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LESSON-O': - APPENDIX

INTRODUCTION:

The aim of this less~n is to help the reader in reviewing some important results of analysis

that are to be used in the subsequent lessons. These include some definitions and results on se-
------:'----- -,---

quences of real numbers.

Sequences of Real numbers

Definition 1: Let <x> be a sequence of real numbers. We say that a real number I is a limit of the
n .

sequence <x > if for each E > 0 there is a positive integer N such that Ix -II < E , for all n 2:N. Itcan
n, . " . n ..

be easily verified that a sequence of real numbers can have at most one limit. If I is a limit of the
sequence <x > then we write I = Iirn x .n . n

Defnition 2: A sequence <x > of real numbers is called a Cauchy sequence if given g r-O,there is
. n ,

a positive integer N such that for all n 2:N and for all m 2:N, we have Ixn-xm I < E.

The Cauchy criterion states that a sequence of real numbers converges if and only if it is a Cauchy
sequence.

We extend the notion of limit of a sequence of real numbers to include the values 00 and
-00 .

Definition 3: We say that 00 is a limit of the sequence <x > if for each real number ~ there is a positive
• 1 n .

integer N such that for all n 2:N we have xn> ~ .

If 00 is a limit of the sequence <xn> we write lim xn=oo

Definition 4: We say that- 00 is a limit of the sequence <xn> if for each real number ~ there IS a
positive integer N such that for all n 2:N we have xn< ~ .

If - 00 is a limit of the sequence <x > we write lim x = - 00 .
n n
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A sequence is called convergent if it has a limit.

Remark 5: In most of analysis we restrict ourselves to limits of sequences of real numbers
which are real numbers. But here we find it more convenient to allow ± 00 as limits in good
standing .• ;, -, '" . ...

If I = lim x , we often write x ~ l.
n n

We know ..that if <xn>-is a sequence and <nk> is a sequence of positive integers such that

nl<~.~n3<:;"" ,then<xnk> is called a subsequence of <xn>'

( : ,...: .• ,>~. _.

If a sequence <x > converges and lim x = I then every subsequence < xnk > of <x > converges
n n n

If <x > is not convergent then we consider the convergent subsequences of <x >.n n

Definition 6 : A real number I is called a cluster point of the sequence <x > if, given E >0 andn

given a positive integer N there is an integer n 2: N such that Ixn - II < E·

Definition 7: We say that 00 is a clusterpoint of <xn> if, given a real number ~ and given a positive

integer N there is an integer n 2: N such that xn2: ~ .

Definition 8: We say that - 00 is a cluster point of <x > if, given a real number ~ and given a positiven

integer Nthere is an integer n2: N such that xn:::;~ .

Consider the sequence <x > , where x = (-ll , n = 1,2, .n n

<xn> is not convergent but 1, -1 are cluster points of <xn> .

It can be verified that I is a cluster point of <xn> if and only there is a subsequence < xnk > that
ccnverges t~ l. . . .

\,:~ . :;~~:.,.
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Definition 9: Let <xn> be a sequence of real numbers. We defin~ limit .superior of<x> by

lim x, ~ u;r (~~~ Xk}~fYn , whereY n ~~~~ Xk ~ sup {xn' Xn+l, Xn.2,···j ....• . '.

i,

Definition 10 : Let <xn> be a sequence of real numbers. We define limit inferior of <xn> by

lim xn =sup inf xk =sup zn where zn = inf' xk::: inf{xn'xn+l'xn+2' ..... }
n kzn n kzn . , . .

Result 11 : A real number I is the limit superior of the sequence <xn> ifand only if.

1.
and 2,

, .t~

Given E >0, there exists a positive integer k such that xn < 1+ E for all n 2:k
Given E >0 and given a positive integer n there is an integer N such that N ~ n arid

. I

1- E <x
N

"
'\

< .~. •

Proof: Suppose that I is a real number and I :::lim xn .

Lety = sup {x ,X ,X 2' }, n = 1,2, Now I = inf Yn.
n n n+l n+ n .

Let E> O. Now I + E is not a lower bound for { YI' Y2' ·····Yn,..... }.

So, we get a positive integer k such that Yk < 1.+E . . ',.

Therefbre xn < 1 + E for all n ~ k. Let n be a positive integer. Now / -E <Yo' Ifxk.:::: /- E for all
k 2:n then YnS I - E, a contradiction. •

. , .. .'
Therefore, there is a positive integer p > n suc~thatxp > I ~E . Converslysuppose that conditions 1and
2 hold.

Suppose that s = lim xn .

We prove that s :::l. On the contrary suppose that s =t= l.

Case I:
. .

, ' "

Suppose that I < s. we get a E >0 such that I < 1 + E < s. By condition 1, we get a
positive integer k such that xn < I;+- E for all n 2:k. So Yk::: 1 + E <s, a contradiction
to the fact that s < Y for all n = 1, 2, '

n
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CaseII: Suppose that s ~ I. we get a E>0 such that s < 1- E < I. let p be a positive integer.
By condition 2, we get a positive integer q such that q ~ p andl- E < Xq

So 1- E< Y . Since Y1> Y2> Y3..... , y < y . Therefore, 1 - E< Y and that 'q ,q- p p

s < I - E < inf Yn = lim x = s, a contradiction.
n n

From case I& case IIwe get that, s = I.

Result 12 : The extended real number 00 is the limit superior of <xn> if and only if given a real
number ~ and a positive integer n there is a k ~ n such that "k > ~.

Proof: Suppose that 00 = lim xn . Let Yn= sup {xn' xn+I' xn+2': }

Now 00 = Jim xn = i~f Yn , So yn= 00 for all n = 1,2, .

Let ~ be a real number and n be a positive integer.
Since 00 =yn' there is a positive integer k ~ n such that xk> ~.

T ,,~--, •• ' .'.

Conversely suppose that given a real number ~ and a positive number n there is a k ~ n such that

xk > ~ . By our assumption yn= co for all n = 1,2, Therefore lim xn = irif yn = 00. /';i

Result 13 : The extended real number - 00 is the limit superior of <x > if and only if
n

-00 = lim x, n

Proof: Let y = sup {x, X +1'X +2' }, n = 1,2, .n nn" n ,

Let - oo= lim xn = i~f Yn , Let ~ be a real number. Since - 00 = i~f Yn , L\ is not a lower

bound for , ;' y2' }. We get a positive integer N such that YN<,~. So xk < 6 for all k ~ N.
Therefore lim x =-00 .

n

Conversely suppose that lim xn = - 00 we havey 1~ Y2~ Y3"'....

Let ~be a real number. Since 1imxn= - CIJ , we get a positive integer N such that xn< ~ for all
n~N. So YN< ~. Therefore, no real number is a lower bound for {y!' y2'.....yn'..... } and that
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inf Yn= lim x
nn

Similarly we get the following.

Result 14 : A real number I is the limit inferior of the sequence <xn> if and only if.

1. Given E> 0, there exists a positive integer N such that xn> 1- E for all n::: N.
2. Given E>0 and given a positive integer n, there exists an integer k :::n such that

xk < 1+ E,.

Result 15 : The extended real number 00 is the limit inferior of the sequence <x > if and only if
II

00= lim x ., n

Result 16: The extended real number -00 is the limit inferior of the sequence <x> if and only
, n

if given a real number Ll and a positive integer n, there is an integer k ::: n such that

xk < Ll·

Result 17:

Proof:

Case I:

Case II :

li~ xn'and Hrn xn are the largest and smallest cluster points of the sequence

<x >.
n

Let 1= lim xn .

Suppose that I is a real number. By result 11 (conditions 1 & 2 ) I is a cluster point
of <x >. Let p be a cluster point of the sequence <x > and I < p. If p = 00 then itn n
contradicts condition 2 in result 11. Therefore p is a real number. We get a E>0
.such that I + E< P- E< p,' By condition 2 of result 11, we get a positive integer k
,such that xn < 1+ E <p- E , for all n::: k. This is a contradiction to our assumption
that p is a real number and is a cluster point of <xn>' Therefore p :sl.

Suppose that I = 00. By result 12, 00 is a cluster point of <xn>' Hence 1= 00 is the
largest cluster point of <xn>.
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Case III: J' Suppose that! =:= - 00. By result 13, - 00 =lim xn. So - 00 is the only cluster point ofJ ~x.>. Hence 1~ - 00 is thelargest cluster point of «x.>,

S;mlarly we get the lirn xn is the smallest cluster point of =r

Result 18 : lim xn .:s lirn xn " where <xn> is a sequence of real number.

Proof: Proof follows from result 17,

esult 19 : Let <xn> be a sequence of real numbers. Then lim xn = lim xn = I if and only if

1;' lim Xii.

Proof:\ Suppose that lim xn' = lim xn = I. Let E > O.

Case.!: ), Suppose thatI is a real number. By condition 1 of result 11 & result 14. We get a

positive integer N such that 11- xn I < E for all n 2:N . So lim xn = 1 .
n

Case II: Suppose I = 00 . By result 15, lim X = 00n

Case III,: Suppose 1 = - 00. By result 13, lim x =-00n

Conversely suppose that 1== lim xn. lis the only cluster point of <xn>. Therefore by result 17, lim xn =
I = lim xn

Definition 20 :We say that a sequence (or series) < xn> is summable to the real number s or has a sum

n n
s if the sequence <sn> defined by sn ~ L xk has s as a limit. In this case we write s = L xk·

k~ , k~
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Definition 21 :Let <x > and <y > be sequences of real numbers.n n

,
Then lirnx· +limYn < lim(x +Y ) <Iim x + limy- n - -- n n - n - n

< lim(x +Y )< lim x + lim Y· ,- n n- n n

provided no sum is of the form 00 + - 00 .

.'

Writer: R. SRINIVASA RAO.
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·,LESSON-l : ALGEBRA OF SETS, THE EXTENDED REAL NUMBERS, BOREL SETS
i-:,,<' .~:' . .,

1.1. 'Introductton'r-">:" .

The present lesson is deMoted to it review and systematization of those results which will be ~sefill. ,

later. We define algebra and O'.-algebra of subsets of an arbitrary set X and study some oftheir
properties. The axiom of choice and infinite direct products are also explained Partial ordering and
linear ordering are defined. Moreover, the maximal principle and the related concepts are discussed.

The extended real numbers and their use in defining Sups and Infs for all subsets S of real
numbers are discussed. We introduce a class of sets in IR called Borel sets and also establish some
of its properties. The limit superior and limit inferior of a sequence of real numbers are defined and
:some of their properties are studied. . .

1.2 Algebra of Sets:

We defme algebra of sets and 0' -algebra of subsets of an arbitrary set X.

t" 1.2.1 .Definition:
,

A non-empty. collectioo.)t of subsets.of'X is called an algebracf.sets-ora'Boclean algebra-if

(i) 'A E)I ,B E}l ~ A u'B E}I and

-(ii) A Eft => A 'Efl.

Where A is the complement of kin Xethat is A = X - A.

1.2.2. £xample~ :

.(l·);LetX~be any non-empty set. The collections {'¢, X'[and P(X:) = { E:E eX} are.trivialthe
power setofX,are trialexamples.of algebras of subsets ofX. .

(2) ·Let'Xi'b.e.anynon-emptyset.j.,.et}l"".{ A ~ X }eitherX-Ais.finite. Then)Iisanalgebraof

.subsets.of'Xv-lncase X 'is.afinitesenhenfl = 'p(X) and hence it is clearly an algebra of subsets, of X.

Suppose Xis-net finite, clearly li/J ,''X E}l: and-if A Ejl ,1Ejl. Finally suppose A,"BEfl



, .'!

Acharya Nagarjuria University 1.2 Centre for Distance Education

If both A and B are finite then AUB is finite and hence AUBEJL. If A and B are finite then

A UB = An B is finite and hence AUB- E jl. If either A' is finite .or jj is finite then obviously

ADB = An B is finite and hence, AUB E}l.

1.2.3. Self Assessment Question:

Let jl be an algebra of subsets of X

(i) Then ¢,X E)I
(ii) AE}l, BE}l. :=>AnB E}l.

(m) IfAI'~' ....Anaresetsin}l. ThenA) U~U ....Anisagainin Jl similarly AI nA2 n···nAn

isinjl

1.2.4. Pf'oposi,tion :

Given any.collection Wofsubsets of X there isa smallestalg~pra.$whkh CQll~~; that is there is an
: -, ' -".' .

aig~bra}l containing ~ and such that if 91 is WlYalgebra c~nta,jnjn~W then .5Pcontains)l

P,roof:Le.t ~ be a coliection of'subsejs of'X, Let !T = { §II g;is .analgebraof subsets of X
and ~ c ~}.' We know that, ,9J{x) iis ~ algebra Sl1b,s~t~of X (1.2:2.) ~d:cle,fU'ly ~ c 9'J{x).

Hence 9'J{x) E!T, thus !T is nop.-emptr le~ }l= n {£# :'g; E !T.} .We wHIshowthat flis the

sI)1al~estalgebraofsubsetsofXcontainin,g;w' Sinee :Cj?c;f!IJ, foi"2Ul f!I'f#. ff. :q,:, X e Jt. LetA,B Eft
thpn for each $ E !T ,we have A E g; and BE $. Since !!J is ..aa algebra, AU B belongsto !?l

Sincejhis istrueforevery g;E!T, we have AljB is,inn g;. Simi,la,tly,we,seetrnl~ifA EJt then
. ~Eff .

A E)I. Hen~e}l is an algebra of subsets of X. If $II tSaI).a!I,gepfa'C0ntWn~J).g~:)~henfrom the

definitionof fl it follows that g;0cft. Jil~il~.Jlis the.smallest algebra of subsets of X containing W,

L2.5. Self Assessment Ouestion :
• c. • " ,_ ,>. • •••__ r ••

(i) L,et, lAa ~aE ~ be a family ofalgebras of subsetsof.a set X aI\~Iet fl =n fl.a show
aeLi

that Jl is also an algebra of subsets ofX.

2
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(ii) Let {fln}n ;:::1 be a sequence of algebras of subsets of a set X. Under what circumstances

00
can you conclude that yl= n~l .Jln is also an algebra ?

1.2.6.Definition: Let ~ be a collection of subsets ofX. The smallest algebra of subsets of X.. .

containing ~ is called the algebra generated by ~.

1.2.7. Proposition: Let.Jl be an algebra of subsets and {An} a sequence of sets in.Jl. Then

.0000

there is a sequence {Bn}of sets in)l such that Bn II Bm= tjJ for n::;o!;m and U Bn = U An.
n=l n=l

Proof: Let 8\=A\ and for each integer n >. 1, Bn = An-(A\UA2U UAn_\) =

Ann Al n ~ n .....n, An·_I· Since.Jl is an algebra and AI' A2' .... , An E.Jl, we have that
••- -AI'~ ,.....An -1 E.Jl. Therefore Bn = Ann Aln ~ n .....n An -1 EJl. Clearly BmC Am

for all m = 1,2,3, Let m and n be positive integers and m < n.

NowB nB cA nBm n - m n

= Amn An(l Al n A2 n .....n Am ... n An-I·

= (AmnAm)n(AnnAl n A2 n·····n Am-l n Am+l n ···n An-I)

= tjJ n (Ann Al'n A2 n·····n Am-l n Am+l n ···n An-I) = tjJ.

Therefore B nB = do for m =1= n.m n 'f/ I

SinceB cA ,m- m

00 00

U Bm c U Am : .
m=I m=I

(1)

00

Let x E U Am for some positive integer k,x E Ak'
m=l

Let n be the smallest positive integer such that x E An·

n-I 00
So X E A and X E U Ai. Therefore x E B and that x E U B·

n i=l n \ m=I m
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00 00

Thus, U Am c U Bm (2)
m=l m=l

00 00

From (1) & (2) U Bm = U Am.
~=1 m=l.

n il

Note :In the proof of proposition 1.2.7 we can also observe that U Bm = U Am for alln=Lz ...
m=l m=l

1.2.8 Definition: An algebra jI of sets is called a (Y -algebra or a Borel field if every union of

00

a countable collection of sets inJl is again in)I. That if {An}is a sequence of sets then U An must
n=l

again be in jl.

1.2.9. Self Assessment Question:

Let Jl be a a -algebra of set's. Then prove that the intersection of a countable collection of

sets in jl is again in jI.

1.2.10Proposition: Given any collection @? of subsets of X; there is a smallest a -algebra of sets of

.. X that contains W, that is, there is a (J -algebra Jl of subsets of X , containing W such that if 9J is any .

(J-algebraofsubsetsofX, containing W, thenJlc 91.

Proof: Let W be a collection of subsets ofX.

Let !T = { go / go is a a -algebra of subsets of X and W c ~} .

.Let D be the collection of all subsets ofX. Clearly D is a a -algebra containing YtJ. So DE grand that
!Tis non empty.

LetjI = n go. Since ~ E go for all !11 E!T • g:' c .n !11=):1.
BEF' ~E7



Measure and Integration ' 1.5 '. 'Algebra of sets

Since q), x E ~ for all ~ E 7,f/J ;X E "n~ =)1..
~Egr

Therefore)1. is a non-empty collection of sets of X containing W.Let A 'E jl.

1. A E !?II for all ~ E F . 'Since !?liEF is a (J' -algebra A E !?II for all !?liEF. Therefore

A E nsw=;l.
'~Eg-

2. , Let {An}be a sequenceof sets in)l now {An}is a sequence. of sets in!?llfor all !?liE :T. 'So'

UAn E 9Jforall9JE Sf Therefore UAn E n $=jl.
n n $E7

so)1. is a: (J' -algebra of subsets of X containing ~

Let !?II' be a (J' -algebra of subsets of X containing ~
.'

By the definition of !7, $' E F. Therefore)1. = n 91c ~'.
91E7

Hence}l is the smallest a -algebra of subsets of X containing %'

1.2.11 Proposition: Let W be a collection of subsets oDC. The smallest (J' -algebra W is called the
(J' -algebra generated by ~." '" .", -(, .

• - • ",.'. , • '. \ . j

1.2.12 Proposition: Ifyl is th~'algebra generated by a ~ollection W~f subsets of X then jl and W
generate the same a -algebra. ' '

Proof: Let ~eacollectioJ;lofsubsetsofXandJlthealgebragenerated by W. Let ~l &~
. ;' , " :!',~ ' . " " ..,, 1 , !-;, ..: "

be the (J' -algebras generated by ri and jl respectively.

As <ifc 9f I, 911is an algebra containing <if. So jl C !?II I .
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Therefore !?IJ1C, !?IJ2 as !?IJ2 is the smallest a -algebra containing)?!.
<,

Since)I c !?Illof ~ c !?Il 2'

Therefore !?IllC, !?IJ2 as !?Ill-isthe smallest a -algebra containing ~.

Hence !?IJ1= $112 .. So Jl and ~ generate the same a -algebra.

1.2.13.Proposition: . Let rt? be a collection of se,cland E an element in the a-algebra generated by g'

Then there is a countable sub collection ~ 0 c .~ such that' E is an element of the a -aIgebraAgenerated

by ~o.

Proof:

Let rt? be a collection of sets and E an element in the a-algebra generated by ~ .
;.

Let ': {Jla /a E ~ } be the collection of all 0' -algebras generated b~'countable subsetsof ~.

'1 '.'
Let}l = U }l a .: Let Jl be,the a-algebra generated by rt? .

, aE~ ." '. ,

We claim that)tl is also a a-algebra of sets and ~ cJlcJll.

Obviously j7..1 i~'~ non-empty collection of sets. _

1. Let{An} be a countable collection of sets in jl'. we may assume that An .~.llan <fnE~
,., , , " I.,' •

f~r all n. Suppose iliat An be the O"-~gebra generat~d by a countable collection {B~}k'

Bkn E $i? Now {Bkn} k,n is also a countable collection of sets in rt? . Let .JlY? be the 0'-

. ;" algebra generatedby:t'B~jk,n' 'No~ Jl:<1JEsr and'}lu c}l9J. Since JL.'1J isa a-
,.; . .;', ,n c.' , ',' " • ,

:. J
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1.2.14Proposition:

Let ~= {Xd be a collection of sets indexed by a (nonempty) set ~. We define thedirect

product ~ X A to be the collection of all sets {XA} induced by ~ and having the property that x A E XA •

If one ofthe XA is empty then ~ XA is also empty. The axiom of choice is equivalent to the

converse statement i if'none of'the XA areempty,then ~ XI.. is not empty.

1.2.15 Self Assessment Question:

Let f: X ~ Y be a mapping onto Y then there is a mapping g :Y ~ X such that fog is the identity
maponY

1.3. PARTIAL ORDERINGS AND THE MAXIMAL PRINCIPLE·

Let X be a nonempty set. A subset R of XxX is called a relation on X. Let x, y E X and R is a
relation on X. Then we write xRy if (x,y) E R.

1.3.1.Definition:

Let R be a relation on a set X.

1. R is said to be reflexive on X if for all x E X we have xRx
2. R is said to be antisymmetric on X if xRy and yRx imply x = y for all x, y EX.
3. R is said to be transitive on X if xRy and yRz imply xRz for all x, y and Z EX.

1.3.2.Definition:

A relation -< is said to be a partial ordering of a set X if it is transitive and anti symmetric.
, '

So s is a partial ordering on the real numbers, where s is the natural order on the real numbers
i.e., if x and y are real numbers then x s y if and only if y - x . is non negative.
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--
Let X be a non-empty set and 9'( X) be the set of all subets ofX. Now ~ is partial ordering

on 9'(X) , where for any A, B E 9'(X) , A ~ B if and only if A is a subset ofB.

1.3.3. Definition: A partial ordering -< on a set X is said to be a linear ordering (or simple
ordering) of X if for any two elements x and y in X we have either x -< y or y -< x.

The partial (,.der ~ on the set of real numbers seen above is a linear ordering.

The partial ordering ~ on 9'( X) , X is a non-empty set containing more than one element seen
above is not a linear ordering.

1.3.4. Definition: Let -< be"a partial order on X. We say that -< is a reflexive partial order if
x -< x for all x E X. -< is calld a strict partial order if for no x E X, x -< x.

So -< is a strict partial order on the set of real numbers and .:::is a reflexive partial order on
the set of real numbers, where for any two real numbers x and y, x <y if and only if y - x is a positive
real number.

1.3.5. Definition: Let -< be a partial order on X. Let E be a subset of X. We say that an
element a E E is the first element in E or the smallest element in E if, when ever x E E and x"# a, we
have a -(x.

An element a E E is called the last (or largest) element in E if, when ever x E E and x"# a,
we have x -< a.

An element a E E is called.a minimal element in E if there is no x E E with x :;t:a and x -< a.

An element a E E is called a maximal element in E if there is no x E E with x "#a and a -< x.

Remark: Let -< be a partial order on X and E be a subset ofX. If a E E is the smallest element in
E then a is a minimal element ofE. Also if bEE is the largest element in E then b is a maximal element of
E. If -< is a linear order on 4- and a E X is a minimal element of X then ais the least element ofX.

The following principle is equivalent to the axiom of choice and is often more conveninent to apply.

1.3.7. Hausdorff Maximal Principle: Let -< be a partial ordering on a set X. Then there is a
maximal linearly ordered subset S of X, that is, a subset S of X which is linearly ordered by -< and has the "
property that if S ~ TcX and T is linearly ordered by -<, then S = T.



1.3.,8.Propositio~:

, Let -< be a partial order on X. Then there.is a unique strict partial order -< and a uruque reflexive
partial order j; on X such that for x =1= y we have x -< Y <=:>x < y <=:>x ~ y . .

.Proof: Let -< be a Partial order on X.

1. For x,y EX, define x < y if and only if x =1= y andx -< y .

(a) By our definition for no x EX, x < x.

(b) Let X,Y E X and x < y, y < x.
So, x =1= y and x -< y and y -< x.
But x -< y and y -< x => x = y, a contradiction to X;t:. y . '
Therefore x < y and y < x can't happen simulteniously .

\
, I

I
Let z, x,-y, E X and x <y andy< z. S,ox -< y and y -< zandx =I=\Y, Y=l= z. NOW,
x -< y& Y -< z => x -< z. Ifx = z then we get t~at x -< y and Y\ -< x and that
x = y a contradiction. So x =1= z. Therefore x <z. 'c

Hence < is a strict partial order on X such that for x =1= y we have x -< Y <=:>x<y.

Let <' be a strict partial order on X such that for x =l=Y we have x -< y <=>~<ly.

. 1. Let x,y E X and x =1= y. x<'y, <=>X -< Y <=:>x < y. .
Therefore the strict partial orders <' and < are same.
Hence < is the unique strict partial order on X such that for x =1= y we have x -< y <=:>x<y.

2. Forx,y EXdefinex:::y~fandonlyifeitherx=yorx -< y.

(a) From the definition x < x for all x EX

(b) Let x.y E X and x::: y, v s ~
now either x = y or x -< Y and y -< x.
But x -< y ofy -< x => x = y.therefore x =y .

(c) Let z, x, y E X and x::: y and s : z .Now either x = y & y = z or
x = y & y -< z or x -< y & Y = z or x -< y & Y -< z. In all the cases we get that
x~z·



I

Therefore ~ is a reflexive partial order on X such that for x -:;:.y, x3 <=> x -< y.

Suppose that ~' is a reflexive partial order on X such that for x -:;:.y, x ~'y <=> x -< y. .

If x EX then clearly x ~ x & x 5,'x .'

Let x, y E X and x -:;:.y, x 5,' Y <=> x -< y <=> x 5, y .

Therefore the reflexive partial order S & ~' are the same.

Hence s is the unique reflexive partial order on X such that for x -:;:.y we have x s y ~ ..•,

1.4. THE EXTENDED REAL NUMBERS

1.4.1 D'eflnition :

The set, of extended real numbers consists of the set of real numbers IR and two symbols,
+00 and -00. .

We extend the definition of < to the extended real numbers by postulating - 00 <00 and
- 00 <x< 00 , for each real number x.

We define

and set

x+ 00=00, x+vco =-00
x.co =00 , if x > 0'
x.- 00 =- 00 , if x > 0 for all real numbers x
00+00=00, -oo+~oo= -00'

00 .(±oo) = ioo, "00 Cioo) =± 00 .

The operation 00.+- 00 is left undefined, but we shall adopt the arbitrary convention that 0.00 =0.

One use of extended real numbers is in the expression 11sup S ". Let S be a non empty set of real
numbers which has an upper bound. We define supS to be the least upper bound ofS. We know that
supS always exists and is a real number.

Suppose now that S is a non empty set of r~al numbers which has no upper bound. Then we write
supS = 00. IfS is empty, we define sup S = - 00 •

Therefore ifS is asubset of real numbers then sup S is the smallest extended real number which is
. greater tharror equal to each element ofS.

Let S be a set of teal numbers.



,', ,IfS isnonempty and has a lower bound, we defme infS to be the greatest lower bound of S.We
know that infS exists and is a real number, . ..

If S is nonempty and has no lower bound, we write infS =- dj : . If S is empty, we define
infS=oo. •

So one advantage of the extended real numbers is that it enables us to speak-of sup S and infS for' .
all subsets Sof the realnumbers.

1.4.2. Definition:' A function whose values are in the set of extended real numbers is called an'
extended real valued function .

. 1.4.3. Result : Show that inf E ~ sup E if and only if E '* t/J .

Proof:

Let E be a set of real numbers. -=-"". -=--

Suppose that infE < sup E. We claim that E,* t/J .

On the contrary suppose that E = t/J. Now sup E = -00 < 00 =inf E,

A contradiction to our assumption that infE :ssup E.

Therefore E '* t/J. Now suppose that E,* t/J. Let a E E.

Clearly infE :0:a Ld a:O: sup E

Therefore infE JuP E. ,

-,
We know thatthe intersection of any collection of closed subsets of real numbers is closed and the

union of any finite collection of closed subsets of real numbers is closed. But the union of a countable
collection of closed subsets of real numbers need not be closed. For example, the set of'rational numbers
is the union of a countable collection of closed sets each of which contains exactly one rational number.
So, we are interested in (J' -algebra of sets that contain all of the closed sets. .

1.5 BOREL SETS
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1.5.1. Definition: The collection !?il of Borel sets is the smallest (Y -algebra of sets of real numbers
which contains all of the open subsets of real numbers.

1.5.2.-Defmition : The collection !?il of Borel sets is the smallest (Y -algebra which contains all of the
closed subsets of real numbers.

Proof:

We know that the collection 91 of Borel sets is the smallest a -algebra which contains all of the-,
open sets .

Let fJiJI be the (Y -algebra generated by the collection of all closed sets.

Let 0 be an open set. Now (5 is a closed set. So (5 E !?ill.

Since !?ill is a a -algebra, 0 = 0 E!?ilt .

So !?ill contains the collection of all open sets.

Therefore 91 c !!# 1 ,as 91 is the a -algebra generated by the collection of all open sets. Let F
. ", ','

be a closed set. Now F is an open set.

So FE 91 , Since flIJ is (Y -algebra, F = FefllJ .

So 91 contains the collection df all closed sets.

Therefore 371 C 37. Hence 37 = 37} .

1.5.3. Self-Assessment Question:

The collection of !if of Borel sets is the smallest a -algebra which contains all the openintervals.
; .'

1.5.4. Definition: A set which is a countable union of closed sets is called an F0 -set.

Clearly each Fo -set is in /3, the collection of all Borel sets. Obviously each closed set is an F0" -

set. So ¢&R are Fa -sets.



.. \
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Since(a,b)= ~ .[a+ ~,b- ~·],a<bwehaVethattheopeninterval(a,b)iSa~ F~\n-l .. .

00 ·00

Now(-oo,b)= U(a-n,b)isanF and(a,oo)= U(a,b+n)isanF as acountable'union ,
. . n=l 0" rr=l 0" ,

of sets in Fa is again in Fa'

Therefore each open interval is an F; .

Since every non empty open set isa countable union of open intervals we get the each open

set is an Fa .

1.5.5. Dcfmition :

We say that a set is aGo if it is the intersection ofa countable collection of open sets.

Therefore the complement of an Fa is a Gg and conversely ..

We also consider sets of typeFao ' which are the intersections of countable collections of sets

each of which is an FO",.

Similarly, we can construct the closses Goa' Faoa , , etc.

A set of type GoO"is the union of a countable collection of sets each of which is aGo
,~'...,.

A set of type FaoO"is the union of a countable collection of sets each of which is a Fao, Thus th~
. ~

classes III two sequences'

Fa' Fao, Faoa""
Go, Goa' Goao""

are all classes of Borel sets, 'However, not every Borel set belongs toone of these classes.
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1.6..Answers to SAQ's:

1.2.5. : See Proof of 1.2.4.

-'Let {An}be a sequence injI. SinceAn EjI, we have that An EjI:

TherefOre~An E)L SO (~An)E)f ....

But(~J=rl(An} =n. An Ejl. Hence QAn E'jl,
. . n _n· ,

1.2.15: Let f: X ~ Y be amappingon:to Y. For e~chy E Y, let Ay = f·1 ({y}) = {XE XI f(x)=y}.
,.'- . /. f

Let}l={Ay lYE Y}. Sincef is onto Y,A is non empty for each YE Y. Therefore, byaxiom~f
. , y. .

choice, X Ay.is nonempty.
'.,' yeY·· .'

Lef{ay}E X Ay. Define g:Y~X byg(y)=a forall YEY .
. yeY Y

Clearly g is a mapp~ . .fog is a mapping ofY into Y.
(fog)(y)= f(g(y)) = fea ) = y; for all y E Y

• .'C' -~-. -: .• ~L_ --- .._

Thereforefog is the identityrnap on Y.

We,have thatthe collection !1IJ of Borel sets is the smallest a -algebra which contains all open
.setsLetzs". be the a-algebra generated by the collection of all open intervals. Since each open interval

~~!~ open set, .5Uisa a.;.algebra containing allthe open intervals. Therefore ~' c 91 It is clear that

¢E !1IJ' . Since each nonemptyopen set is a countable union of open intervals, 9/' containsthecollection

of allnonempty open sets. Therefore 9J' contains the collection of all open sets. So 9J c 9J' . Hence
!1IJ =9/',

1.7.Model Examination Questions:
, .j

·1. Define an algebra of sets. If)Iis an algebra of sets and <A? is a sequence of sets inJl

then prove that there is a sequence <B? of sets in)l such that Bn (IBm = 1> forn =t=mand
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0000
U B.= U A.. 1 1 . 1 l·

1= 1=

2. Define a a-algebra of sets. Given any collection Wof subsetsof a set X, there is a smallest
a -algebra that contains ~,

\
.3. . State Hausdorffmaximal principle. If ~ is a partial order on X, the~prove that there is a

unique strict partial order <and a unique reflexive partial order ~ on X such that for x =F- y we
have 'x ~ y ~ x < y <=> x :sy.

4. Define the collection ~ofBorelsets. Also define a Go - set and Fa- - set of real numbers.
Prove that the collection ~ofBorel sets is the smallest a -algebra that contains all open
intervals,

1.8. Exercises:

. Given an example of an algebra of sets which is not a a -algebra,

[Hiat :Let Nbe the set of positive integers.}l = {A eN / either A is finite or N-A is finite}

}l is an algebra of sets as seen in 1.7 but not a a -algebra, ]

1.9': Reference Book :- Re'al Analysis, H.L. Royden

'..

Lesson writer: R. SRINIVASA RAO '



LESSON :2 LEBESGUE OUTER MEASURE AND IT'S PROPERTIES

2.1 INTRODUCTION:

The concept of Lebesgue measure which is basic to the theory of Lebesgue Integration- \ .
arose in an attempt to assign the notion of lengthin IRto more general sets than the finiteintervals, ' .

- .

Mathematically we want to define the notion of a length in m to a large-class of seis such that this
class contains the intervals in m in such a way that the definition give back thefarniliar notion oflengthto the
intervals. The notion thus defined is called the measure ofthe set. - .' -' .

\

\ Lebesgue outer measure (hereafter called outer measure) of an arbitrary set of real numbers
~~~ntroduced and measurability of a set is defined via this outer measure. A number of prooperties of
~\ outer measure viz countable sub-addivity, translation invariance are established and proved that for any
inte\al I in m m *(1)is same as the length ofI. ,. .

\

" \
2.2. Set Functions:

An extended real valued function defined on a class ; of sets is called a set function. We
consider the set functions defined on a class of subsets of the real number system lR. We would like to
construct a set function m that assigns to each set E in some collection 'Lof sets of real numbers a non-
negative extended real number mE called the measure ofE. We should like m to have thefollowing
properties.

I

(i) mE is defined for each set E of real numbers .L = 9'( m),
!

(ii) For an interval J, mI = t(I) ; - ,

(iii) If {En} is a sequence ofdisjoihtsets (for whichm is defined ), m( ~En ) = ~m(En)

(iv) m is translation invariant, that is, ifE is a set for which m is defmed and ifE +y is the
set { x + y: XE E } then m (E+y) = mE.

However, it is known that there are no set functions satisfying all the above four conditions.
Consequently, one of these properties must be weakened, and it is most useful to retain the last
three properties and to weaken the flRstcondition so that mE to be defined for as many Setsas possible
and will find it convenient to require the family L of sets for which m is defined to be a o -alegebra
(Definition 2.2.7),
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Definition 2.2.1:,

Let m be a set function defined on a a -alegebra)l Then m is said to be countably additive ii
m(A) ~ 0'for all A Ejl and for each sequence {An}of pairwise disjoint members of jl.

m[ U A J= I mi A )
I
nn

n= n=l

Definition 2.2.2. :

A set function m defined on a a-alegebra)I is said to be countably subadditive if mfA) ~ 0 for

all A E)I and for any sequence {A.} in)l
1

(

00 ) 00
m U. A. ~',!:;In(A.,). i==l 1 j~l ' ~

Definition 2.2.3 :

A set function m defined ona (J" ,:,alegebra.Jhssaid to be ,finitely additive ifm(A) ~o for all

, A E)I and fer each pam.A,B of disjoint members of}l,m(AUB) =meA}+mCB).

2.2.4 : Self Assessment Question:
I

Show that anycountably additive set function defined on a zr -alegebra is countably sub
additiveand also finitely additive. '

2.2.5 : :Self A~sessment ,QuestinD ;

Give .aa example of a countably sub-additive set functiondefinedon ,a ,(J" -alegebra rn ,isnot
countablyadditive
Tbeoliem 2.2.6,:

Let m be a countablyadditive set function defined on a o - algebra)I. Then the followinghold

,(i) If Ac B and A ahdB EJt thenro(A) ::Stn(B)

(ii) If there is a'set A EJI such that meA) < 00 then m( tjJ )=0.



Proof:

(i) 'LetA~BeflandAc B. ThenB-A=BnX-A efland AU(B-A) =B and An(B-A)=tjJ
By the countably additivity ofrn, wehavem(B)=m(A)+m(B-A)2:m(A)since,m(B-A~

(ii) 'Let A eJl and m(A)<oo then meA) = meA) + m( t/J)+m( t/J) + .

(consider A = VAj where A I=A, At t/J for i>1)Since m( t/J)~Oit follows that m(t/J )=0.
I

, 2.2.7. Definition:

A non negative extended real valued countably additive set function defined on a (J -algebra
,is called a measure.

2.2.8. Example:

Let X be any set and)i= 9'( x], the class of all subsets ofX. Define for any 4eil

meA) =

+00 if A is infinite

IAI ifA is finite

Where IAI is the number of elements in A. Then m is a countably additive set function

defined on jl and m is a measure.

2.3. LEBESGUE OUTER MEASURE

We shall construct a set function satisfying almost ~11properties mentioned in the begining
of the previous section. We begin with the following. '

1.3.1. Definition:

Thelength of a finite interval I, with end points a.b with a < b is defmed to be I{I)=~a and ifI is
an infinite interval then /(1)=00. Thus 1(I)has the following properties.

(i) /(1) > 0
(ii) 1(1UJ) S 1(1) + I(J) if!, J and I u Jare intervals
(iii) If I c J then 1(1):s l(J)
(IV) 1(1+ a) = 1(1) for everyae lR.
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2.3.2. Defmition :

For any set A of real numbers, define

m*(A;=inf{ I l(In):A~ U In and each Inis an open interval}
n=1 n=1 .

The set function m * defined on fJlJ (m) is called the Lebesgue Outer Measure. For any A c m
m*(A) is called the outer measure of A..

2.3.3. Remark : /'

00

A countable collection {In} of open intervals is said to be a cover for the setE ifEc U In
_.. n=l

If A is a set of real numbers, {(-n,n)} is a countable collection of open intervals that covers
100

A as A c lR = n~i-n, 11) and that such a collection always exists. since lengths ofthe

intervals and positive real numbers the sum of the lengths of the intervals L 1(1 ) is uniquelyn
n

defined independently of the order ofthe terms. Thus we define the outer measure m *(A)
of A to be the infimum of all such sums.

(1)

(2)

(3) For notational convenience we need only deal with countable coverings of A, the fi ite case
is included since we may take In= ~ except for a fmite number of integers n.

We now obtain some elementary properties of the outer: measure.

2.3.4. Theorem: a) Non-negativity: m*(A) ~ 0 for all A c lR
b) Monotonicity : If A c B then m*(A):::: m*(B)
c)m*(¢)=O

d) m*( {a}) = 0 for any aE m.
e) Translation invariance : m*(A+x)=m*(A)foranyx~ m.

Proof:

(a) For any set A, m*(A) 2: 0 since the outer measure is the infimum of a set of non-negative
numbers.



I
(b) If A C B then every cover {In} ofB is a cover for A so that for such cover

00

m*(A):::: L 1(1n). That is, m*(A) isalowerbo~d for the set
n=l .

{Ef(I,): B c E(I,)} ~herefore,m" (A):S inf {Et(I,): B C ,gl I, }~ m"(B)
,I

(c) By (a) m*( ¢) ~0 and for any E >0 the intervall = (a, a+E) is a cover for ¢ and so

m*(¢)::::I(I)= E showingm~(¢)< E for each E>OHence,m*(¢)=O

(d) For any E>Othenopen interval 1=( x -~, x +~) is a cover for {x} so that

m*( {x})::::l(I) = E. This together with (a) givem*(3x}) = 0

(e) For each E >0 there exists a collection {In}such that A c U Inand m * (A) :2: L.e (In) - E

But clearly A + x cu (In+ x). So, for each E,

m*(A+x)s L I(In+x)= L 'l(In)s:m*(A)+E. So,m*(A+x).:::;m*(A).But,A=(A+x)-xso

wehavem*(A)::::m*(A+x). Thus,m*(A)=m*(A+x)'yIXEIR.

We now prove that the outer measure m* is an extension of the set function [(length) i.e',

m * (1)= f(I)foranyinterval 1.

We now prove that the outer measure m" is an extention of I i..e,m*(I)=I(I) for all intervals I.

2.3.5. Proposition: The outer measure of an interval is its length

Proof: Let I be an interval.

Case I:

Suppose that I is a closed and finite interval.

Now I = [a,b] for some real n~bers a and b, a<b.

Let E>O. [a,b] c (a- E, b + E). SOm*([a,bD:::: I «a-E ,b+E) = (b-a)+2E. Since E>O is
arbitrary, m*([a,b])::S b-a.
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We provenow that m*([a,b])?: b-a. This is equivalent to showing that if{In} is a countable

collection of open intervals with [a, b] c UIn then b - a ::;L I! (In) . Let {I } be a countable collection
. n n .. ~ , ... ,n .

of open intervals with [a, b] c U In. Since [a,b] is a closed and bounded subset of real numbers, by
n '

Heine-Borel Theorem there exists a finite subcollection of {In}' say II' 12' .... 1mwhich covers [a,b].

- m . m· m
Now 'Lf(Ij)::; 'LR(In) and [a,b]c U Ij. As aE[a,b]c U Ij

j=l n . j=I . j=I

We get a 1 ~ k ~ m such that aE Ik. Let Ik = (apb).

m "
Ifb <b

I
then a

I
< a < b < b

i
and that b+a s,bi -al s 'L.e(Ij) s !.e(Inl·

j=l n'

Suppose that bi ~b. Nowbi E [a,b] and bi ~(aI,bI). Thereforewe get a 1::;p::; m with p e.k
such that bi E Ip. Let Ip= (a2,b2). So a2 < bi < b2. We get a sequence (aI,bI), (a2,b2),····· (~,bk)fi:om
the collection {II' 12' , 1m} such that ai < bi_I< bi' i = 2,3, k. Sin,ce {II' 12' 1m} is a finite
collection,our process terminates with some interval (~,bk). Butitterminates with (~,bk) only ifb E (~,bk)·
Suppose that the process terminates with (~,bk). Now ~ <b <bk·

m k -
"Lf!(In} ~ Lf(Ij) ~ Lf!((aj,bj)) = (bk-~) + (bk_(~) + ....+ (b(aI)

n j=l j=I

(' .,

= bk - '(~-~_) - (~-I - bk_2) .••• - (a2-b )-a1

> bk-aI, since a. < b. l' i = 2,3, ....k
. 1 ~ .

> b-a, since bk > b and a > al. , .

Therefore
, . . . n . .. " .

So b - a", inf { ~ e(i.)/J I~J is a countable collection of OPe!)intervals with [a, b1c ~~n }

=m*([a,b]).

\'Therefore m*([a,b]) = b - a.

.- .. < ;
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Case II:

Suppose that I is a finite interval.

Sol = [a,b) or (a,b] or (a,b) or [a,b], where a and b are'real numbers and a <b.
jl

; "

E E
Now J c I and I(J) = (b-a) - "2 = 1(1)""2 i '

Therefore all- E < 1(J)=m*(J)~m*(I)~m*(j)=m*([a,b])= b-a=/(I).

.So, 1(1) - E < m*(I)~; 1(1). Since E>0 is arbitrary ,
; .. " ".

P,

We get that m*(I) = leI).

ease III:

Suppose that I is an infinite interval. "

So I = (- 00 ,a) or (: 00 ,a] or (a, 00 ] or [a, 00 ) or (- 00 , 00 ) where a is a real number. Let 8 be
a positive real number.

We get aclosed interval J c I with I(J) = L\.

Now 8 =1(J)=m*(J).:::m*(I). Sinceil>Oisarbitrary,

m*(I) = 00· But I(I) =00. Therefore m*(I) = 00 = 1(1).

From case I, case II and case IiIwe get that the outer measure of an interval is its length. '

We prove now that the outer measure m* is countably subadditive.

2.3.6. Proposition:

Let {An} be a countable collection of sets of real numberS; Then m m * (~In)sLm * (An)
, n " _



Proof:

If one of the sets A has infinite outer measure the inequality holds trivially.n .

So, we assume that m*(A ) is finite for all n. Let E>0.
- n

Since m*(An) is finite from the definition of m*(An), m*(An) + ~ is not a lower bound for
. 2

{L:ePm)/Pn} is countable collection of open intervalswith An CUlm} and thatwe getacountable
m m

collection {I .}.of open intervals such that An C UIn,i and ~ f (In' i] < m * (Ao ) + 2: .
n,1 1. m I

Since union of a countable number of countable collections is countable, {I .} .is a countable
. n,l n,l

collection of open intervals.

Also UAn C U In i. ,
n n.r

So m" (UAn) ~ L;f(In,i) = L:~f(Io,i)
n 0,1 0 1

~ ~( m" (An)+ 2: )

= Im*(Ao)+E(I ~J
o· 0 2

~ L:( m" (An)+E .1) (Since f ~= iJ
o 0~2

Thereforem' (~A" ),,; ~(m' (A")+E)

Since E> 0 is arbitrary, we get that m" (~Ao ) S ~(m* (An»).
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2.3.7. Corollary: If A is a countable subset of real numbers then m* ( A ) ~ 0

Proof: Let A be a countable subset of real numbers then A = .U .{a}
aEA

Since m* is countable subadditive, m * (A) = m" ( U. {a})
aEA ,

=0

So m*(A).:S O. But m*(A):::: O. Therefore m*(A) ~ O.

2.3.8. Self Assessment Question:

Show that any non-empty interval is uncountable.

2.3.9. Proposition:

Let A be a set of real numbers and E >0. Then there is an openset 0 such that A c 0 and rn*(0)

.::::m*(A) + E and there is a Go -set G such that A c G and m*(A) = m*(G).

Proof:

Let A be a set of real numbers and E>0.

Case I:

Suppose that m*(A) = 00. Take 0 = R

Now Ac 0 and m*(O) = 00 = m*(A) + E.

Also 0 is a Go -set and m*(A) =m*(O) = 00 .

Case II:

Supposethatm*(A) is finite.
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Then there exists a countable collection {I } of open intervals such that A c U In andn . n

n

Put 0 = U In NowOisanopen setandAcO. '
n

No~ m * (0) = m~(~ In ) ~ ~ (m* (In) ) = ~ e (In) < m * (A) + E

\

Thus for each E>O!the~e is an open set 0 such thatAc 0 andm*(O) ::sm*(A) + E.

Therefore for each positive integer n, there exists an open set On such that A cOn and

m*(On)::Sm*(A) + l/n.

ex)

PutG= n On. clearlyGisaG~-setandAc G.
n=l ,

So m*(A) ::sm*(G).

Since G cOn' m*(G) < m*(On) < m*(A) + l(n for all n = 1,2,...•.

Therefore m*(G)::Sm*(A). Hence m*(A) = m*(G), where G is a G~ -set.

Answers to SAQs :

2.2.4. :

Let)t be a (J' -algebra of subsets of a setX andmbe a countably additive set function defined on

)t. Let {A '}be a sequence of sets inJl. Then by 1.2.7, there exists a disjoint sequence {B }in Jl such
n ," n

that U An = U Bn .and B c A for all n. N ow we have, rri( U An"J =n=1 n=1 n -..,."n n=1

(

OCJ J OCJ OCJ

= m n~Ia, =.E m (Bn) s .E m (An) since m is countably additive and by 2.3.4.(b)
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Let A, B E)l and ,AnB = ¢. Put An = ¢ for n > 2, AI = A, A2 = B.
\

Thus;'m(,u AnJ = Im(An) = m(A)+m(B). But, U An = AUB hence m(~UB) =
n=l n=l n=l

meA)+ m(B). i.e. m is finitely additive.

2.2.5. :

. '0 ifA=cp
Let)f= 9'(lR) theclassofallsubsetsoflR:ForanyA E)f,defIi1e ml A] = .. then

, ' 11fA:;t:cp(
m is countablysubadditivebut not countably additive since 1= m (z +) = m ( ~ {n}) and ~. m ({n}) = 00.

\
'~.3.8:

),

If 1= [a.b] is an interval m*(I) = b-a by Theorem 2.3.5. So thatm*(I) > O. Hence I is
uncountable (For if! is countable tnen m*(I) = 0 by corollary 2.3.7}.

2.5. Model Examination Questions:

1. Define the concepts of a countably additive set function and of a countably subadditive set
function and prove that every countably additive set function is countably subadditive. Is the
converse true? Justify your answer.

2. If m is finitely additive set function defined on)l and m(B) <00 then m(B-A) = m(B)-

meA) for every A,B E)f with Ac B.

3. ' Define outer measure of a set and prove that the outer measure of any interval is its length.

4. Prove.that the outer measure m* is countably subadditive.

5. Show that m* is translation invariant.
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2.6. Exercises:

1. Show that ifm*(A) = Othenm*(AUB}= m*(B) for any set B.

2. For any subset A ofm., prove that there is a Go -set G such that A <;;;;; G and m*(A) = m*(G)

3. Show that every finite set has outer measure zero.

4. For any sets AandE offfi.,prove that m*(A):::;m*(AnE) + m*(AnE) where E isthe

complement ofE in m..

5. Let A be the set of rational numbers between 0 and 1and let {In} be a finite collection of

open intervals covering A. Then, L, e ( en ) ;:::1.

2.7. : Reference Book: Real Analysis - H.L. Royden

Lesson writer: R.SRINIVASA RAO

.1



LESSON -3

MEASURABLE SETS AND LEBESGUE MEASURE

,3.1 Introduction:

The Lebesgue outer measure m * which is defined on the collection' of all subsets of real

numbers is not countably additive (4.11.2). However, if we restrict m* to a class of. ,

subsets of real numbers, namely the Lebesgue measurable sets then m* is countably
.> .

additive on this class. It is proved that the collection of all Lebesgue measurable sets is a
. i

(J' -algebra containing all open and closed subsets of real numbers. It is shown that the
i \ '

L~besgue measure m, which is the restriction of the outer measure m*to. the coll~ct,ion of

all Lebesgue measurable sets is countably additive and translation invariant. 1\

\
'\
\

Note: All the sets considered are subsets of real numbers unless otherwise stated.We are

going to adopt here the definition of measurability due, to caratheodory w~ich is
, " \."

motivated by the following consequence of countable sub-additivity of the outer measure.
\

3.2 Remark: Given a set E, for any set A, A = (AIIE)u(AIi E) implies

* * *m (A) S;m (Ar-E) + m (All E )

3.3 Definition: A set E'is said to be measurable or Lebesgue measurable if for every set

A, we have m*cA) = m* (Ar=E)+m'(Ao E) where E is the complement ofE in 9t

3.4 Remark: (i) The definition of measurability says that the measurable sets are those

which split every set into two pieces that are additive with respect to the outer

measure.

-
(ii) A set E is measurable iff for every set A, m*(A) ~ m" (Ar-E) + m*(A liE)

(in view of the definition 3.3 and remark 3.2)

3.5 Lemma ~ (i) ~ and 9t are measurable

(ii) If E is measurable so is E

(iii) Ifm* (E) = 0 then E is measur~ble.
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Proof: -

(i) For any set A, we have A n.~ =~, A n ~ = A n 9l= A and Anill=A, A n ill=~

* * * * * * *so that m (An~)+m (An ~ )=m (~)+m (A)=m (A) and m (Anill)+m (An ill )

= m*(A)+m*(~)=m*<A). Hence ~ and ill are measurable.

(ii) If E is measurable then m*(A)= m' (AnE)+ m' (An E) for every set A. That is,

'"'"m * (A)= m * (An E)+( AnE) for every set A, showing E is measurable.

(iii) Suppose m *(E)=O. If A is any set then AnE ~ ..E and An E c A. Since rn' is

monotone, m" (AnE)::; m' (E)=O and m' (An E) s m' (A) so that, m* (AnE) t

m*(An E ) ~ m' (A). Hence by remark 3.4 (ii), E is measurable.

3.6 Lemma: Let E be a measurable set. Then show that for each y, the set

E + Y= {x+y/xaE} is measurable and the measures are the same.

Proof: Suppose E is a measurable set. Then for any set A, it is easy to see that

An(E+y)=(A-y) nE. Also (E + y) = E +y.

Therefore, m*(An(E+y))+ m*(An(E + y))

* *= m «A-y) nE)+m (An( E +y))

= m~(A-y) nE)+m*«A-y) r, E )

= rr.-y), by the measurability ofE

=m *(A) since m * is translation invariant

Thus, E+y is measurable,
* *Hence, m(E+Y)=ll1 (E+y)=m (E) = m(E)
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3.7 Lemma: IfEJ andE, are measurable, so is EJuEi.

Proof : Suppose E] and E2 are measurable sets. Let A be a set of real numbers. We

r--J r--J r--J

*. . * * *m (An(EiUE2)+m(AnE2 u E2) s rn (AnE1)+m (A nE2n E I)+m (An E In E 2)

=m*(AnEJ) + m*(An E I) (si?ce E2 is measurable)

=m(A) (since EJ is measurable)

Thus, E1uE2 is measurable.

3.8 Corollary: The family ~JL of all measurable sets is an algebra of sets.

Proof: Let ~L be the family of all measurable sets. Since ~ and 9t are measurable

sets 0R. is a non-empty collection of sets. If EI E ~t E2 E 0R. then EJ u E2 E 2)1l by

Lemma 3.5. IfE E 01Uhen E E 01Lby lemma 3.5 (ii) Hence 2)Jl. is an algebra of sets.

3.9 Lemma: Let A be a Set and EJ, E2 ..... En be a finite sequence of disjoint measurable

* n n *sets. Then, m (A n (UEi))= Lm (AnEi)
1=1 i=I'

Proof: We shall use induction on n. It is trivial for n= 1. Let n> 1 and assume that the

result holds for n-I. Let E],E2, ... ,En be disjoint.measurable sets. Since Ei's are pair-

I

wise disjoint, we have E; n En = ~ for all i<n and hence E, c En for all-r<n and

n n 0-1 n _

(uEi)n En= ~Ein En= U E, and (uEi)n En= En.
•=1· 1=1. • i=1 1=\

< ~. • ~

Since En is measurable we have
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* * n=I= m (AnEn)+m (An u Ei)
i=1

* n=I *
7',m (AnEn)+ ~ m (AnEi) (by the induction hypothesis).

n *=L m (AnED
i=1

Hence the result.

3.10 Theorem : The collection ~L of measurable sets is a a - algebra; that is, the

complement of a measurable set is measurable and the union of a countable collection

of measurable sets is measurable.

;.

Proof: We have already observed that ~ is an algebra of sets and so we have only .

to prove that if a set E is the union of a countable collection of measurable sets it is

measurable. By proposition---------, such an E must be the union of a sequence {En}
00

of pair-wise disjoint measurable sets ie, E = u En, where En are measurable sets
0=1 '

Jl '

and EnnEm = ~ for nern. Let F, = ~ Ei since E, are measurable, Fn is measurable '\j
. . . lL 1=1 '.

n=I,2, ... , also, since F, c E we have E c F n for all n=I,2 .... ,

Let A be a set of real numbers. Now An E cAn F n since m* is montone we have

• *m (An E ) ~ m (An F n).

Since F, is measurable,

m*cA) = m*(AnFn)+m*( An F n)

* I * ......-
~ m (AnFn)+m (An E)

.....-* n . •
= m (AnuED +m (An E)

1=1

n * * -...,J .
= ~ m (f\nEi) +m (An E ), (by lemma 3.8).

1=\
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'""""'* n * . .
Therefore, m (A) ~ I m*(AnEj) +m (An E ) for all n=1,2,3 ..... ,

i=1

'"* 00 * *Hence, m (A) ~ L m (AnEj) +m (An E)
i=1

" "

00 00 00

. * * U * •since, m (AnE) = m (An Ej) = m (~AnEi) s~ m (AI'lEj).
i=1 I-I 1=1

Hence E is measurable.

Therefore 011 is a (J -algebra.

3.n Lemma: The interval (a,oo) is measurable.

Proof: Let A be any set, write A I = An(a,00)and A2= A2 = A n (-00,a]. If we prove

m*(A) ~ m*(A1)+m*cA2)-------(1) it follows that (a,oo) is measurable.No~ (1) is

trivial if m'(A) = +00. Assume, m'(A) < 00. Let E > 0 we will show that

m*cAl)+m*(A2) ~ m*(A)+E. By the definition of m'(A) , we get a countable

collection {In} of open intervals such that A e u In and L I (In) < m*(A)+E-------(2)
n 0

1 II 1 II
Put, In = Inn(a,oo) and In = Inn (-oo,a]. Then In and In are either empty or "

1 II " 1 II 1 II
intervals, with In uIn = In and Inn In =~. Therefore, I (In) = I (In)+ I ( In) =.

.1, II 00 I 00 II
m (In)+m (In ). Now since Ale u In ,A2 e u In we have,

0=1 0=1

• 00 100"*1
m (AI) ~ L l(In) = L m (In) and

0=1 0=1

• 00 II 00 ,II
m (A2) ~ L l(In) = L m (In ) SOthat.

0=1 0=1

, , 00", I * II 00

m (AI) +m (A2) ~ L {m (In)+m (In )} = L l(In) -----!(3)
0=1 - 0=1

. * • •
Therefore (2) and (3) give, m (Al)+m (A2) ~ m (A)+E.

Since E>O is arbitrary we get the inequality in ..... (1).

Thus (a.eo) E ~lLforallaE~.
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3.12 Theorem: Every Borel set is measurable. In particular each open set and each

closed set is measurable.

Proof: For any a E 91, (a.eo) is measurable and hence its complement (-oo,a] is also

measurable. Now for any bEm, (-oo,b) = 00 [-oo,b - .l] and since [~oo,b _.l] is
'U n n
n=l

measurable so is (-oo,b). Since (a,b) = (-oo,b)n (a.co), it follows that each open

interval is measurable. Also since any open set is a countable union of open intervals

we get that every open set is measurable. Since the collection 93 of Borel sets is the

smallest a -algebra containing the class of all open sets and since the collection ~ of

all measurable sets is a a -algebra containing all the open sets, it follows that 93 'is

contained is ~, that is every Borel set is measurable. Since open sets and closed sets

are borel sets, they must be measurable.

3.1,3 Definition s For any measurable set E its Lebesgue measure m(E) is defined to be'.. '" .'.

the outer measure of the set E. That is if EE ~1 then, m(E) = m~(E).

Thus the Lebesgue measure m is the set function obtained by restricting the outer
. *measure m to the class 2}lL of measurable sets. Note that.

(i) The Lebesgue measure in is a non-negative set function defined on the

a -algebra ~. of measurable sets.

(Ii) m(!) =m *(1) ~ 1(I) for all intervals.

(iii) m(E+y) = m*cE+y) = m*cE) = meE) for all measurable sets E and for all

real numbers y. Recall that if E is measurable then E+y is measurable for

any real number y. We now prove that m is countably additive; so that m

is a non-negative extended real valued countably additive set function

defined on a a -algebra, thus m is a measure (Definition 2.2.7) and this m

is called the Lebesgue measure.
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3.14 Proposition: Let {Pn}be a sequence of measurable sets. Then m(u En)
. . n

sL m(E~). If the sets En are pair wise disjoint then, m( u En) = L m(En).
n· \ n n

Proof: let {En} be a sequence of measurable sets. Now u En is measurable. Hence
. n

m( u En) = in·(u En) sLm' (En) (Since m' is countably sub-additive)
n n n --

Therefore, m( u En) ~Lm(En)
n n

Now suppose that En's are pairwise disjoint. From Lemma 3.9 (by taking A=91),
)

we have
n n

m( u Ej) = LE, for all positive intergers n MQ
,-1;_1 .

00 .. .n J.I,

therefore m (u Ei) ~m(v Ei) = I m(Ei) for ail n.
, '. '. i-I. ';=1 i=I'; . ,

co co

. Implies that m( (; Ei) ~ ~ m(Ei)
'., . ,=;I i.=1 .

.• co co -

Also m(u Ei) s L: m(Ei) (as seen above by the countable subadditivity of m" and
. i-I i-I . '. ., .

hence ofm).
co co

Therefore, m( V Ei) = L m(Ei). Hence, 1)1 is countably additive.
. . ·,_1 i=1 "

3.15 p'roposition : Let {En} be an infinite decreasing sequence of measurable sets, that

is, a sequence with En+1C En for each n.
co

Let 111(E1)be finite. Then m( rv En) = Urn m(En).• n~ n __

'"Proof: Let E = II En and ilet Pn = En- En+1,n= 1,2, .........,..,.....,. . n=] .

eo

We claim that, E1-E = ~ F, 'aridFn are pair-wise disjoint.

co

Let xeEI-E, now x aEi and x~E-== (\ En.
n=I
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For some positive integer i, X~Ei. Letj be the least positive integer such that
co

x~Ej. So xEEj_1-Ej = Fj-l and that XE ~ Fn..

<Xl eo

Therefore E1-Ec u Fn. Let XE ~ Fn. XE F, for some positive integer n. SO XE En and·
1=1 1=1 •

<Xl

X~En+l. Therefore xEEI-E and that u F, eEl-E.
0=1

<Xl

So E1-E = u Fn. Let n and m be positive integers and neem. Without" loss of .
. 0=1

generality suppose that n<m. So n+ l sm and that

= Enn E n+In Emn E m+I = ~
<Xl

Therefore Fn are pair-wise disjoint measurable sets. Since E,-E = u Fn, we have
0=1

co ; . 00 00

m (EI-E) = m (u Fn). Since F, are pair-wise disjoint, m (u Fn) = I m(Fn).
0=1 n=1 n=1

'"Therefore m(E1-E) = L m(Fn)---------(l)
ne l

We have EI=Eu(EI-E) and En(EI-E) = ~.

So m(E1)=m(Eu(EI-E) = m(E)+m(EI-E)~---(2)

Since m(E1)<co measures of all the subsets E, EI - E,Fn,

En, n=1,2, ofE! are finite. So m(El-E) = m(El)-m(E) by (2)
Since En = En+1U(En- En+1)= En+1UFnamd En+lnFn=~,

m(En) = m(En+IUFn) = m(En+1)+ m(Fn)

By the above argument, m(Fn) = m(En)-m (En+1).

'"
Therefore, from (1) m(E1) - m(E) = L (m(En)·- m(En+1))

n=1

n

=Lim L (m(Ei) - m(Ei+1))= Lim (m(E1) - m (En+1))
n-..co -i=l n~oo .

Since m(EI~<CXJ,-m(E) =- Lim m(En+1) ie, m(E)= Lim m(Enf/J
n~ro o~'"
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ie, m(E)= Lim m(En).
n--+oo

00

Therefore, m( n En) = Lim m(En).
n=l n--+oo

3.16 Proposition: Let E be a set of real numbers. Then the following five statements

are equivalent.

i.: E is measurable.

2. Given E>O, there is an open set 0 ~ Ewith m*(O-E)< E.

3. Given E>O, there is a closed set F~E with m*(E-F)<E.

4. There is a G in G/iwith E c G and m*(G -E) = 0.

5. There is a Fin FO'with F ~ E and m*(E-F)=O

If m*(E) is finite, the above statements are equivalent to

6. Given E>O, there is a finite union U of open intervals such that

*m (U~E)<E

Proof: Let E be a set of real numbers. Let E>O, we prove that 1~2~3~4~1 and

1=>3=>5=>1.

I=>2 Assume that E is measurable.

Case I :Suppose that m(E)<oo. By proposition 2.17 there is an open set 0 such that EcO

and m*(O)< m*(E)+ E. Since E is measurable, m*(O) = m*cOnE)+m*(On E )

. = m*(E) + m*(O-E). Since m*cE)< oo,m*(O-E) "'"m* (0) ~m~ (E)<E

Case II:Suppose that m(E) = 00.

Let In=(-n,n). In is a finite interval of lengtlrZn.
00 ~ ~

Now R= u In. E=EnR=En( u In)= U (E nIn).
n~ ~~ n~

00

Let En=Enln. n=I,2, now E= u En.
n=!

Since Encln, m*(En) sm*(In)= f (In)=2n<00. Also since E & In are measurable, En is also

measurable. Therefore by c.ase I, we get an open set On such that Enc Onand
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m*(Od-En)< E/2n. Let O=~ On. Clearly 0 is an open set and EeO as E=~En"and
, 0=1.. ' ' . 0=1

eo <Xl eo

O-E = U On - U En e U (On-En).
0=1 0=1 0=1

* • 00· 00 * 00

Therefore, m (O-E) sm (u (On~En» s u m (On -En)< L E/2n =E.
0=1 0=1 ' 0=1

, '

" . \. . . . I

2~4 Assume 2, we get an open set On such that EeOn and m*(On-E)< - for all
n

ec

n=1,2, .... Let G:= (') On. G is aGx-set and EeO.
0=1 i' ,

1

Since G-E e On-E, m*CG-E) $m*(On-E)< - for all n=I,2, ....
,,' :" "n '

, Therefore, m.*(G-E) ~ O. But m*(G~£)~O.

*Hence m (O-~)=O. _

4~1 Assume (4) so there is a Oa -set G such that EeG and rn'(G -E)~O. By Lemma
-

3.5, G-E is measurable, Gis measurable as G is a Borel set. E = G- (G-E) as EeO:

Therefore, E is measurable.

1~3 Assume (I). E is measurable. So E is also measurable. Since 1~2, we get an

,...., ~

.open-set 0 such that E e 0 and m*(0- E )<E. 0-E =OnE=En 0 =E- 0 .

Let F= 0 .Since 0 is open 0 ~Fis a closed set.

EcO implies 0 e ~ =E ie FeE. so rn*(E-F)=m *(E- 0 )=m *(0':' E )< E.

3=>5: Assume (3).' For each positive integer n, we get a closed set FncE such that

m*(E-Fn) < !.Let F::;=~ r;F is a Fa-set and FeE. SinceE-F;eE:-Fn, m*(E-:F) S
n n=1 ' ,

* 1 ' * ,*m (E-Fn)< -for all n=1,2, .... Therefore, m (E-F) $0. But m (E-F) ~O.
n

'!; I.

Hence, m •(E-F) = O. \' :
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5=>1 Assume(5). Ther,eis,a Fa - set F such that FeE and'm*cE-:F)'= O. By Lemma-3.5,

E-F is measurable. Since F is a Borel set it is measurable. E=Fu(E-F) as FeE.

Therefore E is measurable.

Therefore stat7ments 1,2,3,4 and 5 are equivalent.

Suppose now that m*(E)<oo.We prove that 1=>6=>1.

1=>6 We have that E is a measurable set of finite measure. Since 1=>2,we get an open

set 0 such that EcOand m*(O-E)< ~ . Since 0 an~ E are measurable sets and

0= Eu(O-E) and En(O-E)= cjI, m'(O)= m*(E)+m*(O-E).

Since m*CE)<00 and m*(O-E)<EI2,m*(O)<00.

Without loss of generality we may assume that 0 is 'nonempty. We get a

countable collection {In}of disjoint open intemals such that O=ulh. Since each
• . 0 .

Inis measurable, and In's are disjoint, L l(In)= L ril(In) :::;'m*CuIn)= m(O)« 00.
n 0 0

Case I Suppose that the collection {In}is finite consisting of Ij, h~..:.,Ik. '
k

Let V=uI ; now V=O. So EL\V = (E-V) u(V-E)=(E-O) u(O-E)=O-E.
i=1

Therefore m'( EL\V)=m*(O-E)< e/2<e.

co co

Case I Suppose that the countable collection {In}is hot finite. Now 0= u Inand LJ(In)
0=1 0=1

co

== m*(0)< 00. We get an integer N such that L I(In)<e/2.
o=N+1

N
Let, V = u In.now E~V=(E-V) u(V-E) e(O-V) u(O-E) ..

0=1 .

00 N 00o-v = u In-U In= u Inas Inare pairwisedisjoint, Since Inare pairwise disjoint
. 0=1 0=1 o=N+1 . .

r- co ClO 00·

measurable sets, m'( v'ln) = L 'm*(In)= L' l(1n)<e/2.
.' :.' ,0=N+1 o=N+1 0=N+1

·00

. So m*(O-V)= m*( u I~)<«a.
'" o=N+1. . - . . ,':. ,

Therefore, m (E~V) sm «O-V)u (O-E» ~ m (O-V)+ m (O-E)< el2+e/2=e.
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6~1 Assume (6). We have that m*(E)< 00. There is a finite union V9f open intervals
.. "-* . .

II ,!z,..... In such that m (VLlli)< E13. We get an open set G such that E-V~G and

m*(G) ~m*(E-V)+ Ef.3. Let O=GuV. 0 is an open, set as G and V are open sets. '

E~ (E-V) uVcGuV=O.

O-E=(GuV) -E=(G-E) u(V-E) ..
J

Therefore m*(O-E) ~*(G-E)+m*cV-E)

* *<m (G)+m (V-E)
* * .~m (E-V)+ E/3+m (V-E)

sm*(EflV)+ E13+m *(EflV)

<E/3+E/3+E/3 (Since E-V and V-E are subsets of EflV)

=E

So we have proved 6~12. Since 2~1, we have that 6=>1, this completes the

proof.

3.17 Self Assessment Question:

Show that ifE is a measurable set, then each translate E+y ofE is measurable.

3.18 Self Assessment Question:

Show that if E, and Ez are measurable then m(EluEz)+m(ElnEz) =m(El)+m(Ez)

3.19 Self Assessment Question:

Show that the condition m(Ei)<oo is necessary in proposition 3.15 by giving a
co

decreasing sequence {En} of measurable sets with <l> = n En and m(En)= <X) for
, n~

each n.

3.20 Sel~,Assessment Question:

Let (En} be a sequence of disjoint measurable,sets and A be any set. Then prove'

* 00 00 *
that, m (An u En) = L m (AnEn).

n=l n=l·
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3.21 Self Assessment Question:

Show that the cantor ternary set has measure zero.

3.22 Self Assessment Question:

Let E be a set of real numbers and m*(E)< 00. Prove that E is measurable if and

only if for each E>O, there is a finite union U of pair-wise disjoint open intervals

*such tl ;: m (U~E)< E.

3.23 ANSWERS TO SAQ'S.

3.17 (See Lemma 3.6 for alternate proof)

Let E be a measurable set and y be a real number, Let E>O. By proposition 3.15"
. ,

there exists an open set 0 such that E~O and m*(O-E)< E.

Since 0 is an open set O+y is also an open set and E+ycO+y.

Now, (O+y) - (E+y)=(O-E)+y.

m*((O+y) - (E+y))=m*((O-E)+y)=m*(O-E) as m* is translation invarient. So,

* *m ((O+y) - (E+y)) = m (O-E)< E

Therefore, again by proposition 3.15, E+y is measurable.

3~18 Let E, and E2 be measurable sets.
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3.19 Let En=(n, (0), n=I,2, .

DO

Now E(:)E2::JE3:) and n En = ~
. o~

DO

Each En is measurable. m( n En)= m(~)=0
0~1

Since m(En)=m(n,oo)=oo for all n=I,2, .....
DO

Lim m(En) = 00 '# m( n En)= 0
n~'" n~1

Therefore, the condition m(E1)< 00 is necessary in proposition 3.15 .

3.20 Let {En} be an infinite sequence of disjoint measurable sets and A any set. Since'

00 00. .

An( u En) = u (An En)
n=1 . n=1

00 ao 00

. m·(An(~ ~» = m·(~ (AnEn»~I
0=1

of m· ---------( 1)

* . lm (AnEj) by the countable sub-additivity
• " •. - ~\ ' .'.• ,t '. r

n
• u. = n *' ='By Lemma 3.9, m (An( i=l E1» ~ m (AnEn), for all n 1,2, ...,.

• ao. • 0 n.
Now m ( An( ~ Ej»~ (An(~ Ei» = L m (AnEi), for all n=l ,2, ....

1=1 1=1 i=1 ,

.' ao ao.·
Therefore, m (An( u En» ~ L m( AnEn) ------(2)

n=1 n=1 -

. • . 00. 00.. .

From (1) & (2), m (An ( u En» = L m ( AnEn)
.' n~ n~

3.21 Let Co=[O,I]. Delete from Co the open interval (1/3,2/3) which is its middle third'. ~.

and now write, C1=[0,1/3]u[2/3,1] Now delete from, C\" the open intervals
, . ",

(1/9,2/9) and (7/9,8/9) which are the middle thirds ?f [0,1/3] and [2/3,1]

respectively and write,C2=[O,1/9] u[2/9,1(3] up/3, 7/91u. [8/9,1]. Continuing

this process, we get a sequence {Cn}OOn=lof sets where Cn+1 is obtairied from Cn by

deleting the. open middle third of each of the 2n disjoint closed intervals of which
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-. 00 . ,..! __ ",
C, is composed of. The cantor set C is defined by C= fl Cn. Each Cn is composed

n=1 I

of 2ndisjoint closed intervals each of length _1 .
3D

Th .s.: C·· bl d n 1 (2)0 .ererore, n IS measura e an m (Cn)=2 . Y-="3 ' n=I,2,3, .

;. 00

Now, C= fl Cnis also measurable and m(C) ~(Cn)=(2/3t for all
0;\

n=1,2,..... Hence, m(C)$O.Therefore m(C)=O.

Note. It is known that the cantor set C is measurable, So, cantor set C is an example
. .'

of an uncountable set of measure zero.

3,22 This follows.fromproposition 3.15

3.24 MODEL EXAMINATION QUESTIONS.

1. IfEI and E2are measurable, thenshow that E1uE2 is measurable

2. Show that the interval (a; (0) is measurable, where a is a real number

3. Prove that every Borel set is measurable,

4. Prove that the collection 01L of all Lebesgue measurable sets is a a -algebra.

5. Prove that the Lebesgue measure mis countably additive.

6. Let <En> be an infinite decreasing sequence of measurable sets, that is, a
co

sequence En+lCEn for each n. Let m(El) be finite. Then, prove that m( fl En)=
. . . o~

Limm(En).
n400

7. For it set E of real numbers, prove that the following are equivalent

1. E ismeasurable. (
, /, . . * .' .

2. Given E>Othere is an open set 0 such that EcO and m (O-E)< E

3. There is a Gin Os'withE c G, m·(G-£)=O·
''':it
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3.25 EXERCISES

1. Prove that for. any set A there exists a measurable set E containing A and such that'. .m (A)=m(E).
co

2. If {EnL is an increasing sequence of measurable sets then prove that m( uEn)
n=1

3. IfE is a measurable set. Prove that E+y is also measurable

4. Prove that the set of all rational numbers and the set of all irrational numbers are

Borel sets and hence Lebesque measurable.

5. Show that there exists uncountable sets of zero measure.

Lesson writer: R. SRINIV ASA RAO.



LESSON-4 : A NON-MEASURABLE SET "

4.1 INTRODUCTION:

In this lesson we consider the relation between the clas~.LofLebesgue measurable sets and the
class 9'(lR) of all subsets of lR. Using Lemma 4.4, we show in theorem 4.5. that L :#9'(lR). Since

the characteristic function X A is measurable if and only if, A is measurable we have the corresponding
relation between the two classes of measurable functions and the class of all real-vlaued functions, Now,
we are going to show the existence of a non-measurable set. . . .

4.2. Definition: '. 'C,,"f

If x and y are real' numbers in [0,1), we define the Sum modulo 1of x and y to be x:y, if
x+y<1 and to be x+y-Lifx+yj-I. Let us denote the sum modulo 1ofxand y by x+y. !fEe [0,1) and
YE [0,1) then the translate modulo 1of E by Y denoted byE~yisdefinedas E~y= {x~y/xeE}

4.3. Remark:

-+ is a commutative and associative operation taking pairs of numbers in [0,1) into numbers in [0,1).

4.4. Lemma:

Let E be a measurable set of real numbers and EC [0,1). Then for each YE [0,1) the set Et. y is
measurable and m(E+y)= m(E).

Proof:

Let E be a measurable set of real numbers and E C [0,1) and YE [0,1) .
[0,1) = [O,I-y) U [1-y,l) & [O,l-y) n [l-y,l) ~ ¢.

E = En [0,1) = (En [O,l-y» u(En [I-y,I»
, .

~et E\ = En [O,I-y) and E2 .= E n [I-y,I»



I . ..
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NowE = Ej UE2 andEj (lE2= ¢. Also E1& E2 are measurable.

E+ Y='EI+y and thatEj + y is measurable ..

m(E1+ y) == m(Ej + y) = m(Ej) as m is translation invariant

E2+ Y= E2+ (y- 1) and that E2 + y is measurable.

m(E2 +- y) = m(E2+(y-l )) = m(E2) as m is translation invariant

Since E = EI U E2' E + Y= (EI + Y)U (E2+ y). We see now that

a + Y= a + y = b + y = b + (y - 1). Therefore b - a = 1

A contradiction to the fact that b - a <J .

Therefore (EI +y) (I (E2+ y) =¢ So m(E+ y) = m(EI + y)+ m(E2 + y}

Hence the Lemma.

4.5 : Theorem: There is 'a non-measurable set of real numbers

Proof: Let X,YE [Q,I). Definex~yifandonlyifx-yisarationalnumber. Clearly>- isanequiv~ence
relation on [0,1). This equivalence relation partitions [0,1) int~ disjoint equivalenc1 classes and any two
ele~en~s of the same class d~fferby ara~ionaIn~ber while ~y two el~ments of difffrent classes differ by
an irrational number. By axiom of choice there 'IS a set P which contams exactly one element from each
equivalence class. Since all the rational numbers present in [0,1) are countably infinite they can be written

..



00

NowPo=P. WeclaimthatP nP =¢ forn*mandUPn=[0,1)
. n m· '0-n=

.Let x E [0,1) Now x ~ y for some yEP. x -y is a rational number.

Case I :,

Suppose that x. - y 2: 0 and now x - y = rj for some integer i2: O.
00

So x = y + r: == y +-r: E P +-r. = P .. Therefore XE U Pn
" I I . I .111=1

Case II:

Suppose thatx - y < O. Now y - x >0. Let y - x == r. for some integer j 2:0.'. J .

l-r
j

= rkfor some integer k2:0

y-r.=x => y+ 1-1'.= 1 +x =>y +(1-r.)=(1 +x)-l =x => x=y+- rkEP + rk=Pk. J . J J

00

Therefore x E U Pn•
n=O

00 00

From case 1& case II we getthat [0,1) CXE U Pn. Obviously U Pn~ [0,1).. . n~O n=O

00

Therefore U Pn = [0,1).
n=O

Let x EP n P ,whre n and m are non negative integersn m

Now x = a +-r = b +-r ,where a, b E P.n . m
a +-r = a + r or a-+ r -1 and b ~ r = b + r or b + r -1n n _ n. . m- ... > m ' m

As a '~.rn= b +-rmwe get that a - bis a r-ational number, '

So a and b belong to the same equivalence class, i.e, a ~ b.
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Since a,b EP and a - b by our construction of P, a == b.

Now x = a -+ r =a -+ r .
o m

Suppose that a -+ r = a + r -1 and a -+ r = a + r .n n n m

Nowa+r -1 =a+r .. Sor-l =r i.e r + 1 =r an m· n m' m n'

Contradiction to the fact that 0·< r < 1.- 0

Similarly we arrive at a contradiction if a -+ r = a + r and a -+ r = a + r -1
. • 0 0 m m

Therefore either a-+ r = a + r and a -+r = a +rn n' m m

. or' a .+ r = a + r -1 and a -+ r= a + r -1.
. 0 n m m

In either case we get that r = r i.e, n = m'1 . m

Therefore P are pairwise disjoint.
n

.Now suppose that P is measurable.
00

ByLemma4.4,eachPn.ismeasurableandm(P)=m(Pn)foralln. Since [0,1)= U Po and Pj are
. . ~O

(

00 J 00 00

disjoint,wehavel=m([O,l))2:m n~oPn .= ~m(Pn)= Eom(p).

\m(P»O.

Now either m(P) = ° or

00

If m(P) = 0 then 1= L' m (p ) = 0 , a contradiction
.n=O

00

It\m(P) >°then 1= L m (p) = 00 , a contradiction
\ \. ! n=O
nierefore P is not measurable.

\

Tht\s P is a non-measurable subset of real numbers contained u1[0,1).

\
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4.6. Self Assessment Question:

Show that ifE is measurable and E c P then m(E) = 0, where P is the set defined in Theorem 4.5.
• i ., .

4.7. Self Assessment Question:

Show that if A is any set with m*(A) > °then there is a non-measurable set E contained in A.

4.8. Self Assessment Question;

Give an example.of a sequence of sets {En}with En ~ En+l , m*(E
n
) < 00

4.9 Answers to SAPs:

\ 00

4.6. Let {rn}n=Obe the sequence considered in Theorem 4.4.

Suppose that Eis measurable set and Ec P, P is definedin theoremd.S. Froni'Tbeorem 4.4

00

we havethatPn = P -+rnfor all n = 0,1,2, ..... and U Pn = [0,1) and Pn arepai~sedisjoint. AsEe P,
. n=O . .. .

E =E-+r CP-+f =P.
n n - n n

00 00

Since P are disjoint, E are disjoint and U En S;;;; U Pn = [0,1)
n n n=O n=O

.C

Since E is measurable, by lemma 4.4. Enis measurable and m(En) = m(E) for all n=0,1,2, ...

•
Since ngoEn c [0,1), mCgo En) s m([O,I»)=1

So {go E} ~ m(En) = to m(E)s 1

Therefore m(E) = 0.
4.7 Let A be a set of real numbers and m*(A) > 0.
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I

Suppose that Ac [0,1)

,":

Case I:

Let {Pn} :=0 be the sequence of sets defined in theorem 4.5.

Let Bn = A nPn for all n = 0,1,2, .

I 00
Since n~oPn = [O,~d Ac [0,1),

A=An [0,1) =An ( U PnJ = U (A(lPn) = U Bn.
n=O n=O n=O

Suppose that Bn is ~efls~~ble for all n = 0,1,2, ....

So Bn+x is meas~rabl~ for all x E [P, 1) ~~ n= Q,l ,2, .....

Clearly x+ y -+- (l -y) = x for all X,YE [0,1)
'.f ~ ' ~

Bn +.(1-fn) C P +0 - rn) = (P -+ rn) 4- (1 -Tn) ~ P, for all n = 0,1,2, ...J.
". .,. .

'<, . "'. : 0

By the above problem, m(Bn + (I-rn» =0 for all n = 0,1,2, .....

Since Bn = Bn 4- 0':: r~) -+ rn, by lemma4.4. m(Rn) = 0, forall n '. I
, .

Thereforem*(Bn)~ °for all n =0,1,2" . (1)

00 . (00) 00
Since A = U Bn, we have, 0< m" (A) = m": U B, s ~ ni*f(Bn) =0 frolll.\(1) .a

n=O n=D n=O . :~

contradiction. Therefore for some non-negative integer n, BncA is,not ~easurab1e.

Case II:

~!lppose that A g; [0,1)

IR is the uniorrof the disjont intervals [n, n+ 1),n is an integer.
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Therefore A = UAn' where An = An n [n, n+ 1)and n is an integer.

Now, O<;m'(A)=m'(~An)'; ~1Il'(An)'
, ,

So for some integer n, m*(An) > 0. Now, Bn = An + (-n) C [Q,I). Since m* is translation
invariant, °< m*(An)= m*(An+(-n» '= m*(Bn). Therefore by case I, Bncontains a non-measurable set
E. Now, E+n C An C A.'

IfE + n is measurable then E is measurable. Since E is not measurablf' E+ n is not measurable,
Thus E + n is the required non-measurable subset of A.

4.8.' Let P and Pnhave the meaning as in the proof of theorem 4.5. We know that PnnPm=¢ for

n*mandm*(p )=m*(P ) *Oforeveryn,m., n m

00
If En = U Pm then En ::) En+1• Clearly Pn C En

m=n ' ,

So tvat, Q < p1*(f) =m~(Pn) ~ P1~(p)< '~ and therefore
.-. ',' [ '.

00 (00 )lim rn" (En) > 0 . Al~Q, n En = ~ gives ,lll~ ,~En :;::0,
n~ ,n=l ~,-J,

Braving the resl,llt

Model Examination Questions:
.~ ': . :": ". '-'-'", ".:' /' ,.

4.10.1. Let E.C [0,l) bea measurable set. Then for ~~gby~ [Q,,1)· S.hg~", ~lE t- ,yis measurable
" and m(p -t y) ;;= ritE. ,',

~.10.2. ciiv~ <m ~x.~~l~Clf" set which is not Lebesgue ~@f!SW~bl~.

Exercises:
S"h~'¥.,that' -i- is a commutative and associative openlti9n ~~ Wlmpel ~ in [0,l) into.numbers
~~~ .

Qiv~ an example where {E} ~&~ Qisj9:int~~q~~n,~e9;~§~ts~9 .m+ (U:,j), <: ~ Plt'gj .
I" " .' • ,I,'

2.

LeSSOD Writer: R. SRINIVASARAO. '
. '"~.'- . ,. . ."'.. " ', ,'. ,'- . ,
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\ LESSON -5

MEASURABLE FUNCTIONS
.\

.1 Introduction: In this lesson we introduce the concept of a Lebesgue measurable

f nction and study certain properties of Lebesgue measurable functions. The class of

Lebesgue measurable functions which includes the class of continuous functions as a

pro~er subclass play an important role in the Lebesgue theory ~(integration. Further we

prove the Littlewood's Second principle which states that every measurable function is

nearly continuous. (Proposition 5.20).

5.2 .Proposition: Let f be an extended real valued function whose domain D IS
I

measurable. Then the following statements are equivalent.

1. For each real number a, the set {x E D I f(x) > a} is measurable.

2. For each real number a, the set {x E DI f(x) ~a} is measurable.

3. For each real number a, the set {x E D I f(x) < a} is measurable.

4. For each real number a, the set {x E D I [(x) ::; a}is measurable. These statements

imply

5. For each extended real number a, the set {x E D I f(x) = a}is measurable.

Proof: Let f be an extended real valued function whose domain D is measurable. We
Iprove that 1 ~ 4, 2 ~ 3 and 1 ~ 2.

Let a be a real number.

1 => 4 We assume (1). So {x E D I f(x) > a } is measurable.

Clearly {x E D/f(x)::;a} =D- {x E D/f(x»a}
!

Since D and {x E D I f(x) > a} = A one measurable, {x E D I f(x)::; a} is measurable.

4 => 1 We assume (4). So {x E D I f(x)::; a} is measurable.

Now {x E D I f(x) > a} = D - {x E D I f(x)::; a}.

Since D and {x E D I f(x)::; a} are measurable, {x E D I f(x) > a} is measurable.
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'~,=> 3. We assume (2). So {x E D / f(x) ~ a} is measurable.

Now {x ED / f(x) < a} = D - {x E D / f(x) ~ a}

Since D and {x E D {f(x) ~ a} are measurable, {x E D / f(x) < a} is measurable.

Similarly we get 3 => 2

1 => 2. We assume 1. {x E D / f(x) > a} is measurable for all real numbers a. Clearly

~ 1
. {x E P(f(x)~a} = n{xED/f(x»a--}.

n~l n

Since {x E D / f(x) > a - ~ } is measurable for each n = 1,2, ,
n

n{x E D / f (x) > a - ~} is measurable as countable intersection of measurable sets is
n~l n

measurable. Therefore {x E D / f(x) ;? a} is measurable.

2 => 1. We assume 2. {x E D / f(x) ~ a} is measurable for all real numbers a.

co 1
Clearly {x E D / f(x) > a} = U{x E D/f(x) ~ a + -}.

. n~ n

Since {x E D / f(x) ;? a + ~} IS measurable for each n = 1,2, .
n

co 1
U {x E D / f (x) ;? a + -} is measurable as countable umon of measurable sets is
n~l n

measurable. Therefore {x E D / f(x) > a } is 'measurable. Now 1 ~ 2, 2 ~ 3 and 1 ~ 4.

Therefore the first four statements are equivalent.

We prove now that the first four statements imply 5th. statement. Assume the first four

statements.

Case I Suppose that a is a real number.

.Now {xED/f(x) = a} = {x ED/f(x);?a} ("){xED/f(x) ~ a}

By our assumption {x e D/ f(x)~ a}, {x e D / f(x) ~ a} are measurable.

So {x E D / f(x) ~ a} (") {x E D I f(x) ~ a} is measurable.

Therefore {x E D / f(x) = a } ismeasurable.
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" . .
Case II Suppose that-« = 00 '",''' ',I- t:"

00

Now {x E D / f(x) = oo} = n{x E D/f(x) ~ n}
n=1 \ --

Since {xEDIf(x)~ n} IS measurabie' for ea~hli= 1;2;: ... ::: ,.:' ,
00

n{x eDzf'(x) ~ Jil} is measurable, as countable intersection ,of,measurable sets IS
n=1 '<" , ,,', " , ,,', " " ' '

measur~ble. Therefore {x E D I f(x) ==;x,} is ine~sillabre.';'

Case III: Suppose that a = - 00

00

Now {x E D / f(x) = - oo} ='n{x E D/f(x) ~ -n}
'n=1

Since {x E D/ f(x) ~ - n } is measurable for each n = 1,2, ....
ec

n{x E D/f(x)::; -n} is also-measurable. Therefore {x E D hf~x)= -<X)} is measurable.
n=1

This completes the proof.

5.3 Self Assessment Question: Show that the statement 5 in the proposition 5.2 ne~d not

imply anyone of the first four statements.

5.4 Definition: An extended real valued function f is said to be measurable or Lebesgue

measurable if its domain is measurable and if it satisfies one, of the: first four statements of

proposition 5.2.

5.5 EX,a~ple: A continuous real valued function with measurable domain D is

measurable since for any real n~ber ~, the set {~.ED / f(x) > a} = [-1 (a,'oo) being the
( , ,

inverse image of open set (a,oo) is open in D and hence measurable.
. " ',. •.. -. =" '- '"

Note that the converse is IWt.true. For example the function f defined on IR by f(x) = 0 if
.' . ". • c' .~. ; •• • .' .'

X E (0,1) and f(x) = 1 otherwise, is measurable but not continuous. Thus the class of

continuous functions is a proper sub~lass of the class of measurable functions."

5.6 Self Assessment Question: .' '

If f is a measurable function and E is a measurable subset of the domain of f then the
, ,. 2' !

•• ~$

function obtained by restricting f to E is also measurable.
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, ,
5.7 Self Assessment Question:

Prove that every constant function defined ona measurable set is a measurable function .
. . ', '.;

.'. . '.' s : 1'. , .t. ',' '. • . . ". . . . '. .

S.8 Proposition: Let c' be a constant and f and g two measurable real valued functions

defmed on the same domain. Then, the functions f+c; cf, f+g, f - g and fg are also
'. I' . • " ., ;' ' •. ,'

measurable.

}.I .:

Proof: Suppose that c is a constant and f and g are two measurable real valued functions

defined on the same domain D. ' . ,

Let a be a real number.:~; .

1. We show that f + c is .a measurable function. . ..'!

{x E D / (f + c)(x) < a} = {x E D / f(x) + C < a} = {x E D / f(x) < a -c }

Since fis measurable, {x E D / f(x) < a - c} is measurable.
. :' (,. '"

So {x E D / (f+c) (x) < a} is measurable. Ther~fore f + c is measurable,
ii! ... ·

2.. ' We show thatcfis measurable.

Case] Suppose that c=O .. '

Now cf= 0, a constant function, and hence measurable by SAQ 5.7

Case II Suppose that c :> 0
. ."" " . '0:'

{x E D/ (cf) (x) > a} = {x E D/ cf(x) > a}= {x E D / f(x) > - }. ". . ,c'

. .-1.' ·a·.· .
since fis measurable, {x E D/ f(x) > -} is measurable. Therefore

c

{x E D / (cf) (x) > a} is measurable. Hencecf is measurable.
,.'

Case III Suppose that c < O.

a
{xED/ (d) (x) > a} = {x ED / c.f(x) > a} = {x E D / f(x} <-+. ;.,e

C
'\';': ,I ~ > ••••• ,. d' • ~ -~ii~"a, . ,.. " "

Since fis measurable {x ED/ f(x) < -} is measurable .
.. ·..;.c :.

So {x E D/ (cf) (x) > a} is measurable. Therefore cfis measurable.
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3. We show that f + g is measurable.

{x E D I (f+g)(x) < a}.= {x ED I f(x) + g(x) < a} = {x E D I f(x) < a - g(x)}

Since between any two real numbers there is a rational number, given

X E {x E D I f(x) < a - g(x)} , we get a rational number r such that f(x) < r < a - g(x).

Therefore {x E D I (f+g) (x) < a} = U ({x E D I f(x) <r} (1 {x E D I g(x) < a -r})
4

Since rational numbers are countable and {X,E D I f(x) > r}and {xED I g(x) < a - r}

are measurable (as f and g are measurable),

U ({XE D/f(x)<r} (1 {x E D/g(x)<.-~--r})isacountableunionofmeasurable· .

sets and hence measurable. Therefore {x E D I (f+g) (x) < a} is measurable and that

f + g is measurable.

4. We show that f - g is measurable.

f - g = f + (-1) g. Since g is measurable, (-l)g is measurable by (2). Since f and (-l)g .

is measurable, f+ (-1)g is measurable by (3).

Therefore f - g is measurable.

5. We show now that fg is measurable.

First we prove that f 2 is measurable.

Ifa~Othen {x E D/f2(x»a} ~ {x E D/f(x»..Jc;.} u {x E D/f(x) <--Ja}
and as {{x E D / f(x) > -JU} and {x E D / f(x) < - Fa} are measurable (as f is

measurable), {x E D I f2(X) > a} is measurable.
) .

If a <0 then {x E D I f 2(X)> a} = D and that {x E D I f 2(X) > a} is measurable.

Therefore {x E D I f2(X) > a} is measurable and that f is measurable.

1 2 2 2nowfg= - [(f+g) -f -g ]2 .

Since' f and g are measurable f 2, g 2 are measurable as seen above and f+g is

measurable by (3). Since f+g is rneasurable as seen above (f+g)2 is measurable.

(f+g) 2_ [2 is measurable by (4). Also (f+g) 2_[2_ g 2 is measurable again by (4).
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Now

! [(f + gi - f2 - g 2] is measurable by (2) i.e. fg is measurable.
2

5.9 Note: In proposition 7.6 we considered the sum and product of two real valued

measurable functions defined on the same domain and not the sum and product of two

extended real valued measurable functions defined on the same domain. Let f and g be

extended real valued functions defined on the same domain D. f+g is not defined at a

point XED where f(x) = 00 and g(x) = - 00 or f(x) = - 00 and g(x) = 00 as 00 + --<X) is

undefined. If we take the same value for f+g at such points in D then we see that f+g is

measurable. Also if the set of all such points in D is a set of measure zero then f+g is

measurable, whatever values we take for f+g at these-points in D. However fg is always

measurable.

5.10 Theorem: Let {fn} be a sequence of measurable functions with the same domain of

definition. Then the functions sup {fl' f2, .... , fn}, inf {fJ, f2, ... , fn}, sup f., inf fn, lim f,
nn

and lim fn are all measurable.

Proof: Let {fn};=\ be a sequence of measurable functions with the same domain of

definition D. Let a. be a real number.

1. Let h = sup {fJ, f2, .... , fn}. Now hex) = sup {fleX), f2(x), ..... , fn(x)} for all XED.
n

We claim that {x E D / hex) > a} = U {x E D / fi (x) » a} .
i=1

Let xED and hex) > a.. Now hex) = fj (x) for some 1 :::;;j :::;;n.
n

Therefore fj(x) > a and that x E {x E D I fj(x) '!J a.} c U{x E D I fi (x) > a.}
i=\

. n

So {x E D/h(x) > a} c U{x E D/fi(x) > a}
i=\

n

Let x E U{xED/fj(x»a.}.Nowforsome 1 :::;;k:::;;n,fk(x»a..
i=1
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Sinceh(x)~fdx»a,x E {x E D/h(~»a}
n

Therefore U{xED/f;(x»a}c {XE D/h(x»a}
;=]

n

Hence {x E D/h(x»a};= U{xED/f;(x»a}.
i=l

Since f is measurable, {x E D I f (x) > a} is measurable for i = 1, 2, .... n and that
n

U{x' ED I f; (x) > a} is measurable. So {x E D I h (x) > a} is measurable. Hence h is
;=1

measurable.

'l r '

2. Let g = inf {fi, f2, ; fn}. Nowg(x) = inf {fleX), 6(x), fn(x)} for all XED. '

Nowg = inf {fl, f2, fn} = - sup {~fJ, ~f2' ..... , -fn}

Since f is measurable, - fi = (- 1) fi is also measurable for i ;= 1,2, n. Therefore by
i

(1), sup {-f), -:-f2,;.... , -fn} is measurable and that -sup {-fl, -f2, ..... , -fn} is also

measurable. Therefore g is measurable,

3. Let h = sup {fJ, f2, ..... , fn, ..... } = supf,
n

now h (x) = sup {fleX), f2(x), .... , fn(x), ... } = sup fn(x), for all XE D.
n

00

We Claim th~t {x E D I hex) > a} =U{x E D/fn (x) > a}.
n";!

Let xED and hex) > (X.. Suppose that fn(x) ~ a for all n =,: 1,2, now sup Ejx) ~ a
n .

i.e. hex) ~ a,a contradiction. So for some positive integer m, fm(x) > a.
00 00

So X E U{x E D/fn (x) > a} . Therefore {xEDIh (x) > a} c U{x E D/fn (x) > o} (1)
n~ n~ .

QO ; -.'

Let x E U{x E DJfn (x) > a}. For some positive integer k, fk(x»a. Since h(x)~fk(X» ex';
n~ .

00 .

X E {x E D I h (x) > a}.Therefore U{x E Dzf', (x) > a} c {x E D I hex) > a} - (2)
n=l

':/t
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. . 00, : . . .'-' .

From(1) & (2) {x E D'/ hex) > a} = U{x E D/fo (x) > a}. Since fn is measurable,
0=1

.00.

{x E D I fn(x) > a} is measurable for all n = 1,2, ..... Therefore U{x E D/fo (x) a} is
0=1

measurable. So {x E D I hex) > a} is measurable. Hence h is measurable.

4. Let! = inf {fl, f2, .... , fn, ... } = inf fn.
n

now I (x) = inf {fl(X), f2(X), ... )n(X), .... } = inf fn (x).
n

1= inf {fl, f2, .... , fn, ... } = - sup {-fl' -f2; .... , -fn, .... }.

Since fn is measurable, -fn is measurable for all n = 1,2, .... So, by (3) sup {-ft, -f2, .... , -f,
... '

.... } is measurable. Now -sup {-fl' -f2, .... , -fn, .... } is measurable that is I is measurable.

5. Let p = lim fn. lim fn = inf sup fk.
on .. n kzn

Let gn = sup f, = sup {fn, fn+l, .... }, n == 1,2, .....
kzn

Now p = inf go. Since fn is measurable for all n = 1,2, .... By (3) go is measurable for all
n

n = 1,2, .. ~... therefore by (4) p is measurable.

6. Letq = Lim fn. Lim fn = sup inf fk
n 0 kzn

Let h, = inf fk= inf {fn, fn+I, .:.}, n = 1,2 .....
k~o

Now q = sup hn. Since fn is measurable for all n = 1,2, ... by (4) hn is measurable for all
n

n = 1,2, ..... Therefore by (3) q is measurable .. (

5.11 Result: Let {fn} be a sequence of measurable functions defmed on the same domain

D. LetLim fn = f i.e. Lim fn(x) = f(x) for all XED. Then fis a measurable function on D.
n-+oo n-+oo

Prooft.Since Lim fn = f, f= .Lim fn = Lim fn-
0-+00 n~oo n

'.,

By theorem 5.10, lim fn is measurable as each fn IS measurable. Therefore f is
. 0

measurable.
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5.12 Definition: A property is said to hold almost every where (abbreviated a.e.) if the

',,- set of points where it fails to hold is a set of measure zero.

For example: (1) Let f and g are extended real valued functions with the same domain D

where D is a set of real numbers. Then we say that f= g a.e. ifm( {xED / f(x)"* g(x)})= 0

ii) Let {fn} be a sequence of extended real valued functions defined on the same domain

D,O a set of real numbers. Then we say fn converges to g almost every where if there is a

set E of measure iero such that fn(x) converges to g(x) for each x not in E.,

iii) If f and g are functions with the same domain and {x: f(x) > g(x)} has measure zero

then we say that f~ g a.e.

iv) Let fbe afunction defined on IR by

{.
o if x is irrational

f(x) =
1if x is rational

\ .

'the~h!(x) =0 a.e., since, m{x: f(x)"* O}= m{x:x is rational}=O
\

\
Ope consequence of equality a.e is the following:

\
\

5.1¥roP.osition: Iff is a measurable function and f = g a.e., then g is measurable.

proo\ Let f be a measurable function and f = g a.e. Let D be the domain of f and g and

let E,~ {x ED: f(x) =/; g(x)} Since f = g a.e, m (E) = O.Let a be a real number. Now,
\ '

{x E'~\ g(x) > a} = [{x ED: f(x) > a} u {x E E: g(x) > a}] - {x E E :.g(xr::; a}.. (1)

Now the \p1easurability of f implies that {x.fixj>«} is a measurable set. Also since each
• , .'\ I·

one of theisets {x EE: g(x) > a} and {x E E: g(x) ~ a}, being subsets ofE of measure
, i -' ,-

zero, is of measure zero. Hence (1) shows that {x ED: g(x) > a} is a measurable set for

each real a, proving g is measurable.

5.14 Definition: Let A be a set of real numbers. The char-acteristic function XA of the set

A is a real ~alued function de~ned on the set of real numbers by XA(X) = {I i.f xt~ A
. 0 If )\i~ A /
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5.15 Result: Let A -be a set of real numbers, then "XA is measurable' if and only if A is '

measurable.

Proof: Let A be a set of real numbers. Suppose that "XA is measurable. Now

{x E R / "XA (x) ~ l} = A is measurable.
2

Suppose now that A is measurable. Let a be a real number.

{

R' if a < 0
Now {x E R / "XA(X) > a} = A, if 0 ~ a < I

~,if 1~ a

Since R, A and ~ are measurable, XA is measurable.

Note: If A is a non measurable subset of R then by the above remark, XA is not

measurable. So the existence of a non measurable set implies the existence or a

non-measurable function.

5.16 Definition: A real valued function ~ is called simple if it is measurable and assumes

only a finite number of values.

Let ~ be a simple function. Suppose that aI, a2, .... , an be the distinct values assumed by

~. Let A, = {x / ~ (x) = ai }, 1 ~ i ~ n. Since o is measurable, A, is measurable for all

1s is n.
/ n

As aI, a2, .... , an are distinct AI, A2, .... , An are pair wise disjoint. Clearly ~ = Lai"XA; .
, i~1

5.17 Result: the sum, product and difference of two simple functions is simple.
"

Proof: Let $1, $2 be two simple functions defined on E. since $1, $2 are measurable, real
, .,

valued functions ~1+~2' ~1-~2and ~1~2 also assumes finite number of values. Therefore

~1+~2,~1-~2and ~I~2 are simple.

5.18 Definition: A real valued function ~define.d on [a, b] is said to be ,a ~~epfunction if

there is a partition a = Xo< XI <..... < Xn= b such that for each i, ~ assumes only one

value on (Xi, Xi+I),i = 0,1,... ; n-1.
. I
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5.19 Result: A step function is measurable and hence simple.

Proof: Let ~ be a step function on [a,b]. We get a partition a = Xo< XI, < ..... < Xn= b

such that ~ = ai on (Xi-I,Xi) for i= 1,2, ..... n for some real numbers ai, a2, .... , an.

n

Let Ei = (Xi-I,Xi), i = 1,2, .... n. Let.'P= :L>iXE
i

• Since E, are measurable.P is measurable. I
i=1

Also ~ = 'P except possibly at the partition points xn, XI, .... , Xn.Since a countable set of

real numbers has measure 0, m( {xo, XI,.. '" xn}) = O. Therefore ~ = 'P a.e., since \f' is

measurable by proposition 5.13, ~ is measurable. Also, since ~ assumes only a finite

number of values, we get that-o is simple.

5.20 Theorem: Let fbe a measurable function defined on an internal [a, b], and assume

that f takes the values ± 00 only on a set of measure zero. Then, given E > 0, we can firid

a step function g anda continuous function h such that If- gl < E and If - h]« E except on

a set of measure less than E; that is, m ({x: [f(x) - g(x)[ ~ E}) < E and

m( {xl [f(x) - h(x) [ ~ E}) < E. If in addition f is bounded and m S; f S;M, then we may

choose the functions g and h so that m S; g S;M and m S; h S; M.

Proof: With out loss of generality, we may assume that f is real valued.

Case 1 Suppose that f= XE and E is a measurable subset of [a, b]. By proposition 3.16

and 3.22, we get pairwise disjoint open intervals h, h,...., In such that

m'«Q1tlMl) < E. Now IR, (QI,) ~ QJi' where J" h ,...,Jm arepair wise disjoint

intervals.
n m

Let t = LXIi + LSiXJi ' where s, = 0 for all 1 S;j S;m.
i=1 i=1

Let g be the restriction of t to [a, b].

Now {x E [a,b] / [f(x) - g(x)[ ~ E} =~, if E > 1 and for 0 < E S; 1,

{ X E [a,b] / If(x) - g(x)1 <: E) ,,; (QI') A E ...
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* . .
So, m ({x E [a.b] /.If(x) - g(x)1 ~. E}) < E. Next, choose a continuous function h on [a, b]

such that,
* .m ({x E [a,b] /,}f(x)-h(x) I~E})< E.

• n

Case 2 'Suppose that fis a simple function on [a, b] and f= L>iXE
j

,where ar, a2, .... , an
i=l

are real numbers and El, E2, .... ,'En are pair wise disjoint measurable sets with
n

UEi = [a, b]. As seen in Case I, foreach 1 ~ i ~ n We get a step function g, and a
i=l

continuous function hi on [a, b] such that m* ({x E[a,b] Ilai XE
j
(x) - g, (x) I ~ :})\ < :

and ni* ({x E [a, b] Ilai XE (x)- hi (x) I~ E}) -: ~ ., n n .
Letg= ~gi andh= ~hi' . . \

g and h have the required properties .

.CaseS: Suppose that f is a bounded measurable function on [a, b]

.We get a simple function ton [a, b] such that If(x) - t(x) I < E/2 for all x E [a, b]. The

existence of such a simple function is proved later in Lesson 7, proposition 8. By case 2.

we get a step function g and a continuous function h on [a, b] such that

* E Em ({x E [a, b] / It(x) - g(x)1 ~ -}) < - and2 2
• . E E

m ({x E [a, b] I It(x) -hex) I~"2}) < 2' For x E [a, b], If (x) - g(x) I~ E =>

I f(x) - g(x) I ~ E/2 and If(x) - h(x) I ~ E => It(x) - hex) I ~ E/2. Now g and h have the

required' properties.
I

Case 4: Suppose that fis an arbitrary measarable function. For each positive integer rr, let

En ={x E [a, b] I If(x)I ~ n}. Clearly En's are measurable sets, En ::J En+l for all n and
\ ..' .'

co

nEn = ~.So, m* (En) ~ 0 as n ~ 00, by proposition 3.15. We get a N such that
0=1

* E - . . - {f(X) if x ~ EN
m (EN) < -. Let f be the function defined by f (x) = .

. 2 . .' N If x E EN

Now f is a bounded measurable function on [a,b].
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I_ SO,by case 3, -Ivveget a step function g and a continuous function h on [a, b] such(that

I• - E E
I m ({x E [a, b1 / I f(x) - g(x)1~ - }) < -···22

.' * - E E
and m ({x E [a, b] / 1f (x) - h(x)1~ - }) < -2 2

E
Let E = {x E [a, b] / If(x) - g(x)1~ - }

2
. - E

and F = {x E [a, b1 / If (x) - g(x)1 ~ - }
. 2

• E
Nowm (F) <-.

. 2
so {x E [a, b] / If(x) - g(x) 1~ E} c E C EN U (E~nE) = EN U (E~n F) where E~ is the

complement of EN in [a, b].

* * * E ESo, We have m ({x E [a, b] / If (x) - g(x)1~ E }) S m (EN) + m (F) < - + - = E.22
Similarly, it can be shown that m* ({x E [a, b] / If(x) - h(x)1 ~ E} < E

This completes the proof ofthe theorem.

5.21 Self Assessment Question:

Let D be a dense set of real numbers and let f be an extended real valued function on the

set of real numbers such that {x / f(x) > a} is measurable for each a E D then prove that

f is measurable.

\

5.22 Self Assessment Question:

Give an example of a function f such that I~ is measurable but f is not.

5.23 Self Assessment Question:

Let D and E be measurable sets and f a function with domain DuE. Show that F is

measurable iff its restrictions to D and E are measurable.

5.24 Self Assessment Question:

Let f be a function with measurable domain D. Show that f is measurable iff the function

g defined by g(x) = f(x) for XED and g(x) = 0 for x ~ D is measurable.
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5.25 Self Assessment Question:

Let f be an extended real valued function with measurable domain D and let

DJ = {xl f(x) = oo] and D2 = {x / f(x) ='-oo}. Then f is measurable iff Dl and D2 are

measurable and the restriction off to D - (D. U D2) is measurable.

5.26 Self Assessment Question:

Prove that theproduct of two measurable extended real valued functions is measurable.

5.27 Self Assessment Question:

If f and g are measurable extended real valued functions and a a fixed number, then f+g

is measurable. If we defined f+g be a whenever it is of the form co + -00or - 00 +00

5.28 Self Assessment Question:

Let f and g be measurable extended real valued functions that are finite atmost

everywhere ..Then f+g is measurable no matter how it is defined at points where it has the

form 00+ - 00 or - 00 + 00.

\ 5.29 Answers to Self Assessment Questions:

5'.3 Let E be a non-measurable set contained in [0, 1). Define a real valued function fon
c . . . {X if x E E

the measurable set [0, 1) by f(x) = if E
-Xl x!CO

Let a be a real number then, {x E [0, 1): f(x) = a} c {a, - a} and hence

{x E [0, 1) : f(x) = a} is measurable, sinceany finite set is measurable.

Also, {x E [0, 1) : f(x) = 00 } = ~, {x E [0, 1) : f(x) = - co} = ~ and hence measurable:

Thus f satisfies statement 5.

Now either 0 E E or 0 ~ E

IfO E E, then {x E [0, 1) : f(x);;:: O}= E is not measurable.

If ° ff-. E then {x E [0, 1) : f(x) > O}= E is not measurable.

Therefore statement 5 does not imply anyone of the first four statements in..

5.6 Let f be a measurable function with measurable domain D. Let E be a measurable

subset ofD. Let fiE be-the restriction off to E. Let a be a real number. Then.,
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{x E E: ff E> a} = En {x ED: f(x) > a} is measurable. Therefore, fIE is measurable.

5.7 Suppose f(x) = c for all x E E, where E is a measurable set. Then forany real number

. {~if a ~ ca, we have, {x: f(~) > a} = r '.-
E If a < c

Here ~ and E are measurable sets and hence f is measurable.
5.21. Let D be a dense set of real numbers, Suppose that f is an extended real valued

~. .

function on IR such that,~: f(x) > a} is measurable for each a E D. Let rbe a real
~ \ -

. , number. For each positive inte~r n there is an an E D such that r - l< an <r, since D is
\ n

00

dense in IR. Now we have {x: f(x) < r} = U{x : f(x) < an}. But, by hypothesis each set
o~ . .

{x: f(x) < an} is measurable and hence {x: f(x) <r} is measurable. Thus fis measurable.

. 1 1 . .
5.22 Let E be a non-~~a,~ura,bl~ ~et. Then, X,E - '2 is n<?t~~asurable, but I XE (x) - _~ 1=

~ f~~al! )( ~o IXE - ~ I ~~g1efls~r~ble.

5.23 Let D and Eb,~measurable !;I,~tand f fl function with 49lllfliP. DuE. by SAQ 5.6 the
•• >, '., .' ,~ '. . • '-. . ," •

restrictions of f to P @g r: ~X~ measurable, Conversely suppose that-the r~~triCtiol1sf\ ~t;lq
J. • , • ~.' -', • : • .' •

f2 off to D and E are measurable. Let a be ~ real number, then
'.,' 1:.

{x E DuE: [(x) >~} = {J,CED: f\ (x)> a} I,.J {x E ~: .f~:(x;»~}

Since fl and f2 are measurable, {x E E : f\ (x) > a} and {x ~ ,0-: f2 (x) > a} are

measurable and hence {x ~ I) u E : f(x) > a} ~sm_~'wvable,. Therefore f is measurable.

function defined on D '-,:J D by g(?C) = f(x) for all x ED and g(x) = 0 for all ~ E D.

Suppose ~ha.tf~s,m~~faPlY. The restriction of g to D is f and hence measurable. The

restriction .of g to D is the constant function 0 and i~ measurable Therefore g is
. ,

measurable by 5.23. Conversely suppose that g is measurable since the restriction of g to
...•,: . ~~,

D is f, we have f is measurable.
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5.25 Let f be an extended real valued function with measurable domain D and let

Dl = {x: f(x) = oo}and D2 ={x: f(x) = - co}. Suppose that fis measurable. By proposition

5.2, DI and D2 are measurable. Also since DI U D2 is measurable D - (DI U D2) is

.measurable and that the restriction of f / D - (DI U D2) is also measurable. Conversely

, suppose that DI and D2 are measurable and.the restriction fl of f to D - (DI U D2) is

measurable. Let a. be a real number. Then {x ED: f(x) > a.} = {x E D - (DI U D2) ;

fl (x) > a.} U DI. Since fl is measurable, {x e D - (Dr U D2) : fl (x) > a.} is measurable '

and that {x ED: f(x) > cc} is measurable, since DI is also measurable. Theref~~, f is

rneasurable.

~.26Le~ fan,id g be measurabl,e extended real value~ functions defined onD~

~utAI ={x'e D: f(x)=oo} and Aj = {x e D: f(x)=-oo} ,
\ -

BI\= {xe I}: g(x) = co] and B2 == {x E D= g(x) = - oo}

Ct ~ {x ell : (fg) (x) = oo}and C2 = {x ~ D : (fg) (x) = - eo}

Then'\ CI = {x ED: (fg) (x) = co}

= {x~D: f(x) g(x) = oo}
"

= Al n\'{x ED: g(x) > O} U (HI (l {x E D: f(x) > OJ) U (Az (l {x ED: g(x) <~}) u (a2
\

(l(x ED: f(x) <O})

Since ftd g are measurable all thesets involved on the r.h.s. are measurable and hence

CI is mea\surable .

. C2 = {X e\D : (fg) (x) = - ro}

. = [x ~ D ~f(x) ~(x) = - co}
= B~ n{~ E P : f(x) > a} u (AI (l {x e D : g(x) < O}) V (BI (l {x e D : f (x) < O}) U

A2" {x e D : g(x) > a.}

Since f and g are measurableall the sets involved on the r.h.s are measurable and hence

C2 is measurable.. '

Let E = [(AI v A2) n {x E D 19(x) = O}] U [(BI U Bz)" {x e D / f(x) = O}]

Since f and g are measurable all the sets involved on the right hand side of the, above

equality are measurable and hence E is measurable.
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By our convention that 0.00 = 0 = 0.(-00),

(fg) (x) = f(x) g(x) = 0 for all x E E. Therefore fglE = 0 is measurable since C\, "1 and E

is measurable, CI U C2 U E is measurable and that D - (CI U C2 U E) is measurable.

Since f and g are measurable, the restrictions of f and g to D - (CI U C2 U E) are•
measurable. Moreover the restrictions of f and g to D - (CI U C2 U E) are also real

valued functions and that by proposition 5.8, the restriction of fg to D - (CI U C2 U E) is

measurable.

Now (D - (CI U C2uE» uE = D - (CI uC2)

Since the restriction of fg to D - (CI U C2 U E) and E are measurable by SAQ 5.6, the

. restriction of £g to D - (CI U C2) is measurable. As CI & C2 are measurable fg is

measurable.

5.27 Let f and g be measurable extended real valued functions defined on a common

domain D and let a be a fixed number.

Let Al = {x ED: f(x) = co} and A2 = {x E D :f(x) = - oo]

BI = {X'E D : g(x) = oo] and B2 = {x ED: g(x) = - co}

CI = {x ED: (f+ g)(x)=oo} and Cy= {XE D: (f+ g)(x) =-oo}

Now, CI = {x ED: (f+g) (x) = oo}= (x ED: f(x) + g(x) = co]

= Al n {x ED: g(x) *- - 00 } U (BI n {x E D: f(x) *- - oo})

= (AI - B2) U (BI - A2)

Also C2 = {x ED: (f + g)(x) = - oo] = {x ED: f(x) + g(x) = - oo}=

= (A2 r. {x E D / g(x):;t: co]') U (B2,n {x ED: f(x) *- oo}) .

= (A2 - BI) U (B2 - AI)

since f and g are measurable, we get that AI, A2, BI and B2 are measurable and hence C2

is measurable. Put, E = (AI n B2) u(A2 nBI). Clearly, E is measurable.

Now CI U C2 U E is measurable. Thus D - (CI U C2 U E) is measurable and fang are

real valued functions on D - (CI U C2 U E). Therefore by proposition 5.8, f + g is a
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measurable function on D ~ (CI U C2 U E). Now, define f + g = a on E. Clearly, f + g is

measurable on E being a constant function on E. Therefore f + g is measurable on

(D ~ (CI U C2 U E)) u E = D - eCI u C2). Since CI and C2 are measurable, we have by
\

SAQ 5.25, f + g is measurable on D.

5.28 Let f and g be measurable extended real valued functions that are finite almost every

where.

Let D be the common domain of f and g

LetA= {x E D/f(x)=±oo} andB= {x E D/g(x)=±oo}

By our assumption meA) = m (B) = 0

Therefore m (A u B) = O. So every subset of Au B is measurable. Now D - (A u B) is a

measurable subset ofD and f, g are real valued measurable functions on D - (A u B).

Therefore f+g is a measurable function on D - (A u B) by proposition 7.6.

Let a be a real number. Suppose that f+g is defined arbitrarily on A u B.

{x E D I f+g(x) > a} = {x E D - (A u B) I {f+g) (x) > a} U {x E Au B I (f+g) (x) > a}

So f+g is measurable on D:- (A u B) {x E D - (A uB) I (f + g) (x) > a} is measurable.

Also as {x E Au B I (f+g) (x) > a} is a subset of Au B, {x E Au B I f + g (x) > a} is

measurable. Therefore f + g is measurable.

5.30 Model Examination Questions

5.30.1 Show that the sum and product of two simple functions are simple.

Show that

x - = 1 - XA
A

5.30.2 Letc be a constant and f, g be measurable real valued functions defined on the

measurable set E. Then prove that f + g, cf, fg are also measurable.
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5.30.3. Iffis measurableandf'= ~a.e then prove thatg isalsomeasurable.
• :' I, • ,. ..~, /, 'f . - i. ". . . ;t:" ,1 '

5.30.4. Let <fn> be a sequence of measurable functions (with the same domain of

definition). then prove that the functions sup {fi, f;, - fn} and inf {[\, '£2, ,fn}th~n lim;

fnarid Hm fn are' all measurable .'

5.31 Exercises:

1.. Give an example of a measurable function which is not continuous.

2. .Show that constant.functions are measurable. -

3. Let {fi}be a sequence of measurable functions converging a.e. to f. Show that f is

measurable.

4 Show, that the set of points on which a sequence of measurable fun~tions' {fn}

converges.js measurable.

5. Iffand g are measurable functions defined on E then prove that {x eEl f(x) =;g(~

and {x E E / f(x):I= g(x)} are measurable.

6.. 'Iff is a measurable function then prove thatf ", f" and Iflare measurable.

7. Let fbe a continuous function and gameasurable function show that the composite

fog is measurable.

8. Show that monotone functions are measurable.

9. Give an example of a function f such that [f is measurablebut f is not.

I,Q.Prove that for any non negative measurable function f defined on a measurable setE
. . i

,there isa sequence {4>n}of simple functions such that 4>1~ 4>2~ 4>3~.... :;.".~'f1U1d
..

lim ~n (x) = f(x) on E.
n~'"

,ii

11. Let f be a measurable function on [a, b] . Given E > 0 and M, show that there is a

simple function 4>such that If(x) - 4>(x) I < E exceptwhere.lfix) r~M.

Reference: Real Analysis - H.L. Royden

Lessor writer: R. SRINIV ASA RAO



LESSON-6

LITTLEWQOD'S THREE PluNCIPLES

6.1 Introduction: There are three important principles, identified by J.E. Littlewood

which roughly say that measurable sets are 'nearly' finite union of open intervals,
- "' '. .-

measurable functions are 'nearly' continuous functions and convergent sequences, of

measurable functions are 'nearly' uniformly convergent. Various forms of the first

principle are given by proposition 3.16 one version of the second principle is given :hY'
theorem 5.20 another version by -Lusin's theorem. The following proposition givesone

version Ofthe third principle. A slightly stronger form is given by Egoroff's theorem. "

'.i

6.2 Proposition: Let E be a measurable set of finite measure and {fn} a sequence of

measurable functions defined on E. Letf'be a real valued functionsuchthat for each x in

E we have fn(x) ~ f (x). Then given E > ° and 8 > 0, there.is a measurable set A c E

withm(A) < 8 and an integer N such that for all x ~ A and all n 2':N, Ifn(x) -"f(Xi)1< Ei

Proof: LetE be a measurable set offinite measure and {fn}.a sequence .of measurable
.:, . (., .

functions defined on E. Let fbe.a real valued function such-that for each x in E we have'~ - - .. '. . . .' ,

fn(x) ~ f(x).

Let s s-O

Put lTn= {x E E: Ifn(x)- f(x}I2':E}, n = 1,2, .

Since eachf; is".measurable and {fn}, converges pointwise to f by result 5.10, f is

measurable. Sofn- f is a measurable .function and that Ifn - f 1,is measurable for all

n = 1,2, So Gn is a measurable set for n = 1, 2, .

. . ','

Put En = =,{ x E"l2 1fm(x)-.f(x) 12':E, for some m 2':n}.

Each En is measurable since each Gmis measurable;



Measure and Integration 6.2 Littlewood's Three Principles

Since En+l c En for all n = 1,2, ..... {En}:~1is a decreasing sequence of measurable sets.--- ' ' .
00

We claim that, nEn = <1>.
n~1

, II'!
I, '; - , /

00 ,

Suppose x E nEn . Since limfax) = f(x), we get a positive integer k such that
n=1 n e-s-cc

00

Ifn (x) - f(x) I < E for all n ~ k. Now x ~ Ek. This is a contradiction to x E n En .
n=l

00

Therefore nEn = <1>.Since El c E, m(El) ~ m (E) < 00. Therefore by proposition 5.14,
n=I

limm (En) = m (nE~ ) = m(<I»~ O.Let 8 > O.
n---+oo n~l

We get a positive integer N such that m (En)< 8 for all n ~ N. Let A = EN.Now

m (A) = m (EN) < 8. For all x ~ A = EN, Ifn(x) - f (x)1< E for all n ~ N. This completes

the proof.

6.3 Proposition: Let E be a measurable set of finite measure and {fn} a sequence-of
I .

measurable functions that converges to a real valued function f a.e. on E, Then,' given

E > 0 and 8 > 0 there is a set A c E with m (A) < 8 and an N such that for all x ~ A and

all n ~ N, Ifn(x)- f(x) I< E.

6.4 Definition: Let {fn} be a sequence of extended real valuedfunction defined on a set E

and f also be an extended real valued function defined on E. We say that {fn} converges

point wise to f on E if lim f, (X) = f (x) for all x E E. We say that {fn}.converges point
n---+<x>

wise to f a.e. on E if there is subset B of E with m(B) = 0 such that lim fn (x) = f(x) forn---+oo

all x E E - B.

Proof of Proposition 6.3: Let E be a measurable set of finite measure and {fn} a

sequence of measurable functions that converges to a real valued function f a.e. on E, We

get a subset B c E such that m(B) = 0 and lim fn(x) = f(x) for all x E E - B. Let E > 0
n---+oo
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and 0> O. By proposition 6.2, there is a measurable set A c (E \ B) with meA) < 0 and a

positive integer N such that for all x E (E\B)\A and for all n 2:N, Ifn (x) - f(x) I < E. Since

A andB are measurable, A u B is a measurable subset of E and meA uB) ~ meA) +

m(B) < 8 we have (E\B)\A = E\(AuB). Therefore m(AuB) < 0 and for all x ~ Au Band

all n 2: N, Ifn(x) - f(x) I< E.

6.5 SAQ: Give, n example to show that we must require m(E) < 00 in proposition 6.2.

Let E = [1, 00) m (E) = 00. Let fn = X[n,n+l), n = 1,2, .... Let x E E. We get a positive integer

k such that k s x c k+ I nowO= fk+1(x)= fk+2{x)= .

Therefore lim fn(x) = O. Let f = 0
n->'"

So {fn} converges point wise to fon [1, 00).

Suppose that proposition 6.2 is true for E and {fn}.

Let E = ~ and 0 =~. We get a measurable set AcE such that mrA) < ~ and a positive
2 2 - 2

. 1
Integer N such that for all x ~ A and for all n 2:N, Ifn(x) - f(x) I < -.~ 2

1
So, for all x ~ A, IfN(X)- f(x) I < -.. 2

1 l'
IfN(x) - f(x) I< - ~ X[N N+l) (x) < .~ ~ x Ii'!: [N, N+ 1)

2 ' 2

Therefore x ~,A implies x ~ [N, N+ 1) i.e. x E [N, N+l) implies x E A. i.e. [N,N+ 1)~ A.

So 1 = m ([N, N+ 1)) ~ m (A) < ~, a contradiction.
2

Therefore the proposition 6.2 is not true for E and {f-} as m(E) not finite.

Therefore m(E) < 00 is necessary in proposition 6.2.

6.6 Theorem: (Egoroff's theorem) If {fn}is a sequence of measurable functions that

converge to a real-valued function f a.e. on a measurable set E of finite measure, then

given E > 0, there is a subset A c E with m (A). < E such that {fn} converges to f

uniformly on E - A.
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ProOf: Let {fn} be a sequence of measurable functions that converge to a real valued

function f a.e. on a measurable set E of fmite measure. Let E > 0'. By proposition 604, f6r

.' E" .,
each positive integer n we get a measurable subset An of E with meAn) < and a " ;'2n

positive integer K, such that for all x ~ An and m ~ Kn, Ifm(x)- f(x)1< ~.
n

co

Let A = UAn . A is measurable as each An is measurable. Now A c E and- meA) ::;
n~ ,

We see now that {fn} converges uniformly to f on E - A. Let D > O. We get a positive
•

1 ":' 1
integer n such that '- < D.For x E E - A c E - An and m ~ Kn, Ifm(x)- f(x) I < -< D.

, n 'fie

Therefore {fn} converges uniformly to f on E - A.

6.7 Theorem: (LUSIN'S THEOREM) Let fbe a measurable real+ valued function on an

interval [a,b]. Then given D>O, there is a continuous function <j. on [a, b] such that

m ({x / f(x) -:I; cj> (x)}) < D.

Proof: Let f be a measurable real valued function on an interval [~, b]. Let D .; 0: By

proposition 5.20 for each positive inte~er n there is a continuous function h~r ~d a
. '. ,',.;' ",- .' " ' , ~ '" , I • -, •

D' "
measurable subset An of [a, b] SuchitP.~t'lhn(x)- f(x)1< 2n+1 for all x !l..Anand ,,'

8 - . , .' .':
meAn) < 2n+1 . Let E = DAn. As An is measurable, An is .measurable and!h~t E is

measurable, where An =[a,b] - An. Now E ~ [a, b] and that m(E) ~fu (Ia.bj) == b-a<Oo.
- , D

For x E E, x E An for all n =·1,2, .... and that Ihn(x)- f(x) I< 2n+1,~~rall n ~ l,f, ..:.;:80,

for each nEE, limh.Ix) = f(x). By example 5.5, each hnis measurable. By Egoroffs
n-+<Xl

theorem; there is a measurableset A.c E with m (A) < ~ and {h.} converges uniformly

to f on E - A. Since E - A is measurable by proposition 3.16, there is a closed set
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F s; E - A such that m «E - A) - F) < ~. Since the sequence {h.} of continuous, 4 '

functions on E - A and converges uniformly to f on E - A, f is continuous on E - A. As
, ," T, ". ' ,

F c E - A, f is continuous on F. Since F s; [a, b] and f is continuous on the closed set F, f

can be extended to a continuous function g on [a, b]. So f(x) = g(x) for all x E F and g is

continuous on [a, b]. Now {x E [a,b] I f(x)"* g(x)} c F c (E u A) u «E - A) - F).

For x E F , if x E E - A then x E (E - A) - f and if x ~ E - A then x E E - A = En A

=EuA.

So m ({x E[a, b] / f (x) "*g(x)}) sm ( F ) ~ m ( E ) + meA) + m«E-A)-F)
, '~, ,(',-J') (00 ) 0000 8 8, 8""

m(E)'OAn =m ,~An ~~m(An)<~'2n+1 = 2·Alsom(A)<'4;andm«E\A)\,F)
;- , <

888
<0/4. Therefore m ({x E [a, bII f(x)"* g(x)}) < - + -=- + - = 8.

. . 244
Hence g is a continuous function on [a, b] such that f(x) = g(x) except on a set ofmeasure

less than 8.

6.8 Model Exainination Questions:
6.8.1 Let E be a measurable set of finite measure, and {fn} a sequence of measurable

. '. " '.. ,

functions defined on E. Let f be a real valued function such that for each x in E we have
" '<;;

fn(x) ~ f(x). Then, prove thatgiven E > 0 and 8 > 0, there is a measurable set A c Ewith

meA) < S and an-integer N such that for all x ~ A and'alln ~ N, Ifn(x)- f(x) I< E.

6.8.2. State and prove Egoroff's theorem

6.8.3. State and prove' Lusin's theorem

6.8.4. Show that the condition m(E) is finite is necessary in Egoroffs theorem.

Reference Book: Real Analysis - H.L. Royden

(
Lessor Writer: R' SRINIV ASA RAO

,'l, , , '



LESSON 7: LEBESGlJE INTEGRAL - DEFINITIONS AND ELEMENTARY
PROPERTIES

INTROI)tlCTION:

TheRiemannintegral, inspite ofits utility in finding areas and volumes, has its own limitations

and shortcomings to mention a few, integrability of If I does not necess~rily guarantees integrability

- or r. Convergence does not necessarily have compatibility with integral. More precisely point wise
convergence of a sequence of Riemann integrable functions does not imply integrabil ity ofthe limit
function, even so the limit of the sequence of integrals may not exist and even if this limit exists the
limit ofthe sequence of integral may not be the integral of the limit.

A more useful integration theory that overcomes these drawbacks is developed by IIcnry
Lebesgue. after whom the integral is appropriately named,

This lesson and the next one are devoted to a systematic development of the Lebesgue
integral. In contrast to the Riemann partitions of the domain we divide the range into disjoint
measurable sets and define the integral in terms of the measures of sets. As such we start wi th the
definition of.the in..6ra1 of a characteristic function, extend this to finite linear combinations or
such functions. These are called simple functions - and then take lip the integra] or a bounded
measurable functions establish its linearity among other things.

We use the integral of a bounded measurable function to define the integral ofa non negative
measurable function. We define integrability of a non negative measurable function and extend
this to arbitrary measurable functions. We finally show' among others that this illll.::gral POSSl'SS

Ii 1l1:.':lri1y propcrt ics and monotonicity.

Inlt'gnll of a simple function: ..

Ih'finitiolls: If E ~ IR the characteristic function X Lor E is defined by :

{

I if x E E,·
X c(x) =

L 'o if x ttE

A finite linea;' combination of characteristic functions of measurable sets is called a simple
function.

Ih'mar-! •.s :( I). ¢ is a simple function ifancl only if there exist finitely many measurable sets E1" .. i·:"
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n
and numbers ai' a., .... ,a such that, ¢ (x) = L OJ XE (x)

~ 11 i=l i

II is clear that the range of a simple function is finite. However the above. representation is not

necessarily unique since the ruler function X R = X( -co,O) n R + .l(O, co)() Q.

If rjJ is a simple function with non zero range ( a" .... ,an} and Ai ={x/ ¢ (,x)~ (Ii : then ,c<ich,

n
A is measurable.and ¢ (x) = L: a·.lA. (x) \-I

I • 11 ;----...' vX
1= l <,

This representation of ¢ is called the canonical representation of ¢ .

(2) IrE is measurable X L is a measurable function because if a E lR,

¢ if a 2:1

[ x / X F(X) >a } = [Kif a < 0 and'

EifO:::a<l

Since a finite linear combination of mea sura ble functions is measurable, every simple function
is measurable.

(.1)11" ¢ is a simple function and E is a measurable set ¢ X E is a measurable funclionbecausc.;
\

11

L a·XL'I L.

i = I I

11

¢ ·IE = 2:: O·XE· EI .r,
i = I I

J. Ikfinition : Let rjJ be simple function which vanishes outside a set or finite measure. If

11

the canonical representation of ¢ is given by rjJ = .L Gi X A.
1 = 1 1
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,--~M~ea::s~u~re:..:a~n~d~ln~t~eg~r~at~io~n~_~S~~~C:7.J~~~~3..._~a~nd~EI~em~e~n~ta~fYUp~ro~p~er~ti~es=~.J

n
f ¢> (X) dx = L a .m(A.)

. 1 I 1
1=

This integral is some times denoted by f¢>. IfE is any measurable set we define the integral of ¢ .- ,..

We define the integral of ¢ 'by:

over Eby k¢ = f ¢·X E

4.· Example: The Lebesgue integral of xQf XQ = 0 sincem(Q) = O.

S. Lemma: Let ¢ be a simple function which vanishes outside a set of finite measure.
-,'

11

If rjJ"" L (Ji X E, where each Ejis a measurable set of finite measure and Ej nE, =¢ if i ;t j
i = 1 I

then

f¢
nLa. m(E.). 1 l l1=

Proof: The representation for ¢ in the statement is not necessari ly thccanoni cui

representation as somea's could be equal. However this can be reduced to uhe canonical
. I . . .\.

representation as follows', Let a I' a 2' .... , ar be the distinct non zero members of :ai,.·"a) so
that I ::::r::::n. Each aj may repeat a number of times. Foreach j letAj= {xl ¢ (x) = aJ' Then Aj

r

is the union of those E. for which a = a ... Hence A is measurable and ¢ =' .I l'ajX A . is the
. I. 1 J J, )=)

canonical representation of ¢ .

r

Hence f ¢ = .L aj X A .
J =1 )

r
I a ,meA ,)

j=l ] ]

rLa. m( U E.)
= '1] a-a IJ=? i- j

r
La, L

= )'--1 ] a =a
i j

m(E.)
I
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r, ,
L L a.m(£.)

=f=Ia.=a. ,J I'
1 J

n
L ·a.m(E.)

i=1 I I

6. Proposition:

Let ¢' be simple functions each of which vanishes 'outside a setof finite measure. Then
" for any a; b:

(i), J(a¢+blf/)=af¢+bflf/ and

(ii) J¢2 JIf/ if ¢(x) 21f/ (x) a.e.

Proof:

n
(i)'Let ¢= .L Qi XA. and

1=1 I

m

.L lbj XB. be the canonical representations of ¢ ami W
J= J

and let ft..o= {xl ¢ (x) = O} and 80 = {xl (x) = O}. For,eachpair (i,j) where I :::::i :::::nand

I :::::.i::::: m write Ei.i= Ai nBj' The set { Eij IV,i :::::i:::::n, 1:::::.i:::::111 [are measurable, pairwise disjoint

and ¢ (x) = 0 for x E Eo' as well asE. 0 r, '•.1 I,

A. =A.n[· ~ B ,]=U E.
I I, '-OJ "_01., J- ,J- J

, ,

n n 111

and d. = L a i XA. = L a. L XE
If' i=li=1 Ij=l ij

, n, m
13v/CIJ7ma 4rd.= 2: 2: a.m(£ .. ) ,. .If', '1'1)"

i=lj=l

m 11

," JIf/= L Lb.m(E .. )
S 1111 ilarly, ' . l' l J IJ} = 1=

n m , ,nm
aip+blf/= L, 2: (aai +bbj)XE. f a¢+blj/= 2: 2: iaa.w bb .)111(£ .. )

Since i=1 j=l' I.' i=l )'=1 I } 1.1, J

lienee f a¢ +b If/ = of ¢+'bflf/ .
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!

(ii) We first prove that f> 0 a.e then If =0 and deduce the general case from (i). Now assume

. . / . . n .
that fis a simple function with can~nical representation f= L: a1'%A ,f> 0 a.e., a. >,0 for. r i= 1 i-I~'
I ~ i < rand a.< 0 if i> r.. _. 1

/

'''!/
Then m(A) = 0 since { x I t~x) < OJ == . (; Ai has measure zero.

1 . l=r+l

n'
Hence f f= L: a.m(A.) ~ 0 since a. > 0 for 1 < i < r.. ' 1 1 1 1- - -

1=

'.i'

In th~ general case ~ -ljI is a simple function a~d ¢21f/ > 0 a.e.,

H~,ce f ¢- f Ij/ = I¢-Ij/ ~ O. This impljes that f ¢~ f Ij/ .
-,

7. If E I,E,\. .... E are measurable sets sUcl~hat •.:
. F '\ 11 . . \ 7L

\ i~l
E1·) < 00 and ai' ... a are real numbers and

. 11

n n /
¢= L: a. %E tli 1 f ¢= L: a. m r/. 1 I • :n~ . 1 1 ,p;

1= I 1= 1

Prouf: Follows tr~'rt-OY~sition 6.~~~
f

RCIll~'rk : From this coroll~r~ll;w~/that when ¢. is simple. I ¢ is independent of the

representation of ¢.
/

').!:. 1)'"Ollositi«,lW:

. . ~t f be defined aI,ld~delron a measurable set E with finite measure. Then the following
m:riquivalenl . - '" .

(I) f is measuraw{

/
(2)

'"

inf f Ij/(x)dx = sup. f ¢ (x) dx....·.....*f ~1/1/ F f.~ <' r r \\111..' 1\.' I.~ ;t nd i/I arc s i 111P Ie fu net iOI1S



Pn)()f: Denote the Ihs of (* ) by A and the rhs by B. If ¢and Ij/ are simple functions such

that ¢ (x) S f(x) S (x) on E, ¢X[~ .X E' hence 1¢ =-J¢ XE S Jlj/XE =blJl

This being true for every ¢, Ij/ 3 ¢ ~f ~ . k Ij/ is an upper bound for the set

:k ¢(x) dx S [(x) pnE} so that B ~ J If/ y * simple function 2: fon E.

Now taking the infimum on we getB ~ A.

We now prove that (1) => (2).

Since f is bounded, :3 aM> 0 3 -M ~ f(x) ~ M for x E E . Fix a positiveinte:~er 11an~1write

" (k-l)M kM
t:I,= [x'/x E Eand .::;f(x) ~ -},(-n~k~n),

, 11 n

M n
¢n(X) =- L (k-l) XE (x)

n k=-n k
r:

and (x) = M £ k XE (x) clearly ¢ ,Ij/ are simple functions
n n k =-nn k n n

satisfying rjJ n(x) ~ [(x) ~ n (x) on E. Hence

/f M n M· n »

/'J ¢ (x) dx=-' L (k-l}m(Ek) ~ B ~ A~ flj/ =-' I km(Ek)
" E n n k = -n , E n n k = -n .

M n M
o < B _A < - L m( E ) =- m(E)

- n k=-n k n

This being true 'If positive integer n it follows that B = A.
i
,I

To prove (2) => .( I).

Since B = A for every positive integer n. :J sil' ',' rlllll:li'\Il~:'~. .slIch'thlt¢> h') f(,).
l! II ,.



_~M~e~a~su~re~an~d~ln~t~eg~ra~t~io:n__ ~~~~~~7)~~~~~~Le~b~eS~g~Ue~l~nte~guffi~I-D~e~fil~1it~io~ns~~<; 7·1 and Elementaryproperties

\j X EEand A __1 < I ¢>n(x)dx < J If! n(x)dx < A + _1
2n E - E Zn '

1
S tl t f( If/ -¢ )(x) dx <-

o rat n n nE . (I)

Since each A.. , are measurable A.. * and * are measurable.'Pn n 'P

More over ¢ * (x) S f(x) S * (x) for x EE.

Ifwe show that ¢ * (x) == * (x) for almost all x in E it will then follow that f= ¢ * =

a.e. on E. From the measurability of rjJ * 'we can then conclude that f is measurable .

*

To this end, write

and V positive integer k,

and \j positive integers n, k

= { x E E / ¢ * (x) <

={xEE/¢*(x)<

= ( x E E / ¢ n(x) <

. * (x) }

* (x) - 11k}

(x) - Ilk}11

(T.-)

. oo(n)
Also. L". k. ~ n A'k since x Eo L\k ~ \j positive integer n,

n=~

fl, SUt'l¢ (x)
'P' (x) < . r n < A.. * (x) <n ~ f1: -'P

. 1
* (x) - - <. k :

, . ..(11) a: l1(n)
So that x E 6Ii . Vn and hence x E n k:

n=l

We IlOW show that m( ~.I) = 0 V k. S~l1(;;~
(n)(x)- A.. (x) 11k for x E 11

n Fn· k

1(1f/ - r/! )(x) dx 1. n n <-by(*)E .. n
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,.' k
0< m( ,1{,.}<. -'-'\1 n.

- I\, =n ) Since lim!::;: 0
n n

it follows that m( t1k ) ::;:O.

From (2) we get 111 (,1 ) ::;:O.

Hence '~. * = f= * a.e., on E and hence fis measurable.

Rcmm:k: Since fis bounded 3a llloE; IR 3 III .s:f(x) for all x EE. If is any simple function
.>,,'P, .,•. { ','

such that f~' thenmc SO:\p1()!11(E)~ kif . This shows thatlhs of *in the above proposition -
" ..'

is a ,:eal number; Likewise the ~h§i.~ also a real number, -Itis thus clear that if f is a bo,undcd
l11eus\l"abI~function. T~1el1tl~eeqll~Lval,,!~in C••.)isar~alnUn1qer.

9.1ntcg,-~tI of a bounded measunblc··fundion;
., . ,.... ~ :.. '";' ",~"~:,, .~;';:'..,",\,,:\.;

Odinition ! Let f be;;~bqundedll,WtJ$yraple function defined on a measurableset E with finite
1\1C[ISlIl;e.'\ye<;icfinethetebesgueiilt~~r,fll ~fJoyer'f~Y' '

J f(x)dx
E

: JlIs(x)dx. f I r ' /
III lE simple function 3 ·f(x).s: (x) for all x EE:

.This integral is son~e times denoted by 1f.

. //,

If E ~ [a. b1 we wri te [ a:~ '= jr . Ir,qs a bounded measurable function (defined on IR) wh ich

vanishes outside.aset E of-finite i11em;~lre~ewrite ' Jf for ·If .



,.lebesgueJntegraI;Definilions", "
~od .Elementary properties .'7.9

. ;

Ren'.ark: .When 'r'is a sill1pleJun~tion ~ailishing outside 'a ~etfwhich'i~ mea~~lrabl~and'h;~'~

finite measure t~en, ac?otdir\g;totl1c. ~~ove definition 1f., =l( =if[~E'" " .: , .
- ...,' . ~ • \;; f "".'.' ; 1. \ .: •• ~;. •

Since f = f. X E on E. 1lis a me~ber of the set whose infi~um is defined as the integral. For
: !: ".', ', '. : ",i .,.-:.,•.,.:,I ' . ~., ' ~, • ': \; '~~

every other. the conditio:lf~' ~nEimplies'that 1;,~klp~encel l,i,S the infimum of the

rhs in the above definition and is rgal}.Th~s this definitionris'cri~sistelit'with tl~edelil'iiion of the
integral for a simple function that vanishes outside a'measu~ible~~etoffinite measure.' .

Comparision withthe,Riemahnlnfegral:-< : . ,..;

10. Theorem:
. .

Let fbe a bounded'functiondefined on [a.b];· Iffis Riemann integrable on
"

. .., "'. :. ..' ',. b. .'" !.", /' . J f(x)d1
[a.bj then f is measurable and,th,eRleJl~almlllt~g(al;~l;;(x~dx = ,the Lebesgue lIltegral[a, b]

. '., :'4'tt·~;:;·;l·,i"I" '~', '.' > '·"i~'~/"'j~,_!~i''t ' ..\ '::'r:~ .,". _".:
I).·oot' : By definition f is Ri~1nanhintegrableiff" - "-

infU(p,f) = slIpL(p,f) ,'. '.. . ;, :",:',' <'.~!
p' J', where the infimum and supremum are taken over all partitions

';.".'," "j ~ ':':',)(;[':':>:i.,"";"" ···.',::j· .:·.. :ii::'.l , .s.: : :. i ,'.

nn
== j = < x < <x = b} . L (p f) = L m, ~ x. and U(p f) =., L ,M ..~ x.P I a Xo I •••.•.•. II • , '.' . I I "', '. ., -: I :, I'

. 1=1' . "'... '1;:=1 , .'.

Where n\ = g. I. b. { f(x)/x i-I::: X:::xil,am,d Mi = lub { f(x)/'I' i-I:::x~xi!,~nd 11 Xi=\-~i.J
, "0':" .' . '" _ _ l. ~~~"': I,: \ '

For such a partition p,

.}

and at each XI' let ¢p(xi) = lfIp(xi) = f(xi) <.~:
\ :: \ • :_" v • .,

.\j . ·r .: . ~!
'_0.

" -
0", s .

t :

i.. • ~t' .' •
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. 1

H nee the three quantities in the above inequality becornf;.eqY,;:)litm~~f;.;[f:bfs::iiliptiestHat.n~ui1e'aStrrable
and

c,',:
;~ p- ;'.,:<; .

.',..

.~, , ,
••.• \. i-

ral for bounded measurable functions:

':l1.l~roposition : (\ .' ',.' \ iI, -: '., f'qn~
/

t '~~'! .<,1 ,. '-. 1 - "~~~i;J:~;.d~·;.l~:··:·"t· ....
....~:1. '. :~; ~""-)I l""..."'':';' .: "1t::. \o·l~"': '~,q.- . ;;'?- • ' .•.• ~ i

J f f and g are bounded measurable functions defined on a measurable set Eof finite measure then

(i)

f'!
.~.! ~ ~ ' ..; _., ._ . . .". r . "l.,.ff+"g .~··ff+'fgl"j ; \',. '\' '.

, 0:' . and
. E E E .
.,:': u;·:" : ,.If-at ;::" :ffU::,' : ,;:..:
. V a E IR: E = a E

:t . ..! ' .... ,. ~ t t: 1
: ~

.~ ..
• ~ ~ • L " . ""

Proof:

(ijif ." 2 are simple functions sp~,p that~f(x),~ :,(x)<>q.E aq9!g\~)!~ 2(x)on'E~then ([,f g)(x)-.
~ ( .". 2)(X) on E. Since 1+ '-;;'ika ~i'mpie fJri'Ction it follows that: ' ,.

, .

;{ ,\~.~."'~",;'l!."'~-:i".";r. "f'J_ '\~ ,.,.'!:f - .i.·:,

Fixing tirst i and taking the infimum for all ',~-i~~';~~~'J(/\+!) =V~1"'2
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.' -

If ifJ I' ifJ 2 are simple functions such that~~ ,(x) s f(x) on E and~2(x)Sg (x) on E then, -
. .- . .' .

fjJ l+ifJ 2 is a simple functionandt-e 1+¢2) (x) ~ (f+ g) (x) onE so that.ias above:'

,i ., ,'{

.' ..-

\

Asribove taking the supremum for all ¢-I~ f on E,keeping ¢ 2 fixed and then taking the supremunr
'" -- ./

-. II- I/> 'E - If +I .g I'(f +g) (:')_-' ,'i,for a < g on we get - " < - .!.
2- -' , E E --- E

- ' - 'Hf +g) Jf+ I g
From (1) and (2}we get E '=E E

Ilroof: (ii) If a== O, (hs~rhs=O

~ ,,-

If a > 0 then \jJ > af <=> -\jJ f.- Also \jJ is a simple function iff a \jJis simple- a

f af
l-~_ A

=.- . .inf J\jJ

afs; '" E

.inf f If/

f5:'l/E
,a

inf I a'l/ _ '--' -' ,
f5:'l/

1
E '- J(\jJ, \jJl,sir11ple function)

.~ I

.inf .a -l- '1/1-' inf J'I/}
- f5:'l/1E = !:::;lfIr,E =

afl
E

Let a = -1 Ifwewrite-A for the set {-x/~ E A}we have inf(-A) = ;.supA, ands~p (-A)= -inf A-
---A lso ¢ is a simple function iff ~1/>, is a simple function .

.' f-f
Thus E ' = infI \jJ

.:...f5:\jJE

inf f-¢.
¢~fE '_ ',-

-S'Up f~
l/>~fE ','

.' inf I \jJ. -
-\jJ5:fE -:

.'inf -J ifJ by (5)
¢~fE -

.' ~r , .': ~

= __~If- .: E-



Acharya Nagariuna. Uni"ElfSity Centre tor Distance Education

';;-
. f' af if-:-J (-a)('-t)' _ -a] (-t) =' a] f

11a< 0, -a > 0 so E ; =, E ' E E

Proposition: If AandBaredisjoil1tme~surable sets of finite measure and fis defined, bounded
and measurable on AU B.

.....i),rouf :, If \jI is a simple function suchthat/(x):::\jI (x) on AtJBthenA~B f::; A~B ~I

For any simple function g,
I. ' .'-

I g == JgX(AuB) = I g(XA+ XB) = fgxA+ Ig Xn= Ig+ Ig
AuB . .. .... ... A B

. 'r- \jIHence V \jI ;::f, 'AuB . f \jI+ J\jI
A B .> J/+JI

A -.,B

So that. f I
AuB =

inf J\jI
\jI~ f AuB >

II + II
A -.B ( 1)

(

Replacing f by -f we get, I r
AuB

I -'I >
AuB

I-f+ I- I
A' B so that

, ' , I ,f
AuB

> II+II'
A B

(2)

..
combining (1) and (2) we get equality·

. .

Proposition: Letfand g be bounded measurable.functions defined on a measurableset E with
iinitc measure. Show that:

. (i) Jf> 'Jg
If f~g a.e., on E E- E

(ii) )ff = g a.e.ion E JI == Jg
E E

.,

(iii) -I]::; Jl!l
·.·E E



,.Msasore and;lnte9'ration1~n~i:'.· , ....'.~'::'~::'.;.
,r"' __ " .,_•. f "" •••• ~. ,,' .,~. , ••• \ •• 't"-~"""'~''''''''~.''~."" ..1":

j... :, 1 .;_~i ::~.+'\ ; ,
('1) f f 0 S· J/-g J/-" ..fg .. ¥i I . ,., I '1/1~ g¢:>' - g ~ . mce E = E E It'IS enoug 1 to prove t re resu t \-\1 ten g = O.

In this case f~ 0 a.e. on E. Hence any simple function: ':M ~ fl.~~atistie~ i~0 a.c, on E. Hence
. :~

f ~I
bv > 0. E -'

. ~.. . t /\ f' ;. ~ " : • ~ ~ • I J ' ", "f ~~, : :..-. !:.; .' 1 -;. .:~. I '. ~I.'.'

. '.'.1.. , " . ,. t,,· ••; ff' ,,, i " ..••.••r "f > o· -,<' ' .•.• '

. J, .;:, In .. '1'.:- ... ',.'., :,,"'j. Hence 'E' = ; \~.~ f E' ,,' . , ".: d' . ,1-.1 •

(ii)
. ~';/).jv;'./.,~n·,.d,<,ld/:,'d;! ::r,ji.·;~~ld:J~, .:'; -c ! )A·j .. I

f= g a.e. ¢:> f~ g a.e and g ~ f a.e.
}l, " ~<

-. /, ::,.

Now the equality of the integrals is a consequ~,~~e ~~(i) ab;~~'~.•1)' ) 'i ,;.
.. . ; )'

(iii) -11(x)1 ::::'t{x) :::: If(x)1 'Y x E E. AI~o f and If I ~~esimultaneo~lsly meas:urabl~. Hence-ri) and
I ,.. ) \. ;':1 ,.;, '" t: 'i. :./~;,l':»: ,I '..':; c;' ~+l!L<: /1,;'/".,.,' ,: .. ,', : i.,): ',':"(\

J If I < I I < .I 1/1'~his implies that II < Jill
E ", --",,/f,; .Jll-: t~;"j, .,;IF: .,Hr;\. ~:'""W i"._,l;." \.,0'3 ,'.' .; /i;: ',_,;,~,:Jf";! ; ',.' , ! .-~'.'.' '.,:'i,': {ii'.,::'

(iv)
Jdx , ... .' . .Jf(x)~/x, .' , .",'

Since E = m(E), by (I) 1,t)tolJows"that;A m(E}ltf:.,£ ! \,", • \. -"IE ,Bll1i([".), l

12. I>l'finition :

_ • .,'.:\ ,;.' ,',1< .~": ti,ji141ff t.S(U'P"J',hL~,JjmJo,'; i

define the integral oft over E by E' = hs,/' E .

~ ~:.f. ~\ \". t f Cdn -.-:oJ ~ \", ;:,~~.t~

"IK'n: the supremum is taken over all bounded measurable functions h which vanish outside a sl'l
~... • . . . - . \ !~~ i n~n; ~ :..-1, ,:;'

01 J mue measure.

l~cnulI'k : The integral of a bounded measurable flll{cVi'~kdefil1ed Wi'~i11~J~~u'I'abk set with

~il?~len?lCtaSlllr~iSI.t!~1i,t~tl.!~~~~.c:~e~·,~~l~!~,~hei~~:~~;~!~r;~r?~~;}1ef:f~an.~~,~~~.eJ~~w~~~)leflmc~.i:o!.l~sl}nitc:J~;;
ISpOSSI)ctlattilsvallelsoo.·' ..·· ;,., .." , , '.' ,. - .

. ! )j' ,.'/;,..~{jw-
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Lint~~lritl' of the integrnl :; , ~

Theorem: , " lf f and g are non negative measurable functions defined on a measurable set Ethi;..;1'

,(i) , ff +g = If + I g and
E"",' E\, E; 'l ' , ..

ICr. C If ,
'i!:=f."ifC>O"" r.:

E ' 'E' "

t, ~

~\ . "J: : i ::,,1
"

(ii) ", '. L"

Proof (i): r' "

. \
lf h and k are bounded measurable functions on E such that {x I h(x) *OJand { x I k(x) * 0 rhuVl:
finite measure and h(x)::::f(x)andg(x'):S'k(x) V ~',~Ethen;"l"'~:' " '

{ x / h(x) + k(x) * O} c {x /h(x) ;to } u {x / k(x) *0 } hence has finite measure and
h(x) +k(x):::: f(x) + g(x) V xeE. ' , \, ill;; " .'} ", ,', "

Jh+ [ k J(h~k) ';'J(f+g)';
Hence E E = E :s.. E "

it':'. '.' .; ~-"" ..,i)1 ': .::: :~'" ~\ ~""'~;' 1:-' e·,

S' I" t" iuch h ndk h If + I gIIlCC t us IS true or every sue an ,we ave: E E <
, I '

~.' ~:
, ¥; II

HI + g),
E

. . ,~f ' , '. .
. ' .~ • ( . , ); ,\ • :-~! ".. . r ~.~ ':'''. '. ~,'.

1'0 prove the reverse inequality let / be a bounded measurable function such that, { x I/(x) '* 0 ) has
finite measure and l(x) :s (f + gj tx), V x e E . ' ' (1)

, ,
write h(x}.= min ,{ f(x) , l(x)' }~Ieady h(x) is measurable; """ ."',' ~ ,L,"

, ' ,

If A < I(x) < B. Then min {A,O} =Sh(x)::::8 V x e'E So that h is bounded. Since ~(x)2:h(~)
- - .' ·.n:;J~· ~5~~'!' · .• .fi:;. .•~'i·:.;..,! :,.~'{';'!.', '~. ~'.' ~\'

V x . h(x) * 0 =:::> [(x) *0, hence { x I h(x) *°} c {,xl1,(,x)-#;'Or-'Smce this second set OIl '
" ,

the rhs has finite measure.the set on the left ft••s finite .mea.~",re·r, .. '" '
'~_' I ':f": >~ ,~:!} i '~ ~ ~~.', _.' s , ;1('.! ,.:. ,.,. , '. ~'l> I. \

Ifk(x) = I (x) - h(x), ktx) isa boundedmeasurable function m~ h(x):s-tlx).,
. '.:~" ,. .:....,., -: _~ " ',; .:~ '~'~r. ~~ .- . r': :;

Since h +k = I, and h(x) = min { f(x) , I(x)}

k'\~' I~ h"" = 1.,~in';lf,/}:";' 'i i+':';ft,,/,>! , ,'.," r; ::~l

= max {./-f,O}
;j'i(;'~ max {g,,?l. = g ( "g ;;q). :/ ..:': ;:.. , ;, ; ',;.,iU < ' ,; 1, -. ' ')~" .: "

. , Ji,: 'i: ',.:,,':';'~ '\, >, :~.Jl· , ',' . ,: ., ,,;~.:~~ ';;;' f~':(,;;~ I ,,,~'~:'l.;' ;~: ':. i" "~··'.:t··.r;.:"

Since hand k are bounded measurable functions vanishing outside sets with finite measure .!nd ,
satisfy h :s f & h ~g. ' , "", ,

. • t-: ~ ..'. :.!,:
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f I _ fh+k _ [h + I k
E - E -E E <

If + I g
E E

S· I'·· t~ hi' f 11 h Hf+ g) If + I gII1ce t lis IS true or every sue • It 0 ows t at E ..:s E 'E (2)

. 'HI + g), If .•. I g
From (1) and (2) we get E, = E E

, '.' ~

IfBy Definition E sup' J h= h5:CI E where the supremum is taken over all bounded measurable

. . ,'. '. 1 . .
functions h such that { x./ hex) ;,:.0 } has finite measure since c > 0, - hex) = 0' <=> hex) == O. Hence

.. ,C

I
: x / -- hex) :;:.0 }has finite measure. Further hex) ,:Sc f(x) if and only if

c

h(x) ,
'-.-' .:sflx) hence

C

.: ;~

sup I h
h5:CI I: = sup I h

h/C5:1 E

sup Je hI
= "'15:f I.:

SUp C J hI"
- '15:1 E .

CSUp J hl
= h~f' E1 .' .

= CI I:
"1:

Where the supremum is taken over all bounded measurable functions 3 hl{x).:s [(x) V x E E and

. . I Cf C If
{x / hI (x) :;:.O}, has finite measure.. Hence i = E ,;i

The general Lebesgue integral

For any real number a.we define the



"

postive Qart a+ and negative part a~J!L:. .

a+ = a V O=max {a.O} anda = max {-a,()}.

Remark: For any real numbers a, b (a+b)" ~ a+ +b" and (a+br~a- + b-.

13. Iletinition: A non negative measurable function f defined on a rneasurableset E issaid
.,

· to be integrable on E ir.lf < 00 e.,

Remark:

If'f-isanonnegative measurable function defined on a measurable set E'then A =' {xl x E E
and fix) =oo} has measurable zero(See SAQ) unless m(A) = 0; . . ,

i4 .. Dcfinidon :' .:~ . Iff is defined andmeasurableon a measurable set E we say that fis integrable
overE if the functionsf ", f". defined-by f,+(x) =f(x)+andf-(x)= f(x)-are integrable'over E. In

f f+,. Ji- .•. . . If(x)dx = If = Jf+ -·fl-
· this we call E E the integral offover E and wnte E .' '. E E E.

Linl;~lrit" of the integral·:;

t S.I)roposition:

If fandg are defined and integrable' over a measurable set E. Then (i) f + g is integrable and.
.. ... .

'i t':" =Jf +L g and (ii) For everyc E IR"cf is integrable and k C r,Ck f. ·

I)roof of (i); f+ g isdefined onasubset AbfEat each.point x ofwhiclrfix) + g(xfis not of the
'i()r'll cY::!' -oo'or-oo+cY::!. Since'fis'lntegrablethesetA(f)= {x E E/f~x)=± co } and likewisc(
A(g) =, X.E E / g(x) = ± 'oo] are both of measure zero. Hence Ao=A(t)()B(f):has.mc,,~i.lrezcro.
Clearly "A c E,. A(j' Since m (Ao);';"O -the integrability is not affected by'assigningaJiycOl~~tanl

· valueon Ao' Then we may assume without loss of generality that f 4- g isdefinedon E itself."



F9f every x JE,f(x):s rex) and g(x),c:::g'tx) so that (f+ g):(x) c:::(r+-+g+)(x)i."Since
0.:::(I~+g+}(x) it follows that Cf+ gt(x) 2: (f+ + g+) (x) \:j X E E. sothatIf + g)t 2: f" + g" replacing
fby -f and g by -g we get

\ ,

Since f", f", g -i- and g - are integrable (f +'gt and (f + g)" are integrable.

;:Sinc:e (f+gy+U(t+g)-;='fc+g "=="f+- r,-,+ g t.; g','
(f+g) ++ f -+ g - = (f + g)- + f ++ g +.

Since all the functions on lhs and rhs are non negative by 11
, a ',.' .,

fC/+ ». Ie + f\(,
E E E

f(.f+g)
E

= I(I +g)+ _ fCl +g)- ,
E E

Ir+ Jf'- + Ig+ - I g~
E E E E
If+ fg

E E

=

=

Proof of(ii): IfC:'::: 0, Cf= °= so cr ' = Cf" = (C£)+= (Cf)". Hence iffis integrable so is Cfand
;':,' I- ',> ',:

f~Cf= C'~'f =':,0:;ifC~ 0 Vx~ E, (Cft (x) =i; Cf+(xfand '(Cty(~r = Cf -(xf0:'~'lel1ceLir:'t,iis

!nte.g,;ableHy.~rp ~PJlre.f+ and. L and therefwe (Gt)+ ~nd (Cf)" are integr~b}e. -rhis implies ;that"yf
,. " • ,- -,,', ; ,", _"I ~ " ~. _ ", ' .".~:" ._.:, •• ' • ~, ,- ' .,':.,:

. i$jfotegl';lbl~"Q'veJ;:Eal1q~.Cf =:'. J~Cf)+.- ,J(Cf)- L -, ~~,~'+··.·n,eJf~ ,:'
== C ff+.,,,,,, JC,:.~ .. G1f.f

E E E

'. i. . '\.... Jj ... .. .' ' .' .... ··1:.. " .

Since (-lye = f" ancl (-1)"= f ' integrability off implies that of (-f)+ and (-f)- so that -I is integrable
over E.



\
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J f __J (-f)+ _ J (~f)-
Further. E .

'. E' E
/ [f" _ Jf+'

/ E E
I ~~.

. + ..:.
=. a·Jf ~J.~.:

E ·E··... '··
,/ ,

Finally ifC< 0, -C > O. So Cf= HZ) (-f) is integrable and
1

, H.,-'l .. '._1 h5 .:

'. , ~l' .

[Cf = J (-C)(-f), = (-C) f -f = C If .
E E E E .-

-: ,.;', \

. ,

16. Corolhlry :If A and B are disjoint measurable sets in E, E ismeasurable and f is i,lilegra;blc}m .

E then A~f = j I +J I.
I)ronf: f X Au B(x) =f(x)

=0

. .; ~.,. ,

i r..

if x E AuS

if x ~ A uS

',< '; .. " ,
-.'-

Since f+ and f- are integrable on Au S(being a subset ofE)(f~ A l),B r .U!l!;\

(fZ AuBY are integrable on A uB and hence on E. Hence fXAu B is integrable on E. SimBar;ly

J;, fX A . fX B are integrable on E./

f f
AuB = I f X AUB

E .
JfzA+JfzBE E .
If+ If
A B

= .I f(x A + ZB)
E .' ,

=

17. CoroUnry:

,> "." ""t.

. JI s Ji
If f and g are integrable on E and f:s g a.e. on E then E .,E '

Proof: ,If g 2:0 'a.e. onE andA ='{ x EE / g(x) <OJ, inCA) = O. On,E-A. g;:i~iilteg~'hhl~~l;'ld

f g > O. Since the value of g on a set of measure zero in E does not alterthe :~~~i'(lc·\:}rihc£-A ". '. ',,'

integral 011, E it follows that 192:O.
. ' ....
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\ .

Short Answer Questions with solutions:

1. If f is n nonnegative measurable function on a (measurable) set E and FeE. is

measurable then J/:5: 11.~'.
Solution:

.. Define g(x) = X F (x) . t1x) for x E E, so that g(x) < f(x) V x E E. Then g is a non

negative and measurable. Sinceg(x) < f(x) XE E, 19 :511
So that ff = T f X F = f g sfF

FEE

.'2. If f is integrable over Ethen { x { X E E and f(x) ~ R} hasmeasure zero.

-; \

Solution:

Let A = ( x / x E E and ttx) = + 00 [and B = {x / x E E and f(x) = - oo}. Clearly A and B arc

measurable. If meA) > 0 ff+ > ffT ... E - A

Since mtA) > 0, and f+(x) ~n on A for every' ;hiv~ integer n, jf+'~ nnif A) V positive integer n:

So jf+ = Cf) hence If+ = 00 .. Butthis contradicts integrabilityof f on E. Hence m(A)=O

j.:, !

Similarly we can show that m(B) ~O.
. .'

!
. .}' I,'~He.oce { x / [(x) {2;R, x E E } has measure zero; .

If f and g are measurable and /l(x)/ ~ /g(x)/ a.e and g is integrable then f is integrable:



. .
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"'3. ·,If r and g' arcnonncgative'mcasurable;fti~ctions defined o~ a measurable set E.

(i) f::: g a.e. on E If ~ I g
E '.' E.

If = I g
E' ···E·'" '

(ii) ;. f= g a.e. on E ::::>,' .

(i) Let h be a bounded measurable function such that hex) ~ g(x)'\j x EE. Then

lux) ::::l(x) a.c.on E. Let A = { x / hex) > f(x)}. Then meA) = O. Define h, =h %E _ A . Then

h, is a bounded measurable function and h,~ f on E so that 1hI ~ r.
Thus If > I hIE - E = fh

E-:-A +

== I h
A

I -,
A

I ~ = I h=O)A A '

This being true for every such h. we getlg < Jf
E

(ii) follows from (i)

. 4. . , If I~(E)'~ O,'then (i) It =0 '\j non negative measurable function on E" (ii) 1('==0for.

every integrable function f on E.

(i) If f = %A tl~en It = 1X A = m (E nA) = O. If f is a simple function and

f= £ a; %A then Jf = £ Q. m(A. nE) = O.
• '.1 I .. ' E· 1 I 11= 1 . 1=,

Since the Integralof a bounded measura15f; functionis the supremum of the integrals over

simple functions, it follows that if = 0 whenf is a bound~d measurable ~uncti~n. Again, by

definition if, when f is nonnegative is the supremum-of the integrals' of bounded measurable

functions so that 1f" =0.,
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Lebesgue.lntegral-Definitions
and Elementary properties

.. .. - ,'. '. .. . ~

.... (i i)'", . "If f is inteurable so are f + and f -from (i) f r: = f f-
.' .. -,' e- E E~., . \:.:., ....,

0,

, ;.

5. Iff and 'g'arc measurable If(x)1 ~ Ig(x)1 a.e, and g is integrable then f is integrable.;
. ':' .-~ \' " '-'. '. _.

.' '. r
Solution:' .Since the set ] x / If(x)1 > Ig(x)1 } has measure zero, and the integral over a set o(

. . . ." .~-

·lllc.nsurcz~rois zero, we may assume without loss of generality that If(x)1 ~ Ig(x)1 every where:.,

S'i,,~cel'(l;~ f+aildr - and'f + and f -are nonnegati ve f + 2: If I and f -2: If I so that f' 2: Igl and J:
_.' ,j:.", ,.:',', '

{- 2: Igl~"'I~I~licef+,a;l~1f' a,re integrable so that f is integrable. , f.~

.1

.-,'" " ;

,Jf(x+t)~'li(E-t}, x+t E E <=:>x E E-t.

Iff is the characteristic function of a set E, f = X E then f f(x) dx = m(E) aile
c

, S'ohition :

. ~.. ~ ~~, -. ." ..

., . Since rn(E) = m (E-t), I.h.s. = r.h.s.when f= X E. Consequently equality holds when fis a

srnlpleofu~ctl~,~vanishing!outside'a set offinite measure. When fis a bounded measurable function;
, ,

'f' t', SUp f¢ I . k 11' 1 f . A. . I . id '.r . = ¢sf Where t ie supremum IS ta en over a simp e unctions 'f/ varus ung outsi e a set'
, ,

Qf nni'te"ln_t!asllr~ arid for such ¢,' f ¢(x) dx = f ¢(x + t) dx.
·'~;'I.' .". J: .. x , ':.' '::, .",~1.

(

Hence f f = f f (x + t) .
, . ,oJ' ."

'",>

.=
If t is'a I~'onnegative measurablefunction,

. ',,' '.:".
j,' • j ,

, .r/'..,= SLIP. ': f g.1 g::: f. g bounded measurable function vanishing outside a set offini te measure.:

" ~ ,if(x+t),.·
'.,;~ . ~l':<::, ""f 1/: ~ " . ,::( ,\'; . .

Sinc~ J/,= f.(+ - Jf~where fis any integrable function it now follows that
, //

;!l!>i~;,:f.['~,(x)',-.Jf;(x) = If+(x,+t) - If-(x+t) = If(x+t)
,

i ::~~, I •• ' • ,,'.~ : : -

.r
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22. Model Examination Questions:

I. , .' " sup f¢ . ff'l/
Show that a bounded real valued function f on IR is measurable iff¢ S J. = I~f

where the integrals are taken over all simple functions rjJ, \jf v~nishingoutside a.set oi,
finite, measure and satisfying rjJ :s f:S \jf .

T < ,:; 'Sl~ow that a nlt~a~urable function, t'is integrable iff Ifl·iS integrable:

If f is a nonnegative measurable function and If = 0 then f = 0 a.e.
IH'="= g~.e.at1d fis measurable sh'ow that f is integrable iff g i~;:

",

5: If f is integrable on f'.. and B show that f is integrable on A U B and A~' .; Jf +Jf
23. Exercises: ~-' . .. -:, :

If f is a non negative measurable function defined on a measurable set E and A, Bare
'; I .I "'. ,. ..,.'. ;; ;: r ~1 " '.,.... ..\: 1

measurable subsets ofE such that A n~ = rjJ Sh~W that'A~{' =' J/ ~'~";Jf.'
'lff:::Oon'I~aI~d if =Oshowthatf=~ a.e.onE. ,/.",),,;.'

Hint: \-111 let A = { x / x E E and f(x) > 1In } and A = { x / x E E, t{x) > 0 }
V 1\

Show that A = UA and meA ) =0 Vn
).J '" ;',.' ,': " "'... n . n , "'.' ~ . ~" ' {~ ,.;

3,,; ,.' Show that fOI thecharacteristic function XA);r A < 00 isfinjt~iff AIA~ ha,~me.?s!lIr~

1.
- ~. :

.t-" ,..,:':t',·:

2.

zero. ' .
4/-:.,. ;:. -If f andg are, measurable, .Q ,< f :s~,and g is integrable, Is.f integrable ? If f and ,!i,are

measurable and If I :s g and g is integrable is f integrable? Justify your answer. ..
. _, .. '..... I ..;·,··, .

1f f is integrable E show that { ~ E'E / fj(x)1 = 00 } is me~surable ~nd 'ha~ I~~~~sur~zero.

Show that 1f fl = flfl iff either f ~ 0 a.e. or f:s 0 a.e. I,

Show that r is.integrable if and only if If I isint~gr~?l~:; ... ,
r ' '.1 •..• ~; • . .'

Let ¢ be a simplefunction, which vanishes outside a set of finite measure. Show that rjJis

integeable.in the sense of definition 14. " .. , ".H""

5.

6.

7.

8.

:1 .~.



LESSOrs 8 :LEBESGIJE INTE(;RAL -CONVER(;ENCETHEOREMS ..

As mentioned in Lesson in the Riemnn integral does not send the integral ofpoint wise
convergent sequences of measurable functions to the integral of thepointwise limit T6ere are three

(

possibilities. Eitherl~n t~,may hot be Riemann integrable whenIf} converges pointwise or lim I;,

maybe Riemann inte.gntblebutlYp fin -::j:. J lim ~,or liffl If;, =oc. However in the case ol"

lcbesgueintegrableseveral convergence theorems are available unlike the Riemann integral. In
this lesson we present these convegence theorems as their consequences. We also prove uniform "
continuity of theintegralof anon negative integrable function.

. .

2 II Example: Let {rl,r2~''''''':'''''''''~''''''''''''''''} be enumeration.oftheset of rational numbers

in 10.I], Deline 1(J1)~ XAn (x) where An= {r., .s..r" }(x) is zero.except at 1'1' .....• .1"".: Sof, h~lsa

l
finite number of discontinuities and hence f is Riemann integrable and r f = O.

. ",. . ~ u :.:! .:: ., -, " - 0 n

Further 1i,~111~,(x) = 0 if x is an irrational number while ~,(rk).,= I for n~ k so that Ii,!P I~,(rk)= I.

Hence ({x)~' lim f (x) = I if x is rational and Oifx is.irrational clearly {is not Riemann integrable.
1,1 11 . \" .. ' • . -. .' .'

\

b 'Examplt': Let t)x) = n x (l":X~)" ifO::::..x:s 1.

For eachn,~, is continuous so Riemann integrable. Further

I
Jf(x)dx
)
'. n,':

L

n . .' 1
y II dy= -"- so 11m f (x}=::-..... 2n+2 n u . 2

. since 0 :Sx :s 1
J

< -.'-,-
'nx-

1
I-Jcn.cenx(l-xl)ll< .. - 2 .' lim 1 =0 So Jim f (x)=O"

xf\+x·)n n 0+X1)" '/1 n

. it; 0 < x<l. Ifx= 0 PI' I. t~,'(O)=.t~,(1) = {) V'n SolyP(O) =lyl' t~,(1) =0
--" .



Thus.1iJp f,1(X)=O in [0,1).

This example shows that lihl1 (x) is Riemann integrable b~t
, . .

1· .' 2n
As above f is continuous for every n so Riemann integrable mid fin (x)dx =-? '2-So that

II . 0 _n+

I
IiIII J.~1 (x)dx = +00

II ()

1
However lim f (x)=.O. So f linl11. fll (x) = 0... n II 0

3. Hounded Convergence Theorem:

Let {f } be a sequence of measurable functions definedon a set E of finite measure and
n . . ' _' :.. .

suppose that there is a real number M such that 1 ~I (x) I.:::: M for all nand x

If f (x) = 1~11f,1ex) for eacl;x inE,then

We make use of Littlewoods third principle for {f,),Given i > o there isa subset A ofE )

£ . . . .
m (A)< 4m and a positive integer N such that for n >, N and x ;EE \ A.

I f~1(x) - f(x) 1 < 2m(E)

& .
so that .Ii.!;, - Ii .::::2 . (E) m(E\A) < C

1:-.1 m 2

Since I( (x)1 ::: M '\j x E E and f(x)=lihTI
( (x),

.: ·1

8



\

< M ¥ x E E and in particular for x: EA.'

Hence II.!;, -II:s IV;,I+!II} = II,J;,I+IIII ~ Mm(A) + Mm{A}
.-/ A ,./ A

Ji- e: s
< ---,+- =,--

442 ...... 2

Now for n ~ N

. f l.f~- II +fl.f~ - II< ~ + ~ from( 1) and (2)
E-A . A - - .

f /. f/'Hence ' = lim '11
EnE

Remark That Bounded convergence therem does not hold for Riemann integral is evident
from example 2 a,

..• On Fatou's Lemma:

It is evident that under pointwise convergence of Riemann integrable functions, the limit
function even though Riemann integrable the sequence of integrals may not converge to the integral
01" the limit. Bounded convergence theorem serves a limited purpose only. When compared to the
wide scope of Lebesgue integral. The sequence considered in Example 2c shuts down the doors for

anvweaker form the result as lim .I~(x) = 00 In the case of Lebesgue integral for nonnegative. n
measurable functions the first positive result is Fatou's Lemrnna which is equivalent to Monotone
convergence theorem which will be proved so on. As this lemma involves limit inferiors in place of
limits we first develop the neessary machinery in this regard. Let us first recall the definition of the
limit inferior of a sequence {a }of real numbers. By definition limit inferior a" or lim inf a, orn. II ; I.

lim. - .. inf I sup id l" ',. lirn- a IS by definition s w rere S = k > a, an 1J11ltsupenor a or im sup a or' a IS11 II 11 n n _11" n· n n II

SLipS inf a " , lim
11 where s =k > k where {a } IS a bounded sequence -- a , 11'111 a are realnumbers

17 !l _11 . II S n 11

otherwise they can be ± 00, An equivalent way defining these terms is through the cluster points, A
cluster point is in effect a subsequencial limits, More precisely I is a cluster point of {a J iff there is. . 0
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r ) r' I' I. a f 1.a J 3 llTI a = .a subsequence l 11kJon . 11k The infimum of the set of cluster points or {an: .IS

IiIII
J 'I I ' Iim W' I C' 11' ies of 1 I' , , f 1-' I11 an W 11 e t ie supremum IS nan' e use t te 10 owing properties 0: t ie mut mr 111 <atoll S

Lemma.

4.2 Lemma: Let [a] be a sequence of nonnegative real members, Then

(i)
lima =a¢::>lima =lima =an - n n

n n

=>Iima s Iim »n n(i i ) a < bn- n n n

-.\ Proof: The f rst statement is clear since every subsequence of {a I has Iim ita when Iim a = a,n n
The second statement is a consequence of the definition itself as a < b V n

11- 11

~ sup (f k :::; sup hk
k?11 k e:n

~ inf sup ok :::;inf: sup hk r

n?lk;:::11 n?Jk?n

=> rim a :=;; lim bn n
11 11

The proof for limit superiors is similar,

--1..1 Some other properties of lim and Iim '

1. Jim xl1 + ~~ Yn:S lim (\,+Y):S lilll \, -: lim Yn
whenever Ills and rhs arc not ofthe form if.) -if.)

If lim x = I then lirn (x +y ) = lirn x + lim Y and Jim (XI1+Yll) = lim )\11+ ~~- YIIII -- 11 11 11 - 11

3. lim(ax)
- 11

= a Iim x if a >0- 11 -
= a Iirn XII if a <O
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4 .' lim{a Xn).· = a .lim xn if a 2:0
= a lirnx ifa<Q.- n ..

.,', "

5~ Fatou'sLemma:

. . ,.

If {~,} IS a se~uence of nonnegative measurable fUl~ctionsand!., (x) .~. t(x)almost everywhere

011 asci E then f.l< Iimf.f~ ...•
E -. E

Proof: Let A::;: {x/x E E3 1i,T ~/x) :;cf(x)}. Then meA)==: O.Forany nonnegative measurable ,

function g. ~g = 0.. Hence it is enoughto show that Ei~<;; lim Ei~n.Thus we may assume that

. A=r/ and t;, (x) ~f(x) for everyxs E. /

. .'

Let h be'a bounded measurablefunction which vanishes outside a set E' of Tillite measure
ancl satisfies h (x)':: ftx), We may assume that h(x):::O \:IX. - ,

. 'Write hn(x) = mill {h (x),~, (~)} for x E E for n 2:L Each hi; is a bounded measurable
function such-that hn(x) ~ fn(x) and {XE E / hix):;cO} has finite measure. ',. .' . ," . . .

__ -----e-~-.-: ...:-

SiI1cehll~honandE' andh(x) =0 onE \ E', by bounded convergence t'hcorem.

f h = f h =Iim f h = Jim 'I h .s lim I f = lim f f
. E E' n E' n n E' n n: E' n n E n

.. '. . Jf =su 'Jh::; IiIn ···f f :
Hence •.... '. p. .... /1
.' E he' nE

This completes the Proof:

ncrmlrk: It is quite possible-that strict inequality holds inFatou's lemma.Forexamplelet A=[n.n+ I)
....; .. " '. . " '.;.... . ' .. ,'.. .- . ':." ." .. ': :..... .. n

'and t~,~XAl1torn~l.CJe~~IY 1i:;~t;,(X)~Oforeveryx. Howeverfor ~v<eryn, Ji;, ~ m,<~\)==L:So,

' ... Iim '.
.J. Ji.m!·$ -.- I.f···.·.·.' n '/1 .. n ';' .. n '.' '.
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6.\ . Milnotone Conv~rgencethe()rein:
. .

Let {f'} be all increasing sequence of nonnegative measurable functions-and let.f'= linYr
11 .. 17 . II

then fr= lim j f.' n· n
. ,

Proof: By Fatou's lemma J,f:::lim J f~ (I) .
. '.' .

For each n, f. < f
.' 11- J j~:s ff

.:~..; (2)

From (1) and (2) we have

Hence f.r= Iimf In ...

. . . 00
7. ' Corollary: Let {un.} be a sequence of nonnegative measurable functions and f~/~llli1.

Then

. . . 00
Proof: Let {s) be the-sequence of partial sums ofth~ series n~l un ,defined by sn=u,+ +un.

00

Then [s ) is monontically increasing and lim s= II· Un.
,II ,. ... n n=.'

'. l .

Alsofsn = JUi +fu2+·····;+Jun

00 . f 00

Hence by Monotone convergencetheorem f L un ., limsn == I I Un
. . \ n=I·' ,n . n:==1
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8.Coro\larv: Let f be a nonnegative measurable function and {Ell} be a disjoint sequence of.

measurable sets and E = U E . Thenn 11

00

II= I II
E 11=1 E

11

00 00 00

Prouf: Let f = I X E' . -['llell L f'1 - L fXE - f L XE . r X- . '. E
II n n=1 11=1 11 n=1 Il :

00

fl= fixE = I II
By corollary(7) E E n = IE

11

9.Thcorcm:

Let f be a nonnegative integrable function over a set E. Then given E > 0 there is a <5 > 0

such that for every set A c E with 111 (A) < 8 , jl < e

PnlOf: Suppose fis bounded. Then g aM>O 3 If(x)I:SM VXEE.lf E >OandA c Esatisfies

111 (A) <: 1~' j/:s M. m(A)< E·

Suppose f is unbounded. For each positive integer n let f (x) = mil; {f(x), n} for x E E·
11

clearlv each 'I' is measurable and 0 < f (x) < n.
- 11 - 11 -

.' . sup I (x) = 00 = f(x)
If xEEandt(x)=oo,~/x)=n vnso~l(x)<ln+l(x)and n n

If 0 :s f (x) <: 00, there is a positive integer Nsuch that N:s f(x)<N+ 1 J

so t;/x) = min (f(x),n} = n jf n:S N

= f(x) ifn>N

=> f:,(x) :s ~'+I (x) V n and ~,(x) = f(x) for n > N

lim l (x) = sup t (x)=> I(x) = ' n . n
11 n
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lim ( (x) = ((x)
Thus (f) is monotonically increasing on E and . n . on Eo By Monotone

n
convergence theorem.

Sf = lim f fn
EnE

Given [; > 0 there exists a positive integer N such that
.'

Jf _I,ln = II JIn - If I <-~ for n > N
E E t: £12 -0

_ Sf If
":> E -E NO <

-2 , (1)

s
Choose 0 < 8 <-)N-- If mt A) < 6

- 0

J f = J (f - fN + f N )
A A 0 0

= f (f -- .~'V ) + f t.TV
A 0 A 0

C'
< - + N m (A)2 0\'

by (1)

s C'
< - + _. E2 ').:.,

Lebesgue Convergence Theorem:

Let g be integrable over a measurable set E and let {f } be a sequence of measurable functions- n
such that It~l(x) ! .'Sg(x) on E and for almost all x in E. We have [(x) = lim ~l(X).Then

Sf = JIimfn
E E



Measure and lritegration 8.9 Leb.esgu.e Int.egral -Convergence
. Theorems

1).'00": Sincerhe set A = {x I x E E, lim f (x);f:. t~x}}hasmeasure zero and the integral of.a function
<, n n .. '.. . '.' ..... ,

overasetof~ure zerois zero.we may assume thatfn(x) ~ [(x) on Ei Since gis integrabl: and

II)x)l:S g(x) for all x.ea~htil is integrable, hence.the.set {xl l~l(X) 1= oo} and {xii g(x) I= oo} have
measure zero. As such We may remove these sets as well while considering integration. Thus \ye
may assume without Joss of generality that allthesets mentioned above are e;11ptyso-that
(g ± 1) (xjisdefinedfor all x E E.

, ... '.,

Since Iti/x)l:S g(~) <00 on E.lf(x)I·~g (x) onE so that g(x)- f(x)::: O'and g(x)- j~](.xl~OV

x E E and n::: I. Since eachoftilesefullctions is measurable and g -f= li)f1g'-t~lby Fatou'slernma

f(g - f) slim f (g -In)
E E .

~ I g- If:=;; Ig,.,...lim I In
E E E E

[1 . Jim J·f···
::;>" > '/1E E

....(I)

Also u(x)+ fix) > O!!(x) + f (x) 0\-111 and x E E.'Since lim (!!+f) =, (g+I). as above wee ~ , ~ 'n . -.' v n .~ II.

get Jg+f< lim f([+fn) = Jg+limffn
E - E E E

. . ff Jim ff'llcnce .' < =r:>. 11
E - E

'. . . . f f limf flrom ( 1) and (2)\ye get E =. n E n

.... ,(2)

>

t I.A gcncrniisation of Labesa:uc convergence' theorem:

If {g Jis a sequenceofintegrable functionswhich converge a.e. to an intcgrahlcIunctiong
-, . n '. . .' . .'

and 't f 1 is a sequence of measurable functions such that 11'1 <gl'and {f } converues to Ia.e and if- n ' ... ,''I . -: " 11 - 11 n •...... ,'-
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Proof: We make use of the following facts on lim inf and lim sup.

Since ~ is integrable and If I < g , we may assume that g & f are real valued functions.
~II' . II - II ~II II . _ ",

Since -g < f <u., 0 < g + f and 0 < g - f since Jim g =g and lim f = f'(we mayassume that the
~II- II-~II - II n - n n n . II ...

convergence is everywhere) lim g + f = g + f and Jim g - f = O. We apply Fatou's lemma and get .. . n n n n ~

~ Jg + f,r:s; lim f g n +)fn ::::f g+ lim f f n ~ f f:S; lim f f n

Also [g- Jf ~ lilllf.~,,- JI" = J.~~limJf" :::>limJf,,':::{f

Hence Jr.:::: lim fI".:::: lim ff,,':::: If

12. Lcbcsllue's theorem on Ricm;,"n in'tc.grability.

1\ 'necessaryand sufficient condition for a bounded function to be Riemann integrable is
thaI the variation between the upper and lower sums can be made arbitrarily small. As a.consequence
itltlllmvsthat a continuous function is Riemann integrable. However some discontinuous functions
arc also Riemunnintegrable.' Lebesgue settled the relationship between continuity and Riemann
iUll'grahility or a bounded funciion byproving that a bou'nded real valued function f on [a.b] is

. R icmann integrable if and only iff is continuous almost every where. We present one proof 01" this
result here. We first introduce some fundamental notions prove a few results in the form ofproblems

.' .
with solutions or short answer questions with solutions and prove Lebesgue's theorem using these
results. To distinguish Riemann integration we put (R) beforetheintegral sign. In what follows '
1\: Ia.b] ~ Ris a hounded function.. .

ForO' >0 and xE [a.b], ls(x) (=1 5)' stands for (x'-5· x +5)(1 [a ..h]
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J 2.1 I)ctinitions:

Semi continuity: f is said to be lower semicontinuous at x E [a.b] if for every & > 0 there

corresponds a t5 > 0 such that f(x) - & < f (y) for y E 10 (x). , "

fis upper semi continuous at x iffor & > 0 there corresponds 0 >0 such that 1~y)<t{x) + E

fory EIO(x).'

'f islower (uppe«) semi continuous iff is lower (upper) sernicontinuous at every point.

Envelope: FOl' 15 >0 and ~E [a,b] write

.'s (x)=inf {fly) IY.E IO(x)}
f' 0) (x) = Slip {fey) lYE 15 (x)}

f ("')= inf f<5(X)
"'x <5<0

~* _ in f f( <5)(x)
t (x)- <5< 0

f, is called the lo~er envelope and f *, the upper envelope of f.

'.',

'.

.- ,

12.2 Some immediate conseguence.ofthe definitions: :,

(i) f is continuous at x ifand only iffis both lower and upper semicontinous at.x.

(ii) f is upper semicontinuous if and only if -f is lower sernicontinuous,

(iv) ift{x)::: g(x) V x E [a,b) f* (x}::: g*(x)

(v) f .(x)::: qx),S r ' (x)

(vi) (-1)* (x) = - (f* (x») and(-f*) (x) ~ - (t~(x»
\

. '" '.'

The followingresults are needed in the proof of Lebesgue's theorem. We state the results
here and supply proofs eleswhere.



12.2. A Result: f* is upper semicontinuouss and f * is lower semicontinuous andffs'cliht:iiltI6ds:~lt.

x iff( (x) = f" (x).

12.2. B Result: There is a sequence of step functio~s {¢J ~uch that for~ver; n ~fl &'.;.
.: I .r-

¢" (x) ¢II+I(X) and li,f ¢" (x) = f'*ex)
\ '.~

If m ~ f(x) ~ M for all x E [a,b] we may choose¢II'3m~ ¢ n(x)~ M,for a!l n andx.
, ., . ,- ,'! ';1 •

Remark: It is not in general true that a bounded semi continuousfunction is Riemann ,illteg,ral'>,lc,
( .. : •. '•. \ -". ," I ~ • J;

c. .. bI Iff. I b' I' I f f *However such a Iunction IS measura e so. t tat [G, b] exists as 'a rea num er. n tne case 0
, , I

measurability follows from (A). Since for each n, the step functi~n¢ n.,is measurable .
• - ',j

\

12.3 Lemma: Iff[a,b]~R is bounded
-

(R) 1f(x)dx = f l* (x) dx and (R) ~f(~)dJ; = J j~,
a [(l,b] f!: .. [a,b]

We prove this lemma in two steps.

I •. ',.'1," ,",I ',::

Step 1: Let P = [a = Xo < XI ... < xn = b}. be .any partitionof'] a.b] , , '
"

M=sLlp ff(x)/x' < xx x.I
I l, I-I - - II

~. :. .

Define ¢ (x) = Nt in I. = (x I' x.] ..I .I .1- .I

, ~.- .~, ....~; '" ,I,.

Then ¢ ex):::: f '(x) for all x in [a.b] (by IV).

*J¢ r f
Hence [ L] > '.a.o - [a,b] '. , \

J n
13 t f¢ = L

II [c1.I)] [b]' 1a, J=
M n

. XJ = L ' _ = '.J . . 1 M. (x, x. I) U (P,f)J J= .I .I .1-

, i .•

J f*
For any partition P, U (P,f)::::

[a,b]
(1)
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b f f*
Hence (R) ff(x)dx ~

a [a,b]

~.:'p 2: From (12.2B) there is a decreasing sequence of step functions {¢ } such that lim ¢ (x)=n n n

f ,\x). If m S l{x) S M for all x, we may choose {¢.) 3 m S ¢ n (x) SM for all n and x E [a.b],
Hence by the bounded covergence theorem.

ffx
[a,b]

lim f ¢n
n [a,b]·

Since ¢ is Riemann integrable,
n

f ¢ .b .n
[ . I] n = (R) f ¢n = I M. (x, - x. ) = U(p f)
a ') .'. 1 • • .-1 n, a 1=

.'

Where Pn is the partition that defines the step function ¢nand Mj is the lub of ¢n (x) in the interval

of P
II

• In fact ¢n(x) = M
j

on this i th interval...

*
-1·'1 f f

1LIS ,- I ]a, )

b
lim f ¢n = lim UCp f) > (R) ff(x)dx
n [a,b] n . J1' a

..... (2)

f f* b _ _
From (1) and (2)we have [a,b] - = (R) If(x)dx

12.4 M~lin Theorem:

f is Riemann integrable if and only if the set of points in [a,b]at which fisdiscontinuous 'has
measure zero.

,;!

PI-OOt': Since fis discontinuous at if x iffj~ (x) =1= J, (x) the set in the ~bove statem'~nfis precisely

E =(x/ XE [a.b] and f*(x) :;tf(x)}.



b f r f f b·
(R)ff ;:= = * = (R) f f
. a [a,b] [a,b] a ,.....(I)

So that f is Riemmann integrable conversely if f is Riemann integrable then again (I ),holds.

*
Thus [a:~{ -f) = O. Since r ' - f ~ 0 it follows that f* = t; ja.e. in [a,b]

Thus f is continuous a.e. in [a.b]

B. Short Answer Questions with Solutions:

SAQ-I: Let fbe a nonnegative measurable function and f (x) = rnin I f(x),n lJ Then lim f :/,'" = f.l
11 . • . . n'

Solution: If f (x) :'Sn, ~Jx) = f (x) = f
l1
+1 (x) ,

If 11 < f(x), ~l(X)= n < n+ 1 so f
l1
(x) ::: f (x)

~f (x) < min {fix), n+l)} = f+1 (x)
11 - n

Jim!. (x)
Iffix) = +00 ftl(X)= n V n so n n = 00 = f(x)

I

If f (xj c+ oo3N 3N::: f(x) <N+l sO~l(x)=f(x)forn~N+l and li}~l1t~l(x)=f(x)

. lim l f.By monotone convergence theorem If = .n
n

SAQ,;,2 : .Monotone convergence theorem for monotonically decreasing (integrable) functiuns:
. '.

,. ,

Let If lJ' be a sequence of nonnegative measurable furictionssuch that 0 < f +I(x) < f (x)
• 11 . - 11 . - 11
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j d limfn(x) £Ii) If'f' k fl " lirn II IfV n ane X an 11 ' = \x , or some, k < 00 then n n, = ,
(

'Proof: F~r n ~ k, 0 s 'IIn S JIk < 00, Since {~) is decreasing, (f~ - ~) is increasing from the

integrability of fk & f:1(n2:k) we may assume that fk(x) < 00 for all x.
',',

Hence by the monotone convergence theorem li~nII k -t~1= II k - f= II k - II·

Ilcncc lim II = lim flk -(f -f)= lim II _Iilll flk -f = III( - .fIk + I"r = I,f'n n n k)1 n k n ' 11 II '

SAQ-3: An App.lication of monotone convergence theorem and Fatoul's lemma:

[. Ij'l b . f , bl functi d limln(x) 1'(.et I f e a sequence 0 nonnegative measura e unctions an . ==. x ).11, ,. n

Ir f )' ,') 'd h .lim f f IIn(X ===-t(xV n an x t en n <n =

Proofr Write g (x) = max{f,(x), f (x)}. For every n g is a nonnegative measurable function11 11 . 11 '
and V x,

B 'I' " Ij' '( . _limJ gn' (x), y monotone convergencetheorem . x)- n

': , .: ..; '_' 'lini;, Jim "" limI(x)
Also 11111 g (x) = /"'11 g (x) > t (x) > - [(x) > [(x) by Fatous lemma. Hence f(x) == 1111 11' - nil - n n - 11

~ :! ) , . " ., ,.

Let (t~I}be a sequence of nonnegative measurable functions defined on IR and f=li~l fn SliPpOS~:
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..I, "1'1 f I bl II lim I fJ./' < 00. ren ror eac 1 measura e set E E = n En.

Since JI < 00, {x / f(x) = co ] has rneasure zero. Since lim fIn < oo , J/17<,oo ,fi)!'

sufficiently large 11, so that we may assume that V 11, fIn < 00 and as above {x t. f;l(~)= 00 1 has

measure zero. Since sets of measure zero do not contribute to the integral, we can also USSliITIC that
()S l)x) < 00 and 0 Sf(x) < 00 for all x.

~ ", • "t

Now define g = f X [ Since E is measurable g is measurable & 0 < .g < f . Alsoo 11 n :. 11 - 11 _. n

lill,ll u =: IXE and lim (1' - g) =: lim f XE' = !XE". n ~Il 11 '11 11 nil, < ,

f I ' lim f
By Fatou's lemma E = fixES - gn

17

lim J' f
. 11 and

11 E

~ IiIII J In < J .{', J (r t' ) J.{', J r
Il E II - .IX E I = . -. X E = .IXE = i ·····1 (2)

14. Moder Examination Questions . ;.,:;": :. -

I. State and prove Lesbcgue's dominated convergence Theorems. Showtlratthis does not hold
good 1'01; Riemannintegrable,1;, ';, J'" ,:'. :' , :

State and prove Fatou's lemma. Show that Fathou's lemma has no, analogue for Riemann
integral.

,J ,,;l" "
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3. State and prove monotone convergence Theorem. Give an example to show that the
result does not hold for decreasing sequences. '

,4. Stale and prove Lebesgue's bounded convergence,p;:.....,.-('\\..V""

5. Show that a nonnegative measurable functionis the limit of an increasing sequence or
simple functions. Deduce that if f is a nonnegative measurable.function,

ff = sup { f¢ /¢ simple, ¢ ~ f}.

. 00

6. If U;lJ isa sequence of integrable functions such that I I I!,'] I <00 then showthat
, n=l.

00 00

Of = I fn converges a.e., fis integrable and I ffn If
n=l. n=l

15. Exc rci~cs

1. '" , b " f' . bl c.: '. . ff I (x) d lim, , , I 'ILet /\,1 II' e a sequence 0 measurae tunctrons.] < g (x \-I x an t = t a.e. SlOW t rat
, II _,... . 11 - V n II

lin1JII ~fl'= O.HintApply Lebesgueconvergence theorem to {f - f}n n i >. 11

2. JfO <x < I and x is rational write fix) = O. If 0 < x < 1 and x is irrational.let n he the smallest

; t .•.. ' [1]'-:1
inteuer ~ ~~ and f(x) = -:-'
, e, X - ·.x

'1" ·h·. ff= 00
SlOW t at (0,1) •

..•
" . Let {f J- 'be a sequence of integrable functions such that L JIf I < 00 show that the series

II . n ,.

4.

L In converges a.e., its sum f is integrable ahd If = L ff n .
. . II

Let {f } bea sequence ofintegrable fitnctioris such that f (x) ~ f I (x) \if x and t1x)=-~
, 11 . II·. 11+, '

lim. ." ., lim J' , 'L (x) Show that ff = '. './;;.
11 n . n

Hint:. Show that [x I fl(x) = 00 [has measure zero. Apply monotone convergence theorem to
If -r.:

.' 11 I"

5. Iff and g are measurable, Ittx) '.s', g(x) , a.e. and g is integrable show that f is integrable.



(a)

','.,., (b)

:(c)

(d)

, 7.

" ' '9.

,)8 . Centre tor-Distance Education .

6. Let f = -11 + 11
. II [O.ll· . [1.21

If 0< x < 1 .f (x) = -11
- . II '

If r <x ::: 2 ~1(X) = n aildt:1(x)= 0 otherwise
cadi f is integrable

II '

ff· =OVn'n

J liminf x does riot exist.
. II ,

x
Let F'be a nonnegative integrable function. Show that-the functions F(x) = ff(t) is

'. " -00

uniformly continuous; Hint: Apply Theorem 9

Let g be an integrable functioh over E; {f}a sequence of measurable functions on E such
. ", "n

that It:1(x) I :sg(x) a.e. on ,E;;Show ti)~t b liri' ~1s 'Jim 1In :s Hm k r; :s L linl t;I'

l(). Let 1', = :.f.[1/2.IJ t; = X 11/4.,IJ t~:;; % [0.:3/4] (,I =.1- fl' f5 = fl' t~,= t; mid in.general
f 4ii+k = fJ.; tor n ~.,.~and 1 :s k :::3.. ." .

]::ordli~ sequence {<r show that a,lIthe ineqiiatiti,¢s in9 tthove are stric~.

. <11.U:Jbe asequence of integrable functions~uch thatf.tx) ~ fz<x) ~ :s f.l(X) < 1~H\(X):S .. ,' .

and let th) = lihl1t{x). Show.that tin' J.t;,= II·

J-jjnf: We mayassume .:.00 <fi :(~)< .~ (or all x . Applynionotone convergence theorem
"f' t").to l 11- 1"

12. Let {~i} be asequence ofi.ltt¢gmble fUi)CHohs; gall ihteg{'ahle function and t~I(X}::::g (x) for
. . lim . Um

all-x. Show that j- ~1(X) s - j.r" (x).
-n "n

:'Hillt: ApplyFatou's lem;na to {t:
1

- g}ap~~opriateIY.;
~
9
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I~. Show that if f is inteurable then• . eo

n
{l = lim Jf

11 -/1

(h).
/1+1 11

\1' t E R Ii111 . J f dx = Ii111 Jf (x +t) d x
. . . n· '-17+1 . 'l1-n '

ff(x+t)dx= J/(X)dX'ljl E R.(c)

14. l.et f: I R ~ I R be such that f is Riemann integrable in [a.b] forevery a.b such that

b 00
-~F< a < h < 00. If b~loo Jf(x)dx exists in JR. We say that f.f(x)dxexisls as an improper

a.. . a .

b a
. Riemann integral. . If IimJ f(x) dx exists in IR we say that fl(x)dy exists as an improper

a 400 a -00 ..

a 00

.Riemann integral. If for some a E R f f(x) dx and ff(x) dx exists as improper Riemann
-00 a

00' ':00

integrals. we say that the improper Riemann integral J f(x) dx exists. and write J f(x) dx
-00 -00

a I 00
Jf(x)dx + J lex) dx.

-IX) a

a 00

«(I) Show that if J f(x) dx and J f(x) dx exists as improper Riemann integrals tor some a
-00 a

, \

a 00

. then these integral exist for every a and f f(x) dx + [ f(x) dx is independenr of the choice of a
-00 a

',: I

00 00
'(b) Showthat ii' J f(x)d\!exists then I f(x) dxexists.

-00 • -00



;

, "

- t sin x
(c) Show that for the function f defined on IR by f'(x) = -,- ,if x >0 and 0 for x.::: 0

x
00 00

If(x) dx eixsts but fi!(x)1 dx does not exist.
-00 -00

(d) Show that the function fin (c) abo~e IS not Lebesgue integrable (even though the improper

00

Riemann integral I !(x) dx exist~.
,-00

15. Let [t:1l be a sequence of integrable functions such th~t j~ +: a.e. lffis int~grable show

that1im fl f - II = 0 ifI1im ill I~Jl/l. .n n n n
I' , \

Iffis integrable overIa.b] and &> 0 show that (A) there is a .step function h and (B) a
c~nti nuo'usfun~tion gsuch that g Y~liishes outside a set or' finite rheasllre and' '. •

f If - hi < 6" f If - gl < 6"

,- , ,b-,J and~[ 'b']a" ' '" a,

17. Hence or otherwise show that the conclusion in exercise 16 holds good for arbitrary
, measurable sets I?, , , '""

Prove Riemann Lebesgue lemma: If f is integrable, I~ll ff(x) cosn x ~ O.IX.

, ~' .

I <) (a) Let f be a nonnegative measurable. Show that there is an increasing sequence (¢ .) of

. I f I I lim¢ fsimp e tunctions sue 1 t iat n n = .

,(b) Deduce that ff =,SlIP J¢ where ¢ is simple and ¢ S·f
• <,."

20. Prove 12.2 A

2'1. " 'Prove 12.2 B' ,

Let f be any integrable function defined onja.b]. Then, for every e >.0 there exists a step

II! -hi <8
function h such [a,b]
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Solution: Iffis integrable so are .r and j>. Since f= f+ - .r, if we are able to prove the

existence of h fornonnegative integrable functions, we will get step forms h ,h,,)

j k+ - hll'~ ~ and ., J I;~-h21< ~~~dthe function h.> h,-h, satisfies the r~qui~~
[a.h] [a,b]" .~ .

. '; '~

cond itions. Th us we may assume that f(x) ';0: 0 for all x. B; defini~ion 'k!~I/~j k4> where

E=-.:[a.b] and ¢ runs overall simple functions c fon E. Since ,kf ~oo: iiv~n E >'0 there is a simple

function ¢ :s fvanishing outside E ) kf - ~ < LIP .
" ...' "' '~

so that II!-~I~If -¢ = If_ I¢ < e 12
.. ' E' " E E E '.

, .' . ' 'J: 1¢-11r<C. -f,;'
It is thus enough to prove the existence ofa step function h suchthat [a.b] ',., 2. ':

(1)

Since f~ 0 we may assume that ¢ is nonnegative.
.J: ._", { ;i

• ' ~I

n n
Lct¢ = L {/i%E .where Eachn.ts meesureble.Pi r-, E.= ¢ifi :;t:jand :UE} =E=[u.bJ.

i=I·' i I I . J. i=l ..

LctM 1,= ;m~lx aiso that,~ I ~ O. Sincem{E) < oo , by Littlewooq~ t1!~s~,~r,inciplctl~crci;s ~ fil~,i~S,~
.. . ...'. .. ~~ -' . , .

..', .... .' '. 1::
uniqn ~)rqpcnjntervals/which ,we.~enote by Vi) m(Ei Ll V)<2n(M +-1) :'

(Recall E. ~ V. = E.-V. u V. - E.)
. I I 1 I I I.

. !

. '

{...... ' ,'",

1ifxEE.-V~
1 I

-1 if X E \l.-E, . , .r:, ,
I I

rP ifxE(E.nV.) u(EIn Vi:)
I I I ,I..

.' .1:.,/;<

& '" n·, ; . . :.', . d
Hence f X E ..- Xv. = f X E.. LlV. == m(Ej6.vj) < 2n·('M + I.) Seth= ..LI aj Xv.· Since each Vi is

, !, II l ,.[ = . .' I. .



.:.- " :,.{
. . " .. ~,

'~" .. ,...~:{.:~h";"":.,I

r 1 ;'
, "

'_ ',' I .' .' , .' _ ~ '" ' ,_, " .11,. ,',

a' finite union ot' open intervals, h is ~ step fu~ction wh'ich vanishe~ o~tside U Vi'

i= "
'"

= i' f ~"(XE' . ~~V" J
E ;=1 I, ••

',. 1" I
.' .,

. 1.~'•. ' .

11

< L (Ji f X E. - XV.
i:: I 'E ',1 / ''; " ".,

n &<r a. --~-"
I Zn (M, + 1) ..'i=l

~'. " .

c
< -' a, < M Vi2 1-

This completes the proof.
" ~ ... -~ -,'~,

17._ Problem:
.. -. , .

, Let f'be abounded measurable function defined on [a.bj.If C > 0 there exists a continuous
functions g such that g vanishes outside-a finiteinterval (not necessarily [a.b] ) and

II! -..cgl <&~:

[a,b]
." '

Sc)ltltion:Ch~;ose 'astep 't1.1hctidrihvanishing outside a finite it1t~tval n~~n~~ess~rny [a.b] 3 (.
~. , ' ."

f If - hi < e I ', 'I ' " fi d ' ' f ,'. ,f If·- sl < & . hd ' '. 'I ,,', ,la. b] " . t IS enoug lj to ,:Ill-acontllluollS unction.g 3 [a,b] , "2 ail gvanrs res

outside a finite interval. ,,' ,,', ,,:, '

n , " ," t ' '
Ldh = L -. XE. Where each E.an open interval-say.E, ~ (c.,dlLet 0 < IJ <min :2 (d,-c,),c :.i= I, I' , ' .I ' " 'J J J,~ ,,'.I, J, f.

. -/ I

.Ill" EE; Set glx)~l if x Eb + ~ ,dj - n
. .' '!:~...' ,;. '. .' . . -, <'.-"; . .



( dj - ~ ,dj ) . At the points cj, cj + ~ ,d I":' ~ .d, all the one sided I.il,nitsare zero ~o·that gjis
. " , ".' ., .' , .. ,' , .J, '. , ", .

n
continuous for eV,eryj. Further f X £", - g/. -: e Let g =' 'L' 'ajg j .Theil g is contin~lolls,vi:misl~cs

2 J =]

. ;

<
')':

<

Since -c is arbitrary the result follows.
"

'.< •••

f.' . ~ " '

. "",' _ i,. '\' ,." .' '",
I~. Problem : State and' prove Riemann Lebesgue lemma

" . "
.,

RicllUlIln Lebesgue Lemma:

, ... . lim '
Iff is integrable, If (x) cos nx dx = 0n

.\

Prouf; (1'f(x) = Con (a, b) and 0 o~ltside (ab) then

b
flex) cos nx dx = C. I cos IlX dx = ~ (sin nb - sin na). '

a n
\"."
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, I 2c . '. 1 lim "
So Iff(x) cos nx dx ::: -;;. Since lim n = 0, n I:1(x) cos nx dx = 0 = O.

If f is a step function vanishing outside an. interval it follows that li~l1If/(x) cos nx dx] = o.

such that Ilf - ¢I< 6. Hence lim If/(x) cos nx dxl= O.,;.' " " n . ,

Iff is a simple function vanishingoutside a set of finite measure V e» 0 there is a step function t/J
(

Iff is a nonnegative measurable function and Jf <00 we may assume that 0 ~ 1lx) <00 for

all x. For every- C > 0 there is a simple function fjJ vanising outside a set of finite measure such that

f If -¢I < 6. Hence If/(x) cos nx-?(x) cos nx 1<&. Since li~l1f¢(x)cos n x= 0 it follows that'

Jim f t~x) cos nx = 0
11

19. Problem:

Let f be a nonnegative measurable function. Show that (a) there is as sequence r¢ III of

simple functions such that ¢ II(X) ~fjJ 1I+I(x)vxand Ii~n~II(X) =:=, f(x). Deduce that (b)jf ~ SLIp

J¢ where ¢ is simple and ¢~ f

Proof (a). For each positive integers 11 and k) I ~ k ~ n2", write En k ~ (., ( Ink) where

J
11 =k (

k-l k)'-211 '211 andF =f-'(.J)where J = (n,oo).II II 11_

, 112 .

Put '" ~ k -I ZE
' 'f' 11= s: n n k

k = 1 2

+n r '- "'F.n



.Measure and lnteqranon " i.~~b~sgu~Int~g~(lJ,.Cpnver:Qence .'
'; : . " Theore'I}l,~ " " , " '

Sinn: r is measurable Ei] for I ::: k < n2n, and Fn are measurable so that <P'lis a mcsurable V 'I~;dr
k

f (x ) :> n+ I. then f (x) > n so ¢n + I (x) = n+ I > n ¢11(x). If n Sf (x) ;sn+ I then<P11 (~) = n while

[ ') ,
k-J k "

¢n -+ I (x ) is the left end point of the interval 2'1+1' 211+1 thatcontains 1{x), However f(x):::: n.

So this left end point ~ n so rPn + I (x) ~ n =¢/1(x) .

k -I k 2k - 2 2k - I 2k - I ·2k .
If f (x) < nand 211 < f (x) < 2f7 then 211+1 < f (x) S 211+J or 1n+1 <f(x)S '2/1+1 SI.)lIKit

, ,

¢11('X) < ¢n + I (x ) If 0 < f(x) < 00 then 3 ~ positive integer N 3for,n:::::, N and some ks I .sk.s 2".

k --I ' k
--'7 < f (x) < n2 . 2

=> II~X)-<Pn (x)1 < ~
2

. lim ¢ll(X) d:::f'{x),
/1=>

I'" '" ( ) . lim '" '() f{x) .I I (x ) = 00. 'f'il X = Il V n so n 'f'n x =. x .

(b) Clearly f<p.s ff tot' a simple function <PS f.,

, .' ,I. () '" (x). s: 1111)"" f~'1 .If {¢ : is a sequence of simple tunctloris)'f'n x ::: 'f'n x ,V x o; " 'f'n:'::' t ten ,
11 . , • '. 11

Ii,lln f¢n = ff by the Monotone convergence theorem: Thus if a < If' th~re is ~ Si;11plc Illl1ctio~i

¢ :::f such that a <: f<p. Hence ff=' f¢ where <Pis simple function and ¢ :::f

20 Problcm :

I)n~uf of 12.2 A: f* is upper sel11i~ontinuous and f. is lower semi continuous. Further f*is'

continuous at x if and only if r (x) = f* (x)'.,, .
\" j



I*(x)- ~ < tEl (x):Sf(y)andf?(z}:SI(02)(X)<f* (x)+ .~"
<,

i

'~roHf: It is clear from the definition that for every 0 >0,

I*(x)s fa (X)5f(x)sf(Ol(x):sf'\x) ,

Fix x E Ja.b]. If E > bt.hereexistOI > band 0~>0 3 for YE IOf(x)~ai1d Z E,

, '

If i5 ~min{i5" i5 2}then for y'EI~5(x)

x1"'S

''r--~
. y'I+O·lx,+O

, . &.. . ..•.....•.... ' .. /. ' ..... ' ... &
Clearly 1~(x)-2 < 1'8 (x}S fo/(Y)Sj(O) y~ f" J lex)<[* (x) +---2.'

..{" is lowersemicontinuolls,atxand (*is upper serrriconiinous at 'x. III partiCl.lIaF'W'he~l

,f~ (x) = f(~) (2) tells that 'v'E > O,~ao > 0 :3
, ,

f & $'.
for Y E Ie) (x) * (xH 2,<f(z)< f* (x) +2 so thatlt~z)-t~x~<

This implies continuityof fat x.conversely iff is-continuous at x \::j E ), 0 3a.<> >0 ).1'01"

'=i' f(x)- i:s [8(x)~f(x) ~ [<"l(X) Sf(x)+i



=> f(x),-, ~:::.Jc)(X)::: f*(x) s r: (x):::f(c))(x) < f(x)+ ~

,If* (x) ~ f* (X)I < e and this is true 'Ve > 0

f* (x) = I; (x).
." ,

.. ~:

' ..
=>

=>

21. Pt:Oh1cm: Prove 12.2 B

Proof of 12.2 B: Given a bounded function f: [a,b] ~ IR, there exists a decreasing sequence

{rPn} of step fu'nctions such that f* (x) = li~n rPn(xJ rfm::: f(x)::: M then we can choo~e . '.

: rPn: :3 III rPn(x).:s M for all x.
. , <.~ ~

. ~ I I P b h '... P {a = x < x < x = b} I II)ro~t: I'or eac 1 11 et 11 e t e partituon 11: ,',' n,O . n,l. n 2n '. ,sue 1~t"",

x - \;fJ' write /.n .= ,[x ' ,x ] for J' < 211 and 1n,xll.j'-'I1.j_'- 211,' J nj_l nj 2n

Mn.
J

I "
nj .Clearly ¢n is a step function and ¢n (x) 2: f (x) for all nand x.

Since P I is obtained bY'adding the mid point~ o[:[.Xn.. 'Xn,] to P b' *' x E J n
J
.

11+ • 1 . II
" . ]-]

=> either XE [

' . x +X 'J' [X +X '. n ._ In. n .-1 n .
x "J } } } ,x
, nj -1 2 or 2 nj -1 so that '"I; +,(x) <"I; (x).

~ n ~ It .



When x == b we get equality. Then {¢ nI is a decreasing sequence. Clearly if m :::f (xl::: M,

III .:s ¢ n (xl::: M.

More over ¢ n (x) 2: f (x) V nand x. Hence ¢ n (x):::: f* (x)

E ..-- E
Further if E> O. f* (x) + 2 > r (x)~ f* (x) + 2 > f (y) for every y E l( £5'(x) fors6t11c'

,.

) s /
(> > o. If ') N + I < 2" for some j, x )/In g/c I s (x) then J* (x) + E· >~ j >¢ N(X),

- /-

. ./

. '"

Lesson Writer: I. Ramabhadra Sarma



LESSON-9: LEBESGUE'S THEOREMON-DiFFERENTIATION-OFA MONOTONF.
FUNCTION

, ~'

9.1 INTI~ODlJCTION:
\ ,.c'(,

We have discussed the limitations of Riemann's theory of integration to some extent in the
c.ulicr lessons. Another important aspect that deserves discussion is about integration versus,
di flcrentiation. . ... . . "::'

Is the integral an anti derivative and vice versa?

When does

b .
f flex) dx = f(b)- f(a)?
a i

t :

d x
- ff(t) dt = f(x)?
dx a' <, ,.;,"

In the first case 'f must be Riemann Integrable while the second equality holds forcontinuous
functions. Unfortunately the Classes of continuous functions and Riemann integrable functions arc"
\'\.:1')' small. .

When does

. ...; .' ~
The purpose of the next three lessons, 9,10 and 11 is to enlarge the classes offunctioil~(ll)i"!

which integration and differentiation are mutually reciprocal process.

It will be shown that the second relation holds more generally almost everywhere. The first
question, as we see in the sequel.,. though cannot be fully answered in the present context we wi I~::
characterize certain' classes of functions that include the above classes and for which-the equality
holds. \ ' ~.

In this lesson '9' we learn the famous Lebesgue theorem on differentiation of a (110no[011('
function which makes use ·of Vitali's lemma: .;

9.2 Vitali's Icmm~l :
< 'i

. ,
If E is a set of finite outer measure and () 'isacollection of intervals that covers E in.the

Sl'!1St: of Vitali. then given Ii >0 there is a ,finite disjoint collection of ~ntervills in 8- such that

N
In*(E\ U<&)

i=1

". '

..'
,



We divide the proof into a number of steps.
.~'...:, .

',.'

, Step 1 : The intervals in 9 may be assumed to be closed.
i.' •

", ~."

iiI'isany interval Let 7 be the Closure ofI and let :9 = { 7 /I E 9)· Since 7 \ I

, * N_ *N
istinitc,111 (E\ U J) =: In (E\ U

. i=[' i=1

Reason:

I.) for . finit II ti f I I 1 '[I .f1 01 any 1111e co ec IOl1l r , II" ,lUS I' we

prove for 9 then the conclusion holds good for 9 as well. As such we may assume that .9
consists of closed intervals.

Step 2: If no finite sub family of 9 covers E, there is a sequence (II) of pairwise disjoint
00 ,'! "

i;llcrvalsin .9 ,,~uchtilat n~/(/ n) < 00 .

Proof:

Since m*(E) < 00 3 an open set O'ry E 3m*(O\E)< 00 sothatm*(O)~m*(E)+
, , r

1,1~':(O\E)<oo. If x EEc03r>Osuchthat(x-r,x+r) cO. If IE 9,x Elilild/(l)< 2 t1~cn

I' .

x E I c (x-r, x+r) cO. Thus we may assume that each I in 9 is a subset of O.

N
U' I.If SOI;lefinite sub family of9 covers E. then EC . I· tor some 1\•......• INin .9 so that

i =1

m * (E \ ~ Ii) = m' (¢) = 0 <: e \:j s >0. Assume now that no finite sub fail1ily:'j;:lj c(;v'er~It
i=1

i';';'; Choose I,' E9. Since E <t:11, :i'x EE\II' l~etll =[a,Pf Sil~~ex ~II,~itherx < ~ or'

x > fJ. In the former case we choose I: 30< I: <a -x where as we choose l' '3 0< [,'<x- fJ,in

. G
. the othercase. In either case 9 contains a I such that x E I, 1 (1) < 2 and I nil = ¢.

Hence 9 I = , I,l I E 9, I nIl = ¢ } is non empty.



.. .:..~M~ea~s~u~re~a~n~d~ln~te~g~ra~ti~on~_---,~~~~C:9.3f:e~~~~~·L~eb:e:Sg:u~e'~s~Th~e~oriliem;;;.onBD~i~lfe~re~n:tia:a:ti<-:........... ;.;' ofa MonotoneFunction

. Sincc mrO) < 00 and [ E [) ::::::> I cO. 0 < kl < 00.

Define a sequence {I } of intervals [)inductivclv as follows:
" J.

N
Let [) = ( IIJ E s. 1n (U 1i ) = ¢}and k = Slip ( 1(1) I I E 19 J, Choosc l . E /}

1\ '. 1 n·· . n . n+I I
1=

so that k < 2 I (I I)'
11 n+

w
Since I cO for every nand {l } is a sequence of pairwise disjoint intervals. L IUn) 'c,
. n 11.. • 1'7=1

oc; 00

L m(ll1) = m( U In) ::m(O) < 00,

n=l i=l

:, ..•~..,. .•..
.....•....••.-.

Iim ~ 1(1 ) < E:
Hence n \11(1) = 0 and V e >0 3 aN EN 3 n;:N' n5'

{II' I" ...., I } has the required property._ n

Proof:

N N
U I . U,· A.Write R = E\ i . If x ER. there is a 1 .E [)3XE I and 1(1(. J) =",.,

1=1 .r r j=l .. ,

If I >11:= ¢. If I n 1= ¢ V j, thenI E [) . Hence I (I)':::kll.::: 21 (111+1)'.I .I. / n

Since lim/(I) =0./(1) = O. Since I is it closed interval (with different end points) this is not

possible. _rims therejsaU~~t Ol~~ n_~ith I n In =1= ¢ . Let 11 be the smallest in~~~r w~th-lilis
. -

N ..
property.' Since I n U Ii = ¢,n >-N.

i = 1
r'f, • '.'

/ I
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'-:'. "

Let I = [a..b] and C = a+b 12. Since x E I, and I n I = A. ,x < a or x > b. In either case:'
11 u 'f/ ~.

1(J )Ix - cl ~ 1(;) +----1'L
. "-2

.-> "

1(1 )
<k +~

11-1 2

1(J }
~2/(l )+_n_.

n 2

N
'. ,

v.: Let.l = I··c-r. c+r].· Then I c'J. Hence R = E\ U Ii c
II' . 11 - 11 i=l'

00

U '.J.'
I .

i=N+l

Hence 111'( R) <:
00

U l(li)
i=N+l

8·

00

5 U _~l(li) <
i=..N +1

<

---:- , ... '

This completes the proof.

9.3. Dini Derivatives:

Let us recall that sup E = 00 if E is unbounded above and inf E = - 00 if E is unbounded
below. Thus every subset of R possesses supremum' and infimum in the extended ..teal number
system.

. ,
Definitions: Let f :(a, b) ~ R bea function. We define

lim sup . .... inf sup (?1~_ .
. fI(x)= s: 0'0 < h < s: foc+hj-and denote this by ~ f (x)x~a+ u> u x~a+

. ,
', I .".' ~. . t. 'xU~~~..la·.

n+ff(X)'=;·~:u>pO·· inff(x+h) and denote this by lliln[~:rCx).
--, u O<h<J . .' x-ta+ .

. ~.,'i, .-.: ,"~' '.1 .

lim sup fix) .
and define in a similar way b-' f(x) andx~ ."

off at x aredefined as follows:

lim ini t~x)
x ~<b' . If a < x -< bthe four Dini"

. r~



"',

'. -.

D -,f(x):; upper left Dini derivative of f at x

Jim sup f(x+h)-.f(x)
.= h.~O+ h

Jim 'inf~f(x+h)-f(x)
" = h~O+' -"<. h

Jim SUpf(x+h)-f(x)
= h~O'

b

.. - - .

~;:l1+-;fCxi= upper right Di11i derivative of fat x

~D~Jtx};';lower right Diniderivativeof f at x

'-:.-' ~;

":'-' 'lim
=h~O

in.f f" ." .(x+h)-f(x)'~
h

;0,;,/1>-)= lower left Dini derivative of f at x
-/~",:. .- ."

'" ,\ye:saythat f has right Dini derivative at x if D)'(x) ;:::D+f(x) and in the case denote the.
'~4upl.y,Su~~y f; .,ex). . . '.'. " '.."

. .~.

We:'$~lYtI1atf ha~left Oini derivaiiveatx ifb f(x) = Iff(x) and in the case denote the equal-
\,fdy~b~,t'_(X)' " " -

',¥escl¥that f has derivative{f is.differentiable at xwith derivative ftx» if f' +(x)= f'Jx)
an~Vthis~qualva'lueis de liP teclby 1" (x). .

.' .,'.:' .' " . - -' ... '

:,.,', •••••• ,'_ '. :"~. • 1 _

We;d.o.I~ot.exc.lude.thepossibIHty jhatany of the above derivatives is~~-

x, ;.:.
(2) .'

Jlih.l(%+h}-:f(ll .. IR" . f" d:'i'l'" '. ibl in theusual sense if and.h40 .' h' 'exlstsll1, l.e.,· is ttrerenna e at x .,

oi~lfjf ~llihefoui"bhlli,dedvaHves.·afe equal iiii4 .th~ec)ua'i y~lue is irilR. In this Qas¢ this
'¢quq1Vaiu€· is the lihtitconsideredabove. .' .

. (J)

(4)
. ; .' ' , .. .. '.. .' Jim I(x);;" f(x-ih)

8o!~1.ealltl~filW the leftDirii p,~'r,rvatlves asJ)~f(x) = h ~ 0..:... h . . and

_ lim f(x)- f(x..:...h) .
...' . .,Df{x) = h~O- t. ".h

.-' ~
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Iim f(x)- f(x~h)
h

>

lim J(x) ",f(x +c -h)

'-h
But

h~O-
=

', Iim .... f(x+h)~'f(x)'
hh~O+,'

Df(x}

. --' I(x)...,-I(x-h) . " .
'h.' ,= D~f(x).:. and similarly lim

. . h~Oc'
. ".. . ... .

. . This equivalence allows us to make useofthree.notionsasper our convenience.

9.4. 'Example: . Letf(x) =;: XQ. Find D/, n+f, J)landD~fat x ElK ForxER,h=#;O'we

. f(x+h)-J(x)., .
find f,,(h) =. ". h .'. in various cases.

When x, x+bbothbelong to Q or both to Q\ fJh) = O.. '.

. " '.' l. .
When x E o and x + h ,EQc ~,,{Jl)==-h"Yhereas

In this case D+f(x) = ~and Di(x)=:,-oo .. '

",

. Similarly ~hen x E QC an~ 5> ()O:h~c5.~,,(6)=00, andO <ihf<6 ·~O. So that D~'tlx)= 00
- . .' .. - .

'and D~f(x)'=0:

10 '
I -i:;-
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of a Monotone Function

in a similar way we can prove the following:

.{ 0

00 . if x EQ

if x E QC.

~ {~oo ::: ::c
0- f(x)

and

9.5. Example: [(x) = Ixl if x E R.

Solution:
f(x+h)- f(x)

= 1. h
.. ' . . f(x+h)- I(x)

Ifx < 0 and 0 < h < -x.h + x < 0 so . =-1'. . h .

Ifx> 0 and h> 0,

/

. Hence if x > 0 Jim f(x+h)- f(x)
h~O+ h

Jim f(x+h)~ f(x)
h = 1.

h~O+

'and
. f(x +h)·- f(x)

ifx<O Jim
h~O+ h

Iim f(x+h)- f(x)
= -I

h~O+ h

So that OJ{x) = D'fix) DJ(x) = D+f(x) =

if x > 0

if x < O.

" f(h)- f(O) Ihl
Since = -

'. . h h

1

{
ifh> 0

-1 ifh<O.

Dtt10)= Jim f(h)-f(O) =l=D+f(O)whiieD-f(O)= lim f(h)-f(O) =-I~D f(O).
. h~O+ h h~O' h - .'
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9.6. Lebesgue's theorem on the derivative of a monotone function:

Let f be an increasing real valued function on the interval [a,b]. Then

(i) f is differentiable a.e. in [a,b]
(ii) 1" is measurable and

b
. (iii) Jf'(x)dx:::;f(b)-f(a)

a

Proof of (i): We divide this proof into four steps.

Step I: Itisenoughifweshowthatforanyrationalsu, v u > v thesetEu.v={x/x E[a,bl
and D+I~x)> LI> u> Of(x) } has measure zero.

Proof: By definition f is differentiable at x if and only if all the four Dini derivatives
·E

O+t1x), O-trx), Di(x), D~f(x) are equal. The set E += { x I D''flx) > Of(x) }= u ~ v U,V 1I E Q,

VEQ.

lfwe prove that m (Eu,v) = 0 then since u.u vary over the countable set Q, we will get

m(E) = O.

\
Likewise it follows that the set E -= { x I D+f(x) < D f(x) }, and other sets with various+ -

possibilities for the Dini derivatives are of measure zero.

If E is the set of all x E [a,b] such that f is not differentiable at x, then E is the union of sets

of the typeE_+ ,F+ and as each of these sets has measure zero, m(E) = O.

Step 2 : Ifu, v are rational numbers 3U >v and m*(Eu v)= sthen there is a finite
. '.

disjoint collection of intervals I I' ....IN where I. = [ x. - h, x] such that
J J J J

N
(a) J~l f(x) - f(xj - ~i) < V (S+E) and

(b)
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.of a-Monotone Function

LetO~e an open seL30 ~ Eu;u aildlIl*C()\ Eu, l.}} < e..

so th~ltlil*(O)< m' (Eu u)+ &";'s+ s .
'. "'. .

'., E
···x E u,V .~ Df(x}< V

sup inff(x)-f(x--h)
5>OO<h<5 'h' < o .

SinceOis openan:dx~qtheabovehmay·be<choosensoth~f[x-h,XT$o.

The collections:" {([a~PJI[a,p] cO and fC/31-tta) <:;JCP-a1{is therefore a
.. ' . . .'-' _. r' ,-' '" ",. '

VitalicQveringbf"Eu,v . Finite disjoint coHection{I" ....IN} in.theabdve Vitalic~yersuch that

N
• E: . 'U' J'm( Uv\,' ...•r)<E .., ' i=}' .

Let 1.= [x.- h.~x.jaridA> .Euv· n
) J J J ','.

N
1/· .an..d B= Eu·'v. -. U.' '.. I~. ',1=1 I

Since Eu,u= AuB,s=n,l*(-?u,U)<m~(Aj +m*(13)<m*(A)+E. Sothatm*(A»s - s .

'Further,

N
L ...,

···.I·Vh .. ·J = ..' .. ..I

N
L. ,v .. ··I.h:.J= J
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..... :~.:. N'v 111 •• (.2: .'L) .
..' j::l J

U m*(O)

. ".

:< v(s +c)

This completesthe proofof~;tep'2.

Step.J: There isa~tinitedisjoil~tcbllection ofclosed.interyals.JF .... :JM.Jr=.[Yr'.Y
r

+kflslIch .
'.' M". . ..... ..' .... ·.. M .....•...• . '.'

thafcCiCh)r'ClifQr son+ei·.,m*{A~' .U
t
·•·.··.J;) < Eand. 'Lt" [f{Yr+~r)-t(YI)l>u( s.;.2 E) .

. ' ':.' '." . ·r= . "... r=.··· ..... ". . '" .
.. ' .

.:~

Proof:. IfYE A; for every 8> 0. there-corresponds a k such.thatO <: k <(i'and f(y+k),; t{y) >ku. '

Thecollection .: { [~,jJ] I[ (l,j31} eli' forsomei 1':::i:::Nand t~f3) -1(a}xx?u (13 - a)
l isa VitalicoveringofA.S03 a finite disjoint.subcoilection PI'''' JM}; 'WhereJ;==:'[yr• y/k,J

.. M .
say VSlIch thatm'{ A \.U Jr) < & ..

r=l . ".

Both the collections {11' ..... IN} and Pi' .....JM}ar~pairwise disjointand eachJr is contain«.!d..
in some L. .

I

... If:B = A \' tl, J -.and. '.•B =A ntf'J -., then'
I'· .... "1 .r .. 2." • ·.·r·=·l... t. , ". r= . '.'

..
. .

,·.M.··, . > '.
Hence ,L f (y.+kr)~f(Yr)

r~l ". " '. '.
, ....

·M
. L uk
r=l r

.., . -

..
M

uL m*(.Jr)··
r=l ,

·u m*'(B ) .. '
. '. '··2

:)
i
I
i

.. ~. . ,.'

.. '~""

> u (s -2&)
"
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This completes the proofofstep 3.

Step 4 : m'( E ) = 0u,u

I) f If . I J' . '" J J Iroo : -: among t te i' 111 step J, n1,.... nrare t re J i that are contained in some In of

step ? where 1 ~ n ~ N then by the monotonicity of f (f is increasing) we have

t{x ) - t{x - h )
n n 11

> £ {.f(Yn. +kll J- fey )}
j=l } } nj

N
So that L f(x) - [(x - h ) > .n = 1 11 11 11-

N r { . }L ?: f(Yn. +kn .)- f(Yn )
n = 1 j=l ' j j }

Ai
L f(y.+k.)-f(y)n= 1 .I .I .I\

This from steps (2) and (3) we get u (s + E) > u / (s - 2 E). Since this is true \;j E> 0 it follows that

s = m *( Eu, u )= O. From step i it nows follows that f is differentiable a.e. proof of (i) is complete.

Proof of (ii) :.

. Jim f(x+h)- [(x)
Since f is differentiable a.e. on [a,b] the function g(x) = h ~ 0 .. i: is defined for

almost all xin [a.b]. Further fis differentiable whenever g(x) is real. In thiscase]" (x) = g(x).

. . . _ f(x+l/n)-f(x)
Now extend fto [a; 00) by settingfix) =f(b) for x ~ b and define gl1(x)= ·1/ n .."

Since f is monotonically increasing, f is continuous a.e. hence measurable and hence gn is
measurable \;j n.

S· ) lim (). . blince g(x = g x, g IS measura e.n. Il

- Since g(x) = f''(x) a.e .. , fJ is measurable.
This completes the proof of (ii).
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Proof of (iii): By Fatou's lemma

b .
Jg lim b

Jgn
a

<
a .n

lim f/(X+ 11n)- I(x)
n a 1In

/ Ii a+ lIn
UTI {f(b}- n J l(x)}
n a

( f(x) = t{b} if x ~ b)

1
< f(b) - f(a) { (a + - - a) n }

n
f(b) - f(a).

b
Since f I = g a.e. we have Jf'

a

b
Jg :::;f(b) - f(a)
a

This completes the proof (iii) and hence the theorem.

n.7. Short Answer Questions with solutions:

SAQ - J : If f is continuous on [a.b] and one of the Dini Derivatives is non negative show that
f is monotonically increasing on [a,b]

Solution: For definiteness assume that D+f(x)::: 0 inja.b]. Iff(b) < f(a) choose E 3 < E < .

f(a)-f(bt
. b _ ~ and define g(x) = t~x) - f(a) + E (x-a).

Since f is continuous, so is g hence the set { x / a:::; x :::;b, g(x) = 0 } is bounded and closed
so that C = max { x / a:::; x :::;b, g(x) = 0 } exists so that if c < x < b, g(x) < 0 because if 0 < g(x), then
g(b) < 0 < g(x) , so that by the intermediate value property of g.ithere would exist a d E (x.b) such ".
that g( d) = 0 contradicting the maximality of g. Also g(x) ;t. 0, because x > c. Thus for 0 < h < b-a .
g( c+h) < Oso that:

o >
g(e+h)

h

g(e+h)- gee)
h

fCe+h)- fCe)
+Eh
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, "

:This i~lplies thatO 2:D+ f (c) +& => (Y> -B ,2: D+ f(c) c~ntradicting the hypothesis. Thus
f(b)~f(a)As thishol~sgo()d for every x :>yin [a,bl; fis monotonically increasing.

'-,,' " '

-- , '

':SAQ~2': " If f has a local maximum at c E (a,b) then show that D+ f(c) :s 0 :s D f (c).
,', t •••

Solution :, 3a 8>0 3Ihl<8=>f(c~h)Sf(c),

f(e+h)- fee) f(e-h)- fee) , ,
=> . h sO:S -h if 0 < h < Ii

::::>D+ f(c) S os D~f(c).

SAQ-3:, The union of an arbitrary .collection of intervals is measurable.

Solution : Let {I a:1aE til be an arbitrary collection of intervals and E ~ a~/'/a . First

, " assume thatli~*cE) <- 00. , It is easy to verify that the con~ction9 = (11-1 is dosed interval
contained in some Ia } is a Vitalicm;er for E. Since m *(E) < 00 there is a finitesub collection "

k ~ ,
In, I'

( In I" n k ) in 9 such that m* (E \ U ' 111. ) <: -. The union of these intervals
" n "'j=l,J::" n..

k "
n,' ,00

£11= .u In. is m~asurablehenceEo = U En is measurable .
•, 1= I ,J s: ,'," n= 1

=

,00

m*(E\ U E )
, ,',fl = 1 ' n

=
00 ",' l'

, In*( n E \ E ) < m*(E~E ),< - \-I n., ' n -n- Vn=l ' ',n

Hencem'(E \ Eo) ~ O. SinceEois'measurabl~and E\Eo is measurableE'ismeasurable.

.:~' ,

Ifm:(E) =00 then-we consider ,thesets En ~ En (-n,n) and the intervals Ja (n)::=Lan (-n,n)

I., UJ(n}"'", U E'
"Clea,rIyEn =, a and m*(E ) <" oo.He~1ce En is measurable, since E = ' . n it

aE~', ' ,1\' n=l
follows that E 'is measurable.

/'
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SAQ4 Show by means of an example that D+ (f +g ) * D+ f + D+gin general.

Sulution Let tt~) = x, tor x E Q and fix) = -X for x E QC and g(x) = -x.

= inf sup· f(h)- f(O)

0>00<h<5 h

inf -
= s: 0 sup J I ·1l = Iu> l"

D+g (0)
inf sup ,g(h)- g(O)

= In
.5>00<h<0 h

inf . .
= 0 > 0 sup { 1,·1 } = 1 .

So that: (D+ f+ 0'" g) (0) = 2.

·SAQ5 If f assumes its maximum at C then 0+ f (C) ::; 0 ::; D}tC).

. Solution .
, , f(x+h)- f(x)

By definition D+ (f) (C) = inf sup h ::;0
. 5>00<h<£>

j(x+h)~ f(x

I•

for-sufficiently small h.· Similarly ~ne can show that O.t(C) ;;:::o.

-SAQ6 Iff I (x) exists then 0+ «(+ g) = D+ (f) + 0+ (g)

lim r(x + h)- f(x) = flex)
Since h~O h .

. f(x+h)-f(x)-hf](x)_O
11m h·-.h~O .

. Write J( x + h ) . f ( x ) . h f I ( X ) = ¢> (h)

..Solution

l .: , ¢>(h)
Then f( x + h) - f( x ) = h f I (x) -: ¢J (h) and hI: O-h- = o.

,
t·
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I)' ( f + n )(x) = inf SUp
e- 6>00<h<6

(I +g)(x+h)- I(+g)(x)
h

= inf sup
6>00<h<6

I(x+h)~ I(x)
h

g(x+h)- g(x)
+

h

_ inf sup 11(x)+¢(h) g(x+h)-g(x)- ~-------- +
6>00<h<6 h h

I''() inf sup
=. x + 6>0 0<h<6

¢(h) g(x+ h)- g(x)
--+

h h

, inf sup g(x+h)-g(x)
= f I (x ) + 6 > 0 0 < h < 6 h (

= f '(x) + 0+ g (x)
= 0+ t~x) + 0+ g (x).

rjJ(h)
lim --= 0)

h .

~ 9.X Model Examination Questions:

I.
,

Define D+ f (x), 0 f(x), D- f (x) and D f (x) and show that 0+ f (x)·~ 0 t~x)and
+'.. - +

D-f(x)~ DJ(x).

2. Let f be a monotically increasing function on [a.b]. If u > u
f\.u = (x / D+f~x) > u >.c.: Df(x)}, .9 = ([x-h,x] }show that .9 is a vitali cover E «tr:

a-
If f assumes maximum at C show that D+ f(C) ~ 0 ~ D_fee). />>r<'l'" U c:...

_L

4. Show that iffis a function of bounded variation on [a,b] then fis the difference of two ..
monotonically increasing functions.

9-9 Exel"Cises :

I. Show that a collection intervals r9 i~ a Vitali cover ofE if and only if .9 is a Vitali cover of E.

2. Show that the collections of ~ in step 2 and in step 3 of9. 6 are Vitali covers.



x
3. Let flxj= ax[O,l] + bX[l,2] where b>a>OandF(x)= ff(t-)dt show that Fiscontinuous

a
but not differentiable at x = 1.

4. Let t{x) =
{

lIq if x = pig in the simplest from (1'(0) = I)
o if x is rational -

x
and F(x) = ff(t)dt. Discuss the validity of f' (x) = f(x).o '

5. lff iscontinuous on [a.b] and one of its derivatives say D+ f~O on [a.b] show that J{b) ~ na).

Hint: First prove this for g when g is continuous and D+g ~ [; > 0:
Then consider g = f + x [;

6. Lebesgue Point: X E [a.b] is called a Lebesgue point of f if

x+h
f{[(tf - [(x)} dt = 0lim

h~Oh ·x .• , .• ,t ·1 ,J

x
If F(x) = ff(t)dt, show that 1" (x) = f(x) at every Lebesgue point x off.

a

7. Show that every point of continuity of an integrable function is a Lebesgue point.

Lesson writer: L Rarnabhadra Sarma

/



Lesson - 10

CONVERGENCE IN MEASLIRE

10.1 Introduction
I

We have proved several results concerning the equality of

lirn Sin and SI
n

-',- .

where In is a sequence of measurable functions such that

In ~I a.e.

Those results hold under a weaker assumption regarding the convergence of In to I. We'.,
deal with the topic in this lesson.

The methods of proving the results are more or less the same as in the previous case.

Suppose that E is a measurable set, I and In for each n in IN are measurable functions

onE.

10.2 Definition: We saythatthesequence (In) converges to I in measure if given anye>O we

can find an n(E)EIN such that for all n~n(E) we have

10.3 Remark: It is to be remembered that we have made" f is measurable" a part ofthe hypothesis
in the definition 12.1.

As soon as we define limit of a sequence it is the custom to define Cauchy sequence. Here
we follow the practice.

10.4 Definition: Suppose In for each n E IN is a measurable function defined on a measurable

set E. We say that

(In) is a Cauchy sequence in measure, if given any E>O, we carifind an n(E)EIN·.

such thatfor all k and .e in IN, k, e ~ n( E)

I,

m{x:\lk (x) - Je (x)\~ El < E.
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10.5 Proposition: Suppose (fn) is a Cauchy sequence in measure and a subsequence

. converges to a measurable function g in measure then (In) converges to g in measure .

. . Proof : Let £:>0.

Since (In) is a Cauchy sequence in measure there is a k} = k} ( E) EIN such that for all

p,q in IN , p,q ~ k}

m{ x:/lp (x) - Iq(x)/ ~~} <~.

Let Ink = s«. Since (gk) converges to g in measure, there is a k2 =s: (E) E IN such

that for all k ~ k2 .

Suppose n ~ n ( E). We note that k snk and so

Since

{x :lfn (x) - g {x)1 ~ E}

C {x: jIn (x) - in,(x)1 ,,~} U Hi •••(x) - g(x)1 ,,~}

m{x:l/n{x)- g{x)1 ~E} < ~ +~ = E proposition is proved.

-. ~'-

10.6 Proposition : If (In) is a Cauchy sequence inmeasure, then there is a measurable function

I such that (In) converges to I in measure.'



.as.\Jr,e andInteqratlon 10.3 Convergence in Measure

Proof: We prove first that there is C3 subsequence
..'''-.

which converges in measure to some measurable function g.

Corresponding to each k E IN I there is some n(i) E IN such that for all p; q IIN

p,q~n(i)

We set

For each k E IN we define

and

Fk = {x E E :Igk+! (x) - g k (x)1 ~ 21k}

and then set .

00 00

F=,n U Fk
n=l k=n

(

00 J a all
Therefore m U Fk ~ L m(F.,,) s L k= ~i:T .

k=n k=n . k=n 2 2

00

and since F c U Fk
k=n



for each n E IN we have m(F) = 0

Now suppose x {It F . Then there is an n E IN such that

therefore x {It Fp for p ~ n .

Suppose now n <r <S , then we have

< _1_ + +~ since x r;. Fp for p ~ n
2s-1 2r

T ( 1 J--1--- 2r-1 2s-r

1
<--

2r-1

This shows that the sequence of real-numbers

is a Cauchy sequence and hence converges to a real number. We denote it by g(x) .

Thus we have proved that the sequence of measurable functions (gk),

converges to g on E\F; and m(F)=O. Therefore g is a measurable function and we

have proved (gk) converges to g a.e.

'Ne ow show that (gk) converges to g in measure.

00

Suppose x {It U Fk.
k=p

.'

Then x {It Fp+r-l for rEIN and so
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The series

eo
L (gp+r-I(X) - gp+r(X»)
r=1 .

converges absolutely..:.Thus

eo
gp(X) - ~(x) = L (gp+r::'IC~) - gp+r(X»)

r=l-

<Xl .

and Igp (xl - g(x)1 s L Igp+r-l (x) - gp+r (x)1
r=1

<Xl 1
< L 2P+r-1 =

r=l

therefore

{xe E:lgp(x,) - g(x)1 ~ ~I:}C U Fk
. ". .' 2P ~=P

and so

m {x e E :Ig (x) - g.'(x)I~. _1_' . } < -L.' -.-- __ ~.-..__(_). p.... ~p:-l 2P-.~. . .•.

Suppq~e e > 0 i~ {;fJv~,n.C.ho.p~~~.k (e);e ~ ~.~~that

1

. mfxE E:lgk_(X.)~ g!{X;)~~E} <; E ..
This proves that

(Ink) conver,g~§;,to g i", measure.

Now by propositjon,10.5 we cQn,clude.that

(In) converQesto g in measure.



10.7 Notation : Suppose E is a set, I and In for n E IN are real valued functions on E and

E>O. In this lesson some subsets of E occur repeatedly. These are defined in terms of f, In
and 8. We introduce the following notation.

B (n, E) = {x E E : I/n (x) - I(x)1 ~ s}

A(n,8) = U B(m,8)
men

={x E E : 11m(x) - f(x)1 ~ E for some m ~ n}
A (s) = n A (n, E)

n

={XEE: for each zs e N wecanfindakm~m such that /fkm (x) - f(x)/ ~ E}
these sets have the following properties

A(n, 8) ~. A{n+t, 'f:); if@<E<¢, the."

B(n, 0) C B(n, E) .

10;8,L~mltla :SUJi>Jlose torsome x .in E.. . ..,

Then, if 6>0 x ~A(E) = n A(n~€);
n

hence if In converge to f pointwise

r1A(n, ,E) = ~
n

P,roof: We'cah find an n(8, x) EINsuch that lim.(x) '-"-f(x)1 <: I

if m;;:: n (E, x). this mea·l1s·ttlat

x ~B(n'G)for n ~ n{ 8,X);

that is x 9!:A( n,E.).for n~n(f:,x}

andso x~nA(n,E)
n

i.11
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In converges to f pointwise means that for each x E E

lim In (x) = I(x) .
. . n

Therefore in that case for each E>0

10.9Proposition: Suppose E is a measurable set of finite measure, I and In for n E IN are

measurable functions on E such that

(In) ~ I almost everywhere .
.

Then (In) converges to I in measure.

Proof: Suppose E >0 .With the notation introduced above we have

A (n, E) => A (n+1, e)

and A(e)= nA(n; E) =~ by 12.8,
n

and m(A (n, E)) ~ m(E) < + ex)

lherefore

lim m (A (n, E)) = 0
n~oo

Since B(n, E) C A(n,E)
We obtain that

lim m (B (n, E)) = 0
n~oo

This. implies that we can find n (E) EIN such that for all n ~ n (E) we have- .

m (B (n, E)) < E

i.e. m{x E E:l/n (x) - l(x)1 ~ e} < E

for all n ~ n( E). The proposition is proved.

10.10Proposition : Suppose ~/n - IIdm ~ 0 as n ~ OCI. Then (In ) converges to I, in .

measure.
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Proof: Suppse 8>0. Then we note that on the one hand

f Iln-/ldm s flln-/ldm
B(n,E)

and on the other hand

f Iln- Iidm ~ 8 m(B(n,8))
B(n,E)

We choose n (82) E IN such that

flln - Iidm < E2

~(B(n, c))·c~ ~/n-/ldm<c2

i.e. m(B(n,c))<c

if n~n( 8
2
). The proposition is proved.

10.11 Example: We now give an example of a sequence

of measurable functions such that

1) (In) converges to the function 0 in measure

-. 2) there is no x in [0,1] such that (In (x)) converges.

Definition of In. Suppose n is a positive integer and

n=k+2r, 0:::; k < 2r.

We note that r is the unique positive integer such that

2r ~n<2r+l.

[
k k+l]

We define In =1 on i:' 2r



ea~u~e > an.cl.I.,:,t~~ration _COl)vergencein Measure_

and In = 0 on the complement

In is clearly a measurable function,

Now we fix some number x .in [0, 1] and try to determine

',' ,

for various n. Suppose r, k, n .are as above. We writ~ the "binary expansion" for x

where ap is either o ort For calculating .

In(x)
we have to determine if

[
kk+l] .

XE ._,--.
2r 2r : -..

; l

The condition

is equivalent to

.~-.. -~

a 1 a 2r . r-I r+ r+ .
We have 2 x = 2 al +· ··+a + -- + --.+ .

r 2- 22 -
'" ~-" "

since ap =0 or 1 we have

. r-I . .2r~t 1 2r 1O~ at 2 + · +ar ~. + + = -
: .<..

and
ar+l ar+2 1O~--+--+··· .... ~ .2 2 '.' :::..

Suppose we set

-', .". . :~, '
., .:. r ··1 ;.:c: .: . :. :'c'-',-

k'~ at 2 ~ +. ;...+a; .
Then we have



.t_,~_.,;.~,~,-

Centre for

k k+1_·:s;x:s;--
2r 2r

Therefore only, for
•

.• ,j

for n =k +2r we certainly have

For all n=p+2r

O:S;p:S;2r-1. pv k=), k, k·+J

we have
fn(x) = 0

we note that n ~ 2r .

Therefore given any positive integer p we can find a positive integer.

such that In (x) = 1.

Suppose for the same p we set

O:S;r:S;2P-1 and r *k-l, k, k+l.

Then it is clear that

[

, < r+1]xll -,--
2P 2P

and hence In (x) = 0 ...

Thus there are infinitely many integers n such that In (x) =1 and also infinitely many

\jntegers .q such that !q (x) =0 .
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Therefore the sequence (In (x)) does not converge to any limit.

we now'show that (In) converges to zeroin measure.

Suppose r is a natural number and n in IN is ;:::2r . If s is a positive integer such that

we have r s: s; and if we set k=n-2s

In is 1 on

In is 0 on on the complement.

So,

1 1m{xE[O,I]:ln(x»O} = - ~-.
2s 2r

Let E >° choose n (E) E IN such that

1--<E
2n(c)

Then for n e n( £) we have

{
.} {O if 1<£m x E [0, 1] : I(x )~ E = .' < .

n <EIf £_1
. .

Therefore (In) converges to zero in measure.

We now prove that a sequence (In) converging to I in measure has a subsequence

\ Ink) that converges to I almost every where.

10.12 Proposition : Suppose E is a measurable set and (In) is a sequence of measurable

functions on E, I is a measurable function on E and (fn) converges to I in measure. Then

there is a subsequence (Ikn) of (In) such that

(ikn) converges to I a.e.
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Proof: Case 1 : Suppose In and f satisfy the condition

m{ x e E:lfn(x) - f(x)l:? 2~} < 2~ 'for all n eIN,

In the notation we have introduced the condition is

If x does not belong to B ( n, 21n) we have

1
I/n (x) - l(x)1 < -,;.

2

Therefore outside the set k9n B( m, 2~ )

1
we have IJn+k (x) - j(x)1 < 2n+k .

Let us write for convenience

E = U B(m _1 )n ' mm=n 2

Then we have

En=> En+l.

What we have proved is that outside

Eo = n En

the sequence In converges to I
We have

00 1
<2:-- 2n+k

k=O
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1
= 2n-}-

So it follows that

m(Eo) = lim m(En) = 0'
n.

Thus (In) converges' to I a.e.

Case 2: ,(In') converges to I in measure otherwise arbitrary.

We choose the sequence (ikn) by induction on n .

For each n we wdte

/

Since (In) ~ I in measure, there is an n} in IN such that

There is an n2 in IN such that for all n ~ n2

We set

k2 =1 + max{n2' kd·

Suppose we have defined positive integers

k» k2, ,kp

such that

1) k} <k2< =» and.

2) m(B(n,Er)) < s, for n ~ k., r=l, ,p.

10.1~ th~orem' Bounded Convergence' Theorem.for Convergerice in Measure:

Suppose Ii is a' set of finite measure

In :E~lR



isa measurable function for each n E IN. Suppose the sequence (In) is such that

(1) (In) converges in measure to a measurable function I and

(2) There is an M in IR such that Ilnl~M for all n .

Then we have

lim fin = f1imln .
n~oo n

~ <: , '0.: • ~

Proof: Suppose E >O. Then since (In) converges to I in measure, there is a positive integer

n ( E) such that the set

has measure less than E for all n ~ n ( E). Corresponding to Ep + 1 there is an np+ 1 E IN

such that for all n ~np+l

It is clear that k1,·······, kp+l satisfy conditions (1) and (2) above for p+ 1.

Thus we have constructed a subsequence

We claim that

By our construction

B( kn, 21n) has measure < 2in .

The sequence

''gh-'= fkn satisfies the following conditions

1) (gn) 4 I in measure and

/
/
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So by what we have proved in case 1

we write

E(/, M +8) = {x E E: l!(x)1 z M +8}
Thus we have

m(E(/, M +8)) < 8.

To see this choose any nEIN. If xEE(j,M+8) we have

-Ms,ln(x) S, M and

I(x)s,-(M +8) or l(x)zM+8.

Therefore j ~x) - In (x)z (M +8)-M = 8 if l(x)zM +8

In (x) - I(x)z( -M)-(-(M +8}) = 8 if I(x )s,:-(M +8)

Thus I/n(x) - l(x)1 z 8

and so we have E(/, M +8) eBen, 8);

Consequently m (E (I, M +8)) < 8 .

If 0<8' < 8, then, . -.. /

E(/, M +8) e E(/, M +8'), and

iii::; M a.e.

LetF={XE E:lfl>M}

vyemayset g(x)=/(x) if xEE and I/(x)I~M
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g(x) = 0

Then it is easy to see that

1) (In) converges to g in measure

if x E E and Ii(x)1 > M

2) Igl ~ M and

3) fl = fg·
So it is enough to prove that

(

lim Sin = Sg
n

.we have Sin - g = S In - g + S In - g
E B(n, E) E\B(n,E)

Therefore

fin - I s f I/n - II+ f lin - II
E B(n,E) E\B(n, E)

~2M ·E+ Em( E\ B(n,E))

~E(2M +mE)

This proves that

lim Sin = SI
n

10.14 Fatou's Lemma for Convergence in Measure: Suppose E is a measurable set, I and

In for each n in IN are measurable functions on E such that

1i In are non-negative

and 2) (In) converges to I in measure.

Then SI s lim Sin·
n

Prof: Suppose g is a simple function such that it va~ishes outside a set of finite measure and

g ~ I·

,We define gn(a) = min{g(x), fn(x)}



, ,easure and Integration 10.17
.. ,..... ', ... :', ..

,.• Converge~ce in 'Measure

Suppose x is such that ~•. '"

Bydefinition gn(x) ~ g(x)

and gn(x) is either g(x) or In(x).lf gn(x) =I' g(x) itfollowsthat
,.

Therefore we have

g(x) = In (x) < g{x) ~/(x).
, ....• ,

Therefore

g(x) - gnft) ~ j(x) - In (x) and so

{x E E:lg(x)- Sn (x )I~,E} C {xEE:I/(x) -:-In (x)1 ~ E}
This implies that the sequence (gn) converges to g in measure. By bounded convergence

. theoremwe have

Now, gn~/n and hence fgn ~ fin
And so

[s = Hmfgn s lim fin
n n

This inequality being true for all g we have

fl = sup { fg:g simple, g sI and g is zero outside a set of finite measure}
g

10.15 Lebesgue Convergence 'Theorem for Convergence in Measure : Suppose E is a

measurable set, In is a sequence of measurable functions on E such that

1) (In) converges in measure to I
." f'

2) There is a sequence of integrable functions gn on,E such that



. /

3) (gn) converges to g in measure and

, '

/

Then lim Iin = II.
n " '"

Le.lim Jln exists and is equal to Jlim In
n n

. ;.:

Proof: Consider the sequence of functions hn = gn - In'

Since I/nl::;gn we obtain hn ~ O. The sequence (hn) converges to (g- I) in measure.
" ':' , .:. • • • '. • .:' ,1 .;

Therefore

Let us set'

b = Jg, a = Jf
"

We have assumed that

lim bn = b
n~oo

': ~.

1,':'.,_

That is
1,:-' ,~ '.' '" ';. ,~•..i.. • '.' ')i ""
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By considering the sequence

kn = gn + In

f lim
We obtain a= Is - an

n
This implies that

lim an = a
n~oo

10.16 Short Answer Questions

lim
Solution: (i) a2n = '2 and a2n-l = 0 for n ~ 1. - an =0n

lim b- 0b2n =a2n-l So n - .n

lim
en = 2 for all n so - cn=2

n

lim
10.16.2 SAQ : Find - in where

n

in (x) = x-n if n is even

= n x if n is odd.
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.I lim
Solution: -In (x) = - 00 V x ,

n

10.16.3 SAQ : Show that if {In} converges to I in measure and {gn} converges to g in measure

then

(i) {In + gn} converges to 1+g in measure.

. and (ii) {a In} converges to a f in measure V a E iR .

Solution: (i) Let E>o. :3n}, n2 in IN such that

(ii) We may assume a * o. For E > 0 .

= {x1fn(x)-f(x)l;, I: I}
1 -

10.16.4SAQ:lf In(x)=/(x)=x and gn(X)=-VxEIR and nEINthen-. n

- In ~ I in measure

gn ~ 0 in measure

. but {In gn} does not converge to 0 in measure.



/
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,.

={X:I X l:::::nE} = (-'00, -n E] U [n E, (0)

10.17 Model Examination Questions
1. Define convergence in measure.

Does convergence in measure imply convergence a.e. ? Justify your answer.

2. Let {In} be a sequence of measurable functions which converges to I in measure.

Show that there is a subsequence of {In} which converges to I a.e .

3. Show that {In} converges to I in measure and {gn} converges to-g in measure imply·

that {In + gn}conve)"ges to f +g in measure.

10.1$ Exercl~es

1. If {In} converges to fin measure show that {lfn I} converges to If I in measure.

2. Show that a sequence' {In} .of measurable functions defined On a set E of finite measure

converges in measere to f if and only if every subsequence ef {In} has a subsequence.

which converges to f in measure.

10.19 Reference Book
Real Analysis - H.t.Royden

Lesson Writer :
v.J. Lal.



LESSON 11 :¥UNCTIQNSO.F .BOUNDED YARIATION
; ',',.J ,.~' -,-" ,·:,_,t ::. 0:-' ',\-::. .: . '" <-

INTRODUCTION:

The Vector Space generated by the class of Monotone functions has aspecial role in Lebesgue
Theory. Functions in this class are precisely functions of boundedvariation. In ~J1islesson we SLLJdy
some properties of functions of bounded variation. Their utility i,n the presentcol1te~~ wi II be
unravelled in the next lesson. . .

L.et us recall that for any real number a, a+ =,.max {a,O}, a- = max {-a,o,} s,.o,'that 101 ~ ~+ +a
Iff: [a.b] ~ R is a function for any partition lJ = {a = Xo < x, < xn} write P == P,.(ll ~= .

11 11)i:1 [f(x)-f(\_,)]+, 77=l1r.(77)= i:l [f(x)-f(xi_,)]-andt= tr(l])=P(1l)=P,{l7}+n,{I~.

Let'S' be the set of all parti tions of [a, b]. N otation:We write pi = p = SLIp{Pf ( 11)/11 E SJ

Jl.~ .VrPJ?o.§!fi~m: If f.is of bounded y~ria!iOIJQI)i~~,qJ,thelJ T$ =~i= lY~qp.g

f (b) - f (tl) = RP - NIJ .. .,-', ...,.'.' . '(I,;q

lJ·.J .Jlcn.~i~i9r~J : ,fa,bg ~ ~ is .SHiq !t-9 be 9fJJOL!l1~t~gv~,Fi~fiml,it ~f< ,00. Tis called the 1qtH1
v~riiJliol) off on ,[a~b],w}Ji.fhP is c~!J~\i!}1~)?Q§jJiveyari~!iR.n,~l)~ t;J i,~H:~lle9t;h~,ne#ptivf variation.
~(IJe setof allfl!Q5~tiQn~pf bOLIl1de9..y~,riatj,pq ?H [~l;p,1is q~l!ot~p Q>' BV ,[q,l)],o.r~iynp!rJ3y. \yh~n

Jh~,rc i~no cqnfu~iq9 we write pen) forfr ,l )l!'W,4 ~g 011.

11

l~nwf:FRr ,<PlY 'partj,tjon /7 = {a = Xo < xn = b}, l?lB);O;=L, .[t~x) - f(x_,)r,n ('7)=."." . ..' ", .., ..,' i = 1 'L ," .I .. " § "
~-..'.~ ".

11

~ P(l1) - n (.11), = i:I 11/ - -: wh~r~p:i .~ t~(=t'i) -.rf~i_')
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n, n
L -L\/. = L [f (x,.)- f(x,,_,,)]

. 1 . 11= 1=

~ f(b) - f(a)

~ P(l1) = n (17) +f(b) - f(a) ::;:N+ f(b) - f(a). Since thisis true V'7, it follows that
.. \ ;

"
SLIp

P = '7 P(ll)'S N + f(b) - f(a)

P - N S f(b)- f(a) Since (-at = max {-a,O)= a-and (-a)" = max {a,O} = a+ for any

n n
"7= {a = Xo< xn=b}, write L\i ,.=f(Xi~- f(xi_,)· Then P- f C 11) = n_L= 1 (-L\j)+ = i::1 Sf

= nf (11) and hence so that n(_1) (17') = Pf (11 )

hence N:::; P + f (a) -'f (b) so that

N - PS f'{a) - f(b).

Hence P - N = f'(b) - f'{a)

Hence t (77 ) ~ P(l1) + n(7]-) = P(l1)+ P(l1} - { t~b) - f(a) }

=2 P(l1) +f(a)-f(b)

'1':::2 P(ll) +N-P.

~ T> 2 P + N-P = P + N (i)

Moreover V'7 ES, t(17)= P(11) +n(1]):::;P+N.

'J;



,-~M~e~a~su~r:e~an~d~l~nt~eg~r~at~io~n~~~~3Ql1.~3~~~~,-~F~u~nc~tiO:n~S~O~fB~O~Un~d~ed~V~a~ria~liO:n~/

sup t(''7) .
Hence T = 17E S ~ P +N (ii)

. From (i) and (ii) T = P + N.

11.3 Theorem: A function f[a,b] -4 R is of bounded variation on [a.b] if and only iffis the
difference of two monotonically increasing functions on [a,b].

Proof: If g and h are monotonically increasing on [a,b] V partition 17 = {a = xo < X I < .... xn =b 1.

n _ . n
2; g(x.)- g(x. 1) + L h(x.)-h(x. 1)

.. \ I l r: • 1 l ': l r:

1= 1=

'. = [g(b) ~ g(a)] + [h(b)] - h(a)]

This is true V'7. Hence Tgch = s~p t g-h (17):::: g (b) - g (a)+ h (b) - h (a) < 00. Hence g-h E BY on

b .
[a.b]. Conversely suppose f is ofboundedvariation on [a,b]. Then Ta f < 00. For a <x S b define

g(x)= pi, h (x) = N~ and g(a) = h(a) = O.

P(ll]) = £ [f(x.)- f(x. )r:::: £. [f(x)- f(x. )]+ P(112) :::: pY2 This istrue V II,. 1 I I-I . I I I-I a I1= . 1= .

Y1 Y . Y Y
so Po ::::Pd2 byn('7I)::::n (172) so that Nol::: Na2 andt ('71):::- ('72) so that

rl'l <TY2 <Tb since fEB V. rb <00 so that 0 <px < rx'<Tb <00 and 0<; NX -r= < rb <00.(/ - a - a . a - a - a - a -a - a - 0



. .

. 'i~Cfiar'Va)~f[f~'§rjfih1i-¥fflwern1t¥~;~'~t;';;{i··,» .~., •"'Ie'''':':;'

Hence g andh are real valued monotonically increasing functions on [a.b]: Also f(x) -t~a) =
;\" .'. X '. . . .'

~; - Na = g(x) - hex) V X E [a,b] so that f(x) = g(x) - (h(x) - f(a)).

Since g(x) andh(x)-h(a) are monotonically increasing, the request follows.

r. Let 17={a= co<c,-b'l <cl+b'I<c2-b'2 < <ck-(jk< ck+(jk<b}

k . .
Then t( '7 } ~ L: f f (e. +6'J -r(e.-,- s., 1 > k:

i=l I I I I n

. ·.i

,k ".
=> . T :::l( In >- .

n
'. ,

~ k<nT

Thus. the number of elements in S < n T, hence Sis finite for every n. This complete the proof;. . n· n

" ,f,

11.4 Example: If f is integrable on [a,b] then the function F defined hy

.' x
.Ftx) = f/(t) dt for a <x::: band F(a) = Ois a continuous function of bounded variation on [a,b].

a

y
At:· [a.b] .=> . ·ff .<E. Hence if'[x-y] < (j, IF(x) - F(y)l= f !(t) dt '<E

A x

Solution: Continuity: since f is integrable-on [a.b], by 2.9 given E > 03 a b' >0 3 m(A)<b' and

. y.. x '. .
. (when x > y ff(t)dt = - f f(t) dt). Hence F isinfact uniformly continuous Oi1 [a,b]

x y" . .

".J"_

For any partition P == {a ~xo < XI < ... <:X:I\= b} and for 1:::i::: n F (~)-f(Xi_l) I=

X.
1 b b

f f(l) dt ~ II!(t)ld! since fis integrable, so is lf]hence t (P) ~ JI!U)!dt \"iP', Tbisimplies that
X. I a . a .
1-
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•..... .~ ---------Functions of BoundedVariation

b
fis of bounded variation on [a.b] and T = s;p t (P):::: flf(t)ldt .

. a

11.5 Theorem;

Iff: [a.b] ~R is a function ernv then. fhas atmost a countable riumberofdiscontinuities on [a.b]

Proof: Since f E B V on [a,b], there exist. monotonically increasing functions g and h such that
, . /

; f = g-h on [a,b]. It is thus enough to show that a monotonically increasing function can have atmost

countable number of discontinuties. Thus we may assume that f is monotonically increasing.

If a < c < b, and a < x <c ~ y < b, f'(a) :s((x}:::: f«6:::: fey) ::::f(b). Hence {ftx) a:::: x < cjis .

bOllnd~dabove by f(c)while {fey) c < y ~b} is b~und~d b~iO\;Let A = lub {fix) a::::x < c}. Clearly

A:::: t1c). We show that f (c-) = A. If & "19, A-& < A So :3 XI:) a::::XI < c and f(xl) >A-.&. Sincef

is monotonically increasing, XI< x< C :=;> f(x I) Sf(x) so that A-& < f(x I):::: t(x):::: A < A+ E . Thus

Il{x) - AI < & ifx. < x< c. This implies that f(c-) = A.
I '

We similarly show that f(c+) = B.
= inf { f(x) I c < x <b}. Thus f(c-) ::::fed) ::::f(c+).

Since f is continous ifff(e-)= f(e+) = fee), f isdiseontinuousat e ifand only if'fic-) <f(c+).

10 ather words the set of discontinuities offis precisely the set S = {cI a< c'<b and f(c+) -f(c-» ()1
. together with possibly a and lor b. It is therefore enough to show that S is.atmost countable. If Sn= /.

00

:c I a < c < band flc+) - f(c-) > l/n} then S = U, S . Hence it sufficies to show that for every
In.n-- "

/.... .i .
positive integer n, Sn is atmost countable. We show that Sn is finite.

. ,
To show that S;1is finite let c., e2, •... ck be any k elements of SJIand a::::e, < c2 < ...: <cJl' \;ji

choose J .> 0 3'
/ I '

'. r ,

Hcj+h)-f(c(h}> I/nforcj<h::::cj+ 6iandalsosuchthata<c,-61-<cl<c,+s, < <s;
" <A: < c -+ s: < .... < c- s: <c
..../ 2 2 f' 2·" JI UJ1 JI
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11.6 SHORT ANSWER QUESTIONS WITH SOLUTIONS:

1
SAQ. J. Define I1x) ~ x sin - if 0 < x S 1 and f(O)

x

show that f is not of bounded variation [O,i].

For each n Let P be the partition
11 .

1 1 1
P.'0< < < <

1\' I (417+l)Jr/2 4nJr/2 (4n-I)Jr/2
. 1 1 1

<--<--<--<1'
3;r 12 2Jr 12 ff 12 J

1(1»)= 1'(__ 1 -J-f(O) + f( .. 1 . J- f«4n41)Jr/2) + j ..(_._1 )~j'(I)
1\ • (417+1);r/2 (41'1+I)Jr/2 JrI2

::::>
_1_ -0 + 1.2._ .. 1 + + '1-1--l(1)1

(4n+I)JrI2 .14 (4n+I)1(12 ..... ,,/2 .

{ I' I .\ . \ \ I} 4{ 1 . 1 II}
(411+1) + (411+\) + (4n-l) + (4n-l) +"'3+3 =" 4n+l + 411-\ + 411+3+·····+3

')

>-
J[

1 1 1. I
S inee the series ~ +-::-+ -7 + is divegent, the sequence {s } where s = 1/3 + 1/5 + 411+ 1j ) 11 . 11

is divergent. Hence {t(Pn)} diverges to +00. Hence fis not of bounded variation on [0,1]

'.
SAQ.2.Detine f(x) = x2 sin 1/x for 0 < [x] S 1 and f(O) =0. Showthat f is of bounded variation

on [-1. I]. ,

Solution: If O< [x] s 1 flex) = 2 x sin l/x .cos IIx. So Ir(x)1s 3 sin~e I sin lIx Is 1 and lcos I/x I~ L

f' (0) = lim f(x) - f(O) = lim' x sin l/x = O.
. x~Ox-O x-o O

Hence I f'(X) Is 3 \;fxE [0,1]; If 17 =, {-I = xo~ x, < .....< XII =l}is any partition of [-:1,1] for

every i, 3 ti E (Xi -l.xi) 3 f(x) - f~)~ f' (9 (X(Xi_) sothat If(xj) - f(xj -})I ..
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1"(t)ll(x -X )1<3(X.-X. -I)~
I I I-I - ,I l r:

n n
Ilcncct(/J)==,.2:: I/U/)-/Ui_I)I:S3.2:: (Xi-·\_I)=3x1=6.

1=1 .' ./=1

This being true for every partition 77 of [-1,1], it follows that f is of bounded variation on [-I.ll

SAQ.J; Let f be a function of bounded variation on [a.b] and V = VI' be the total variation or I'

11 .

/,delinL'd by Vr(a) = 0 and VI(x) = varr[a.x] = Slip i:: 1 I/{xi) - /(::':i -1)1 /p=: a = xo< .... <~II= b] show

that VI' is cdontinuous at x iff is continuous at x. Let a:S c < b. We show that Vr(c+) = Vr(c).

& &
Solution: Given E > 0 :3 a (5 > 0 0) [I(x) - f(c)1 < 2' if [x-c] < li and x E [a.b], Since Vile. b]- '2

. .
. '. 11

is not an upper bound of the collection of sum .I I/exi) - /(xi-1)1 of partitions c= Xo <: ..... <XII
1= 1 .

l ) ..0·0 . 0 b= J, :3 sue 1 a parntion c = Xo < Xl < < xn = 0)

n .)'10 OlE 1·.~ /(xi)- [exi_I)> VI·[c,b] - 2' Choose X'I E (c,x) 3C Xl <C + S
1 -.- I. .
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n
:::::If(xi))~ fee) 1+i ~ 21 f(/)) - (x))) I· .

&
> VI' [c,b] - "2

H.
==) Y r [c.b] - -;:;-< If(x I I) - f( c)1 +V f [ X I Ib]

s:

This being true V x' I in (c,e + <5) it follows that V t(e+) = V,( e).

The proof for Y1(c-) = Vt{c)'

Hence Y,(c+) = V(c) <VF(c+) = V(c)

Hence Y •.is right continuous at c.

Left continuity follows from continuity of f at c and infinum property
~ ' I '

Exercises:

'/ :'

Iff and g are functions ofBV on'[a.b] show that f+ g, and a fwhere a is any real number, .
are functions of BY on [a,b] show also that

. 1.

(a) Tb (f +7) < Tb (f) + Tb
a g- a . '. a g

(b) T: (a f) = lal T: (f.)

2. Show that iff E BY on [a,b],fis bounded, Deduce that iff, g E BV on [a,b] f g E B'V on
[a,b].



, . '
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.,
J. Iff E BY on [a,b] and a < c< b show that f E BY on [a.c] as weir as [c.b]. Show also that

T(~(1) + T(~(0 = Ti (f) .

4, . Iff E BY on [a.b] show that g(x) = T; and hex) = T~'(-f(x) are monotonically increasing

and g-h = f.

Let {t~)be a sequence of function on [a,b] and \j x E [a,b], f(x) = li/l~l f;l(X) show that

b / b :T (f) < lim T(f)a - - a n

6.
00

Let {x [be a countable set in (a.b), andL C be a convergent series of positive terms.
n '. n=l n t'

Define f(x) = x -~ x en Show that f is monotonically increasing on [a,b] and r is
n

discontinuous at x iffx = x for somen.
n

7. Show that iff E BY on [a,b] fis contin ruson [a,b] whenever then g(x) = T; (f) is continuous

,! . '.';'

..,. ~

Define f on [0, I]by f(x) = x'' sin lIx or x > 0 and f(O) = 0 show f E BY on [0,1] if P ::: 2

Lesson writer: I. Ramabhadra Sarma.



LESSON 12 :-ABSOLUTE CONTINUITY·

, .
I TRODlJCTION: In this lesson we characterize the class of functions which satisfy the
undamcntal theorem of calculus for Lebesgue integral. We define an absolutely continuous function

on a closed interval [a.b] study its properties and show that the indefinite integral of an integrable
function is absolutely continuous. We further show that iffis absolutely contil1uOLls on [a,b),fis
differentiable almost everywhere and is the integral of its derivative.

';1
2. DEFINITION: A real valued function fdefined on [a.b] is said to be absolutely continuous on

n
[a.b] if given [; > 0 there is as> 0 such that I I f( X'I) - t1Xi)1< [; for every finite collcL"li(lll

i = I

n
of non over lappyingintervals {(Xi' X'I) 1 :;: i::: n} with i ~l (x' I-X) <(5.

Rem ••,-I{: An absr !'ltcly continuous function is uniformly continuous.

3. Proposition: If f is absolutely continuous 0)1 [a.b] then f is ofbounded variation 011 [a.b].

Proof: Since fis absolutely continuous on [a.b], there exists a positive number.y such that

n
L I [(x) - t1 x' 1)1< I for every choice of a finite collection {(xi' X' 1)11 S iS n} ofnonoverlapping

i=)

. b-a
interval in [a.b]. such that lx' I-XJ<S. L~t k be the largest integer less than 1+5-

b-a
and a := V <v <... < y =b be such that y. - v = -- \-I J' and P = {a = x < < x = b 1 be any• (). I k .I - .I-I k v '0 ... 'n I

partition or [a.b]. Let xr,xr + I,.....X,_I' Xs be those points that lie in (Yi -1 'Yi)'

V· I < x < x I < x <)' the'11 .( y. I' x ) I X .x 1) (X l ' y ..) are nonoverlapping-/- - r r+ ····'5- i ./- r'~ r r+ ..... r r: I .

and the sum of these intervals = y. - Y I < 5 .
1 1-
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Hence (j, = I f(x) - fey, 'I)! + 1f(x'+I) - f(x)! -I-..... +1f{y.) - fts, I) < 1.I I 1- I r I' I-

.' k
As there are K such intervals, I s. < K.

i = 1 I

n k
But I ! r (XI')- f (XI'_I)!:S .I,I' s. <K Hence t (P) < K 'II P.

i=l 1= I

This implies that f is of bounded variation on [a,b].

I I

lirn I(x + 11) - I(x)
h ~ 0 + h ' = f' (x) = 0 if x E E

4 Theorem: If f is absolutely continuous on [a.b] and f' (x) = 0 a.e in [a.b] then fis constant.

Proof: We show that t(c) = f(a) \:Ie E [a.b], Since .f' (x) = 0 a.e. in [a,c] (where a < c:S b) the set
I

F= :x/a.:::x.:::cand f'ex) :;to} has measure zero so that E= [a,c]\F= {x/a.::: x.::: c and f'(x)=Ol
has measure c-a. Let (; >0 and '7 > 0 be arbitrary. Choose (j > 0 corresponding to (; that satisfies
the condition for absolute continuity.

::::::> 3 h> 0 3 is 1f (x+h) - f(x)1 < h 17.

The collection [x,y] such that! f(x) - fey) 1< 17 (y - x) is a vitalicoverof E. By vitali's lemma there,

n n
I (x y) -I- I (y, - x.)

i = 0' i+ 1 - i i = 0 I I

n
c-a = XI-YO -I-X2-yl-l- +xn+I"Yn+ I (y.-x.)i = 1 .I I
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n
m* (E \ U (x.,y,) < 8

i= 1 I I

n, n
By the definition of absolute continuity L I f (x, ,) - f (y) I < & . Moreover .L ! f (y.) - f (x) I

i = 0 t+ Ii = 1 I I '

n. n n
< i:: I 17 (Yj - x) < l7(c-a). Hence l f(c) - !(a) I ~ i~O If (Yj-l-,) - f (x) 1+ i:1 If (y)- f (x) I

< & +'7 (b-a)

Since this is true and V &>Qand 17 >Oit followsthatlf(c)-f(a)!=Osothatf(c)=f(a).S'ince
this is true V c in [a,b] it follows that f(c) = f (a), V c in [a,b] , .\

5 Theorem: f [a,b] ,~ R is absolutely continuous if and only if there is a F: [a.b] ~ R such that
/

x
. f F(t)clt = [(x) a.e. in [a,b]
a

Proof: Assume that f is absolutely continuous. Then f is of bounded variation.
Hence 3 monotonically increasing functions f\ and f2 such that t{x) = flex) - t~(x} V x. J

,Since i', and f2 are differentiable a.e., f is differentiable a.e. in [a,b] and f' (x) = f' ,(X) - f' 2(X)

whenever r.h.s. exists. Hence f' is measurable and I f'(x) I < f' ,(x) + (x)

. I

b b, b , .. x
,~f ! f'(x)ldx:::f fl (x)dx+

a
ff2 (x)dx:::f,(b)-f,(a)+flb)-fla) Letg(x)=J f(t)dt.gis

a a .

absolutely continuous in [a.b]. Since f and g are absolutely continuous, f-g is absolutely continuous

Hence (f-g). (x) = f' (x) - g' (x) ~ f' (x) - I' (x) = 0 a.e. By (Th: 4) [- g is a constant function.
x . "

rex) = f(a) + g(x) = f(a) + f f(t)dt.
a

:. X

~nversely assume that f(x) = J .F(t)dt. Then given e > 0 3 a s > 0 3.J F(t)dt < J:,~
;. ".

in particular for any collection of nonoverlapping intering intervals (x "y I) ...(\;,y n) 3
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, :;J

n
L (y-x) < 0

i = 1 I I

f F(t) dt < 6'

U(x.,y.)
I I

.,
n y.

1

~ L f F(t)dt < &
i = I x.

I

n
~ I I fey) - f (x) I < e Hence f is absolutely continuous.

i = I

6. Corolla ry: Iff is abso Iutely continuous [~l f is the indefini te integral of its deri vati ve.

j{1~x) = f f' (t)dt. \ ..
a

x
J1x) = f F(t)dt.

.a

Proof: Since fis absolutely continuous on [a,b], 3a F : [a,b] --+ R ~

~ f' (x) = F (x) a.e.

x
~, ftx) = f !'(t)dt.

a

x
7.Lemma: If f is integrable on [a,b] and .I J= 0 v.« E [a.bjthen f(x) = 0 a.e. in [a.b]

, a
-; :

Proof: LeU\. = {x / f(x) > 0, X E [a,b]} and B = {x/f(x) < 0, XE [a,b]}. Suppose m (A) > G

'b
Then 3 a closed set FC A 3 m (F) > O. The set V = (a,l?) \F is then open. Si'nce 0 = If'=

a

Lf f! ff If.' (A) 0& f( )' "0 A J f"o If ° s: V' hV + A . 'v -A since m > x > on . A > so V ::j;. II1ce ISopen.t ~~~c.

,. > .~ ~, : : i i ". i :
, ; ':
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00

is a sequence (a ,b ) of pairwise disjoint open intervals such that V = U (a,b) sothat
11 III 11 11. n=

b
If 00 n

L If.-

V n= 1 an

lr b
II 00 n n

o*- 2.: II ~ If ::j:. O. for some nV n=l a an n

a bn n
~ If + f I ::j:. 0 for some n

a a

(( b
n n

~ If ::j:. 0 or f f::j:. O. But this contradicts the hypothesis. This Proves the lemma.
a -a

" I

,e
f l(t) ~t + F(a)

Lemma: _If fis of bounded and measurable on [a,b] and F(x) = then F isa

differentiable a.e. and I' (x) = f~x) a.e. on [a,b].

Proof: Let P = {a = xo < < xn = b} be any partition of[ a,b].

n n
. I I F (x) - F(x. ) I = 2.:
i = ) I I-I i = 1

x.
l

I [dt
x. 11-

- n
1<2.:
-i=lx·1 1-

x.
l

I
b

If(t)ldt = II f(t)ldt . .
. . (remember that I f I is

a

integrablel). This being true "if partition of'[a.b], it followsthat F is of bounded variation. HenceF

is of bounded variation on [a,b]. Since F is the difference of two monotonically increasing functions
by Lebesgue's Theorem F is differentiable a.e in [a,b] -

. F(x+ 1/ n)- F(x)
For each positive integer let f (x) = 1/

c 11 n

.,; ,

x+lIn
clearly f (x) ='11 JI(t)dt

n x
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8. Sincefis pounded, :3 K> 03 1f(x) l:s K V X E [a,b]

x+lIn ,
Hence I t:1(x) I.:::: n f f(t)dt .::::K. Clearly f' (x) = li~n ~l(X). By the bounded convergence

x
theorem it follows that V c E [a,b].

f/;(X)dX=lim f f(X)dx=limf F(x+lIn)-F(x)dx
a n ann a lIn

c c
= Ii~n n {f F(x+ 11n)dx f F(x) dx}

. a . a

{
C+ 1/ n C f

= lim n fF(t)dt- fF(t)dt .
n . a + 1'1na· '-

, :' {c+ 11n . a + 11n }
, .~. lim n . f F(t)dt - ,f F(t)dt

n a ~ a"

= lim J f (c) - f (a)}
n l" ,"

= F (c)-F (a)

C 1 C ' x
= ff(.~?dx-Hence f{f'(X)-"f(x)}dx=OVCE[a,b],Hence f'(x)= flf(t)ldt+F(a) a.e.
a a a

x
9. i'hcorc~: let fbe an integrable function on [a,b] and supposethat F(x)'= F(a) + flf(t)ldt.

' ...,," , , ;. a

'T'hen F is differenOab-Je a.e . .in [ap) and F/(X}=,f(~) wheneverlhs exists.'.

Proof: We may assume that f(x):::: 0 for ~ll x; because.once.we prove the result for nonnegative f.
the general follows by applying this to each off + and f -:-

Under this assumption write ~l(X) = min {t~x) and x}
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i.e. f (x) ={f(X) iff(x}< 1,1n
n iff(x) > n

Each f~lis bounded, measurable, 0 :s fn(x}:s f(x) V x

and t{x) = li~n ~l(X).Since (f -'~l)(x):::: 0 \f XE [a,b]

..... (1)

x
On,(x) = ,J (f ~~)(t)dt is an increasing function ofx. Hence On is differentiable a.e in [a.b]

a
G1n(x)::::0 wheneyer the derivative exists.

x
Since f'l is bounded and measurable by (1) F11(X)= J f (t)dt is differentiable a.e. and F '(x) = f (x)

n ' , n na
whenever the derivative exists ..~.. .. , :;...

~
F,rC~~)+On(~) = f f(t};<;it = .f(x) - f(ft)

q '.

, I

=> Fn (x) + ,Gn (x) = I' (x)

I

=> f' (x) ~ fn (x) = ~J~)~.e. in ,Ca,p 1

=>
b ,b
f f' (x) = F(b) - F(a) = J f(x,)
q , ,g

b
J i F (x)- t{x) } = o,
a

since F' (x) - [(x),~ 0 a..e., iffollows that F!(x) - ~x) = 0 a.~:,

=> F' (x) = f'(x) a.e. in [ a,b]
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10. Short Answer Questions with solutions:

C). I Let nx) = x sin I/x if x "':j:. 0 and 1'(0) = O. Show that

(a) I is continuous in [0.1]
(b) f is absolutely continuous in [6' .1] 'II 6' .') 0 < 6' < I
(c) f is not absolutely continuous in [0.1]

Solution: It(x) ~ 1(0) I = I x sin I Ix 1.:<;[x] < 6' if [x 1<6' . This proves (a).

If a < (; < x SI If'(x)1 = [sin l/x - l/x cos I/xls 1 + if 6' ,,= k (say).

l.r(x) - iCy) I
If E < X < Y S I .:3c.') I < If (c) 1.:<;k and x < c < y.x-y

So thallt{x) - f{y)IS k Ix-YI.Thus if '7> O. if{(xj' Y) lIS iSn} is any finite collection or

. n t n n
nonoverlapping intervals in [B .1 ]sucl1tHat .Il (y. - x.) < - .Il If(y.) - f(x)1 < k .. I, (y - x.}< '1·

1= I I k 1= I I 1= I I

Thus f is absolutely continuous iii [6' .11 This proves (b). To prove (c) we recall thatan absol utcl ,
conti nLInus functions of bounded variation which f is not of bounded variation.

C).:2 Iff: [a.b] ---+ R is absolutely continuous monotone Ec: [a.b] and Iil(E)= 0 then III unm=cc 0

Pn)hf: ASSUlllC that f is monotonically increasing in [a.bl Since f is absolutely coritinuous, given
h' > 0 there exists an 5 > 0 .') for every finite collection of nonoverlapping intervals'

if) 00

intervals (ck,dk) in [a,b] .') E c U '(ck,dk) and L (d" -ck) <s since f is continuous on Ic".d"J
k=l k=l .

:3 "«f3 k in [c"AJ '3 V x in [c",djJ f (ale).:<; f(x).'S f (f3k) so that f([ck,dk]) = [11 a In· 11 f3k )/

00 00 n
Since L (PI _a I ) < L (d -c ) < 6' . 'II positive integer n, I f3k JX k <8 so that

k=1 J( J( -/(=1"" k=l'

'.
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L If(a k ) - t{,8k)1 < e ..
k = 1

00

L If (ak ) ~f ( ,8k )[ < e
k=1 . '.'

00

m(f(E))< k~l If(Pk)-·f(ak)l< e .

This is true 'V s > O. So m (t{E»= 0

().3 II'f is monotonically increasing function defined on [a.b] there is an absolutely continuous
function f, and a "singular" function f2 such that f(x) = flex) + f2(x) for x -E'ld:b].

By definition a real valued function defined on [a.bj.is singular if its derivative-is zero
almost every where.

X

Proof: Since fis l11onoton~,fis differentiable a.e. Further flex) = fl/ct)ldtis abs~lutely continuous.
• . a

Clearly t~= f ., f,issingular
'. ;}

Q.4 A.function f: [a,b] ~ R is said to satisfy a Lipschitz condition if there aM> 0 such that
It{x) - fCy)1:s M [x-y] for all x,y in [a.b],

lf f satisfies Lipschitz condition on [a,b] thenfis absolutely continuous
.. : "! -. # ~ j

Proof: Let E> 0 and {(xi,y)} .1 < i:s n be any finite 'collection of nonoverlapping int~rvals sllch
'. : ~ . "n . &

that I: (y. -x.) <-
i=1 I I M , 1

n n
i~l I f(x) - try)1 ~ i~l M (Yj - x) < E· Hence f is absolutely continuous.
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Short Answer Question with Solutions

Q.I Iff: [a.b] ~ R is absolutely continuous in [c,b] '\I c in [a,b], continuous at a and is of
bounded variation in [a,b] then f is absolutely continuous in [a,b].

Proof: Since f is of bouindedvariation and continuous at a, the total variation function VI' is

8
continuous at a. Hence given s > a. 3 a O. > 0 such that I V t{x)- Via)1 < "2 if a::: x ::: a +6' = c< b.

Since f is absolutely continuous in [c,b] 3 a £5 1 > 0 for every finite collection of nonoverlapping

l:
intervals (x, y.) in [c,b] .3 L (y - x) <0 I, L I f(y.) - f(x.) I < -2 . Let {I. I :s j:s n} be any

JJ J J J J J

\ nonoverlapping finite collection of intervals in [a,b] with L I (I.) < £5 1 where I (I) is the length' of I .
.I J J

Let II" I be the intervals in [a,c] and I I' 1 be from [c,b]. Write L~(a)., Ii).) and assume
r r+ n J

.' that '1 < a ~ /3 ~ a .~ /3 < a ~ fJ ~ C Tl1e11'. '" - I· 1 2 . 2 ;. - r r .

s
I f( a I )~f( a)1 +If( /31) - f( a1 )1 + If("z )- f( /31 )1 + .....+ If(c) -f( /3r )1 ::: V I{c) < "2

r 8
Hence L If(,B ) - f( a ) I < - .

i=l r r 2

n
Consequently .L If( /3i ) - f( ai )1 < e

1=1

This implies that fis absolutely continuous in [a,b]

)I. Model Examination Questions

1) Define absolute continuity. Show that iff is absolutely continuous 011 [a.b] then fis a function
of bounded variation on [a.b]

2) Show that if f is absolutely continuous on [a,b] and f'(x) = 0 a.e. on [a.b] then f is a

constant function.
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b
3) Show that if f is absolutely contil~Lious opt [a.b] then f(~)= r f' (x)dx a.e.

a

~l5"~

4) Iff is integrable on [a,b] show that f f (t)dt is absolutely continuous.
a

r

-12. Exercises

Let g be a monotone increasingabsolutely continuous function on [a.b] and g(a) = c. g(b) ~ d.

I)
1

Show that for any open set 0 c [c,d] m (0) = f g (x)dt
-Is (0)

1) Let Hr=j x z g'(x) -::j:. O}.IfE c [c.djhas measure zero showthat g-l(E)nHhasmeasllre

zero.

:1) If E c. ~c.d] is measurable show that g-l (E)-.n» measurable
,.~ ';

\ -

4) _ Show that if f' (x) is bounded on [a.b] then fis absolutelycontinuous on [a.b].

5.a) Iff and g are absolutely continuous and gof is defined on f show that gof is not necessarily
absolutely continuous.

Hint: /1x) = JX g(x) = X2 Sin 1[/2x

h) Show that if in addition the function g is monotonically increasing then fog is absolutely
continuous.

6) Write f(x) = x" sin l/x for x -::j:. 0 and f(O) = O.
For what values of a is f an absolutely continuous function?

I'" •

Lesson writer: I.Ramabhadra Sarma



\ Lesson - 1'3

THE CLASSICAL BANACH SPACES - I

13.1 Introduction

In the earlier lessons we have dealt with the Lebesgue measure and integral on the real line
IR . Several results including a number of convergence theorems for the integral have been proved.

We use these results and study special classes of measurable functions namely LP spaces

where 1sP ~ 00 . These spaces are also known as the classical Banach spaces. The LP spaces

of functions defined on [0, 1] and their analogues namely eP spaces for any exponent p such

that 1< p < 00 were introduced by F. Riesz iff 1910 - 1913.

'In this lesson we define "essentiaiiy bounded" functions and show that these functions can

be S~lit into disjoint equivalence classes which form a vector space. Likewise the class :;zp of all

measurable functions 1 on [0, 1] such that /lIP is integrable can also be divided into disjoint

equivalence classes which form a vector space.

We introduce the concept of norm on a vector space and show that the above vector
space. become normed vector spaces with appropriate norms. We denote thesenorrned vector

-space ~y LP (1 ~ p ~ 00) •

In what follows all the functions under consideration are extended real valued measurable

functions on [0, 1] .

13.2 Definition: We call a measurable function f on [O? 1] essentially bounded if there is a real

number M > ° such that the set

EM (I) ={x/xE[O,l] andl/(x)I>M}

has measure zero. Any such M is called an essential bound of f. The infimum of the set of

essential b~unds of f is called the essential supremum of I and is denoted by II f 1100 .

II 11100 = inf { M/ M > 0, m ({xiI! (x )1>M}) = o} .
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We write ::zoo = {I / I is essentiallybounded on [0, 1]}.
(

Let us recall that the definition of I+g when I and g are real valued functions is given by

(I +g)(x) = I(-c)+g(x)'v' XE[O, 1]. When I and gare extended real valued functions

1(x) + g (x) is not necessarily defined for aH x. We fix any number a' and define' (I+ g) (x) = a

whenever I (x)+ g (x) is not defined. With this definition h is known that I + g is measurable"

whenever f and g are measurable. In this lesson we fix this a to bezero so that (I + g)( x) = °
whenever I and g are measurable functions and I(x)+ g(x) is not defined. With this in mind,

we prove the following.

13.3 Proposition: Suppose I E ~, g E:ZOO oj a Em.. Then

(i) If(x)1 s 11/1100a.e. in [0,1]

(ii) 1+g e g;a and II! +sl], s 11/1100+ Ilglloo and

(iii) aI E ~. and Iia 11100= lal'lll 1100.

By the definition of essential supremum, for every positive integer n there exists a M n >°
'. .

00

Since E={X E [0, IVI/(x)1 > lilt} = n~l En, it follows that O~ m(E)~ n~l m(En) = 0

so that m( E)=O. This proves (i).

To prove (ii) let Ef = {x E [0, 1VII (x)1 > lilt'} =.

Eg = {x E [0, IJ/lg(x)1 > Ilgt}.~

By (i) m(Ef)=m(Eg)=O.

If x~EfUEg' If(x)I~lllt & Ig(x)\ ~ Ilgt
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So that 1(1 +g)(x)1 ~ I/(x)1 +lg(x)l~ 11/1100+llglloo" ;

. Thu's E={XE[O, il/I(f ~g)(x)1 > 11111oo+ Ilgt} C EfU Eg SO that m(E)=O, hence
. - . - / ,",' "

I + g E~ and 11ft ,+ Ilglla>,is an ess~ntial bound for I + g. $.0 that Ilf + gt s 11111oo+ Ilgt·
This completes the proof of (ii]. we now prove (iii). If a=O, LHS = RHS = O.

"" , . !, '," . "

Assume that .1:;t=0. Then l(al)(x)1 ~M~I/(x)I~~. '

M
Hence M is an essential bound of a f if and only if ~iS an' essential bound of f.

Then Iia It = inf {Mj M is an essential bound of a I}

= inf {Ial¥' 1M' is an essential bound of I}

=Ialil/t. This completes the proof of (iii).

13.4 Corollary :

The space-~ is~'a vector sp~c~ ~nd the essential supremum satisfies the following.
properties :

(i) 11ft ~ 0 for I E;;zoo and 11/1100= 0 if and only if I(x) = Ova

(ii) Ilf +gt ~ 11111oo+ IIit .
r:

(iii) IiaIt = lalll/ltXl'
( ;- , . . . .

Proof: In view of proposition 13.3 it is en~'Jgh to prove (i). It is clear that 11111oo= O.

1
If 11111oo= 0, for every positive integer n , there is' aMn 30<Mn <- and

n

m({xl/(x)1 > Un}) = 0 so that
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Write E={x/ f(x)*O} and En = {x/lf(x)I>~}.

Then E = U En so that O~m(E)~Lm(En~ = 0
n:2:1 n . I'

I

Hence m(E) = 0, so that f(x) =0 a.e.

Conversely suppose f(x}= 0 a.e.

Then \fE>O m({x/lf(x)I>E}) = O.

Hence every positive real number is an essential bound for I. Hence I is essentially

bounded and

11/1100 = inf {E/E>O} = O.

13.5 Proposition: The relation - defined on ~ by I~g iff

f (x) = g (x) a.e. is 'an equivalence r,elation :,

proof: That - is an equivalence relation is clear.

11 ~ g}, I: - s: => 11 (x)=g} (x) a.e. and I: (x)'= l12 (x) a.e,

For a Em., a .fi (x) = agl (x) a.e. so aft ~ agl .

In particular fEN, gEN'=>f~O,g-O=>f+g-O and \faEm (af)-O so that

r +g EN and aIEN. Hence N is a linear subspace of ~ .

If f - g then I(x) = g(x) a.e. so that (I - g)(x) = 0 a·e hence 111- glloo = O.

r
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=>llflloo -llglioo s Ilf - g IleX)= 0 =>llft s Ilglloo

By symmetry Ilgt s 11ft· Hence 11/1100= Ilgt .

13.6 The Space ~

Consider the space ~. By 13.4 the mapping f ~ llit has the fc:lowing properties.

(i) 11ft ~ 0 V I E ~, llit = 0 if and only if 1=0 a.e.

(ii) Iii+gt ~ 11111oo+ ligiloo V I E ~ and g E ~ and

(iii) IiaIt = laillit V I.E ~ and a E IR .

From proposition 13.4 it follows t~at N = {I E ~ IIIi 11oo= o} is a linear subspace of _'/Y

and the map
, I

Iii+NII ='Ilft defines a norm on the quotient space '~h'
We denote this quotient space by Loo. Elements of Loo are equivalence classes of ess1(iai'Y

bounded functions f formed by the equivalence relation defined in 13.5 by [> g iff f =::, . 1.e.

Since III + Nil = Ilgt V gEl +N, we may identify the coset f + N with any f! I N

keeping in mind that Ilfll = Ilgll whenever I -g ,. ,. 00 00
We thus treat Loo itself as the space of all essential bounded functions,

13.7 The Space fZP (1sp < (0)

If 0 <p <00 !;ZP stands for the space of all measurable functions f on r0, 1] such t \

1

JI/IP <00,

o

X" ~ {f:[O,I)4IRU{±ooY f is measurable and IIJ'P <,,}
. '
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, I

{
I }h

We write 1IJIlp = l'f'P 'for 1E £P .

If f and gbelong to £P, the sets

. A={x/I(x) = ±oo} and B={x/ g(x) = ±oo}

have measure zero so that the set of x for whcih 1(x ) + g (x) is 'not defined, being a

subset of AU B has measure zero. We define

(
' )() {/(x)+ g(x) if this is not of the form 00 -00 or -00. +00 and
1+g x = .

. 0 otherwise ' -, ,," >; ,

Clearly f + g is measurable on [0, 1]. With this definition for f + g we have the foUowing,

13.8 Proposition : 'f 0 <p <oo:ZP is a vector space over m .

Proof: It is enough if we show that

(i) 1E!ZP arid g E!ZP => f +g E!ZP and
.

(ii) f E!ZP and a E m ~ alE !ZP

because the other conditions can be verified in a routine way.

Since (ii) is clear, we verify (i) only ..

For O::;x::; 1, 1(1 +g)(x)I~lf(x)1 + Ig(x)1

::;2max{I/(x)I,lg(x)1}

=>1(1 +g)(x)IP::; 2Pmax{l/(x)IP ,lg(x)IP}

s 2P {I! (x)IP + Ig(x)IP}

=> JI(I +g)(x)IP ::; 2P{JI/(X)IP + flg(x)IP}
'0 0 0

. -:';

~ f + g E !ZP. This proves (i)
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. 13.9 Proposition

Let n, p be nonnegative real numbers and suppose 0 < t.. <1. Then

with equality if and only if u= P .

Proof: If up = 0 LHS .=O~AU =AU + (I-A)~= RHS. Assume that uP:;tO:

. Now define ~:[O, ex))~IR by

~(t) = (l-tA )- A(t'-t).

~ is differentiable and ~' (t ) = A(1- tA
-
1

)

( .:Since A < 1, O<t<1:::>tA-1 =} >1 so that ~'(t)<O

and if t>1, (A-l <1 so that ~'(t»O.

So ~' (( ) is increasing in' (1, ex)) and decreasinq in (0, 1). By the. continuity of ~at 1 it

follows that

~(t)<~(l)=O for all t:;t:l.

Hence (1- A) + At :?: tA with of equality if and only if; t = 1~.

a
If p:;t:O put t =-.Then( p

Equality occurs if and only if a p = 0 or a=p:;t: 0
13.10 Holder's inequality

Let 1~ P < ex) :



00 if p = 1

Write q= and

~ if p:t:1
. p-I

1 1 l Jf '. ,
Clearly - +- = I 1< P < 00 .

P q

I

If IE::LP, g E2q then I gE::L1 and III gl sll/lip Ilgllq .o . .

Proof: If p=l, q=oo so I/(x)I:::;ll/t, a.e.

Since f E2'1, and Ifgl(;) slf(x)llliltx) a.e., f gE~l and

I 1

fli gl s flflllgiloo = Ilglloo IIIIII .o 0

1 1
Now let 1< P < 00. Then - + - = 1. So that 1< q < 00 .p,q

First assume that II!IIp = Ilgllq = I.

.,
I •.
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1 1
=- + - =1

p q

1
In the general case if 11/!lp = 0, fl!(t)IP = 0 so that

o .
f(t)=o a.e., hence LHS = 0 = RHS.

Similarly if [s] "= 0 LHS = 0 = RHS
. q

f
Now suppose that II/lip *" 0 *" Ilgllq. Then II/pll

p"

. 1

Jig < 1
Hence 0 IIflip Ilgllq - .

1

=> JI! gl.~ I1I1Ip Ilgllq .
o ', I.

That I g E L' is clear from this inequality.

13.11 Equality in Holder's inequality, , -, -,

1

We prove that if 1<r=» then JII gl = 1IIIIp Ilgllq if and only, if there exist real numberso . '

a,~ such that al/(t)IP = ~lg(t)lq a.e.

1

Proof: Jlf gl ='IVllp Ilgllq = 0
o
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¢:> IIIII = 0 or [s] = 0P q

IIIII = 0 ¢:> 1=0 a.e.
P

I
Similarly when Ilgll

q
~ 0, ~f(t) g(t)1 = 0 ¢:> Ig(t)lq = 0lf(t)IP a.e.

o
. I

Now assume that Ilfllp Ilgllq :;t:0. Further consider the case IIflip = Ilgllq = 1 '.

1 1
In this case JI! gl = 1 ¢:> J((l-If gl)) = 0

o 0

Assume that 1< P < 00 .

~ 1{~ I + (1- ~J g -II(Il g (Ill} = 0

the above equality occurs if and only if

This holds if and only if I/(t)lq = Ig(t)IP a.e.

f . g
In the general case we replace f by Ilfllp and; by Ilgll

q
I

so that in this case equality occurs if and only if
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II(t)IP _ Ig(t)lq

(11111
p
r (1lgll

q
t a.e.

q p p

if and only if [s] iJ(t)1 = IIIII Ig(t)lq a.e. -q P

13.12 Minkowski's inequality :

If 1S; p S; co I E;ZP and g E;ZP then

I I 1

Proof: If p = I, II! +gill = II(I +g )(i)1 S; III (t)1+ Ilg{t)1 = IIIIII + IIgill
000

Now assume that 1< P <co .' If III + gll = 0 clearly LHS S; RHS
P

Assume that II! + gllp * O. For OS;tS; 1

S; (iJ(t) + g(t)I)P-I ,(II(t)I+lg(t)1) .

= (If(t) + g(t)I)P-l II(t)l+ li(t)+ g(t)IP-I·lg(t)j , •

1. 1. . -1 . I.' . -1.
sothat ~(I +g)(t)IP S; II(I +g)(t)IP if(t)1 +~(I +g)(t)IP Ig(t)1

o 0 0

We apply Holder's inequality to the integrals on the RHS.



1 '

and f<U +g)(I)IP-
1 Ig(I)1 S; Ilgllp I\v+gy-t

1

I\v+g)P-t ~ [1(11(I) +g (I )IP-1 ry
1

~{~/(t)+g(t)I(P-,)q Y
1 E

~U\J(t) + g(t)IP}q ~ (III+glIX

S.lnce 1-..!.. == ~ we now get II! + g'll ::; iif:l· +IiiII·",.
g.' p p p, p

13.13. AS'econd Proof ofMihkowski;s InequalitY:'
The fcillo'vving proof of MlhkdwsKi's' inequality do~s' not make use of Holder's inequality.

However we'require the notion dfa"convex functlbrt

for all x,y in [a, b] and Os;J:,S;l'.

P;Giposit~on: If $ is twice differentiatsle in [a,bJ arid qi"(x»l), in [a~ b] then 4i(x) is "strictly.
convex" i.e.
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cjl(A.X +(l-'A) Y)<Acjl (x)+(l ~A)cjl(y)

,'Consequence ': If 1<p<oo xP is strictly convex in [0, I].' '
. - . .

.. , ..-"',"' " . -.

We now prove Minkowski's ines:luality: We consider the casal <p <00 .

Assume that f'e £,P ,se£'P .
. " "

, If Ilfllp= 0 orllgllp = ° thenthe correspondinq function is zero almost everyWhereand

h~hceequality occurs in Minkowski's inequality. ' , .

f ',' g
Now assume tha;ta=llfllp * 0* Ilgll~= b. Write fo~ a and go = b'

, ioe£P, go e £P and Ilfolip = Ilgtfllp ='1.~ -

"For xe [0, 1).

Then

.~--
'"

1(1+g)(x )IP :s(lf( x)1 + :Ig{x )I)P

=(alto (x~1+blgo,(x)I)P
, ' ,

, .. ,( cil:k (xt\1 'bl,g'"" (x)'I'j' P=(a+b)P; ~ob' + ,ob' "
'a+ a+b . >

, . ,

. '. ~..•

/

. ,

" ~(a+b)P('~l!o(x)1 +...:L.lgo)(x)I'p)"'(' .:~ +~=I)
, ' " a +b· a +b . a + b a +b

, ,

,(arid xPis convex)
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This completes proof of Minkowski's inequality.

,~3.13.2Proposition: If i~p s OC) I ~ IIflip defined for IE;ZP satisfies the following properties.

(i) IIIII ~O'vl/E;zPand IIIII =0 ifandonlyif/(x)=Oa.e.. p p

(ii)

(iii) Ilalll = lalll/ll 'vi IE;;ZP & a E IRP p.

Proof: (ii) is Minkowski's inequality. The first part of (i) and (iii) are clear. Mor-eover

1

IIIII = 0 <=> III (t )IP = 0
P 0

~ If(t)IP = 0 a.e.

<=> f(t) = 0 a.e.

This completes the proof of the proposition.

13.13.3 Proposition: The relation+ defined on :;zp by I~g iff f (x ) =g(x) a.e. is an equivalence

relation. '

is a linear subspace of :;zp ..Further I~g ~ IVII = [s]
P P

Proof: As in 13.5.

At this stage we recall the definition of norm on a vector space over the field of real numbers

IR. A norm on a vector space X is a real valued function assigning to each x in X , Ilxll called

norm x satisfies. /

(i) Ilxll:2: 0 for every x in X with equality if and only if x = 0
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(ii) Ilx+ yll ::; Ilxll + Ilyll \;f x, y in X and

(iii) Iia xii = lalllxli \;f x in X and a Em.
We now state the following proposition in the form of SAQ.

13.13.4 SAQ 1 : Let X be a linear ( = vector) space over m. Suppose <p:X -»JR satisfies the
following conditions.

;"

(i) <p( x)~ 0 for every x E X

(ii) ~(x+y)::;~(x)+~(y) for every x, y in X and

(iii) H a x) = lal~(x) \;f x in X and a Em·
T~en N={xEX/~(x)=O} isalinearsubspaceof X, ~(x)=~(y) iff x-YEN and

Ilx+Nil = <P (x) is a well defined function on the quotient space ~ which is a norm.

13.14 The Space LP(l::;p<oo)

Consider the space :;z r , By 1-» 1IIIIp has the following properties.

IIIII ~ 0 \;f I E 2:P with equality if and only I (x) =;:0 a.e.p

III + gllp = 1I/IIp + Ilgllp \;f IE ZP and g E :;z p and

Iia Illp = lalll/lip \;f IE:;ZP and a Em.

From proposition-13.13.3 it follows that N = {f E 2:P1II/IIp = o} isa linear subspace of

. £P and the map

III +NII = Ilfllp defines a norm on the quotient space 2:%
We denote this quotient space by LP. Elements of LP are equivalence classes offunctions
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1 .',' .,. .:

f such that' Jlf(t)IP <ooformedihy,the eqUiValencerelatiqndef~nedifJ 13.13,3by/;" gift
.0 ... " .,.... ". ". .'.' . ,.' .

f(x) = g(x) a'.e.

Since 11/+Nil = JlgijpV.g.~ F+ N .wemayidentirytl1ecQs~tf+Nwithahy ,ge /+ N, .'

keeping in mindthat Ilfllp= IlgllpWhanever f ~'.~..

. , . .....' . '. I.. .,...

':.'::\'\.'~thus treatLP :itself a~the space of all meas~rable'functions f:suchthat "~f(t)IP <: 00';. '. ' ' '0
.. '. . " :;: ,.' '. "

'13.15The 'Sequence ,spacesep(l~ p~ 00.)' :' , '....

.' hi analogy totheclassical Banachspac~s.LP.we:have .the 'sequence spaces .'

eP (1~p~oo) ... The spaace e~cohsistspreCiSelY ofallbound~d:~eqllences and the, space

eP (l~p<oo) consists of all those sequences {Xn} of real numbe~s'Nhichsatl~fY.

• i

l
.

ex>

L IxnlP < 00.
".n~l' .

'. 'J
We define for X= {xn}

. ' .

. llxlloo=suPlxnl~nd .'
n

: .:

'. '.

,'. Pro'ofsof the foilowing'results are available in the studYrPat~tial for "paper! Topology'and..
functional analysis- Function~lana,lysislesso~ 3U

•

'~"Result 1 : eP is a vector spacefor +$ i5 00



1·.··.· 1
and·-+-= 1 or p=l and q= 00pq

00

Llx~Ynl ~llxllpllYllq
n=l

Result 3:MinkoW$ki~sirteqJaljtY :For.arlYsequence{ xn} arid {Ynr in fP (1 ~p~ 00)

13.,6:LerXbe a linear space over lR: Suppose·cj):X~ JR.satisfiesthe follQwingcpnditions
• ..~,' • • :"': :._. - : .' • : . :, ~ ... ; • . :: ... - '0 ,- .. •

(i). l(x}~O. forevelY~ EX,.~(O)=O

(ii) t(x+y)~ cj)(x)+~(y)'tx, yin X ahd
".- ..'. "':'

"': .. " ~.. -.

(iii) ~(a ~J=lplcj)(i) 'tXE: X ~.andaE JR.;

ThenN={xlxEX,and~(~)=O} is a linear subspaceof X ...

ahdIlx+ NII=;;cj)(x)isawelidefinedfunction onttrequotlent space % which isa norm.

Proof:(i) Nisa line~rsubspaceorX :c'e~r'y ~(O)=Oso OeN ..

xeN,:)'E.N=:>cj){X) =$(Y) =0,. ..' .
. -

.=>o;;~(x+)'J~~(x)+~(y)=O

"" ,"" .;'.: ':.'. .

This.stro'Nsthat N:is a linear sublpace of X ..
. ~ .

.... .,.." - - ... -'

N 4cj){x}iswel.ldefinedori -f&
x+N=y+ Nbx-YE N =>~(x__y)=o·

..



~C~en~tre~fo~r:=!D~is~tan~c~eE~d~uc~at~ion~~~~:113.1188F~~~~~~A~ch~ary~a~N~ag~a~rju~na~U~n§ive~rs~ity~

since $(x) = $(x- Y~~$(x- Y)+$(Y),

$(x)-$(Y)~$(x- y).
• , ,

Interchanging x and y, $(Y) - $(x) ~$(y-x) = $(x-y)

so that 14>(x)-4>(y)1 ~ 4>(x-y)=O

Hence O.~I4>(x)-4>(Y)1 ~ 0 so that 4>(x)=$(y).

(iii) If we define Ilx+ Nil = $(x) for x eX, Ii II satisfies the properties of a norm on the

quotient space -%
Clearly Ilx+ Nil is non - negative. If x + N = N, X e N so that Ilx+ Nil = 4> ( x ) = 0: If

$(x)=O, xeNso Ilx+NII = 4>(x) = o.

Thus Ilx+NII~o V x eX and Ilx+NII = O~ x+N = N.

Since 4>(x+ Y)~4>(x)+4>(Y)

II(x+N)+(y+N)11 = Il(x+ Y)+NII

=$(x+ y)~ $(x)+$(y)

=llx+NII +lly+NII

Finally Ila(x+N)11 = Ilax+NII

~¢(ax)= lal¢(x)

= lallix + Nil

Thus x= N ~Ilx + Nil defines a norm on the quotient space -% .
. 13.17 SAQ 2: Suppose f is a bounded measurable function [0,1].
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Then lim l\fllp = Ilflloo_ p-+oo

Solution: Write M=\lfl\ and for O<E<M.
. co ,

EE = {x E [0, 1]/ M - E :5 f (x ):5Ml

Then by the definition of M , m (Ee ) >0 .

1

Alsollfll~ = fll(x)IP
. 0

1
. p

fio that (M -E) {m(Ee)} :5llfllp

This implies M - E:5 lim IIIII .p~oo p

It is clear that Ilfll :5M V p ~ 1, p

It now follows that - lim Ilfllp = l\ftp-+oo

13.18 SAQ 3 : Suppose {j~} is a sequence of elements in LP such that {fn} converges to

Iwhere f E LP. Then {fn} converges to f in LP Le·llfn - flip ~ ° as n ~ 00, if and only if

Ilfnllp ~ IIflip .

Solution: We have Illfnllp -'llfllpl :5llfn - flip'

This implies that Ilfnllp ~ Ilfllp ,if Ilfn - flip ~ 0



. .

Conversely supposellfnll p ~ Ilfllp "as n -400 .

Clearly Ifn ~ fl ~Ifnl+lfl

set gn=2{lfnIP +lfIP).

Then Ifn - flP ~2{lfnIP +lfIP) = s;

Since In --.;f we get Illn - Illp ., 0

13.1911110delExamination Questions
~:;. c

1, Show that LP ts a vector space if 1~ P <00

2. Show that if f is measu~.abl~. "~~oo 11I11P = 11/1100·'""
. . . . ",

" "
" "

3.Show that if f eLl and g eE" then

4. Show that II!+ gllp ~llfllp +llgllpif 1sp~oo and -f' e LP and g E" LP .

13.20_Ex~rcises

1. Show that if f is bounded on [O,lland measurable, fis e~sentiallybounded and

11ft = sup{lf(x)I/O~x~l}. .:

2." Let f (x )= 0 if x is irrational

=n if x = Xii where { xn} is a sequence which is an enumerauon of.the setQ of

rationals.
" . .

"- Show that f is measurable, essentially bounded but not bounded.

3. ~how that if f e2P (1~ P<00 )" then f E "9fX'. '-,
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"" ..

. .. . 1 ... .

4. Definef (x>=(;;)p ifn ~I< ~,;~.(n positiveilite9~r)~nd. . - ," ",

1(0)'= o.
Show that f is bounded, measurable and f rt-fZP where 1~ p <00

": ."
. .

.5.· . Showthatif /"( x) »O then f(x) is strictly convex in [a,b].

6.)7.
, /

Show that Minkowski does not holdgoodwhEm 0< p<l .

ShowthatfZp.~;;z'I is »>« ~ 1
'. - -"

If f is me~surableon [O;lJ show that Ilfllp s IlIlt, ifl~p~q ..

If 1s P .$00 show by an example that 11/11p= Ilgllq does not im~lr· 1--g8.

9. Prove proposition 13.13.3
", "/',
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Lesson - 14

THE' CLASSICAL BANACH SPACES - II

14.1 INTRODUCTION

In this lesson we continue the study of LP spaces. We prove that for 1$; P s 00, LP is a
Banach space. This is Riesz - Fischer theorem. We then obtain a one - one correspondence

between the bounded linear functions on LP (1 $; P < (0) and the elements of Lq where p and q

1 1
are "conjugate pairs" i.e. - +- = 1 if 1< p < 00 and q = 00 when p = 1. In fact this one - onep q
correspondence is linear norm preserving and onto. This is the famous Riesz - Representation

theorem for LP spaces. The analogues for eP spaces introduced in lesson 13 are also valid.
We begin with some fundamentals of normed linear spaces which are essential to establish

Riesz - Fisher theorem and Riesz - Representation theorem.

D~ mitions : Let X .Jea normed linear space. A sequence {xn} is said to be a Cauchy sequence

in if for every E>O there corresponds a positive integer NE such that Ilxn-xmll < E whenever ..

n ~ E and m ~ NE; (equivalently n > m ~ NE)·

!
j {xn} is said to be convergent in X ifthere is a x E X such that limllxn -xii = O. i.e. for;

n

every positive number E there corresponds a positive integer NE such that

Ilxn - xii <E whenever n ~ NE

In this case x is uniquely fixed and is called the limit of {xn} and is denoted by limxn.
n

X is said to be a Banach space if every Cauchy sequence in X converges in X .
A bounded linear functional on a normed linear space X is a function F: X ~ m. which is

linear i.e. F(a.x+~y)= aF(x)+ ~F(y)'y>'x,y in X and a,~ in m. andforwhichthereisa

M >0 such that

IF(X)I $; Mlixil for all xeX.

. {F(X)f }If F: X ~ m. is a bounded linear functional the set N 0 -::f:. X E X is bounded above.

r .



The supremum of this set is denoted by IIFIIand is called the norm of F .

14.2 Deflnltlon :

co

Let X be a normed linear space. A series L fn in X is said to be summable to a sum
n=l

s if seX and the sequence of partial sums {sn} defined by sn =Ji+"'+fn converges to s;
that is,

lim Iisn - sll = 0
n

co

In this case we write S= L In.
n=l

co

The series is said to be absolutely summable if L Ilfnll < 00
. n=l

In the case of real numbers absolute summability implies summability because of this
obvious reason that the real line IR is complete. However it is not necessarily true in anormed ..
linear space that absolute summability implies surnmability. Then implication is valid if and only if
the normed linear space is complete.

14.3 Theorem :-A normed linear space X is complete if and only if every absolutely summable
series is summable.

Proof: Assume that X is complete and let IIlxnll<oo where xn eX "if n. If e>~ a positive
. n=l

integer NE such that

m
L Ilxkll < e if m z- ne: NE·

k=n+l

By the triangle inequality,

m
~ L Ilxkll<e for m>n?NE·

k=n+l



/
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m
IISm-Snll = L Xk <e

k=n+l

Hence {S n} is a Cauchy sequertce in X . Since X is complete, {s n} converges to some

OC)

s in X. Hence LXn = lim s; =S. This shows that every absolutely summable series is
n=l n

summable in X .
. Conversely assume that every absolutely summable series in eX is sum mabie in X. To

show that X is complete, let {xn} be any Cauchy sequence in X. We find a subsequence

1 .
{xnk} suchthat Ilxnk - xnk_111. < 2k-1 'V ~»1 .

When k = 1, we take E = 1. Then :3. a positive integer nl such that Ilxn - xm II < 1 for

n>m~nl

so that Ilxn - xnl II < 1 for n >nl .

. . l'
Similarly 3 a positive n2 > nl 311xn - xn211 < 2" for n ~ n2 .

Since n2 >nl ' we have IIxn2 - xnlll < 1.

Assume that nb nz, ...,nk-l in IN are chosen so that

nl < nz <...<nk-l and
I .

,

Since {xn} is a Cauchy sequence in X there exists a positive integer ni » nk':'l such that

and a positive integer.nk+l >nk such that

'.' '.'-



Ceotre for Distance Education 14.4 Acharya Nagarjuna University

Since nk+.l>nk we have
/

,', IIX~k+l -Xnkll < 21k "

, By indu~,here is a sequence {xn}' of positive integers such that :
. '. ,.

IIXnk- Xnk_lll< 2k1~1for afl nk .

. We show that {xnk} converges in X .

Since the geo~etric, series f 21k is convergent given E > 0 there is a ko E IN 3 ,,'
, k=l

r 1L k < E for r>s~ko
k e s 2

, r " ,r 1
Hence L IXnk+l - xnk I =:; L k < E for r>s>ko

'k=s k=s2 (to,

00 00

The series Lilynk II satisfies Cauchy criterion. Hence' L IIYk II converges. By hypothesis
k=l k=l'

a

L Yk converges in X .
k=l

,Ifsk =YI +Y2+···+ Yk then sk =~nk+l'~ xnl·

Hence the sequence {xnk+l - ;nk }' conv~rges in X .

, , ,This irnplies that {xnk+l} and hence {xnk} converges in X . Thus { xn} has ac~nvergent

subsequence in X. It now follows from that {xn} converges in X . Since every Cauchy sequence

inX converges in X. X is complete.

14.4 Definition:A linea; functional on a linear (vector) space X is a transformation f:X~JR
which satisfies,
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f (x + y) = f (x) + f (y) for all x, y in X and f (a x) = a f (x) for all x in X and Q f;m. .
A linear functional f on a normed linear space X is said to be bounded if there is a real . I

number M > 0 such that II (x)1 S; M Ilxll for all x EX.

If I:X ~m is a bounded linear functional, then

{
1/(x)11r .}

the set l~ / O=l=XE X is bounded above.

The least upper bound of this set is called the norm of I and is denoted by 11/11.

14.5 SAQ : Let X be a normed vector space and {xn} be a Cauchy sequences in X. If some

subsequence {xnk} of {xn} converges then {xn} converges.

'''\ Proof: Suppose {xnk} is a subsequence of {xn} and lim xnk = x. If E >0 there exist positive

~gers Nj> N2 such that n,
~ Ilxn -xmll < ~ if ni- me: NI and

This shows that lim xn = x .
n

a

14.6 Definition: A seriesL xi in a normed linear space X is said to be summable to a sums in
-- i=l
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·n

X if the sequence {Sn} of partial sums defined by Sn = L xi converges to s in X. If this is the
i= 1

CIJ

case we write S = L xn .
n=l

00. 00

L xn is said to be absolutely sum mabie if the series of nonnegative termsL '1lxn II
n=l n=l

is convergent.

14.7 ~iesz - Fischer Theorem: If l~p<oo LP is complete.

Proof! In view of 13.5 it is enough to show that every absolutely summable series in LP is summable
I

in LP/ Suppose fnELP for n~l and IIlfnllp < 00 ".

x t n=l

Define gn(x) = Iii (x)I+··:+lfn(x)1 for xE[O,l] and n~l·

Clearly O~ gn (x) ~ gn+! (x).
By Minkowski's inequality

Since {gn (x)} is monotonically increasing, lim g., (x) = g(x) exists and is measurable.
n

By Fatou's lemma

Hence gP is integrable. We set

E:::;: {X/XE[O, 1) andg(x)=oo} and

En = {xjXE[O, 1] and Ifn(x)l=oo}
!

Since e" and IfnlP are integrable, m(E)=m(En)=O.
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Supposex~E. Then O~\!n'(x)I<<X)V'nand

00

Elfn (x )1< 00
n=l

.00 .

ThereforetheseriesL fn,(x) converges tc a real number.
. ". . n==l. .'

00 .

>Sr'lctWri1tef(x}=Lfn(x) andsn(x}=fi{x) = Ji(x)+···+fn{x)
n==l·. .

"""." . "'. .' p .... 'p.Hencejsn-,II:::;; .(2g). .

.. 'Sy'tb'El Le5'esgue'cohveriehee'Tti~or~i'na: 1'OWe Obtain

.'.;

. ,".n... ' ..
liIhL lk';;'" /== 0
n *=1 ' .

. ..·J\.1/,i~inP1etes :1>"i!fdOt: ... . . . • •
\"\,' ......•. .... . .'.. '. . . ' . ". '. ..... '.... '~:l~.$~~•.~~O$i~ion:Let. f'E £/7(1 '5.p<od~. For each 'posltive'integern 'and x e [0,11' define

,.' '. \ .
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{

. n if I(X ) ~ n

In(x)= I(x) if I/(x)I~.n
-n if l(x)S;-n

Then In is.measurable, \in (x )1 S; n "if X E [0, 1) and n ~ 1 and lim Iltn -:-III = 0 .
J n. P.

Proof : Measurability of In is clear.

If E={x/ x E [0, l]anq I(x )=±oo} then since f E, LP, m{E)=Oapq al~p

\in (x)- l(x)1 ~ 0 for X ~ E

Further 1(1- In)(x)IP s;1i(x)IP for x~ E

Hence by Lebesgue's bounded convergence theorem

1

lim JI/n - inlPY::;; OJ
n 0'

1 1·
1.~.9iPrC)p,ositt~m: Ifd!$p$oo ClJ;ld;q is..~4~I}tJh~atp +'L=1' V't;hef L~p<~'Wpil~qFoo 'II(~e.n,

p=l and, q=l when p=oo J each function, g E,. Lq,·d,e.fines,a boutl.~edr liQ~a,~~~ct.ipn:~I.F on~LP
d~finedby

1
P.(/) = IIg

o

~rqqf: If f E LP and g'~ Lq th~p\ate~rly,; ~ (/le ~. 6Ylthe)~n.e~(ity qf~~h,e;,.iq~~QfCl!Vt'r h~v~ for .

ft, h in LP, an-9, at> (12 in IR.

.
I

1 I 1

F(alJi +a;"h)= J(a.lJi,+a2 h}g = a.diJi-tg +. a2if2;~..
o ~ 0



,Measure and Integration; _. Classieai :Banach Spaces;~ II,'

=Ul F(fl)+U2 F(h).
Hence F is linear.

We now prove that F is bounded and IIFII~ [s] .q

By Holder's inequality, for I E LP and g E Lq
" ,

1 1

Jf g ~ nfgl $llfllp ··llgllq,'
o - 0

..~!.
-. ..•...

.. ,JI

This shows that F is b?~~d~d andJ[~iIL~ Ilgll~., ';:','.~ ~'i .. i,:'

We now prove that IIFII= Ilgll· , ,q :- .."

If a E m. write sgn a = 1, 0 or -1 accqrding' as a >is.pbsitive;'-'iero or'ri'egative.Clearly

Isgnal = lal·
, .f I -Iq/ PIf 1< P < 00 write J 0 = g sgng

Then I/olP = Iglq [sgn glP =Iglq; ;' i.: .. '--

and log = Iglq/ P (g sgng) = Iglq/l;' Igl (since g sgn g = Igl,>-
c.

!L+i

= Ig(. = Iglq (since !L+l = q)
,p ;

r
1 1

F(/o) = flo g = nglq
o 0

. -, ..:,:~.



= Ilgllq Ilfoli
p

Hence IF(fo)1 = Ilgll
Ilfolip q

Thus IIFII = Ilgllq .

14.16 Proposition : Let· g be an integrable function on [0, 1] and assume that there is a real

number M > 0 such that

1

If g SMllfl1o p

for all bounded measurable functions f. Then g E Lq and Ilgllq s M .

,.propf : First assume that 1<P <00 •
I '
I Define for each positive integer n and x E [0,1]

.. . {g(x) if Ig(. x)1 s n
gn(x) = 0 if Ig(x)1 > n

and fn(x) = Ign(x)lq/
p sgn(gn(x»).

. !!..

Also Ign(x)lq = Ign(x)lq/
p
+

1 = Ign(x)( Ign·(x)1

!!..
p

= Ignl (sgn gn(x») gn(X) = fn(x) gn(x)

= fn(x) g(x).
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~::-:-'\';'~':.">~"~'c-:"'>"">'.~ '., '_:';'.~;: .• .. -.,-.- - -,.,."' . -

.. -Hen~ (1lgnllJ =i~~~~~:c~F(~;g(x).·

1

= f fn (x) g(x)
o .' ,

.-." .' . ' •. -,

••. j

1
~ flgn (X)lq ~ Mq.

o

: ~ .

'"
Since gn (x)~ g(x) a.e., by Fatou's lemma,

•.. ,_'. if·
.,",,:, .,.<' .•

1 1
Jlg(x)lq ~.lim inf Jlgn(x)lq:::; Mq
o 0,

.: .: ..
;: ,-. -..

Hence g E Lq and Ilgllq :::;M .

When p=l V E>O let E ={x/O:::; x:::; I and Ig(x)I>M +E} and define
'. , . '. .- ! ,; ,

f (x ) = {sgn g (x) ~f x E E
o otherwise .

1
Then ~f(x)1 = JI =m(EE).

o E
1. 'i ' ,> .'~ f"

I .If g = Ig(x) sgn g(x) = Jlgl~ (M +E) m(E)
o E E



'-, ,
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I

while II g s MII/III =m(E)M
o

Then m(E)M~ m(E)(M +E)

This holds only when m ( E) =°.

Since this is true for every E >0 it follows that Ilglloo ~ M .

14.11 Proposition: Let I E LP , 1~P <co and E >0.' Then there is a step function g and there is

a continuous function L on [0, 1] such that

II!- s] .< E and II!-hll < E.P P

Proof: V n ~ I,By Proposition 14.8 we can find a In in LP 3

Also there exist g, h defined on [0, 1] and Ec[O, 1]3...:.n ~g(x) ~n, ~n~h(x)~n
> '

on [0, 1]

", - 1 E' 'l"e"/
I!n(x)-g(x)I<-) .- and Iln(x)-h(x)I<-) -'Vx~E and

- 2 - 2
p ,- p

2 2 .,'

1(' E JPm(E)<- '
2 2·2 n

By Minkowski's inequality
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1
Also Ilfn - g'11~= ~/n ( ~) - g (x )IP

o

: .~;

= J Iln(x)~g(x)IP + Jlln(x)~g(X)IP
[0,1]\£ £'

Since Iin - gl~2n I

" I,. , ;,

flln(x)-g,(x)IP ~(2n)Pm(4')
E

. P 1 ( e JP 1 (e)P«2n) ~ - = - - .
2 2· 2n 2 2

Also

e e
<- + - = e

2 2

The argument for II!- hll < e is parallel.
p

14.12 : Riesz Representation Theorem: Let F be a bounded linear functional on LP (1sP <~ ).

Then there is a function g in Lq such that

1

F(/) = Jf g.
o

, :

I"":'

. We also have IIFII= Ilgllq·



\P\~OOf : For °ss ~ 1. Let X s be the characteristic function of [0, s] . We show that the function <1>
defi~ed by . '

<1>(s) = F (Xs )

.'

. i .. ~ : _., ;. I ._"1. .. ,'.. " s
is absolutely continuous. Then '<1> 'is the;i,~defin'iteiritegral of some g :<1>( s) = f g (t) .

, ; 0

We show that this g has the required properties .

Step 1 : Absolute continuity of <1>.

Let {I j 11sj sn} be a finite collection of nono~erlap~in~"subintervalsof [0, 1], I j = (Sj' sj )

and

,
n "",'

I=L X) sgnF(x))
)=1

, Then F(f) = i: IF(Xj)1 = ± \F( Xsj ) - F( Xs])\'~ .:
J=} J=}

n
= L 1<1>(S)) - <1>(S))1

j=} .

"

}

Ilfll~= ~flP .
o

"

.~

n 1 n '
= L Ilx j I

P = L (sj' - sj )
)=10 )=1

• .• .l • ~

. , \' .
• "(' .,-!: ..;

n
Then for every choice of {Ij /1::;; j::;; n} with ~ (sj -sJ )<0 '

, ;=1,

f 1<1>(sj)- <1>(Sj)l'= F(f)
j=1



> 0 0)' ~ ,.' : 0, , ••

. ••••••aure'IIIOc;ilntegratipn , 14.15' 'Classlc,1 Banach Spaces : II,'.

S; IIFIIII/ilp

<IIFII·sh'

< IIFII . E

-I+IIFII
<E.

sinCe this holds for ~~e'ry positive integer and for every choice of nonoverlapping intervals

.{Ij /1~ j S; n} iUO;lows tha~ 4> 'i~absolutely conti~uouS. . ,

.. . '. . .' . . . s..
Let g be an integrable function on [0, 1] su~hthat <t> ( s) = Jg .

o \
.,' l

$ttt~2: F(f) = Jf g for every bounded measurable function j .
o \

\
If / is a step function, :3 finitely many si' say s}.···,sn in [0, I] and a},···,an such that

O\:: $1 <s2 <",<sn =1

f(x)=ai in (Si-l, Si) for lS;iS;n·

n
so th~t f = ~ ai X(Si_l, s;) for x ~ {SI""Sn}

1=1

n' .

= ~ =. (Xsi -XSi_1 ) for x ~{S],""Sn}
1=1 .

. n "
~ F(f)= Lai {F( XSi )- F( XS;_1 )}

i=1

n
= Lad Cl>(Sj )-<t>(si-d}

i=1



1

= fgl
o

Let f be a bounded measurable function on [0, 1] "and - M5: 1ex) 5:M \:j X E [0, 1].

Then there is a sequence {fk} of step functions on [0, 1] such th~t
, , '.

- M 5:ik (x) 5: M \:j X E [0, 1] and lim ik (x) = 1(x) a.e. on [0, 1] . , ,
k . .' , '

Clearly If(x)- fk(X)IP 5:(2M)P V XE[O, 1).
. ,.' . ',':"',

Hence by the Bounded convergence theorem

Since F is continuous and lmear, idollows that

IF(f)-F(Ik)1 = If(f - 1k)1

5: IIFII'II! - J« IIP
. "

and hence lim F (Ik) = F (I) .
k

1 .
Since fk is a step function, F(fk) = Jik g.

o

ence by the Bounded convergence theorem

::..
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I I
lim f!kg = ffg

k 0 0

1

Hence F(f) = ff g
. 0 .

This completes the proof of step 2,

1

Step 3: F(f) = ff g \f f E LP.
o

Given E> 0 there is a step function fo E LP such that Ilf - follp <E.

Since fo is bounded, by step 2

1

F(fo) = ffo g.
o

1

Therefore F(f)- Sf g
o

1

= F(f)-F(fo)+F(fo)- ff g
o

1 ,

~IF(f - fo)l+ f{fo - f)g
o

~ IIFllllf - follp + Ilf - follp Ilgllq
<IIFII E + Ilgll E.q

= ( IIFII+ Ilgllq) E .

Since E >0 is arbitrary it follows that

1

F(f) = ff g.
o



Step 4 : IIFII= Ilgllq .

From the above equation it is clear that

1

As If g = 1r:(f)1 s IIFllllfllp '\I f E If

°
by proposition 14.1611gllq s IIFII.

Hence IIFII = Ilgllq .

This completes the proof.

14.13 P approximants: Let fEL' and P:O=$'o <$i < ···<$'m = 1 be any partition of [0, 1].

Write Il) = $')+1 - $';, Il(P) = Il = max{llo,···llm __d
$'j+l

a j = I f for 0s j ~ m-l
$'j .

'.

I
/

/
The function Tp (I) is called the P approximant of 1 in the mean.

The following properties of Tp can be easily verified.

1) Tp (I) is a step function V fEL'

2) Tp (I) E J! and IITp (/)llr s 1I/IIr for 1s r .

3) Tp(l +g) = Tp(/)+!p (g) for f E I' and g E L'

4) Tp (a f) = a Tp (f) for fEL' and a Em..
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14.14 Proposition : For r e 1 IE J! and E >0 there exists a positive number 8 (E) such that for

every partition P:O=$'o <~ <··-<$'m = 1 with, L\(P)<8( E)

IITp (/)- Illr <E_

Proof .Chcose a step function g on [0, 1] such that Ilg- Illr <~
. .

Let M = sup {g (x )/ x E [0, 1n,-
I Since g is a step function, there is a partition

Po : 0 = $'0 < $'0 - -- < $'m = 1

such that g is constant on ($')' $')+1) for a ~ j sm ~ 1.

Let 8(E) = ((E) Jr32M-m

Let P:O=fo <fI <-- -<fn =1

be any partition of [0, 1] such that L\( P)<8( E) - '

. {n if I(x ) > n
Defi~e In (x) = I (x) if II(x )1 ~ n

-en if I(x).<'-n

Since f E, E, IE L', and In E f' - Also gEL' .

Since g is constant on ' ($'K, $'K +1) ,

Therefore if Tp (g) is not continuous on (f), f)+d, this interval must contain some ''1$[(

where l~.K sm -1 _ So there are atmost (m -1) intervals ( f), tj +d such that. Tp (g) is not

continuous on (f j' tj +1). Write
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1 '

ThereIITp(g)-gIL s m·2M I:!.-;''and 1:!.<8(e}.

Thus

IITp(/)- Illr = IITp(/)-Tp (g) + Tp(g)-g+g - Illr

. ~IITpl -Tp(g)llr + IITp(g)- gllr +llg- Illr
1

~IITp(1 - g)llr + m2M I:!.-;'+'·111-gllr

1

~ 211/- s], + 2M m /).r

E 2E<-+ -=E.
3 '3

This completes the proof,

14.15 Corollary: The P approximants 1 in L "converges" to 1 in measure:

.114.16 The .e Pspaces: Proofs of the following results are available in Lesson 3 of the study material
for Functional Analysis of paper I-Topology and Functional Analysis for M,Sc, final mathematics
under Distance education mode. As such we merely state the results without proofs.

14.16.1 Result: The space .eP (1~p~eX) is a Banach space with respect to II lip.

14.16.2 Result: There is a one - one correspondence between the bounded linearfunctionals on

.e p (1sp sex) ) and elements of .eq where p and q are "conjugate pairs". This correspondence is

linear, norm preserving and onto.

14.17 The Spaces Co and c: The sequence space c consists of all convergent sequences of real

numbers. The space Co consists of all sequences which converge to O. Clearly c is a linear

space and Co is a linear subspace of c. These spaces are Banach spaces with respect to the {XI

-norm defined by II{xn}lloo =sup Ixnl.
n

There is a one - one correspondence between the bounde~ linear f,unctionals' on Co (as

well as c) and the sequences in .eoo. This correspondence is linear, norm, preserving and onto.
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As the proofs are available in lesson 3 of the reading materials on Functional Analysis of
.. paper - I: Topology and Functional Analysis for M.Sc. final under Oistance education, mode we

omit the details.

14.18 SAQ : Let X be a normed linear space and X' be the collection of a bounded linear functionatF
on X.

Then X' is a linear space with respect to the pointwise operations defined by

(F+G)(x) = F(x)+G(X) .

and (a F) (x). = a (F (x ))

for F, G in X', XEX and aElR.

Solution: (a) Linearity of F +G :

For ?C, Y in X and a, p in m
(defn of F +G)

= (aF(x) +P F(y)) + (aG(x) + PG(y)) (Linearity of F, G)

= a(F+G)(x) +P(F+G)(Y) (definition F+G)

(b) Linearity of »F : .

(YF)(ax + py) =y(F(a.x + py)) (definition of yF)-

=y{aF(x)+P F(y)} (distributive law)

=a(y F)x + P( y F)(y) (commutaitivityof multiplication

in lR and definition of y.!!)
(c) Soundness of K +G :

) .

For x E XI(F +G) (x)1 = IF(x)+G(x)1

:::;IF(x)1 + IG(x)1

~ for O:;t:XEX I(F+G)(x)1 < F(x) + IG(x)1 <IIFII + IIGII
' . II x II - Ilxll Ilxll-

.'.



=> F+G is bounded and IIF+GII ~ IIFII + IIGII.

(d) boundedness of y F:

F~r o~xExl(YF)(x)l= lyIIF(x)1 '
, Ilxll· Ilxll .

=> IlyF11 = sup {I(YF) (x)l}
O;cxeX Ilxll

lyIIF(x)1= sup
O;cxeX Ilxll

= '1;1 'sup IF(x)1
, ,j O;cxeX Ilxll

=Iyl IIFII < CfJ

Henc~'IIY !II = lylllFll
Thus X' is' Closed under pointwise addition and scalar multiplication. Si~ce X' is a

nonempty subset of the vector space @ of all functions from X into IR with pointwise operations
X' is' almearsubspace of @ and hence is a vector space by itself. ) ,

(1.14.19' SAQ : If X is a normed linear space then F ~IIFII defines a norm on X' .

Sol'lition':ln view of (c) and (d) of SAQ it is enough to show that IIFII~ 0 and IIFII = 0 if and only

if F = O.

/F(x)/
If F~O, F(x) ~ 0 fq~some x(~O) in X soth~t IIFII ~ Ilxll' > 0
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14.20 Model Examination Questions:

1. Prove that Lrx:J is complete.

11,
2. . If 1<P <CIJ and - +- = 1 show that each g in Lq defines a bounded linear functionalp q

'.! 1

Fg : LP ~ m by Fg (f) = If g and that liFll = Ilgllq.

. 3. Let g be integrable on [0, 1] and suppose that there is a positive real number M such that

I /
for all bounded measurable functions f. Show that g E Lq and Ilgllq ~ M .

4. t.et.l ~ p <C(); F a bounded linear functional on rP and forO ~ s ~ 1 <D( ~) = F (x,) where
.' . ,

Xs is the characteristic function of [0, s] . Show, that <D is absolutely continuous.

5. ~et {1n} be a seqLt~n~~ in LP, 1~ P < ex) , which converges almost everywhere to a

function in LP. Show ~hat {In} converges to· f in LP if and .~,nlyif.llfn lip ~ Ilfllp .
14.21 Exercises:

1. Let c09 be.the space ot all sequence {xn} such that Xn =;f:. 0 for atmost finitely many n .

(a) Show that' Gao i~,adi(1ear.'space and' Co 0 C Co C c.

(b) Show that coo is a,normed-lineas spacewlthrespect.to the frx:J norm.

, ., -:;.:,~:'
(c) Let {x( n~}. be the sequence in coo where for each. n; x( n) is the sequence of

.." . 1
n~bers witb'~ inthe n~/;I place and.zero elsewhere, Show that the series
...... :- n

rx:J.'. "

'.L /11) is ,~psolutely surnmable, but not summable in coo.
'·ij~l/'. .

• t.·
<.,.'>1; ~ .
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2. 'Prove that every convergent sequence in a normed linear space is Cauchy sequence.

3. Let c = c [0 1] be the space of all continuous functions on [0, 1]. Show that C is a Banach

space where the norm is defined by

11I11 = 11/1100 = sup {If(x)l/o~x~ I},

4. Show that the g E Lq in Riesz Representation theorem is unique.

r
REFERENCE BOOK

If X is a normed vector space showtaht ·X' is a Banach.space (see lesson 3 of Reading
material on Functional Analysis of Paper ITopology and Functional Analysis)

Real Analysis - Royden

Lesson Writer:
ta. LaJ

.~
L
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Lesson - 15

ABSTRACT MEASURE AND
MEASURABLE FUNCTIONS

15.1 INTRODUCTION
We consider general spaces and generalize many of the results of lesson 1. In this lesson

you would learn how to define a measure on an abstract set and some simple and far reaching
properties of such a measure. The concept of a complete measure space is introduced.

Recall from lesson 3 Theorem 3.10 that the class of all (Lebesgue) measurable sets is a
(j- algebra. Motivated by this observation, we would prefer to define measure on a (j- algebra of

subsets of X. We recall the definition of a o - algebra of sets.

15.2 MEASURABLE SPACES AND MEASURE SPACES
15.2.1 Definition: Let X be a non-empty set; os:1 be a non-empty collection of subsets of, X
satisfying the conditions (

(a) A E ~ => A E~ (A : complement of A)

ao

(b) for any countable collection {An} of members of GiI their union U An is also
n=l

a member of os:1 .
As we remarked earlier the domain of a measure is going to be a a-algebra.

15.2.2 Definition : If X is any non-empty set and ~ is a a - algebra of subsets of X then

(X,~) is called a measurable space.

In this case the members of os:1 are called measurable sets relative to os:1 in the
measurable space. We now define a measure on a measurable space.

15.2.3 Definition : Suppose (X, C29t) is a measurable space. An extended real -.valued set

function f.1 defined on ~

(that is u: C29t -----t [00, 00]) is called a measure if it satisfies the conditions.

(i) f.1(¢) = 0

(ii) Non-negativity : f.1( A) ~ 0 for all A E os:1 and
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(iii) countable additivity: For any sequence {An} of pairwise disjoint sets in G9I we

have

15.2.4 Definition: If (X, G91) is a measurable space and J.1 is a measure on itthen (X, citI, J.1)

. is called a measure space.

" ,15.2.5 I:xample :

(i) m ~s the real line, m is the lebesgue measure on m. G# is the family of all

lebesgue measurable subsets of m. Then (m, G#, m), is a measure space.

(ii) On m, ~ is the (J - algebra of Borel subsets of m. Then (m, ~) is a measurable

space and (m, .9'3, m) is a measure space.

Note that the measure space in (i) and (ii) are different though the measure in both the
cases is the same' m '.

15.2.6 Example: X is an uncountable set.

~ = {A eX: A is countable or X - A is countable}

Define J.1 on ~ by

{
a if A is countable

,u (A) = 1 if A is countable

Then (X, ffi, J.1) is a measure space.

Solution: We know that 'Pl3 is a (J - algebra of sets, Clearly ,u is non-negative and J.1 (¢)= a. Let

{Ai} be a co'untable disjoint collection of sets from 'Pl3. If each Ai is countable, UAj is countable

. andhenceby the definitionof I' , I' ( ~ A, ) ~ 0 ~ ~ I' (A; ) .

Suppose Aio is countable for some in" then ,u ( Aio ) =1. Since Aio nAj =¢ 'if i= io , we

have, A j ~ Aio for every i= io . Thus, A j is countable for every I= io implies J.1 ( Aj ) = a for

every j "io. Also, eTA; c A,o ' implies eTA; is countable. Hence, 1'( YA; ) ~ I and
j i
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L:~(Ai) ='1 =Jl( Y Ai} Therefore,p is a measure on 93. Hence (X,Pl], Jl) is a measure

sp,ace.
. i "'}

15.2.7 Example: Let X, bea set. and for any A E:qj>( X) define,

(A) = '{'the number of elements in Aif,AiSfinite
Jl , 00 if A is infinite

"~I,

Then, (X, :qj>(X), Jl) is ameasure space. Jlis called the counting measure on X.

Clearly p is non-negative and p{¢:} = O. Let{AnJ be a countable disjoint sequence of

'sets. If An is infinite for at least one no then Jl ( Ano) = 00 and Jl (~An J =sx:>. Therefore, .

u(~,An') = 00 = ~ Jl ( An). If ea~h An is finite say with mh ,elements then p (An) = mn 'for

n=1,2,3,........... by the definition of p.,and since An'S are disjoint, we have

ItQ\An) = n~\mn = ~/,(An)

(X, 9£l(X),Jl) is a measure space.

Therefore, Jl is a measure on :qj>(x) and hence

15.2.8 Example: LetX be a set, XOEX, A eX.

" . , {I ifxoE A
qefine, Jl (A)=,' 0 otherwise

Then. (X, :qj>(X), p)iS a measure space. This Jl is called Dirac measure.

Clearly Jl is non-negative.p(¢)=o since xo'r¢: ¢. Let {Ed bea countabledisjointsequence

ofsets, If XoE~Ei then P(,,~.Ei) = 1. Since, Xo E~ Ei and tc:« are disjoint, Xo E Eio for some
I I I .

unique 10' Then ,u( Eio) = land Jl(Ei)=O for every i·:t:io. Hence, Jl(~EiJ = 1 = ~P(Ei) .If
, I I
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Xo ~ UE; then Xo ~ E; for every i and hence,
;

,u(~ Ei) = 0 = L,u (Ei). Therelore,u is a measure and (X, 9"(X},,u) is a measure
" 1 " " ,:. '

space.
We continue withthe derivation of properties ofthe measure p defined in 15.2.3.

15.2.9 Self Assessment Question:

If (x, Q9{, p), is a measure .space and AI, A2, ..... , 4n are pairwise disjoint sets in Q9{ .

'.Provethat

,u C9
1
At ) = It}l (Ai). (This property is called the finite additivity of ,u ) .

:(;1:5.2.10Theorem: Suppose (X"Q9{,: p) is a measure space.

(i) If A E Q9{, BE Q9{ and A cB then p(A)::; p(B).

(ii) If ArEQ9{ for i = 1;2,3, then

Proof: (i) Since B =AU (B - A)is a disjoint u~iori of, AE, Q9{ and B - A E Q9(' we h~ve.:'·by

SAQ15.2.9, that, p{B) =p(A) + p(B-A). Since p is non-negative,

p(B -A)~Q. Therefore p(B)~p(A).

i-I
(ii) Given Ai E~' for l=1,2,3,: while, B, =A; - U Ak. Then B;c A; for

, k=1

i=1,2,3, ...;.... and {Bd is a pairwise disjoint family 9f sets 'in Q9( such that

00 '00

U B, = U Ai . Therefore, by countable'additivity of p ,we have;=1 1=1, ", , '
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00

~L ,u(Aj)

i=1

15.2.11 Remark: The property proved in (i) of Theorem 15.2.10 is called the monotonicity of ,u
while that in (ii) is called the countable_subadditivity of ,u .

15.2.12 Theorem: Suppose (X, cPI, ,u) is a measure space. If {Ai} is a decreasing sequence

of sets in Q9{ (i.e., Ai+l~ Ai for i=1,2,3, ) with ,u(Ad<oo then

00

Proof: Let A=.n Ai and Bi=Ai-Ai+I for i2':l. Then B, EQ9/ for i2':l, BinBj.= ¢ for i*J
1=1 .

00 ,

and U Ai = Al - A (verify!). Therefore, by (iii) of definition we have,
i=l

,u (AI - A) =,u ( U Ai J = ,u r U BiJ = f,u (Bi) ------------------- (1)
i=I "i=I i=I'

Therefore ,u(AI) = ,u(AU(AI \ A)) = ,u(A)+,u(AI-A) and

,u (Ai) = ,u (Ai +1U(Ai \ Ai+1)) = ,u (Ai+I) + ,u (Ai \ Ai+d
respectively give

,u(AI-A) = ,u(AI) -,u(A) --------;--.:----------(2)

and ,u(Ai \Ai+l}= ,u(Ai) - ,u(Ai+1)------------,.---(3)

Now we get from (1), (2) and (3) that

00

,u(Ad- ,u(A) = L [,u(Ai)- ,u(Ai+1)]
i=1
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This implies }t(A)= lim ,u(An) , since ,u(Ad<oo.
n~oo

, 15.2.13 Self Assessment Question :
, ,

Suppose (X, (29(, fJ) is a measure space. If {Ai} is a sequence of sets in QX/ such that

Ai ~ Ai+l for i = 1,~,3" then, prove that ,u ( ,U Ai J = Iim zz(Ai ).
. 1=1 I

15.2.14 Theorem: Suppose (X,QX/, fJ) is a measure space and E10 E2 EQX/. Then,

,u(EI ~E2)=0 implies that ,u(E1)= ,u(E2)'

(The symmetric difference El ~E2 = (El \ E2)U(E2 \E1)·

Proof: From the hypothesis we have

Since ,u is non-negative ,u(El \E2) 2': 0 and ,u(E2 \E1)2':0 and hence .trom (1)

,u(EI -E2)=0 and ,u(E2 \E1)=0.

(El \ E2)n(E1nE2)=¢ .

E2 =(E2 \E1)U (El nE2), (E2 \ El)n(EI nE2)=¢

Thus,

II ( E1) = ,u (El \ E2 ) + ,u (El n E2 )

=,u(E1nE2)
/

and similarly, ,u (E2) =,u (ELnE2)' Thu's we have ,u (E1) = ,u (E2) .
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15.3 Classification of -Measure

15.3.1 Defini~ion: A measure j.J. on the measurable space (X,g;1') is said to be

(i) finite if p (X) <00

(ii) '. a - finite ifthere is a sequence {An} in Q9/ such that p(An) < 00 for every nand

00

X=U An.
n=1

...

,For example the Lebesgue measure on [0, 1] is a finite measure while the Lebesgue

00

measureon(m, m)is a- finite since m= U (-n, n)and m(...ln, n» =2n<00 for every n .
n=l

15.3.2 .Definition: A measure space (x, g;1', p) is said to be complete if A E 021, .u(A)=Oand

.BcA imply B E QSt/-.~lnotherwords,.a measure space (X, 091, p) is complete if 091 contains .

all subsets of sets of measure zero ..

15.3.3 Examples:

(i) (m, G4t,m) is a complete measure space

(ii) Any measure on (X, 'PI> (X») .is complete

(iii) .Let X ~ fjJand X contains more than on~ element. Let QSt/ = {fjJ,X}. Define

p (fjJ) = 0 = f..l (X) . Clearly j.J. is not complete .
'::. \

(iv) Let X= {a,b,c}, GW'={¢,{a}, {b,c}, X} and .u:GW'~m is defined by

p(fjJ)=p({b, c})= 0 p({a}) = p(X)=l. Then (X, cd, p) isameasurespace

which is not complete since {b, c} E 091 is of zero measure but has subsets

{b}, {c} neither of which lies in. cd. .
Note that the Lebesgue measure is complete while Lebesgue measure restricted to the

(7- algebra of Borel sets is not compete. Thus not all measure spaces are.complete. However,
every non-complete measure space is included in a comple. , measure space. This process is
called completion.

15.3.4 Theorem (completion) :If (X, 'P13,p) is a measure space, then we can find a complete

. measure space (X, Plb,,ao ) such that
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Oi) Ee'rJlJ=>p(E)= JIo(E)

(iii) '·§e'PIJO <=>.E=AUn.,whereBE~,Ac C,C E'PIJ with .u(9)=O.

Proofrket (X-,ge1.u).'is a measure space.. Write

~o = {E!E= AUB, A.CC,CEge with.u(C)= 0 and BE'PIJ}

We leaveproving~l isaa-,- 'algebra and gecgeo as a simple exercise for you. Now
r

observe the fonowing. If E=;AI U BI = A2 UB2 where BI' B2 Ege,Ai c Ci, C; E~ with .u(C,) = 0

fori=l, 2, ThenEI cE = A2 U B2 c C2 U B2

=> .u(Bl)~.u(C2 U B2)~ .u(C2.)+ .u(B2) = .u(B2)'

Since .u(C2)=O. Hence, .u(BtJ~.u(B2)' Similarly wecanprovethat .u(B2)~ . .u(BI)·

Therefore."p(BI) = p(B2)·,

Now define .Po on fIb as follows

If E E ~ then E=AUB, BE'PIJ, A c C, CE 'PIJ,.u(C) = 0

.Define, Po (E)= p(B).
. '

By the above observation, Po iswell defined. Since p is ~on-negative, Po is non-neaative,

and Po (rfJ)·= p.(rfJ)=O. Now,let fEn} b~ a disjoint sequence,of sets in fIb· We will show that
(

Now, En EfIb implies En =An U Bn, An c Cn, C,., E·ge, f.J. (Cn) = Oan~ Bn E 9?J. forevery

n .Then,

Po(~E.) = JIo((~~)U(~Bn))
= p(~Bn)
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n

Hence, (X, ~, f10) is a measure space. Next we show that f.10is complete. Let E E PAb ,

!to (E)=O and Fe E. Since E E ~ we have E=AUB, A ~ C, C E ffi , f.1(C)=O and BE ffi .

Now by the definition of f.10,f.10(E) = f.1(B) = 0 .

Now, F~E=AUB eCUB and

f.1(CUB):S;f.1(C)-+ f.1(B)=O. Clearly, CUBEffi. Now, F=FUrp, FeCUB,

CUB E ffi , f.1(C U B) = 0, and rpE ffi. Therefore FE ffio. Hence, f.10 is complete and

(X, ~'f.10) is a complete measure space.

Note: The measure space (X, ~, f.10) has the following property. If (X, ~,f.11) is any complete

measure space such that

,,

15.3.5 Definition: The complete measure space -(X, ~, f.10) given in the above proposition is

called the cornpletion of the given measure space (X, ffi, f.1) .

15.3.6 Self Assessment Question: Let (X, ffi, f.1) be a measure space. Let y eX, Y Effi , C I

define ffiy = {A E ffi: A e Y} and uv (A) = f.1(A) . Then (Y, my, ur ) is a measure space. f.1y

is called the restriction of f.1 to Y .

15.4 MEASURABLE FUNCTIONS :
In this section we extend the concept of a Lebesgue measurable function (introduced in

lesson) to a measurable function in an abstract measurable space.

15.4.1 Definition: Let (X, ffi) be a measurable space and f an extended real valued function

defined on X . We say that f is measurable if for every real number a, the set {x: f (x).~ a} E ffi .

15.4.2 Proposition :'Suppose (X, ffi) is a measurable space and f is an extended real valued
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function defined on X. Then the following statements are equivalent.

(a) For every a~1R the set {x:j(x»a}Er%3

(b) For every aEIR the set {x:f(x)~a} Er%3'

(c) For every aEIR theset{x:j(x)<a} Er%3

(d) For every a E IR the set {x:f (x )s:a} E Pli .

Proof: We prove that (a) => (b). (b) => (c). (c)=>( d) and (d) => (a) from which the theorem
,

follows.

Assume (a) For any a E IR we have
i

/ {x:j(x):2:a}= n,{x:j(x»a-!l.
/ n=l n J

No~, by (a), {X:J (x »a - M is in 9Il for each n21 and hence {x: f (x }2a}E9Il, Jinee

Pli is a (J" - algebra. Thus (a) =>( b) .

Assume (b) : For any a E IR, we have {x:f (x )<a} = X -{x:j( x )~a}

Since, X EflB and by (b), {x: j(x):2:a}E:9?5, we get {x:j(x)<a}EPlJ proving that

(b)=>(c).

Assume (c) : For any a EIR we have

{x:j(x)s:a} = 11~1 {x:j(x)<a+~}

Now, by (c), each set on the right is in Pli so that

{x:f (x )s:a} E PlJ, showing (c)=>( d).

Finally assume (d) : For any a E IR

{x:j(x»a} = X -{x:j(x)::;a}

shows {x:f( x »a}E Pli for any a E IR. Hence, (d) => (a).
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Remark: Note that an extended real-valued function defined on a measurable space (X,~) is

measurable if anyone of the stafements in the above, propositon holds.

15.4.3 Example: (i) If 1 is measurable, then {x: 1(x) = a} is measurable for each extended real

number a (ii) the characteristic function ZA is measurable. if, and only if A E 9B; (iii) the constant
I .
functions are measurable. '

15.4.4 Self Assessment Question :

Prove that every extended real-valued constant function is measurable.

15.4.5 Theorem : If 1 and g are measurable real valued functions and c is any constant then

1 +c, cf , 1 + g, 1 - g, 12 and Ig are measurablefunctions.

Proof: (i) If c=+oo (or) -00 then 1+c= +00 or -00 so that 1+c is measurable by SAQ 15.4.4.

Therefore assume c E IR. and c:;:.O. Then for any a Em'
We have,

{x:(1 +c)(x»a} = {x:j(x)+c > a} = {x:j(x»a-c} and by the measurability of j
the set on the right is in 9B proving j +c is measurable.

(ii) If c= + 00, - 00 or 0 then cl is a constant function so that cf is measurable by SAQ'15.4.4.

Therefore assume c Em and c:;:.O. Then for any a Em, we have,

{x:(c j)( x»a}= {x :cl(x»a}

={{x:j(x»a/c} if ce-O

{x:j(x)<a/c} if c-cO

since the set on the nght lies in 9B by the meas·urability of 1 we get that {x:( cI)(x»,a}
is in 9B for each a Em.. Proving that cf is measurable.

(iii) If j (x) +g (x )<a then j (x )<a - g (x) and therefore we can find a rational number r such

that J(x)<r<a-g(x). Therefore for any aEm ""--

{x: J(x)+g(x)<a} = U{{x:j(x)<r}n{x:g(x)<a-r}}
r

where the union is over rational numbers r . Since {x:j( x)<r}E~ and

{x:g (x) <a - r} EPl3 their intersection is in Pl3. Thus the set on the right is the union of a countable
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family from 9(3 and hence lies in 9(3. That is, {x:j(x)+ g(x) <alE 9?Jfor any aE IR, proving that

f +g is measurable.

(iv) Since 1-g=1+(-1) g, it is measurable by (ii) and (iii)
/

(v) To prove the measruability of j2, note that for any a E IR

{

X if a~.O .

= {x,:j(x»Fa}U {x:/(x)<-Fa}if a>O

In either case, by the measurability of I, the sets on the right are in 9?J.' Hence, 12 is

measurable.

(vi) Now, since
,

Ig = ~ {(I +g)2 - (I - g)2} it follows that Ig ·is also measurable.

15.4.6 Definition: If 1and g are extended real valued functions defined on X then 1v g and

11\g are defined by

(Iv g)(x) = max{/(x), g(x)}

and (I I\g)(x) = min{/(x), g(x)}
for any X'E X .

Note that in the case g (x ) = 0 for all x, then

( vO)(x) ='{f(X) if l(x)~O
1 0 if I(x)<o

while

( )( ) _ {O if l(x)~O
11\0 X - .

I(x) if I(x)<o



Measure and Integration 15.13 Abstract Mea... & Measurable func ...

15.4.7 Self Assessment Question: If i and g are measurable show that iv g and I 1\g are
also measurable.

15.4.8 Theorem: If {In} is a sequence of measurable functions on X then (i) sup·.h is
l$;i$;n

measurable for each n (ii) inf Ii is measurable for each n (iii) sup in is measurable (iv)
l$;i$;n n

inf In is measurable (v) lim sup in is measurable (vi) lim inf in is measurable.
n

-Proof: (i) Since {x: sup .h (x) > a} = .u {x:.h (x) >a}, we have sup.h is measurable.
l$;i <n 1=1 l$;i$;n

(ii) inf Ii = - sup (-Ii) and so is measurable.
l$;i <n l$;i <n

00

(iii) {x:sup in (x»a} = U {x:ln(x) >a}. so supfn is measurable.
n=l

(iv) inf In = -sup (- In) and so is measurable
n n

(v) lim sup in = inf (~up .h J is measurable by (iii) and (iv)
l:?n

(vi) lim inf in = -lim sup(- in) and so is measurable.

15.4.9 Self Assessment Question: Prove that a subset E of a measurable space (X,C29f) is

measurable if and only if its characteristic function X E is measurable on X .

We have the following result showing that the result 19 of lesson 8 holds in any measurable
space. //

./

15.4.10 Theorem: Let I be a non-negative measurable function on X . Then there is a sequence

{¢n} of simply functions such that

(a) O~¢I ~¢2 ~ <f and

(b) lim ¢n ( x) = f (x) for all X .
n~oo XE

Proof: For n=1,2,3, .. ·· and 1:::;i:::;n2n define
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{
i-I i}En i = X EX: - :s; i (x) < - and

, 2n 2n

Then for any nand i , we have En,i E Q9( and En E Q9( (by the measurability of i). Now
define

«i", 1[-
¢n (x) = I - X . (x) '+ n X ( x )

i=} 2n En,1 Fn

Then {¢n} is the required sequence satisfying (a) and (b) (The proof given in Theorem .
of lesson .... holds here also).

15.4.11 Definition: Suppose (X, cPt, f.1) is a measure space. A property is said to hold almost,

every where (or briefly a.e.) if the set of points where itfails to hold is a set of measure.zero.

For example, we say that i=s a.e. if i and g have the same domain and

f.1{x: i (x ) 7:- g ( x) }= 0 we say that in cenverqes to g ~Imost~,£ery where if there is a set E of

measure zero such that in (x) converges to g (x) for each ~x n6t i~ E .

One consequence of equality a.e. is the following.

15.4.12 Theorem: Suppose (X, c9f, f.1) is a complete measurable space and j is measurable

on X. If g= i a.e. then g is also measurable on X.

Proof: Write E = {x:g(x»a }, E} = {x:j(x»a}

E2 ={x:j(x);t:g(x)}. Then E} and E2 are measurabl~ and, as f.1 is complete, so is

EnE2. So, E=(EI-E2)U(EnE2) is measurable.

For example if {Ji} is a sequence of measurable functions converging a.e. t01 then f is

measurable, since, j = lim sup fi a.e. the result follows by the above theorem.

15.5 ANSWERS TO SAQs

15.2.9 SAQ : If AI, A2, .... ",An are pairwise disjoint members of Q9/ where (X, c9f, f.1) is a

measure space, define Ak =¢ for k ~ n. We get by countable additivity of u , that
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since p(AK) =0 for K'? n.

00 00

15.2.13SAQ : Write Fi = E1; F; = E; - E;-1 for i» L Then U E; = U F; and the sets f; are
;=1 ;=1

measurable and disjoint.

. Hence, p( .Q E;J == tJi.(F;) == lirn f p(F;) == lirn p( .9 F;J
1-1 1=1 n 1=1 1-1

=lim p( UE;)' = lirn p(En). ;=l n

15.3;6 : (tis easy to verify that fK1r is~ CT - algetira ofsubsets ot Y . Now, py (¢}= p (¢) = 0 and
, I ..' .. ..... ' .., .... .

the coun,fableadd'itivityof j1yisinheritedtrom the countableadditivity of' p. .

15.4,"/,f i( x) = - 00 forall x tHen {x:j("x» a} = '¢>.' for any exE IR sh~wsthat f is measurable.

!~'f (x) =+ 00 for all x then {x: j (±)>a} == X for any a E iR proving the measurability of f .
;

IlfI{x)=c foral! XEK (where CEIR) then

{ j (). '}' .{¢ if c. < ax: x >tl, = .X if c»:«

, andin~itiier case the ~~tbh the right is measUrable.Therefore f is measurable.

. {S.4.7: FdT any real nlimber a, we Wave . .
I . . . ,{i:(/v g){x}>aJ; {x:j(x»a}U{± :g(x»a} and

{.t:(j /\g}(~) > al =lx:j(x»a}n{x: g(x»a} ,

Now since {x:J{x»tl} ahd {x:g(x»a} are both.measurable we get that the sets

{x:(jv g)(x»a} and {x:{J I\gJ(x»a} are measruable, proving that Iv g and Ir-s are
measurable.
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15.4.9: Proceed as in lesson 5

15.6 SAMPLE EXAMINATION QUESTIONS .

(1) If (X,QS«,,u) is a measure space and {An}isasequencein QS« such that An+l~An

for n=l, 2, 3, with ,u(A1) <00 the~ show that lim ,u(An) =,u( n An).
. n~oo . n=l

•
(2) If 1 and g are measurable functions and c is any constant prove that

1 +c, c I, 1 +g, 12,Ig are also measurable.

15.7 EXERCISES:

1. Show that 15.2.12 will hold if ,u (Ei) is finite for some i , and the result will not hold

qenerally in the absence of such a finiteness condition .

...,_-2. (a) Let (X, ffi) be a measurablespace (a) If ,u and v are measures defined on 'Pl3

then the set function A defined on 98 by A E = ,u E + v E is also a measure we·"

denote A by ,u+v.

(b) If fl and v are measures on g{3 and ,u 2:: v then there is a measure A on 98 such

that z, = v + X.

(c) If v is a - finite, the measure A in (b) is unique.

3. I~ {Ai} isa sequence of sets from tJe"·. Prove that 1-'( .LJ Ai) = lim ,u ( .U Ai.)
.', • ' . 1=1 n-s-» 1=1
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Lesson - 16

INTEGRATION WITH RESPECT TO
AN ABSTRACT MEASURE

/

16.1 INTRODUCTION
We attempt to generalize the concept of Lebesgue integral to the integral with respect to an

abstract measure. The striking feature of the Lebesgue measure is that its completeness - which
an abstract measure may fail to possess. Therefore we begin the integration with respect to a
complete measure. We shall proceed with the process of integration, when m. is replaced by any-.

. /

set X , the a - algebra of Lebesgue measurable sets by a a - algebra C91 of subsets of X_ and
m the Lebesgue measure by a measure Ji on QS2'/. We shall define the integral for the class of

n
functions of the type rjJ= I ai X Ai , which serve as building blocks for our integral. Then keeping

i=l '

in mind the limiting property the integral should have, we will extend it to a larger class of functions

called measurable functions. In the sequel (X, G91, Ji) stands for a complete measure s ace'

unless otherwise mentioned.

16.2 INTEGRAL OF A SIMPLE FUNCTION . (
16.2.1 Definition: Suppose E is a measurable set and rjJ is a non-negative simple function ~iven
by

n '
rjJ( x) = I Qi X A. (x) for any x , we define the integral of rjJwith respect to

i=l I

n
J1, denoted by f rjJdJ1 by f rjJdJi = L Qi J1(Ai n E).

E E i=l
,'~.:

"16.2.2 Theorem: If a and f3 are non-negative numbers rjJ and If/ are simple functions then
. ~. '. . .

f(arjJ+ f31f/) d u = aJ rjJd u + fJ f If/ d u
E E E

n m
Proof: Suppose rjJ(x) = I Qi XA. (x) and If/(x)= I bj X B (x) forevery x. Then, arjJ"f',fJlf/

. 1 I . 1 J1= J=
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takes the values aai + P b) (1 s i s n, 1s j sm) on Eij = Ai n Bj and hence,

n m
(a ¢ + p/f/ ) (x) = I I (a ai +P b) ) X E .. (x).

i=1 j=1 Ij

Therefore,

n mf(a¢ + p/f/)dJl = I I (aai + Pb) )Jl( Eij nE)
E i=I }=I

n m n m
f(a¢ +p/f/)dJl = aI I aiJl(EijnE) + PI I bj Jl(EijnE) ------------(1)

E i=1 j=I' i=1 j=1

= (Ai nE)n X = Ai n(EnX) = Ai n E and

m .
Jl ( Ai n E) = I Jl ( Eij n E), by the countable additivity of u . Therefore the first

)=1

term on the right of (1) is

Similarly we can show that the second term on the right of (1) is P f /f/ d u . Hence the
E

theorem is proved.

1'6.3 INTEGRAL OF A NON-NEGATIVE MEASURABLE FUNCTION
We use the integral of a simple function to define the integral of a non-negative measurable .

function.

16.3.1 Definition: Suppose f is a non-negative extended real-valued measurable function on the

measure space (X, QSt/, Jl) and E E G91. The integral of f with respect to u , denoted by
. . ~---,

/
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1f df.i is defined as the supremum of the integrals 1t/J dJl where' t/J ranges over all simple

functions satisfying 0 ~ t/J sf .

That is, f f d u = sup f t/J. d f.i .
E 'O<;'~<;'f E

Note :The supremum may be +00. Hence the integral can be +00. .

16.3.2 Self Assessment Question : If f and g .are non-negative measurable functions on X

such that f ~g on X then prove that

ff d t: ~ Jgdu and f c I d f.i = c f f d f.i if c ~ 0 .
E E E E

To prove some other linearlity (of addition) properties we need a few convergence theorems.

16.3.3 Theorem (Fatou's lemma) : Let {In} be a sequence of non-negative measurable functions

that converge almost every where on a set to a function f. Then

\

Proof: First we recall that convergence a.e. on E means convergence, pointwise on E except on,
a set of measure zero. Let F r;;;, E, FEed,' f.i( F)=;O be such that In (x) ~ I(x) for all x E E\F.

Then JIdu = J f df.i+ f I du
E E-F F

n
Let ¢ bea simple function such that 0:$ ¢ :$ f and let ¢= L ai X A Now for x E Ai '

i=1 I

n
I(x)~ai' FnAjEC29I and f.i(FnAi)=O. Hence, Laif.i(FnA;) =0. Thus,

i=l

f f du = sup{O} = O· Similar argument yields that fin du = 0 for each n . This shows that in
F .

F

the inequality, the integrals need be taken over E\F alone, not necesarily on the whole of E.

Thus we can assume without lossof generality that In ~ I on the whole of E. Also in view of

Definition 16.3.1, [t is enough to prove that for each simple function with 0 ~ t/J ~ I the inequality

f t/J d f.i ~ lim' f In d f.i -::.,.------------(1) holds
EnE .
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n
Let ¢ be a simple function such that 0::; ¢ ::;I and ¢ = L ci X E

. i=l I

Case 1: f rjJd.u = 00

E

In this case there is a measurable subset A of E such that J-l(A) = 00 and ¢(x»Ofor
, n

every xEA; Since f¢dJ-l,=oo we have by the definition LCiJ-l(EnEi) = 00; hence,'
E i=l

A isa measurable subset of Eand J-l(A)=oo. ForxEA, rp(X)=Ci>~ =a(say»O. Thus

there is a positive number a such that 0 <a <¢ (x) for all x E A .We define for each n,
I

An = {X EE: Ik (x) > a for all k e n}. -T~en {An} is an incfea~~,g sequence 0\
measurable sets. The.refore lim f.1. (~n) = J-l( U An]- --------------- (2). . ,n~oo n=!

'"
00

But, since rp::;1= limln we get Ac U An. In fact if xEA then, limln(x);;::¢(x»a
n n=l n

00

gives fn ( x):> a for all ne: nO where nO is some inteqer.iso that x E Ano .showing x E U An·
n=l

Therefore, J-l(A) s J-l( U An] which gives, J-l( U An]= 00. Hene, by (2), lim !leAn) = 00.
n=l n=! n~oo

Now, since fin d u e fin du > a J d u = aJ-l(An)·
E An An

> a lini J-l( An ) = 00

n

We get, lim fin d u so that lim fin du = 00· Therefore, f ¢ d u = lim fin d u . ~n
n~oo EnE E n ,E

this case. So (1) holds.
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Case (ii) : Suppose f ¢d u «:»
E

n
Now f ¢du = L ci Jl (En E,)<00 implies ci Jl( En E,)<00 for all i , Now c, :;t: 0 gives

E i=1

1'( En E,)<~' If we take A~En( ,9/,) then A is a measurable subset of E, ¢(x)~O for

every x ~ A and ,u(A)~ ,uLQ/nE,),; ,~,u(EnE' )<"'. Thus if 141<"'" then the set

A = {x E E: ¢ (x) >o] is a measurable set of finite measure. Let M be the maximum of ¢' that is

¢(x):s; M for every x E E and if 0 <E <1 write An = {X E E: ik ( x ) > (1- E) ¢(X ) for every k ~ n} .
CfJ

Then the sets An are measurable, An ~ An+1 for each nand U An ::>A. Therefore, {A-An}
n=l

CfJ

is a decreasing sequence of sets, n (A - An) = ¢. Since Jl( A)<oo we have by theorem 15.2.12
n=l

But Jl ( n A - An J = f.1,(¢)= O. Thus, lim Jl ( A \ An) = O. Hence there exists a +ve integer
n=1 n

N such that Jl ( A \ An ) <E for every n ~ N

Thus for n 2 N ,

fin du e f indJl > f (l-E)¢ d u
E An An

>(l-E) f¢dJl- J ¢df.1,
E A-An

2 f ¢dJ1 - E f ¢dJl - MJl ( A \ An)
E E
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~ f¢d,u -E f¢d,u -ME (since, ,u(A\An)<E)
E E

i
I

Since, M + f ¢d,u is a finite number, we get·
E

fin d u > f ¢d u - E for all n ~ N .
E E

Proving lim f In d u> f ¢d,u. Thus (1) is proved in this case.
n EE

fi= lim fin
n \.

\

16.3.4 Monotone Convergence Theorem: Let {In} be a sequence of measruable functi ns

which converge almost every where to a function f and suppose that in ~i for every n . Th n

Proof: Since In::;I for all n , we have,

so that lim fIn dus; f I d u , a (1)
n

8yFatou's lemma,

f f d u ~ lim fin d u -----------(2)
n

Now from (1) and (2) the theorem follows.

16.3.5 Theorem :

(i) If f and g are non-negative measurable functions and a and f3 are non-negative real

numbers then

Hai + pg)d,u = a Jid,u + jJ Jgd,u
E E E

(ii) If f is a non-negative measurable function then J / d u ~ 0 with equality if and only if
E

/=0 a.e.
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Proof: To prove (i) let {tPn} and {Iff n} be increasing sequences of simple functions which converge

to f and g. Then fa tPn + fJlffn} is an increasing sequence of non-negative simple functions

converging to aI + fJg and therefore by the Monotone convergence theorem we get
.: ~.

= a_ fldJl+fJ fgdJl
E E

(ii) Obviously, f I d u e 0, since f ~O. Now if f f dJl = 0, let An ={X E E : f (x) ~ ~} for
E E

l' 1
n=1;2,3, Then An is measurable and f ~;;X An SO that 0= f f dJl~- Jl(An), proving

E n

I

Jl(An)=O for each n .
00

Therefore, if A={xE E: l(x»O} then A= U An' so that
n=l

Jl( A) = Jl( U An] ~ IJl( An) ~ 0 giving Jl( A)=O. Thus, 1=0 a.e. on E.
n=l n=l

16.3.6 Cor()lIary : Let {In} be a sequence of non-negative measurable functions on E. Then

00 00

J I In = I fin.
En=1 n=IE

n
Proof: Let un = L ik for n = 1,2, 3, Then {un} is a sequence of non-negative measurable

k =1

00

functions with Jim sn = L In Therefore, by monotone convergence theorem,
n~oo n=l .
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k~/}p~}~iUndfi.

But fUn d u = f( IIkJd,u = I f fk d u
E E k=l k=l E

00

so that Iim fUn d u= I fin' d u, proving the result.
n~ooE n=lE

16.3.7 Definition: A non-negative function lis said to be integrable over a measurable set E
with respect to ,u if it is measurable and

Jld,u<oo.
E

We now have a new result which shows how integrals can be used to construct new
measures with a special continuity property.

16.3.8 Theorem: Le't (X, cd,,u) be a measure space and I a non-negative measurable function.

Then ¢(E)= f I d u is a measure on the measurable space (X, cd). If in addition, fld,u < 00
E .

then for every E> 0, there exists 8> 0 such that, if A E cd and p(A) < 8, then ¢(A) <E.

Proof: Clearly ¢(<p) = fI d J..i = O. Since the integral of a non-negative measurable function is
¢

non-negative, ¢ is a non-negative set function. If {En} is a sequence of disjoint sets of cd ,

!6(g,E} ) f dti= ,EJXEJdfl

U En .
n=!

(by 16.3.6)

00 00

= L f f du = L¢(En)
n=l En ·n=l

Thus fp is a measure on the measurable space (X, cd). Write In =min(/, n). Then

In is measurable, In t I and lim fln·d,u = JI du by Theorem 16.3.4, s if SI du <'00 i.e. I is
n. \
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integrable on (X, cd, ,u) , then for each E> 0 there exists N such that

If A E QX{ and,u( A)<7'iN we have

fiN du < 7'i, So take 5 = ~N to aet
A

II d u> f(f- IN )d,u+ IIN d u

A A A

16.4 INTEGRAL OF AN ARBITRARY MEASURABLE FUNCTION
We now iritroudce the notion of integrability with respect to ,u of a general measurable

function I defined tin a measure space (X, cd, ,u).

16.4.1Definition: An arbitrary function I is said to be integrable if both 1+and 1- are integrable.

In this case we define

fl = fl+ - fi-
E E E

Some of the properties of the integral are contained in the following proposition.

16.4.2 Proposition: If I and g are integrable functions and E is a measurable set, then

(i) I(ci I + c2 g) d u = CI II d u + C2 Ig d ,u
E E E

(ii) If Ihl $1/1 and Ii is measurable then h is integrable.

(iii) If f e g a.e.then II';? fg

Proof: We first prove the following

I(c I) du = C II d u ----------------- (1)
E E

and f(I +g) du == f I du+ f g du ----------------(2)
E E E
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where e is any real number and f,g are as in the hypothesis. First note that

(eft = {ef+ if e~O
-ef- if e<O

/

Therefore, when e ~ 0, we have by Theorem 16.3.5, that

J(e f) d u = J( eft d u - J( e ff d u
E E E

= fef+d,u- fef-d,u
E E

= e J t" d P - e J f- d p
E E

~cuJ+ d u - 1r d u)

= c J f d,u
E

Again if e <0
. i'

He f) du = He ft d u - He ff du .
E E E

= J - e f- d u - J - er d u
E E

=( -e- e) J f- d u - (- c) f r: dP
E E

~cuJ+ dp - 1r dp)
=cJfd,u

E
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Thus (1) is proved.

First note that if f = fi -h where fi and h are non-negative then

f f d Ji = f fi d Ji - f h d u ----------------(3)
E E E

Now, f +g = (1++g+ ) - (1- +g- ), where

f+ + g+ ;:::0 and f- + g-;:::0 , so that by (3)

J (f + g) d Ji = f (f+ +g+ ) d Ji - f (f- +g- )d Ji
E E . E

and now using Theorem 16.3.5, we get

~(p+dP~ lFdP) +(VdP~ VdP)
= ffdJi+ fgdJi

E E

This proves (2). Now consider

J(al ~ ,Bg)d,u = J(al)d,u + J(,Bg)d,u
E E E

=a ffdJi + fJ fgdJi
E E

by (2) and (1) established in the thoerem.

(ii) If h is measur~ble and Ihl ~ III then

flhld,u ~ fl/ld,u < 00

E. E

shows Ihl ~nd hence h is integrable.

(iii) Let I;;:: g a.e. then I - g ;;::0 a.e. so that by T~:_orem 16.3.5 (ii), J (I - g) du> 0 . Now by
E
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proposition 16.4.2, this gives f I d Ji - f g d Ji 2:: 0, proving the result.
E E

16.4.3 Self Assessment Question : If I is measurable on E then show that f is integrable on

E if and only if III is integrable on E and in this case.

fldJi:5; fl/ldJi
E E

00

16.4.4 Self Assesment Question: If f 2::0 is integrable over E = U En'. where { En} are pairwise
n=l '

disjoint measurable sets prove that

00

fldJi = I f f d u
. E In=} En

16.4.5 Lebersgue Convergence Theorem: Let g be integrable over E, and suppose that

{In} is a sequence of measurable functions such that on E

and such that almost every where on E

fn (x)~ f(x).

Then f f = lim f In
E n~oo E

Proof: Since Iin (x)1 :5;g (x) on E we have, - g (x) :5;In (x) :5;g ( x) for all x E E so that {s +In}
and {g ~ In} are sequences of non-negative measurable functions respectively converging to

g + f and g - f almost every where on E. Therefore, by Fatou's lemma, we get
/

f(g+ f)dJi :5; lim f(g+ fn}dJi
EnE

and f(g- f)dJi :5;lim f(g- fn}dJi
EnE

Which can be written by Theorem 16.3.5, as
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Jg du + Jf du =:; Jg du + lim JIn du
E E En E

and Jg du - fIdu s f g du - lim fin d,u
E E EnE

. ',"; Since g is integrable, Jgd u < 00 , so that the above inequalities give
E

fI d u =:; lim fin d u
E nE

and J I d u e lim J In d u
EnE

from which the theorem follows.

16.5 ANSWERS TO SAQs

16.3.2 : If f and g are non-negative measurable functions on X such that f ~g on X , then any

simple function ¢ =:; g also satisfies ¢ s f. Hence

That is, f gd u s JI d u ,
E E

Again if c ~ 0, f is a non-negative measurable function on X , then

f cIdu = c f f du is very obvious.
E E

16.4.3 : Let f be measurable on E .

If f is integrable then f+ and f- are both integrable by definition, so that f+ + 1- == III
is also integrable.!f Ifl is integrable then since 1+ =:; /1/ and 1- s /f/, we get f+ and f- are

both integrable so 'that 1+- 1- = I is integrable.
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Since -/fl~f ~/fl we get

\

- J\f\d,u s Jfd,u s f\f\d,u proving the inequality.
E E E

00

16.4.4 : Give f ~0 measurable function and E = U En where {En} is a sequence of disjoint
n=l

measurable sets.

Than ffd,u= fixEd,u
E X

00

= L f f du
n=l En

Proving the result.

16.6 MODEL EXAMINATION QUESTIONS

16.6.1 : Define the integral of a non-negative measurable function f with respect to a measure ,u .
Stat~ and prove-Fatou's lemma.

16.6.2: State and prove Lebesgue convergence theorem.
~. '\)! ,: .~ ...
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16.7 EXERCISES

16.7.1: Show that if f is integrable, then the set {x:f(x):;t: o} is of (J- finite measure.

16.7.2: Let f be integrable, then IJfd,ul s Jlfld,u with equality if, and only if, f?O_~a.e. or

f~O a,e,

16.7.3:(a) Let (X, re,,u) be a measure space and g a non-negative measurable function on

X. Let v( E)= f g d u . Show that v is a measure on 9?J.
E

(b) Let f be a non-negative measurable function on X. Then

ffdv=ffgd,u.

REFERENCE BOOKS
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Lesson - 17

SIGNED MEASURES

17.1 INTRODUCTION
The aim of this lesson is to discuss the properties of set functions which are countably

additive but are not necessarily non-negative or even real-valued. Such set functions arise naturally.
For example, if we consider a linear combination of finite measures, it need not be a measure, i.e~
it need not be non-negative (of course, it will be countably additive). Another way in which such set

functions can arise is when we integrate an integrable function: v (E) = Jf d /-l .
E

. We have seen in theorem 16.3.8 that if f is a non-negative measurable function on the

measure space (X, 0.91., /-l) then the set function ¢ defined on cd by ¢(E) = ffdj.1 is a
E

.rneaeure. If f is any measurable function whose integral with respect to J1 exists, then

v(E)= f f dJ1. is a set function on cPI which is countably additive and which behaves in most
E

respects like a measure. This suggests extending the definition of a measureto allow negative
values. This is done in Definition 17.2.1 The Hahn and Jordan decomposition show how in the
stUdY;~Ofsuch measures we may keep to the non-negative measures, already discussed. We will
prove hat the set X on which signed measure is defined can be partitioned by means of the
measu (Theorem 17.3.4) and each such measure can be written as the- difference of two non-

, negativ " measures (Theorem 17.4.3). , ' .

17.2 SIGNED MEASURES
When you allow a measure to have both positive and ne.gative values you are likely to get a

00-00 situation. Hence, we should take care of such situation while defining the signed measure.

17.2.1 Definition: A set function v defined on a measurable space (X, QQ,f) is said to be a

signed measure if the values of v are extended real numbers and

(i) v takes atmost one of the values co and - 00

(ii) v(¢)=O and

(iii) _ v ( nQ IEi) ~ ~ v (Ei) il s,n E j ~ ,p lor i" j ,where the equality is taken to mean
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i

that the series on the right converpes absolutely if v (UEi) is finite and that it diverges

to +00 or - 00 as t~e case may be.

Note (i): In the above definition means that if v(A) =+00 for some A E cd then for no BE cd ,

v(B)=-oo (if v(A)=-oo for some AEQX{ thenfornoBEcd v(B)=+oo).

17.2.2 Example: Every measure is a signed measure, since it never takes the value -00 , it takes

the value 0 at fjJ and it is countably additive.

The converse is not true, for example, if J1 is a measure on a measurable space (X, cd)
. i

and if we define v( E) ;",- J1( E) V E E cd, then v is a signed measure but not a measure.

17.2.3 Example: If v is a finite measure and J1 is a measure on the measurable space (X;cd)

then for any real number a the set function v~aJ1 is a signed measure. In fact if ,u(E)=oo for

some E then (v-ap)(E) = -00 or +00 according as a2':O or a<O; (u-a,u)(¢)=O and

(v-ap)( U En] = v( U 'En] -a,u( ,U',En]=I{iI-aP)(En)WheneVer {En} arepairwi~e '
n=l n=l ' n=l n=I' ,-.- .

disjoint measurable sets.

17.2.4 Example: Let (X, cd, J1) be a measure space ~nd f 'be any measurable function on

cd. Define, fjJ( E)= II dJ1 where II dJ1 is defined, then"fjJ is a signed measure. We ha~e
E

either ff+dJ1 < 00 or fl- d u < 00 so (i) of Definition 17.2.1 follows. (ii) is trivial (since

fjJ(fjJ) = If dJ1 = 0). Suppose {E;} is a pairwise disjoint sequence in cd and for E E cd write
¢

fjJ+ (E) = fr dp, fjJ- (E) = f 1- du , so that by Theorem 16.3.8 fjJ+ and fjJ- are measures.
E E

Then, fjJ( .U EiJ = fjJ+ ( .UEiJ ~fjJ;:: ( .U EiJ
1=1 1=1 1=1'

• . I

, .

00 00 00

=I ¢+(EJ - I'¢- (EJ =2: ¢(EJ
;";'1 ;:;:;1", ;=1' " "

as we cannot get 00- 00 at any stage,
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17.~.5Self Assessment Question: If f..l\ and f..l2 are measures on (X, Q9f) such that;atleast

one of them is finite then show that v (E) = PI (E)- P2 (E) V E E Q9f is a signed measure

on DS4

We shall show that the method described in example 17.2.5 is the only way of constructmq
signed measures(see theorem 17.3)

17.2.6 Self Assessment Question : Let v be a signed measure on (X, Q9f). Then prpve the
following: .

(i) If A, B E r§!/ and AnB=¢ then v(AUB) = v(A)+v(B).

(ii) If AE'-!W wit~h IV(A)I<oo and BEQ9'I with BcA then IV(B)I < +cjo and

v(A\B) = v(A)-v(B).

(iii)· v is finite iff Iv (A)I < + 00 VA E '-!W

\

.17.3 SETS ASSOCIATED WITH A SIGNED MEASURE
If v is a signed measure, it is difficult to handle it as it is. We wish to describe\it interms of

non-negative measures and use the knowlede of such measures in studying signed measures. A
I

.•step in this direction is to classify subsets of X in relation to u . /

17.3.1 Definition: Suppose v is a signed measure on a measurable space (x{ QX(). A set

E E QI!/ is said to be a ' \
I

(i) Positive set with respect to v if v( A) 2:0 for every measurable subset Jt of E.
I

'(ii) Negative set with respect to v if v (A) =:; 0 for every measurable subse(i A of E .

(iii) Null set with respect to v or a v - null set if it is both a positive and a neg~tive set with
respect to u .

Clearly A is a negative set with respect to v it is a positive set with resoectto - v.
For example the empty set is a positive set'with respect to any signed measure. It may be

notedthat E is a v - null set if and only if E f:; cd and v( A)=O for all A E cd with A c E. The
reader should carefully note the distinction between a null set and a set of measure.zero : While
every null set must have measure zero, a set of measure zero may well be a union of two sets
whose measures are not zero but are negatives of each other.

We have the following Lemmas concerning positive sets. Similar statements hold, of course,
for negative sets. '
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I

Then En is a measurable subset of An and so v (En) ~ O. Since the En are disjoint and

E=UEn, we have,

OCJ

v(E) = L v(En)~ 0
n=l

Thus A is"a positive set.

17.3.3 Lemma: Let E be a measurable set such that 0 <v (E) <00. Then there is a positive set A. '

contained in E with v(A»O.
'. '

Proof: If E contains no set of negative v- measure then E is a positive set and A = E gives the

result. If E is not a positive set then there exists a measurable subset. B of E and v(B) <0.

Then we can find a natural number n wi 'h v (B) -:_.l. Let nl be the smallest such integer and El
n

. . l'
a corresponding measurable subset of E with v (EJ ) < - - ; we now consider E \ El ; if this is not

nl

a positive set, as earlier we find the smallest positive integer n2 such that there. is a measurable

1 J .
set E2 cE \ El such that v (E2) < - - . Continue this process.

n2

Having chosen n}> n2' ,nk-l and measurable subsets E1, E2,· ,Ek-1, we choose

k-J
the smallest positive integer nk > nk-l and a measurable subset E k of E - U E· with; 1 JJ=



k
If the process stops at nk ' say, then A = E - U EJ is a positive set. Also, v (A) >O. In

j=l .

fact if u(A)=O then, U(E)=U(. ,6 EjJ = ± u(Ej) < 0 a contradiction to the hypothesis. Then
J=l j=l

A is the required set In this case.

00

If the process continues indefinitely, we shall show that A = E - U Ek is a positive set
k=l

satisfying the inequality u( A»O and A c E.

Now, E = AU ( U s,J and these sets are pairwise disjoint. Thus we have,
k=l

00

= v (A) + L v (Ek) -------------- (1 )
k=l

Since v (E) <00, the series on the right hand side of the above equality is absolutely
"

,001

convergent. Hence L - is convergent and we have ,ik, -+ ci:J as k -+ 00 ·3 a +ve integer
k =1 nk

ko .3 nk > 1 for k > ko .
k

If BEQ9/, B~A and k>ko then BcE- UE· so that- . 1 J
J=

1
v ( B) C:. -.--- (nk -1)' by the definition of n k : Since this inequality holds for all k > ko " so letting

k -+ 00 we have v(B) ~ 0 and so A isapositiveset.Alsosince v(Ek)~ 0\7' k and v(E»O,

we have v(A»O as required.

17.3.4 Hahn Decomposition Theorem: Let v be a signed measure on the measurable space

(X, cd) . Then there is a positive set A and a negative set B such that X = A UB and An B = ¢ .
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Proof: Let v be a signed measure on (X, Q!«). We may assume that v(A)<+oo for every
f

A E cd since v cannot assume +00 and -00 on cd. Let X =sup{v(A): A is a positive set}.

Since empty set is positive set we get A, ~ O. Let {Ai} be a sequence of positive sets such that

By lemma 17.3.2 the set A is itself a positive set, and so A, ~ v (A). But A - Ai ~ A and so

v(A-Ai)~O. Thus

v (A) = v ( Ai ) +V ( A - Ai ) ~ v (Ai)

Hence V(A)~A, and so v( A)=A and A <00.

Let B =A , the complement of A. If E is a positive subset of B then En A = ¢ and

EUA is a positive set so that A,~v(El!JA) = v(E)+v(A) =v(E)+A" hence v(E)=O, since

O:sA,<oo. Thus B contains no positive subsets of positive measure and hence no subsets of

positive measure by lemma 17.3.3 consequently B is.a negative set.

17.3.5 Definition: Suppose u is a signed measure ona measurable space (X, g;;(). If there is

a positive set A and a negative set B such that A U B =X and A n B = ¢ then the pair {A, B} is

called a Hahn decomposition of X with respect to u .

Theorem 17.3.4 shows that a Hahn decomposition of X always exists that a Hahn
decomposition need not be unique, follows from the next example.

17.3.6 Example :,Let A and B be as.ln the theorem. Let N E cd be a v - nullset. Then (A \ N),

BUN is also a Hahn decomposition of X. Furhter if AI> BI and A2' B2 are two Hahn

decom positions .of X with respect to u, then v (Al A A2) = v (Bt A B2) = 0 and for every

E E C!9f, v(EnAd = v(EnA2), v(EnB.) = v(EnB2)'

17.4 THE JORDAN DECOMPOSITION
We now use the Hahn decomposition to obtain a decomposition of a signed measure into

the difference of measures. "

17.4.1 Definition: Two measures VI and v2 on a measurable (X, Q!«) are said to be mutually
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singular if there exist disjoint measurable sets A andB with X=AUB, q(A)=~=~(B). In

this cas we write vI .L v2 .

,17.4.2 Example': Let .u be a measure and let the',m1e:,sures vI, v2 be\ given by

q (E) = J.l(AnE), v2 (E) = J.l(BnE) where J.l(AnB)=O and E, A, BE QQ/. Th~n vI ~v2

since q(B) = J.l(AnB)=O, V2(A)=J.l(BnA)=O.

, 17.4.3(Jordan dec nmposltlon) The,orem : For every signed rneasureo defined on a me~urable

space (X, C2Rf) there exists a unique pair of mutually singular measures v+ and v-on (.x\ C2Rf)
I ,

such that U=v+ - r):-

, \

Proof: Let {A, B} be a Hahn decomposition of X with respect to v and define v+ and v-', by

, v+(E) = v(EnA), v-(E) = -v(EnB) for every EEC2Rf. Then v+ and v- arerneasuresby
i'

Also for E E Q9{ ,

"~v(E)= v(EnA)+v(EnB) = v+(E)-v-(E) .:So, V=VT -'v- and the proof will be complete

when we show that the decomposition isunique. Let v~vI -v2 is any decompsition of v into

~'mutually singular measures. Then there exists disjoint measurable sets C and D with X = CUD,

.:v1(D)=O=V2 (C).
\ '

We have the following

E~C implies v(E)='vI(~)"':-V2(E-)=Vl(E)

EcD implies u(E)=Ul(E)-V2(E)=-~2(E)

r: Also, if E c A then v(E)=v+ (E) and if E c B then v(E) = -v- (E).

Then, u(BnC)=-~~ (BnC)~O'

, also v(BnC)=q (BnC)~O

hence,v(BnC)=O. Thus we have',';
, -

i. . 1·-.··.

-, ) . .
v(Bnc)=o=v- (BnC)=q (BnC). Also we get

v(AnD)=O = v+ (AnD) ~~ (AnD).' "
,,'
I
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Now for any E EoX'!,

=v-+:(EnAnC) =v(EnAnC) (':EnAnCc A)

vI (E) =q (EnC) + vI (EnD)

=vI (EncnA) +vI (EnCnB) (vI (EnD) = 0 since vI (D)=O)

:. v+ (E) = Vl( E) hence v+ = vI similarly we can show that v- = v2.

Thus the decomposition is unique.

17.4.4 Deflnltion : The decomposition of v given in the above theorem is called the Jordan

decomposition of v. The measures v+ and v-are called the positive variation and negative
variation of o .

Note that since U assumes atmost one of the values + 00 and - 00 , either v+ or· u- is
I

finite. If both v+ and v-are finite, v is said to be a finite signed measure.I . .
I

17.4.5 D~finition: For any signed measure v on a measurable space (X, oJ<'!) , its total variation
I
I

or absolyte value Ivl is the measure defined by

Ivl(E)= v+(E) +v-(E) for each EEcPi

17.4.6 Self Assessment Question: Show that the Hahn decomposition is unique except for null
I

.sets .

17.4.1felf A~sessmentQuestion: Let (X, d4, ,u) be a measure space and let Sf d u exist.

Define v by v (E) = Jf du for E E cd . Find a Hahn decomposition and the Jordan decomposition
I ".

E

with respect to o .
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17.5 ANSWERS TO SELF A~SESSMENT QUESTIONS

00

17.2.5: Clearly v(¢)=:O. Let E= U En where En are pairwise disjoint elements of Q9/ . Then
n=l .

00

f.ii (E) = I f.ii (En), i = 1, 2. Suppose f.il (A) <+ 00 V A E Q9f. In case f.i2 (E)<oo also, then
n=l

00

the series I (f.il (En)- f.i2 (En)) is absolutely convergent to f.il (E) - JLz (E). Hence
n=l

00 00

v(E)= f.il (E)- f.i2 (E) = I f.il (En) - L f.i2 (En)
n=1 n=l

00

= L (f.il (En) - f.i2 (En))
n=l

00

In case j.12 (E) = +<x,) or -00, clearly theseries L (f.il (En) - JL2 (En)) is divergent to
n=l

- ,l12( E) = ,l11 (E) - ,u2 ( E) . Thus v is a signed measure. If both f.il, JL2 are finite measures then

Iv (X)ISI,l11 (X)I + 1,l12(X)I < 00 i.e. v is a finite signed measure.

17.2.6: The proof of (i) is obvious. To prove (ii) let A E Q9/ and Iv( A)I < 00. If BE Q9/ and B s; A

then A=(A-B)UB and we have

v( A)=v( A - B)+v( B).

Since Iv (A)I < 00 and v can take atmost one of the values + 00 or - 00 ,we get Iv (A \ B)I <00

and IV(B)I<oo. Further, v(A\B)= v(A)-v(B). (iii) follows from (ii).

17.4.6: Let {A, B} and {AI> Bd be Hahn decompositions of X. Then we have
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x = A U B, X = Al UBI where A and Al are positive sets, B .and Bl are negative sets.

A is positive set and BI is a negative set follows that A ~ Al is both positive and negative

i.e. a null set. Similarly we can show that Al ~ A is a null set. Hence, we have A ~ Al is a null set.
. '.1

" ,;

Also, B!1 Bl is a null set.

17.4;7: From example 17.2.4, u is a signed measure. Let A={x:f(x)~O},· B~{x:f(x)<O}.

Then, A, B form a Hahn decomposition, while u+ and c: given by v+ (E) = fr d u,
E

u- (E) = f j- dJ.i from the Jordan decomposition.
E

17.5 MODEL ':XAMINATION QUESTIONS

17.5 ..1: Define a signed measure on a measurable space show that every integrable function f
on a measurable space (X, cd, J.i) defines a signed measure on X .

17.5.2: Define a positive set, negative set and a null set with respect to a signed measure. Prove
that the union of countable collection of positive sets is also a positive set.

17.5.3: If u is a signed measure on a measurable space (X, QQf). Prove that every E E cd

with O<u(E)<oo contains a positive set A with u( A)<O.

17.5.4: State and prove the Hahn decomposition theorem. Show that Hahn decomposition is
unique except for null sets. .

17.5.5: Prove that every signed measure on a measurable space can be written as a difference
of mutually singular measures on the space.

17.6 EXERCISES

17.6.1: Show that if E is any measurable set. Then - u - E ~ u E su +E and

IU(E)1 ~ Ivl(E).

"
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17.6.2: Show that the Hahn decomposition is unique except for null sets.

17.6.3: Show that if vI and v2 are any two' finite signed measures, then so isavi + PV2,

where a and p are real numbers.: Show thatiavi = lall v I.

REFERENCE BOOKS
1. . Real Analysis - H.L Royden.
2. Measure Theory and Integration- G. Debarra
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Lesson - 18 /

THE RADON - NIKODYM THEOREM

18.1 Introduction: In this lesson the absolute continuity of a measure with respect to another is

defined on a measurable space (X, C29f) and such measures are characterized when the space

is a - finite. Integrating a non-negative function over the sets of a a - algebra produces a new
measure from the original one and in the Radon Nykodym theorem we show that any new measure
continuous in a certain way can be formed in this manner. This gives rise to the derivative of one
rneasure.with respect to another.

18.2 Definition : I.' J.1and v are measures on a measurable space (X, C29f) such that

v(A)=O for each set A for which J.1(A)=O then v is said to be absolutely continuous with

respect to )1 and we write v«J.1 in this case.

18.3 Example: If f .is a non-negative integrable function on the measure space (X, C29f, J.1)

define v by v( A)= Jf dJ.1,for each A E QS2{ . Then, v is a measure and v«J.1, since J.1(A)=O
A

implies v(A)=O.

We need the following lemmas to prove the main theorem. These lemmas show that given
a family 2!3 of measurable sets, a measurable function can be derived from this family.

18.4 Lemma: Suppse that to each a in a countable set D of real numbers there is assigned a set

Ba such that Ba ~ BfJ for a < j3 . Then there is a unique measurable extended real valued function

f on X such that f ~ a on Ba and f ~ a on X - Ba .

Proof: For each x E X define

f(x) = inf {aE D: XE Ba}

where inf¢=oo. If xEBa, then f(x)~a. If xrt.Ba, then xrt.BfJ for each j3<a. If

f (x) <a then by the definition of f there exists a 5 E D :3 X E B5 and 5 <a. Now, 5 < a implies

B6 ~ Ba and x E B6 c Ba i.e. x E Ba a contradiction. Therefore, f(x)~a on X -Ba' Nowwe
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will show that f is measurable. Let a be.any real number. Then, the set {xl f( x)<a} = U B/3'
/3<a

If !(x) < a , then there is a /3 < a and x E B/3 cUB /3. Now if x E U B/3 then x E B/3
fJ<a fJ<a

for some /3<a. Hence, f(x)~ B ca .:Thus, !(x)<a. Therefore,
I

{x:f(x)<a} = U B/3
/3 <(X

since, U BfJ is a measurable set we get f is a measurable function.
fJ<a

Note: If the' set D in Lemma 18.4 is dense in m, then f in the lemma is uniquely determined ..

18.6 Lemma: Suppose that for each a in a countable set D of real numbers there is assigned a

set Ba in 9?3 such that J.1 ( Ba - B/3 ) =0 for a < /3. Then there is a measurable function f such

that f :S a a.e. on Ba and f:2: a a.e. on X - Ba .

Proof: Write, C= U (Ba - BfJ)
a</3

Now, O~,u( C):s l: ,u(Ba - BfJ) = O· Hence, .u( C)=O.
a<jJ

For each a E D, put, B:X = Ba U C.

Hence, B~ c B'p for a c B: Therefore by lemma 18.5 there is a measurable function f

such that f(x)~a on B:X and f(x)~a on X-B:X. Therefore, f' s:a on Ba and f e.a on

X - (BaU C). Hence, f :Saa.e. on Ba and f > a on X - Ba except for x E C and ,u( C)=O.
Therefore, we have, !sa a.e. on Ba and !~a a.e. on X - Ba .

;,., ."
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\ ,

, The followihg theorem, the Radon-Nikodym theorem, characterizes absolutely continuous

measures v on a ~,~, finite measure space (X, cd, p). lnfact every measure v« u is of the

form given the exatple 18.3. <', " , . . ' ,

18.7~heOrem(Ra don - Nikodym) :Let (X,;C?E,,u) be O"-finite measure spa~e,and let v be a

measure ,definedoh Y?3 which is absolutely continuous' with respet to u. Them there isa non-

,negative measurable function f such that-for all Ein, 'PJ3wehave " ' . "
, ,- . .

/

v(E) = Ji d u
E

\ ' The function f is unique in the sense that if g isalso a non-negative measurable function
\ .
~Ch thatv{E)= J g d u, E E Pl3 then!';"g a.e. (p).

, E '
, ,

~~:. , ,

, , ',St~p-~: Suppose that the result has been proved for finite measures. Then in the .g~~eral case

we hav X =UXn and' p(Xn) < 00 for every n ',We can assume that Xn's are disjoint,
, , ' 'n, .

, \ ' , '

\
'. WrlteP4, ={EnX~/E E~}

The~(Xn, .ggn, p) is a measure space, and J.l(Xn) <00 , for every n.Sy assumption,

there exists' a non-negative measurable function In on X n suc~ that v (E) = fin dJ.lV E E ~.

E

Define f on X by, I (x )= In (x) if X E X n : Clearly f is non-negative, since each In is non-

IX) ,

negative. Let a be a real number, now {x:/(x» a} = U {xl In (x»a}. Therefore f is
, n=l

measurable.

Every E in ~ can be written as E = UEn where En = En Xn-E ~ for every n . Therefore
n

- ' I

f f d u = f Id u =~ f f = Lv(En) = v(E). So the general case follows.
E UEiz n En. n

n'

Step -2:'So we need to show that for finite measure such a function I exists. Thus without loss
. . ~.

.of generality we can assume,' that" ,Li(X)<oo .'Nowfor each rational
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a,(v~al')(E):;: v(E)~a,u(E). Since I' is finite, we have, v~a,uis a signed measure.

Therefore by Hahn decomposition theorem, there exists {Aa, Ba} such that X = Aa U Ba' .

Aa nBa = rjJ, Aa isa positive set with respect to v ~d,u and Ba is a negative set with respect to

o=au . For a =0, take Ao=X and Bo =rjJ.

Step - 3 : We will show that I' (Ba ~ Bj3 ) = 0 if a < fJ '.

Consider Ba - Bj3= Ba n Bj3 = Ba n Aj3 is a subset of Ba which is a negative set with

respect to u ~ all and hence, (u - aJ.l) ( Ba - Bj3 ) ~ O. Also Ba - B f3 is a subset of Af3 which is

a positive set with respect to v - fJ,u and hence (v - fJ,u) (Ba ~ B f3) ~ 0 . Now if jJ >a , we have,

v (Ba - Bj3 ) ~ au (Ba - B P )

~f3,u(Ba~Bp)

~v(Ba-Bj3)

Hence, au (Ba ~ Bj3 ) = jJ,u ( Ba ~ B j3 ), implies that J.l(Ba - BP ) = O. Thus, there exists

a measurable function f such that; f ~a a.e. on Aa and f ~a a.e. on X - Aa = Ba by lemma

18.5. In particular f ~0 a.e. on X . Also without loss of generality we can assume that f ~0 on.

X.

Step - 4 : Let E be a measurable set and let N' be a positive integer. For k ~ 0 ,

00

Eoo = E - U B k
k-O -'- N

00

Then {E k} are pairwise disjoint, each of them is disjoint from Eoo and E = Eoo U U Ek '
r k=O

.so that
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00

U (E) = u (Eoo) + L u (Ed -.,---------(1)
k.=O

Also, Ek c Bk+l n A~ gives (u - k; 1 f.1)(Ek) ~O and (u- ~ f.1)(Ek )~O which imply·
N N .

k k+l-f.1(Ek) ~ u(Ek) ~- f.1(Ek) ---------- (2)
N N

Since Ek ~ B k + 1 - B k = B k + I n A k we have by the choice of the measurable function
- - - -

N N N N

f that

k k+l
N ~ f(x)~N for x E Ek so that

From (2) and (3) We have

:Ste.p .. 5 : u (Eoo) = J f du ----------(5)

E""
/
!k

If x E Eoo then x E B k forevery K implies, x E Ak forevery k and hence f(x);;i N a.e.
N N

for every k . Hence, f(x)=oo a.e. on Eoo.

If f.1(Eoo) > 0 then (v - ~ f.1} Eoo) 2::0 for every k. Since s; is a subset of \4 ~ for

everyk .Hence,

u(Eoo)2:: ~f.1{ Eoo) for every K,

Therefore, in this case, we get J f d u = u(Eoo).
E""

I
implies u(Eoo) = 00, since f.1(lfoo»0 .

•
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If J.l(Eoo) = 0 then u( Eoo) = 0, since o-e.u . Hence, u( Eoo) = f f du = O.
Eoo

Step - 6: From (1), (4) and (5), we get

CJ:)

s f f d u + I f f d u
e; k=OEk

1::;u(E)+-J.l(E)
N

Hence, u(E):-=; fJdJ.l :-=;u(E) since Jl{E}<oo and Nisarbitrary. Therefore,
E

v(E)= ffdJl
E

Step -7 Uniqueness of f: Suppose there exists a non-negative measurable function g such that

u(E)= f gd u for every E Effi· Then foreach E E ffi, we have,
E

f(f-g)dJl= ffdJl- fgdJl= O,proving f-g=O a.e. [.u] i.e f=ga.e. [Jl]~
E E E

18.8 Definition : Suppose (X,:?B, J.l) is a (Y - finite measure space and u is an absolutely
I

continuous measure with respect to u . The function f obtained by Radon-Nikodym theorem
such that

v(E) = f f d u for every E E 'P13, is called the Radon-Nikodym derivative of v
E

with respect to Jl and is denoted by [:~ ].ThUS, if u ~ Jl then v(E) ~.1[:~]dJl forall E E 9lJ.
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18.9 Self Assessment Question: If vI and v2 are a- finite measures on (X,W) and vI «.u .
v2 -e u then

The following theorem shows that every a - finite measure on a measure space (X, W, f.1)

can be written uniquely as a sum of two measures one of them is singular with respect to f.1 and
the other is absolutely continuous with respect to f.1 .

18.10 Lebesgue Decomposition Theorem : Suppose (X,?J8, p) is a a- finite measure space

.and v is a a- finite measure on w. Then v = Vo +vI, where Vo is singular with respect to p

(va .Lp) and vI is absolutely continuous with respect to f.1(VI «f.1). The measures Vo and vI

are unique.

Proof: Since f.1 and v are a- finite measures so is the measureA=f.J+v. Also,p«A and

v« A . Therefore by the Radon-Nikodym theorem there exist non-negative measurable functions

j and g such that

f.1(E) = f j dA and v( E)'= f gdA .
E E

Now if, A ={x:j(x) >O} and B={x:j(x)=O} then A and B are disjoint measurable

sets with AUB=X and p(B)=O. Define, Vo and vI both on W by voCE) =v(EnB)and·

VI (E) =v(EnA) for any E E W·

Then, vo(A) = v(AnB) =v(¢) =0 and p(B)=O imply that Vo is mutually singular with

u . i.e. Vo .l u . We will now show that VI -e.u . Let E E re be such that f.1(E)=:O. Then

f j dp=O showing f = 0 a.e. [A] since f is non-negative. Since f( x»O for x E An E we

E

have A(AnE)=O showing v(AnE)=O (since v «A). This gives VJ (E)=O. Hence, VI -e.u .
Also for any E E W we have.
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=v(En(AUB))

=v(EnX) = v(E).

showing that, v = Vo+ VI . Thus every a - finite measure on Yl3 can be written as v = Vo+ VI

where vo.l p and VI « u .

To prove the uniqueness of the decomposition, suppose v=vo +q = Vo+vi where

Vo-Lp, VI -e.u, Vo-Lp and vi« u. Then there exists sets A, B, A', Bi such that

Now for any E E '!?l3 we have \
\

E=(EnBnB')U(EnA'nB)U(EnAnA')U(EnAnB')

since, p(EnA'nB) = p(EnAnA') = p(EnAnB')=O

" we get, VI (EnA'nB) = VI(En AnA') = V] (EnAnB') = 0 and

vi (EnA'nB) = vi (EnAnA') = vi (EnAnB') = 0

since VI«p and vi« p .

Therefore for any E E g(J , we get

(vi -vd(E) = (vi -vd(EnBn B')

=(vo -vo)(En Bn B')

=0, since vo(B) = 0 and v6(B')';" 0

Therefore, vi(E) = VI (E) i.e. vi = VI implies vb(E) =vo (E). i.e. Vo = vo, proving the

uniqueness of Vo and VI .

18.11 Self Assessment Question: ,
1

(a) Show that if V is a signed measure such that v.1.p and o-e u, then v=O.'
J

(b) Show that if VI and v2 are singular with respect to u , then.so is ci VI" + c2 v2 .
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/

(c) Show that if vI and v2 are absolutely continuous with respect to Ji so is cI vI -+ c202 .

(d) Prove the uniqueness assertion in the Lebesgue decomposition.

18.12 Answers to SAQs :

18.9 : Clearly VI + v2 is a a- finite measure and VI +v2 «Ji . For E E Yl3 ,

so the uniqueness of d(VI +v2)/dJi gives the result.

18.11 (a) : Since vl.Ji there exist disjoint sets A and B such that X =A UB , v(A)= O=Ji(B).

Since, o-e u , we have v(B)=O, we will showtha't v=O. Let E E Pl3, then E=(EnA)U(EnB)

and hence v(E)=v(EnA)+v(EnB)=O. Therefore v=O.

(b) : vI 1. Ji there exists disjoint sets A and B such that X = AU B , VI (A) = 0 = Ji (B) .

v2 1.Ji there exists disoint sets A' and B' such that X = A' UB', v2 (A') = 0 = Ji (B'). Now,

CI Vt +c2v2 is a measure.

Now, X =(An A')U(BnB'), where

. (CtVt +C2V2)(AnA') = 0 and Ji(BnB')=O

Therefore,( civi + C2V2) 1. Ji
-,

(c): is obvious.

(d) :Suppose v =vo +VI = Vo+vi where Vo1. u, Vo1. u, VI «Ji, vi -e.u , By (b) and (c) we have,

(Vo- Vo ) 1. Ji and (ut - vi)« Ji .

By (a) we have, Vo-v& =f
and vI-vi =0

Therefore, Vo = vo, VI = vi
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18.13 Model Examination Questions

18.13.1 : State and prove the Radon-Nikodym theorem.

18.13.2 : Prove that every measure v on a finite measure space (X,~, J.i) can be decomposed

as v = Vo +vI where Vo 1. J.i and vI « II.

18.14 Exercises

18.14.1 : Show that the follwoinq conditions on the signed measures J.i and von (X,~) are
/ '

equivalent: (i) v«J.i (ii) lul«IJlI (iii) v+«pand v-«JI

18.14.2: Show that if II and v are measures such that u-e.u and v 1. JI then v is identically
zero.

'18.14.3: Show that the condition JI a - finite is necessary in the Radon - Nikodym theorem.
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Lesson - 19

OUTER MEASURE AND
THE EXTENSION THEOREM

19.1 INTRODUCTION
In this lesson we first consider some of the ways in which a measure can be defined on a

a- algebra. In the case of Lebesgue measure we defined measure for open sets and used this to
define outer measure, from which we obtain the notion of measurable set and Lebesgue measure.
Such a procedure is feasible in general. In the first section we discuss the process of deriving a
measure from an outer measure, and in the second section, we start with a measure on an algebra
of sets and extend it to the smallest a - algebra containing it - this extension is called Cartheodory's
measure.

Finally, we start with a "semi-algebra" of sets and a non-negative set function, we consider
the possibilities of extending it to a measure on the smallest algebra containing it.

19.2 OUTER MEASURE AND MEASURABILITY

The purpose of this section is to introduce the concept of an outer measure Jl * on the

class of all subsets of a given set X and there by obtain a class W of subsets (called the class of

j..J * - measurable sets) which is a a - algebra of subsets of X .

19.2.1 Definition : By an outer measure Jl * we mean a nonnegative extended real-valued set

function defined on all subsets of a set X and having the following properties:

(i) Jl * (¢) = 0

(ii) A c B ~ j..J* (A)~ ,/ (B)

00 00

(iii) E r;;;, U s, ~ Jl* (E)~ L Jl*(Ei)'
i=1 i=1

The second property is called monotonicity and the third countable subadditivity.

19.2.2 Example: The Lebesgue outer measure m * defined in lesson 1, 'is an outer measure on

the class of all subsets of m. Since m*(¢)=O; AcB~m*(A) ~m*(B) and m" is countably

subadditive.

19.2.3 Self Assessment Question: Show that the outer measure u* satisfies the finite subadditive
property.
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19.2.4 Self Assessment Question: Show that condition (iii) in the definition 19.2.1 can be replaced
by the following condition

OCJ /' , ·OCJ

E= U s; n, disjoint=>~*(E) s L,u*(Ei)'
i=l" .".. i=l

19.2.5 Definition: An outer measure ,u* is called finite if ,u* (X)<oo. In view of monotonicity of

,u* we have ,u*(A)<oo for every A~X if ,u*isfinite .

.".We know that the Lebesgue outer measure is not countably additive but it is countably

~:additive on the class of all measurable sets, Analogously the outer measure i-t* defined on 'pjJ (X)
~. I

.' need not even finitely additive. So we have to identify some subclass S of F(X) such that ,u *

restricted to S will be countably additive, This is the class S which we call the class of ,u * -
, I

measurable sets of X . A set E ~ X is in S if we use it as a knife to cut any subset- Y of X into

tl(v~Jparts, Y r TE-and y n EC , then their sizes ,u* (y n E.) and ,u* (y n E'C) add up to give the size

I.F,u*(Y) ot r .This motivate our next definition

." . .. , . . '* *
19.2.6 Definition : A set E c X is said to be measurable with respect to « orl,u -measurable

if for every set A c X we have

For example,

(i) the empty set ¢ is ,u * -measurable,

(ii) If E is such that ,u*(E)=O then E is,u* -rneasurable. In fact, if A is any set then

AnE~E implies ,u*(AnE)=:;,u*(E)=O so that ,u*(AnE)=O and An~~A gives

,u* ( A nE) =:; ,u * (A) . Therefore

j/ (An E) + Ji* (A nE) s Ji* (A). Again since,

A =( An E)U( A nE), we get b¥ the finite subaddltlvitythat ,u}( A,)=:;,u*(A nE)+,u* (A nE)
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Hence, .u*(A)=.u*(AnE)+.u*(An£) for every AcX,·provingthat E is .u*-measurable.

19.2.7 Remark: The finite subadditivity of .u * gives

.u* (A) =.u * [( A nE) U ( An £)] <5,.u* (A nE) + .u* ( An £) for every set A . Therefore, the

..u* -rneasurability of E follows iff .u* ( A) ~.u * ( A nE) + .u* ( An £) holds for every A ~ X . Again

if .u * (A) =00 , this is obvious. Hence to establish the .u * -measurability of a set 4, it is enough to

provetheinequality .u*(A)~.u*(AnE)+.u*(An£) forev~ryset AcX with .u*(A)<oo.

19.2.8 Theorem: The class ffi of .u* -rneasurable sets is a a - algebra. If /L is .u* restricted to

Pl3 then /L is a complete measure on ~.

Proof: The empty set ¢ is .u * -measurable .:

Also since the condition for .u*-measurabilityof E is .u*(A)=.u*(AnE)+.u*(An£) is

symmetric in E and £ it follows that £ is .u * -rneasurable whenever E is. We will show that if

E}> E2 E'9B then E} UE2 E'9B. Let E},E2 Effi ,since E2is .u* -measurable we have

.u* (A)= .u* ( A nE2 ) + .u* ( A n£2 )

which the measurability of E}gives

.u* (An £2)=.u* (An £2 nE})+ .u*( An E2 nE}); and combining these two we get

.. .

But since, An (E} U E2) = (A nE2) U ( An £2 nE}) we have by the subadditivity that

.u* (A n(E} U E2)) <5,.u* (A nE2) + .u* ( An E2 nE}) -------------------- (2)

Then (1) and (2) imply that

.u* (A)~ .u*( A n(E} UE2)) + .u*(An E} UE2), proving that E} UE2 is .u* -me·asurable.

Thus ffi is an algebra of sets of X . By induction the union of any finite number of measurable sets

. is measurable. Assume that E =UE, ' where {Ei} is a disjoint sequence of measurable sets; and
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put

n
G=U£.n l.

i=1

\Then, Gn is measurable, and

Jl* (A) = Jl* (A nGn) +Jl* (A nGn ) ~ Jl* (An Gn) + Jl* (An E), since, E cGn. Now

Gn nEn =En and Gn nEn =Gn~1 and by the measurability of En we have,

Jl* (AnGn) = Jl* (An Gn n En)+ Jl* (AnGn n En)

= Jl* (An En)+ Jl* (AnGn-d

n
But by induction we can prove that Jl* (A n Gn) = L f1* (An Ei) and so

... i~l

00

Jl* (A)~Jl* (An E)+ L Jl* (A nEi)
i=1

~Jl* (A nE)+ Jl* (A nE), since,

00

An E c i~1A nE, . Thus E is measurable. Since the union of any sequence of sets in an

algebra can be replaced by a disjoint union of sets in the algebra, it follows that re is a a - algebra.

Given that p is the restriction of Jl * to PlJ that is p (E) = Jl* ( E) fo~ all E E PlJ . To prove

that Jl is a measure, first we show that it is finitely additive. Let El and E2· be disjoint measurable

sets. Then the measurability of E2 implies that

p(EI UE2)=Jl* (El UE2)

= f1* ( (El UE2 ) nE2 ) + f1* ( (El UE2 ) nE 2) .
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Now by induction the finite additivity of JI follows.

00

Suppose E = U E, where E, E Pl3, E, nE j = rfJ for i *" j. Then for any n ~ 1,
i=l

00 00

Alsp, ~ ( E) = Jl * (E) ~ L Jl * ( Ei) = L~(t:)
i=l i=l

Therefore, p( E) ~ PCQ/i J ~ i~ p~Ei) i.e. J.l is countably additive. Further,

~(rfJ) = Jl* (rfJ)=O. Clearly It is non-negative, since Jl* is non-negative.
/

Therefore 1/ is a measure on re.
To prove that the measure Jl is complete, recall that every set of outer measure zero is

Jl* - measurable. (19.2.6 Ex(ii)). Suppose, E E??J with )1(E)=O, and F ~ E. Now

It(E)=Jl*(E) and Fc;;;,E implies Jl*(F)~Jl*(E). Therefore, Jl*(F)=O which gives F is

Jl * - measurable. Thus It is complete.

19.2.9 Self Assessment Question:

(a) If {Ej} is a sequence of disjoint measurable sets and E =U E, . Then for any set A

we have Jl * (A nE) = L Jl * (A nEj ) .

(b) Show that the outer measure Jl" is countably additive on Pl3.

19.3 THE EXTENSION THEOREM
, .

19.3.1 : In this section we start from the definition of a measure Jl on an algebra r:;;p( of subsets of

X and define an outer measure Jl * . called the outer measure induced by Jl . We denote the class,
I' '

of Jl * - measurable sets by re and prove that the restriction It of Jl * to Pl3 is an extension of Jl



to a a - algebra containing nw that is /:L= Jl * /fJJ3 . Further we show that starting with a set function

defined on a semi-algebra it is possible to define a measure on an algebra.
I

19.3.2 Definit~on : A non-negative extended reai~valued set functionzz defined on an algebra ()SI!

of subsets of r is said to be a measure on oW if

(i) \Jl(¢)=O and
I

I
(ii) for any sequence {Ai} of pairwise disjoint sets in A whoseunion is also a member

of ()vl, we have

The process by which we construct 1'* from Jl is analogous to that by which we constructed
Lebesgue outer measure from the lengths of the intervals.

19.3.3 Definition: Suppose Jl is a measure on an algebra QW of subsets of X . For any E eX,
define

The set function Jl * is called the outer measure induced by Jl .

19.3.4 Remark:

(i) Given any E eX, there exist at least one covering {Ai} i~1 of E by elements of

()9f , namely {X} .

(ii) The set function Jl * (E) can take the value +00. for some sets E .
19.3.5 Self Assessment Question: Show that

19.3.6 Lemma: Let Jl be a ,measure on an algebra cd. If A E OW and if {Ai} is any sequence

00 00

of sets in (lSf! such that A c U Ai, then, Jl (A) s L Jl (Ai)·
i=1 i~1
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Proof: Put, e;= A n An n An-I n····· n AI,. Then s; EG'4 and s; ~ An . But A is the disjoint

, ' 00 00

union of the sequence -{Bn} , and so by countable additivity Jl ( A) = !Jl (e;)~I Jl ( An) _
n=l n=l

19.3.7Corollary:lf AEG'4 then .u"'(A)=Jl(A)-

Proof: If AEQ9{ then {A} covers A and hence by the definition of Jl*, we have, Jl*(A)~Jl(A)-

00

But by the above lemma, .u(A)~ L.u( Ai)' if {Ad is any sequence of sets in Q9t such that
i=l

Ac U Ai' AgainbYthedefi~itionof Jl* we have, Jl(A)~Jl*(A). Therefore, Jl(A)=Jl*(A).
i= 1 .

Note: 19.3.7 shows that Jl* is an extension of u .

19.3.8 Lemma: The set function Jl * is an outer measure.

Proof: Clearly .u* is a non-negative set function defined on the class of all subsets of X .

Since ¢ E rd by 19.3.7, we get Jl* (¢) = Jl* (¢)=O. Again if A c B c X then anysequen~

00 00
{ Ai} of cd with B c U Ai is also a sequence for which A ~ U Ai and therefore Jl * ( A) ~ Jl* ( B) ,

n=l n=l',

proving the monotonicity of Jl*. It remains only to prove the countable subadditivity of Jl*. Let

00

E c U E, _ If .u* (Ei ) = 00 for some i then the inequality.
i=1

00

Jl * ( E) ~ I Jl * (E i) ---------- (1)
(::::1

is trivial. Therefore assume Jl * (Ei) <00 for each i . Then by the definition of Jl * (Ei) , to each

00

E>0 we can find a sequence {Ai)} ._ in cd , such that E, c U Ai) and
j-I,2,3,..... ' j=l



OC>

L f.1 ( AU ) < f.1* (e,) + 7'i i ------------- (2)
j=1 .

OC> OC> OC>

Now, E c U E, c U U Aij, where Aij E QSC/ forall i and j so that by the definition of
;=1 i=1 j=1 '

. f.1* (E) and (2) we have

OC> OC>

f.1* ( E) < L L f.1 ( AU )
i=lj=l

OC>

=L f.1* (Ei)+E
i=1

Since E > 0 is arbitrary, we get (1) in this case also.

Thus, f.1* is an outer measure.

19.3.9 Lemma: If A E cd , then A is measurable with respect to f.1* .

Proof: Let E be an arbitrary set of finite outer measure and E a positive number. Then there is a

sequence {Ai} in Qr;;f such that E c UAi and
i

L f.1 (Ai) < f.1* (E) + E ---------- (1)

Now, Ai::;:Ai n X = Ai n (A UA) = (Ai n A) U(Ai n A) . By the additivity of f.1 on cd , we

have

f.1 ( Ai) = f.1 ( Ai nA) + Jl ( Ai n A)
From which we get,

OC> OC> OC>

L Jl( A;} = L f.1( Ai nA) + L f.1( Ai nA) ----------- (2)
i=1 i=1 i=1

."
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00 00

But En A c U Aj n A, En A c U Ai n A and the countable subadditivity of p * imply
i=1 i=1

that

00 00'

p*(EnA)~LP(AinA) and p*(EnA)~ ~p(AinA) --------(3)
i=l i=1

Combining (1), (2) and (3) we have

p*(E)+E ~ p*(EnA) + p*(EnA)

and since E > 0 is arbitrary, we get

. p*(E)~p*(EnA)+p*(EnA) thus proving that A is p*-measurable.

19.3.10 Definition : If J1. is a measure on an algebra Q9{ of subsets of X and p * is the set

function on the class of all subsets of X constructed in the above theorem then J1.* is called the

outer measure induced by p .

19.3.11 Definition: Given an algebra cd of sets, the class of all those sets which are unions of

countable collection of sets of cPI is denoted by C2Y1a and the class of all those sets which are

. intersections of countable collections of sets in Q9fa is denoted by Q9f0'l5'

19.3.12 Proposition: Let p be a measure on an algebra 09'1 , 'P * the outer measure induced by

f.1 , and E any set. Then for E> 0, there is a set A E oY'fa with E c A and

There is also a set BE cdm5 with E ~ Band p* (E) = p* (B).

Proof: By the definition of p * , there is a sequence {Ai} from cd such that E c UAi and

00

L p(Ai) ~ p* E + E ---------- (1)
i=1

00

Put A= U Ai' Then, p* (A) ~Lp* (Ai) = I f.1( Ai) ----------- (2)
i=l

\..
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From (1) and (2), we get that A E os1a, E ~ A and ,u* (A) s ,u* (E) + E , proving the first

part. Now by the first part of the proposition, to each positive integer n , there is a set An E QY{a

such that E c An and f.1*(An) <f.1*(E)+1. Let, B= n An then, BE QS<{o-o and E ~ B. Also
n n=l

since B ~ An for every n , we get

* () . * () * (E) 1 . * *,u B ~f.1~n <,u +-;; forevery n,showing,u (B)~,u (E). But since,

E~B we also have ,u*(E)~,u*(B). Thus, ,u*(E)=/-/(B).

The following proposition gives the structure of the measurable sets in the (J" - finite case.

19.3.13 Proposition: Let f.1be a (J" - finite measure on an algebra Q)(/ , and let f.1* be the outer

measure generated by u . A set E is f.1 * measurable if and only if E is the proper difference
I .

A;.~B of a set A in QS<{ao and a set B with ,u* ( B) = O. Each set B with ,u* (B) = 0 is contained

in set Cin QS?/ac5 with ,u* (C)=O.

Proof: Suppose E = A ~ B where A E QS<{ao and p * (B) = O. Now each set in ~o must be .
------

measurable since the measurable sets form a (J" - algebra, while each set of ,u * - measure zero

must be measurable since" is complete. Therefore, E is f.1*- measurable.

Conversely suppose that E is',u * - measurable. Since f.1 is (J" - finite, there exists a

sequence {Xi} of sets from cPt such that X = U Xi and ,u(Xi) < 00 for every i . We can assume
i

that Xi's are disjoint. Now, XiEOs1~f.1*(Xi) =f.1(Xi) <00 for every i . Now,

E=U(EnXi)=UEj where E, =EnXi and EiE9i3 for every i , since EEYl3 and
i i

Also, ,,(Ed = ,u* (Ei) ~,u* (Xd<oo for every i , Therefore by the above proposition, to

each positive integer 'n' there exists a set A>jj in Q91"; such that Ei C Ani and
. ,
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* (A ) < * (E) + 1 Put A - UA . then E=UE1· cUAn1· = An for every n impliesp n i - P i -. . n - n, I
n 2' i i i .

E cnAn = A (say). Then, An E cda for every n , implies, A E cdo-J' Now we will show that
n

p* (An - E) ~ .!. for every n .
n

00 00

An - Ec.U (Ani - E;) 'and hence ,u* (An - E) ~ L p* (Ani - Ei)
1=1 . i=1

00 1 1<2::-=-
.- i=1 n2i n

Now, A - E ~ An - E .

Hence, ,Li* (A - E) ~ ,u* (An - E)::;! for each n .
. . , n .

Therefore, P*(A-E)=O. Thus,

Suppose p * (B) =.0. 'then B is p * - measurable. 'So by the above 'proof there is a s~ c
in C?9faJ such thai B cC and J..l* (C - B)=Q.

Now, C, i)3 nc and en T3 are ail p* - measurable and hence,

,L/(C) = ;li(C} = jL{CnS)+.u(cns) where.u(enT3) = p*(e - B) = .0 and

.' '.' * ..' * ..u(BnC)~,il(B)=1t (B)=Q. Thus, p (C)=O.

Therefore 'every 'set B with ;li*(B)=O is contained in a set C in ~J with p*(C) =.0.
\

We summarizethe results ofthis section in the following theorem.

, 19j~'14Theorem (Cafatheo'dbry) : Let fL be a measure on an algebra cd and p* the outer

measure induced by /.J,. Then the restriction It of p* to the p * -rneasurable sets is an extension

of' j:i to a (J' - algebra e~ntainihg cd. If P is finite (or (J' - finite) so is p. If P is (J' - finite, then
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p is the only measure on the smallest (J'- algebra containing <Pi' which is an extension of u .
. . * -

Proof: Let j1 be a measure on an algebra cd and u the outer measure induced by j1 . Let Ii

be the restriction of J./ to thej1*- measurable sets. Now by corollary 19.3.7, we have,

j1*(A)=j1(A) for each AErd'. But, AEC?vl => j1*(A) = ji(A) since any AEcd is j1*-.
- ,

measurable and ii is the restriction of~,*to the j1* - measurable sets, Hence, ,n (A) = ,.u( A) for '

every A E \9'1. Thus ji is an extension of i..l to a (J - algebra of ,.u * - measurable sets containing: -

r&1. If JL is finite then j1(.x)<oo and since, XE@! we have, ,n(X)=.u(X}<ro andhence Ji
(

is finite. Similarly we can show that if ,.uis (J' -finite so isji .

Uniqueness: Suppose -,.uis q- finite. Let m3 be the smallest (J'- algebra containing cd and

jJ is a measure on 98 such that Ji/ pp( = ;;. Then we h~ve to show that jj :;;J;. First we will

show that ,n and Ji agree on oW'a' _.Let A E QWa then A =U Ai' Ai E pR( and Ai n Aj = tjJ for
i

i * j . Consider

p(A) ';'P(YAtJ,,; P(Ai)= ~p(Ai)(Since. filed = p)

~~:U(Ad (since /L/C?>II = j1)
I

'=fi( Y Ai) (since fi is a measure)

= ;J(A).

Next we will show that ,n and :u agree on f313. We first show that

ji(B)=;J(B}VBE~suchthat j1*(B)<oo. Now, let BE~ such that

j1*(B}<oo. Now we will show that ;J(B)::;; ,n(lJ) = j1*{B). Let E>O 'themthere exists AEC2l<1a

such that B~A and JL*(A)::;;j1*(B)+E.
/

/

'20 Hence,;;(B)~,.u*(B)+E V E>O. Therefore,
,I
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- . * /p( B)~p (B) for-eachB in 9.'3.

Since 9.'3is the smallest a-:-algebra containing QS!/. We have 9.'3c the a- algebra/of
, , , ~. \ .. ,

* .'
p - measurable sets .

. Therefore BErer;;a-.a}gebra of p* -measurable sets implies, )/(B) = Ii(B).
Therefore,

p (B) sP * ( B) = Ii (B). for each B E P/3 .

Now we willshowthat, ji ( B ) ~ P(B) + EVE> a and for each B EP/3 such that J1* ( B) <00 .

Let E> a then there exists' A E CJY1o- with B c A and

p*(A) ~ p*(B)+E.

Now, ;U(B) ~ ;U(A) = peA)

=p(B) +p(A-B)

'~p(B)+p*(A-B)

<~(B)+E

since, 11*(B)< 00 we hav~,p* (A-B) =,u* (A)-p*(B) <E. 'Therefore,

j1(B)~~(B). Hence, j1(B) = ~(B) tor every B in P/3with ,ll*(B)<oo.

Since J1 is a -r- finite, there exists a disjoint .sequence {Xi} in QS!/ such that X = UXi
. i

and p(Xj)<ao forevery i..Let Be ffithen ..B",.B.QX ~ Bn( YXj) ~ Y(Bnx,j. Now, BE ffi

and Xi E 091 r;; Pl3 and henceB nXi E??I3.Therefore, since p and Ii are measures on P/3, we

have,

}l(B) = L~(Bnl"t) and
i
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Now, p * (B nXi ):s; P * (Xd = p (Xi) < 00 , since Xi E r:d ,

p * (Xi) = P (Xi)' Therefore by the above proof we have p (B n Xi) = Ii (B n Xi) for every i .

Therefore, p(B)=Ji(B) thus, Ji d P .
19.3.15 Definition: Let X be any set. A collection 'tF of subsets of X is called a semialgebra of

sets if the intersection of any two sets in 'tF is in 'tF and the complement of any set in 'fi is a finite

disjoint union of sets in 'tF .
19.3.16 Example:

(i) The collection of all intervals forms a semi-algebra of sets of IR .

(ii) If r:d is an algebra of subsets of X then r:d is a semi-algebra of sets but the

converse is not true. For example X ={1~2} and 'tF = {fjJ, {I}, {2}}. Clearly 'if is a semi-algebra

of sets but not an algebra of sets. Since {I,2} ~ 'tF'
19.3.17 Self Assessment Question:

If 'tF is a semi algebra of sets then

Q~ = {fjJ} U {A:A = .U c., c,E 'tF, c.» are diSjOint}.
. /=1

Then show that cd is an algebra of sets. This algebra cd is called the algebra generated
by <$' i.e. cd is the smallest algebra containing 9f.

The following proposition gives conditions under which a non-negative set function defined
on a semi-algebra can be extended to a measure on an algebra.

19.3.18 Proposition: Let 'tF be a semi algebra of sets and p a nonnegative set function defined

on 9f with p(¢)=O(if ¢ E~). Then f.1 has a unique extension to a measure on the algebra r:d

generated by <$' if the following conditions are satisfied.

(i) If a set C in 'if is the union of a finite disjoint collection {Cj} of sets in 9f I then

• I
i

I .
(ii) If a set C in ~ is the union of a countable disjoint collection {Cj} of sets in <$',

then i«: sL uc, .
Proof: Let re' be a semi-algebra of sets and let cd be the algebra ge,nerated by ~. Then,

QQf. = {¢}U{A:A=.U c., Cj'E;~c, 's are diSjOint}
1=1
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Define p on A as follows: .

.n
Let AEQS<f then A= U Ci,CiE~;CinCj =¢Vi"#j.
. .i=1 . .

_ n .
,u(A)::: L ,u(Ci)

i=1

'p is well deflned.

m m
Suppose A= U Dj' Dj E~, Di nDj = ¢ V i * j. C, c A= U ,Dj implies

j=1 j=I.· .. ~- . - t/

m m :
\,t'=c, n .~Dj = .~ c,nDj ,where, C, npj E ~. Therefor~ by (1) in the sta~emen~,

~(C;)= ~-;(Cin~~ and hence . . .~; T .

j=1 ,,"~

n,', n m
L,u(Ci)=LL,u(cinDj). '
i=1. i=lj=1 '

Similarly we can prove that'

'm m n' ~,

I ,u(Dj ) = L L,u( CiT1D))
j=1 . j=li=1

, ' , ..~ m,
Therefor~L,u(Ci) = L',u( Dj ). Thus piswell-defined:

i;:1 j=l

,u is a measure: '
,

• . ..' -j .

If. AE~, p(A) = ,u(A).Hence, p/~ ~ ,uandp(¢) = ,u(¢) =}) (since.ee Yf).
. ' . j'

Now we will show thatpis finitely additive,

Let A, BE rd, such that An B=¢ ,
i

/'_-;~.m _ _ .'
, Suppose, £~}JCi;B=.u o; Ci,Dj E~and pairwise disjoint. Consider,
, .. ,I=l, J=l . -:. " "",

"
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//#/

AUP=( U CiJU( U DjJ theni=1 j=l. ,. ,

. ' . n m· .
~(AU B) = L p(Cj) + L p{Dj) = ~(A)+ ~(B).

. ;=1' j=1

By induction we can prove that ~ is finitely additive. Now we will show that ~ is monotone.--·

Suppose A c.B , then B= AU (B\ A), since p is finitely additive

~~(A), since; :U(B\A)~O.

Therefore, ~ is monotone.

00 00

Suppose {Ai lis a sequence of disjoint sets in Q9'/ such that .U A; E Q9{ .: Put, A = e Ai.
. {=1. 1-1

. n 00 . (n J (00 J .Now for every n, .UAi c .U Ai=>:U .U Ai 5,~ .U Ai ,hence
1=1 1=1 . 1=1 . 1=·1· .

- --.

00

To' prove, the other in equalitY,since A= U Ai Ecd we can write, A=CtUC2 U
i=1

'. .... .. , . . . :.' , .' .' . n'" . -; ,' ..

·····UCn;C; e~,CinCj = fjJ'di *1. andAk eCd => Ak=.U AIej' AkjE~~~A,g:~ls disjoint·
'. '. J=I . . . I' .
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= u(c; n ~ AkjJ
k J=l

= u[ G (C;nAk')!
k j=l g )

{ /

1 ~ k ~ 0Cl }

For each i , C; n Akj 1< . < is a-sequence of disjoint sets from ?f.
-J -nk ' .

f.1 satisfies condition (2) in the statement, we have,

Since

J.1 ( c,)~L J.1 ( Akj n C; ) . Therefore,
k,j

n
= I L J.1( Akj n cd --------(1).

k,j i=l

Now, AIqnq, AIqnc2, .. ·.. ··,AIqnCn is a finite collection of sets in ?f and

n
.U (Aj nci) = Akj . Hence by condition (1) in the statement we have,
1=1 ' " i:' ,

n
J.1 ( Akj ) = 2: J.1 ( Akj 1\ c,)

i=1

Therefore, P(A) sI J.1 ( Akj ) = I ~ J.1 ( Akj ) = 1:p (Ak ) .
" . k]s k )=1 k
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Thus, It is a measure on the algebra cd .

To prove the unicity of It, let 11' be a measure on cd such that 11'/?f = 11. Now, let

n
AEQW then, A= U c.. Cj E~.

j=l

Hence, It = 11'

Therefore, It is unique.

19.4 ANSWERS TO SAQs

n 00

19.2.3 : If E cUE; then E ~ U E; where En+1= En+2 =·Bn+3~····· .=¢ , so that, by (iii) of
;=1 ;=1

Definition 19.2.1,

00 n., 00

11*(E)::;LI1*(Ej)= LI1*(Ed+ L j/(Ej)

i=1 i=1 i=n+ 1

, "

n
= L f.i* (E; ) .

;=1

inview of (i) of definition 19.2.1 (note that if i i-n then 11*(Ei) = 11*(¢)=o):
. .

19.2.4 : We have to prove that f.i* is'an outer measure' if -and only if (i) .ll* (¢) = 9 (ii) A c B

00 00

=> f.i* (A)::; 11*(B) and (iii) if E= U s, and E; nEj =¢ for i *j implies 11*(E)::; L 11*(Ei).
i=1 ;=1

The necessity is trivial. Suppose that 11* is an extended real valued function such that (i),

00

(ii) and (iii) in the above satisfied. We have to prove (iii) in 19.2.1. Let E c .U E;. Then define,
1=1



Measure ,~ndrlntegration. ' 19.19 . Outer Measure ... Extension Theore

0000 00. 00

. UF; = U Ei. Now since E c U F;, we get by (iii) of the hypothesis that P * (E) sL fl * (F;) and
i=1 i=1 ' ;=1 ;=1

since F;cE; 'we have by the monotonicity of p* that p*(F;) ~p*(Ei) so that

r-._ 00 , ....

j.J * (E) ~Ifl * (Ei ). Hence fl* is an outer measure.
'~ .' i=1 '. . .' .

Since ?Jl3 is a a - algebra We have An E?Jl3 for each n ~ 1. The measurability of En gives

since, AnnB1t7E~ and Ann En. =An'-l. Now \

=---~~~----------~----~----------

= p* (AnEn) +11*(An EI1-1)+···· ..+p*(An E1)

Therefore, ,t!(ArlAn) ~ i:>(AnE,).NoW, AnAn~ An erE, C An(,U EiJ for
. 1=1 1=1 1=1

every n and hence, p *(A n ,U s,J ~ fl * lAn ,U E;J -i»*( An Ei) for every n .Letting .
1=1 . 1=1 i=1 "

n~oo we get, ",", "1 ..;" -v
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From (1) and (2) we get
/

(b) Put A:::::A/in (a) then we get

.- .

(

00 J 00 ..'

J.l * i~lEi =-i~ P* (Ei) prov~~gthat J.l * is ~ountablY additive on 9?j, the (j-

* I .algebra of J.l -measurable sets.

19.3.5 :

C{t,u(A;):A; EQ9/,and .U Ai -::;)E}'
i=1 1=1

Hence, inf {I:J.l ( Ai): Ai E Q9/ and .U Ai -::;)E} s
i=1 1=1

i
I

-" , .

.. That~'P·~inft~/,(:i):A;-E~' A;nAj/ fori" j and gj:f6E}
..' .r

-...:-" _.



00

".1 ";:~Tef A;'E(pfarld .u Ai~ E. Then we know that there exists Iii E cd such that B, nBj'=t//'
1=1 ~

>.-'\,

00 00 00

for'; * j and U Ai = UBi' B, C Ai Vi. Then, U Bi ~ E and hence,',
i=1 i=1 i=1 .

" "",'<.::.' '.,' .;00 .. ;, 'it . 00

But L fL(Ai) ~ L fL(Bi t
\i=I', ,"; '> l=i'-', ,

..-' •....,

I

~ inf{~fL(Ai):Ai EcP!, AinAj=¢
i=1

Therefore we:,get equality ..

n m
19.3.17 : rjJE cd. Suppose E E cd, FE oW with E= U C, and F= U Dj where Ci,Dj are

. i=1 j=1

EnF= U (Ci nDj) showing EnFE cd, since C, nDj E ~ for any i and j.
lS,iS,n . \
1< .<
-J_m. \

n ._ _ n_
Also if EEcP! and E= U E, with Ei-nEj=¢ for i*j, EiE?if then E= n Ei Now

i=1 . i=1
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----
each E i is a union of a finite collection from ?? implies that E also has this property. That is

E E cd whenever E E cd .

Thus rPI is an algebra.

19.5 MODEL EXAMINATION QUESTIONS:

19.5.1 : Define an outer measure J1. * on the class of all subsets of a set X and J1. * -measurabillty
/

of a set prove that the class J?lj of all J1. * -measurable sets is a (J" - algebra of subsets of

X . Also prove that the restriction ji of J1. * to J?lj is a complete measure onJ?lj.

19.5.2: Define a measure on an algebra oSf! of subsets of X. Prove that it induces an outer

measure on the class of all subsets of X .

19.5.3 : State and prove Caratheodary's theorem.
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