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LESSpNl·

PRELIMINARIES IN NUMBERTHE.QRY

Objectives
The Objectives of this lesson are to:

• learn the fundamental definitions of Number Theory
• understand the properties of numbersand to identify the prime numbers
• use factorization concept in proving the fundamental theorem of arithmetic
• know the notion of Arithmetical functions
• study the properties of Mobius function and Euler's Totient function.
• understand the relation between Mobius and Euler's Totient functions and to derive a product

formula forEuler's Totient function. . .

Structure
1.0 Introduction
1.1 Divisibility _
1.2 .Prime Numbers and Fundamental Theorem of Arithmetic
1.3 Euclidean Algorithm
1.4 Arlthmetlealfunetlons
I.S The Mobius function J.1{n)and Euler Totient function cp(n)
1.6 Summary
1.7 Technical terms
1.8 Answers to Self Assessment Questions
1.9 Model Questions
1.10 Reference Books

1.0 INTRODUCTION

St Historical record shows that :as"early as 5700 B.C. ancient Sumerians kept a calendar, so they
must have developed some form of arithmetic. By 2500 B.C. the Sumerians 'had developed a
number system using 60 as a base. This was passed on to the Babylonians, who became highly
skilled calculators. Babylonian clay 'tablets containing elaborate mathematical tables. have been
found, dating back to 2000 B.C. I

1
The first scientific approach to the study of integers, i.e. the true origin of the theory of

numbers is' generally attributed to the Greeks. Around 600 B.C. Pythagoras and his disciples made
rather thorough study of integers. They were the first to classify integers "invarious ways. Such as,
even numbers, odd numbers, prime numbers, composite numbers etc.
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Around 300 B.C an important event ,occurred in the history of Mathematics. The appearance
of Euclids Elements, a collection of 13 books, transformed Mathematics from numerologyinto a
deductive science, Euclid was the first·top~esent Mathematical facts along with rigorous proofs of
these facts. '

After Euclid in 300 B.C, no. significant advances were made in number theory until about Afx
250, when another Greek mathematician, Diophantus of Alexandria made systematic use of algebraic ,
symbols." Many of his problems originated, from number 1eory and it was natural for him to seek'
integers~lution~ of equa!ions. Equations to be solved with nteger values of the unknowns' are no~ .
called-Diophantineequations. '.. '. . .. "

. ,--~- --........

In the 1th century, the subject was revived in Western Europe, largely through the efforts ofa remarkable French Mathematician Pierre de Fermat (1601 - 1665), who. is generally acknowledged
to be the father of ModernNumber Theory. He was thefirst to discover really deep properties of the

. integers. " ,

Shortly after Fermat's time, the names of Euler (1707 -1783), Lagrange (1736 - 1833J, \
Legendre (17.52 - 1833), Gauss (l777-1855)and Dirichlet (1805 - 1859) became prominent in th&.::
further development ottne subject. The first text book in number theory was published by Legendre
in 1798. Three years later Gauss published Disquisitiones Arithmeticae, a book which transformed.
the subjectinto a systematic & beautiful science. ..\

1.1 DIVISIBILITY

-1.1.1 Definition: the PrinCiple of induction: If Q is a set of integers such that
a) 1 E Q,
b) n E Q ::::> n + 1 E Q, then
c) all integers greater than or equal to 1. belong to Q.

1.1.2Defi~ition: The Well Ordering Principle: If A is a non-empty set of positive integers; tbeA".
A contains it smallest member.

, . ,
1.1.3 Definition: For two integers d and n, we say that'd divides n (we write din) if n ='Ccf .
for some integer c. In this 'case, we also say that d is a factorof n, or n is a multiple of d, or d is
a divisor of n. If d does not divide n, we write d t n.

";- .,

1.1.4 Note: Properties of'Divisibility:

(i) n I n (reflexive property)
~~~)d I n- and !},.d,m;"~id~.lm (tr',l9s.Wxeproperty~

(iii): din and d t m ::::> d I (an + bm) .Jo.r any two. Integers a and b (linearity)
(iv) din ::::> ad Ian (multiplicationproperty) ,
(v) ad Ian and a '# 0 ::::> din (cancellation law).
(vi) 1 In ( 1 divides every integer)' .
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(vii) n 10 (every integer divides zero)
(viii) 0 In:::) n = 0 (zero divides only zero)
(ix) d In andn ~ 0 :::) Idl S; [n] (comparison property)
(x) din and n Id :::) Idl:; Inl
(xi) din and d ~ 0 ;;::> ~n/ d)/I n.

1.1.5 Definition: (i) If d [n, then,'~ is called the divisor conjugate to d.- d
I

__(ii) If d divides both a and b, then d is called a common divisor of a and b

1.1.6 Definition; We say that an integer d;:::O is the greatest common divisor (g.e.d) of two
integers a and b if it satisfies:

(i) _d is a divisor of a and b, and
(ii) ela, elb => eld for every integer e.

1.1.7 Note: Every pair of integers a and- .b have g.c.d. If d is the greatest common divisor of a
and b, then d= ax + by for some integers x and y. The g.c.d of a, b is denoted by (a, b) or by
aD b. If (a, b) = 1, then a and b are said to be relatively-prime.
Self Assessment Question 1: Show that ifIa.m) = 1, then (m-a .m) = 1.

1.1.8 Properties of g.c.d
(i) (a, b) = (b, a) or aDb = bDa (commutative law)
(ii) (a, (b, c) = «a, b), c) (associative law)

(Hi) (ac, be) = Icl(a, b) (distributive law)
(iv) (a. 1) = (1, a) = 1 and (a, 0) = (0, a) = [a], "

_ Self Assessment Question 2: Prove that any two Consecutive integers are relatively prime.

1.1.9 Lemma:(Euclid's lemma) If a Ibe and if (a, b) = 1, then a Ic.
Proof: Suppose (a,b) =1.
Then by Note 1.1.7 ,we get 1= ax+by for some integers x and y.
Now c = acx +bcy . , -
But we know that a I aex and a I bey. So we have a [c .

1.2 PRIME NUMBERS AND FUNDAMENTAL THEOREM OF
ARITHMETIC

,
1.2.1 Definition: (i) An integer n is said to be prime if n > Iand if the only positive divisors of n
are 1- and n. -
(ii), If n > 1 and n is not prime, then n is called composite number ,

.:0' .

1.2.2 R~sul~:Eyery integer n>1 is either a prime number or a,product of prim~ nU!D-bers
Proof. We use induction on n. The result is clearly true for n = 2
Induction Hypothesis: Assume that the result is true for every integer < n.
Suppose n is not prime. Then it has a positive devisor d ;f:. 1, d -;f:. n.
Therefore n = cd, where c * n.

I
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But both c and d are less than n and greater than I. '
By induction hypothesis, c and d can be' written as a product of prime numbers.
Hence n can be expressed as a product of primes.

1.2.3 Result: (Euclid) There are infinite number of prime numbers, ,
Proof: If possible suppose that, the number of primes is finite. Therefore there-exists the greatest

prime number say q. '
Let n denote the product of primes 2,3,5, ,g. Thatis n = 2·3· -q,
Let m = n + 1. Clearly m :t:- 1 (Since m = n + t>: 1.)
Therefore m must have a prime factor say p. That is, p I m.
Now p is one of the primes 2,3,5, ,q.
Therefore p I n.(Since n = 2·3· q).
Since pi rrr and pin, we have pi m - n. That is, p 11.
This implies p = 1, a contradiction (Since 1 is not a prime number).__.f

Therefore the number of primes is infinite.
This completes the proof. .

, '

, "

o"j

1.2.4 Note:(i) If a prime p does not divide a, then (p, a) = 1. ,r
(ii) If a prime p divides ab, then p I a or p I b. More generally, if a prime p divides a product

at. a2 ... an, then p I ai for at least one i. .C

~.2.5 Fundamental Theorem of Arithmetic: Every integer n > 1 can be written as a produc~,'of
prime factors in only one way, apart f!pm the, order of the factors. ,~"
Self Assessment Question 3: Express' 3000 as a product of prime powers.
1.2.6 Note: (i) Let n.. be an integer. If the distinct prime factors of n are pt, P2,;- .. pr and if' Pi
occurs as a factor a, times, then we write

r
- al '" a2 ~II' IT a'n -: PI X P2 x ... X PI' or n = 'Pi I

i=l

and is called the factorization of n into prime powers.
(ii) We can express 1 in this form by/faking each exponent ai to be zero.

".J

r '
(iii) If n = 11Pi aj

, then the set of positive divisors of n is the set of numbers of the fo:m
i=l,

r

TI PICj , where 0 -< CI'-< a, for i = 1, 2, ... , r.
i=1

, ...,.

00 r '

(iv) If two positive integers a and b have the factorization a = I1Pi8; , b =TI Pi bi "
i=( i=l

r ,

then their g.c.d. has the factorization (a, b) = DPiCj where Ci = minjau bi}
I , ie l

,; \,'
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1.2.7 Note: (i) The infinite series.f-l- diverges where Pn's are primes.
'11=1 Pn -

(ii) The Division Algorithm: Given integers a and b with b > O. If there] exists a unique pair of
integers q and r such that a = bq + r, with 0 $ r < b, then we say that q is the quotient and r is
the-remainder when b is divided into a. Moreover, r = 0 <=> bra.

1.3 EUCLIDEAN ALGORITHM

1.3.1 Euclidean Algorithm: Given positive integers a and b, where b t a.
Let ro = a, rl = b and apply the division algorithm repeatedly to obtain a set of remainders r2, r3, ... ,

_rn, fn+I defined successively by the relations
ro = r.q, + r2 0 < f2 < ri,
rl = r2q2 + f3 '0 < r3 < f2

rn-2= rn-Iqn-I + r; 0 < rn < rn_1
rn_1= rnqn + fn+1 rn~1= 0

. The~ fn, the last non zero remainder in this process, is the g.c.d. of a and b.
... '"J

. 1.3.2 Definition: The greatest common divisor of three integers a, b, c is denoted by (a, b, c):,
and is defined as (a, b, c) = (a, (b, c) );~.,
1.3.3'- Note; By the properties of g.c.d , we have (a, (b, c»= «a, b), c). So the g.c.d. depends only
on a, b, c and not on the order in which they are written. .

I .

1.3.4, Definition: The g.c.d. of n integers a., a2, ... , an is defined inductively by the relation (a),
a2, ... , an) = (a., (a2, ... , an». Again this number is independent of the order in which the a, appear.

1.3.5 Note: If d = (a., a2, ... , an), then d is a linear combination of the a.. That is, there exist
integers Xj , X2, . '" Xn such that (a., a2, ... , an) = alxl + a2X2+ ". + anxn.
(i) If d = 1, then the numbers are said to be relatively prime.

(ii)' If (a., aj) = 1 whenever i =1=- j, then the numbers ai, a2, .:., an are said to be relatively prime in
pairs. '
(iv»)fal' a2. "., an are relatively prime in pairs, then (a., a2, ... , an) = 1.
But the converse is not necessarily true since (2,~, 10) =1 and (2,10) =1=- 1.

. 1.4 ARITHMETICAL FUNCTIONS

1.4.1 Definition: A real or complex valued function defined on the positive integers is called an
arithmetical function or number theoretic function.
If f is an Arithmeti.9a1 function, then f: N ~ '7(\ or f : N ~~ c.
1.4.2 Example: (i) .The following are Arithmetical functions: .

a) f(n)=/2n forall n E N.
b) U(nY= .1 for all n E N.

. I ./1

--c) . N(n) = n + 1. for alru E N.
n



/M.Sc. Mathematics 1.6 Preliminaries in Nll

1.4.3 Example: The number of divisors of a positive integer n .isdenoted by den). I

I~ is an Arithmetical function and is represented as, d(n) = L:1.
din

Here is a table of values of den).

Number Divisors d(n)
(Ii)

to I, 2, 5, 10 dOO) = 4
20 1,2,4,5, 10,20 d(2) = 6

6 1,2.3,6 d(6) = 4

1.4.4 Note: If n = PI u, . P2 u, .. , Pk u, is the prime factorization of n > I, then the number of divisors of
n is den) = (1 +(X.I)(1 + (X.z)... (1 + (X.k),where o, ~ 1.

1.4.5 Example: The sum of the divisors of a positive integer n is denoted by o-(n). That is, otn)
= L:d and it is an Arithmetical.function. .

din

If n = PI u, • P2u, •. , Pk u. is the prime factorization of n, then
a,+1_I u'+'_1 a.+1_1

cr(n) = L d = PI . P2 ~.. Pk , ' .,. (*)
din PI -I P2 -I ' Pk -I

For example, consider the positive integer 4. The divisors of 4 are r, 2, 4.
Therefore cr(4) = 1+ 2 + 4 = 7.
For example, consider

cr(100) = I + 2 + 4 +5 + 10 + 20 + 25 + 50 + 100 = 217 (by definition)
W'e can also write 100 =22 x 52 = PI ~1 ,P2 ex! •

So cr(tOO) = p,u'+'-1.P2u
2
+'7'"1 =(23'-IJ(53-1J=7.124 =217 (by (*»

PI -1 P2 -1 2-1 5-1 4

1.4.6 Definition: The sum of the (X.lhpowers of the divisors of n is denoted by <Ja(n).That is
O"a(n) = L d u.•

din

Since the function O"cr(n) is defined on positive integers, it is an Arithmetical function.
For example consider the following:

(i) 0-2(6) = 12 +-22.+ 32.,:: 62 = 1 t4 + 9 + 36 =50.
(ii) cr3(tO) = 13 + 23 + 53 + 103 = 1134.

1.4.7 Example: O"o(n)= den) .and O"I(n) = Ld' =cr(n).
din

,
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I.S -MOBIUS FUNCTION AND EULER tOTIENT FUNCTION

1.5.1 Definition: An integer n is said to be square free if it has no squaie factor.
(Equivalently, n = PIUI • P2U2 ••• Pk Uk is a square free if Uj = 1 for 1:5 i ~-k.)

1.5.2 Example: 1,2,3,5,6, 7, 10, 11, 13, 14, 15, 17, 19 are square free numbers between 1 and
20. 4,8,9, 12, 16, 18 are not square free numbers.
(Because 4 = 22,8 = 23,9 = 32, 12 = 22 x 3, 16 = 42, 18 =32.2)

1.5.3 Deflaltlon Mobius function J,L(n):
, The function u : X ~ 7( defined by Jl(1) == 1.
If n> 1 and n = PIal .p/2

••• Pk ak (the prime decomposition for n),
then J.!(n)= (_l)k if a, = a2 = ... = ak = 1 (that is, n is square free)
':'.~ = 0 otherwise.

1.5.4 Example: Here is a table of values of Jl(n).

n 1 2 3· 4 5 6 7 ~'8 9 10 30
u(n) 1 -1 -1 0 -1- "1 -1 0 0 1 - -I

1.5.5 Notation: (i) For any real number x, [x] denote the integral part of x.
That is [x] is the greatest integer less than or equal to' x.

F?r,example [23°] = 6, ~- ~3] = - 5.
(ii) [x] is not an arithmetical function

(because its domain is 110tthe set of all positive integers)
- -' [ 1J {I if n = 11.5.6 Definition: For any n ~ 1, define [(n) = - -= .'. .

- - n 0 If n >
Then I(n) , is an arithmetical function.
1.5.7 Theorem: If n ~ 1 and !-ten) is the Mobius function, then L!-t(d) = I(n), where the

din

,,~»~mation on left is over all positive divisors d of n.

1.5.8 Definition Euler totlent function <pen): If n ~ 1, then the Euler totierit
function <pen) is defined to be the number of positive integers not exceeding n \vhich are relatively
prime to n~ ,

n "L'

Thads, <pen)=-2:1. where (k.ji) = 1 and the summation is.taken6ver,~11:the':~l,lmber~,~(1 ~'~ ~ n)
- jk = I ' .' l - ; <'" ' •. ,-,

• r\;", .: :,j l.

which are relatively prime to n.
I

Self Assessment Question 4 : If m> l .then s~ow that rAT'!') is ev.~'1'"

1.5.9 Note: (i) If pis a prime number. thenj<p(,p)= p - 1. ~
(ii) Here is a Table of values of q>(n) for n = 1, 2; .~.,11 ..

~•. r-: j.
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n 1 2 3 4 5 6 7 8 9 10 11
<D(n) 1 1 2 2 4 2 6 4 6 4 10

-.

Self Assessment Question 5: Verify that r({p~=III-~).where p isprime.

1.5.10 Note: Consider positive integer n and write S = {l,i, ... , n}.
Define = on S by- a - b <=> (a, n) = (b, n).
Then - is an equivalence relation.
For a divisor of n, A(d)' = {k / (k, n) = d} is an equivalence class. So S = U A(d).

din

1.5.11 Example: Take n = 6. Follow.the notation given inthe Note 1.5.10.
S = {I, 2, .'" 6}. Then divisors of 6 are 1,2,3,6.
Now A(l) = {l , 5}, A(2) = {2, 4}, A(3) = {3}, A(6) = {6}.
The union of A(l), A(2), A(3), A(6) is S.
Note that these sets A(l), A(2), A(3), A(6) are disjoint.

1.5.12 Theorem: If n ~ 1, then L<P(d) = n.
. din

1.5.13 Note: If (k, n)~ 1, then I(k,n) ~ [(k\)] ~ [iJ ~(1] ~ I.

If (k, n};t=1, then (k, n) > 1 => [-( 1)]= a => l[(k, n)] = O.
. k,n

1.5.14 Theorem: A relation between the Euler totient function and the Mobius function:, . . - ,~. . '. . .

If nz 1, we have cp(n)= L~ci). ~.
din d

n

Proof: cp(n)= L 1 (by the definition of cp)
k;1 .
(k.u 1;1

.~[_l]L..J (by the above note)
k=1 (k, n) .

n

= LI(k,n)
"';'1

= i/~~~~);~
k~1 ·~d1{w.n) .. )

(by Theorem 1.5.7 , l(n) = .E~d))
din

= i: ~\E,~a)·;.·..-(i)
k=1 ';Jin:iiri'ddlk

For a fixe-d divfS'OI::d "of n;,*!:we:cll1'~;'t"sumover all those -k' in the range 1 ~ k~ n- which are
multi.ples of d.



jAcharya Nagrjuna University 1.9 Center for Distance Educatio~

k n n
If we write k = qd, then 1 s k s n <::;> 1 < - s - <::;> 1 S q s -.

d d d
II

Consider <pen)= L L~d) (by (i»
, k=1 d l nandd l k

(n/d) n . u
= IIJ.(d) = LJ.(d)2:1 = I~d). n

din q=i din q='1 din d
nid

[since II= 1 + 1+ ... + 1 (E. times) = E.]d dq=I

, This completes the proof.

1.5.15 Theorem A product formula for <pen): For n ~ 1 we have

<pen)= n Il(l-~Jwhere p runs over distinct prime factors of n.
pi n p

Self Assessment Question 6: Find the number of positive integers ~ 2500 and relativelyprime to
2500.

1.5.16 Theorem: Prove that
(i) <p(pU)= pU- p" - I for a prime humber p and a ~ 1.

(ii) <p(mn)= <p(m).<p(n)_d_ where d = (m, n)
<p(d)

(iii) <p(mn)= <p(m).<p(n) if (m, H) = 1.
(iv) a I b => <pea)I <p(b).

(v) <pen) is even for n ~ 3.
Moreover if n has r distinct odd prime factors, then 2r I «>'(n)

1.5.17 Problem: Find ~nintegers n such that <pen)= ~ .

Solution: SUPP" ose n is an integer such that <pen)= n, . 2

=> I1(l-~J= ~.
pi n p

Observethat if n ~ 2", then Qfl- ; J ~ (I-±) ~ ± ... (i)

(since 2 is only the prime number dividing 2(1)

If n has an odd prime factor, t(hen ~J=2<l.k fo(rso~eJ' odd num(ber ~J'. ,-(. 1J'
Now for this n, we have TI 1-- = IT l-~. = TI 1-~. IT 1-~ :

pin ' p p 12a.k p p 12a P pi k P
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= ~. rr(1 - ~J < ~ (since 11.'(1 ~.!.J = ~)
. 2 p I k P 2 P I 2a p 2

(observe that this part is < 1)

Therefore if an acid prime divides n, then ep(n)< ± ,.. (ii)

Now if n = 2u ,then ep(n)= n rr(l- ~J (by Theorem 1.5.15 )
pin p .
1 . n

= n( 2) (by (I» = 2

If n =2u.k with k prime, then ep(n)= n(rr(l- .!.JJ < n. .!. (by (ii)
pin P .2

n
=> <pen)<-:

2

- Hence, n = 2u <::>ep(n)= ~.
2

2u

1.5.18 Note: If n = 2u and a 2 2, then cp(n)= - = 2u - 1 is an even number.. 2 'r

1.5.19 Problem: Ifthe same prime divides m and n, then n. ep(m)= m. om).

Solution: Suppose same primes divides both m and n

=> n(l-!J = h(l-!I ...(i)
p l m p pin p) .

Consider cp(m)=m. rr(l-~J and cp·(n)=n.'rr(l-~J
p l m P. pin P

. => ep(m) = rr(l-.!.J andep(n) = rr(l-.!.J
m P ImP n' P I'n p

=> ep(m) = ep(n) (by (i) => n. cp(m)= m. cp(n).
m n

1.5.20 Problem: Prove that a I b =>ep(a) I ep(b).

Solution: Consider a' b => b = a.e for some integer e.

Now <pCb)~ <p(ae)"~ (p(a). ep(e).~; irhere (a, e) = d .
. ',' ..... ,epCd) ..

~,d.cp(a) .. cp(e) .=? cpCb)= d.CP(c) ... (i)
. . " cp(d) cp(a) . cp(d) ~., . .. .{
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Now we prove this by induction on b.
If b = 1, then a = 1 and so <pea)I <pCb).
Suppose this result is true for all numbers less than b.
Since ac = b we have that c < b.
So by induction hypothesis, the result is true for c.

Now d I c => <pCd) I <pCc) =>. <pCc) is an integer :::!> d. <pCc) is an integer
. . <p~) <p~)

=> <pCb) is an integer (by (i) :::!> <p(a)I <pCb).This completes the proof
<pea)

1.6 SUMMARY

In this lesson some basic concepts of Number Theory have been .introduced and some
elemen1ary :esults we~~ ob~ained. Also the properties of divisibility,. prime numbers ~ere.discusse~.-
Representation of positrve Integer greater than I,as the product of pnme powers was identified, ThIS
lesson also provides an algorithm for computing the quotient 'q' and the remainder Or'forthe given
integers 'a' and 'b' with b > O. An uniqueness for these numbers also obtained. Finally, we
discussed some important arithmetical functions like Mobius function and Euler totient function
with examples.

1.7 TECHNICAL TERMS

Divisibility: For two integers d and n: "d divides n if n = cd
for some integer c".

Greatest Common Divisor: If d is a divisor of a and band ela, elb => eld for every
integer e, then d is called greatest common divisor.

Prime numbet: An integer greater than I and whose positive divisors are
only land itself.

. f

Factorization:
r

n = PI": Xf/2 x ... xp,.a, or n = TIPiaj
, where n E Z +'ahd

. . i=1

primes 'pi occurs as a factor a., I ~ i ~ r.

Arithmetical function: A real or complex valued function defined on the set positive
, Integers.

Mobius function: Il : '.x~ 7? defined by Il( 1) = 1.

If n > 1and n = PI"'. P 2"1 ... Pk·' (the prime decomposition for n).
then !-l(n)= (-ll if a I = a2 = ... = ak = 1(that is n Is squarefree)

= 0 otherwise. .
", >-

Euler totient function: ~(n): The number of positive integers not exceeding -n ( n 2:: 1 )
which are relatively prime to n. -
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1.8~SWERS TO SELF ASSESSMENTQUESTIONS

l: "Suppose (m-a ,m) = d ,
=> d I m-a and d [rn => d I m-( m-a) =. d I a.

Now dim and d [a . - ' .
=> d I (a.m) => d II=> d = 1

Therefore (m-a ,m) = 1.

: , Lei-n and' n+ 1 be, two cons,ecutive intege~ and let (n, n+ I ) = d.
=> nand" d I n+ I => d I n+ I-n => d I 1
There e (n, n+ 1 ) = I -
Hence nand n+ I are relatively prime.

3: 3000 = ~x2x2x5x5x5x3 = 23.53.31.'

4: We know th~'f <l>(m,n) = I, then (m-n, n) ~ 1 (by SAQ 1 )
Therefore Integer relatively prime to m occur in~airs of type n, m-n.
Hence <p(m) is eve. .

5: The integers trora 1 to pk which are not reltivelY prime to pk are p.I, p.2, p.3 ....p.pk-l~
Total no. of such integers which are not relati ely prime to pk is pk- .
Therefore <l>(pk)= number of integers relatively prime to pk and less than p".

=pk _pk-I= pk(1 _ ~-). '
p

6: Here n = 2500 = 22 x 54
Therefore <pen) = <p(2500)

=tp ( 22 x 54 )
I -- 1

= 2500 (1--) (1--) = 1000.
.25

1.9 MODEL QUESTIONS
I

\
1. Define the terms: (i) Division Algorithm (ii) Euclidean Algorithm
2. State and Prove fundamental theorem of Arithmetic. -
3. Define an Arithmetical function and give an example.
4 Define Euler totient function and Mobius function
5. Derive the relation between Euler totient function and Mobius function.
6. Derive a Product formula for <p (n).
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LESSON -2

ARITHMETICAL FUNCTIONS AND DIRICHLET
MULTIPLICATION

Objectives

The objectives of this lesson are to:
• know' the concept of Dirichlet multiplication of two arithmetical functions and to study the

algebraic properties of Dirichlet multiplication
• identify the significance of Dirichlet product and related inversion formulae
• study Mongoldt function I\(n) , Liouville's function A(n), and divisor functions <Ja(n)
• study the properties of multiplicative arithmetical functions using formal power series.
• prove the Selberg identity.

Structure

2.0 Introduction
2.1 Dirichlet Product of Arithmetical functions
2.2 Mangoldt and Multiplicative Functions
2.3 Liouville's and Divisor Functions
2.4 Generalized convolutions and Formal Power Series
2.5; Bell Series and Derivatives of Arithmetical Functions
2.6 The Sellberg Identity
2.7 Summary
2.8 Technical terms
2.9 Answers to Self Assessment Questions
2.10 Model Questions
2.11 Reference Books

2.0 INTRODUCTION

Certain functions are found to be of special importance in connection with the study of the
divisors of an integer. Particularly Arithmetical functions play an important role in the study of
divisibility properties of integers and the distribution of primes. In this lesson, we introduce some
funcrions like Mongoldt, Multiplicative function, Liouville's and Divisor functions "'-(n) and <Ja.(n).
We define the multiplicative functions whose significance is that, they are completely determined
once their values at prime powers are known.
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2.1 DIRICHLET PRODUCT OF ARITHMETICAL FUNCTIONS

2.1.1 Definition: Suppose f and g are two arithmetical functions, then we define their product
(Dirichlet product or Dirichlet convolution, denoted by f * g) to be the arithmetical function
defined by the equation f * g =If(d).g(~) where the summation is over all positive divisors d

din

of n.

It is clear that, (f * g)cn) = If(d).g(8). -Here 8 =.:.:. and the summation runs over all positive "
d.S = n d

divisors d and 8 such that d.S = n.

2.1.2 Example: (i) (f * g)(4) = If(d).g(1-) = f(1)g(4) + f(2)g(2) + f(4)g(1).
dl4

(ii) (f * g)(6) = f(1)g(6) + f(2)g(3) + f(3)g(2) + f(6)gO)'.
I

r,

(iii) If n = p'" where p is the prime number, then

2.1.3 Notation: (i) The symbol N used for the arithmetical function for which N(n) = n for all n.

(ii) By the Theorem 1.5.14 of Lesson 1, we have

<pen) = LIl(d). n = LIl(d). N( n) = Il * N. -
, din d din d

(ii.) The arithmetical function I defined by

I(n) - r~] = 1 if n = 1Ln
= 0 if n> I is called the identity function.

2.1.4 Theorem: Dirichlet multiplication is commutative and associative.
Th;at is., for any arithmetical functions f, g, k we have
(i) f * g = g * f (commutative)
(ii) f* (g> k) = (f* g) * k (associative)

) ,
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2.1.5 Theorem: For all f, we have 1* f = f* 1= f.

{
I ifn = I

2.1.6 Note: The function l(n) = . is the identity function with respect to Dirichleto otherwise
product.

2.1.7 Theorem: The set A of all arithmetical functions f with f(1) #- 0 forms an Abelian group
with respect to Dirichlet product or Dirichlet convolution '*'.

Proof: Let f, g E A.
By the definition of f * g we have that
Therefore f, g E A => f * g E A.
Commutative law:
Consider (f * g)(n) = 2:)(d).g(~) =

din

f * g is an arithmetical function.

If(d).g(cS)
d.8=n

Ig(cS}f(d)
Ii.d=n

This is true for all n.
Therefore f * g= g * f .
Associative iaw: Let f, grh are arithmetical functions and H = g * h and consider

[f. (g;" h)](n) = ~)(d).(g * h)(cS)
d.8=n

= I fed). Ig(a) h(b) = If(d).g(a).h(b)
d.li=n a.be.S a.b.d=n

Similarly [U * g) * h)](n) = . Lf(x).g(y).h(z)
x.y.z= n

Therefore f * (g * h) = (f * g) * h .

Iden lily law: Consider the function I defined by I(n) ~ [!} ~{~i~::~
Consider (f * I) (h) = Lf(d).I(~).

din

If d= n, then ~ = ~= 1 and r( ~) = 1.

Otherwise r( ~) = O.

Therefore (f*l)(n) = Lf(d).I(%) = fen).
din

This is true for all n.
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Similarly we can prove that f = (1* f),
Hence f * I = f = 1* f .
Therefore I is the identity element with respect to *
Inverse law: Let f be an arithmetical function with f( 1) oF O.
Suppose there exists an arithmetical function g such that f * g = 1.

1
If n= 1 then I ~I(l)=(f*g)(l)=f{l).g(l) => g(l)=-

. f(l)

Suppose n > 1, then f * g = I

<=? 0 = l(n) = (f * g )(n) = I f(d).g(-J)

~ O=f(l)g(n)+ Lf(d).g(.~)
din
d e l

<=? f(l)g(n) = - If(d).g(-;t) <=? g(n) = 2. If(d).g(-;t).
din, MI f(l) din

MI

We prove that if g is an arithmetical function such that f * g = I, then

g(n) = 2.Lf(d).g(-~).
[(1) din

d*1

This shows that there exists inverse of f and it is also equals to the same expression. This means
there exist unique inverse.
Hence A is an Abelian group with respect to Dirichlet product.

1
2.1.8 Note:.The function C1 defined by C1(1) = - and

f(l)

f-l(n) = 2 LCI(d).f(J) (for n >'1) is called the Dirichlet inverse of f.
f(l) din

d-en

2.1.9 Deflnltlon: We define the unit function u to be the arithmetical function such that u(n) = 1

for all n.

2.1.10 Note: By Theorem 1.5.7 oflesson L we have L~l(d) = I(n).
din

Now ~*u= L~(d)u(-J)
din
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.=-!"~fa;J(Jl¥ definition of u)
tijT!"

= L)l(d) :-ltl1) (by Theorem 1.5.7 oflesson I).
din

')

Hence J.l * u = I. Thus u and 1-1. are Dirichlet inverses of each other.

That i '-I -Iat is., u = f.l , f.l = u ..J . .
. ,

2.1.1l'Theorem: (Mobius inversion formula)

The equation fen) = Ig(d) <=> g(n) = If(d).I-I.(~). (Equivalently f= g*u ¢:;> g =f*I-I.).
din din

Proof: SUPDQSe fen) = Ig(d) ... (i)
din'

'1 We know that LI-I.(d) = l(n) (by Theorem 1.5.7 oflessonll) '" (ii)
..t din

.'~lWe have unit functio •• u(n) = I' for all n (by Definition 2.1.9) '" (iii)
I I

Consider fen) = Ig(d) (Ci) given)
-' din

<=> fen) = Ig(d).u-(iJ- (by (iii)
din

<=> fen) = (g * u)(n) (since by the definition of Dirichlet multiplication)
.

<=> f= g e u

¢:;> f*u-I = (g*u)*u-I = g*(u*u-I) (by associative law)

¢:;>_J * 1-1. == g (since u" = 1-1. (by Note 2.1.10»

¢:;> g(n) = (f*I-I.Xn) for all n

<=> g(n) = L f(d).J.t(-J)
din

Hence fen) =kg(d) <=> g(n) = If(d).~l(-;J-) .
", ~h - din .'

2.2 MANGoLDT AND MULTIPLICATIVE FUNCTIONS
.2,2.1 Definitio ••: For everyinteger n ~ 1, we define

t(iogp ..if n = pm
!\(n) =./ .

o . otherwise
for some prime p and some m ~ 1
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The function I\(n) is called Mangoldt function.

2.2.2 Example: For example consider the following table which shows the values of n and the

corresponding values of /\(n).

"

n 1 2 3 4 5 6 7 8 9 -" .~. 10

/\(n) 0 log 2 log 3 log 2 log 5 0 log 7 log 2 log 3 0,

J .-

2.2.3 Theorem: If n ~ 1, we have log n = L/\(d) .
din

, "

Proof: If n = 1, then log 1 = 0 = 1\(1) = I/\ (d) .
din

: ~ :/ '-' -. <'.

Assume that n > 1 and n = TIPk"k . '
k=1

..;

Now consider the sum L/\ (d).
din

" :-- ~::,.

,''':'' -. ,

In this sum (by the definition of /\) we have /\(d) -:f:. 0 ¢:> d = Pkm -for some 1 ~k ~ rand 1 ~ m
s ak.

Hence LA (d) = ttA (p~)
din k=1 m=I

. . '-.

I al a2 3r

= Llogp, + Llogp2 + ... + LlogPr
m=1 me l 111=1

_. ai log PI + a2 log P2 + ... + a, log pr

:.'

log n. '..:

Therefore' log n = LA (d). '
din
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2.2.4 Theorem: If n ~ 1, we have I\(n) = L,1l(d) log(%) = -L,1l(d).(logd).
din r

Proof: By the Theorem 2.2.3, we have

logn= LI\(d) for n > 1 ... (A
din ' /

, By Mobius inversion formula (see Theorem ) ../1.11)

(f(n) = L,g(d) Q g = f * u . That is., g(n) = L,f(d).Il(~»
~n ~n

we have I\(n) = L!-l(d).log(~)
din

(since f *!-l = !-l* f )

= LJ.!(d)(logn-Iogd)
din

= log nLJ.!(d) - L!-l( d) log d.
din .din

= log n l(n) - LJ.!(d) log d
din

(Since LJ.!(d) = l(n), by the Theorem 1.5.7 ofless~n 1)
din .

= -LJ.!(d) log d
din

(for 0 = 1 log 0 = 0 aod for 0> 1,1(0) = 0 and so log n. I(n) = 0 for all n)

Therefore I\(n) = - L!-l(d) log d .
din

2.2.5 Definition: (i) An arithmetical function f is called multiplicative if f is not identically zero.
That is., f;l:.0 and f(mn) = f(m).f(n) whenever (m, n) = 1.

(ii) An arithmetic function f is called completely multiplicative function if f is not identically
'zero and f(mn) = f(I1).).f(n) for all m, n. '

2.2.6 Note: Every completely multiplicative function is multiplicative but the converse is not true.

Consider the example: The Mobius function J.! is multiplicative but not completely multiplicative.
Suppose (m, n) = 1. Then m and n have no common prime factor.
Case-(i): If 'm, n are square free, then m = PIP2 ... Pk and n = qlq2 ... q, for some distinct

. ,) d 'pnmes Pi s an CL s . .
~ m.n = PIP2 ... Pk qlq2 ... qs is also square free.

Now !-l(m)= (-1)\ !-l(n)= (_I)S, !-l(m.n)= (-ll+s.
Hence !-l(m.n)= p(m).!-l(n) ..
Case-(ii): Suppose either m and n has a prime square factor.
Then m.n has a square factor.
Now m, n has a square factor ~ Il(m) = 0 or J.!(n)= 0 => J.!(m).Il(n) = O.
Since mn has a square factor, iwe have !-l(mn)= O. Hence Il(mn) = !-l(m).!-l(h).
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Therefore ~..is mult licative.
To see that ~ is not tompletely multiplicative, take m = 2,
Then ~(mn) = ~(22) fO (since 22 is not square free)
~(m).~(n) = ~(2).~(2 = (-1)(-1) = 1. .
Therefore ~(mn) = ~ 4) :j;j.t(2)~(2) = ~(m).~(n) .
This shows that ~ is ot completely multiplicative.

\

n=2.

,

2.2.7 Example: Let \fu(n) = na', where a is a fixed .real or complex number. This function is
completely multiplicaVve . .In particular, the unit function u = fo is completely multiplicative. We
denote the function fa \by Na and call it as the power function. .

2.2.8 Example: The Euler totient function <pen) is multiplicative but not completely multiplicative.
(i) In theorem 1.5.16 oflesson I, we proved that <p(m.n)= <p(m}.<p(n) is (m, n) = 1.

Therefore <p is multiplicative.
4

(ii) Take m = 2, n =2 then <p(mn)= <p(4) = II= 2.
(k,4)=1
k=l

<p(m) = <p(2) = I, <pen) = <p(2) = 1. Therefore <p(mn)= 2 :j; 1 =<p(m).<pen).
I .

Hence <p is not completely multiplicative,

2.2.9 Theorem: If f is multiplicative, thin f(1) = 1.

Proof: Let f be multiplicative. Then l is not identically zero.

(by definition of multiplicative function)

This implies that f(n):j; 0 for some n.

Also f(mn) = f(m).f(n) if (m, n) = 1.

Consider fen) = f(l.n) = f(1).f(n) (since (1, n) = 1).

=> [(1).f(n) - fen) = 0

=> (f(1) - l)f(n) = 0

=> f(l) - 1 = 0 (since f(n):;c 0) => f(l) = 1.

Therefore f( 1) = I.

2.2.10 Theorem: Given f(1) = 1. Then

(i) f is multiplicative
~ f( P I<XI • P2<X] ••• P r <x, ) = fC-pIal) ••• f( P r a

r
) for all primes pj and for all integers Uj 2: 1. [In other

words, if f is a multiplicative function, then f is completely determined by the values at prime
powers]

(ii) converse of (i) is true. .\
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(iii) Suppose f is multiplicative. Then f is completely multiplicative => f(pa) = (f(P)t for all
primes p and for all integers a.?: 1. [In other words, if f is completely multiplicative, then f is.
completely determined by its values at prime numbers]
(iv) If f is multiplicative-and f(pa) = (fip) a for all primes p and for all integers a?: 1, then f is

completely multiplicative. '
\ '

2.2.11 Theorem: If f and g are multiplicative, so is their Dirichlet product f * g .
That is, f * g is multiplicative.

~2.12 Note: The Dirichlet product of two completely multiplicative functions' need not be
completely multiplicative.

2.2.13 Theorem: Ifboth g and f * g are multiplicative, then f is also multiplicative.
'.

2.2.14 Note: The function I (defined by I(n) = 1 if n = 1 and I(n) = 0, otherwise) is completely
multiplicative. r '

For this take n, m. If n = 1, m = 1, then I(nm) = 1(1) = 1 = 1.1 == I(n).I(m)
Suppose one of. m or n.i$" \>1. .
Then mn> 1 and I(n) ~ 0 erIim) = 0 => I(n).I(m) = O. ,
Now mn> 1 => I(mn) = 0 = I(n).I(m). Hence I is completely multiplicative.

2.2.15 Theor~m: If g is multiplicative, then its Dirichlet in~erse g-I is also multiplicative.

Proof: Given that g is multiplicative. By Note 2.2.14, g-I * g == I is multiplicative.

Now by Theorem 2.2.I3"g-1 is multiplicative.

2.2.16 Theorem: Let f be multiplicative.

Then f is completely multiplicative '<=> [I(n) = Il(n).f(n) for all n z 1.

2.2.17 Example: The inverse of Euler's rpfunction.

S· N h -I, -I N-1mce <p= Il * we ave <p = Il * .

But N-1 =IlN since N is completely multiplicative, so <p -I = 1l-1 * ~LN= u * IlN .

Thus <p-I(n)= Idll(d).
dl n

2.2.18 Problem: Show that cp-I(I1)== I1(I - p], where cp is the Euler totient function. [Here cp(n)
p!n

n

~) ].
k=l.(k.n)=1
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2.2.19 Theorem: If f is multiplicative, then
-' 'v-

L)l(d).f(d) = n(1- f(p»':'
din pin'

.' '

2.3 LIOUVILLE'S AND DIVISOR FUNCTIONS

2.3.1 DefinitIQr-; The Liouville's function A is defined as

A(n) ={ 1 if n = 1

(_1)Ut+u2+~,,+uk if n = PI Ut . P2 U2 ... Pk Uk
,

"

where PI, P2, ... , Pk are distinct prime numbers and (Xi::?: I for all i.

2.3.2 Note: (i) Observe the table.

- n Iii 2 3 4 5 6 7 8 9 10
/..(n) 11 -1 -1 1 -1. I -1 -1 1 1

(ii) The Liouville's function is completely multiplicative.'

2.3.3 Note: We know that A(n) is completely multiplicative but.

g(n) = ~),,(d) = g(n) is not completely multiplicative.
din ,;,

Verification: Let n = pUfor some integer ex

In a contrary way, suppose g(n) is completely multiplicative.

Now g(p) = 2>,(d) = A(1)'; A(p) = I + (-1) = 0
dip

(g(p»U = (O)" = 0 ... (i)

Consider gip") = LA(d)
dlpu

= A(I) + A(p) + ... + A(pC1)
.. I ~

I + (-1) + (_1)2 + ... + (- I )"

(1 if ex is even
I , ...(ii)
L0 if (X is odd--'-- "'; ..~'.~J:..

If (X is even, then from (i) and (ii), we get (g(p»U = 0 -:j; 1 = grp")

Hence g is notcompletely multiplicative.
, , .
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\ {12.3.4 Theorem: For every n ~ 1, we have LA(d),,=
din 0

if n isa square

otherwise

1 'Also A: (n) = I~(n)r for all n.

Proof: Write g(n) = LA(d). Now g is multiplicative.
din

So to determine g(n), we need only to compute gtp") for prime 'power.

Consider gip") = LA(d)
dlpu

= A(I) + A(p) + ... + A(pa)

1+ (-1) + (_1)2 + .. + (-It

{
I if a is even

.. .... (i)o If a is odd

Suppose n=ITpiai. Then g(n) = ITg(Pi"i) ... (ii)
i~1 i~1

Suppose at least one a, is odd.

Then ,g(Piai) = 0 (by (i)

=> g(n) = 0 (by (iij).

Suppose the other case that all ai's are even.

Then g(p;ai) = 1 (by (i»
e "

=> g(n) = rrg~iai) = III = 1.

[All ai's are even <=> a, = 2bi for some bi' s
_ (a, a,.- ak ) _ (b, b, bk)2 f .' b<=> n - PI . PZ ... Pk - PI . P2 ... Pk or some' i s.

Therefore each a, is even <=> n is a square].
This shows~hat g(n) ={ 1 if a.ll a.'s are even..that is n is a square.

, 0 otherwise.
, '

2.3.5 Note-We-know that A-I = ~A (see Theorem 2.2.16)
So A-1(n)"='='.:Jl(n}.A(n)

= "J:t{n):lJ.(n). =l }t2(n) = IIJ.(n)/
=:> A-I(n)-=IIl(n)! for all n.
[If n has a square Pi<fi,then J.l(n)= O. If J.l(n)*- 0, then n is square free.
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J.l(PI.PZ.····Pk) = (_I)k => "'-(PI.PZ..... Pk) = (_I)k. Therefore in this case, ~ = "'-.].

2.3.6 Definition: For real or· complex a and any integer n ~ 1, we define

CJu(n)=Idu
• (The sum of the ath powers of the divisors of n).

din

The functionso.; defined above are called divisor/functions.

2.3.7 Note: (i) Consider (NU *u)(n) = LNU(d).u(-;t)
. din

= L(N(d»u.1 =
din

LdCl =O"a(n).
din

Therefore O"a=Nu * u .
, .

(ii) The divisor functions are multiplicative because O"u~u * NU ,the Dirichlet product of two

multiplicative functions.

When 0,= 0, O"o(n)is the number of divisors of n. This is often denoted by den).

When 0,= 1, crl(n) is the sum of divisors of n. This is often denoted by cr(n).

S· . I . l' '. h .. (al ak ) - I al) I ak)ince O"uIS mu tip icative we ave O"uPI ... Pk - O"u\PI ... O"u\Pk .

To compute O"a(pa)we note that the divisors ofa prime power pa are 1, p, pZ, ... , p".

pu(a+l) -1
if 0,*0

pU_l

a + 1 if 0,=0

2.3.8 Theorem: For n ~ 1, we have cru~l(n)= Ida .!-!(d).!-!(~),
din

2.4 GENERALIZED CONVOLUTIONS AND FORMAL POWER SERIES
Throughout this section F denotes a real or complex valued function defined on (0, +.)

such that F(x) =0 for 0 < x < 1

2.,4.1 Definition: Let F(x) be a real or complex valued function defined on(O, ) such that F(x) =
0,· for °< x < I. For any arithmetic function u(n), .
we define the generalized convolution of a and F as (0,0 F)(x) = Lu(n).l'(t) .where

n'sx

n is a natural number.

3)
i
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2.4.2 Example:(i) (0.0 F)(3)·±'·Z c:i(h).f<f):;i.::,(,
nS3

, (i,i)«(lo F)( 4; 7)

h 1:

'.; •• : .. ~.;. '';: (' t - .1:i '") i:" , ..~ . I •

= a(l)F(3) + a(2)F(t) + a(3)F(1) c.•

L a(n):F(43?) =,=0.( P~(~~7)t.,~(~)I(:~n"",:-.~.(~l~,\;j7),,;:,a(1!,~(;4~7Lo
n$4.7~· - . .. . ',

..• ..•. ~~
"... J..., •• .:..

If X', is an integer ,(in this case xfnustbeaii integtii) .. '.'; '.1'.( nH ';;;:;'(j' 1.' ',: ,.''''i~}r'",t.; i;; ~~.~

n

Then (aoF)(x) = La(n).f(~) = La(n).f(~) = (a*fXx)
usx nix

Therefore (0.0 F)(x) = (a * fXx)
,-".

Hence the operation 0 is generalized convolution of Dirichlet product convolution "*,,
",; .r~f.'; .~ {!;_,.,;. ~~:"

<)~.;;

2.4.4 Theorem: Associative property relating 0 and *.
For any two arithmetical functions g and h,~.\}'ehave go(hQF),= (g * b}o F .

... , "c,.~.) ,; ~~ _~,.., ~ i J .... ,,.-.,.,:~ :"" .' ~:n;; .: ~':-~,,.~: .: j-';',~_,;~~.,,~~'.'.'~

Self Assessment Question 1: The identity function J(n) ~ [~ J for the Dirichlet product

'(Convolution) is dis:o a left idb~~yti;~}JrtHtlJ~er~'t(()it'-o~i.-<,i>·· ... : \".,fH)(i lV;)l"" t. :.f;d:r;''.;~~Jil'c~Lt.,f.

2.4.5 r~~oR~.Jrl?i9~~n~.r,aUz.ed,lJl;v,~rsip~~,r,o~m~I~~)f,J}r~~_a~J.~f}I(irj~~J~t:'~~~r.~~.;;$fi-~•.•~;~~Jhe
~ -

equation G(x) = Ia(n).F(-;) <::>F(:x)=Lu·'I(n).G(-;).
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2.4.6 Corollary: Generalized Mobius Inversion Formula: Let a be the arithmetical and its

Dirichlet inverse a·1 exists. If a. is completely multiplicative, then prqve that ' '.

G(x) = La(n).F(;) <=> F(x) = LJ.l(n).a(n).G(~).
-. nsx ~~x .

2.4.7 Definition: An infinite'series ~f the 'form ta(ri)x n = a(O) + a(l)x ., a(2)x2 +< ...:+ a(n)xn
11=0

+..... is called a power series in x. Both x and the coefficients a(n) are real or cornpiex D;.ull1b~rs.,
. ~ '\ '.- ,;.'. i, :(~n' \ 4;'· '

2.4.8 Note: (i). To each power series there corresponds a radius of convergence r ~ 0 such that the
series converges absolutely if Ixl < rand diverges if Ixl>~.(The radius r canbe +)'; { ..r

(ii). We consider power series from a different point of view. We call them fpI;mal p,0werseries t~
distinguish them from the ordinary power series.
The object of interest is the sequence of coefficients (a(O). a(l) •..... :,a(h)p ~«, ,,«, ).

(iii). The symbol x" is·simply a device for locating the position of the nthcoefficient a(n). The'
coefficient a(O) is called the constant coefficient ofthe series. ' .

00

2.4.9 Definition: If A(x) and B(x) are two formal power series, say A(x). = La(n)x nand B(x) =
n=O

:JCLb(n)x n , then we define
'n=O
Equality: A(x) = B(x) means that a(n) = b(n) for all n ~ O.

_, , 00 r .. ~ ," '~< '

Sum: A(x) + B(x) = L(a(n) +-b(n»)x n .

n=O

r .'

" .'~....~'. ( , ~ ., '.-

~" .' ~ . . '.

Product: A(x)· B(x) = Lc(n)x n " where em) = La(k)b(n:"- k') .'(CauchY product)
n=O k=O

i,.-

2.4.10 Definition: A formal power series is called a formal polynomial if aJI its coefficients ~re.0

from some point on.

f"' \. ~ ..~, ,~., ~

';2.4.11 Note:For eath formal powerseries A(x) = ~>(n)x n'with constariU3derfidetlt-)i(O) * 0'"
1):=0_:· (ll ~;I '.~',-\li-) -'!":~ '- .r.,

00

there is a uniquely determined formal power series B(x) = kb(n)x n such that
0=0



!Acharya Nagrjuna University
, .: ...

2.15 Centre for Distance Educatioii/

A(x)- Bfx) = 1. Its coefficients can be determined by solving the infinite system of equations
a(O) b(O) = I -,
a(O) b(I)+ a(l) b(O) = 0
a(O) b(2) + a(l) b(l) + a(f) b(O) = 0,

\
\

-in succession for b(O), b(l), b(2), The series B(x) is called the inverse of A(x) and is denoted by

A(xr1 or by 11A(x).

00

2.4.12 Definition The series A(x) = I + La" x " is called a geometric series. Here a is an
11=1

. ,.,

a,rbitrary'real or complex number. Its inverse is the formal polynomial B(x) = 1 - ax. In other

1 co
words, we have -.- = 1 + l:a"xl1

1- ax n=1

2.5 BELL SERIES AND DERIVATIVES OF ARITHMETICAL FUNCTIONS
. 2.5.1 Definition: Let fbe an arithmetical function and a p, prime. Then fp(x), the formal power y

co.

series defined by fp(x) = l: [(p")x" , is called
"=1

> •

,~ .

the Bell series of f modulo p.

2.5.2 Example: Consider the Mobius function Il .

Since J.l(p) = -1 and J.l(p") = 0 for n ~ 2, we have J.lp(x)= 1 -x.

2.S~3Example] : Consider the Euler totient function cp.'

Since <p(p") = p" _ p" - I for n ~ Iwe have
•

00 00 00

<pp(x)= 1 + L(pl1 _pll-I)x" = Lpl1xl1 -xLpl1x"
"=1 11=0 11=0

00

=(l-x) Lpl1xl1
11=0

I-x---
I-'-px ... ~)i, .: L

Self Assessment Question 2: Let ,fond g he multiplicativefunctions. Then verify that
h(x) = gp(x)jar all primes p. ,,~'. "". .' .", ,. ..... .

" .' f
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2.5.4 Theorem : For any two arithmetical functions f and g let h = f *~. Then for every prime p we

have hp(x) = fp(x)gp(x).

, \ ~
2.5.5 Example :Since ~2(n) = ,,-I(n) the Bell series of ~l2 modulo p

. 2() IIS ~p -X = -- = 1 + x..,:- ' "p (x). " : ,~

2.5.6 Example: Since C1u = NU * u the Bell series of C1u modulo pis

2.5.7 Definition: For any arithmetical function f, -we define its derivative f'to be an ~~ithmetical

function given by the equation I'(n) = f(n).log n for n ~ 1.

{
o if n > I

;2,~,5.8,::E;x~mple;(i) Consider ,I(n) = "1' if 11 = I ' : "' . '. ~ .': '. :

We know that log I= o.
Therefore l(n).log n = 0 for all n 2: 1. By definition of derivative of arithmetical functicn we. have

II(n) = l(n).log n = 0 for all n ~ 1.

(ii) Consideru(n) the' unitary function.
" 1(u(n) = 1 for all n ~ 1)./ Now u (n) = u(n).log n = log n.

Self Assessment Question 3: log n = (/\ =u )(n) where /\ is Mangoldt function. \,

2.5.9 Theorem: If f and g are arithmetical functions, then

(i) «(+ 9)1 = fi + g'

(ii) (f* g)' = fl * g +f» gl

(iii) (fl)l = - f 1* (f* fyl provided f( I) '* O.

Proof: (i) By the definition, fl(n) = f(n).Iog n.
/

Let f and g are arithmetical.fufictions. Consider

(f + gj'(n) = (f + g)(n) log n
-:;::'- \ = (f(n) +gtn) log n ···~f(h) log n -+- g(n)'log 11 = fl(ri)~;~I(n).

Therefore (f + gj'(n) = fen) + g'(n).
" " ;. .
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...•_., ',~ ': I ~ • '.....
(ii) Let d be the divisor of n.,'· ..

Then n = d(-;}) ~ log n = log d + log -;} ... (i)

. (f* g)' = (I f(d).g(-;}»)I
din .

= (Lf(d),g(~)J log n
din

= (I f(d),g(-;}») (log d + loge -;t» (form above)
din

= I(f(d),logd~(cV + If(d)(g(-;t).Iog(-;t»)
din din

. I.
'.- .-

; , . ,,~
:"It

,...•

Lfl (d),g(~) + Lf(d),gl(~) = (fl *g)(n) + (f* gl)(n)
din din

Therefore (f* gj'(n) = (fl * g)(n) + (f* gl)(n)

(iii) Let f be an arithmetical function and fl is its Dirichlet inverse.
. '. \ '.

Now (f* f1)(n) = I(n)

=> (f* fl)l(n) = II(n) = log n I(n) = 0

~ (f* ["1)I(n) = 0

~ 0 = ([*fl)l(n) = (f1*r-I)(n) + ([*(f-I)I)(n) (by (ii)

~ ([*(r-I)I)(~) = - (fl*r-I)(n)

~ f* (fl)1 = _([I* fl),

By multiplying on both sides with r' (with respect to*), we get

(fl)1 = fl * (-fl * ["I)

= _(f I * [I) * f -I

= _([I * fl) * r' = -(fl * (el * el» = -f * (r* t)"I, .

..

'-,
•• !

'. ~::' ; . l ,

2.6 THE SELLBERG IDENTITY
, .

". l.1.' -• ..:" t

';i!.,' . nil I~JO!peaj7Jebeliev..edr1hal the.primenumbentheonem. ..could not beiprovedwuhout the
help of the properties;;qrthelzeta~/unclion"ilnd'iwithout, recourse ao.complex.function. theory.. :Iii'
1949. the Norwegian Mathematician At/eSe/berg discovered a purely Arithmetical proof which was
a great surprise. His paper "An elementary proof of the prime number theorem" did not use the
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methods of modern analysis, indeed its content is exceedingly difficult. Selberg was awarded a
fields medal which is considered as a Nobel prize in Mathematics) at the.J950 .International
congress of Mathematiciansfor his work in this area.

. ,

2.6.1 Theorem: (The Selberg Identity) For n ~ 1,

we have /\(n)logn+ L/\ (dj », (-;}) = LIl(d)log2(-;}).
~n d~

" . . ~, } ;

Proof: We know tha, log n = (/\ * u)(n) (refer S.A.Q '3)

=> u(n) log n = (/\ * u)(n) (since u(n) = I)

=> u'(nj= (/\*u)(n) ... (i) , .....',.

By differentiating on both sides, we get

ull(n) = (/\*u)I(11)

= (/\1* u)(n) + (/\ * UI)(n) \:;:1 ;, " " -r i ,":: , "

= (/\1 *u)(n) + (/\*(/\*u»(n) (by (i)

= (/\1 * u)(n) + «/\ * /\» * u)(n)

By multiplying on both side~(~~"~igl~i)\~lti;\ ~l~;~-I ·(r~&rNot~2.1.'1O{we get'

(Ull * Il)(n) = /\I(n) + (/\*/\)(n)

-~.,-.!

.i . ~.'

,.,'1

. ~ 'r

=> LIl(d)uJ1
(-;}) =/\(n)logn+ L/\ (dj », (-J)

d~ ~n

=> ~)1(d)log2(~) = /\(n)logn+ L/\(d)X("Jt .. «:
~n ~n

[Verification for uti (-;t)= log ' (-;t) is given below]

Since Ull(-;}) = {Ul(-J))I nv

= (u{J} log(y)Y

(u(-;t) log(-;t))log(-;t)

...c~.; /,:~;..~;.r'." (1,:1

= ~(-;t}logl(-;t) = log2(;j-) (since u(n) = 1 for all n)

2.7 SUMMARY °J'lll /.. t,~~~ ,

.- .
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This lesson also dealt with Arithmetical functions such as A(n) and divisor functions (ru(n).
We provided the properties inter relations of various functions and their applications. It is observed
that the sum for q>(n)can be expressed as a product extended over the distinct prime divisors of n;
also the properties of the product formula obtained. We also discussed Dirichlet multiplication, a
concept which helps to classify inter relationships between various arithmetical functions. Selberg
identity is derived from the. concept of derivative which is sometimes used as the starting point of an
elementary proof of the prime number theorem.

2.8 TECHNICAL TERMS

Dirichlet product: For any two arithmetical functions f and g, the

Dirichlet product is defined by the equation

f * g = 2: f'( d).g(1-) where the summation is over all .
din _

positive divisors d of n.

Inversion formula: f(n) = Lg(d) <=> g(n) = Lf(d).~(~).
din din

Multiplicative function: An arithmetical function f is multiplicative if f

is not identically zero. That is., f 7:- 0 and

f(mn) = f(m).f(n) whenever (m, 11) = L

Liouville's function: A(n) ={l if n = 1
.(_I)Uj+U2+ ... +Uk if UI u2 Uk

1 n= PI .·P2 · .. Pk·

where PI, P2, ... , p, are distinct prime numbers and

Uj 2 1 for all i.

2.9 ANSWERS TO SELF A~SESSMENT QUESTIONS

1: Consider
(10 F)(x) = L I(k ).F(f)

ksx

..

I(I)F(t) + LI(k).F(f)
I<k~x

F(x) f, ~\= F(x)\~stilced{l) =dI and J(n) = O' for n> 1), .
.Therefore (I 0 f)(x) = F(x). Hence I is a left identity.
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2: Suppose f = g. Then f(Pll) = g(pll) for all primes p and 'all n ~ O. So fp(x) = gp(x).
Conversely suppose that fp(x) = gp(x) for all p, then flp") = g(pn) for all n ~ O. Since f and g are
multiplicative and agree at all prime powers, we have that they agree at all positive integers. So f =

g.

J: We know that (by Theorem 2.2.3)

log n = L/\(d) = L/\ (d).u(-Zt-)(since u(n) = 1 for all n ~ 1)
din din

. ~:::::; ,~

= (t., *u)(n).

Therefore log n = (/\ *u)(n).

. ..

2.10 MODEL QUESTIONS

1. Define Dirichlet product. Prove that a set of all arithmetical functions f with f( 1) -:;:.0 forms an
abelian group with respect to Dirichlet product,

2. State and prove Mobius inversion formula

3. Define Mangoldt function. Prove that for n 2 I, log n = LA(d).
d In

4. Define Liouville's function and Bell series of f modulo p.

5. State and prove the Selberg's identy.

2.11 REFERENCE BOOKS

I. Chandrasekharan, K. "Introduction to Analytic Number Theory", Springer Verlag.
2. Hardy,G.H. & Wright,E.M. "Introduction to the Theory of Numbers", Fourth-

Edition, Oxford Publications,
3. Levegue W.J. (1986) "Topics in Number Theory (2 volumes), Addition - Wesley Publ,

Co.
4. Rademacher-(-19.6.Lj.)"Lectures on Elementary Number Theory", New York, Blaisdell

Publ, Co. .
5. Tom M. Apostol "Introduction to Analytic Number Theory", Springer International

Student Edition, NarosaPublishing House, 1995.

6. Uspensky, lV., and Heaslett, M.A. (1939) "Elementary Number Theory", New York,

Me. Graw - Hill Book. Co.

7. Vinogrador, "Elements of Number.Theory" , Dover Publications

...

",- '. " ;,

Name of the Author of this Lesson: Dr. Kuncham SyamPrasad



.f .:~ , r,, .
.~, ,.

.,
..
'; ~d' t .~~;;

LESSON: 3
. :''; •... . i 'f" -.,:c..... . . " .

ASYMPTOTIC EQUALITY OF FUNCTIONS &
EULER'S SUMMATION FORMULA

:' . ~
.' I

Objectives .f.

The objectivesofthis lesson are to:

• introduce the big oh notation
• know about asymptotic equality of functions and some elementary asymptotic formulae
• t: study the properties.of'order
• know the significance of Euler's summation formula and related results

....: .

Structure

3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3;8
3.9
3,10

Introduction
Partial Sums
The big oh notation
Asymptotic equality of functions
Euler's summation formula
Some elementary asymptotic fori .•ulae
Summary
Technical terms
Answ~rstoself Assessment Questions- . . . .

Model Questions
Reference Books,
'I - '.",

~'l'
,;,

( ~"" .,t' J' I

"

3.0 INTROPUCTION
'j!, ,

: ~Wedescribe that the average order of den) is log n. Partial sum notation of arithmetical
function: splays-an vital role 'in the theory ofriumbers. ,This 'lesson aims at the' determination oitlie;
behavi;~ of the partial sum 'LI(k) at a function of x especially for large x. We derive a

; 'L~_' )... v. k$.x ". . 'I. .f.. 'e,..:..~' ~"

Summation formula of Euler, which gives an 'exact expression for.' the error made in an
approximation, where the asymptotic value of a partial sum can be obtained by compariI~.g,it withan
integral.' . . . . , -. "

3.1 PARTIAL SUMS

3.1.1 Definition Let fen) be an arithmetic function. Then
. i'
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- 1 n
(i) fen) = - L:f(k) is called the arithmetic mean (for given n):

. n k=1 •

n

(ii) Lf(k) is called nth partial sum.
k=1

3.12 Example let fbe any arithmetical function defined on N.

3
Take n = 3, then :L)(k) denote the 3rd partial sum.

k=l

n

3.1.3 Note If n ~ x < n + 1, then L f(k) = f(1) + [(2) + ... + fen) = L f(k) is called nth
k sx k=J

partial sum. Here it is understood that the index k varies from 1 to [x], the greatest integer not

exceeding x.

13.1.4 Example

Take x = 3.5 , then n = 3. Now k varies from 1 to [3.5] = 3.

Therefore Lf(k) = f(1) + f(2) + f(3)
ksx

3.2 THE BIG Oh NOTATION
, .

3.2.1 Definition Suppose g(x) > 0 for all real values x ~ a and f(x) is a teal valued function such

that f(x) is bounded for x 2: a. Then we say that "f(x) is of large order g(x)" or "f(x) is of
g(x) .

order g(x)". In this case, we write f(x) = Otgfx) (we read f(x) is big Oh of g(x».

&Equivalently, we qm say thatfix) = O(g(x» if there exists a constant M> 0 such that f(x) ~ M
g(x)

for all x 2: a, or !f(x)! < M.!g(x)! or !f(x)! ~ M.g(x) for all x 2: a (since g(x) > 0)].

3.2.2 Note (i) f(x) = hex) +'0 g(x) means that

fix) - -hex)= O(g(x» =;. ![(x) - h(x)1 ~ M.g(x) for some M > O.

(ii) Suppose f(t) = O(g(t)) for t ~ a

=;. /f(t)!s M.g(t) for t 2: a and for some M > O.
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~ :1f. .•• ~

=> [1[(Oldt,;; tM.g(t)dt => If!(tJdtl,;; Mtg(t)dt
'f... 1-

=> r f(t)dt = O( r get) dt) for x 2 a.
(J.. ~ f rl-, J '(

~ "t...

Therefore f(t) = O(g(t» for t 2 a implies that r f(t)dt = O( f get) dt) for x 2 a.
~ ~-

Self Assessment Question 1: Show that if f(x) = O(g(x) ) then cf(x) = O(g(x) ) for any constant
c>O.
3.2.3 EX3:~ple (i) Write f(x) = 20x and g(x) = x.

Then f(x) = 20 which is bounded. Therefore f(x) = O(g(x» or 20x = O(x).
g.(x)

»:

(ii) Suppose f(x) = lOx2 and g(x) = 20x4. Then [(x) = lOx 2 = _1_ ::; 1
g(x) , 20x4 2X2

, 2 4for all x 2 1. Therefore f(x) = O(g(x» or lOx =.0(20 x ).

(iii) Suppose f(x) = 30x, hex) = lOx and g(x\ x. '

Then f(x) - hex) = 30x - lOx = 20x = Otx) '\ O(g(x»

=> f(x) - hex) = O(g(x» => f(x) = hex) + O(g(~».
\\

3.3 ASYMPTOTIC EQUALITY OF FUNCtI,?NS ','

3.3.1 Definition (i) If lim f(x) = 1 then we say that f(x)'~nd g(x) are of same order (or) f(xf~"is
, HOO g(x) . ' \. ", ,,',.r.

, \

asymptotic to g(x). In this case, we write [(x) - g(x) as x~.

(ii) If lim [(x) =' 0, then we say that f(x) is of small order g(x), and we write
XO->OC gtx ) \

o(g(x». (Here we use small letter 0). \

, .~,I,

3.3.2 Example Write [(x) = x3 + X2 - 5 and g(x) = x '.

3 2 ( ). f(x) . x + x - 5. 1 5Then hm-- = lim = lim1+--- = 1
x->oo g(x) x->oo, X 3 x c-s-cc X X J

Therefore f(x) and g(x) are of same order, and so f(x) is asymptotic to g(x).
'-' !., '. ' ," .

Self Assessment Question 2: If fix) = x' + Xl - 5, and g(x) == X4, thenfix) is of small order g(X):
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3.3.3 Theorem If g(x) > 0 and lim f(x)~ L where L is finite, then f(x) is large order of g(x)
><->00 g(x) I

( that is, f(x) = O(g(x» ).

Proof: Now lim f(x) = L
. HOC g(x)

=> given s > 0, there corresponds Xo such that f(x) - L < c for all x ~ xo.
"" g(x) ..,,'"

, ~~.•

~ f(x) < € + ILl for all x ~ xo.
g(x)

Let £ + ILl= M. Then f(x) < M for all x ~ xo.
g(x)

=> f(x) is bounded for all x ~ Xo.
g(x)

By the definition of large order, we have f(x) is of large order g(x) => f(x) = O(g(x».
Hence the theorem.

3.3.4 Corollary If f(x) >0 and g(x) ~ f(x), then f(x) = O(g(x» and g(x) = O(f(x» if f(x) > O.

Proof: Let f(x) >0 and f(x) ~ g(x)

Now lim f(x) = 1 and lim ~(x) = 1.
x-+CXJ g(x) X4CO f(x)

So given £ > 0 there exists Xo such that f(x) < e + 1 and g(x) < e + 1 for xz xo. . .
, g(x) f(x)

=> f(x) = O(g(x» and g(x) = O(f(x» (by definition)

3.3.5 Corollary If g(x) > 0 and f(x) = o(g(x», then [(x) = O(g(x».

Proof: Suppose g(x) > 0, and [(x) are two real valued functions and f(x) =IO(g(X».

Then lim [(x) = 0 ... (i)
", x4CO g(x)· ,
Now we have to prove that f(x) = O(g(x».

By (i), we have that given £ > 0 there exists Xo such that f(x) < £ for all x ~ Xo : => f(x) =
g(x)

O(g(x».

3.3.6 Theorem (i) O(g(x» + O(g(x» = O(g(x»
(ii) If f(x') = O(g(x» then O(f(x» + O(g(x»= O(g(x» .,-,

Proof: (i) Let fl and fz are two real valued functions and g(x) > 0 is a real valued function" such

that [I (x) = O(g(x» and f2(x) = O(g(x». .-
"
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By definition of large order, there exist numbers MJ > 0 and M2 > 0 such that

f2(x) .
and --. s M2. Wnte M = MJ + M2.

g(x). . .

. Consider fl(x)+f2(x) ~. fl(x) + f2(x) sM, +M2=M.
g(x) g(x) g(x)

f(x)+f(x) .=> I . 2 IS bounded => fl(x) +6(x) = O(g(x»
g(x)

=> O{g(x» + O(g(x» = q(g(x».

. ii

(ii) Let fl and 6 be two real valued functions and g(x) > 0 is a real valued function such that

fl(x) = O(f(x» and f2(x) = O(g(x» ..

Then by def. ii:~s MI where MI is a positive number => !fl(x)! ~ MJ!f(x)! ... (i)

And also f2(x) ~ M2 where M2 is a positive number. => 16(x)1~ M2Ig(x)1 ... (ii) .
. ' g(x)

Givenjthat f(x) = O(g(x», we have that

Since f(x) ~ M where M is a positive number.
g(x) .

=> !f(x)1~ M.lg(x)1 ... (iii)

Consider ifl(x) + f2(~)!~ ifl(x)! + if2(X)!

s Mdf(x)! + M2!g(x)! (by (i) and (ii)

. ~ Mdg(x)I.M + M2Ig(x)1 (by (iii)

= Ig(x)I(MI.M + M2)

=> fl (x) + f2(x) ~ M* where M* = MI.M +!vb
o g(x)

f, (x) + f 2 (x) I . 'b d d=> \ IS oun e .
, g(xJ

-- => fJ.~ + f2(x) = O(g(x». '------
=> O(f(x» + O{g(x» ~,

\,. ,
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Self Assessment Question 3: Verify whether O(O(f(x)) = O(f(x)).

3.4 EULER'S SUMMATION FORMULA

3.4.1 Theorem Euler Summation Formula: If f(x) has continuous derivative

where 0 < a < b (that is fl(x) is in [a, b], 0 < a < b), then'

~:r(n) = r f(t)dt + r (t - [t])fl (t)dt + f(b)([?] - b)- f(a)([a]- a).
a-cnsb 0\. 0:...

Proof: Suppose f(x) has continuous derivative and f''(x) is in the cl~sed irite'~a:l" [a, b'1' 'where 0
~,ft '.
""<::'a < b.

Let [a] = m and [b] = k (that is, m is the largest integer less th~n orequ~d.to a and similarlyfor

k).
'-. '·1

k

Then Lf(n) = 2)(n) = Lf(n) .,. (i)
a-cnsb mcnsk n=rn+l • I ' ..

Suppose (n - 1) and n are two integers in [a, b] and t lies between (n -1) and n.

= (n - l ) [I f" (t)dt = (n - I) [f(t)]::_1

= (n - 1) (f(n) - fen - 1» = n.f(n) - fen) - (n - l}f(n - 1) ... (ii)

Taking summation with n = 111 + 1, m + 2, ... , k on both sides of (ii),we get'
... ,

.'t.. "

kL{nf(n) - fen) -, (n -J)f\n -:-l)}
n=rn+l

k k

~ I LI[t]fl(t)dt =kf(k)-m.f(m)- Lf(n)
0=11'1+1 11=111+1

k k
=> If(n) = k.ftk) - m.f(m) - l[t] fl (t)dt

nem+l
: S,," .,' (:< ~:" :

--.- ....~~-.-.. - .

= k.f(k) - m.f(m) - l[t] [I(t)dt
~
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. =k.f(b) - m.f(a) - l[t] f" (t)dt ... (iii)

I
. 0\....,

,. 0..

Now (. f(t)dt = r·f(t)dt = b f(b) - a ~(a)_~!trl(tjdt (integration by parts)

=> f f(t)dt - b f(b) + af(a) + f t f'(t)dt = 0 ... (iv)
~ . ."'. . ....

k· ..

from (iii), Lf(n) = k.f(b}-m.f(a)- £[t]f' (t)dt +0.
ne m+l . iiI'- .

Now replace '0' byL.H.s.of(iv), we get
k

L)(n) = [k.f(b)~m.f(a)- 1[t] f'(t)dt] t r] f(t)dt - b f(b) + a f(a) + J t f'(t)dt] ... (v).
n em+l 60... . .0\' . .' q.. ' .

k

Now ~)(n) = ~)(n) (by (i»
axrisb u=m+!

= f...f(t)dt + f~t-[t])f'(t)dt+ f(b)(k-b)-f(a)(m-a) (by (v)

=> ~)(n) = f f(t)dt + l(t-[t])f'{t)dt +f(b)([bl-b)-f(a)([al~a) '.
a-cn.sb fa. . ca.. . ..

This completesthe proof
. .

.. .,. . [' ].. " 1 1 -, 1 ,. 'n 1
3.4.2 Note C = lim(.l + - +-. + ... + --10. gn.)..= Jim ('L.· -J - logn

, 11-40') 2 3 t:t.... n-.>oc k=1 k

= lim[·(2:!J-IOgn]" is called Euler':s c~nst~nt.
n~~ ksn k ~ .

3.5 SOME-ELEMENTARY ASYMPTOTIC FORMULAE

\ ; 1 1
3.5.1 Theorem If x ~ 1, then L- == log x + C+O( -::-).

n:!>x n x
1 .•. .. -,.. 1

Proof: Consider [(t) = t· We know that ft f(t)dt = r tdt =lo~x. ,

Also fl(t) = \(,~,I which is continuous in [l,x] .
.t) t2

By Euler's summation formula. _
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Lf(n) = L! = f!dt + [(t-[t]{-21)dt + ([x] - x)! - f(1)([11- l)(by theorem 3.4.1)
l-cnsx l-cnsx n \ t \ t x

, ..,...
= logx- rt-P]dt + [x]-x -0.

. ,t x
. .'"1.-
" 1 1" 1 f t - [t] [x] - x-=> L..- ='- + '~ - = 1+ log x - -2-dt + .:..:.'-"-.--
n sx n 1 l-cnsx nit x

C!O -Iil D\J [ ] []t"- -t- t x + X
= 1 + log x - f-'-i-dt + '[-2-dt + ,

\ t " t x
04 r;)

[
t-[t] [x]-x [t-[t]= log x + A + -2-dt + ... (i) where A = 1.- '-2-dt.

~ t x It.,

. ' x-[x] 1Smce 0:::; x - [x] < 1, we have 0:::; . < - for every x
. 'x x

=> x-[x] =O(!) ... (ii)
x x

A~sofor any ,t ,.E [x,), O:::;J - [t] < 1.

. t -:-[t] 1 ~ t ~-Lt] . - ~ J 1
=> 0:::;-- < - => [--.,rlt < ,[-dt = -., e t 2 'oJ..t 2 - ',: F' x

,1,- .

c»
;~.r: t:-, [t] d - O( 1 ) (... )=>·--t-,- 111

.~ (2 ""x'"

~l;lbstitu~i~g(ii) Cipd (iii) in (i), we get
, , 'il ~

'L~ = .log xT1}+9CL) + O( ~) = log x + A +O( ~) ... (iy,)
~t&x~' x X x

(bY,tbeorem3.3.6, O(g) +.o(g) =.Q(g»
" . -', .

1 1
=>E- -log x = A + Q( - )

~sx n x

=> .1im(2:: 1.-log xJ = lim A + O(1.) => E~ler:s constant (C) = A ... (v)
x400 n{x n X400 . X '

From (iv) and (v), we have Ll. 0= 199x + C + O(l.).
. ~xn ,x

3.5.2 Definition For s > 0, the Riemann.zeta-Iunctlon is defined as
~ -. ••. , ~,"",'.' .,,'. ",,'r • ~ .: - ~ '"... _.•:~

4
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s(i~)= f~ if s > 1
n=ln

i

. ( 1 I-s J1. x.nm ----
x-e-co ~ns l-s

ifO<s<l.

Thezetafunction ((s) was introduced by Euler into analysis to prove the prime number
theo~ Euler had restricted the zeta function ((s) to real values of eRiemann in his momoir uber
die Anzahl der Primzahlen unter einer gegebenen Grosse of 1859, recognized the connection
between the distribution ofprimes and the beahviour of ((s) as afunction of a complex variable s ==
a + ib. TheRiemann's Explicitformula, relating 7l(x) to the zeroes of ((s) in the s-plane, connected
two seemingly unrelated things namely, number theory, which is the study of discrete, and complex
analsis, which deals with continuous process. :/

3.5.3 Theorem If s > 0 and s * 1 then for any x ~ 1,

1 x I-s ' 1L- = -, +s(s) + O(--s )
n" 1-s Xn:Sx

, .

Proof: We know that the function f(t) = ~ has derivative
t

fl(t) = __ 5_ 15III [1, x]. Therefore by Euler'ssummation formula'
C+I

Lf(n) = f f(t)dt + f(t-[t])f'(t)dt+ f(b)([b]- b) - f(a)([a] - a)
a-cnsb (1., 0. '

We have that " _1 = ~f~dt + -J.-
f
(t - [t]{ ~s )dt + ([x] - x{ __l ) - ([1]-1)L.. s t s 1'+1 X S

l-cnsx n I I

.;. . 7-

= f~ dt + .f(t-[t]{2)dt + [x]-x +0 ... (i)
C . \C+1 XS

1 I .

1 " 1 1
Consider "--, = - (n = 1 case) + ,,--L.. S IS L.. s

n sx n l-cn sx n

,< { )1 ' - s x -x
= 1 + f- dt + f(t-[t] - dt + [] '(by (i»)tS 1'+1 XS

I

[
. t -s~~iJ x ' JL--r·t '- [t] d [x] .. x

1 + -+-- - S --- t + -----
l-s ts+1 x"

I \
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= 1+ [x -s+1 __ 1_] _s~ft r- [t] dt + [x] - x
l-s l-s 't8+1 XS

\

x -s+1 [ 1 r t - [t]] r t - [t] -f~t - [t] 1--+ I---s --dt +s --dt-s -,-dt +0(-)
l-s l-s tls+1 ts+1 ts+1 XS

I , I '

X -s+1 , t - [t] 1 '
= -- +A(s)+s [-' -\ dt +0(-) '" (ii)

l-s tS+, x"

1, rt-[t]where A(s) = 1 - --s -- dt.
I-,s e+1

\ '

Now 0 ~ t - [t] <:: 1. ' (Since [t]
0-0 ---{)oO ---0

[t] + 1 )

~ [ ']'"t - [t] 1 t - [t] " 1 t -s x -s 1
=> -' - < - => -- dt < - dt = - = 0 - -- = -

t8+1 ts+1 r t8+1 i 1'+1' -s (-s) sx"
, ~ x

r t - [t] 1
=>s --dt<-

. t8+1 X s
=> sr t -[t] dt = 0(_1 ) ... (iii)

-:z:. t8+\ X
S

x -5+1 1 1
-- +A(s)+O(-)+O(-)
l-s ,xs, XSBy (ii) and (iii) we have L~

ns x n

X -s+1 1
= - + A(s) + 0(-) ...(iv)

l-s - XS

(By Theorem 3.3.6, O(g(x)) + O(g(x)) = O(g(x)))

Now it is enough to show that A(s) = ~(s).

By applying lim on both sides in (iv), we get
x~oc;

~(s)= f~ = lim I~
n=1 n x~oo nsx n

= lim x
l

-

s

+ limA(s) + limo(_l)
x--.oo 1- s x-»OC' X---7·-.() X S

= 0+ limA(s) +0 =A(s)
x~oo

(because A(s) is independent of x)
, I

[Verification:

Suppose s > 1,



/Acharya Nagarjuna University 3.11 Centre for DistanceEducatio~

The~ lim x
1

-
s

=v lim ' = O. Also lim.0(_1_) = 0 [since x5
~].

x->oo 1- S x->oo (1- s)x I-I x->oc x"

,c,',,:,,'
'" ;~~{ .-' "

.' 00 1
So, if s> 1 we have s(s) = L-s= A(s) ... (v)

n=ln
..:'

1 ,xl-s , I
If O<s< 1, we have I---; = - +A(s)+O(~)

nsx n 1-s x

(
1 x 1-s J 1~I -,1---' =A(s) + O(~)\,

ns x n 1-s x

Again applying Jim on both sides, we get
x~oo

lim~t~-~) = lim( A(S)+O(~;-)) =A(s)+O
x~oo - nS 1 - s x~oo\ xS

_ nS;x ",

'/ .

~ S(s) = A(s) .. _(vi) (by the definition of s(s»]

From (v) and (vi) (in both cases where s > J and 0 < s < 1) we have s(s) = A(s) ... (vii)

1 x l-s1
By using (iv) and (vii) w~ get I- = - + s(s) + 0(-" ).

n sx n S ' 1 - s x I

. . "'''' .:., .':

This completes the proof.

3.5.4 Corollary If x ~ 1 and s> 1, .then L~ = O(x 1-5).
n >x n

',.

Proof: If s> 1, then by theorem 3.5.3, condition (v), lim 2:-1
- = lim Aisjj= S(s).

x~oo nS' x->oo
nS;x

-; ~. .-

00 1 -r. I
:::::> L-, = S(s) is finite (since L-:;-is convergent series for 0 < s < 1 and s > 1).

n=1 n \1=1 11

'" 1 1 1
Therefore s(s) = 2:-. = 2:-" + 2:-, '

n=ln' , n sx 11' n >x n"

=> I~= s(S) - L~
I1>X n nsx n

Xl~ I
s(s) - [- + s(s) + 0(-)]. (By Theorem 3.5.3 ,

l-s . x "
J. C\·.-f)~~
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X 1-, 1
= - - -O(~s)

1-s x

= _(O(x1•s) + O(x'S» [Suppose [(x) = x" and g(x) = xH~

Then lim [(x) ,= lim x
J
-
s

= lim.!.., =; O.
x-w, g(x) , x-+oo X -s x-oeo x'

Therefore f(x) = O(g(x»

=> O(f(x») = O(O(g(x») = O(g(x») ='> O(x~s} = O(XI~S)]

Hence ,,_Is, = O(xl's). Thi 1 t th f~ IS comp e es e proo,.
n>x n

xct+1

3.5.5 Theorem If a ~ 0, then for any x ~ 1, we have 2:nu = -' - + O(Xu).
ns x a + 1

Proof: Let f(t) = t'' and fl(t) = a.tU-J arecontinuous in [1, x].

By Eulers summation formula, we-have
"'I- ~

Inu = ftU dt + f(t-[t])a.tU-'dt + ([x]-x)xu -(I-[I])f(1)
l-cns;x I I

[
tU+1 ]X 'lC.

._- + a [(t - [t]).tU-'dt + ([x] - x)XU+ O.
a+ 1 1 1

By including the case n == 1 we get

nsx l<n:'>x

(by (ii) given below)

[reason: 0 ~ I[x] - x] < 1 => ([x] - x)XU < XU=> ([x] - x)XU= O(XU)] ... (ii)

Consider 11- _1 1 = I~I< 1
0.+1 0.+1

1=> 1 - - = 0(1) ... (iii)
o. r I

Consider 0 ~ t - [t] < 1 => (t - [tDtU-
1 < tu-I

?: -i.

=> f (t -[t]).tu-'dt < ['tU2ldt
I I
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By substituting (iii) and (iv) in (i), we get
a+1

Lna = _x_ + 0(1) + O(XU)+ o(XU)
n~x' a +1

a+1

= _x_ + 0(1) + O(XU)(since O(XU)+ O(xa) = O(XU»
a+ 1

xa+1

Hence Ina = -- + O(XU).
n:s:xa + 1

3.5.6 Problem Use Euler's summation fo'l;nula to deduce the following for n ~ 2.

" log n 1 2 . ( log x ) . .L.J -- = - log x + A + 0 -- where A IS a constant.
nsx n 2 x

. . log t I I - log t
Solution: Consider [(t) = -- and f'(t) = 2 in [I, x].

t t

By Euler's summation formula, we have

I logn = flOgt dt + f(t_[t]{l-I~gt)dt + ([x]_x)logx +(l_[l]{IOgl) ... (i)
1< n t \ t x \1<nsx I I

[Note that log 1 = 0 ~ the last term of RHS of (i) is zero].

1Put log t = y. Then dy = - dt.
t

Also I:S; t :s; x ~ log I, :s; log t :s; log x ~ o s y $ log x

Now considerr logt dt = !OgX ydy = [L]'OgX = (Iogxr ... (ii)
I t 0 2 0 2

Consider O:s; I[x] - x] < 1 ~ I[x] _ xllogx < logx = O(IOgx) ... (iii). x x x

l-logt
e ..
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::;r l-l~g x dt (since tE [x, J =>x ::; t ~log x ::;log t
x.. t /'

:::)' 1 - log x ~ 1 - log t)

~

=(1 -Iog x) [_1 dt
t2."/-

l-logx . r" 1 [C2
+

1]CJJ (l)CJJ (1) 1= (Since -.. dt= =- - =- -- =-)
x.. . .' t2 .. - 2 + 1 x- . t x x x

= 0CO~i) . r

Now consider (i) . That is,

I logn ~ f logtd(+'[(t c- rillI-I?gl)dt + ([xJ- x] IO~X

l-cnsx nit· I . \ t-

(logxY+ f(t~[t]fl-I~gt)dt + O(IOgX) (~y (ii; ~nd (iii»
2 \ t x .

I

(Io~x)' + A- J (I- [Ilt ~jl~gt)ctl + O('O!X)
where A = f (t - [tJ{ 1- :~gt }t

I .

= (logX)2 + A + O(IOgX I+ O(IOgX) (by (iv.)
2 x ). x

1 1 (lOg x)2log- x +A+ 0 -x- .
J;

3.5.7 Problem Use Euler's summation formula to deduce the following for n ~ 2.

~ 1 / ,( I I
L. = log(log x) + B + 0 J'

2:Sn:Sx n log n \ x log x /
.'
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Solution: Consider f(t) = -l-/andfl(t)= -~+l~gt) which are continuous in,(1,). _
t log t t - log t

By Euler's summation formula, we have

L 1 [_1- dt + [(t_[t])-{l+IOgt)dt
2~n~x'nlog n t log t t2 log t

I I

+ ([x] - x)_l_
xlogx

... (i)

, .j. , .

(we are not using last term, since 'log 1 = 0)
--I.- '" f I !OgX IConsider -' - dt = - dy

t log t Y
J

[Reason: Take log t::= y. l. <'1 < x

~ log I slog t s log x ~ 0 < y slog x.

" 1
Also -dt = dy]'

t

[log y ]~OgX = log(log x) - log 0 = log(logx) - log(log I) ... (ii)

, . " x-[x] 1 x-[x] o( 1 J (oo,)Now consider 0 S x - [x] < 1 ~ 0 s < ~ = ... 11l
X log x ' x log x x log x x log x ,

1+ logt (I + logt]
Since 0 ~ t - [t] < 1, we have 0 ~ (t - [t]) 2 2 ~ 1. 2 2

~' t log t . t log t

~r (t -[tJXI + logt) dt s f (I + lo~t) dt =_ r~[-l-) <it= [~]OO
X. t2 log ' t ~ t2log- t dt tlogt tlogt x

1

xlogx

Therefore [(t-[tJXl+10gt)dt=O[ I J ... (iv)
1- t2log2t . xlogx

Using (ii), (iii), (iv) in (i), we g;et that

I, r (t-[t]Xl + log t]L " ' = [log(log x) - log(log 1)] - ') 2 dt
2snsx-n log n J t - log t

+[(t-[t]XI+Iogt) dt + o( I, J.
t21og2 t ' .x log x

"= log(log x) + B + o( 1 j\ -+ O( 1 J
x logx xlogx

ci)( X I )
where B = - log(log 1) - f t - [~J I ~ og t dt is a constant.

, t- log t
1 '

--.--;---
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Hence L 1 = log(1ogx) + B + 0l' 1 ] ..
2:<;n:<;x n log n \. x log x

3.6. SUMMARY

This lesson dealt with the asymptotic equality of functions. We provided a Euler's
summation formula to compare the asymptotic value of a: partial sum with an integral. Some
consequences of Euler's summation formulae which may be regarded as elementary asymptotic
formulae, were obtained.

3.7. TECHNICAL TERMS

partial sum:
n

Lf(k)
k=1

big oh notation: "f(x is of order g(x)'.' if there exists M > 0 such that
I ftx) I :S; M I g(x) I, g(x) > O.

asymptotic: "f(x) is asymptotic g(x)" provided lim f(x) = I.!
. HCO g(x)

Euler's Summation formula:

L)(n) = ff(t)dt+ f(t-[t])fl(t)dt + f(b)([b]-b)-f(a)([a]-a),
a-cnsb o: 0-

where f(x) has continuous derivative on [a, b], 0 < a < b.

Euler's constant: C = lim(I ~) -Iogn I
n -e cc ksn k )

Riemann Zeta function:
. -x I
s(s) = I-, if s> I

n=1 n
( .. 1 h]

= limlI- .. -~ .
x-->oo n e;x n S 1- s

if 0 < s < L

3.8. ANSWERS TO SELF ASSESSMENT QUESTIONS

1: Suppose f(x) = O(g(x».
. . [(x)

Then bydefinition, we have -- < M for some M> O.
.. g(x)

=> c [(x) < eM = Mi (Say)
g(x)

=> c [(x) = O(g(x) ) . , ~;

2: Write f{x) = x3 + XL - 5 and g(x) = X4. .., .. ,
.", f
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Then limf(x) = lim x
3

+ x 2 - 5 = lim(~ +._1__ ~ I= 0
x-ecc g(x) x ....•co X 4 , ,--tor. X X 2 x 4 )

(

Therefore [(x). is of small order g(~). That is, fix) = o(g(x».

3: Let fleX) = O(f(x» and 6(x)-= O(fl(x)) where fl and f2 are two real valued functionsand

lex) > 0,

~ there exists two positive constants MI and M2 such that

. [I (x) ~ MI and [2(x) ~ M2'
f(x) flex),

~ Ifl(x)1< Mtlf(x)1 .and If2(x)1< M2Ifl(x)1

~ if2(X)I< M2If1(x)1 ~ M2.Mtlf(x)1
r

~ f2(x) < M M ~ £2 (x) is bounded ~ f2(x) = O(f(x»
f'(x): - 2 I f(x)

O(f!(x» = O(f(x» =,., O(O(f(x» = O(f(x)).

3.9. MODEL QUESTIONS

1. Define asymptotic equality of functions.
2. Prove the-Euler's summation formula.

1 x I-s 1
3. If s > 0 and S:f. 1, then show that for any x ~ 1,I-s = -.- +l;;(s) +O(-s )

n:::::xn 1-s .x
3.10. REFERENCE BOOKS

l. Chandrasekharan, K. "Introduction to Analytic Number Theory", Springer Verlag.
2. Hardy, G.H. & Wright, E.M. "Introduction to the Theory of Numbers", Fourth

Edition, Oxford Publications,
3. Levegue W.J. (1986) "Topics in Number Theory (2 volumes), Addition - Wesley Publ.

Co.
4. Rademacher (1964)!'Lectureson Elementary Number Theory", New York, Blaisdell

Publ. Co ..
5. Tom M. Apostol "Introduction to Analytic Number Theory", Springer International

Student Edirion, Narosa Publishing House, 1995.
6. Uspensky, lV., and Heaslett, M.A. (1939) "Elementary.Number Theory", NewYork,

. Me. Graw - Hill Book. Co.
7. Vinogrador, "Elements of Number Theory", Dover Publications

, ,
, "

.", e: .J

:: "

Dr. Kuncham Syam PrasadName of the Author of this Lesson:



LESSON -4

AVERAGES OF ARITHMETICAL
FUNCTIONS

Objectives
The objectives of this lesson are to:

• find the average order of various arithmetical functions
• discuss different identities satisfied by arithmetical functions such as ~(n), cp(n), A(ti) and the

divisor function
• study the behavior of these functions and other arithmetical functions fen) for large values of n,
• discuss an application of the asymptotic formula for the partial sums of <pen), to a theorem

concerning the distribution of lattice points.

Structure
< -

4.0 Introduction
4.1 The average order of den)
4.2 The average order of the divisor functions O"a(n)
4.3 The average order of <p(n) , ;
4.4 An application to the distribution of lattice points visible from the origin
4.5 The Average order of /-1(n)and A(n)
4.6 Summary
4.7 Technical terms
4.8 Answers to Self Assessment Questions
4.9 Model Questions
4.10 Reference Books

4.0 INTRODUCTION

We had already familiar with the arithmetical functions like Mobius, Euler, divisor, and
studied their asymptotic equality using big oh notation. In this lesson, we discuss the average orders
of some arithmetical functions such as d(n), rr a (n), <p(n), /-1(n)and A{n).AI~o we will deal an
interesting application of the asymptotic formula for the partial sums of cp(n)to a theorem concerning
the distribution of lattice points in the plane which are visible from the origin .

• < : .•••..

4.1 THE AVERAGE ORDER OF d(n)

4.1.1 Definition: A point (d, f) in the plane is said to be a lattice point if d and if are both
integers. [For example, (1,2), (-3,4), (5, 6) are lattice points.]

i \ .r-,
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4.L2 Note: (i) x.C = O(x) where C is a co~stant. (ii) x. o(~) = 0(1).

[Verification: (i) Suppose f(x) = x.C and g(x) = x.

C id li f(x) xC' c.onSI er Im-- = - = C => t(x) = O(g(x)) => x.C = O(x).
, x -e-cc g(x) X

(ii) Take g(x) = or~I => g(x) ~ M for some M > O. => x.g(x) 5: M .
. \x) (~)

x.g(x) . r' 1 "=>. sM=>x.g(x)=O(l)=>x.O-j=O(l).] :.:;
1 , x j

4,1.3 Theorem: If den) is the number of positive divisors of n , then for any x ~ 1 we have
Ld(n)= x log x + O(x).
n:5:x

Proof: Since den) = 2)' we have
din

/'

Ld(n) = I ~)
nsx nsx . din

= L Ll (since din we have n = d.S for some 0 => d.S = n :S x)
d8Sx din

2) ...(i)
(d,li)
do"x

" .

" '

o~
1\ -

8
\

<=\,4 \
\ \

Q), 1\ \
I~1'\ \ r-,

4 1\ \ r-,
\ -.r-.I-- ""2
~

f'--.-.. <,r-t-- t--

I'-- ---- t-
<,

0 -

"

I Fig-4.1.3 I

..
'" c,l·

2 4 6 8 10
[Here the summation runs over all those ordered pairs ~G, 0) of positive integers d, 0 with do < Xl.';'

That is, the sum on the right hand side is taken over all these lattice points in the first quadrant of the"
do plane. Observe the figure- 4.1.3 given.].'"
Observation: Curve-l qd = 1; curve-2 qd = 4; curve-3 qd = 10; curve-4 qd = 6.
If n = 1, then (d, 8) = (1, 1).
If n = 2, then (d,8) E {(2, 1), (1, 2)}
If n = 6, then (d,8) E {(1, 6), (2, 3), (3, 2), (6, I)}
If n = 10, then (d, 8) E {(1, 10), (2, 5), (5, 2), (l0, I)}
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These points (d,' o)'s li~s onthe hyperbolas d<5= n E {l, 2, 3, .,. , [x]} .
. Thus I den) gives the number of lattice points in the first quadrant that do not lie on the axis and

n';;x
those lie below the hyperbola do:s; x.
For any fixed point d with d s; x, all the lattice points on the vertical through d below the

1 ~ x. n ' x
hyperbo a are only those (d, u) with 1::::;<5::::;- (since l::::;<5= - ~ -)

d d d

Thus (i) becomes L den) = I II· ... (ii)
n«:x l~d$x I$O$X I d

(.(+1

By theorem 3.5.5, (statement: 2>(1 = _x_ + O(XU
) if c. ~ 0)

.'. ""X a + 1

"we get (by taking a = 0) :2)= ~ + OCI) ... (iii)
nsx 1

From (ii) and (iii), we have' [in (Iii), take ~,in place of x], d
Id(n) = I {~+0(1)} = x L ~+ :LO(1) = x I ~ + O(x) ... (iv)
nsx I~d~x d I,,05:x d iscsx I,;;d,;;x d

[Verification for L 0(1) = O(x):
I"d,;x /

Consider I 0(1) = [x].O(1) = O(x).O(l) = O(x.l) = O(x)]
I"d"x

Also by Theorem 3.5.1, I 1. = log x +C + O(~) (v) where C is the Euler's constant.
ns;x n

From (iv) and (v) we have (take d in place of n in (v»

~d(n) == x{log x + C + O(~)} -1:- O(x)

~ x log x + x.C + x.oC) +O(x) ~ x log x + O(x) + 0(1) + O(x)

= x log x + O(x) (since O(x) + 0(1) +O(x) = O(x))
Hence Id(n) = x log x + O(x). This completes the proof.

n$x

4.1.4 Corollary: The average order of den) is log n.
-

Proof: Let den) is the average function of d(n).
-' 1 i1,. 1 I

Then den) = - L:d(k) = -,~d(k) = - {n log n + Den)} (by Theorem 4.1.3)
n k=1 " n k,," 11 '

1= log 11 + -O(n) = log 11 + 0(1)
n
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- -
=> den) = logn + 0(1) ~ 1 + 0(1) => lim den) =

logn logn logn logn n~oo logn
Therefore the average order of den) is log n.

-
1 + 0 = 1:::> lim den) = 1

, x~oo logn

4.1.5 Theorem: Dirichlet Asymptotic formula: If den) is the divisor function, then for all x ~ 1,
Id(n) = x log x +(2C - l)x + o(rx) , where C is the.Euler's constant.
n~x

Proof: ,
x"'"''''''''''''''

[.~.] - d lattice points
on this line segment

d8 =.x

dt
.rx.. 'i

d , ,,"
Fig-4.1:£J

dJx
x

Consider Id(n) = I II (since ~(n) = I1)
nsx nsx din din

= 2) where n = 5. (see point (1) of Theorem 4.1.3)
do!>x d

Here the RHS sum is over all those ordered pairs (d, 6) of positive integers with d6 ~ x.
Clearly the RHS sum is equal to the number of lattice points in the first quadrant of the d8-plane
which is not on the coordinate axis and that lie below the hyperbola d6 = x.
So II is the number of lattice points (d, 6) with d6 s X.

dO!>l<

The hyperbolado = x is symmetrical about the line d = 5.
So II = the number of lattice points in the region.

do";x ':' ", , '

= 2 x(the number of such points below the line d = 6
.+,Uhe number of lattice points on the line d = 6)

Therefore Ld(n)= L('(irom earlier steps)
. ns;x d8ix

(d.S)
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[Since the number of lattice points on the Iine. d = 8 are [.,J;.]]

~ 2 dfrx {: +O(IH} +orE)

[Since O(rx) = [ .rx] and [~] = 0(1) +~(verify!)]
d d

= 2x L! - 2 Ld + 2. LOO)+ o(.rx)
d5,J';' d «r: «r: .

[by Theorem 3.5.1 and Theorem 3.5.5, andby the

proof of Theorem 4.1.3 L 0(1) = O(x). ]
n~x

== 2x{logfx + C + O( ~) - 2{($.)I+i + o(~)l + 20(~) + O(~)
""X 1+1 f

= 2x log-rx + 2xC + 2x. O(l )-x- 2. O(-rx) + 20(-rx) + O(.h')
= 2x log.rx + (2C - l)x + 2 O(.rx) + O(.rx)

[since x . O( -* )= O(~)(verifY"!)J

= 2x log.rx + (2C - l)x + O(.,J;.)

Therefore Id(n) =2x log(x)1/2+,(2C - l)x +O(.rx)
n$x

Hence Ld(n) = x log x + (2C - I)x + O(.rx).
I1~X

Self Assessment Question 1: Verify (i) o(.rx), = [.rx } (ii) [~J = 0(1) + (~)
d d

h-ti,,'

'~elf A ssessm en I' Question 2: Verify x . O( l) = O(.rx)

4.2 (fHE AVERAGE ORDER OF THE DIVISOR FUNCTION aa(n)

In the above t,heorem, we considered the case a = O. Next we consider a >0. We consider the case
-a= 1 separately.

4.2.1 Theorem: (f otn) is the sum of the, positive divisors of n, ~hen forariyx 2'1 we have
Lo(n) = ~.(2).X2 + O(X log x). .i ,

n:5x
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Proof: Since-rr(n) = Ict we have
dill

//
, 2:O"(n) =2:Id

IlSX nSx ~n
:Ed
d3:sx

x
[Take a = I, n = 0 and x = in the

d

theorem 35.5. Then we get LcS = (~(~)2+ o(~)J
o<'!. 2 d d-d

= 2:[~(~)2+o(x)J = X2 I-I +o(xI ~J
dsx 2 d ',d 2 ~:s, d2

d'sx d

[Put n = d and s = 2 in Theorem 3.5.3.
1 \ x 1-2 1

Then we get E- = - + s(2) + 0(-)
d2 1-2 X2

and.put n = d in Theorem 3.5.1.]

- ~:U~:+ $(2) +,c,JJx ,2)] +,O{ x (I.of' +C + ,Q(-;-H)

X2 X-I X2 x2 _J
= -' .- + -' r(2)+- (O(x -)) +.O(x,logx+xC+xJ)',(..1))2 -I 2 '::l, 2' '-, < x

1 2 ; 2 ' ,

= -::-.-{(+ Ls(2) + ~- ,Q(~-2) +,O,(x Jog x + xC + X. 0(..1))
2' 2 "~ " "," , v- .': x

2 '
[Since (i) -T0(x-2Y=P(1). (~ih,C =Q(x), x. Q(+) ='~9(l)~hY'NQte 4.1.2]

~..o.(».)+ ~(l) =O(x) ]
1 X2

= -2"x + TS(2)+ (1(.1) tl¥fC Io~ x -;I- O(x))

kn h 1· Q(X) l' J 0' [~We., ' o~ -.t rat ,~l!TI ' " ':", up , ' =.
, .' 'x:::,'" x,log,f.( Hoof.(log x

,~ >O(~)7'P(~ Jog,~) ? ~J9~~x z+ ,Q(x),=P(xJ9g x)l
1 x 2 ,"

= --x + -, s(2) + 0(1.) +O(x logx)
2 2..:'· .." ,

[Since Cx = Q{x), Q(x) + 0(1) = O(x) and~ \ ..
q(x) + O(x log.x) = "O(x 199,x) J
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Therefor~ L a(n) = t.S(2).x 2 + O(x log x).
n$x

.: . 00 1 ]t2
4.2.2 Note:It can be shown thats(2) = L~ = -

11=1 n .. b
(proofis out of scope of the book) I

. We use this fact in the next Corollary.
. . n2n

4.2.3 Corollary: The average order of om) (or 0"1(n) is -.. . . 12

Proof: By the definition ofthe average order, we have that

-\1~. 1", 1[12 .. ]<J(n)'":-,,-,o(k) =-~(J(k) =- -n ~(2)+0(nlogn)
n k=1 n ksn n 2
1 1 1 n2 .

r = -n~(2) + - O(nlogn) = -n- + O(1og n)
2 n 2 6

(by Theorem 4.2.1)

(by Note 4.2.2
1 .

Use - O(n logn) = O(1og n) )
'n

]t2n .
= - + O(1og n).

12 . -:

Consider Ii (j(n) - li 1 +. leX Q(logn)lm-,- - lmtlm ,
n-+oo c1n n-+oo Hoo (~;)

n2n== the average order of cr(n) = 1:2'.,

/

= .1 + 12 lim(O(logn») =
n->co n2n.

'/ . .

4:2.~ Theorem: Ifx ~ 1 and a >0, a =F I, then LGo: (n) = ~(a + 1) .xa+1 + O(x~) where
nS" a + 1

B = max {I, a}.
- 1/

Proof: Since cra(n) = Lda = LdCl = L80: (by replacing d and 8)
din dd=u do=n·

{
I ()a+1 ('\ a} 0:+1= L -- ~ + 0l~I [Since Lna = _x_ + O(XU

). by theorem 3.5.5
d<x a + 1 d d). n'§;, a + 1- ) :

xHere take in place of x \and. 8 iq.place of -n.]
d , \

5
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= x
a
+
1
( x1-(a+l) +S(a+l)+o(X-(I+a»)' +,0[xa(x1-a)+s(a)+'0(_1)]

a+l 1-(0.+1) ), 1-0.' xa

1 I-s 1
[Since L-s = ~ + ~(s)J+ 0(-. ), byTheorem 3.5.3, take d in

n:sx n 1- s x
place of n and (a + 1)' In place of' s
and for the second part take a in place of s.]

= -x + x
a

+
1

s(o.+l) + x
a
+

1
"O(x-(l+a»)+ o(_x_+xa~(a)+xa(o(_l_)JJ .

0.(a + 1), a + 1 '1 + a ' " II-a x a ,
\ "xa+1 XI-(tHI) 'xa+1 .x-a xa+1,x-a -x

[Since --. , - -- -- =]
, a + 1 1- ( a + I) a + 1 - a, - 0.(0.+ 1) 0.(a + 1)

- X xa+1 - ~
= +--s(a+l)+O(1)+O(xB) where~=max.{I,a}

0.(0.+1) 0.+1
[We know that. (i) x. 0(+) = 0(1). So xu+I.O(x .(I+U)= 0(1).

Also constant x.O(l) = 0(1). Last term of above step= o[_x_ + xaS(a) + 0(1)]
I-a

, = O(x) + O(XU)+ 0(1) = O(xi3),
where ~ = max{l, a}

xa+1 ,
-x + --(;(0.+1) + 0(1) + O(x13)

0.(0. + 1) 0.+1
. a+1

= O(x) +_x -S(a+ 1) + 0(1) + O(x13),
0.+1

a+l '

= _x_ S(0.+ 1) + O(xp) [Observe [O(x) + 00)] + O(xp) = O(x) + O(xp) = O(xP) 1
0.+1

, " ' (;( a + I) a+ 1 [1) ~ r:l. }Hence we proved that .L..O"a(n) = .x + Otx" wnere I-' = max{l, a ,
, l1oSX

/
, 0.+ 1

4.2.5 Theorem: If ~ > 0 ami 8 = max{O, I-~}, then for x> I, we have

{
SW + l)x + O(XO) if ~:f: J

LO"-I3(n) = . ' .
nsx S(2)x+0(logx) If~=l

Proof: Case-It): Let 13:f: 1 and x > 1.
; . , '-1

Consider (Y'f3(n) =Z:d~~-= L~
din dl".,d

:' , . -:.'. I' "I' " "

Now! Lcr-l3~n)=LL~ '
, nsx nsx din d
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=L:L:i- = L~Ll.
d s x 0<'" d dsx d iJ'<~-d . - -d

= L i-{~+ 0(1)}. [Since L 1= [~J= ~ + 0(1) ]
dsx d d ""<X d d.

v-d

. . 1 1
= xL~+I /3.0(1)

ds;x d dSx d

= xI+'O(I~)...(i) (say)
dsx d dsx d

= .xl XI-(~+l) \ ~(~+1) + O(x -~-l)l + o[ x I-~ + ,w) + o(x-fl)l ... (ii) (say)
1 - (~ + I ) . J 1 - 13 J

[Take d in place of nand 13+ I in place of a, .in theorem 3.5.3 1

i-[3

= ~ + x.'(~ + 1)+ x.Olx -[3-1 )+ O{O(x 1-13 )}

-~ .

1-5 .

ISince ; _ ~ + s(~)+ O(x -~) = ol~I':'P ) (verify !) ]

x 1-[3 + x.sm + 1) + o(x -13 )+ o(x HI)
-13 '.

. 1-13

= O(x I-~) + x.'CI3+ 1) + O(x -(3)+ O(x l-~ ).ISince ~~ = O(xl
-
p)]

= x.,w + 1) + O(x HI) + O(x~) [Since O(x I-il) + O(x I-p) = O(x 1-13) and O(x-~) = O(x I-(3)J

Therefore Ia -II (n) = x.,W +1) + O(x~-i3)= x·s(13+ I) + O(x -) where 6 =max {13,1 :'13}
nSx

[Since O(x'-Il) = O(x6), where 8 = max lb, 1 -13}(verify!)]

Hence the result is proved for case-( i): 131= 1., .

Case-(ii): Suppose 13 = 1. Put 13 = 1 in (i) of the above part, then we get

La_l(n) = xL~+O(L~)'
n sx dsx d- dsx d

[Next we use the following;
I x I-a.. . . . -;

(i) By Theorem 3..5.3, L ~ = --=- + 'C,0) + O(x -a.)
Il:;~n 1 a .

. Take d in place of nand .?- = 2 in the first term. Then
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I_I = X
I

-

2

+ ~(2) + O(x .2) == =-!. ~ ~(2; -+- O(x .2)"
d~x d 2 1- 2 x

. (ii) By Theorem 3.5.1, I~= log x + C + O( +).
Take d in place of n for second term of the above.]

x( ~1 +s(2)+O(x-2)) + O(logx+C+O(~»)

= -1 + x.<;(2) + x.Orx") + O(logx + C + O(~»)

= -1 + x.~(2) + x.0(x·2
). + O(\og x) .'

., . (log x + C + 0(1») [ ]
[Since lim ' = 1, we have 10gx+C+O(:) =O(logx)]

x-+ro log x .

= -1 + x'9(2) + 0(+) + O(log x) [since x.Orx") = .0(:)], .

= -1 + 1<;(2) + O(log X! [Since 0(+) + O(1og x) = O(1og x}]
= x.~(2) + O(1og x) (since, constant + O(f(x» = O(f(x»)

Thus if f3 = }, we have I (J~p(n) ~I(J_I (n) = x.~(2) + O(1og x).
nSx n5x

X 1-11 () ( ).Self Assessment Question 3: Verify -- + s(l3) + 0 x -13 . = Ox 1-13
1-13

Self Assessment Question 4: Verify O('K1'1] = O(x" where S= max{fJ, 1 - jJ}

Self Assessment Question 5: ~erify 0(+) + O(iog x) = Oilog x)

4.3 THE AVERAGE ORDER OF <p (n)

4.3.1. Note:

(i). Consider f /-l(~) . Since /-l(n)::; 1.by the clef.
11=1 n

of Mobius function, /-l(n) < l..
n2 - n2 .

Therefore f /-l(~) is absolutely convergent.
11=1 n .

(ii) f /-l(n) = _1_ = ~.
11=1 n2 <;(2) 1[2.

(iii) Similarly I/-l(n) =! _. 1_
n=1 n" :, :9s) .1

[Proof is out or the scope of the book].

. /

..
j

.; ."',; , ;.
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4.3.2 Theorem: (i) ~ f.l(n) =~' + O(xl
-

S
) and in particular

\ ~ ',', rl:;;ic nS t;;(s) ,

(ii) I f.l(~) = -; +0(+).
nsx n rt

• / , OCJ ~l(n) 1 '
Proof: (1) By the above Note 4.3.1, we haveI-- = ---,

11=1 n S ~(s)

=> L f.l(n) + L f.l(u) = ., 1_ => I ~l(n) == _1_ - L f.l(n)
nsx nS n>x nS t;;(s) usx n" - t;;(s) "n>x n" .

\

. ,

Therefore I f.l(~) = _1_ + O(x I-S).
n:O;x n 's(s) ,

1[since juri) ~ 1 andI-
s

= O(x1
-
S

) (by Corollary 3.504)]
- Il>xn

(ii) Take s = 2 in (i), then

L f.l(n) = _1_ + 0(XI-2)

nsx n2 ~(2)

6 . '" 1 'n2

= -2 + 0(+). (since ~(2)= L'-2 = -). This completes the proof.
n' " ' 11;1 n 6

. ~" ,: ,:: -'.{, <
-. -I"

4.3.3 Theorem: For x > 1, we have

(i) I <pen)= ~ X2 + O(x log x); and (ii) The average order oi cp(n)'is 3~ ."
nsx 'n _ ;,1 , rt

" 'n ' nProof: We know that cp(n)= Lf.l(fJ: - => LCP(n) = LLf.l(d). -;-. [By Th. 1.5.14],
din I d nsx n s;x din d ' , ,

Then Icp(n) = ILf.l(d)8 (Here 11 = d 8)

= IIl(dlI8
ds x li~1-

xu+1
[Now we use Theorem 3.5.5, Inc< = ,--) + O(x<X).]

\ ' Il"X ' a+ 1 ,

If.l(d){~(X'J2+~(~J} = ~ L~(~)-;;o(x L~(d)J
dsx 2 d d 2 dsx d dsx d

\

[~owwe'use, fqf.r\ term: above The6rem 4.3.2 (ii) use d in place of r::",

"

/
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'~,

for second term: 1J.l(d)1< 1 ~, IJ.l(d)I s .!.
d' d

=> o(x ~ /-t(d)J = o(x L:~J
d$x d, d$xd

X2(6 0' i)' ("IJ /F2 -2 -y-~~) + 0 x 4..t-
11; , dsx d

3x 2 'x t ;
-,'-2 +--2' .~(+) + O(x[log x + C + 0(-;)])

7t '

[Since I.!. =lvgx+C+ O(~),byTheorem3.5.1J
n$Xn

3x2
= - + O(x) + O(x log x + xC + 0(1))

'n2

3x2 -

-, + O(x) + Otx log x)
7C

3x2
= -2 + O(x log x).

n
(ii) The average order of <pen)

, 1 n

<pm)= -L:<p(k)
n k=1

= .!.I <p(k).
n ksn

3x2
Therefore I <pen)= -2 + O(x log x).,

nsx 7t

1 [3n2 "l _ 3n '= - -2 + O(n logn)J -:-,-. + O(1ogn)
n n ' 7t2

<pen} L (!~) ,'L O(logn)
Consider Lt -- = t t.:\ + t {J

n~oo (~~) HOO ~7J n-w;i

(
O(IOgn)j' '= 1 + Lt .n- = 1 + 0 = I

n-->oo 3n J

3n
Therefore by the definition of average order, w:e:~et that average orderof <pen) is -2 .

7t

~.J.
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4.4 AN APPLICATION TO THE DISTRIBUTION OF LATTICE
POINTS VISIBLE FROM THE ORIGIN

4.4.1 Definition: Two lattice points' P and Q are said to be mutually visible if the line segment
which joins P and Q contains no lattice points other than the end points P and Q.

4.4.2 Definition: A lattice point Pea, b) is said to be visible from the origin if the line segment
joining the origin and the point P has no lattice points other than origin arid 'P.

4.4.3 Example: (1, l ), (2, 3), (3, 2), (2, I) are visible points from origin. (2,2) is not a visible point
from the origin.

4.4.4 Theorem: A lattice point (a, b) is visible from the origin ~ a and b are relatively prime.

Proof: Suppose (a, b) is visible lattice point from the origin.
Now we have to show that a and bare relatively prime. Suppose (a, b) = d. ------

In a contrary way suppose that d > 1. Then, (~,~) .is also a lattice point, on the, line segment, d d _

joining (0,0) to (a, b), a contradiction. Therefore-d= 1.
Hence a and bare relatively prime numbers. '-',

Converse: Suppose (a, b) =1. In a contrary way assume that (a, b) is not a visible point from the
origin. Then there exists a lattice point say (a', bl

) on the line segment joining (0, 0) and (a, b).
This means there exists a rational number t with ° < t < 'I such that a I = ta and b-I= tb. (Note that
t can not be an integer). Suppose t = rls where rand, s ate integers (r, s) = I=and s -:t:- 0.

Then a1= ra , b' = rb => s / ra, S / rb (since a', bl "are integers)
s s

=> s / a, sib (since rand s are relatively prime numbers)
=> s = I (since g.c.d of a and b is 1)
=> t = r and so t is an integer, a contradiction.

Therefore (a, b) is a visible point from origin.

4.4.5 Theorem: Two lattice points (a, b) and (m.in) are mutually visible
¢:::>' -a - m and b - n are relatively prime.

"-
Proof: Suppose (a, b) and (m, n) are mutuall-y visible,
¢:::> (a - m, b - n) and (in -m, n - 11) are mutually visible (by shifting the origin to'(~n»

¢:::> (a - m, b - n) and (0,0) are mutually visible
¢:::> a - m, and b - n are relatively prime (by Theorem 4AA)"

This completes the proof.

4.4.6 Definition: For any r > 0, let N(r) be the number of lattice points in'the (square) rex: y) / lxi,

Iyl:::; r} and Ni(r) is the number of the lattice points which are visiblefrom the origin. lim Nl(r¥
n--)-oo N(r)

is called the density of the lattice points visible from the origin.
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4.4.7 Theo'reni; The set of lattice points visible from the origin ha~ density ~.
11:

the lattice point (a, b) isvisible from the origin
"

" Proof: We know that, by Theorem 4.4.4,
are relatively prime.
Part-(i): To find Nl(r):

(-1,1) (1, 1)

Fig - 4.4.7 A

(-I, -1) (1, -1)

Let r ~ 1 and S, = {(x, y) flxl S; r, IylS; r}.
\

r~------------------~
.....•:~:~

2-+---------...",,;.;·;;;;:.~{i.~~~;·
-:~:~:~:~'::~:~:!:!:~:~:•.:.:'::~:

r '

1

-I 2

-1
r

/

r I Fig - 4.4.7 B I-r

The notation used is ( ,
-N.,(r)T the number of lattice points in the square S. , ,
l\('(r) = .the number of visible lattice points-from the origin inthe.square S.
If r == 1, then S, contains the eight visible iattice points from theorigin, these are

(1,1); (0; 1), (0, -1), (0, -1), (-1, -1), (-I, 9), (-1, ''1), (0, I)

~ a,b
(

,'rJ..'
"' \.
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Therefore N(1) =8 = N1(1). Observe the figure. in general (for any r) . .
Nl(r) = Number of lattice points visible from the origin in S, + 8 x (number of lattice points is the
shaded region of the figure)

= 8 + 8 x (number of lattice points in {(x, y) / 2 ~ x ~ r, I ~ Y ~ x} that are visible;
from the origin)

= 8 + 8 x (number oflattice points in' {(x, y) Y 2 ~x s r, I ~ Y s x} such that x, y
are relatively prime) (by Theorem 4.4.4)

= 8+8 Lq>(x) (x,y)= 1
2$X$\,

. . n

= 8. q>(1)+8 Lq>(x) [We know that <p(n)= II.:::> <p(l) = 1]
2SxSr k=1

(k.n)~1

Here we use Euler's totient function.
r

= 8. Lq>(n)
n=l

" {3r
2

.}. .= 8. ~<p(n) = 8 7+0(rlogr) (by Theorem 4.3.3)

24r2
= -- + OCr log r)

1t2
'. I. 24r2

Therefore N (r) = -2- + O(rlog r) ... (i)
1t

Part-(ii): (To find N(r)): Consider the part of'Xvaxis and part of Y-axis inside Sr.

~ 2[r] + 1 points on this line

rr1
? -

1 -
0 I' 2

,
-1-

-rrl

+- Similarly 2[r] + 1
points on X-axis

I Fig - 4.4.7 C I

These two contains 2[r] + 1 integers.
So the lattice points are (2[rJ + 1),x (2[r] + 1) = (2[r] + 1)2 in number.

. 2 2 2Therefore N(r)= (2[r]+ 1) =(2(r+0(1»+ 1) =4r +O(r)
Therefore N(r) = 4r2 + O(r) ... (ii)
Part-Illl): From (i) and (ii) we get

"

~-l:·.(1 jf i :=..,

\~~. .~,"./
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'Nl(rr _~ 2:2
2 +',O(rlogr)62 +O(lo~r) , " . N1(r), .-; +0 6

= 1t , (1) " Now lim --' = 1t - -2 " »:

N(rf, , 4r2 + OCr) 1:+0 r r4ao N(r) " 1+ 0 rt /'
6 ' ,

Hencethe density of lattice pointsvisible from the origin is -2' Hence the theorem.
1t

4.5TBE'AVERAGE'·ORDER O~ J.L(n)AND A(n)

4.5.1 ' Note: (i) Finding the averag~ order~ ~f' J.l(n) and I\(n) are more difficult than thatof 'Ij>{l'l)~"
, and the divisor function. It is known that J.l(n) has average order 0 and I\(n) has the average'

orderI. ,~•• <

That is., lim -!- ~ J.l(n) =- 0 and lim J " 1\ (n) = 1
. x-+~ .£..J x-eec x £..J .

nsx nSx T

(ii) These results (given (i) are equivalent to the prime number theorem lim n(x) log x = 1 where,, ' ~~ X ,)
1t(x) is the number of primes ~ x.

~.6SUMMARY
In this ,lesson, an attempt has been made for findingaverage.ordersofcertain .arithmetie-

functions: Mobius, Liouville's, Euler and divisor function. Also provided applications, computing
techniques involving arithmetic functions, particularly to· the distribution of lattice points, visible
from the origin ",

4.7 TEC~NICAL TERMS
\

Lattice point: Coordinates (d, 1) in the plane, wh
integers.

!:':J fare both

Dirichlet Asymptotic formula: Ld(n) =xlogx+(2C-l ),x+O(Fx),
I1$X

where C IS the Euler's constant x ~ 1.
·i,

Average order of aa (n) :
=:

a> 0, a;t I, f3= {l , a }.
\

The averageorder of <pen) : 3~ ' (Since L<p(n) ==, 3
2
,X2 +0 (x logx).)

It nsx1t. " " ,

Visible from the origin: Lattice point p(a, b) is said to be visible from' the
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Density:

origin if there are no lattice points on the segment PQ.

lim' N I(r) where N(r) = number of lattice points in
n~<xo. N(r)

{(x, y) / lxi, Iyl «; r}; Nl(r) = number of lattice points

which are visible from the origin.

. ,i

.\

4.8 ANSWERS TO,SELF ASSESSMENT QUESTIONS

1: Since [x] ~ x, we have ([:])~ 1, for any x. So [x] = O(x.)

Therefore in particular we have O(h") = [ ..Jx].
xTake y =-.
d

Consider lim y+ 0(1) = 1 + lim 0(1) = 1+0= 1
y-WJ Y y-w; y'

This implies O(y) = 0(1) + y. We know that [y] = O(y)
Therefore [y] = 0(1) + y .

# ", ~

(

.. :~ . ",

2: Suppose flx) = 0 ( Jx )
f( ) x f'(x)

=? + < M for some constant M > O. => Fx .f(x) < M => i < M.

s:
=> x- f(x) =0 (Fx). That is., x- o();:) ~0 (Fx).

I"" -._ ~.

3: Consider

l-~
_x-+sG3)+0(x-~)

. 1-~ .
lirn I_~'
x-trJ) X

1 1--+0+0=--
l-~ l-~

4: For this consider.. 1 - P «; max {P, I - ~} = 3.
I

I-~

~ lim~ ={O if 1- ~<8.x->oo X
. I if 1 - P = 3. .:

'.. \.
..
"
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5: limH)/logx = lim 1 = O.
•••.• cc ,-.'" x log x

,
So : = O(log x) ~ 0(+) = O(log x) ~ 0(+) + O(log x) = O(log x).

4.9 MODEL QUESTIONS

I. Define lattice point. Show that if d(n) is the number of positive divisors of n , then for any x ~ 1
we have Id(n)= x log x + O(x).

n:Sx " .
"".12. State and prove Dirichlet Asymptotic formula.

\\
3. Show that if cr(nYis the sum of the positive divisors of n, then for any x z 1 we have Lcr(nf'=

n:Sx '.'"

t.(2).x2 + O(x log x).

" s(ex + 1) In"4. Show that if x z 1 and ex >0, ex;t 1, then .L}Ia (n) = .x'" + Otx'') where p = max {l, d}.
n:Sx ex + 1

5. Show that for x > 1, (i) L<I>(n) = -;"Xl + O(x log x); and
nsx 1t

3n(ii) The.average order of <I>(n)is ? •

1t-

6. A lattice point (a, b) is visible from the origin <=> a and b are relatively prime.
'"it;
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• 'I. ,-•• THE·PARTIAL SUMS OF A
DIRICHLET PRODUCT

Objectives'
~

The Objectives of this lesson are to:

• understand Dirichlet product
• to know applications of Mobius function J.i(n) and Mangold's function I\(n)

• analyze the partial sums of a Dirichlet product

Structure
5.0 Introduction
5.1 The partial sums of =.t Dirichlet product
5.2 Applications to f.L(n)and I\(n)
5.3 Another identity for the partial sums of a Dirichlet product .
5.4 Summary
5.5 Technical terms
S.6 Answers to Self Assessment Questions
5.7 Model Questions
5.8 Reference Books, ,

5~O INTRODUCTION
In the previous lessons we derived some elementary identities involving Jl(n) and I\(n)

which are useful to study the distribution of primes. Now we obtain them from a general formula '
relating the partial sums of arbitrary arithmetical functions f and g with those of their Dirichlet
product f * g. We examine the applications to J..l(n)and I\(n). We observed that the factorial of
integral. part of x ;:::1 is· the product of primes, called the Legendre's identity. We use Euler's
summation formula to determine an asymptotic for log [x]! and find another identity for the partial
sums of a Dirichlet product.

5.1 TH}'; PARTIAL SUMS OF DIRICHLET PRODUCT

5.1.1 Theorem: Suppose f and g are two arithmetical functions and h = f* g, the Dirichlet
product of f and g.
Suppose F(x) = L f(n), G(x) = Lg(n) and H(x) = L:h(n) .

. n~x Il~X • n~x

Then H(x) = "f(n) G.(A) = "g(n) F(A)L.. n ~ n
n~x nSx

~.!'. .1' ,. '.', '.
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Proof: We know that (f* g)(n) = 2)(d) g(~) and (fo g)(x)::::: 2)(n) g(~)
d~ n~

Now f, g and h are arithmetical functions.

. {o if °< x <}Consider the function u(x) = .
. 1 if x ~ 1

We have to prove that H = fo G = go F.
Consider F(x)::::: ,Lf(n) :::::If(n) u("*") = (fou)(x)

n:5x n$x

G(x) = Ig(n).l = Lg(n)u(-;;-) = (ge ujfx) (i) and
nsx nsx

H(x) = Ih(n) = Ih(n) u("*") = (hou)(x) (ii)
nsx nsx

Consider (f'e G)(x) = [f'e (go u)](x) = [(f* g) 0 u](x) (We know that in general go (h e t) = (g *h)» t)
= (h 0 u)(x) (since h = f* g)
= H(x) (by (iij).

Therefore H(x) =(foG)(x)
Consider (goF)(x) = [go (fou)](x) (since f'= fou)

= [(g*t)ou](x)= (h e uux) (since h=T+g) = H(x).. {

Therefore H(x) = (f'e Gjtx) = (goF)(x). Hence H = foG = g e F.

5.L2 Corollary: If g(n) = 1 for all n, then G(x) = [xJ.

Proof: From above G(x) = Lg(n) = Ll = [xJ.
n:Sx nS:x

5.1.3 Theorem: If F(x) = Lf(n), then LLf(d) = Lf(n)[.;] = LF(;).
nsx nsx dln ns x nsx

Proof: Consider the statement of Theorem 5.1.1.
Take g(n) = 1 for all n. Then by Corollary 5.1.2, we have that G(x) = [x] (i)
Theorem 5.1.1, says that H(x) = Lf(n) G("*") = Lg(n).F("*") , (ii)

nS:x n:Sx

From (ii) H(x) = Lf(n) G(-;) = Lf(n).[.~] (by' (i) (iii)
n$x n:S;x

From (ii) H(x) = Lg(n) F("*") = L1. F(~) :(bYdef. g) = LF(;) (iv)
IlS;X n sx n-sx

See statement of Theorem 5.1.1, H(x) = Ih(n) and h v f= g.
n:Sx

Now h(n) = Lf(d)g(1-) = If(d).} (sinc~ g(n) = 1 forall n) = L){d) (v)
din din . din

Therefore H(x) = Ih(n) = IIf(d) ... (vi) (from (v»
-nsx nsx din

From (iii), (iv), (vi) we have that
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IIf(d) = I[(o)[-;J = LF(-;).
nsx din nS- I nsx

Hence the Theorem.

..

5.2 APPLICATIONS TO Jl(n) AND I\(n)

5~2.1Theorem: For x ~ 1, we have
I~(n)[~]= 1 and- LA(n)l~] = log([x]!)
n';;x

'-
(These sums are regarded as weighted averages of /.L(n)and A(n)).

Proof: From Theorem 5,1.3, we have
L2)Cd) =~)(n)[f,-] = I/(fl) ".(i)
nsx din nSx IlS,

Part-(i): In Lf(n)[-;] = LLf(d), fen) = ~l(n).
nSx . nSxdSn

Thenwe ha"ve~fl(n)[{-l ~ ~(t:fl(d) J

,L[~]= [!]+ [!]+ ... + [_1] = 1+ 0 + ... + 0 = 1
.n s;x n .1 2 . [x]

theorem 1.5.7 and by definition of Ifn) )

Therefore .L /l(n )[-; J = J.

(Sincb2>(d) ~ I(n)·~ [:] (by
din. , . ',' .

n5"x

Part-(ii): We know that Mangoldt function /\(n) ={ log p, if n = pm, m z 1<and
- 0, otherwise.

Taking fen) = /\(n) in (i) we get"', .
LA (n)[-;] = LL/\ (d). .
nsx li~x din

= Llogn [by theorem 2.2.3] I

nsx

= log 1 + log 2 + ... + log [x]
= log(l x 2 x ... x [x])
= log([x]!)

5.2.~ Theorem: Legendre's identity: For every x ~ 1,we have [x]! = JlpU(p) where.the product
pS~

is extended over all primes ~ x and a(p) = :t[~].
1n=1 P

, • .1- ,

,'.' .

Proof: We know that
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{
log P if n = p,m for some prime p, m ~ 1

/\(n) =
\., 0 otherwise

Consider, log([x]!) = L/\ (n)[~] (by Theorem 5.2.1 part (ii»

= IflOgp[ ~n] [since /\(n) = 0 if n:;t:pm for some m]
psx mel P

I[(f[~]JIOgp] = Iu(p)logp, where a(p) = f[~].
pSl< m=l P pxx mel P

= LIOg(pa(p)) =IT (pU(p)
p="x pSx

Therefore log([xJ!) = logI1~a(p)) => [x]! = rr~(l(p»)
pi;x psx '

\

, I !l(n) !l(1) 1 !, !l(n)Proof: Suppose x < 2. Th.en -- = -, = - = 1 and so.' , -' -,-: = 1.
, " " to' " 'n 1 I " , '. n

nSx "

Assume tha~/x ~ 2. , "
For any real y we use the notation: {y} =,y - [y].
(clearly 0,< {y} < 1) then ~ ~'Eyl+ {y} " ,
We have 1 = L!l(n)[;l (by, Theorem 5.2.1, weighted a','erage of !f(n)

n$x

= LIl(n)(* - ~}} = XL /len) - ~!l(n).{~}.
nSx n$~ n I;ISX n

~ x L,Jl(n) = 1 + L.Jl(n}{x}
n$~ n n="x n '

~ x I !l(q) , = 1+ I~(n){~}'
nS'x n \1$'" n

= l+{x}+ I .~(n)!:}".,:
2$h$x t"

s 1 + {x} + b Jl~(~)k~}'I':t:r'
2$n$x ,. t.n, ~J1

= 1 + Jl(~0'~} + L Jl(n){ x},,.'11 , 2Sn$x n
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2~n~x
n is square free

(If n .is not square free then /-L(n)= O.= 1 + {x} +

,ffn is square free, then lu(n)1 = I(± q = 1] ; '.

Now, I {~}= {~} +/{~}+ ... + {~}
zsnsx n 2, 3 Jx]

/

s 1 +) + ... + 1 ([x] - 1 times) (since {y}:S; 1 for all y) = [xl-l

xiI ~L(;n) ~ 1 +{x} + ([x] - I) = x ~ 1 + x -[x] +[x] - 1 = x
In:5x n

Therefore

(Since {x} = x - [xl)

Therefore x I ~t(n) s:;x.
nsx n

Hence I /-L(n) ~ 1.
. . nsx n

5.2.4 Theorem: For x ~ 2, we have
log [x]! = x log x - x + O(log x) and L/\ (n)[~]= x.log x - x +Q(log x)

ii~x

Proof: By Theorem 5.2.1, we have L/\ (n)[-~] = log [x]!

= log(lx2x ... x [x]) = log 1 + log 2 + ... + log[~]= ~logn ... (i)
o:S,X. . '

Now let f(t) = log t be a function having continuous derivative in [1, x] for any x ~ 1.
By Euler's summation formula:

I [(n)= f f(t)dt + l' (t - [t])fl (t)dt + f(b)([b] - b) - f(a)([a] - a)
a-cnsb o: 0-..

we have, Llogn = 110gtdt +J(t-[t])fl(t)dt +([x] -x)1ogx-.([l] -l)l'qg 1
l-cn s x } , ""- ..

'------------

= [tlogt - t]~ + 1(t -[t]) dt + O(log x) (ii)
. I t

(i) fl(t) = (log (tj)' = ~; (ii) 0 < I[x] - x] < 1
t

=> I([x] - x) log x] < log x ~ ([x] - x) lo~ x = O(1().~~)]

[Since

Now 0 S t - [t] < I => t -t[t] < i => J. (t -tlldt < f ~dt ~ log x (since .'?g" 1 ~ 0)

'1-[(t-[t]) r-l-(t-[t]) _ ...
=> dt < log x => dt - G(log x) (111)

tIt ".: .
I

and [tlogt - t]~ = [x log x - x] - [l.log 1 - 1] = [x log x - x] + 1 (iv), '

From (ii), (iii) and (iv) we get,

6)
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I '

~)ogil = (x log x- x + 1)+ O(log x) + O(log x)' ~'x log x - x + O(log x)
l-cnsx " , ' ,

Since log 1 = 0, we have ,:2:logn = I logn.
I<n~x nSx

,So, i ~)og;n/ =x log x -/x+O(log x).
, n«l '

'By' (b we have L/\ (n)[-;] = Llogn
n s x n.5'x' '

Therefore" LA (n)[-~]= x log x:x + ()(:log x).
nsx -

This completes the proof.
~' ,

5.2.5 Theorem: For x ~ 2 ,wehave~[: }Ogp= x log ~ + ooo where the sum is extended over

all primes p:::;x.
Proof: By Theorem 5.2.4, we have L/\ (n)[~] = x log x - x + O(log x) I

n:S;x

. ." {IOgp if n= p'Lm z I
We know that Mongoldt function 1\ defined by A(n) = . . i ' '" ' ,° otherwise

SO, LA (n)[~] = Lt, A(p;nl ~n],,(~ith,~~l:::;x) '1"'~,,, "

nsx ps x m=1 t p

~ ~~(lOgP)[;'] (with,pm,;x)

~ ~(Iogp)[~l+ ~t,(lOgP) [;.] (with pm:5 x)

=> ~qogp)[7l~ ~A (n)[;:-]- ~~(lOg p) [;. J :--,--------,----- (!)

Note that all the' following p 's are with pl11:::; x.
:'

Consider It (log p) [ ~II ,J,$b'I (tog p)~ (since [~]:::;x)
p~.'c11I-2 P pSX ~,=2 P

~~(lOgp{~ ~a

,"

'-

..•. i

~ x~(lOgpt(pl~ I,) (~sing G:p'- formul~)

,',,-y;. ,,': .: .~r.:::; x'L )og n :::;,x-i:' log n .
nsx n(n -1)n=2 n(n -I)
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Therefore by this ratio test; it is clear that ,t logn converges (verify !).
, n=2n(n-l),,'

So this sum is finite quantity.

'Therefore from the above we get that X(L: log n J = Ofx) ' (ii)'
n sx n(n -1), _

, '

We know that by Theorem 5.2.4, LA (n)[~] = x log x - x + O(log x) - (iii)
n$x

From (i), (ii) and (iii) we get
,L(logp)[~] = (x log x - x + O(log x) + O(x)
p~x

Hence

= x log x + O(x) + O(x) + O(x) = x log x + O(x)

[Since log x ~ x => log x ~ I log(x) = O(x) -=> O(log x) = O(O(x» = O(x).]
x

L(Iogp)[~] = xlogx+O(x).
p:5x

/

'-' logn
Self Assessment Question 1: Verify that L: converges .

n=2 n(n-1)

5.3 ANOTHER IDENTITY FOR THE PARTIAL SUMS OF
A DIRICHLET PRODUCT

5.3.1 Note: (i) (Refer Theorem 5.1.1) The statement is as follows:
If h = f* g, the Dirichlet product of f and g, F(x) = Lf(n) , G(x) = Lg(n) and Htx) =

nSx nSx

Lh(n) .
n:5'x

Then we have H(x) = 2)(n) G(~) = Lg(n} FJ~)
n~x n5x

(ii) H(x) = If(n) G(~) = IIf(d) g(~)
nSx nSx d~

Self Assessment Question 2: Verify H(x) = Lf(n) G(-;) = LLf(d) g(~), by taking x = 3.5
ns x nSx din

(iii) H(x) = 'L:If(d) g(~) = Lf(d) g(~) = If(d) g(q).
nsx din nsx qdsx

din

, 5.3.2 Theorem: Let F(x) = If(n), G(x)'= Lg(n) and
n5x n:$x

H(x) = ~)f* g)(n). If a and b are positive real numberssuch that ab = x, then" '
. nSx •.
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If(d) g(q) = IfCn) G(-;) + Ig(n)F(-;) - F(a)G(b).'
qdsx usa nSb .

q

b1-----11--~

Proof:

Fig - 5.3.2

~------~-----7do a

ByNote5.J.l(iii),wehav:e H(x) = If(d)g(q) ... (i)
qdsx

The curve is for ab = x. Observe the Fig-5.3.2, given here.
All the d, q participated in the sum on right side of (i) satisfy, dq ~ x.

So the point (d, q) lies below the curve. The point (d, q) participated in the-sum of (i) are lattice
points belongs to the region A or B or C.
We split this sum into two parts, . one part over the lattice points III AuB (that sum is

i
IIf(d)g(q) ) and
d:Sa q:s~

the other over the lattice points in Bue (That sum is . I,4:f(d)g(q) );-'
q:sbd<X' . ' ":-d

The lattice points in B are covered twice (That is, in both the parts) so we have to subtract the sum
over lattice points inB. [(That sum is I If(d)g(q» and the other over the lattice pointin Hue

dsa xq:5-
q

(th~t ~u~ is (II f(d)g(q» .. The lattice points in B are co~ered twic~ (that is, in both the parts),
. ' q:$bd:s~ !, .' ,., . , , .

sowe have to subtract the sum over latticepoints in B (that sum is L If(d)g(q})]
d~a qsb . '

Hence H(x) = If(d).g(q)
dqsx

r:>

= I If(d)g(q)+ I If(d)g(q) - IIf(d)g(q) (i)
d<aq<"- q<bd<"- dsa q:Sb' "'.

- -d - -d

If(d) Ig(q)+ Ig(q) If(d) - If(d)Ig(q)
d:5a. q:5-J:"'. qsb d:5~ dsa q:Sb

'.'

If(d).G(t) -+- Ig(q).F(!) -F(a)G(b) <>.

d:S. g:Sb
By replacing d by n in first term, q by n in second term, we get

= If(n}.O(~),' +<Li(n).E(~:"F(a)G(b). .
n:Sa ' nsb. " .',',',

This completes the proof of the theorem.

):i .. ',.
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5.3.3 Pro~lem: Prove that L )..(n)[*] = . [ .Jx ] where )..(n) is the Liouville's function.
. nSx .

Solutlon: Theorem 5.1.3, states that LL)(d)= I/(n)[-;] (i)
nsx din _ nsx

In this, take fen) = "-(n).

Then RH.S= L"-(n)[~]
11$,

= LL,,-(d) [by (i)]
nsx d]»

= ~(prd))= I 1 (by reason (ij))
nSx

n is square

.[Reason(ii): .L"-(d). = {ol' if n is a square (by Theorem 2.3.4 of Lesson-2) ]
din otherwise

.= [ ..rx] (by reason (iii)

...~ , " '

[Reason (iii) :',Note that the number of squares ~ x are 1, 2, ... [Fx ] ].

Hence L,,-(n)[-;] = [.JX] where A, is the Liouville's function.
nSx

5.4 SUMMARY'

In this lesson, we obtained some identities involving arithmetic functions. An exercise has
.been made in the partial sums of-arbitrarily arithmetical functions f and g with their Dirichlet
product f* g. Further applications of ~l(n) and /\(n) were identified. We also proved the
Legendre's identity, the computation for factorial of an integral part of some greater than or equal to
1. Some related consequences also obtained.

5.5 TECHNICAL TERMS

Legendre inequality: For every x ~ 1, we have [x]! ~ TIpCX(P) and
psx

/ ,'.\" .
j ~ ~ \

Partial sums of a Dirichlet product: H(,x; ~L;·(~)G(.~) :~,-2:g(n~_F(4J:{~he~:~,~
nSx nSx"

.' .

', :-.

,.
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are arithmetical functions, h == f* g, F(x) = If(n) ,
n$x

G(x) = Lg(n) , H(x) = Lh(n)
n:S;x

5.6 ANSWERS TO SELF ASSESSMENT QUESTIONS

1: Now we use ratio test:

Let U, =e . leg II and U
o
+

1
= _l~g(n+ I)

-n(n -1) n(n + 1)

1· U n.,ol _ l·clog(n + 1) n(n - 1),. lcgm + 1- n) ( 1)=> Im---··- 1m x = liln x n-
n->oo -U n 0-+'" n(n + 1) log n .' \ 'H'" (n + 1)'

== ljni' log(1) x (n -I) = lim O.(n -1) = o.
.v4oo (n + 1) 'HOC (n + I) .

Therefore b~ ratio test, it is clear that t log n converges .
.' . - n=2 n(n-1)

2: Take x = 3.5 then n = 1,2,3

L.H.S =Lf(n) G(*) ~ f(l) Ge/) + [(2) GC/) + [(3) Oej5)
n~x

= f(I)[g(l) + g(2) + g(3)] + f(2)[g(l)] + f(3)[g(l)].

R.H.S = LLf(d) g(-})
nsx din

= f(l)g(l) + f(1)g(2) + f(2)[g(I)] + f(l)g(3) + f(3)g(l) = L.H.S.
'-.r---" v " v '
p = Iease n=2 case . n=3 case

I

5.7 MODEL QUESTIONS

1. State and prove Legendre's identity.

2. For x ~ 1, show that L~L(n)[~] = 1 and L/\ (n)[*] = log([x]!).
n sx

3. For x ~ 2 ,we have L,[.~]10gp = x log x + O(x) where the sum is extended over all
fl~X p

primes p s x.
4. For x 2 2, show that log [x]! = x log x - x + O(log x) and.
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LA (n)[~l~x log x ~x + O(1og x).
nSx
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LESSON -6

SOME EUEMENTARY THEOREMS ON
. :,';

THE DISTRIBUTION OF PRIME NUMBERS

Objectives
The objectives of this lesson are to:

• understand the notion n(x)

• observe therelations between \jJ(x) and9(x)
• know the relations between g(x) and n(x)

• identify the equivalent forms of prime numbers

Structure
6.0 Introductlon
6.1.C;hebyshev's functions \jI(x) and g(x)
6.2. Relations connecting g(x) and n(x)
6.3~ Some equivalent forms of the prime number theorem
6.4 Summary -
6.5 Technical terms
6.6 Answers to Self Assessment Questions
6.7 Model Questions
6.8 Reference Books

;( , f'·";

6.0 INTRODUCTION
Let x > O.and n(x) denote the number of primes not exceeding x. We"kherwtllat,-the

number of distinct prime numbers is infinite. So n(x) ~ oD as x ~"'? Inspection of tables of
prime numbers led Gauss (1792) and Legendre (1798) to conjecture that n(x) is asymptotic to

_x_, that is., lim n(x)logx = 1. This conjecture was first proved in 1896 by Hadamard and de,
log x x->oo X . .

leiVallee Poussin and is known as the Prime Number Theorem .

. We obtain some results relating to 9 (x) and n(x), which are useful in showing that the prime
number theorem is equivalent to the relation: lim (g (x)/x) = 1.

X-)OO'" ;~'i!f, ,:.,~
This lesson is mainly concerned with elementary theorems on primes.' We.s);1o:y,that .the

prime number theorem can be expressed as several equivalent forms. For example, we will show
that the prime number theorem is equivalent to the asymptotic formula .

.~;...!~JJ~~~ :"'",~~~f
_ L/\(n) = x as x~lid.



6.2 Some Elementary Theorems on: .. D.P.N.I
:·t~~.." 1,;". .-

C~BYSHEV'S FUNCTIONS \jI(x) AND g (x)

s. "\~', ··,~·;~~,~\·~1-(·.-
'~"~J.l Dt"q.hlUol1:For x > 0, we define n(x); by n(x) = L1, where the summation is over all

\" psx

;, prlm~s.p ~~. (That is., n(x) denotes the number of primes not exceeding x. Here rr(x) ----t x as

". \·;t:/f<//., ,;:,;'. . " ..
M"'(I~J~lQ~"i"(jon: For x > 0, we define Chebyshev's ur-function by the formula ",(x) -- L1\ (n)

.' " ,;,'. .: '.\.".':" ... , nSx'! -,

. ; . /: ''''~;'.':I.

[W~ kno\,V, that the Mangoldt function /\(11) is defined by
~(n){ Ipg'p if n ~ p~, p is prime

.0 otherwise
", " . -' ~. -.\~ .'-¥:" . ,~ .

" ~;1~3,Noi~:Since /\(n) = ° unless n is a prime power,

l, '~l~).=iA(n) = f L/\ (pill) (since /\(n) ~ ° if n * pm)
." "n$:x - rn e l pll\SX

<T;

= L L log p ,where p is a prime number.

[The number of m's that satisfy p'" ::;X is finite,
Hence the sum 011 right side is a firiite sum]

00I: Llogp
m=l p~xl/m

\'/ -. '. X. o;

,A" S~flA~~psilJelltQuesti()1i1: Verify L Llogp = L Llogp
m=1 p<;x1/m m s logj x p~xl/m

·cJJ

L L1ogp,
In :S log2 x p~x!lm

.... .'~.•'"'. ~<d·,.·.. .-:r:,

Hence ''lI,(X)= I I log P .
m s log2 x p~xl/m

,:..
",~, .;.,.. {/r~j:...-. \

',< 6~J.4:Dinnition: If x ~ 0, we define the Chebyschev's g function by the equation

:~fiogp': ~here the sum ~ms over all prime numbers pless than or eq~al,to ~''-.i :'.',

p';X
. '.~- .; :,;?,/{ ....;;' " .

-.(i.~.5«((elation between \j1(x) and 7(x»:

g(x) =

We kno~ th~t,by 6,1.3, \jJ(x) ., I I (log p]
III ~ iog2 x p~xl/lll
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.. ' .
: ,~ "

= I 7(X1/m} (by Definition 6.L4)
,m $log2x

Theref~~e'~(x) = L 9'(X1/m).
: ' " '; , "m S log2 x

6.~,.,6Theorem: For any x ~ 1, we have

t\!l(~fJ ',it ';9'(xllm)= 9'(X)+ :7(XI/2) + ... + 7(X1/m) wherern = (,lOgXJ = 10g2 X.
,.,mSloS2x ' ,:,' :' 10g2

Proof ,We know that
\!I(xrt,'~A (n),' = Q if n is not equal to power of a prime.

Llog p , if n = pm where p is ~ prime _number.
nSx ', , '"

~ \!I(X~_'tlogp '(p is prime)
Ill;! p'" $;~

/

= f 9'(~m) = 9'(x)+J(XI
/2) + ... +7(xl/m) + ...

, rrt=! '

If x < 2, then' x ~ 1 and so 9'(x) = LI<?gp = log I= O.
pSI

So 9(x) = 0 if x < 2.
i'his senesonme right has non-zero terms, if (xl

/
ll1

) ~ 2
log x ' ' r log x ] ,

~ m~-- => m~l--.
, 10g2" ~', .. .log Z ,J " "

Therefore o/(x) ~ ?( ~)+ 9(xl/') + ... + 7(xlim) where m ~ [:::;] =Iog-x. \

\\a: , ,
Inother words, \!I(x)= L __;7(xl:llI), il

" .: m $ log2 x -I
I

6.i.7 Theorem: (i) For x> 0, we have
, (log X)"o ~ \!I(x)/x - J( xl/x ~ -'~''-=-~-

" ' 2.rxJog2

(ii) lim{.(\!I(x)lx)- (9'(x)/x) } =0
, X~OO'

(iii) Ifone of \j/(X)/X or7 (x)/x tends to a limit then so doestbe other. Also the two limits are
~q'ual. ,"

Proof: By.Theorem 6.1,6, we have

\jI(X) = I
m s lug2 x

n, (X1/m) __ n( ,
j '/ x}

" t .?.,"
,;
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=> \jJ(x) - '7(x) =
2:<:;m:<:;]og2 x

From the definition of .9 (x), 'we have 7 (x) = L logp where p is a prime number. Consider 9

(x) = Llogx

= log I + log 2 + ... + log p + ...
(sum runs over all prime numbers sx)

~ log 1+Iog 2 c+ .•• + log [x] (slim runs over all positive integers ~ x)
::s; log x + log x + ... + log x (since log a::;: log b if a ::s; b)

[x] log x ~ x log x (the number of terms here is [x])
Therefore 7(X) < x log x (ii)
From (ii), we have 7(XI/Ill)::s; x 1/1ll.log X Inn ......••. ~•• (iii)
From (i) and (iii) we get

O < (x) r>() "7, (Xillll)_\jIx-/x= L

,'.'. ' -I

, -"I

::s; LXl/11l1ogxlilll
2s:mS-;lo~hx

, J

s L fx logfx (verifyl)
2smslog, x

s (Iog2X)( ~ log~)

(Observe I y = I y =, y + y + ... + y ([a] times) = [a] y ~ay),
2Smsa lSIll~! a I

j

( log x '\ I
= 1-- ! ""X {logx

~log2)

~ (21~g2 J Fx(logx)' ~ (lo;I:~;
(logx)"Fx 1

Therefore 0 ~ ( \v(x) - g(x) )/x = -
210g2 x

"j j' (logx)2=> 0 ~ \jJ(X) x - lex) x = I "
2"" x log 2

This completes (i ).

I W [log x ]'
(ii) By taking x ---+~~we have "II x ---+ and so ~ O.

\ 2";; log2

Hence we have 0 <:;, lim (\jI(x) - 7(X)/X = 0
x...,>oo

; '~

i

This shows that lim (\jJ(x) - 9(x»/x = 0
x-+oc

(iii) If one of the limits tends to a limit, t\;en
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0;:; lim (\j1(x) - 7.(x»/x:: lim \jJ(x)! x, - lim 7(x)/x
. x-+oo X-+IJC" '~'l..

~ lim \II(x)/ x = Urn 7(x)/x
x-+oc X-+ClC'

!

Self A ssessm ent Question 2: Verify LX 1.11 log x I III s LFx log Fx for m ~ 2.
~~I\\~lng. x ~'5m:Slug2 x

'6.2 RELATIONS CONNECTING .9 (X) AND n(X)

6.2.1 Remark: The functions mx) > I I ,and 9' (x) ;:: ~)ogp are step functions with
ps.\. p is prime pSX

jumps at prime numbers. Observe the following:

Primes 1t(x) • . 7(x)
,

x
Osx<2 Nil 0 '0
2<x<3 2 I ' log2
3~x<5 2,3 2 log 2 + log 3
5sx<7 2,3,5 3 ! log 2 + log 3 + log 5
7 < x< 11 2,3.5.7 4 i log 2 + log 3 ..•.log 5 + log 7
IISx~13 2,...3. S. 7. 11 . 5 ! log 2 + log 3 + log 5 + log 7 + log II

i -
'.'
:.',

~.2.2 'l:'beorem: Abel's Ide~tity: For any arithmetic f~nction a(n), define •\ .
'A(x) =:La(n). where A(x):: 0' if x < I. Assume that f has a continue derivative 'on the interval

nsx

[y, x], where -.O <y < x. 0 Then we have
.,. . .... • "1-

,; :La(~)f(n) = A(x)f(x)- i\(y)f(y) - fA(t)f'(t)dt .
. .fens",· . l
'>Pr~~(:S~ppose [y] = k and [x] ~m so that A(y) = A(k) and A(x)/= A(rn).

-' ~ .. -.
In

;~sider ;La(p)f(ni = La(n)f(n).
". Y<II::;~' n~k+1 .

IBy the definition of A(x) we have a(n}:= A(n) - A(n - I)]
"m . /' .

- .2:{A(~)'''''~(n ,1)}f(~)
, n-k+l ..' ,

\, •...\

'.

n1 . InI ~(n)f(n)- LA(n -I)[(n)
n=k+1 n=k+1

m m-t- L A(n)f(n) - LA(n)f(n + 1)
'. ~k~ n~

, ,
I, .
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~ L?:.~(n)f(n)+ A(m)f(m)} {A(k)f(k +1) + ,,~~(n)f(n + I)}
m-I

LA(n) {fen) - f(n+l)} + A(m).f(m) - A(k).f(k+l)
nek-e l

m-I +1 . "

= - IA(n) f f '(tjdt + A(m)f(m) - A(k)f(k + 1)
n=k+1

[Since f+' fl (t)dt =[f(t)]::TI = f(n+ I) - fen), we have

fen + 1) - fen) = f+lfl,(t)~it =;>[(n) - fen + 1) = - f+' fl (t)dt]
,r"., 11l-1 +1L f A(n)fl(t)dt + A(m)f(m) - A(k)f(k + 1)

n=k+1 .

.rn+I ) - .

- - L r+/A(t)f1 (t)dt + A(m)f(m) - A(k)f(k + 1) : (i)
n=k+I -

(If n< t < n + 1, then A(n) =A(t»
Since m = [x] . there is no integer lies between m and x.
Therefore A(x) = A(m).

Now A(x)f(x) - £ A(t)fl (t)dt = A(m)f(x) - £Atrnjf ' (t)dt
-J-

= A(m)f(x) - A(m) ,ifl (t)dtIn
= A(m)f(x) - A(m){f(x) - f(m)}

, = A(m)f(x) - A(m)f(x) + A(m)fCm) = A(m)f(m)
Ii.
=> A(m)f(m) = A(x)f(x) - £ A(t)fl (t)dt (ii)

And also we have k = [y] so that A(k) = A(y),

Now r+1
A(t)fl (t)dt =,[+1 A(y)fl (t)dt

o «+1
= A(y) ~ fl (tjdt

= A(y){ f(k+ I) - f(y) l .
= -A(y)f(y) + A(y)f(k + 1)
= -A(y) fey) + A(k) f(k + 1)
= -A(y)f(y) + A(k)f(k + 1) (since A(y) = A(k»

=> A(k)f(k + 1) = A(y)f(y) + [+1 A(t)f' (t)dt (iii)
. 1 .

From (i), (ii) and (iii) we have
~

m-I +1 I

La(n)f(n) = - L f A(t)fl(t)dt +lA(x)f(x) - 1A(tJt(t)dt}
y-cnsx n=k+1 'IY"I' '

- {A(y)f(y) + £+1 A(t)f' (t)dt }

o
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m-I +1, -y() , ,

[Observe that I r A(t)fl(t)dt = .LA(t)fl(f)dt]
n=k+1 '" k..• ,

= A(x)f(x) - A(y)f(y) -{ [+1 A(t)fl (t)dt + 1:1A(t)fl (tjdt + iA(t)fl (t)dt} ,
x. ,

= A(x) f(x)'- A(y)\(y) ~ r~(t~fl (t)dt .

This completes the proof.

6.2.3 Corollary: (Euler's Summation formula for Abel's identity)
If a(n) = 1 = U(n) for all n, then

.L f'[n] = [f( t)~t + [( t - [t])fl (t )dt + (y - [y])f(y) - (x - [x])f(x).
y<n~x "

IProo~:Let a(n) = U(n) = 1 for all n : " .. (i)
We know that by Abel's identity, )(..

Ia(n) f(n) = A(x)f(x) - A(y)f(y) - [fl (t)A(t)dt
y<n~x ' "

~
= [x]f(x) - [y]f(y) - [fl(t)[t]dt.

" (Since A(x) = Laln] = L 1 = [x], Similarl~ A(y) = [y])
nsx nsx

Since a(n) = 1, we have 'If(n) = [x]f(x) - [y]f(y) - £fl(t)[t]dt " .. (ii) ,
ycn:5x , ' ,

By using integration by parts, we get

ftfl(t)at,:;:[tf(t)]~ ,,[f(t)dt = (xf(x) -,yf(y» - [f(t)dt

~ [f(t)dt = xf(x) - yf(y) - ~tfl(t)dt : " .. (iii)

Subtracting (iii) from (ii), we get '

Lf(n) - [f(t)dt = [x]f(x) - [y]f(y) - [fl (t)[t]dt - x-fix) + yf(y) + [t fl (t)dt
ycn:5x

= ([x]-x)f(x)+ (y -[y])f(y) + [(t:--[t))f1(t)dt

(Take the L.H.S. second termto right side)

~ ' Lf(n) = ([x] - x)f(x)+ (y - [y])f(y) + £(t - [t])fl (t)dt + [f(t)9t. .
y-cn s x •

6.2.4 Theorem: Iftn.n*,:2:2,!wehave '(a) '7(x) = n(x)log x - f n(?dt 'and
'1- .\ '

(b) 1t(x) = [.9 (x)/Iog x] + r [.9(t)/(t log2t)]dt
!1..
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Proof: (i) Assume, aln) = {Ol if n is a prime number 1 ••••••••••••••••••• :. (i) , c"

, " other wise ' .' "-

We know that A(x) = l:a(n) = l:I = n(x) (that is the number of primes ~ x)
n s x p5X ' ';';"

=> A(x) = n(x) . ~.. , (ii) -
=> Ia(n)logn = Ia(p)logp (since a(n)=O if n*p,aprimenumber)

l<n5x I<p~x
~)ogp (since a(p) = 1 if p is prime)

lcp s x

I log p = .7 (x) (iii)
p5X

Consider the Abel's identity given in Theore~ 6.2.2,

Ia(n)f(n) = A(x)f(x): A(y)f(y) - f A(t)f' (tjdt ,
ycn$x

Take log n in place of fen) and y = 1.

Then Ia(n) log n = A(x)log x + A( 1jlog 1 - f A(t) log' (t) dt.
lc n s x \.

! .:'

......

. '
\', .

,.:' z
I"::

" '\ '.. ',

=n( x) log x + 0 - f n( t)tdt ;.,. (iv)J', '
(use A(x) = n(x)"logi(t) = l/t, log' 1= 0] ,

From (iii) and (i~), we have ,.57(x)= Ia(n) logn = n(x) log x - r n(?dt ~
l cn s x

~r1t(t)dt '" , .
Therefore g (x) = rr(x) log x - .12 --. [Since t < 2, the number of primes less than 2 = n(t) =

'l- t, , .:

)
0.]

{
I if n is a prime

(b) Consider a(n) as above, that is.;-1(n)= '0'
, ' ' otherwise

Let b(n) = a(n).log n. -Now n(x) = I·I = Ia(Jifl
p s x n s x ,~

= l!{-l) t Ia(n) = 0 + 'La(n)
1.5cn5x 1.5<n~x

';' d'>·

.:

, .,"",
,,"!,.

Thereforentx) = La(n) ~ (i)
1.5<n:Sx

•..•.•f-. r . -t. t;5;' :

Consider 9(X) = Llogp = Ll.logp
p5X p=:>x
~a(p)logp = ~a(n)logn (since a(n) =0 if n is not prime)! ,! on';)":
ps x n5x.Z

s

,-, ." ', -:
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Therefore 9(x) = La(n) logn = I b(n) (ii)
n s x n~x "

,Now consider the Abel's identity, 1.-

Ia(n)f(n) = A(x}f(x) - A(y)f(y) - [A(t)fl (t)dt where A(x) = La(n).
y<n~x l

Take b(n) in place of atn) and _1_ in place of [(x) and y = 3/2.
, log x

'1 ,I J ( 1 )1Then we.get I b(n) - =A(x) - - A (f) ~ - r A(t) - dt.
3 log n log x log~2) .IJ/2 log t
2<n~x I

=> 2:_a(n)logn = A(x) _ A(312) + f _A(t) dt
~<n~x logn logx Jog(3/2) ,./tJog2t

[ Since b(n) = a(n)log n, (_1_)1
logt, '

_-_1~ = -1 )
t (log t? t log ' t

=>2:_a(~) = A(~) _, ~~3/7) + f A(t~ dt
t~i1~~' .Io~x .'·!e~(3,/T) 1~;tJog- t

I , A(t)=> n(x.)=;:9(x)/!ogx-O+ $' 2 dt ,
, t !q~ t

.( ,~im:e,-(i) 1t(~) = 'E~(n), (ii) A(x) = ~.~(n:) = 9.(x) (see (ii) ~bove)'
., l~ii'<x n s x ' •• '2 - '

t ' (iii) A(3/2) = :Lp,(n) =.:b(l) =a(Hlog 1 = ,0 )
n<.1

- 2
-/.. A(t)

Hence 1t(x) = vex) flog x +.r - "2' dt.
, ';). t log

"

.p:~.l:N,",~tr:y.;e know that *~epr:ime number theorem is : ,
.:II(lf'\ J!ilg,x, , (x), 1t X Jl

.'. Iim ,.~}~~~._:I. ~ L;;;:?.1Ii(?\) = a -- ,or - - -- as x ~ w'
'x~C() x, logx x logx

i6~3~2'F~.m~..~t¥g:~fi~tJpWiI1g~t~~p.1eTltSflre ~quivalent:
(a)li~n~~J..:~~~~ =f.1;l{Sg~;}im,[ J(x) / x] = 1; and (c) lim Vex) = l.

X4CC X ,x~cx) x ...•co X

, Proof: We know by Theorem 6:2.4 that
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~ .
!lex) = n(x) log x - r n~t)dt ....................................•.......... (i) and

n(x) = [!l(x)/logx] + r [!l(t)/(tlog2t)]dt , (ii)

and 0 ~ (\jI(x)/x) - (.!l(x)/x) s ~x)2. .. (iii) (by Theorem 6.1.7)
. 2 x logZ . .

(a) ~ (b): Divide by x on both sides of (i)
. . n(x) log x 1 £ n(t)Then we get !l(x)/x = - - -dt.

x x t

..~~ !l(x)/x = :~n;,n(x):ogX - :~~~ rn~t)d_t

= 1 - lim ~ f n(t) dt (since byIa) : (iv)
x-~oc x.h t

. n(x)logx
From (a) we have, 11m ' = J

X4CO X

1 1--<--
logt - 10g2 .

(ii) -J;. ..::; t ::; log -J;. s log t ~ _1_.::; 1,-- 1
log t Ipg-..;x

-I-

I fx I k--.' l dt + l dtlog2' . Jog..Jx x

= _1_ [t,]f -t- 1 [t]X
log 2 log-J;. fx.
-h.- 2 x - -J;. -J;.' x - E
--+ . <--+--=

log 2 log-h. log2 logE

:::> f _.1_. dt < _Fx_x_ + x - Fx = _Fx_x_+ x
.12 logt log2 log.[;. log2 10g.JX

1 ,1 1 . 1 1
. => - i-dt < + - C C~logt . .Jxlog2· log.Jx "\IX log "\IX

~

=> n(.x) = o(_I_J ~ fn( t) dt = o( r _I dtJ
x log x .h t .h log t

~ ~ ( C"~t) dt) ~ 0G r lo~t dt) (v)

f:l rlxl ~l
Consider'.'--·dt = 1--dt + r--dt.logt - logt JJx logt

< rJx_1_.dt + fr::- 1 dt [since (i)log2:::;logt for 2:::;t~-.12 log2 JJx log--Jx

Fx
log .[;.
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( J ( J
' ( '1 ( '11· 1 rId u I I' 1 I' I j=> 1m - J2 -- t :s; 1m + . 1m --- - 11m '

X~OO x logt x~<XJ fx log2 x~O':) logfx) X~<XJ fx logfx

=0+0+0=0

=> !~Cr lo~t dt) ~ 0 (vi)

From (v) and (vi) we get, lim (~ f n(i) dtI= o.
x~co x J2 t )

By substituting this fact in (iv), we get that lim (g (x) / x) = l.
x--'>oc '

This completes the proof of (a) ~ (b)

(b) => (a): From (ii) we have, n(x) = (.l(x) /log x) + r (g(x) / t log2t) dt

.. . log x
Multiplying on both sides by ,-- , we get

x
n(x)logx logx rx 2x= (g(x) / x) + .:.--;- .12 .' (g(t) I t log t) dt

1· ~(x)logx l' ( ()/) I' .Iogx r=> im im g x x + 1m--
x-~<XJ X X~'CO x~CX) X

. logx 1x
= 1+ hm--

X~<XJ X

loz x rNow we have to show that lim _0_

x -e eo x

(.l(t) / t log2t) dt (vii)

(J(t) / t log't) dt = O.

Now log x r o(t) dt = O(.10g x r~J (V111)
X J2 t log2 t,'X J2 log2 t

Consider r' dt = rIx ~ + f' ~
.12 log2 r 1 10g2 t JJx log2 t

:s; 1 2 r-lxdt + 1 _ f' dt [as in the above part]
(log 2) 1 (log fxy JJx
.,Jx - 2 x - .,Jx' -rx x - -r;.

= + < + ""''' : (IX)
(log 2)2 (log.,JxY (log2)2 (log.,JxY

From (viii) and (ix) we get that
10gx r~ = logx +. logx _ logx

X log ' t .,Jx (Jog2)2 (logFx-Y .,Jx (logfx)2

logx 2 2= ---''''---- + ~ 0 as x ~ gf:>.
fx (log2f logfx fx logfx· r.. '.

[ since log x = log( fx ,Fx) = 10gFx + logfx = 210gfx] .
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Hence xl~IO:X r 10;2 t dt = 0 (x)

From (viii) and (x) we get lim log x r (g (t) / t log't) dt = 0
x-+co x .!z

By substituting this fact in (vii) we get lim n(x )Iog ~ = 1.
x -+<Xl X

This completes the proof of (b) => (a)
(b) => (c): By Theorem 6.1.7, we know that

lim (",(x) _ (g(x) / x»= 0 ~ lim \jJ(x) = lim (g(x) / x),
X-+<Xl X x4co X x~oo

Therefore lim \jJ(x) = 1 ~ lim (g(x) / x).
x-+co x x~co

Hence the theorem.

6.3.3 Theorem: If P» denotes the nthprime, then the following three statements are equivalent: (a)

lim n;(x)logx = 1; (b) lim n(x}logn(x) = 1; (c) lim Pn= 1.
"X~CO x x-+co X . x-+co n logn

G· l' n(x)logx 1Proof: (a) => (b):- 1ven 1m = .
-- x-+co x

Taking "log" on both sides, we get
lim (log n(x) + log(log x) - log x) = log 1 = O.

x-+co

Dividingby "log x" on both sides, we get,

I· (IOgn(x) logilog x] IJ - 0 I' log ntx] + I' logllog x] - 11m + - - => 1m 1m - .
x -e-co logx logx x-+co logx x~co logx

. log nlx]=> hm + 0 = 1 => log n(x) ~ log x.
x-+co logx .

. logllog x) I' log y - 0)[Put y = log x. Then 11m --- = 1m -- -
x-+co logx Y-+<Xl Y

X
=> log n(x) ~ log x ~ n(x)

[since lim n(x) log(x) = 1
x-+oo x

=> n(x) ~ _1_ => logx ~ _x_J
x log x , n(x)

=> log 1t(x) ~ n(x)

=> Iim n(x) log n(x) = 1. This completes (a) =>(b)
x-+<Xl X
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(b) => (a):- Given that; lim n(x) Iogn(x) = 1.
x~oo x

Taking "log" on both sides' lim (logmx) + logtlogmx) - log x) = log 1 = O.
x~oo

Dividing by Iogmx) on both sides, we get

lim (IOgn(x) + lpg(logn(x)) __ lo~x 1 = 0
x -e-eo log nlx] log rttx ] kign(x))

=> Iim (I + log(logn(x)) _ logx ) = 0
x-')oo logn(x) logn(x)

=> lim log(log n(x )) _ lim log x = -1
x-,)00 log n( x] x~oo log n(x )

Therefore 0 _ lim log x = I
x=-s-co logn(x)

[Take y=n(x). Then lim 10g(logn(x))= lim logy =0]
x -,)00 log n(x) '¥~OO Y

~ lim 10g() = I -~log x -log n(x) as x ~~.
x-,) log n x

Given th t lim n(x)logn(x) = 1 => log n(x) - ~
x~oo x' n(x)

- , - , x" x
Therefor log x - log n(x) - n(x) ::::>' log x - n{x) as

complete (b) ~ (a). -
(b) => (c :- We know that n(x) =

x ~ t/>:=;> lim log xn(x) = 1. This
X~OO x

II= the number of prime numbers ~ x.
p:$X

Let Pn b the nthprime number. Then n(Pn) = n.
[since there are n primes which are ~Pnl

11'm' n(Pn) 10gn{Pn) = 1. .By takin x = p., we get
x~oo Pn

~ Ii
x-,)

n logn

Pn
[since n(Pn) = n] = 1

~ !im p" = 1.
x-H" n Iog »

() () G· , - I' Pn Ic =:> :- IV en - l Hl = ,
.... _ n-')oonlogn

Choose' such that Pn' ~ X <pn+l.

Now n( n) = n wherr-p, is the nthprime number,
Pn+l " "

Pn+1 is the (n + l)th prime number. So Pn ~ X :::;
/ '
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=> Pn
n logn

~ __ x_ < Pn+l
n lognn logn

=> lim Pn S; lim x·· S; lim Pn+l .
n~oo n logn n-Hoon logn n--toon logn

=> 1S lim __x_ s Jim' Pn+l
n-too n logn n--toon logn

Iby the given condition lim Pn = 1].
n--toon logn

Consider lim Pn-t:1
n~aoniogn

............................... (i)
= liIl1 Pn+l (n+i)iog(n+l)'

n~oo(n+-l)log(n+l) nlogn

= I' Pn+l li (n+l)iog(n+l)
im ( ) . ). im - ..

n,-+oo n s- l logtn+ l n-too n.log n

1. lim (n + I) log(n + 1)
n-too n log n

I In the given condition, take n + I in place

of n, then we get lim Pn+1 ]
. n-too(n+l)log(n+l)

=1.

Therefore lim Pn+1 = 1 -~- (ii)
n -too n log n

x
From (i) and (ii) we have 1 S; lim S; 1.

n-+O'.)n log 11

Therefore lim x. = 1.
n~oc n logn

[By the solution of n, we have pn S; X < PIl+1 => PII is nth prime and there are n primes before x
=> n(x) = n(Pn) = n. Also x ~~as n ~~]

I· x 1 I' ;r(x) log nlx ] r' Th' 1 fof'{cr ;=> nn = => irn =. IS comp etes the prooof (c) => (b).
x-+oon(x) logn(x) x-tr.c x

6.4 SUMMARY

In this lesson, we defined Chebysheve's functions ",(x) and g (x), and obtained some
inequalities involving Cbebysbeve's functions and Logarithmic functions. We .proved a Theorem
relates the two quotients 'V( x )/x and '] (x )/x. We also proved some identities namely, Abel's identity
and deduced Euler's Summation formula from Abel's identity. Using the notion.jtfx) {x > 0), (the

.number of primesnot exceeding x), some logically equivalent forms of prime number theorems
were obtained. We observed that \jI(x) is "about the-same as" {lex) in magnitude when x is large.
We formulated a theorem which relates the "prime number theorem" to the asymptotic value of the
nth prime.
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6.5 TECHNICAL TERMS

Chebyshev's 'V - function: The Chebyshev's ur-function given
by the formula \V(x) = L/\ (n), x> O.

n~x

Chebyshev's J - function: For x > 0, the Chebyschev's 9
function by the equation g(x) = L logp,

p$X

where the sum runs over all prime numbers p _
less than or equal to x

Abel's identity: For any arithmetic function a(n), define
A(x) = La(n), where A(x) = 0 if x < 1.

nSx

Assume that f has a continuous derivative on the
interval [y, x] where 0 < y < x. Then we have

La(n)f(n) = A(x)f(x) - A(y)f(y) - f A(t)fl (t)dt .
y<nS"x

Euler's Summation formula for Abel's identity: If a(n) = I = D(n) for all n, then

Lf(n) = [f(t)'dt + [(t - [t])fl(t)dt + (y - [y])f(y) - (x - [x])f(x).
y<n~x

Relation between \II(x) and9(x): \II(x) = L J(xl
/
m

).

m ~ log2 x

6.6 ANSWERS TO SELF ASSESSMENT QUESTIONS

1: Observe this sum. Consider the primes p involved in the sum. If xl/m< 2, then there exists no
prime p such that p:-=;xl/m< 2. Therefore the sum runs over all m such that xl/m Z 2. Now Xl/Ill

logx
2: 2 ~. x 2: 2111 => log x 2: log 211

) ~ log x ;::::m log 2 ~ -- 2: m ~ log, x 2: m or m s
10g2

1 12: For m zZ, we have -:-=;- ~ xl/llllogxl/lll:-=;XI/210gxl/2
m 2

X11m log x 11m :-=;"1/-;' log.[;. .
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6.7 MODEL QUESTIONS ., '.;

1. Define Chebyshev's .v function and prove (i) For x > 0,

Os \!f(x) _9'( x)/x S (10gx)2
x 2.J;.log2

(ii) lim (\!f(x)/x - 9( x)/x) = 0
x~oo

wehave

(iii) If one of \!f(x It...; or .9 (x)/x tends to a limit then so does the other. Also the two limits are
equal.

2. State and prove Abel's identity.

3. Prove that the following statements are equivalent:

(a) lim n(x) logx. = I; (b) lim7(x) / x = I; and (c) lirn Vex) = l.
x~oo' x x~O) x~'" x

4. If pn denotes the nth prime, then prove that the followingthree statements are equivalent: (a)

lim n(x) logx = 1; (b) lim n(x) logn(x) = 1; (c) lim . Pn. = 1.
x-~oo X X400 X X400 n logn
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··LESSON -7

.SHAPIRO'S TAUBERIANTHEOREM

Objectives
The the objectives of this lesson are to :

• learn about the notions 1t(n) and Pn_
• know about Shapiro's Tauberian theorem
• understand the applications of Shapiro's Tauberian Theorem.
• Appreciate the usefulness of asymptotic formula for the partial sums

Structure
7.0 Introduction
7.1. Inequalities for n(n) and Pn

7.2. Shapiro's Tauberian theorem
7.3. Applications of Shapiro's theorem

7.4 An asymptotic formula for the partial sums L(~J
p~x p

7.5 Summary
7.6 Technical terms
7.7 Answers to Self Assessment Questions
7.8 Model Questions
7.9 Reference Books

7.0 INTRODUCTION

Gauss and Legendre gave a conjecture that n(x) is asymptotic to xllog x. In 1896,
Hadamard and deVallee Poussin first proved this conjecture which is now known as prime number

1t(x)logx .. .
theorem, namely = I. In other words, pnme number theorem states that 1t(n) - n/log n

x
as n ---t«J. We deal with the inequalities for 1t(n) and pn to show that n/log n is the correct order of
magnitude of 1t(n). We obtain upper and lower bounds on the size of the nth prime. We discuss a
Tauberian theorem proved by A.N. Shapiro in 1950 which relates the sums of the form La(~)

n~x

with those of the form La(n)[xln] for non - negative a(n) and its applications in detail. We also
nSx

obtain an asymptotic formula to the divergent series I (1 / p) for its partial sums.
p~x

7.1 INEQUALITIES FOR 1t(n) AND Pn
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7.1.1 Lemma: 'If n is a positive integer, then 211:::;(211)CI1< 411.

Proof: Part-(i): In this part (by induction) we prove thatZ" :::;(2n)Cn for all positive integer n.
If n = 1, then (211)Cn== 2el = 2 ~ 2 =:211. ' .
Induction Hypothesis: Suppose (2k)Ck ~ z'.

C id 2(k+l)C' _ (2(k + I))! _ (2k + 2)! .ons} er (k+l) - - .
.. , (k+l)!(k+l)! (k+l).[k!](k+l)(k!)

(2k + 2)(2k + 1)[(2k)!] _ (2k + 2)(2k + 1) (2k)!
(k + 1)2(k! k!) - (k + 1)2 (k! k!)

(2k + 2)(2k+ 1)(2k)C (2k+2)(2k+l)2k(b I d '1H hesis)k ~ 2 Y n uctio ypot esis .
[k + 1)2 [k + 1) .

= 2 (k + 1)(2k + 1) 2k = i+1 (2k + 1) > 2k+11 = 2k+1
(k + 1)2 [k + 1) - .

This completes the proof of part (i).
Part-{ii): Now we prove that (211)CI1< 4'1.
Consider 4n = (2)2n= sum of binomial coefficient for index 2n

= (2n)Co + (21l)C
I

+ ... + (21l)CIl + ... + (2n)C1n > (2n)Cn .

This completes the proof of part (ii).

1 n 6.n
7.1.2 Theorem: For every integer n ~ 2, we have --- < n(n) < --

6logn log n

( I. n(n) log n 6)or - < <6 n

Proof: Part-(i): By Lemma 7.1.1, we have 211:::;(2n)Cn < 411.
By taking "log" on both sides, we get 11log 2 :::;logCZnCn)< n log 4

=> n log 2 :::;log(2n)!) - 21og(n!) < n log 4 (i)

[since logCZnCn)= 109( 2n! J = log(2n!) - log n! - log n! = log 2n! - 210g n!]
n!n! .

ByLegendre's identity, we have [x]! = I1pa(p), where a(p) .; t[ :]
pS:X m=l P

=> n! = ITpa(p) where a(p) = f
L
r 1~1]'

ps n 111=1p

If pm> n, then 0 < p: < I=>[ ~l Jl = 0 => a(p) = L p~n
P 111=1

pl11<n ".
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[
IOgn]

logp [ ]
=> a(p)= L :.

rn e l P

logn[Now pll1<n => m log p < log n => m < --
logp

=> m S logn]
logp

. [IOgn 1

. Therefo're n! = [lpa(p) where a(p)= IrJ
[ ~l] (ii)

p s n ill=l P
By taking logarithm on both sides, we get log n! =. La(p)logp (iii)

psm

Part-Ill): By substituting (iii) in left side part of (i), we .get

n log 2 $ La(p) logp - 2 L a(p) logp
pS2n pSn

""' ..
,''4-,

..... r['~:g2pnJr2 ] n:::;][ ]\J
: ~ n log 2 s L l L -;- log.p - 2 Ll~L : Iogp [By using (ii))
~ ps2n m= l Lp .' psn 111=1. P

. .

~ .' . -

[IOg2n] .
=L II([~].,2[~])IOg p .

Pill pm
m=1

( Reason: ',If pill> n, then r~]= o. SoLpm
[ ::: ~ J r n ] ._ [ 1~:g2pn] [' n ]L --;; - L --;; .The newly added te~s

111=1 ~p m=l P
are equal to zero J

[
IOg2n 1

logp J
$ L L(1.logp) =ps2n m=1

'" flOg2njlOgp h [2] 2[]L. [since for aryy x, we have t at x - . X
pS2nL logp

. .'. (2n (n JJ :is either 0 or LThercfore - - 2 - $ 1]m 11/. '. P .p.

~I log 2n == 1t(2n).log 2~.
" pS2n

T~erefore n log 2 $ 1t(2n).log 2n.

(the number ofp\imes $ 2n is 1t(2n)]
...
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nlog2 2n log2~ re(2n) 2: = --
log2n log2n '2
log 2n 1 1 2n : :

~ re(2n) 2: ,- = - "" " " :(IV)
log2n 4 4 log2n .

I log2 > _1 I'[since log 2> -. we have
2 2 4

Case-(i): Suppose k is an even number, Then k = 2n for some n:

F (iv' (k 2' 1 2n I k I k .rom IV) re ) = n( n) 2: - 2: - -- 2: - -- .
4 log Zn 4 logk 6 log k

f I k. . . .There ore - -- ~ reek) IS true for all even mtegers k : ': {v}
6 log k , '

Suppose k is odd: Then k = 2n + 1 for some n.

Consider n(k) = re(2n+ 1) 2: re(2n) > i, 211 (by (iv)
4 10g2n

1 2n 1 211 2n + 1> - = - -- --,-----:-
- 4 log(2n+l) 4211+1'log(2n+l)

12k 2n 2
2: - - -- [for any n, -- 2: - I

4 3 log k 2n + I 3

= ~ _k_ (vi) ,:
6 logk .

1 k
From (v) and (vi) we get that, for any integer k 2: 2, we have - -- < n(n).

6 logk
Part-(iii): From (ii) and (iii) we get that I

rIog2n 1 [IOgn ]

log(2n)! _2 log n! = L L l~ J[ 2:] log p _ 2 :L l~ [ : ]lOgp
p:52n m=l P psn m=l P ,

2: I [2n]10gp_ 2 I[~]lOgp
p:52n P p:5n P

~L [2n]10gp_ 2 L ,[:110gp
pQn p p:52n t' J

L ([2n] - 2[E.]Jlogp 2: L ([2n] - 2[E.]JIOgp
p$2n P P n cp s Zn p p

L 1.10gp [for those primes p with n < p < 2n, [2pn] - 2[pn] = 1
n <p:52n ":.~~~c-L'>~:. \;1

. '.',

, ~.

I' 2n k '

'4 (2n + 1) logk

(verifylj]

Ilogp - ~)ogp
p:52n p:5n

" ••.~ 'l"

" . ''--. ~.
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(By definition of .9(x) = I~ogp (p is primej]
p~x

Therefore g(2n) - g(n) ::; log(2n)! - 2Iog(n!) < n log 4 (by (i)
=> g(2n) - g'(n) < n log 4. .

Taking n = 2r in this inequality.we'get
g(2r+l) _ g(2r) < 2r log 4 = 2r.2 log 2 = 2r+1log 2 -,

k k
=> I (g(2r+l) - g(2r» < I2r+llog2

r=O r=O

= Y(2n) - g(n).

=>9(2k+l) - -9(2") < (~: 2) (t.2 '+1) ~log2(2k+' - 2) < (log 2).2k+2
~ 2k+'log 2_

=>7(2k+1) <2k+2 log 2 (vii)(since g(2o) = log 1 = 0)
Select k such that 2k::; n < 2k+l.
Then we obtain g(n)::; g(2k+l) < 2k+2 log 2 (by (vii)
::;4n log 2 / [ since 2k ~ n, we have 2k.4 ~ n.4 =>. 2k+2~ 4n)
=> J (n) ::;4n log 2 ......................................•..... (viii)
Part-(iv): If 0 < a. < 1 and n" < ps n, then log n" < log p
=> log P > log nCL

•

=> Ilogp> , IlognU
= login") II

nU cp sn nU -cp sn nU -cp s r.

•~ log nul L1- L 11 ~ log n"(,,{n) - ,,(n"))
p s n P$llu j

= (n(n) - n(nCL »·log nCL
•••••••••••••••••••••••••••• (ix)

Therefore (mn) - TI(nU»- log n" < "2:)ogp (by (ix)
nU<p~1l ','

< Ilogp = 9(n) ~ 4n log 2 (by (viii)
p:;n

Therefore (n(n) - n(nU» log n" s 4n log 2
=> n(n) log n" s 4n log 2 + TI(nU

) log n"

=> TI(n) < 4n log2 + TI(nU)
log n "

< 4nlog2 +n" [since n(nCL)=nU]

- o.log n

!

.,.~~.-~,
:; ;.

= _n_(410g2 + {logn)n
a J =

logn ex, n
_n_(410g2 + (Iogn))
logn ex, nl-a

- ,",-:; .
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Therefore 1(n) < _n_(410g2 + (Jogn)j\ .. (x)
logn a: nl-a,

If c> 0 and x ~ l.-then the function t{x) = x'c log x attains its maximum value at·' x == ellc

, " I" .1 1 e-I, 1Therefore' x'c log x ~ max value = (e:I")"L Iog(c I~) = e ..•..Iog e = - = -.
c c ce

C ITherefore x' log x ~ -" , __._(xi)
ce

Taking ex. == ~ in (x) we get
3

() ,n (410g 2 log n )run <-- +
logn 2/3 nl-:-(2/3) !

= -n-(610g 2 + IOgn)
, logn nl/3

= -n-(610g2+~)
logn e

\
(S' logn, .\/31 3 (b ( .»]

IDee ril/3 =n Og\,~ te - -; y xi .

< _n_(6).
logn

6n
Therefore n(n) < --.

, logn
This completes the proofof.this theorem.

Self Assessment Question 1: Verify that[ 2; ] -2 [ ;] ~ I for primes p with n <p 52n .

• r' I' ,
7.1.3 Theorem: For n ~ 1, then nthprime pn satisfies the following inequality
n logri . 12-~ < p, < 12(n log n+ n log '-)6 e

Proof: Part-Ii): Let k = pn is the nth prime
=> n(k) = 1t(Pn) = n ,: ;.. (i)

By Theorem 7.1.2, we have that

n <1t(n) < ~ ,ii)
-61ogn logn ' ,

Taking n = k on the right side part of (ii), we get {use (i) also) ,
6k 6p "

n = reek) < __ = n
logk log p.;

6Pn ' nlogPn' n log n. => n <:: => pn > > -~
log p., 6 ' 6

[Observe the table N 1 2 3 4 5 6,
Nth prime 2 3 5 7 11 13
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Clearly Pn> n => log Pn > log n ]
n logn n logn

Therefore Pn> or < p, : (iii)
6 6 . "

This completes the proof for the left hand part of the required inequality.

Part-Ill): Consider the left part of (ii), That is., n < n(n).
610gn

, Take n = k in this inequality. Then we get

n = n(k) > k' Pn (since by (i), we have n =n(k»
610g k 610gPn

> p.,: 6' 1=> n => n. ogn p, > Pn
610gPn

=> pn < 6n log pn :.., , (iv)
, '. 1

From the proof of the Theorem 7.1.2, we know that xTog x::;; - (v)ceo
. Taking c ~ -21,we get X-1/210g x::;; /e => log x < 3.

2 .r;. ~e

Taking x = pn in this we get

"logPn 2 1 2JP:r::-. ::;;- => og p, ::;;--
v'Pn e e

<,

. 6n.2'[p;
By using (iV)~ get, Pn < 6n log p, ::;; e

c: 121
=> v'Pn < e

L" Taking "log" on ~oth sides, we get ~ log p" < log n + lOge: ) (vii)

From (iv) and (vji) we get that
pn < 6n log p, < 6h (2 log n + 2 loge 12/e»
=> p, < 12 (n log n + n logt lZze)

This completes the proof of right hand part of the required inequality

(6n).25:=> (6n) log pn ::;; .
e

12n r::-=> pn < -v'Pn
e
\

7.2 SHAPIRO'S TAUBERIAN THEOREM
, ': 1

7.2.1 ResultrShowthat "- L/\ (n) ~ I as X0()' is equivalent to prime number theorem.
x nsx

Proof: Result·6.'L2· shows that

\jI(x) = L/\ (x) (Here /\ is the Mongoldt function,
n!>x

/\(n) ={IOgp
'0

if n == pm (p prime)
otherwise
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Result 6.3.2, states that the prime number theorem is equivalent to lim 'V(x) = l.
x -700 X

Now x x
Now ,,~ L/\ (n) = \V(xl ~. 1 as x ~~"is equivalent to prime number theorem.

x nSx __x
. . 1 .'.

7.2.2 Note: Consider - L/\ (n] ~ I as x ~ oc ' (i)
x nsx . •

Theorem 5.2.4 states that :L.>\ (n) [r x] = x log x - x +O(1og x), , (ii)
nSx ,n - .

Both sums (i) and (ii) are weighted averages of the function /\(n).

Each term A(n) is mu1tipl ied by a weight factor : in (i) and by [:] in (ii),

Theorems relating to different weighted averages of the same function are called Tauberlan
Theorems.
Hence forth, we present the Q:~ofs for important results only.

7.2.3 Theorem: Shapiro's Tauberian:- Suppose {a(n)} is non-negative 'sequence such that

• e ",

La(n r~] = x log x + O(x) for all x ~ 1.. ..... (i), then
n$x tn . -

(a) For x ~ 1, we have L a(n) = log x + 0(1).
n

[In other words, in (i) if we remove square brackets then we get La(n)~ = x log(x)'+ 6(x) and
rrsx n .

divide by x to get I a(n) = log x + O( I)J.
nsx n

(b) There exists a constant A> 0 such that Ia(n) :S;A(x) for all x z 1.
nSx

(c) There exists a constant B > 0 and xo> 0 such that Ia(n) ~ B(x) for all x > Xo·

nSx

Proof: Write Stx) = Ia(n) and T(x) = Ia(n f~] ; (i,i) .il).· ..

n sx . ns x 'Ln
Part-(i): In this part we prove that Sex) - S(1) ~ T(x) - 2T(t) ....,..::.... :','", ....(iii),

• ., ,1 (', _., , ~,

,-

.' i
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Ia(n {~] - 2 Ia(n {~]
n<x 1n x 12n
- n~- '2 '

-Ia(n {~] + Ia(n {~]. - 2 Ia(n {~]
x t n x . 1 n x 12n

n~- -<n~x n~-
2 2 2

~ ~a(n{[~]-2[2:J) + ,La(ot]
ns-> . -<n$x2 2

= 0 + x La(n{~] = x La(n{~l [We know that [2y] - 2[y] = Obrl which is ~ O.
-<n$x -<n~x2 2

Taking y = ~ in this we get [~] ..:2 [~] = 0]
2n n 2n

[since [~] = 1 as (i) i < n ~: < 2=> [:] ~ 1
x
-<n~x
2

&(ii) n <.x => : > 1 => [:J 2: 1 ]

= L:a(n) - 2:a(n) = Sex) - s{-~J
xn~~
2

=> T(x)- 2T(1) ~ Sex) - S(1) or Sex) - S(1) ~ T(x) - 2T(-}) (iii)
Part-(ii): In this part we prove (b).

In the hypothesis, it is given that l~a(n{:J = x log x + O(x) for all x ~ 1... (*1)

T(x) - 2T(1) = 'Ia(n {x] - 2 La(n {~]
n~x 1n n~x 12n

= (xlogx+'O(x)-2 (i10gi+o(i)) (by(*l»)

,xx ' (x)= x log x + O(x) = 2-1og- - 20 -
., .' .: 2 . 2 2

= (x log x + O(x}) -.(.x log x - x log'2) - O(~) [, since 2 ~ log ~ = x log ~
2 2 ' 2
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= x (log x - log 2) = x log x - x log 2 ]
= x log 2 + O(x) + O(x) = x log 2 + O(x) = O(x) log 2 + O(x) = O(x) + OEx) = O(x)

Therefore T(x) - 2 T(t) = O(x} .. , ; (iv)

From. (iii) and (iv), we have that O(x) ~ 'I'(x) - 2\T(t) > Sex} - S(.~.)

=> Sex) - S(1) < O(x) = kx for all "x, where k is a constant:

In this, take in place of x, the expressions, x, ~, -;- ...2 2
Then Sex) - S(.t) < kx; Sex) - S(.t) - SCx2) < k ;;

s(;,)-S(;3 ) < ~ 2
X

' "sc~ )-SC:" )<kC~J
By adding all these, we get Sex) - S(~l) s kx(l + 1.. + ~2 +.,. + _1_' .)

2n+ 2 2 2n

[ as n ~Oowe get s(~) = 0 and 1+ 1.. + _1_+ ... + _1_~;=2]
.2n+1- . 2. 220 2n

,/

=> Sex) ~ 2kx.

Hence we get L &(n) = Sex) < Ax: where A = 2k, a constant , .. , ,',., (v)
n:5x

This completes. the proof of (b)
Part-~'m):Now we prove (a)

By (ii), wehave T(x):= ~ a(n{'~] = La(n)[x. + 0(1)]~ n . nn:5x . . n:5x

= ~a(n}: + [L.&~~)~O(l)'
ns x n:5x)

= La(n)~ + o(Ia{n)].
n:5x n:5r

./

a(rt)= x :L-. -', + O(x)
n':5'"n

[ By (v) we have La{n} s Ax,
n:5x

~ 2:a:(n} =' O(x),l (vi}
n:5x

From (i)' and' (vi) we have x logx + O(x} = T(x)- x L a(n) + O{x}
ns:~ n

" a{n}=> X L- = x tog-x + O(x) - O(x) = x log x + O~x}
n:5x n
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Dividingby x we get that Ia(n)i=lo'g'X+O(l) .:, .. ::.: : (vii)
nsx n

This completes the proof of (a)
Part-Iiv): In this part we prove (c).. .

By (vii) we get that A(x) == L a{n) == log x + 0(1)
n sx n

=> A(x) = log x + R(x) where R(x) = 0(1) ~ (viii)

Note that R(x)~ 0 (1) ~ IR;X)I,; M for some fixed number : (ix)

Take a with 0 < a < 1 and

consider A(x) - A(ax) = L a(n) - L a(ri)
, nsx n n:5ax n

= (log x + R (x) - (log (ax) + R (ax» (by (viiij)
= (log x + R(x» - (log a - log x + R( ax» ,
= -Iog a + R(x) - R(ax) ~ - log a -iR(x)i - iR(ax)i

~ - log a - 2M (where M is given by (ix) ' (x)
Now we choose a such that - log a- 2m = 1.. That is., -Jog a:;= 1 + 2m

1 2 1-2m-1=> og a = - m - ~ a = e .
Therefore if a = e-2m -I, then -log a - 2m = 1 and so A(x) - A(ax) ~ 1 .... :(xi)

1Now a=exp(-2m-l) = -- < I => a E (0,1) => O<a< 1.
e2m+1

=> 0 < ax < x.
so far 0 < a < 1 and a = exp(-2m - 1) we have A(x) - A(ax) ~ 1 (from (xi».

Therefore 1~ A(x) - A(ax)'= L a(n) - L a(n)
n:5x n nsox n ,

= I a(n)
ux cn sx n

1

., -;,

','',.
,

" .1.1

<
1 1

La(n) [Since ax < n we have - > -:-]
ax ax<n:5~ ax n

<'~La(n)
ax nsx

1=> 1 < - Ia(n) => Ia(n) "~ ax for all x ?,l!a. ;
ax nsx nsx ".:,

=> La(n) ~ Bx for all x ~ xo. .where B = a .and Xo =:= l/a.
n:5x

This completes the proof of the theorem.

o
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7.3 APPLICATIONS OF SHAPIRO'S THEOREM

7.3.1 Theorem: (i) For all x ~ I, we have I/\(n) = log x + 0(1).
n::::xn

(ii) Also there exists positive constants CI, C2 such that \)I(x) 5 CIX for all 'x ~ 1 and \jI(x)~ C2X
for all sufficiently large x. .

... {IOgp if n is prime {x]' .(iiij Define /\I(n)=·· .' Then LA\(n - =x log x +Dtx)o otherwise nsx n

Proof: (i) By Theorem,5.2.4., we have ~ A(n{:] ~'x log x - x + O(lOg x)

By using Theorem 7.2.3(i)-we get, L /\(n) = log x + 0(1) [Take a(n) = /\(n)]
nSx n ~

(ii) From Theorem 7.2.3 (b) and (c), taking a(n) = /\(n) we can conclude that there exists CI = B > 0
and C2= A > 0 such that L/\ (n) 5 CIX and L/\(n) ~ C2Xfor sufficiently large x.

nSx nSX

(iii) By Theorem 5.2.5, we have. ~[~ ] logp ~ x logx + O(x)

Consider /\I(n) defined in the 'statement.

Then LI\I (n)[~ l= L/\I (p)l- ~ 1 where p IS prime
nsx nJ p::::x ()p.r

, [since I\I(n) = 0 if n is not prime)

=' L(logpl ~I= x log x + O~x) [by Theorem 5.2.5]
psx L P J

:-I
Therefore Ll\l (11)\ ~ I :::::x log x + O(X).

nsx L nJ .

7.3.2 Theorem: (a) For all x ~ 1,we have L logp = log x + 0(1).
. \ ps;x P

(b) There exist positive constants CI and C2 such that 9 (x) 5 c.x for all x ~ 1 and g(x) ~ C2X
for all sufficiently large x.

Proof: (a). By Theorem 7.3.1 (iii), we have ~ 1\I (nl[:]~x log x + O(x).

By taking a(n) = /\I(n) ill Shapiro's Theorem 7.2.3, we conclude that .,. " "

L /\1 (n) = log x + 0(1)""" {i)
nsx n
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. ,:" ;:.~~:,; .1: ;,,:\'../ .J.",,~t~;

--:----::: .

:'~Since2:A1fn)=,0. if? is notp,ri~e''i'''e ha,;,~ L /\)(n) = L logp .. ; ':': Aii)., ,. ',(
. ,.' z, , .' n~x' . 'Ii':' . psx, ri';

Fro~~)and (ii) we get E10gp ~ tog x + O( I!
"'. , 'ps){ ~;\p. . ,.".. ",.:

(b) By the d~finiti'on of9(~)~~,]1ave 7(x) =':L)ogp.
pSX

Therefore g(x) = Llogp = Li-::dp) ~ :L>'\ [n}.
p s x p:5x" , ns x '

,.l" "~.;

; 't 'I'

-« -,

(since I\)(n)=0 if n is not prime)
Consider Part-Iii), (iii) of Theorem 7.'2.3.
If a(n) = 1\1 (n), then La(n) = L/\) (n) = vex).

Therefore there exists CI == B? 0 and: C2 = A > 0
C2X for all sufficiently large ;~. ;;',. > .'

'I

such that 9(x) s CLX for all x z 1 and9(x)~
0' "~" ':, 'L" ... ;,;.,

7.3.3 Theorem: For all x z 1, we have

(a) .~ IJ{:) ~x log x - x +O(log x)

(b) L 9( ~) = x logx+ Otx)
n

~ ,~ '.' t· I ~.' 4 ' :

. '._1i

,-~- r '. /,

nS;x • .r : ~.,

Proof: By Theorem 5.1.3, we have

~f(ntJ ~ ~F[:J where F(x) ~ ,~f(n)

(a) By 6.1.2 , we know that \jI(x) = I/\ (n)
nS;x

>:.

............................ '.... '''':',(i)

In (i) take f=l\,and F=\jI. d

Then 2>t) ~RHS of (i) ~ LHS, of (i) ~ 2>(n{: ] · "
nsx ,., nsx _. ;,

, ,'= x log x - x + O(log x) (by 'fheorem-~5.2.4)'-
(b) As in above Theorem proofpart-Iii), we can observe that " " .
9(x) = Llogp = L/\) (p) = LI\) (n).· .,,' .. ,;; 1 _ ,,;'

p s x ' psx n sx ',J:

.'. ".

"

.'.- c

Therefore g(x) = LI\) (n]. [In (i) take ifi I\!",then F = .9,'.],. ~ '. '. _!. " '
n$;x -.-}.. ·':1,;',!". ~

Consider L<. J ( : ) ~ RHS of (i) ~ LHS of (i) ~ ~>dnl~1,-,
n_x Il_X , ,

.. ~ 2'~' J:'" 7. ,"
= x log x + O,(x) for all x ~ 1.

, y ':,', . fBy:takirig"ahi)'e·.i\j'(n) in Shapiro's Theorem 7.2.3J
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7.4 AN ASYMPTOTIC FORMULAFORtllIl:P!~ttAL SUMS ~.~ .
:"'.. " , "p_x,

7.4.1 The~fe~: There exists a constant A such that' L~~10g(l~g x) + A + O(_I_J
ps~P . ! , logx

, "

for all x

Proof: Consider the function a(n) = logT1 if n is a prime numb;r.
~, : : n

= 0 "otherwise.'; "

, ,

-.. ,

Clearly a(n) ~ 0 for all n ~ 1.
Write A(x) = Ia(n).

<, {'::_ "," ~ Jcp ~;~ . ~. < ; . \ ' ;' •

Then A(x) =L:a(n) = Ia(p) (since a(n) = 0 if it is not prime)
, " $x psx

= :;I lo~p,:= log x + 0(1) (by Theorem 7.3.2)
psx p ''.,

=$ A(x) = log x + 0(1) (i)
By Abel's Theorem 6.2.2, we have

2:a(n) f(n) = A(x)f(x) - A(y)f(y) - rA(t)fl (t)dt
y<n:Sx, ,

[In this take f(t) = _1_ tor t> 1.
logt \,

1 -1Then f (t) = 2 exists and continuous in [1, x].
t log t , "

Also observe that a(n) = 0 if n is not prime. If y = 1, then
A(y) = A(1) = log 1 + 0(1) = 0]
Now ",.;",""

L (IOgp),.(._l_.1 = (log(x) + 00)(_1_J .-~(Y)f(Y) - r A(t) -12 dt
lcp sx p logp) ,logx , ",' \ ,tlog t

=> I ~ = logx+O(I) -O.f(y)+ 1A(tl dt /'
l-cp sx P log x , , t log t

logx + 0(1) ~ '1-[ log(t)+ 0(1) qt';"(SinCe'A(t)= log-t + 0(1), by (i»
logx logx t 10g2 t , ", ,- ,

= 1-+ 0(_1_) + f logt dt +.[, O(I)dL'. zz: ,I::: .-.; '..:
logx tlog2t 'tlog2t " " .':\

~", 'it,., [since ~qg)=:' 0, Vfe ta~~ ~n,t~gt;~ifr9P,1 2 t~ '~ ]' ~

. J ~{ -v ,

"\'

{ .

v : :". \' ~

I "

" - ~.
I • C ~ •
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= 1 + d'( 1 J r dt r 0(1)dt
"log x +.12 t log t + .12t log2 t

= 1 + O(_l_J + (log(Iogt))~ + r O(I)dt - r O(l)dt
logx tlog2t tlog2t

[since ~(log(logt)) = _1_)
dt tlogt

= 1 + 0(_1_1 + log(log x) - log(log 2) + r O(l)dt_ r O(l)dt
logx) tlog2 t ~ t log ' t

= A + O(_I_J + log (log x) - 0(1) r dt
log x ''1- tlog ' t

F O(t)dt
[where A = 1 - log(log 2) + h 2]

'~ t log t

= A+ 0(_1_] + log(log x) - O( 1).(~].
logx .' logx

[si r dtsmce, 2
t log t

= A + log(log x) + 0(_1_].
log x

7.5 SUMMARY
In this lesson, we dealt with further inequalities of 1t(n) and Po (n> 0), the nth prime. We

have also shown that the prime number theorem is equivalent to the asymptotic formula which
leads to Shapiro's Tauberian theorem. We proved thatn/logn is the correct order of magnitude of

,1t(n). We derived an asymptotic formula for the partial sums ~)1/p). As applications of Shapiro's
theorem, some asymptotic formulae were deduced from it.

'( 1 J' [1]00 1- dt= - =0--]I logt logt x logx'

7.6 TECHNICAL TERMS

Shapiro's Tauberian Theorem: Let ~a(n{:l'= x log x + O(x) for all X" I,

where {a(n)} is a non - negative sequence. Then

(a) For x ~ I, we have L a(n) = log x + 0(1).
n ',

(b) There is a constant B > 0 such that L a(n)
nsx ,

sB(x) for all x ~ L
(c) There is a constant A > 0 and Xo > Osuch that,



\M.Sc..Mathematics . .7.16 Shapiro's Tauberian Theoreml

L:a(n) ~ A(x) for all x.z xo..

Inequalities in n(n) and Pn:
. I n 6~n

(1) .. --- < n(n) < -.- (n ~ 2)
6logn . logn , .

( ..)' hlogn'12
11 . ' < p, < 12 (n log n + n log¥::i;.-)

6 '~~e.;"
:~.,~.

7.7 ANSWERS TO SELF ASSESSMENT QUESTIONS

l(:)Le~: :e,: ~~m:Wit[hn]n:: ~a::.[T;nCl:~ have
p p p,. P J

(ii) n < p => 2n < 2p => r2n]' < 2~
. L P

[
2n l' ' [2n]

Now 15 PJ < 2 => P = 1.,

[
2n] InJlTherefore - - 21 - = 1 -,2xO = 1 for all n < p ~ 4n.
p LP ,

7.8 MODEL QUESTIONS
. 1 n . n

I. Prove that for every mteger n ~ 2, we have - -- < rr(n) < 6. '--:
, 610gn logn

2. Prove that for all x ~ 1, L A(n) = log x + O( I).
',', ' n:Sx n," "

i Prove that there is a eonsta~tA suei, that, ~ t~log logx .;.A + 0 ( IO~ x ) •
, , -~ " . ....,' .
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LESSON -8

THE PARTIAL SUMS OF THE MOBIUS FUNCTION AND
SELBERG'S ASYMPTOTIC FORMULA

Objectives
The objectives of this lesson are to:

• understan-d partial sums of the Mobius function
• know brief sketch of elementary proof of the prime number theorem
•. analyze the Selberg's asymptotic formula

Structure

8.0 Introduction
8~1. The partial sums of the Mobius function
8.2. Brief Sketch of an elementary proof of the prime number theorem
8.3 Selberg's asymptotic formula
.8.4 Summary,
8.5 Technical terms
·8.6 Answers to Self Assessment Questions
8.7 Model Questions

·8.8 Reference Books

8~O 'INTRODUCTION

In previous lessons, we had familiar with various arithmetical functions. In this
lesson, we provided. the detailed proofs .ofsorne implication of prime number theorem, we introduce
the notion, and the proof of Selberg's asymptotic formula. Using this we discussed the sketch of

. elementary proof of prime number theorem. . .

8.1 THE PARTIAL SUMS OF THE MOBIUS FUNCTION. .. \ .

8.1.1 Definition:lf x ~ 1, we define M(x) = IIJ.(n).
n sx

[Mobius function { if n = I

lJ.{n)=
I

( _l)k

o

.'
if n = PIP2 ",Pk' (square free)]
other wise
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8.1.2 Note: (i) The exact order of Magnitude of M(x) is not known. Numerical evidence suggests
that IM(x)1< ~- if x > 1. But this inequality, known as Mertens conjecture, has not been proved
nor di-sproved. \ -
(ii) The best 0- result obtained to date is M(x) = OCx·8(x)) where
o(x) = exp{-A log'(3/5) x (loglogxtI/5} for som~positive constant A.
(iii) In this section, we prove that the statement lim M(x} = 0 is equivalent to the prime number

X"""700 x "

theorem.

8.1.3 Definition: If x ~ 1, we define H(x) = LIl(n)logn. ,. ,

nSx

8.1.4 Theorem: (i) }~JM;X) - ~~~:~) ~ o. • ;,L

(ii) Ifone of M(x) or\r(x) tends to a finite limit, the other also tends to same limit.
x x log x ' ' ; .-e,

Proof: By Abel's identity (Theorem 6.2.2), if a(n), is an arithmetical function, and

A(n) = 2:a(n) , then 2:a(n)f(n) = A(x)f(x) - A(y)f(y) - fA(t)fl(t)dt
n s x y-cn sx

In this Abel's identity, take a(n) = Il(n) and f(t) = log t which is differentiable in [1, x].
A(x) = La(n) = Ljl(n) = M(x). " , "

n~x n~x
Now by substituting these, in Abel's identity we get

- LIl(n)logn =M(x)logx-A(1) log 1- IM(t)!dt ~ ; (i)
I' < ~ t ,«n sx

By definition of H(x) (refer 8.1.3), we have
H(x) = Ljl(n) logn = jl(l) log 1 + Ljl(n) logn

l<n~x I<n~x
= 0 + LIl(n) logn

l-cn sx
-. , - 1

= M(x) log x - A(l) log 1 - fM(t)tdt

, 1
= M(x) log x - 0 - fM(t)-dt

~ , t
Dividing by x log x, we get
~ H(x) = M(x.) _ 1 f M(t) dt

xlogx x xlogx.)o t

~ H(x) _ M(x) = _ ,I f M(t)dt
x log x x x log x I' t
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~ lim ( H(x) _ M(X)) = _ lim 1 ~fM(t) dt (ii)
x~CXJxlogx x x~CXJxlogx t

, . \'. (J
. \.... -I- tLJ.l(t)

Consider f M(t)cit = f ~::;t . dt (by definition of M(t»
t 'I t .

/ [since !l(t) = 1 or (-1) we have !l(t)~l]"'t.[~)J . 'k~f n::;t dt = f [t] dt
J t \ t

',""./,

';;,[ldt (since [tj s t) = [x]~ = x v l.
I

Dividing on both sides by x log x, we get
I rM(t)dt- x-I _ I 1

log X' \ t x log x log x x log x

=> lim I r. M(t)cit = lim _1__ lim I = 0
x ~CXJx log x 1 t x70 log x x~O x log x

By substituting this in (ii), ., get lim [ H(x) _ M(X)] = 0,
" x~oo xlogx x

(b) From above steps we have lim H(x) - lim M(x) = O.
. X~CXJx log x x~CXJ x

1· H(x) - 1· M(x)=> 1m - 1m--
x~oo x logx x~oo x

Therefore if one of H(x) or M(x) tends to a finite limit then the other also tends to the same
xlogx x

limit.

8.1.5 Theorem: The prime number theorem implies lim M(x) = O.
x~oo X

Proof: First we prove that, lim \If(x) = 1 implies lim H(x) = O.
x~oo X x~oox~gx

Part-(i): Suppose lim \If(x)= 1
x~oo X

=> for e > 0, there exist a positi~!,number A such that [1JI~X)-IJ < en for all x z A.

xc:
=> l\jf(x) - x] < 2 for all x ~ A , :.\ (i),
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By Theorem 2.2.3, we have that, log n = LA (d) (ii)
din

. . {lOgp ifn=pffi
where Mangoldt function is A (n) = .o otherwise

By Theorem 2.2.4, we have A(n) = ~2::I-l(d)logd (iii)
din

We know that the Mobius inversion formula (Theorem 2.1.11) is
[(n) = Lg(d) Q g(n) = LI-l(d)f(~) .

. din din
In this take fen) = /\(n) and g(n) = -1-l(n)logn.
Then we get A(n) = LI-l(d) logd Q - I-l(n)log n = LI-l(d)A (1) (iv)

din din
From (iii), we have /\(n) = LI-l(d)logd

din .
~ -1-l(n)logn= L~(d)A(1) (by (iv)

din

Takingsum :s; X on both sides, we get - LI-t(n)logn= L L~(d)A(n)
nsx n~x din d

=> -H(x)=- LJ.l(n)logn [Bydefinition8.lJofH(x)]
nsx

= LL~(d)A(1J) = L(I-t*A).
ns xdjn ns x

\

= LI-t(n)ljI(-;) (verify! SAQ 1)
/

Therefore -H(x) = LJ.l(n)\II(*).
n~x

n~x

Put Y= [: ] where A is taken as in (i)

~ -H(x) = L~(n)ljI(*) +L~{n)ljI(*)

o

......................................... (v)
n sy y-cn s x

Part-Ill): Consider "~Il( n )IJI(!) ~ ;~:~!l(nt + IJI(~)< J
= x L I-t(n) + L I-t(n{ ljI(*)-~)

~sy n n~y \ n

=> LJ.l(n)\II(* ~s x L f.l(n) +L \11(*)-~
n s y 1 n sy n n s y n
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<x- 1 + L(~)~
n s y n2

[since, (i) Theorem 5.2.3 is 12: J!~n)I':S;. ~

(ii) Form (i) we get ",(~) ., x s (~)~]
n n n 2

<x+ ':"L(~') ~.x+ ex~X
2 ns y ~,' 2 'n::syn

E ' "
= x + _. x (logy +c +O(y»

2 ,. '.,
\ . 1 '

[Since by Theorem 3.5.1 we know that L- = log x + C + O(x))
ns:xn ' , .

= x + ~ (log y +O( 1» (since' y is constant, O(y) = O( 1» .
,2 '." ' .

EX ,.' EX "EX
= x+ -(logy + 1)= x+ -logy+-

2 ,,' 2 2

Therefore L~(n)",(x)$X + E~ logy + EX.: ••••••••••••••••••• ,•••••...•••••• '••• (vi)
nsy ,n, 2,_ 2

Consider the second part of R.H.Sof (v).
That is, LJ.l(nJ",(;.) ~ L J!{nj",(*} .,'.ii

Y·<n::Sx"" ,,'k' x
.-<n::Sx·

,,!:n

"<'!f.1{n)",(Al, <,' (verify! SAQ 2)
,x', . '"

~<n::S'x·
p

= ~(A) LJ!(n).
x-<n::Sx
n

{, .

. ,.:s; ",(A).x ~ ', ~ -, ., (~iii
, [since by definition of J!(n)~,f.1(n),= 1 or O~~Therefore Lf.1(x):s; x]... " n<x

Part-(Ui): From (v), (vi), (vii) we get th~t

-H(x)'; (x + E; logy+ e;.) + (",(A).x) .

Dividing by x log x and taking modulus, we get

X(l + ':'logy +.:. ~ ",(A)', : "'(\ ' " . "" )
H(x) 2 2, -)" I, s s ( )

1_':""':'_1 ~' " = -':,- l+-+-logy+'II A
x log x ._: x log x '.,,' log x ' 2 2 ,

, ...".~ . I .
''''". "·r·

,
"

, ,
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..,.'.:,;,': ~ /

'Considerlog y ~ lo{'1) s IO{:) ~ 109'x - log a

=> logy = logx -: log A = 1 _ logA
log x . logx logx.
. log v : . log A:..=> lim -- = I - lim -- = 1 - 0 = 1.

X~<:¢ log x . X~<:¢ logx

So, Jim. H(x) s Jim (I+~+IJI(A)} +~.Iogy ~O+~.l ~~.
X~OO x log x x.~<:¢ log x 2 logx . 2 2

This is true for any s > 0:

Hence lim H(x) = 0 => lim H(x) = O.
X~<:¢ x log x X~<:¢ x logx

Now by Theorem 8. L4 (ii), lim M(x) = O. .
X~<:¢ x

Self Assessment Question 1/: Verify L(Il* /\) = LIl(n)\jI(!)
nsx ns x

Self Assessment Question 2:Verify ~{;) 5 ~A), where y < n S x

8.1.6 Deflnltion: (i) f(x)·= o(g(x» as x ~read: f(x) is little oh of gtx)
f(x) .

means that lim -( ) = o. .
x~<:¢ g x

(ii) An equation f(x) = h(x) + o(g(x» as x ~06means that
f(x) - h(x) = o(g(x» as x~.-:(j

8.1.7 Note: (i) Consider the asymptotic relation f(x) - g(x) as x ~ ~

=> lim f(x) = 1 = lim g(x)
X~OO g(x) X~<:¢ g(x)

<=> lim f(x) ~ lim g(x) = I - 1=0
X~<:¢ g(x) . x~cOg(x)

<=> lim f(X)( )(x) = 0 <=> f(x) _g(x) = o(g(x» <=> ~(x) = g(x) + o(g(x».
x~oo g x .

Therefore f(x) - g(x) as x ~is equivalent to f(x) = g(x) + o(g(x».
(ii) By Definition 8.1.6, we have the following: .' .

Prime Number Theorem => lim M(x) = 0 => M(x) = o(x)
. x~oc X

(iii) By Theorem 6.3.2 (c), we have'

Prime Number Theorem => lim 'I'(x) = 1
x~oc x

,.
1-'

j ;'
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=> lim \jJ(x) _ 1 = 0 ~ lim \jJ(x)_ lim ~ = 0
X-HO X X.-;OO X x.-;oo X

11'm \jJ{x)-x =0 ( ) (=> . ~ \jJ X :- X = 0 x)
x.-;oc X

=::;> \jJ(x) = x + o(x).

(In other

f"'"
I .

Thus the prime number theorem is true.

8.1.10 Theorem: If A(x) = L /1{n), then the relation
n s x n

A(x) = o(l) as x ~.~ implies that the

prime 'number theorem.
[In other words, the prime number theorem is a consequence of the statement that the series

IJl{n) converges and has sum OJ.
n=1 n

8.1.11 Note: The converse of this Theorem 8.1.10 is also true. But this is out of the scope of this
book.

8.2 BRIEF SKETCH OF AN ELEMENTARY ,PROOF OF THE PRIME
NUMBER THEOREM

This section gives a very brief sketch of an elementary proof of the prime number theorem.

Using Selberg's asymptoticfonnula: 1jI(x) log x + ~ A(n }1jI(:) ~ 2x log x + 0 (x).

(given in Section 8.3), we discuss the proof of prime number theorem.
First, Selberg's formula; will be brought in a convenient form, which involves the function 0' (x) = e-
x \jJ( eX) _ 1.
Selberg's formula implies an integral inequality of the form
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x y
Icr(x)IX2:5 2' J Jlcr(u)ldudy+ O(x) (i).

o 0
and the prime number theorem is equivalent to showing that c (x) ~ 0 as x ~09
Therefore, if we take C = lim suplcr(x)l, the prime number theorem is equivalent to showing that C

X4000 .
}

C

Q

=0.
In a contrary way, assume that C > O.
From the definition ofC , we have 1a-(x)1~ C + g(x) (ii)

where g(x) ~ 0 as x ~.<>O.

Ire> 0then this inequality, together with (i), gives another inequality of the same type,' Icr(x)1gel

+ h(x) (iii)
where 0 < C1 < C and hex) ~O as x ~<Il.
The deduction of (iii) from (i) and (ii) is so lengthy part of the proof.
Letting x ~:Nin (iii) we find that C sc', a contradiction which completes the proof.

~; ';

83 SELBERG'S ASYMPTOTIC FORMULA.

8.3.1 Theorem: Let F be a real or com~lex valued fu. nction defined on (0,) and let ,'G(x) =

logx LF(~). Then F(x)logx+ LF(*)I\(n) = L~(d)G(-j). , 0

n~x nSx dsx .

P~~of:ConsiderF(x) logx ~ f[~]1~}o~:}(SinCe [~] ~O if n> 11

= LF(~)IOg(~)[L~(d)J
nsx n n diD

.',

[By Theorem 1.5.7, we know that .[~] = L~(d)],
n din

= L L log( ~)~{ d)F( ~). . ...• " : ; :".' ', ,~.(i): .
nsx d]n n n .,': ; , '

By Theorem 2.2.3, we know that log n = LA(d) (ii)
.. '-, ;' , dill

By Mobius inversion formula (Theorem 2.1.11), we have
fen) = Lg(d)' ~ g(n) = Lf(d)~(-J) = L~(d)f(-J)

din din din " ,~r,'" , .. i'; W;,I)::"')? fl.; IU

Taking fen) =Iog nand g(d) = I\~d) in the Mobius inversion fQnnula"Wtf,get,,~;, .' ;~e:;
logn= LI\(d) ~I\(n)= L~(d)log(-J) .. : (iii)

din dln·-,- . :::-:~" -, '"
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. From (ii) and (iii) we get that /\(n) = L~(d)log(*) (iv)
din'

By multiplying withF(-;) on both sides; we get

, F(-;)I\(n) = L ~(d }log(J) F(-;)
din

=> LF(-;)/\ (n) = LL~(d)log(*) F(*) (v)
ns x ns xd]n

By adding (i) and (v) we get .
F(x) log x + LF(-;)/\(n) = LL~(d)log(*)F(-;) + I~~(d)F(*)log(*)

nsx ns xd]n ns xd]n

= LI~(d)F(* )(1og(-;)+ log(*))
n s xd]n

L L!-!(d) F(* ) l~g(-a-) [since log(*) + log(~) = log(*)]
n s xdln

I L F(:8 )~(d) log(-a-) .
d8~x8~~

= riled) log{t }2:F(dxo}
d6'Sx r . "<~

u_ d i

L !i(d)l",g(~}2:F (1]J
d8~x 8<~- d . .

= ~)~(d)G(t)(0 is givenin hypothesis)
d6~xrf.l(d] O(-a-}.
d'~x

This completes the proof.

8.3.2 Theorem: isetberg's asymptotic formula): For x > O
we have 'V(x) log x + L/\ (11}:\V(*) = Zx log x + O(x).

n~x.· I .
Proof: fad"(i),: Write FI(x} = \jI(x) and GI(x}= log x I.F\ (*).

n s x

Then G fEx:) .~ tag'i~jr~F\ (x)
,"" ~ n

. n$x

,"~='l~~ S(V2: \f,(~}';(sih'ce FI = \If)
, n~x
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= log x (x log x - x + O(log xl) (by 7-.3.3, L'V(n) = x log x - x + O(log(x».]
n$xG 7 1=> leX)= x logx - x log x + Otlog'x) (i)

Write F2(X)= x- C - 1 where C is Euler's constant and G2(x) = log x 2:,F2(~)'
n5x

Then G2(X)= log x L F2(*)
n5x

= log xI(*-C-1)
n$x

~(logx{ x~~ -C~I-,~IJ
= log x (x (log x + C + o(~h-C[x] - [x])

(by Theorem 3.5.1, I ~ = logx + C + O(~)]
n5xn

= -log x (x log x + Cx + 0(1) - C(x + 0(1» - x - 0(1» [since Ix] = x + 0(1) ]
= log x (x log x - C.O(1) - x)
= Xlog2x - O(log x) - x log x .Isince CO(l) = 0(1) & (log x) 0(1) = O(log x)]

Therefore G2(x) = x log2x + O(log x) - x log x (ii) \
Part-fli): By Theorem 8.3.1, we have
F(x)logx+ IF(*)/\(n)= I~(d)G(-J) (iii)

n$x
Taking Fl(x), Gli(x) in place 'of F(x) and G(x) in (iii) we get
Fl(x)log x + LF) (~)/\(n) = 2:~(d)G) (*) = L~(n)G) (*) (iv)

ns x ns x ns x

Taking F2(x), G2(X) in place of F(x), and G(x) in (iii) we get
I F2(x)log x + IF2(*)/\(n) = L~(d)G2(*) ; (v)

n$x n5x
Subtracting (v) from (iv) we have
(Fl(X) -F2(x»logx+ 2:(F)(*)-F2(*))/\(n) = L~(d)(Gl(*)-G2(*)) (*)

Now, Fl(x) ~F2(x) = \!I(x) - (x - C - 1) = 'V(x) - x + C + 1
F\{:;) - F2(*) = 'V(*)-*+C+l
Gl(x) - G2(x) = (x lo~2x - x log x + O(log2x» - (x lolx + O(log x) - x log x)

= O(log x) - O(log x)

G) (*) - c 2(*) = O(log2 *) - O(log*)

= O(log2 (*))
[Reason: O(y) + O(y2) = 0(y2) lim -{ = 0 => y = o(l)]

x --+00 y,...
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By substituting these in (*), we get

(\jI(x) - x + C + 1) log x + ~/\ (nX\v(~)- ~ + C+ 1) = I~(nXO(10g2 (~)))
n~x n~x

So, (\jI(x)log x - x log x + Of.l jlogtx) + L/\ (n)\jI(~) - xL /\(n) + L/\ (nXC + 1)
n s x . n s x n n s;x

~ "~Jl(n)o([;} ISince 0(10g2(*)) ~ o(IfJ (Verify! SAQ4) I

[ In the next step we use (i). Theorem 7.3.1,2: /\ (n) = log x + 0(1)
. n s x n

(ii). We know 0(1) log x = O(1og x)
(iii). 2:A(n)(C + 1) = (C + 1) 2:A(n) = (C + 1) \jI (x) (by definition of\jl (x)) ]

n~x n~x
So, \jI(x)log x - x.log x + O(log x) + L/\ (n)\jI(;) - x(x log x + 0(1)) + (C + l)\jI(x)

n~x

= L~(n)O(~)
n~x

~ .; "~Jl(n)(o(;)) ~ .i: {~~ J
[In the next step we use

(i) Theorem 6.3.2: Prime number theorem => Jim \jI(~) = 1 => \jI(x) ~ O(x)
X~OO X .

=> (c + l)\jI(x) = (c + l)O(x) = O(x)
(ii) By definition Il(n) = 0 or ±1 => ~l(n)::;1 for all n

~'~(n)::; _1 => 2:~(n) ::;I~ => O[I~(n)J = 0[2:-1 Jl
.: .; n sx .j;; n~x.j;; n s x .j;; n~xrn

I.

So, \jI(x) log x + L/\ (n~(~) - 2x log x - O(x) + O(1og x) + O(x)
n~x

. '

[Take s = ~ in Theorem 3.5.3.:· ,,~= X I-s + S (s) + 0(_1 ).
2 . ,. L-ns l-s XSnSx



M.Sc. Mathematics 8.12 , The Partial Sums ... M.F.& S.A.F .1

Then we get L: ~ ~ ( .Jx ) + 1;(~)+ 0_
1

= 2 .i:+ c, (~)+ 0(_1 J
n~xvn l-! 2 Fx 2 Fx

.2,

= 2.Jx + O( 1) + O~)

Now .Jx. {~lJ ~ .JX. o(2.Jx +O(I):{JdJ
= 0(2x + 0(1).rx + 0(1»
= 0(2x + O(x) + 0(1» = O(x) + 0(1) = O(x) ]

So, \If(x) log x + IA(n)\lf(~)
Il~X n

= 2x log x + O(x) - O(log x) - O(x) + O(x)
= 2 x log x + O(x) + O(x) + O(x)

I' logx[ im -- = 0 => log x = O(x) => O(log x) = O(O(x» = O(x)]
x~C() X

= 2x log x + O(x)
Therefore \If(x)log x + I/\(n~(*) = 2x log x + O(x).

n~x
This completes the proof.

Seif Assessment Question 4: Verify O(log2
(~)) ~ o(~}

8.4 SUMMARY

In this lesson, we defined partial sum representations of the Mobius functio1n, related results,
properties were discussed. We also obtained the Selberg's asymptotic formula and lts consequences.
We also provided the sketch of an elementary proof of Prime Number Theore I, using Selberg's
asymptotic formula.

Merten's Conjecture: IM(x)1 < .Jx, if x > 1.

8.5 TECHNICAL TERMS

Selberg's asymptotic formula: For x > 0 we have \If(x) log x + LA(n)\lf(~)
n~x n

= 2x log x + O(x):' ., . ,
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8.6 ANSWERS TO SELF ASSESSMENT QUESTIONS

1: Consider Theorem 5.1.1
- This states that if h = f*g, F(x) = 'Lf(n), G(x) = 'L g(n), then

nSx nSx
.L h(n) = 'L f'[n )G(*) ". In this, take f =, ~land g = 1\, then h =,~l* 1\ .
nSx nSx

.Consider G(-;) = Lg(d) = L!\ (d) =\11(*) (by point 6.1.2)
dSK dsK

n n

So L(~*!\Xn) = Lh(n)~ 'Lf(n)G(;)= 'L~(n)G(*) = L~(n)\jJ(*).
nSx n s x nSx nSx nSx

2: Consider y < n ::; x
. 1 1

=> l12:y+l => -$-- ~
n y+l

x x x",,
=> -::;--<A => -<A =>

n y+l n

x x x x x
-$-- => -$ --<-
11 y+l/ n y+l-y

\jJ(~) ::;\II(A).
\11

3: Suppose f(x) = 0(1)

=> lim f(x) =0 => lim f(x) =0
x~oo 1 x~oo

z> lim f(x) lim ~ = 0.0 = 0
x~oo x~oo X

=> lim f(x) = 0 => f(x) = o(x)
x~oo X

. log2(~)
4:Consider lim HI1

<, x~oo ~
n

lim 21og(y)2 (where y = /x
n
x)

y~oo y ~-;;

;: lim 4 log y = 4 lim l,~g y = 4.0 = O.
y~oo y y~CIC Y

Therefore O(log2(*)) ~ o(IfJ
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8.7 MODEL QUESTIONS
//

/, 1. Prove that Jim (M(X) - H(x) J = o.
~ / x-too ' X xlogx

2. State and prove Selberg's Asymptotic formula.

3. Assuming the prime number theorem, prove that lim M(x) = O.
"-too . X
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LESSON -9

PRELIMINARIES IN GRAPH THEORY
Objectives

After reading this lesson, the reader shoul~ able to:
• appreciate the relevance of Graph Theory in real life situation
• understand different fundamental definitions
• observe the difference between different concepts defined through the examples present= .
• understand some techniques used in proving simple theorems

Structure
9.0 Introduction
9.1 Definitions
9.2 Applications of Graphs
9.3 Finite Graphs
9.4 Infinite Graphs
9.5 Incidence and Degree
9.6 Isolated Vertex
9.7 Pendent Vertex
9.8 Null Graph
9.9 Summary
9.10 Technical terms
9.11 Answers to Self Assessment Questions
9.12 Model Questions
9.13 Reference Books

9.0 INTRODUCTION

Graph theory was born in 1736 with Euler's paper in which he solved the Kongsberg
Bridges problem. No development made during the next 100 years. In 1847, G.R. Kirchhoff (1824
- 87) developed the theory of trees to applications in electrical networks. After 10 years, A.Cayley
discovered trees while he was trying to enumerate the isomers of (Cn H2n+2).

Mobius (1790 - 1868) solved the four color problem. D. Morgan discussed about it. Later,
Cayley gave a lecture on this topic in 1879. Hamilton (1805 - 1865) invented a puzzle in 1920's. D.
Konig worked for the development of graph theory.

The last three decades have witnessed more interest in Graph Theory, particularly among
applied mathematicians and engineers. Graph Theory has a surprising number of appI ications in
many developing areas. The Graph Theory is also intimately related to many branches of
mathematics including Group Theory, Matrix Theory, Automata and Combinatorics. One of the
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features of Graph Theory is that it depends very little on the other branches of mathematics. Graph
Theory serves as a mathematical model for any system involving a binary relation. One of the
attractive features of Graph Theory is its inherent pictorial character. The development of high-
speed computers is also one of the reasons for the recent growth of interest in Graph Theory.

9.1 DEFINITIONS

9.1.1 Definition: A linear graph (or simply a graph). G = (V, E) consists of a nonempty set of
objects, V = {VI,V2, ... } called vertices and another set, E = {el, e2, ... } of elements called edges
such that each edge '~k' is identified with an unordered pair {Vi,Vj}of vertices. The vertices Vi,Vj
associated with edge ek are called the end vertices of ek.

9.1.2 Note: (i) A graph is also called a linear complex (or) J-complex (or) one-dimensional
complex. (ii) A vertex is also called as: a node (or) junction (or) point (or) O-cell (or) 0-
simplex. (iii) Edge is also called as: branch (or) line (or) element (or) J-cell (or) arc (or) 1-
simplex.

9.1.3 Definition: An edge associated with a vertex pair {Vi,Vi}is called a loop (or) selfloop.

9.1.4 Definition: If there are more than one edge associated with a given pair of vertices; then these
edges are called parallel edges (or) multiple edges.

9.1.5 Example: Consider the graph given here.

Vs

I Fig-9.1.5

This is a graph with five vertices and six edges. Here G = (V, E) where
V = _{VI,V2,V3,V4,vs} and E = {el' e2, e4, es, e6, e7}.
TIie-identrncation of edges with the unordered pairs of vertices is given by. ,
el ~ {V2'V2}, e2 ~ {V2,V4}, e4 ~ {VI.,V3}, es ~ {VI,V3}, e6·~ ;{V3, V4}.
Here --'er'·-is,aJoop and e4, e5 are parallel edges. \. >

I••

~.1.6 Definition: A 'graph that has neither self-loops nor.parallel edges is call~d a simple g~aph.

,,4..'
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9.1.7 Note: Graph containing either parallel edges or loops is also referred as general graph.

9.1.8 Example: It can be observed that the two graphs givenin Figures 9.1.8Aand B are one and
the same.

Fig-9.,1.8A
!

2 ; I Fig-9.1.8B I
I20----0----.0 4

3

9.2 APPLICATIONS OF GRAPHS

Graph theory has wide range of applications in engineering, medical, physical, social,
.biological sciences. A graph can be used to represent almost any physical situation involving
discrete objects and a relation ship among them. In the following, we present few such examples.

9.2.1 Konigsberg Bridges Problem: This is one of the best known examples of graph theory. This
problem was solved by Leonhard Euler (1707 - 1783) in 1736 by using the concepts of Graph
Theory. He is the originator of graph theory.

[Problem: There were two islands 'C' and 'D' connected to each other and to the banks 'A' and
'B' with seven bridges as shown in the following figure.

A

Fig-9.2.1 I

. The problem was to start at any of.the four land areas of the city A, B, C, D walk over
each of the seven bridges once and only once, and returns to the starting point.]

Euler represented this situation by means of a graph as given inthe following figure.
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c O--~--bD

B

Euler proved that a solution for this problem does not exist.

9.2.2 Note: The Konigsberg Bridges Problem is same as drawing a figures without lifting the pen
from the paper and without retracing a line. The same situation can be observed with the following
for graphs/figures.

I· Fig-9~2.2

9.2.3 Utilities problem: There are three houses HI, Hz, H3 each to be connected to each of the
three utilities water (w), Gas (G), Electricity (E) by means of conduits as shown in the following
figure:

[ii- 9.2.3

" ,,[, ,..
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The Problem is - "Is· it possible to make such connections without any crossovers of the
conduits" ?

This problem can be represented by the graph as shown in the following figure. Here the
conducts are shown as edges, and the houses and utility supply centers are vertices. .

::;'<1

But we cannot trace the graph without edges crossing over and so the answer to this problem is -
'NO'

9.2.4 Seating Arrangement problem: Nine members of a new club meet each day for lunch at a
round table. They decide to sit so that "Each member has different neighbors at each lunch". How
many days can this arrangement last?
This situation can be' represented by a graph with nine vertices such that each vertex represents a
member and an edge joining two vertices represents the relationship of sitting next to each other.

9
. " .

7

2 I Fig-9.2.4:,::1
6

.:
4

The above figure. has .twopossible arrangements (1234567891, 135274968)).at the -di:nne-:r,-:fab.je:
Fromthis figure, we carr.observe .that there are two possible seating arrangernents.-c thoseere
1234567891 and 1352749681. ,.-.,
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. It can be shown by Graph - theoretic considerations that there are- only two more
arrangements possible - these are 1 57392846 1 and 1 7 9 583 62.4 1. -

In general, for 'n' people the number of such possible arrangements is
n-1 .f ' ,. dd ( c.1 n. IS 0 rerer later lessons)

2
n-2

if 'n' is even.
2

9.3 FINITE GRAPHS

9\.3.1 Definition: A graph 'G' with a finite number of vertices and a finite number of edges is
called a finite graph.

9.3.2 Example: Consider the following three graphs

. { ", ..
" , i ~.• ~. -r

>".' :.,.-,

I Fig-9.3.2 I

U2

It can be observed that the number of vertices, and the number of edges are finite. Hence
these three graphs are finite graphs.

9.4 INFINITE GRAPHS

9.4.1 Definition: A graph 'G' that is not a finite graph is said to be an infinite graph.

9.4.2 Examples: Consider the two graphs given here. It can be understood; that the number of
vertices of these two graphs is not finite. So we conclude that -these two figures represent (infinite
graphs. (': , -'. . ' . ,'.
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Fig-9.4.2 ,I

9.4.3 Note: Henceforth, we place our attention on the study of-finite graphs So we.use the term
'graph' for 'finite graph'.

9.S INCIDENCE AND DEGREE'

9.5.1 Definition: If a vertex v is al~end vertex-of some edgee, then v and e are said to be'
incident with (or en, or to) each other.

95,2 Example: Considerthe 'graph given ilj Fig-9.5_2. Here the edges e2, e6, e7 are incident with
the vertex U4.

,
\.':

Us '\ Fig-9.5.2 J

9.5.3 Definitions: (i) Two non-parallel edges are said to be adjacent if they are incident on a
common vertex.

(ii) Two vertices are said to be adjacent if they are the end vertices of the same edge.

9.5.4 Example: Consider the graph given in Fig-9.5.2. Herethe vertices U4, US are adjacent. The'
vertices u'l and U4 are not adjacent. The edges e2and e3 are adjacent.

9.5.5 Definition: The number of edges incident on a vertex v is called the degree (or
valency) of v. The degree of a vertex v is denoted by d(v). It is to be noted that a self-loop
contributes two to the degree of the vertex.

9.5.6 Example: Consider the graph given in Fig-9.5.6. Here d(uJ) = 2; d(u2) = 1;
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Us r-,.t:.-----=-------------:;;o, ..UIO'

9.5.1 Observation: Consider the graph given in Fig-9.5.7.

Us I Fig-9.S.7

. I
Here d(ul) = 2, d(U3) = d(U4) = 3: d(U2) = 3; deus) = 1
So, d(ul) + d(u2) + d(u3) + d(u4) + d(u5) = 2 + 3 + 3 + 3 + 1 = 12 =,2(6) = 2e, where e
denotes the number of edges. Hence we can observe that,
q{ul) + d(u2) + d(uJ) + d(u4) + deus) = 2e (that is, the sum of the degrees of all vertices is-equal to

: twice the number of edges).
I .
9,5.8 Theorem: The sum of the degrees of the vertices ofa graph G is twice the number of edges.
That is, . L:d(vJ~ 2e. (Here e is the number of edges).

VJ'V

Proof: (The proof is by induction on 'e') .

.Case-(i): Suppose e = 1. Suppose f is the edge in G with f = uv.
Then d(v) == 1, d(u) = 1
Therefore Ld(x) LdJx) + d(u) + d(v) = 0 + 1 + 1 = 2 = 2 X.:1

xeV xeV\!u.Vf ,': :.;~tJ·!
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No~,w:e can assume that the result is true for e = k f l.
Take, a graph, G with k edges. Now consider ~n edge' 'f' In G whose end points are u
and v. R:move f from/G. Then we get a ne1 graph G* = G - {f}.

, Suppose d (v) *denotes the degree*of vertices v i? G. Now for any x ~ {u, v}, we have d(x)
=;;9 (x), .and d (v) = d(v) - 1, d (u) = d(u) - 1:

.. *
Now G has k - 1 edges. So by induction hypothesis Ld *(v i) = 2(k - 1).

I ,'.. = 2 x i (number of edges).
Hence the given statement is true for n = 1.

NOW;2(k-l} = Ld*(v) = Id*Cv;} +d*(u)+d*(v)
VjEV Vi;Z;{U.v:

Id(vJ + (d(u) - 1) + (div) - 1)
v, I1'~u.vl

Ld(vJ + d(u) + d(v) - 2 = Ld*(vJ - 2
v.elu.v! V,EV

=> 2(k-l) + 2 = Id*(vJ => 2k = Id(vJ
VjEV VjEV

Hence by induction we get that "the sum of the degrees of the vertices of the graph G is twice the,
numbers of edges".

Self Assessment Question 1: Find the degree of all the vertices of the graph G given in Figure
9.3,.2lJnddencf,? and degree)

9.5.9 Theorem: The number of vertices of odd degrees is always even.

Proof: We know that the sum of degrees of all the 'n' vertices (say, Vi, 1~ i ~ n) of a graph G is
n

twice thenumberofedges (e) ofG. So we have Id(vi) = 2e --------- (i)
i=1

Ifwe consider the vertices of odd degree and even degree separately, then
n ,

Id(vJ = Id(vj) + Id(vk) -------- (ii)
;=1 v.isevcn vkisodd "

Since the L.H.S of (ii) is even (from (i) and the first expression on the RHS side is even,
that the second expression on RHS is always even.
Therefore I d(v k) is an even number --------- (iii)

vkisodd

we have

In (iii), each d(vk) is odd. The number of terms in the sum must be even to make the sum an even
number, Hence the number of vertices of odd degree is even.

Self Assessment Question 2: Can a simple graph exist with 15 vertices each of degree five.

9.5.10 Problem: Show that the number of people who dance (at a dance where the dancing is
done in couples) an odd number of times is even.
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Solution: Suppose the people are vertices. If two people dance together, then we can consider it as
an edge. Then the number of times a person v danced is 8(v) ...By Theorem 9.5.9, the'number of
vertices of odd degree is even. Therefore the number of people who dance odd number of times is
even.

9.5.11 Definition: A graph in which all vertices are of equal degree, is called a regular graph.
(or simply regular) ..

9.5.12 Example Consider the graph G given in Fig-9.6.12. It is easy to observe that the degree
of every vertex is equal to 3. Hence the graph G is a regular graph of degree 3.

Fig-9.5.12

~.' ..

Self Assessment Question 3: How many vertices does a regular graph of degree 4 with 10 edges
~~ .,

9.6 ISOLATED VERTEX

9.6.1 Definition: A vertex having no incident edge is called an isolated vertex. In other words, a
vertex v is said to be an isolated vertex if the degree of v is equal to zero. ' .

~~.

9.6.2 Example: Consider the graph given in Fig-9.6.2. The vertices V4 and V7 are isolated
vertices.

J ~ •

Fig-9.6.2

. r~,. f.
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9.7 PENDENT VERTEX

9.7.1· Definition: A vertex of degreeone is called a pendent vertex or an end vertex.

9.7.2 Example: Consider the graph given in the Example 9.6.2. Here 'V3' is of degree 1, and so it
is a pendent vertex.

9.7.3 Definition: Two adjacent edges are said to be in series if their common vertex it; of degree
two.

9.~ Example: In the graph given il Example 9.6.2. two edges incident on VI are in series.

9.8 ~LL GRAPH., \

\
\

9:8.1 Definition: A graph G = (V E) is said to be a null graph if E = <\>.

9.8.2 Example: The graph G give 1 in Fig-9.8.2. The graph G contains no edges and hence
a null graph.

Vs 0

VI o

9.9 SUMMARY

G IS

0 V6

I Fig-9.8.2 I
0 0 V4v3

This lesson is meant for beg nning your process of learning Graph Theory. It started with
the definition of Graph and Move on to illustrate the concepts of finite and infinite graph, incidence,
degree, isolated vertex, .pendent ~ertex and null graph. This lesson also initiated various
fundamental notions in the Graph Theory.

9.10 TECHNICAL TERMS

Graph: A linear graph (or simply a graph) G = (V, E) consists
of a rionempty set of objects, V = {v!, V2, ... } called
vertices and another set, E = {el, e2, ... } of elements
called edges such that each edge 'ek' is identified with an
unordered pairt v., Vj} of vertices. The vertices vi, Vj

associated with edge ek are called the end vertices of ek



/M.Sc.,Mathematics 9.12 Preliminaries in 0: T.I
Finite graph: A graph consists of finite number of vertices and a finite

number of edges.

infinite graph: A graph that is not finite

'incidence: If a vertex v is an end vertex of some edge e, then v and
e are said to be incident with (or on, or to) each other.

degree of a vertex: The number of edges incident on a vertex. The degree of a
vertex v is denoted by d(v). It is to be noted that a self-
loop contributes two to the degree of the vertex. '

isolated vertex: A vertex having no incident edge. In other words; a vertex v
is said to be an isolated vertex if the degree of v is equal to
zero.

, p~ildent vertex:
<,

A vertex of degree one.

.nall graph: A graph' with edge set E = <p • /
I

.9!fl ANSW~RSTO·SELF AS:8ESSM~NTQUESTI()N"S

5,
Now I ui = 3 + 4 + 3 + 3 + 1 = 14. lEI = 1.

i=l
5,

S~.!d(Ui) = 2 lEI
" i=l

:fherefore the sum of degrees of all the vertices of a graph G is twice the 'nurnber of edges in G

2: No, sihce the sumof the degrees of the vertices cannot be odd.

1:. Let G be a regular graph of degree 4 with '1'0edges and let 'n' be, the number of verticesin G.
then £d(u)= 2 x 10 = 20.

ueV
~ n . 4 = 20. ~ tl = 5.

ro



!Acharya Nagarjuna University 9.13 Center for Distance Educatio@

9.12 MODEL QUESTIONS

1. Define the terms: Graph, finite graph, infinite graph, incidence, degree, isolated vertex,
pendent vertex" null graph ' . .:»

2. Explain the Koingsberg Bridges problem. , "
/ 3. Explain the Seating Arrangement Problem." . :'.:, "

4. Show that the sum of the degrees of the vertices of a finite graph G is twice the number of
edges.
5. Show that the number of vertices of odd degree is always even. ._'
6. Show that an infinite graph with finite number of edges must have an infinite number of isolated
vertices. " . .

.; ,', . .

7. Show that the maximum degree of any vertex in a simple graph is, (n ~ 1).
.. : . .' .... "

n(n-I)
8. Show that the maximum number of edges in a simple graph with n vertices is

2
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LESSON-tO

SUB GRAPHS

Objectives
The objectives of this lesson are to:

• understand the concept of isomorphism between two graphs
• identify whether a given graph is a subgraph of another graph
• find out a method to solve the puzzle: Instant Insanity
• learn about walks, paths and circuits in a graph

Structure

10.0
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9"
.10.10
10.11

.-,

Introduction
Isomorphism
Subgraphs
A Puzzle with Multi Colored Cubes
Walks
Paths
Circuits
Summary
Technical terms
Answers to Self Assessment Questions
Model Questions

Reference Books

10.0 INTRODUCTION

In this lesson, we introduce some additional concepts and terms in Graph Theory and
provide a variety of examples. We study isomorphism between graphs like congruent figures. Two
graphs are thought of as equivalent and called isomorphic if they have identical behavior in terms of
graph theoretic properties.

Some times we need only a part of a graph to solve some problems. When some edges and
vertices are removed from a graph without removing end points of remaining edges, a smaller graph
is obtained and such a graph is called subgraph ofthe original graph. Walks, paths. circuits in graph
G are its subgraphs with special properties.
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A puzzle, which involves stacking four multi-colored cubes, will be solved. In this lesson
, we see with examplesthatjhowsome general problems can be, converted into-problems of graph

theory and. solved. . '";<:.;.,,

10.1 ISOMORPHISM

10.1.1 Definition: Two graphs G and 01 are said to be isomorphic to each other if there is a one-
to-one correspondence between their vertices and a one-to-one correspondence between their edges
such that the incident relationship must be preserved. . . .' ;, -.
[In other words, two graphs G ~.(V, E) & G I = (V I; El)c,are said tQ.,~~eisomorphic if there exist
bijections f :V -+ Vi and g : B~ EI .such that g(ViVj)";f(vj)f(vj) fer any ledge viv, in G].

r

10.1.2 Note: Except the labeling of their vertices and' edges of'the isomorphic graphs, they are
same, perhaps may be drawn differently. . ,

10.1.3 Example: Consider the two graphs given in Figures lQ.1.3A and B. Observe that these are
isomorphic. The correspondence between these two graphs is as follows.
f(ai) = Vifor 1 ~ i ~ 5 and g(i) = ej for 1 ~ i~5.'

4

Fig-l0.1.3A

10.1.4 Example: Observe thatthe two graphs given in Figures ~O.1.4A and'B are isomorphic.

. Fig-IO.1.4 A

~... ,.
, .

t Fig-IO.1.4 B
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Fig-tO.1.5 B

I Fig-1O.1.5 C I

SelfA,ssessU1fmQ~~~tio~J:Write {l~'lsomorphis,~of th~.foJl:owingpairs·ojgr~phs?
( ~;. . ~.:,,, " . . ." " . .

// \ ~/

..~. =:__._....__ ~ 4 ,'. ,.,_ •• .4A, .••••.- ..•••.N_ ••• _ •••• ,., • •
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4)

~
\

10.1.6 Note: It can be observed that if there is an isomorphism between two graphs G and Hr-then
G and H must have: .

(i) The same number of vertices
(ii) The same number of edges

(iii) An equal number of vertices ofa given degree
(iv) The incident relationship must.be preserved.

10.1.7 Note: Consider the two Graphs given in Figures IO.1.7A and B. These two graphs are not
isomorphic.
[verification: In a contrary way, suppose that the graphs are isomorphic.
Then 8(a) =degree of a =3 and 8(y) = degree of u = 3 and there is no vertex other than a and u
whose degree is 3. So a and u are to be associated. In such a case, the number of pendent vertices
adjacent to a must be equal to the number of pendent vertices adjacent to u.

b v

a
u

c

! Fig-1O.1.7 A Fig-IO.I.7/B

Observing the graphs, we can conclude that there arc two pendent vertices adjacent-to a, and there is
only one pendent vertex adjacent to u, a contradiction. So the given two graphs are not isomorphic].

10.2 r SUB GRAPHS

10.2.1 Definition: A graph 'g' is said to be a subgraph of a graph G if all the vertices and all
the edges of 'g' are in G, and each edge or 'g' has the same end vertices in g as in G. We
denote this fact by g cG.

10.2.2 Example: The graph-Z and graph-3 are subgraphs of graph-I.
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o----o:::--+---~--::o_-o 2 Fig-l0.2.2
Granh-l

4

5 2

\
I Fig-1O.2.2 B I

. L Graph-2·. I Fig-l0.2.2 C
Graph-3

10.2.3 Observations: Here we can observe the following facts:
(i) Every graph is a sub graph of itself.
(ii) A subgraph of a subgraph of G is a subgraph of G.
(iii) A single vertex in a graph O· isasubgraph of G:
{iv) A single-edge in G together with its end vertices is a subgroup of G.

. ,
r" •.'i

10.2.4 Definition: Two subgraphsg and gl of a graph '0' are said to be edge-disjointif gl a:lldg2
. do not have .any .edges in common. . .

10.2.5 Example: Observe the two graphs given in Figures 1O.2.5A and B. These two graphs-are
subgraphs ofthe graph given in the Figure-lO.2.5C. There are no common edges .in thesejtwo
subgraphs. Hence these two subgraphs are edge disjoint subgraphs. .'," ' . ,:';~ .

; ...• , . '>1
" Y',J



..,jAcharyaNagariuna University

B R B R
e3

f4

I Fig~'IO.2.5 A e4 e] , f]
f2 Fig-IO.2.5 B

w~---~G

"<,

f4 ''''-..

·e3

If I
Fig-lO.2.5 C I

el I 2
/,

I

/
e2

W ,/

"
[3
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6
wtr--------O'G o

10.2.6 Definition: The subgraphs that do not have vertices in common are said-to be vertex
disjoint. . . .

10.3 A;-PUZZLE WI~H MULTI COLORED CUBES

.) .. ,

Now we are going to solve a puzzle called "Instant Insanity Puzzle"
> t' Ir.:

:Ut3.1 Problem: Weare given four cubes. Th~ six' faces of every cube are, variously colored with
colors: Blue(B), Red (R), Green (G),fwhite(W).' ,', , ..:-.:'>U )_\i\.~·~ ••..

Now the problem is: 'Is it possible to stack all the four cubes one on the top of another to form a
column so that no color appears twice on any of the four sides of this column'.
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B G G G IR IR

IB

R w Cube-2Cube-I

w B

IG B G 1w 1
R

Cube-4 .~-:i ,

rR B' W IR I

~ Cube-~

Solution:' Step-Ii): (Construction of the graph):

B ~--",,,'

3

2

I '

Fig-1O.3.1A I3 2

2

4

Construct a graph with four vertices one corresponding to each of the four colors. We draw an edge
between two vertices if the corresponding colors are on opposite sides of a cube. Label the edges
with the number of the cube to which that particular edge belongs. , J;.,
The graph of the above four cubes is given in Flgure-lO.3.1A. ' \ )~~

Step-(ii): (To find two edge disjoint spanning regular subgraphs of degree 2): In this step we
have to find two edge disjoint spanning regular subgraphs Hand L of ,,' r,
degree 2. For this problem, two such subgraphs Hand L were given in the Figures 10.3.1B and,
C.~-'."' . }i:~t~,:/·.C'~(f \' ~<. 1~1>.:"

.: j ~<.
~.,
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B~------------~
4 R

Subgraph-H 2

w (")--------"--------(J G
3

Fig-lOJ.1 B

Bo---~_--QR
3

Subgraph-L
4 1

W 2 G

Fig-lO.3.lC I

Step-(iii): First we stack the cubes according to H so that each color appear~ once on the front and
one on the back of the stack. The edges of'H are BR, RG, GW, WB. '
Using these edges, we form table-l. Now L determines the colors on the sides of the stack. Since
each cube can be rotated about an axis through the front and back, there is no problem in arranging
the colors so that the left and right sides correspond with the table.- 2.' . i.' ...•.. ...,

Cube Front Back

(North) (South)

4 B R

2 R G

3 G W

1 W B

Table:-l 'I

Cube Left Right'

(West) (East)

4 B W

2 W
,

G

3 R B

I G R

Table-2

10.3.2 Note: Observe that a solution for the above puzzle exists ~ there exists two 'spanning edge
disjoint regular subgraphs Hand L of degree two.

10.4 WALKS
:. 1- ';'- I:

10.4.1 Definition: A finite altemating sequence of vertices and edges (no repetition of edge
allowed) beginning and ending with vertices such that each edge is incident with the vertices
preceding and following it, is called a walk (or edge train or chain).

10.4.2 Example: (i) From the above definition, it is clear that no edge appears more than once in a
walk.
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g a
" :,..",~- '.'

b~--------------------~vz

d
Fig~1O.4.21l . V3.

e f

V 4 I<:::... -'-- -'---l V 5

h
f: ..

'J,

. (ii) Co~sider the graph given in Figure 16.4.2. We ,can observe that" vlavzbv3cV3Qy~e ~ZfV5?Sis a
walk.

10.4.3 Note: The set of vertices and edges constituting a given walk in a graph G;forms a subgraph
~. " .' I " •ero:

-<' ,~,i . JT,(j-:i J

.~0.~.4 Deflnltion: Vertices with which a walk begins and ends are called the terminal v~rti<;i~(or)
'terminal points of the given walk. The remaining vertices in the walk are called i~,t~rmfiP~ate

vertices (or) intermediate points of the walk. .
\, - i

. .• '.~ .

10.4.5 Definition: A walk is said to be a closed walk if the terminal points are same,
. ". I. ,: • ,. •

10.4.6 Example: Consider the graph given in Figure 10.4.6;
The walk "v.av-bv-cv." is a closed walk.

[iiI0.4.6 I

Vz 1 •
". r •

10.4.7 Definition: A walk which is not closed. is called an open walk. [In other words, a walkis
said to be an open walk if the terminal points are different].. . . r . :".; J U. :

i0.4.8 .. Exam·ple: -Censider the graph given in Figure 10.4.2.' In this graph,
.\·vlaV'2bvjflV'4ev2!J5'1J~.:!is::anopen 'walk. .J

. ~a..:..: J i_'.~' {\ -t'i~d L..· .j/'!",.; .. .\.::,.j

. ... ;','

'the' walk

.1t -. 'J "i\~j:H .~' !J
.ri;
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10.5 PATHS

10.5.1 Definition: An open walk inwhich no vertex appears more than once, is called a path (or)
simple path (or) elementary path. In other words, an open walk is said to be a path ifit doe~ not
intersects itself.

10.5.2 Example: Consider the graph given in Figure-IO.4.2. We can observe that
"v\av2~v3dv4" is a path, and "v.av-bv-cv.dvaev-fv," is a walk but not a path (because this walk
contains a repeated vertex V2). '

10.5.3 Definition: The number of edges in a path is called the length of the path.

10.5.4 Note: (i) Consider the graph given in Figure 10.4.2. The path "viav-bv-dv," is oflength 3.
(ii) An edge that is not a self-loopis a path of length one. ' ,

(iii) A self-loop is a walk but not a path. '

',il:' (li-'jConsider'a'path as a subgraph. With respect to the subgraph, we have that termi~al vertices of
the path are of degree one and the rest or the vertices (these are called intermediate vertices) are of
degree two. , ' ,

(,:'Fbf"eiampfe;'cbnsiderthe'path'v,av2bv3dv4 (refer the graph given in Figure 10.4.2). With respect
-:'to this path' d(v,) = 1, d(V2) = 2,d(v}) = 2, d(V4) = 1. ".

10.5.5 Note: Consider the graph given in Figure 10.5.5. We can observe the following facts.
(i) If there isno repetition of vertices in a walk, then 'the walk is a non-intersecting walk.'

V4

Fig-IO.5.5

/ V2 LL- -::----'-_-:..I V3

(ii) Observe that a walk is intersecting <=> there lies repetition of vertices.
(iii) v\VS, VSv). V3V4,V4VS,VSV2is a walk.

10.6.!})efi"'it~or;A closed walk in whi~h no vertex (except the initial Y~Jtex:a.\1l~;~h,~;final vertex)
appears more than once is called a circuit. (or) cycle (or) elementary cycle.l(or);cln.ml~rp:ath«))r
polygon (or) loop. In other words, a closed and non-intersecting walk is called a circuit.

10.6.2 Example: (i) Consider the graph given in Figure 10.4.2. The walk V2 b V3 d V4 e V2 IS a
circuit.



/MoSc. Mathematics Subgraph~10.12

(ii) Consider the three graphs given in Figures 10.6.2 A, Band c., These three graphs represent
three different circuits.

; "

b

"i .'. "

a

, I Fig-10.6.2 B '

h

Fig-1O.6.2 C

e
vs

Self Assessment Question-2: Find any two paths and one cycle for the given graph.

\

v '

10.6.3 Note: (i) Every vertex in a circuit, is of degree 2.'
(ii) Every self-loop is a citouit.ibut every circuit is not aself-loop. i i. ,

".
" ,

1
" -I

, ;
• 'v, < ~

L c.
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.10.7 SUMMARY
In this lesson, we learnt that two isomorphic graphs must have,the same number of vertices, same
number of edges, & equal number of vertices with a given degree. We
discussed terms like subgraphs, Edge disjoint subgraphs, vertex disjoint subgraphs; we also learnt,
to convert the given four cubes problem in to a problem of Graph Theory. We studied some basic
concepts like walks, paths and circuits that are prerequisites in understanding the concepts Euler
graphs and Hamiltonian graphs (that appear in the coming lesson).

10.8 TECHNICAL TERMS

l.1somorphism between two graphs: An one-to-one correspondence between their vertices and their
edges such that the incident relation ship must be preserved.

2. Subgraph: A graph'g' is said to, be a subgraph of a graph G if all the
vertices and all the edges of 'g' are in G, and each edge of
'g' has the same end vertices in g as in G. We denotethis
fact by g c G.

3. Edge-disjoint: Subgraphs of a graph which do not have any edges In
common.

4. Walk/edge-train/chain: A finite alternating sequence of vertices and edges (no
repetition of edge allowed) beginning and ending with vertices
such that each edge is incident with the vertices preceeding
and following it.

5. Terminal vertices: Vertices with which a walk begins and ends

6. Intermediate vertices: The vertices which are not terminal vertices, in the walk.

A walk which is not closed. [In other' words. 'a walk ~hose
terminal points are different].

7. Open walk:

8. Path/Simple path/Elementary path: An open walk in which no vertex appears more than once.

9. Length: The number of edges in a path.

10. Circuit/Cycle/Loop: A closed walk in which no vertex (except the initial vertex and
the final vertex) appears more than once. [In other words, a
closed and non-intersecting walk is called a circuit].

. ;

, .

'.:I

10.9 ANSWERS TO SELF ASSESSMENT QUESTIONS :;,:;,:,;q;., r', {:j '-

1. The two graphs Gt and G2 in (1) are isomorphic and the isomorphism is given by
--s<.'-.'~-

/' :,.
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a --),e, b --) h, c --) f, d --) g,

The two graphs G, and G2 in (2) are isomorphic under the correspondence: 1 --) 7",
2 --) 5, 3 --) 8, 4 ---4 6.

The two graphs G, and G2 in (3) are isomorphic and the isomorphism is given by
a} --) b. a2 --) b2. a3 --) b3, a, --) ba

The two graphs G, and G2 in (4) are isomorphic and the isomorphism is given by the
correspondence: a, --) b" a2 --) b2,a, -+ b3, a, -+ b4, as -+ bs, a6 -+ b6.

2: (V6v, V2V4) and (V7V6V2VI) are two paths.
(vs V6V2vs) is a cycle.

10.10 MODEL QUESTIONS

1. Explain the isomorphism between two graphs and give an example?
2.Define subgraph ofa graph andgive an example.? '
3.Define the terms: Walk, Path ,Open Walk, Closed walk and give an example of each.
4.When will you say that two subgraphs are edge disjoint?
5. State and solve the Instant Insanity Puzzle.
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LESSON -11
CONNECTED GRAPHS

Objectives
The objectives of this lesson are to:

• learn the concepts of connected "graphs & disconnected graphs.
• analyze the components ofdisconnected graphs.
• study a method to find all the components of agraph G.
• knowing different examples of the connected graphs.

Structure

11.0 Introduction
111.1 Connected Graphs
11.2 Disconnected Graphs
11.3 Components
11.4 Summary
11.5 Technical terms
11.6 Answers to Self Assessment Questions
11.7 Model Questions
11.8 Reference Books

,
t

11.0 INTRODUCTION

One of the most important elementary properties of a graph, is that of connectedness.
Intuitively, the concept of connectedness is obvious. A connected graph is in "one piece", so that
we can reach any point from any other vertex point by travelling _long the edges. In this lesson we
develop the basic properties of connected, disconnected graphs and components. We also obtain
some elementary results and examples.

"
,

11.1 CONNECTED GRAPHS

11.1.1 De+itiOn: A graph G is said to be connected if there is at least one path between every

pair of vertices in G. .

11.1.2 Example: The graph given in Figure 11.1.2 is connected.
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c

b~~--------~------~V2

d

V4 cr--------------------ov 5
h

11.1.3 'Example: Observe the graph given in Figure.l lLS

b

Vs

~~~----------~V3
V2

f

The graph given in Figure 11.1.3 is a connected graph

11.2 DISCONNECTED GRAPHS

f

I Fig-l1.1.2 I

',.

---,.".,
t s-

" t

g I Figl1.l.3 I
: ,

•. ~

11.2.1 Definition: A graph 'G' is said to be a disconnected graph ifit is nota connected graph.
11.2.2 Example: The graph given in Figure 11.2.2 is a disconnected graph (observe that there is no
path from V4 to V2). ,",

V3

-".' ", I , ..

Figll.2.2 I
°ri .-' i •
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Self Assessment Question 1:. Draw a connected graph that becomes disconnected when any edge
is removef from it ?

11.3 COMPONENTS

11.3.1 Note: Let G = (V, E) be a disconnected graph. We define a relation ~ on the set of
vertices as follows: v ~ u ~ there is a walk from v to u.
Then this relation r-: , is an equivalence relation.
Let {VihE'c' be the collection of all equivalence classes. Now V UVj .

iE~

Write E, = {e E E / an end point of e is in Vi} for each i.
I

Then (Vi, ED is a connected subgraph ofG for every iE~.
This connected subgraph (Vi, Ei) of G is called a connected component (or component) of G
for every i E ~. I .. I .

The collection {(Vi, Ei)LE,C, of subgraphs of G is the collection of all connected components oCG.
11.3.2 Note:(i) If G is a connected graph, then G is the only connected component of G, .
(ii) A disconnected graph G consists of two or more connected components.
(iii) Connected component of a graph G is a maximal connected subgraph of G.
(iv) A graph is connected iff it has exactly one component.
(v) Consider the graph given in Figure 11.3.2.

/0 ,0 /1 Figll.3.2

This graph is a disconnected graph with two components.

11.3.3 Formation of components: If G
connected component and it is equal to IG.
Now suppose that G is a disconnected graph. Consider a vertex v in G. If each vertex of G is
joined by some path to v, then the graph is connected, a contradiction. So there exists at least one
vertex which is not joined by any path to v.

The vertex v and all the vertices of G that are joined by some paths to v together with all
the edges incident on them form a component (GI, say).
To find another component, take a vertex u (from G) which is not in G). The vertex u and all the
vertices of G that are joined by some paths to u together with all the edges incident on them
form a component (G2, say).
Continue this procedure to find the components. Since the graph is a finite graph, the procedure will
stop at a finite stage. In this way, we can find all the connected components ofG. It is clear that, a
component it self is a graph.

is a connected graph, then G contains only one

11.3.4 Theorem: A graph G is disconnected ~ 'its vertex set V can be partitioned into two non-
empty disjoint subsets VI and V2 such that there exists no edge in G, whose one end-vertex is in
VI and the other end vertex is in V2-
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Proof: Let G = (V, E) be a graph.--
Assume that V = V I U V2, V I ;;J:. <j>, V2 ;;J:. <j> and VI n V2= <j>' such that there exists no edge in
G whose one end-vertex is in VI and another end-vertex is in V2•

We have to show that G is disconnected.
In a contrary way, assume that G is connected.
Let a,b E G such that a E VI and b e V2.
Since G is connected there exists a path a el a, e2 a2 ... an-Ien b from a to 'b.
Now b g; VI., So there exists least number j such that aj g; VI.
Now aj_1E VI, aj E V2 and ej is an edge between a vertex in VI and a vertex in V2, a
contradiction. Hence G is disconnected _

Converse: Suppose G is disconnected. Let a be a vertex in G. Write
VI = {v E V I either a=v, or a is joined by a walk to v}. ,
If VI = V, then all the vertices (other than a) are joined by a path to a, and so the graph is
connected, a contradiction.
Hence VI C V. Write V2 = V \ VI. Now VI, V2 form a partition for V. Ifa vertex x E VI"
is joined to ~ E V2 by an edge, then y is connected to a (since x E VI) => y E VI =>!oo/E
Vln V2 = <j>, a contradiction ..
Hence no vertex in V I is connected to a vertex of V2 by an edge.· This completes the-proof .':;-

[ In other words, the Theorem 11.3.4 can be stated as: A graph G is connected <=> for any partition
v of vertex set in to subsets V I and V2, there is a line of G joining a point of V I to a point of V2]."

";H

11.3.5 Theorem: If a graph (either connected or disconnected) has exactly two vertices of-odd
degree, then there exists a path joining these two vertices. i'<

i

Proof: Let G be a graph and v I, V2 be the orily two vertices in
[

Case-(i): Suppose
vertices.
So there is a path from VI to V2in G.

G whose degrees are odd.

G is connected. Then by definition, there exists a path between any two

Case-(ii): Suppose G is disconnected. 'then G has two or more components.
Let GI be the component in which VIpresents.
Now, GI is a connected subgraph.
If G\ do not contain V2,then the number of vertices in G I with odd degree is 1 (an odd number), a
contradiction (since in any graph, the number of vertices of odd degree is even).
Therefore V2 is also in GI.
Hence VI, V2 are in the same component. -
Since ev~ry component is connected, there exists a path from v I to V2 in G.

~'\.c
Self Assessment Question 2: Determine whether the given graphs ore connected.
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11.3.6 Theorem: A simple graph with 'n' vertices and 'k' components can have at most (n - k)(n
-k -+- 1)12 . edges [or the maximum number of edges in a simple graph with 'n' vertices and 'k'
components is (n - k)(n - k + 1)/2 ].
Proof: Let G be a simple graph [that is, G has no self-loops and no parallel edges] wih 'n'
vertices and k components,
Suppose that 01, Ch, G3, •• " Gj, .. , Gk are kcomponents and PI, n2, n3, , .. ni, .. " nk are the
number of vertices in the components GI, G2, G3, "" G, respectively,
It is clear that n = Ilj + n2 + n3 + ". + 11k - - - - - - (i)

k k

Now ~)ni -1) = Lni - k = n - k
;=1 ;=1

Squaring on both sides, we get that

k k k
=> L(n; _1)2 + 2 IT IT (n, -1)(nj -1) = n2 + k2 - 2nk

;=1 ;=1 j=1

k

=> ~)n~ - 2ni + 1) + (some non-negative terms)
;=1

, k ,

=> ~)n~ - Zn.) + k ~ n2 + k2 - 2nk
;=1

k kLn; - 2 L n i + k ~ n2 + k2 - 2nk
;=1 i=1
k k

=> 2>~-2n + k ~ n2 + k2 - Znk. J~ince In; = 11by (i) ) .
;=1 ;=1 . ',' ,

k

=> I n~ ~ 112+ k2 - 2nk + 211, - k
;=1

,'>

'I,' ~ "

(ii)
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and Gi is simple, we have that the maxinlUI';i'number of edges in the ith component is

Since G is a simple graph, the ithcomponent G, is also a simple graph. Since G, contains n, vertices
nj(nj -1)

2
Therefore the maximum number of edges in all the k components is

t nj(nj-l) = ~ ±nj(nj -1)
;=1 '. 2, 2 i=1

1 k
- "(n2 -n.)
2 ~ I I

;=J

t (tn~~tn;)
1 2 2::s; 2"[(n +k-2nk+2n-k)-n]

(from (i) & (ii) )
1 2 2=-[n -nk-nk+k +n-k]
2
1

= - [en - k)n - (n - k)k + (n-k)]
2
1= - (n - k) (n - k + I).2 '

This completes the proof.

11.4 SUMMARY
In this lesson, we discussed connected graphs, disconnected graphs and components in a

disconnected graph. We also learnt a procedure, to find all the components in a given graph G. We
studied an equivalent condition for a graph G to be disconnected. The maximum number of edges
in a simple graph with n vertices and k components was found.

11.5 TECHNICAL TERMS
Connected graph:
Disconnected graph:
Component:

A graph in which every pair of vertices are joined by a path.
A graph which is not connected.
maximal connected subgraph of a graph.

11.6 ANSWERS TO SELF ASSESSMENT QUESTIONS

1:
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2: Graphs Gland G3 arf not connected
,. Graphs (){ and G4 are connected.

/'
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11.7 MODEL QUESTIONS

1. Define the terms and provide an example of each. (i) Connected graph (ii) Disconnected graph -
(iii) Component.
2. Show that a graph G is disconnected ¢:> its vertex set V can be partitioned into two non-empty
disjoint subsets VIand V2 such that there is no edge in G, whose one end-vertex is in V1 and
the other end vertex is in V2.

3. Show that if a graph (either connected or disconnected) has exactly two vertices of odd degree,
then there exists a path joining these two vertices.
4. Show that a simple graph with On'vertices and 'k' components can have at most (n - k) (n
-k + 1)/2 edges [or the maximum number of edges in a simple graph with on' vertices and 'k'
components is (n - k)(n - k + 1)/2].
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LESSON -12

,EULER GRAPHS

Objectives
')

The objectives of this lesson are to: I
• learn' the concepts of Euler line, Euler graph, Unicursallinf and Unicursal graphs.
• learn a beautiful characterization with which Euler solved the Konigs berg, bridges problem.
• discuss the operations like union, it. -rsection and ring suin of two graphs.
• know about decomposition of a graph G into subgraphs.
• learn the concepts of arbitrarily traceable graphs.

Structure

12.0 Introduction
12.1 Euler Graphs
12.2 Operations on Graphs
12.3 Further Discussion on Euler Graphs
12.4 Summary
12.5 Technical terms
12.6 Answers to Self Assessment Questions
12.7 Model Questions '
12.8 Reference Books

12.0 INTRODUCTION

Euler formulated the concept of Eulerian line when he solved the problem of the Konigsberg
bridges. The Euler lines mainly deal with the nature of connectivity in graphs. These are used to/
solve several puzzles and games. In this lesson we discuss the relation between a local property
namely degree of a vertex and global properties like the existence of Eulerian cycles. We see that
there are well designed characterizations for Eulerian graphs. We also provided some binary
operations on graphs.

12.1 EULER GRAPHS

12.1.1 Definition: Let G be a graph. A closed walk running through every edge of the graph G

exactly once is called an Euler line.

"l.":
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12.1.2 Definition: A graph 'G' that contains Euler line is called an Euler graph,

12.1.3 Example: The graphs given in the Figures 12.1.3A and B are Euler graphs.

4
4

11

Fig-12.1.3 A
Star of David

Fig-12.1.3 B
Mohammad's Scimitars

(i) Consider Fig-12.1.3A.

Here 123456789(10)(11)(12)13579(11)1 is an Euler line.
(ii) Consider Fig-12.1.3B.

Here 23456789(10) 12(11)357(11)8(10)2 is an Eulerline. .~~:
Self Assessment Question 1: Which of the following is an Euler graph, give reasons?

2

1 2

3

4 ~--------------~5
G2

12.1.4 Note: An Euler graph may contain isolated vertices. If G is an Euler graph and it contains
no isolated vertices, then it is connected.
Here after we consider only those Euler graphs that do not contain isolated vertices. So the Euler

graphs those we consider are connected.
~ . .- ' .." '

12.1.5 Theorem: A given connected graph G is -an Euler graph <=>all the"vertices of G are of
even degree. ";:'l; ,

Proof: Suppose G is an Euler graph. Then G contains an Euler line. So there exists a closed walk

running through all the edges ofG exactly once.
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Let v E V be a vertex of G. Now in tracing the walk it goes through two incident edges on v
with one entered v .and the other exited. '

o~--~>~~o~~>~-o
V

Fig12.l.5 '

Thisis true not only for all the intermediate vertices of the walk, but also true for the terminal vertex
because we exited and entered at the same vertex at the beginning and ending of the walk.
Therefore if v occurs k times in the Euler line, then d(v) = 2k.
Thus if G is an Euler graph, then the degreeof each vertex is even.

\
Converse: Suppose all the vertices of G are of even degree. Now to show that G is a Euler graph,
we have to construct a closed walk starting at an arbitrary vertex v and running through all the
edges of G exactly once.
To find a closed walk, let us start from the vertex v. Since every vertex is of even degree, we can
exist, from every vertex we entered, the tracing cannot stol1at any vertex but at 'v'. - it

Since 'v'. is also of even degree, we shall eventually reach 'v' when the tracing comes to an end. ,;"i

If this dosed walk (h, say) inclu"des all the edges of G, then G is an Euler graph. ",:,
Suppose the closed walk 11 does not include all the edges. Then the remaining edges form a.

I" ~
subgraph h of G':lJ

Since both G and h have. all thei r vertices of even degree, the degrees of the vertices of h I" are
also even. /
Moreover, h' must touch h atleast one vertex 'a' because
G is connected. Starting from 'a'"we can again construct a new walk in graph hI.
Since all the vertices of h I are ofeven degree, and this walk in hI must terminates at the vertex
'a'.
This walk in hi combined with h forms a new walk which starts and ends at vertex y and has
more edges than those are in 'h'. .
We repeat this process until we obtain a closed walk that travels through all the edges of 'G.
In this way, one can get an Euler line. "t.
Thus G is an Euler Graph.

12.1.6 Konigsberg Bridges Problem: In the graph of the Konigsberg bridges problem, there exist"
vertices of odd degree. So all the vertices are not of even degree.
Hence by the Theorem 12.1.5, we conclude that "the graph representing the Konigsberg bridges \
problem" is not an Euler graph. .
So we conclude that it.is not possible to walk over each of the seven bridges exactly once and return
to the starting point. " rr ,

12.1.7 Note: The concept of Euler graph can be used to solve s~ many puzzles like: to find how "~'
given picture can drawn in one continuous line without retracing a line and without lifting the pencil
from the paper. ·.·,~.'I': j','

For example, consider the two graphs given in Example 12.l.3. Anyone of these two graphs can be
drawn in one continuous line without retracing a line and without lifting the pencil from t'ie paper .

. 'i t'-i r :": : "-J~ . I .fl...
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Self Assessment Question 2: Let G be thesgrapn given below. Use theorem 12J 5 to, verify that G
is an Euler graph.

V4~------------+-----------~V6

V7'~----------~~----------~
V8 V9

12.1.8 Note: In defining an Euler line, some authors drop the requirement that the walk be closed.
For example, consider the graph given in Fig-12.1.8. The walk VIel V3e2V4e3v. e, V2es V4e6 vs e;';
V2includes all the edges of the graph 'and do not contain repetition of edges. Observe thatthis walk;
is not closed. (because the initial vertex is 'a' and the final vertex is 'b'), This sittiation/d~velop~:ii",
new concept called unicursal graph.

I Fig-12.1.8 I

Vlo- e_4~ ~

Vs

12.1.9 Definition: Let 'G' be a graph. Then an open walk running through all edges of the graph,
'G' exactly once is called an unicursalline. .,

12.1.10 Definition: A connected graph that contains u~icutSalline is called a unicursal graph.

12.1.11 Note: (i) If we add an edge between the initial and final vertices of a unicursalline, then we
get an Euler line. ' '

(ii) A connected graph is unicursal <=> it has exactly two vertices of odd degree,
[Verification: Let G be an unicursal graph. Then we get a '
path from v to u with v;t. u. If we join a new edge vu, then we get an Euler line. So all the
vertices of this new graph G* = G u {vu} have degree even. , ' .,,.
So in the given graph G, there exists exactly two vertices v and u 'with odd 'degree .. l .r ..::J .' -~.'

Converse: If there exist exactly two vertices u and v of odd degree, 'then join 'by trv. So in 'the new
graph, all vertices are of even degree. So by above theorem, the new graph contains an Euler line.
Now remove uv from this Euler line to get an unicursal line],
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12.1.12 Theorem: In a connected graph 'G' with exactly 2k odd vertices, there exists k edge-
disjoint subgraphs such that they together contain all edges of G and that each subgraph is an
unicursal graph. . .

Proof: Let VI, Vz, ... , Vk, WI, WZ, ... , w, be the vertices of odd degree in G (in some arbitrary
order).
Nowadd k edges between the vertex pairs
(VI, WI), (V2, W2), ... , (Vk, Wk).
[Note that no two of these edges are incident on a common vertex].
Write G1 = G U {viw, /1 s i s k}.
Now we got a new graph, say GI

.

Now each vertex of GI is of even degree.
Since every yertex of GI is of even degree, we have that GI consists of an Euler line "P". .
If we remove the k edges (just added) from this Euler line P (note that no two of these edges are
incident on the same vertex), then this Euler line 'P' will split into k walks, each of which is an
unicursal line.
[The first removal will leave a single unicursal line, the. second removal will split that into two
unicursal lines, and each successive removal will split an unicursal line into two unicursal lines.
After removal of k edges, we left with k unicursal lines].
This completes the proof.

12.2. OPERATIONS ON GRAPHS I
To study a large graph, it is convenient to consider it as a combination of small graphs. First

we understand the properties of small graphs involved, and then we derive the properties of the

large graphs.

Since graphs are defined by using the concepts of set theory, we use the set theoretical

terminology to define operations on graphs. In defining the operations on graphs, we are more

concerned about the edge sets.

12.2.1 Definition: Let GI = (VI, EI) and G2 = (V2, E2) be any two graphs. Then union of

GI and G2 is the graph G = (V, E) where

V = VI U V2 and E =, EJ U E2. We write G = GI U G2.
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12.2.2 Example: Consider the following graphs OJ, O2 and 03.

V6

Vz V3

V3 d e

Vs V4 Vs
f

Fig-12.2.2 C
Graph-G3

Fig12.2.2 A
Graph-G. V2

d

V2

Fig-12.2.2B
Graph-02

v: h
n-----------~V6

f Vs

Vj

It is clear that 0, = O2 U 03.

12.2.3 Definition: Let Gj = (Vi, E,) and G2 = (V2, E2) be
any two graphs with V: (l V2":t= ~. Then the intersection of G, and O2 is defined as the graph

.0 = (V, E) where V = V: (l V2 and E = E, r, E2.

We write G = G, (l G2.

. 12.2.4 Example: Consider the graphs given in Figures 12.2.2 A, Band C. The intersection of O2

and G3 is given below. G4= G2 (l G3.

Fig-12.2.4
Graph-G4

Vs
o
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12.2.5 Definition: The ring sum of two graphs GI = (VI, EI) and G2 = (V2, E2) is defined as

the graph G= (V, E) where V = VIUV2 and E = (EluE2) \ (ElrlE2). Wewrite 0= GI-

E9 G2•

12.2.6 Example: Consider the graphs G2 and G3 given in Figure 12.2.2 Band C.

VI h
V6

b
V2

Fig-12.2.6
Graph-Gs

d
Gs = G2 E9 G3.

V4
f

The graph G2 E9 G3 is given by G, (observe Figure 12.2.6).

Self Assessment Question 3: Find the union, intersection and the ring sum of Gi and G2.

b c

a[ t7
d e

GI

a

12.2.7 Note: (i) The three operations (union, intersection and ring sum) on the set of all finite
graphs are commutative. That is, G I U G2 = G2 U G I,

GI n G2 = G2 n GI, GI EBG2 = G2 EEl GI.

(ii) If G1 and G2 are edge disjoint, then GI rl G2 is a null graph, and
GI E9 G2 = G, U G~. ;
(iii) .~o.r any graph G, we have that G uG = G rl G = G and G E9 G = <I> (a null graph).

12.2.8 Note: Let g be any subgraph of G. Then G EEl g is a subgraph of G which remains
after removing alHhb edges of g from G. So G EB g is written as G - g, whenever g c G. So
G EEl g = G - g is often called the.eomplement of g in G.

12.2.9 Exa-mple: Observe the graphs given in Figures 12.2.9 A, Band, C. In these Figures, an
example of a graph G, a subgraph gof G, and the complement G - g of g were given. -
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c
V3 V2 V3

VI C
e

d

Vs V4 Fig-12.2.9 B
Graph-g , ,

V20------0

f

Fig~12.2.9A, Graph-G
VI

b

V3 Fig-12.2.9 C
Graph G - g

e:

f Vs

12.2.10 Definition: A graph G is said to be decomposed into two subgraphs g, and g~;' if (i)
gl U g2 = G, and (ii) g, 11g2 = <I> (anull graph).

(Equivalently, a graph G is said to be decomposed into two subgraphs g, and g2, if every edge of G
occurs either in g, or in g2, but not in both).
However, some of the vertices may occur both in g, and g2. In the decomposition, theisolated

i~erti,ces are disregarded.

12.2.11 Note: A graph G can be decomposed into more than two subgraphs. A graph (J is said to
have been decomposed into subgraphs gl, g2, ... gn if

(i) g, U g2 U .... U gn = G, and (ii) gi 11gj = <I> (a null graph), fori *). I

12;2.12 Problem: Let G be a graph containing m edges. Then G can be decomposed in'(2in
-
1

- 1)
differ~nt ~ays into pairs of subgraphs gr, g2 (which. are not nun ~~aphs!. '! J < 'i-:., "
.Solution: Let {eI, e2" ... , em} be the set of all edges I." G. Suppose G IS decomposed into-two of
its subgraphs gl and' g2 (which arenot null graphs) where G = XV, E)~' ~'l '

gl = (VI, EI), g2 = (V2, E2). iU~. . '.:., ", f.'

Now EI 0E2 = E 'and EIIl E2'~ <1>. 'j~,' ;L'l' ?L)

,L
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Note that E. =F <\> =F E2.
If one of the El, E2 formed, then the other one follows. Without loss of generality, we assume that
el E HI.
Now {e2, ... , em} is to be divided into two parts.
We know that {eJ, e2, ... , em} can be divided into two disjoint-sets FI and F2 in 2m-1 ways.
Write EI = {el} u FJ and E2 = E \E1• '

Now EI UE2 = E and EI n E2= <\>.
This division can be done in 2m-I ways.
Since empty set is not allowed to consider as E2, this division can be done in 2m~1-1 ways.
Thus the subgraphsgl and g2 can be formedin (2m-I_I) ways. '
This completes the proof.

12.2.13 Note: (i) If v is a vertex in a graph "G, then G - v denotes asubgraph of G obtained by
deleting v from G. I

(ii) Deletion of a vertex isalways implies the deletion of all edges incident on that vertex.

12.2.14 Note: (i) If e is an edge in agraph G, then G -e .denotes the subgraph of G obtained
by d.~leting .e ,from G.. ,'. . J ' '.

(ii) Deletion of an edge does not Imply the deletion of :ts end vertices:
(iii) It is c.lear that G - e= G EEle.

12.2.15 Definition: A pair a, b of vertices in a graph G are said to be fused (or) merged (or)
identified if the two vertices are replaced by a single new vertex such that every edge that, is
incident.on either 'a' or 'b' or on both is incident. on thle new vertex. Itisc1e~rthat the fusion of
two vertices does not alter the number of edges, but It reduces the number of vertices by one.

12.2.16 ExampleObserve the graphs G andG* given in Figures 12.2.16A and B.
The vertices a and b of G were fused to get.the graph<IT*.

e f

'0,

g
, h ~9

~I

a ~------------~o

6

c

g

Fig-12.2:16 A
Graph-G

Fig-12.2.1613
Graph-G*
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12.3. FURTHER DISCUSSION ON EULER GRAPHS

12.3.1 Theorem: A connected graph G is an Euler graph ~ it can be decomposed into circuits,
Proof: Let G be a connected graph, Assume that G can be decomposed into circuits.
That is, G is the union of edge-disjoint circuits. Since the degree of every vertex in a circuit is even,
we have that the degree of every vertex in G is even. By theorem 12..1.5, we have that G is an Euler
graph.

Converse: Suppose that G is an Euler graph.
Then all the vertices of G are of even degree ..
Now consider a vertex VI. ' \
Clearly there are at least two edges incident at v I..

Suppose that one ofthese.edges is between VI and V2.

Since vertex V2 is also of even degree, it must have atleast one more edge (say between V2 and
V3). .
Proceeding in this way, we arrive at a vertex that has previously been traversed.
Then we get a circuit say T I'.

Now let use remove TI' from G. (It is understood that we are-removing only the edges of I', from
G). Then all-the vertices. in the remaining graph must also be of even degree.
Now from the remaining graph, remove another circuit T2' in the Same way.t' as we removed T,'
from G).
Continue this process to get circuits rl, r2 •• .T, (until no edges are left). Now it is clear that the
graph G was decomposed into the circuits r I, r2 ... rn- .

This completes the proof.

12.3.2 Note: Consider the graph Gvgiven in Figure 12.3,2. It.is an Euler graph. Suppose we start
from the vertex 'u' and trace the path uvw. Now at ow', we have the choice of going to either 'x'
or 'v' or "u'.

\ .
\

v
If we took the choice of going to 'u',then we would only trace .the circuit 'uvwu', which is not an
Euler line.
Thus we have the following situation: ., .
"Starting from the vertex 'u', we areunable to trace the entire Euler line simply by moving along
any edge that has not already been traversed".
Now the following question arises.

I Fig-12.3.2 I
y

1;':
I
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"What property must a vertex 'v' in an Euler graph have so that an Euler line is always obtained
when one follows any walk from the v.ertex 'v' according to the single rule that whenever one
arrives at a vertex, one shall select any edge (which has not been previously traversed)".
For the graph given here, let us consider the vertex 'w'. An Euler line is always obtained when one
follows any walk from the vertex 'w' accordirigto the single rulethat whenever one arrives at a
vertex one shall select anyedge which has not been previously traversed. .In this case, we say that
the graph is an "arbitrarily traceable graph" from the vertex 'v:', .
. '. ,One can.observe tD.~tt:h:egrarPp.g~ve~ above is not arbitrarily traceable from any vertex other
than w:' . r ' ,', ';,.,,;:, ;., .:>.,.; ., . . . c ,

'~l

12.3.3 Definition: Let G be a graph and, v , a vertex .. The graph is said to beurbitrarily
traceable graph from the vertex, X. if an Euler line 'is always obtained When one follows ariy walk

. . ,_, , . _.'"', , _.- . . -" i

from the vertex v according to the single rule that whenever one arrives at a' vertex one shall
select any edge (which has ~~t q.~~~~PFeviouslytrave~sed).· . .... :'. . '.-:1

" .L • '-.-, _ ;j }~t

12.3.4 Example: The graph given in Figure 12.3.4 is an Euler graph. It is not arbitrarily traceable
from any vertex.

I Fig-12.3,4

~-----Qg
; . b

, ,~.
.1

. ,
.. ~ j

o 12.3.5 Example: The graph given: in Figure 12.3.5 is an arbitrarily traceable graph from all

vertices. v

:. • • ~ I' _,! - ' •

I Fig-12.3 ..5

. , I·,

An Euler graph G is arbitrarily traceable from the vertex v in G <=? every circuit in G
contains v.
Proof: LetG be anEuler.graph. fIg·.,L' '..' .,
Suppose that G is arbitrarily traceable from the vertex v..
Now we have to prove that every-circuit in,Q.contai.nS'1:.1 . _ ~
In a contraryway, suppose that there existsa circuitC, suchthat v is not in C/. Since v is in
Euler line, v is in a circuit C2 which is edge disjoint from. Ci, .
The circuit C2 provides.aciosed-walk from': v. to v .W;hichis not an Euler line .. ; ."

.J .. "- . ~.
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Now we can get a walk W(of maximurnlengthjstarting ~t v' ,and ending at v which do not
contains Ct. .! • ,;: I. ~ 'I'·~"~~., r:

So we get a walk W (of maximum length) which do not contain the edges in CI and this walk W is
not an Euler line, I} contradiction .to the \fact thaf G is arbitrarily .traceable from v. Hence every
circuit contains v.· -- ' , .
Converse: Suppose that every circuit in G contains v,
Since G is an Euler graph, there ~xist"finit~nurnberpf4tsjoip.tcircuits;sayCl' C2,,;. Cn.'
By converse hypothesis, we have that each of these circuits contains ' v.
We can cover all the edges of any cycle C'istarting at vand ending at' v.

~ " , ; • ' .••.~ j It' ' • r '. ~ •

1. ~:~, r .\' . ; '. :. ,"
~:~" ~. . ," . .~.'

" '\''' 'i....~~'" ~'

,~ ". .
, ,

,. ::3 ,; 'p" ' . .:'
." ,;", , ", " "

Now the walk given by v Ci, V Ci2v .. ; V Ci"v'ili'an Eulerline for all possible distinct values of

ii, h, ..:,in such that {ii, h, ...;:i~r ~ {I, 2, .:.,nF·
H~nce G is an arbitrary traceable frorri: v. ' :'" ,

12.4 SUMMARY
\ ". ;~ . .~.

In this lesson; we learnt the concepts of Euler lines: Euler graphs, and gained knowledge about a
necessary and sufficient condition for a connected graph to bean Euler graph. As a consequence of
this we obtained a solution fortheKonigsbergsbridge prQblem.,_ Wealso discussed few binary
operations on graphs. The concepts arbitrary traceable graphs and a few characterizations on it
were discussed.

Euler graph: ,
Unicursal line:

12.5 TECHNICAL TERM~ .....
Euler line: . ;A closed ~~l1<.r.u.T!nil?gthrough every edge of the graph.

G exactly once.
~graph that.contains an Euler Iine.: " ,: ' . , ",,'"
An open walk running-through all edges of the graph \"',

, " exactlY,once.. ."j f; ",.:,,' ;" ' \,' ",'.i .:

, ,~.c~rl;e~ed,graph tha],cO.J(ltflin~unicursal.line. '.~' ' <:«>, ,

, , "i .
Unicursal graph:

'. •. •. j ~,

, .
, '~ '. "

: i ", -v t , '

" '-.:. -;' "', .
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Union of two graphs GI and G2: G = (V, E) where V = VI U V2 and
E = EI uE2. Wewrite G = GI U G2.

Intersection of graphs: G = (V, E) where <I> :f. V = V I n Vi .and
E = ElnE2. We write G = GlnG2.

Ring sum of graphs: G = (V, E) where V = VI U V2 and
E = (EI U E2) \ (EI n E2). We write G = GI EB G2

Complement of a graph: Let g be any subgraph of G. Then G EB g is a
subgraph of G which remains after removing all the
edges of g from G. So G EB g is written as G - g,
whenever g ~ G. So G EB g = G - g is often called the
complement of g in G.

Decomposition of a graph: (i) gl U g2 = G, and (ii) gl n g2 = <I> (a nullgraph),
whereg, and g2 are subgraphs ofG. '

Fusion of two vertices:
in a graph

Two vertices are replaced by a single new vertex such
that every edge that is incident on either of the vertices
or on both is incident on the new vertex.

Arbitrarily traceable graph: Let G be a graph and v a vertex. The graph
is said to be arbitrarily traceable graph from
the vertex v if an Euler line is always obtained

when one follows any walk from the vertex v
according to the single rule that whenever one
arrives at a vertex one shall select any edge
(which has not been previously traversed).

12.6 ANSWERS TO SELF ASSESSMENT QUESTIONS

1: GI: The graph GI contains no Euler line. So it is not an Euler graph.
G2: The graph G2 has an Euler line "l 3 5 4 3 2 I". So 9·~is an Euler graph.

I

2:We observe that G is connected and that dfv.) = dtv») = d(v3) = d(v9) =2
d(V2) = d(v<t) = d(vg) = d(v6) = 4 and d(vs) = 6.
Since the degree of every .vertex is even, by Theorem 12.1.5 G is an Euler graph and the
Euler line in G is given by: VI V2V3V6VI)vs V7V4V2vs VgV6V5V4VI .
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3: lZrxJ
d e f

G(UG2

a b c
o

a b c

12.7 MODEL QUESTIONS

1. Explain the terms given below with examples
(i). Euler line and Euler graph; and (ii). Unicursalline and Unicursal graph. --.

2. Define the terms given below and provide atleast two examples for each
(i). Union of graphs; (ii), Intersection of graphs; (iii). Ring sum of graphs; and (iv).
Complement of a sub graph in a graph G

3. Explain the terms (i). decomposition of a graph; (ii). Deletion of a vertex from a graph;
(iii), fusion of two vertices in a graph; and (iv). arbitrarily traceable graph from a
vertex.

4. Prove the a given connected graph G is an Euler graph <=> all the vertices of G are
of even degree.

5. Show that the graph of Koningsberg bridges problem is not an Euler graph.

6. Prove that a connected graph G is an Euler graph <=> it can be decomposed into circuits.

7. State and prove a necessary and sufficient condition for an Euler graph G to be
arbitrarily traceable from a vertex v in G.
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LESSON -13

H·AMILTONIAN GRAPHS

Objectives , .:.~
{, ,

The objectives of this lesson are to:
.r • study different concepts likeHamiltonian circuits and complete graphs and to distinguish

Hamiltonian , .rcuits, \
• s~dy. a necessary and s~cient condition for a simple ~r!lph G to have a' Hamil~onian

circuit. . . '. t. ".,.. , ;.. .l.

• study a characterization stating the number of edge disjoint Hamiltonian circuits in a
complete graph with odd number of vertices: ': 'r: ',:;' ", i'

• know the application of Hamiltonian circuit, the travelling ~kle~riian problem '
• know the solution of the seating arrangement problem

rI,~ " ! •. ;'i- i-}::'~ :';"

Structure
13.0 Introduction
13.1 Hamiltonian Paths and Circuits
~.3..2.,Formation.of-Hamiltonian Circuits in a Completed Graph
13.3 The Seating Arrangement Problem
13.4 The Travelling Salesman Problem
13.5 Summary
13.6 Technical terms
13.7 Answers to Self Assessment Questions
13.8 Model Questions
13.9 Reference Books

,". . , .

13.0 INTRODUCTION

In the previous lesson, we studied that, the concepts of Euler lines mainly deal with the
nature of connectivity in graphs. And also, 'these concepts have application to' the area of puzzles
and games. The concept of Hamiltonian circuits came from a game, called the Icosian puzzle (Also
called city - route puzzle), invented in 1857 by the Irish Mathematician Sir William Rowan
Hamilton. We also studied some applications like travelling salesman problem and seating
arrangement problem.

13.1. HAMILTONIAN PATHS AND CIRCUITS

13.1.1 Definition: In a connected graph, a closed walk running through every vertex of G exactly
once (except the starting vertex at which the walk "'~:minate,s) is called a Hamiltonian circuit. A
graph containing a Hamiltonian circuit is called a'Hamiltonian graph.
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13.1.2 Example: Observe the graph given in Figure 13.1.2.
In this graph, the walk ej, e2, e3, e4, es, er" e7, eg is a closed walk running through every vertex of
G exactly once. Hence, this walk is a Hamiltonian circuit. --

. Fig-13.1.21

e"
Hence, this graph is an Hamiltonian graph.

13.1.3 Note (i) A Circuit in a connected graph G is a Hamiltonian circuit <::> it includes every
vertex of G.
(ii) A Hamiltonian circuit in a graph of in ' vertices consists of exactly 'n' edges.

13.L4 Note: Every connected graph may not have a Hamiltonian circuit.

13.1.5 Example: Both the two graphs given in Figures 13.1.5A and B are connected, but they do
not have Hamiltonian circuits.

I Fig-13.1.5 A I
e

f

Fig-13.1.5B

-¥------{) g
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Self Assessment Question 1: Which of the fallowing graphs are Hamiltonian.

a~ ~d~ __-9
e a o---------nb

e
bO---:------Cj..

~. O2.-----,--- . . .

13.1.6 City-Route Puzzle: Hamilton maaeaaegul~rdodec;;thedrori of wood (please see the graph
given here) whose 20 corners were marked with the ~ames--Qt~ities, and the routes are the edges of
the graph.

I Fig-13.1.6 A I

Now the problem is to start from a city and find a route along the edges of the dodecahedron, that
passes through every city exactly once and return to the city of origin.
The graph of dodecahedron is given in Fig-13.1.6 A.
This can be represented by the graph given in Fig- 13.l.6;B.
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I Fig-13.1.6 13. I

18
.U

19

Here the closed walk (of edges) 1 23 4 5 6 7 8 9 (10) (11) (12) (13) (14) (I5) (I6)(17)(l8){19)
(20) is a Hamiltonian circuit.

13.1.7 Definition: II we remove anyone edge from a Hamiltonian circuit, then we ate 'left with a
path. This path is called a Hamiltonian path.

,

13.1.8 Note: (i) Clearly by .definition, a Hamiltonian path in a graph G traverses through.every
vertex of G.-
(ii) If a graph G that contains a Hamiltonian circuit,then G contains a Hamiltonian path.
(iii) There exists graph with Hamiltonian paths that have no Hamiltonian circuits.
(iv) The length of a Hamiltonian path (if it exists) in a connected graph of n vertices, is 'n-l'.
(v) In 'a Hamiltonian circuit (or) path every vertex appears exactly once. Hence Hamiltonian citcuit

(or .path) cannot.include.a self-loop or a set of parallel edges. ' 1 ,;

Self Assessment=Question 2: Draw a graph with six vertices which is Hamiltonian but not
Eulerian.

13.1.9 Note: (i) Let G be a given graph and we wish to find whether a Hamiltonian circuit exists
in G or not.

In such a case, to identify the Hamiltonian circuit (in an easy way), first remove all the self-
loops. If there are multiple edges between any two vertices' a and b, remove all the edges between a
and b except one edge. Then the remaining graph G* (a subgraph of G) is a simple graph. Now it is
easier to identify a Hamiltonian circuit (or path) in G*. It is clear that Hamiltonian path exists in 0*
<=> Hamiltonian path exists in G.

(ii) What is a necessary and sufficient condition for a connected graph G to have a Hamiltonian
circuit?
The problem was first posed by the famous Mathematician Sir William Roman Hamiltnion in 1859.
and is still unsolved.
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13.1.10 Definition: A simf~e graph in ~hich there exists an~dge between everyp~ir of vertices is
called a complete graph. I~is also sometimes referred as a umversal graph or a Chque.

I .
I -

13.1.11 Example: Completr graphs of two, three, four & five vertices are given in the Fig-13 .1.11.
, '.
I

I
i/6 I Fig-n.l.ll I

13.1.12 Note: (i) Complete graphs with three or more vertices can have Hamiltonian circuits.
(ii) Let G be a complete graph with n vertices. Since every vertex is joined with every other

vertex and there are no multiple edges. we have that the degree of every vertex is n-l. The total

b f d . G' n(n -1)num er 0 e ges In IS . .j.
2

13.2. FORMATION OF HAMILTONIAN CIRCUITS IN A
COMPLETE GRAPH

13.2.1 Note We can construct a Hamiltonian circuit in a complete graph of On'vertices (with n ~
3). Suppose the vertices are VI, V2, ••.• v-. Since an edge exists between any two vertices, we

-, -,-.
can start from VI and traverse to V2, and then from V2 to V3, and finally Vn to VI. NO\v v IV2?

V 2 V3 ' ... , V 0-1 V n ' V n V I is a Hamiltonian circuit.

13.2.2 Note: A given graph may contairi more than one Hamiltonian circuits. The determination of
the exact number of edge-disjoint Hamiltonian circuits (or paths) in a graph (in generalrisan
unsolved problem.

13.2.3 Example: Consider the graph given in Fig-13.2.3.
~.' '.' ""v. If 1',

"'.:'
'1" -

elO [ Fig-13.2.3 I
: I"'!?: ,-' • " .• ~..~~.~; i ;
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(i) e[, e7, es, Ct),C,o, e, " e3, eg is a Hamiltonian circuit.
(ii) ea, C7,e6, et), elO, en, e2, eg is also a Hamiltonian circuit.
(iii) These two Hamiltonian circuits are not edge disjoint.

13.2.4 'Theorem: Let G be a complete graph with In' vertices, where n is an odd number greater

than or equal to 3. Then there are (n -1) edge-disjoint Hamiltonian circuits.
2

. Proof: Let G be a complete graph of 'n' vertices, n is an odd number and n ;::::3.

Th 1 1· h n(n -1) d d H' 01 0 0 0 0 G . f 'en c ear Y It as e ges an a arru toruan circuit 111 consists 0 'n' edges.
2

, Therefore, the number of edge-disjoint Hamiltonian circuits in G cannot exceed
(n-1)

2

N 1 h h 0 (n -1) d di 0 0 H 01 0 • 0 h <". dd dow we SlOW t at t ere exists -,,,- e ge- ISJ0111t arm toman circuits, w en n IS 0 an n z
L

3.
The subgraph (of a complete graph of 'n' vertices) given in the Fig-lO.4A, is a Hamiltonian circuit.

2
1

n

Fig-13.2.4A

Keeping the vertices fixed on a circle, rotate the polygon pattern clockwise by
360 360 360 (n - 3) 360

--, 2. ,3. --, ... ,----- degrees.
(n-I) (n-I) (n-l) 2 (11-1)

Observe that each rotation produces a Hamiltonian circuit that has no edge in common with any of
the previous ones.

Thus we have (11 -3) new Hamiltonian circuits, all edge-disjoint from the Hamiltonian circuit
2 ,

given in Fig-13.2.4A, and also edge-disjoint among themselves.

( -,
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Hence the theorem.

n-6

Fig-J3.2:4B I .

13.2.5 Note: This theorem can used to solve "the seating arrangement problem at a Round table"
introduced in Chapter 1. .
13.2.6 Theorem:(Dirac, 1952) If G is a simple graphwith n vertices, where n ~ 3,z.nd d(v) ~

..!: for every vertex v of G, then G is Hamiltonian.
2 .'

Proof: part-(i): In a contrary way. we suppose that there exists a graph G which is not a

Hamiltonian graph with n 2 3 and every vertex has .degree at least"!: .
2

Any spanning super graph (that is, with precisely the same vertex set) also has the property that

d(v) ~ ~ (because any proper super graph of this form can be obtained by introducing extra edges).

Thus there will be a maximal non-Hamiltonian graph G with n vertices and dtv) ~ ~ for every

vertex v in G.
We take such a maximal non-Hamiltonian graph G~

Part-Ill): If G is complete, then by a known result, G is ~amiltonian, a contradiction. There fore G
can not be complete. Since G is not complete, there are two non-adjacent vertices u, v in G. .'

. \

Let G + uv denote the supergraph of G obtained by introducing an edge uv from u and v.
. Since G is maximal non-Hamiltonian and G + uv is proper supergraph of G, we have that G+uv is

Hamiltonian.
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Let C be a Hamiltonian circuit in G +UV, Now uv is in C (otherwise, this circuit C is in.G => G is
Hamiltonian, a contradiction). Suppose C = (VI V2 V3 ' .. VnVI) where VI = U, Vn = v. (Note that vu =
V~.vl).' . "

Part-(iii): Write S == { Vi E CIthere exists an edge from u to Vi+l in G}.
T = { vJ E C / there exists' an edge from v to Vj in G }.
Now.v, = v ~ T{since Gcontains no self-loops).
v = Vn ~ S (If V = Vn E S, then there exist an edge from u to Vn+l.

Here in circuit Vn+l = U. SOthere exists self-loop from u to u, a contradiction).
V = Vn ~ SuT. Thereforet'SVT 1< n.
Since C contains all vertic~s.of G: .we can write
S =.{Vi is a vertex in.G / there exists an edge from u to Vj+l in G}

,T ~,'{ Vj i,sa vertex in G ./ ther~ exists an edge from v to Vj in G}
Therefore ISI= d(u) and 'ITI=div).' ,

r- Part-tiv): Now we verifythat-S n T = <1>.
. . ,

, Ifvk'E S n.T, then there existsanedge e = UVk+1 and f= VVk.

Then we have the graph given in the Fig-lO.8.
, NowCI = VI Vk+1 Vk+2 ... Vn-l Vn Vk Vk-I ... V2VI is a Hamiltonian cycle in G, a contradiction.

ThereforeS n T = <1>, SQ 1 S uTI = ISI+ ITI·
Now d(u)+ d(v) =ISt 4- IT!== IS uTI < n

,::::;n> d(u) -I- d(v) ~.; + ;= n => n > n , a contradiction.

V=Vn'

I Fig-13.2.6 I

Vk+2'

This completes the proof.

13.2.7 Theorem: Let G he a simple graph with n vertices, and let u and v be non-adjacent
vertices in G such that d(u) + d(v) 2: n. ~~t G + uv denotes the super graph of G obtained by
joining u and v by an edge: Then G is Hamilt~nian 0 G + uv Hamiltonian. .

Proof: It is clear that G is Hamiltonian
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:J i=> u'ssupcrgraph G+ uv of G is Hamiltonian.

Converse: Suppose that G + uv in Hamiltonian.
In a contrary way, suppose that G is not Hamiltonian. As in the proof of above theorem, we get that
d(u) + d(v) < n, a contradiction to the hypothesis that d(u) + d(v) ~ n.
This shows that G must be Hamiltonian.

Self Assessment Question 3: Draw a graph with 6 vertices which is Eulerian and non-
Hamiltonian

13.3. THE SEATING ARRANGEMENT PROBLEM

13.3.1: Consider the seating arrangement problem. First we construct the graph of this problem.
(i) Represent a member 'x' by a vertex, and the possibility of sitting next to another member "y'

by an edge between xand y.'
(ii) Every member is allowed to sit next to any other member. So G isa complete graph of nine

vertices. (Here 'nine' is the number of people to be seated around the table). Clearly every seating
arrangement around the table is a Hamiltonian circuit.! ' "

(iii) On the firstday of their meeting, they can sit in any order, and it will be' a Hamiltonian
circuit (HI, say), ;

On the second day, they are to sit such that every member must have differentneighbors. So
we have to find another Hamiltonian circuit (H2, say) in G, with an entirely different set of edges
from those in HI (that is, HI and H2 are edge-disjoint Hamiltonian circuits). '
(iv) But by the Theorem 13.2.4, we know that the number of edge-disjoint Hamiltonian circuits in

Gis, (n-I) = (9-1) = 4.
2 2

Therefore we can conclude that there exist 'four' such arrangements among 'nine' people, The
Figures 13.3.1 A, B, C and D, were obtained by following the procedure mentioned in the proof of
the Theorem 13.2.4. Observe that Fig-13.3.l E is same as Fig-13.3.1A.
There fore all the four distinct Hamiltonian circuits (that is, different seating arrangements) were
shown in the 5 ~ures-13.3.1 A, B, C and D.

2r'f---I--+-----<o---+--+--+---::O 9 I Fig -13.3.1 A I

..,....J--!:O~·~';..: ', ~~".'''I":
;: •. ~ '-J' i) }(! '··:~.f.r~.!-

.~~,.;' ._.~;,

-;r',:
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/

2

9

6

I 'Fig-13.3.1 B

4

.1 Fig,. 13.3. 1DI

I. Fig-I3.J.l E

13.4. TRAVELLING - 'SAlj~'SM'AN P<Il.PRlJEM

13.4.1: 'This, problem is related to Hamiltonian circuits.
The: Rroblem:'A salesman required to visit a number of cities (each of city has a road to every
other 'cityj'-during his -trip. Given the distances between the cities. -In what order should the
salesman travels so=asrto visitevery city precisely once and return to his home city, with the
minimummileage traveHed? _
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Solution: (i) Represent.the cities by vertices, and the roads between them by edges. Then we get a
graph. In this graph, for every edge 'e' there corresponds a real number wee) (the distance in miles,
say). Such a graph is called a weighted graph. Here w(e) is called as the weight of the edge' e' .

13.11

(ii) If each of the cities has a road to every other city, we have a complete weighted graph. This
graph has numerous Hamiltonian circuits, and we are to select the Hamiltonian circuit that has the
,smallest sum of distances (or weights).

(iii) The number of different Hamiltonian circuits (may not be edge-disjoint) in a complete
\ (n-l)'

graph of 'n' vertices is equal to .., 2
[Reason: Start from a vertex.
To go from the first vertex to second vertex, we can chose anyone of the (n-l) edges.
Togo from the second vertex to third vertex, we can chose anyone of the (n-2) edges.
To go from the third vertex to forth vertex, we can chose anyone of the (n-3) edges, and so on.
Since these selections are independent, mid each Hamiltonian circuit has been counted twice, we
have that the number of

H "I' .', .' ~ . (n-l)(n-2) .....2.1 (n-l)!amI toman circuits IS ' = .2 2
(iv) First we list all the (n -I)! Hamiltonian circuits that are possible in the given graph. Next

, ' 2 '
calculate the distance traveled on each of these Hamiltonian circuits. Then select the Hamiltonian
circuit with the least distance. This provides a solution for the Travelling sal~sman probl~m.

13.5" SUMMARY

In this lesson we discussed Hamiltonian circuit, which is defined as a closed walk that
.I traverses through every vertex exactly once.. Where a~ Euler line is a closed walk that traverses

every edge of the graph exactly once. yve also provided a variety of examples for all these
concepts. We studied sufficient condition for a simple graph G to have a Hamiltonian circuit and
also we studied a Theorem which gives the number of edge disjoint Hamiltonian circuits in a
complete graph with odd number 'n' of vertices, and n ~ 3. These concepts enables us to find

, solutionsof the city route puzzle, the seating arrangement problem and the travelling salesman
problem,

13'.6 TECHNICAL TERMS

Hamiltonian circuit: Aclosedwalk running through every vertex of G
exactly once, (except the starting vertex at which the
walk termiriates) ,

Hamiltonian path: .A path obtained on the removal of any edge from a
Hamiltonian circuit.

13
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Complete Graph: A simple graph in which there exists an edge between

every pair of vertices.

Weighted graph: The graph Il1 which for every edge 'e' there

corresponds a real number wee), called the weight of'e'.

13.7 ANSWERS TO SELF ASSESSMENT QUESTIONS

1. G1: The graph G1 do not have a Hamiltonian circuit so Gj is not a Hamiltonian graph ..
G2: The graph G2 contains a Hamiltonian circuit. So G2 is a Hamiltonian graph.

2.

Hamiltonian and
Non-Eulerian

3.

Eulerian and
Non- Hamiltonian

13.8 MODEL QUESTIONS

1. Define the terms and give two examples for each
(i). Hamiltonian circuits; (ii). Hamiltonian path; (iii). Complete Graph; and (iv).
Weighted graph.

2. Let G be a complete graph with 'n' vertices, where n is an odd number greater than

or equal to 3. Then prove that there are (n -1) edge-disjoint Hamiltonian
2 . .'
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3. If G is a simple graph with n vertices, where n ~ 3, and d(v) ~ E.. for every vertex
2

v of G, then prove that G is Hamiltonian.

4. Let G be a simple graph with n vertices, and let, u and v be non-adjacent vertices
in G such that d(u) + d(v) ~ n. Let G + LlV denotes the super graph ofG obtained by
joining u and v by an edge. Then prove tht G is Hamiltonian <=> G + uv
Hamiltonian

5. State and find the solutions of
{i). City route puzzle; (ii). The seating arrangement problem; and (iii). Travelling
Salesman problem.
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LESSON -14

TREES

. Objectives

.The objectives of this lesson arc to:.. study connected graphs without any circuits (called trees) and s091e properties of trees .
know the significance of the terms like "distance", "center", arid "diameter" in a tree .

•. 'introduce the "metric" in a connected graph.
learn about the role of pendant vertices of trees .

•

•

Structure

14.0 Introduction
14.1 Trees
14.2 Some Properties of Trees
14.3 Pendant Vertices in a Tree
14.4 Distance
14.5 Centers ill a Tree
14.6 Summary
i4.7 Technical terms
14.8 Answers to Self Assessment Questions
14.9 Model Questions
14.10 Reference Books

14.0 INTRODUCTION

Trees are extensively used as models in areas like computer science, chemistry, geology,
electrical networks and botany etc. We shall now describe such model based on trees.' In saturated
hydrocarbons, the molecules, where atoms are represented by vertices and bonds between them by
edges. In graph models of saturated hydrocarbons, each carbon atom represented by a vertex of
degree 4, and hydrogen atom-is represented by a vertex of degree 1. So there are 3n + 2 vertices in
a graph representing a compound of the form Cl H211 + 2. Trees are also useful in design of wide
range of algorithms. .

14~1 TREES

The concept of a 'tree' plays a vital role ill the theory of graphs. First we introduce the
definition of 'tree', study the some of its properties and its applications. Later, in the next lesson we
introduce the concept of 'spanning tree'. and study the relationships among circuits and trees.
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14.1.1 D~finition: A connected graph without circuits is called a tree.
, .~.

14.1.2 Example: Trees with one, two, threeand four vertices are given in the Fig-14.1.2.

o r v v y I Fig-14.1.2 I
14.1.3 Note: (i) Since a tree is a graph, we have that a tree contains at least one vertex.

(ii) A tree without any edge is referred to as a null tree.

(iii) Since we are considering only finite graphs, we have that the trees considered are also finite.

(iv) A tree is always a simple graph.

Self Assessment Question 1: Which of thefollowing graphs are trees.

. ,:.;'

14.1.4 Examples: (i) The list of the ancestors of a family, may be represented by a tree. This tree

referred to as a family tree.
.,'; 7

(ii) A river with its tributaries and sub-tributaries may be represented by a tree. This tree is referred

to as a river tree.

(iii) .The sorting of mail according to zip code are done according to a tree. This tree is called

decision tree (or) sorting tree'.

The tree given in the Fig-14.1.4, represents the flow of mail. Suppose that all the mail arrives at

some local office.say vertexN. -For example, take a letter with zip code 522 510.
, \ -

The most' significant digit in the zip code is read at N, and the mail is divided into ten piles No,Nj,

N2, .._N9 depending on the most significant digit.
>'." "

"

. : , ,1

~'~, " , r.·· .
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I, Fig-14.1.4 I

N

(For this example, the most significant digit is 5. So this card will be kept in 5th pile).
Each of these piles will be further divided into ten piles according to the second most significant
digit, and so 011. This will be done up to the mail is subdivided into 106 possible piles, each
representing a unique six-digit zip code.

Self Assessment Question 2: Draw all trees with five vertices

14.2 SOME PROPERTIES OF TREES

14.2.1 Theorem In a tree T, there is one and only one path between every pair of vertices.
Proof: Suppose T is a tree. Then T is a connected graph and contains no circuits.
Since T is connected, there exists at least one path between every pair of vertices in T.
Suppose that between two vertices a and b of T, there are two distinct paths.
Now, the union of these two paths will contain a circuit in T, a contradiction (since T contains nOI

circuits).
This shows that there exists one and only one path betweena given pair of vertices in T.

14.2.2 Theorem: If there is one and only one path between every pair of vertices in G, then G IS

a tree.
Proof: Let G be a graph •..
Assume that there is one andonly one path between every pair of vertices in G.
This shows that G is connected.
Ifpossible suppose that G contains a circuit.
Then there is at least one pair of vertices a, b such that there are two distinct paths between a
and b. But this is a contradiction to our assumption.
So G contains no circuits. Thus G is.a tree.

14.2.3 Theorem: A tree G with 'ri' vertices has (11-1) edges.
Proof: We prove this theorem by induction on the number vertices 11.

If n = 1, then G contains only one vertex and no edge.
So the number of edges in G is n -I = I - I = O.



!M.Sc. Mathematics .. 14.4 Treesl

Suppose the induction hypothesis that the statement is true for all treeswith less than 'n' vertices.
Now let us consider a tree with 'n' vertices.
Let 'ek' be any edge in T whose end vertices are Vi and Vj.

Since T is a tree, by Theorem 14.2.1, there is no other path between Vi and Vj.

So by removing ek from T, we get a disconnected graph,
Furthermore, T- ek consists of exactly two components( say T I and. T2)'
Since T is a tree, there were no circuits in T and so there were no circuits in T I and T2.

Therefore T I and T2 are also trees.
It is clear that IVCTI)I+ IV(T2)1 = IV(T)I where V(T) denotes the set of vertices in 1.

Also IV(TI)I and IV(T2)1 are less than n.

Therefore-by the induction hypothesis, we have

IE(TI)I = I\,(T,)I- 1 and IE(T2)1 = IV(T2)1- 1.

Now IE(T)I- 1 = IE(TI)I + IE(T2)1 = IV(T,)I- 1 + IV(Tz)l- 1

=> IE(T)IIV(TI)I + IV(T2)1- I

IV(T)I - 1 n-1.

This completes the proof.

14.2.4 Theorem: Any connected graph with '11' vertices and 11-1 edges is a tree.

Proof: Let 'G' be a connected graph with 11 vertices and n - 1 edges. It.is enough to show that
G contains no circuits.
If possible, suppose that G contains a circuit.
Let 'e' be an edge in that circuit.
Since 'e' in a circuit, we have that G - c is still connected. .
Now G- e is conriected with 'n' vertices, and so it should contain at least n -1 edges, a
contradiction (to the fact' that G - e contain only (n-2) edges).
So G contains no c'ircuits. Therefore G is a tree.

L

14.2.5 Definition: A connected graph is said tobe minimally connected if the removal of any one
1

edge from the graph provides a disconnected graph.

14.2.6 Example: (i)Graph-l given in Fig-14.2.6A is not minimally connected.
(ii) Graph-2 given in Fig-14.2.6B is minimally connected.
(iii) Any circuit is not minimally connected.
(iv) Every tree is minimally connected.
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. ~ ,- .'Fig-14.2.6 A
Graph -1

Fig-14.2.6 B
Graph -2

14.2.7 Theorem: A graph G is a tree <=> it is minimally connected.

Proof: Assume that G is a tree.
Now we have to show that G is minimally connected.
In a contrary way, suppose that G is not minimally connected.
Then there exists an edge 'e' such that G -e is connected ..
That is, e is in some circuit, which implies G is not a tree, a contradiction.
Hence G minimally connected.
Converse: Suppose that G is minimally connected.
Now it is enough to show that G contains no circuits.
In a contrary way, suppose G contains a circuit.
Then by removing one of the edges in the circuit, we get a connected graph, a contradiction.Ito the
fact that the graph is minimally connected). .
This shows that G contains no circuits. Thus G is a tree.

14.2.8- Note: To interconnect 'n' 'given distinct points, the minimum number of line segments
needed is n -1.

14.2.9 'Theorem: If a graph G contains n vertices, n -1 edges and no circuits, then G is a
connected graph.

Proof: Let G be a graph with 'n 'vertices, n -I edges and contains no circuits.
In a contrary way, suppose that G is disconnected.
G consists of two or more circuitless components (say, gi, g2, ... , gk).
Now k ~ 2. Select a vertex Vi in g., for 1 ~ i ~ k.

Addnewedges el,e2, ... ,ek-l where ej= VjVj+1 to geta new graph G*.
It is clear that G* contains no circuits and connected, and so G* is a tree.
Now G* contains n vertices and (n - I) + (k- I) =' (n + k - 2) L nedges, acontradiction
(since a tree contains (n - 1) edges). / .

.This shows that G is connected.
This completes the proof., .>:
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14.2.10 Theorem: For a given graph G, with n verticesthe following' conditions are equivalent:
(i)G is connected and is circuitless:
(ii)G is connected and has n -1 edges;
(iii) G .is circuitless and has n -1 . edges;
(iv)' There is exactly one path between every pair of vertices in G;
(v) G is a minimally connected graph; and
(vi) G is a tree.

Proof: (i)6 (vi) is clear.
(vi) '=> (ii) and (iii): Theorem 14.2.3
(ii): =? (vi): Theorem 14.2.4

(iii) => (vi): Theorem 14.2.9.
(iv) <=> (vi): Theorems 14.2.1 and 14.2.2
(v) <=> (vi): Theorem 14.2.7

/ ,

14.3 PENDANT VERTICES IN A TREE

Recall that a pendant vertex is a vertex of degree 1.

14'.3.1 Theorem: If T is a tree (with two or more vertices), then there exists at least two pendaht .

vertices.

Proof: Let T be a tree withjv] ~ 2.,
Let vOelvle2v2eJ ... Vn-lenVnbe a longest path in T (Since T is finite graph, it is possible to find
.alongest path).

/ Now we wish to show that d(vo) = J = d(vn).
Ifd(vo) > 1, then there exists at least one edge e with end point vo such that e *' e!.
If e E{el, e2, ... en}, then e = e: for some i *' 1.
So either Vi-l= vo or Vi= vo => vo repeated in the path, a contradiction.
Hence e ~ {et, e2,eJ, ... en}.
Now e, el,e2, e3.... en is a path of length n+ 1, a contradiction.
Hence d(vo) = 1.
In a similar way, we can show tha} d(vn) = 1.
Hence v« Vn are two pendant vytices.

\14.3i2 Example: (An Application): Given a sequence of integers, no two of which are equal. We
have to find the largestmonotonically increasing subsequence in it. Suppose that the given sequence' .'
is 4, 13, 7, 2, 8, u. It can be represented by a tree in which '

(i) The vertices (except the starting vertex) represent individual numbers in the given .sequence,
and
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o Starting
node

'.' ..•~

Fig-14.3.2

(ii) a path from the start vertex to a particular vertex 'v' describes the monotonically increasing
subsequence terminating in v.
As shown in the'Fig-14.3.2, . this sequence contains one longest monotonicauy increasing
subsequence (4,7,8,11). It is of length 4, Such a tree used in representing the data is referred to as
data tree by the computer programmers.

14.4 DISTANCE

14.4.1 Definition: Let G be a connected graph. The distance between two vertices: v and u
is denoted by d(v, u) and is defined as the length of the shortest path [thatis, the number of edges
in the shortest path] between v and L1,

14.4.2 Example: Consider the connected graph given in Fig-14.4.2.

"
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v<jd I 'Fig-14.4.2

g

• I; -:.~

".Here some of the paths between VI and V2 are (a, e),
(a,c,t), (b,c,e), (b.f), (b,g,h),'(b,g,i,j), (b,g,i,k)
Here there are two shortest paths (a, e) and (b, f) each of length 2. Hence d(v], V2 ) = 2.

14.4.3 Example: Consider the tree given in the Fig-14.4.3. ,

a

I Fig-14A.3 'I
cd b

Here d(a, b) = 1, dta, c) = 2, dta, d) = 2, deb, d) = !.

14.4.4 Note: In a connected graph, we can find the distance between any two given vertices.

14.4.5 Definition: Let X be a set. A real valued function f~x, y) of two variables x and y
(that is, f: X x X ---* R where R is the set of all real numbers) is said to bea metric on X -if it
satisfies the following properties.

(i) Non- negativity: [(x, y) ~ 0, and f(x, y) = ° <=> x = Y

(ii) (Symmetry): f(x, y) = fey, x).

(iii) (Triangle inequality): f(x, y) ~ f(x, z) + fez, y) for x, y, z in X.

,I ;

14.4.6 Theorem: Let G be a connected graph. The distance d(v, u) between t:wo vertices v ;
and u is a metric.

Proof: Let v, U E V
(i) d(v, u) = (the length of the shortest path between v and u)

~ 0,
Therefore d(v, u) ~ 0.
Also d(v, u) = °

<=> there exists a path between v and 1I of length 0
<=> v = u.

[if V is not equal to u, then d(v, u) ~ I, a contradiction.]

, ' ,~, ~..,

, ,
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So d(v, u) = 0 <=> v = u,
(ii) d(v, u) = The length of the shortest path between v and u .

..~ The length of the shortest path between u and v.
, = d(u, v)

(iii) Now we show that for any w in y, dtv, u) .~ d(v, w) + dew, u).
Suppose 11 = dtv, w) and m = dtw, u).
Thenthere exists a path of minimum length n from v to w, and there exists a path of
minimum length 111 from w to u. Combining these two paths, we get a path from v to u of
length less/than or equal to n + m.
So d(v, u ) ~ n + m = d(v, w) + dew, u), .'

14.4.7 ~efinition: Let G be a graph and 'v' be any vertex in G. Then the.eccentrlcityjof

'v' iSt'noted by E(v) and is defined as the distance from v to the vertex farthestfrom / 'v' in

G. Tha is, E(v) = max {d(v, u) / u is a vertex in G}. Sometimes it is also referred as 'assoc~~,te

numb '(or) 'separation'.

14.4.8 Example: Consider the graph given in Fig-14.4.8.

a

I Fig-14.4.8 I
cd b

Here E(a) = 2, because the distance from 'a' to a vertex d farthest from 'a' IS dfa, d) = 2.\.
Similarly E(b) ceo 1, E(c) = 2, Etd) c=. 2.

14.4.9 Note: The eccentricities of vertices of a graph may be represented as in

Fig-14.4.9. 2

2 I Fig-14.4.9 I
2

14.4.10 Example: Consider the tree given in Fig-14.4.10A.

o a e

I Fig-14.4.10 A I
of

c d

b

Here' E (a) = 3, E(d) = 2; .E (b) = 3, E (e) = 3; E(c) = 2, E (f) = 3.

l:hc graph given in Fig-14.4.IOA may be represented as. the graph in Fig-14.4.10B:

.~.
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\
o 3 3

'oo-2------<;2~. I Fig-14.4.10 BI
------03

3

14.5 CENTERS IN A TREE

14~5.1 Definition: In a graph, a vertex with minimum eccentricity is called a center of the graph.

v is a center of a graph <=> E(v) = mill fE(u) / u E G}.

145.2 Example: (i) Consider the Graph-l given in Fig-14.5.2A.

The center of this graph is b (since 'b ' has the minimum eccentricity).

a

d b 14.5.2 A
Graph-I2

Consider the Grapb-2 given Fig-14.5.2B. Here E(c)

So both c, d are centers.

2 E(d).

>- 3

d 14.5.2 B

2 Graph-2
03

3
Thus a tree may have two centers. Some authors refer to such centers as 'bicenters'.

14.5.3 Note: In a circuit, every vertex has equal eccentricity.

14.5.4 .Theorem: Every tree T has either one or two centers.

Proof: If T contains exactly one vertex, then that vertex is the center.
If T contains exactly two vertices, then these two vertices are centers.

Let T be any tree with more than two vertices.
Let v E V. Now the maximum distance, max d(v, Vi) from the given vertex' v
vertex .Vi occurs only when Vi is a pendent vertex ..
Then by the Theorem 14.3. L T must have two or more pendent vertices.
Now by removing all pendent vertices trom T. we get a tree TI.

to any other
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The eccentricity of a vertex v in TI is one less than the eccentricity of the vertex v in T. This is true
for all vertices v.

Therefore all the vertices that .T had as centers will still remain centers in TI.' I· :. .' . . . II
Now from T' we again remove all pendent vertices, and get another tree T .

6

Fig-14.5.4 A
T

6

6

6

5 4 3 4 5

f,

5

We continue this process (as shown in the Figures 14.5.4 A, B, C and D) until there is left either a

vertex (which is the center of T) or an edge (whose end vertices are the two centers of T): Hence
every tree has either one or two centers.

··I
4

. c
o~~-3~'~'---~-2~o~---~~--~o," 4 ') 4

I Fig-14.5.4 B
Tl,~ .' . .

CO-----------Or------ o
2 I ")

Fig-14.5.4 C
TII

c
Center I Fig-14.5.4 0•o

14.5.5 Corollary: From the above argument, we get that if a: tree has two centers, then the two
centers must be adjacent.

]4.5.6 Definition: Theeccemricity of a center.in a graph (or in a tree) is called the radius of that
graph.

14.5.7 Example: Consider the graphs T. T~. TII given in.point 14.5.4. The radius of Tis 3,
the Radius of TI is 2: Radius of TII is I.

]4.5.8 Definition.:.T!l.~ length{oj)h);Jol1gesllx~th in a tree is called diameter ofa tree.
"j'- ". . I
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14.5.9 Example: (i) Consider the tree given in the Fig-14.5.9.
Clearly the diameter of T = 2, radius = I.
The only largest paths in T are abc, abd, cbd,. (And their lengths are equal to 2).

(ii) Consider the graph T given in point 14.5.9. The diameter of T = 6.

14.5.10 Problem: Is the diameter is equal to twice the radius? Justify.
Solution: The diameter is not always equal to twice the radius. For example, in the graph given in

.Fig-4.5.10, radius = 2, and diameter = 3

o-------oo------~o~----o
V3 VI V2 V4 Fig-4.5.IO

14~6SUMMARY

In this lesson ,we dealt with a special type of graphs called trees and studied some
properties. The concept of minimally connected graphs was introduced. By listing all the
properties of tree, it was easy to observe that there are five different equivalent conditions for tree.
The concepts: "distance", "center", "metric", "eccentricity", "radius", and "diameter" were
discussed.
14.7 TECHNICAL TERMS

Tree: A connected graph without circuits.

Null Tree: A tree without any edges.

Pendant vertex: A vertex of degree 1.

Minimally connected: If the removal of anyone edge from the graph results
a disconnected graph.

~ The distance between a pair of vertices is the lengtl~ ~f
the shortest path between them.

Distance:

Eccentricity of a vertex (E(v)): Etv) zr: max dtv, Vi)
"jE(j

Center ofa graph: A vertex with minimum eccentricity.' [in oth~r'~o;ds,v is
a center of a graph<:=> E(v) = min {E(u) / u E G}].

. ·1,.' ,~. ~
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Radius ofa graph: The eccentricity of a center in a graph (or in a tree).

Diameter of a tree: The length of the longest path in a tree.

14.8 ANS\VERS TO SELF ASSESSMENT QUESTIONS

1: GJ is a tree. since it is a connected graph without circuits. G2 is not a tree tsince itis not
connected).

2:
" ,'~ .

~

G~

First draw five vertices. Then connect them, so that no cycles are created. In this process, we must
be careful that not to repeat trees since two trees which appear different may just be drawn
differently. Here there are three trees with five vertices as shown above.

14.9 MODEL QUEStIONS

1. Define the terms: tree, minimally connected graph, pendent vertex, distance between two
vertices in a connectedgraph, eccentricity of a vertex, ceritreofa graph .andgive an example of ,
each, -~"" I

2. Show that G is a tree <=> there is one and only one path between every pair of vertices.

3. (I). Show that a tree G with n vertices has 11 - I edges. '
(ii). Show that any connected graph G with n vertices andn-ledgesis tree.

4. Show that a graph G is a tree <=> itis minimally connected. '

5. Show that in a tree there exist at least two pendant vertices.

6. Show that every tree has either one or two centres.
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LESSON -15

SOME TYPES OF TREES
/

/

Objectives

The objectives of this lesson are to:

• know different types of trees such as rooted, unrooted, labeled, unlabelled , binary trees,
together with their properties.
discuss about few applications of trees. "

understand those trees which are subgraphs of a given connected graph G containing all 'fhe
vertices. (ie., spanning trees) ,.
compute rank and Nullity of a graph

•
•

•

Structure

15.0 Introduction
15.1 Rooted Trees
15.2 Binary Trees
15.3 On Counting Trees
15.4 Spanning Trees
15.5 Rank and Nullity
15.6 Summary
15.7 Technical terms
15.8 Answers to Self Assessment Questions.
15.9 Model Questions
15.10 Reference Books

/::
. :.
It 1-

15.0 INTRODUCTION

In lesson 14, we introduced the concept of a tree, pendant vertices distance and centers in a
tree. We studied some basic properties of trees. In this lesson, we present more results on trees,
Binary rooted trees which are extensively used in the study of computer search methods, binary
identification problems, and variable - length binary codes. The method of counting how many
spanning trees and non - isomorphic spanning trees are there for a given graph was initiated by
Cayley. He used trees to count the number of saturated hydrocarbons Co H2o+ 2 containing a given
number of carbon items. He proved that, given n vertices, labelled 1, 2, ,n, there are n" - 2
different ways 'of joining them to form a tree. Spanning trees are important in data networking.
Spanning'trees playa vital role in multicasting over Internet protocol (I.P) networks.

15.1 ROOTED TREES
,. . .. ~,

15.1.1 Definition: A tree in which one vertex (called-the root) is distinguished from all the qt.her
vertices, is called a rooted tree. In a rooted tree, the root is generally marked in a small triangle.
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15.1.2 Example: Distinct rooted trees with four vertices, were given in Fig-15.1.2.

Fig-15.1.2

15.1.3 Note: Generally, tl.e term 'tree' means trees without any root. However they are sometimes
I

called free trees (or) non-rooted trees.

15.2 BINARY TREES
A ~arietyof r~oted trees (callfd the Binary root~d tre~s) is .of p~rticular interest (since .they

are extensively used in the computelillsearch methods, bmary identification problems, and vanable
length binary codes).

15.2.1 Definition: A tree in which there is exactly one vertex of degree 2, and all other remaining
vertices are of degree one or three, is called a binary tree. '

I
15.2.2 Note: (i) Clearly the Fig-15.2.2 represents a binary tree (because the only vertex 'v.' IS

of degree 2, and all other vertices are of degree either 1 or 3).

,. Fig-15.2.2

"', ~,' " t

(ii) Since the vertex of degree 2 (that is, VI) is distinct from all other vertices, thi~ vertex VI is the
root. ',I " " .

\ \ \ '\ \ \ ..
(iii) In a binary tree, the vertex with degree 2 serves as a root. So every binary tree is a rooted tree.
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15.2.3 Properties of Binary trees:

Property (i): The number of vertices n, in a binary tree is always odd.

[Reason: In a Binary tree, there is exactly one vertex of degree 2 (that is, even).
The remaining (n - 1) vertices are of degree 1 or 3 (that.is, odd).
We know that the number of vertices of odd degree is always even;
So n -1 is even. Hence n = (n - 1) + 1 is odd.
Thus, the number of vertices in a binary tree is always odd].

Property (ii): The number of pendent vertices is 'n + 1
2

[Verification: Consider a Binary tree T with n vertices. Write p = the number of pendent
vertices.
Also there is a vertex of degree 2.
Now there exists a vertex of degree 2, and there are p vertices of degree 1.
The remaining (n - p - 1) vertices are of degree 3.
So number of vertices of degree 3 is (n - p -1).
We know that 2 IE(T)I = sum of degree of the vertices,

= L6(v) (sum taken over all pendent vertices v)

+ I)(v) (sum taken ~ver all vertices v of degree 3) + 2'
/

(p x I) + «n - p - 1) x 3) + 2 = 3n - 2p ~ 1.
1

~ IE(T)I = "2 [ 3n - 2p - 1].

We know that in a tree, IE(T)I = n - I
1 n+1So n-1 = -(3n-2p-l) => p = -].

,2 2
Property 3: Number of vertices of degree 3 is

n+ l n-3
= n-p-l = n-(-)-l =-2 . 2

15.2.4 Example: In the graph given in Fig-15.2.2,

n=13, p = n+1= 13+1 = ~ = 7.
2 2 2

n-3
Therefore number of vertices of degree 3 is

we have that

13-3
= 5.

2

"

15.2.5 Definition: A non-pendent vertex in a tree is called an internal vertex.

15.2.6 Note: The number of internal vertices in a Binary tree is
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n-l-- = (p - 1) 'where p = the number Oi~pendent vertices.
2

[Verification: Number of internal vertices =' n - p
n+J n-l n+I '

= n - (-' ) = - = -'- - 1 = P ~ 1]
2 2 2 " '

15.2.7 Example: In the binary tree given in Fig- 15.2.2, the internal vertices are VI, V3, V4, VS, V6,
V9. These are 6 (= 7 - 1 = P - l)in number. ' .

15.2.8 Definition: Let v bea vertex in a binary tree. Then v is said to be at level
at.a.distance ofi from the root.

if v IS

15.2.9 Example: (i) A 13-vertex, 4-level binary tree was given in Fig-J5.2.9.

"level °

I Fig-15.2.9 I

level 2

level 3

level 4

Here the number of vertices at levels 0, 1,2,3,4 are 1,2,2,4 and 4 respectively.

15.2.10 Definition: The sum of path lengths from the root to all pendent vertices is called the path.

length (or) external path length of a tree.

15.2.11 Example: The path length of the binary tree given in Fig-15.2.9 is:

1+ 3 + 3 + 4 + 4 + 4+ 4 = 23.

15.2.12 Example: In the Figures 15.2.12 A and B, there are two 11-vertex binary trees.

",',
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level - 0

level -1
Fig-15.2.p A

Graph-(a)
,\,

level -2

level -3

The path length of Graph-(a) :·2 + 2 + 3 + 3 + 3 + 3 = 16.

level 0

level 1

level 2 Fig-15.2.12 B
Graph-(b)

level 3

, level 4

level 5

The path length of Graph-(b): 1 + 2 + 3 + 4+ 5 + 5 = 20.

15.2.13 Search proceduresD (An application)

Each vertex of a binary tree represents a test with two possible outcomes. We start at the root The
outcome of the test at the root sends us to one of the twovertices at the next level, where further
tests are made and so on.
Reaching a specified pendent vertex (that vertex which represents the goal of the search),
terminates the search. i

For such search procedures, it is often important to construct a binary tree in which, fur a $-en'
number of vertices n, the vertex frothiest from the root in as close to the root as possible. If; .

.~
(i) There can be only one vertex (the root) at level O. Number of vertices at level one isat most

2. Number of vertices fat level/two is ;it most 22 and so on.
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So the maximum number of vertices possible in a k -level binary tree is
2° + 21 + 22 +. . . + 2k
So n:::; 2° + 21 + 22 + ... + i

(ii) The maximum number among the levels ofthe vertices in a binary tree is called height of the
tree.
So height = max { level of a vertex 'v / v E V}.
This height is denoted by I ma~ •

(iii) To construct a binary tree for a given n such that the' farthest vertex is as far as possible
from the root, we must have exactly two vertices at each level, except at the 0 level.

n= l
So max Imax =

2

15.2.14 Weighted path length: Suppose that every pendent vertex v of a binary "was
associated with a positive real number w = fCv).
[I~was illustrated in the Example 5.2.15].

Suppose m positive numbers WI, W2, ... , Wm are given. The problem is to construct a binary
tree with m vertices VI, V2, •.. , Vrn (assume that w, = f(Vi), the associated real number)
such that the sum LWj ·1(vJ (sum taken over all pendent vertices) is minimum, .where lev)

denotes the level of v.

15.2.15 Example: Suppose that there is a Coke Machine.
I

The machine is to have a .sequence o,f.tests (for.example, it should be capable of identifying the
coin that is put into the machine). "r .

We suppose that five rupees coin, two rupees coin, one rupee coin and fifty paise coin can go
through the slot.
So the machine can identify only these four coins.
Every coin put in, is to be tested by the machine.
Each test got the effect of partitioning the coins into two complementary sets.
[Suppose a coin is put into the machine, It should test whether the coin is "five rupee coin". If it is
not a five rupees coin, then it should test whether it is a two rupees coin and so on].
We suppose the time taken for each test is.
Test type-I: One type of testing pattern was shown in Graph-(a) which was given in Fig-15.2.15A.
Suppose the statistical data tells that
wr = probability of putting a Rs 5 CQll1 = 0.5
W2,' = probability of putting a Rs 2 com 0.2
W3' = probability of putting a Rs 1 coin 0.2
W4,'.::= probability of putting aRs 0.5.coin 0.1

N0;v,,;.LWj .l.(v;) = WI .1(vI~ +w~ ·I(vc) + w'.1.1(v}) + w. ·1(v4)

;.,~

~ (0.5) (1) + (0.2) (2) + (0.2) (3) + (0.]) (4) = l.9 '
.. ~. , .

"
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Rs 2 coin

not Rs 5 coin

not Rs 2 coin
Fig-IS.2.IS A

Granh-Ia)
0.5

not Rs I coin
Rs 1 coin

Rs 0.5 coin
, 0.1

So expected time to be taken by the machine for testing one coin is 1.9t.

Thus-if the machine follows (for its testing pattern) the binary tree given in Graph-(a), then the
expected time for testing one coin is equal to 1.9t.

Test type-Z: Another type of testing pattern was given inthe
Graph-(b) which was given in Fig-15.2.15 B. For Graph-(b),
Lwj.l(vJ

WI ·I(v I) + w 2 ·I(v 2) + W, . I(v3) + w 4 . I(v 4)
(0.5) (2) + (0.2) (2) + (0;2) (2) + (0.1) (2)

2.0

Rs 5 or Rs 2
I

Fig-15.2.15B
Graph-(b)

Rs5

0.5
VI

0.2
0.1

So here, the expected time to be taken by the machine, for testing one coin is 2t.

T. hus if the machine follows (for its testing pattern the' binary tree giv7n i dr~h-(b), then the •
expected time for testing one coin is 2t. " / .

I .
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Conclusion: Now it can be understood that if there are two machines, machine-I (follows the
J

binary tree in Graph-(a)), and machine-2 (follows the binary tree-in Graph-(b)), then machine-I is
more effective because it took less time for testing. - - -
15.3 ON COUNTING TREES

15.3.1 Note: In 1857, Arthur Cayley discovered trees while he was trying to count the number of
structural isomers of saturated hydrocarbons CkH2k+2. He used a connected graph to represent the
CkH2k+2molecule. Corresponding to their chemical valances, a carbon atom was represented by a
vertex of degree 4 and a hydrogen atom by a vertex of degree I (that is, a pendent vertex),
In CkH2k+2,there are (J<:) + (2k + 2) = 3k + 2 atoms.
So the number of vertices = 3k + 2,

1
The total number of edges: e = - (sum of degrees)

2
I
- [(4k) + (2k + 2)]
2

-'- 3k + L
Observe that I E I = I VI-I. .
Since the graph is connected and lEI = i V I -I, we have that the graph is a tree.
Thus the problem of counting structural 'isomers of a given hydrocarbon becomes the problem of
counting trees. ' .'
Now the Cayley posed a question:
What is the number of different trees that one can construct with 'n' distinct (or labeled) vertices?

15.3.2 Example: If G has 4 vertices, then we have sixteen trees
figures.(Observe that there are no more trees of four vertices).
Here the vertex set V = {I, 2; 3, 4}.
The following are the 16 trees of four labeled vertices

/'12

as shown in the following

1 2 ·2

3 4
0

3 4 3 4

1 2 1 2 2

;f

. [" ~
e ~;, 1·1 :,

3 4 4
3 4 3

I·
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i:
,:'~. ;,(\
,, 4 'J ~'.

3 4 3 4 3 :

",,'.
,.:'1
.\ r

..r'~

3
4

1

3 4

.~ .. 2

~
3 4

I 2

7
/r:....---~o
3 4

2

15.3.3 Definition: A graph G in which every vertex is assigned a unique name or label (that IS, no
two vertices have the same label) is called a labeled graph. Otherwise is said to be an unlabeled
graph.

15.3.4 Note: (i) when we are counting the number of different graphs, the distinction between
labeled and unlabeled graphs is important.

,.
(ii) Consider the graphs in Example 15.3.2. . _
The 5th, 6tl\ 7th and- s", are counted as four different trees (even through they are isomorphic),
becausethey are labeled. If/(/there is no distinction between 1, 2, 3, 4, then these four trees
counted as one.
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(iii\ A careful inspection of the 16 graphs wi II reveal that the number of unlabeled trees with four
vertices (no distinction made between I, 2, 3, 4), is two. ' . ,
These two graphs were given in Fig-IS.3.4 A and B.

"---

Fig-15.3.4-A
Tree-I with four

vertices
Fig-15.3.4 B

Tree-2 with four
vertices

The following well-known theorem for counting trees was first stated and proved by Cayley,
and is therefore called Cayley's theorem. .

15.3.5 TheoremjCayley's Theorem): The number of labeled trees with n 'vertices (n ~ 2) IS
n(n-2) ../

Proof: Part-Ii) Let the n verticesof a tree T be labeled with 1, 2, 3.>-/ .•. , n.
Remove the pendent vertex (and the edge incident on it)
having the smallest label (say, that vertex is a.).
Suppose that a, is adjacent to b., Note that we also remove the edge a.b.. ,";
Among the remaining (n - 1) vertices, let a2 be the pendent vertex with the smallest label and bi
be the vertex adjacent to a2. Remove a2 and the edge a2b2.,
This operation is repeated on the remaining (n - 2) vertices and then on (n - 3) vertices, and so
on.
The process is terminated after (n - 2) steps, when only two vertices are left.
In this process, we got the sequence (b, b2 ... , bll-2) .•..•••••••• (i)
Also this sequence is unique for T.
So T defines the sequence (b., b-, ... , bll-2) uniquely.

Part-Ill): Suppose a sequence (b., b2, ... , bn-2) of (n - 2) labels is given.
Then we can construct a n-vertex tree uniquely as follows:
Determine the first number in the sequence

1,2,3,4, ,n (ii)
.that does not appear in sequence (i).
'Suppose that this number is a..
Now the edge (a., bi) is defined.
Remove b, from the sequence (i), and <I, from the sequence (ii).
In the remaining sequence of (ii), find the first number that
does not appear in the remainder of (i). '",
This would be a2, and so the edge (a2. b2) is defined. Remove a2 .from (ii}CjlI14~Pfl from .0). '-:':.'
The construction is continued till the sequence (i) has no element left.

..! ' , '.j' ; ."~'~-.~ •• r~.., '~J "

'. , "

"::;: ":--.di -j~.•': ,

;IJ", ,,'

r,'" \
, • i,"".
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Finally, the last two vertices remaining in (ii) are joined.
Then we get T.

\

Part-(iii): From part (i) and part (ii) we conclude the following: for each (n - 2) elements in the
sequence (i), we can choose anyone of n numbers.
.So the number of (n - 2)- tuples that can be formed is n(n- 2) .

Each of these (n - 2)- tuples defining a distinct labeled tree ofn vertices.
Since each tree defines one of these sequences uniquely, we conclude that there is a one-to-one
correspondence between the labeled trees and the n'" - 2) sequences.
Thus there are 11(11 - 2) labeled trees with n vertices.

15.3.6 Example: (Observe the procedure in the proof Of Theorem 15.3.5 )

Part-(i): Suppose the given tree is T, (observe Fig-15.3.6 A).
al = the pendent vertex with smallest label.
So a, is the vertex 2. Now b, = I.
After removing a, and the edge (a.. b.), in the remaining graph
a2 the pendent vertex with smallest index. = 4.

. 8

06 9

I Fig-15.3.6 A I
,., ~24 .)

Now b2 = 1.

a, = L b, = 3, a, = 3, b, = 5, 3, .C 6.
b, = 5, a6 = 7. b, = 5, a7'= 5, b7 = 9.
Therefore we have the sequence

(bi. b-, b3, ba, bs, b., b7) = (I , 1,3.5.5.5,9).

Part (ii): (converse of above part (i )}: we have to construct a tree with n = 9 vertices.
Consider 1,2,3,4,5,6, 7, 8, 9 . . . . . . . .. (i)
Given (n - 2)-tupJe is (1, 1,3, 5, 5, 5.-9) . . . . . .. (ii)
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9

5 Fig-15.3.6 B

1
Observe the sequence In (ii).

First join 1 and 3 , 3 and 5, 5 and 9. Then we get the graph given in Fig-15.3.6 R
Now the least number in (i) which is not in (ii), is 2. So we join 2 and 1.

Next least in (i) which is not in (ii) is 4. So we join 4 and 1.
Cancel 3 in (i) and 3 in (ii). Also cancel 5 in (i) and
5 in (ii) (in (ii), canceling of only one 5 is allowed).
The next least which is not in (ii) is 6. So we join 5 and 6.
The next least which is not in (ii) is 7. So we join 7 and 5.
The next least which is not in (ii) is 8.
The remaining number available in (ii) is 9.
So we join 8 and 9.

r7

06

4

9

[iig-15.3.6 C I

2

15.3.7 Example: (Weprovideonly part (ii)) ..

Given (4,4,3, L 1) (ii)
So this is a (n - 2) = 5 tuple.
Since n - 2 = 5, we have that n = 7.
So we have to construct a tree with n = 7 vertices.
Consider 1, 2, 3, 4, 5, 6, 7 .... , , . (i)
Construct a tree with 4,3, I (entries in ( iil).
Obs~rveFig-15.3.7A. Join 4 and 3,join ] and L

1

3 Fig-IS.3.7 A
Graph-l
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The least index which is in (i) and not in (ii) is 2.

. ,~-

Fig-IS.3.7 B
Graph-2

3

Fig-I5.3.7 C
Graph-3

~ ~ 'I ~ •

, ..," ~ ~ 7

r-

. ! /'" '/ ...~
/ ,

Fig-15.3.7E
Graph -4

Fig-I5.3.7 F
Graph -5

So we join 2 and 4 (since 4 is the first entry in the given sequence (4, 4,3, 1, 1)).
Then we get graph 2.
The next least which is in (i) not in '(ii) is 5.

So we join 5 and 4 and then we get graph-3.
Now we cancel 3 in (i) and 3 in (ii).
The next least in (i) not in (ii) is 6. So we join 6 and 1.
Next least which is in (i) and not in (ii) is 7.
So we join 7 and 1, and finally we getgraph-5.

15.3.8 Unlabeled trees: (i) Since the vertices representing in hydrogen atom are pendant, they go
with Carbon atoms only one way and hencemake no contribution to isomerism. .
Therefore, we need not show any hydrogen vertices.

(ii) Thus the tree representing CkH2k+2 reduces to one with k vertices, each representing a
, (

carbon atom. /

In this tree, no distinction can be made between vertices and therefore it is unlabeled. Thus for

Butane (C4HIO) there are only two distinct trees as giveri in the Figures 15.3.8 A and B.
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Fig-15.3.8 A
Graph-fa)

0'--.._0>---<0)---0

Fig-15.3.8 B
Graph -(b)

15.3 SPANNING TREES

In this section, we will study the tree as a subgraph of another graph. A givengraph may
have numerous subgraphs. If e is the number of edges in G, then there are 2e distinct subgraphs
are possible. Obviously some of these subgraphs will be trees.
Out of these trees we particularly interested in certain: type of trees, called spanning trees. , c

t ~' •

15.4.1 Definition: A collection of trees is called a forest. .

15.4.2 Definition: A tree T is said to be a spanning tree of a connected graph G 'i(:r is a
subgraph of G and T contains all the vertices of. G. Spanning tree is also referred as skeleton- .

or scaffoldlng.;

15.4.3 Example: Consider the graph G given in Fig-15A.3 A.
Graph T(given in Fig-l 5.4.3 B) is a spanning tree of G. ;:'

V2

, ,

r , :

Fig-15A.3 A 'Graph-GI

" i .

.~. ' ,.
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Fig-15.4.3 B
Graph-T

15.4.4 Note: (i) Since spanning trees arc the largest (with the maximum number of edges) trees
among all trees in G, we have that a spanning tree is also called a maximal tree subgraph or
maximal tree of G.

(ii) Spanning is defined only for a connected graph. (because, a tree is always connected) .
(iii) However, each component of a disconnected graph, does have a spanning tree:

Thus a disconnected graph with k components contains a spanning forest consisting of k
spanning trees.

15.45 Theorem: Every connected graph has a't least one spanning tree.

Proof: Let G be a connected graph.
If G has no circuit, then G is a spanning tree.
If G has a circuit, then delete an edge.from this circuit and till-leaves the graph connected.
If there are more circuits, repeat the operation till an edge from the last circuit is deleted, leaving the
graph connected, circuitless, and contains all the vertices of G.
Thus the subgraph obtained is a spanning tree of G.
Hence every connected graph has at least one spanning tree.

Self Assessment Question 1: Find a spanning tree of the simple graph G given below:

;VI
V2

V3
V4

G

Vs V6
\1-

15.4.6 Definition: (i) An edge in a spanning tree T is called a branch of T.
(ii) An edge ofG that is not in a given spanning tree T is called a chord. In electdcal

engineering chord some times referred to as tie or a Iink.
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15.4.7 Note: (i) Brarches and chords are defined only with respect toa given spanning tree.

(ii) An edge tha~ is a branch with respect to one spanning tree T I (of G) may be a chord with
respect to another spanning tree T2.

15.4.8 Definition: Let T be any spanning tree of a connected graph G, - and T1. is the
complement of T in G. Then each edge in T is called a branch (with respect to T), and the set
of all edges in T is called the branch set. Each edge in r'
is called a chord (with respect to T), and the set of edges in r' is called the chord set (or) Tie set.
r' is called as thecotree. We may write T instead of TI.

15.4.9 Theorem: With respect to any of its spanning trees, a connected graph of 'n' vertices and
'e' edges has 'n-l ' tree branches and e - n"'+ 1 chords.
Proof: Let G be any connected graph on 'n' vertices and e edges.
Let T be any spanning tree in G.
Since every spanning tree of G contains all vertices of G, we have that jV(T)j = n and so
jE(T)j = jV(T)j - 1 = n - 1. Since every 'edge-of a spanning tree T is called a branch ofT, we
have that G contains n - 1 branches. -

- Since the number of edges in G is' e , we have that the;number of chords of T is
e-(n-l)=e-n+ 1. . ','

15.4.10 Problem: There is a form consisting of six walled plots

v , •

." . Rigd5A.I0 1

of landas shown in the Fig-IS .4.10, and these plots are fl:!Uof w~ter. -How IIJ~nY (minimum number
of) walls are to be broken so that all the water can be-drained out?
Solution: Consider the wall joints as vertices, and walls as edges, Then we can consider it as a
graph. In this graph the number of vertices is n = 10, and the number.of edges is e = 15.
If there exists a circuit, then the water ins~9,~the circuit capQQi.be dn~i.v,e4out; So we have to
remove minimum number of edges so,that the graph do not ~9·:nt~jncircuits,
To have this, .we should have a spanning tree 'with (n - 1,) edges. Hence we-b,a;yytQ break y - (n -
I) = e - n + 1 = 15 - 10 + 1 = 6 edges (walls) so that all the water. ~aN;be drained out.

S"If Assessment f/-uestion 2: How many edges must. be ,rf!,!,fJ.;w!¢f,:a.m 'q'.q,o,nn£;cted/graph with n
vertices and m edges to produce a spanning tree'! . ,

15)
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15.5 RANK AND NULLITY

15.5.1 Note: Let Q be a graph; .n be the number of vertices In G; e be the number of edges in
\(1; k be the number of components in G.
(i) If k = 1, then G is a connected graph.
(ii) Since every component ofa graph must have at least one vertex, we 'have that
n ~ k. (or n - k ~ 0).
(iii) Since a component is a connected subgraph, we have that in ith component,
the minimum number of edges = (number of vertices - 1)
~L (minimum numberof edges in the ilhcomponent)

~ L (number of vertices in the ith component - 1)

=> e ;;:::L (minimum number of edges in the jlh.component)

~L (number of vertices in. the ith component -1)

= [~)n:umber or'vertices in the ith component)] - L 1
= n-k. 1 -:> .

Therefore we got that e ~ (n -k) ~ e - n + k ~ O.

15.5.2 Note: Apart from the constraints n ~k 2: 0;

e - n + k ;;:::0, the three numbers n, e, and k are independent.
These are the fundamental and important numbers in graphs. [From these three numbers, we define
two other important numbers called rank and nullity].

15.5.3 Definition: Let G be a graph. Then rank (r ) of G' is, defined as r = n - k;and
nullity of G is Il = e - n + k. . .
The nullity of a graph is also referred to as its cyciomatic number (or) first Betti number.

15.5.4 Note: (a) Let G .be a connected graph.

In a connected graph there is only one component, and so k = 1.
So rank of G =.r = u-L; and the nullity of G = Il = e-n+ 1.

(b) In a spanning tree we have
(i) r =n -1 = number of branches.

(ii) I--L ~ c- n + k ~(n - 1) - 11 + 1 0
= the number of chords.

(iii) r + Il = e. .... '.
(c) Let G be a connected graph.

Then we can observe that
r = n - 1 . 'j.'~"" ,: ',' ;'. .

== the number of branches in any spanning tree of G.
JJ" = e - (n - 1) = the number of chords in G

r + Il = the number of edges in .
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15.6 SUMMARY
In this lesson, we learnt about rooted trees, binary trees, spanning trees and their properties.

We discussed some important applications of trees. We also discussed the well-known theorem for
counting trees which was first stated and proved by Caley. We learnt about the numbers Rank and
Nullity in a graph and also proved some results on Rank and Nulllity. .

15.7 TECHNICAL TERMS

Rooted tree: A tree in which one vertex (called the root) is
distinguished from all the other vertices.

Binary tree: A tree in which there is exactly one vertex of degree 2,
and all other remaining vertices are of degree one or
three, is called a binary tree.

Internal vertex: A non-pendent vertex in a tree,

Let v be a vertex in a binary 'tree. Then v is said to
be at level i if v is at a distance of i from the
root.

Level:

Path length: The slim of path lengths from the root to all pendent
vertices.

Labeled graph and unlabeled graph: A graph in which every vertex is assigned a
unique name or label (that is, no two vertices have
the same label

Forest: A collection of trees.

Spanning tree: A tree T is said to be a spanning tree of a
connected graph G if T is a subgraph of G
and Tcontains all the vertices of . G. Spanning
tree is also referred as skeleton or scaffolding.

Let G be a graph. Then rank ( r ) of G is defined
as r = n - k; and nullity of G is ~ = e - n + k.

Rank and Nullity:

15.8 ANSWERS TO~SELF ASSESSMENT QUESTIONS.

1: Here the graph G is connected but it is not a tree since it contains si~ple d~~uits. First remove
the edge VIVS. This eliminates one simple circuit and the resulting.graph is ~ti,llconnected and
contains every vertex of G. This is given in Fig G\. . " . " . . - .

• , •~ I ' •

"1- I'
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V4
V3o-----O ; ,

I
i;

!
I

,',' i >Vs

! ,
", l

Next remove the edge VSV6 to eliminate a second simple circuit and the resulting graph is given in

Fig G2. '.,,.
~t

Vs

Finally remove the edge V3V7. Then the resulting graph G3 is a connected simple graph without
circuits. Moreover, it contains every vertex of G. So the graph G3 is a spanning tree of G which

,~I)given in Fig G3, , '

V2
V I 0-------09

It is easy to see that the graph G3 obtained above is not the only spanning tree of G.

2: m - n + 1 edges.

5.9 MODEL QUESTIONS

1. Show that number of vertices in a binary tree is always odd.

2. Show that the number of pendant vertices in a binary tree with n vertices is n + 1 .
2

. 3. Show that the number oflabeled trees with n (n 2: 2) vertices is nn.2,

4. Show that every connected graph has at least one spanning tree.
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, LESSON -16

CUT-SETS

Objectives
The objectives of this lesson are to:

• study about subgraphs of a connected graph 0* whose removal from G separates some
vertices from others in G.

• discuss some properties of cut sets.
• appreciate the great importance of cut-sets in studying the properties of communication and

transportation networks.
• learn about fundamental cut-sets and fundamental circuits.

Structure
16.0 Introduction
16.1 Cut-sets
16.2 Some Propertiesof Cut-sets
16.3 Fundamental Circuits
16.4 All Cut-sets in a Graph
16.5 Fundamental Circuits and Cut-sets
16.6 Summary
16.7 Technical terms
16.8 Answers to Self Assessment Questions
16;9 M.odel Questions
16.10 Reference Books

16.0 INTRODUCTION

In this lesson, we learn that a cut set of a graph is a set of edges such tht the removal of these
edges produces a subgraph with more connected components than in the original graph, but no
prop-er subset of this set of edges has this property. Cut sets are of great importance in studying
properties of communication and transportation networks. These are used to identify weak spots in
a communication nets and transportation network. We study the parallelism between circuit and cut
sets. We further learn that a minimal set of cut sets from which we can obtain every cut set of a
graph by taking ring sums, is the set of all fundamental cut-sets with respect to a given spanning
tree. We alsostudy the relation between fundamental circuits and cut sets
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16.1 CUT-SETS

16.2

16.1.1 Definition: Let G be a connected graph. A cut-set IS a subset C of the set of all edges of
G whose removal from the graph G'Teavesthe graph G disconnected; and removal of any proper
subset of C does not disconnect the graph G. .
(Equivalently, cut-set can also be defined as a minimal set C of edges in a connected graph G
whose removal reduces the rank of the graph by one).

16.1.2 Example: Coserve Graph-(a) given in Fig-16.1.2A. If' we remove {a, c, d, f} from Graph-
(a), then we get the subgraph-(b) given in Fig-16.1.2B.
So in the Graph-( a), the subset {a, c, d, f] of edges, is a cut-set.
Also there are many other cut-sets such as {a, b, g},: a, b, e, f}, {d, h, f}.
Also edge set {k} is also a cut-set:

g

V2 f

Fig-16.1.2 A
Graph-(a)

\

h

Vs

V3
Vt

b k

g V4v,

e h·

'.

V2

V5

Self Assessment Question 1: Is the set of edges {a, c; h, d} in the graph:1,6.1.2 A, acut set?

I Fig-16.l.2 B Subgraph-(b )-1

16.1.3 Note: (i) A cut-set is also some times called as minimal cut-set (or) a proper cut-set (or) a
simple cut-set (or) a co-cycle.
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(ii) A cut-set "cuts" the graph into two subgraphs.

(iii) Observe the graphs given in Example 16.1.2.

The rank of the graph-(a) IS 5 (n - k = 6 - I).
The rank of the subgraph-(b) is 4 (n - k = 6 - 2).

16.1.4 Note: "If we partition an the vertices of a connected graph G into two mutually exclusive
subsets VI and V 2, then a cut-set is a set consists of minimal number of edges whose removal
from G destroys all paths between the two set~-N.r and V 2 of vertices".

16.1.5 Example: Consider the graphs given in the Figures 16.1.2 A and B. In graph-(a), the cut-
set {a, c, d, f} connects the vertex set V I = {VI, V2, V6} with
V2 = {V3,V4, V5].
Clearly, the removal of the cut-set S = {a, c, d, f} from G, destroys all the paths between two
vertex sets Y I = {VI, V2, V6} and Y2 =. Iv3, V4, vs}.

Self Assessment Question 2: Is every edge of a tree G is a cut-set?

16.l SOME PROPERTIES OF CUT-SETS

16.2.1 Theorem: Every cut-set in a connected graph G must contains at least one branch of every

spanning tree of G.

Proof: Let T be any spanningtreeof G, and let S be any cut-set in G.

Suppose S n T = $. Then T ~ G \ S.
Let v, u be two vertices in G

=> v, u are vertices in T
(since T is a spanning subgraph)

=> v, u are connected by a path P in T
(since T is a tree)

=> v, u are connected by a path P in G \ S
(since T ~ G \ S).

We proved that every two vertices in G \ S are connected by a path, a contradiction. Here S n
T ¥- $.

16.2.2 Theorem: [Converse of the Theorem 16.2.1]

In a connected graph '0, any minimal set Q of edges containing at least one branch of every
, r -'. '. ,1 .•• ~:. f ,," .

spanning tree of G is li'Cut-set:' '
[In other words, if Q is minimal i;l s = {S / S is a set of edges, S n T ¥- $ for any spanning
tree T of G}, then Q is a cut-set.
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Proof: Let G be a connected graph and Q be a minimal set of edges containing at least one
branch of every spanning tree of G.
We have to show that Q is a cut-set.
Now consider the subgraph G \ Q
[the graph obtained by removing the edges of Q from G]. .
Since the subgraph G \ Q contains no spanning tree of G, we have that G \ Q IS a
disconnected graph [if G \ Q is connected, then it contains a spanning tree].

. I
Take any edge 'e' from Q and write Q = Q - {e}.
Since Q is minimal in the set S, we have that QI is not in die sets

=;> there exists a spanning T suchthat Q I n T = <p.
=;> T <;;;:; G \ Q' =;> G - QI is connected.

Now we observed that the removal of any proper.subset of Q does not dis~onnect the graph G.
Thus Q is a minimal set of edges whose removal from G disconnects G.
This shows that Q is a cut-set.
This completes the proof.

16.2.3 Theorem Every circuit has an even number of edges in common with any cut-set.

Proof: Let G be a connected graph, and S a cut-set in G.

Suppose that the removal of S partitions the set of vertices of G into two disjoint subsets V I

and Vz.,
Observe the graph given in theFigure-16.2,J.
yircuit I" in G was represented by lines with arrows. .:
The arrows indicate the direction.

I Fig-16.2.31

Case-(i): If all the vertices in rare with in the vertex set
edges common to both Sand I' is '0'.
That is, n(S (l T) = 0, an even number
[Here n(g) stands for the number of edges in a subgraph g].
So in this case the theorem is true.

Case-(ii): Suppose that some of the vertices of r are in VI, apd some ofth~~" 'are inV;z.;
Let us start with a vertex v = vc in r which is also in VI" "

. j '.'.

We tan write the circuit as VOelv,e2 V2 , .. en_, Vn_lenvO·

Now vo E VI. By our supposition (of this ease-(ii)),there exists such that Vi ~ V2·

V I (or in V2), then .the number of

'Z: 1
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Let k be the least such that Vk E V2..

So V(k_l)EV, and V(k-I)Vk ES.

Now we are in V2 and we have to traverse back to V,.
Now m be the least such that k s m and. Vm E V,.
Clearly V(m-I) E V2 and VmV(m_l) E S.
Observe that if we traverse from V, to V2 and back to VI once, we got two edges in S (1 r.
So by the closed nature of a circuit, whenever we traverse from VI to V2, we have to traverse
back.
Thus the number of edges we traverse between V, and V2 must be even and also these edges. ~
are in S.
So the number of edges common to Sand T is even.

16.3 FUNDAMENTAL CIRCUITS

16.3.1 Note: If we add an edge between any two vertices of a tree, then a circuit is created. This is
because, there already exists one path between any two vertices of a tree, adding an edge in
between, creates an additional path, and hence a circuit.

16.3.2 Definition: Let T be any spanning tree of a connected graph G. Adding anyone chord to
T will create exactly one circuit. Such a circuit formed by adding a chord to a spanning tree, is
called a fundamental circuit.

16.3.3 Example: Consider the graph G (given in Fig-16.3.3A), and its spanning tree T (given
in F)g-16.3.3B) of G. Now, if we addthe chord c,· to T, we get a circuit 'b, b2 b3 bs CI'

which is called as fundamental circuit (givenin Fig-16.3.3C). »:

c-)

Fig-16.3.3 A .
Graph-G'

13"' .
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Fig-16.3.3 B
Spanning tree- T

16.6 Cut - Set~.

',...el
....

Fig-16.3.3 C
Fundamental circuit-F

16.3.4 Theorem: A connected graph G is a tree c> adding anedge between anytwovertices in'
G creates exactly one circuit.

between two vertices. u and v·Proof: Suppose G is a true. Suppose we add a new edge e = uv
in G. Since- G is a tree, G contains a path from u and v.
By joining this new edge, there creates exactly one circuit.

.. ,

Converse: Suppose the converse hypothesis. Suppose G contains a circuit.vvie.v-e- ... envI: By'
adding new edge el = VIV2, we get two circuits vie' vzel VI and vlel, VZeZV3.. ' envI, a
contradiction. So G contains no circuits. Now we show that G is connected. Let u, v .be two ..

vertices in G. Add a new edge e* = lIV ,. to G.
Then by converse hypothesis, there create§ a circuit.
Suppose the circuit is u e*elvle2v2.... eju. Now velVle2V2... ciu is a path in between v and u.
This shows that the graph G is connected. Hellce G is a tree.

16.3.5 Corollary: Suppose G is a tree, Then by adding a new edge between any two vertices in

G creates, exactly one fundamental circuit.

16.3.6 Note: (i) Let us observe the graph G (given in Fig-16.3.3A), and the tree (T) {b., bz,
b3,ba, b5,b6} given in the Fig-16.3,3B. Add 'CI' to T.
Then we get a subgraph {b., b2• b3, bs. b., CI}; which is a circuit (observe' circuit (i) given in the
following figures). This circuit is called a fundamental circuit.

(ii) Now if we add the chord C2 (instead of CI), we will get a different fundamental circuit {bz,
b3, bS,C2}. (See Circuit-2) ,~

, (iii) Now suppose that we add both the chords CI and C2 to the tree T. Then the subgraph {bl,
b2, b3, ba, bs, b6• CI, cz} contain not only the fundamental circuits we just mentioned, but it also a
contains the circuit { b., CI, C2}, which is not a fundamental circuit (see circuit-3). There are 75
circuitsin the graph given in the Fig-16.J.3A [by enumeration on computer], among which only 8
are fundamental circuits, each was formed by adding one chord ..
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'"C,2

bs

I Circuit-l I ) I Circll~ I Circuit-3 I

16.3.7 Note: (i) A circuit is called a fundamental circuit only with respect to a given spanning tree.
A given circuit may be fundamental circuit with respect to a given spanning tree, but not with
respect to a different spanning tree of the same graph. The number of fundamental circuits in a
graph is fixed.

(ii) In the most of applications we arc not interested in all the circuits of a graph but only in a set
of fundamental circuits. The concept of a fundamental circuit introduced by 'Birchoff' is of
enormous significance in electrical network analysis.

16.4 ALL CUT-SETS IN A GRAPH

16.4.1 Definition: Let T be a spanning tree of a connected graph G, and 'b' be a branch in T,
Since {b} is a cut-set in T, the set {b l partitions all the vertices of T into two disjoint sets one
at each end of b. Consider the same partition of vertices in G, and the cut-set S in G that
corresponds to this partition. Now it is clear that this cut-set S will contain only one branch b of
T, and the other edges (if any) in S are chords with respect to T. Such a cut-set S containing

- exactly one branch of the tree T is called a fundamental cut-set (or basic cut-set) with respect
to T.

16.4.2 Example: Consider the graph G and one of its spanning subtrees T (given in the Figures
16.4.2 A and B). I
All the fundamental cut-sets with respect to T were shown in the Flg-16.4.2A, by dotted
lines/curves.

. ,
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Fig-16.4.2 A
Fundamental cut-sets of the graph G

,. V2 V4
f·

VI 0 e V6

f

V3 V5

Fig-16.4.2 B
Spanning tree - T

16.4.3 Note: (i) We know that, every chord of a spanning tree defines a unique fundamental circuit.
In the same manner, every branch of a spanning tree defines a unique fundarn+tal cut-set.
: (ii) The term fundamental cut-set (like the term fundamental circuit) has meaning only with
'respect to a given spanning tree.

~16.4.4Theorem: The ring sum of any two cut-sets in a graph is either a third cut-set (or) edge-
disjoint union of cut-sets.
Proof: Let SI and S2 be any two cut-sets in a given connected graph G.
Let V I and V 2 be the partition of the set V of vertices of G corresponding to S I; where both
VI and V2 are unique and disjoint.
Let V3 and V4 be the partition of the set V of vertices of G corresponding to S2; where bo+
V3 and V4 are unique and disjoint.
Clearly VI U V2 = V and VI n V2 = ~

V3UV4 = V and V3n V4 = <p.
Write V5 = [V1nV4]u[V2nV3].

It is clear that Vs = VI ffi V3.

[Verification: V1nV4 = Vln(V\V3) V1\V3;

V2n V3 = (V\V1)n V3 = (V3\Vd.
So (VlnV4)u(V2nV3} = VlffiV3].

Write V6 = (VI n V3) u (V2 n \14),<,
NOw'~6 = V2 EBV3.
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"[Verlfication: . V2EB V3 = (V2\ V3) u(V3\ V2)

= (Vi n V3') u (V3 n V21)
= (V211 V4) u (V3n VI) = V6].

Now we can observe that the ring sum of two cut-sets SI and S2 (that is, 81 ffi S2) consists of the
edges that join vertices in V5 to vertices in V6-

[Observation: Let vu = e E SI \ S2-
With out loss of generality, we assume that v E VI and u E V2-
Since vu ~ S2, we have that either v, lI·E V3 or v, u E V4.
If v, U E V3, then v E VI n V3 and 1I E V2n V3 and so vu is from V6· to Vs.
If V,U E V4, then v E VI n V4 and u E V2(\ V4, and so vu - is from Vs to V6.'
In the other cases, the observation is similar].
Thus the set of edges SI ffi S2 produces a partition of V' into subsets Vs and V6 such that Vs
uV6 = V and V5 nV6 = </>-
If the subgraphs containing Vs and Y6 disconnected after th~ removal of SI ffi S2 (form G),
then S, ffi S2 is a cut-set.
Otherwise SI ffi S2 is an edge-disjoint union of cut-sets. Hence the theorem .

I. Fig-l 6.4.4 A

....... S2

V.:I

Fig-16.4.4 B

Fig-16.4.4 C I
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16.4.S.'Example: (i) Consider the graph given in Fig-16.4.5.

/. Fig-1604.5 ·1

/

Take SI == {d, e, f}, S2 = {f,g, h}.

So VI = {VI, V2. v·d. V2= {V4, vs, V6} is the partitionof V

\ with respect to S I.

t. Clearly VI v V2 = {VI, V2. V3, V4,VS.V(,: = V and VI n V2 = ~.
Similarly V3 = {VI, V2, V3, V4}, V4 = (V5. Vii) is the partition of V with respect to S2.

-', Clearly V3 v V4 = V and V3 n V4 = Ij>.
Let V 5 i = (V I n V 4) V (V2 n V 3)

= <I> V J~4-} = {V4}.

[Also' VI EB V3 = {V4}. So VI EB V3 = {V4} = Vsl.
Similarly -V, = (VI n V3) u (V2nV4)

= {VI, V2, V3} u{ V5, V6} = {VI, V2, V3, V5, vs}.
[AltO V2 EB V3 = {VI. V2, V3, V5, V6}. So V2 EB V3 = Ve-l

~ Therefore VS =.{V4} and V6 = ~VI.V2. v}.V5. yo}. .
\ Clearly Vs u Vo = Vvand Vsn y6 = <1>.

\ Therefore SI EB S2 = {d, e, g, h} partitions '! into Vs and V6 .

. Hence it is a cut-set

(ii) Similarly, {a, b} EB {b, c, e, f] = 1a, c, e, n.is another cut-set.
(

(iii) {d, e, g, h}EB {f, g, k} = {d, e, f. 11, k} is not a cut-set [because, one of its proper subsets {d,
t", f} is a cut-set]

= {d, e, f} u {h, k}, an edge-disjoint union of cut-sets:

16.4.6 Problem: Consider the graph given in the Example 16.4.5.

(i) Find out the five fundamental cut-sets.

(ii) Find out the ring sum of each pair of fundamental cut-sets.

(iii) Find whether they (the ring sums obtained in (ii) ate cut-sets or disjoint ~ionoftwo cut-sets.

II
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16.5 FUNDAMENTAL CIRCUITS AND CUT-SETS

16.5.1 Theorem: With respect to a given spanning tree T of G, a chord Cj that determines a
fundamental circuit f occurs in every fundamental cut-set associated with the branches in I' and
in no other.

Proof: Part-(i): Let T be any spanning tree of a given connected graph G.

Let c be a chord with respect to T.
Suppose F is the fundamental circuit made by c which consisting of 'k' branches bI, b2, ••• ,

b, in addition to the chord c.
Note that b., b2, ... , bk E T and c (l T.
So f = {c, bl, b, .. ;, bi} is a fundamental circuit with respect to T.
We know that every branch of any spanning tree has a fundamental cut-set associated with it (by the
Theorem 16.2.1).
So we can take a fundamental cut-set SI associated with b, (means b. E Sl) consisting of q
chords in addition to the branch b I.
Suppose SI = {b., CJ, C2, .•• , cq} i.sthat fundamental cut-set with respect to T.
Note that CI, C2, ... , cq are not in T and b, E T.

Part-(ii): Now by the Theorem 19.2.-3, there must be an e.ve~ number of edges common to both
S. and f. '
Here the edge b I is in both rand S 1 •

So {bJ}.c r r, SI.
If b, E r n S I for some ~ S; i S; k, then b, = 9j for some 1 ~ J ~ q, a contradiction
(since b, E T and Cj ~ T).
So CErn SI.
Hence .F Pi SI = {b., c}

=> C E SI = {b., CI, C2, ... , c.q}
=> C = Cj for some 1 S; j S; q (since c, 7:- bl}.

Thus the chord c is one of the cbo!.-ds c I, ci, ... , cq. .

Therefore the chord c is contained in the fundamental cut-set associated with b..
-Now exactly the' same argument halds for ail th~ funda~~ntaJ cut-sets a;sot.iated with the branches
b2, .~., bk (in F). Therefore by that argument, the chord c is contained in every fundamental cut-
set associated with the branches in F.

Part-Iiii): Now we show that c "is not in any other fundamental cut-set.
If possible, suppose the chordec is in SOl11,C other fundamental cut-set S1

, with respect to "I"
besides those associated with, hi, 132, ... , bj(.
TheIl" b., b2, ... j e~)Il··S+~qnd,;.c E:: 81

, ~ Sl-Ilr= Sl:YY{l?l,bz, ... ,bk,c} =- {c},
a.coniradictiori~\es:iJ1~e::tW~\1fl~~9;erof elenl~pts in the intersection-of a cut-set and a circuit is even).
So the. chord cf is~"(not->irflal1}';.·m{l,~f!f!1enta.tcut-sets other than .' . / .
thoseassociated Witli~~:bi~i.l,S; i:s; k. .
Hence the theorem. . - .
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16.5.2 Example: Consider the graph G given in the Fig-16.5.2A, and the spanning tree T = {b,c,

e, h, k} given in Fig-16.5.2B.

\d '~

~L-F_~_;~_:_h5_~2_G_A,-l

f

/
/

Observe that the fundamental circuit made by the chord f, IS {f, e, h, k}/
I

Fig-16.5.2 B
Spanning tree T

Clearly here e, h, k are branches.

The cut-set determined by branch e
The cut-set determined by branch 11
The cut-set determined by branch k

e~~ Fig-16.5.2C
~ L-F_l_m_d_a~m_e_n_ta_l_c_if_c_u_it.......J:

IS: [d, e, f}
IS: {f,g,h}
IS: {f,g,k}

Note that the chord f occurs in each of these three fundamentalcut-sets associated with the
branches e, h, k and there is no other fundamental cut-set containing f.

16..5.3 Theorem: (Converse of the Theorem 16.5.1)
With respect to a given spanning tree T of G, a branch b (that determines a fundamental cut-
set S) is contained in every fundamental circuit associated with the chords in S, and in no others.
i'Foof: (The proof of this theorem consists of arguments similar to that of the Theorem 16.5.1).
Let G be a connected graph and T be a spanning tree.

Part-Ii): Let S be a fundamental cut-set determined by branch b.
,Suppose S = {b, c., C2, ... , c.}.:

Now bET and cj , C2, ... , cp tf. T.
Let r j be a fundamental circuit determ ined by chord c..
Suppose rj = {CI' b., b2, ... ;bq}.
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Now CI ~ T and b., b2, ... , b, E T.

Also CI E S (\ T 1

Part-(ii): Since the number of edges common to Sand r[ is even (by the Theorem 16.2.3)
[some bj for 1 ~ j ~ q is in S. Since this bj is a branch bj 7= Ck for 1 ~ k ~ P :::::>

b],
We have that b must be in one of the hi, b2,., b.,
This shows that b is in the' fundamental circuit r I associated with the chord CI.

Now by using the same argument, we can conclude that b is in every fundamental circuit
associated with the chords C2, ... , cpo
Thus b is contained in every fundamental circuit associated with the chords CI, C2, ... , cp
cut-set S.

b· =J .

jU

"
in the'

>/

Part-(iii): Now we will show that b is not in any other fundamental circuit. .'I' ;

For this, suppose b occurs in a fundamental circuit I' p+1 that associated with a chord other than:'
cj , C2, ... , cpo ....J-!
Now rp+l. and S have even number 01' common elements (by the Theorem 16.2.3).
Since b is common there exists one more element common in Sand rp+1 ,:,,!

:::::> c, E rp+1 for some i,
a contradiction fix the selection of 11'+1>

So b is not in rp+1•

Thus b is not in any other fundamental circuit.
This completes the proof of the theorem.

16.5.4 Example: Consider the graph G, and the spanning tree

T = {h7 C7 e7 h7 k I l3iy¥u in tl1~ fiplfCli IO.5.ZA and 10.5.2 B .

c . / Fig-16.5.4 A
b

Consider the branch e of T.
Now S = {e, d, fI~is a fundamental cut-set associated with the branch e.
Note that d, f are chords.
Therefore the two fundamental circuits made bythe chords d and fare:
Fundamental circuit associated with chord d is :d, c, e 1,' and the fundamental circuit associated
with chord f is :t~c, h, k}. ' ,

Fig-16.5."t d J
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We may observe that the branch e iscontained in both these fundamental circuits, and the branch
e .is not in the three remaining fundamental circuits
(whichare {a,c,b}, {c,d,f,g}, {g,b,kl).

I

(,
16.6 SUMMARY

In this lesson, we learnt about cutsets, properties of cutsets and their applications.
Inparticular their use in to identifying the weak spots in a communication net. For a given graph
we were able to find all cutsets, fundamental cutsets and their interrelations with circuits. We
observed that every branch of spanning tree defines a unique fundamental cutset, just as every chord
of a spanning tree defines a unique fundamental circuit. We came to know that the term
fundamental cut set (like the term fundamental circuit) has meaning only with respect to a given
spanning tree. We had shown in Theorem 16.4.4 how other cut sets of a graph can be obtained
from given set of cut sets.

16.7 TECHNICAL TERMS

Cut set: A subset of the set of all edges of a connected graph whose
removal from the graph leaves the graph disconnected; and
the removal of any proper subset of it does not disconnect the
graph.

fundamental circuit: A circuit formed by adding a chord to a spanning tree.

. fundamental cut set: Let T be a spanning tree of a connected graph G" and 'b'
be a branch ill T. Since {bJ is a cut-set in T, the set {b}
partitions all the vertices of T into two disjoint sets one at
each end of b. Consider the same partition of vertices in G;.
and the cut-set S in G that corresponds to this partition.
Now it is clear that this cut-set S will contain only one
branch b of T, and the other edges (if any) in S are chords
with respect to T. Such a cut-set S containing exactly one
branch of the tree T is called a fundamental cut-set (or
basic cut-set) with respect to T.

16.8 ANSWERS TO SELF ASSESSMENT QUESTIONS

1: No. (Reason: the set of edges {a, c, h, d} is not a cut-set (because, one of its proper subsets {a,

c, h} is a cut-set)).

2: Yes. (Reason: _ because removal or any edge from a tree breaks the tree into two disjoint
connected components).)
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16.9 MODEL QUESTIONS

1. Define the terms (i). cut set; (ii). fundamental cut set and givean eJfample for each.

"

2. Show that every circuit has an even number of edges in common with any cut set.

3. Show that the ring sum of any two cutsets in a graph is either a third cut set or an edge disjoint
union of cut sets.

4. Prove with respect toa given spanning tree T of G, a branch b (that determines a
fundamental cut-set S) is contained in every fundamental circuit associated with the chords in S,
and in no others. .
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LESSON -17

CONNECTIVITY AND SEPARABILITY

Objectives

The objectives of this lesson are to:

• discuss about edge connectivity and vertex connectivity of a counter graph G
• learn some concepts related to separable graphs.
• know the relationship between spanning trees and cutsets.
• discuss about few applications of the concepts like edge connectivity and vertex

connectivity.
• know different version of Menger's Theorem.

Structure
.J' ',

17.0 Introduction
17.1 Connectivity
17.2 Separability
17.3 More concepts on Connectivity and Separability
17.4 Menger's Theorem
17.5 Summary
17.6 Technical terms
17.7 Answers to Self Assessment Questions
17.8 Model Questions
17.9 Reference Books

17.0 INTRODUCTION

In this lesson, we define the other parameters of a graph namely edge connectivity and
vertex connectivity. The that vertex connectivity is meaningful only for graphs. that have tBree or
more vertices and are not complete. ; \

Menger, in 1927, showed that the vertex connectivity of a graph is related to the numbe of
vertex - disjoint paths between two vertices in a graph. A variation of Menger's theorem, a ve
important and practical result in the maximum - flow, minimum - cut theorem. \ \

The purpose of this lesson is to find the best way of connecting 'n' stations that are conne~{~
by 'e' lines. .. - . , .', \ \
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17.1 CONNECTIVITY,

17.1.1 Definition: The number of edges in the minimal cut-set (that is, cut-set with the fewest
number of edges) is called the edge connectivity of G. [Equivalently, the edge connectivity of a
connected graph G can be defined as the minimum
number of edges whose removal (that is, deletion) reduces the rank of the graph by one]. Some
authors use A(G) to denote the number 'edge connectivity ofG'.

17.1.2 Example:(i)Consider the graph-(a) given in the Fig-17.1.2A.

VI a

b c Fig--17.1.2 A
V6 h Graph-(a)

g d
e

V2 f
Vs

The edge-connectivity of this graph is I (because {k} is the only a smallest cut-set with fewest
number of edges).

(ii) Consider the graph-(b) given in the Fig-l 7. 1.2B.
The edge-connectivity of this graph is 2 (because {a, b} is the smallest cut-set with fewest number
of edges).

V2 d V4 Fig-17.1.2 B

~GraPh-(b)
VI c e g V6

b k

V3 f Vs

b

.Fig-17.1.2 C
T: is a tree

(iii) The edge-connectivity of a tree is I (because every branch in a tree is a cut-set and it is also
smallest).
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17.1.3 Definition: The vertex connectivity (or connectivity) of a (connected) graph G is defined
as the minimum number of vertices, whose removal from G provides a disconnected graph.
Some authors use keG) to denote the 'vertex connectivity of G'.

-; 17.1.4 'Example: (i) The vertex connectivity of the graph-(a) given in the Fig-17.1.2A is 1 (because
. we get a disconnected graph if we remove the vertex V4 from graph-(a)).

(ii) The vertex connectivity of the graph-(b) given in the Fig-I7 .I.2B is 2 (because the removal
of two vertices only can disconnect the graph).

Self Assessment Question 1: Consider the graph-(c) given in Fig-I 7.I. 4. What is the vertex
connectivity of this graph ?

Fig-17.1.4
Graph-(c)

17.1.5 Note: (i) The vertex connectivity of a tree is one.

-, : (ii) Vertex connectivity and edge connectivity defines only for the connected graphs. Some
authors defines both the edge connectivity and vertex connectivity of a disconnected graph as O.

(iii) Vertex connectivity is meaningful only for graphs that have three or more vertices and are
not complete.

17.2 SEPARABILITY

17.2.1 Definition: A connected graph G is said to be separable if its vertex connectivity is one
[equivalently, a connected graph G is said to be separable if there exists a subgraph g in G
such that g. (the complement of g) and g have only one vertex in common]. A graph which is
not separable is called as non-separable graph.

17.2.2 Example: (i) Consider the graph-(c) given in Fig-17.2.2A.
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Fig-17.2.2 A
Graph-Ic)

"-
It is a separable graph (because the vertex connectivity of this graph is one).

-
[Verification: Consider the graphs g and g given in the Figures 17.2.2 Band C.

Fig-I7.2.2B
Graph - g

Fig-I 7.2.2 C
Graph - g

- -
The graphs g and g are subgraphs of the graph-(c). We observe that the graph g is the

complement of g. Also g and g have only one vertex v in common.
So the graph-(c) is a separable graph.]

-,
\

17.2.3 Definition: In a separable graph, a vertex whose removal disconnects the graph is called a .
cut-vertex or a cut-node or an articulation point.

17.2A Example: Consider the graph-( c) given in the Fig-I7.2.2A. In this graph, v is a cut-
vertex.

,

17.2.5 Note: In a tree, every vertex with degree> 1, IS a cut-vertex.

17.2.6 Example: Consider the tree T given in the Fig-17.2.6

Fig-17.2.6 I
vs
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\

So the vertices V3, V4, and V6 are cut-vertices.

[Observe that the removal of anyone of these three vertices disconnects the graph].

17.3 MORE CONCEPTS ON CONNECTIVITY AND SEPARABILITY
r

17.3.1 Theorem: A vertex v in a connected graph G is a cut-vertex ~ there exists two
vertices x and y in G such that every path between x and y passes through v.
Proof: Let v be any vertex in a connected graph G.
Assume that v is a cut-vertex.
Then clearly the removal of v from G disconnects the graph G.
That is, G - v is disconnected.
Hence G - v has at least two components.
[Since every disconnected graph contains at least two components].
Since 'v' is a cut-vertex, we have that the removal of v from G partitions the vertex set V
into two disjoint subsets VI and V2 (say).
Since G - v has twoicomponents, we have that VI .
consists of the points of one component, and V 2 consists of the points of the other component.
Then any two vertices x E VI and y E V2 lie in different components of G - v.
Therefore every x - y path in G contains v.
Thus every path between x and y passes through v.

\

Converse: Suppose that every path between x and y passes through v.,

We show that this vertex v is a cut-vertex in G.
Since every path between two vertices x and y in G passes through v, we have that there
can not be a path joining these two vertices x and y in G - v.
Thus G - v is disconnected, and hence v is a cut-vertex in G.
This completes the proof.

17.3.2 Theorem: The edge connectivity ofa graph G cannot exceed the degree of the vertex with
the smallest degree.
In symbols, we can write as A(G) < 8(G), where
A(G) = edge connectivity, and
B(G) = B(v) where v is with minimum degree].
Proof: Let v be a vertex with the smallest degree in G.
Let s = d(v) = degree ofv.
Then there exist edges e], e2, ... , ~s with end point v.
Now the removal of the edges ei, e2, , e., will disconnect the graph.
So there exists a subset S of {el, e2, ,es} which is a cut-set.
Now we got a cut-set S such that ISI s; s = d(v).
,We know that edge connectivity = min{IYI / Y is a cut-set}

~ ISI ~·d(v).
~~

Hence the theorem.
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17.3.3 Theorem: The vertex connectivity of a graph' G can never exceed the edge connectivity
of G. In symbols, we write keG) S A(G), where keG) denotes the vertex connectivity, and
A(G) denotes the edge connectivity.
Proof: Let the edge connectivity of G be a. , i

So there exists a cut-set S with !SI ""a.
Let'S' partitions the set of vertices ofG into subsets VI and V2.

Now by removing at most a-vertices either from VI (or from V2) on which the edges in S are
incident, we can have the same effect as the removal of S.
So there exists vertices VI V2 Va whose removal from G creates a disconnection

~ vertex connectivity s a
~ vertex connectivity s edge connectivity.

Hence the vertex connectivity.ofanygraph G can never exceed the edge connectivity of G."
Combining the statements of the two Theorems 17.3.2 and 17.3.3, we get the following c'

Theorem 17.3.4.

17.3.4 Theorem: For any graph G, we have the following:

vertex connectivity s edgeconnectivity s d(v), where v is the vertex with smallest degree.{In
symbols, we can v.rite this as keG) s A(G) s 8(G)].

,(

Self Assessment Question 2: Verify that ill a non-separable graph with more than two vertices,
every cut-set contains at least two edges,

r
I

17.3.5 Theorem: Consider all the graphs with 'n' vertices and 'e' edges I

(with e 2:: 11 - 1).

I

2e
Thy maximum vertex connectivity among all these graphs, is the integral part of the number

n

(that is, r2e
]) .

.' •...n

Proof: part-(i) Let G be.a graph with n vertices and e edges.

Since every edge in G contributes ,two to the degrees of the vertices, we have that the total (2e
degrees) is divided among n vertices.

If all the vertices are of equal (same) degree, then d(v) = 2e for all vertices v.
n

Otherwise, there must be at least one vertex in G whose degree is less than the number
2e .

'(,," :~~.( '-';"fi,'-"I n
By the Theorem 17.3.4, we have that ktG) = vertex connectivity ~ d(v), where v ' is the vertex
with smallest degree.
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2e
"Since d(v) is the degree of a vertex with smallest degree, we have that d(v) ~ -

n

2eTherefore k(G):::; d(v) :::;- ~
n

keG) :::; 2e.
n

Part-(ii): Now we have to show that this value can be actually achieved.
That is, we have to construct a graph with 11 vertices, and e edges with vertex connectivity equal

to [~el
* . [2eJ .Forthis, we construct an n-vertex regular graph G of degree -;;- and then we add

the remaining e - ~ [~e ] edges (arbitrarily) between any two pairs of vertices:

Now by removing [~e] vertices only, one can get a disconnected graph form 0*.

* [2
n

eJ.Thus the vertex connectivity of G is equal to

-- [2
J1
CJ.Thus maximum vertex connectivity

17.3.6 Note: The three theorems 17.3.2, 17.3.3 and 17.3.6 can be summarized as follows:
vertex connectivity :::;edge connectivity

:::;d(v) where v is with minimum degree
2e<
n

(because there exist vertex with degree :::; 2e),
n

d he maxi ... . [2e]an t e maximum vertex connectivity IS --;; ..

17.3.7 Example: Consider the graphs 1 and 2 (given in the Figures 17.3.7 A and B).

These are graphs with 8 vertices and 16 edges.

Here we can achieve a vertex connectivity (and therefore edge connectivity) as high as 4. (= 2x 16. 8

32. - - 4)-8 - .
(i) In Graph-l , we observe that the vertex oonnectivity = I. and the edge connectivity = 3.

.'
I·'
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(ii) In Graph -2, we observe that the vertex connectivity = 4,

and the edge connectivity = 4,

Fig-17.3,7 A
Graph -1

n=8
e =16

Fig-17,),7 B
Graph -2

n=8
e = 16

17.3.8 An application: Suppose weare given n stations that are to be connected by means of e
lines (telephone lines/ bridges/ rail roads/ tunnels/ high ways) where e ~ n - 1. 1

What is the best way of connecting? I ..i
Here by "best" we mean that the network should be as invulnerable to the destruction of individual
stations and individual lines as possible,
[In other words, construct a graph with n vertices and e edges that has the maximum possible
edge connectivity and vertex connectivity [.

..
-'.

17.3.9 Example: Consider the Graph-l given in the Example 17.3.7. '

Here if one vertex v is bombed, then the remaining stations can not communicate each other. 'If
three lines destroyed, then the stations can not communicate each other. "

t~
17.3.10 Example: Consider the Graph-2 given in the Fig-17.3.7B.

For this graph, vertex connectivity = 4 = edge connectivity.
Consequently, even after any three stations are bombed, (or any-three lines destroyed), the
remaining stations can still communicate with each other.

17.4 MENGER'S THEOREM

17.4.1 Definition: A graph G is said to be k-connected if the vertex connectivity of G is k

[observe that I-connected graphs are same as separable graphs].

17.4.2 Definition: Let u, v be two distinct points of a connected graph G. . ' .

••
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(i) Two paths joining u and v are called disjoint (some times calledpolnt-dlsjolnt) if they
have no points other than u and v (and hence no lines) in common.

(ii) Two paths joining u and v are called line-disjoint if they have no lines in common.

17.4.3 Definition: A set S of points, lines or points and lines separates u and v if uand v
are in different components of G - S. [Clearly, no set of points separates two adjacent points].

17.4.4 Theorem: (Menger's Theorem) The minimum number of points separating two non-
adjacent points sand t is the maximum number of disjoint s-t paths.
Proof: part-(i): Suppose that k points separate sand t.
If (the number of disjoint paths joining sand t) ~ k + 1, then we should remove at least k +
1 points to separate sand t, a contradiction.
Therefore there can not be more than k disjoint paths joining sand t.
Now it remains to show that there are k disjoint s - t paths in G.
This is obvious if k = 1.
Part-(ii): In a contrary way, suppose that the result is not tree for some k > 1.
.[That is, there exists a graph G, two points sand i in G such that it takes k points to
separate sand t, the number of disjoint s - t paths is less than k].
Let h be the smallest among such numbers k.
.So there exists a graph F, two points s, t in F, it takes h points to separate sand t, the
'number of distinct s - t paths is less than h. .. .. (i)
We remove lines from F until we obtain a graph G such that h points are required to separate
s and t in G but for any line x of G, only (h - 1) points are required to separate sand
t in G \{x}.
Part-(Hi): Now we investigate some properties in G.
By the definition of G, for any line xof G, there exists a set Sex) of (h -1) points which
separate sand t in G - {x}.
Now G - Sex) contains at least one s - t path, since it takes h points to separate sand t
in G.
Also each such s - t path must contain the line x = uv.
Now v, u ~ Sex).
If u =t:. sand u =t:. t, then Sex) u {x} separates sand t in G.
Now we verify that
"No point is adjacent to both .s and t in G" (ii)
In a contrary way, suppose co is adjacent to both sand tin G.
Then G - co requires (h - 1~ points to separate sand t and so (by the minimality of h). the
graph G - U) has (h - 1) disj9int s - t paths .
.Replacing U), we have h disjoint s - t paths in G, a contradiction to (i). Therefore (ii) IS

true.
Part-Iiv): Let W be any collection of h points separating sand t in G. '
We call "a path joining s with some Wi E Wand containing no other point of Wo,· as s-W
path.
Write Ps = collection of s - W paths, and

P, = collection of W - t paths.
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So each s - t. path begins with a member of- P, and ends with a member of P, (because every
s - t path contains a points of W).
Moreover, the paths in Ps, PI have the points of W in common and no others in common.
Part-(v): Now we show that either Ps-W = {s} or Pt-W = {t}.
Ifnot,both P, plus the lines {COlt,COZt... .}, and PI plusthelines {SCOI,SCD2,... } aregraphs
with fewer points than G in which sand t are non-adjacent and h-connected.
Therefore in each, there are h disjoint s - t paths (we get these paths by combining s - Wand
W - t portions), a contradiction.
So P, - W = [s} or P, - W = {t}
· => all the points in Ware adjacent to s or all the points of Ware adjacent to t.
Now we proved that any collection W of h points separating sand t is adjacent either to
s or to t (iii)
Part-(vi): Let P = {s, U),U2,.. '" t} be a shortest s - t path in G and let u, u2 = x.
If U2 = t, then we have the given diagram and so UI is adjacent to both sand t,
a contradiction to (ii).

o------~o~-------o
S ui Uz = t [ Fig-17.4.4

Hence U2 7:- t:

Suppose Sex) = {VI,V2,"" vh-d where Sex) is the separating set containing (h - 1) pointsin
G \ {x}. [Note that here Sex) separates sand t].
If ~ is in G, then UI is adjacent to both sand t, a contradiction to (ii).

Therefore UI t .~ G.

Write W = Sex) u {u.}.
Then W isseparates sand t rn G,
Now by (iii), all the points of Ware either adjacent to s or adjacent to t.
Since ui is adjacent to s, we have that all the points of Ware adjacent to s.
Thus SVi' E G . for 1'::; i ::; (h -I ).
So (by (ii), v.t ~ G for all 1.

Write W* = Sex) u {U2}.
Then W* is separating sand t in G, ,
Now by (iii), all the points of W* are adjacent to s or adjacent to t.
Since VI, ... ,Vh-I are adjacent to s, we have that sU2 E G.
Now {S, U2,U3, "'. t} is a path from ~ to t shorter than P (see the beginning of Part-(vi)), a
'contradiction. , .
'Bence the Cco'!1q'ai'y) assumption at the beginning ofpart-(ii), is not tree .

. This completesthe proofof the theorem,
• • . ~.. '.~_~:'-.'__-; ,..),~' ·:"'~.. i~. • '
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17.4.5 Theorem; (Menger's Theorem - Part-ii)

A connected graph G is k-connected q every pair of vertices in . G' is joined by k or
more paths that do not intersects (means vertex disjoint paths) and at least one pair of vertices is
joined by k non-intersecting paths.
Proof: Suppose G is k-connected.
Then to separate any two points sand t, we should have at least k points in the separating set
W
[and there exist two points sand t for which a separating set W for" sand t' contains
exactly k points].

q there exist at least k vertex d~.ioint paths between any two vertices sand t
[and there exist two points s and I t such that there exist exactly k 'vertex disjoint paths

\.-.

between' s / and t]
!q ev(:ry pair of vertices in G is joined by k or more paths that do not intersects and at

least one pair of vertices is joined by k non-intersecting paths.
This completes the proof. .

17.4.6 Theorem: (Edge version of Menger's theorem)

The edge connectivity of a graph G is k q every pair of vertices in G is joined by k or more
edge-disjoint paths (that is, paths that may intersect, but have no edge in common), and at least one
pair of vertices is joined by exactly k edge-disjoint paths.
Proof: Suppose that the edge connectivity of G is k.
L~t U, v be two distinct vertices of G.
Then any u - v separating set of edges must have at least
kedges.
So there must be at least k edge disjoint u - v paths, as required.
Also there exist a pair of vertices which are joined by kedge
disjoint paths.
Converse: Suppose that given any pair of distinct vertices u and v 9f G, there are at least k
edge disjoint paths from u to v (and at least one pair of vertices is joined by exactly kedge-
disjoint paths).
So for each pair of vertices u and v, every u - v separating set of edges must have at least k
edges.
Thus it requires the deletion of at least k edges from G in order to produce a disconnected
graph.

17.5 SUMMARY v- .
In this lesson we learnt the concepts of edge connectivity, vertex connectivity' and

separability. We studied some results based on these concepts. Then we s;vitc~~d:,?Y;rto prov~-an
important theorem, namely Menger's Theorem in vertex version and the edge version. -We
constructed a graph with n vertices and e edges that has the maximum p~ssible:'edgJ connectivity
and vertex connectivity.
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17.6 TECHNICAL TERMS
/

The number of edges in the minimal cut-set (that is,
c~t-set with the fewest number of edges).

Edge Connectivity:

Vertex Connectivity: The vertex connectivity (or connectivity) of a
(connected) graph is the.minimum .
number of vertices, whose removal disconnects the
graph,

Separability: .A connected graph with vertex connectivity one.

Cut- Vertex: In a separable graph, a vertex whose removal
disconnects the graph.

k- Connected: The vertex connectivity of a graph is k.

17.7 ANSWERS TO SELF ASSESSMENT QUESTIONS

1: Clearly the vertex connectivity of this graph is I (because the removal of v
disconnects the graph).

2: Let S be a cut-set in a non-separable graph G:

Since G is non-separable, we have that vertex connectivity > 1.

Now I < vertex connectivity < edge connectivity :os; ISI

=> ISI > I => ISI 2 2.

=> S contains at least two elements.

=> S contains at least two edges.

17.8 MODEL QUESTIONS

1. Prove that a vertex v in-a connected graph G is a cut-vertex <=> there exists two vertices
x and y in G such that every path between x and y passes through v.

2.,Prove that thevertex connectivity of a graph G can never exceed the edge connectivity of G.

3. Prove that theminimum number of points separating two non-adjacent points,

sand t is the maximum number of disjoint s-t paths.
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_,~ that a connected graph G is k-connected <=> everypair of ,vertices in G is joined
-~ ,

by k or more paths that do not intersects (means vertex disjoint paths) and at least one pair of

vertices is joined by k non-intersecting paths.
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LESSON -18

PLANAR GRAPHS

Objectives

The objectives of this lesson are to:

• know the notion of a planar graph.
• understand the characterization of planar graphs
• observe the Kuratowski's graph
• identify different representations of a planar graph.

Structure

18.0 Introduction
18.1 Planar Graphs
18.2 Kuratowski's Two Graphs
18.3 Different Representations of a Planar Graph
18.4 Summary
18.5 Technicalterms
18.6 Answers to Self Assessment Questions
18.7 Model Questions
18.8 Reference Books

18.0 INTRODUCTION

In this lesson we consider the embedding (drawing without crossings) of graphs on surfaces,
especially. on the plane. We study the planar graphs, which has great significance from a theoretical'
point of view i.e., whether it is possible to draw a graph G in a plane without its edges crossing
over. Planarity and other related concepts are useful in many practical situations. In designing
printed circuits, it is desirable to have as few lines cross as possible.

We also observed the non , planar graphs, called Kuratoski's graphs. We provided a useful,
characterization of Kuratoski's graphs. That is., a graph is non- planar if it contains either of the
graphs K, or K3.3as subgraphs. We gave an illustration to cetrtain results in this lesson for better
understanding.

'18.1 PLANAR GRAPHS

18.1.1 Note: (i) Now we define an abstract graph Gj = ('{, E, cp).

Suppose V consists the 5 objects named as a, b, c, d and. e; and E consists of 7 objects
(none of which is in V) named as 1,2.3.4.5.6,7.
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Tlierelationship between the two sets

[

1 -7 {a, c}
<p = 2 -7 {c, d}

3 -7 {a, d}
4 -7 {a, b}

V and E is defined by the mapping rp.

5 -7 {b, d}
6 -7 {d,e}
7 -7 {b, e}

Here 1-7 {a, c} means that object I from E is mapped onto the pair (unordered) {a, c} of
objects from V.

(ii) Now this combinatorial abstract object 01 = (V, E, <p) can be represented by means of a
geometric figure, which is given in Figure-18.l.l. Now the Figure-I8.I.l shows a geometric
representation of 0).

a

I Fig-IS.I.! I / I

e

18.1.2 Definition: (i) A graph Ois said to be a planar graph· if there exists some geometric
representation of G which can be drawn 011 a plane such that no two of its edges intersect:

(ii) A graph that can not be drawn on a plane without a cross over between its edges is called a
non-planar graph.

(iii) A drawing of a geometric representation of a graph on any surface such that no edges
intersect is called an embedding.

18.1.3 Note: A graph 0 is non-planar if all the possible geometric representations of 0 can not
be embedded in a plane.

18.1.4 Note: We can define the planar graph as follows:

(i) A geometric graph G is planar if there exists a graph 0* which is isomorphic to G that
can be embedded in a plane. Otherwise. G is non-planar,
(ii) An embedding of a planar graph G on a plane is called a plane representation of G.

18.1.5 Note: Consider the graph given in Figure-I.

a

Figure-I d b
f .~, .

(;F------:----c--'::O .... .'
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"
cI Figure - 2 I ",'

If we draw the edge f out side the quadrilateral while the other edges.are unchanged, then we get
the Figure-2. \
The graph given in Figure-Z can be embedded in a plane. ,~". '. ~t
So the graph given in Figure-Z is planar. Therefore the graph given in Figure-I is a planar graph .

. llt::6 ~~a:p le: observ~ the graphs - (a) and (b)' given here.These two graphs are isomorphic-to
each other. But they are different geometric representations of the same graph. Here Graph-fa) Isla
plane representation, and fhe Graph-Ib) is not a plane,representatio~. , ' '. ;.:,

I Graph - (a) I , I' Graph- (b)

18.1. 7 Example: Consider the following graphs G I~" O2 and 'G3• Clearly 01 ,and .Gr 'are
planar. G3 is a geometric representation of G2; and 03 can 'be embedded ina.plane. There:f!M.e
02 is also a planar ,graph. II',"

:
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Self Assessment Qukstion 1: Check whether the given graph is planar. If so give its planar
representation a

d~~-"';"---~f
c

18.2 KURATPWSKI'S TWO GRAPHS

In this section,' we discuss two non-planar graphs which are named' as Kuratowskl's
'igr~p~s (after the .Polish Mathematician Kasimir, Kuratowski, who ..discovcred.jheirunique
'lmoperty).

18.2.1 Note: Observe the graph K, (Kuratowski's first graph) given here. This is a complete
graph on 5 vertices.

\
\
\

\
\
\

18.2.2 Theorem: The complete graph of 5 vertic~s (denoted by Ks) is a non-planar graph.

Proof; Suppose the five.vertices of the complete graph are vi, V2, V3, V4, V5·

Since the graph is complete, we get a circuit going from
VI to V2 to V3 to V4 to vs to VI.

That is, we have a pentagon (given in Graph-A).
,~Qw.this pentagon must divide .the plane of the paper into two regions,
outside.

. ,
one inside and. the, .other

, i

Graph- ~ I,~Graph- A

We have to connect VI and V3 by an edge. ./
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This edge may be drawninside (or) outside the pentagon (without intersecting the 5 edges of

.Graph-A).

Let us select.a line from VI to V3 inside the pentagon. (if we choose outside, then we end up
with a similar argument). Now we have Graph-B.
Now we have to draw an edge from V2 tov4, and another one from V2' to Vs.
Since neither of these edges can be drawn inside the pentagon without crossing over the edges that
have already drawn, we have to draw both these edges outside the pentagon. -
Now we have Graph-C.
Now the edge connecting "3 and Vs can not be drawn outside the pentagon with?ut crossing the
edge between V2and V4. SO V3 and vs have to be connected with an edge inside the pentagon.
Now we have the Graph-D.

I Graph - C Graph - D

Now we have to draw an edge between VI and Y4.
!

It is clear that this edge can not be drawn either inside (or) outside the pentagon without a cross-
over (Observe Graph-E).
Thus this graph can not be embedded in a plane.
Hence the complete graph K, on 5 vertices is non-planar.

t -Graph - E

\.
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18.2.3 Note: A Jordan curve IS the continuous non-self-intersecting curve whose origin and

terminus coincide.

/
18.2.4 Example:

intersection 76
ongin terminus

1\

(i) C1 is not a Jordan curve (because it intersects itself).

c(ii) C2 is not a Jordan curve (because origin and terminus are not coincide).
(iii) C3 is a Jordan curve.

18.2.5 Definition: Consider the graphs (a) and (b) given here. These are regular connected graphs
with 6 vertices and 9 edges. These two graphs are isomorphic and so they represent the same
graph. This graph is called as the Kuratowski's 2nd graph. These two graphs show the two
common geometric representations of the Kuratowski's second graph.

Fig. 18IS(a) Fig: 18.2.5.(b) .
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The Kuratowski 's 2nd graph is denoted by K3.3.

18.2.6 Theorem: Kuratowski's 2nd graph is a non-planar graph.

Proof: Observe the Kuratowski's 2nd graph K3,3. /

It is clear that the graph contains six vertices Vi, 1:::;i :::;6 and there are edges

\

\. V6< __ l_'n_si_d_e__ I::ISide
vs V4 .

\ I Fig- 18:2.6 (a) r
Now we have a Jordan curve. So plane of the paper is divided into two regions, one inside andthe
other outside. .
Since v 1 is connected to v4, we can add the edge v Iv 4 in either inside or outside (without

intersecting the edges already drawn). Let us draw v I V4 inside.
(If we choose outside, then we endup with the same argument Now we have the Fig- 18.3.6(b))

V6~ VJIFig-18.2.6 (b) I

V5 V4

Next we have to draw an edge v 2 V 5 and also another edge v 3 v 6 •

. I

First we draw v 2 y 5 •

. . 1 ~.J1
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If we draw it inside, we get a cross over the edge v, v 4 •

So we draw it outside. Then we get the Fig-18.2.6(c).

V6@Vl

V

I Fig-18.2.6(c) I·

Still we have to draw an edge from V3 to V6.

If V3V6 drawn inside, it cross the edge v,v4 (seethe Fig-18.2.6(d».

Fig-18.2.6( d)

So we can not draw it inside.

So we select the case of drawing v 3 vi> cross the edge v 2 v 5 (see the Fig-J8.2.6(e».

Thus v 3 V 6 can not be drawn either inside or outside with out a cross over.
Hence the given graph is not a planar graph.

t.-:

Fig-18.2.6( e)

1.,

r •

18.2.7 N~In the notations: K5, K3.3• the letter K represents the first letter in the name.

Kuratowski.

. ','
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18.2.8 Common properties of Kuratowski's I" and 2nd graphs:

(i) Both are regular graphs.

(ii) Both are non-planner.

(iii) Removal of one edge (or) vertex makes each a planar graph.

(iv) The two graphs are non-planar with the smallest number of edges.
Thus both are the simplest non-planar graphs.

,Self Assessllte~t Question 2: 'LeI G be ~ graph with a representation containing two intersecting
edges. Can we conclude that "G is non planar". li

18.3 DIFFERENT REPRESENTATIONS OF A PLANAR GRAPH '.,
18.3.1 Note: A plane graph G divides the plane into

number of regions [also called windows, faces, or meshes] as shown in following Fig-IS.3.l.

I Fig-I8.3.1

A region characterized by the set of edges or the set of vertices forming its boundary.

In the Fig-I8.3.I, the numbers 1,2,3,4, 5, 6 stand for the regions.
.r

18.3.2 Note: (i) A region is not defined in a non-planar graph,

(ii) For example, we can not define region in the graph by Fig-I8.3 .2.

~ 1 Fig-18.3.2 ·1

',.~

18.3.3 Note: The portion of the plane lying out side a graph embedded in plane (such as the region
4 in the graph given in the Fig-! 8.3.1) is called an infinite [or unbounded or outer or exterior]
region for that particular plane representation.
In the Fig-I8.3.1, the region 4 is an infinite Region .

. '! J;!i d~!1)

/!ls.3.4 Example: -Observe thegraph givel'}~j)1,the Fig-18.3.4. ,Clearly it has,' 4 regio~~. !he re~~6n

4 is an infinite region.
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) .:

I Fig-18.3.4 I V2

4

18.3.5 Note: If we consider two different ernbeddings of a given planar graph, then the, infinite
regions of these two representations may be different. "

18.3.6 Example: Consider the graph G1 and G2 given here.
"'\

I Graph - G1 I Graph - G2

These two graphs are two different embeddings of the same graph. Here the finite region VI V3 vs
in G, becomes the infinite regio,n in G2.

18.3.7 Embedding on a sphere: To eliminate the distinction between finite and infinite regions; a
planar graph is often embedded in the surface of a sphere.
It is accomplished by stereographic projection of a sphere on a plane.

18.3.8 Theorem: A graph can be embedded in the surface of a sphere <=> it can beembedded on a

plane.
,.; !

Proof: Put the sphere on the plane; and call the point of contact SP (South pole). Now draw a
straight line perpendicular to the plane at SP. Let the point of intersection of this line with t~e
surface of the sphere be called NP (North pole). Observe the~Figure 3.8:8 . . ,'". .
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NP

Fig - 18.3.8 Stereographic
projection

SP

Now corresponding to any point P on the plane, there exists a unique point plan the sphere andi
vice versa; where pI is the point at which the straight line from P to NP intersects the surface of
the sphere. '

If graph contains vertices VI, V2, ... , vn, and VII, V2
1

, .•. , v,' are the co~espondingpoints on th~{
sphere, then there is a one-to-one correspondence between the set ,~

{ VII, V21 , " .• , V n I} of points of the sphere and the set {VI, V2, ... , v-} of finite points on tht
plane.
'If there is an edge between Vi and Vi, then we add an edge between vi' and v/ . ,.ill

From this construction, it is clear that any graph that can be embedded in a plane (that is, drawn
one plane such that its edges do not intersect) can also be embedded in the surface of the sphere.

C T k h witl \.. I I lIb dd d honverse: a e a grap with vertices V I , V 2 , ••• , V 11 t rat em e e on a sp ere.

,Draw line through NP and v i I. It meets the plane at Vi.
Now represent the points VI, V2, .. "' Vn on the plane.
If there is an edge between ViI and vi' ' then we draw an edge between Vi and vj-
So we can conclude that any graph that can be embedded on sphere can be embedded on a plane.

fI"

".l

18.3.9 Theorem: A planar graph may be embedded in a plane such that any specified region (that
is, specified by the edges forming it) can be made the infinite region.

Proof: A planar graph embedded in the surface of a sphere divides the surface into differertfl

regions,
Each region in the sphere is finite.
The infinite region on the plane having been mapped onto the region containing the point NP:<'

'I!

Now it is clear that by suitably rotating the sphere we can make any specified region map onto '1h~'
," , .~.

infinite region on the plane. From this we bave the conclusion. ,,

18.4 SUMMARY
,:::. ,

-"J' _'~
In thislesson; we learnt theconcepts-of a planar graph, non - planar,graph and embeddtng.:

We analyzed find whether a given graph is planar or non - planar, and discussed two specific and;'
most important fundamental non - planar graphs: Kuratowski's 1st and 2nd graphs. We also presented
few examples to understand these explicitly. /:
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18.5 TECHNICAL TERMS

Planar graph: A graph G is said to be a planar graph if there
exists some geometric representation of G which
can be drawn on a plane such that no two of its edges
intersect.
A graph that can not be drawn on a plane without a
cross over between its edges.

Non - planar graph:

Embedding:
'1'

A drawing of a geometric representation of a graph
on any surface such that no edges intersect.

Kuratowski's 1st graph: A complete graph with five vertices.

Kuratowski's 2nd graph:
:,~.. A regular connected graph with 6 vertices and 9

edges.

Infinite region: The portion of the plane lying out side a graph
embedded in the plane is an infinite region for that
particular plane representation.

18.6~,ANSWERSTO SELF ASSESSMENT QUESTIONS
"

1: No

2: (i). Corl~ider the graph

t8JB
C D

J.

IJiGI, AD and BC are intersecting edges, but it is a planar graph .
.!I,I

(ii). Consider the graph Ks. Here we have intersecting edges but it is non - planar.
Conclusion: We cannot say about the planarity of a graph having two intersecting edges.

18~7 MODEL QUESTIONS

1. Define the terms planar graph, Embedding, plane representations, Kuratowski's two graphs.
2. Show that the complete graph of 5 vertices (denoted by Ks) is a non-planar graph.
3. Prove that Kuratowski's 2nd graph is a non-:planar graph.
4. p:rove that a graph. can be embedded in the surface-of a sphere" <;:::> it can be embedded on a
plane, .:~

/
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LESSON: 19

EULER'S FORMULA AND DUAL GRAPHS

Objectives
After reading this lesson, the reader should able to:

(i) know the number of regions of a connected planar graph.
(ii) observe the plane representation of a graph.
(iii) know the step wise procedure to detect the planarity.
(iv) write the geometric dual of a planar graph.

Structure

19.0 Introduction,
19.1 Euler's Formula
19.2 Plane Representation and Connectivity
19.3 Detection of Planarity
19.4 Geometric Dual
19.5 Summary
19.6 Technical terms
19.7 Answers to Self Assessment Questions
f:9-.8 Model Questions
19.9 Reference books

19.0 INTRODUCTION

In this lesson, we give a simple formula showing the relationship between the number of
vertices, edges and faces in a connected plane graph. It is one of the best known formulae in Graph
Theory and was proved by Euler in 1752. In this lesson we study a necessary and sufficient
condition for a graph G to be planar namely Kuratowski's Theorem .

.' The existence of a dual graph gives another alternative characterization of a plenar graph.
Whitney gave a combinatorial definition of dual, which is an abstract formulation of the concept of
geometric dual. He also proved that a graph is planar if and only if it has combinatorial dual.
Geometric dual of a graph depends on the embedding of the graph in the plane. So the same graph
may have different geometric duals for different embeddings.

19.1. EULER'S FORMULA

19.1.1 Example: Consider the 3-connected wheel given in Graph-fa). The Graph-(b) is
another embedding into the plane (for the same graph). These Graph-fa) and Graph-(b) can be
represented 011 the sphere.
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I Graph - (a) I
3

Graph - (b)

,

.Observe that the representation Graph-(a) divide the plane into 5 regions.

Here the region 5 in an infinite region.
Observe the Graph-(b). In this graph the region 3 in the infinite region.
The following Euler's formula provides an information about the number of regions in any planar
graph.

19.1.2 Theorem: (It;yler's Formula) A connected planar graph wit~ n vertices and e
edges has e - n + 2 regions.
[Let G be a connected plane graph and let n, e, and f dei19t.€;{the number of vertices, edges
and faces (or regions) of G respectively.
Then"n-e+f = 2 (or) f == e-p+2]. .
Proof: We.prove tNs theorem-by Mathematical Induction on the number of faces f.
Part-d): Suppose that f = 1. .
Then G has only one region,
If G contains a cycle, then it will haw at least two faces, a: contradiction.
So Gcontains no cycles.
SinceG is connected, we have that G is a tree.
We know that ip.at~ee n = e + 1.
So e - n + 2 = e - (e + 1) + 2 = 1· = f.
So the statement is true for f = 1.
Part-Ill): Now suppose the Induction hypothesis that f > 1 and the theorem is true for all
connected plane graphs with the number of faces less than f.
Since' f > I, we have that G if)not a tree (since a tree
contains only one jnfinite region).
Then by, a knowq-J,h.~(W~inL~.tatement: G is a tree <=>every edge of G is a bridge], G has.an
edgek, which)s.--fJ,9ta,bri¢.i~:
So the subgrapIvp'~"'i~ \i~sliJJH?,onnecteq~.,lO~,
Since any subgr~J.1l'R~'.a>p,J~»J~·gr~p'h iS~~f~0a plane graph, we have thatG - k is also a.plane
graph. .
Since k is nota bri9ge",,~~~d;rav~that kfl~·a part of a cycle.
[Since an edge e of G is a bridge <=:>-'-eis not part of any cycle in G];
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So it separates two faces FI and F2 of G from each other.

Therefore 'in G - k. these two faces F I and F2 combined to form one face of G - k.
We can observe this fact in the Figures-19.1.2A and B.

Fig-19.1.2A
Graph G
4 faces

Fig-19.1.2 B
Graph G - k

- ~,-, 3 faces

':/ n<.G - k), 'e(G - k), f(G - k) denote the number ;;f vertices, edges and faces of G -~k
l'especttveiy.
.Now we have n(G - k) = n; e(G - k)= e - 1 and
f(G - k) = f- 1.1
By our induction hypothesis, we have that n(G - k) - e(G - k) + f(G - k) 2

=> n-(e-l)+(f-l) = 2
=:> n - e + f = 2 => f = e - n + 2. I

Hence by Mathematical Induction, we conclude that the statement is true for all connected planar
graphs.
Self Assessment Question 1: Suppose that a connected simple planar graph has 20 vertices each

-of.degree 3. into haw many regions does a representation af this planar graph split the plane?, . .,"

I
'19.1.3 Definition: ~e( <I> be a face of a plane graph G. We define the degree of <P

(denoted by d(<I») to be the number of edges on the boundary of </>.

19.1.4

,d(cI>f~ 3.

Note: For any interior face 4> of a simple plane graph, we have that

19.1.5 Theorem: Let G be a simple planar graph with n vertices and e edges, where .n ~

3. Then (i) 2e;?: 3f (ore ;?: ~f) (ii) e ~ (3n- 6) ,
2

Proof: Case-d) Suppose that G is connected.

Part-(i): If n = 3, then we have three vertices.

Since G is simple; there exist at most three edges.

~o e ~ 3. If e = 3, then G is given by the Figure-Iv.Lfi.

V, J/Fig-19.1.5

So f = 2 and e = 3 => 2e ~ 3 f

If e < 3, then (since Gvjsconnected) e = 2 .and f = 1
\e
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\ => 2e ~ st .
In '~is case, we proved (i).

Sinc\ e ~ 3, we have .3n - 6 = 3 x 3 - 6 ::: 3vze,

In this\ case; we proved (ii);', :;.:;,

Part-(ii): Now assume that n ~ 4.

If G is a tree, then f. = 1 and e = n - 1 . '

: Now e = n- l' ~ 4 - 1 '~'yi <.'

~ 3 =~xl=~f.
2 2 2

'. '

Also (3n - 6) - e = (3n - 6) - (n > I)

2n - 5 ~ 2 x 4 - 5 ~ 0

=> 311 - 6 ~ e.

ThereforeIi) and (ii) are;true if. G is a' tree and n '~ 4.

.:Part-(iii): Now suppose that n 2: 4 and G is not a tree. Since G is connected, G contains a
,\eycie. ;. "

Since G is simple-Ithere.arp.nomultiple edges), we have that each ~~c,e'~asat, least threeedges

'on its boundary, and so d(4)) ~ 3 for each face </>.

Write b ::: I~e~de</»~ (i)

where ~ denotes the set of all faces of ,G. _
There are f faces participated in the slim (i), and each face has at least three edges.
So each face contributes at least 3 in the sum (i). ,
So f faces contribute 3r.' N~w-we ge(th~t -"b 2: 3[,'-'
When we are summing up for b (in (i», each edge of G (if itis counted) was counted either once
or twice. "," -
(Twice if it occurred as a boundary edge for two faces).
Even if all edges participate in the sum (i), then the number is 2e:. So b S; 2e.
Now 2e ~ b ~ 3f => e ~ (t)f (or te ~ f)

Part-(iv): Now by Euler's formula, we have that e - n + 2 = f (or) n e.:- f+2.
e

Now n = e - f + 2 2: e - (t e) + 2 = - + 2. 3
; .,'

e
=:) n 2: - + 2 ;:;:> 3n 2: e + 6 ~ e < 3n - 6.

3
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This provesui).
,

;t~~se (U): N9~sup.pcise that () is a non-connected graph.

: S.ep;(ji:.Le~/,d",·;';.Gtlje its connected components, and
let ",\iii~,ei 'depote.the number of vertices, number edges (respectively) "in
'-, . '" '," ,,:--.! > .' ',

< t):'-..... '
'1 :.

OJ for each -i {I S; i

-:,t, . '. . I~~, ,.-.t ..

, Now' n = '}jnjand,i =, L~j .
"'"1' s- ;-4""

Then esch Oi .isaplanar connected sinlplegraph (since G't. .

So we ha\ve that ej ~3nj -6 (bycaseti) for l'S; i S; t.

is planar simple graph).

" 1 I

Now e ~ :Le; '$ IOn; -6)
~=>I j".1

., I'

= L3'n; - L6
';=1 i=l,

,I

3;L11; - 6t,
i=1

= 3n -.6t S;3n ,- 6

.~en6ei"~s; '.3h - 6:: .
(since t ~1 ::::)pt, ~ 6 ::::>, .,6t S; -6)

Step-(ii): Suppos~'~,lUit:each: Gj',createsft ,regions.
.ThenrIf -' 1) regions are int~rnal?r7lions of Gi, ,
:N.o~ f :::,:'(the number ofi~ternal~reglOnsof"G)+ 1 (related toexternal regiori)

f • v:";" ": . '-,~~,.", ,': ...._,, . . ' .

.<.. ~ [L (nu~:be~:9'fjlJiei'pa!~egio~~ ofa !}J+'}
'I '." ,,' "

- ri:f;] -(t-i) , /sinc¢.:9 i~disconnectedand t' =~o. ofcomponents > 1

, J./e ha:Ve .t'~1 >\0].

,S; ['±~~,e'f'(t 1) [since,3fi s 2eiby case (i)]
, i;ol"' 3 . '-. . -

2' ,t' .; ;",

- [- ~2:e; ] - (t - IJ.
31 ' .:

,,

2' " , '~'"= -e Co (t - 1) ~ .- e (since.t ~,l » 1):
,3 ,'3 :..•..



\ -"'- -=-2 ~
~ -f $ - e ~ _3f ~ 2e__ _ 3

'rhis-proves (i). This completestheproof
:I

Euler's For:mula and Dual GraPhS! -

J?J.6 Note:!nsome cases; the relation-Jgiven in the statement of the Theorem 19.1.5) e ~
~".-. _~_-~y-be-useftil in finding out whether a given 'graph is planar or noi:

u

- •

19~I.l·_ Corollary: The Kuratowski's e~aph K, (The complete graph on five vertices) is non-
planar ..c;"

PreofrJn a contrary way suppose that Ksis=:planar.
- Observe.the diagram (given in Fig-19.L7) for-Ks.

--1_- _FJ_' g~-1_9._1._7_1·l ~ .

It is a simple graph with n = 5 ~ 3 and+e== 10.
By the Theorem 4.5, we have that 3n - 6 ~ _e

:::) 9 ? e = 10, a contradiction.
So we conclude that K5 is a non-planar graph.

19.1.9

IK3.3.'j: b?ig-19.1.9 B

\--
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Clearly this graph K3,3 satisfies the equation e s 3n - 6.

[Reason: In K3,3, we have that e = 9 and n = 6.
Now 3n-6 = 12 => e<3n.-6].
But we know that K3,3 is a non-planar .graph.

19.1.10 Problem: Show that K3,3 is non-planar.

Solution: In a contrary way, we suppose that K3,3 is planar.
Note that n = 6 and e = 9.'
In K3,3 everyface has 'at least four edges on its boundary.
So d(~r'2- 4 for each face <1>.

Write b = I¢E",d(¢) ",'.:.(i)

IFig-19.1.lOAI ~I Fig-19.1.1OB

where ~ denotes the set of all faces of G.
The notation we use is I ~ I = f. I
Now b = I~E~d(<I» ~ I~E~4 =I~ I x 4 = 4f.
Since each edge was counted either once or twice in (i)
boundary edge for two faces), we have that b s 2e.
Therefore 2e ~ b ~ 4f

=> e ~ 2f
~ e ~ 2 (e - n + 2) (since f = e - n + 2)
~\\ 9 ~ 2 (9 - 6 + 2) => 9 ~ 2 (5)
=> 9 ~ 10, a contradiction.

Hence K3,3 is a non-planar graph.

----....
.~

(if it is counted) (twice if it occurred as a

19.2. PLANE REPRESENTATION AND CONNECTIVITY

In a disconnected graph, the embedding of each component can ~'be considered
independently.. \ . .
So it is clear that a disconnected' graph is planarc> ,each of its componentsAs plapar:,',
Thus it is enough to study the planarity for connected graphs: ' ..... , ,.
Similarly, in a separable graph, the embedding of each block can be considered independently+
So a separable graph is planar <=> each of its block is planar.
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Thus it is enough to study the concepts-embedding (or) planarity only for non-separalile'graphs.

\
19.2.1 Definition: Two embeddings of aplanar graph on spheres are said to be not distinct, if'\
the ernbeddings can be made to coincide by suitably rotating one sphere with respect to/the other
and possibly distorting (that is, either pulling or adjusting) the regions, (without leaying a vertex
cross an edge).' . .'
19.2.2 Definition: If every pair from the set of all possible embeddings of the given graph G
on a sphere, are not distinct, then we say that the grapbG have unique em,be¥ing on a sphere. In
this case; we also say that G' have a unique plane representation. " ' ..
19.2.3 Example: Consider the twoembeddings (of thesame graph) given in Fig-19.2.3.In the
embedding (b), the infinite region (with respect to plane) is bounded with5 edges. In the embedding
(a), the infinite region is bounded with ,~ ,. .
edges. Also it can be observed that in the embedding-fa). there is no region which is bounded by, 5
edges. ., . .

I Fig-19.2.3 A I e4 Fig-19.2.3 ~"I

Thus byrotatingtwo spheres on which (a) and (b) are embedded, we can not make them coincide.'
Hence the two embeddings aredistinct. ,So we: conclude that the graph has no unique plane
representation. ' . --:

. Self Assessment Question 2: Check whether 'the two planar representation of a graph ha~e t~:e
same regions ? , .

19.2.4 Example: Observe the two graphs given in Figure-19.2.4A and B.

Fig-l 9.2.4 A
\ ",.
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These \wo :grq'plis .are .two ernbeddingsof the:,saipe grapfi~/lf"'i:eonsider' their representations on a.'
sphere, they can be made to coincide:' "
[Remember that edges can be bent, and in a spherj¢ embedding there is 'no infinite region]. So the
grap,h ~as a unique-plane representation. .", .'" :' s ": ,. _ " "

193~~~~CTION 0F'PLANARITY
. /

, -, '

19.3.1 'Elementary Reduction Procedure: r , " l.'

Step-(i): Since a disco~n~cte1d gra~h:i:Splanar .; each ofjtscp'~p~n~nt~ ispla~~r;. it isenough .to
observe each c9mponent independently. . ..',' '" '
Also a separable graph is' planar <=> each of its.block is planar. .' .
therefore for the given arbitrary graph G, we determine the, set {G), G2, ... , Gk}ofall n097
separable blocks of O. ,'j :

.Then it is enough to test planarity for each Gj•

-Step-Iii): Since addition, (or) removal of self-loops does not effect the planarity, we remove all
self-loops. - " _
Step-(Hi): Since parallel edges do not affect the planarity, we can eliminate edges in parallel by

• removing all, but one edge between every pair of vertices. ,;. . '.'
Step-Iiv): Elimination of a vertex of degree .2 by merging (or fusing) two edges in series' does noi
effect the p1ilp.arity.· .
[two edges are said to be- in series if they have exactly one vertex in common: and this vertex is of
degree 2]' '. . ,

ISo eliminate all edges in series.
Repeated application of steps (iii) -and' (iv) will usuallYJ,e~uc~the given graph, drastically" and the..
reduced graph is very convenient for study, .. .;.. ,

19.3.2 Example: Consider the graph given in the Figure-I,9.3.2.
• ~; < ".(.' ~. t.. L I:: ': .t

Fig-19.3.2 le4

e7
;;.:....

/ .'

Fig - 19.3.2 (a)
Series Reduction.

.. Fig - 19'.3:2 '(b)
. \' i _ .

Parallel Reduction :. '
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-Fig - 19.3.2 (c)
Series Reduction

Fig - 19.3.2 (d)
Parallel Reduction

By the repeated applications of step (iii) and (iv) of the above procedure, -we get the graph in
Figure - 19.3.2 (d).

19.3.3 Definition: Two graphs G, and G2 are said to be homeomorphic if the graph G, can
be obtained from the graph G2 by the creation of edges in series (that is, insertion of vertices of
degree 2) (or) by the merge of edges in series.

19.3.4' Example: The three graphs given in the Figures-19.3.4A, Band C, are homeomorphic

to each other.

I Fig-19.3.4A I Fig - 19.3.4 B
(by merging)

Fig - 19.3.4 C
(by creating)

19.3.5 Note: It is Clear that if G, - and G2 are homomorphic, then G, is non-planar <=:>-
G2 is non-planar.
19.3.6 Theorem: (Kuratowski's Theorem (1930»
A necessary and sufficient condition for a graph G to be planar is that G does not contain either of
the Kuratowski's two graphs (or) any graph homeomorphic to either of them;

Proof: Let G be a planar graph.
We know that the Kuratowski's two graphs K, and K3,3 are non-planar.
Ifthe graph G contains a subgraph homeomorphic to either K, or K3,3, then G is non-planar
a contradiction to our assumption. /
Thus there is no subgraplr of G which is homeomorphic to either K, or K3, 3 .
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Converse: Suppose that G" contains no subgraph which.is homeomorphic to either K5 or Kj.
3. In a contrary wayv suppose that G .is non-planar. '
Now let G be a non-planar graph having the minimum number of edges. "
Then G must be a cp,!llpon~nt. , ,
Then 0 (G) = a(v),' the degree of v where v is of minimum degree ~ 3.
Now we can obtain (for a complete proof, the reader may refer to (Harary "Graph Theory", Narosa
Publishing House, New Delhi) a subgraph of -0" of G which is homeomorphic to either of
Kuratowski' s 'two graphs, a contradiction.

. -/"

-19.3.7 Note: (i) Observe the graph given in the Figure - 19.3.7.

This graph is a non-planar graph and it contains no subgraph which is either isomorphic to K, or
K3.)·
From this example, we can understand that it is not necessary for anon-planar graph to have either

_of the.Kuratowski 's graphs as a subgraph.

1- Fig-19.3. 7 -I

(ii) A non-planar graph contains a subgraph which is homeomorphic to one of the Kuratowski's
.. ...' (~\

graphs'.

19.3~8 Problem: Find whether thegiven Graph 193.8 is planar?

A

e I- Fig- 19.3.8 :;]

a

Solution: Now we reduce the Graph-19.3.8, by removing edges (using the elementary reduction
, procedure) so that the remaining graph is still non-planar.'
. Let us remove the edges (a, x) and (A. C).

A '-.

e Fig-19.3.8 B .
, ,
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t.. -.

[Here we remove (A,' C) to get a subgraph. This operation is not a part of elementary reduction'>
proeedure]. " ; i '. ' :' , '" :,

Then we get a' subgraph which is Graph-Ib). ,,' '
Take Graph-tb) and merge the two edges (which are in series) at the vertex x. Then we get Graph,-;
(c). ' ", '\~'"
It is clear that Graph-ic) and .Graph-tdjare ;:omeomorphi~. I,. ','" '
Now it is easy to-observe that Graph-Ic) and Graph-td) are
two distinct representations of the same graph, ' " .;''< '
Graph-I d) is nothing but the Kuratowski' s second graph.

A
A

e

'I Fig-19.3.8 D

a C B

I Fig-19.3.8C I b

Therefore Oraph;..f9.?'~A contains a subgraphwhich is homeomorphic to. K3.3. '

Hence we conclude that the given graph is non-planar,

i9.4: GEOMETRiC DUAL
~ " ,

I."19.4.1 Delinition: Let 0 be a plane graph. We define the dual of, 0 to be the graph O·
constructed as follows:

(i) To each face (or region) f of G there is a corresponding vertex r ' of 0"'.
(ii) To each edge e of O. there is a corresponding edge e· of 0* [if the edge e occurs on

the boundary of the two faces f and g, then create an edge e* that joins the corresponding
vertices r and g. in 0*]. ,
[If the edge' e IS abridge. then we treat it as an edge, it occurs twice on the boundary of the face f
in which face it lies. So the corresponding edge e· is a loop incident with the vertex, f * in 0·].

19.4.2 Procedure to construct a dual from a given graph:

Step-d); Consider the given planar graph and identify the regions F, 1 S isri. ,
[Consider the plane representation of the graph given in Fig'.Jre-19.4.2 A. In this graph there are 6
faces (or regions) FI, F2• F3, F4, Fs, and F6].

Step':(ii): Place' th~/poiiltS ' P'I,:P2; .. " pn 'on the plane one for eachof the regions.
[In the example, .place 6 points PI, P2, P3, P4. ps, P6.
Note that Pi is a point in the interior of the region. Fi],
Observe the Fig-lYA.2 B. 'k ' , ,
...,1 .

. ;} ~J '
•~ I

'(:~t . -, .>, :) t, n .
•...
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Step-(iii): If two regions F, ana PI are adjacent (that is, .,
having a common edge), then draw a line joining the correspondingpoints Pi and ',pj"'th1itf"-
intersects the common edge between Fi and Fj exactly once. .' ' .'
[Ifthere is more than one edge common between F: and Fj, .' ,,- . . ",- \ >

then we draw one line between the points Pi and P1 for each of the common edges].
We perform this procedure for all 'i, J E P, 2, ... ,' n} such tha;(']' 'J f' ,~~~..,-:. '~

". ,. ': .~

" -~ ~ -j '. :-

" " \

·",1 "!,.:'-Step-tlvuSuppose.a regiou T', contains anedge e lying ,

opo

.'..~-, .~,

:' .: ' ~;. -' ', -

,; .1,1
. ~', .'

I Fig-19.4.2 AI' .

• " '>,; • ! :.~

.•..•. I"

Fig-19.4,2BI ..':

~ :; "
-, ,,' " ~:, _ ~" .. \'. :,

• ,,;: ;'•.•.•• ,';,' 1"

. .:.'
. ~..

t; .:

.~r '

-; I Fig-l 9.4.2 C2 " .

"
.:.- t:':,

entirely in it; then we draw a self-loop at the point Pk ,in~ersectlng .;e e~::~tW:~~~~,:"~m;:''::", ..' ",~~';::
, ,

We perform this procedure for all such Fk' " ",'(
By using this procedure we obtain a new graph GO,. . ":: ,j, :~ ': ~: }{,;'-.'(l !~~, ;\"'.. ";'J';"
Such a graph 0* obtained hereis called a dual (or gco,metric dual) 'of G." ~ ';'1' ;;,:I."ii;'

[In this example, the dual G*__was shown with broke" lines (observe Fig- 19.4.2 C), Thisdual 0·'
consist of 6 vertices PI, P2, P3, P4, P5, and prr and the edges (brokenjjoining these vertices].
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. .

19.4.3 Note: From the construction of the dual O· of G, it is clear that there is a one-to-one'
correspondeQ.ce. between the set of all edges of G and the set of all edges. of 0+. Also note that
one edge of 0 intersects one edge of G. . .

. 19.4.4 Observations: (i) An,edge forming a self-loop i~,G Yiel,dsapendentedge in . G*.

(ii) A pendent edge in' G yields a self-loop in GO. ./

(iii) Edges that are in series in G produce parallel edges in 0·. [If ei, e2areih series inG,
then e'l, e' 2 are parallel in GO].

(iv) Parallel edges in ,G produce edges in series in 0·.

(v) It is a general observation that the number of edges constituting the boundary of a region F, in
G is equal to the degree of the corresponding vertex Pi in G*,·.a~d vice versa. .

(vi) The graph 0* is embedded in the plane, and so G* is also a planar graph.
(vii) Consider the process 'of drawing a dual GO from .G.. ' .

It can be observed that G is a dual G-.
Therefore instead of calling G*, a dual of G, we can usually say that G and 0" ate dual.
Iraphs. ,

(viii) If n, e, f rand Il denotes the number of vertices, edges, regions, rank and nullity of
a connected planar graph G, and if n", eo., ( .r' and 'Il" are the corresponding numbers in the
dual graph G"; then
• f ° ,0n = ,e = e, f ::= n.

••• i- ~I·

r = Iland Il = r [Verification presented in the followingFrom these facts. we can get that
problem]. .
Self Assessment Question 3: If C* is the dual of G, . then verify that

(i) rank of G = nullity of G* [that. is r = Il"1
(ii) ronk of c' = nullity of G [that is / = III

..

19.4.5 On the uniqueness of dual graphs:

(i) Consider the graph Gland its dual G 1",

FigM19.4.5 B
Graph - G1.'

Fig-19.4.5A
Graph - 01

.1
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Also consider the Graph - G2 and its dual Graph - G2 *.

(ii) Observe that Graph - Gi and Graph - G2 are two different planar representations of a same
graph (say, G).

Fig-19.4.5 D

Graph - G2*

, ,iiii) The Graph.: G2 * contains a vertex of degree 5, and the Graph - G: * contains 110 vertex of
degree 5. Therefore Gj * and G2 * are non-isomorphic.

,~o we have that G. == G2 but G/ G2*' ,
, "> (iv) From (iii), we may conclude that two isomorphic planar graphs may have distinct non- '
isomorphic duals.'

'. Fig-19.4.5 C
Graph - G2

19.5 SUMMARY
1'"

,
\

•el

In this lesson, we revised that eventhough, a planar graph ruay have different plane
representations, the number of regions resulting from each embedding is the same, which is
precisely the Euler's formula, gives the number of regions in any planar graph. We studied that e S
3n - 6 is only a necessary but not a sufficient condition for the planarity of a graph. Kuratowski's
2nd graph stands as an example for this statement. Some simple and efficient criterion for detection
of planarity was discussed.

It is, observed that the geometric dual of a plane map is a plane graph.
We deducted that two isomorphic planar graphs may have distinct non-isomorphic duals.

19.6 TECHNICAL TERMS

1. Euler's formula:

oJ 2. Degree'of<\>,,(d(<\»):

A connected planar graph with n vertices and e edges has
e - n + 2 regions.

The number of edges on the boundary of' a face <jJ of a plane
graph G .
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3. Not distinct embedding; rh~ embeddings that can be made to coincide by
, " (on sphere) ',suItably rotating one sphere with respect to the other and

possibly- distorting (that is, either pulling or adjusting) the
regions (without leaving a vertex cross an edge).

4. Unique embedding:
(on sphere)

Every pair from the set of all possibleembeddings of the
given graph G on a sphere, are not distinct.

5. Homeomorphism: G( and G2 are homeomorphic <=> the graph G( can be obtained
'from the 'graph G2 by the creation of edges in series (that is,
insertion Ofvertices of degree 2) (or) by The merge of edges in
senes. ,

6. Kura~wski's theorem: ~ necessary and sufficie~t c?ndition for a graph G. to b~ planar
, --\' '. IS that G does not contam either of the Kuratowski 's two

, , graphs (or) any graph homeomorphic to either ofthem.

7. Dual: . ~Thedualof G to be the graph G* constructed as follpws:
(ilTo each face (or region) f of G there is,a corresponding
vertex f* of G*.

•(ii) To each edge e of G, there is a corresponding edge e of
G* [if the edge e occurs on the boundary of the two faces f and
g, then create an edge e* that joins the corresponding vertices
f* and' g*' in G*].
[If the edgee is a bridge, then we treat it as an edge, it occurs
twice on the boundary of the face f in which face it lies. So the
corresponding edge e* is a loop incident with the vertex f -. in
o'j : . .

19.7 ANSWERS TO SELF ASSESSMENT~QUESTIONS

i:We'kn~w that 2 lEI = Ideg(v) ~ 21EI = 20 x 3 = 60
v

~ lEI.=30. Now by Euler's formula, the number of regions is equal to
.e -11 + 2 = 30 - 20 + 2 = 12.
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2: Consider the following graphs:
C

A B

J A
C

D E
G1 D . ,G2'

,j.'

B

•.. ' '.':' r" .

. ",.'

In G1, the infinite region is formed by the-four edges AB, BE, DE and AD whereas inG, there is no
infinite region bounded by ~ny four edges. ". . t"

3: Suppose.thegraph G contains one component. then
(number ofregions) - 1

*. ' *(e - n + 2) - 1

.(since in general f = e - n + 2)

e*' - n* + l' =' e~-'(n* - I)

= .: number of edges - rank

'/-
.',- " .

,..o;R,-. .". •

. .,. .~.

. \, L'

nullity *- = Il
c

rank of G* * 1r = n -Now

'(nurnber of vertices in\ q*) ~ 1

- (number of regions in G) - I·

f-l = (e-n+2)-1 = e-(n-l)

number of edges' in; G- - rank of G'

nullity of G = }-l

19.8 MODEL QUESTIONS .. ,

1. Show that a connected planar graph with n vertices and e edges has e - n +'2 regions,

2. Let G be a simple planar graph with n vertices and e edges, where n· 2 3. Then

Prove that (i) 2e 2 3f (or e :;:. 2f1 (ii)e ~ (3n - 6).
2

3. Slu :hat the graphs K3.3 and K, are non-planar.
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4. Prove the necessary and sufficient condition for a graph G to be planar isthat Gdoes
not contain either of the Kuratowski's two graphs (or) any graph homeomorphic to
either of them.

5. Define Du~l Ofa graph G and Explain the procedure to constru~t a dual from a given
graph.
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LESSON -20
VECTOR SPAC,ES ,OF A 'GRA"PB

Objectives
The objectives of this lesson are to:

• know some fundamental concepts in algebra, which are useful in the study of graphs
• represent graphs algebraically and to manipulate them algebraically
• understand that sets of certain subgraphs of a given graph satisfy some postulates, a,nd thus

form their groups.
• introduce the concepts: Modular Arithmetic, Galois field modulo m, k-dimensional vector

,space, and basis
• observe that, there is a vector space WG associated with every graph G.

Structure
san,

~

Q.l
2 .2
'203
20~4
2015
20,.6
20.7
20.8
20i9
~n.lO
;20.!Il

Introduction
Sets with one Operation
Sets with two.sperattons
'Modular~rif"tnetic an~:(i,~I().s':Fields
Vectors and Vector spaces
Vector spaceassoelated w.Jtil a7grap;h
'Basjs vectcrs.of.a ,graph
Summary
Technical tenus
Self AssessmentQuestions
.~'Odel Questions
Reference books

'2<0,0 INTRODUCTION,

The .conoept ofvector space .is an important-tool jnJthe :th~Qr;yand-applications-of.graphs.
Most of the digital computers do not allow to workonpiotorialaad Hesign,oJ·graphs, 50 it is
essential to.represent a graph algebraically, In this lessonwebrought out· the structure of vector
spaceassooi.ated 'with a graph; studied some of its .propc[ti~s in·,ah~lQgue of algebraicjproperties.
We·also obtained some simple results relating dimensioabasis .

•10$1,.1 Uefinitio:J!:A -sef is a -collection or objects in which ,wec~ns'ay·whe.th~r·a iliven ebject
belongs to' the collect.ion 01,not. If A is a ~e<tand x ~.i~llhobje~.t in ,"~';: \t.l,1J~n.'we s;ay :that, ,3 is afJ
'element of A. In this ca~e~saythat a .lfelon,gs~to A, ,?nd'thls'faONs;denoted b-y a E A.
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20.1.2 Definition: Let A, B be sets. If every element of A is an element of B, then we say
that A is a subset orB. :--=,

If A is a subset of Band B has at least one element that is not in the set A, then A is caned a
proper subset of B.

20.1.3 Definition: Let Sl and S2 be any two sets.

(i) The set {x / x E Sr-Gf- x E S2} is said to be the union of SI and S2.
The union of S j and S2 is denoted by Sj U S2.

(ii) The set {x r x ESj-anfr.:-x- E S2] is said to be the intersection of S. and S2.
The intersection of SI and S2 is denoted by SI n S2. '
(iii) A set with operations defined on it is called an algebraic system (or) Algebra.

20.1.4 Definition: A system (S, *) is said to be a group if it satisfies the following axioms:

(i) Closure axiom: a, b ,E S => a * b E S.
(ii) Associative axiom: a-;15:CE S => (a= b)» c=a*(b*c)
(iii) Identity axiom: there exists an element e E S
such that a *e = e * a for all a E S.
(iv) Inverse axiom: a E S => there corresponds b E S
such that a * b = e = b * a.

;."'
.J

20.1.5 Definition: A group is said tobe a commutative (Abelian) group

if a * b = b * a for all a, b E S.
.;

"

i '

20.1.6 Theorem: (i) The ring sum of two circuits in a graph G is either a circuit (or) an edge-'

disjoint union of circuits. ,-,

, (ii) The ring sum of any t~o edge disjoirrrrmion of circuits is also a circuit or another edge-disjoint'
union of circuits. '

"Proof: Let r j and r 2 be any two circuits in a graph G. . ,
Case-(i): If the two circuits F 1 and I'2 have no edge (or) no vertex in common, then the ring sum,
of f I and I"2 (that is, T I EDf 2) is a disconnected subgraph of G.'
Clearly it is an edge-disjoint union of circuits.
Case-(ii): If the two circuits I' 1 and r 2 do have one or more edges (or) vertices in common, then
we have the following situations:
Since the degree' of every vertex in a circuit is 2, we have that every vertex v in the subgraB~
f I EDI"2 has degree d(v); where d(v) = 2, if v is in r 1 only (or) in F 2 only (or) if one of the
edges formerly incident on v was both in I" 1 and F 2.
(or) d(v) =~A if fl and f2 are just intersect at v (without a common edge). ,
Thereforein r 1 EB T 2 the degree of a vertex'is either 2' or 4. ' ,i)
Thus F IEBF 2 is an Euler graph (by a known result).
Since fIEB r 2, is an Etiler~rap-h; weh§i\$j"Fj,EB 12-consists either a circuit (or) an edge-disjoint
union ofcirc\lits (by a~!?-=-o~E..Eesult). '1',_______________ ," " . .,;
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Hence the ring sum of two Lrcuits is either a circuit (or) an edge-disjoint union of circuits~
This completes the proofofl(i).

(ii) followsdirectly from (i).

20.1.7 Theorem: The sel co~sisting o~ all the circuits and the edge-disjoint unions of circuits
(including the null set ~) in a graph G is an Abelian group tmder the operation ring sum Et>.
Proof: Let 1 be the set consisting of all circuits and
edge-disjoint unions of circhits including ~. '
Now we have to show that, (1, Et» is an Abelian group.
Let 1J, 12 E r .
By the Theorem 20.1.6, 11 Et>12 is either a circuit (or) an edge-disjoint unions of circuits.

I .
This shows that r, Et>12 E 1. ) .
So the operation" Et> " satiJfies the closure property.
Clearly the associative and Fommutative -laws hold good.
Here the null graph ~ acts ar the identify element.
(because ~ Et>g = g for any subgraph g of G).
It is clear that a circuit (or) an edge-disjoint union of circuits 11 is its own inverse (because of
1 IEEl1 I = ~ for any 111E 1). I

Hence (1, EEl) is an Abelian group.

20.1.8 Theorem: The slt consisting of all cut-sets and the edge-disjoint unions of cut-sets
(includingthe null set <l> ) iJI a graph G is an Abelian group under the ring-sum
operation EEl.
Proof: By the Theorem 16.4.4 of lesson -16, the ring sum of two cut-sets is again a cut-set (or) an

~~gt~:~!::~:eu;~~~e~yC~~~h~~Od.
Clearly the associative and Icommutative axioms hold good.
The null graph <l> acts as the identity element (becauseS, EEl~ = S, for any cut-set SI).
Also a cut-set (or) an edge-lbiSjoint union of cut-sets 11 is its own inverse
(because 11 EElr 1 = ~).

This completes the proof of the Theorem.

I '
20.2 SETS WITH TiO OPERATIONS

20.2.1 Definition: A system (R, * ) is said to be a ring if it satisfies the following:

(i) (R, *) is anAbelian group.
(ii) (R, ) is a semi-group.

. (iiij.Distributive laws: a(b * c) = (ab) * (ac); (a *. b)c (ac) *.' {bc)~-'... '
....• ,.,:;... ,.'

,_
20.2.2 Definition: (i) A ring R is said to be a commutatlverlng, if it .satisfies the commutative
property with respect to (that is, ab. == ba for all a, b E R)"-"'~ "", '

. -- \ --
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(ii) Acemmutativering R that has an identity element 1 E R is called a commutative ring with
unity. Here the unity element I satisfies the.prepeny a l' = la~F=-"ktIDT'al1 ae R.!.

(iii) A ring with unity is said to be a division ring (or) a skew-field (or) S-field if every non-zero
element of ithas an inverse 'with' respect to .'
Thatj~,_O r=Xc':E, R:p .there existsx' E R~uEh that x X-I:;:: e ,= x X-I

(ivyA.'comm'utative division ringiscalled afield. _'t i

20.2.3 Note: Diagrammatic representation showing the relationship of some algebraic systems with
two internal operations: . .

,!

'.

. I
, I'
,. I j

"1'" ,;

. "'~,',,< .

.20.2.4 Examples: (i) The set Z of all integers is not a field'

with.respect to the, usual operarions + and • (multiplication).

elements of Z which have no multiplicative inverse, for example

inverse in Z).

(ii) (R, +,.), (C, +,.) and (Q, +, .) are fields, where

[BeC~lQS,ethere are nqn-~~~~

2 E Z has no multiplicative

,R = The set of all Real numbers.

C

Q

= The set of-all CmDple~[?:!-IfDbers.·

The set'ofall Rational rhhn~~k>;
~', • f :) r.1 -,.;:;"'" ~,J\I·;:f.U1;;O..' ,:

" .J
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20.3' MOD'ULAI{ARITHMETICAND GALpISFIELP,
. ' . ,.. . " . : \~. ~

, "
20.3.1 Definiti~~: orConsider Z3 = {O, I, 2} = the ring gfintegersmodl!lo 3. . "

The addition and multiplication for Zj are called addition modulo 3 and multiplicatiori moduIQ\3.
Bi9th the~~ ~wo.operations put together, we call it as modulo. 3 ari~hmetic., Observe thya44itid\n
and multiplication tables.
In modulo 3 arithmetic, 1 + 1 + 2 • 2 + I + 2 + 1 = 1(mod 3) \

" , ~.,

+3 0 1" ' 2
O. 0 1 2
1 1 2 0
2 2 0 1

-3 0 1 2
0 0 0 0
1 0 1 ,2
2 0 2 1

'l' >. "/- .~.,-~; .:

(a) (b)
(ii) In general-we can define modulo m arithmetic system consisting of elements 0, 1,2, .. ,' m-l
and the following relationship: •
for-any 'q > ill - 1 ,q = r (mod m) where q = m .p + rand r < m.

20.3.2 Defln,ition: Write Zm = {O, 1';--2,... , m-l}.

Now Zm is a field <=> m is a prime number. .
If'-m is' a 'prime number, then the field Zm is. called a Galois, field modulo m. We denote it by
GF(m).

,;:. "

20.3.3 Example: Z2 = {O,I} is a Galois field modulo 2 under the addition and multiplication
modulo 2. It is denoted by GF(2),

20.4 VECTORS AND VECTOR SPACES

20.4.1 Note (i) In an ordinary two-dimensional (Euclidean) plane, a point is represented by an
ordered pair of numbers X = (XI, X2).
The point X may be regarded as a vector.

c:{ii) In a 3-dimensional Euclidean space; a point can be represented-as a triplet

"<some time; we may represent this element as the column vec;or [:~ J

,~. .

.r.: '.1

~~te\... "

(iii) Consider GF(2).

Then every number in a triplet may be either equal to 0 or 1. ;,./
Thus thereare 8 (.= 2\yectors possible in a 3-dinl'sional,snacditid'·' !';';i;~:>.· Y
these are (0,0,0) (0,0~'l), (0;1,0), (0, 1, 1), (I, 0, 0), (l')~'})'i~h1, O)~!;~J,:t;,1).., : f ••

Extending this concept, a vector in a k-dimensional Euclidian space is an ordered k-tuple.
I
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For example, the' 7-tuple (0, 1, 1, 0, I, 0, ~~.represents a vector in a 7-dimensional vector space
over the field GF(2).(iv) The numbers from a filed may be called as scalars. In GF(2), the scalars

are 0 and 1.

20.4.LDefinition : A k-dimensional vector space (or a linear vector space) over the filed F IS an

object consisting of the following:

(i) A filed F [with its set of elements S and two operations * and 0]. (Note that * is additive

operation and 0 is multiplicative operation).

(ii) A set W of k-tuples (all entries are taken from F).

I (iii) A binary operation ~ (called vector sum) between the elements of the set W, such that (W,

.~) is an Abelian group.

(iv) A binary operation [;J (called scalar multiplication) which when applied between any scalar

C E F and a vector X = (x., X2, .... Xk) E W, produces a vector pEW.

Then p is called the scalar product ofe andX.

The scalar product is given by

p = c 0 X =c 0 (XI, X2•.... Xk)

= (c 0 x., C 0 X2, ... , c 0 Xk).

Furthermore, the scalar multiplication satisfies the following properties:

(i) Cl 0 (C2 0 X) = (CI 0 C2) 0 X, CI, C:, E F.

(ii) CI 0 (X ~ Y) = (CI 0 X) ~ (C28 Y)

(iii) (c, * C2) 8 X = (c18 X) ~ (c28 X)

(iv) 10 X = X, where 1 is the identity with respect to in F.

20.5 VECTOR SPACE ASSOCIATED WITH A GRAPH

20.5.1 Note: (i) Let us consider the graphs given in the Figures 20.5.1 A, B, c.,
These graphs are with four vertices and five edges el, e~ e3, e4, e5.
Any subset of these five edges (that is; any subgraph grof G can be represented by as-tuple:
X = (xj , x2, x3,X4, xs) where Xj = I if the .edge ej is in g.~- .,

I .. ,_ ."

.' . . :== 0 if ej IS not 111 g. ~

(ii) The subgraph gl given in Fig- 20;5.1B, may be representedas (1,0, 1,0, 1).
The subgraph g2 given in Fig - 20.5~1 C may be represented as (0, 1, 1, 1, 0).

. . ~ -
....;
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:0( :
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o

I Fig - 20.5.1 B

I- Fig-20.5.l C "

',lilt is clear that 25 = 32 such 5-tuples are possible, including the zero vector-

0= (0, 0, 0, 0, 0) which represents a null graph and (1, 1, 1, 1 ,1) represents-the-graph given in
20.5.lA

20.5.2 Note: Let G be a graph with n edges.

Suppose gJ ,g2 are two subgraphs and (h I, hz, ... , hn),
(f1' f2, .'" fn) are the n-tuple representations for g., g2 respectively.
Ifan edge ei is in both gl and g2, then e, is not in, gJ EBg2.
Since ei is in both gl and g2, we have that h, = 1, f =; 1.
Now hi + f = I + 1 = ° (mod 2).
So in the binary representation for gJ EBg2 the ith component is 0.
The ring sum operation between two subgraphs corresponds to the modulo 2 addition between the

..••..•... ~ - "
two n-tuples ' ,
(hi, h2, "., h-), (fi, f2, "., ~1) representing the two subgraphs.

20.5.3 Example: Consider the two subgraphs g, and g2 (figure 20.5.1 B,C) of -G (figure 20.5.1

A).

The sub graph gl' = {e., e3, es} represented by (1, 0, 1, 0, 1), and g2 = {e2,e3, e4Tr~presented by
(0, I, I, 1,0).
Clearly gl EBg, = {el,e2, e3, e4, e5} represented by (1,1,0,1,1), (i).
Also, the modulo 2 addition between the two 5-tuples .,' ' ~:,
(1,0, 1,0, 1) and (0, 1, 1, 1,0) is given by (1, 0, 1, Q, 1) + (0, 1, 1, 1,0)

= (1 + 1, 0+ 1, 1 + 1, °+ 1, 1 + 0) , '
= (1,1,0,1, 1) ~.... (ii)

Observe that (i) and (ii) are same.
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Self Assessment Question 1: Construct g, (J)g~~fromG where g, and g2 are sub graphs oj G
induced by {ell ei, ec e5} and ( ei, el. e3. eo) respectively.

\

20.5.4 Definition: A vector space Wci associated with a graph G consists of

(i) Galois field modulo 2.
That is, the set {O, I} with operation addition modulo 2 (written as '+').
The addition modulo 2 is given by .

0+ 0 = 0, 1 + 0 = 1,0 + I =1, 1 + 1=0
and multiplication modulo 2 is given by .

0·0=0=0·1=1·0, \·I=l.
(ii) 2e vectors (e-tuples), where e is the number of edges in G.

:'(iii) An addition operation between two vectors X, Y in this space, defined as the vector sum
XEBY = (XI+y"X2+Y2, ... ,Xe+Ye), where
X = (xt, X2, ... , x.), Y = (YI, Y2,.. ., )'e) and + being the addition modulo 2.

(iv) A scalar multiplication between a scalar CE Z2 and a vector X be defined as c. X =

(c- xpc· X2'···;C· xJ.

20.6 BASIS VECTORS QF A GRAPH

20.6.1 . Definition: A set of vectors X I, X2, ... , X, (over some field F) is said to be linearly
.' I

independent (simply LJ) if for any scalars CI, C2, ... , c, in F we have that .' '.(
C1X1 +C2X2 +...+ c.Xv= 0 => Cl = 0 = C2 ~ ... = Cr.
Otherwise, the set of vectors is said to be linearly dependent (simply, L.D),

. Seii As~eSSmeJlt~2stion jy" Verify whether the vectors XI ~ [~J'X2 = [.~.J'
, , ";,'i, 0 2 l: _



\
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x, ~m are linearly independent over the field R of real numbers.

20.6.2 Problem: Find whether the vectors XI, X2 and X3

given by X,~ [~J'X, ~ [~lX, ~ [~.5J are lineatly independent over the field R of real

numbers.

Solution: Suppose c. [~J+ C2 m+ C3 [n ~m for some scalars c" C2, C3

Now we can take CI = 1, C2 = -1, C3 = 2.

Then we get that c{ ~J + C2 m + c{ ~5J~0 for some non zero scalars c, C2,C3.

\Therefore XI, X2_ X3 are linearly dependent.
\

20.6.3 Definition: If every .vector in a vector space W can be expressed as the linear combination
of vectors from a given set B of k linearly independent vectors, then the set of vectors n is
called a basis (or) a coordinate system in the vector space.
[Equivalently: A given set B of a vector space W is said to be a basis if

(i) The given set B of vectors is a linearly independent set, and
_ (i1) every vectorin W can be expressed as the linear combination of the vectors from B].

If B is a basis, then the vectors in B are called as basis vectors. . .

20.6.4' Definition: (i) If every vector in a vector space W, can be expressed as a linear ,combinatipn
elements ofa given set S of vectors, then we say thatthe set S spans the vector space W.

(ii) The minimum number of linearly. independent vectors required to span+ W is called the
dimension of the vector space W. . .\" ; . '.. .'. ....\' > ..,' .

(iii) Any set of k linearly irtdependent vectors that spans W (where W is a k dimensional
vector space) is called a basis for the vector space W.
The vectors in a basis are put together called the basis vectors.



.,/M.Sc,Mathematics 20.10 .'Vector Spaces 'of A Grapij

following set of'k unit vectors:

20.6.5 Example: CD Thenatural (or) standard b~sis in a k-dimensional vector space is, the
" .' ~ .

1

°

°

°°°1
° ...,

°
(ii) Any vector' in the k-dimensional vector space (over-the field of real numbers) can be expressed
as a linear combination of these 'k vectors.

20.6.6 DeflnltloneConsiderthe vector :space Wo associated with a given graph G. Correspo~gmg
to each subgraph -of G,' there wasa vector in WG ; represented by an e-tuple. The natural basis
for this vector space Wo is a set of e linearly independent vectors, each repres~nting a subgraph
consisting of exactly one edge of O.

~~;; .• '.; i. .!. .i::
20~6.7 Example: Consider the graph given in Figures 20.S.IA

•. . \

(i) Here the set of five vectors (1, 0, 0, 0, 0),(0, 1,0,0,0), (0, 0, 1,0,0), (0, 0, 0, 1,0), (0, 0; 0,
0, 1) serves as a basis for Wo . ' . . . ' . l'l

(ii) For the graph given in Figure 20.S:iA, the possible subgraphs are 2e = 25 = 3,2. Any of these
possible 32 subgraphs can be represented (uniquely) by a linear combination of these S vectors.

20.7 SUMMARY

In this lesson, we dealt with the algebraic concepts of a graph, particularly the vector space
associated with a graph. The fundamentals such as sets with one operation, and sets with two
operations were given. For a graph, the ring sum.of two circuits were studied. Some results and
examples concerning modular arithmetic and Galois fields .(QF 2) were provided.

-------- . .

20.8 TEC~L TERMS

Mod~lo m arithmetic: S~g of elements D, 1,2, ... , m-l with the following
relationship: for any q > m - 1 , q = r (mod m)
where q = m . p + rand r-em .

A ring with unity and if every non-zero element of it has an:inverse
with respect to . That is, O::f:. X E R => there exists x" E R
such that x X-I = e = x X-I.

Skew field:
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Basis: - Ifeve-ry vector in a vector space W can be expressed as thelinear
combination of vectors from a given set B of k linearly ..

- independent vectors, then the set of vectors B is called a basis-
(or) a coordinate system in the vector space.

Standard Basis: The natural (or) standard basis in a

the following set of k unit vectors:

k-dimensional vector space is
1 0 0
o 1 \ 0

Q
, ... ,

0·_· .

00 1

Natural Basis for Wa: - The natural basis for this vector ~pace WG is a set of 'e' -
linearly independent vectorsreaeh-eepresenting a subgraph

consisting of exactly one edge of G.

20~9~NSWERS TO SELF ASSESSMENT QUESTIONS

1: rhe-subgraph g) ;=: {e), e3, e4, es} is represented by(L, 0, 1, 1, 1,0)~*subgraph.g, = { e),'e2, C3,e6) is represented by (1, 1, 1,0,0, 1)
Then~g2= (1,0,1,1,1,0) + (1,1,1,0,0,1)

- =(1 + 1,0+ 1, 1 + 1,1 +0, I +0,0+ 1)
'"" =(0,1,0,1,1,1)

Therefore g) ® g2 is given by

/
I

'-,

.\ ' !, 'i }'



!M.Sc. Mathematics' 20.12 Vector Spaces of A Gralili

=> CI + 3C3 = 0, 4CI + Cz = 0, 2c::, = ~

Now 2C2 = 0 => C2' = O.
4Cl+C2=O and C2=0 => CI O.
Since CI ::::! 0 and CI + 3C3 = 0, we have c~= O.
Therefore CI = C2 = C3 = O.
This shows that [Xi, X2, X3} is a linearly independent set.

20.10 MODEL QUESTIONS

1. Define the terms: modulo 'm' arithmetic, k-dimensional vector space.
2. Prove that (i).the ring sum of two circuits in a graph G is either a circuit (or) an edge-disjoint
union of circuits; and '
(ii) The ring sum of any two edge disjoint union of circuits is also a circuit or another edge-disjoint
union of circuits.
3. Prove that the set consisting of all the circuits and the edge-disjoint unions of circuits (including
the null set ~) in a graph G is an Abelian group under the operation ring sum EB.
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