n > 1) then C(X, IR) is isomorphic

to B(X) ~ver IR.

5. Define II x 1100 = max { IXil / 1 :s; i :s; n} when x = {xi, X2, .. '" xn} E Kn

Show that the algebra Kn is complete with this norm.

6. Prove that Koo is complete.

7. Prove that Koo is separable.

8. a) Show that C(X, K) = B (X) when X is equipped with discrete metric.

b) Prove that C(X, IR) is separable if and only if X is finite when X is equipped with

the discrete metric.

9. Let A be an algebra of real or complex functions defined on a nonempty set X.

Assume that for each x E X there exists a f E A such that f(x)~ O. Show that if A has

identity element e then e (x) = 1 for all x E X.

10. Let f E C(X, K), f ~ O. Show that the set Y = {x E X / f (x) ~ O} is open and! is/ f

continuous on Y.

11. Prove that the closure A of a subalgebra A of C(X, K) is a subalgebra.
-

12. If A is a subalgebra of C(X, C) such that f E A => f E A show that f E A =>
-
fE A. . .

5.26. Answers to self assessment Questions:

SAQ 5.8: ~ ~ A c X is bounded if and only if there exists a real number K\ > 0 such that

d (x, y) :s; K\ for all x, y in A.
.\

Fix Yo in A. This implies that d (x, 0) :s; d (x, Yo) + d (Yo, O)

:s; K\ + d (Yo, 0)
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Hence IIxII = d (x, 0):::; K) + lIyoli for every x E A.

Conversely if there is a K > 0 such that II x II :::;K V X E A, then for every x E A and

yEA,

d (x, y) :::;d (x, 0) + d (0, y) s 2 K

Hence A is bounded.

SAQ 5.11: Ixd2...;;IXil2+ + Ixi :::;(lxr] + + IXnli V i, I :::;i :::;n

=> IXiI:::;IIxll:::;Ixd + + Ix"1
n

SAQ 5.12: IXi(k)- Xi Is Ilx(k)- xIIs 2:1 x t) -x j I for 1-$ i :::;11.
j=1

Thus lim x(k)= x in Kn => lim lIik) - x II= 0

=> lim Ix)(k)- Xi I= 0 V i, 1 :::;i:::; n

=> lim X ~k) = Xi Vi, 1 s i:::;n '

Conversely iflim X~k)= XiVi, I~i~n

Lim IX~k)- xd = 0 Vi, I s t s n

n

=>lim2:lxfk) -xil=O
;=1

=> lim IIx(k)- x II= 0

=> limx (k) = X in Kn.

SAQ 5.18: If X is a topological space and C(X, K) is equipped with the supremum norm

defined by II~I= Sup { If(x) I / x E X} then a sequence {fn} is C(X, K) converges to fin

C(X, K) with respect to the induced metric d if and only if {fn} converges to f uniformly

onX.

Proof: Suppose d (fn, f) ~ Oas n ~ 00 i.e. lim Ilfn- ~I = 0
n

Then given 8 > 0 there is a positive integerN (8) such that

IIfn- ill < E for n ~ N (8)
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Since 0 ~ Ifn(x)- f (x) IS; Ilfn- ~I V x E X,

Ifn(x) - f (x) I< e for n ~ N (E) and x E X

He~ce {fn} converges uniformly on X.

Conversely assume that- {fh} converges to f uniformly on X. Then for every E > 0 there
. I

corresponds a positive integer N (E), such that Ifn(x) .; f (x) I< ~ for n ~ N(E) and all'. . . 2

X E X. Hence Ilfn'- fll= Sup {lfn(x) - f(x) 1/ x E X}S; ~ < E for n ~ N(E)

Hence d (fn, f) ~ Oas n ~ 00

(

Lesson Writer: V.J. LAL
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LESSON NO. 6

COMPACT SPACES

6.1 It is well known that closed and bounded sets of real numbers have important

properties in analysis. For example continuous- real-valued functions defined on closed

and bounded sets of real numbers are bounded and uniformly continuous. In contrast to

this, the function de1ned on the open unit interval (0, 1) by f(x) ~ ~ is neither bounded

nor uniformly continuous. An abstractization of this important p:perty possessed by

closed and bounded ~ets of real numbers gives rise te the concept of compactnessfor -

to logical spaces.

6.2 Definitions: Let X be a topological space. A class {Gj LIof open subsets of X issaid

to be an open cover of X if X = UGj •

iEI

A sub class of an open cover which is itself an open cover is called a subcover.

A topological space X is called a compact space if every -open cover of X has a

finite subcover.

A subspace Y of a topological space X is said to be compact if Vis compact as a

topological space in its own right.

6.3 Examples:

(1) Every indiscrete space is compact (Ex. 2.6).

Solution: If X is an indiscrete space, since X has only two open set <;. every open

cover has a finite subcover. Thus X is compact.

(2) Let X be any infinite set and let

T = {V ~ X / X - V is finite} U {~}



Centre for Distance Education 6.2 Acharya Nagarjuna University.

Then T is a topology on X, called the cofinite topology. The topological space (X, T) is

called a cofinite topological' space. This cofinite topological space is compact (Ex. 2.8).

Solution: Let {Vi h e I be an open cover of X. Since X = U Vi , some Vi is nonempty,
iel

say VI' . Then X - Vi is finite.Let X - VI' = {XI, .... , xn}.4rSupposex, E V for r = 1, ... ,
o 0 • 0 If

n. Thus X = Vi, U ...'" U Vi' U Vi So {Vi' ... Vi , V,, } is a finite subcover. Hence
II () I nO'

X is compact.

(3) Every finite topological space X (i.e. IXI < 00) is compact.

Solution: Since X has only a finite number of open sets, every open cover has a finite -

sub cover. .'. X is compact.

(4) The open un•• interval (0, 1) with usual topology is not compact.

Solution: For each positive integer n, let Vn = (!,1) Then {Vnh e w is an open cover
. n

of (0, 1), but it has no finite subcover. •• (0, 1) is not compact.

..~

(5) The set ~. of all real numbers with usual topology is not compact.
• 00

Solution: Clearly IR = U(-n, n). For each positive integer n, let U, = (-n, n). Then
n=1

·{U n} i etIJ is an open cover of IR, but has no finite subcover. Therefore IR is not

compact.

6.4 SAQ: Let Y be a subspace of a topological space X. Then Y is compact if and only if

for every class {Hi }i E I of open sets in X such that Y <;;:; UHi there is a finite subclass
iel .

{HLeJ (J ~ Iand J is finite) such that Y ~ UHi
ieJ

We now prove two simple, but useful, theorems.
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6.3 Compact Spaces,

6.5. Theorem: Any closed subspace of a compact space is compact.

pr~of: Let Y be a closed subspace of a compact space X. Let {Hi LEI be a class of open'

sets in X such that y ~UHi . Then X = Y U v' ~ (UHi ) U v' C X, where v' is the
ieI ieI '

complement ofY in X. •. X = (UHi) U v'. Since Y is closed, ylis open. Hence the
ieI

class {Hi h E I U {yl} is an open cover of X. Since X is compact, there exists a finite

subclass {H. , ..... , H } of {Hi hE I such that X = Hi U ....U Hi U v'. Hence Y =
. II In" I II

(H. n Y) u ....u (H, n Y) u (yl n Y) c Hi U ... U Hi . By SAQ 6.4, Y is
I) In I n

compact.
6.6 Theorem: Any continuous image of a compact space is compact.

Proof: Let f: X ~ Y be a continuous mapping of a compact space X into an arbitrary

topological space Y. We claim that f(X) is a compact subspace of Y. Let {Hi }i E I be a

class of open sets in Y such that f(X) c U Hi . Since f is continuous and H is open in Y.
ieI '

r' (Hi) is open in X, for every i E I. Therefore {r' (Hi)} i E I is a class of open sets in X.

Also reX) c UHi ~ X C r' (UBi) = Ur-I(HJ ~ X = Ur-I(HJ. Since X is
iel ieI ieI ieI

compact, there exists a finitesubcover {f " (Hil), ..... , r' (Hin)} of {r-I (Hi )}. Hence

X = r' (HI' ) u U. C1 (HI' ) and this implies that f (X) c H, u u H, .
I n II In

Thus by SAQ 5.4, [ex) is compact.

6.7 Remark: Let us recall that if X is a set and {Aih EI is a class of subsets of X, then we

have that

(UAi)1 = nA:
IEl ie l

and, (nAiJI = UA:
iEI iEI
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We note the following:

{A, hE I is a covering of X <=> X = UAj
iEI

..~

6X-UAi=~
'iel

<=> (UA)I = ~
lEI

We also note that a subset A of a topological space X is open iff its complement

A 1 is closed.

The following theorem is an easy consequence of the definition of compactness of

a topological space.

6.8 Theorem:" A topological space is compact <=> every class of closed sets with empty

intersection has a finite subclass with empty intersection.

6.9 Remark: In remark 6.7, it was observed that if {Ai} is a classof subsets of a set X

then {Ai hE Iis a covering of X if and only if nA: =~. As a consequence of this we
0" ie!"

have that the class {A, } is not a covering of X if and only if nA: ;:I;~.

ie l

6.10. Definition: A class {Ai he I of subsets of a non-empty set X IS said to have the

finite intersection property (simply; f . i .p.) if every finite s~bclass of {Ai"}';E Ihas non-

empty intersection.

In view of this defi1tion, theorem 6.8 can be restated as follows. . ,

6.11. Theorem: A topological space is compact <=> every class of closed sets with the

finite intersection p operty has non-empty intersection.
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Let us recall that an open base for a topological space X is a class of open sets

with the property that every open set is a union of sets in this class.

6.12 Definition: Let X be a topological space, An open cover of X whose sets are all in

some given open base is called a basic open cover.

6.13. Remark: Suppose X is a compact space. Since every basic open set is an open set,

every basic open cover is an open cover and hence it has a finite subcover. We prove the

converse part in the following.

6.14 Theorem: Suppose {B, hE I is an open base for a topological spaceX. If every basic

open cover by sets from {BihEI has finite subcover, then X is compact.

Proof: Let {GJiEJ be an open cover of X. Since {B, he I is an open base, each G, is a

union of sets from {B, h E I. SO there is a subset Ir cl such that Or = UBi . Put 10 =
iE[r .,

UIr . Therefore X = UGr = U(UB;)= UBi' Thus {BJiElo is a basic open cover of
iEJ iEJ ieJ ielr ielo --

X. By hypothesis, there exists a finite' subclass {Hi)'" :'.. Bin} of{Bi }iElosuchthat

n

X = UBiK . Now for each BiK, there exists GiK (rk E J) such that BiK C Grk. So X =
k=l

R U B, C G r u u Grand hence X = G r u u Gr' Thus X is compact.
II n .1 II, I n

6.15 Definition: Let X be a topological sp'ace. A class {F.} of clo~ed subsets of 'X is

called a closed base if the class {F: } of all complements of its sets is an open base of X.

Sets F, are called basic closed sets,
1neorem 6.14 'can be restated as follows.

6.16 Theorem: A topological space is compact if every class of basic closed sets with the

,finite intersection property has 'non-empty intersection.
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6.17 Definition· Let X be tonol .
.. _.,. a opo ogical space. A class {S, } of closed subsets of X is

called a closed subbase if the class {S J } fill .
loa cornp ements of Its sets is an open

subbase.

6.18 Remark: Let us recall that an open subbase is a classes of open subsets ot a

topological space X whose finite intersections form an open base. This open base is

called the open base generated by the open subbases. From the definitions 6.15 and 6.17

it is clear that the class of all finite unions of sets in a closed subbase C is a closed base.

This is called the closed base generated by the closed subbase C. <,

We now prove a criterion for a topological space to be compact in terms of
subbasic closed sets.
6.19 Theorem: A topological space is comapc,t if and only if every class of subbasic

closed sets with finite intersection property has non-empty intersection.

Proof: Let X be a topological space. Since very subbasic closed set is a closed set, it

follows from theorem 6.11 that if X is compact then every class of subbasic closed sets

with f.i.p. has non-empty intersection. Conversely suppose that every class of subbasic

Closed sets with f.i.p has nonequity intersection. Let {Sa. LE~ be a closed subbase and let

{Bi }iEI be the closed base generated by this subbase. So, each B, is a finite union of Sa'S.

By theorem 6.16, to prove the theorem it suffices to show that every class of basic closed

. sets from {Bi }iEI with f.i.p. has non-empty intersection. So, let [n, }iEJ be a class of Bi's

with f.i.p. We have to show that nB, *-~. Let ~I be the family of all classes of BilS
iEJ

which contain {Bi }iEJ and have the f.i.p. Since the class {Bi}iEJ is in ~ I,the family ~ I *- ~.

Then 31- is a partially ordered set with respect to class inclusion. Let {m i} be a chain in

~I' Put 93= U m 2, Since each fJ3Nis a class of B ~s, fB is also a class of B ~s. Let {Bil'
n

....... ~., B, }be a finite ~BN class of sets in m. contained in some f1lN. SinceD3N has the
n _

f.i.p., f3il n ....n B, *-~.Since { mN} is a chain,. The finite class { mj ~1\ }
'. n I ....., n
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So ~ has the f.i.p. Therefore m E '3\ and isan upper bound of H\N' s. By Zorn's lamma, ~I

has a maximal element. Let {Bk}KeKbe a maximal element in :51• Since {Bk}KeK

contains {Br)reJ' we have that nBk c nB; . So, it suffices if we show that nBk :I; $.
keK ';eJ keK

Now consider the class {Bk }kEK. Each B, is a finite union of sets in {Sa}ae6' for instance

let B, = S) U ..... U Sn. It now suffices to show that at least one ofthe sets S), .... , Sn

belongs to - (*) the class {BdkEK . For, if we obtain such a set Sak for each Bk, then the

resulting class {Sak } is a class of subbasic closed sets. Since Sa. is a subclass of {Bj},

{SaJ has f.i.p. Byhypothesis, nSak :I; $ and hence nBx :I; $, since each SakC Bk. We
, kEK kEK

prove (*) by contradiction. We assume that each of the sets = S), .... , Sn is not in the class

{Br}. Consider SI. Since each subbasic closed set is a basic closed set, S) is a basic

closed set.
Since SI is not in the class {Be}. the class {BdkEK U {Sj} contains the class {BkhEK

properly. By the maximality property of {Bk}kEK' the cla~s {Bk}kEKU {Sd fails to have

the'f.i.p. Sothere exists a finite subclass r1 of {Bk}kEKsuch that SI n (nB)=~. If we
, Ber

do this process for each of the sets SI, .... , Sn, we get finite subclasses r1 ••••• , rn of

{Bk}kEKsuch that Sj n (nBJ = ~,for 1 ~ i:::; n. Put r ='r, U ..... Urn. Now r is a
Berj

finits subclass of such that n

l' (SJr{OB JJ u u(s" "-{OB J) ~ ~ . Therefore r u {Bkl is a finite subclass of

{Bk}kEKwith empty intersection. This contradicts the finite intersection property of the

. class {B~}keK. Therefore one of the sets Sl, .... , Sn belongs to the class {Bk LeK as

defined.

By remark 6:9, the above theorem can be restated as follows.
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6.20. Theorem: A topological space is compact if every subbasic open cover has a finite
subcover.
6.21. SAQ Let X be a topological space and Y a subspace of X If {ViLI is an open

\-

.',~ubbasefor X then the class {Ui }iEI' where U, = VI n Y, ViE I, is an open subbase of Y.

\

.We now prove the famous Heine - Borel theorem.

6.22 Theorem: (The Heine - Borel theorem) Every closed and bounded subspace of the

real line is compact.

Proof: Let E be a closed and bounded subspace of the real line IR. E is bounded => E ~

[-n, n] for some positive integer n. Since E is closed in IR, it is also closed in [-n, n1- By

theorem 6.5, to show that E is compact,it suffices to show that every interval of the form

[a, b] is compact. If a = b, then [a, b] = {a} and hence it is compact, because every finite

space is compact. So, we may assume that a < b. Clearly the class of all intervals of the

form (c, + 00) and (-00, d), where c and d are real numbers is an open base for IR. By SAQ

6.21 by draping the empty set, the class of all intervals of the form [a, d) and [c, b] where

cand d are real numbers such that a < c < b and .a < d < b is an open subbase for [a,b].

Therefore the class of all interals of the form [a, cjand [d, b], where a < c, d < b is a

closed subbase for [a, b]. Let y = {[a,c;]}iEIU{[di,h]tJ be a class of subbasic closed sets

with f.i.p. It suffices to show that the intersection of all sets in y is nonempty.

". r

If y contains only intervals of the form [:1, Cj] then the intersection contains a. Similarly y

contains only intervals of the form [d, b], then the intersection contains b. So, we may

assume that y contains intervals of both thetypes.Define d = sup {d, / [d., b] E y}.

Cleanly d E [d, , b], V i. We complete the proof by showing that d::;;CjVi. Suppose that

d > Ciofor ~ome io. Then Cio is not an upper bound of the defining set of d. :. There

exists a: d, such that ci <d<. Thus [a, c, ] n [d< , b] = ~ . This contradicts the f.i.p of
(Ion 0 n • . )

y. This completes the proof.
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6.23. SAQ: Prove the convrse of the Heine - Borel theorem: Every compact subspa~>
", "<,

the real line is closed and bounded.

6.24 Definition: A topological space is said to the countably compact of every countable

ppen cover has a finite subcover.
!

6.25 SAQ: Prove that a second countable space is countably compact ~ it is compact.

,
6~26Model Examination Questions:

I .

1. Prove that any closed subspace of a compact space is compact.

2. Prove that any continuous image of a continuous space is compact.

3. Prove that a topological' space is compact if and only it every class of basic closed

sets with the f.i.p has non-empty intersection.

4. Prove that a topological space is compact if and only if every subbasic open cover has

a finite subcover.

5. State and prove the Heine - Borel theorem.

6. Prove that every compact subspace of the real line is closed and bounded.

6.27. Exercises:

1. Prove that a compact subspace of a metric space is closed and bounded.

2. Let X be a topological space. If YI, and Y2 are compact subspaces of X? prove that

YI ~ Y2 is also a compact subspaceof x. . '
\

\

3. If {Xi} is a non-empty class of compact subspaces of X each of which is closed, and

if nXi is non-empty.show that nXj is also a compact subspace ofx.
j ieI .

" ,

4. Show that a continuous real or complex function defined on a compact space is

bounded.

5. .Show that a continuous real function defined on a compact space X attains its

infimum and its supremum.

\,
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6. If X is a compact space, and if {fli} is a monotone sequence of continuous real

functions defined on X which converges pointwise to a continuous real funtion f

defmed onX, show that {fn} converges uniformly to f.

7. Prove 6.8

8. Prove that the class of intervals of the form (c, (0) or (-00, d) where c, d are real

numbers is an open base for IR.

6.28 Answers to self assessment questions:

6.4. Suppose that Y is a compact subspace of X. Let {HiL! be a class of open sets in X

such that Y ~ UHi .
iEI

Then {Yn Hi LI is an open cover of Y. Hence, there exists a finite subcover, say

{Y (\ H , y (\ H }. Therefore Y = (Y (\ Hi ) U U (Y (\ Hi ) = Y (\ (Hi
1( In I II I

U U Hi ) C Hi u U Hi . Since every open set G in Y can be written as G =
II I _ II

Y (\ H, where H is open in X, the converse part can be proved in a similar way.

6.21 Let H be any non-empty open set in Y and Y E H. Then H = G (\ Y, where G is

open in X.Since y E G, there exists Vii' , Vi.- in {ViLI such that y EVil n .

(\ Vi C G. Then, clearly y EVil n .....n Vi '~H. .• {UJiEI is an open subbase for Y.
n n

6.23 Let Y be a compact subspace of the real line IR. For each positive integer n, let

In = (-n, n). The~ ,{IntEN is a class of open sets in IR such that Y c UIn . Since Y is
. n~1

compact, there exists positi~e integers n., , nk such.that Y c Inl u U IlIk • Let n

be tl[.emaximum of nj .... , nk. Then Y ~ In ~ Y c (-n, n) ~ Y is bounded. To show Y is

closed it suffices to show that its complement v' is open. Let x, E v'. For each x E Y,

since x -:f= xn, there exists neighborhoods Vx of x and U. of x, such that Vx n Vx .Xu n

Clearly Y :::; UVx' Since Y is compact, there exists Xl, ..... , Xm E Y such that
XEy
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y c VXU" V x . Let Vx , , V be the corresponding neighborhoods of x; Put
1 III I Xm

G Vx '-...J ••... U Vx and H = U ,1\ 1\, Ux • Then x E G => X E Vx for some i
I m x\ m _ f

~ X ~ Ux, => X ~ H. Therefore G 1\ H = ~ and hence Xo E H·::;; G1::;; v': Thus v' is

open.

6.25. Let X be a second countable space. Since every countable open cover is an open

cover, it follows that if X is compact, then it is countably compact. Conversely suppose

that X is countably compact. Let {Gi }iel 'be an open cover of X. Then X = UG i • By
iei

Lindelofs theorem, thereexists a countable subclass {Gi" Giz ••••• } such that x = OG" I

i=1

Thus JGi} is a countable open cover of X. by hypothesis, there exists a finitet r reN

subcover, say {G, , G,. }. Since this is a finite subcover of {G,.}. I' we have that X·
II Ik IE

.is compact.

Lesson writer: V.V. REDDY



LESSON'-7

'PRODUCT SPACES

7.1 Introduction: In this lesson we introduce the notions of product topology and

product spaces. we define these notions initially for two topological spaces for a
" .. ~. ,.

better understanding and prove that the usual topology on the Euclidean Plant R2 is

precisely the product topology. We then extend these notions to arbitrary class of

topological 'spaces. We prove the main theorem of this lesson, namely the

Tychonoff's theorem. As an application of this theorem we obtain the Generalized

Heine - Borel Theorem. We also define the notion of locally compact space and some

examples of these spaces are given. We obtain an equivalent condition for a

topological space to be locally compact.

We begin with the notions of product topology and product space for two topological

spaces.

Let Xj and X2 be topological spaces. Let us recall that the Cartesian product of the

sets Xl and Xj is the set of all ordered pairs (x1,x2)with XIEXI and x2 EX2 We

denote it by XIX X2. Suppose X = X] x X2. Let S be the class of all subsets of X

of the form G 1 x X2 and X 1 x G2 where Gland G2 are open subsets of X I and X2

respectively. The topology on X generated by the class S is called the product

topology. The open sets in the product topology are the unions of finite intersections

of sets in S. Theset X equipped with the product topology is called the product space

or the product of the spaces Xj and X2. The product topology has S as an open

subbase. It is clear that (GI xX2) n (XI xG2) = (GI n XI) x (~2 nG2 ) = GI xG2
"!

Therefore the open base generated by S is the class of all subsetsofthe form G IX G2"'

where G and G2 are open in X and X2 respectively.I I

Define mappings Pi: X -» Xi' for i = 1,2, by' p (x I' x2) = Xi for all

(x"x2) E X. PI and P2' are called projection mappings (or simply projections)
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Let us recall that if X is anon-empty set andif·T, and T2 are topologies on X

such that TI c T2' we say that TI is weaker than T2. Further, the family of all

topologies on X is a complete lattice with respect to the relation 'is weaker than'.'

. 7.2 Theorem. Let X, and X2 be topological spaces and let X be their product

space. Then the projections Pi , for I = 1,2 are continuous. Moreover the product '

topology is the weakest topology for which the projections are continuous.

-.... "

Proof. If G) is an open set in X" then p -I (G.)) = G I X X2, which is a

sub-basic open set in X; so PI is continuous. Similarly P2 is c~ntinuous.: Suppose T,
I

is a topology on X for which the projections PI and P2 are continuous. Then for

each pair of open sets GI and G2 in XI and X2 respectively, the set GI x G2 =

(G) x X
2
) r1 (XI xG2) = p~1(GJ r1 p;I(G2) must be open in T since the projections

are continuous with respect to T. Thus every set which is open in the product

topology must be open in T.

7.3 Definition: A mapping ~ from a topological space X into a topological space Y

- is called an open mapping if ~ (G) is open in Y whenever G is open in X.

7.4 SAQ. Prove that the projections PI and P2 are open mappings. Let us recall that

the Euclidean plane R2 is a normed real linear space, where R2 is the set of all

ordered pairs (XI, X2)of real numbers, under coordinate wise operations and norm

given by !!(X.,x2)!! = ~!XI!2 + IX2!2.

7.5 Theorem. The usual topology on the Euclidean pl~e R2 is precisely the product

topology of the usual topologies on R taken twice.

/

Proof: we know that the funection d defined by .

d((rl,sl)' (r2' sJ) = J/rl -r2/2 + /SI-S2/2
. I .

is a metric on R2. We have to show that the topology induced by the metric d is

precisely the product topology. ' Suppose G is a subset of R2 which is open-with
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respect to the metric d, and let (r,s) E G. Then there exists an . E > 0 such that the

open sphere SE (r,s)~ G. Let V = SE/!2 (r) and W = SE/!2(S), which are open sets

in R containing rand s respectively. We assert that V x W C G and this will show

that G is open in the product topology. If'(x.y) E V x W, then x E V and YEW; that

is Ir-xl < E I J2 and Is - ~I < E I J2. Thus d (r,s), (x.y) = ~lr_xI2 +ls-yI
2

< ~(E'I J2r + (E I J2r = E and so (x,y) ESE [r.s] C G, as desired.

Now suppose G is a subset of R' which is open with respect to the product

topology, and let (x,y) E G. Then there exists open sets V and W such that (x,y)
I

rE V X W C G. Thus x E V and YEW, so there exist Ex, Ey > 0 such that

SEx(X)~V andSE,(Y)c W. Let E =min k,.,Ey}, We claim that

SE(x, y) ~ SEx(x) X SE
y
(y) which will show that G is open with respect to the metric

d, since SEx(x) x SE
y
(y )~ V x W ~ G. Now if (r,s) E SE(x, y) then

Ix-rl ~ )Ix-rr + ly-sl2 < E s ~Ex and Iy-sl s )lx-rI2 + ly-sl2 < E ~ Ey' so

(r.s) e SEx(x) x SE
y
(y), as desired.

We now prove that the product of two compact spaces is compact.

7.6 Theorem: If X and Yare compact spaces, then their product space X x Y is

also compact.

Proof: Let {WJAE/\ be an open covering of X x Y. We choose an Xo in X iand
!

Consider {xo} x Y. Corresponding to each y in Y, there is a A(Y) E /\ such that

(xo, y) E W"-(y).Then there exists a basic open set U, x V(y) such that

(xo, y) E u, X V(y) C W,,-(y)

The class {V(y)}yEY is an open covering of Y. Since Y is compact there exist )'1, .... ,

Ym E Y such that Y = V(YI) U ..... U V (Yn). Let U , ..... ,U, the corresponding
YI )'11

neighborhoods of Xo. Put U (xo) = U (\ ..... (\ U . Then we have, y, Ym
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U (xo) x V (Yr) c W'J...(Yr),for.r ~ 1, , m. and so V(xo) x yc W'J...(YI)U U

W'J...(Ym)'It follows that corresponding to each x in X there is a neighborhood Vex)

of x and there are finitely many elements A (x, 1), .... , A (x, m(x)) in 1\ such that

Vex) x Y c W'J..(X.I)U U W,,-(x.m(x)). Now the class {U(X)}XEXis an open

covering of X. Since X is compact, it follows that there are elements x I, .... , x, in X

such that X = U (XI) U U U(xn). So we have

X x Y c (U (XI) x V) U u (U (xn) XY)

Thus ({W"" ..,l:::'" t is a finite sub covering of X x Y. TjerefOre X x Y is compact.

n m(xi)
~ U UW'J..(Xi.i)

r=1 i=1

7.7 SAQ. Prove that if X and Yare topological spaces such that their product space

X x Y is compact, then X and Yare compact.

We now extend the notion of product topology to arbitrary class of topological spaces.

Let us recall that the cartesian product PiEIXI of a non-empty class of sets {XiL, is

the set of all mappings f of I into U Xi such that f(i) E Xi for every iEI. If f E PiEIXi
iEI

then f is denoted by f = {xihEI, where f(i) = Xi for each i E 1. For each iEI, the

projection mapping Pi is the mapping from PiEIXi into Xi defined by P, ({XiL,) = x,

for every {XiLI E PiEIXi.

7.8 Definitions: (i) Let {XiLI be a non-empty class of topological spaces and let

X = PiEI Xi be the cartesian product of the sets {XiLI' For each i E I, let Pi be the

projection of X onto Xi. Let S be the class of all subsets of X of the form S ="R~'('OJ),·

where i E I and G, is an open subset of X, . The topology on X generated by the class

S is called the product topology. The set X together with the product topology on it is

called a product space of the product ofthe spaces {Xi}iEI.
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(ii) A subset of X is open with respect to the product topology if and only if it is a

union of finite intersections of sets in S. It is clear that S is an open subbase for the

product topology and is called the defining open subbase.

(iii) A subset B of X is in the defining open subbase ~ B = PiJ (OJ), for some i E I

and some open subset G, of X, ~ B = PjEIGj, where G, = Xi for i =t: i and Gj is an open

set in X, ~ B =:P G,; whereG, is an open subset of Xi which equals Xi for all i's but
lEI , '

one. The class of all complements of open sets in the defining open subbase - namely, '

the class of all products of the form PieIFi , where F, is a closed subset of Xi which

equals Xi for all i's but one - is called the defininz closed subbase.
(iv) The open base generated by the defining open subbase, that is, the class of all

finite intersections of subbasic open' sets, is called the defining open base for the

product topology. A subset G of X is in the defining open base if and only if it is of

the form G = PjEIGj , where OJ is an open subset of Xi which equals Xi for all but a

finite number of i'S.

As in theorem 7.2 .one can prove that all the projection mappings Pi are continuous

and the product topology is the weakest topology for which the proje.ctions are

WUL~U"V"". : •.:.:..." ~~is clear that all the projection mappings are open.

7.9 SAQ Let f be a mapping of a topological space X into a product space PielXi .

Prove that f is continuous ~ Oiof is continuous for each projection Pi· ., a ,

7.10 Definition: Let X be a non-empty set, let {Xi} be a non-empty class of

, topological spaces, 'and for each i let fi be a mapping of X into Xi. Note that if X is'

given its discrete topology, then all the f: s are continuous. The intersection of all

topologies on X with respect to each of whichall' the f: s.are continuous is called the

weak topology generated by the f: s.

It is: . C"C;tlf£f.;thisis the topology on X'which makes (;illthe f: s continuous and it is
,,'-~'. "" -. /

the ~eatc~:-:~ology for which ~ll the f: s are continuous.

, \
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7.11 Re~ark: In view of the above definition, it is obviousthat if {Xi} is a non-

empty class of topological spaces and if X = PiXi is their product space, then the
. .

product topology on X is the weak topology generated by the set of all projections.J\
We.now prove the main theorem of this lesson: , '\_. /

~ \
, .

\ ' . /.' ..~. ,

7.12 Theorem (Tychonoff'stheorern) Let {XiliE! be anon-emptyclassof topological ~

spaces and let X = PielXi be their product space. Then 7is"com~act if and only if ~~ch

space Xi is compact. '-----=::"

Proof: If X is compact, then each space Xi is dJmpact since the projections are

continuous and onto. Hence, suppose that each space Xi is compact. Let {V}. be aJ JeJ
t

non-empty class of closed sets from the defining closed subbase for the product

topology on X. Therefore each Fj is a product of the forin Fj = Pie! Fij, where Fij is a

closed subset of Xi which equals Xi for all i' s but one. We assume that the class

{Fj}jeJhas the finite intersection property. To show X is compact, it suffices to show
/

that nFij "* $ . For a fixed i E I, we show that the class {Fij}iEJ'all are closed subsets
~ .

of Xi , has the finite intersection property. If {F. , , F. } is a finite subclass of
- IJI IJII

{F.}. then the corresponding subbasic closed sets FJ. , ••••••• , FJ. form a finiteIJJeJ I n
\

subclass of {Fj}jeJ. Since {Fj}jeJhas the finite intersection property, we have that Fj I

(l ..... r, FJ. "* "'. Choose a point xin FJ. (l ..... (l V . Suppose x = {Xi}. Iwhere
11 't' I JIt .' IE

Xi EXi for all i. For 1 ~ k s n, x E Fijk= Pie!Fijk=> Xi E Fijk· Therefore Xi E Firl(l \

...•.. (l Fir.and so Fir, (l ..... (l Flrn "* $. Thus the class {FiJjeJ has the finite

.intersection property. Since Xi is compact, nFij "* $. Choose a point a: in nFij . Since
jeJ jeJ

i E I was arbitrary, we have that ai E n Fij for all i. Put a = {aJel . Thus a, E FiJor
jeJ

all i and for all j => a E P Fij for all j => a E Fj for all j => a E nFj => nPj "* ~, as
desired: lEI. jeJ 'jeJ
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7.13. SAQ Show that the relative topology on a subspace of a product space is the

weak topology generated by the restrictions of the projections to that subspace.
Let us recall that t?e n-dimensional Euclidean space RI1 is the normed real linear

;

space, where R11is the real linear space of all ordered n-tuples x = (x I, ....; xl1)of real

numbers under coordinatewise operations and the norm is given Ilxll =

~I XI 12 + + IXn 12 . The topology on RI1obtained from the norm is called the usual

topology. As .in theorem 7.5, one can prove that the product topology on RI1 is

precisely the usual topology.

We now prove an important consequence of Tychonoff's theorem, namely, the

'Generalized Heine-Borel thoerem'.

7.14 Definition: Let RI1be the n- dimensional Euclidean space. If (a., b.)' is a bounded

open interval or j~e real line for each i = 1, ... , n, then the subset ofRn defined by

Pn(a' b·) = {(Xi, ..... ,Xn) / for each i}
I, I aj<xj<bj

i=1

is called an open rectangle in Rn• Similarly if [a., b, ] is a closed interval on the real

line for i = 1, .... ,n then

Pn[a' b·] = {(Xi, ..... ,Xn) / for each i}
I' .1 ai~~i~bi

i=1

is called a closed rectangle in R''.

7.15 Theorem: (The Generalized Heine-Borel theorem) Every closed and bounded

subspace of Rn is compact.

Proof: Let E be a closed and bounded subspace of R", Since E is bounded, there

exists a real number K > 0 such that Ilxll~ K for all x E E. Ifx = (x., .... , xl1)E E, then
n

IXiI~ -llxli~ K and hence Xi E [-K, K] for all i. Thus E ~ P [-ri' ra , where ri = k for
i=1

n

all i. Since E is closed in Rn, it is also closed in the subspace p [-ri , ti] . ThllS E is a
i=1
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n

Closed subspace of the closed rectangle p [-ri , r.]. To show E is compact, it suffices
;=1

to show that each closed, rectangle is compact as a subspace of Ril.

n

Let X = P [a, , b.] be a closed rectangle in RI1. Each coordinate space [a. , b.] is
;=1

compact by the Heine-Borel theorem. Therefore, by Tychonoff's theorem,

X=P [-ai, bi] is compact with the product topology. So, to show that X is compact as
i=1

a subspace of R'\ if suffices to show that the product topology on X is the same as its

relative topology as a subspace of RI1. By the above remarks, the product topology on

RI1 is the same as its usual topology. By SAQ 7.13, the relative topology on X is

precisely the weak topology generated by the restrictions of the projections to X. It is

clear that the restrictions of the projections on Ril to X are precisely the projections on

X. Therefore the relative topology on X as a subspace of RIl is precisely the product

topology on X. This is the desired result and the proof of the theorem is complete.

We'now discuss about the localization of compactness in topological spaces.

7.16 Definition: A topological space is said to be locally compact if each of its points

has a neighborhood whose closure is compact.

7.17 Examples: (i) Every compact space is locally compact. For, if X is a compact

space and if x E X, then X itself is a neighborhood of x such that X = X is compact.

Thus X is locally compact.

The following example shows that every locally compact space need not be compact.

(ii) Let Ril be the n-dimensional Euclidean space. If x E RIl and if Sr(x) is any open

sphere centered on x then Sr(x) is a neighborhood of x. Since the closure S r (x) is

closed and bounded, by the Generalized Heine Borel theorem, S, (x) is compat.

Hence Rn is locally compact. But RI1 is not compact. I .

(iii) Every discrete space is locally compact.



Topology and Functional Analysis 7.9 Product Spaces

Let us recall that a class of neighborhoods of a point is called an open base at the

point if each neighborhood of the point contains a neighborhood in this class.

We now prove a necessary and sufficient condition for a topological space to be
locally compact.

7.18 Theorem: A topological space is locally compact if and only if there is an open

base at each point whose sets all have compact closures.

Proof: Let X be a topological space. Suppose that X is locally compact. Let x be a

point in X. Let ffix be the class of all neighborhoods of x whose closures are compact.

Since X is locally compact the class ~gx is non-empty. We prove that (gx is an open

base at x. Let G be any neighborhood of x. Since X is locally compact, there is a

neighborhood H of x such that its closure H is compact. Clearly G r, H is a

neighborhood of x and its closure G n H is compact, since G n H is a closed

. subspace the compact space H (theorem 6.5). Thus G r, H E 9lx such that

X E G n H c G. Therefore 91x is an open base at x.

Conversely suppose that there is an open base at each point whose sets all have

compact closures. Let x E X. then there exists on open base ~J3x at x. whose sets all

_--Aa'\'e-t.\JI11Pactclosures. Since X is a neighborhood of x, there is a neighborhood B of

x in 9.1x such that x E B c X. Now B E ~11x .implies B is compact. Thus X is locally

compact.
7.19 Answers to self Assessment Questions:

SAQ 7.4 Let G be an open subset ofX. If PI (G) = ~ then clearly it is open. Suppose

PI (0) 1:-~. Let a E PI(O). then a = PI (x, y), for some (x,y) E O' Then there exists a

basic open set 01 x 02, whereGi and G2 are open inX, and X2 respectively, suchthat

(x, y) E G. X G2 C;;;; G. Thus PI (x,y) E PI (GI x G2) C PI (G) and so a E GI C PI (0),

since PI (01 x G2) = GI. Hence PI is an op~n mapping. Similarly, P2 is also an open

mapping. '
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SAQ 7.7: Let Px : X X Y ~ X be the projection mapping. Theil Px is continuous and

onto. Since continuous image of a compact space is compact, i~ follows that

px (X x Y) = X is compact. Similarly Y is compact.

SAQ 7.9: Suppose fis continuous. For each i, the projection mapping Pi: P X. ~ X
AEI I. I

is continuous. Therefore pof
I

continuous for each projection Pi . Let S be any open set from th~ defining open

subbase of the product topology on PXj• Then S = P ~I (Gi), for some i and some
lEI

is continuous. Conversely suppose that Piof is

open set G, in Xi . Therefore fl(S) = fl (p ~I (Gi)) = (pof) -I (Gi) is open, since Pi of is
I ,

continuous. Thus f is continuous.

SAQ 7.13 Let {Xi} be a non-empty class of topological spaces and let X = P, Xi be

their product space. Suppose Y is a subspace of X. For each i,let Pi: X ~ Xi be the

projection mapping and let Pi / Y: Y ~ Xi be the restriction of Pi to Y. The product

topology on X is the topology generated by the class of all subsets of X of the form

p ~I (Gi), where i is an index element and G, is an open set in Xi. Therefore, the
..;

relative topology on Y is the topology generated by the class of all subsets of Y of the

form p ~I (G, ) n Y, where i is any index element and G, is any open subset of Xi . It is

clear that

Hence the relative topology on Y is the weak topology generated by the restrictions

pfy of the projections Pi to y.

7.20 Model Examination Questions:

1. Prove that the usual topology on the n dimensional Euclidean space Ril is the same
\

as the product topology on it.

2. State and prove Tychonoff's theorem.

3. State and prove Generalized Heiene - Borel theorem.
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4. (a) Define a locally compact space. Prove that every compact space is locally

compact. Is the converse true. Justify your answer.

(b) Prove that a topological space is locally compact if and only if there is an open

base at each point whose sets all have compact closures.
7.21 Exercises

(l) Let X and Y be topological spaces. If Y is compact, prove that the projection

mapping of X x Y onto X is a closed mapping (Let A and B be topological

.spaces. A mapping f: A ~ B is called a closed mapping if f(F) is closed in B

wherever F is closed in A)

(2) Prove that if X and Yare metric spaces with metrics d I and d2 respectively

then the mapping d defined by

d ((a, b), (c, d) = ~d~ (a,c) + d; (b,d)

is a metric on X x Y which induces the product topology.

(3) Let X be a metric space with metric d. Prove that d is a continuous mapping of

X x X into R.

(4) Prove that a closed subspace ofa locally compact space is locally compact.

(5) (a) Let X, Y and Z be metric spaces and let f be a mapping of the product

space X x Y into the space Z. Prove that f is continuous if and only if Xn ~

X and y~l~ Y implies f (x.; Yn) ~ fex, y)

(b) Show that if f is continuous, then for any y in Y, the mapping fy: X ~ Z

defined by fy(x) = f(x, y) is continuous and for any x in X the mapping

x' : Y ~ Z defined by xr (y) = [(x, y) is also continuous. (If we regard f as

a function f(x, y) of two variables x and y, it is customary to say that f is

jointly continuous in both the variables x and y whenever f is continuous

from the product space X x Y into Z.

(c) What about the converse of the result stated in (b)? Justify your answer.

Lesson writer: Prof. Y. VENKA TESW ARA REDDY



LESSON NO.8

COMPACTNESS FOR METRIC SPACES

8.1 Introduction: The famous 'Bolzano - weierstrass theorem' (with its converse) states

that a nonempty subset E of the real line is compact if and only if every infinite subset of

E has a limit point in E. This motivates the concept of Bolzano - Weierstrass property for

metric spaces. In this lesson, we define this concept for metric spaces and prove that a

metric space is compact if and only if it has the Bolzano - weierstrass property. We also

introduce the notion of sequentially compactness for metric spaces and prove that a

metric space is compact if and only if it is sequentially compact. In this lesson, we further

define the notion of totally boundedness for metric spaces and prove that a metric space

is compact if and only if it is sequentially compact. In this lesson, we further define the

notion of totally boundedness for metric spaces and prove that a metric space is compact

if and only if it is totally bounded. In the sequel, we define the notion of Lebesgue

number of an open cover in a metric space and prove that every open cover of a

sequentially compact metric space has a Lebesgue number. By using this as a tool, we

prove that any continuous image of a compact metric space is uniformly continuous.

First, let us define the following very important concept.

8.2 Definition: A metric space X is said to have the Bolzano - Weierstrass property if, .

every infinite subset of X has a limit point in X.

8.3 Theorem: Every compact metric spacehas the Bolzano Weierstrass property.

Proof: Assume that the metric space X is compact. We show that every infinite subset of

X has a limit point in X. Suppose that A is a subset of X with no limit points. Since each

point x E X is not a limit point of A, there exists an open sphere S" (x) centered on x

.such that S" (x) r, A c {x}. Since the class {S" (x)} forms an open covering of X, there
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must be some finite- subcovering X
n

USrx; (Xi)' Therefore A = A n X
i=1

n

U(AnSrx; (x.) C {xi, ..... , Xn} and so A is finite. Thus every infinite subset of X must
i=1

have a limit point in X.

,
8.4 SAQ. Prove that a compact subspace of a metric space is closed.

Let us recall the following definitions. If X is a metric space with metric d and if X

is a point and {x.} is a sequence in X, we say that the sequence {x.} has a limit or

converges to X, written lim Xn = X or x, ~ X, if for every E > 0 there exists an integer N

(e) > 0 such that d (x., x) < E whenever n > N (E).

If {x.} is a sequence in X and if {ru} is a sequence of positive integers such that

ni < n2 < , then the sequence {X"k } is called a subsequence of {x.}.

8.5 Definition: A metric space is said to be sequentially compact if every sequence in X

has a convergent subsequence.

8.6 Theorem: A metric space is sequentially compact if and only if it has the Bolzano -

weierstrass property.

Proof: Let X be a metric space. Assume that X is sequentially compact. We show that. ,

every infinite subset A of X has a limit point in X. Since A is infinite, we can choose a

sequence {x.} of distinct points from A. Since X is sequentially compact, the sequence

{xn} has a subsequence {xn\} which converges to a point x in X. Since {xnk} IS a

sequence of distinct points, X is a limit point ~fthe set {xnk / k ~ I}. Since the set

{xnk / k ~1} c A, it follows that x is a limit point of A.

Conversely suppose that every infinite subset of X has a limit point in X. We

prove that :x is sequentially compact. Let {x.} be an arbitrary sequence in X. If the
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sequence {x.} has a point xwhich is infinitely repeated, then there exists a subsequence

{xnk} of {x.} such that xnk= x for allk ~ 1. This subsequence {xnk }, clearly, converges

to x. If no point of {Xn} is infinitely repeated, the set Aof points of the sequence {XnJ is

infinite. Since A is infinite. It has a limit point x. Then each open sphere centered on x

contains infinitely many points of A. We choose a subsequence {xnk} as follows.

Choose nl such that d (x, xn ) < 1. Having chosen n, , ..... , nk-I such that n. < n2 < ..... <
I

. 1. . . ."
nk-I and d (x, XII) < ': for 1 = 1, .... , k - 1, choose an integer nk such that nk > nk-I and

. '1 ' .

d(x, xn) < ~. By induction, we get a subsequence {xnk} of {xn} such that

1d (x, xnk) < k for all k ~ 1. Clearly {xnk} converges to x. Thus X is' sequentially

compact.

Let ustecall tfie f&llowing definition.

Let)( be a metric space witTh'metri'6 d cutdJet A c' X. The di~eter d (A) of A is

defined by d(A} == Slip {dtx.y) / x, YEA}. A is said to .have finite diameter if d(A) .is a
t')'" " -"-' ::<, . ':. ,.}~.; '; . r' 1 _ - , _. I, . ~ > L-", . ",';real number. In this case we say that A is bounded. Observe that A = $ if and only if

d (A) = - 00. So, if A * $, then 0 ~ d (Ae)' ~. 00.

\'~;. -~ '.~'j!",.,-~" --,' :' . "'" .' \, : ,',- '-;8~7Defiltltitio: Let {OJ } be an: open cover of a metric space x. A real number a > 0 is

called a Lebe~'gue number for the open cover {Gi t if each s~b~el' of X whose diameter is

I~ssf ais contrl~ ih at least one G; .

9: < •• ~i': -:':.-:t' __" ':-:"~' .. ' ... ; , . , .. 1. . •8~8 Theotenh (Lebesgue's covering lemma). In a sequentially compact metric space,

e\'r(eryopen cover has a Lebesbue number.

·p~oot:Let x be a sequentially compact metric space and let {OJ} be an open cover ofX.

We say that a subset of X is 'big' if it is riot contained in any OJ . If tliere are no big sets,
.\, \."'. '. ; <. • ,

then any positive real number will serve as a Lebesgue number. We may thus assume that
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big sets do exist. Note that every big set contains at least two points. We define

a' = glb {deB) / B is a big set}. Clearly 0 ::;a' '::;00 and a' s d (B), for any big set B. It

will suffice to show that a' > 0; for if a1>0 then any real number a such that 0< a < at

will be a Lebesgue number. We therefore assume that a I = 0 and we deduce a

contradiction from this assumption. For each positive integer n there exists a big set B,

such that 0 < d (Bn) < ~ . Choose a point x, in each Bn• Since X is sequentially compact,
, n

/

the sequence {x.} has a subsequence {xnk }, which converges to some point x in X. Then

X E G1,for some set G1, in our open cover {G, }. Since G1, is open, there exists an open
u 0 (I

sphere SrCx) such that SrCx) C Gin. Since Xnk .--) x, it follows that xnk E Sr/2 (x) for

infinitely many k, that. is x, E Sr/2 (x) for infinitely many n. Choose no such .that Xn E
. • : " " . (I

Srdx)andno>~.ThusO<d(Bn)<_l <~.IfYE a, ,thend(x,y)::;d(x,xn )+dr . II n 2 II IIo '

r r r
(X y) < + d (B ) < - + - = r. Hence B, c Sr(x) c G1,o.This contradicts theno' ,'2 no 2 2 II

fact that Bno is a big set.

8.9 Definitions: (i) Let X be a metric space and != > O. A subset A of Xis called on E -

net for X if A is finite and X = USE (a) .
aEA

(ii) A metric space X is said to be totally bounded ifit has an E-net for each E> O.

Let us recall that a subset A' ofX is said to be bounded if 0 ::; d (A) < 00, where

d(A) is the diameter of A.

8.1Q.SAQ. Prove that a totally bounded metric space is bounde~:.
I

.r .

8.11 Theorem: Every sequentially compact metric space is totally bounded.
( ..

. J C'.'
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Proof: Let X be a sequentially compact metric space with metric d. Suppose that X is not

totally bounded. Then, for some E > 0, X must have no E-net. Let x, E X. Then the

finite set [Xl} is not an e-net for X, and so there exists a point X2 e SE (xi). Therefore d

(XI, X2)~ E. Nowthe finite set {XI, X2}is also not an E-net, and so there exists a point X3

2

e USe (x.). Thus d (XI, X3)~ E and d (xj, X2)~ E. Proceed by induction. Ifthere exist a
i=l

set of points {XI, .... , xn} such that d (Xi, x.) ~ E whenever i *- r, then this finite set is not
n

an e-net and so there exists a point Xn+1e USe (Xi); that is dtx, , x.) ~ E whenever ,i *- r.
i=1

Now, by induction, we have a sequence {x.} of distinct points in X such that d (Xi, x.) ~

E whenever i *- r. Since X is sequentially compact, the sequence {xn} has a subsequence

Ix., },which converges to a point X E X. But then the open sphere SE/2(x) must contain

Xnkfor k > N, where N issome positive integer; that is SEI2(x) contains Xnfor infinitely

many n. This contradicts the fact tht d (Xi, x.) <~ E whenever i *- r. Hence X is totally

bounded.
8.12. Theorem: Every sequentially compact metric space is compact.

Proof: Let X be a sequentially compact metric space. Let {G;}be an open cover of X. By

Lebesgue's covering lemma, the open cover {Gi} has a Lebesgue number a. Pute = a/3.

By theorem 8.11, X has an 'E-net, say {at, ..... , an}. For each k == 1,2, .... , n, we have that

the diameter d (SE (ak)) ~ 2 E < a. Since a is a Lebesgue number ofthe open cover {G, },

for each k, there exists an open set Gik in {G, } such that SE (ak) c Gik . Thus X = Se

(at) U U S, (~n) c Gi; U U Gin and hence X =G. U U Gin·

Therefore X is compact.

8.13 Theorem: If X is a metric space then the following conditions are equivalent.

< (i) X is compact

(ii) X is sequentially compact

(iii) X has the Bolzano - Weierstrass property
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Prooti (i) ~ (iii) follows from the theorem 8.3, (iii) ~ (ii) follows from the theorem 8.6

and (if)=> (i) follows from the theorem 8.12. -

8.14 SAQ:Show that a compact metric space is separable.

We now prove an important theorem/regarding continuous functions of compact

metric spaces into arbitrary metric spaces.

..r

8.15 Theorem: Any continuous mapping of a compact metric space into a metric space is

Uniformly continuous.

Proof: Let f'be a continuous mapping ofa compact metric space X into a metric space Y.

Letd, and d, be the rri~trics onX and Y respectively, Let E > O. For each x E X, consider

, . the open sphere Se/2 (f(x)) centered on f(x) and radius E/2 in Y. Since f is continuous,

f -I (SeI2(f(x)) IS an open set in X containing x. Now, the class { f -I (~e/2 (f(x)) hex is an

_open cover of X. since X is compact, .this open cover has a Lebesgue number 8> O. If

'~, x' E X are such thatd, (x, x') < 8, then the set {x, x'} is a set with diameter < 8.
'.oj' . .'. .. ': I

Therefore {~, x'} C r' (Sel2 (f (xo) ) ) for some XoE X. Hence f~x), f(XI) E Se/2 (f (xo) ).

This implies that d, (f (x), f(xl) ) ::;;d, (f(x), f(xo) + d, (f(xo), fey) ) < E/2 + E/2 = E. Thus

, fis uniformly continuous.. , ,_

8.16 Answers to Self Assessment Questions:

SAQ8.4: Let Y be a compact subspace of a metric X and letd be the metric onX. To

prove that Y is closed,. it suffices to show that its complement v' in X is open. Let

z e'yl. For e~ch posi~ive integer n.rlet An = {x E Xi d (x, z) > .!..}. Then {An} is an
n

00

ascending sequence of open sets in X such that Y c U An . Since Y is compact and {An}
, n=1

is an ascending sequence; there exists apositive integer nsuch that Y c An. Clearly Z E
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',: '\ ,

SlIn (z) ~ v', whereSi., (z) the open sphere with centre.z and radius.!. . Hence Y)isn ,'. .

\, open.

SAQ 8.10:d Let X be a totally bounded metric space with metric d. Let E >O. Since X is
n

totally bounded, X has an E-net, say {ai, ; an}. Then X = US~ (a.): Ifx, y EX then
;=1

X E SE (a.) any y ESE (a.) for some i, r. Therefore d (x, y) :=; d (x, a.) +d (a., a.) + d (a., y)

~ d ({aI, .... , an}) + 2 E, where d ({aI, ..... , an}) is the diameter of {aj, ..... , an}. This

implies that d (X) ~ d( {a., ..... , an}) + 2 E < 00. Hence X is bounded.

SAQ. 8.14: Let X be a compact metric space. By theorems 8.13 'and 8.1 LX is totally. . " .. ,. ..,.. . .

bounded. For each. positive integer n; let Cnbe an .!.- net of X. Put D = UCri,; Since
n 0=1

each Cn is finite, it follows that D is countable .
. ",

To prove theresult.iit suffices to prove that D is dense in X. Let Sr(x) be any open

sphere in X. Choose n such tha~ .!. < r. Since C, is an .!., - net for X, we get that X =
. n' , n '

USIIII (a). Therefore x E SlIn (a) for some a E C, ~ D. Since .!.< r, it follows that a E
~ n,

SlIn (x) C Sr(x). Thus D (J SrCx):I:~. Hence D is densein X.", , ',1

'8.17: Model Examination Questions:

'. (i) Prove that a metric space IS sequentially compact iff it has the Bolzano -

Weierstrass property.

(ii), Prove that every .open cover of asequentially compact metric space has a

Lebesgue number.
, (OO.)', 111' .r., Prove that eve /. compact topological space' has; the Bolzano'i+ Weierstrass

property.
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--
(iv) Prove that every sequentially compact-metric space is totally bounded.

(v) Prove that every sequentially compact metric space is compact.

(vi) Prove that any continuous mapping of a compact of a compact metric space is
uniformly continuous. ~

8.18 Exercises:

(i) Prove that every compact topological space has the Bolzano - Weierstrass

property.

(ii) Prove that if {x.} is a sequence in a metric space X which convergesto a point x

in X and if the set {x, I n ~dof points of the sequence {x.} is infinite, thenx is a

limit point of the set {x, I n ~I} .

(iii) Let X be a metric space with metric d and let E > O.Prove that if x E X, then the

set Me (x) = {y E7ct(X, y) > E} is open in X.

(iv) Let X be the set of all positive integers. Let T be the topology on X generated by

the class of all sets of the form {2n - 1, 2n} , where n E X. Showthat with this

topology T. X has the Bolzano - Weierstrass property but it is not compact.

(v) Prove that if E is a compact subset of a metric space, then its derived set d (E) is

also compact (d (E) is the set of all limit points of E in X)

(vi) Prove that.a subspace A of a metric space Xis totally bounded iff A is totally
/bounded.;

/
i
/

Lesson Writer

Prof. Y. Vcnkateswara Reddy



LESSON - 9

ASCOLI'S THEOREM

9.1 Introduction:

In Lesson 8 we established that compactness of a metric ~pace is equivalent to

sequential compactness as well as Bolzano - Weierstrass property. The full power of

these criteria becomes evident when these are found to be instrumental to characterize,

compact subset= of the space C(X, -C) of complex valued continuous functions on a

compact metric space X. This characterization is known as Ascoli's theorem, also called

Arzela - Ascoli theorem and Ascoli - Arzela theorem.

This theorem is based on "Cantor's diagonalization process" which enables us to

select a sequence from an array, of sequences in such a way that except for a few terms in

. the beginning depending on the array all the remaining terms·lie in every array.

Technical terms: Compact set - Total boundedness - equicontinuity.

The proof of Ascoli' s theorem requires consideration of a countable collection of

sequences which, when. arranged in a sequence, each one is a subsequence of its

predecessor. We recall that a sequence {b-} is a subsequence ofa sequence {an} if there

is a strictly increasing map ~: rN~rN such thatb, = a~(nl for every n ~ 1. This definition

is equivalent to the existence ofa strictly increasing sequence of positive integers {n.}
. .' ;

such that for every k ~ 1, bk = ak•

Notation: Suppose X is set and {x., X2, x, }is a sequence in X. We write

So = {xj, X2, .. ~.:., x-, ..... }.

Suppose we are given acountable collection of sequences {So, S(, S2, ',' Sn }

such that each Sk is a subsequence of its predecessor Sk-I. We write

Sk = {xk .x, , xk ••••••••. } _.\
-I •• 2 'II
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9.2 SAQ:With notation as above for every m ~ 1 the sequence

{Ym, Ym+l, , Y~:.; } where Yk = Xk,k 'If k ~ 1, is~ subsequence of S; .

In particular {Yl, Y2, , Yk, } is a subsequence of {x., X2, , x.; }

\ In the sequel (X, d) stands for a compact metric space and C(X, C) for the Banach space
\
\

of all complex valued continuous functions on X.

Theorem A: A metric space X is compact if and only if X is complete and totally

bounded.

Proof: Assume that X is compact.' Let {x,} be any Cauchy sequence in X. Since X is
. . . .

sequentially compact, {x.} contains a convergent subsequence say {xnk}·

\ .

Let x = lim {x~k }. We show that { X n } converges to x.

( .~

'. ,',

If E > 0 there exist positive integers No and N k such that
. \ "

....'

E
d (x, ,x) < ~ for nk ~ N,

k 2. "
'... ,

We may choose N k" ~ No. We then have for n ~ N k"

Hence lim Xn = x.

Since every Cauchy sequence in X converges in X, X is complete.

To prove that X is totally bounded le~ E>O be any number. The collection
,....

{Se(x)/x E X} is an open cover for X. Since X is compact, there exist finitely many

n

elements .of X, say XI, •••••• , Xn such that X = USe(xJ. This is true for every E > 0, so X
is totall)\ bounded. i=l';, ,,; i
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Conversely suppose X is complete and totally bounded. Let {x.} be any sequence
" ,

in X. We .show that {x-} has a convergent subsequence. Since X is complete it is enough

to show that {xn} has a subsequence which satisfies Cauchy criterion.

Write Xn= XI nand SI for {x }.
"" " '. l.n

Since X is ;otally bounded the collection {8 ~(x) / x EX} has a finite subcollection which

covers X. Denote this finite.subcollection by V I, V2, , Vn- Since the elements x In
, '\'"' , ' " , "' ",'"

belong to the union of Vi , 1 $ i$ n, one of these neighborhoods contains xl,n for"

infinitely many n.

,0- LerS2 : {X;.I' X2•2' •••••••. , x2•n, •••••••• } be such a sequence which is included in a single Vi

. "

so that d(X2' x2·)<l
'" ,I ,J 2 for all i and j

Apply Ih: above argument to the sequence 8, and the coIIection { 8~(x) / x E X} has a

finite subcollection which covers X. As above we get a subsequence of S2. say

S3 = {x3,1' X ~.2 , .•.••••.•. , X 3,n •.•.•.•. .} whos~ elements lie in one of the spheres so that

d (X3.i , X3,j) < ± '\f i, j.

We repeat this process and get a sequence of sequences {Sj} where

Sk = {xk.J, ~k,2' , xk,n : } is a subsequence of its predecessor Sk-I and

The diagonal sequence

S ~ {YI, Y2, .. : .. , Yk, }

Where y~~"Xk k 'fj k satisfies the conditions of sAQ 9.2.
, ' "

1If E > 0 and s > - then for r > s
E
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i.

Hence {Yr} is a Cauchy sequence and as each Y, = xr,r is an element of.{xn}; JYr} is a

subsequence of {x.}, This completes the proof.

Since a closed subspace of a complete metric Space is complete we 'have the following

theorem as an immediate consequence of theorem A.

-
Theorem B: A closed subspace of a complete metric space is,compact if and only if it is

totally bounded.
, ,

9.3 Definition: A subset F of C(X, C) is said to be equicontinuous if.for every positive

number 8 there corresponds 8(8) > 0 depending on 8 such that for every x, yin X with d

(x, y) < 8 (8) and f E F :-

If(x) - fey) I< 8

Remark: Since every f E C(X, C) is uniformly continuous given E > 0 and r'E C(X, C)

there exists (5 > 0 depending on 8 as well as f such that x E X, Y E X and d(x, y) < (5 => I

f(x) - fey) I< 8.

The property that makes a family of functions F In C(X, C) equicontinous, IS the

existence of a common 8(E) > 0 depending on E alone, such that

d (x, y) < (5 (E) => If (x) - fey) I< 8 for all fin F.

9.4 SAQ: Every finiteset F c C(X, C) is equicontinuous.

9.5 SAQ: If (X, d) is any metric space, not necessarily compact, A ~ X and if for every

(5 > 0 there exist finitely many points XI, ..... Xm in X such that, d

m

A~USo(xJ
i~1
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n

then there exist finitely many points at, , an in A such that A c USll (a.)
. i~

9.6 Propos~ion: A totally bounded subset F I ~ C(X, C) is equicoritinuous .

.Proof: Since F1 is totally founded, given E > 0 there exist finitely many elements

f\, ..... , fn depending upon E such that

In

FI c US~(fJ
;=1 3

Since X is compact and each f is continuous on'Xvcorresponding to E and f there

exists OJ > 0 such that It (x) - t (y)1< ~ for x, y in X satisfying d(x, y) < Oi.

Let D== min'{D), , Dn} -:..

. Iff E FI, for somei, f E S, (fi ) sothat V XE X If(z) - f (z) I< ~.
. '3 3

If d (x, y) < 0 and x E X, Y E X then d (x, y) < Oi for some i so that [f (x) - t(y) I< ~.. 3

Hence If (x) - fey) I= Ifex) - f (x) + f (x) - f (y) + fi (y) - fey)1

~ If(x) - f (x) I+ I f ex) - f (y) I+ [f (y) - fey) I

E E E
<-+-+-=;::E

333

The proof complete .

. 9.7 SAQ: If F c C(X,K) is "totally bounded then F is bounded.

9.8 SAQ: Let (X, d) be a compact metric space. If fn E C(X, C) V nand {fn} converges

uniformly on X then {fn} is equicontinuous on X.

9.9 Theorem (Aseoli): Suppose F is a closed subset of C(X, C). Then F is compact if and

only if F is bounded and equicontinuous.
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Proof: Suppose F is co~pact. Then F is totally bounded hence by 9.7 equicontinuous,

Moreover a totally bounded set is bounded. Thus c0p"\pactness of F implies that F,' is

bounded and equicontinuous.

Conversely suppose that F is bounded and equicontinuous. To provethatF is a
. ' . , .

compact subset of the metric space C(X, C), it is enough to show that F is sequentially

compact in C(X, C). As we have assumed that F is a closed subset of C(X, C), F is
.., ;"

complete as a metric space so that every Cauchy sequence in F is convergent in F. Thus it.. ' ~
is enough to show that every 'sequence in F contains a subsequence which satisfies

Cauchy's criterion for convergence in C(X, C).

Since X is a compact metric space, X is separable. Hence there is a countable set which is

dense in X. Let D = {x., , x, .' }be any such countable dense set in X.

Since F is bounded, there exists a real number K > 0 such that If (x) I~ Kfor all finF and

X E K (1). Since F is equicontinuous, given E > 0 there is (5 (E) > 0 such that

for all x, y in X and fin F.
, ..

8
d (x, y) < 5 (E) => If (x) - fey) 1<-

3
............ (2)

We' claim that the open spheres

{Sdxn) / n ~ I} where (5;:(5 (8)

cover X. Since D is dense if.A for any x E X the open sphere SI) (x) contains Xmfor some

,. '

00

m so that X = Us 0 (x m ) •

m=1

Since X is compact this open cover has a finite subcover. So there are integers mi, m2,
r

: .... , m, such that X = USo (xm;)

i=1

, ',' . . s . _'. ',-< .,

Ifs is the largest integer among mr, , m, then X = USs(xJ (3)
...: ( i=1 ',- . '''.:'>~ ,.,"\

Now let So= {fi, f2,1, f, ~d-'be any sequence-in r.By (l-j.the sequence,

I f (XI) I~ K \;f i so SO(XI)= {fl (xj), 6 (XI) fn (XI) } is bounded.
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By Heine .: Borel 'theorem this sequence ofnumbers contains a convergent subsequence.

Choose any such convergent subsequence say,

{f),) (x.), f1,2 (X2), fl. n (x.) }

Write S) = {fl. 1.f1.2. f1.3 fl. n .•...•• }

S) is a subsequence of So such that SI (X)= {fl.l'(XI), fl.2 (x.), ..... } converges. We

.define· inductively a sequence 0'£ sequences .

. Sn= .{fn , fn , f', }
.j ,2· .k,

such that for each n, Sn is a subsequence of Sn-I and

s, (x-) = {f"'1(x , ),fn.2 (x~ ), : f".k(x , ) } converges. We have ~lready defined such

a sequence when n == 1. Assuming that Sn-l is already defined.

Then Sn-I(Xn)= {fn_I.1 (x,"), f,,-1'
2
(x, ) .fll-I.k(XII) } is bounded, hence contains a

. .
.'

convergent subsequence. We choose any such convergent subsequence and denote this by

{f (x , ),fn (x ), f· '(x ) } we now write S; = {f" , f" , fn }
11.1'., .• 2, n !l'k n ,:. ".2,k

S, is a subsequence of Sn-) and S, (xn) is a convergent sequence. The inductive process is

complete. We now apply SAQ 9.2 to the countable collection {So, SI, S2, ,Sn, }

The sequence S = {fJ. J f2,2" fn, n } is a subsequence of {fr, 6, fn, }

Also for all k ~ 1, {fk,k'fk+J'k+1' , fk+Pk+
P
J is ~ subsequence of .

'{fk" , fk' , fk , , fk' , ~
.k .1.:.+1 -1.:,.•·1 k+p J

Since the sequence Sk (xi) conver~es and

}fk (xk),fk (xk),fk (x. ); ..·..·..,fk (x.,), ~l 'k .1.:+1 .k+2 k+p J

is a subsequence of Sk (Xk)this subsequence converges.

Hence S(Xk)= {fll(x. ), f22(x, ), , fkk(x, ) }converges for every k.

Write gn = f . Then {gl, g2, , gn } is a subsequence of {f}, f2, 6 £;1' }
,p. nIl ,

and the sequence {gn(Xk)}converges for every k.

We now show that thesequeneeIg.} is a Cauchy sequence inF using (2) and (3).
',;';-\
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Since {gn(x)} converges for 1 ::;;i ::;;s (s as in (3) ), for each i, 1 ::;; i ::;;s :3 a positive

integer N such that I gn (Xi)- gm(Xi) I < I for n ~ m ~ N, (4)
6

Let N (s) = max {N], N} and X E X.

By (3) :3 a i 3 1 ::;;i ::;;s and x E S1)(Xi)

For n ~ m ~ N (E), n ~ m ~ N, so

Ign(X)- gm(X) I= [g, (x);:- gn (Xi)+ gn (xJ-gm (Xi)+gin(Xi)-'-gm(x) I

::;;Ign(X) - gn (Xi) I+ Ign(Xj)- gm(Xi)I+ Igm(x.) - gm(X) I

€ € € ..
< - + - + - by (4) and '(2).

3 6 3·

Since this is true for every X E X we get for n > m ~ N (8)

€ € 8d (gn, gm)= sup Ign(X) - gm(x)j ::;;- + - + - < €
XEX 3 6 3

Hence (gn} is a Cauchy sequence.

The proof is complete.

9.9.1 Corollary:

Let K be either IR or C, X a compact metric space and F, a closed subset of C(X, K).,

Then F is compact if it is equicontinuous and F, = {f(x) / f E F} is bounded for every

X E X.

Proof: In view of Ascoli's theorem it is enough to show that F is bounded in C(X, K) ~

that is there exists a K > 0 such that If (x) I ::;;K for XE X and f E F. Since F is
I

equicontinuous, there exists 8> 0 such that If ex) - fey) I < 1 for all fin F and x, y in X

with d (x, y) < 8. The collection of open spheres {SIl(X)/ x E X} is an open cover for X.
< ' • • " III

So there isa finite number of elements, say, x;; , Xmin X such that X = US5 (X;).
;=1

I

Since F
Xj

is bounded for everj' i, 1 ~ i.~ 111" there is, aM > 0 such that. If (xi)1 < M for

every f E F and 1 ::;;i ::;;m. fix E X there is' a 'i such that d (x, Xi) < 8. This implies that
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If (x) - f(Xi) I < 1 for every f E F

Hence If(x) I ~ If (Xi)1 + If (x) - f(xi)1< M + 1 V f E F. Since this is true for every f E F

and x E X it follows that F is bounded.

9.10 Model Examination Questions:

1. Define equicontinuity of a family of furietions F in C(X, C) when X is a compact

metric space.

Show that if F c C(X, C) is totally bounded in C(X, C) then F is equicontinuous.

2. Let (X, d) be a compact metric space and F ~ C(X, C). If F is compact then F is

equicontinuous.

3. Let D be a countable set and {fn} be a sequence of complex valued functions such

that {fn(x)} is bounded for every XED. Show that there is a subsequence {gk} of {fn}

such that.Ig, (x) } converges for every XED.

9.11 Solutions to S'AQ's

L
!
~
l
L
L

SAQ 9.2: Let ~k+J : rN --} rN be the strictly increasing map that makes

Sk+l : {~k+I'; ':~k~I'2 ,.; ..••• , ~k~l,n , •.••••••. } a subsequence of

Sk : {Xk ,xk , •.••••• , xk , ••••••••• }
.1.2 -n

Then xk = Xk_1 for every k ~ 1 and n ~ 1 where Xo = x, We define
.:tl.<- :~ .'~(n.) '11

~k,p : ~k+J ~k+2..... ~k+p
. '.';~ ., .

Then ~k,p : ft.J, ~ ft.J is,st~ictly increasing and

Thus {X,k+P,"} is a subsequence of {~k,n} for all p E rN.
. ~." " . .!-, .

I~

Also ifk + P = r,

{y'r;Yr+l, .. ~. .'. Yr+n, } is a subsequence of

{X:k; k, Xk;k+l"., xi.;, k+n- ••...•• .}, which is a subsequence of.Sr,

In particular {x1,1, X2,2, xn,n } is a subsequence of So= {x\, X2, x., .

L
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S1-Q 9.4 Suppose 8 > O. There are OJ(8)'> 0 such that Ifj (x) - fj (y)' I <8 if d(x,y) < OJ(E).
\

Set 0 (8) =Min {Ol (8), ,On (8}}

SAQ '9.5 Suppose 8 > O. Then there are XI, ..... , Xmin X such that

\A c SSI2 (XI) U U SS/2 (xm).

Supposea E An ScS/2 (xj)then

Choose one element from each non-empty-set An S1)/2 (xj)
(

Let at, a2, , an be the points so selected that

, >

SAQ 9.7: 1> O. SOthereare f1<, , £11 in F such that F c: SI (fl)'u U SI (fm)
" i\ \. " ~ \ .f ~<". ": ' j: t" ;, ,., ~ ~.~-\,; '}:, -. ': :.-

Let K F II fl II+ I II flilII· If f E F then there is} stich that

f E stCfj)
SO II~I= II f - fj + fj II :::;Ilf - fj II+ II ~dl s 1+ K

SAQ 9~8Let 8 > O. S'ihce {f~} converges urtlfottilYlyon X, there is a' positive integer.N
> • ' E ,~,

such that 11£1 - fm II= sup Ifn (x) - fm(x)' I < -'-'-for n > m ;;::N.
xeX 3

»"'. ,-~-),:
In particular IJfn-IfNil < 1fat n > N.

Each of the functions fl , ..... fN is cOrlti'hub:us~henc~ uilifon'nfy continuous on X. Hence

rfn;;:: N and'd (x, y)< 0

/fn (x) - fn (y) 1 :::; 1£;1 (x)'- fN (x) /+ /f;'i(x:)i- fN(Y) / + ii'NCY) - £l(Y)/

8 8» 8
< - + -"-+ - =8

3 3 3
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9'.12 Exercises:

1. Show that (0, 1) is bounded but not totally bounded.

2. Let f: IR -) IR be uniformly continuous.

Define £1 (x) = f(nx) for n ~ 1.

Is {f.} an equicontinuous family?

3. Suppose {£1} is an equicontinuous on a compact metric space (X, d) and {fn(x)}

converges for every x E X. Show that {fn} converges in C(X, C).

X2
4. Let £1 (x) = J 2 (0 ~ x ~ 1 and n ~l)

x +(l-nx)

a) Show that lim fn (x) = ° (0 ~ x ~ 1)
n

b) Show thatlf, (x) I ~ 1 0::; x::; 1 and n ~ 1

c) Show that {£1} is no,t equieontinuous,

5. Does equicontinuous irillptyboundedness?

Reference: Introduction to TO,ll?9,10gyand ModernAnalysis - G.F.Simmons -
...'. ':>' .. . .1. .,. ..'

International stude~t ~dition - M~Ota~ - Bin International' Book Company

(1963).

Lessen Wrl,t~r: V.J. LAL



LESSON NO - 10

SEPAHATION

10.1 Introduction : In this lesson we introduce three separation axioms and explore

some of their properties. These axioms are called separation axioms for the reason that

they involve "separating" certain kinds of sets from one another by disjoint open sets.

Con'sider the fact that in IR and 1R2 each one point set is closed. But this is not true in

arbitrary topological spaces. For example, consider the topology ]={~,x,{a,b},{b,c},lQll

on the three point set x=Ia.b,c}. In this space the one point set {b} is not closed, for its

complement is not open therefore, one often imposes an additional condition that will

rule out examples like this one, bringing the class of spaces under consideration closer to

those to which one's geometric intuition applies. The condition was suggested by the

mathematician Felix Hausdorff, so mathematicians have come to call it by his name.

The Hausdorff condition is stronger than the following property, which is usually called

the Ti-axiom:

10.2 Definition: A Tr-space is a topological space in which given any pair of distinct

points, each has a neighborhood which does not contain the other.

10.3 Examples

(i) Every discrete space with more than one point is a Ti-space.

(ii) Every indiscrete space with more than one point is not a Tj-space.

(iii) Consider the space X={ 1,2,3}, 'y {~,x, {] }, { 1,2}, {],3}} every open set that

contains 2. also contains]. Hence X is not a Ti-space.

(iv) Let X be any infinite set, and let the topology consist of the empty set ~ together
, , '

with all subsets of X whose complements are finite (that is. co-finite topology}.

Thisis a Tj-space.
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10.4 Self Assessment Question

Show that any subspaceofa Ti-space is also a Tj-spacc.

In the following theorem \NC will give asimple characterization ofTr-spaces.

10.5 Theorem : A topological space X IS a Tr-spacc if. and only if every suhset

consisting of exactly one point is closed.

Proof: If x and yare district points at' X in which every sunset consisting of exactly one
I "<, ". - ,- ",: --=--=---=:=-~- . I

point is closed, then {x} is an open set containing y but not x. while {y} is an open set

containing x but not y. Thus X is a T I-space.

Conversely, let us suppose that X is a Tj-space and that x is a point of X. Then by

definition 8.2 if y:;tx, there exists an open set Gy containing y but not x, that is

YEGy~{X} I. But then {x} I=U{ {y}: y:;tx }~{x} I, and so {x}' is a union of open sets, and

hence is itself open. Thus {x} is a closed set for every x E X.

10.6 Self Assessment Question:

Show that in a Tr-space X, a point x is a limitRQIi1t~aset E if and only if every open set
-

containing x contains an infinite number of distinct points ofE.

10.7 Self Assessment Question.

Show that any finite Tj-space is discrete.

10.8 Self Assessment Question.

Show that a topological space is a T i-space iff each point of X is the intersection of all

. open sets containing it.
" \

We now define a separation property which is sli..gWty-stronger than the Tj-axiom.



Topology and Functional Analysis 10.3 Separation

10.9 Definition: A T2-space or Hausdorff space is a topological space X in which each

pair of distinct points can be separated by open sets, in the sense that they have disjoint

neighborhoods. That is XEX, YEX and.xvy, there exists neighborhoods u, U, of X

respectively such that U, n Uy=~.•,

10.10 Examples:

(i) ,Every discrete space Xis a T2-spacefor, if x, y e.Xiare such that X=F-y

{x} and {y}:areopen sets, {x}n{y}=~ and XE{X}, YE{y}:

(ii)

(iii)

(iv)

Every metric space is a Hausdorff space.

Every subspace of a Hausdorff space is a Hausdorff space.
"-

Every Hausdorffspaceis .aTr-space but the converse is nottrue. For example, if

Tis the co-infinite topology on an infinite set X then (X,T) is a Ti-space but not a

Hausdorff space (T2-space)

By the definition of T, since any finite subset of X is closed, singletons are closed.

Hence, (X,T) is a T I-space.

We will show that in this space we cannot find two disjoint open sets neither of

which is empty. For otherwise, suppose G and H are disjoint non-empty open sets

then, X=~I=(GnH)\ = G~.uHI, a contradiction, since G) and HI are finite, so is

their.union G1uHI=X.

Therefore (X,T) is not a Hausdorff space.

10.11 Theorem . The product of any non-empty v class of Hausdorff spaces, IS a

Hausdorff space.

Proof: Let X= nXi be the product of a non-empty class of Hausdorff spaces. Let x and y
. i -

be two distrinct points in X. Then we must have Xi"=F- Yillfor at least one index io. Since

Xi" is Hausdorff, there exists disjoint open sets Uill and Vi" containing Xi" and Yill

respectively. Now, n:' U,' ) and Fl. - (V) disjoint open sets in the product space
"" In I" . '

containing x and y respectively.
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10.12 Theorem :-In a Hausdorff space any point and disjoint compact subspace can be

separated by open sets in the sense that they have disjoint neighborhoods.

Proof: Let X be a Hausdorff space, x apoint in X and C a compact subspace of X which

does not contain x. We exhibit a disjoint pair of open sets G and H such that XEG and

CcH. Let y be a point in C. Since y:t:x and X is a Hausdorff space, there exi_stsdisjoint

neighborhoods G; and H, ofx and y respectively. Ifwe allow y to vary over C, we obtain

a class {H,hEC of open sets such that Cc U Hy. Since C is compact, there is a finite
yeC.

subclass {H, .H, ,....H; } suchthat.C c Hy U Hy u....u H . If G ,G ,.... ;G
, I 2 II 1 2 Yn' y, Y2Yn. . .'

n n

are the neighborhoods QfX which correspond to Hy 's, put G= nO. ; and H = u H ..
, ' 1=1 y, 1=1 ),

Clearly G and H are open sets containing x and C respectively. For each I = 1,2, , n

n

Gn H YiC G Yin H Yi'=~· Therefore, GnH= ~ (GnH Yi)= ~. Hence, G and H are disjoint.

We have proved in theorem 6A that every closed subspace of a compact space is

compact. By considering the indiscrete space X, we have proved that a compact subspace

of a compact space X need not be closed. We now use the preceding theorem to show

that compact subspaces of Hausdorff spaces are always closed. I
10.13 Corollary: Every compact subspace of a Hausdorff space is closed.

Proof: Let C be a compact subspace of a Hausdorff space X. We prove that C is closed

by showing that its complement CI is open. CI is open if it is empty, So we may assume

that CI is non-empty. Let x be any point inCl. By theorem 10.12, x has a neighborhood

hI I h' +': I·G, sue that XEGxC C. Clearly, C = u,Gx; t ererore C IS open.
• XEC

One of the most useful consequences of this result is the following:

10.14, Theorem : A one-to-one continuous mapping of a compact space on to a

Hausdorff space is a homeomorphism.
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Proof: Let f: X ~ Y be a one-to-one centinuous mapping of a compact space X onto a

Hausdorff space Y. We must show that f(G) i~.2pen in Y whenever G is open in X. If G

is open in X then G1 is closed in X. Since X is compact, G1 is compact. Therefore fCG1)is '

compact, since f is continuous. Since f is onto fCG)I=f(G1) is a compact subspace of a .

Hansdorff snace Y. Hence. bv Corllarv 10.13, f(G)1 is closed. Therefore, f(G) is open.
10.15 Self Assessment Question.

'(a) . Give an example of a topological space in which any sequence converges~? every
point of the space. . - . -- .

(b) If X is a Hausdorff space, show that every convergent sequence in X has a unique

limit.

10.16 Definition : Let X be a topological space and consider the set C(X,IR) of all

bounded continuous real functions defined on X. If for each pair of distinct points x and y

in X there exists a' function f in C(X, IR) suc~ that f(x};t:f(y), we say,tr-e(JSIR)_

separates points,

10.17 Lemma: If C(X, IR)separates points then X is Hausdorff.-

Proof: Let X,YEX such that x-:;t:y.Since C(X, IR)separates points there exists a function I .

in C(X, IR) such that f(x) -:;t:f(y).Suppose f(x)<f(y). Let r b~ a real number suc~\that
\-I . --t

f(x)<r<f(y). Now, put Gx= f (-co,r), G=f (1'. co) \

Since fis continuous, G, and G, are ope;in X and XEGx and YEGy, G, (\Gy=~. Hence, 'X:\

is a hausdorff space.

10.18 Definition: A topological space X is said to be a completely regular space if (i) X

is a Tj-space (ii) XEX, F is a closed subspa~~.-J)f·X such that xz F then there exists a......,..-~------'"=-~-=--=~~- -- ",
function fin C(X, IR)such that 0 ~f(x) ~ IVx.§2( and f(x)=O and f(F)=l.

.. -----
Thus completely regular spaces are T I-spaces in which continuous functions separate

points from disjoint closed subspaces. .
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10.19 Lemma: Every completely regular space is a Hausdorff space.

Proof: Let X be a completely regular space. Then X is a Tj-space, by definition. We will

show that C(X, IR) separates points. Let X,YEX such that x:t:-y.Since X is a Ti-space

singletons are closed. Thus {y} is closed and x~ {y}. Then there exists an fin C(X, IR)

with values in [0,1] such that f(x)=O and f(y)=l. Hence for any x,y in X such that x=y

there exists fin C(X, IR) such [(x) :;t:f(y).By Lemma 10;17, X is a Haussdorff space.

10.20 Remark: Any subspace of a completely regular space is completely regular. Our

next separation property is similar to that of a Hausdorff space, except that it applies to

__disjoint closed sets instead of merely <distinctpoints.

<,

)0.21 Definition: A Tj-space X is said to be a normal space if for any two disjoint
" !

closed sets F, and F2 in X there exist disjoint open sets GF and GI,., such that F,<;;;;GF,
\ I '

and F2~GF,.

Note: Any metric space is a normal space (see 10.28.5)

-
'10.22 Theorem: Every compact Hausdorff space is normal.

Proof: Let X be a compact Hausdorff space and F, and F2 bedisjoint closed subsets of

X. We must produce a disjoint pair of open sets G F, and G 1', such that F, <;;;; G F, and

:, F2<;;;;GF,' If either of the clos~?,:~et:ris empty, we can take the empty set ~~
'/

neighborhood of F, and the full space as a neighborhood of the other. We may therefore

assumefhat both F \ and F2 are disjoint compact subspaces of X. Let x be a point of F \

then X~F2 hence by theorem 10.12, there existdisjoint open sets G:, and G;, such that

XEG: and i:,! <;;;;G~2' The collection {Gx/xEFd covers F, and since F, is compact there
\

n

exist x.. X2..... :' 1 in F\ such that F\~ u G,
i=1 :\i

- 11 n

Now, put G I', = ~ G'i ' clearly GF\ is an open set containing F ,. Put G j', = 0 G F, \
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Hence, G F, and G F1 are disjoint open sets such that F1e G F, and ~2e G F, ' since

F2 ~ G~~for i= 1,2 ,n.

Therefore X is a normal space.

A characterization of normality is given in the following theorem. Let us recall

that by a neighborhood of a' set F We mean an open set-G containing F.

10.23 Theorem: Atopologic,al space X is normal if and only if each neighborhood ofa

closed set F contains the closure of some neighborhood of F.

Proof: Suppose X is normal and the closed set F is contained in an open set G. Put,
" \" , r'

K = x - G . Now K is a closed set which is disjoint from F. Since X is normal th~re exist
< .' • '.

disjoint open sets GF and GK such that F~GF and K eGk. Since GF~X\Gk and x - Gk is
, . ~ . . .

, , . ,i

closed, we have GF c x - Gk. Now, GF cX-Gk ~ X - K= G. Thus GF is a desired srt.

Here GF is a neighborhood of F and its closure GF cG. Conversely suppose the condition

holds arid let F 1 be contained in the open set x - F2, and by hypothesis there exists an open
* '~* -.' .• - e .set G such that FlcG and G eX-F2. Clearly G and X-G form a pair of desroint

open sets containing F 1 and F2 respectively.

We now prove the main theorem of the lesson that is commonly 'called the

'Urysohn's Lemma'. It asserts the existence of certain real-valued continuo~s functions

'on a normal spaceX.

10.24 Theorem (Urysohn's Lemma) : Let X be a normal space and let A and B be
• , , • 1 '~ ,

.~ ;' I . ,

disjoint closed subspaces of X. Then there exists a continuous real function f defined on
" .'t· . <. . ... J.~ .. ~' .. - • ~ j" 1

X, all of whose values lie in the closed unit interval [0,1] such that f(A)=Oand f(B)='1
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Proof: We shall define, for each rational number r, an open set U, of X in such a way

that whenever r<s Vy'ehave U r ~ Us. For each rational number r such that 1'<0, define

U, =<1>and for each r> 1, define Uv=X. Let {rn} be a listing of all rational numbers in the

interval [O,lJ such that 1'1=0and 1'2=1.Define U'1 =B i .Since A is a closed set contained in

the open set 1Ir,' by theorem 10.23, there is an open set U" such that Ac U" and

U,,~U,. Suppose that U,. ,cU,. , .Ll, are defined. We define U. as follows: The
l' I.~ n· I 11'~I .'

number r( is the sm~llest element, and r2 is the largest element of the set {1'1,1'2,.· rn+d

and rl1+1 is rieithter rl nor r2. So, I'n+1has· an immediate predecessor p and an immediate

successor q in {fl,r2, rn+d. Since p'<rv.rcq, the sets Up and u, are already defined,
-

and U p~Uq. Since X is normal, there is an. open set U, n+1of X such that U p~ U 'n.' and

U rl1+l~Uq• By induction, we have U r" defined for all n. We now define f: X ~ IR as

follows: Given a point x of X, let lIS define Q(x) = {r/x el.L}. r<O =>xi~= U, so re Qix)
. -

.,
=>xc. Also Q(x) it contains every number greater than 1, since every x is in U, for r> 1.

Therefore Q(x) is bounded below, and its greater lower bound is a point in the internal

[0,1]. Defi~le f(x)=gtb Q(x) = g/b {r/~EUr}.·

We show that .f is the desired function. If xEA, then XEUr for every r~O, so that Qix) ,
, " . . . .

equ~ls the set of all non-negative r~tionals and f(x)=g.l.b Q(x)=O. Similarly, if x sB, then
. . . '". :.', .:

XE U, for no rs l , so that Q(x) consists of all rational numbers greater than 1, and f(x)=l.

We finally we show that f is continuous.

For this purpose, we first prove the following elementary facts.

(i): XE U r =>f(x) ::;r

(ii) xeU, =>f(x)~r

To prove (i), note that if XE U. , then n~Us for every s>r Q(x) contains all rational
:- ,,-- •.. ' -: :- :",' '\.' ,,' . ,{ .' : .

numbersgreater than r,so that by definition we have f(x)=glb Q(x)::;r.
~., .i '
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To prove (ii), note that if xeU, then x~Us for any s ~r. Therefore Q(x} contains no

rational number less than or equal to r. f(x) = glb Q(x) zr.

Now we prove continuity of f. Let XOEX. Let (c,d) be an open interval containing the

point f(xo). Choose rational numbers p and q such that c<p<f(xo)<q<d. Put U=Uq(l( U p)l.

Clearly XoEU (for it xo~Uqthen by (ii) f(xo) ~q. Also xo!l Up, because XOEU p=>f(xo)~p,

by(i)).
\

U is a nbd of xn. We show that feU) c (c,d).

Let XED. then x EUq cU q so that,f(x) ~q by (i). And X!l Up, so that x~Up and f(x)~p by

(ii). Thus f(x) E [p,q] c(c,d), as desired.

The following slightly more flexible form of Urysohn's lemma will ~efuf In

applications,

'..,
10.25 Theorem ~Let X be a normal space, and let A and B be disjoint closed subspaces

of X. If [a,b] is any closed interval on the real line, then there exists a continuous ~V
function fdefined on X, all of whose values lie in [a,b], such that f(A)=a and f(B)=tr.

.>

Proof: If a=b, we have only to define f by f(x)=a for-every x, so we may assume that

a<b. If g i~ a function with the properties stated in Urysohn's lemma, then the function f

defined by f(x)=(b-a) g(x)+a has the required properties.

10.26 Answers to SAQS

lOA Let Y be a subspace of a Tj-space X.' Let YI*Y2 be distinct elements in Y. Since X

is a T r-space there exists a neighborhood 0 of y\ and a neighborhood H of y2 such that

y2 ~ 0 and y \~ H. Then, 0(1 Y and H(1Yare neighborhoods .of y I and y2 in Y such that

y I~ 0(1 Y and y I~ H(1Y. Hence, Y is a T .-space.
, .

. '.-
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10.6 Sufficiencyofthe9Qnditionisobvious. To prove the necessity, suppose there were
,y, I'

an open set G containing a for whic~ GnE w~~ finite~ If weJe) Gn(E\ {X}J:::~ {Xi},then

.each set {Xi}would also be a closed set. But then (~{Xi})1 nG would be an open set
( • ,'=1, I

n n n

containing Xwith [(u {Xi})1nG] 0E\{x}=(u {Xi})ln(U {Xi})=~. Thus xwould not be a..
1=1' 1=1 10., 1=1 ,

limit point of E.

to.7 Since Xis a Tj-space, singletons are closed. LetA b~ a subsetof~en A= u {a}
I . HA

is a finite union of closed sets and hence closed. Thus any subset of X is-closed and thus

any subset of X is open. That is (X,.3) is a discrete space.

10.8 Let N be the intersection of all ope~ sets containing on arbitrary point x and let y be

any point of X different from x. Since the sp~ce is T!, there exists a neighborhood of x

not containing y and consequently y cannot belong to N, that is yz N. Since y is arbitrary,

no point of X other then ~ can belong to N. It follows that N={x}. Now we prove the

converse part let x,y be.anytwo distinct points of X. By hypothesis, the intersection of all

neighborhoods of x is {x}. Hence there must be a ~eighborhood of x which does not

contain y. I~follows th~t X is a T I-space. ,

10.16 We first recall the definition of the convergence of a sequence in a topological

space.

Let X be an arbitrary topological space and {xn} a sequence of points in X. This sequence

is said to be convergent if there exists a point x in X such that for each neighborhood G

of x a positive integer no can be found with the property that x., is in G for all n~no. The

point x is called a limit of the sequence, and we say that {x-} converges to x (and

symbolize this by Xn ~ x).
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a) Example : Consider the indiscrete topological space X consisting of at least two

point-s. This space is not a.Hausdorff space but in this spac~ any sequence converges

to every point of the space,

Note: This is the reason why the above point x is called ~limit instead of the limit. It
, ',", .' .'

is the failure of limits of sequences to be unique that makes this concept

unsatisfactory in general topological spaces. The following result shows that this

anomalous behavior cannot occur in a Hausdorff space.

b) In a Hausdorff space, a convergent sequence has a unique limit :- Suppose a sequence

{xn} converges to two distinct points x and x* in a Hausdorff space X. Then there

exist two disjoint open sets d and G*such that xe G and XEO*. Since xri~x, there

exists a positive integer N such that XnEG whenever n>N. Since xn~ x*, there exists

an integer N* such that xnEG* whenever n>N*. If m is any integer greater than both N
. . , .

* *. ..: ; *
and N , then Xmmust be in both G and G , which contradicts the fact that G and G

are disjoint.

. }.
.:

10.27 Model Examination Questions:

10.27;1 Show that a topological space is a Ti-space if and only if each point is a closed. '

set,

l0.27.2.Show that a one-to-one continuous mapping of a compact space onto a Hausdorff

space is a homeomorphism.

10.27.3.Define a Hausdorff space. Show that every compact subspace of a Hausdorff

space is closed.

lO.27.4.Define a completely regular space and a normal space. Prove that every compact

Hausdorff space is normal.

1O.27.S.State and prove Urysohn's lemma:
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10.28 Exercises :

10.28.1 Show that in a Tj-space, no finite set has a limit point.

10.28.2 Show that the co-finite topology defined on an infinite set is a Tj-space but not a

Hausdorff space.

10.28.3 if f is a continuous mapping of a topological space X i~to a Hausdorff space Y,

prove that the graph off={(x,f(x)/xEX} is a Closed subset of the product space

XxY.

10.28.4 Show that any metric space is a Hausdorff space.

10.28:5~how that any metric space is a normal space.

10.28.6 Show that a closed subspace of a normal space is normal. ,I

10.28.7Let X bea It-space, and show that X is normal iff each neighborhood of a closed

set F contains the closure of some neighborhood of F.
- "

10.28.8 Is every normal space a Hausdorff space?

10.28.9 Isa normal space completely regular?
:: .', '

10.28.10 Is a completely regular space normal?

Reference Book:

1.

2.

Introduction to Topology and Modern Analysis G.F. Simmons

Topology by MUNKERS

Lesson Writer: V. J. LAL. "

" .'.',
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11.1. Introduction ' I .

An important problem in topology is regardirlg e/xtension of continuous real function on a subspace
of a topological space to the whole space, If we cpnsider the function f defined by

'f(x) = 2 for x:;tO, XE~H
. 'X .

which is continuous on f.H ~ {o} ~here is no /UE9i so that if we write f (0) = a then extended
function becomes continues/at o.

/ I

If we assume that the topological space i~ normal and the subspace is closed, by applying
uryshon's lemma one can get an extension of/ any continuous function which is bonded on the
subspace. This 'famous theorem, whichis knownas as, 'Tietze Extension theorem' is proved is this~ ,
lesson. " .

\ We know that every metric space X is a topology space X. We now look at the converse, Can
every topology be induced by a metric. The immediate answer is no because the topology induced
by a metric has several nice properties whicH do .not }l61d in an arbitrary topological space For
example Hausdorff's separation property, ebuivalence of continuity and sequential continuity,
equivalence of compactness and sentential cb'mpactness and so on. The next natural question is
which extra con~itions on the to~ological. sp~C~IO.W it to be inetrizabl~ or to b~ imbedded in a ,metric
space? A partial answer to this question IS/ provided by Uryshon's Imbedding theorem which we
learn in this lesson. ..

t .
Let us recall that if ~ is topological spac~ Y, a subspace of X and f : Y ~Z is a map, we say that

,
a map 9 : X ~ Z is an extension of equivalently f is a restnction of g if f(x) = g (x) for every x E Y .

Key Words: Extension - restriction - imbedding

TIETZE EXTENSION THEOREM: Let X be a normal space; Y a closed subspaceof X and fa
continuous real function defined on Y whose values lie in a closed interval [a,b]. Then f has a
continuous extension f1 defined on all of X whos,e values also line in [a, b]

Pr~of: If a = b the~ f (x) = a v x e Y an'd we define in this ca~f1 (x) = a v x s X.

, Assume that a < b. Since f is bounded, the set {f (x . EY} has L u. b. M and g. 1.b.m. since

a:::;f(x):::;b for every XEy we have a srns.Msb. W ay therefore assume that.[a,b] itself is the

srnauest closed interval such that a:::;f(x):::;b for
I

Since [a,b] is homeomorphicto 1-1, 1] may further assume that a = -1 and b = 1

Thus f is a continuous function
/

1JYY into [-1,,1] and g.' L b {f(x)/xEY}= -1 and LU.b.
. /

{f(x)/xEy}=1.
;/

.~

".; .
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'Now'let A, d~'[-I,-i] and B, d-"~[i ,'1]. Then A" B, a~~CloS~Ubsets of Y and hence
~,

.,pf X. Since -1 ~ 9.Lb.{f(x)/x. EV}. there exists a sequence {an} in V such th~t·lim f(an)=-1n _

. . { 1. . lim ( )
Similarly there is a sequence b, J in Y such that -n f b n = 1

This implies that A1• B. are non - empty. Since X is normal. by urysohn's lemma there is a
continuous function.

91 : X ~ [-1. + 1]
Such that

-
(a) 91 (A1) =-1

(b) 91 (B1) = +1

Define

,·1,

Then function fl is a continuous function

,.;i,

To see this first we select x E Ai' Then we have

fl(X) =; f(x} -291 (x) = f(x).~ (._2)
3- 3

1 .
= f(x)+-

3

and -1 ~ f(x) ~_2. .' . .3

therefore'

2- - s; fl (x)s; 0
3 .

similarly we find for x jn B,
• \,.~ .! ~ •

" 2O~fl (x) ~ -
_----S-

Now suppose
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xEY-(A1uB1)

then

1 1
-- <f(x)<-

3 3

1 1 1and --:::; -91(X):::;-
3 3 3

1Therefore f(x) - ~ g{x)3~

lies between

1 (1) ~ 1 1-"3 + -3 and 3 + 3

i.e. -~ ~ f1(X}~ ~
3 . 3

Then we note that

)"0 see this. y.Je note t,hGlt th~fe,. is go 0.1 E N: such tjt1~t tot qJl: n;;:::A1

tf£;a )<--
tn, 3

Cin E ~1

It fol~ow:sthat

g.1.1:> f'7 -1-
A1

It' follows similarly th~t'.

2 2limf1(b )=>--'~aRd Lub. f1=~
~n "3- >-~-" , 3 .

n-)-oc B,
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We now set

B =f-1[~ ~]=f-1[~.~ ~J"
2 1 32' 3 3 3' 3

It is clear that A2' 82 are closed subsets of Y and so closed subsets of X.

We claim that A2 is non-empty.

We know that

"

Therefore thus is an n2 E N such that for all n ;:::n2

2 2-~ < f1(a ).< --'3 - n - 32

If follows that for alt n ;;:::n2

.' 2
anE A2 and g'.tb' f1 =- 3

A2

similarly

2,
lub. f1 = -:-., 3
82

Sinee X is-normal there is a continuous funGti'oh

[ 2' 2J'92: X--)' :-3' '3

Suchthci-t

. (A") 2gz.. '2 '=--'-,. 3

We set
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It is checked that

Inductively we construct a sequence of continuous function on X

91, , 9n1 .

Such that

[ (
2)m-1 (2)m-1] ,9m: X~ - '3 '3 ------(1)

Ilf-~ (91+ .... +9m)11s(~)m -------(2)

1 ({ ) ,If we set fm = f-- \91 + ..... +9m ---(3)
3

then

g.l.b.fm = -(~rand I.u.b.fm = (~r
y y

Suppose we have defined 91, ,9m havinq properties 1,2,3,

D.efine

Am+1 ~ f~1[[ -(~r-i (~rJJ
Bm+1 d~' ([H~n~nJ

Then it is easily checked that
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4) Am+1'Bm+1are closed subsets of X

5) Am+1'Bm+1are non - empty

6) g.l.b.fm = _(~)m

Am+1

I.u.b.fm = (~)m

Bm+1

By Urysohn's lemma there is a continuous function

9m+1 • x-+ [-GT (~r1
such that

We find that

91, .... , 9m+1

satisfy conditions (1), (2), (3)

Since

(
2)m+1Ilgm ,,::; "3 .

a:

by weierstrars M-test we obtain that the series I 9mConverges uniformly to a function 9: X ~ R. m=1
As a limit of a uniformly convergent series for functions

oc

I 9m
m=1

9 is continuous. And we have
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. (2)ms 1~"3 =0

thus we have extended f to X ;

1-g
3

is the extension

11.3.SAQ·: Prove the converse of Tietze extension theorem:

Let X be a topological space. Prove that if every real- valued continuous mapping f of a closed
subspace F of X into a closed interval [a,b] can be extended to a continuous real-valued mapping}*
of X into [a,b] then X is normal. . . .

Proof: suppose F, and F2 are two disroint nonempty closed subsets of X. Let [a,b] be any
closed interval such that a<b.The mapping f, defined by f (x) = a if xEF1 and f(x) = b if x EF2 is then

a continuous mapping of the closed subs are F1 u F2into [a,b]. Then there exists a continuous
\

function f* of x into [a,b] such that f * IF1 u F2 = f. If c is any real number such that a<c<b then
£*,1([a,c]) and f*-1([c,b])are disrointopensets containing F1and F2 respectively. Thus X is normal.

The follOWing example shows that the closed ness of Fisessential in the above the theorem.

11.4. Example:
Let X = [0,1] and F - (0,1]. Since X is a metric space, it is normal. F is not closed in X. Define

f: F ~ [-1, 1] by f(x) = Sin (~). Then f is continuous. Since x I: 0 f(x) does not exist, f can not be

extended to a continuous mapping f* of X into [-1, 1].

We now turn our attention on the metrization problem. We begin with the following example.

Example: The infinite dimensional unitary space COO consisting of all sequences of complex

number {xn} such that f IXnl2<00 is also denoted by F and is a complete.metricspace with respect
n=1

to the metric defined by
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/ For details of the proof one may refer to page 2.7, 2.8. of the study material on functional
/'analygig. We denote the topology induced by this metric by Td'

Clearly 12c ([Nwhere ([N is the space of all sequences ot.complex numbers. Since([N = Il ([N
- . nEN

where ([n = ([ V n, ([N has the product topology on it where ([n is equipped with the usual topology,

induced by the metric d., (Z1' Z2) == /Z1 - z;/ V n ~ 1 and Z1E ([ Z2 E ([ we denote the restriction of the

product topology on ([N to 12 by T and prove that Tc Td
'"

For kEN and 0>0 write
.I". '

S (k, 0) = {Z= (Zn) E ([N: IZKI < 8}These sets S (k.S) are the typical s~bbasic open sets of ([N

that contain 0 E ([N

. Let Kl < < Kr be a sequence of natural numbersand let 01, 02,
ot positive numbers. The sets

,Orbe a sequence

S(!S,Q)= S(K1' K2, .. · Kr, 81, 82 ..... 8r)

= S(K1' (1) n nS(Kr, s.)

= {(Zn)E ([N:I ZK11<01,..·:·,1ZKrl<Or }

. are the typical basic open sets of ([N that contain 0 E ([N

If zEI2 and "Z" < 0 then

andso

So (0) c S(k, 0)

This implies T STd'

We claim that there are no sequences

K1' K2' Kr of natural numbers and

01, 02, ,8r positive numbers such that

S(K,o) ~ So (0)

To see this we set 80 = Min {01,· ..·' s.}
Chose any positive integer k. Take any sequence
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Z (k,8o) = {Z1"",ZK' O,O O}

IZnl<Oo

This sequence' is in 12. This sequence is also in S (!S,8). However if we take

1Zn = "2 00 . n= 1,2 ,...,K

We have

K s: s:. K 20If - Uo >u I.e. >-2 00

IIZ(K,oo)II > 8

and so Z(K,oo) ~ s (!S,§)
The following basic fact about product topology will be used in Uryshon's embedding theorem.

11.5. Propositlon :
Suppose trat I is a set, for each i in I, (Ai' T, ) is a topological space and (A, T) is the product of

the (Ai' T, ) ! .-

I
be the projection of A onto the i- th factor

\ Then

,1) Pj is continuous

2) Pj is a open map

and

4) If Y is a topological space and

f: Y~A

i~any map, then f is continuous if and only if Pi- of is continuous for all j in 1.

Rroof : Let us recall that

for jE I. I(j) = 1- {y}, jl •....• jn EI, l(jl"'" jn)=I-{y, ..... , y}
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And for VJ. , , VJ. , , VJ. in AJ. , AJ.Inn 2 n

the sets

Vjl X X Vjn X n Ai

iEI(jI,·jn)

are basic open sets for T.

1) Suppose V is an open set in AJ . J

Then pt(vJ= Vi x n A'
id(j)

is a sub basic open set of T. This implies that P
j
is continuous.

2) It is enough to prove P
j
(V) is an open subset for every basic open subset V of T. Let

V=Vj) x .... x Vj" x TI Ai
iEI (j).,jn)

Then

and so 2 is proved

'3) Consider Wi S Ai and (Pi' fr1 (Wi)

We have

Therefore P y of is continuous for all j implies

r1 (V)

is an open subset of Y for all sub basic open sets V of A. This implies that f is continuous. The
rest is clear.

We recall a definition

11.6. Definition:
Suppose (X,T) is a topological space We say that

(X, T) is metrizable

if there is a metric d on X such that the topology Td induced by the metric d on X is the same as
T:

'-
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11.7.· Proposition

Let In i [0, ~.] be given the usual topology and let J ==11 In
2n .' nEN

be the product space, with the product topology T Define

C1J

d(x,y)== L IXn-Ynl
n=1

where x = (x), Y = (Yn) are elements of J. Then d is a metric on J and the topology Td induced by
d is the same as T.

,'.. .

Proof: We leave the proof that d is a metric to the reader. In the case of 12 we have just proved
that

TSTd

The same method will give us in this case also

TS;Td

We shall now prove

TdST

To get a clear idea we shall first prove that the open sphere

58 (0)

contains a basic open neighborhood V of 0 with respect to the product topology.

We set

00 ==Min{1,0}

We can find a positive integer no such that

We5et

For any x = (xn) in V we have .
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'-< d(x,o) = LXn
<,

no eX)

= I XK + I XK
K=1 K=no1

Thus

Suppose now

U=(Un) E J

and we are given

As above we set

So=Min {1,S}

and choose an no such that

If m s no then we choose intervals as follows .

This is an open interval of Jrn and.
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no 00

V = 11 1m X 11 JK
m=1 K=no+1

is a basic open set containing o: Suppose x E V. Then

no 00

L: IXK- uKI = L: IXK - uKI + L: IXK -uKI
R=1 K=no+1

<~ + ~ = ()
2 2 0

Thus

This implies that every point a of an open set U with respect to the metric topology Td has a-------
neighborhood V (u) With respect to the product fopology T. So we have

i.e.

TdST

Thus the propopition is proved

11.8. Theorem
(Uryshon imbedding theorem). Suppose X is a topological space. which is normal and second

countable. Then X is metrizable

Proof: Let

{u n }n E N

be a basis for the open sets of the topology of X. We consider the ordered pairs of

(m,n) ENxN

of natural numbers such that

we have assumed that X is normal. By urysohn's lemma there is a continuous function.
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Such that

1) fmn = 1 onUm

and

2) fmn = 0 outside u,
The set of ordered pairs (m, n) we have considered is a subset of N x N which is a countable SE

SO the set functions fmnis a countable set. We' write them in a sequence

{f1 f2,····· .. ·· , fn,········· }

Corresponding to each pEN there is a unique ordered pair (m, n) such that

f =fmn p

and conversely. We define a map

F:X~J

by

F(x) =(f1(X), f2(~) ,.... ,fp(x) ,...... )
2 2 2P

We recall that

PK:J~JK

is the projection map and that

F:X~J

is continuous if and only if
/

f·
F' JP' =-,

J 2J

is a continuous function on X. If follows that F is a continuous map into the product J of topology
spaces

JK
We denote F (X) by Y. We consider Y with the topology To induced by the product topology T on

J. We have just proved that

F:X~Y

is a continuous onto map.

We will now prove that F is one-to-one and open.
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F is one-to-one: Let x, y E X and x -:j:. y. Then there is a basic neighborhood. Un of x. such that

-
XE'Un ~Un and y ~Un

Since X is normal we may choose a basic neighborhood Urn of x such that

Then we have a p = p (m, n) such that

fp (x)=1 and fp (y) =0

This implies that

F: X--)- Y is an open map: It is enough to show that the image of each Un is an open subset of

Y Let vEF(Un)

We shall prove that there is a neighborhood V of v with respect to the topology T on Y induced
by T on J such that

V S F(Un)

since v E F (Un) there is an u in Un such that

v=F(u)

The space X is normal and UE Un' Therefore there is a basic open set

Urn
such that

Corresponding to this pair (m, n) of natural numbers there is a p ::: p (m, n) such that

f = fp rnn
We have ..

fp (x) = 0 if x~u"

The set
,,'j

'.. ;~.

I,. -, ~•

.~,

. t.\.;
;.. Ie
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is.a sub basic open set of J Since

fp (u) = 1

the point

v=F(u) EV

If x in X satisfies

then we must have

1 1
-f (x»-
2P P 2P+1

that is

1
- < fp (x)
2

This implies that

Therefore we have proved that

That is F(Un)is an open subset of Y. Since F is continuous and also one-to-one it follows tha

is a homeom orphism

In the previous result we have proved that

T=T d.

/ on J. Therefore T on Y is the same as the topology induced by the metric on Y. Thus we hav.
provide that X is homeomorphic to a metrizable space. So X is metrizable.

11.9. SAQ Show that a compact hausdorff space is metrizable it is second countable

Proof: Let X be compact Hausdorff space. Then it is normal Suppose X is second countable.
Then by urysohn imbedding theorem, X is metrizable. Conversely suppose that X is metrizable. By
SAQ 8.1-4 sinceX is a compact metric space, it is separable. Since every separable metric space is
second countable it follows that x is second countable.

Remark: Theorem 11.10 provides an example of a metrizable space. In this Theorem we show
that the Tychnoff product of metric spaces is metrizable. In example 11.11 we show that the metric
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topology of the infinite dimensional Euclidean space <Ieo (also denoted by 12) ,is stronger than the
relative topology inherited from the Tychnoff product erN
11.10~Theorem: ~

Suppose for each natural number n, (An' dn}i~.a metric space and Tn is the topology induced on
. , ,

An by dn. Then the product space (A, T) where A"" n An and T is the product topology, is metrizable.
neN

. ~. . .
Proof: Since the metric 1+ on- and dn generate the same topology on An we may assume that

o ::;dn (x, yk1 for all x, y in An'

For x = (An) and y = (Yn) in A define

00 1
- Since O:S: dn (x, y):$; 1 and 2: n is convergent,
<, 11=1 2

The series on the right hand side converges, hence the above definition is meaningful.

For x = (x ), y =(y ) and z = (z ) in A we haven . n n

i) d(x, y) = 0 <::>dn (xn' Yn) = ovn <::>xn=Yn vn c:;.x=y

Thus d is a metric on A. We denote the topology on A induced by d by T'. What we prove is thai
T=Tl

For this it is enouqb.to.prove that

1) giyen an open set \i of Tand a E V there is a nl',ignborhood U'.(a) of a withrespect to T'
such that ----. .

'u (a) S V-
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and
-)

2) given an open set U' in T' and [3EU' there isa neighborhood V(a) of a with respect to T
such that

V(a) S U'.

Further it is clear that the statement (1) if proved for a class of sub basic open sets implies the
statement for all open sets of T. So it is enough to prove (l)"and (2) for sub basic open sets V and U.

Let V be a subbasic open set with respect to the product topology T. Then there is a natural
number m and an open set V (m) of Am such that

V=V(m) x fI An
_neN
n*m

Let a=(an) EV. Then am EV (m) since Tm is the topology induced by the metric dm there is a

0>0 such that

Then we claim that the sphere of radius

o -
- centered at a2m

with respect to d is contained in V :

Suppose XES I) (a). Then we have
2m

This implies that

xm ESI) (a~)
. and so XEV. We have provide (1) .. Let U' be an open set in the topology generated by the

metric donA and let f3EU'. By the definition of the topology T' there is a 8> 0 such that
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We choose a natural number k such that

1 8 . K-1 1
-K < -I.e. 2 >-
22 8

This is possible because of Archimedian property of R. we claim that

K

VW) = n S 1 Wr) x n An
k=1 2K n>K

is contained in SOW) suppose y E V (~) then

1 1. 1
<-+ """7'"C =-<0

2K ZK 2K-"f

Therefore

v (f3)' s s, (~)S; U'
and We have proved (2J
The result is proved

Model Exami:natidrl QuestfdHS' :
~

1. State- and prove Tietze extensron theorem

2. State crrid prove Urys\llorl's imbedding theorem

3. Show that the product t6~ology of a c"Ouhtah:fecolledlon of metric space is metrizable.

Exercises l

1-. Prove that a,separable metric space is second cotJfit·gble

2. Show that every metric space is riormal

3. Show that a second ceuntabte normal space i~ metrizabJe

4. Let Ix = [0,11 (v x E [0, 1.1)eqU'ipj:5edwith the usual tcpoloqy. Show that the product topolog"y on

XE?o,1]Ix is normal but .not-metrizable.
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5. Given an example of a metric space which is not second countable.

1 '
6. Does the continuous function - defined on R - {O} have a continuous extension to the whole ofx

R?

[ 1 1] '
7: Let X = [-1, 1]~Y = - 2' 2 Define f, r, f2 by

f(x) = Ixl for x EY

f\ (x) = Ixl for x EX and

{
IXI if x E Y and}

f2 (x) = l·f X Y
-1 XE -
2

Show that fl and f2 are continuous extension 6f f

8. Define f(x) = xsim 1tbr XE(O,l) show that fhas a unique ccntinuoua extension; an [0,1],
, 'x " ,

lesson writer : V~J.Lal.
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LESSON NO. 12

CONNECTED SPACES

12.1. 'Introduction

In this lesson we study connected topological spaces, which is one of the most important

topics in topology. Intuitively, a connected space may be thought of as a space consisting of a

single piece. We give a forJ?al definition of a connected topological space. We prove that a

subspuce of the real line R is connected if, an only if, it is an interval. We also prove that the

property of connectedness is preserved by continuous functions. We further prove that the product

of a non-empty class of connected spaces is connected and hence R" and en are connected. We

also introduce the concept of components of a topological space. We study some elementary

properties of components.

CONNECTEDNES

12.2. Definition. A toplogical space (X, T) is said to be connected if X can not be represented

as the union of two non-empty disjoint open sets. In other words; if,
-j

BE T, A ;f. <j>, AnB = <j> implies B = <1>, then X is said to be connected.

XI = AuB, A,

12. 3. Definition. Let (X, T ) be a topological space. If there exists A, B in ' T such that

x = AuB, A ;f.~, B;f. <j> and AnB = <j> then this representation of X is called a

"

disconnection of X. If X is not connected we say that X is disconnected, or equivalently X

is disconnected if, and only if, X has a disconnection.

/
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12. 4. Definition. A subspace Y of a topological space X is said to be connected if Y IS

connected with respect to the relative (induced) topology in Y.

\12. 5. Lemma. A subs pace Y of a topological space X is connected if, and only if, Y is not

contained in the union of two open subsets of X whose intersections with Yare non-empty

and disjoint.

Proof. Suppose that Y is connected. Let Y ~ AuB where A and B are open in X , Let C

= AnY, D = BnY. Then Y:;;::CuD, C and D are open in Y. lfCnD:;;:: <!> and C:I;<p then

D = <I> since Y is connected.

Conversely suppose that the stated condition holds. Let Y = CuD where C and D

are disjoint open sets in Y. Let C = YnA, D = YnB where A andB are open in X. Then

Y k AuB. IfC if; ¢I then AnY if; <1>.

BnY = <I> • i.e. D = <1>. Hence Y is connected.

~I
( 12. 6. SAQ. Let X be any non-empty set. Let T be the indiscrete a topology '?n X. Show that

~f--
(X. T) is a connected topological space.

12.7. SAQ. Let X be a set with at least two elements. Let T be the discrete topology on X.

l
Show that (X, T) is disconnected.
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12.8. Lemma. Let X = { a, b }, y = { c, d }. Let Tx be the discrete topology on X and let Ty

be the discrete topology on Y. Then (X, Tx ) and (Y, Ty ) are homeomorphic. Thus there

exists a unique discrete space with two points upto isometry.

Proof. Tx = { <1>,{a} {bl, X}, Ty={<I>, {c }, { d l, Y }.

Define the mapping f.: X ~ Y by

ffa) = c and f(b) = dThenfis.abijectionwhich is continuous and open. Thus f is

a homeomorphism.

12. 9. Notation.. Let °and 1 be two symbols. The discrete two point space is denoted by {O, I}.

" .
;-. . ' , -.

12.10. Theorem. A topological spaceX is disconnect~d if, and only if, there exists a continuous

function from X onto the discrete two point space {O,1}.

.., . }

Proof: Suppose that X is disconnected and Let X = AuB be a disconnection of X. Then

,A and B are non-empty disjoint open subsets ofX.

Definef:X ~ {O,l} bYf(X)={
o if xe A
1 if xe B

Them f -I (<I»= <I>, f -I ({ O}) = A, f ~1({ 1})= Band Cl ({ Q, I}) = X and all these sets

are open in' X. Hence f is continuous.

Also f is onto, since A #:, <1>.and B #:, <1>.

Conversely suppose that there exists a. continuos . surjective", function

f: X~ {O. I}. Let A = {XEX/ f(x) = Oland B =,{XEX / f(x) = 1}. A and Bare

non-empty; -Since f. is surjective. Also AnB = <1>.[Oland {I} are open and
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A = f -1 ({ ° }'),= B = f -1 ({ 1 } ). Since i is c~~tinuous, we have that A and B

are open in X. Thus X = AuB is a disconnection of X. Thus X is disconnected.

12.11. Theorem: Let f : X--7 Ybe a continuous mapping of a connected topological space X into

a topological' space.Y. Let Z =J ex )bethe (continuous) image of X.' Then Z is

connected. '

Proof: If Z is not connected, then by 12. IO.there exists a continuous function g from Z

onto the discrete two point.space {o, I}. Then the mapping h : X --7 {O,I} defined

by hex) =g (f(x), beingthe composite of two continuous functions, -is continuous

'and it is also onto. This implies that X is not connected, which is a contradiction to
1. ~

the hypothesis. Hence Z is connected.

12.12. SAQ. Give a direct proofoftheorem 12.11 without using theorem 12.10,

12. 13. Theorem. The product of any non-empty class of connected spaces in connected.

Proof: Let {Xi} be a non-empty class "~d spaces. Let X= lli Xi be the product

space of the topological spaces {Xi J . J. ~ \! that X is connected, it is enough to

prove that ~ny continuous function from X into the discrete two point space {O,1}

is not onto.

Let f:X --7 {O,l} be acontinuous function.

Part A. We first prove that if two elements of X differ in atmost one component then they

have the same image under-the mapping f: .

Let a = {a.} and x = {Xi }E X and let ilbe an index such that Xi = a.for i '# i L

"v

"
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Define fil : X il ~ X by fil (t) = {Yi} where y il = t and Yi = a, for i '* il. fil is a

continuous mapping from Xii ~ X.

Now fof., : X il .~ {O,l} is continuous. Since X il is connected fofil is a constant.

Now fof., (ail) = f (a) and f (x) = fof., (x.r), fof., is a constant imply. that fofil

B. Let a = [a, } be a fixed clement of X. Now we prove that if XEX and x differs from

a in atmost n components then f (x) = f (a).

If n = I then the result is true by part A. Suppose that the result is true for n

= k Let x E X such that x differs from a in atmost k+l components, say il.

i2, .... ik, i (k+l).

Define y = {Yi} EX by

Yij = xij for j = 1,2, ... , k.

and Yi = ai for i '* il , .. , ik.

\
\

Then x and y differ in at most in their if k+ 1) th component.

By Part A we have f (x) = f(y). Also y and a differ at most in their

i1, i2, ... , ik components. By induction hypothesis we have f (y) = f (a).

f (x) = f (a). Hence the result is true for all n.

Fix some a EX.

Let A = { XEX I x differs from a in atmost a finite number of cornponents.]

Then it can be shown that A is a dense subset of X. Also by part B. f is a constant

on A. Since {O. 1 } is a T 1 - space we get that f is a constant mapping on X. Hence .
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f is not onto. Thus there is no continuous mapping of X onto the discrete two point

space {O, I}. Hence X is connected.

12.14. SAQ. Prove that the mapping fit in Theorem 12.13 part A is continuous.

12.15. SAQ. Prove that the set A in Theorem 12.13 part C is dense in X.

12.16.SAQ. Let X be a topological space and let Y be a T 1 - space. _Let f : X ~ Y be a

continuous map such that f is a constant on a dense subset A of X. Prove that f is constant

onX.J

12.17. Theorem. A subspace of the real line R is connected if, and only if it is an interval. In

particular R is connected.

Proof. Let X be a subspace of R

(i) Suppose that X is not an interval. Then there exist real numbers

r, s, t 3 r < s < t, r, t E X and s ~ X. The sets A = X n ( - 00, 8) and

B = X 1\ ( s, + (0) are non-empty disjoint open sets in X such that X = AuB

Hence X is not connected.

(ii) Assume that X is not connected. Let X = AuB be a disconnection of X. Then A

and B are non-empty and disjoint closed, as well as open, subsets of X. We can

choose x E A and Z E B such that x t= z. We may assume that x < z. Now

x, Z E X. [x, z ] n A is bounded above by z. Hence y = sup ([x, z] n A) exists
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in R. It is clear that ~ ::;y ::;;z. Since X is an interval, x, Z E X, we have y E X.

Since A is also closed in X, the definition of y shows that yE A.

y < z. .Also if E > 0 then y < y + E < z implies y + E E B. Since B is closed in X-------.
we get y E B. Thus y E AnB , which isa contradiction since A and B are disjoint.

Hence X is connected

The proof is complete from (i) and (ii)

, 12.18. Theorem: The range of a continuous real valued function on a connected space is an

interval.

Proof. Let f : X -7 R be a continuous real valued function. Let Z = f (X).

By theorem 12.1l, Z is connected. By theorem 1'2.17, we get that Z is an interval.

Theorem 12.18 may also be stated as follows: Let f be a real valued

continuous 'mapping on a connected space X. Let x, y E X. Let c be a real number

3 f (x) ::; c ::; f (z), Then 3 z EX 3 f (z) = c. Thus theorem 12.18 is also called

"Intermediate value theorem".

12. 19. Theorem. The spaces Rnand Cn are connected.

Proof. We know that R, being an interval, is connected with the usual topology. We also

know that Rn as a topological space can be regarded as the product of n copies of

the connected space R. Hence by theorem 12.13, we get that Rn is connected. We
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show that C" and ,R2
n are homeomorphic as toplogical spaces. Let Z = (ZI. Z2, ... ,

z, ) E C", Let Zk= ak+ ib, for k = 1,2..... n,

Clearly f is one~one and onto and I f (z) I = Iz I.

Thus f is an isometry of Cn onto ~?n and hence f is a homeomorphism. Since R2
n

is connected we have C" is connected.

, Answers to SAQs
\ '

~ 12.6. SAQ. T = {$, X I. Thus X is the only non-empty open set and hence X can not be

represented as the union of two non-empty disjoint open sets.

Hence (X, T ) is a connected space.. '

, "

12.7. SAQ. Let a,E X. Then B = X \{a} is non-empty. Since T is the discrete topology, every
..

subset of X is open in ( X, T). Thus X = { a } u B is a disconnection of X.

12.12. SAQ. Let f: X ~ Y be a continuous function and suppose X is connected. Let Z = f (X).

Let Z = AuB be a disconnection of Z.

Then 3 open sets' G and H in' Y such that

A = Z n G and B = Z n H.

Let Gt = f -I (H) and H, = f -I (H). Then G1 and HI are open in X.
-:' . . '.",'

< A * <I> => 3 x E X 3 f (x) E A = ZnG

=> f(x) E G => X E r' (G) =Gi
, .

, ~.
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Similarly 3 YE X 3 Y E f " (H) = HI. Thus GI:f:. <I> and HI::f. <1>.

t E G1 (\ Hi ~ f ( t ) E G and, f (t) E H

~ f ( t) E ZnG = A and f (t) E ZnH = B

~ f ( t ) E AnB which is a contradiction .

.. . G1 n HI = <1> •

t EX ~ f(t)EZ

~ f (t) E A or f(t)E B

~ t E f -I (G)or t E r' (H)

~ t E G1 or t E HI

~ tE G1uH1

Thus X = G1 U HI is a disconnection of X, which contradicts the hypothesis that X

is connected. Hence Z is connected.
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12.14. SAQ. We know that the canonical projection Oi : X -7 Xi- is continuous for each i.

. ( t for i = il
Also TIi 0 fil (t) = for i ....•.'1. . aj or 1 -r- 1

Thus TIi 0 fiJ is the identity map on X il for i = il and is the constant map to a, for

i "* il . Thus [li 0 fil is continuous for all i. Thus by SAQ 7.9 of lesson 7 fil is

continuous.

12.15. SAQ. Let B be a non-empty basic open set in X. Then B finite number of indices il , ...

in and non-empty open sets Gu . ... , Gin in Xi\, Xi2..... Xinrespectively 3

n - 1
B = n TIij(Gij). Choose XijE Gij for j = 1,2, ... , n.

j=I

Define y = {Yi} by

Yij= Xijfor j = 1,2, ... , nand Yi= a, for i (e { il,i2, ... , in }. Then

n - 1
yEA (l nTIij( o, )= A (l B

j=l

Thus A (l B ::f:. <I> for every non-empty basic open set B in X. Hence A is dense in
X.

12.16. SAQ. Let f (x) = a V XEA. Since Y is a T I - space and a E Y. {a} is closed in Y. Since f

is continuous C1 ({a}) is closed in X. We have

A C C1 ({a}) => A c r' ( {a}) = r' ( {a})

=> x= Ac f'lUa})

=> f (X) = {a}.

Thus f is a constant map on X.
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Exercises:

1: 20. Exercise. Prove that X = A u B is a disconnection of a topological space

X iff A and B are non-empty disjoint closed sets.

12. 21. Exercise, Show that a topological space X is connected if, and only if, every non-empty

proper subset of X has non-empty boundary.

12. 22. Exercise. Show that a topological space X is connected iff for every two points in X there

is some connected subspace of X which contains both.

12. 23. Exercise. Prove that a subspace of a topological space X is disconnected iff it can be

represented as the union of two non-empty sets each ~f which is disjoint from the

closure in X of the other.

12. 24. Exercise. Show that the graph of a continuous real function defined· on an interval is a

connected subspace of the Euclidean plane.

12.25. Exercise. If X is a countable, connected topological space, show that constant functions

are the only real valued continuous functions on X. (Hint. Use Theorem 12.18 and

the fact that every interval with more than one point in R is uncountable).

12. 26. Exercise. Determine whether th~ following are connected subspaces of R2
1\' .

(i) {(X,y)E R2/x:;t:O}

{(X,Y)E R2/x2+y2='I}
• ~~ --:;-; ; r .\ c

(ii)

(iii) { (x, Sin (l/x) / 0 :;t: X E R }

~~ (iv) { (x, y) E, R2/ x:;t:'y}
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12. 27. Exercise. For any completely regular space X, provethat X is connected iff the Stone-
,

Cech compactification B oo of X is connected.

12. 28. Exercise. If T 1 and T2 are topologies on X such T 1 ~ T 2 and (X, TJ ) is connected prove

that (X, T2) is also connected.

12. 29. Exercise. Prove that a topological space X is connected iff every continuous function

" from X into the discrete two point space {O, I} is constant.

Components

12. 30. Introduction. In this lesson, we will prove that a topological space X can always be

decomposed into a disjoint union of maximal connected subspaces of X, which we

call the components of X.

12.31. Definition. Let ( X,T) be a topological sp~ A connected subset A of X is said to be a

»>: component of X if A is not properly contained in any other connected subset of X.

That is, a subset A of X is a component if it is connected. and A c B, B is

connected implies A = B.

12. 32. Example. If X is a connected space, then X is the only component of X.

12.33. Example. In a discrete topological space X, any set with more than one lement is
/'

/'disconnected. Hence singleton sets are the only components of X.
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12. 34. Example. In the space Q of rational numbers with usual topology, any subspace A with'

more than one element is not connected; for if r, SEA and r < s we can find an

irrational t s r < t < s and A = {A n ( -<X), t)] U [ A n ( t, + 00] is a disconnection of

A. Thus singleton sets are the only components of Q. But the usual topology in Q

is not discrete.

We prove the following two theorems before we attempt to decompose a

space into its components.

12. 35. Theorem. Let X be a topological' space, let [C, } be a, non-empty class of connected

subspaces of X such that n C, is non-empty. Then the subspace C = U C, is

connected .

. Proof: Suppose C c A u B where A and B are open sets in X such that Al = C n A and

B 1 = C n B are disjoint. For each i, the connected set C, c C and hence

C, c A u B. (Cj n A) n (C, n B) c Al n Br = <\>. Since C, is connected by

Lemma 12.5, either C n A =<\> or C, n B = <\>. Thus C, c A or C, c B. Since

n C, -;f:. <\> we have either all the Cj are contained in A or all the C, are contained in

B. Thus C = u C c A or C = u C, ~ B. Hence C c A or C c B. Thus

C n B = <I>or C 11 A = $

Hence C is connected.

12.36. Theorem. Let A,be a connected subspace of a topological space X. Let B be a subspace
-I .i , ,,: I. ", ' ,

of X such that A c B c A. Then B is connected; in particular A is connected.
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Proof. Assume that B is disconnected. Then B open sets G and H of X such that

Since A c B c G u H and A is connected, either A cHand A n G = <I> or

A c G and A n H = <1>. Suppose A n G = <1>. Then AnG = <I> • If A n H = <I>

then A n H = <1>. Since B ~ A we get that B n G = <1> or B n H = <1> which is a

contradiction. Thus B is connected.

12.37. Theorem. Let X be a topological space. Then we have the following

(i) Each point of X is contained in exactly one component of X.

(ii) Each connected subspace of X is contained in a component of X.

(iii) , Each component of X is closed in X

(iv) A connected subspace of X which is both open and closed is a component

ofX.

Proof: (i) Let XEX. Let A = { C c X / XE C and C is connected subspace of X.

The A ;to <1> since { x} E A and x E (lC
CEA

By theorem 12.35,C, = U C is connected.
CEA

If D is any connected subspace of X 3 C, ~ D then XED. So, D is in the class A.

HenceD cCx

D=Cx•

Thus C, is a component of X. If E is any component of X 3 x E E then E ~ CX.

Since E is a component and Cx is connected we have ex = 'E.
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(ii) Let C be a connected subspace of X. If x E C then C cC;

(iii) Let C be a component. Since C is connected, by theoren 12.36, C is connected C

c C and C is a component => C = C

=> C is closed.

(iv) Let C be a connected subspace which is both open and closed in X. By (ii) :3 a

component E .3 C ~ E. Then C is open and closed in E also. Since E is connected

we have C = <I> or C = E. Since C is a subspace, we have C ;f::. <1>, Hence C = E is a

component. .

12.38. SAQ. Prove that a topological space X is connected if, and only if, X has no non-empty

proper subset which is both open and closed.

12. 39. SAQ. If the product nXi is connected prove that each Xi is' connected

12.40. SAQ. Is a component of X open in X?

12. 41. SAQ. Prove that tti~ corsponents of a space form a partition of X. If there are only a

I
12.42. Answers to s.I\Q~

finite number of compo'hents of a space )C, prove- that each component is open.

)
i

12.38. SAQ. Suppose X is connected; If A is a non-empty proper subset of X which is both

open arid closed th~n:X = IX w (X \ A) wolida form a disconnection of X.

If X = A \..J B is a disconnection of X then A. (and also B) is a non-empty proper
<, , ~~~: . ."

subset of X which is both open and closed in X.
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12.39. SAQ. Hint. Use theorem 12.11 with the projection mapping Pi: X -7 Xi .

12.40. SAQ. See example 12.34. Singleton sets are not open in Q, since if { r } c Q is open in

Q then { r } ::) Q (l (a, b) for some open internal (a, b) in R. But Q (l (a, b) has

infinitely many points.

12.41. SAQ. Let X be a topological space, Each XE X belongs toa uniquecomponentC;

Then X = uCx• If Cx (l C, * <I> then
XEX

C = Cx 'u C, is connected Cx c C and Cy c C imply C = eX. = Cy. Thus the

compo'11ents'of X fdtrh- a' partftion of X.
. n

Let CI, Ct, ... , cn 11e"the only distinCt tC!mpofi~rltS'of X. the x:::;; U Ci and
i:::l

n
For each i,D, = UCj IS dos'ed and hence

j = 1
J*i,

Ci == X -'Di is open.

12.43. Exe~ci~e~Let rti }be a non-e'mpty crass 01 connected sobspacesdf a topological space X

stroh that Ci (l 'q iqtt'ot a1'l f and]. Prove that UC\ is also comYettect'. (Hint: proof

of thedfe'th 12.35).
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12.44. Exercise. Let AI, A2, ... , An ... be a sequence of connected subspaces of a

00

topological space X such that An nAn+l '* <I> for n = 1-,2, .... Prove that U An
n=1

n 00

is connected. (Hint let B, = U Ak• Then U An= U Bn. Use induction to
111

prove Bn is connected and use theorem 12.35 with the class {Bj.].

12.45. Exercise. Use theorem 12.35 to prove that X x Y is connected if X and Yare connected.

12. 46. Exercise. Prove that an open subspace of the complex plane is connected if, and only if,

any two points in it can be joined by a polygonal line.

12.47. MODEL EXAMINATION QUESTIONS

12.48. Define a connected space and prove that a topological space X is connected iff there is no

continuous function from X onto the discrete two pointspace {O, I}.

12.49.Prove that the product of any non-empty class of connected spaces is connected.

12.50.Describe connected subsets of the real line R.

12.51.Prove that the continuous image of a connected space is also a connected space.

12.52.Prove that Rnand C" are connected.

12.53. Define a component of a topological space. What are the components of Z, the set of all

integers, as a subspace of the real line R with the usual topology?

12.55. If A c B c A for subspaces A and B of a topological space X and A is connected, show

that B is also connected.
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12.56. Prove that the components of a topological space X are closed subsets of X. Can we prove

that components of X are also open subsets of X? Justify your answer.

Lesson Writer: V.S. Lal

***



SUPPLEMENT TO LESSON 12

FUNCTIONAL ANALYSIS
I

PROJECTIONS

Let us recall that by a projection P on a Banach space N we mean aP E B(N, N)

such that p2 = P. In 6.7 it was proved that P E B (N, N) is a projection if and only if B =

Range P EEl Null space P. The norm on a Hillbert space has special properties because of

the special features of the inner product. In what follows H stands for a complex Hilbert

space.

and only if P is s~lf adjoint. In this case N = Ml.

12.18 Theorem: If P is a projection on H with range M and null space N then M .1 N if
I
I

Proof: Ifx E H"P (x - Ptx) = P(x)' - p2(x) = P(x) - P(x)= 0

so that x - P(x) E N. Also x E M (\ N => P(x) = 0 and x = P(x) so that x = E(x) = O.Thus

.every vector x in H can be uniquely written as x = y + z where y E M and ZEN.

. N~w ifM.l N then (y, z) = 0 so that z L y..

llence (P*(x), x) = (x, Ptx) = (y + z, P(x» = (y, P(x) ) + (z, P(x) )

~. (y, y) (.: P x = y and (z, y) = 0)

Also (P(x), x) = (y, y + z) = (y, y)

~o that (P'(xj.x) = (Prx),«), hence ((p. - P) (x), x) = 0 for every x.

This implies that p* - P = 0 by 11.7 so that p. = P i.e. P is self adjoint.
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Conversely suppose that p' = P. Ifx E M and YEN then P x = x and p' y = Py = 0 C·.~ t 1-'

E N ~ py = 0) so that

(x, y) = (P x, y) = (x, p' y) = (x, 0) = o.

This implies that x .Ly if x E M and YEN so that M J,. N.

We now sho-v that if Mcl, N then N = M'.

Clearly N c M'. If N * Mi., N is a proper linear closed subspace of the Hulbert space

Mi.. So there exists nonzero z E Mi. which is orthogonal to N. Since z .L M and Nand H

= M EB N it follows that z .L H, there by implying that z = 0 which contradicts that z * O.

12.19 Dcfii~ition: If P E B(H) and. p2 = P = p' then P is called a projection or
. ! .~

perpendicular projection: on ,H. We also say, in this case, that P is a projection on M =

{peX) I x E H}.

12.20 Propo~ition: Let P b'e a projection on M. then

(i)' I - P is a projection,
)

(if) IIP(x) II= Ilxll~ x E M

(iii) P is a positive operator on H.
f .'

Proof: (I) 1'2 = P <=> (I - r/ = I - 2P + p2 = I - 2P + P == I - P.

=> i-'l' is a projection;

To prove (ii), suppose-P is a projection on M.

Ifx E M then P(x) = x so IIP(x) II = IIxll·
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For any x E H, x = P(x) +9 - P) (x). Since (P (x), (I -,P) (x) ) =0,

................ (1) (
So. liP (x) II = [x] => II (I - P) (x) II =·0 => x EM.

From (1) above it is dear that IIPxll ~ IIxll so tl~~t IIPII,~ ,.

(.: IIPII= sup IIPx II )
x II x II

Moreover for-every x E H, ,

(Px, x) = (p2X,x) = (Px, p"x) = (Px, Px) (.:p =p*) = lIl.>xIl2~O

This yields (iii)

'i~.21 ne1iD.itjo~: Let T E ,ij(Jl). A:d{)~.ed~,i~e~rsijb~'p:a~e.~:q~ij~,s~~i(d~?'~ei~variant

un4er TlfT (M~c'~.If pot W,~\i~;M1..areiny~r:iah~,t4P:d.erT, :~e,$ayiif~t~ fe~ces T
, _. .' , " _.' ,"' ,) ,:._' L - " .'" "". ~. ' '. ,I ~.

}

12~~~T~~r.e",~ A .closed H!1~r ,~y,pSp'age~ pf ,¥ is i~yadflPt .~~der !,€ ~j(;l:I),if and
.' .. - .". '.',

l' ·fM'.L·· . d T'*,qny:1.,., asinvanant un er '..

h ·~K.L ., • "d T*t ten ,lMl is.invariant un er : .
. : ,-, . .'....' ..

( T~;\!) - I1.d..en'c'"T*';i' E M',.LX, Jl. ~'-'\jf~~~ ':._.:~it '"J ,::'.

12.23 :th~orem:Aclosed linear subspace M of H i~~uces.an ,0P~<ltot Trif and -only if~1.''

I is invariant under T and T*.- ~,, _ "411.
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Proof: M reduces Tiff M and M.Lare invariant under T

if and only if M is invariant under T and T*. !,.

12.24 Theorem: If P is a projection on a closed linear subspace M of H''rhen M is

invariant ~naerTE·B (H) if and onlyifTP = PTP.

Proof: If x E H,then P(x) E M. If M is invariant under T then T(M) ~ M so that TP(x) E

M, hence P (TP) (x)'> 1=P(x). (': x EM=> P(x) = x) and hence PTP = TP.

Conversely i(PTP= TP, then for x E M, Px = x so that TP(x) = PT P(x) hence T(x) = PT

(x) = PTP(x). This implies that M is invariant under T.

12.25 Theorem: If P is a projection on a closed linear subspace M of H then M reduces

. T E B (H) if and only ifTP = PT.

Proof: M reduces T if and only if M is invariant under T and T*, if and only if TP = PTP

* •and T P =PT P

if and only if 11> = PTP and PT = PTP

if and only ifTP= PTP = PT.

2 . 2Since P = P, TP = PT => PTP = P T = PT

and also TP2 = (TP)P = PTP so that PTP = TP = PT.

f. 1..2.i~.!Tb,tr.em: !fP and. Q are P~j~F.:iPns on close~ linear subspaces M and N of H then

.;~M~11fl.rii only IfPQ~ 0 li--and,onJYJfQP ='G '
'.;1_ r- •.. ,- - - .~:.... • ••.••./.p;. --
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Proof: It is clear that

PQ = 0 <=> (PQ)* = 0 <=> Q* p" =0 <=> QP = 0

~ ,
If M 1..N then N s M so that V x E H, PQ(x) = P(Q(x) ) = 0 as Q(x) E M-L. Conversely

if PQ == 0, then for x E N, P(x) = PQ (x) = 0 so that N c M~ and hence M c N~. This

gives M ~ N.

12.27 Theorem: If PI, P2, , Pn are projections on closed linear subspaces MI, , M,

of H respectively then P = PI + + P, is a projection if and only if Pi Pj = 0 whenever

Proof: Since p;*= Pi V i, p. = P. Thus P is a projection if and only if p2 =P.

If Pi Pj =0 when i * j,

p2 = POP = ""p. P. = ~p2 = ""P = PL.JI J ~I L.JI
i,j

Conversely suppose that p2= P. To' show that Pi Pj = 0 whenever i * j it is enough to

prove that Mi 1..Mj whenever i * j.

Let x E M, andj * i. Then Pi (x) = x.

n n

=> IIxl12= IlPi (x)1I2 :5 2: (Pk x, x) = (2:Pk x, x)
k=1 k=1

= (P x, x) = II P (X)1\2 ~ IIxl\2

Hence Pix) = 0 for r * i. This implies that M, k Mt ifi * j.

Consequently M, 1.. M t if i * j and hence Pi Pj = 0 if i '# j.
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We now prove that :Pis the projection on M.

If xe M, , Pjx= 0 for j ;!; i so px = p,x, hence IIPxll= [lx] thus x E M, \=> x E Range P so
- . 1- _, . •

. I

(." ~ I

that M c Range P.

Conversely if'x eRcir{ge P,' f. -'~ ",l; ,i'

x = Px = PI X + +Pn x EM) + + M, = M. ~ ":.> j ,

Thus RangeP = M '

This completes the proof.

12.28 SAQ: If P and Q are projections (m closed linear subsapces M and N of H prove
. . .' - .' ,.' . ~ -', ' ;

that PQ-is a projection if and only if PQ = QP. ,In this case show that PQ is the proejction
__ " i .

on Mrv N.

Answers to SAQ's:

12.29 SAQ: Under the hypothesis of SAQ prove that P 5 Q .~ liP (x) II5 IIQ(x)1I~ PQ =

P~QP=P

SAQ 12.28 Suppose M, N are linear sU9spacesofH and Pi~a pro~ectiono~ M while Q

- is a projection on N. IfPQ= QP, (PQ)2 = PQ PQ = P(PQ) Q ~p2Q2 = PQ. Purtl v (PQ)*
. . " . . '.,'

= Q*p. = QP = PQ.SoPQ is a projection .

. Since M, N are closed, M nNis closed.
, -

Ifxe M n N, Px = x and Qx = x so QPx= Qx = x.

Since PQ = QP, XE Range PQ

;'l : , , :- .,,, .' 1;,,' '".' ,. " ',' ~

Ifx E Range PQ,PQx =x ~.PX =P(PQx) = PQx = x.
s : '"

=> X E Range P = M. By symmetry XE N.
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,

: ."" ~ v,

~x EMnN.

Thus M n N = RangePQ.

SAQ 12.29: Let P, Q be projections on closed linear subspaces Mand N of H~ ,

Then P~Q '? \I x EH, (Px, x)~(Qx, x)

~ IIP(x) 112~ (P(x), P(x) ) =(p2(X), x) = (P(x), x) s (Qx,X) =IIQxI12
.' .[:

~IIPxll~IIQxll

Th~ reverse inequalities also hold so that IIP(x) II~'IIQ (x) II~ P sQ.

PQ = P ~PQ is a projection~ PQ = QP~ QP=P. "

Interchanging P, Q we get QP"';P ~ PQ=P

Thus PQ = P <=> QP = P

PQ = P ~ (P(x), x) = IIP(x)1I2=IIPQ(x)112~ IIQxll2= (Qx, x)

Conversely suppose p~ Q~Then \I x IIP(x)1I=IIQ(x)11,

~ Nl. C Ml.. For every x E H, x- Q(x) E Nl.,

t;' '~P(x _Q(x) ) =0 \IX" ".

=> P(x) = PQ (x) \I X

~PQ=P

Thus P s Q <=> PQ=P.'
.""

12.30 Model Examination Questions: . ,,: ~

1. Let P be a projection on 'a Hilbert space H with range Mand pull space N .,show that
:, ~ , .- • ' :.' " .' '. '.. '.' </ .,;,.; :.'~ "

P is selfadjoint if and only ifM..l N.
r .
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2. Show that a linear subsapce M of a Hilbert space H is invariant under an operator T if

and only ifMJ. is invariant under T*

3. Show that if P is a projectiori on a closed linear subspace M of H then M reduces T E

B(H) <=>TP = PT.
\

4. If P and Q are projections on closed linear subspaces M and N show that M. .L N <=>

PQ = 0 <=>QP = O.

12.31 Exercises:

1. Show that the projections on H form a complete lattice with respect to the natural

ordering of self adjoint operators.

2. IfP, Q are projections on closed linear subspaces M, N ofH show that M ~ N <=>PQ

=P<=>QP=P.

3. Under the hypothesis of2 above

Prove that P - Q is a projection if and only if Q ~ P.



LESSON NO -13
r .

APPENDIX

The following famousresults, without which an ,introduction to topology is not

complete and some of which are useful in Functional Analysis as well are presented here

under. Some equivalent forms of Zorn's lemma are also stated without proof.

1. Cantor's intersection theorem

2. Baire category theorem'

3. Schoroder ~ Bernstein theorem..
4. For any set A there is no bijection from A onto peA)

,

5. Equivalent forms of Zorn's lemma

13.1 Cantors Intersection Theorem:

\

In lesson 9 we proved that a metric space is compact if and only ifit is complete

and totally bounded. We charac~rised compactness by X is compact ifand onlyif every

class of closed subsets of X with finite intersection property has' non-empty intersection.

Suppose we are given a c~untable class {Enh E ~ of closed subsets of X then the class of

sets F; = E( n n En has the followingproperties,

r, is closed, Fn=> FnH
_.'.

If the given Class {En}nE ~ has finite intersection property then

F, *~
So in this Case the compactness of X implies n Fn ;t:~. . .

That is

A decreasing sequence of non-empty closed subsets of 'X has non-empty

intersection. We consider this property and prove two theorems. These are used

extensively in several branches.

We assume that the space X is a complete metric space.
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Example I: Let X = IR and let En = (- 00, - n],u [no<Xl) for all positive integers n.Then En
~ .

is closed and En ::.> En+ \. We have nE n = 4>. This follows from the Archimedean
, nat

property. Given any ceinR there-is a natural number n.such that - n < a < n

The En's are closed decreasing and non-empty but not bounded while X is complete.

Example 2: We define
. 1 2 .' : 1En= {a e Q : a> 0,2 - -:S a :S2 + -}n n

Then we clearly have

En;;? En+1
"

If there-is-a rational number p/ q in all En then taking limit in the inequality

1212 - - s (p/q) s 2 + -,
n n

We obtain 2 ~ (!)'
This means that .fi isa rational number. We knowas part of the construction of real

(

number that

1) 'J2 is irrational and

2) The set En is non-empty.

We claim that the set En is a closed subset of Q+.To see this, consider the map

f: Q+ ~ Q+ defined by f (x) = X2

f'iscontinuousand En is the inverse image of the closed set. [2 - !,2-+ ~]
n n

\

and so En is a closed subset ofQ+. The sets are all boundedaboveby 2. If2 < P then
q

, 2 " ,
4 .( ~. We shall now prove that En ':F- cpo

q

We suppose 0 > 0 and consider the interval (2,- ,0, 2 + 0)

We choose a natural number n and consider the numbers xK = 1 + ~. k -= 0.1, n.n '
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We have

X~+I'- x~ = (Xk+1+ Xk) <x..+I-Xk)

1 4
<4 - =-.

n n' \
The numbers x ~ satisfy \

1 = x ~ < x ~ < < X ~_I -cx ~ = 4.
\

We now suppose 0 < .!... Then there is an integer k s~ch that
2 '

x~ S 2 - 8 < X~+1

Suppose2+osx;:I-,.then28~(2+o)-(2-o)$x~+, -x~ < ~

By Archimedes' Axiom we can find a natural 'number m such that

2 .. il: 2m > - J.e, u> -.
8 m

If we use such an m)i{the pJace of n above we have x ~ s 2 - 0 < X ~+I< 2 + O.

, From this we m~ conclude En ¢ ,.
/

Therefore we have a decreasing sequence of bounded non-empty closed sets En inQ+
G&

such that nEn =~. Here we note that Q+ is not complete.
n-I '.'

'"
There is a condition on the sets En which ensures that nEn is non-empty when

n~1

X is a complete metric space. To state the condition we need some preliminaries.

13.2 Definition: Suppose (A, d) is a metric space and B is a non-empty subset of A. We. ,\ .

define the diameter of B to be

I.u.b d (x, y)

..x,y E B

Wedenote it by d (B)
i.
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13.3 Remarks: We have defined deB) only when B is a non-empty subset. So each time

we talk of the diameter of a set B we have to be certain that B is non-empty.

The numbers d(x,y) are all non-negative and 0 = d(x,x) is certainly one of them.

Therefore d (B) 2: O.

If there are two distinct elements x and y in B then

d(x,y) > 0

therefore d (B) > 0

It follows that d (B) = 0

if and only if B consists of a single point we now state.

13.4 Main Theorem: (Cantor's intersection Theorem). Suppose X is a complete metric
( .

space. If {En}nEIIJis a sequence of closed subsets of X such that

ii) and

iii) d/En) ~ 0 as n ~ 00

then E = n En ::j:. ~, and consists of a single point.

Proof: For each positive integer n we choose an element x, arbitrarily from the non-

empty set En. Thus we obtain a sequence {x.} , x, E En.

Since we have assumed that En:::::>En+1

We have Xn+pE En+p ~ En for all p E tN .

We have assumed that d (En) ~ 0 as n ~ 00. Therefore given any E > 0 we can choose a

positive integer n (E) such that d (En) < E if n 2: n (E); therefore d (Xnh xn) < E if n, m2:n(c).

This means that {x.} is a Cauchy sequence. Since X is complete the sequence tends to a. ," .

limit say z. AU'the x, are in E1. Since EI is closed. z EEl.

Choose any n. The sequence Ylll = x.,+ IiI is a subsequence of {xd

Since { xd tends to z, the sequence {Ym} also tends to z. Since Yill E En for all rn and En

is closed we obtain

Z.E En
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It follows that

ZE En

It follows that

Z E (\ En

Suppose z' is also in E then d (z, z') ~ d (En) for all n. Since d (En) ~ 0 we must have

d (z, z') = 0 that is z = z'. The theorem is proved.

There is ,another theorem we prove in this lesson. It is extensively used. It is

known as Baire category theorem. Cantor's intersection theorem is used in its proof. For

the statement of the theorem we need some preliminaries.

13.5 Definition: Let X be a topological space. A subset A of X is said to be nowhere

dense in Xif the closure A of A in the space X has empty interior: Int (A) = $.

13.6 Remarks: It is important to remember that the closure of.E is 'taken in X. Suppose.

we simply consider Eas a subset of itself with the topology induced from X then we have

E = E and Int E = E

As an illustrative example we consider

E = Qand X = IR.

Then Q in IR is IR and Q in Q is Q.
. .

Int Q in IR is the empt set and Int Q in Q is Q itself.

Exercise: If E and F are nowhere dense in X then E u F is nowhere dense in X.

13.7 Remark: It might happen that

Int' E = $ and Int F = $ and Int (E uF) * $
Fe •.example E = Q, F = Q' :=;; IR \Q and X = IR

So one should remember that for a set E to be nowhere dense it must satisfy
'.-'

Int E =~, Where the closure is taken as a subset of X .
./

I"



Centre for Distance Education 13.6 Acharya Nagarjuna University

13.8 Baire Category Theorem:

Suppose X is a complete metric space and En, n E rN is a sequence of nowhere dense
00

subsets ofX. Then UEn eX.
n=) :#

Remark: If E is nowhere dense in X then E is nowhere dense in X. Therefore we could

have stated the above theorem as : If En is a sequence of nowhere dense subsets of X.

then

U En eX.
n *

I

Exercise: Suppose the above t,t1eorem is assumed. When En C .En+l, and ~ are closed.

The above theorem may be deduced from it.

Proof: We denote the closure of En by Fn. Fn =E, ; lnt F, = ~. F, is closed. We have

assumed that lnt fl = ~.This implies that FI C X. So there is a point XI in X which is not
. * .

in Fl. FI is a closed subset of X and therefore there is a 81> O. Such that

closed subset of X with Int F2 = ~ and SOll2 (XI) is a non-empty open subset of X.>

There is an x2 in So . (XI), not in F2 and since F2. is closed, there is a 82 > 0 such-that
1/2 (.

S&z(X2)'<,::;;;S&;" (XI)

Soz (X2) n F2 = ~. We then have

, '
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Inductively we choose x, and ()n in the above manner. We thus obtain a sequence

of points x, in X and a sequence of positive numbers ()n with the following properties:

i)

Ii)

iii)

Suppose we set X, = Son [xn] then we have
2

-
2

, ()... on
Also d (So [x] ) :::;2 0, and so d (xn) :::; 2 _n = ()n; since by our choice On+1 :::; -. We

2 _. ·2

obtain d (Xs) ~ 0 as n ~ 00. The En are closed and X is complete. Therefore by Cantor's

intersection theorem we obtain an Xo in the intersection n Xn. Since Xo is an element of

CI)

X, and X, = S On[xn] n F n = ~,xo is not an element of UFl1 . Thus the theorem ISproved.
2" n=1

13.9 Remarks: To understand the proof the student is advised to study the following

example. The topological space X is 1R2.The sets En are EI = { (O,y) : y E IR}

En = { (2~-1 ,y) : y E IR}. The points Xn are (2~-1 ,0) and the positive numbers s, = ;n

with these choices we have

SOn (xn) n En = ~;

Int En =~.

n So (xn) = ~
n

.......,\
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13.10 Schroder - Bernstien theorem:

This famous theorem which is useful in proving that any two bases in a vector

space over a field have the same cardinality can be proved by using the set of n:atural

numbers and inductive definition. A clear proof which makes the idea transparent is

given in the reading material on paper IAlgebra (C.D.E) prepared by Acharya Nagarjuna
\

University: We now present a proof of this theorem due to Littlewood" which does not

involve the set of natural numbers.

13.11 Theorem: Suppose A is a set, T: A ~ A is a one-to-one map and AI ~ A is such
,

that

Then there is a bijection S: A ~AI.

Proof: For the proof we introduce the notion of a suitable set as defined by Littlewood. A

subset X of A is called a suitable set of AI - T (x) c A-X.

For example ~ and A - AI are suitable subsets of A.

Claim: Suppose {Xi}, E I is a class of suitable subsets of A and X = UXi . Then Xis a
iEI

suitable set.

Proof of the Claim AI \ T (x) = AI \ UT(Xj)

=A\X.

Our claim is proved. We denote the union of all suitable sets by H.

lfB is any suitable subset of A we have B c H. We have
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A I \ T (H) ~ A \ H.

By taking complements in A we have

H ~ A \ (AI' T(H) )

= (A , AI) U T(H) since T(H) c T(A) ~ Al

= E uT(H) where we have set E = A'Au
Write K = E uT (H)

Since Hc K

Al \ T(K) C Al \ T(H)

= (A , E) , T(H)

= A , (E u T(H)) ': E n T(H) = ~

=A 'K.
Thus K is a suitable set and so we have

K~HcK;

therefore

H=EuT(H),

A \ H = A , (E uT (H))

= (A \ E) n (A \ T(H) )

= Al n (A 'T(H»

= AI' T(H) since T(H) c Al

We define ~ : A ---+ Al by

x _ {T(X) if x E H
$( ) - x if x E A \ H

It is easily verified that ~ : A ---+ Al is a bijection.

13.12 Theorem: For any set A, there is no bijection from A onto peA).

Proof: Suppose, if possible, there is a bijection
;",. 0'. ": ,:-l.

A : A ---+ Pt A)

Write B = {a E A: a e: A (a)} Since A is abijection and BE R(A), there is a unique.be A
)[JJ ..

such that A (b) = R.
\ .
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The element b of A and the subset B of A have the following properties.

b E B <=> b E A(b) <=> b ~ B.

The last equivalence is by the definition of the set B. The assertion b E B <=> b ~ B is not

valid. Since the construction of B is based on the bijection A, it follows that there is no

such A. Here there is a question. Suppose B = ~.Then what do we get? What we obtain is

for each

a E A (a)

since {a} c A, there is some bo in A such that

A(bo) = {a};

since by our assumption

ho E {a}

it follows that

bo= a

so the map

A: A~P(A)

is given by

A(a) = {a}

It follows that if a., a2 E A and al :F- a2 then there is no a in A S.t.

So we must have

A = {a}.

Here we use the' fact that the empty set ~ is counted as a set and is also a subset of every

set. Thus in the map

A(a) = {a}

the empty subset ~ of A is missing in the image.

13.13 Some equavalent forms of Zorn's lemma:

In the preliminaries we introduced Zorn's lemma which comes to our rescue

while trying toestablish'''existence'; 'without bothering about the' "form". Many a time
\

Zorn's lemma may fail to do the needful in which case other equivalent forms of this
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famour lemma. Just as Zorn's lemma cannot be proved with the existing set theory and

without using any or the equivalent forms, none 'of these equivalent forms do not have

any proof based on set theory minus any of the equivalent forms. Even though the proof
-,

for their equivalence is simple and straight forward, it requires however, that the reader is

sufficiently advanced in conceptual thinking. As such we mention here (without proof) a

few equivalent forms of Zorn's lemma.

1. Axiom of choice: If A is a nonempty set and {Ai} i E I} is a nonempty family of

. nonempty sets in A then there is a map <1>: I ~ .A such that $ (i) E Ai ViE I.

13.14 Definition: A class A of subsets of a set A is said to be of finite character if the

following holds:

A subset X of A is in A if and only if every finite subset of X is i"A.

Hausdorff's maximality Principle: If A is a class, of subsets of a set A of finite

character then A has a maximal element : that is there is an X c A such that (l\X E A

and

(2) there is no Y c A such that (i) YEA and (ii) X c Y.
*

13.15 Definition: A partially ordered set (X, ~) is said to be well ordered if each

nonempty subset of X has a first element: that is 3 x E X such that x ~ y for everyy E X.

Well ordering Principle: Given any nonempty set X, there is a partial order on X, say

~, such that (X, ~) is a well ordered set.

Le-ser Writer: V.J. LAL


