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Lesson 1 FUNDAMENTAL CONCEPTS OF ALGEBRA

1.0 Introduction: In this lesson we give a series of definitions to assure completeness and to fix
our notations that we follow through out this book.

1.1 Definition: A system (S .. ) where 'S'. is a nonempty set and '.' is a binary operation on'S'
is said to be a semigroup if

C/.{b.c)={a.'b).c for all a.b,c in S

1.2 Definition: A system (G, 0, -. +) where G is a nonempty set, 'a' is a zero-ry operation, '-' is a

unary operation and '+' is a binary operation on G is said to be a group.

(1) (a+ b)+c=a+(b+c) for all a.b,c in G.

(2) a+O = O+a = a for all aEG

(3) a+(-a)=(-a)+a=O for all GEG

1.3 Definition: A system (R, 0, -, +,.) where R is a nonempty set, °and 1 are zero-ary operations,

'_' is a unary operation and '+' and '.' are binary operations on R is called a ring if

(1). (R, 0, -, +) is an abelion group.

(2) (R, 1,.) is a semigroup.

I

(3) a.(b+c) '7 a.h + a.c i

(a+b)·c = ac+bc for all a.b.c in R

1.4 Definition: A ring (R, 0,1,-, +,.) is said to be a division ring if O:;t: 1 and for every G:;t: °,there

exists an element b e R , such that a b = 1= b a .

1.5 Definition: A cummutative division ring is called a field.

1.6 Definition: A class of systems sharing a given set of operations and satisfying a given set of
identities is called an equationally defined class.

1.7 Examples: The class of all groups is an equationally defined class, similarly the class of all
semigroups, the class of all rings, the class of all cummutative rings are all equiationally defined
classes. But the class of all division rings isnot an equationally defined class.



1.8 Definition: A system (S,::;) where S is a nonernpty set and '::;' is abinary relation on ~ is

called an ordered set if the binary relation'::;' is reflexive, antisymmetric and transitive.

1.9 Definiion : An order~d set (S,::;) is called a simply ordered set if for any two elements a and

b of S, either a::;b ot b s a .

1.10 Definition: Let (S,::;) be an ordered set and A~S. Then

(a) An element XES is called a lower bound of A if x z:a for all XE A.

(b) An element YES is called an upper bound of A if as; Y for all a EA.

(c) An element Xo E S is called the greatestlower bound of A if Xo is a lower bound of

A and for any lower bound X of A , xo::; x . The least upper bound of 4-. is denoteq

by lub A.

1.11 Defi'nition : An ordered set (S,::;) is said to be a semilattice if for any two elements qand.,

b of S, the set {a, b} has ~reatest lower bound in S . It is denote by a 1\ b In other ::"or,dS.,

1.12 Definit,on :f\system (S,::;, 1\) is said to be a semi lattice if, (S,::;) isan ordered set and

'1\,' is a.binary operation on S such that for any a, bE S , a 1\b = g €b { a,b} .

1.13 Remark: Let a and b be any two elements of an ordered set (S,::;). Then an element xES'

is the g£b{ a, b} lfand only if for any c E S , c::;X implies and is implied by c::; a ahd d'::; b .

Proof: Suppose x=g€b{a,b}. Let c be any element of S. Assume that c s x . Since xS; a and
, . ,.~ _ . _ -. ' _ , ., , , . [';'(X::S b we have c::; a and c::;b. Now assume that c s.a and c <b , which implies cis a lower

bound of {a,b}. Since x=g£b{a,b} we have c::;x. Thus c::;x implies and implied bYc::; a and

c scb ,

Converselysuppose that forany c E S , c::; x implies and is implied by c::; a. and c sb "r'

Since xS;J', we have X <a and x::;b =>x is a lower bound-of {a,b}. Suppose y is ant
. \

/oliVerbound of {a, b} => y::; a and y::; b , which implies y.::; x . Therefore xis.thegr:eatest lower

bound of {a, b}V;',



'.

1.14 Remark: Any simply ordered set is a semilattice.
. . .

Proof: Suppose (S,::;;) is a simply. ordered set. Let a,b <:= S ..Since S is simply W,dered set, ~.e .

have either a 5,b or b 5,a .
.' ~. ) .

If a 5,b , then a = g£b {a,b} . If b 5,a then b = gtb {a,b}. Thus any.two elements Of Shave

gtb . Hence S is a semi/attice.

1.15 Remark: If (S,5"I\) is a semilattice, then for any a.b e S, a r.b is unique.
,.~

Proof: Suppose x = 11 1\ b =y. Since x is a lower bound of a and, b , we have x ~ a ar:d x 5,b .

Since y is the g£b {a, b} we have x ~ y . Similarly y 5, x . Hence' x = y Therefore a 1\ b is a

unique element.

1.16 Example: Let N be the set of all natural numbers.' For any a.b e N, we define as; b if and
. ,

only if a divides b. Then (N,S;) is an ordered set which is not a simply ordered set but a

semilattice Further for any a. h E ;1\/, a 1\ b = gcd {a.h}

1.17 Example: Let X be any nonempty set and let Jl»(X) be the set ~f all subsets of x. Forany

A,BEJl»(X), we define A~B iff Ac;;;;;B. ThertJl»(X) is an ordered sefwhichls n"bfa~lmply

ordered set. For any A, BE lP(X), gtb {A, B} = A nB which isthe intersection of ·04' andB .Thus

Jl»(X) is a sernilattice.
,'ioI. '.,'

1.18 Theorem: The class of all semilattices can be equationally defined as the class of all
,} . .' ..". -., --'"

semigroups (S, 1\) satisfying the commutative law and idempotent law.

Proof : Suppose. (S, 5" 1\) is a semilattice. Then '1\' isa binary operation on S suchthat for any

(l,bE S, a r.b = g£b{a,b}. Now we shall prove that for any a.b e S, al\b=gCb{a,b}. L.~t

x:=al\(hl\c) => x=gfh{a.bl\c} => .'(<;a and x<;hl\c: Since hl\c=gfh{h.c}, we have

b 1\ C S; band b 1\ C S; C => ~ S; b and x 5, c . Tbus X is a lower bound of {d~b, c}.:Sup'pose Xo is

any lower bound of {a,b,c} => Xo <a, Xo 5,band Xo ~ c => Xo 5, a and Xo <b I\.c => Xo 5,x . Thus

x= gCb{ a.b, c}. Similarly it can be shown that y=( a 1\ h) 1\ C = gCh{ a,h,c} . Therefore-x= y , Thus:

for any a,b,cGS, a/\(b/\c)=(a/\b)/\c. Hence (8,/\) is aserniqroup. Further for ab e-S:
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a r.b =geb{a,b} =g£b{ b, a} = b /\ a and for any a E S " a /\ a= g£a{ a} =a .Thus (S,/\) is a

semilattice satisfying commutative and idempotent laws .

.;:. Conversely suppose that (S, /\) is a semigroup sati_~fyingcommutative and idempotent laws.

For any a.b ES, we define a 5:b if and only if a /\b=a. Since for any a E S, a /\a=a we

have a s a for any a E S . Therefore' 5:' is reflexive. Suppose as band b 5: a => a /\ b= a and

b /\ a = b . But a /\ b= b /\ a => a = b . Therefore's' is antisymmetric. Suppose a 5: band b 5: c =>

al\h=a and hl\c=h. Now al\c=(a/\h)l\c = al\(hl\c)=ol\h=o. Therefore a S.c:» 's' is

transitive. Hence (S, s) is an ordered set. Now we show that for any a, b E S , a /\ b = g£b {a, b} .

Suppose xsa/\b. Since (a/\b)/\b=a/\(b/\b)=a/\b we have a r.b z b . Since

(a 1\ b) /\ a = a /\ (b /\ a) =a /\ (a /\ b) = (a /\ a) /\ b = a /\ b , we have a /\ b sa=> x5: a and x 5: b .

Conversely suppose that x 5:a and x s b .

Now x /\ (a /\ b) = (x /\ a) /\ b = X /\ b = x => x S a /\ b . Thus we have x $. a /\ b if and only if
(

x S a and x s b . Therefore a /\ b = glb { a, b} . Hence (S, s, /\) is a semilattice. Thus the class of
all semilattices is equal to the class of all semigroups satisfying commutative and idempotent
laws. Hence the class of all semilattices is equationally defined as the class of semigroups satisfying
the commutative and idempotent laws.

1.19 Defrnltlon : A system (S, s, 1\, v) where (S. s) is an ordered set and 1\ and v are two

binary operations on S such that for any a.b « S , a /\ b = gib {a,b} anda v b = lub] a,b} is called

a lattice.

1.20 Remark: Every simply ordered set (S,5:) is a lattice.

Proof: Let (S.s) be a simply ordered set. Let a.b e S, Since S is simply ordered set, we have

either usb or b s a If usb,then a rcb==a and uvb=b.lf b s. a then a r.b=b and avb=a.

Thus for any two elements a, b in S , a /\ b and a v b exist. Therefore (S, 5:, r-,v) is a lattice.,

1.21 Remark: If (S, s, 1\,v) is a lattice and a;b E S , then an element XES is the lub {a;b} if and

only if for any C E S, x s c implies and implied by a S c and b s c .
Proof: The proof is similar to the proof of the Remark 1.13 ..
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1.22 Remark: If (S',~) is an ordered set, then for any two elements a and b in S, a=b if and

only if for any C E S,c ~ a implies and implied by c:;; b . Equivolently for any C E S. a < c implies

and implied by b ~ c .

1.23 Definition : A lattice (S,~, 1\,v) is said to oe a lattice with 0 and 1 if there exists two

distinguished elements 0 and 1 in S such that 0 S; :1 S; 1 for all a E S . The lattice with 0 and 1 is

written as (S,~, 1\,v, 0, 1).

1.23 Definition : Suppose (S,~, 1\,v ,0, 1) is a lattice with 0 and 1 and let a E S. An element

a' E S is said to be a complement of a I if a 1\ a' = 0 and a v a' = 1 . If every element of S has a

complement, then S' is called a complemented lattice A complemented lattice is denoted by

(S',~, 1\, v , ' ,0,1).

1.23 Definition: A lattice (S.~,I\,v.O.l) is said to be a distributive lattice if for <-lny

I ~24Remark: If (S,~, 1\,v, ',0,1) is a complern 3ni.f,d distributive lattice, then for any a E S I the

complement d)f a is unique.

=»roof;Suppose a E S and suppose that ((I a: ::l ,i· are complements of a in S . => a 1\ Cil = 0 arid

a 1\ a2 = ° and a v (11 = 1 = a v 02 .
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Therefore al =a2' Hence the complement of a is unique.

1.25Remark;lf (S,:::;,/\,v) is a distributive lattice, then. for any a,b,cES, av(b/\c)=

(avb)/\(avc).

(uvb)/\(uvc) = [(avb)/\u]v[(uvb)/\c]Proof :"

=av[(a/\c)v(b/\c)]

=[a,v(a/\c)] v(b/\c)

=av(b/\c)

1.26 Definition: A ring R is said to be a Boolean ring if a2 = a for all a E R .

1.27 Definition: A system (S, 0, " /\) where (S, /\) is a sernilattice and 0 is an element ()f Sand

", " is a unary operation on S is called a Boolean algebra if for any G, b E S , a /\ b' = 0 if and only if

a /\ b = a( a:::; b) .

1.28 Theorem: If (S, q,', /\) is a Boolean algebra, then for anyelement a E S, a" =( a')' =a

Proof : Since a'<a' we have a'/\a'=a'=>~'/\(a')'=O=>a'Aa"=O =>a"/\a'=O =>a":O::;;a.

Similarly since a":O::;;a" we have am:o::;;a' and a"":O::;;a" => a"" r.a' = 0 => a' /\ (a"')' = 0 => a' :0::;; am.

Therefore a' = a" .

Since 0:0::;;0we have 0/\0'",,0=>0/\0'"=0 =>a/\(o")'=O =>a:O::;;a", Hence a=a", j;

"1.29 Theorem : A Boolea~ algebra becomes a complemented distributive lattice by defirfing

a v b =( a' /\ b') and 1=0' . Conversely any complemented distributive lattice is a Boolean algebra

in which the above equations are provable identities.

proof:Supp,~~e (S,O,',/\) ,(s a Boolean algebra. For any a,bES, define avb ~ (a' /\b')' and

" 1=0' Now we,show tha~j:). 0.1.'. /\. v) is a complemented distributive lattice, Clearly fO~ilfny
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a,bES, a r.b and avb exist in Sand aAb=gfb{a,b}. Now we show that avb=eub{a,b}.

Let c be any element of S . We have a v b ~ <:

iff (a' Ab')' ~c

iff Ca'A b')' /\ C' = 0
. j

iff c' ~ a' /\ b'

iff c' ~ a' and c' ~ b' .

iff c' /\u=O and c' /\b=O
iff a ~ c and b ~ c

Therefore a v b = lub {a, b}. Hence (S,:::;,./\, v) is a lattice. Now we show that for any a,b, c

in S, aA{bvc)={aAb)v{bAC).

Suppose x is any element of S . Then

a A ( b A c) ~ x iff a /\ (b v c) /\ x' = 0

iff (a /\ x') /\ (b v c) = 0

- , . iff (a /\x')/\{b' AC')' = 0

iff (a A x') <b' A c'1[,

"

iff a /\ x' s b' and a /\ x' sc'

iff a /\ x' /\ h = 0 and a /\ x' /\ ('= 0

iff a /\b ~ x and a A C ~ X

iff {a,/\b)v{a/\c)~x

Therefore a /\ (b A c)::::(a /\ b) v (a /\ c) . Hence (S,~, »; v) is a distributive lattice. For any

aES,since a~a,wehave a/\a'=O and ava'=(a'/\a")' =(a'/\a)'=O'=l.Therefor~ a'·is

the complement of u. Hence, (S,~, 0, 1,',r-;v) is a complemented distributive lattice. Conversely
, ., . .

: lR-~PPOS~ t~,~!. (S,~,O,l,I,/\,y) is a c~mpleme,nted d.istributive lattice. Clearly (S,$,/\) .is a

j;:ernilattice ..First we prove tha.t( S, 0, ',I'<;) is a . .ean algebra.

Let Q,bES. Suppose a./\b'=O.

-s NO~- a=a;l=al\(bvb') = (al\b)v(aAb') =(al\b)v-O~al\b. S.up'~'osea/\b~'a.
,6 . . .. ,' .' . . . . . ,
. Now a /\ b'~( a /\ b) /\ b' =a /\ (b /\ b')=a /\ 0=0. Thus we have forany a,b,E S', a /\ b' =0 if and



·.iff·:

bnly if a/\ b = a. Therefore (S, 0, " /\) is a Boolean algebra. Further we have to show that the identtities

avb = (a' /\b')' and 0'=1 are valid inS. For any a,bES, (avb)/\(a' /\b',)'

= (a/\a' /\b')v(b/\a' /\b')=OvO=O and (avb)v(a' /\b') = (avbva')/\(avbvb') = 1/\1=1

Therefore avb is the complement of a'/\b'~avb=(a'/\b')' ..Since 0/\1=0 and Ov1=1. We

Ihave 1 is the complement of 0 ~ 0' = 1. Hence the theorem ..

1.30 Definition: An ordered set (S,::;) is said to be a semilattice if any two elements have least

upper bound.

1.31 Definition: A system (S, 1,',v) is said to be Boolean algebra if (S, v) is semilattice and for

any a, b E S , a v b =a if and only if a v b' = 1 .

1.32 Remark: If (S,O, ',/\) is a Boolean algebra then so is (S,l,', v).

Proof: Suppose .(S, 0, " /\) is a Boolean algebra ~ (S, 0, 1, " /\. v) is a complemented distributive

lattice where 0' = 1 and tor any a,b E S , a v b=( a' Ab')' . Since for any a,b E S,a v b=lub{ a,b} ,
. , ,

We have that (S, v) isa semilattice. Now for any a.b e S ,
, '

avb'=l iff (a' /\b")' =1 iff (a' /\b")=O

iff a' /\(b') =0 iff a' /\b'=a'

,
iff (a' /\b') =a iff a v b=a

Therefore (S, 1,', v) isa Boolean alqebra.

11.33 The9reJl1: A Boolean atqebra (S,O,',·) becomes a Boolean ring (S,0,1,-,+,·) by defining

1=0', -a=a, a+b =ab' v ba' where a v b =( a'b')'. Conversely any Boolean ring can be regarded

l
as a Bqolean al~:ebra with a' = 1 - a and the above definitions of 1, - and + then become provable
identities.

Proof :Suppose (S,O, ',.) is a B.oolean algebra => (S,.) is a semilattice in which for any a.b E S ,

a.b=gCb{a,b}<~nd'forany a,bES a- b'=O iff a·b=a.

Define 1=0' and -a=a for any QES and for any a.b e S



uVb=(db')' and a+b=ub'<rbu",

Now we shall prove that (S, 0, 1, -, +,.) is a Boolean ring.

Clearly '-' is a unary operation and '+' and '.' are binary operations on S . ~et a, b, C E S .

We have (a+b)+c = (ab'va'b)+c
,

=,( ab' v db)c' v c( ab' v db)

=ab'c v a'bc' vc[ (f!bl)' (db f]
=ab'e'v a'bc' v e[ (a'v b)(b'v a) ]

I

=ab~e'v a'b'c'<rca'b' v ebb' v ea'av eba

:;: ab' c' v ba'c' v ca'b'>« abc

$imil~rly q+(b+e) ~qb((:'vba((/vqLbr.v9be, Therefore a+(b+c)==(a+~}+c. Henlte'+'

i~ assosiative,

F~r~fl.y q ~ $ , a+O = ~,O' v Q.q' ;;= {l:1\h 0= r·' ==.a . ~Wl'\ilqrl¥O+f! =a. ThlPrefore '0' is the

additive igeAti.ty in S : For any a E S, at (~{1J ~ £1+a % aa' Y a' (l = Qv O.= 0 . Ther~f~r~ -a is the
additive tnverse of o

AI~o,tor any (J,bES, q-tb=qb'vha'={J.9'vab'=b+ff. => '+' is q~IT1mI,.lJ~tive.Hence

(S) 0, -, +] is an ahelion group. FgF~ny a.b, ()~ S , (a·b)· c=a· (b . 0) (give.n irHh~.Hypothe~is).

FgFarw a E S ~a . 1= a = I . a . H~nge (S, 1,:) is ?I s~migfellP with i<j\3ntity. F\JF1t1~rf~r any a.b_r c: s:

a· (b+c)=l1' (bcl.vcll)=abc'vacb'.

=ab a' v a&p!v afJa'v acb'

Therefore a - (b+c}=a. b+G.ici't Similarly it can be shown that {a+b)·c=a·c+b. c.
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Hence both the 'distributive laws hold good. Therefore (S,O,l,-,+,-) is a ring. Since a-a=a we

have that it is a Boolean ring.

Conversely suppose that (S,O,I,-,+,.) is a Boolean ring. Clearly (S,·) is a semigroup

satisfying the idempotent law and commutative law. Let a.b e S .

Suppose a.b'=O~a(l-b )=O~a-ab=O~a=ab. Conversely suppose that a=ab=> a-ab=O

~a(l-b)=O~ab'=O. Thus for any a,bES, ab'=O if and only if ab=a. Therefore (S,O,',.) is

a Boolean algebra.

Now 0' = 1-0= 1. Since S is a Boolean ring we have a+a=O for all a E S => - a=a for all

aES·

For any a.b e S, ab'v ba' = a(1-b)vb(1-a)

;;;ta - ab ) v (b - ba )

,= [(a-ab)'(b-ba)'J

=[[l-(a-ab)] [1-(b-ba)]J

=[(l-u +ab )(I-b+bu)]' = [(1 +a+ab )(,1+b +.ba)]'

= 1+(1 +b+ba+a +ab+ aba+ab +abb +ab ba)

=a+b

Hence (S, 0,',.) is a Boolean algebra where a' = I -.a for any a E S in which the identities

1=0', -a=a and a+b-=ab'<r ba' are provable.

1.34 Definition: An ordered set (S,s;) is said to be a complete lattice if evet» subset of S has

both infimum and supreirnum.

1.35 Remark :If (S, s:) is an ordered set in which every subset has infimum, then any subset of

S has suprimum.

Proof: Suppose (05',::::) is an ordered set in which every subset has infimum. Let T ~ S . Let A be

the set of all upper bounds of T . Let t~:T ,. Since A [sthe set of all upper bounds of T . we have
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t ~ a for all a E A=> t is 'a lower bound of A. Thus everi element of T is a lower bound of A .

Since every subset of S has infimum, it follows that Inf A exists in S say ao => ao is the greatest

lower bound of A=> t ~ ao "if t E T => ao is an upper bound of T . Suppose b is any upper bound of

T ~ t ~ b V t E T~bE A~ao ~b, ThusaO is the last upper bound of T. i.e. ao = Sup T . Thus

every subset of S has suprimum.

1.36 Definition: An ordered set (S,~). is called a well ordered set if every non empty subset has-- .
a least element.

1.37 Remark: A well ordered set with greatest element is a complete lattice.

1.38 Definition: A Boolean algebra is said to be complete if it is a complete lattice.

1.39 Definition: Let (s,~) be a complete lattice. By a closure operation on S we mean a

mapping Cll-~aC of S into it self such that a ~ aC
,{ aC r ~ac and a s;b implies aC ~bc for all

(

a, bES·

1.40 Definition: An element a of a complete lattice S with closure operation on it is said to be

closed if aC s;a i.e. a" =a.

1.41 Example: Let G be any group, Then I?(G) , the power set of G is a complete lattice under

set inclusion. For any subset A of G, let AC be the smallest subgroup of G containing A. Then

A H AC is a closure operation on I?( G) .

1.42 Theorem: Given a closure operation on a complete lattice; the inf of any set of closed elements
is again closed. Hence the set of all closed elements form a complete lattice. Conversely any
subset of a complete Lattice which is closed under th~ operation 'inf can be obtained in this way.

I Proof: Let S be any complete lattice with a closure operation. Let T be the set of all closed
elements of S w.r.t. the closure operation. Let X be any subset of T. Since X c;;;;.S and S is

complete, inf X exists. Let a=inf X. Now we shall show that 'a' is also closed. For any XE X,

we have a ~ x => aC
~ XC . SiFlce x is a closed element, we have XC = x => aC s;, x "if x EX=> aC is

a lower bund of X=> aC ~ a. But a ~ aC => a = aC . Therefore a is also closed and hence is in T.

Thus for every subset A of T inf A exists in T. Hence T is a complete lattice.

Conversely suppose that T is any subset of S such that the infimum of every subset of T

is in T. 'For any a E S ,·define aC =inf {t E T / a s;,t} .'"By definition, a is a lower bund of the set



For any G, h E S such that a < b we have {t E T I b < f} c {t ET I a ~ t} :::> inf {t E T I a ~ t}

s inf {t E T I b s: I }=>ac ~bc .

Hence the operation aHc{ of S in to itself is a closure operation. let a be any closed

element => a =aC =inf {t E T I a ~ t} . Since aC
E T we have that a E T. Thus T contains every

closed element. Let a E T=>o E {f E T / o:s; t}:::>oc 5:0. But a 5: a" :::>a=ac; Hence a is closed.

Thus T is precisely the set of all closed elements of S .

1.43 Problem :Show that in any Boolean ring R , for any a E R, a + CI = 0 and for any a, b e R, ab = ba .

Proof: We know that in a Boolean ring R-, a2 =a for all a E R . Therefore (a+ . (=!1+a

=>a2+a2 + a2 +a2 =a+a=>a+a+ata=a+a => a+a=O

Also for any a.b e R, (a+b)(a+b)=a+b:::>a2 +ab+ba+h2 =a+b

=> a+ab +ba +b =a+b=> ab +ba = O=> ab =ba

1.44 Problem: If S is any lattice, then for any a,b E S , a 1\ (a v b )=a and a v (a 1\6 )=a .

Proof: Since 05: G and a 5: a v b . we have G is a lower bound of {a,a v h}.

=>a~geb{a,avb} i.e. a~al\(avb)

But a 1\ (a vb):::; a => a = a 1\ (a vb)

Also av (a 1\ b )is an upper bound of a and a 1\ b r=a z;« v (a 1\ b). Since a 1\ b s:« and

a .sa we have that a is an upper bound of a and U 1\ b => a v (U 1\ b) ~ a . Therefore a =:= a v (a 1\ b) .

Prof. G. Koteswara Rao
Departmentof Mathematics

Acharya Nagarjuna University



Lesson 2 SUBRINGS, HOMOMORPHISMS, IDEALS

2.0 Introduction : In this lesson, the most important notions in ring theory namely ideals and
homomorphisms are introduced and 'it is shown that there is a 1 - 1 correspondence between
ideals and congruence relations of a rings,

2.1 Definition: Let (R, 0, 1,-, +,.) be a ring. A subset S of R is called a subring of R if S is

closed under all the operations of R i.e., OES,IES for any QES,-aES and for any

a.b e S, ab e S, a+b e S. lnother words (S,O,I, -,+,) is a ring.

2.2 Theorem; The subrings of a ring form a complete lattice under inclusion. The inf of any family
of subrings is their intersection, The sup of a simply ordered family of subrings is their union.

Proof: Let y be the class of all subrings of a ring R. For any' S, T E y, we define S s T if and

only if S c;;:;. T. Clearly 's' is an ordered relation on Y , so that (Y, s) is an ordered set. Let {Sa} be

any family of elements of y, Put S = nSa' Clearly S is a subring of R ' (Since the intersection of

any family of subrings is a subring). Also S c;;:;. Sa 'v' a ~ S :s; Sa 'v' a . Hence S is a lower bound of

{Sa}. Suppose T is a lowerbound of {Sa} =>TcSa 'v' a=;> T c;;:;.nSa =S =>T:s; S .

Hence S is the greatest lowerbound of {Sa} => S = inf {Sa} . Let {Sa} be a simply ordered

family of elements of y. Put S =USa since a E Sa 'v' a and I e Sa 'If a we have a e Sand 1eS .

Suppose a ES=>a£Sj3 forsomefJ. Since Sj3 is a subrinq, we have -aeSj3 =>-aES. Let

U,b,ES. If a and bare in one SfJ. then u+bESfJ and a.beSj3 ~ a+b e S and a-b e S:

Suppose a E Sj3 and bE Sy. for some fJ and r .Since {Sa} is a simply orderedset, either Sj3 c;;:;. Sy

or S; S Sj3 . => either both a and b are in Sj3 or in Sy . => either a +band ab are in Sj3 or in Sy .

=>a+b and ab are in S.

Thus S is closed under all the operations 0,1,-,+ and '.'. Hence S is a subring of R.

Since S=U Sa we have Sa c S 'v'a =>Sa sS 'If a.. Hence S is an upper bound of {Sa} .

Suppose T is an upperbound of {Sa} => Sa :s; T 'v' a => Sa c T 'v'a => USa ~ T . Hence

S~T~S:S;T.

:.S is the least upper bound of {Sa}' Le., S=Sup{Sa}'
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2.3 Definition: Let Rand S be rings, A mapping ¢:R ~S is Galled a homomorphism, if ¢

preserves ~II the operations, i.e., ¢(I)) C,¢(l)=l,¢(-a)=-¢(a) ¢(a+b) = ¢(a)+¢(b) and

¢(ah) - ¢(n)¢(h) foral! '([,bER,

2.4 Definition: A homomorphism ¢ of R into S is called
\

(a) a monomorphism if ¢ is one - one.

(b) an epimorphism if ¢ is onto.

(c) an isomorphism if ¢ 'is both one-one and onto. '

2.5 Definition: A homomorphism ¢ of R into itself is called an Endomorphism,

2.6 Definition: An isomorphism ¢ of R onto itself is called an automorphism.

2.7 Remark: If ¢:R ~S and If/:S.~ T are homomorphisms of rings then If/O¢ isa homomorphism

from R into T defined by (If/o¢)(a)= 1f/(¢(a)}VaER.

2.8 Theorem: Suppose ¢:R~S and If/:S~T arehornorprusms of rings,

(1) If ¢ and If/ are monomorphisms, then so is If/o¢

, . (2) If ¢ and If/ are epimorphisms, then so is If/o¢

(3) If If/ 0¢ is a monomorphism, then so is ¢

(4) 'If lfIo¢' is an epimorphism, then so is If

Since If/ is a monomorphism, ¢(a)=¢(b)

Again since ¢ is a monomorphism. We have a = b . Hence Ifo¢ is mono.
\

The proofs of (2), (3) and (4) are left as excercise. '

2.9 Corollary : A homomorphism ¢: R ~ S is an isomorphism if and only if there exists a

homomorphism If/:S ~ R such that ¢Olf/ is an automorphism of Sand If/o¢ is anautomorphism

of R.

Proof: Suppose ¢: R ~ S is an isomorphism. Define ¢: S ~ R as follows. Let S E S· Since ¢ is

ontothere exist an element rE R 3¢(r )=s, Since ¢ is one - one, this r ER is unique, Now define



If'(s)=r. Itcanbe verified that If' 'is a homomorphism and If'is also one-one and onto. Hence

rjJol/f is a homomorphism of S on to S which is one - one and /fIot/; is a homomorphism of Ron'

to R whieh is also one - one. Therefore ¢JOIf/ is an automorphism of S an9lf/o¢ is an automorphism
~R. .

Conversly .suppose that there exist a homorphism If': S ~ R such that rfJolfI is an

automorphism of Sand If'orjJ is an automorphism of R. SincerjJolf/ is epi, we have rjJ IS epr,

Since If/O¢ is mono we have rjJ is mono. Hence ¢ is an isomorphism.

2.1o Definition : Let Rand S be rings. A binary relation () between Rand S is called a

homomorphic relation if 0 () 0, I () 1 and r] B s] and r: B s2 implies -'1 B - s1, r1 +r2 e s] +s2

and r] r: e s] s2 .
\

2.11 Definition: A homomorphic relation from R into R is called a homomorphic relation on R.

2.12 Definition: A homomorphic relation () on a ring R is called congruence relation if e is an
equivalence relation on R. i.e., e is reflexive, symmetric, and transitive.

2.13 Theorem (Find Lay): If () is a reflexive homomorphic relation on a ring R , then () is symmetric
and transitive.

Proof : Let a B b :=:;. - a B - b

Now aBa, -aB-b and b Hb together implies that a-a+b B a-b+b=:.bBa .·.B is

symmetric. Suppose a B band bBe. Since bB b , we have -b B' - b . Now a B b, -b e - band

h fJ c together implies a=b+b O h-h+c=:. a B c. Hence fJ is transitive.

2.14 Definition: Let () be a congruence relation on a ring R . The set of all equivalence classes of

R. or eosets of R determined by the equivalence classes is denoted by %. For any r E R , the

equivalence class containinq r is denoted by O'r which is equal to {r' E R/ r () r' } .

2.15 Theorem: If () is a congruence relation on a ring Rand % is the class of all equivalence
, "

classes of R under the equivalence relation (), then %has the structure of a ring w.r.t, suitable

operations.

Proof: For any H a, ()b in % we define -(Oa)=O(-a) and Oa+Ob=O(a+b) and

Oa·Ob =O(ab).
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First we shall prove that all the three operations are well defined.

Suppose Oa=Ba' and Ob=Fb' ,

.~ a Ha' and b(jb'~ -aB-a' . Hence B(-a)=B(-d).

Also a+b B a'+bi and abil a' b' ~ B(a+b) = B(a'+b') and B(ab)=B(a'b'). .', All

.the three operations are well defined.Now we show that (%.BO, B 1,-, +, .) is a ring with BO as
\ '. . .~ ~.. . ;, ; . .,

zero element andB 1 as the unity element.

. R/
For any Oa, Ob, Bcin / B'

Ba+(Bb+Bc) = Ba+B(b+c) = B(a+(b+c))

= B((a+b)+c:)

= B(a+b)+B(c)

=( Ba+Bb )+Bc
I

Hence + is associative.

For any BaE%, Ba+BO = B(a+9)= Ba= BO+Ba

.'.eo is the zero element of %.
For any B aE %, Ba+B( -a )=BO = B( -a )+Ba

.'. B( -a) is the additive inverse of Oa .

For any Ba,BbE%,Ba+Bb=B(a+b )=B(b+a)

=Bb+Ba

Hence + is abelian in %
Hence (%,BO,~, +) isan abelian group.



Similarly it can be prove that C%,Bl,.) is a semi group with identity. Further, for any

()a,()b,()c in %,
Ba(Bb+Bc) = Oa Ob +Ha Be and

(Ba+Bb)Be = Ba Hc+Hb Be

Hence two distributive laws hold good in ~Ie.

Therefore (%,BO,BI,""7,+,J is a ring.

2.16 Definition: Let R be a ring and let B be a congruence relation on R so that % is a ring.

Define st :R ~ % by st (r ) =Br for any r E R . Then Jr is a homomorphism which is on to: This Jr

is called the canonical epimorphism of' R on to %.
I

2.171'heorern : If ¢: R ~ S is a homomorphism, then there exists a congruence relation B on R

and an epimorphism 'Jr: R ~ % and a monomorphism K: %~ S such that ¢= KOJr .

Proof: For any r,r',E R define r I) r' iff ¢(r )=¢(r') clearly 0 f) 0 and 1 f) 1.

Suppose rBI" ~ ¢(r) = ¢(r') ~-¢(r)=-¢(r')
1

~¢( -r )=¢( -r')

()
.r~-r -'-r

.. B is a homomorphic relation on R .



F.orany r e R, ¢(r) =¢(r) ~rer V rER

Now r Or' ~ ¢(r) = ¢(r') ~ ¢(r') = ¢(r)~r'er for any r,r'E R

:. B is symmetric

Suppose r Hr' and r'Br" ~¢(r) =¢(r') and r¢,(r') = ¢(r")

. ~¢'(r) =¢,(r") ~r e r":

:. 8 is transitive Hence e is a congruence relation on R .

Let % be the family of equivalence classes of R determined by a and let n :R -+ % be

the canonical epimorphism of R on to % defined by 1r(r) = er for any r E R '

Define K:%-+S by K(ar) =¢,(r) for any arE%.

Suppose ar = ar' => rer' => ¢ (r) = ¢' (r)

Hence K is well defined.

Now K (eo) = ¢(o)=o

K(al) = ¢'(l)=O

K(Br+ar')'= K(a(r+r'))=¢'(r+r') =¢,(r)+¢,(r')

=K (er)+ K (er')

«io». ar') = K(a(rr')) = ¢,(rr') = ¢,(r)¢,(r') = K(Br) K(Br')

•• K is a homomorphism of rings.

Suppose K (Or) = K (0 r') for some Or, Or'E %.
=>¢,(r) = ¢(r') => r a r' =>ar= Or' . Hence K is a monomorphism.

For any rER, K01r(r) = K(1r(r)) = K(ar) = ¢(r)



2.18 Theorem: The congruence relations on a ring form a complete Lattice under inclusion. The
infimum of any family of congruence relations is their intersection. the sup of a simply ordered
famity-of congruence relations is their union.

Proof: Let S be the set of all congruence relations 'on a ring R . Every element of S is a subset of

R x R . Let {)I' {)2 E S . We declare that {)I ~ {)2 iff {)I c {)2 as subsets of R x R . NQw for any' o E S,

Since .8~ 8 we have B < B. Hence 0 SO is reflexive. Suppose ()\ < B2 and {)2 -:;,Bj• ~~ ~B2 and

B2~~'

::::> BJ = 82, .'. 0 S 0 is antisymmetric.

Hence {)1 ~B3 . Therefore 0 ~o is transitive.

Thus (S, ~) is an ordered set.

Let fea} be any family of elements of S. Put B=nBa·

Clearly B is a congruence relation on Rand e ~ea Va.

Hence B is a lower bound of {Ba}. If B' is any other lower bound of

{ea} ~B' ~Ba V a ~ B'c Ba Va~B' cnea =e~e' ~(j

.'. 8 is the greatest lower bound of {Ba } .
Hence infimum of any family of congruence relations is their intersection.

Now suppose that {Ba} is a simply ordered family of congruence relations on R. For any

of3 and Oy in {{)a} , either 0 f3 cOy or Oy c 0 f3. Hence it can be verified that e.= U Oa is also a

congruence relation on R. Clearly ea ~e 'va ~e is an upperbound of {ea}. If B'is an upper

bound of {tJa} ,we have tJa 5.tJ' '\I a ~ ea (;;;JJ' '\I a ~UtJa ~e' ~e~e' ~e5.e' .... e is the last

upper bound of {Ba} . Thus the sup of a simply ordered family of congruence relations is their

·union.

2.19 Definition: If R is a ring, then an additive subgroup K of R is said to be an ideal of R if

ar e K and ra E K for all r E R and a E K .

2.20 Remark: The intersection of any family of ideals of a ring R is an ideal of R .
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Proof: 1. Let {Ka} be any family of ideals of a ring R. Put K =n Ka . Since the intersection of

subgroups of a group is also a subgroup, it follows that K is also an additive subgroup of R. Let
a E K and r E R-::=:>aE Ka \;j a -::=:>raEKa and ar EKa \;j a cs rae K and ar E K.

•. K is ideal of R. '

2.21 Definition: Suppose G is any additive abelian group and A and B are-two subgroups. We

define their sum A + B as the set of all elements a + b where a E A and b E B . If {Aa} is a family

of subgroups G, we define their sum B =I Aa as the set of all elements Of the form I aa

where aa e Aa \;j a and all but a finite numer of aa 's are zero:

2.22 Remark: (1) If A and B are two subgroups of an additive abelian group G, then A + B is

also a subgroup of G . Further if { Aa} is a family of subgroups of G , then L Aa the sum of {Aa }

is also a subgroup of G.

Proof: Since 0 = 0 + 0 E A +B, we have that A + B is a non-empty subset of G. Let
•

a+b e Aw B and c+d e A+B~a,cEA and b id e B: Now (a+b)-(c+d) =(a-c)+(b-d)E

A+B (·:a-ceA and b-d EB)

.'. A+B is a subgroup of G.

Since 0 EI Aa ' we have I Aa =t ¢ . Let a EI Aa and bE I Aa

~ «=as, + +aan and b=bal + +ba/1. We may assume with out loss of generality

that the components of a and b are same, by adding some zeroes if necessary.

Now a-b = (aal -bal )+( aa2 -ba2 )+ +( aan -ban)'

Since aai - b(Xi E Aai for i = 1, 2, ..... n ; it follows that a - bEL Aa . Hence LAa is a

subgroup of G .

2.23 ~esult (2) : If {Aa } is a family of ideals of a ring R, then L Aa is also an ideal of R .

Proof: Clearly I Aa is an additive subgroup of R .

Let and Now ar=aa r + +aa r
I n and

rar=raa + +raa . Since each
'I n

is an ideal, we have and

".LAa is an ideal of R.
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2.24 Theroem : There is a one-to-one correspondence between the ideals K and the congruence
relations 0 of the ring R such that r - r' E K iff r B r' . Thus is an isomorphism between the lattice
of ideals and the lattice of congruence relations.

Proof: Let 0/{' be the set of all ideals of the ring R and let if be the set of all congruence relations

on R . We define ¢ : ,-))7," ~ 'if as follows Let k E nJr. Define a binary relation BK on R by a () b

iff a-be K for any a.b e R .

Since °E K, a-a E K Va E R ~ a()aVa E R. Hence () is reflexive.

In particular 0O 0 and I () 1.

Suppose a Ob and cBd :::::::;.a-bEK and C-dEK.

Since K is an ideal of R. (a-b)+(c-d)EK:::::::;.(a+c)- (b+d) E K :::::::;.(a+c)B(b+d).

Also ac=bd = ac+ad+ad=bd = a(c-d)+{a-b)d. Since a=b e K and C-dE K,

we have a ((.' .- J) E K and (u - b) J E K

~ac-bdE K ~ac B bd

Thus B is a homomorphic relation which is reflexive and hence B is a congruence relation

on R. Denote this by BK .

Define 9(K) =OK . Clearly 9is well defined. Let K and J be two ideals of R.

Thus K ~ J. Similarly J ~ K . Therefore K = J . Hence ¢ is 1 - 1. Let BEt' be a: I element,

put K={aESlaBO}.ltcanbeverifiedthat K isanidealof R and hence kEK. Now aeb iff

a+b e b=b iff a=b eo iff a=b e K: Hence e=eK. Thus ¢(K)=O. Hence ¢ is onto. Thus ¢ is

a one-to-one correspondence between rVf' and Ii. Let K and S bel two elements of K. Now we

show that ()Kns = BK n ()s . Let a.b e R . Now aBKnS b iff a=b e K ns . .
. . I

iff a-b EK and a-b E S
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Further ¢(K v S) =¢( K +S)=()K+S'

Now we show that ()K +S = f)K v ()S .

Suppose a ()K b ==> a=b e K:» a=b e K +S:=) a ()K+S b.

.. f)K+S is an upper bound of f)K and f)s· Let f) be any upper bound of ()K and ()s::::::>

()K ~() and ()S ~()

Suppose a()K+Sb =>a-bE K+S => a-b=x+y for some xEK and YES.

::::::> a - b - x = YES and a - b - Y = X E K

=> (a-b)+{a-b) () (x+ y) => a=b f) 0 (': a+b=x+ y)

Thus ()K +S is the least upper bound of ()K and ()S·

.. ¢(KvS) = ()KvBs = ¢(K)v¢(S) Hence ¢ is a lattice homorphism. Since ¢ is a

bijection it follows that ¢ is a lattice isomorphism.

2.25 : Definition: If there is an isomorphism between two rings Rand S . we say that Rand S
are are isomorphic and write as R =S.

2.26 Remark: In a ring R. if () and K are the corresponding congruence relation on R and ideal

. of R r then we write % = ~ .

2.27 Theorem: If ¢ is a homomorphism of a ring R into another ring S . then ¢(R) = R / ¢-1 (0)

-1{) {rER/ } .where ¢ 0 = / ¢ (r ) = 0 which is the kernal of ¢.

Proof: Since ¢: R~S is a nomomorphisrn the~e exists a congruence relation () on R and an



epimorphism I1:R ~%and a monomorphism K :%~s such that ¢=K oD ..

Now ¢(R) =Kurr(R) = K(%) ~ % (.: K is mono).

But the corresponding ideal of the congruence relation () is given by B 0 and

eo ={a E R I a eO} = {a E R I ¢J ( a )= ¢J ( 0) = O} = ¢J-I (0) .

Hence % = ~-1 (0)

2.28 Definition : A lattice (S, 1\, v) is said to be a modular lattice if a and b are any elements

such that a '5:. b , then for any element CE S , (a v c) 1\b = a v (C 1\ b) .

2.29 Theorem: The set of all ideals in a ring R form a complete modular lattice under set inclusion.
The inf of any family of ideals is their intersection. The sup of any family of ideals is their sum.

Proof: Let ('~ be the set of all ideals of R. Clearly r5' is an ordered set underset inclusion. Let

{Aa} be,any family of ideals of R .·Then A = nAa is also an ideal of R and A = inf {Aa } . Thus oj'

is a complete lattice. Let A and B be ideals such that A ~ B. Suppose C is any ideal. Now we

shall prove that (AvC)I\B=Av(CI\B). i.e., (A+C)nB=A+(CnB). Let

xE(A+C)nB~XEa+c for some aEA and CEC and xEB. Since GEA, we have GEB.

Now x E B and a E B =:> x - a = C E B =:> C E C nB .

Hence x=a+cEA+(CnB)

(A +c)n B~ A +(C n B). Similarly it can be verified that

A+(CnB) c (A+C)nB .', A+(CnB) =(A+C)nB.

Thus J is a modular lattice.

Let {Ba} beany family ofideals. Suppose B= L Ba . Then clearly B is an ideal containing

Ba Va=:> B is an upper bound of {Ba}' Let C be any upperbound of {Ba} ~ Ba ~ C 'if a

~ IBa~ C. i.e., BeC ~ B'5:.C.

Therefore B is the least upperbound of {8a 1. Thus the sup. of any family of ideals is their sum.
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2.30 Definition: If A and B are additive subgroups of a ring R , then we define AB as the set of

all finite sums .r. Gi hi where ui E A and b, E B. We define (A,' B) (A over B) as the set
1=1

{r E R/rE ~ A} and VIe define (A ". B) (A under 8) as the set {r E R/ Ar s; B} and for any

r E R the set r B={rb/b E B} .

The sets ( A .: B) and (A .. B) are called residual quotients.

2.31 R~f11ar~" If A and B qr~ subQJfOUPSQf a ring R, then AS, A:8 and A', 8 are also
subqroups of R.

2,~~Theorem! !:f A, B, C and {Aq} and {Bq} are all subgroups of R . Then the following are

v~l!eq.

(1) ARs;(' iff Ac;;C.' B iff B~(A '. c)
(?),

"
"\ (3)

~)

(5\
(I;)

(7)

(A .' B) ,~C = (A " CB)

(A' . B).· C = A', (B ~' c)
A'· (B', C) = (BA)" C

(IAa)B = 2:(Aa B)

(nAa " B) = n(4q. ~B)

(A.· ~ 8a) = n(A .: Ba)

'.

2.33 Re~l,Ilt: If A, B are ideals of ~Hing R, then 99 are AS, ( A·' B) and ( A'· B ).\1Qrt?Qver (1)

. Proof: (1) Since A is-an h:1e~1we have for any a E A , r E R , ar EA. Every element of 4R' is the

n
form I a, ri where ai'.E A and -~.'\~Rand nEW.

1=1



n
Since each a, ri EA· we have .2: .ai ri EA .. '. AR~ A.

, ... '. I..'.).' .

Since IE R, we have for any a E A, a=a.1 E AR => A ~ AR.

Therefore A = AR. Similarly A = RA .

(2) Let aEA,since A isanideal, aR~A=>aE(A"R)

=> A C ( A .: R ) . Let x E ( A .: R) => x R ~ A => x .1E A ~ X E A

- Therefore (A .: R)~ A

Then A =( A .: R) simitarly A =( f!. .. ~ ) .

.:

3)
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Lesson 3 MODULES, DIRECT PRODUCTS
}' ...

3.0 Introduction: In this lesson, another important algebric system namely module is introducec.
and the direct products are studied.

3.1 Definition: Let R be a ring. An additive abelian group A is said to be a right R - module

denoted by AR if there exists a mapping (a,r)H a r from A x R into A sa~ng.

(1) a (r + s) = ar + as V a E A, r , S E R

(2) (a+b)r = ar+br 'If a.b e A and r E R

(3) a(r·s)=(ar)8 V aEA and r .s E R

(4) u.l - u V a E,A
3.2 Definition: An additive abelian group A is said to be a left R module if there is a mapping

(r, a) H ra from R x A ~ A satisjying the corresponding above four identities.

3.3 Example:

1. Let A be an abelian group. Then A is a Z - module. Where for any a E A, nE Z ,

an = a+a+ +a (n times) if n is positive and

an=-(a+a+ ....+a) (-n times) if n is negative

aO=O

2. If R is a ring, then R itself an R - module.

-
3. Let ./1 be any abelian group and Let F be the set of all endomorphisms of A . Let 0 be the

zero endomorphism defined by aO=0 for all aEA. Let T be the identity endomorphism

defined by a . T = a for all a EA. For all f,g E F. Define f +g and fg and - f by

a(f+g)=aj'+agand a(f g)=((a)f)g and a(-fl= -af fon all aEA. Thenitcan

be verified that (F. 0,1,<':"-.+..) is a ring. For any a E A, f E F . we define qF=( a) f .This operation

gives us that A is a right F -moduleAF .
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3.4 Theorem: Let'(:R""")P,be:'a'hon;OniQrphism;ofriings yvj;Jer~:R.is,a ring and F isthe ring of

endomorph isms of an additive abelian group A . For any a E A and r E R I we define ar = a (r (r )) .

Then A is a right R ~module. Further everyriqht R-moqule may be obtained in this way ....

Proof: Let a.b e A and r,s E R.

(... Tr is an endomorphism)

=ar+br

a(r+s) =a[(r+s)
) .

=a(r(r)+r(s)) (By the definition of addition of maps)

+a I(r)+a I(s)

=ar+as

a(r.s) =a'r(r .s.) =a(rr) rrs} . (:.I' is a homomorphism)

~((a)rr )[(s) (composition of maps).
. . r ,- ,

= (ar ) 1 (s) = tar) s

a.1 = a.r(l) = a.Ie a (,...f, is homo, r(1)=I)

Hence A is a right R - module.

Conversly Let AR be any right R - module. Let F be the set of all endomorphism of the

additive abel'an group We know ttatF is a ring Define r.R ,) F' by I(r) as the endomorphism

on A given by (a) r (r ) = ar for any a EA. It can be,verified, that I' is a ring homomorphism and

the R - module structure is determined by r since or = (a) r (r) .

3.4 Remark: ,Suppose A'-t? isa right R - module. Every r E R can be seen as a unary operation on

A given by af---7ar, satisfying (a7:b)r=ar+br for any u;b~ ,A. Thus the R - module AR is

regarded as a system (A, 0, -, +, R) where (A, 0, -. -1-') is an ab~nan group and each element r of

R is a unary operation on A satisfying



(a+ b)r =ar +br for all a.b e A .

3.5 Definition: Let AR be a right R - module. An additive subgroup B of Ais cal/eda submodule

-of AR if B R is an R - module.

3.6 Definition: Let ARand BR be two right modules. A mapping ¢:A ~ B is said to be a module

homomorphism if ¢(0)=0, ¢( x+ y )=q>(x )+¢(y) ¢( -x )=-¢( x) and ¢(xr) =¢(x)r for all

r e R , X,yE A . i.e. ¢ is a group homomorphism satisfying ¢(a r) = ¢( a)r for all a E A, r E R.

3.7 Definition: Zorn's' Lemma: If every simply ordered subset of a nonempty ordered set (S,~)

has an upper bound in S , then S has at least one maximal element In in the sense that m ~ s for

any S E S implies nr=s ,

3.8 Definition: Axiom of Choise : The Cartesion product of a non-empty family of non-empty

sets is non-empty. i.e., If {Sa} a E.1 is a family of sets where L1:j::.¢ and Sa :j::.¢ Va E L1 , then there

is at leastone map f:t3.~ U Sa such that f(a)ESa v a e c..
aE.1

3.9 Theorem: Let T be any subset of the module AR. Then any submodule B of AR which has

no element in common with T except possibiy 0 is contained in a submodule M which is maximal
with respect to this property.

,
Proof: Let P be the set of all submodules of AR, which contains B and whose intersection with

. .
T is contained in the submodule {o}: Since B E P, it follows that P ~ ¢ .1Now P is an ordered set

under set inclusion. Let {Ba}aE~ be any simply ordered family of submodules in p . Put
I

R = r 1 Ru Since {Ru.} is a simply ordered family, it follows that B is also a submodule of A .
aE.1
- .

Suppose if possible an element O:j::.~EBnT ~ x EBa for some a E t3. ~ O:j::. X E Ba nT. Which

is a contradiction since each Ba has no element common with T except possibly 6. Hence

B nT ~ {O} . Hence. B E P, clearly B is an upper bound of {Ba} since Ba ~ B Va. Thus every

simply ordered set in _P has an upper bound in P: Hence by Zorn's l.emrna, P has atleast one

maximal element M . ~ M is a submodule of A which is maximal w.r.t. the property that it has no

element in common with T except possibly O.



· 3.10 Definition: If R isa ring, then a submodule of the right R -module RR is called a right ideal

of R.

3.11 Definition: An ideal (right ideal) of a ring R is said to be a proper ideal (right ideal) ifit does'
not contain 1. -

3.12 Theorem: Every proper ideal (right ideal) ofa ring R is contained ina maximal proper ideal
(right ideal).

Proof: Take T = {l} or {0,1}. Let p be any proper ideal of R . Let 1P' be the setof all ideals whose

intersection with T is contained in {O}. Since P is a proper ideal, 1IC P Hence pnTc{O}.

Hence p E lP :::::;.IP ;t: ¢ . Now IP is an ordered set under set inclusion. If {AaJ is any simply ordered

family of elements of P. Put A =UAa . Since {Aa} is simply ordered, Aisanideal of R. Since

each AaELfD, we have l~Aa '\1a:::::>l~A. Hence A is also a: proper ideal and hence

AnT ~ {o} :::::;.A E IP. Clearly Aa c A Va:::::>A is an upper bound of { Aa } . Thus we have that every

simply ordered set has an upper bound in lP' . By Zorn's lemma, lP' has a maximal element M . Now
M is a maximal proper ideal containing P .

3.13 Definition: If {Aa} a Et1' is any family of sets. The Cartessian Product of {Aa} is defined as

the set of all mappings x:,6. 4 U Aa such that x ( a) E Aa \;j a. If x is any element of the Cartesian
aE6

product of { Aa }a Et1. ~then x is denoted by x = {xa } .Where xa = x (a) foreveryrz. The Cartesian

product is denoted by pAa or 1£Aa .

3.14 Remark: If {Aa}aEL1 where 6={1,2 •.... ,n}, then the Cartesian product is denoted by

Al x A2 x x An Any element x in AI x A2 x x An is written as x =( xI, x2, , xn) where

Xi E Ai for i = 1,2, .....n .

3.15 Definition: Suppose {Ra}aEl is a family of Rings. Let l£Ra bethe Cartesian product of the

sets {Ra }aEI . We defin~<all the ring operations by,



(3) Foranyx={xa},-·x:::;:{-xa}where -xa is the addttveinverse ot.e., in·Ra Va.

(4) For any x'={xa} andY={Ya} inJZ"}~i:X'+y::;:;'{xa+Ya} andxy={xaYa}

where xa t Ya E~(X and xa Ya E Rq, va .

So that JZ" Rry is a rin,g with tbe above operations. i.e." (JZ" Ra .0.1. -. +. ,) is a ring. '

, 3.16 Definition : Suppose {Aa} aEto. is a family of R - modules. The Caresian product. nAa is

called the direct product of R - modules {Aa} if we define all module opertions on nAa which

makes' JZ"Aaas an R~ module:

3.17 Remark: We define the module operations on A = JZ"Aa as follows.

(1) 0 = {Oa} where Oa is the zero element of Aa Va.

(2) If x={xa}inA,then -x={-xa}·

(3) If x={xa}, Y={Ya} in A, then x+ Y = {xa + ya}·o

(4) If x={xa} in A and r E R, then xr={xa r}.

3.18 Definition: If {Aa }aEt. is any family of subgroup of an abelian additive group A, then the

sum of {Aa } to. is defined as the set of all elements of the form I aa where aa E Aa Va andaE aEto.

all but a finite no. of aa's are zeroes. The sum is denoted by . L Aa. We say that the sum/ , aEto.

I Aa is a-aTrectsum if 0 can not be written non trivially as a sum of elements of the Aa 's i.e. if
aEt.

0= I aa where aa E Aa then aa =0 'ija E/:....
aEt.

3.19 Definition: An element a of a ring R is said to be an idernpotent'lt a2 ~ a .

3.20 Definition: An element a of a ring R is said to be a central elemE~ntif ar = ra V r E R .

3.21 Definition: Suppose A)oA2, .... , An are subgroups of a group A . We say that A. is the direct

sumof AI, A2,····, A~ ifeveryel~ihenta of A'~an be uniquely expressed' as d=al +a2 +"'~,+ ~n

where ai E Ai for i= 1,.. " n ,



(

3.22 Definition: Suppose {Aa} ai=f.. is a family 'of subgroups of a group A . vye say that A is the

direct sum of {Aa} aEf.. if every element a E A can be uniquely expressed as a = I aa where
~ aEB

aa E Aa and all most all the aa 's are zeroes except for finite number.

3.23 Problem: Suppose {Ba )(XEC<. is a family of sub modules of a module AR' Then the sum

L Ba is direct if" Ba n S s, = 0, V aE L'l.
aEC<. r*a

Proof: Suppose I Ba is direct => 0 cannot be written nontrivially as a sum of elements of theaEC<.
r

Ba's. Let x E Ba n I n,
rei-a

Put x=ba. Now L A -x=O~ L b, -cba =0
r*a r*a

Thus Ba n I e,= 0
r*a

-,
C6~erslY suppose that Ba n I e, = 0 Va,

, r*a

Suppose' 0- I a,. where at least one (fa j: 0
\

::::>O=Qa+ I Qr::::>I ar =- Qa
r e a r*a

But Qa E Baand, L: Qr E L: B;
.. , ria r*a

:.("1'

~. Uu. ci Bu. ri I BI' ~ BI' n I BI 1: 0
r*a r*a

Which is a contrarnctton.i.. 0 cannot bewritten as nqfk!rivially as the sum of elements of

the Ba's.



3.24 Theorem: Let R be a ring. then the following are equivalent..
.'

(a) R is isomorphic to a finite direct product of rings. R; (i = 1,2, ...n) .

n
(b) There exist central orthogonal idernpotents ej E R such that 1= i~) e, and ei R == R,

(c) R is a finite direct sum of ideals K; == R, for i = l,2, ...n .

Proof: Assume (a)Let ¢: R ~ R]x R2 x ... Rn be an isomprphism of R onto the direct product of

rings Ri(i=1,2, ...n) .

. Let E:i=(O.O, .. ;O,1,O,.: .. O) which is an n tuple with 1 in ith place and 0 else where for

i=I,2, ...n.Since¢ is an isomorphism for every i,:3 is a unique e; in R3¢(e;)'=E:j,SinCe E:T=E:;

for i=l,2, ....n ~e have¢(el)=¢(cdVi. Since ¢ is one one, el=ci for i=1,2, .... n . Since

¢(el+ ....+cn) =E:) +E2 +.....+E:n =(1,1, .....,1) which is the unity element in the direct product it

follows that c)+ ..... +en is the unity in R.

Clearly ¢i is a homomorphism. Since it is the composition of homomorphisms ffj and ¢.

Suppose ¢i (ei r )=¢i(ei s)=> ffj (¢{r ))=Jr; (¢ (s))
,

j',,'

, ,

Hence ¢i is one one. Let riERi' Since ¢ is onto, :3rER 3¢(r)=(O,O, ..... ,ri,Q,O, .... ,O)

where ri is in the j'b'place, zero else where. => ¢i( ¢ (r »= ri => ffdb (r) = ri => ¢i (ei r)= ri . Hence

¢i is on to. Thus ¢i is an isomorphism of ej R on to Rj. Hence (a) => (b) assume (b) .
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Put Ki=eiR,clearly K, isa'nidealof'R for i=I,2, ...n and K;'=R('ifi.

. ' Let ' . r E:R =>r = l. r ~ (el +....+ en) r = el r + ....+ enr

=>1' EKj +K2 + .... +Kn~R=kl +K2 + .... +Kn

Let x E «,n I Kj for some t .
i=!

=»=». ri and x=eI 1'1+....+ei-I ri-I +ei+1 ri+1 + ..... +en "n-

=> x=e;~ = ei ri =ei (el rj·+ .... +ei_1 ~i~I +ei+1 ri+j + .... +en r,;) = o
n

This is truefor i:c... 1,2, ... n . Hence the sum.2: Ki is a direct sum. , '., .. 1=1

Hence (b )=>( c)

Assume (c) Let (Pi be an isomorphism of K, on to Rj.

Define ¢ :R -4 RI x R2 x .... x R; as follows. Let r E R .

=> r= a, + ai + .... + an for some unique set of elements a" a2,' ..., an' where Qi Ek, for

i'= 1,2,...n '

Defi ne (0 (r ) = (0, (Q, ), rh (a2 ) , , (On ( an) )
Clearly (0 is a homomorphism.

r
Suppose ¢(r)=¢(s) suppose r=al +a2 + +an

s = hi + b: + + bl1

=>Qi =bi for i=1,2, ...n

=>1'=5' :.(0 is one one

Put :Qj=¢-I h)Vi. Put.r=a, + ....+Qn

Now rER and ¢(r)=(r"r2,· .. ,rn)

Hence (c)=>( q))'
..¢ is on to. Hence ¢!~ an isomorphism of R onto Rj x R2 x .... x RI1

\: ...'



Lesson' 4 DIRECT SUM OF MODULES,

4.0 Introduction: In this lesson, the direct sum of a family of modules is defined and some equivalent
condition to a direct sum of a modules is given.

4.1 Definition : Suppose A = Tr Aa is the direct product of Rvmodules. If Tra: A ----)Aa and
aEt.

Ka :Aa ----)A are the canonical epimorphism and monomorphism respectively, then

= 0 if a* f3

4.2 Definition: A submodule A of the direct product Tr Ai of R-modules consisting of alia E Tr Ai
iEI iEI

such that a(i)=O for all but finite number.

4.3 Definition : A submodule A of the direct product Tr Ai of R - modules consisting of all
i e. I

a Ei«Ai 3ai:O for all bU: finite number of ;'s is called the (external) direct sum of R - modules

{Ai liE\S denoted by L Ai
IE I

*
4.4 Remark: If {Ai} ie 1 is a family of R - modules and A = I Ai is the direct sum of R modules

iE I

and for every i E J Tri: A ----)Ajis the canonical epimorphism and kj: Ai ----)A is the canonical

monomorphism, then L K, OTri (a )=a for all a EA·
iE I
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4.5 Definition: Let A be.~nR - module=A fa~ily {.Ii LE J of endomorphism of A is said to be a

complete system of orthogonal idempotent endornorpnisms.

if (1)

(2) Ii O.li = if ~orall i .

(3) L: .Ii (a )is a finite sum and is equal to a for all a EA .
iE I

4.6 Theorem: The following statements are equivalent concerning R - modules

(1) AR is isomorphic with the (external) direct sum of R - modules {Ad i e I

(2) AR has a complete system of orthogonal idempotent endornorphisms

'(3) AR is the (internal) direct sum of subrnodules {Bi} i E I where B, ~ Ai Vi.

"Proof: Assume (1)

L: A·Let lfI be an isomorphism of AR on to . I i . Let Jri be the canonical epimorphism of
I""

L Ai onto Ai and let K, be the canonical monomorphism Of Ai into j~1 Ai
iEI I

Put Ei = lfI-1 0 K, 0 Jri 0 lfI . Clearly Ei is an endomorphism of AR for all i . Nowwe show

:_~hat{Ei} iE I is a complete system of orthogonal idempotent endomorphisms.

Let aEA~v(a)E L: Ai =v(a)(i)=O for all except for finite number of i's (sr
iE I



and I EJ a) = I (If/-I 0 t;0 Jri 0 If/) (a)
iEI iEI

=If/-I {If/(a))=a

.'.{EdiEf is a complete system of orthogonal idempotent endomorphisms of AR'

Thus (1)=>(2)

Assume (2)

Let {Ei LEI be a complete system of orthogonal idempot~nt,endomorphisms of AR such ,\

that Ei A ~ Ai for all i.

Put B, =Ej A for every i. Clearly each B, is a submodule of A and B, ~Ai'

Now we show that AR is the (internal) direct sum of submod~les {Bi} iE I' Let a E A '

By the hypothesis L Ei ( a) = a and the sum is finite.
\ ie t



For each i e I,e, (a)E B(~aE L B,
iF!

:.A=L:Bj
ie l

Let a E B, n L: B j ~ a = hi for some hi E B, and
j-f:.i

a=b; +bh +b; + +b; where, 1 ' _ ' ~ , 17

=:;,bi =bJ, +b
j
, +..... +b

j
·

. 1 .2 . n

~ bi =Ei (b;)=Ei (bl· +hJ· + ..... +bJ· )=0
, I ' 2 ' n

=:;, a = 0 =:;, B, n L: Bj = 0 ViE 1
j ei

.'. A R is the internal direct sum of submodules {Bi} ie t where B, ~ Ai 'if i .

Thus (2)=:;,(3)

Assume (3)

Let If/i be an isomorphism of Bi onto Ai for every i.

Define If/: A -) L: Ai as follows.
iEI

Let a EA·

{B } a= L biSince AR is the internal direct sum of submodules ; iel : we have ie l where
. .

hi F B, V; and h;= 0 except for finite number of i' s.

Clearly If/i (bi ) = 0 except for finite number of i' S.

')

Hence {Vi (bd} E L Ai
iEI '.. :



..
Clearly IfI is a homomorphism.

Suppose lfI(a)=IfI(a'} where a= L b, and a'= ~Lbi
. . I lEI

IE

=> lfIi (bi ) = lfIi (bi) Vi

:. ¢ is one one.

Let {ad· I E L: Ai
IE iEI

Put a= L b,
iEI

:. IfI is onto

:·1fI is isomorphism.

Thus (3)=>(1)

Problem: Prove that the sum i~1 s, of submodules of AR. is direct <=> ViE J, Bi n .2:;. Bf = 0
. J=tl

Proof: Suppose B = L B, is a direct sum of submodules of AR.
iEI

.
=> every element a E B can be uniquely expressed as a = L b,

where b, E B, and the sum is finite ..

Let a E Bi n L B.f =>a=bi and
j=ti
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Suppose a=bJ· +bJ· +.....+bJ·
I 2 n

~bi =bJI +bj2 +..... +bj· =,;>O=-bi+b
j
· +bJ· +....+b

J
.

. . n . I .2 . n

Since LBi is a direct sum, we must have b, =O=bj +bJ· +....+b,·
. I .2 . n

~B;n L BJ =0
J"-l

Conversly suppose that H, n ~ HJ -c-
0

i"-J

Let a E .LI B; . By definition' a' can be written as
IE .

a = .II b, where b, E B, and the sum is finite.
IE

Sa = 2.. b, - L. bi 'h b b' Buppose . I - . I were i> iE i
IE IE

Fix some iOEI, now bio -bio = L. (bi-bi)
ie I
i"-io

~b· -s: EB n L. B·=O
10 10 10 .. J

I 7' '0

•

This is true for every io E J

..,b, = bi ViE 1

Thus every element of I B, can be uniquely expressed as the sum of elements of B;.

=> I B, is a direct sum.
iEI

Prof. G. Koteswara Rao
Department of Mathematics

AcharyaNagarjuna University



Lesson: 5 CLASSICAL ISOMORPHISM THEOREMS - 1

5.1 lntroduetion : In this lesson we introduce some important types of modules namely Artinian
and Noetherian modules. An important characterization of Noetherian module is proved.

5.2 Theorem : If ¢ is a homomorphism of an R - module A into an R - module ~' then

¢(A)=A/¢-I(O) where ¢(A) is the image of ¢ and ¢-1(0) is the kernel of ¢.

~¢(X- y)=O

:·VI is one -one.

:.'If is O-Qto.

:N,pw (Ij/[(X +¢-I (0»)+( y + ¢-J (0')] =v.r[ (x + y) +¢-I (0)]

=¢(x+ y)

=i¢(X)+¢(Y)

=If/( x+¢-I (0) )+If/(y+¢-l (0»)
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, Also /f/(a( x+rfi-l (O)))=/f/(ax+rfi-l( 0n~<p( ax )=~<p(x)

=a /f/ (x +¢-I (0))

:./f/ is a module homomorphism.

Ther~fOre/f/ is a module isomorphism Off;-I(O) on to'¢(B):

,,5.3 Theorem: Let C be a submodule of AR. Every sub-module' of A/C- has the form BIC

, (A%/'", A - Ie
where CcBcAand Ys= ',f~f
~;;-:s, \ ~:'",:;"~',~,,--·~-J\::t ---'-~',~:.: '.~>_... _} ,~.' ,~ / .• ,.• : '. _'. ..,

Proof: tet B' beahy submodula otthe quotient module AI C and Let n: A ~ A I C be thecanonical
, "

eplmorphlsm of A onto1i~:n:'~I'(B~) is' a sub-module of A, Put B'=7r-I(B')_ Since

Jr-I (O)f~;-I(B'y'if~~rec ~:ii-I'lfB:')~=B => c~B ahd' Jr(B}= B'=> %=B' .
" '

-J ... ;, ; .. ,,;//0 f ·~;'·r···'.''';,.' r.: .
Thus we' have E'I C,is asub-n'ioduIEfOf' A I C.

" (PA'%') ,,' , '(A%/)", " \ Yc " " ' " , ' " ,"..' / C
Let" .Yc --> . C f%y be the canorucat epimorphism of Yc onto . (%)'

, '('4%,)' ". ",' •. ' ., If...,!". ' ,''., , . Ie"
, => 17:' 0 7r is an epimorphism of A onto ,', (%)c

,.

=n'~1 (B')= B



. (A/%A - /C
By the above theorem Ys= (~, )

5.4 Theorem: If Band C are sub-modules of A . then !..+C==.~.
B -Bne

Proof: iI've have that JJ +C IS again an R - module and B IS a submodule of B +C .

B., B+C
Let n : + ( --> .__ .- be the canonical epimorphism.

B

Let K: C ~ B +C be the canonical monomorphism defined by k (x) = x .

B+C
r- or every x E:: C .:» nok is a module homomorphism of C into ---ii'-'.

Put r/J=7rok. Now x e ker e <:::>r/J(x)=O and XE C

<:::>7rok(x)=O and XE C

<:::>7r(X}=O and XE C

<=> x+ fJ-:::. Band XE C

<=> XE 8 and XE ('

{:::> X E' lJ n(,

•• ker¢ == BnC

Further r/J(C)=7rok (( ')=7\( C)=7r( B) + 7r( C)
. .

- ( ;:?' «)- Jr . LJ' T ."

..
C'

But wehave f.-I (1'\)qJ \ \1

t r r=> C R+C
..- rp~"-).......;.· BnC" - B
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5.5 Lemma (Zasson Laws) : If 'B' c B c A and C' s;C s; A are modules over R I then

B'+BnC _ C+BnC
B'+BnC' - C'+CnB"

'. Bne
Proof: Now we show that both the R.H.S. and L.H.S. are isomorphic to (B' nc + Bn C) .

But B1+B2 =B'+(BnC)+(BnC)

=B' +(BnC) (.,' BnC'cBnC)

Also B1nB2 =[B' +(BnC)]n(BnC)

cc: (B n C') + [ B' n (B n C) ] (By modular law sin~e Bh C' c B n C and B' is any module)

= (BnC)+(B'nC)

B'+(Bne) _ Bne
Thus we have B'+(BnC') = (BnC)+(B'nC)

C'+(Bnc) _ Bne
Similarly, we have C' +(B'nC) = (BnC)+(B'nC)

B'+(BnC) _ C'+(BnC)
Therefore we have B' +(BnC') = C' +(B'nC)

5.6 Definition : A sequence of submodules Ao c A1 c c Am = A of A where each Ai is a

submodule of Ai+1 for i=O, I, 2, ,m-l, is called a chain of submodules of AR :3nd m is called

Ai +1
the length of the chain and ~ for i.;= 0.1. 2." ".11I -I are called the factors of the chain

. {



5.7 Definition: A chain of submodules of A given by Ao cA1 c; .... :cArn ::::A is called a refinement
, ~. '." .' . ,

of the chain Boc B1c .,..c B; =A of submodules of A if {Bo, B1,.· .....Bn} c{Ao,AI,A2 ..... ,Am}. In

particular if {Bo,Bt>:.... ,Bn} is a proper subset of {Ao,A1, ... A;:}. then we say that chain

AocAl c cAm =A is a proper refinement of the chain ~ocB1c cB; =A.

5.8 Theorem: Given two chains of submodules of AR

B=Ao c Al C cAm =A and B=BO cBI c cBn =A J then both the chains can be
refined. So that the resulting refinements have the same length and the factors of the refinements
are isomorphic in some or other order.

Proof : For i=O,1,2, .... ,m-l J we introduce the chain of submodules Aio c Ail cAi2 C .....CAin

between 4i and Ai + I such that Ai =Aiu and Ain = Ai +] :

Forj=O, 1,2,;...,n-l .we introduce the chain of submodules. BoJcB]) c B2J c ....c Bmj

between B) and B)+1 such that Bj =Bo) and Bm) =B)+I as foll~ws.

For any i=O,1,2, m-l. and j=O,l,2, n we define Ai) =Ai +(Ai+l nBj)

For any i=O,I,2, ...:,m and i= O,1,2, ....,n J we define Bi) =.Bj+( Bj+l n Ai)

Thus we have the following chains

B=Ao =Ao cAo c .... cAo =AI =A1 cA1 c ....cA.1 '
, . 0 I n 0 I n

and

=BO c .....cBm . = Bn-l =Bo c B, ....=Bn. 2 n-2. n-I n-I

, ,-

The, ..above two chains are refinements of ' B=Ao cA] c .•:;.cAm=:A' and ,~~

B=BO cBI ~ ..:..CBn=ArespectlveIY and lengths of these two refinements a(~ same e.ach Of'~~ .
. ..•.. . • .•• i -- •

which is equaF~o "mn '. . . '~o,:

;.:,1 ..

Further for any fixed I ) ()~, ISm and for j=O,I,2, ..... n we have Ai cAi+1 and



Bj~lCl];·. By Zasson - La~s Lemma, we have

Ai ~(A~.tlnBJ) ~Bf-.l+Bj nAi+1

Ai +Ai+l nBj-1 Bj-l +Bj nAi

A· B· Il , 1+ ' I
.~_J_ C J-

A· -,- B·
Ij_I." Ij_1

Similarly for any fixed j 305,j5,n~ 1 and for every i='O, h2, ...m wehave by using A/_Ic Ai .

and Bj cBj+I,.

Ai - I+ Ai n Bi + I
._-_.------
Ai-It Ain Bj

Bj +(Bj+1 nAi)
-

B· +B· l·nA I'.f 1+ l r-

Hence the factors are isomorphic in some or other order.

5.9 Definition : A chain of sub-modu;es of .A which is of the form' °= AocAI c.....cAm = A

where Ai *Ai + I for i= 0, I,2, ....m -I is called a composition series of the module A if it cannot be

properly refined i.e., it has no proper refinement.

·5.10 (JORDAN HOLDER)

Let O=AocAI c ... cAm=A and O=BocBI c.:.cBn=A be two composition series of

.1. Then me-nand there exists a permuatation e of the numbers O,I,2, ... m-1 such that

Ai+l::::: Be(i) + I

A - B for i = 0, 1,2, .... 111 -1 .
i e{i)

Proof: By Schreier's theorem, the given two chains can be refined such that the resulting refinements
are of.same length and the factors of the refinements are isomorphic '1i1 some or other order. Since
both of thG givGn cl:\ains arocomposition series of A ,~hey cannot be properly refined. Hehce :;iny

I.... '
I..- refinements of the given 'chains are themselves. Hence they must have same lengths .and the

factors of them are isomorphic in some or other order => m = n and there isa permutation e on the



, Ai+l~ Be(i) + I
set {O,1,2, ....m-l} such that ~=-; ...:-

, ,I' -'-'e(l)

5.11 Definition: A module I A I is said to be Artinian if every non-empty set of submoduleshas a
minimal element.

5.12 Remark: A module A is Artinian iff every descending sequence of submodules becomes
ultimately stationary.

Proof: Assume that A is Artinian. Suppose AI:;;;;? A2 ~ ..... be a descending sequence of

submodules of A .

Put A = {Aji EN} . Now A is a non-empty set of submodules. Since A is Artinian, A has

a minimal element say Ano ~ Ano c Ai 'II i . But An ~ Ano for n ~ no ~ An = Ano forn ~ nO' Thus

the sequence is stationary from n::: nO. Conversely suppose that every descending sequence of

submodules becomes ultimately stationary. Let A be any non-empty set of submodules of A.

Suppose A has no minimal element. Choose an element Al in A. Since Al is not a minimal

element, :=3 an element A2 ;) AI;2 A2 and AI"* A2 . Again since A2is notminimal, ::J an element

A3 ;)A2 ~ A3 and A2 *' A3 . Continuing this process we get a descending sequence ofsubmodules

of A given by AI =:J A2 =:J A2 =:J •.•. wrucn is not ultimately stationary which is a contradiction. Hence
* * * .

, A ' has a minimal element therefore A is Artinian ..

5.13 Definition: A module A is said to be Noetherian if every non-empty set of subrnodules has
a maximal element. . .

5.14 Remark: A module A is Noetherian iff every ascending sequence of sub modules of A is
" '

ultimately stationary.
. -' ,

5.15 Theorem: A module is Noetherian iff every subrnodule is finitely generated.

Proof: Suppose A moouie A tsrsoetnertan. Let '13' oe ,any suo-rnooure of ~. Let :J be thc'~ct

of all finitely generated submodules of B ' Since A is Noetherian, j has a maximal element s,ay

C. SUPPOSQ if possiola C -:£ B ~ :3 an element hE B suclithat b v.C, Put CI ::iT +bl! . Now CI is

also finitely generated submodules if B [CI is generated by the set of generaters of C together

with b]. Hence CI eo :J, Also q contains C. Since C is maximal in ~ I We have C( =C => be C

which is a contradiction. Hence C = B ' Therefore, B is finitely generated.

Conversly suppose that every submodule of A is finitely generated. Let AI ~ A2 ~.... be



an ascending sequence of submodules of A . Put B = U Ai . Clearly B is a submodule of A . By

hypothesis B is finitely generated. Suppose B is generated ~y {bl, b2,···· bk} ~ bl ,b2, ... bk are all

in UAi ~:3 Ana which contains all the b,' s for i = 1,2, ....., k ~ B C Ano . But Ano C;;; B. Thus we

have Ano =~~ for n ~nO, An =Ano. Hence the given ascending sequence of submodulesof A

is ultimately stationary. Therefore A is Noetherian.

5.16 Let B be a sun ·module of AR . Then A is Artinian (Noetherian) if and only if B and A / Bare
Artinian (Noetherian).

Proof: Assume that A is Artinian

Let BI ~ B2 ~ ..... be a descending sequence of submodules of B ~ This is a descending

sequence of submodules of A . Since A is Artinian, the given sequence is ultimately stationary.
Hence B is Artinian.

Let C1 ~C2 ;;;;;> •••••••• be a descending sequence of subrnodules of AI B. Since C, is a

sub-module of A / B , we have C, = Ys for .some same sub-module Ai of A containing B . This

is true for every i ~:3 a sequence {An} of sub-module of A each of them containing B such that

.., - Ai / \-I • Al / A2 / :. d' f b d I f A / BCi-IBvl~ IB";;;;;> /B";;;;;>············· IS an ascen mg sequence 0 su mo ues 0

=> AI ~ .42 ~ .4] ~ is an ascending sequence of submodules of A . Since A is Noetherian, we

have that there exists a positive integer ~ no

=> Am = A~{ V n '?nO=>Cn =CI1Q V ~ '? no. Hence the given descending sequence of

submodules of A / B is ultimately stationary. :. A I B is Noetherian. Conversely for every submodule

B of A, B and A / Bare Artinian. Let AI";;;;;>..12 ~ A3~ be any descending sequence of

submodules =>AI nB~A2 nB;2A)nLJ";;;;;> is a descending sequence of submodules of B.

Since B is Artinian, :3 a positive integer NI ~n~,Nl => An nB=An\ nB . (Since B is Artinian, :3).

'r
. A I A· + B Ai + I + B A· + B

Since Ai,~Ai+1 Vi we have A,.+B;;;;;>~ Vi =>_l_~ Vi and -' - is a
. B 'B - B' B

A A\ + B Al + B . .
submoduleof - Vi=> ;:;;2 ;;2 is a descending sequence of submodules of A lB.B. ./ B B .

- . "



'ince A/iiiNoetheri~~. 3 'a'::~i~i\te inieger N23 fo,' n~N;, An;B - 4~+B Let

N\ max {NI>N2} ,,>forn ~ AT' where 4n nB =AN nO and An; B =0 ANB+H

Now for anY.n ~ N.

An =An n(An+B)=An n(AN+B)=An +(snAn)= 1N +(BhAN )=AN
~ . ~,

". "."., The given,desc~n(:ling sequence of suomodules of A is ultimately stationary, Hence A", ,
is Arthiian, ' .. . , "

5.17~orollaiy :A finite direct product of rnodules is Artinian (N~etherian) if and .only ifeach factor
is Artinian (Noethertan). ' .

Proof: It is en.ough to prove this corrolary in fhe case of direct product of two modules.
~".-~-', , 'i ! ••." .

I . ,. " .' . .... .
" $l;Ippo'se A = B.~,9is the direct product of two modules B ,ariq C . Assume that' A' is

: ~.: ' ••.• : .'. ••• • • I ,;.' •

., . " .' A ' .. " "
Artinian we have 0 xC is a submodule .of A = B x Cand 0xC == Band also Ox C ~ C ,

.J'

A
" Since A is Artinian; OxC is Artinian and OxC is Artinian ~B 'and C are Artmtan.

Conversely assumethat Hand C are Artinian.ec Ox C is Artinian (.: Ox C ~C),
, .

,
A ,'. A . . .

Since OxC ~B and B is Artinian. We have oxe is.Artinian. Thus Ox C is a submodule

.. . A., . ". " . .
of A such that Ox C and 0 x Care Artinian => A isArtini~n,

, ') "'. '

\' 0;:

"

.>,-,

: ;.
," ;.i,
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Lesson :6

6.1lntrodoction :In this.tessona famousLernmaknown as Fittinqs Lemma is proved and a
famous theorem which is provedbyqreat mathematicians Krull, Remak, Schmidt, and Wedderburn
is given: ,/ -

6.2 Theorem : Arnodule A has a composition series if-and only if it is Artinian and Noetherian.

Proof : Assurhe that A has a composition series of length !n I. Let Al ;;2A2 2 ,..2 An be a

descendirig sequenceqf submodutes of A. 'Suppose ifpo~sible thissequence is not ultimately

stationary ~:3n+l submodules At',A2.·······An+1 such that Ai*.Ai+1 and'" .

~O=An+1 cAnc , cAI s Ao ~A is a chain of length more than In'. Since the

length of a composition series is '11 ,.we cannothave ".a chain of length more than n . Heiieethe
given descending sequence is ultimately stationary

Similarly ifA1 c A2 c sAn s is an ascending chain of sub modules which is

not ultimatleystationary, we can get a chain of subrnodulesof length more than' n', which IS also

.not possible. Hence every ascendmgsequerice of submodules of A is also ultimately stationary.
Therefore Ais Artinian and Noetherian. Conversely suppose that A is Artinianand Noetherian.

Since A is Artinian, :3 a minimal submodule A1 :;t:0 Again if we consider the set orall subm'odures

of A which contains AJ properly, it contain a minimal element say A2. Continuing this process,

we get an ascending sequence of submodules of A , such that

(0) = Ao c Al c and for each i I Ai +I is a minimalelement among the submodules

'of A containing Ai properly ~ for each i there cannot be any submodule B3Aic::BcAi+1.
*- *-

Since .4 is Noetherian This sequence is 'ultimately stationary 'say from AN' ~ There is no

submodule of A containing AN 'properly. ==> An =A for n ~N . Hence

(O) =Ao cAJ c cAN =A is a composition series of A . Therefore A has a ccmpceition.series.

6.3 Theorem: An endomorphism of an Artinian (Noetherian) module is .anautomorphism if and
only ifit is mono (epi). . . .

Proof; Let 1be an endomorphism of an Artinian module A . 'If' jis anautomorphism, then clearlv

it is mono, Conve~~ely suppose that 1 is mono ..Now 1 (A) is a submodule of A and 12 (A) is



a submodule of f(A), etc Hence A;;;;2f(A):::Jf2(A):::J is a descending sequence of

submodules of A . Since A is Artinian, :3 an integer N 3 for n ~ N, fn (A) = fN (A). In partiicular

fN (A) = fN+1 (A).

is mono, we have IN is also mono. ~b=.f(a). Thus .f is onto. Hence f is an automorphism.

Let f be an endomorphims of a Noetherian module A. If f is an autiomorphism, then

clearly f isan eepirnorphism. Conversely assume that I is an epimorphism. Now I-I(a) is a

submodule of A. Also /-2 (0)=/-1 (/-1 (a)) is a submo dule of A containing

r-1 ( a) [x E r-1 ( a) ~ I (x ) = a ~ I (I (x) )= 0~ I (x) E I-I (0) ~ X E r' (f-1 (a) )]

Continuinq this process for every n, we have an ascending sequence of submodules of A given

by ac/-I (a) cf-2 (a)cf-3 (a) c .

Since A is Noetherian, this sequence is ultimately stationary ~:3 an integer N such that

for ne N: l-n(a)=I-N (a). In particular I-N (a)=I-(N+l)(a). Suppose I(a)=a for some

a EA· Since I is epimorphism, we have that fn is also epimorphism

=>:3 b EB 3/ Iv (b) = a .=> / ( / N (b) ) =/ (a) =0

~/N+l(b)=a

=> h E 1-(N + I) (a) = 1- N (a) => IN (b) = a => a =a

r.] is mono. Hence / is an automorphism.

6.4 Fitting's Lemma: If f is an endomorphism of the Artinian and Noetherian' module AR' then

for same n,A = fn (A)+ f-n (a) as a direct sum.

Proof: We know that /(..1) is a submodule of A and /2 (A) is a submodule of /(A) etc.,



I-/anca we have a descending sequence of submodu/es of A given by .

.42/(.1):2/2(.4)2....... since A is Artinian, :3 a positive integer n such that

fn (A)= r" (A)=f211 (A). Since fn (A) is a submodule of A and since A is Noetherian, we

have I" (A) is a Noetherian module. Now if we restrict the In to In (A) we get that In is

endomorphism of fn (A) which is epimorphism. Hence In is an automorphism of t: (A). Hence

Let aEA=!>fn(a)Efn(A). Since fn

3fn (b )Efn (A) such that I" (fn (b) )=fl1 (a)

II1 (A)~In (A) is an epimorphism,

=> f2n (b) = t" (a) => t" (a - t" (b) ) = 0

Hence A is the direct sum of .111
( A), and f- 11 (0) .

)efiniUon : A non-zero module is called an indecomposable module if it is not isomorphic to
'irect product of non-zero modules. equivalently if it is not the direct sum of non-zero submodules.

'orroltary : If AR is indecomposable, Artinian and Noetherian, then endo-morphism of AR is· .
. nilpotent or an automorphism.

: : Let I be an endomorphism of AR which is indecomposable, Artinian and Noetherian. By

's Lemma. :3,a positive integer 'n' such that ·.1 isthe direct sum of the submodules, .in (A)

" .

jl'

-n (0) . Since A is indecomposable, either fn (A) = 0 or f-11 (0) = 0 . If fn (A) = 0 we have

=!> f is nilpotent. If r: (0)=0 it follows that fl1 is mono =J is also automorphism.

eorem : If AR is indecomposable, Artinian and Noetherian, and g = Ii+I: + + In is an

orphisrn where I, E Hom p (A. A). Then some f; is an automorphism.



Proof: First we prove this in the case n = 2 . Suppose 'g' is an automorphism of A which is

indecon\:lposable, Artinian and Noetherian and g = fi + h where fi and h are endomorphism
otA.

Since g = fi + I: we have 1=g -I .Ii +g -I [: . Now g -I.ft is an endomorphism of

A => either g-I.li is nilpotent or an automorphism. If g-I.li is an automorphism, we have

g( g -I .Ii )= fi is an automorphism. Suppose g -I 11 is nilpotent =>1- g -I fi is an automorphism.

[since If'h' is nilpotent and hlJ=O, I-h has inverselth+ ... :.+hJ1-11 =>g-Ifi is an

automorphism =T: is an automorphism. SLI-'t->ose n>2. i.e., g= fi +I: +······+fn is an

automorphism. Assume that the truth of the result for n-l. Put h=h +····.·+/n· Nowg=fi +h .'

=> either .Ii is an automorphism or h is an automorphism. If .ft is not an automorphism, then h

is an automorphism. By induction hypothesis, same Ii where 2:::; i:::; nis an automorphism. Hence

the result.

6.8 Lernma ; Let A be an isomorphism of the Artinian module A = AI x A2 onto B = BI x B2 such :

that A (aI' 0) = (a ClI' fJal) where a is an isomorphism of AI onto BI arid fJ is a homomorphism

of Al into B2· Then A2 == B2 .

A _ A(A) B' .: . . ."'.
Now A2 == Al x 0 = a (AI) x 0 = Blx 0 = B2 . Suppose fJ ( AI) 7:- 0 . Now we produce an Isomorphism

Jl of A onto B . S~~h that Jl (aI, 0) = (a (ad, 0) for every al E AI .

Define ,u:AI xA2 ~Bi xB2 as follows. Let (aj, a2) belongs to AI xA2 and Suppose

.\

Now we show that Jl is one -. one. Suppose ,u(al,02)=(O,O). Supppose



=>A(al' a2)=(0,0). Since A is one -one. We have a] =oi =0 .'. J.1 is one - one. =>//,-11-1 is a

monomorphism which is an endomorphism of the Artinian module A.

=>//, -I J.1 is an automorphism.

=> J.1 is an isomorphism.

Thus J.1 is an isomorphism of A] X A2 onto B] 'x B2 . such that

6.9 Theorem: Let the Artinian and Noetherian module A = AI x A2 x x Am be isomorphic with

A' = Ai x:;42 x x A~ where each Ai and Aj are indecomposable for i = I, 2, ,m and

j=1,2, n then m=n and Ai ~Aj after some renumbering.

Proof : Let //':A~A' be the given.isomorphism. Let Kj_ Kj and1ri' tr.~. be canonical

monomorphism and epimorphisms respectively for i = I, 2, , m and of = 1,2, ·.','n associated

with the corresponding products. Put aj =tri O//,0 K, and Pi =trj 0 //,-10 K{ for i= 1,2, ,m and

j=1,2, ,n

m m
we know that I K, 0 J[i is the identity mapping on A. => ,2: ai O/3i is the identity mapping

i=1 ,=1.

of Ai. Since A' is Artinian and Noetherian, we have Ai is also Artinian,and Noetherian. => Ai is an

m
indecomposable, Artinian and Noetherian module such that I aj 0 Pi is an automorphism of

. ' i=1

Ai => Atleast one a, 0 Pi say al 0/31 is an automorphism of Ai,

=> /310 al is not nilpotent (if PIOal is nilpotent where (/31Oal r =0)

• =>al O(P Oal r =0 => (a, 0 PI r+I=0 which cannot happen since a] 0/31 is an

automorphism.
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•• PI Oal is an endomorphism ofthe Artinian, Noetherian and indecompsable module Al

.;I!'ld PIOal is not nilotent => PI Oal is-an automorphism .

•. al is an isomorphism of AJ onto Ai.

Further A( a] ,0, O, O} = (A °K1 (ad)

Hence A (a1 ,0,0, 0) = (a1 (a1 ), *, *, * ) where a] is an isomorphism of A] onto

Ai. Therefore by the above Lemma A2 x : x Am ~ Ai x x A~.

Assume that n ~ m. We repeat this process until Am is letton one side. Since Am IS

indecomposable, there cannot be more than one on the right-side.

Hence n·= m and Am ~ A~ '
)

6.10 Theorem; The central idempotents of a ring R form a Boolean Algebra B ( R) .

Proof: Let B ( R) be the set of all centralidernpotents of R . Clearly 0E B ( R) . Suppose e E B( R)

Put e'=l-e. Now (e,)2 = (l-e)( L-e) = (l-e)=e' and for any r E R,

e'r = (1- e) r = T, - er = r - re = r (1- e) = re'

.'. e' is also a central idempotent of R . Hence e' E B ( R) .

Suppose e and fare in ~(R)=>efEB(R)

Further for any e"e2,e3 in B(R), (e, .e2)e3=e, (e2 ·e3) .... (B(R),.) isasemigroupwhich

satisfy idempotent law ana commutative laws .

.·.(B(R),.) is a semi-lattice. Now OEB(R) and ' isaun~ryoperatronon B(R). For any
'. ' ,,',1' .

e, fEB(R), ef' = 0 iff e(l-f)=O iff ef=e .

.":( B (R), 0,',0) is a Bolean Algebra .

.6.11 Definition: A minimal non-zero element of a Boolean Algebra is called an 'atom.'.



6.12 Lemma: If e is a central idempotent in R then eR is indecomposable if and only if e is an

atom of B( R). .

Proof: Suppose eR is indecomposable. Suppose if possible er is not an atom of B( R).

=> there exists a non-zero element fin B { R):3 f <e .

=>e = f + (e - f) where f and (e - f) are orthogonal non-zero idempotents.
('

~ eR = f R + (e - f) R is a direct sum of ideal which flre non-zero.

=> eR is not indecomposable. Which is a contradiction.

..« is an atom of B(R).

Conversely suppose that e is an atom. Suppose if possible eR is decomposable.

=> eR is the direct sum of non-zero ideals.

Suppose eR = A EEl B where A and B are ideals of R .

Since eE eR, e= f + g for some unique f E A and g E B.

Since fg E A nB = 0 we have f and g are orthogonal.

2 2 n=>/ -f=g -gEA B=O

r-

Also for any r E R, er= fr+ gr and re = Ii +rg

But er=re => fr=rf and sr=rs .

.'. rand g are orthogonal central idempotents of
.;:(' • '~#" >-

since eg = g we have g < e. Hence e is not an atom,
indecomposable.

R. Since el=f where f < e and

which is a contradiction .... eR is

6.13 Theorem : If R is a direct sum of indecomposable ideals, then there are the only
indecomposable direct summands of R
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Proof: Suppose R is the direct-sum of ideals K» K2, .K; of R which are indecomposable.

=> there exists central orthogonal idempotents el,e2, ,en in R such that

el +e2 + +en =1 and l(i =ei R for i= 1,2, .n ; so that R =el R + +en R. Since each

ei R is indecomposable, we have that each ei is an atom of B( R). Suppose if possible e is ,(

another atom of B( R)' such that etoe; for i= 1,2, .... n . \

n ,
~e=e· 1= L eei =0

i I

=>el R, e2 R, enR are the only indecomposable direct summands of R.

"
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Lesson· 7 SELEC-rE;D TOPICS ON' COMMUTATIVE
RI.NGS

7.0 Introduction :In this lesson, the radical and prime radical of a commulative ring are defined
and charactensed, Thetamous.Birchoff's theorem is also proved.

7.1 Definition: AI"'!element rofa·ring. R is called a unit, if 3 an element

1.2 Definition: An element r ofa ringR is called a zero-divisorif 3 an element s :;t:0) either

r&=O or sr=O.

Remark: Aunit is.nota zero-divisor.

Pr90f: Let rbea unit ~3ane.lement s E R)rs=sr=l

Suppose If possible> isazero-divisior =>3 an element (:;;to) either r(=O or tr=i).

suppose rt > 0

Now t=l.t={sr)t = s,O==O, a contradiction. .,« is not a zero-dlvisor.

7.3 Qefinitio:n ;A commutative rin~ .iscalled a field if Ot; I and eVfqry'non-zeroelement is a unit.

7.4 : A commutative ring iscauee an integral domain if O:f:: 1and Q is the only zera-diviser.

7.5Lemrn~: An element of a comrnutative ring !saullit ;.fand only if it lies in noproper ideal and this
is true if and only ifitHesinno maximal ideal. '.

Progf : Let r h,e any element .ofa qpmlTiutative ring!? .

Suppose r is a unit =>:3 anelement S ER ) rs = 1. If A is an idea.! containing r i then

rs E A=> 1EA. Hence A =R. Thusvfies in no proper ideal.

Oonversely suppese that r"lies in no proper iQeal of R : Since rR is an ideal of Rand

r e rk , we must have r~"is notprqper =>rR::::R.

~ rs == I f~~sorne s'~ ft. ~ r is a unit.

Suppose r does~6t lie in ~riY proper ideal of R. Since every maxima] ideal is also a proper
ideal, it follows that r do~~'Snot lie. in'any maximal ideal. '\ . .

. Co~verseIV. sUPBbse t,hat r,',:cloes not lie IF;> any. n:a"imal ideal since any proper idea: i,
contained In a maximal Ideal, It follows that r doe&-'n10tlie In any proper Ideal.



. 7.6 Definition: A proper ideal P in a ring i,scalled a prime ideal if for any two ideals A and B,
~·1nCr implies either 44 ~ P or B ~ P ~'!< .:

7.7 Theorem: The proper ideal M of the commutative ring R is maximal if and only if for every
r e M; 3XE R 31-rxEM. . " ,.

Proof: Suppose M is a maximal ideal of R. ~_etr ~ At. Now M +tR is an ideal containing M
properly. (Since rEM +rR and r ~ M)

Since .H is a maximal ideal we must lave that J1 + rR = R .

:::;>IEM+rR =>1=m+rx Iorsome..» .··.R andforsomemEM'.

"~l-rxEM for some x E R,

Conversely suppose that for every r : M ~ :: 'an element x E R 31 - rx E M

Suppose M , is any ideal containing .,'", properly =>:3r E M1 and r ~ M .

Hence M1 =R.

Therefore M is a maximal ideal of ,{ .

7.8 Theorem: The proper ideal P of the cor-mutative ring R is prime if and only iffor all elements
a and .i, ab Eo: P implies U E P )rh c J>. '; , ." :,~. \.

Proof: Suppose that p is prime. Suppose ah E P where a and b are elements of .

R=>(a.~)(hR)c:;;;(ab)Rr;;;;;P ;

Now tlR and bR are ide.us o~ R a d r I' pririe => either ak c; P or b Rc; P. If alee; P,

then a E T) if bRc; P then b e I •. .v-c . i or bE P.

Cr nversely suppose that .;i) P W, :.'j·;E 1:\ J1E; a E P or b e P.·

~~JDpOSeA and Bare ideal: of l ilBr;;;P. Suppose Ag;,P

=, J an element a E A 3Q 1". i.ei h I be any element of B.

,
f

-=-'> ;,.= f' Th is is true for ever'! !I .r Henc= I? t~ p'~: P is prime.'



R
7.9 Theorem : The ideal AI of the commutative ring R is maximal if and only if Ai is a field.

. . R
Proof: Suppose M is maximal. Let r + M be a non-zero element of - => r rt. M

M

Since M is maximal, 3 an element x E R 31- rx E M .

=>l+M =rx+M =(r+M)(x+M) = (x+M)(r+ /vi)

R R R
Hence (r + M) is a unit· in M . Thus every non-zero eleinent of M is a uni! => Jv1 is a field.

R
Conversly suppose that M is a field. Let r fl M => r + M is a non-zero element of

R . R
-=>r+M isaunitin - ..
M M

=>3 en element x+M in ~3(r+M)(x+M)=1+M
M

=>rx+M =l+M =>l-rxEM for some x E R=>M is maximal.

R
7.10 Theorem: The-Ideal P of a commutative ring R is prime if and only if .P is an integral

domain.

R
Proof: Suppose P is prime. Suppose (r+P)(s+P)=P in p =>rs+P=P.

=> rSE P , Since P is prime, either r E P or S E P.

R
=> either r + P = P or s+ P = P. Hence P is an integral domain. Conversely

R
suppose that P is an integral domain, Let a and b be two elements such that ab E P => ab + P = P

R R
=>(a+P) (b+P)=.P in'·p.Since p is an integral domain, we have either a+P=P or b+P=P =>

either a E P or b E P .r=;> P is a prime ideal.



Remark: Ever:y field is.an.inteqral.dornam.

Proof: Let R be a field => R is a commutative ring with 1"*0 in which.every non-zero element is a
unit. But we know that every unit is not a zero-divisor. . '

=> every non-zero element is not a zero-divisor.

=>" 0" is only the zero-divisorof R => R is an integral domain.

7.11 Theorem: Every maximal ideal of commutative ring is a prime ideal.

Pro' of" LetM 'b'e 'a' maxima" ideal-of a commutative rinc R ' , '. _. . \. .\ '''' " .. vv:. i L... '~i ;i~ \.

• ,._.:.,;,-,. I I

R R
=> !VI 'is a field => IVfis an integral dornainc» M is a prime ideal.

. '

'i ; : ~--~

Remark: A prime ideal need not be a maximal ideal in a commutative ring.

Ex : Let z 'be the ring of integers. lnthis commutative ring (0) is a primb 'ideal but not a maximal
, ideal.

7.12 Theorem i If the ide':ll A is cont;~ined In the primeideal B, there exist minimal elements mthe
set of all prime ideals P such that A ~ P'c; B .

Proof: Let:5 be the set of all prime ideals P such that A ~ P ~ B .C.learly 3 is non-en .pty since
- -, -- .' .,!

BE:5, Now;) is a partially ordered set under set inclusion,

Let {Pa} aE6 be any chain of elements in :I.Put P = a~6 l~ . Now we show that Pis a prime

ideal. Let ab E P => ab E Pa ".fa E f:... . Suppose a (to P =>:3ao E f:... ,3a 'ii$ Pao ' Now we show thatb E P ,

Let Pp be any element of {Pal . Sjnce {Pa} is a chain, we ,hav,eeither PfJ £;; Pao or Pao ~ Pp

Suppose Pp ~ Pao=> all pp(. a ~Pao ), But abe Pp and Pp is prime,

Hence bE PfJ,
.. "

','Suppose Pao £ Pp Since abE'Pao and« ~r; we must have I:;E Pao"~bE Pp: Thus h ~'PfJ

for every fJ E 11=>h E n Pa = P .
aE6 '

•• P is prime. ..~ ' .. -:.,. ,; ,,,-:,

Since A c:Pr:r~ B \;j a E A, we have '{!('~ n Pa ~ B =::> A, £ P £,lj ,
, .. - aEt"J. " ....



". • ,I '> :i'.: , : \~ .

", ,. .'" :.. ,

~ P is a lower bound of {Pa} aEll

Thus every chain in :3 has a lower bound in :3. Hence by Zorn's lemma :3 has a minimal
element.

7.13 Definitlon: The intersection of all maximal ideals ofa commutative ring R; is called the
radical of R and it is denoted by Rad R .

7.14 Definition: The intersection of all maximal prime ideals of a ring R is called the prime radical

of R and it is denoted by rad R .

7.15 Theorem : The radical of R consists of all elements 17 E R such that 1-rx isa unit for all

xER·

Proof: Let r e Rad R => rEM for every maximal ideal M . Let x E R. ~ rx EM for every.maxlrnal
Ideal M => 1- rx ~ M for every maximal ideal M => I...:.. rx is a unit.

(1(1 - rx is not a unit, then the ideal generated by 1-rx isa proper ideal and which is contained in

a maximal ideal say M, => 1-rxE MJ .j

Thus l-rx isa unit '\I XE R.

Conversely letrbe any element of R 31 -rx is a-unit '\I x E R .

=> l-'rx ~ Mforeve,y maximal ideal ''\1x E R => r E Mfor every maximal ideal ~ rE kad R .

•• Rad R = {r /1- rx is a unit '\Ix E R}

7.16 Definition: An element r E R is called nilpotent if r" =0 for some natural number .».

7..17 Theorem : The prime radical of a commutative ring R consists of?1I nilpotent elements of R.

Proof: Let r I be any nilpotent element and suppose r" =0. Let p be any prime ideal of

R => r" E P ~ r. rn-J E P => either r E P or r" -I E p. Continuing this process we get that r E P

This is true for every prime ideal P. Hence ,. E rad R .

. .\ - .'- . ! . . .~

Conversely suppose that r E rad R . Suppose if possible rn"* 0 for every positive integer

n, put T = {1,r,,.2 ,,.3, } clearly 0 ~ T . Let P be an ideal of R which is maximal with respectto

the property that it does not meet T.
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Suppose a E P and b e P => P -+ aR and P +hR· are ideals which contain j> properly"

=> P +aR and P +bRmE:8~:~' .

.:.:::;> P + ab R meets T .

=> P + ab R must contain p properly .

. =>abeP

Thus a e p and b E P => ab e P . .'. P is prime.

Since P does not meet T we have r e P . Thus r e fad R which is a contradiction ... r is
nilpotent.

Thus rad R = { r / r is nilpotent dement of R}.

7.18 Lemma: If T is a subset of a commutative ring which is closed und,er finite products and
does not contain 0, then any ideal which is maximal in the set of ideals not meeting T is a prime
ideal.

Proof: Since T is closed under finite products and 1 is treated as an empty product; it follows that

1ET·

Now T has the properties

(2) lET

(3) Oe T.

Let 'J be the family ideals .1 such that .1 does not meet T . Let M be a maximal element

in j. Now we show that M is prime. Suppose a e M and b eM => M +,aR and M +bR contain
M properly. ',~,

Hence they meet T~:Jll E(M +aR)nT

II t2 E(M +aR)(M +bR)c(M +abR) and also tJ t2 ET .

and ': E(A1 +bR)nT. Now

." ·~H +ab R contains .\[ properly ~qJvt. .\1 , ".' M .. is a prime ideal.

7.19 Definition: A commutative ring R is called semiprimitive if it's radical is O.



7.20 Defi,nition~: A commutative fing 'R is called semiprime if its prime radical is O.

Remark: (1) R IS semi-primitive - iff for any r =I' 0,1- rx !snot a unit for some x E R.

(2) R is semiprime iff it has no non-zero nilpotent elements,

(3) If R is a commutative ring then rad R ~ Rad R (.: every maximal ideal is a prime ideal)

R R
7.21 Theorem (1) : If R is a commutative ring, then 'Rad R is semi primitive and rad R is semi

prime.

R
Proof: Let n :R ~ Rad R be the canonical epimorphism. Let Tr(r) be any element in the radical

R R
of Rad R ~ for any Tr(x) in Rad R' lr(l)-lr(r)lr(x) is a unit ~lr(l-rx) is a unit for every

x E R· Let x be any element of R~Tr(l-rx) is a unit ~3YER3Tr(1-rx)Tr(Y) = Tr(l)

~ n (1- (1- rx) y) = 0

'", " ~ l--:(l~'rx)y~ RadR~(1-r~)y is a unit in R ~ l-rx is a unit in R.
, ~- '. '.,.'

=> r-e Rad R =>7r (r) ~O. :. Rad ( R~R) ~ 0 => Ra: R is a semiprimitive.

(2)
R '

Let Tr:R~ -- be the canonical epimorphism.
radR

Suppose Tr(r) beany nilpotent element of ra~ R =>( lr(i'))n =0 for some n..

" ~r E rad R~lr'(r)i:O :.rad(_R_)=o~_R_ is semiprim~.
rad R rpd.R,

7.22 Definition: We say th~t a ring R IS a subdirect product of a family of rings {Si / i E I} ifthere

:~\-"



is a monomorphism k :R ~ S = " S, such that for any i, "i 0 k is an epimorphism of R onto S,
". ie I, " , , " ,

where "i is the canonical epimorphism of nS, onto Sr'

7.23 T~~orem: R is a subdirect product of the rings {Sj / i E I} if and.only if :J a family {Kj / i E I}
:';:.. • ~ ',: I ., , . ." . .

. R,
"ofi~ealsof.R:3Si:;K' . 'IIi an~ nKi=O:

, . I

Proof: Suppose R is a subdirect product of the rings {Sj / i E !}. For each i , let "j be the canonical
_'::',;1 .

epimorphism of nS, onto Si' Let k be a monomorphism of R into nS, such that "i 0k is an

epimorphism of R onto Sf 'IIi ,

R
Let K, be the 'Kernel of n-iOk'lli~{Ki/iEI} is a family of ideals of R3 K. :;Sj'lli,

I

Suppose r En k, => «. K (1')= 0'11; =>K (1')=0. Since k is mono, we have r=O, Thus we have

n Kj=O
iel .'

"
, C'R\-I'

Conversely suppose that :J a family {Kj / i E I} of ideals :3 n K, = 0 and ')i:;K. vI, Let 'lfi be
I

an isomorphism of '(;j onto :; 'II i Define k: R ~ ff S, by K(r )={ If/jl ffi (r)} V r E R. It can be

verified that kis a homomorphism. Suppose k(r)=O~'lfil "i (r) =0 'II i~"i (r )=0 'IIi·

~r=O:. k is a monomorphism.

, ~.
I I,' '

. .. , .

~7riOk = 'f/i-l7ri Vf. Since 'lfj-I and trj are onto mapping's, we have that 7riOk is an

epimorphism 'IIi.
,')'. ;'

~ R is a subdire.ct product of the<rings {Si / i E f} : ~-.,
7..24.Corollary : A~cQlT!mutative ring is a, subdirect product of fields (inteqral domains) iff it is
seniiprimitive (semiprime).



. ~Lesson :7:~1~~~~~~5~~~, '~))~. ~~E:·~; ~~~~~.E ...E,..3:( Rings a(1~ Mody1es:e

Proof: Let R be a commutative ring, Suppose R is a subdirect product of fields tFf / i E I} ~ :I
R . . . . R

a family {Ki / i E I} of ideals 3 Fj == K
i

V 1 an~ n K,= 0 . Since F, i~ a field we have that K
j

is a

field Vi =>K, is a maximal ideal for every i E 1., Since j~ Ki = 0 , it follows that the Intersection of

all maximal ideals is zero => Rad R =o=> R is semiprimitive conversely suppose that R is

semiprimitive. Let {Ma }aEI1 be the family of maximal ideals of R. Since R is serniprimitive, we
. , '

". . { R }
have .n

A
Ma =o=> R is a subdirect product of the ring's M ..

. aEL> a aEL'i

R
Since each.Ma is a m~ximal i~eal, we have that Ma is a field v a . .'.R is a subdirect

product of fields.

(2) Suppose R is a subdirect product of integral domain {Sj} iEl =>3 a family { K, / i E I} of ideals

R . ' R
of R 3 S, == K, V 1 and nK, = 0 . Since S, is an integral domain we have K, is an integral domain

I I

Vi=>Kj is a prime ideal Vi. .'
Since n K, =0 ,it follows that the intersection of all prime ideals is 0 => rad R = o=> R is

. jEl" .

semiprime.

Conversely suppose that R is serniprime. Let {Pa / a E 6} be the family of all prime ideals
, . ... .,;

Since each Pa is prime, we have that ;>ja is an integral domain v a ..

7.25 : A commutative ring R is semiprime iff it is isomorphic to a subring of a direct product of
integral domains. ~f~'" '. .

Proof: Suppose R is semiprime => R IS a subdirect product of a family of integral do~~'ins

{S, / i E I} => 3 a monomorphism. k: f? ~ 1rS, .=>R>is isomorphic to a subring of 1rS, .

Conversely suppose that R:is isomorphic to a subring of 'the direct product of integral



domain say {Ra Lrt=l\' Now 7r Ra is a direst product of integral domain.
aE~

=> 7r A Ra is also a subdirect product of integral domains.aEu

=> 7r A Ra is semiprime => Every subring of 7r A Ra is also semiprime => R is semiprime.aEu aEu.

7.26 Corollary: A commutative ring R is semiprime iff it is isomorphic to subring of a direct
product of fields . "

Proof: Suppose R is semiprime => It is isomorphic to subrinq of direct product of integral domains

say {Ra }aE~' We know that every integrai domain can be embeded in a field. Let Fa be a field

3 Ra is embeded in Fa Va. Now 7r Ra is a subring of the direct product of fields a~~ Fa .

=> R is isomorphic to a subring of 7r Fa a direct product of fields. Conversely suppose that

R is isomorphic to a subring of a direct product 7r Fa of fields. Since 7r Fa is a subdirect product of

fields and hence integral domains, it follows that 7r F.a is semiprime => R is serniprime since it is

isomorphic to a subring of a semiprime ring ..

7.27 Definition: A ring R is called subdirectly irreducible if the intersection of all non-zero ideals
is non-zero.

7.28 Theorem: (Brikhoff) Every ring is a subdirect product of subdirectly irreducible rings.

Proof: Let r *' ° be any non-zero element of R . Let K; be the ideal which is maximal in the set

of all ideals that are contained in R-{r}. That is K; is the ideal which is maximal with respect to

the property that r ~ K; .

Now consider the family {Kr },'ER* where R * is the set of all non-zero elements of R.

Now n*Ar=':O (If s*,O,then s~Ks)' Hence R is a subdirectproductofrings {R IKr}rER*'rER

Now we show that for each r E R*,~ is subdirectly irreducible. Let A{ be any non zero idealK /~r .
r

of ~r => A is an ideal of R containing K, properly. By the property of Kr' we msut have

A R
rEA ~ r + K; is in K'- . Thus every non-zero ideal of -K- contains the non-zero element r +K; .

. r r



.R R·
Hence the intersection of all non-zero ideals of K is non-zero. Hence K is subdirectly irreducible.

r r
Thus R is subdirect product of subdirectly irreducible rings.

7.29 Problem: (1) If r is nilpotent then J- r is a unit.

Proof: Since r is nilpotent, 3 a positive integer n 3 r" = O. We may assume that n isthe least

positive integer') r" = 0 . i.e. rn-I:;t 0 .

Now (l-r )( 1+r +r2 + + rn
-
I )=1. Hence 1-r is invertable => l-r is a unit.

(2) Show that an ideal p of a commutative ring is Prime iff R -P is closed under finite products.

Proof: Suppose P is prime. Let al ER - P and a2 E R - P => al ~ P and a2 ~ P.

Since P is prime we have al a2 ~ P => al a2 E R - P

Since P is prime we have al a2 ~ P => al a2 E R - P .

Conversely suppose that R - P is closed under products.

Let ab EP . Suppose if possible a ~ P and b ~ P => ab fl P which is a co~tradlctioh ..

Therefore a E P or b E P => P is prime.

,
.-,

..

.., .,.
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Lesson .:,8 ,PRIME IDEALS IN SPECIAL COMMUTATIVE"
, . ,,\. .

RINGS

0.0 Introduction: In this lesson, a special class of commutative rings namely Boolean rings and
commutative regular rings are studied,

8.1 Definition: A subset F of a Boolean Algebra (5,.0, " A) is called a filter if

(1) 0' E F

(2) a.b e F ~n I\bE F

(3) a E F and a 5, b ~ b E F '

8.2 Definition: A filter F is said to be a proper filter if O~ F '

8.3 Definition: A maximal proper filter is called an ultrafilter.

Remark: The filters of a Boolean algebra (S, 1," v) are called dual filters,

,8.4 Theorem: If a Boolean algebra is regarded as a ring, the dual filters are precisely the ideals,
hence the dual ultrafilters are precisely the maximal ideals,

Proof: Let K be a dual filter of a BooleanAlgebra (S,l,',v) s~nce l'EK, We have OEK, Let

a E K and S E 5 ' Then as 5, a ~ as E K ' Similarly sa E K ' Let a, b E K ~ ab' E K and ba' E K '

~ab'vba'EK~a+bE K. ".K is an ideal.

Conversely suppose that K is an ideal ~ 0 E K ~ I' E K ,

Suppose U E A and b 5, a zz-b=ub e A.

Suppose a.b e Kcs a v b = (a'b')' =((l-a)(l-b))' = l-(1-b-a +ab) =b+q-.qbEK

.',K is a dual filter. ; ,

Thus the dual filters of S are precisely the ideals of S .

8.5 Theorem: The following statements concerning the Boolean ideal n« a Boolean ring Bare
equivalent.

(a) K is maximal

(b) K is prime



(c) For every element, s of R, either S E K or s' E K but not both.

Pro<?f : Assl.,1~e (a). Since the ~(j()\eanring is acornrnutauve ring it follows that every maximal
ideal is a prime ideal'. - ~.

Hence (a )=>(b)

Assume (b) Since K is a proper ideal. we have 1~ K . Let s. EO 8 .We have :"+ s':::: I ~ K=> Both

of sand s' cannot be in K.

But s s' = s(l-s) = s-s2 = 0 EK.

Since K is prime, either s E K or s' E K . Hence (b)=>( c).

Assume (c) Since K is an ideal, we have OEK=> 0' ~ K => 1~ K .

=> K is a proper ideal.

Let s be any element 3 s ~ K => s' E K

Now l=s' +s EK+s B => l-sxE K for some x E B

.• K is a maximal ideal.

Hence (c)=>( a)

8.6 Corollary: The following statements concerning the Boolean ring S are equivalent.

(a) S is a field

(b) S is an integral domain

(c) Shas exactly two elements

Proof: Let K = (0)be the zero ideal of S which is a Boolean ideal. Assume (a) =:} S is a field

S. S
=> K- is a field => K is a maximal ideal => K is a prime ideal => K is an integral domain => S is

an integral domain. Hence (a)=>(b).

Assume (b) => ~ is ~n integral domain => K is prime.

=> For any s E S , either s E K or s' EK but not both.



Sinces .s' =OEK 'and K is prime, either s = a or s' =0.

=> Either s=O or s=O'=l. Hence s={O,l}. Hence (b)::::>(c)'.

Assurne.tc) i.e., S={O,l}. Then clearly S is a field. Hence (c)::::>(a)

8.7 Corollary: A boolean ring is semiprimitive. Thus an element of a Boolean ring is a iff it is
mapped on to "a" by every homomorphism of the ring into the two element Boolean ring. -

8.8 Definition : A~ring R is said to be a regular ring, for every a E R , the exists an element

a'ER » a a' a =a

8.9 Theorem: In a commutative regular ring R' we have the following properties.

(1) Every non-unit is a zero - divisior

(2) Every prime ideal is maximal

(3) Every principal ideal is a direct summand

Proof (1) Suppose "a" is not a zero-divisior.· Since R is regular, 3 an eleme 1t

a' ER3a=aa'a::::>a(1-a'a )=0. Since "a" is not a zero-divisor we have I-a'a = 0 ::::> a' a= 1=>" a"

is a unit.

Hence every non-unit is a zero-divisor.

(2) Let P be a prime ideal suppose a ep . By regularity, 3a' » a a' a = a::::>a(a'a-I)=OEP. Since

P is prime and a ~ P , we have a'a -1 E P. Hence P is a maximal ideal.

(3) Let aR be a principal ideal. Let ,
a be an element 3 aa'a = a. F u:

a'a =e=>e2 = a' aa'a = a'a=e z» e is an idempotent. Hence R is the direct sum of eR a io

(l-e)R. But eR=aR.

:. aR is a direct summand of R .

8.10 Th,eorem : Every commutative regular ring R is semiprimitive.'

. Proof : Suppose RadR:t:O. Let O=l=aERad R. Sjnce R i~ regular, :3 an element

a'ER3aa'a= a::::>(l-aa')a = 0::::> l-aa' is a zer o-divis or, =>I-.aa'l"snot a unit

-=-> 1- ao' E:HI for some maximal ideal ,HI'

But a E Ml => aa' E M\=> 1E MI .}'Urich is a contradiction.

:. Rad R :dO=> R is serriiprimitive. .,



8.11Definition: A commutative ring is called local if it has exactly one maximal ideal M.

8.12 Remark: If R is a local ring, then Rad R is the unique maximal ideal of R. If R is an integral

domain, then (0) is a prime ideal and hence rad R = O.

Ex : We shall given an example of a local integral domain which is not a field Let R be the ring of
formal power series.

'a(x) = ao +a1x+ .... over a field F, Clearly R is an integral domain.

An element a( x )=ao + a1x+ of R is a unit iff ao:;t0, Hence a( x) E Rad R iff for every

b (x) E R, 1- a (x) b (x) is a unit iff for every b (x) E R, 1- ao bo :;t0 . Iff ao = O.

Hence Rad R = xR . Which is the principal ideal generated by x.

Suppose c(x) E xR=> Co :;to=>c( x) is a unit => c( x) R = R

•• xR is a maximal ideal. Since xR = Rad R , it is the only maximal ideal of R . Hence R is

a local ring.

8.14 Theorem: Let R be a commutative ring, The following conditions are equivalent.

(1) R has a unique maximal ideal M .

(2) All non-units of R are contained in a proper ideal M .

(3) The non-units form an ideal M .

Proof: Assume (1). Let x be any non-unit => x is in a maxi .. ,dl .deal.

Hence every non-unit is inM . Therefore (1)=>(2)

Assume (2) : All the non-units of R contained in the proper ideal M since M is proper, every

element of M is a non unit.· => M is precisely the set of all non-units of R . Hence (2) ==>(3),

;.Assume (3) : Let M be a ideal consisting of all non-units ==>M is proper. Let M1 be any maximal

: ideal-=> Every element of M is a non-unit ==>M1 s" M , Since M1 is maximal and M is proper,

we must have M1 =M. Therefore M is the only maximal ideal of R .'. (3)=>(1).

8.15 Definition: A ring R is said to be 'fully primary If ,it has a unique prime ideal.

8.16 Theorem: Let R be a commutative ring, The foJ.l,qwing conditions are equivalent.



(1) Every zero-divisor is nilpotent

(2) R has a minimal prime ideal p and This contains all zero-divisors.

Proof: Assume (1). Let P be the set of all zero-divisors of R. Since every nilpotent element is a

zero-divisor, if follows that P is the set of all nilpotent elements of R (... ,every zero-divisor is
nilpotent)

=> P = rad R =>P is contained in every prime ideal of R . Suppose a ~ p and b ~ p . Suppose

ab E p =>ab is a zero-divisor.

~3s =t:.O3abs=O. If bs=O then b is a zero-divisor. Hence b e P: If bs-.j:O, then "a" is

a zero-divisor and hence a E P . Any way it is a contradiction' .... ab ~ P . Hence P is prime.
I

thus P is a mlniirnal prime. ide?!,1which contains all zero-divisors.

Hence (1)::;> ( 2 )

Assume (2) : Let P be a min. 'al prime ideal which contains all zero-divisors. Suppose r is a

zero-divisor :::::>rE P: SUPIQQ$e it possible r is not nilpotent. Let T={stk / s ~ P and k> o .any

natural number} . Clearly 1::;: 1, yO E T and r =) r' E T . Also T is closed t.inder finite products, [I_at

(1 h r= rand suroose a -r- S I'm and h ~ t r" for some s I{: P. f I{: P and m 20, n 20. Since P is

prime ideal \'Ve have sf eP . NQV( ab=st rm+J;l E T}· Suppose if Possible OET~ 0 = sr" for some

s ~ p and k 2::0 and rk =t:.0 ~ s is a zero-diviscr ~ s E P which is a contradiction .... 0 ~ T .

Let M be a maxima! el$melilt among the set of all ideals which does not meet T . We know

that f\(1 is prime ::;::> M ~ R - T .'

IJ S E R - T , then s t:: P (other wise S E i') ~ R - T ~ P .

Thus we have M ~ R - T cP => M ~ P where M and p are prime ideals and p is a

minimal prime ideal => M = P = R - T . Since r E T we have r ~ P . Which is a contradiction. •• r is

nilpotent Thus (2)=>{1).

8.17 Oe.finition : A ring R is said to be primary if every zero-divisor is nilpotent or if R has a
. . I .

minimal prime idea]. 'P' and this contains all zero-divisors.

8.18 Theorem: Let R 'beSi cQrnrnutptive ring, then the foUowing conditions are equivalent.

(1)' R has ,;i.'uniquepflme ideal P.

(2) R is 'oca'<antf:RJ~R = rad R



(3) Every non-unit is nilpotent

(4) R is 'primary and all non-units are zero-divisors.

Proof: Assume (1) : Let p be the unique prime ideal. Since every maximal ideal is a prime ideal,
there can be only one rnaxirnal'ideal. Sincep is proper, it is contained in a maximal ideal. Hence
there is at least one maxinial iCle~1.Hence P itself is the only maximal ideal.

~R is local and Rad 7?';'rad R :.(1)~(2).

Assume (2) Let r be any non-unit ~ r is in a maximal ideal. But R is local ~ Rad R is the only
• :;1

maximal ideal ~ r E Rad R. ~. r e rad R ~ r is a nilpotent. :. (2) => (3) .

As'some (3~ ;L:et r be any non-unit=> r is nilpotent. Let n be the least positive integer

sr" c::.O..::.:>'rrn-'l =0 where rn-1 7-0~r is a zero-divisor. Thus every non-unit is a zero-divisor.

Let r be any zero-divisor ~ r is a non-unit ~ r is nllpotent.

•
Assume'(4) :'Let P ~e'the setGl~U ~etO.;a:w,lsorswhichis minimal pri't'tte id~·at·SuI9P'Qser ~ P ~·r

is,t;rdt.azero-divisor ~ r is a l1r:iit.,~~·R'GeP 'Irs a maximal icl'eal t::;:;> IF is,theorily~pfilll1e ideal. Hence

(4)=>(Q.

8.t9 't>efinitlb'n : i(f K"lsany so;~s-et'~oftheC0h'fnilitalive r'itlg 'R I then we write K * = 1r E y,.K ='o}
'and iscalled theannihilator of K.

·8.2'Q ~emar'k ~ K* f$ always -an iGiealand we der'il6te (K *) * 'oy K'* '* 'and A G: B':::::::>B * ~ A * .
\ .

8.:21Theorem ;~echoy;) : Let R ·:bea :SuUdirectly ,irreducible commutative rkrg w;ith smallestnon-
zero ideal J. ~heli 'title 'annihilat'Or J * (if J is the set of·81I·zero4divisotsantfl .1'* -is a maximal :ideal

anti J-**=3 .

~SE r*an~ s ¢@ ,



Hence J *coritains all zero-divisors. Let r EJ * ~ rx = 0 V x EJ .~ry = 0 for some non-

zero y E J ~ r is a zero divisor.

Therefore J * is the set of all zero-divisors;

Clearly 1 rt .T * ~.T * is proper' =>.T * is a proper ideal.

Suppose r ~ J* ~ ry '* 0 for some y E J ~ ryR is a non zero ideal and ryRc J (-: y EJ)

Since J is the smallest non-zero ideal, we have J =ryR ~ y=ry x for some X.E R~y(l-:-rx)=O

~ j(l-rx)=OV j E J~l-rxEJ*~J* is maximal ideal.

Let x E J . Now for any y E J * , we have xy = 0 => X E J * * => Jt;;;,J * * . Let 0,* a E J * * .
Now aR is a non-zero ideal. ~ J t;;;, aR ~ ar '* 0 for some r E R such that ar E J . Since ar =f. O·

We have r ~J* Since J* is maximal, we have l-rxEJ* for some

xER~a(l-rx)=O~a=arxEJ~J**~J. Hence J=J**.

8.22 Corollary: If R is subdirectly irreducible and semiprime, then R is a field.

Proof: Let J be the smallest non-zero ideal of R . Since R is semiprime, we have rad R = 0 ~:3

no non-zro nilpotent element ~.12 '* 0 ~ J gJ * Hence J * = 0 ~"O" is a maximal ideal. ~ R is

a field. •

8.23 Theorem: A commutative ring R is subdirectly irreducible if and only if it contains an element

j such that jR has non-zero intersectlon with all non-zero ideals and it's annihilator j * is a
maximal ideal.

Proof: Suppose R is subdirectly irreducible => ::3.a smallest non-zero ideal J . For any 0,* j E J, ,

we have jR=J and j *=.1 *. Hence j * is maximal. Clearly jR has non-zero intersection with all
non-zero ideal.

Conversely supposet hat, ::3 an element j such that j R has non-zero intersection with all

non-zero ideals and j * is maximal. Now we show that jR is contained in every non-zero ideal of

R. Let A be any non-zero ideal of R, Let O,*a E A=>aRnjR,*O. Let ° ,*xEaRnjR

~x=ar=jsfor some rER and s e Rcs s e j=, Since j* is maximal,

:3tER31-stEj*~j(1-st) = 0

~j=jst=art

'=> jRt;;;,art Rc; art;;;,:A
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Thus jR is contained in every non-zero ideal of R . Hence R is subdirectlly irreducible.

8.24 Problem: Show that in a regular ring R , for each element r E R :l an element r'» r r' r = r

and r'r r' = r' and r' is uniquely determined by r ,

Proof: Since R is regular, there exists an element S E R .3r sr = r .

Put r' =srs

Now rr'r = rs rst=rsr=r and r'r r' = r'

Clearly r' is uniquely determined by..1' .

Prof. G. Koteswara Rao
Department of Mathematics

Acharya Naqarjuna University



Lesson' 9 THEcoiVI'PL'ETE RING"OF QUOTIENTS OF A'"
COMMUTATIVE RING

9.0 Introduction: There are several ways of constructing the rational numbers, from the integers! .
some of which go back to Euclid's theory of proportions. One of those such methods is the following .

. The fraction 4/6 may be regarded asa partial endomorphism of the additive group of integers; its

domain is the ideal 6z and it sends 6z onto 4z, where Z E Z , the ring of integers. Similarly the
fraction 6/9 has domain 9Zand sends 9z onto 6z. These two fractions are equivalent in the sense
that they agree on the intersection of their domains, the ideal 18z, since both send 18z onto 12z.
Ratios are then defined as equivalence classes of fractions. This method may also be applied to
any commutative ring to construct its "complete ring of quotients" provided only-certain ideals are
admitted as domains. . " ,~ .I

:. DD' is dense.
( .

9.1 Definition: An ideal D in a commutative ring R is called a dense ideal of R if, for all r E R ,

rD=(O) implies r =0.
"

9.~ Remark: R is dense.

For let rER such that rR=(O)=>r=r.l=O=>r:;=O.

:. R is dense.

9.3 Remark: If D is dense and D ~ D' , then D' is dense.

For let r E R such that rD' = (0) => rD=(O) (.,' D~D')

=> r =0 (,,' D is dense)

:. D' is dense.

9.4 Remark: If D and' D' are dense, so are DD' and Dn D'. For let r E R' such that

rDD'=(O)=>rdD'=(O) for all d e Dvxs rd=I) for all dED (':D' is dense)

=>/"D c- (0)=>/"=0 (':D is dense)

Since DD' ~ D n D' and DD' is dense, by remark 9.3, Dn D' is dense.
, . -,.

'"

9.5 Remark: If R*(O), then (0) is not dense.
", '. ~•.. ::'.-' ~-.
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For, since R*(O), choose r:.~;R $~chthat r:;t: O.We ~p~wthatxO=O for any x E R => 1'0=0.

If (0) is a dense ideal of R, then r=O, a contradiction. So (0) is not dense ideal of R.

9.~ [)efinition' : By.?fr~ctiohllVe mean ~n element f E Hom R (D. R), where D is a dense ideal of
.~ , I ,.... . ~...", I.,.. .• -, ..' ..'. '

R " (i.e., every R-~or;nQr:norphism from D into R, where D is a dense ideal of R; is called a
fraction) .

. Thus ['is aqrouphorttornorphism of D into R such that f(dr)=(.Id)r for any ci E D
'1 ".:' '\'; •. ' .;: (

and r E fl. .
.>.

We defifie, for any fEHon1R(D.R).-:f:D---7R, a R-homomorphism, by,

(-f)(d).=:=~(/(d)) for alld,E D. .~ ; - -':.

We also introduce fractions 6, iE HOl11R(R.R), by writing O(r) = ~ and 1 (r)=r "for all

r E R . Addition and multiplication of fractions are defined as follows:

Let he [[OIllN. (Di, R) for i,,-, 1,2. Define (.Ii -t h. )(d)~.Ii (d)+.12 (d) for all d e D1 nD2·

By remark 9.4, D2 D1 is a dense ideal of R. Since D2 DJ ~h-lD1' by remark 9.3, h-1 J~ is

a dense ideal of R. .

Let F be the set ·of all fractions.

9.7 Remark: (F, 0,+ ) is an additive abelian semigroup with zero.

For let hEHomR(Di,R) for i=1,2,3 and D, be a dense ideal of R for i=1,2,3,
,'.1'" .

First we sho';;; that fi +h is an R-homomorphism of D]nD2 into R.

For any x, y E Dl n D2 ' consider (.11 +h)( x +y) =I, (x +y) +h (x +y)

=f] (x)+f] ('v)+f:.: (x)+h (r) C:II and hare R - homomorphisms).



.:. .:

\ .

=it(x)+h(x)+.li(y)+ hey)

~(ft + h )(x ) + (.Ii +h) y

=> (it +h)(x+ y)=(it +h)(x)+(fi +h )(y) for all X,yE DInD2

(.,' R is a commutative ring) .

For any d e D1n D2 and r E R, consider (.Ii +I: )(dr)=

= it (dr ) + [: (dr )=.11(d) r + I: (d) r (','.11and [: are R-homomorphisms)

=(it (d)+h (d))r =((.11+h)(d))r

..fi +h is an R-homomorphisms of D) n D2 into R.

Since D\ and D2 are dense ideals of R, D\ nD2 is also a dense ideal of R (by remark 9.4)

Hence ..11+I: EF

Clearly Ui +h)(d) = (h + it )(d) for all d e D) n D2

=> it +h = h + it on DI nD2 .

.:·fJ+f2=f2+fJ

It is easy to verify that (fi +h.)+/3 and .11+(.h + f3) are R-homomorphisms of

D1 nD2 nD3 into R and they are equal on D) nD2 nD3 and so (.Ii +h)+h = fi +(h +h)·

Let 1E HomR (D, R), where D is a dense ideal of R.

For any d e D, consider (I +O)(d)=/(d)+O(d)

=-:J(d)iO=J(d)

.'.r + 0 = r- .

.',(F, 0, +) is an additive C\~elian semigFo.yp with zero.



~OoiSistta:a.n~c;ee'EE:diduucc~atj(iio;nn))~·~~~~~~3:: ~)) ~~~~~~~(Acharya Nagarjuna U!1iversit~_

9.8 Remark: For any fEF, f· 1 =·1 . f = f ' ,.

We define a relation e on F as follows. For any ii ,h EF, define .IiBh if and only if fi
and I: agree on the intersection of their domains; that is, fi (d)= h (d) for aI/ d e D] n D2 .

9.9 Lemma: For any 1i,h E F, 1i B I: if and only if 1i and I: agree on some dense ideal of R .

Proof: Let fi,h EF

Suppose 1iB12 ' where Ii EHom R (D/, R) for i = 1,2 .

Then .Ii (d)=h (d) for all d « D1 nD2
- ,

Since D] and D2 are dense ideals of R, by remark 9.4, ~ n D2 is a dense ideal of R . So

.Ii and 12 agree on the'dense ideal"D1 nD2 of R.

Conversely suppose that Ii and f'], agree on some dense ideal D of R. Then

fi (d) = I: (d) for all d e D .
.-

For any x E DI n D2 and for any d ED,

Consider fi (x)d = fi (xd) (,·.fi is an R-homomorphism) .

=I: (yd) (·:.xd E D and Ii and h agree on D).

=h(x)d" ('.: I: is an R ~ homomorphism)

'.

=> (Ii (x) - h (x)) d = 0 for all dE D a~d for all x E DI n D2

=> (.Ii (x) -:h (x )) D = (0) for all .x EDI n Di

=> 1i (x) - I: (x) = 0 for all x E DI n D2 C' D is a dense ideal of R).

=>,Ii Bh

Thus .Ii B I: if and only if ,Ii 'and h Clfiree ohsomedense ideal ~f R '



7'() ' ~ .. -: .
-- 9.10 Lemma : O is a congruence relation on the system (F, 0, 1, -, +,.):

Proof: Clearly () i$ reflexive.

. ( Rings .and Modules :E

$uppose Ii,12 E F such that J..o 12· Then J..a.~d 12 agree on some dense ideal D of

R (Sy ,Lemflla 9.9).

=> J.. (d)= h(d} for-all dE D=>I: (d) = J.. (d) for all d e D=>h and Ii
agree on the dense ideal D of R.

;

:. () is symmetric

SUPPP$e J..,h .I: E F such that .Ii ()12 and I: ()13 z

Then Ii(d) = I~(d) for all d e Dj nD2

, \ .
Now D] n D2 n DJ is a dense ideal of Rand D] n D2 nD3 ~ D] nD2 and

=>fi(d} =.i3{d} for all dE~nD2nD3 .
'./.' .

::::}Ii and /3 agree on the dense ideal DI n D2 n D3

=> J.. () /3 (by lemma 9.9) ..

:.() is transitive and hence e is an equivalence relation on F:

Clearly °o° and 1 () 1
'-..
L

Suppose Ii,I: E F such that fi ()I: .Then Ii and h agree on some dense ideal D of
. ,

R =>J..(d)=12(d) for all dED.

=> -.Ii (d) = -:f1 (d,) for all' d'~ D
• ..

. I
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=> (-.li)( d.)=( -.12)(d} for all .d ED

.' =>( -.Ii )B( -h)

Suppose .li,h,.l3d4EF such that fiBfj and hBf4' Then .Ii (d)=:/3(d)for all

d e D] nD3 and h (d) = f4 (d) for all d e. D2 nD4 .

Now D] n D2 n D3 n D4 is a dense ideal of R a.nd D, n D2 n D3 n D4 s D, n D3 and

D, n D2 n .03 n D4 ~ D2 n D4 -

For any d e D, nD2 nD3 nD4 ' consider (.Ii +12)( d) = ii (d)+/2 (d)
. \ .

...Ii+ hand /3 + f4 agree on the dense ideal D, n D2 nD3 nD4

Hence by Lemma 9.9, (.Ii +.I2)B(.13 +/4)

Since .Iief3 and he /4 ' we have .Ii (d) =J: (d) for all d E D, nD3 andh ( d) = .14 (d)

for all d e D2 n D4

Since .12-] D, and .14-] D3 are dens~ ideals of R, by remark 9.~,

=>dED2 and I: (d)ED, anddED4 and .t4(d)E~
, ':'.1 .



..fi 12 and 1314 agree on the dense ideal Iz-] D] n./4-] D3

So by lemma 9.9, (fi h)e(/3 14)

:.e is a congruence relation on( F,Q,l,-,+,.).

For any f E F, &(f) denotes the equivalence c,'ass containing f, that is,

e(/)=={g E F / leg}, We denote the class of all equivalence classes under B by

(F,Q,l,-,+,.) / _ FI
le - Ie

Theorem 9.11 : If R is a commutative ring. then the svstem (F,Q,i,-,+,){ == Q(R) is also a

7ut~tivering, It extendsR and will be called its complete ring of quotients,

Proof: Define +, • and - on % as follows. '

For any e(fi ),e(h)E%, define e(fi )+e(h)=e(./i +12),

e(fi)·e(h)==e(.Jih) and -e(.Ji)=e(-,/i)

Now we will show that +, • and - are well defined,

Suppose e(fi), e(h), e(13), e(i4) E% are such that

e(Ji)=e(13) and e(h)=e(/4)' Then fi Bfj and 12Bj4

Since e isa congruenCe relation, (.Ii .h)e(h ./4)' (.Ji +h)e(.J3 +j4)

and (~fi )e( -13 )=>e(Ji h) = e(f3 14)' e(Ji +h) = e(13 + 14)

and e(- fi)=e(-13) => e(fi) e(h) = e(f3)e(/4);

B(Ji)+B(h) = e(13)+e(/4) and -:e.(r,)~-B(f3)

:,+,. and - are well defined, ...~" i I •
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Let 8Ui),8Ch)E%. We know that fi+fi=h+fi on the dense ideal

D1 nD2 => (fi +h) e (h + .Ii ) => e (ft + f2 )= e (12 + .Ii ) =>e (ft )+e (/2) = ~(h )+oUi )
.'. + is cum mutative.

Let 8(fi)· 8(/2), 8(l3) E %. We know that

(.Ii +.12) +.13 = .ft+U2 + h) on the dense ideal DI n D2 n D3 .

=>((.Ii +h)+.13)8(/i +(.12+.13)) "
. ", .

=>8((fi +f2)+/3) = e(fi +(hcf-f3})

=>(B(.ft )+B (h) )+B (h) = B(fi )+( B(.12 )+B(l3))

.. -r is associative.

Let B(f) E% .·Then f E F and 0 EF . S~ppose D is the'domain'ot" f . Then :th~ domain

of / +0 and 0+/ is DnR=D and / +ci=f and o+/=/on D.

=>(f +o)e .f and (O+f)BI

=>e(l+o)=e(f) an? e(o+/) = e(f)

=> B{/)+B(O) = B(/) and B(O)+B(/)=B(/)

.. 8(0) is the additive identity in lj,~.

Let {jet )El/~, Then f EF . Suppose the dornain.of.j" is D, where-D i~adense ideal of

R. Then -lEF==>e(~/)E%

Now, for any dE D, consider (f +( - f) )(d) iz: f (d)+( -I)( d)

= f(d)-f(d)=O~o(d)=>(f+C'-1))(d)= O(d) for all de D==>/+(- f) and 0
agree on the dense ideal D.
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=>(r +(-f))e 0=>8(f +(-f)) -= e(o)

=>8(/)+8( -I) = 8(0)

:.8( -f) is the additive inverse of 8(f) in %
Hence % is an additive abelian group.

Let 8(fi),8(h) E % and assume that .Ii E HomR(Dj, R) for i=I,2.Then by the

definition of fih 'the domain of .Iih is {x E D;;'2 (x) E D1 } = h-' D1 ; which is a dense ideal of

R. => fi I: EF~8(fi h)E%

=>O(fi) 0 (h)E %
So "." is closed on %
Let 8(.1i), 8(h)E %.Then .Ii EHom.p (Di' R) for i= 1,2; where DI and D2 are dense

ideals of R . Then by remark 9.4, DID2 is a dense ideal of R .

For x E D1 and y E D2, consider .IiI: (xY)=.1i I: (yx)

=fi (h (yx)) = .Ii(h (y)x) ('.:I: is an R - homomorphism).

=fi (x I: (y)) = fi (x) h (y) (":.Ii is an R - homomorphism)

=h (y) fi (x) = h (y fi (x)) (',: h is an R-homomorphism)

=I: (.Ii (x) y) = I: (.Ii (x y )) (":fi is an R-homomorphism)

=hfi(x y)

=t; h(xy)=f2fi (xy) for all xEDI and for all YED2 ----(1)

--
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Let dED] D2. Then d=xlJ'l+x2y2+· .. · .. ····+xnyn' where x\,x2,·····,XnEDj and

Yl,Y2,·····,Yn E D2.

Consider fih (d)= fih (X] y] +x2Y2 +······+xn Yn)

= Jj (fz (Xl Y\)+ Fz (X2 Yl)+" ..... + I: (Xn Yn))
J

=I, (fz (YdxJ)+ fi (fz (Y2)X2)+·····+ fi (.12 (Yn)xn)

=.li (fz ( Xl YI ) ) + fi (fz (X2 Y2 ) ) + + .Ii (fz (Xn Yn ) )

('.: fz is an R -homomorphism and R is commutative)

=hfi (XI Y] +x2 Y2 + +XnYn)= I: fi (d)

:·fifz(d)=fzfi(d) foral! dEDID2

'< fi I: and hfi agree on the dense ideal D] D2 .

=>(fi I: )e(h fi )=>e(fi I: )=B(h·.fJ)

~8(fi )8(12)=8(12 )8(fi)

:. "." is commutative.

Let o (fi )E% a~d assume that fi E Hom R (o; R) , where D~ is a dense ideal of R for

i=1,2,3.
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It is easy to verify that 13-1 (h-1 D1) is the domain of Ui h) hand fj (12h) and

h-I (12-1 Dd is a dense ideal of R and also (f. hJh, .Ii (.12 h) agree on h-I (fil D))

=> (fi12)h e fi (h 13)=>e((fi 12)h}=e(fi (hh))

=>( B(.1t )B(h) )B(.t3 )=B(.ti HB(h) tJ(.f3»)

: .• is associative on %
Let B(/i)E% and assume that .fi EHomR(Di,R) fori=I,2,3. The~ .I1(.h+h)EF

and fi I: + fi hE F ,
I

Since 12-1Dr and 13-1 D( are dense ideals of R: byremark SA, h-1 D( n13-1 D] is a

dense ideal of R .

=fi ((12 +13)(d)) = fi (12 (d)+h (d) )=Ji (12 (d))+ Ji (13 (d))

=I, I: (d)+ f.13 (d) = (fi h + fi f3){d)

=>fi (12 +.h) and fi h + fi .h agree o~ the d~nse ideal /2-1 D( n .h-I D(

=>.Ii (12 + h )8(fi I: +.li h) (By lemma 9.9)

~O(.li (.12+ .l3))=B(Ji I: +.li h)

=>B (.Ii)( 8(12)+ B(f3) )=B(./i)B (h) +B(fi )B(ld

•.+ and. satisfy the left distributive law.

Similarly we can prove the right distributive law also.

Hence % is a commutative r~ng. "

Now we will show that there is a monomorphism from R into Q (R) = %

, I



Let r E R

r r
Define -:R ~R as -(s)=rs for all s E R

1 1

r
Clearly 1is well defined.

r
For any sl, s2 E R . consider 1(Sl + S2) = r (s) + S2)

r:·1 is an additive group homomorphism.

For x,YER. consider f(xy)=r(xy)= (rx)y =f(x)y

r r=>-(xy)=-(x)y
1 1

r r:·1 is an R - homomorphism and hence 1E F

So for each r E R,e( T )E%=Q(R)

. Now define If/:R ~Q( R) as If/(r) = e( f) ·for all r E R .

Now we will show that If/ is a monomorphism.



" ,'.

rl (\ r2 ( ") .: rl r:=>- s'] =- s for all S ER=>- and - agree on R
1 1 "1 I

:./f/is well defined.
,

Let rl, r2 E R . Then r1 + r2 E Rand rl ri E R
1 "

, rl +r2 11]" r2" "=>-"""-""-''''hd -'t- - a'"'ree,Ofli-Dla 1 1 "~" uv .



o - I-=> - () 0 and - 81
1 1

=>If/(O) =e(o), which is the zero element in Q( R).

and If/(I)=B(i), which is the unity element in Q( R).

For any r E R I consider If/(-r) =e(. -r J = - o( ~j; -vr(r)
1 , , 1 /

:.IfI:R~Q(R) is a ring homomorphism.

Suppose r E R such that If/(r)=O{O) => e( f) =B(O)

r - r=>/1 eo=> 1 and 0 agree on some dense ideal D of R .

r---) ,- (d) - 0 (d) for all J eo D.
1

=>rD={O)=>r=O ('," Dts a dense ideal of R).

:.If/ is one - one.

Thus V/:R~Q(R) isa ~onomorphism and hence Q(R) extends R·

9,1 Z Remark : The mapping ~{r--<. & Cn) is called the canonical monomorphism of R into

Q(R)

Let R be a commutative ring and d E R be a non-zero-divisor. Then dR is.a dense ideal of

r dR R r (d ) -. . rR . Let r.E R . Defi~e;a: ~as d' .x =: rx for any x E R . Then it is easyto verify that s=
r r

alfR-nomomorphislU,.and hence dE Hom R(dQ, R) and this 'J is called.,~ classical fraction

assoctated with the dense ideal dR.

7)



9;13 Theorem: The equivalence Classeso( ~). r E R, d not a zero-divisor, from .~SUbring',~

,'._:QfR). which is called the classical ring of quotients of \R and is denoted by Qc/ ( R) .

Proof: Let R be a commutative ring.

. . 'l', -,
, ,

, ", \

d e R~d: ~ is~\>tazero-divisor ,

Claim: 'Qel (R) is a subring of Q(R).

( Ii '\ ( ''2 'J 1', 1'2,' ' ;
Let 8ld,) and 8ld

2
eQc/ (R). Then d

l
and d

2
arefractions. Now d, d2 R is a dense

.
For d,d2se d,d2R. consid~~r d +1)(d,'d;".V)

" ..

/
,.



:. Qc/ (R) is closed under addition and multiplication ..

. '\ 'i. 1"1 1"2
. ..d

l
d
2

and d} d
2

agree on the dense ideal d} d2 R ..

_·(,.s)=( -1')57= ; (ds)

For anyds edR, consider -(~ )(dS) = -(~ (dS»)

(r) -r.:. - d and 7i agree on the dense ideal dR



1 -
Since lER and 1 isnotazerodivisor'l(ls)=ls=s=l(s)

~(}(l) c ~Li(R)

o
It is easy to verify th;:ii: l' and 0 agree on R and hence

Thus Qcl (R) is a subring of Q(R) ,

9.14 Definition: A fraction f defined on a dense ideal D is said to be an irreducible fraction if
,

there does not exist a fraction g defined on a dense ideal G such that D c G properly an(? r):::': f .

(simply a fraction is called irreducible if it cannot be extended to a larger domain).

9.15 Theorem: Every equivalence class of fractions contains exactly one irreduci~efraction and
this extends all fractions in the class, " .

!

Proof: Let e (f) be the equivalence class containing j. For any fi,./2 E e (f) , define fi shAf
. /

and only if DJ ~ D2 where D, is the domain of .1;. for i == 1,2. Then it is easy to verify that (0 (I}, ~)

is an ordered set. Let {.Ii / iE I} be a chain in 8(/) ,Then each .Ii is a fraction defined on a dense
.:

ideal DI of R . Write D C~ l.J D, . Then D is a dense ideal of R '
~(::;: /

Define g: D ~ R 8"3 foltows.

Let d ED· Then dEDi for some i E I .

Put g(d) == fi (d) [If also d e Dj, then .Ii (d)==Ii (d); since fi and Ii agree on o, nDj 1

Since each Ii is an R-homomorphism, it is easy to verify that g; D ~ R is an R -
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homomorphism and hence g E HornR tD, R), Clearly g is an upper bound of {'o/;E I}' So by

Zorn's Lemma, 8(f) contains a maximal element. Let h . with domain H, be a maximal element

in O(f), Now we will show that h is an irreducible fraction, Let C be a fraction with domain L

such that C is an extension of hand H c L ', -

Then ~ = h =>.e and h agree on H => f! 0 h

=> eo f(-: h e 8(f)) => e E O(f)

Since .e E 8(f) and h 5.C and h is maximal in 8(f), we have h=f and L= H. Therefore

h is irreducible. Next we will show that h extends all fractions in 8(f)· Let g EO(f). Then

'.fOg. Since f Oh and f8g, we have gtih . Now g is a fraction on some dense ideal Dt and his

. a fraction on the dense ideal D2" where D2 = H. Then D) + D2 is a dense dieal of R.

Define kD, + Dz ~ R as k(dj +dz)=g(dd+h(d2) for all dl +di E DJ +D2 ' where

d} E Dt and d2 E ~ .

Now we will show that k is well defined

Since gOh, g and h agree on Dl nD2·

:=)g(dd = h(dd=h(-d:d =-h(d2)

=> g(dj)+h(dz) = 0 =:>k(dj +d2)=O

:. k is weli defined.

Since g and hare R-homomorphisms, it is easy to verify that k is an R-homom?rphism

and hence k E Horn R (Dt +~, R). Clearly k is an extension of g and h . Since- h is an irreducible

fraction. we haveh = k , Therefore h is an extension of g .



Thus hextends all fractions in 8(/).

let h' be another irreducible fraction in 8(/) . Since h is an extension of every fraction in

8(/) and h' is irreducible, we have h=h'. Hence 8(/) contains exactly one irreducible fraction.

9.16 Theorem: The following statements concerning the commutative ring R are equivalent.

(1) Every irreducible fraction has domain R.

(2) For every fraction 1there exists an element S E R such that fd = sd for all d ED, the

domain of f.

(3) Q(R) == R canonically.

Proof: Let R be a commutative ring.

Assume (1): l.e, every irreducible fraction has domain R . let f be any fraction with domain D.

Than 8(/) is the.equivalence class containing f. Then bytheorern in 9.15,8(/)contains an

treducible fraction h, which is also an extension of I. By our assumption, h has domain R. Put
I ..' .

1f(1)= s .Then for.any d ED. 1(d) =h( d)= h(l d) = h( 1)d =sd . Thus for I, there exists s e R

such that I( d)=sd for all de D.

So (1)~(2)

Assume (2) : i.e., for every fraction f, there exists an element s E R such that I( d)=si'for all

d ED, the domain of I·

Define",:R ~Q( R) as

.. (r)",(r )=8 1 for allr E R.

Then", is a monomorphism (The proof is given in theorem 9.11)',

Next we will show that '1/ is onto. '

Let 8(/) E Q(R). Then 1 is a fraction with domain D, a dense ideal of R. By our

assumpnon there exists s e Rsuch that I(d)=sd for al/ d e D.
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:.I{/ is onto

Consider I{/(s) = o(f )=0(/)

Hence I{/ is an isomorphism of R onto Q( R).

i.e.• R;;:Q( R) canonically
J ; • :' , '. • ~

'50(2)=>(3)
Assume (3) : l.e., R;;:Q( R) canonicaily.

-=> ~ EB(f)
I '

Let 'I'; R ~ Q( R) be the canonical isomorphism. Let fbe any irreducible fraction. Then

8(/)eQ( R). Since I{/ is onto, there exists S e R such that

So ,(3)?(1)

Now f is irreducible. Since O(.r) contains exactly one irreducible fraction, we.ha~.,q:~t

=:> The domain of 1is R r»: .

Thus every irreducible fraction has domain R
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9.17 Remark: If R satisfies anyone of the equivalent conditions in the above theorem, we say that
R.is rationally complete.

9.18 Remark: We identify R with its canonical image in Q(R ) . Thus we write 8 ( ~ ) = ".

9.19 Remark: For any q EQ(R), put q-IR = {rE ~r E R}' Then q-J R is a dense ideal of R.

For, It is easy to verify that «' R is a~ ideal of R. Since q EQ(R), q=8(f) for some

fraction f with domain D.

=> qd E R for any d ED.

~qDc;;.R=>Dc;;.q-1 R=>q-I R is dense t. D is dense)

9.20 Theorem: If R is any commutative ring, then Q( R) is rationally complete.

Proof: let R be a commutative ring.

C.laim: Q(R) is rationally complete.

'Let <p be any fraction over Q( R) and K be its domain.

Put D={rEKnR/¢rER}

Now we will show that D is a dense ideal of R

Suppose r E R such that rD=(O)

Let kEK.Then ¢kEQ(R).

Put D' = k -I R n(rp kr1R . Then by remark 9.19 and remark 9.4, D'isa dense id~al of R

and «t:c; Rand (¢k) D' ~ R . Therefore ¢(kD') c;;. R. So kD' <; R nK and ¢(kD') ~ R and hence

kD'~.:;;D.

,•..•I"



Consider (rk)D' = r(kD') ~ rD =(O)=>(rk)D' = (0) =>rk=O (.: D' is a dense ideal of R)

Since k E K is arbitrary, we have rK =(0) =>r=O (.,' K is a dense ideal of Q(R)}. Thus,

for any r E R, rD=(O}=>r=O.

Consequently D is a dense ideal of R .

Nowdefine f:D ~ R as f(d}=¢>d for all d e D·

Then f E HomR (D, R)=>B(f}EQ( R)

Now we will show that for any k e K , ¢Jk = B (f) k

Let k f' K and let d' E D' = k -I R n (¢ k rI R

Consider (¢>k)d' =¢ (kd') = f(kd') (': kD' ~ D)

=(B(I») (kd') :;(B(f)k)d'

=>(rf>k-B(f)k )d' =0

Since d' ED' is arbitrary, we have (¢k - e (I) k) D' = (0) .

. ;;Q·¢k - e~/) k =0 (.,' D' is a dense ideal of R).

=>¢k=B(/)k.

Thus forthefraction ,pover Q{ 8) with domain K, there exists B(f)EQ( R). ¢k = fJ(f)k
for all k E K .

-Therefore, by theorem 9.16, Q( R) is rationally complete.

9.21 Remark: If 8(f)EQ( R) and D is a dense ideal ofRsuch that B(/) D=(O), then fJ(/)=O.

For, let 8(f)EQ( R)_ and D be a dense ideal of R such that B(l) D = (0). Let DJ be the

domain of I.

For any d E D and d) ED) , d dj ED. Then by our supposition, B (I) dd, = 0, which is the



, .zero element', in Q( R) ,

~e(f) e( d ~1 ) = e(o)

~o(f(~dl») =0(0)

~ 'I' (f (dd.)) ::::'I' (0 }-;-where'; is the canonical monomorphism of R into Q( R) .

:::)f (ddt) =0 (.: 'I' is·one;. one)

Thus for any de D, d1 e.DJ,f(d4}}::. 0= <>(dd1)·

~f and <> agree. onjbe-Oense ideal DD,

~ f 00:::) O(f)=O(o)

Thus if 8(f)eQ(R) andifD isa dense ideal of R such that 8(f)D=(O), then e(f)=O

9.22 Definition: let S be a commutatjye..ring.. A sub group D of S is called dense if. for any

. s E S; sD=(O)iroplies s=O./

9.23 Definition: :let S bea commutative ring andR be a sub ring of S. Then S is called the ring

of quotients of R if and only if. for all s e 8,s-1 R={r e %r E R} is dense in 8.

9.24 Remark : S is a ring of quotients of R if and only if. for ails e sand t e 8) t :;;0 implies

I(s-I R):;t(Q).lnotherwords,forallseB,forall O:;tteS, these exists re R ~uchthat sre'R

and tr :;t{) :

9.25 Theor&m:l,;etRbe a slibring-ofthe·commutatbte ring S . Then the following three statements
are equivalent: .

{1) S is a ring of quotients of R_,

(2) For all O:;tseS,s-l R isa·dense\ideafof Rand s(s-1 R):;;O.

(3) Thede exists a monomorphism of S into Q( R) which induces the canonical



monomorphism of R into Q( R).

Proof: Assume (1) : i.e., S is a ring of quotients of R. Then for any S E S. 8-1 R is a dense ideal

of R. => for all O:;t:s E S, S -1 R isa dense ideal of R.

Let O-/-.\ <;: S. Since siR is dense in S I we have s(.,·-IR );t(0)

So (1)=>(2)

Assume (2): i.e., for all O:;t:s E S.s-I R is a dense ideal of Rand s(s-l R ):;t:(0)

Let Sf:'S. Define ;:~.-IR~R as'~'(d)=sd for all dES-I R. Th~n·;- is an R -

nomornorphtsm and hence ~EHOntR (s·-I R. R). Consequently e(.~·)EQ( R). So, for any /

Clearly If/ is well defined.

Now we will show that If/ is a ring homomorphism
.

Let sl, s2 E S and assume .5,:;t:0 and S2'; O. Then by our assumption sj-l R 0. and S2'· R

are dense ideals of R. Then by a known result, s)\ R n .si 1 R is a dense ideal of R. Also
-

A-I ( 1 ) ..
82 $1 R IS a dense idealof R ..

=> sl + s2 and ~ +~agree on the dense ideal Sll, R n821 R .
.;,...



~8(l~2) =B(.~)+0(.;;)

.~.V'(81+52 )=O( sl +~ )=B(,~ )---B( ~ )=V/( Sd+ V/(.\'2)

--- --- A-l( _I )=> sl 82 and $1 s2 agree c :~edense ideal S2 s} R

,','1/(.\'\ s2) =(J(.~) =8{ ~ ).B(.;) =V/ (SI ) IfI ('\'2 )

Similarfywecanshowthat cp(~s) =-If/(s) forall s E~~ and cp(I)=B(T) and '11(0)=0(0)

:.", is a ring homomorphism,

Now we will show that VI is one - one.

Suppose s e S such that ",(s)=O in"Q( R)

So '1/ is one - one and hence '" is a monomorphism.

r _ r
ForanY.reR.,-IR=R. Then r(d)=rd=,(d)forall d e Reo r and 1agree on R,



Hence If/~: R ~ Q (R) is the canonical monomorphism of R into Q(R) .

Thus f/I induces the canonical monomorphism of R into Q( R).

So (-2)~(3)

Assume (3) :i.e., there exists a monomorphism of S into Q(R) which induces the canonical

monomorphism of R into Q(R). So we may assume that RcScQ(R). To show S is a ring of

quotients of R, it is enough if we show that, for any S E S, s-I R is dense in S.

Let s e S. Then s e Q(R) and s == B (f) for some fraction .r defined on a dense ideal D

of R. Then D c s -I R . Now we will show that s-t R is dense in S. Suppose t ES such that

t (.~-I R }-,-(O). Then I=O(f') for some B(f')eQ(R) .. Since I( s-1 R)=(O), we' have

8(1')(s-1 R)=(O)=>B(f')D=(O). Then by remark 9.21, B(f')=O and hence 1=0.

Thus t(s-IR)=(O) for any t e S implies 1=0

.'. s - I R is dense in S Hence 51 is a ring of quotients of R.

So (3):::)(1)

Corollary 9.26 : If S is a ring of quotients of the commutative ring Rand D is a dense ideal of. R ,
then 0 is dense in S .

Proof,: Suppose S is a ring ofquotients of the commut~tive ring Rand D is a dense ideal of ,?
Since S IS a ring of quotients of R. by theorem 9.25, there exists a monomorphism of S into

Q{R) which induces the canonical monomorphism of R into Q(R). SO we may assume that

RcScQ(R).
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Suppose IE 51 such that tD~~(01·Since S~ Q( R), t =8(f} for some 8{f}EQ( R) then

:, ;) D=(O). By remark 9.21, (1'(I)=O and hence, =0. Thus for t E S, tD=(O) implies t =0.

Hrorce D is dense in S.

9:27 Theorem: Upto isomorphism over R. Q( R) is the only rationally complete ring of quotients

of the cornmolative ring. R .

Proof: Let S be any ring of quotients of R such that 51 is rationally complete. Now we will show

that Q( R)=S. Since S is a ring of quotients of R, by theorem 9.25, we may assume t~at

R ~ S ~ Q ( R) . Let q E Q(R) . Put D = {S E S / q S E S} . Then q-I R c.D: We know that q -1 R is a

'3',:mseideal of R . By corollary 9.26, «' R is dense in S . Since q-I R cD. D is dense in S. But

LJ ISan Ideai of S . So 1) ISa dense Ideal of ,\ .

Define g: D ~ S as g (d) = qd for all d ED. Then g is a fraction over S . Since S is

(l}ti-onally complete, by theorem 9.16, theTe exists s E S such that g( d) =sd for all d e D. Then

qd=sd for all d e D. Since q-J Rc D is dense in Q(R), qx=sx for all XEq-1 R implies that

,if =8. This implies q E S . Since q E,Q( R) is arbitrary, Q( R)~S .:Consequently S=Q( R). Thus'

Q( R) is the only rationally complete ring of quotients of the commutative ring R.

Dr. V. SAMBASIVA RAO
Department of Mathematics. ,

Acharya Nagarjuna University
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l.e.sson 10 RINGS OF QUOTIENTS OF COMMUTATIVE
SEMI-PRIME RINGS .

10.0 Introduction: In this lesson, it is proved that if R is a commutative ringthen Q( R) is regular

i~and only if R is semiprime. Also it is proved tha! the annihflator iqeals in ~. com.mutative.s~miprime
nng form a Boolean algebra. Further the lower subsetof-afTOrderedset ISdefined and It Is;proved
that the lower sets of a Boolean algebra, regarded as a ring, arEfits annihilator ideals.

10;1 Definition: let R be a commutative ring and K be a sub set of ·R. TheJ'l

K* == {rER IrK=(O)} iscaliedtheannihiiatorofK.

10.2 Remark r K· is an ideal of R.
. ~" .

10.3 Remark: An ideal K of R is dense if and only if K =(0).

1Q.4 Remark: For any sub groups K, and K2 of R.

10.5 Lemma: For any ideal K in a commutative semi: prim~ ring R, we. have KnK· =(0),

*K + K is dense.

Proof:: Let K be an ideal of a commutative ring R f First we showtt)at KnK* =(0).

( .)2. {*r2Consider KnK c K K =(O)=:> KnK . :::{!!J

~ Kn K* is a nilpotent ideal of·R...,.·.

Since R is samt-prtme. by a known result, (0) IS"the onlynitpotent ideal of

~~:.>k ;-'i K* -(0).

"-
Next we will show that K + K* is dense.

Since K* is an ideal of R, by the above proof, we have K* nK*· =(0) . But
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* *
(K+K*) =K*nK**~(K+K*) =(0)

. ~ K + K* is a dense ideal of R.

HUi Theorem: If R is a commutative ring, then Q( R) is regular if and only if R is semi-prime.

?;-oof: Let R be a commutative ring. Then Q( R) is also a commutative ring.

Assume Q( R) is regular. Since every commutative regular ring is semi primitive, Q( R) is

semiprimitive. Then Rad(Q(R))=(O). Since rad(Q(R))~ Rad(Q(,R)), we have

, rad(Q(R))=(O)=:>Q(R) is semiprime =:>R is semi prime.

Thus if Q( R) is regular, then R is semiprime

conversely suppose that R issemiprime.

To Sh0W Q(R) is regular, it is enough if we show that, for B(/) eQ(R), there exists

If')e{2( R) such that e(jle{f') e(l) = e(I). i.e., B(l I' f) =B(f)

i.e., f 1'ff)f·

Let e'(f)eQ( R). Then f is a fraction with domain D. a dense ideal of R. Let K be.the

Kernei of f. Then K ~ D . Since R is semi-prime, by lemma 10.5, K nK* = (0) .

~ D n K n K* = (0) =:> The restriction of f to D n K* is a monomorphism.

Write E = f (D n K*). Then E is an-ideal of R By lemma 10.5, E + E* is a dense ideal of R.

Define f': E + E* ----+ R as follows.

Let x'E:;E + E* . Then X= I( d)+r, where I (d)ef(Dn K~) and re E* .

Define fl(x) =d. Then f'(f(d))=d and 1'(r)=O,

First we show that.t-:-p is well defined
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Suppose x1=f(d])+r] and x2=f(d2)+r2EE+E* such that

*=>d] =d2 ('.: f is a monomorphism on Dn K )

=>/'(X1) =f'(X2)

.', f' is well defined.

It is easy to verify that t' IS an R-homomorphism.

* '-
.'.f' is a fraction over E + E =>B(f')EQ( R)

By Lemma to.5,K + K* is a dense.ideal of R. Since K:+ K* and D are dense ideals of

R, we have Dn( K + K*) is a denseideal of R. By modular law, K +( Dn K*)= Dn( K + k*)

. => K +(Dn K*) is a dense ideal of R.

For any x = k + d E K +( D nK * ) , ..consider f I' f (x )

= ff'f(k+d)= ff'{r(k+dH

=I .f'(f{k)+f(d))=//'(/{d}) (':kEK and K is the kernal of /.)

=f(f'(f(d)))=f(d)=f(k)+ f(d) =f(k+d)=f(x)

=>f.f' / al}p / agree .on the dense ideal' K +( D n K * ) .

=t>If' f Bf =>B( If' f )=8(f)=>B'(.I)B(f'}B(I)=B(f)

.Thus forr,(}(f) E Q,GR) , there exists ()(f')E Q( R) such that

8)



. B(f)B(F)B(f)=·e,(f)=>Q( R).is regular

Hence the theorem is proved.

10.7 Lemma : For any subsets ,K;ary.d.J of a commutative r(n~ R, w~ have

(1) * *.KcJ=>J cK
;" j :-- -

(2)

(3)
" .
'.~ .,

Proof: (1) Suppose K ~ J

Let x E./· Then xJ =(O)=>x K =(0) t: K ~J)
- • • .1, 't •

*=>xEK

* *: ..1 ~K r ,

(2) * * **Since KK = K K =(0), we have K ~K ,: .. :~'~\

(3) ,,.., .

.'
Again by (2), K* ~ K*

10.8 Definition: Let R be a commutative ring. An ideal .1 of R is called an annihilator 'ide-alof R

if J = K* for some subset K of R.

Note that for each subset K of R, K* is an annihilator ideal of R. If J is an annihilator
," • i " - :: ~ '-.' !".:- .".;:~ -: -. \ ~, "1, "~~4~.':; ";'-, '-':

• • _.' .'. I, ":; *
ideal of R, by lemma 10.7, J =J*

. , - ~,"__ . '.',: ..., '. ~~ . 90.': -':~': ..,
10.9 Theorem: The annihilator ideals in a commutative semi prime ring form a complete Boolean

alqeb.: n* ( R) ,.wtih, intersection as inf and ,* as complementation. "
t l , i,"_'
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... *, '.
Proof: Let R be a commutative semi-prime ring and let B CR") be the set of all annihilator ideals

of R.

It is easy to verify that B* (R) isan ordered set under set inclusion [Here the ordering on .

B*(R) is defined as AS;B if and only if A~B for any A,BEB*(R)]. For any family {KiIiE!}

*
of subsets of R, 'it is easy to verify that n K; = ( L KiJ . Then the intersection of any family of

iEI iEI

annihilator ideals is again an annihilator ideal of R and it belongs to B* (R). Hence B* (R) is a

complete semilattice with intersection as inf. To show B* (R) is a Boolean algebra, it is enough if

* . . *' *weshowthatJnK =(0) ifandonlyifJcK foranyJ,KEB (R).LetJ,KEB (R).Suppose

J<;;;,K. Then JnK* cKnK* =(O)~JnK* =(0).

Conversely suppose that In K* =(0)

i..

Hence B* (R) is a complete Boolean algebra.

10.10 L~m~a :iiM R isan R-submoduleof Q(R) and if q(Aln R)=(~), q E Q( R), then qM =(0)

Proof: Let M be a right R-submodule of Q(R) and qEQ(R) such that 'q(MnR)~(O). Let,
... , .::.:.. ,1ff' .' '. .

mEM. Then D=m-I R={rERlmrE-«} is dense in Q(R).Now mDcM and ri1D~R and

so mDcMnR.Consider qmDcq(MnR)=(O)
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~qmD=(O)~qm=O (·,'D is dense in Q(R)).

Since m e M is arbitrary, qM =( 0).

10.11 Theorem:Themapping K~KnR isanisomorphismof B*(Q(R)) onto B*(R).

Proof: Let S* ( R) be the lattice of all annihilator ideals of Rand S* (Q (R)) be the lattice of all

annihilator ideals of Q(R) .

Claim: If/ is a Boolean isomorphism.

First we show that, for any K E S* (Q( R)), K nR E S* (R). Let K E S* (Q( R)). T1E'r1K

is annihilator ideal of Q(R). Thisimplies K =K** . write M =K*. Then M is an ideal of Q(R) and

consequently an R-submodule of Q (R). Now we will show that K nR =(M nR) * .

Let r E K nR. Then r E K and r E R~r E M* and r E R =::;,rM=(0) and r E R.

Since Mn R~M, we have r(MnR)=(O)

. *
Conversely let xE(MnR) . Then x(MnR)=(O).

By lemma 10.10, xM =(O)~x E M* and x E R·
.-.\,.



~esson: ~I ~)~~~~~~~~[:= RiRiin!ngiSsaanndd~M;;oo:thduJiEle;Ss ~

TLshowthat for any K E B' (Q(R)), \I'(K)EB' (R)

Clearly 1// is well defined and 1// ( 0) = 0 .
.1

Next we will show that, for any K E B* (Q( R)), 1//(K* )=(1//( K)f

* *Le., K nR=(KnR)

~ . .
Let K E B (Q( R)). Then K is an annihilator ideal of Q(R).

- Let x E K* nR => x E K* and x E R => xK =( 0) and x E R .

*Conversely suppose that x E (K nR) =>x(K nR)=(O) and x E R

~xK =(0) and x E R (By Lemma 10.10)

* * * *:. ( K nR) c K nR and hence K nR = ( K nR)

Hence 1// is a Boolean homomorphism.

Next we will show that 1// is one - one.

Suppose K E.B*'{Q(R)) such that IjI(K)=(O)~KnR~(O)
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, *( \ * *Since K E BQ(R)'j.wehave K=M whereM=K

" *,,' *'
Then KnR=(MnR) =>(MnR) =(0)

, .

If possible suppose that K * (0) . Choose r E K such that r '* 0 . Then

So. K=(O). Thus Vf(K)::(O):::>K=(O).

Hence Ijf is one- one.

Next we will show that Vf is onto

t""

Write K ={q E Q( R)/ qJ =( O)} Then K is an annihilator ideal of Q( R). Now we show that

* ,* 'J . = K (I R . Consider x E J Q x., =(u) and x E R <=> X E K and x E:? <=> x E K nR .

Hence 'f/ is onto.

Thus 'f/isan isomorphism of i/(Q(R)) onto B*(R).

10.12Theorem: If R is commutative semiprime and rationally complete. every annihilator ideal of
R is a direct summand. ',;"

Proof: Let R be a cOmmutative ser «prime and rationally compietetog .and Kijbe .an ~nn,!.~ila,t0r.~'
ideal of R.

t,r'-·'

Since R is a commutative s.vmprfrne ring, by lemma 10.5, T( + K* is a dense ideal of R.
,_·~tf..·. s ;·i~,. "f~~

Define fi K + K* ~ R as f(a+h)=a for all a+b e K +K*. where a E!": and b e K*' It is
• ! _ .' 1 ;jj I .3r.:' ." 11;' .

easy to verify that f is an R~homomorphism and so f is a fraction over R. For any a.~ K ,.((a )= a



and for any bE K*, f( b)=0. Since <'K+K* is dense and.since R is rationally complete, by

theorem 9.16, there exists an element e E R such that f( a+b )=e(a+b) for all a+b e K + K*
; ~ ..

=>a=e( a+b) for all a +b E K + K* and f( a )=;a for all a E K· For any a +b E K + K* ,consider

a= f(a+b)=e(a+b),

=>e2,(a+b )=ee( a+b )=ea= f( a) =a=e( a+b)'

. .. *
( .: K + K is dense)

Since a = f (a ) = ea for any a E K . we have K ~ eK . Clearly eK ~ K . So K = eK ~ eR .

Since f( a+b )=e( a+b) for any a+b « K + K* . we have f( b)=eb for all b e K* . Since
" • ',' '. J;" . . *

r(b)=O foranYbEK* we have eb=O for all bEK

=>(I-e)K* =K*

.', K* = (l-e)K* ~(I-e)R

We know that eR~(I -e) R= R => eRn(l-e) R=(O)

~cR(l'c) R oc:(O)~cR~( (1 c) R f ~ K** (-: K* ~(l-e) R)
";. . ;" '

•*=>eR~K =K C· K is an annihilator ideal)
I,' ,C', .j

.'. K =eR and hence K is a direct summand of R.

10.13 Corollary ':"If R is commutativeseh,i prime and rationally comple~~1 then B* (R)=:B(R) I '

the Boolean algebra of central idempotents of R .
. ~r:~:\. . lOt.-.

Proof: Let R be a commutative semi prime a.nd rationally complete ring. Then ,/ ( R) . the farrily,
- ~ •• ~~ f'! - ' ,

of all ann~,h,ilatorideals of R , ~"~a Boolea~ .7lgebra and ~~). the ~et o~'all central idernpotents o!.

R , is a Bbolean algebra.



Define If/:B{R)~B*(R) as If/(e)=eR for all eE B(R),

; 'Since R=eREB{l-e) R for any e'E B( R), we have eR n(l-e) R =( O)~eR(l-eR)=(O)~ '.,:

*=>eR=((l-e)R) for any eEB(R)

~ eR is an annihilator ideal of R and hence eR E B* (R) for all e E B( R),

Now we will show that If/ is an isomorphism,

Ciearly If/(O)=O.

For any e,j E B( R), If/( ej)=~fR=eRn ,fR=lf/( e)nlf/(f)

Let e E B( R). Then l-e is the complement of e.

* *Consider If/ (e') = If/ ( 1-e) = (1-e) R = (eR) =(If/ (e) )

. *
:.II'"(e')=(If/(e)) for any eE B(R}

Thus If/ is a Boolean homomorphism.

Next we will show that If/ is one-one,
, ,

Suppose e.f E B(R) such that If/(e)=If/(f)

~eR=jR

smce; c.cR , we have c c [R 7> e -:.Ii' for some r E R '
, .

Similarly f =es for somes E R, '

Consider e = fr =t. fr ('.:f is an idempotent)

'T, j',e 'F.e f =e e s=e s = f'
.:" '. . .

=>e= l

.'.If/( e)=If/(f)=>e=f

So II'" is one - one,



~Lesson : 10)
:~~i.•.•• '.

Next we will show that If is onto.

Let k E B* (R). Then K is an annihilator ideal of R. Then bythe above theorem, K'isa

direct summand of R. This implies there exists an idea J of R such that R=K +J and

K nJ = (0). Now 1E K + J => 1= e +1 for some e E K and 1E J. For any x E t: and. y E J ,

XYE KnJ. Then xy=O. Now l-e=f E J.

Consider e (1- e) = ef = 0 => e2 = e => e is an idempotent. ClearlYeR. c:. x.

Let x E K . Consider (l-e )x= 1 x=O=>x=exE eR

•• K c;; eR and hence K = eR

Now consider Ij/(e) =eR = K => If is onto.

Hence If:B(R)~B* (R) is an isomorphism.

. ,.,*;1.,' ""
10.14 Corollary: If R is commutative semi prime, them B (R): B(Q( R)): B(Q( R)).

Proof: Let R be a commutative semiprime ring. Then by th~orem 10.6, Q( .R)i~regular. Since

Q(R) is a commutative, regular ring, bya known theorem, Q(R) is semipnmltlve arid hence

Q( R) is semiprime. By theorem 9.20, Q( R) is rationally complete. Since Q(R) is commutative

semiprime and rationally complete, by corollary 10.13, B* (Q( R}): B(Q(R)). Also 'by theorem

10.11, B* (R):B* (Q(R)). Hence B* (k}=B*(Q(R)):B(Q(R)).

10.15 Lemma : If R is a Boolean ring, then Q(R) is a Boolean ring.

Proof: Let R be a Boolean ring. Let B(f)EQ(R). Then f E Homk (D;R) for'some,dense'ideal

D of R. Then f2 is defined on D2 and D = D2 (.,' R is aBoolean ring)~,

For any dE D, consider 12 (d)= 1(I(d))=/(f(d. d)}

=f(f(d)d) C·f E Hom e (D,R))



=f(d)f(d)

'=(f(4))2 =/(d) "(.,'R isa Boolean ring).

:.Q(R) is a Boolean ring.

Hence the theorem.

Let (S,~) be any ordered set. Wi!h any subset X of S, we associate XV =the set of all

upper bounds of X and X/\ = the set of all lower bounds of X. Write (xv r =Xv/\ and

1Q.16Lemmat Let (S,~) bean crderedset and X, Y be subsets of S. Then

Proof: Given that (S,~)is an ordered set and X and yare subsets of S

Let' :i~yv."fh~n'z i~.ah upper bound Of Y=>y ~ z fo( all y'E Y:.- =>x <z for all

x E X (-: X S;;;;; Y) => z is an upper bound of X .n." ..



Similarly we can show that yA ~XA

(2) Let x EX· Since every element in XV is an upper bou!1d of X, we have x s z f~r all

z ~ XV =>x is a lower bound of XV =>x EXVA

Since x E X is arbitrary, we have X ~XVA

1 .

Similarly we can show that X c XAV

(3) From (2), we have XV ~XVAV

.' t.:--~·'"

Again from (2), X c XV A. Then from (1), we have

.,

Similarly we can show that X"'VA =XA

10.17 Remark: From lemma 10.,16.,ihs easy to verify that \/ 'i\ and' 1\ v are closurerepesations oh
the set of all subsets of S.

10.18 Definition : Let (S, s) be an ordered set. A sub set y of S is called a lower set if y = X A

for some subset X of S . '..:

10.19 Remark: By (3) of lemma 10.16, y=yVA

10.20 Theorem: The lowersets of (S:.,s) form a compl~telattic:ejD,J$)" Thep~nol}iggLrnappjJlg

Jl:S---+D(S) defined by Jl(x)= {xrA has the property that x s y iff #(~)C::Jl(Y} for any

X,YE S; thus (D(8)'c )~a¥:be regarded as ~n.exten~!~~, of (S'~): MOf~?ver~~,c.~ ~Is~mentof

D( S) is the sup and inf of subsets of Jl (S) . , '.:,.,c "

Proof: Let (S,s) be an ordered set and D(S) be the set of all lower sets of S. Clearlx 1)(S) is an

ordered set under set inclusion.

Let {Ya}aEL'1 be any sub class of D(S)



'" Since each Ya is a lower set of S, we have Ya = Y~ /\ for all a E 11. By Lemma 10.16,

Suppose x E ( n Ya)V /\ => x :S Y for all Y E ( n Ya _)V
aE~ aE~

Fix f3 E 11. Then each upper bound of 1f3 is an upper bound of nA Ya ~ x is a lower_ aEu

bound of Yp

Since f3 E 11is arbitrary, we have x E nA Ya
aEu

~ n YaED(S)
aE~

Clearly nA Ya is the infimum of {Ya }aE~aEu _

Also clearly S is the greatest element in D( S) . So D( S) is a complete lattice'.

Define ,u:S~D(S) as ,u(x)={xr-" for all XES·

Clearly ,u is a mapping.
I'

First we show that x sY if and only if ,u(x) S ,u.(y) for any x, yES.

Let X,YE S
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=> fl( x )Cfl{Y)

Conversely suppose that ,u(x)~,u (y)

=>{yr ~{xr => for IES, y-.5,1 implies that x s;»:

Since y ~ y , we have x ~ y .

Thus for any X,YES, x~yifandonlyif,u(x)~,u(y).

Now we will show that ,u is one - one

Suppose x,YE. S such that fl(X)=,u(y)=>{xrA = {yrA

=>{xrAV = {yrAV => {xr = {vr (By lemma 10.16)

=> x =y

:.,u is one-one. Hence (D(S), c) is an extension of (S, s).

Next we will show that for X E. D (s) ,X is the supremum of some subset of f.1S and X is

the infimum of some subset of f.1S.

Let X E.D(S). Then X is a lower set of S =>x =XVA.

First we will show that X =sup {fl (s) / f.1(s)~ X} .

Clearly X is an upper bound of {f.1( s ) / ,u (s) ~ X}

. For any S ES, f.1(s)cX



(, {}V/\)" .•.: S E S \ , ----~--- (1)' .

SUpp~~~ YED,(S)SUchthai Y is an upper bound of {,u(s)/,u(s)~X} Then for any

s:,ES. ,u(s)c;X ;p(s)cY, That is. for~ny SES,SEX~SEY.
. "'r,i:, { .

.. ,x ~ r, Thus X =sup{,u(s) I ,u(s)c X}

Next we will show that X = In! {,u(s) I X £; ,u(s)}
. ,'.

Clearly X is a lower bound of {JL(s)1 X £JL(s)}

~ for t E S. S ~ t implies t E XV

Since s:::::;s, we have S E Xv.

Also if S E XV and S ~ t • then t E XV (':: ~ is transitive)

,;. X elf (s) if and orilyif S E :yV for' any s e S ----------- (2)

Suppose Y is a lower bound of {,u(s) I X £JL( s)} . Then X £ ,u(s)~ Y £,u( s).

i.e., S E XV ~s E yV (by (2»

This shows that XV ~ yV ~ YV /\ ~ XV /\ ~ Y ~ X (.: X and Yare lower sets of S).

:.X is infimum of {JL(s) / XCJL(s)}

10.21 Remark: D(S) ,is called the Dedekind - Mac Neille completion of S:

10.22 Theorem: The lower sets of a Boolean algebra, regardecj as a ring .R . are. its annihilator
. - ; '"

ideals, that is D(R)=B* (R)

Proof: Let R be a Boolean algebra. Then R is a Boolean ring and the ordering:::::; on R is a:::::; b
if and 'mly if a= ab . ,,,



l

Let K be any subset of R. Now we will show that for any r E R, r E KV if and only if

*l-rEK .

Let r E R . Suppose r E KV if and only if r is an upper bound of K i1and only if k ~·r for all
, ,

k E K if and only if k =kr for all k E K if and only if k(l-r )=0 for all k E K if and only if i -r E «'

*•. r E KV if and only if 1-r E K

Next we will show that x E K* if and only if 1-x E KV .

Consider x E K* if and only if xk =0 for all k E K

if and only if (l-x}k=k for all kE K if and only if l-xE KV ,

•. x E K* if and only if 1-x E KV ,
, .

**Now we will show that K = KV /\

** / *
Let S E K ~ sl =0 for all IE K --------- (1)

For any «« «>. l-xEK~. Then by (1), s(l-x}=O foranyxEKv~s~x for any

Conversely let r E KV/\ ~r is a lower bound of KV.

~ r ~ x for any x E KV
------- (2)

For any Y E K*, 1- yE KV . Then by (2), for any y E K* ,

r 51- y~r=r(l- y} for any y E K* ~.. " .

, ~. '.~~... .,; ....... ;'\.• . ~•.i .

• .*~ ry = 0 for any Y E K ~ r E K



Suppose K ~ D (R) if and only if K is a lower set of R , if and only if K = KV
/\ if and

only if K =K** lfand only if K is.an annihilator ideal of R if and only if K E B* (R).

10,2~ .obr~llary:If R is.a Soolean ring, then its Oedekind - Mac Neille completion is
isomorphic over R to its complete ring of quotients.

,Pr.o,of :l.et R bea.Boolean ring. Then R ls a commutative semiprime ring. By corollary 10.14,

B* (R)= B* (Q( R))=B(Q( R)). Since R is a Boolean ring, Q( R) is also a Boolean ring. Then

B(Q{R)'=Q(R).$ince R is a Boolean ring, R is also a Boolean algebra. Then by theorem

10.~2, D(R)~E"'(R'). Hence D(R)=Q(R).

Dr. V,SAMBASIVA RAO
Departmentof Mathematics

Acharya Nagarjuna University
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Lesson - 11 Prime Ideal Spaces
11.0 Introduction: In this lesson, the properties of the topological space of all prime ideals

of a commutative ring are studied. If rc is a prime ideal space of a commutative ring R such that

I1rc = (0) , then it is proved that the complete Boolean algebra of annihilator ideals of R is isomorphic

to the complete Boolean algebra of regular open subsets of rc . Further it is proved that a Boolean
algebra is isomorphic to the algebra of all subsets of a set if and only if it is complete and atomic.

A topological space is a system (X, T) where T is a set of subsets of X which is closed

_under union and finite intersection. The elements of Tare called open sets. Thus we havetl'le
following:

1. Any union of open sets is open (In particular, the empty set is open).

3: X is open.

A topological space is called compact if any family of open sets which-covers the space
con~ains'annitesub fam:ily which already covers the space. A set is called closed-if its complement
is open. The, closure-ofa set is the intersection of all closed sets-containinq-it. .

Throught this lesson rc denotes the set-of all prime ideals- of a commutatlverlno Runless
otherwise stated.

111',1 'De:Finitiron : Let R be a commutative ring,. Forany subset AI of R, define

r(A}.= {p E Tr I A'f6PY.

11·.2 Reni·arl<:: I' (A) = T ( A') , Where; A' is the intersection of all prime ideals of R containing

A , hence an ideal of R. Thus for each subset' A of R , there exists an ideal B' of>R such that

r(A)'= F(B).·

11.3 Theorem: Tr becomes a topological space, iLa'sopensets,we takeatl sets of the form

I" (A) = {p ETr I A g;;p} , where A is any subset of R . If Tr contains allmaximal ideals, then Tr is

cornmpact.

Proof: Let R be a commcitative,lring·; and zrbe the: set of/all prime-ideals: of R:.

By remark 11.2, T = {r~A) I A is an idealcef R}.

~ Claim: T is a topology on Tr .
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Let [r (Ai) / i E l} be any sub familyo(,T. •., .. :

Consider .u r(Ad = {PEJr / Aiq;,P for~ome iEl}
I E I .' ~"~~; : '., i

,..:',

. f •• ~",.

. " ; "'u r (Ai)E T
i· ,I"-
'.' ,,' "'.r " : .: :.l ._.

. ,\ ie!
,..,,' :

""

So T is closed under arbitrary unions.
. '

Let r{A), '1 (B) E T':'
',' . ', ,.

':-" . ",_ " :: <: 'f~}-
'- t?, .

Consider r(A)nr(B)={PEJr/A~Pand B~P}

, ;

. :\

.'.-' :

, ."
"'. ':;} ':'1

.Consider T (R) =: { P E'lr,/ R CJ:.P }:=Jr ... ,.
.,:

~ . • ..... ., ~ s ':..• ~ '-j~'f~: <

So T is a topology on Jr and hence (Jr,T)is a topological space.
. '. .. ,.;~.

" '

or, ~ .

Suppose Jr is the class of all maximal ideals of R .
.f. ': ' :,,";.

Then (Jr.T) is a topological space.
'. '". ,'",. _.:: .,. : ' • .".:':~' "~ '" ; r., '. '

" '

. "'. ); •...

, Now we will S9?W that '! is coillpact.~. . . .'~ ,

Suppose [r(Ai) / i E I} is an open conver for Jr. Then Jr = :ul;r(~~)'== r (~ Ai~ ~>:~. Ai
, IE IEJ j lEI

is contained in no maximal ideal of R and so 1 E L Ai .
iEI

,
. ~-"

I



=> 1= ail +ai2 + +ain for sornee.. EAiJ'O'where l:s;J:S;n'
. J

. [ J .n • n' n

~ R = .L Aij ~ 7r = r (R) = r ~ Aij = ~ (Aij )
J = I J=I J-I

I

=> 1[ is compact.

11.4 Remark: For any subset A of R, r(A)= U r(a), thus the sets r(a) form a basis
\ aEA '.' .

of the open sets of " , in the sense that they are open and every open set is a union of basic open
sets.

11.5 Remark: I' is a mapping from the set of subsets of R into the set of subsets of 1[ .
" .. :-~.. '

11.6 Definition: For any sub set V of n , define ~ V = n p
i . . p~v

11.7 Renark: ~1[ is the prime radical of R , depending on whether 1[. is the set of all prime
- -... . "

ideals or only of all maximal ideals of R .

11.8 Remark':': Kis':a'~'a'pping(rom the set of a'lI'subsets ofir into the set of subsets of R.

11.9 Definition: Let V be a sub set of a topoloqicalspace x. :Th~.union of.all.open sub

sets of X contained in V is called the interior of V, The interior of the complement of V is called

the exterior of V .

11.10 Remark: We denote the interior of V by Int (·r) and the exterior of V by Ext( V ).

11.11Theorem: For any sub set V of " s . I'~V is the exterior of V. If ~,,=0, then for any

subset A of R, D. F A is the annihilator A* of A . ~.•...

Proof: Let V be a subset of 1[ .

Consider QE rD.V <=> ~ V <;I, Q <=> there exists r E R such that r E P for all P E V and

r fj:. Q <=> Q E r (r) and P ~ r (r) for ail P E V and this~eansth'~t th~r~ exists ~ basic open set

r(r) containlnq Q and r(r )nv =; <=:> QEr(r )c V) ,whi~his the complement of V

. ~Q.r=!nt(V') PQ~~xt.(V). .; "
-";'!:.-.

Thus r ~V= Ext(V)
~~':. '" _ ,J,:... , \.~.
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Suppose ~Jr=(O). Now we will show that ~r A=A1', the annihilator of A;for any subset

A of R,

Let A be a subset of R .

Suppose r E~r A ~ r E P for all PEr( A).

~ rE P forall P E Jr such that Ag;,.P.

~ for all P EJr , A g;,. P implies r E P .
\

=::;> rA~P for all PEJr =r rA c f'::.Jr => rA=(O) C·' f'::.Jr= 0)
/

*~rEA

*:·.~rAcA

Conversely suppose that r EA* ~ rA = (6) => rA c~ Jr

=::;> fA ~. P for all PEJr

~ for p E TC , Ag P impliesr E P

=> r E P for all PEr (A)

=> r E ~r A

* .' . *.. A ~ ~ r A and hence ~ r A = A

11.12 Definition: A subset A of a topological space X is called a regular open setif A

is the interior of A, where A is the closure of A .

Remark 11.13: Let A bea subset of a topological space X. Then A is a.regular open set

if and only if A is the interior of some closed set if and only if A is the exterior of some open set.

For, let A be a subset of a topological space X. Suppose Ais a regular open set. Then.
- -

by definition, A is the interior of A. Since A is closed, we have A is the interior of the closed set

A. SO A is the interior of some closed set. Conversely suppose that A is the interior of B for

some closed subset· B' of X .: Then A ~ B =::;> A ~ B .

=> In! (/i) ~ In! (B)



~lnt(A)cA(-: A=Int(B))

Since A <;;;;; A , we have In} (A ) <;;;;; lnt (A ) .

Since A is the interior of B, which isan open set, we have A = Int ( A) .'

:. Int(A) ~ Int(A) ~ A ~ Int(A)

So A=Int(A) and hence A i's a regular open set

Thus A is a regular open set if and only if A is the interior of some closed set.

Next we will show that A is the interior of some closed set if and only if A is the exterior of
some open set.

Suppose A is the interior of some closed set B.

Write C =B' . Then C is an open set and A is the interior of the complement of C. So A

is the exterior of the open set C .

Conversely suppose that A is the exterior of some open set G. Then by definition, A is

the interior of the complement of G. Since G is open, Complement of G is closed. Hence A is
the interior of some closed set. Thus A is the interior of some closed set if and only if A is the

exterior of some open set G .

11.14 Problem : For any subset E of topological space X , (Int (E))' = E'

Solution: Let E be a subset of a topological space X.

Consider x E(Int (E))' ¢::::? xrt. Int (E) ¢::::? for every open set G containing x, G C};.E ¢::>

For every open set G containing x , there exists yE G such that yrt.E <=:> for every open set G

containing x, G n F' i: ¢ <=> X E E'

:. (Int( E))' = E' -;

11.15 Problem : Show that the interior of any closed set is the interior of its own closure.

Solution: Let X be a topological space and A be a closed subset of X.
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,CI~im: Int(A)= Int(Int(A»)
. ',' ,. ~.: >.' : ~~,

" ,

Suppose x E im (inl (A») =? there exists an 'Open se.t'G

such that x E G ~ Int (A) ~ A = A (": A is dosed) , r :

=? X ,E G ~ A =? x is an interior point of 1- ,=>, x ,~ I'lt ( A) 'ii,

:. Int (Int( A») c Int(A) ,',

Clearly int(A) ~ int(A)

Since Int(Int( A)) i~ the lar~~st ope~ s~:t contained"in I~t( A)'a'nd since ;~~(~) is an

open set contained in 'Int( A),'~e h~~e Int (',A) c Int( In~'(~)\).
, "

:. Int(A) =int (lnt (A))
y .j, ,'I- ; . ", .

11.16 Problem: If A is a regular open subset of a topological space X, then show that

Ext(Ext(A»=A. ' . Cd', ' ,.'",",

Solution: Let A be a re,gula,ropen.subset of topological space X .. Then.,A,=1nt(Vi).

Consider Ext ( Ext (A) ) = Ext Uht (A')) = Int ((Int (A'))' »i';;

= Int( (A')'} (By pr~blem 11.14)

= "" ("A) = A
. ':,,-

,', .i ,

Thus Ext ( Ext ( A») = A .

11.17 Problem : Prove that the regular open sets in any topological space form a Boolean
algebra.;";;; . .',;' , ', -

Solution : Let x be a topological space and ciY{ be the set of all regular open sets in X.
~ ".f .
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Claim: ci./t is a Boolean algebra.

Colearly ci./t is an ordered set under set inclusion.
-; ~

Let A, BE rYf. The A = tnt{A}andB=Int( s}

=:> A n B= Int(A) n lnt( s) b.1nt(Ans).' , .
.: J'

By remark 11.13, An B is a regular open set. So An B E rJ(" .

Define * on r:)'f/as A* =Ext(A) for any A E'-'Yf. \ '

Let A E r)(. Since ;ev~r:jregUlar, ?~~n set ,i,~an ~p~n;.~~t, A .is,an open set.

Consider A* = Ext ( A) = Int( A'); which is interior of the closed A' =:> A* is a regular
open set (By remark 11.13) : : ; .: ~'- ; .". .:,fj'". , " "

*=:> A E rYf

:. * is a unary operation on rYf.
~i~~"~ .~; .;,;,.. 2'" ..' ..' h. "':i'~(::":'\ "

,",
!;. ..:--.~;"~

Since ¢J = Int( ¢) and X = Int( X), we have t/> , X E rYf.

Next we will show that AnB;~ k. rP SA'c;;;;, B 'for any A, BE·f.Yf.

Let A, BE r)( Suppose.A np~=. t/>: =i A nExt ( lJ)i::;:::¢!' 'i •. ,

=:> A n Int (B') = t/> =:> A ~ (Int( B'))' = (B')' (By problem 11.1~)
i'

=:>A~ B

Since A is an open set and Int ('8) is the largest open set contained in B, we have

A~ lnt( s).
\ ~. ,

",.i,.~'.'-" :/:~ ': '" :;" ''.,;~:.~~.,:;~ ":.,, ';_')~ 'cf'h; ~'~l'< ~", f .. ~~qt".~i;' s .

, :::.:> A C B (-: B is a regular open set)
,', ._,
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Conversely suppose that A c B . Then An B' = ¢

Thus for any A, B E C'Yf, A n B * = ¢ ¢:::;; A <;;;; B

Hence r/'{ is a Boolean algebra.

11.1~ Theorem: If lC is a prime ideal space of the commutative ring.R such that ~lC =( 0),
I' is an isomorphism of the complete Boolean algebra of annihilator ideals of R onto the complete
Boolean algebra of regular open sets of n . Moreover, if lCcontains all maximal ideals of R , T
induces an isomorphism of the Boolean algebra of direct summands of R onto the Boolean alqebra
of the (simultaneously) closed arid open sets in lC .

Proof: Let R be a commutative ring and lC be a space of prime ideals of R such that I:1lC =( 0):

By theorem 10.9, B* (R), the set of all annihilator ideals of R, is a.cornplete Boolean

algebra and by problem 11.17, the set rY( of all regular open sets in lC is a Boolean algebra.

= i~ (il:1(i(A)))= Ext ( Ext(i{A)))

=> J(A) is a regular open set.
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= L'lr L'l(rL'l( r L'l(V) )) = L'lr L'l( Ext ( Ext (V) )) = L'lr L'l(V)

(... V is a regular open set)

=> L'lr L'l(V) is an annihilator ideal of R

So L'lrL'l(v) E B* (R) for any V E rY(

First we show that r is a Boolean homomorphism.

For any A, BE B*(R), consider r(AnB) = {PEn/AnBq;p}

={PElr/ABq;P} = {PElr/Aq;P and Bq; p} = r(A)nr(B)

• => r(AnB)=r(A)nr(B)

Consider r((O))~{pcJl/(O)5bF} =-¢

=> F ((0)) = ¢ I which is the zero element in r/(

Let A E B* (R). Consider r( A*) = r(L'lf(A)) = rL'l(r(A))

= FXf(r(.4)) => r(.4*) = (r(.1)f I which is the complement of r(A) in rit

.'. I" :B* (R) -:+ rX is a Boolean homomorphism.

Next we will show that rand L'lr L'l are inverses to each other.

For any AE B*( R) I consider L'lr L'lr( A) = L'lf (L'lf (A))

=L'lf( A*) = A**= A{: A is an annihilator ideal of R)

'=> g:L'lr(A) = A for any AEB*(R).

For any V E r'X; consider fL'lfL'l(V) = rL'l (fL'l (V))

= fL'l(Ext(V)) = Ext(Ext(V)) = V (": V is a regular open set)



=> r ~r ~(v) = V fer any V E r'Y(

.:r and .t\rl~are inverse mappings to.each ether.

Hence -r,is an isomorphism:

·ASSUI119 .1C is the .space of all maximal ideals of R .

F;"irst\l\(eshow that an ideal A of R is a direct summand of R if and only if Alsan .

*annthileter ideal. of'R fer which A + A = R .

Suppese A is an ideal of R such that A is a direct summand of R. Them there exist~!an

ideal J Of]? such that A + J= R and A nJ = (0). Consider AJ c AnI=> AJ,=;;;(0).~.', '( ,

. "* .
Let x E J => x j = 0 fer all j E J

SiI')CeR=A+J, wehaveI E A + J => 1 =e + I, fer,

. r.some e:E /{ and for-some .IE J=>I-e = IEJ

. =>' x(l-'-"d)'~ 0::::> x~xeE A

.' -..* *This shews that J c A and, hence A = J
',.'. ,~. ' •• ,'t·: :.,,' -"\

. ..'..., . *
Similarly we can shew that .J = A

.. A is an.annihilator ideal of R and A + A* = R .

. Cenversely suppose that'A is an annihilater ideal of R such that A+ ;1.* = R.

, *
Let X.E An A => x E A and xy=O fer all yE A

=> xx = 0 => x = 0 C: R is a semi prime ring)

.'. A n A* = (0). So. A + A* = Rand An A* = (0) and hence5iis a direct summand of R. rU

. . ,t,' . . ..' , . ' ',h ,', ,:.'<;;. ' j"~"
Thus an' ide~l A isa direct summand of R if and only if A is aQ:anni.h!later ide~tetl? sucht/C

*that A + A =R.

Since l[ 'cP!'}tains all ~~:l;<imalideal of. R , this is equivalent to. r (A + :.'11* ) = rtR} and this



is if and only if r(A)Urt,r(A) = " (0: r( A + A')= r( A),Urt.. r(A))

\ Now I' ~r (A) is the extenior of r (A). Hence an annihirator,ideal Ais a direot'summand

of R if and only if th~ associated regular open set r,(A) is the complement of its exteriorif and

only if r (A) is both open and closed. Hence r inclucesan isornorphtsm of the Boolean algebra

of direct summands of R onto the Boolean algebra of the (Simultaneously) ctosedandoperrsets:
of Jr .

, ".t

11.19 Corollary: If Jr is'theset of all prime(= maximal) ideals of the Boolean ring.R , the.n,:.
R is isomorphic to the algebra-of closed and open subsets~f Jr. M~reover, :i'tsDedekind-MacNe'ili:;')
completion is isomorphic to the algebra of regular open subsets of Jr. '.' ,

Proof: Since R is a Boolean ring, R is semiprime and the maximal ideals of R are precisely

the prime ideals of Rand R = B ( R), the Boolean algebra ot' all 'i'd~ni~otents of R ':if e ~ '~( R) ,

then eR is a direct summand of R . Also it is clear that if A is a direct summand of R >tnEmA = eR

for some e E B( R). Let 0)(" be the Boolean algebra of all direct summands of ·R'~,«Defme

'1/ : B (R) ~ eK' as '1/ ( e) = eR for all e E B ( R). Then it is eas~ to verify that 'I; is ~~ js~mo~phism

and hence B (R) ~ r'/l: By theorum 11.18, r:7( is isomorphic to the Boolean algebra of both .open
. I':l ~. .• ' e •. '. -, ';~' '.~ ~~ ••.• ~~,,;

and closed sets. Hence R is isomorphic to the Boolean algebra of all both open and closed sets.

Since R is a Boolean ring, by theorum 10.22, D(R) = B* (R).'. By t~eoruf:T1J1_1.Bi,:8~\~R) is

isomorphic to the Boolean algebra of all regular open subsets of Jr. Hence the Dedekind MacNeilie
completion is isomorphic to the algebra of all regular ope.n .subsets ofJr .;. , ;;.,,,'.,. ".' .

11.20 Definition: A Boolean algebra R is said to be Dedekind Complete if the cononical
_ .' ~ ,". '; _ ,'; ". \ : .. - .••• .; 1,-'~>4~ .·::r~~·!,' ,".

monomorphism JL: R ~'D(R), the lower subsets of R, is an isomorphism (i.e.

,ll(r) = { rr" for all r ER).
.'

11.21 Definition: A Boolean algebra R is said to be atomic if for every e'iement r E R

there exists an atom (minimal ~on-z~ro element) aE Rsuch that a :-:;r. , . " , . , '.

11.22 Theorem: A Boolean algebra is isomorphic to the algebra of all subsets ot.a set if and
only if it is complete and atomic. . " ... . .. ".. . . ..' '. ,"

~-:i~:.'~,::
Proof: Let R be a Boolean algebra

Suppose R is isomorphic to the.alqebra of all subsets of a·s~rX. i.e. ·Rl2:p(X).
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Now we will show that p( X) is atomic and complete.

Let Y E 'P(X) such Y *¢. Choose Y E Y. Then {y} =1= ¢ and clearly {y} is an atom in

P(X) and {y} c Y. Therefore 'P(X) is atomic.

Let r')t be a lower subset of P (X) . Then r')'{" = c)'f'v />. Write A =UB Then A E R(X)
B Er,)(

\
Now we will show that AV

/\ = r'7t

Consider Y E AV <=:>A~Y <=:> B ~ Y for all .B.E r)'f

:.AV=rY(v =>Av/\. = C'/tv"=r)'('(.: r)'tisalowersubsetof P(X))

This shows that if r)( E D(P(X)), there exists A E P(X) such that ,u(A)= C'7t

. :. The canonical monomorphism ,u:P(X)~D(P(X)) is onto and hence an isomorphism.

SO P( X) is Dedikind complete

Hence P (X) is atomic and Dedekind complete.

Since R == P(X), R is atol'!1ic and Dedekind complete.

Conversely suppose that R is atomic and Dedekind complete.

First we show that for any atom a E R, a * is a maximal ideal of R Let a E R be an atom.

It is easy to verify that a* is an ideal of R . Since a =1= 0, we have 1 tI.a*. So a* is a proper ideal of

* ' .» *
R. Let M be any ideal of R such that a ~.M ~ R. Suppose a =1= M . Then there exists r E. M

such that r tI.a* => ar =1= 0 and ar <a => a = ar(o: a is atom) '.

=> a(l-ry=O => l-rEa* => 1 - rEM => 1 EM (0: r E A1)

=>M=R
.,

:. a* isa maximal ideal of R .

Let J[ be the set of all maximal ideals of the form a * , where a is an atom of R ·
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i.e. 1r = {G/aiS an atom of R}', . )

Suppose r E R such that r ::/:.O. Since R is atomic, there exists an atom a E R such that a <r .

*=>ar=a::/:.O=>rf/.'.a =>rf/.'./j,lr

:.lllr={O).

Hence TC is a space of all maximal ideal a* , where a is an atom in R, such that b.7r =( 0).
Since R is a Boolean algebra, each maximal ideal of R is a prime ideal of R and conversely. By

. *
theorem 11.18, B (R) is isomorphic to the Boolean algebra of all regular open subsets of 7r .

Suppose aER isanatom. Now 1(a) ={b*Elr/af/.'.b*}

Let b* Er(a) => a ctb* => ab '* 0

Also ° :Fab 5. a and ° :Fab <b => a = ab = b (-: a and b are atoms)

This shows that 1(a) = {a*}. Therefore every singleton set in TC is an open set

=> Every subset of TC is an openset => every subset of J[ is both open and closed =>

every subset of J[ is a regular open set. Hence B* (R) is isomorphic to the algebra of all subsets

of zr , Since R isaBooleanalgebra, bytheorum 10.22, D(R)=B* (R). Since R is Dedekind

complete, D( R)= R~. Hence R is isomorphic to the algebra of all.subsets of J[ .

11.23 Corollary: If R is any atomic Boolean algebra, its completion is isomorphic to the

algebra of all subsets of atoms of R .

Proof: Suppose R is an atomic Boolean algebra.

If we proceed as in the converse part of the above theorum 11.'22,we have D( R) = B* (R)

and B* (R) is isomorphic to the algebra of all subsets of 7r .

Let f::.. be the set of all atoms of R .

Now we will show that there is a bijection betweeen f::.. and 7r .

Define f: f::.. ~ 7r as f ( a) = a * for all a E II

Clearly r is well defined and onto.



Now we will show that! is.one ; one.. "
. 'r" .).• ~. .\.. ' ',"

Suppose a, bE!1 such that [(a)= f(b), Then a* =b *.

If ab=I), then a E b* ~ a E a* ~ aa =0
. :;

;;'q,= 9'; (;l?j'~'fi E:390lean'algebra), 'whiCh is a contradiction to the fact that. a is an atom.
~ '. ',' • . '. :.: • ' < , (,.. ~" ••

':,'ab:t:O. Since'O:;tabS;a andO:t:ab ~ bandsince a and b' are atoms, we have a =ab

and b = ab . and therefore a ='b '

So f(a) =f(b) ~a=b

.'. .f is one - one and h~nce):d~7l' is a bijection,

Consequently p(tc}::::'p(!1) ,

Since D(R) = B*(R), P(7l'):::: P(!1) and B* (R):::: P(7l') , we have D(R) is isomorphic
" - I

, ,

to P (j.), which is the algebra of all subsets of atoms of R, Thus if R is an atomic Boolean

algebra, its completion D(R) i$ isomorphic to the algebra of all .subsets of atoms of R,
, ,

~... , '.. . ; ,
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Lesson - 12 Primitive Rings

Introduction 12.0: ! "

In this lesson primitive ideals of a ring and primitive rings are defined and studied. The
. Jacobson density theorem, which is one of the basic theorems in primitive rings is studied. Also a

prime ideal ofa ring is,defined and it is shown that a primitive ideal is a prime ideal. R stands for an
associative ring with unity 1 which is not necessarily commutative.

Definition 12.1:

A module AR is called irreducible iff it has exactly two submodules.

So, if AR is an irreducible module then {O} and A, are the only submcdutesof AR and

{O}1=A.
We know that a right ideal M of R is a maximal right ideal of R if

1. 'M 1= R

2: . U is a right'idealof Rand M ~ U ~ R implies U =M or U == R ..
We also know that a right ideal M of R is a minimal right ideal of R if

1. M:;t:{O}

2. U is a right ideal of Rand {a} ~ V ~ M implies U = {a} or V=M.

We'knowthatifM is a right ideal of R then RIM = {r+MlrER} isaright R-module,
T~'. . I, " ' . . .

.and if B is submodule of R / M then B = K / M , for some right ideal K of R containing M.
Using this one can prove the following.

Remark 12.2:

Let M be a right ideal of R. Then R / M is an irreducible R - module if and only if M is a

maximal right ideal of R .

Remark 12.3:

Let M be a right ideal of R. Then M R is irreducible if and only if Mis a minimal right ideal

of R.

Definition: An element r E R is called right invertible (left invertible) in R if there exists an element

S E R such that rs = 1(sr = 1) and r is called a unit in R if it rs right invertible and ieft invertible.



Preposition 12.4:

The following conditions concerning the ring R -:f:. {o} are equivalent.

1. {o} is a maximal right ideal.

2. R is irreducible as' a right R - Module.

3 Every non zero element is right invertible

4. Every non-zero element is a unit.

Let 1', 2' and 3' be the conditions obtained from 1,2 and 3 respectively by replacing 'right'
by 'left'.

Under these conditions R is catled a-division ring .

.".,.Proof': Let R be a ring and R -:f:. {o}
-.

1=> 2 : Let. K be a non zero submodule of the-right R - module R. SoK is a non zero right ideal

of R.

Since {O} is a maximal right. ideal of R , we get that K = R. Therefore, the right R - Module

R has,exactly two.subrnodules {O}.and R' and hence: R. is an irreducible right R - ModUle.

2 ~ 3: Let 0:;:. r E R. Now rR = {rs/ s E R} is a submodule ofthe right R - module R, Also

rR :;:.{o} as 0:;:. r = r.1 ErR. Therefore, by our assumption, rR'= R. So 1E R = rR and

that 1=rs for some S E g. so r is right invertible.

3 =>4;; Let 0':;:. r E R. By our assumption we get S E R such that' rs = 1. Now s :;:.O. Again by

our assumption we, get t E R such that st = 1.

Now t=l· t=(rs)t = r(=st)=r·l=r .

. Therefore rs=l=sr and'hence. r is aiunit in, R'.

4=> 1-: We have {O}:;t:R.

Suppose that K is a right ideal of K and {O} ~ K cR. Assume that K :;t: {O} .

Let 0:;:. or F K. By.our assurnptionwe-qeta v E R such that xy= yx=l'.

Since K'is a right ideal and, x E K, J = xy.E K.

Since 1 E' K we get~fi1~t K = R .



Therefore to} is a maximal right ideal of R.

Similarly one can prove that the conditions I', 2', 3' and 4 are equivalent.

Definition 12.5:

A ring R is called simple if it has exactly two ideals. i.e. to} is a maximal ideal of R. Let

M be-an ideal of a ring R. consider the quotient ring R / M. We know that an ideal X of R / M

is of the form X = K / M for some ideal K of R containing M. Therefore R / M is a simple ring

iff M is a maximal ideal.

A division ring is simple. A commutative ring is simple if and only if it is a division ring if and
only if it is a field.

Now we study primitive rings which contains the class of all simple rings.

Definition 12.6:

An ideal p ora ring R is called {right) primitive if it is the largest ideal contained in some

maximal; riqht.ideal M· Thus. P ;::(R· . M,)= "{r E R./ Rr:'s, M} .

We say that ·a,r.lideal p' o,f'~ riflg~,R- is a (left) pfimitive ideal if it is the ~airges;t(idea!·,conti;i.tJill~d
in some maximal ..left iqeal of R"

Oefinitio,n; 1~.7:

A. ring R' is caHed:(right). W~r,1;~;ve-if'{o}! is,~:(rig!1t).prim~tive.ide,aJ:of R, We. sax-that ~Hing

R is (I~ft)cprimitlve if {o} is a (Ieit) pr~miti\f:e~i.de.~lo.f R ' ,

In~'krnovvn,t~ataJ(righth)rimW~~· riB:9,:n,¢:e,dnot'b~ a7(1~~~:primitive ririQ.~

Here after we omit the attribute "right," and we:writ$.,p'rimitiv,EHingJoF(~iQt.l.t),primitive ring ~Jld
prirn!tiv~ id,eal for (riSl:lt) primitive. ideat ,. " ". " ,. '. '. ' ,

D~fjnj~io~11(~.,8:

A medule. AR JS calledf,~j~hftJl i,ffor any 0: =# r ER" Ar :j:. {O},

Pr(),p()~~t!Q.n1:2.~9,(; ,f:\€OBS~btt~-
, ••. '!..

The ring R'i~~,imitive if"andyonly ifthat;~,ex4'sts,q,fallJ'lf41 i~r~ducible, m;6.dU.l~AR,. ,

Proqf: Let R be.ar~~. Suppqs,e th,at,fl.: iap,ri~i.tiv.e.&inc.~,R' is pfjmlt.lve.;~I<l~re',~~i~t~~ maximal

right idea.l M' ~.UGh,~~t,(R '. At,) ::;to} , ." , ,"'
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Let A = RIM. Now AR is an irreducible right R - Module, as M is a maximal right ideal of

R. Suppose that r E Rand Ar ={ O} .

Now Rr ~ M. So r E ( R •. M) = {O} and that r = 0 .

Therefore AR is a faithful irreducible right R - module. Conversely suppose that R has a

faithful irreducible R - module AR.

Let O:t:aEA, since O:t:a=a.lEar, ar:;t{O}.

Clearly aR = {ar/r E R} is a submodule of AR.

Since A is irrducible we get that aR = A .

define h :R~A by h(r) = ar, for all r E R.

Let and h (r + s) = a (r + s) = ar + as = h (r) + h ( s ) and"S E R 1 E R.r,

h (rt) = a (rt) = (ar) t= h (r ). t. Therefore h is a homomorphism of riqht R - module R into the

right R - module A .

Since aR = A, h is onto A and hence h is an epimorphism of R onto A. Let M = Ker h.
Now R/ M == A as right R - modules. Since A is irreducible RIM is also irreducible.

,
Hence M is a maximal right ideal. Since A=: R / M , we get an isomorphism g of the right

R-module RIM onto A. Let rE(R·.M). Now Rr~M and that (YM)r={M}. Now

to} = {g(M)} = g(( YM)r) = (g( YM ))r = Ar.

Since A is faithful r = O. Therefore (R" M ) = {o} and hence R is primitive.

Lemma 12.10 (Schur):

If A~ is an irreducible module, then its ring of endomorph isms D = Hom R ( A, A) is a division ring.

Proof: Let AR be an irreducible module.

tet D=HomR (A,A) = {f I fisan R-homomorphismof AintoA}. Then D in a ring with

1. Let 0 :t: d ED. since dA is a non zero submodule of AR' dA =-.4 .



Since d-1 0 = {a E AI da == o} *- Ais a submodule of Ai?, d-1 O={O} ..

Therefore d in an automorphism of A .

Hence d is a unit in D. Thus every non zero element of Dis a unit and hence D is a
division ring.

Let AR be an irreducible module and D = HotrlR (A. A).

Now d(ar) =d(a)r for all d e D. aE A. r E~R.

~
Clearly A is a left D - module. From the above 'associative' condition we have that A is a

bimodule DAR. Since D is a division ring A is called a vector space. Consider the ring

E=HoJnD (A, A). For f,gEE, (a)(f+g);=(a)f+(a)g and (a)(fg) = ((a)f)g for all

a EA. F: is called the ring of linear transormations of the vector space A over the division ring D.

We see now the Jacobson density theorem.

Theorem 12.11:

Let R be a primitive ring with faithful irreducible module A R. Then D = Hom R ( 11, II) is a

divison ring a~d R is canonically embedded in E ~ Hom D ( A, A) so that for every (c E and every

finitely generated submodule G of D.l , there exists an element r E R such that ~ e - r) = {o} .

Proof: Let R ~e a primitive ring with faithful irreducible module AR. Now D~ Hom j, (A. A) is a

divison ring. Consider th~ ring E = =:D (A, II). For r E R t define ./;. : A -~ A by (a )~. = ar for

all aEA. Now for a, bE A and d e D. .

(a+b)fr = (a+b)r =ar+br = (a)./;. + (b)fr and (da)fr = (da)r= d(ar) = d(a)./~.

Therefore j~ E HOl11D (A, A)= E. Define T: R -7 E by T (r) = fr for all r E E.

Let r , sER. (a)fr+s =a(r+s)=ar+as=(a)./;. +(a).f~ = (a)(./;. +.fl') for all aEA.

So fr+s. = II' + Is .

( a) '("s = a (rs ) = (ar ) s = ((a )(,. ) t, = (a )(,. Iv for all a EA.

SO.r,.s =t-I, ,:~Now T(r + s) = .r,.+.\. =f,. )" f~ = T(r) + T(s) and

~" r " •.



T(rs}= !"s =I; f;=T(r)T(s). Therefore T isa ringhomomo'rphism.
\

. ,

Let r s Kernel Z". Now T(r)=O i.e. /r=O. So (a)/r = o for all aE A.
, .

i.e. ar=O for all a EA. i.e. Ar=O. Since AR is faithful r=O.

Therefore T is one-one and hence R is canonically embedded in E

Let e E E and G be a finitely generated submodule of AD ..

We prove now that there exists an element r ,E R such that G (e - r ) = {O} . i.e. se= gr for

all'g EG. we define Cr= {SE R ICs = {On and for any subsetS ~f R, S' =' {a E AI as ={O}}.

We prove by induction on' the dimension (the number of generators) of the subspce G of D A ,

that, 1. there exists an r E R such that G(e-r) ={o} and 2·GrI =G. Suppose that dimG~:O

i.e. C={O}. Now 0 E Rand G(e-O) = Ge = {O} e = {Oland o:' = (Gf')1 =({Or r
= Rl ~{O} = G. Assume that the re~ult holds for G and consider G + Da., a f/. G. If. 1'1", G = n

then.dim(G+Da)=ri+l. Now we get an elementrE R such that G(e-r) = {o} andGr/ =G .

. Let b = a (e - r) We claim that aCr = A. Since aCr is a submodule of A and A is

irreducible, aCr = A or aCr = {O}. If aCr = {O} then a E c" = G a contradiction. Therefore

aC;'" = A .We get S E GI' such that as = b. Letg + da E G +- Da. g~d;d E D ..
".', "

(g + da )( e - (r + s)) = (s + da )( e - r - s) = (s + da )( e --:-r) - (g + da) s =

g (e - r) +d (a( e - r) - as) - gs = 0 + d (b - b) + 0 = 0

Therefore (G + Da)( e - (r + s)) = {o}. We now show that (G + DaX' = G+ Da, ';' Clearly

I . . '. . I
(G+DaY' = (Gr n{ar) .SinceG+Da~(G +Dar' we have.~+D~;{Gr n{d}'j .

I' . I'submodules of', .AR. As seel)j;l!bove aG '44 .: Therefore f: aGr ~ yGr . defined by



f (as) = ys , S E c: is well defined. Moreover f is a R - homomorphism ,and that fED. Let

d) = f. Now d1 (as) =' ys for all S E G" and that y·-d) a E o" =G. Therefore y E G + Da.

Hence G + Da = (G + Da r'· This completes the induction and hence the result.

Let {Xi I i r=!} be a family of topological spaces W,e c?nsiderproduct topology on

x - " X n,,~I(V) . .- iel i ~hose basic open sets are all sets of the form ie Fl. I, where "i: X -+ Xi is the

canonical mapping, Vi is any basic open set of Xi and F is a finite subset. of J, Now foreach

i E J, we. consid~r discrete topology on Xi in which all the subsets of Xi are open. Then the

product topology on X is not discrete topology or X but has basic open sets

V= n "jl ({Xd),XiEXi.
iEF

v = {x E X / x (i) = Xi for all i E F}, "i (x) = x (i), This topology on X is called the

finite topology on X .

Let AR be a faithful irreducible module. Let D=HomR(A,A) and E~HomD(A,A), E is

subset of the set of all functions of A into A that is E is a subset of 7rAA.
aE

We consider.finite topology on 7r A and E is a topological space with respect to the
aEA

relative topology,

Each open set V of E is of the form V) nE ,Vi is an open subset of a1f./

The basic open sets of E are of the form V = {e E Ej ai e = b, ' for all i E F}, where F is
; .

a finite set of indices and ai ; hi EA.
, /

A subset Bg(.atopologi.cal space X is called dense if its closure is thewhole space. i.e.
B nV is nonempty for every non empty open set V of X .

12.12 Corrollary:
"t - ,. . ~. _ ,."

A 'primitive rI~'gis a dense subrinq of the'ring of all lineadransformations of a vector space.

Proof: tet R be a primitive ring> Let AR be a-faithful irredueibte module.: D=HomR(A,A) is a,



division ring and R is canonically embedded in E = Hom D ( A, A) .

E is a topological space whose basic open sets are V = {e E E / aie = b., for all i E F},

where F is a finite set.of indices and a., bi EA. R can be treated as a subset of E. We show

that R is dense in E. To prove that R is dense in E it is enough to showthat every non empty.
basic open subset of E has non empty intersection with R .

Let V be a non empty basic open subset of E .

now V = {e E E/ aie ~ b, for all i E F} ;;j:. ¢, where F is a finite set of indices and a., b, E'A .

So we have e E E and aie = b, forall i E F . By theorem 12.11 we get rEi such. that air = b.e = b,

for all i E F. So r E R nV . Hence R is dense in E.

Theorem 12.11: together With corrollary 12.12 is called Jacobson density theorem.

12.13 Definition:

An ideal P of R is called prime if it is proper i.e. p;;j:. Rand AB ~ F, A and B ideals of R

implies A ~ P or B ~ P. R is called a prime ring if {O} is a prime ideal of R. So an ideal P is a

prime ideal of R if and only if R / P is a prime ring. Also a commutative 'ring is prime if and only if it
is an integral domain.

Proposition 12.14:

Let.p be a proper ideal of R. P is a prime ideal of R if and only if for any elements a and

b of R, akb c.P implies a E P or bE P ..

Proof: Let P be a proper ideal of R. Suppose that P is a prime ideal of R. Let a, b E Rand
akb czP:

now R"R -r- {t.c,o" fi",ell K , Is a positive integer "J,leh Is not fixed} Is the Ideal of R

generated by a.

RbR is the ideal of R generated by b. Since aRb s;; P we have that (RaR) (RbR) ~ P .
~ • \ <- -. ~ ,

Since P is a prime ideal RaR~ P or RbR~P. Now a E RaR & b e RbR. So a.EP or b e P.

Conversely suppose that for any elements a nad b of R aRb c P implies a E e'or b E P .
,- - t

Let AB ~ P: A & B be ideals of R. Suppose that A g P. We get a E A - P .

Now aRb ~ AB ~ P for all b E B· So b E P as art: P for all b E B, by our assumption.

Therefore B ~ P .

-,



Hence p is a prime ideal of R.

Corrollary 12.15:

R is a prime ring if and only if 1* 0 and for all a * ° and b * ° in R , there exists r E R such
that arb * °. \.
Proof: Suppose that R is a prime ring.

So {O} is a prime ideal of R and that R * {o].

Therefore 1*0 as R*{O}. Let O*a,O~bER. If arb=O for all rER, thenas{O}isa

prime ideal of R, either a = 0 or b = 0 , a contradiction to a * ° & b * O. Therefore there exists a

r E R such that arb :I; 0. Conversely suppose that 1:1; 0 and for all a * 0, b :I; 0, there is an r E R

such that arb e t), R:I;{O}, as I;tO. Let a.b e R and a~bc{O}. If O;ta,O;tb then by our

assumption we get r E R such that arb « 0, which is a controdiction to aRb ~ [o]: Therefore

either a=.O or b=O. Hence {O} is a prime ideal of R i.e. R is a prime ring.

12.16 Proposition :

Every primitive ideal (ring) is prime.

Proof: Let P be a primitive ideal of R. We get a maximal right ideal M of R such that

P =( R·. 114)= {I' E R/ Rr ~ M} .

Let A and B be ideals of R such that AB ~ P ~ M .

Now M C (M •• B) = {r E R/rB ~ M} ~ R Since M is maximal right ideal of Rand

(M .: B) is right ideal of R , either M = (M .: B) or (M .: B) = R .

Since AB~M, A~(M.· B). Suppose that M=(M.: B).

Suppose that{v- .: B) = R now B~RB·= (M .: B)B and that B~ (R .. M) = P. Therefore
. ,,~..

OJ

P is a prime ideal of R .
" "
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12.17 Problem :

Let M be a maximal right ideal of Rand SE R-M. . Then show that

s-1M = {r.E R/ sr E M} is also a maximal right ideal of Rand ·R/ s-I if ~R/ M.

Solution: Suppose that M is a maximal right ideal of Rand S E R ~ M. Consider the right R-
~. . .

modules RR and RIM R .

Define f: R -> RIM by f(r)=sr+M forallr E R.

Let 'i , r2 , t E R .

'. .

fh t) = sh t)+M =(sn)t+M = (sr, +M)t=(f(r,))t.

Therefore f is an R - homomorphism. Now f(l)=s·l+M=s+M 7:;M.

So f 7:; O. since M is maximal, RIM is irreducible.
;

. .' .

now j(R) isanonzerosubmoduleof Rl M and that f(R)=RIM i.e. f is onto RIM.

Kerf = {r E R/ fer) = M}

= {r E R/ sr + M = M}

= {r E Rl sr e M}

ThereforeR/s-1M': ~/ M. Since 'RI Mis an irreducible right ~ - module 1u s-IM is

also an irreducible right R - module. Hencej -IM is a maximal right ideal of R .
.. , ." .,.i

Problem 12.18:

Let M be~maXimalrightide~lof R. Thenshowthattheassociated brimitiveideal (R '. M)
, .., " :', , "r- . ",'

is the intesection of ails -IM I vJrrere s ranges overall elements of R not in M .
. '/1.
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Solution: Suppose that M is a maximal right ideal of R.

Consider the primitive ideal (R '. M) = {r E R / Rr ~ M} .t

Let P = (R '. M) . Let S=R-M we prove that p= n s-IR,·where
SES

~
S-I R = {r E -%r E M}' Obviousely p ~ M .' let pEP.

<,
Since P is an ideal sp E P ~M , for all S E S so P E S-I R for all S E S .

Therefore p ~ n s-IR (1)
SES

Let XE n s-IR now sXEM for all SES also xE1-'1 R = M (lES):
SES

Let r E R. Now either rEM or r E R - M =S .

If rEM then rx EM, since M is a right ideal.

If rES, then rx E M as x E r -I R

Therefore Rx ci M and that XEP. So n s-IR~P (2)
SES

From (1) & (2), P = n s-IR.
SES

Problem 12.19:

Let R bea ring. Then show that R is a primering if and only if 1* ° and AB * ° for any two

non zero right ideals A and B of R .

Solution: Let R a ~Lng. Suppose that R is a prime ring. So {O} is a prime ideal, of R. therefore

R.;t:{O} i.e.1*O.

Let A and B be non zero right ideals of R. Suppose that AB={O} ". '-~r., ',' ~

Let 0 *a E A and ° *b E B. now aRI?,;={O} as ali c; A.
. • .'., 1 •• ~

Since {a} is prime, by ~r.oposition 1?'t!~, either a =,;)~srb = 0. This i~Jl,cont~C3dictio.n to

a*O and b*O. Therefore AB*{O}.Converselysupposethatin R, 1*0 and AB*{O}forany



two non zero right ideals' A and B of R .

Since 1 '# 0, {O} '# R. Suppose that A and B are ideals of Rand' AB c{O} .

So AB ={O} . Since A and B are ideals of R they are right ideals of R. By our assumption

if AB'#{O} andB'#{O} I then AB'#{O}. Since AB={O}, either A={O}or B={O}. Therefore {OJ

is a prime ideal of R i.e. R is a prime ring.

Dr. R. SRINIVASA RAO
PG. Department of Mathematics

P B. Siddhardha College
Vijayawada
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Lesson - 13 Radicals

13.0 Introduction:
In this lesson the primeradical andthe Jacobson radical (radical) of a, ring are defined and

studied. Inparticular it is proved that the Jacobson radical of R is the largest idealK such that for
. r ...'... <'. ' '.'.: .:' r :"',.

all r E K \- r is a unit. A characterization of the Jacobson radical of a ring, R. interms of the

primitive ideals of R is given. Also strongly nilpotent elements of a ri~g'are defined. Aicharacterization
of the prime radical of a ring R is given in terms of the strongly nilpotent elements of R .

Definition 13.1 :

The prime radical of R is the intersection of all prime ideals of ,R and is denoted by rad R .

We give an internal characterization of the prime radical of R '

Definition 13.2:

An element a of R is called strongly nilpotent if every sequence aO,a),a2, in R

such that ao =a , an+ I E a.Ra; for all integers n 2::0 is ultimately zero. i.e., there is a positive

integer K such that akRak = {o} and that aK +1 = o.

Remark 13.3:

Every stronqly nilpotent element is nilpotent.

Suppose that a is strongly nilpotent. Therefore a is nilpotent.

strongly nilpotenet element in- R .

Now the sequence a,a2, a4, is ultimately zero as a2 E,aRa , a4 E a2Ra2 and

a is strongly nilpotent. Therefore a is nilpotent.

Remark 13.4:

If R isa commutative ring then every nilpotent element is strongly nilpotent.

Suppose that R is a commutative ring and a E R is nilpotent.

We get a positive integer n such that an = 0 . Consider a sequence aO, aJ, a2, in R

such that ao = a , an+l E anRan for all integers n:;:::O.

now al = ax} a = a2 Xl , for some XI E Rand a2 = ( a
2

XI ) x2 (a
2

XI ) = a
4 (xf X2) for some
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K . 2k
X2 E R , we get a least positive integer K such that n < 2 . Nowak = a y for some

yER.

k ··k J. 'k)'. 2 n? -n 2 -n '
So ak = a Y =a l". y = O{ a y == °
Therefore a is strongly nilpotent.

Proposition 13.5:

The prime radical of R is the set of all strongly nilpotent elements of R .

Proof: The prime radical rud R of the ring n is the intersection of all prime ideals of R. We
I

prove that rad rad. R = {a E R/ a is a strongly nilpotent element of R} .

Let a be a strongly nilpotent element.

Suppose that a «rad R.

now we get a prime ideal P such that 0 f/'. P .

Since P is a prime ideal of R, aoRao q;, P as ao rt. P .. So there exists an element

aJ E aoRao such that aJ rt. P. Again since aJ rt. P and Pis a prime ideal in R aJ R aJ q;, P. So we

get an element a2 E aJRa; such that a2 rt. P .

If we continue this, we get a sequence ao.oj. a2 •........... ak+!, such that

aO = a, aj E aoRao , a2 E ajRa! , ,ak+! ,E aK RaK' and an rt. P for all

n=O,I,2, so an:;tO for all n=O,I,2, .

Therefore the sequence ao, aj, a2, is not ultimately zero..

This is a contradiction to an assumption that 00 =0 is strongly nilpotent in R.

Therefore a E rad R.

So the set of all stronly nilpotent elements in R is a subset of ra;} R (1)

conversely, let a E rad R .

We prove that a is strongly nilpotent.

. ,



Suppose that a is not strongly nilpotent.

There exists a sequence ao = a ,al E aoRao, , an+1 ,E anRaw·········

Such that aK :;t ° for all k = 0, 1, 1, .

now T r:;;;.Rand 0 rt T

Let A = {Ill is an ideal of Rand InT = ¢}.

Since [o} c A, A is non-empty

Using Zorn's Lemma, we can/prove that A has a maximal element. Let P be,a maximal
element in A .

We prove now that the ideal p is a prime ideal.

Suppose that A and Bare idelas of R and A r:];. P and B r:];. P .

Since PeA t P and PcBt P, by the definition of F, (A+p)nT:;tc¢ and (S+p)nT:;tc¢.
+ +

Let a; E T n (A + p) and a JET n(B + p) .

Without loss of generality suppose that i ~ j .

Now ai E A +. P .

Therefore Uj+1 EujRu) c(A + p)( B+ P)~ AB+P.

Now a)+1 =;+ y for some x E AS and YEP. As x+ y=aj+1 ~P, x ~P.

Therefore AB r:];. P.. Also P:;tc R and hence P is a prime ideal ofR ..

So P is a prime ideal «« and art P.

This is a contradiction to our: assumption .that a E rod R.

Therefore a is strongly nilpotenet.

So the prime radical of R, rad R is a subset of the set of all strongly nilpotent elements~ , . .
of R (2)

From (1) and (2), we get the result.
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Definition:

An ideal I of R is called nilpotent if In = {O} for some positive integer n.

Proposition 13.6:

The following conditions concerning the ring R are equivalent

(1) {o} is the only nilpotent ideal of R

(2) {o} is an intersection of prime ideals, that is rad R={O}

(3) For any ideals A and B of R, AB={O} implies AnB={O}
Proof:

1=>2

. {O} is the only nilpotent ideal of R .

We prove that rad R ={ o}.

Let 0 * a E R

Let ao =a

The ideal {O} if:. RaOR is not nilpotent

If noRno = to} then( Rno R)2 =( RnoR)( RaoR)={O}, this is a contradiction to the fact that

RaoR is not nilpotent.

Thereforewe get 0 if:. a1 E aO R aO

Continuing this we obtain a sequence ao =a,a1, a2, in R such that an+1 E an Ran
. .' J;'

foral! n=O,I,2, and Gn:t:O foral! n=O,I,2, .

Therefore by proposition 13.5, act rad R.
t: "

Hence rad R contains no non zero element (i.e., rad R = {O}).

"
We have that rad R = {O} .



Let A and B be ideals of Rand 'AB={O}.

Let P be a prime ideal of R .

Now AB={O}cP.

So either A ~ P or B ~ P .

Therefore AnB~p. Hence AnB~rad R={O}.

3=:>1

We have that for any ideals A and B of R, AB={O} implies AnB ={o}.

Let / be an ideal of Rand / n = {O} , for some positive integer n .

If n = 1 then I = f O} .

Suppose that n > 1.

So, {O}=/II-1 =/ /11-2.

By the same argument we get that /11- 2 = {O} ..
,.l·

Continuing this we get that 1= {O} .
\
\ Therefore {OJis the only nilpotent ideal of R .

Definition:

A ring R is called semiprime if rad R={O}.

Corollary 13.7:

The prime radical of R is the smallest ideal K of R such that R / K is semiprime.

Proof: Let 1 be an ideal of R
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We know that any ideal of the quotient ring R / I is of the form J / I , where J is an ideal of R
containing I . We see now that if P is an ideal of R and I ~ P ~ R then P is a prime ideal of R if and only

if P / 1 is a prime ideal of R / 1.

/ Let I ~ P~ Rand P be an ideal of R.

Suppose that P is a prime ideal of R .

We show that P / 1 is a prime ideal of R / I .

Let A II. B 11 be ideals of R II and (A II)( B 1I)c;;;. P 11.

Now (AB + 1)/ I s P / I and that AB ~ P .

Since P is prime, A ~ P or B ~ P .

So, either A/I ~ P / 1 or B / 1 ~ P / J .

Since P 7= R, P / [ =t IV J,·1I1:lefiefor,e P I I is.a prime ideaJof R/ I.

Conv.erse!y" s.uppose that IN I is aprime ideal of R/ I

S'inC8i PIT *- RII, f;* R.

SlJ:ppo~ethc;i,tA anA" r ~re ideals of. R and AB'~ P. . .
nqN\\ (~A,+})11, (8.+ If}) J: a~~ ideals Of, R I /i and,

((A + IV!)(fB + l}/k}= ~A/?+l)/" ~ PI1 as..AB s P and. I ~ P,

Since p;j I is prime; fA+ nil ~ PI! or (lJ.+I)/! ~ PII

Ther,~fore Ji? is a prlme i,dealqf '1,2.

w.e. kno1.fo(J; t~Clt rad R i~.the int~fs,~G,tionof.all prir;n.ejd~als\ofR,.

ConS.lder tt1~q uotient' rin.g,R / rad: R:

~ince ec;c8' prime id~a;!ot R contains rad R , if P is a prime jdeat of R then PI rad R is a prime

idea,l of RI rad 8:.

Therefor~'.the.interse.ctio1l0fa.II'prjme ideals.~J: R/rad R is zero. i.e., Rlrad R is serniprirne.

Ld K ba,an ide~1 of R al)/}I K is semiprime.
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Let r~iE'"1be the collection of all prime ideals of R / K .

Now {Pa / a E tl} is a collection of prime ideals of R .

As R I K is semiprime, n (Pa I K)
aEt.

is zero. i.e., n Pa = K
aEt.

Therefore, rad R ~ n Pa = K. This completes the proof.
aEt.

Definition 13.8:

The intersection of all maximal right ideals of R is called the Jacabson radical or the radical of Rand

it is denoted by Rad R . .

We give a characterization of Rad R .

Proposition 13.9:

The radical of R is the set of all r E R such that 1- rs is right invertible for all S E R.

-" Proof: Rad R , the radical of R is the intersection of all maximal right ideals of R .

Let r E R

r E Rad R <=> rEM for all maximal ideals M of R

<=> I rt M + rR, for all maximal ideals M of R

<=> 1 - rs rt M, for all maximal ideals M of Rand forall S E R

<=> 1- rs is right invertible for all S E R .

Definition 13.10:

A ring R is called semiprimitive if Rad R = {o} .

Proposition 13.11:

The radical of R is an ideal of Rand R I Rad R is semiprimitive.

Proof: We fir~j see that Rad R is an ideal of R .
\

By definition Rad R is a right ideal of R .
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We prove that Rad R is also a left ideal and hence an ideal.
~ , , -,,! • ,

Let r E Rad R and x E R .

We have to prove that xr E Rad R .

By proposition 13.9, it is enough to prove that .1- xrs is right invertible forall S E R.

Let S E R

Let rs=rt.

now r) E Rad R

Since r,X E Rad R, j - r,x is right invertible.
i '.-,'"

So we get U E R such that (I-ljx)u = I i.e., I+lj x U = U

= I+ XUfj - XUfj

= 1

Therefore 1-xrj =1-xrs is right invertible. Since s is an arbitrary elem~~ R, 1-xrs is

Jht invertible for all s E R and that xr E Rad R .

..
/

Therefore Rad R isan ideal of R.

We prove now that R / Rad R is semiprimitive.

i.e., Rad(R/Rad R) = {RadR}.

Let M be a right ideal of Rand Rad R ~ M .

Clearly M is a maximal right ideal of R if and only if M / Rad R is a maximal right ideal of

I Rad R.

Letr + Rad R E Rad(R/ Rad R).

Now, r+Rad R En M/ Rad R

M / Rad R is a maximal right

ideal of R/ Rad R



=> r + Rad REM / Rad R, for all maximal right ideals M / Rad R of R/ Rad R

=> rEM for all maximal right ideals M of R .

=> r e Rad R => r +RadR = RadR

Therefore Rad (R I Rad R) = {Rad R}

So R / Rad R is semiprimitive.

Proposition 13.12:

The radical of R is the largest ideal K suchthat forall ,. E K, 1- r is a unit.

Proof: Let r E Rad R

By proposition 13.9, I-rs is right invertible for all S E R.

Choosing s = IE R, 1-r is right invertible.

So we get a U E R such that (1- r) u = 1.

So 1-u=-ru.

Since r.E Rat! R, -ru =r(-:-u)~ Rad R .

So I- U ERad k .

Therefore 1- (1- u) s is right invertible for all S E R and inparticularfor s= 1, 1- (1- u) is

right invertible.

i.e., u is right invertible in R.

So we get an element v E R such that uv = I

Since 1=(I-r)u , we have v=(I-r )uv =(1 - r)l

= I-r.

Therefore u (1- r) =1=(1- r) u .

Hence I-r is a unit in R.

So, foral! r E Rad R , 1-r is a unit in R .

Let I be an ideal of R such that 1-x is a unit forall x E I .

Let ). E I and S E: R



now YS E I.

By our supposition \- ys is a unit in R and that 1- vs is right invertible in R .

Since S E R is arbitrary by proposition 13.9.

yE Rad R

So I <:;::::;RadR

Hence Rad R is the largest ideal of R such tht torall r E Rad R, 1- r is a unit in R .

Corollary 13.13:

The radical of R is the intersection of all maximal left ideals of R .

Proof: Let J be the intersection of al maximal left ideals of R .

Using the fact that Rad R is the intersection of all maximal right ideals of R, we have

proved that Rad R is the largest idealof R such that 1- r is a unit in R. for all r E Rad R (1)

(

On the same lines we get that J ISthe largest Ideal of R such that 1- s is a unit in R for all

S E J (2)

From (1) and (2) we get that J = Rad R .

i.e., Rad R is the intersection of all maximal left ideals of R.

Proposition'13.14:

The radical of R ISthe intersection' of all primitive Ideals of R .

Proof: Let r E R

r E Rad R <=> Rr <:;::::; Rad R (as Rad R is an ideal of R)

<=> Rr <:;::::; M for all maximal right ideals /VI of R.

<=> r E ( R· . M) = p. for all primitive ideals P of R.

<=>I'cnp

P is a primitive

ideal of R

Therefore Rad R is the intersection of all primitive ideals of R .

I
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Proposition 13.15:

R is semiprime (semiprimitive) if and only if it is a subdirect product of prime (primitive)
rings.

Proof: R is semiprime (Semi primitive)

<;:::) rad R = {o}( Rad R = {o} )

[

nQ = {a} '1
.nr. ...:.[0] Q is LI prilllilin:jl

P IS a prime .
ideal of R ideal of R

<;:::) R is a sub direct product of prime rings R / P, p is a prime ideal of R .

(R is a subdirect product of primitive rings R / Q, Q is a primitive ideal of R).

Exercises

Problem 13.16:

Let S be a subset of R such that I if. S and for any a and b if. S , there exists r E R such
that arb ¢:.S. If further more 0 E S, show that any ideal which is maximal in the set of ideals

contained in S is prime.

Sol: Let A={I/ I is an ideal of R and I ~ s}

Since the ideal {a} c S, A "* ¢

A is a poset under set inclusion.

Let la , a E ~ be a chain of ideals in A .

Let 1 = U fa'
aELl

Clearly I is an ideal of R contained in S i.e., 1 EA. As lex ~ 1 VOCE ~, I is an upper

bound for the chain. Therefore by Zorn's Lemma, A has a maximal element.

Let M be a maximal element in A.

We prove that M is a prime ideal of R .
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M is an ideal and M =t- R as 1 rf; Simply 1rf; M ~ S . ~.,.,

Let a, b E R and aRb ~ M

Suppose that a rf; M and b rf; M .

Let RaR, RbR be the ideals generated by a&b respectively.

now M + RaR, M + RbR are ideals of R which contains M properly.

By the maximality of M, M + RaRq; Sand M + RhRq; S.

Let x E (M + RaR)-S and yE (M + RbR) - S.

11

Now as xEM+RaR, x = Inl + L"atj, ri,li E R, Inl EM.
i=1

m
Also YEM +RbR implies Y = 1112 + LUibvj ,ui ,vi E R ,ln2 EM

i=1

By our assumption we get Z E R such that xzy $. S . .. -~ .

Since M is an ideal the first three terms in the above sum are in M .

Since akbc; M and since M is an ideal, [~riati.zJ[~UibViJ EM
. /=1 /=1

Therefore xzy EM.

So xZV E S , a contradiction to xzy $. S.

Therefore a E M or b E M
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Hence M is a prime ideal of R .

Problem 13.17:

If A is any ideal and r is any element of the semiprime ring R then show that Ar = {O} if

and only if rA ={O} .

Proof: Let R be a semi prime ring and A is an ideal of Rand r E R .
\ ." \ '. . .

Suppose that Ar={O} ,

Let B = {x E R/ Ax = O} .

Now r E B , B is an ideal of Rand AB={O}.

Now (BA)2 = (BA)(BA) =B(AB)A = {o} as AB = {o}. So BA is a nilpotent ideal of R. Since

R is semiprime, by proposition 13.6, {O} the only nilpotent ideal of R. Therefore, BA={O}.

Since r E B , rA = {O} .

Bya similar argument we get that rA = {O} ~ Ar = {o}.

Dr. R. SRINIVASA RAO
PG, Department of Mathematics

PB. Siddhardha College
Vijayawada.
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Lesson - 14 Completely Reducible Modules

Introduction 14.0:

In this lesson radical and socle of a module AR are defined. A completely irreducible module
is introduced equivalent conditions for a completely reducible module are developed. Also

homogeneous components of a completely reducible module AR are defined and studied.

Definition 14.1:

The radical Rad A of a module AR is defined as the intersection of all maximal (proper)

submodules of AR. If AR has no maximal (proper) submodules then Rad A is defined as A
itself.

Definition 14.2:

The socle S(lC A of a module AR is defined as the sum of all minimal (non-zero) submodules

of AR. If AR has no minimal (non zero) submodule then Soc A is defined as {o} (the zero

submodule of AR).

Proposition 14.3:

Let AR be a module and Sac A *{o}. Then the socle of AR is the direct sum of a subfamily

of the family of all irreducible submodules of AR. It is invarient under every endomorphism of AR .

Proof: Let A={Adi E I} be the family of all irreducible (minimal) submodules of AR.

Since Sac A * {O}, A is non-empty.

Now Sac A = L Ai· We say that a non-empty subset J of I is direct if L Aj is a
ie I jEJ

direct sum.

Let B be the set of all direct subsets of I .

If i E 1 then {i} E B. So B is non-empty.

For N, L E B define N::; L if and only if N <;;:;: L. (B, ::;) is aposet. we claim that B has a

maximal element. Let {J K / k E K} * ¢ be a chain in B. Let J = U Jk. We prove that J is a
kEK



Distance Education 2 Acharya Nagarjuna University

direct subset of 1 " Aj is a direct sum. Suppose that "aj = 0, where a . EA· andc: ~.J .J
jeJ jeJ

T = {j E J/ aj :;t: o} is finite. If T is empty there is nothing to prove. Suppose that T is non-empty.

i.e.,

Since T is a non-empty finite subset of .J , and {Jk / k E K} is a chain, we get that T <:;:;; Jk for

some k E K. Since JK is a direct subset .of 1 and I aj = 0 , we get that aj = 0 for all JET.
JET

This is a contradiction to the fact that aj :;t: 0 for all JET. Therefore, T is empty. Hence J is a

direct subset of 1. So J E Band J K S;J for all k E K. So J is an upperbound for the chain

Therefore, by Zorn's lemma B has a maximal element p. Now 2:: Ai is a direct sum.
ie I'

We claim that Sac A = I Ai . Suppose that Ai is a minimal (non-zero) submodule of A and
iE? .

Aj q;, ~ Ai. Then Aj n .L Ai = {a} (1)
iEP IE?

Let a) + ~ai=O, ajEA) andaiEAi' iEP. From (1), =i=v= Lai. SinceP
iF P IE P

is a direct subset of I, a, = 0 for all i E P. Therefore P U [j] is a direct subject of 1 and p is a

proper subject of P U [.J]. This is a contradiction to the maximality of P, So Aj <:;:;; ~ Ai .
ie P

Therefore 2:: Ai containg all the minimal (non-zero) submodules of A and that Sac A <::;;; L Ai .
.«> ie P

Obviously ~ Ai C Sac.4 , by the definition of Soc /1. Therefore Sue A = I Ai is a direct
.ie? ieP

sum. Let e e Hom c i A, ,A).

Let Ai E A ,since Ai is irreducible Ker e n Ai is a submodule of Ai so Ker en Ai = {O}

or ker en Ai = Ai· If ker en Ai = {O} then e(Ai) == Ai and hence e{ Ai) is an irreducible submodule

of A. If kef en Ai = Ai then e(Ai )={o}. So e( Ai )={ o} or e(Ai)== A. Therefore e( Ai h:Soc A

and hence e(Sac A) <::;;; Sac A .



Corollary 14.4:

The following conditions concerning the module AR are equivalent where Sac A -:f: {o}.

(1) Ae Soc A

(2) A is the sum of minimal submodules

(3) A is isomorphic to a direct sum of irreducible modules

Proof: AR is a module and Sac A * {o}

1=>2. we have that As=Soc A.

By definition Sac A is the sum of all minimal sub modules of A. So A is the sum of all

minimal submodules of .1 .

2 => 3 Since A is the sum of all minimal submodules of A. By proposition 14.3, we get 'if

sub family {B; / i E 11 of the family of all irreducible submodules of AR' such that A. = I B, J a
iEI

direct sum of irreducible mo~ules Bi' i E I .

3 => I we have that A is isomorphic to B, where B is a direct sum of irreducible modules.
"We get a non-empty collection {Bdt E j} of minimal (non-zero) submodules of BR such that'

B';" 2: Bi is a direct sum.
iEl

Let f be an isomorphism of AR onto BR' Let g be the inverse of f. g is an isomorphism
'. ,
"

of AR onto BR· where g(b)=a iff f(a)~b, aEA,bEB. since g isanisomorphism g(Bi).
" .

. '
is also a minimal (non-zero) sumodule of A. we claim that A = 2: g (Bi). Let a EA. Since,

iEI

g(B)=A I we get a bE B such that g(b)=a. since B = LBi J

ie l « I

we get some

:r:,

+g(bik )Eg(B.il)+g(Bi2) + +g(BikJC 2:g(Bi)
iEI



Therefore A ~ L g (Bi ). But L g (Bi) is a submodule of A . Therefore A ='L g( Bl) ,i

iEI iEi iEJ

Since g(Bi) is a minimal submodule of A, i E 1, L g( Bi) ~ Soc A. Therefore A ~ Sac A. But
iEI

Sac A~ A. Hence A=So~A.

Definition 14.5:

A module AR is said to be completely reducible if Ais the sum of minimal submodules.

Definition·14.6:

A submodule B of a module AR is called large if it has non-zero intersection with every

non-zero submodule of A R

Lemma 14.7:

. If B is asubmodule of AR and C is maximal among the submodules of A such that

BnC= {a} then B+C is large.

Proof: B is a submodule of AR.C is a maximal among the sub mqdules of A suchthat

B;nC= {OJ. B+C is also a submodule of A. Let D be a submoduleof A ...and

(B+C)nD= [o]. We claim that Bn(C+D)= [o}. Let xEBn(C+D).

Now x=b=c+d for some hEE, CEC and dED. Now d=b-CE Dn(B+C)=-'{O}.

So d=b'-c=O and that b=CE BnC={O}. Sob=c=O and that x=O. This' shows that

B"n(C+D)={O}. By the maxirnality of C, Dee and that D=(B+C)nD={O}. Hence B'+C
is{.jarge.

:'1 Let B be asub~odule of AR. We knowthat a submqdule (. of A is called a c~mplementary

submodule of 'B if B nc = {O} and B + C = A. A is complemented if every submodule B of A
.has a complementary submodule.

Lemma 14.8:
" . ; . \ .

Let B beasubmoduleof AR.lf L(A) is complemented then so is L(B)

. .

Proof: B is a submodule of A~. Suppose that L ( A) is complemented:' Let C be a submocule



of B. Wegetasubmodule C' of A such that cnc={o} and C+C'=A. now BnC' isa

submodule of B. We claim that B n C' is a complementary submodule of C in B.

Since l ~ 13, by modular law B n (c + C') = C + (B n C) .

Therefore C+(BnC') = (c+C')nB = AnB = B

so B nC' is a complementary submodule of C in B .

Hence L(B) is complemented.

Lemma 14.9:

If L ( A) is complemented then Rad A = {O}.

Proof: suppose that L ( A) is complemented. Let O:f:. a EA. By Zorn's lemema we get a

submodule M of A which is maximal among the submodules of A not containing a. Suppose

that N is a submodule of A and M ~ N ~ A. since L( A) is complemented.

We get a submodule N' of A suchthat N nN' ={ O} and N + N' = A. Since M ~ N , by

modular law Af+(NnN') = Nn(M+N'). Now M'=M+{O}= /\1+(NnN') = Nn(M+N') ..

Since art M, either art N or a rt /VI + N'. If a tI. N then by the maximality of /VI, N =/VI. If

artM+N' then by the maximalityof M,N'={O} i.e., N=A.

Therefore, either ,11/ --- M or"r::-= 4

Hence M is a maximal (proper) submodule of A

suchthat a tI. /VI. So art Rad A. Therefore Rad A = {O} .

Proposition 14.10:

The following conditions concerening the module AR are equivalent. 0,'

(1) A IS completely reducible.

(2) A has no proper large submcdule

(3) L (A) is complenented.
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Proof: Let AR be a module.

(1) => (2)

we have that A is completely reducible. So, Sac A = A. Let M be a large sumodule of
/

A . So M has non-zero intersection with every non-zero submodule of A. Let B be an irreducible

submodule of A. Since B;;t= {OJ, M nB;;t={O}. But as B is irreducible either

MnB = B or MnB = [O]. Therefore MnB = B i.e., B~M. Hence Sac A~M i.e., A~M

i.e., A=N/ . So A has no proper large submodule.

(2) ===> (3)

We have that A has no proper large submodule. Let B be a submodule of A. By lemma

14.6, we get a submodule C of A suchthat B n c = {o} and B +C is a large submodule of A. By

our assumption B + C = A. Therefore L (A) is complemented.

(3) => (I)

We have that L( A) is complemented. Since Sac A is a submodule of A, we get a

submodule C of A suchthat Soc A +C = A and Sac An c= {o}. Since L ( A) is complemented

by lemma 14.7, L(C) is also complemented. Now by lemma 14.8,RadC={O}. Suppose that

C:;e {o}. Let 0 =t' x E C Since Rad C = {O} , there exist a maximal submodule D of C suchthat

xlt.D.Againsince L(C) is complemented we get a submoduie D' of C such that DnD'={O}

and D + D' = C. As D is maximal D' is an irreduvible submodule of C and hence an irreducible

submodule of .1. So d ~Soc .1 n C = [O}, a contradiciton to the fact that D' is irreducible.

Therefore C = {O} .

Hence A = Sac A. i.e., .4 is completely reducible.

Definition 14.11:

Let Rand S be rings. Let A be a right R - module and Let A also be a ieft S - module T .

Then A is called a S-R -bimoduleif s{ar)=(sa)r for all SES, aEA and rER.



Example 14.12:

Let A be a right R- module. Let E=HomR(A,A), the ring of all endomorphisms of the

module AR. It is obvious that A is a left E - Module '. Also we have that e( ar )=( e(a))r forall

eEE;aEA and rER. Therefore A isa E-R module EAR'

Remark 14.13:

Let Ai be any irreducible submodule of A~., Let E = HomR (A, A) the ring of all

endomorphisms of the module AR. EAi denotes the subrnodules of Ak, generated by all eai '

. eE E and ai E Ai' EAi consists of all elements of the form elal + e2a2 + +ekak ' where

eJ,e2 , ,ek E E and al ' a2, ,ak E Ai (k is not fixed). Clearly EAi is also a left E

- module and that EAj is an E - R - submodule of EAR' For e E E, eAj is a homomorphic

image of Ai and hence eA, = {o} or eAi == Ai as Ai is irreducible. So eAi is either {o} or irreducible.

Lemma 14.14:
,

Let Ai be an irreducible sub module of AR. If AR is completely reducible then EAi is the

sum of all irreducible submodules of .AR which are isomorphic to Ai' EAi is called a homogeneous .

component of' AR .

Proof: Ai is an irreducible submodule of AR and AR is completely reducible .. Let Akbe an

irreducible sub module of AR and Ak == Ai . Let B be the sum of all irreducible submodules of AR

which are isomorphic to Ai' Since L (AR) is complemented, we get a submodule A; of A suchthat

;Ai nA; = {o} and A = Ai +A;. Let f be an isomorphism of AiR onto AK R . Define e: A ---+ A by

. e( a = Gi+ a/ ) = f (ai), ai E Ai ' . ail E Ail. Clearly e is an endomorphism of AR. i.e., e'~ E .
, ' ( . '\

obviously e (Ai) = Ak. so Ak= e ( Ai) ~ EAi . Therefore B ~ EAi. By remark 14.13 EAi ~ B. Hence

EAi=B.

Proposition 14.15:
i \~ ,

Let AR be the direct sum of a finite number of irreducible submodules Aj, j E J and let

E = HomR (A, A). Then every non-zero E - R':~ submodules of EAR is the directsum of some of

the hornoqeueous components EAi·



Proof: Let AR be the direct sum of a finite number of irreducible submodules Aj, j E J and

E=Homl/(A,A). We may assume that J={1,2,3, ,n} and A=A)EBA2EB EBAn,Ai
are irreducible submodules of AR. Let 1::;i::; n . Define e.: A ~ A by

ei (al :t-a2 + + an) = ai ' aj E Aj for all 1..:;,j..:;, n. Clearly ei is an endomorphism of AR

and that e.e S. Nowei(A)=A;, Also e, +e2+ +en =l,theidentitymapof A. LetB

be a non-zero E - R - subrnodule of EAR' Since e; (B)c Ai and Ai is irreducible,

ej(B) = {O} orei(B) = Ai' Also ~i(B)~B. Let l={iEJjei(B)=Ad. 1 is non empty as

Bi={O}. Now B = (el+e2+·······+en)(B) = L~i(B)=LAi' ForanYiEI, EAi~EBcB.
iEJ iEI

So L EAi c B. Since ei (Ai) = Ai ,B ='2: Ai c L EAi· Therefore B = L EAi. We prove
te ! itl lEI ie l

now that EAi is a minimal submodule of E BR for all i E 1· We know that EAi is a ~ubmodule of

EAR' So EAi is a submodule of E BR for all i E 1 as EAi ~ B for all i E 1· Let i E 1· Let e EE and

'a,E Ai' Since e ( ai ) E EAi c B = L Ai .
ie l

So we get

1;1', Ai2' ~.~ ,Aik . (say), i), i2 ' ik E 1 such that Ai == Ail for all 1::;I::; k and

,fAi cAil +Ai2 + + AiK. Using (1) we conclude that Ail c EAi for all 1::;I::; k .
e ',,' I

Let C be a non zero submodule of E EAj R' Let 0 *- x E C .

l~> \I ,

t\...~t



r

Since x 1:- 0, without loss of generality we may assume that at 1:- O. Now

al 1:-0 E Ail . al = eil x E C .

Since Ail is an irreducible sub module of AR and 01:- al E Ai I ,we have al R = Ai1 . Since

Ai ::::Aij, EAi =EAil. Now EAi =EAil ~ EalR ~ EC ~ C.

Therefore C= EAj and hence EAj is a minimal submodule of £ BR. Since B = I EAi is
iel

a sum of minimal submodules EAi' i E 1, we get that B is a direct sum of some of the minimal

submodules EAi liE 1 of £ AR .

Exercises

Problem 14.16:

Let AR and CR be R - modules and rc be an epimorphism of C onto A. If B is a large

submodule of A then showthat rc-I (B) is a large submodule of C .

Solution: Let rc bean epimorphism of a right R - module C onto the right R - module A . Suppose

that B is a large submodule of A. We prove that rc-I (B) is a large submodule of C.

We know that rc-I (B) is a submodule of C. Let {O} 1:- G be a submodule of C. Let

K= rc-I {o}. K is a submoduleof C contained in rc-I(B). If GnK*{o} then

G nrc-I (B)1:-0. Suppose that G n K ={ O}. Now rc( G) is a non-zero submodule of

A. So lr(G)nB*{O} as B is large. Let O*bEBnrc(G). We get 01:-aEG such

that rc(a) = b .Now a E rc-I (b ) ~ rc-1 (B). Therefore 01:- a E Gn rc-1 (B) and that

G nrc-I (B) 1:- {O}.. Hence rc-I (B) is a large submodule of C.

Problem 14.17:

Let C be a right R - module. Let A and B be submodules of C and A ~ B ~ C. Show that

A is a large sumodule of C if and only if A is a large submoduleof Band B is a lage submodule
of C.
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Solution: Suppose that A i~ a large submodule of C. let {OJ :f:.D be a submodule of B. D is

also a subrnodule of C. smce A is a large subrnoduleof C, AnD:f:. to} . Therefore

A is a larqe submodalesot B. Let G:f:. {O} be a subrnodule of C. Now An G :f:.{o}

as A is a I~rge submqdule of C. Since A c.B , {O}:f:.·A nGc BnG. So

B nG :;t:{O}. Therefore B is a large submoduleof C .

Conversely suppose that A is a large submodule of Band B is a large subrnodule of
C. Let {o} :f:.If be a submodule of C. Since Bisa large submodule of C , BHH:f:. {o} .

. Since {O}:f:.pnH is a submodule of B and A is a large submodute of B,

An (B n H) :f:. [o]. se An H = to}' " -Iherefore ,A is ~.19rg:~submodule of C .'

Problem 1.4.18:

Let B l'W,d C ~e,I~fge ~~bt:nO.~ful~sQ:t a,qf:R- ~o,g,~I~An· T~en sh()'o/~~c.l.t~nc is a I~t.ge
S1J)D.rno;gtli'e Qf A .
\' : .•.. t._,... . ... I,

§.~,I~ti.9n:Let ~a!l~C belanle§,~J;li1,od,u)~sofan,.~-rTloduleAR· Let {Q}:f:.G q~'~ubmodul~of
. ~ "~_t . I • :.' .: "--'., . . i

A . ~i.nce l{ is a I~rg,~s'JQmoduleof A, B n G :;t::{fg}. Since C is.a larqe submodule

of 41" Cf1{Bfrl G):f:. {ol· lJ~eli~,f,gre'(ftnCl n G ,¢. {OJ .

\ Hence. B nc is a 1~r:!tJJ~'!:1l;lp.m.0Qtlle of A '

',..:./

Or,R. SR:!N~VASA RAO
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Lesson - 15 Completely Reducible Rings

Introduction 15.0:

In this lesson a completely reducible ring is defined. some equivalent conditions of a

completely reducible ring are studied. If R is a semi prime then it is shown that RR and R R have
the same socle and they have same homogeneous components which are minimal ideals. Also
the minimal right ideals of a semiprime ring are studied and an equivalent condition for the R -
modules eR and jR to be isomorphic is obtained, where e and fare idenpotents in R .

Proposition 15.1 (Brauer):

Let K be a minimal right ideal of R . Then either K2 = {o} or K = eR ,where e2 = e E2 K.

Proof: K is a minimal right ideal of R. Suppose that K2:f. {O}. We get a k E2 K such that

kK:f. {o}.
~

\ \

Since kK:f. {o} is also a right ideal of R contained in the mtnimal right ideal K, kK = If. .

We get e E K such that ke = k. Now e:f. 0. k * = {r E R/ kr :;::o} is a right ideal of R. Since K is

. minimal and kK*"O,k*nK={O}. From'ke=k we get that k(e2-e) =ke2 ~ke=(ke)e-k

= ke - k = k - k = 0. So e2 - e E2k*. Also eEK. Therefore e2 -eEk*nK = {Or'andthat

e2 = e E K· Now ° *" e E eR c K as e E K· Since K is minimal, eR = K .

Corollary 15.2:

A minimal right ideal of a semi simple ring R has the form ek . where e2 = e E R

Proof: Let K be a minimal right ideal of a semi simple ring R. By proposition 15.1, either

K2 ={O} orK=eR, e2 =eEK. Suppose that K2={O}. Let kEK. Since K2={O} .and /

kRcK, kRk={O}. Therefore {a} = kRk s;;;; P foral! prime ideals p of R. So k E P forallprime

ideals P of R by proposition 12.4. Therefore k E rad R = {o]. Hence K:;:: {o}; this is a

. controdiction to the fact that K is minimal. So K = eR for some e = e2 E K .



lemma 15.3: • J ri'- , "'"

Ife' = e E Rand fER then there is a group isomorphism Ham R (eR , IR) =::. fke . Moreover

if f =e I this is a ring isomorph'sm.

Proof: e2' =e E Rand j ~R,' (./Re, +) is a group, .

(HomR(eR ,JR), +) is also a group,

Let r E R. Define ¢,. :eR ~. fR by ¢,. (es) = (jre )es = fres

= fres, + fres2

Also qSr (( es) t) =qSr (e (st)) = frest = (Jres) t = (qSr (es)) t I for all es EeR and t E R '

Therefore qSr E Ham R (eR, JR) for all r E R '.

Define If : Ire ~ Ham R (eR , fR) by If (Ire) = (Pr for all r E R

If! ISwell defined as jhe = jr2e implies ¢'1 = ¢'2 '

= ¢'1 (es) + ¢'2 (es)

- (¢'1 + ¢I], ) (es) V es E eR

Therefore ¢'1+'2 = ¢'1 + ¢'2.·

,-,,

Therefore 1/' is a group homomorphism.



We see now that If/ is one-one.
.' '. ...' - " ~'.'.- " .... '( .

. : ; ~.
.' ~.

Now ¢f] = ¢'2 and that ¢f] (e~) = ¢'2 ( ee) and.that. ';,

frle = fr2e. Therefore w is one-one. Let't/J E HomR'(eR ,jR)
'- ' ," .

Let ¢(e) = fr , r E R . We claim that ¢ = ¢r

,¢ ( es) = ¢ ( (e) es) = ¢ ( e ) es = Ires = ¢r ( es ) forall es E eR : "
\,

Therefore ¢ = t/Jr' Now fre E jRe and If/(fre) = t/Jr ., t/J...
. !

So If/ is onto Hom R (eR , jR). Hence jRe = Hom R (eR , jR)

as groups. Suppose-now that f'=e as seen above If/ isa group isomorphism of eRe 'onto
HomR(eR ,eR)., Now eke , HomR(eR ,eR) are ring~. We provethat ~i~ a ri~gisorr-"i1;hi~m~

" . . ~. . .-....: .' " ~'.;:' """ ::,,'>i

Let '1 ,r2, E R ,.If/(erl e) (er2 e)) = If/(eher2)e)= ¢r
j
er

2
' Now t/Jr

j
er

2
(es) = erj er2 es=' ~;

¢f] (er2es) = ¢f] (¢'2 (es)) = (¢f] ¢'2 )( es), for all es E eR .,
-..

Therefore If/ is a ri~,g isomorphism.

Remark 15.4:
/

Let e2 = e E R. Now eRe is ring with unity e . By lemma 15.3 eRe and Hom R ( eR . eR) are

isomorphic rings. If eR is irreducible then by schure is lemma we get that HomR (eR ,'eR) is a

division ring.

Therefore eRe is a division ring. The converse is also true if R is semi prime ..
j: ..,.-~'. "

F,lroposition 15.5 : If R is semi prime and e2 = e E R then ek; is a minimal rign,t idea·l.if and.only
if eRe" isa division ring.' . ." .

j' I "

Proof: R is a semi prime ring and e2 = e E R . If eR is a minimal right ideal of R then by the above



','~i',;~r "~ ~""'j ,
, , ",

" '.,' .' •••. ~.il.~ ':"':>"'~"'-;"'~.!:,;-:- .•- •. ~."", .:,.'~.f~:",...•.•' ..,
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remark we get that eRe is a division ring. Conversely suppose that eRe is a division ring. Let

o *- er E eR. Since R is semi prime as seen in the proof of collollary15.2, er Rer *- {o}. So we get

an S E R such that erser :f. 0 and that erse :f. O. Since erse is a non-zero element of the division
l' _ ,,' .;' ,

ring eRe, we get ete eeke such that (erese)( ete) = e. Therefore e E erR and that eR c erk .
Obviously erJ? c eR. Therefore erR = eR ° .,;, .•

Hence eRis minial right ideal of R .

Proposition 15.6: If R is semi prime and e2 = e E R then ek ,is a,minimal right ideaLif ~md only
if Re is a minimal left ideal of R .' ,. . .. . .' . ,

Proof: R is a semi prime ring and e2 = e E R. The new results we get by replacing the term 'right·

iqeel' py 'left,iqeal',~nd «r 'eR::by 'Re: ln.thestatements of proposition 15.1, Corollary 15.2, and.
proposition 15.5 are also valip. So we get that eRe is a division ring if and only if Re a minimal left

'l'"'-:--.'.~'~;.~' ".\,.~;: "".', '" ".;:.-'-;" - ~ ': ~. '.r '

ideal of R. Therefore from proposition 15.5 we get that eR is a minimal right ideal if and only if Re
is a minimal left ideal:

'Proposition 15.7:

'r SUChthat vu=eand uv= I.
. 7, (...

Proof: We have e" -= e E Rand t: = fER. Suppose that eR == jR as right R - modules: As

seen in the proof of lemma 15.3, IfI.:fRe,~ HomR(eR, fR)definedby IfI(fre) = (A, is a group

isomorphism, where rpr (es ):=. Ires. Since eR == fR .there is an isomorphism ¢ of ek. onto fR .

We get a z e R such that IfI(jre) = rpr = rp. Let u = Ire. Now rp-I : jR ~ eR is an isomorphism.

Again by the proof of lemma 15.3 T ~eRf ~ Homp (jR , ~R) defined by T (erj) = gris a group

isomcrphism.where gr(fi) "=erfs. Since rp-I E HomR (jR ,eR), we get a;~R~ such that

T( etf)=gt =¢-I. Let v=etf ..
," ~0.,. ~'. '".

So, e = ¢-I ¢(e) = gl (rpr (e)) = gl (Ire) = etfre = (etf)(Ire) = vu



\ .

and 1 = tj)(rl (1) = ¢r (s. (1) ),=¢r (eff) = fretf = i fre )(elf) = uv

. Conversely, suppose that there are v , U E R such that

e=vu and 1=uv

Now ue = u( vu )=(uv)~= fu .

Define ¢: eR ~ jR by ¢ (er) = uer

¢(efj +er:,) = ¢(eU, + r2)) = ue(rl + r2) = uer, +uer2

¢'(er)s)=¢(e(rs))~u(ers)=(u(er))s=(¢(er))s foral! er~~R and SER.

Therefore, ¢ is aR - homomorphism of eR into fR.

Suppose that erl . er'J. E eR and ¢(erl)=¢(er~).

Now uelj =uer2 this implies v(uerd =v(uer2) and

this implies (vu)er, = (vu)er2 i.e., e(erd= e(er2), i.e·1erl'= er2"

'Therefore ¢ is one-one . Let 'fr e jR.

Now evr E eR and ¢(t'vr) =- (ut')l'r = (fit)vr =- f(ll1)r

=ffr=fr

So ¢ is onto jR. Hence ¢ is an R isomorphism of eR onto. fR. (i!Rand jR .areeomorphlc
~ • 7 • .

as right R modules.

Corollary 15.8:

'J 'J . .' .. .' .
If e- = e E Rand' r: =T E R then eR~iB as rightR modules if and only if Ress Rf as

left R modules.

Proof: ~2 = e E Rand 12 = 1 E R .

By proposition 1~I 7 we have that eR == fR as right R modules if and only if there exist v ,
• .,,, ••t

uER, such that e=vu andJ=uv (1). On the same lines we get that Ress Rf asieftP
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modules if and only if there exist X" Y E R suchthat e = xy and f = yx (2).

From (1) and (2) we get that eR == jR as right R modules if and only if Re= Rf as left R
modules.

Proposition. 15.9:

If R is semi prime then RR and RR have the same homogeneous components and these
are minimal ideals. .

Proof: Let R be semiprime. Let S be the socle of RRand S' be the socle of RR. S is the sum

of all minimal right ideals of Rand S' is the sum of all minimal ieft ideals of R. Since R is semi

prime by corollary 15.2, a minimal right ideal (left ideal) of R is of the form eR (Re), e2 = e E R .

We know that for e2 = e E R, eR (Re) is a minimal right (left) ideal if and only if eRe is a .division

ring, as R is semi prime. Let X = {e E R/ e2 = e and eRe is a division ring} .

So S = I eR and S' = I Re
eEX eEX

We show that s is an ideal. Clearly S is a right ideal of R. Let r E R. f; :R -:+ R defined

by fr (s) =rs is a R - homomorphism. So fr E Hom p (R , R). By proposition 14.3 fr (S) ~ S .

i.e., rS ~ S. Therefore S is a left ideal of R. Hence S is an ideal of R. 8ya similar argument we

get that S' is also an ideal of R. Let e EX· Now e E S. Since S is an ideal, Re~ S. Therefore

S' = L Re ~ S . Similarly we get that S·~ S'. Therefore S =S'. So RR and RR have the same
eEX

socles. We prove now that S & S' have the same homogenous components. Let H be a

homogeneous component of S. We get f E X such that H is the sum of all eR, e EX. Such.

that eR == jR. We have that eR == jR if and only if Rets Rf by corollary 15.8. Now H' the sum of

all Re , e EX, such that Res: Rfis the corresponding homogeneous component of S'. We

claim that H = It clearly H is a right ideal. .Let r E R.. tr defined above is an R - homomorphism
. I

of RR into RJ? ~y proposition 14.3, /,. (H) ~ H i.e., rH c;;;;; H. Therefore H is an ideal of R.

Similarly we get that H' is also an ideal of R. Let e E X and Re == jR. So eR == jR . now eR ~ H

and that e E H. Since H is.an ideal Re c; H. Therefore H' ~ H. Similarly we get that H' ~ H .

Hence H = HI' So S·and S' have the same homogeneous components. We prove now that H



!.'\

is a mirifmal ideal of R. Let «be a n6n.:~~r6fdearof R c6ntaih'edin H .Sin~e HRiscornpl~tely

reducible and K is a sub module bf·H, KR is also completely reducible. Let L bea rYlin.malriQht

"... ,', .'2 ." ' .. ", ,) i . '.', . ''''. .

ideal contained in K, c=s«. forsome g=g and that g E.¥. Now gJ?'Q Has Kr:;;/H. \(Ve

clalmthat gR === jRas RmodLilesjsincegl{ jR are irreducible if rjJ E HomR(gR ,,ffi) then either

ip = 0 or.an R'-:-isomorphism;Suppose:that gR 'j'snot R -'is6motphictO fk .' Th~11by lemma15~3

jRg=HorflR(gR, fR):::: {b} a~ groups. So' jRg=={O},. W~alsoget that eEX and eR=.'jR

implies eRg = [o]. Now 1= {s E R/ sRg = oJ' is ~n ide~1 of R cont~ining H. Si'nce g ~ H ,

'gRg :;:'0 and that g2 = 0.' So g ~g2 = 0, a contradiction to the fact that glf. i~ ~'~i'lim~;,'~i9htigeaL
- ) " 1· '_... .. "

Therefore gR===jR as R - modules. By proposition 15.7, We get u, VE R such that f=uv and

g= vu. Now f = uv = (uv) uv = u ( vu ) v = ~~ .'; r; '

./

, fR = (ugv) R ~ ugR = u (gR) ~ uk ~ K .
, ,

So, for each e E X with eR = jR ,eR ~ K .

Therefore H , the sum of all .rninlrnal right ideals isomorphic to jR is contained-in KJ.
" .~ .

Hence H = K; So H is a minimal ideal of R .

Proposition 15.10:

The following statements concernlnq the ring R are equivalent.
, c •.• '\ " ",'.\ -- ,.j'

1. Every right R - module is completely p3ducible

2. RR is completely reducible

. \

3. Every left R module is completely reducible ..

4. RR is.completely reducible.

Proof:

---1~ 2 We have that every rightR module is com61etely reducible. 'Since ;R isa right R module
1 ',,' -' '.' _;.

RR"is c6'mpletely reduc'i~ie. " '
,

"
2 =>1 We have that RR is completely reducible. Let BIl be a right R module.

"1"- '1.,

Since RR is complE3tely reducible, R is the sum of minimal right ideals Ai, i E I· Now
> ~ ~ ('



,B=' L'bR ,fJSbebR. ;Since R=I Ai' BI=L IbAi.
bEB , iEI "bEB iEI

Let b e B. w~ claim 'that bAi is either i'rreducible or {O}, Define f :'Ai ~ bA; by f (r) =br

fora I I r E. Ai' Clearly 16 lIumR(~i ,qAi) and I is onto bAi· Since Ai is a minimal right ideal

ker f={O} or, Ai' If kerf ={o} -then f is,an isomorphism and that qAt is also irreducible. 'If

,ker f = Ajthem I:;: 0 Le.,' bAi= {O}. t~erefore, eith~r bAj == {O} or bAi is anirreducible sub mod~l~

of B.
. .

Therefore Bis the sum ofirreducible sutirnodules of Bf(' He'nce BII 'is completely reducible.
Similarly we can prove that :3 ~ 4 .

, "

2 => 4 We have that RR is completely reducible.

By lemma 14.8,. Rad={O}. Si,nce rad.Rsz RadR {OJ. rad R={O}. i.e., R is semi

prime. Therefore by proposition 15.9, RII and RR have the same socle. S'inc~ RR is completely

reducible, S6c( RR) =R. The~efore the Sac( RII) = .R, i.e., RU iscompletely reducible. By symenetry

we get 4\~ 2',

Definition 15.11 :

A ring R is said to be completely reducible if Rf( is completely reducible.

Corollary 15.12: '

A vector space is completely reducible,

Proof: Let VI< be a vector space, Now R is division ring, SO RII is completely reducible. So by
, .

proposition 15.1Q, VII is completely reducible.
"

Lemma 15.13:

" ..., , .' .,,' ..•.• " . . .', 2 .
Let R be a prime ring and assume that the socle SR of s, is not zero. Let e =,~E R such

-, " ' ',..-" " 'c; ,," " "<. ",' \. . . ..:
that eR is a' mintmalnqht ideal of R. Then Hamil. (S, S) is isornorp'uc to the ring Of linear

transformations llume Re (Re, ~e) .
< ...!' . ," ~

Proof: R is a prime ring and SR the socle of s, is not ~~r~. So' R is semi prime. Let ~R be a

~inimal rIght idea" ~f"R , e2 =~1~~.· Now eRe .;~a diViSiO~'~i~~and ReeR:' is a right eRe - module.



So Re is a vector space over the division ring eRe. Let H be a Homogeneous component of S .

By proposition 15.9, H is a direct summand of S. We get an ideal K of R such that S = H EB K.

now HK ~ HnK == {a} . Since R is a prime ring {O} is a prime ideal. So H ={o} or K ={o}. Since

H is a minimal ideal of R ,H;;f:. [o]. S-o K ={o}. Therefore S=H.

Let {e;R/i E I} be the set of all minimal right ideals of R , where e? =ei e R for all i E I.

Now S = L e.R: Also e.R =eR as right R - modules as S is a homogeneous components of S .
ieR

By proposition 15.7 there exist vi.u; E R such that V;U; = e and U;V; = e., for all i E 1.

Let ¢e HomR(S ,S). Since e e ek c.S: and S is an ideal, Re~S.

Define (J': Re ~ Re by (J' (re) = (J(re) = ¢(ree) = ¢(re)e E Re.

for all rle ERe. ere E eRe.

Therefore (J' E Home Re (Re , Re).

Define If! : Homp (S, S) ~ HomeRe (Re, Re) by 1fI(¢) = ¢'"

Now ¢i = ¢2. We prove that ¢I = ¢2. Let S E S .

Now s = ~ e·r,.= "u·ev·r·. ~ll ~lll



i

. Therefore ¢1 = ¢2 arid that .If/ is one - one. We prove now that If/ is onto' HomeRe 'ORe , Re).

Let g E HomeRe '(Re , Re) . Define ¢ :S ~ S by

. ".

I
i, I

. . Also ¢' ~g '. So \if (¢) ~g and hence \if is onto HomeRe (Re, Re). We prove j"W that 'P

IS nng homomorphism. If/ (¢I + ¢2) = (¢I + ¢2) .' . "'\

(¢I +¢2)' (re) = (¢I +¢2){re) = ¢I (re)+¢2 (re) = ¢{(re)+¢2 (re)

= (¢{+¢2)(re) for all re eRe .

. '-~ .

(¢I ¢2)' (re ) = (¢I ¢2 ) (re ) = ¢l (¢2 (re )) = ¢l (( ¢2 (re ) ) e ) =

= ¢; (¢2 (re)) = ¢' (¢'(re)) for all re e Re.

So If/ is a ring isomorphism of HomR(S, S) onto HomeRe (Re, Re).

Hence HomR (S,S)= HomeRe (Re, Re) as rinqs.

Dr. R. SRINIVASA RAO
PG. Department of Mathematics

PB, Siddhardha College
Vijayawada.



Lesson - 16 WEDDERBURN - ARTIN THEOREM

Introduction 16.0:

In this lesson the wedderburn-Artin theorem is studies. Wedderburn - Artin theorem is a
valuable and extremely important structure theorem in rings which describes a basic class of rings
in terms of rings of nx n matricsover division rings.

Proposition 16.1 (Wedderburn - Artin theorem):

(a) A ring R is completely reducible if and only if it is isomorphic toa finite direct product of
completely reducible simple rings.

(b) A ring R is completly reducible and simple if and only if it is the ring of all linear trasformations
of a finite dimensional vector ~pace.

Proof:

(a) Suppose that R is a completely reducible ring. So R is a direct sum of minimal right
ideais.. .

Since 1E R, 1 belongs to a finite sum of these minimal right ideals and that R· is a direct
sum of finitely many minimal right ideals. Since R is completely reducible, ,by lemma

14.8, RadR = {O}. As rad R c;; Rad R = {O}, R issemi prime.

So, a minimal right ideal of R is of the form eR for some e2 =e E R. Since R is a direct

sum of finitely many minimal right ideals by proposition 15.9, R isa direct sum of finitely

many homogeneous components HI, H2' , Hn(say) and each Hi isaminimal

ideal of R. So R = HI EBH 2 EB EBH n and Hi is a minimal ideal of R.

Now 1= e1 + e2 + + en' for some ei E Hi' Then by proposition

el.e~ en are central orthogonal idempotenets an~ Hi =eiR =Rei, for all
~. ;.•...

1:::; i S n . .Now each Hi is a ring with unity ei'

Therefore R is isomorphic to the direct product of rings H] ,.:: Hn. We see now

.that a right ideal of n., 1:::;i s n is a right ideal of R. We have

R = HI EBH2 EB.: : EBH n : Let K be a right ideal ofthe ring Hi '_.Let r E R ,
,

r = e1xl +e2x2 + +enxn .ejxj E Hj.

Let kEK. Now k=ejy for some YER as k e Hi+e.R,
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=eie)yx) :+eieiyx2, + : ; .. , +eientxn=ejeiyXj =eiyxi EeiR = Hi' as ,ei ate

ce~tral O~h~gOnalide~pot~~ts. Therefore'~ i~'a ri~ht;deal of R. Similarly we get that

an ideal of the ring Hi, 1.$ i .$n is an ideal of R. Obviousely any ideal (right ideal) of R

contained in Hi, 1.$ i.$ n is also an ideal (right ideal) of Hi Therefore K c Hi, 1::;; i::;; n

" . . . ·is an ideal (right ideal) of Hi if and only if it is an ideal (right ideal) of R. Since Hi',

1::; i::; n is a minimal ideal of R by the above observation we get that Hi is a simple ring.

Also since Hi ' 1::; i .$ n is a direct sum of minimal right ideals of R , as seen above these

.. ,are also. minimal right ideals of Hi' Hence Hi is a completely reducible and simple ring

and R is isomorphic to the direct product of these rings H) , H 2 , H no

" .,~

Conversely suppose that R is isomorphic to a finite direct product of completely reducible

simple rings. Let R =: R) x R2 x x R; ' each R, is a completely reducible

simple ring .. By proposition R = K) (fJ K 2 (fJ (fJ K n : where Xi are ideals of

Rand K, =: R, for.all 1::; i ::;n· Since R, is completely/educible K, is also a completely

; ;,. reducible ring: .As seen above each minimal right ideal of K, , 1::;; i ::;;n is also a minimal

. right ideal of R. Since R =' K) (fJ K2 EB EB K; and each K, is a sum of

minimal right ideals of R', R is a sum of minimal right ideals of R .

(b)

i.e., R is completely reducible.

Let R be a completely reducible simple ring.

So [o] and R a~ethe only ideals of Rand {o} * R . If R2 ~ {o} then 1 = 0, a contradiction

to R,c [o]. Therefore R2:;t {o} and that {o} is a prime ideal of R i.e. R is prime.

A minimal right ideal of R is of the form eR, for some e2 =e E R. Let eR be a minimal

right ideal of R, e2 =e E R .

Since Socle (~R)=R, by lemma 15.13, HomR (R,R) == HomeRe (Re, Re). But

R=: Hom R (R ,J?). As e.R.is minimal, eRe is a division ring and that R is isomorphic to

the ring of' all iinear transformations of the vector "s"pace,

-: ..
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ReeRe ( as R == HomeRe (Re , Re)). We have to provethat ReeRe is a finite dimensional

vector space. To verify that ReeRe is finite dimenssional, it is enough to show that ReeRe

is Noetherian. Let {J(j [i E I} be a non-empty family of submodules of ReeRe. Now KjR

is a submodule of ReeRe for all i E I. Since RR is noetherian and ReR is a submodule of

RR' Re, RR is also noetherian .

. For all i E I , K, = K, eRe = K, Re (as kje = kj) (1),
Since ReRR is noetherian and {KjR/ i E I} is a non-empty family of submodules of ReRR'

this family has a maximal element KmR. We claim that Km is a maximal element in
. ,

{Kdi E I}. Suppose that Km ~ K;, for some i E I· Now Km R ~ K;R. Since KmR

is maximal, KmR = KjR. So KmRe = KjRe . i.e., Km = K, (by (1)). {

Theref-ore K m is a maximal element in {Kj / i E I} and hence ReeRe is Noetherian. So

ReeRe is finite dimensional. Hence R is isomorphic to HomeRe (Re, Re) and

HomeRe (Re, Re) is the ring 'Of linear transformations of a finite dimensional vector space

ReeRe·

Conversely assume that R = Homj, (V , V), where VD is a finite dimensslonal vector

. space. Let VI ,v2, , vn a basis of VD' , •

}

For 1:::; i, j:::; 11, define cij:V ~V by cij(1'ld1 +1'2d2 + +vndn)=Vid). Clearly eij is

a linear transformation. So eij EO R .

n
For l~i~n, Let Aj= I eijD and let Bj={rER/rVcvjD}. We claim that

)=1 .

Let a e Ai' a =eildl +ei2d2 + + eindn for some dj ,d2 , .d; ED.
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Therefore a E B, and that Aj ~ B, Let r E Rand rV ~YiD

Now r( Vj) = Vi Pj for some Pj ED where 1::; j::; n

Now b = eilf31 + ei2f32 + + ejnf3n E Ai

Since Vb v2, vn is a basis, b=r. So r = b e Ai'

Therefore B, ~ Ai and hence Ai=Bj Clearly Bj= {rE R/rVcviD} isarightidealofR.
Therefore A is a right ideal of R., , .

Since a ",,0 I for some r s k s; n , d, ""0. So d;' ED.

For 1:S:J:S: n , eij =e;, e1j EaR as en EaR and qR is a right ideal.
I

So, e;;d E aR for all d e D and I :s; j :s; n

Therefore Ai C aR .But aR ~ Ai as a E Ai and Ai is a right ideal of R. Hence Ai =aR

and that Ai is a minimal right ideal of R. Since eii E Ai, we have

1= ell + e22 + + enn EAt + A2 + + An .

Therefore R = Al + A2 + + An' So R is a sum of minimal right ideals

Al ' A2 ' An and that R is completely reducible. We prove now that R is simple. Let

O:f:. r E R . To verify that R is simple, it is enough to prove that RrR , the ideal generated by r is R.
We have O:f:. r E R .

r E R =A1 + A2+ +An- Now r =al +a2 + +an , where aj E Aj.

Since r =1= 0 for some 1::; i ::;n , ai =1= O. Now 0 =1= ai = eil E R rR ,

Rr R is the ideal of. R generated by r ,



. IJ

Since GjEAj = LeijD, (1'j. =enrl +e~2r.2 + +ejnrn for some rl,r2, : rnE D.
/;':1

$ince Gj:l; 0 fOf some 1~ j ~n, rj :I;0,.

Therefore 1 = el1 + e22 + + enn E RrR. Since, RrR is an ideal and 1E RrR I we

geHhat RrR = R'. Hence R is a completely reducible simple ring. This completes the proof.

ExerCises

Problem 16.2 : 'If D is a division ring and VD has dimension n I then showthat:

Hom-, (V , V) == 'Dn I t~,e riFl~of~~n lWlC3tric~§ qM~rD.

Solu:tl~.I,'H

n
~~~Ts HOlrJ!I>tr" ly) ~fl(;L~1r(Vi)= ~ Viaji i = 1,~, .n , aji ED.
. . .. , . . . j=cl .

all

\1\' . t . 'th' t . (T) q21l!lveCl§.~.oCJ~,~·'f{t,H f~n I5lxn m~[/X m ... =' .'

~12 .

a22·········· ED n

;

W~ prove~ha.t ~t'l!em~~~f;fl~ T ~ m(r) p.t Hom E D(V , V) into D; i,s .a rin,g.

n

isp!11~rphtsm. let S E !lomn.(V , V} and s( Vi) ='L VjPji, - i= 1,2,.....,157
. . _'I '0 'j=1
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Therefore m(T+S)=(aji+Pji) =(aji) +(Pji)" =m(T)+m(S)
nxn. nxn nxn

(TS) (Vi) = T(S(Vi)) = T (± VkPkiJ =
k=1

Therefore, m(TS) = (1-J'i) ,wherefor 1<i ; /sn. nxn '

n

. rji = L =» fJki . So m(TS)=m(T)m(S),
k=1

The above mapping is a ring homomorphism.

SupposethatM(T) isthe zero matrix. Then T(vd=O forall i=1,2, ..... ,n .

Sihce vI ,v2, ..............•. ' vn is a basis, T'=O. Therefore the above mapping is one -

one. Let A = {aji)nxn EDn

n
Define L(vj} = L vjaji ,i =1, 2, " n . Since VI, v2, vn is a basis,

j=o!

L can be extended to a linear transformation of V into V. So L E Hom-, (V V).

Clearly M(L)=A,

sothemapping T ~ I71(T)isontoDn.

Hence T ~ m(T) is an isomorphism of HomD(V V) onto Dn.

Problem tEL3: Show that R,:* {O}is.completelyreducible if and only if no maximal right ideal of

R is large.

Solution :Suppose that R j~ cornpletety reducible. /

Since 1ER, R''1,isadirectsum of a-flnite number of minimal right ideals. Let .

R = K] EBK2 EB EBKn "where K\, K2' , K; are minimal right id~als l
of R. Let M bea maximal right ideal of R. We claim that M is not large.



On the contrary, suppose that M is large. Now K, n M :;t:{O} as K, :;t:{O} and as M

is large, where 1:::;i :::;n .

Therefore KjnM= K, for all i=I,2, ......n . So, K, eM for all i=I,2, ......n and that

K, + K2 + + Kn <;;;;; M i.e.R <;;;;; M a contradiction to M :;t: R .

Therefore M is not large.

Conversely supposethat no maximal rightideal of R is large.,

Let K be a right ideal of R. We get a right ideal L of R

such that K n L = {o} and K +L is large.

Suppose that K + L =f- R· Since I E R , K + L IS contained in a maximal right ideal M

of R .. Since K + L is large, M is also large. A controdiction to the fact that no

maximal right ideal of R is large. Therefore K +L = R. Therefore L (RR) is

complemented and hence RR is completely reducible i.e., R is completely reducible.

Problem 16.4:,

Show that the ring of 2 x 2 matrices over an infinite field has an infinite number of
district minimal riqht.ideals ..

Solution:
) .

Let F be an infinite field. Let F2 be the ring of 2 x 2 matrics over F. F x F IS an

abelia~ group under ~mponent wise addition. For (a , P) E F x F and [: !] E F2,

define (a , p) [a b] = (aa + pc , ab+ f3d).
cd. . . .

1'his 'makes FxF, a right .F2 - module. Fqr (a, 13) E FxF, define
! ~

(a, p)' ~ {[: !} F2/(a ,fit !]~(0,,0) } . q!earIY(a, fi)' is a right ideal

of'F2 for all (a, P)E FxF.

\
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Fix (a, P)EFxF, a" 0 ,p" O. Clearly 0 "I~ -:lE (a .Pj' and

, . [1 OJ ( )r(a, pt:t; F2, as ,0 1 ~ a, p " Since F is simple, we have that F2

and hence prime.

is simple

,

Now K2 ~ {(~ ~J/x,yE F} and KI ~{[ ~~ ]/X,YE F } are minimal right ideals

of F2 by proposition 15.5 as K] ~ e]F2 and K2 =e2F2 a~d e]F2e] == F, e2F2e2 == F,

where el ~ [ ~ ~], "2 ~ [ ~ ~] are idem pot~nts

Also F2 ;: K)EB K2 So {O} c K) c K, EB K2 = F2 is a composition series of F2F2

of lengt,h 2.

Therefore, {O}c (a,pr cF2 is a c6mpositionseries, of F2F2 ,as {O}c (a,pr cF2
+ + + +

" I .••••

can be refined to obtain a composition series of F2F and any two composition series
. .' "2

have the same length. So (a,fJ)'" is a minimal right ideal of f2.

Let S E Rand s:t;0 & s "* 1.
::1,.

Now (a, [ls r is a minimal right ideal of F2 and

[
p'" ""-p] ; "; .: .' ,"

Ii!: (a , ps) . Therefore, the minimal right ideals~ a . ,

(a , ps rand (a, pr are distinct. Similarly we get that for O:;t s , O:;t t in R,

(a,[l1r :t;(a,pt)r, if s:t;f
." .. .

; ~..' \, + Therefore, we gt;t that {(a', ps r /O:;t s E F} is an infinite set of distinct minimal right

ideals of F" .

Dr. R. SRINIVASA "AO
PG. Department of Mathematics

P.B. Siddhardha College



Lesson -17 Artinian and Noetherian Rings
Introduction 17.0: In this lesson, Artinian and Noetherian rings are studied. It is proved that the

radical of a right Artinian ring is the largest nilpotent ideal and the prime radical of a right Noetherian
ring is the largest nilpotent right ideal. Finally Hilbert Basis theorem is proved.

17.1 Definition: A ring R is called right Artinian (Noetherian) if the right module RR is Artinian
(Noetherian) .

Theorem 17.2: The radical, Rad R , of a right Artinian ring is nilpotent.

Proof: Let R be a right Artinian ring. Then RR is right Artinian. This. implies any non-empty family

of sub modules of RR (Le., right ideals of R) has a minimal element and hence R satisfies the
)

discending chain condition on right ideals. Now Rad R is an ideal of Rand

Rad R :2 (Rad R)2 :2 (Rad R )3:2 is a descending chain of right ideals of R. since

R satisfies the d.c.c. on right ideals of R, there exists a positive integer n such that

(Rad Rt = (Rad Rt+1 = .

Put B=( Rad Rr· Then 82 = R·

Now we will show that, , B = (0)

If possible suppose that B =f:. 0

Write r:Y; = {AI A is a right ideal of R such that A ~ Band AB =f:. ( O)} .

Since 8 E r'f: r'f*,¢.. Since R is Artinian, ry contains minimal elements. So let A be a

minimal element in r':/). Then AB =f:. O,=> there exists an element a E A such that

a =f:. 0and aB =f:. ( 0) .

Now aB~A~ Band aBB=aB2 =aB:t=(O}
\

.'.aB E r':/

Since (0) :t=aB ~ A and A is a minimal element in riT We have aB = A. Since a E A

we have a=ob for some b e B.
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Now b e Band B = (Rad Rr ~Rad R => 1-b is invertible. => there exists c E R such

that (l-b )c=l.

Consider a=a.l=a(l-b)c =ac+abc=ac+ac=i) (-:a=ab)

=>a=O a contradiction.

This contradiction arises due to our supposition B:;tO. So B=(O) ·and hence

(Rad Rr = (0) . Thus there exists a positive integer n such that (Rad Rr = (0) and hence

Rad R is nilpotent

Corollary 17.3: In a right Artinian ring, the radical is the largest nilpotent ideal.

Proof: Let R be a right Artinian ring

Claim: Rad R is the largest nilpotent ideal of R .

By the above theorem 17.2, Rad R is a nilpotent ideal of R . We know that rad R ~ Rad R.

Now we will show that every nilpotent ideal of R is contained inRad R .

Let I be any nilpotent ideal of R. Then In = (0) for some positive integer n => In ~ p

for any prime ideal P of R => I ~ P for any prime ideal p. of R .

=> I c rad R => I c Rad R (.: rad R ~ Rad R). So Rad R is the largest nilpotent ideal of R.

Corollary'17.4: If R is right Artinian, then Rad Ri=rad R .

Proof: Suppose R is a right Artinian ring. Then by theorem 17.2, Rad R is a nilpotent ideal of R .

Since every nilpotent ideal is contained in the prime radical of R , we have Rad R ~ rad R. But

rad R c Rad R. Hence rad R = Rad R .

We recall that a ring R is a regular ring ifto each a E R, there exists an element x E R

such th1ata=axa , put e=ax. Then e=e2 and aR=eR.

Remark 17.5 : A ring R isa regular ring if and only if every principal right ideal of R is a direct
summand of R.

For let R be a ring.

Suppose R is a regular ring.
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Let L be any prinicipal right ideal of R. Then L = aR for some a E R '..Since R, is regular,
there exists x E R such that a=axa . Put e=ax , Then e is an idempotent.

consider eR = axR ~ aR = axaR ~ axR = eR ~ eR = aR

. . ;' ., L = eR for some idemopotent e E R . .. '

We know that R is the direct sum of eR and (1- e) R ~ R' is the direct sum of Land

(I-e) R. Hence L is a direct summand of R. Thus every prinicipal right ideal of R isa direct

summand of R.

Conversely suppose that every principal right ideal of R is.a direct summand of R .

Let a E R .Then aR is a principal right ideal of R. BY,our supposltion, these.exists a right

ideal L of R such that R = aR EB L . Since I E R , we have I E aR + L ,/Then 1 = e + l for some

e E aR and l E L .

Consider 1= 'e + f ~ a = ea + fa ~ a - ea = fa E L

=> a - ea E aR nL ('.0 e E aR and a E aR) \ " '

=> a=ea = 0 (0: aRn T.=(0)) => a = ea

Since e EaR, we have e=ax for some x E R '.' .

Consider a=ea=a x a

Thus, for a E R , there exists x E R such that a = axa

:. R is a regular ring.

Lemma 17.6: In a regular ring every finitely generated right ideal is principal.

Proof: Let R be a regular ring and L be a finitely generated right ideal of R .

We prove this by induction on the number of generators of L '. -",;.'

1 ~ :r ,

If L is generated by a single element, then L is a principal right ideal of R .
. '. .) -, '

Suppose L is generated by two elements a and b of R. Then 1= aR +bR. Since R is a regular

ring, there exists t E: R such thata-:- ora. Put c ""ar .' Then e is an idempotent and eR =aR . L

Now l=e+(l-e) => b =eb + (l-'-e}h => hR ~ ebR+(l--,e)hR ~:: (1)

Consider (l-e)bR '= (b-eh)R cbR +eb R ~ bR + eR (2)
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From (1) and (2), L d:'aR+ bR c eR +ebR +(l-e) blic.ek + (l-e)bR ~ aR + bR = L

:. L =eR + (l-e)bR
,

\ -
Now (l-e )bR is a principal right ideal of R ~ there exists an idempotent fER such that

(1 - e) bR = fR => f::;: (1- e) bs for some s E R .

= ere-f:'g( = x (:: eg = 0 and ge = 0) =>x=(e+ g)XE (e+ g)R

Consider ef=e(l~e)bs=O

Put g=f(l-e). Then gf = f(l-e)f = f(f -ef) = f2 = f (.: ef = 0) ~ gf =f

Consider g2 == gf (1 - e) = f (1 - e) =g

Consider eg = ef (l-e)=O (": ef =0)

and se= f(l-e)e =0

So g is an idempotent in R such that ge'=eg=O.

Now g = f(l-e)EjR, and f=gf EgR

=> gR ~ jR and jR ~ gR

.'. fR = gR

Consider L=eR+(I-e )bR=eR+ fR=eR+gR

Now we will show that eR+ gR=;( e+ g)R.

Clearly (e+ g)R c eR-t- gR.

Let x E eR + gR => x = er + gt for some r , t E R

Consider (e + g)x = (e + ~)( er + gt) =eer + egt+ ger+ ggt

So eR + gR c;;;, (e + g) R and hence eR + gR =( e + g) R .

Consequently L = (e +g) R, whjch isa~prinicipal\~r~ht~deal of p. .
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So the result is true for n = 2 .

Assume n> 2 and the result is true for all m <n .

Suppose aI' a2 , ••••••••• , an are generators of L. Then L = aIR +a2R + + a.R .

WriteM =aIR+ a2R + +an_IR. Then by our assumption Mis a principal right ideal of

R. This implies M =aR for some a E R. now L =aR +anR. Again by our assumption, L is a

principal right ideal of R. Hence the result is true for all n .

Thus every finitely generated right ideal of a regular ring is a principal right ideal.

17.7 Theorm: The following statements concerning the ring R are equivalent:

(1) R is completely reducible

(2) R is right Artinian and regular

(3) R is right Artinian and semi primitive

(4) R is right Artinian and semiprime

(5) R is right Noetherian and regular

Pr?of: Assume (2) i.e. R is right Artinian and reg.ular

Let a F Rad R. Since R is regular, there exists r E R/such taht a=ara . Then (l-ar )a=O

Since a E Rad R , we have ar E Rad R. Then 1- ar is invertible. This implies there exists

S E R such that (1- ar) s = s (1- ar) =1

Consider a= l'a = s(l-ar)a =s ·0=0 C' (I-ar)a = 0) =? a =0

Since a E Rad R is arbitrary, we have Rad R = (0) .

:. R issemiprimitive and hence R is right Artinian and semiprimitive.

So (2) => (3)

Assume (3) i.e. R is right Artinian andsemiprimitive

Then Rad R = (0) . Since rad R ~ Rad R , we have rad R = (0). Therefore R is semiprime

and hence R. is right Artinian and semiprime.

So (3)=>(4)

Assume (4) : i.e. R is r,ight Artinian and semiprime.



Since R is right Artinian, by theorem 17.2, Rad R is nilpotent. Then Rad R is contained in

every prime ideal of R . This implies Rad R ~ rad R. Since R is semi prime, rad R=(O). This

implies Rad R=(O) and hence the intersection of all maximal right ideals of R is zero.

Since R contains 1, R has maximal right ideals.

Write

nY} = {L) n~ n, nLn / each L, is a maximal right ideal of Rand n is a positive integer}

Then ,,':;I' *9. Since R is Artinian.rv' contains minimal elements. Let

B =' L) n L:2 n n Ln be a minimal elements in r'l. Now we will show that B = (0). Let M

be any maximal right ideal of R. Then B nM E r.Y and B nM ~ B. Since B is a minimal element

in 8} ,we have B nAI == B. This implies B ~ AI ' Since M is an arbitrary maximal ideal of R , we

have B ~ Rad R. Since Rad R =( 0), We have B=( 0). So LI nL2 n nt; = (0). Since B is

:. R = Ai EB Li' the direct sum, for i = 1,2, ,n .

a minimal element in r:y,} Li 1;lnLj for i= 1,2, .n .

i=!

Put Ai = n Lj for i= 1,2, ,n. Then Ai q; L, for all i. Since Li is maximal right ideal of
j*/

R, we have R =Ai + L, for i= 1,2, .n . Also Ai n L, = (0).

Bya known result, R/ Li ;;;:Ai for i = I, 2, ,n . Consequently, Ai is irreducible and hence
I ,

Ai is a minimal right ideal of R .

Since R = Ai + Li, we have 1E Ai + Li· Then 1= ei + fi for some ei E Ai and I, ELi for

i=I,2, ,n. It is easy to verify that ei is an idempotent for i=I,2, .n .

Now l-ei =L ELi for i=I,2, ,n.

n
Put e = I,ei.

i=1

Now we will show that e -1 = 0

For j=1,2, ,n I Aj C Li for i* i . Then



e":""l == (e'~l)'+ "e· E 1- for 1'=12 ' ' nI L..... } I , , .•••.•. , ,

j*-i

n n n
~ e = 1 ~ I ei = 1 ~ 1E I Ai ~ R = I Ai

i=l i=l i=l

~ R is completely reducible.

So (4) => (I).

Next we will show that (1) implies (2) and (5)

Assume (1) i.e. R is completely reducible.

Then R is a direct sum of a fimite number of minimal right ideals A) ,A2' ·..An . This

implies R = A) + A2 + + An and each Ai is non-zero.

Consider (0) c Al c Al + ..12c c: R is a composition series of RR ~R is right
*- =1= =1= =1=

Artinian and right Noetherian.

Since R is completely reducible, L( R) is complemented. Then each right ideal of R is a

direct summand of R and hence every principal right ideal of R is a direct summand of R.
Then by remark 17.5, R is regular.

Hence (1) => (2) and (1) => (5)

Next we will show that (5) =>. (1)

.Assume (5) .J.e. R is right Noetherian and regular. " " ,

'Since R is right Noetherian, every right ideal of R is finitely geni,iated: Since R is regular,
by lemma 17.6, every finitely generated right ideal is a principal right ideal. By remark 17.5, every

-' • I,..

principal right ideal of R is adirect summand of R. Threrefore every right ideal of R is a direct
, /', - ",- ".

summand of R and hence: L (R) is complemented. Bya known result, R is completely reducible.

So (5) =>(1)
~. ; -, ,

Thus all conditions are equivalent.
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17.8 Theorem: If R is right Artinian, then any rightR -"module is Noetherian jf and only if it is
Artinian.

Proof: Let R be a right Artinian ring.
-

Put N = Rad R . Since R is right Artinian, by theorem 17.2, N is nilpotent. Then there exists

a positive integer n such that Nn = (0).

Let A be any right R module such that A is Artinian.

Clearly ANi is an R - submodule of All for i=1,2, .n .

Consider the chain of sub modules A:;:2AN :;:2 AN2 :::::> •....•...... ANn-1 :::::> ANn = (0) with

factor modules,

ANk-1

FR = ANk for k=1,2, ·,n

Define. : Fk x ~ ~Fk as (x+ANk) • (atN) = ~a + ANk for allx,EANk-1 and

for all a E R.

Then Fk is a right R/ N - module and also Fk is an R - module. Also Fk is Artinian for
" '. '"

k = I,2,········, n . Since R is Artinian, by a known theorem, R / N is also Artinian.

Since R / N is Artinian and semi primitive, by theorem17. 7, R / N is' completely reducible.
i r-. - ._ . I "-'", i ': ,- . .

Then by a known result, Fk is completely reducible as an R / N - module. This implies Fk is
completely ieducible as an R-module.' '

(.: R sub modules of Fk are precisely the R / N sub-modules of Fk).

Since Fk is completely reducible and Fk is Artinian, Fk is the direct sum of a finite number

of irreducible R - submodules of Fk . ThenFk hasa composition series and hence :Fk is Noetherian

';"-8S an R l' module for k:= 1, 2, .... , nj.~·; , , «:'/J::;. ,
".' . ,., \ " ~" .

" :o~ Alvn-2" """
Therefore ANn-1 =Fn ,~fd AN~-l =Fn-1are Noetherian ..Then by a known theorem,

A
A Nn-2 is Noetherian. Continuing in this way AN

Noetherian.

and AN are Noetherian and hence A is



Interchanging the words "Artinian" and "Noetherian" inthe above proof, we get the converse part.

17.9 Corollary: Every right Artinian ring is right Noetherian.

Proof: Suppose R is a right Artinian ring: Then RR is right Artinian. Since R is right Artinian, by

theorem 17.8, RR is right Noetherian and hence R is pight Noetherian.

17.10 Reamrk : The converse of the above corollary need not be true.

Ex : The ring of integers is right Noetherian but not right Artinian.

17.11 Theorem: In a right Noetherian ring the prime radical is the largest nilpotent right ideal.

Proof: Let R be a right Noetherian ring.

The family r:Y"ofall nilpotent right idea' .. Jf R is non-empty. Since Ris right Noetherian, 6r
contains a maximal element say N. Since N is a nilpotent right ideal of R I there exists a positive

integer p such that N P = (0) .

Now we will show that N is the largest nilpotent right ideal of

Let L be any nilpotent right ideal of-·R. Then there exists a positive integer k such

thatLk =(0).

Now (N + L )P +k = (0). This implies N + L is a nilpotent right ideal of R . Since"N s;;;; N + L

and N is a maximal element in qf, we have N = N +L and hence L <;:;;; N .

Therefore N is the largest nilpotent right ideal of R . Now we will show that N is an ideal
of R. For this, it is enough if we show that R N s;;;; N

Consider (RN)k = RNRN RN k times

<;:;;;RNk=(O)~(RN)k =(0) ~RN is nilpotent.

Since N is nilpotent and RN is nilpotent, we have N + RN is also nilpotent. Since

NS;;;;N+RN and Nis maximal element in 07, we have' N=N+RN and hence RNc;:;;;N.

Therefore N is an ideal of R . Since N is a nilpotent ideal of R , we have N c;:;;; rad R . Consider the

R R A
ring N' Any right ideal of N is of the form N where A is a right ideal of R such that N s;; A . Let

M R (M)S . R .N be any nilpotent right ideal of N' Then N =(0) in N for some positive integer s .
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Therefore M is a nilpotent right ideal of R .

Since N is the largest nilpotent right ideal of R , we have M <;; N and hence M = N . This

M R R ' R
implies N=(O) in N· This shows that N has no non-zero nilpotent right ideals and hence N

R
has no non-zero nilpotent ideals. Then by a known theorem, N is semiprime. We know that

R
rad R is the smallest ideal K of R such that K is semiprime. Since N is an ideal of R such that

Let N be any nil left ideal of R .

R
N is semiprime, we have rad R <;; N. Hence rad R = N ._Therefore rad R is the largest nilpotent

right ideal of R .

17.12 Definition: A subset S of a ring R is called a nil sub set if every element of S is nilpotent.

17.13 Remark: The prime radical of any ring is a nil subset.

17.14 Theorem: In a right Noetherian ring the prime radical is the largest nil left ideal.

Proof: Let R be a right Noetherian ring.

Claim: The prime radical rad R is the largest nil left ideal of R .

By a known result, every element of rad R is nilpotent and so rad R is a nil left ideal of R .

case (i) : Assume that R is semi prime

Since R is serniprirne; rad R=(O).

Now we will show that N ~ (0)

If possible suppose that N =t:. (0) .

For any 07= nEN, the set nr ={s E R/ns=O} is a right ideal of Rand 1~ nr.
,

Since N 7=(0) ,we have r'7 =t:. ¢ .Since R is right Noetherian, rYcontains maximal elements.



\

So let 'n" be a maximal element in r}!: Then n"* 0 and n EN,

Now we will show that ~Rn = (0) .

Let x be any element in R. If xn = 0, then nxn = 0 . Suppose xn"* 0 . Since hEN and N is

a 'left ideal of R, We have xn EN. Then xn is nilpotent. Let k be the smallest positive integer such

is a maxi~al element in 0'7, nr = ((xn)k-lf· This implies xne n" and hence nxn=O. Since

x E R ,i~arbitrary, we have nRn=(O). Since R is semi prime, vyehave n=O; which is a contradiction
. , "

to the fact that n"* 0 . Therefore N = (0)

Next consider the general situation where R is no longer assumed to be semiprime. Let
, R

N be any nil left ideal of Rand n :R -) -- be the canonical epimorphism. Since N is a nil left
rad R

ideal of R, n(N) is a nil left ideal of R. Consider n(N)={n+rad R]n EN}

(N+rad R)
= =~----'-

rad R rad R
N

R R
Since R is Noetherian, by a known result, rad R is Noetherian. Also rad R is serniprirne.

(N +rad R) R
Then by case (i), rad R =rad R which is the zero element in 'rad R' This implies

,\r ! red R ~ roc! R and hence V ~ rod R . So if N is a nil left ideal of R , then N ~ ~'~dR ' Thus

rad R is the largest nil left ideal of R.,

17.15 Corollary: In a right Noetherian ring every nil ideal is nilpotent.

Proof: Let R be a right Noetherian ring. Then by Theore~ 17.11, rad R is the largest nilpotent

right ideal of R and so rad R is a nilpotent ideal or'R . Let J 'be any nil ideal of R . Then J is a-nil

left ideal of R. Then by the above theorem 17.14, I ~rad R. Since radR i,snilpotent, we have I
is nilpotent. Thus every nil ideal in a right Noethenanrinq is nilpotent, '. ' , , ,

The following important result is known as the Hilbert Basis Theorem.



17.16 Theorem: Let R [x] be the ring obtained from the ring R by adjoining an indeterminate x. ,' ..

which commutes with all elements of R . Then R [x] is right Noetherian if R is.

I
I
I

Proof: Suppose R is a right Noetherian ring.

Given that R [x] ; is the ring obtained from R by adjoining an indeterminate x which

commutes with all elements of R .

Claim-: R[x] is right Noetherian.

Since R is right Noetherian, by a known result, every right ideal of R is finitely generated.

To show R[x] is rightNoetherian, it is enough if we show.that every right ideal of R[x] is

finitely generated.

Let' K be any right ideal of R ~x],

._ . . _ I.{I ythere i.sa polynomial of degree 4 it; K with leading ..~:For 1-0,1,2, .put X, -,I tER. . .•
coefficient r or r = ° . I

I
I
I

,

Now we will show that K, is(a!right ideal of Rfor i =0,1,2, '. ~ince OE K, ' we have

Ki *¢ for i=O,t,2, .

Consier, f -g= (lj - r2 ) xi + ; + (Cl - c2 ). This implies r] - ": is the lea~ing coefficient

of f - g and so r] - r2 q K i .

Let r] E K, and t E R . Then there exists a polynomial f in K1such that f ~!1J1 xi + .....+ c .

. Co~~ider fr = r1 n xi + ..+M .T~is ih\tplies r1r is the lea~inb coefficient ofthe POlynO~iall

I:/r,and an~.so rl r E Ki;· Therefore ~r isla rig~lideal of R for i.=O,1.2, ..:..... ,,_.

Next we will show that K, C. ~l+1 for i = 0, 1,2, .
. ··f - I ,1.

'I

Let r E Kj. If-r = ° then r E I<fi + I .
I
I

'.
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Suppose r *- 0. Thenthere exists a polynomial f E K such that f = rxi + +e. Since

f E K and since x E R[x] and K is a right ideal of R[x], we have f x E K. and

f x = r xi + 1 + + ex . Then r E Kif. 1 . Therefore K, cKi ; 1 .

Hence {Kd~=o is an ascending chain of right ideals in R. Since R is right Noehterian,
/'

there exists a positive. integer n such that K n = K n + I = .

Since R is right Noetherian, by a known result, Ko, KI' K2' , Kn are finitely generated

mi
right ideals of R . So let K, = I bi) R for i =0, 1,2, , n .

)=1

Since blj E K i , there exists a polynomial Pi) E K of degree i with leading coefficient bi) .
(

Now we will show 'that K is-generated by X.

n mi
i.e., K=(X)=L L Pi)R[x],

i=O )=1
Clearly (X)cK.

\
Suppose K*-(X)., Put S=K\(X). Then S*-¢. Let fES be a polynomial of minimal

degree and let deg f =t. Write f =e/ + +eo· Now f is a polynomial in K of degree t, with

. ~ ~ .
leading coefficient e. Then e E K, = L btj R. This implies C = L btj rtj for some rtj E R for j = 1,

)=1 J=1

2, "', ml.

:ase (i) : Suppose t < n -'

m, (,.' [m, /j'
Censlder the polynomial. f - L ~)rtj E K and deg f -~-Pij rtj ~t -1. This implies

)=1 J=1

~ ~
- j~1 Ptj rtj eS. Consequently Jr: )~I ~<rtj E(X) and hence f E(X); a contradiction,
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Case (ii) : Suppose t e n . Then K, =Kn

mn '

Now C E K t = K n => C = L bnj S nj for some Snj E R for j =- 1, 2, .... , m n . Then the polynomial
j=1

~ , ,

f - L ~I} x' - n Sllj E K and the degree of this polynomial is less than or equal to t -1 .This implies
i=)

mn
f - L Pnj xl - n Snj it S. Consequently

j=1

contradietlen.

mn

f - ~ Pnj xt~n SnjE(X) and hence f E(X); which is a
J=I. '

n mi

Therefore K = (X) = L L Ijj R [x] and hence K is finitely generated.
" i=O j=l

Thus f;v~ry rigJ\t id,~al of R [x] is fiMely genere1te,d. Hence by a known result, R [x] is.

Noetherian.

17.11 Gorolla~ : L,.etR [~I'X2,···.· .. ·.·, xn], be the ring obtained from R by adjoining n indeterminates

xi Whi,chcommute withal! elements of R and with each other. Then this is right Noetherian if R is.

Proof : Suppose R is a ri.ght Noetherian rin~. Then by Theorem 17.16, R [Xl] is right Noetherian.

Agai,r,lby Th~orem 17.16, R[ Xl] [X2] is riQ.htNoehterian. But R [Xl, x2 ] = R [ Xl] [ X2] and so R [ xl, X2]

is right N"ethf;riao,. If w~ continue this process, we have R [ Xl, X2, , xn ] is right Noetherian.

Or. V; s'~ME3ASIVARAO
Department of Mathematics'

Acharya Nagarjuna University.
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Lesson - 18 PROJECTIVE MODULES

18.0 Introduction:

In this lesson. the notion of projective ;I)lQdqles is lntroduced. All pr.ojective modules are
characterized in several ways and some examples are given, some important properties of
projective modules are studied.

18.1 Definition:
. -.~

*
We recall that the (external) direct sum A = L Ai of a family of modules consists of all

iffl
• ~ \ OJ, .

{I E ,ff A, such that a (i) = 0 for all but a finite number of i '
lEI

18.2 Remark:

*
L: Ai(a(i))=u for all a in A = L Ai

iEI iel :

18.3 Proposition:

If A is the direct sum ofafamily of modules {Adi~1 iiithcanonicalmappings K(Ai~A

then, for every module B and for every family of hcmomorptusms {A :Ai ~ B ,! there exists a
". . ";' \. .

unique homomorphism r/J: A ~ R such that ¢ . 'K, =¢i' More over, this property characterizes

the direct sum up to isomorphism,

The proposition is illustrated bythe "Commutative" diagram:

. ;"

Proof: Suppose that .1 ;'3 the direct sum of fa~~y {Ai} iE I of R - modules.

Let B be an R - module and Let ¢i : li~~~B ·bea h~~~morphism 'fO';ij E I.



Let a E A
, "

r; ;: -:.:," ;:" '...... ',)

Then a = LKi (a (i) )
ie l

, ',.: -,'

,D~fine' fjJ: A ~B' by¢( u)' = .L'¢Hu{i))
, iet' '

Now, we show that ¢ is an R - homomorphism,

Let r E R and Let a, al
E A,

" :~,:. '; " ,

Then a = L K; (a(i)) and al= L tc, (al (i»)
iEl ' iEI '

So a+ al ,=IKi((o+al)(i») and ar = I,Ki((ar)(i») ,
. 'lEI!' , ' "IE!'"

Now ¢ (a +a I ) = I ¢i((a + a I)(i») = I ¢i (a (i) .~-a I (i) )
ie I iE I

= L¢i(a(i») + I¢i(al (i») ,
ie! iel

,., ,~~(a) + ¢(a') ,

and ¢(ar) =I¢i (ar)(i») = ~);i(a(i)r)
iet iE I

( '\

= L ¢i ( a ( i) ) r: =~t',L¢;,( a ( i) )J r = ¢ ( a) r
ie I ie l

.'. r/J is an R' - homomorphism,

FiX j in I

Now, for any aj E A j ,

\ ,"
" .

( r/J' K j ) ( aj ) = ¢(Kj (aj )) = 2:¢i(K j (aj ) ( i) )
, ",iE!



Thus ¢·Kj =¢j foralljin I.

Uniqueness: Suppose If :A ---t B is an R - homomorphism such that IfI . K = rjJ ViE I .

For any a E A, ¢(a) = L¢(a(i)) = LIfI·~. (a (i))

Thus there exists a unique homomorphism ¢: A ---t B such that ¢0 K, = ¢i ViE 1 .

Converse:

Suppose that i is another ~odulewith monomorphisms K] : Ai ---t AI satisfying the

conditions of the proposition.

i.e., given any module S, a family of homomorphisms I/Ji: Ai ---t B, i E 1, there exists a

unique homomorphism If: AI ---t B such that lfoK} = ¢i'

Q> . 'I'B<-----'--------A . I

So the diagrams ~ iki B~- f k; are commutative.

Ai A ..' I
. (1). (2)

Take B=AI and ¢; = K} in (1)

Then, by the first part of the proposition, we get a unique homomorphism KI : A ---t Al

such that K10Ki = K}
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Take B = A and (A = K; in (2)

Then, by our supposition, we get a unique homomorphism

K :A' --'> A Such that KOKj= Kj.

.', KoK'oKj = KoK' = K, = I AoKj where I A is the identity mapping of A.

By the uniqueness property, KoK = IA .

Similarly K'oK= lA' where lA' isthe identity mapping of A', .

.'. A == 'A'

18.4 Corollary:

If A is isomorphic to the direct sum of modules {Ai} with canonical mappings

K, : Ai --'> A, then there exist mappings TCi:A --'> Ai (also called canonical) such that TCjoKi = 1

and 7rioKj =0 when -i 1:- j.
-.

Proof:

For fixed i, consider the mapping aij : Af --'> Ai

{

I if' i=,'a - . .
where ' if - 0 if . .'. I 11:- J

By the above proposition, there exists a (unique) homomorphism ffj : A ~ Ai such

that ffjoK j = aij

7ti
A,<··············A

~lk'
8 J

, If

Ai

i.e., ffjoKj =1, the identity mapping of Ai and TC;oKj = 0 when i* j

18.5 Remark:

The above corollary implies K, is mono and 7[j is epi for every i .



18.6 Definition: . :r.

A module 1\1R is called fret; :1' :~ has a basis {l11i}'E I ' where l11i EM, such that every
I .

element m E M can be written uniquely in the form In = I','n~ri wAere 'i E"R and 'all b~t a finite
iet

The above definition implies that ~ m.r: = o only when 'all:rl'=':O.' ". L II -

iE!

., ,"~v, '

-: )'.;"

number of the ri are O.

18.7 Remark:

In particular, lIlil' .:::0 ~ I' :..::O. , "

.•.. ,

18.8 Lemma:

A module 1\1R is free if and only if it is isomorphic to a direct sum of copies of RR'

Proof:

Suppose MR is free.

Then M has a basis, Let it be {mi} iE I .

So every element mE M can be written uniquely as m = Lm.r, , where r,. E R and all
ie I

but a finite number of the ri 's are O.

Therefore, M = I m.R
iEt

LetXEmiRn ImjR.
j~i

=> x = miri = I m/j' where ri '~i E R'\;;f I
jv i

~ x=o
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:. ~ m.R is a direct sum of right R- module and hence M = I m.R asadirect sum.
iel iEi

; .• , ,1\ , ,"

Qefine ¢i: R ~ miJiby ¢j (1;,) = rl1ir,. 00

, . :1'" t""" j , , ' .•: ) I " •.' ; ~

It is clear that each ¢i is an R - isomorphism

*
Conversely, suppose that Ad == L Ai ,where (A/) R 0 '== RR 'I! i ,

. iel

Now we prove that M R is a free module.
• , .•. " . .; i ,,' :';~'J "

* . .
Since M == I Ai' (by prop (4) of sec 1.4), ~ sub modules Bj , i E I::) M :=: I B, as a
, iel ·iEI

Let ¢i : R ~ B, be the R - isomorphism, i E l .

SO XE m.R. :. B; ~ m.R and hence B; = m.R ViE I

Thus M = 2:m.R
iet

Hence M R is free.



i.e., is commutative

18.9 Oefiniti'on :

A module M is said to be projective if it satisfies the following property:

If A and B are two modules with an epimorphism st : B ~ A , then any homomorphism

¢ :M ~ A can be "lifted" to a homomorphism If/ : M ~ B such that 1r 0 If/ = ¢.

1.8.10 Proposition:

Every free module is projective.

Proof:

Let MR be a free module with basis {mi} iel .

Let A and B be two right R - modules with an epimorphism n :B ---+ A and let '¢ :M ~ A ,
be a homomorphism ,

. For each i E I, ¢(mi) EA.

clearly B, :#= ¢ ,since Jr is onto.

Define If! : M ~ B as follows:

Let 171 E M . Then m =I mill, where 1'/ E R , and all but a finite number of the ri are 0
iE! "

';'Clearly If/ is well defined, since each m e M has. a unique representation of.the form

m = L m;ri where ri E R ,
iel

""

It is easy to verify that If/ is an R - homomorphism.



Claim: Ira If! = ¢ .

For any m = "m·r· in ML.. II ,

. if' f

(;r. If!) (m) = ;r (If! (m )) = ;r(I b.r, J = ~;r (bi"i)
. lEI IE!

= L;r(bi)ri = I¢(mi)ri =I¢(mird
iEf iEf iEI

Thus j a homomorphism If! : M ~ B 31f 0 If! = ¢

.'. M is projective.

Remark:

The converse of the above proposition is not true.

i.e., A projective module need not bea free module.

Ex: Consider Z6 = {O, 1,2, 3, 4, 5} .

There exist projective modules which are not free modules in 1:6 over 1:6,

1:6 is a free module as a 1:6 module and hence a projective module.

Let J = (0,2,4) and J =(0,3)

Then I and J are ideals of 1:6 - and 1:6 = J + J as a direct sum. I and J are projective

1:6 - modules but not free modules.

18.1"2 Corollary: RR is projective.

Proof: Since RR is generated by {1}, we h~ve that {1} isa basis of RR ' and hence RR is a

free module.

So, by the above proposition, RR is projective.



, 18.13 Proposition:

If M is the direct sum of a family of modules {Mi. l i e !} , then M is projective if and only

if each M, is projective.

Proof: - Firstsup:pose that each M, isprojective.

Claims: M is projective

Let A nad B be any two modules with an epimorphism n :B ~ A

and Let r/J : M ~ A be a homomorphism.

, . - ~ : ~ ,

Consider the canonical mappings k, : M, ~ M, i E !

Then ¢0 k, : M, ~ A is a homomorphism ViE. !.

Since M, is projective :3 a homomorphism If/i : M, ~ B"3 Jrolf/i = ¢oKi
! -, - .

*
Since M = L M, ' by a known proposition, :3 a unique homomorphism

ie I

If/ : M ~ B :3 If/oKi = If/i ViE 1 .

*
Again, since M = LM, ' by the same proposition, :3 a unique homomorphism

iEt

..
i.e., the following diagrams are commutative:

h

M~r$~k'c"
- 'i-;· ',;:Alj .. /~ '

.~". .,

By the uniqueness of h . we have» 0 If/ = ¢

Thus :3 a hornomorphlsrn -If/: M ~. B. "3J[ 0 If/ = ¢ /.~ : j J •



/

•• M is projective

Conversely, supposethat M is projective.

,.
, j

- I. ,:,:.

Claim: Each M; is projective.

Let A and B be any two modules with anepimorphisrn n :B.~ ~ ..and Let Pi:; Mi' -t .A
, , . : , . . . . . .~

be a homomorphism.

Let 1[i : M ~ A4i be the canonical homomorphism.

Then (/Ji01[; : M ~ A is a homomorphism,
'. ,,',';:

Since M is projective, there exists a homomorphism 1fI: M ~ B such that
" .: •.','·;i

Now lfIoK; : M; ~ B is a homomorphism and
~'.. • I'

(.: 1[i 0 K, = 1)

Thus there exists a homomorphism h = IfI·Kj : M, ~ B such that 1[ . h =¢;
. !...

Therefore each M i is projective.

18.14 Remark:

Any direct summand of a projective module is projective.

18.15 Remark:

Any direct summand of a free module is projective.

O~suit:

)r every non empty set S and for every ring R , there exists

a free R - module on S.

Proof: Let S be a non empfy set and Let R be-a ring with 'f~;:O. "



Write F = {I :S 4 R / I(s) = 0 for all but a finite number 01 s E S}.

Let f, g E F and r E R

Define (I + g)( s) = I (s) + g{s)

and (fr)(s)=f(s)r for all SES.

Then F is a right R - module.

Claim: F is a free right R - module on S .

Let S E S

Define Is :S ~ R as Is (s)= 1

and Is (I) = 0 for all 1"* s in S.

Then t,E F

Consider {fs Is E S}

Now we showthat {Is Is E S} is a basis for FR'

Let IE F.

Then there exist .'II_ .'12 _ , .'Ill in S such that f (.'I) = 0 for all

Putri =/(si), i=1,2, ,nand

n
g= '" f. r.~.s; I

i=1

Let S E S

n n
Then g(s) = L(fs;ri )(s) = Lis; (s)ri .

i=] i=1

, :,'

"

If sels/> .12' 'sn) then S =Sj for some j 3 1 ~ j ~.n.
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·n

So g(s) =Ilsi (Sj )ri = Is) (Sj )rj = l·rj = rj = I(Sj) = I(s)
i=]

If S~ {s], s2, 'sn} then f(s) = a

n
So g(s) = Iis

i
(s)rj = 0 = I(s)

i=l

•• g ( s) = f (s) for all S E S .

~g=1

/ Thus each IE F is a linear combination of lements of {Is I S E S}

Suppose L Isrs = 0 where rs E R .
SES

,

Then C~j,r,J (s1) ~ 0 for all s1 E S .

.~ L (!srs)(sl) = a for all sl E S
SES

There fore F is a free right R - module on S.

18.17 Proposition:

Every module is isomorphic to a factor of a free module.

Proof: Let M be any right R - module.

Let S be the set of all generators of M (for example we can take S=M)

Write F = {I: S ~ RI I(s) = 0 for all a finite number of S E S}.



Let f, g;E F·.and r eR

.Define (I +g)(s) = I(s) +g(s)

and (fr)(~) :::/(s); foralisES

Then F is a right R - module.
> • ~ ,

Let s E S· Define is : s ~ R as 'Is (s) = 1 and fl' (sl ) =0 for sl :t:. s

Then is E F , S E S
'. r

Now {.t~·1S E S} is a basis for FR

So FR is a free module .

"
Define '1/ : F ~ M as follows:

. - \ ~ ;': ," ." .' .' :

Let f E F

Then i = I isfj where rs E R. and al but a finite humber of the ,rs are O. .
SES

Define '1/ (i) = L srs (Where srs E M)
SES

It can be easily verified that '1/ is an R - homomorphism

Now we show that If is onto.

Let mEM

=> m = "" s.r. where s, E Sand r. E R~ll I I c· S generates M)

Put f"-' " t;:. ~. ,~, I
.r . ,".j

Then f E F.

- '. "~,, ,

Therefore If is onto and hence If- is an R - epimorphism.

Consequently /Ker If =- Ai .

~.
'.":
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i.e., M is isomorphic to a factor module %er If/ of a free module '.ER.

18.18 Corollary: , t , .>. ,:;

Every module is isomorphic to a factor module of a projective module.

Proof:

By the above proposition, every module is isomorphic toa factor mOdule of a fre~ module.

We know that every free module is projective.

so every module is isomorphic to a factor module of a projective module.

18.19 Definition:

Let Band M be R-modules. An epimorphism n.: B.~ M is said to be direct if there

exists a homomorphism K: M ~ B such that Jr 0 K = 1M

18.20 Remark:

In the above definition,k is a monomorphism and koit i~ an idempotent endomorphism of B.

18.21 Remark:

If n: 13 ~. M is-direct thenM is isomorphic to a direct summand of B.

Proof:

Suppose " : B 4 M is direct.

Then there exists a homomorphism k: M ~ B such that ". :;k = 1M,

Glearly k is a monomorphism.

Put E =Kost .

Then E is an idempotent endomorphism of B.

Then B] and B2 are submodules of B.

For any b e B, b = b- E (b)+ E (b)
..\ " ~...

= (I - E)( b) + E (b ) EBl + B2
• t' '. • T',:'



Hence B is a direct sum of B\ and B2 .

. C.oD;~;iclerBl = E (B) = 'K07J.) (B) = K (1[( B,}) = K (M) == M

:. M =.8\ ' a dlreet summand of B.

1$42. Propostlon:

fo,.tnO(;ful~ 1vf is projective if <;Indonly if every epimorphism Jr : B -4 M is direct.

(or)
)

A module M is projective if and only if it is,a direot summand of every module of which
it Is a factor module,

PrQQf:

~iJppO$e M is projective.

Let B be any modue and Let Jr : B -4 M be an epimorphism

consider the identity, mapping 1.: M ~ M .

Since M is projective, there exists a homomorphism K : M -~ B such that Jr 0 k = I.

Therefore fr is direct.
I .

Conversely suppose that every ~pirriorphism Jr :. B ~ M is direct.

Claim: M is projective,

We know that any modm~ 'is isomor¢hic to a factor module of a free module.



So we get a free module F and an epimorphism n :F ~ M .

By our supposition, the epimorphism st :F -+ M is direct.

~ there exists a homomorphism K : M ~ F Such that

?

Clearly K is a monomorphism

Now (K 0 1r)( F) is a direct summand of F and (K o1r)( F) = K(1r(F)) = k(M) =M

Therefore M is isomorphic to a direct summand of a free module F and hence we get
that M is projective.

18.23 Corollary:

A module M is projective if and only if it is isomorphic to a direct summand of a free
module.

Proof: Suppose M is projective.

Since every module is isomorphic to a factor of a free module, there exists a free module
F on M and an epimorphism Tr : F ~ M .

Since M is projective, by the above proposition, Tr : F ~ M is direct.

~ there exists a homomorphism K : M ~ F such that Tr . K = 1M .

Now (K o;r)(F) is a direct summand of F and (K o Tr)(F) = K(M) == M.

Thus M is isomorphic to a direct summand of a free module F.

Conversely, supposethat M is isomorphic to a direct summand of a free moduleF.

Since any direct summand of a free module is projective, we have that M is projective.

18.24 Proposition:
Every R - module is projective if and only if R is completely reducible.

Proof: Suppose that every R - "module is projective.

Claim: R is completely reducible.
,~

" It is enough to show that ::/"(RR), the lattice of all submodules of RR (i.e., all right ideals

of R) is complemented.

Let L be a right ideal of R

\-!'-\ ...



By our supposition, Yr is projective. ,

Consider the right R - module o/r

By a known proposition, the canonical epimorphism 1{:; R ~ Yr is direct.

=> There exists a homomorphism 'K : Yr ~ R such that Jr 0 K ', 1% '.

=> k is a monomorphism.

Put E = K on

Then E is an idempotent endomorphism of Rand R is a direct sum of right ideals E (R)

and (I - E)( R) .

Claim: (I-E)(R) = L

Now Ker E = { r E R I E (r) = o}

={rERlk(Jr(r))=o}

={rER In(r)=O}

= Ker n

= L

Therefore Ker E = L

Since E(I -E)(R) = {a} we have (I -E)(R) c Ker E = L

For any xEL, x=I(x)-E(X)

" .~ . ., =(1- E)(X) E (1- E)( R)

. Therefore L ~ (1- E)( R) an~ hence L = (1- E)( R) .

Thus L is a direct summand of R.
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Therefore .::i'( RR) is complemented.

So, R is completely reducible.

Conversely, suppose that R is completely reducible.

Let MR be any f~ght R - Module ..

Since eve,ry mOdul,e i~ isomorphic ot a factor of a free module, we get a free module FR

and an epimorphism Jr :'F ~ M .

Since R is completely reducible, we knowthat every right R - module is completely
reducible.

So F is completely reducible.

Put'" B :'= Ker ';i . ;
Then B is a direct summand of F.

=> there exists a submodule Bl of F such that F is a direct sum of Band Bl.

%
(

F F B BI I rNOWM=/KerJr= Is= BnBI = %}=B (1)

But Bl is a direct summand of F.

~ence BI is projective (": F is a free module)

So by (1), M is also projective.

.:
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Lesson" 19 INJECTIVE MODULES - I

19.0 Introduction: In this lesson, the direct product of modules is characterized. The notion of
injectivity which dual to projectivity is introduced for modules.

Some important properties of injective modules are studied and some examples are given.

19.1 Remark: Let Abe a direct product of a family of modules {A} ie I i.e., A = 7r Ai
iEI

Then tri is an epimorphism and is called the canonical epimorphism corresponding to the

direct product .A= 7r A, for i E 1 .
iEI

19.2 Proposition: If A is' the direct product of a family of modules {AJ iEI with canonical

mappings tri :A ~ Ai then for every module B and for every family of homomorphisms (h: R - -, Ai

there exists a unique homomorphism ¢ : B ~ A such that 1[, 0 ¢ = ¢,. Moreover, this LTc'perty
characterizes the direct product up to isomorphism.

. 4>
B- - - - - - -- - -- - - -) A

~l. ini4>~ is commutative.

Ai

Proof: Let B be an R-module and let (Pi :B ~ Ai be a homomorphism for i E 1.

Let aEA.

Then 7ri (a )=a(i) for i E I

·Define¢: B ~ A as ¢(h)(i)=¢i{h) for all bE B.

Clearly ¢ is well-defined.

Now, we show that ¢ is an R - homomorphism.
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Now ¢(bl +b2)(f)=¢i (bl +b2)

=¢i (q )+¢i (b2)

=¢(~ )(i)+¢( b2 )(i)

=( ¢( bl )+¢( b2) )(i)

This is true for every i E J.

Therefore ¢ (bl + b2) =¢ (~ )+¢ (b2 )

Now ¢(~ r )(i) =¢i (bl r)

=¢i (bdr

=¢(bd(i)r

=(¢(~ )r)(i)

This is true for every i E J

. Therefore ¢(b] r)=¢(bdr

So ¢ is an R-homomorphism.

Now, for any b e B, (Jri O¢)(b )=Jrd¢(b)) = ¢(b )(i)=¢i (b)

=>1ri O¢=(/Ji

Uniqueness: Suppose If/: B ~ A is another R-homomorphism such that 1ri0 If/= ¢i .

Claim: ¢= If/

Let b e B

For any i E J,If/(b)(i) = n, (If/(b ))=(1ri Olf/)(b )=¢i (b )=¢(b )(i)

=>If/(b )=¢(b)

Therefore If/ = ¢

Thus there exists a unique homomorphism ¢:B ~ A such that 1ri O¢ =¢i for all i E I·
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Converse: Suppose that A'isanbther' modulewithepimorphtsrns 1rr:A'4A(satisfying the

condition of the proposition. i.e., given aliY module B, a family of homomorphisms ¢;':B~,Ai'

i E J. there exists a unique homomorphism ip :B ~ A'. such that 1r;° If/ = rP[.

So the diagrams

\IfB~l~;
A· .

I

are commutative.

(1) (2)
Take B = A' and rPj=1rj ..

Then, by the first part of the proposition, we get a unique homomorphism, n': A' ~ A such
.' : !.:. -.' • ",'.

Take B=A and rP;=1r;

Then, by our supposition, we .get a unique homomorphism

1r:A'~A such that 1rjo1r=1rj.

Therefore 1ri o1r' oj[ = 1rj °1r=7tto I A' .where 1A is'the'identity mapping ~iA.
. /

By the uniqueness property, n' °7t = IA

~:..
Similarly n' o1r= I A' , where I A' is the identity mapping of A'.

". _. ;;;

Therefore A ~ A'
..,'~i:~

~
•••• '>:-.

19.3 Corollary: If A is isomorphic to the direct product of modules {Ai} jEI with canonical 'ma'p:ping~;';';o(

1ri:A ~ Ai, then there exist mappings K/:Aj ~ A (also called carronicaljsuch'that-e, oki =1.
and "i'-'kJ=O if i e j.

Proof: For fixed i , consider the mapping 8ij :Ai ~. Aj ,
: It r;

Where 5ij ={~. if i= j .,
if i =t:- j .



By the above proposition. there. exists a(unique ) homomorphism Ki: Ai ~A

~ , ...

Ai··············~A·~lnj
A-.I

i.e., tri 0 ki = I, the identity mapping of Ai and 7r; 0 k j :::iO if i =t .i .

19.4 Remark: The above corollary implies k, is mono.

19.5 Definition: A module M is said to be injective if it satisfies the following property:

If A and B are two modules with a monomorphism k :A ~ B, then any homomorplv=n
¢:A ~M can be "extended" tcahomomorphism ~: B ~ M such that If/ ° k'=¢. ,.'

i.e.,

~f

M~········iBk _ ut t"

. <l>~ .' is.cornrnuta Ive.·

A

19.6 Proposition: If.M is the direct product of a family of modules {Mi ti E I} , then M is injective. ~ . ,

if and only if each M, is injective.

Proof: First suppose that each M, is inj7ctive.

Claim: M is injective.

Let A and B be any two modules with a monomorphism k: A ~ B. and let ¢:A ~ M be a
homomorphism .

Consrder, the canonical m~PP'ingsffi:M ~Mi' i 61. Thenffio¢:A ~ M, is a
homomorphism, for all i E I .

Since M, IS Injective, there exists a homomorphism If/;:B ~ M, such that If/i ok=ffi o¢

for all i 6 I·

Since M = st Mi' by a known proposition, there exists a unique homomorphisrn If/ : B ~ M
iel

such that ffj -v=vi I for all i 6 I·



Again, since M = 1r Mj' by the same proposition, there exists a unique homomorphism
iEI

[i.e., the following diagrams are commutative:

\jf'I .B--------------> ,\IIi

r~
A·

By the uniqueness of h , we have If/'0 k = rP = h

Thus there exists a homomorphism If/: B ~ M such that If/ 0 k = rP .

Therefore M is injective.

Conversely, suppose that M is injective.

Claim : Each M, is injective.

Let A and B be any two modules with a monomorphism k: A ~ B and let rPi: A ~ M, be a
homomorphism.

Since M is the direct product of {Mj / i E I} with ~anonical epimorphisms 1ri: M ~ M, ,

there exist monomorphisms k.: M; ~ M such that 1r; 0 k; = I M
i

and1r; 0 kj = 0 if i '* j.

Since M is injective, there exists a homomorphism If/: B ~ M such that If/ ° k = k, ° rPj .

Now (1Z'jolf/)ok = 1Z'jo(lf/ok)

=1rjo(kj°rPj)

Thus there exists a rtomornorphism h = 1rj ° If/: B ~ M], such that h °k = rPi

Therefore each M, is injective.



19.7 Result: A module M is injective if and only if, for any modules A and 8 with A c B and a

homomorphism <p:A 4- M , there exists a homomorphism If!: B 4- M such that If! / A = <p.

Proof: Suppose M is injective.

Let A be a submodule of a module 8 and let <p:A 4- M be a homomorphism.

Consider the inclusion mapping i:A 4- B, which is a monomorphism.

Since M is injective, there exists a homomorphism If!: B 4- M such that If! 0 i = <p.

i.e.,(ljIoi)(a)=<p for all aEA

i.e.,IjI(a)=<p(a) for all aEA

i.e., If! / A = <p.

Conversely, suppose that M satisfies the condition.

Claim: M is injective.

-Let A and B be two modules with nonmorphism k: A 4- B and let <p:A 4- M be a
homomorphism.

;

Now k(A) is a submodule of Band A=k(A).

Consider <p0 k -: : k (A) 4- M , which is a homomorphism

By our supposition, there exists a homomorphism

i.e., If! 0 K =<p

Therefore M is injective.

19.8 Bayer's Criterion For Injectivity :

A module MR is injective if and only if, for every right ideal K of R and every <pE Hom R ( K, M) ,

there exists an m E M such that <p( k ) = mk for all k E K .
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Proof: Suppose MR is injective.

Let K be a right ideal of R and let ¢:K ~ M be a homomorphism.

Consider the inclusion mapping i: K ~ R .

Since M is injective, there exists a homomorphism If/: R ~ M such that If/ 0 i;= ¢

Put 1f/(1)=m

Then mEM

Now, for any k E K, If/( k )=If/(1 k)= 1f/(1)k=.m k

Thus ¢(k)=(lf/oi)(k)=If/(k)=mk for all k'EK.

Conversely, suppose that for every right ideal K of R and every ¢ E Hom e (K,M), there

exists an m e M such that ¢(k )=mk for all k E K·

Claim:'M is injective.

Let A be a submodule of a right R-module B and let ¢:A ~ M be a homomorphism.

{
Disasubmoduleof BR,AcDand }

Write ("'>')'= D, If/ -
( ) If/:D~ M isa homomorphism 3 If/ / A =¢

Clearly .j* ¢J'(': (A, ¢)E:<,/)

Define (Dj, If/d ~ (D2' 1f/2 ) iff ~ is a submodule of D2 and 1f/2 is an extension of 1f/1.

Then ( "Y, :::;)is a poset.

Let {(Da,lf/a)laE~} beachain in rY ..
Put D= U Da

aEt;

Then, D is a submodule of B and A ~ D .

Define If/:D ~ M as follows:



..-.~-.-

Let xED

? x E Da for some a E ~ .

Define IjI (x) = IjIa (x)

Claim: IjI is well - defined

Suppose xED f3 for some j3 E ~

, t ,

Therefore xEDa and ljIa (X) = 1jI,B(x) and xED,B.
0 .. 1

Therefore IjI is well-defined.

Itcan be easily verified that If! is an R-homomorphism and IjI is an extension of each IjIa
. '\ ;,

and hence an extension of ¢.

So (D,IjI) isan upper bound of {(Da,ljIa)laEA}

. Hence by Zon's lemma, r'/ contains a maximal element (Do, ljIo) (say) ..

So we have A ~ Do cBand 'fO: Do -.; M is an extension of rjJ.

Claim: Do=B

Let b e B

Put K = {I" E R / br E Do} .

Then K is a right ideal of R.

Define IjI:K -.;M as IjI (k )=ljIo (bk) for all k EK ..

Then IjI is an R-homomorphism.

So, by our supposition, there exists an m e M such that
J ,
"..



( Rings and Modules :E
lfI{k )=mk for all k E K .

i.e., lfIo(bk)=mk for all kEK.

Define lfIb :Do +liR ~ M as follows'.

Let x E Do +bR

:::::::> x=do +br for some do E Do and r E R

Define lfIo (x) = lfIo (do) + mr

Claim: lfIb is well-defined.

i.e., '1'0 ( b (r2 - r1) ) = m (r2 - rl )

Therefore '1'0 is well defined.

It can be easily verified that lfIo. is an R - homomorphism and lfIo is an extension of lfIo

,

Therefore (Do +bR, '1'0)E r"l' and (Do, lfIO)s( Do +bR, lfIb)

Since (Do,lfIo). is a maximal element in ,Y,,' we have that Do =Do +bR and '1'0 =lfIo h

So b e Do
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Therefore B ~ Do and hence B = Do .

Therefore VO: B~ M is an R-homomorphism and lfIo extends ¢. Hence (by the above

result) M is injective.

19.9 Definition: An Abelian group M (= Mz) is called divisible if, for every 111E M and every non-

zero integer z, there exists an m' E M such that m' z = m .

19.10 Examples: (Q,+) , the additive group of rational numbers is divisible.

19.11 Remark: Any homomorphic image of a divisible group is divisible.

Proof: Let f be a homomorphism from an Abelian group G into an Abelian group H, where G is
divisible.

Claim: f(G).isdivisible.

Let XE f(G)

=> x = f (g) for some g E G .

Let n E Z :;)n 7= 0 .

Since G is divisible, there exists g' E G such that g'n = g .

So f(g'n)= f(g)=x

=> f(g')n=x

Thus there exists y=f(g')inf(G) such that yn=x.

Therefore f (G) is divisible.

19.12 Proposition: An Abelian group is injective if and only if it is divisible.

ProOf: Let M be an Abelian group.

Then M is a Z- module, where Z is the ring of integers.

Suppose M is divisible.

Claim: Mis injective as a Z-module.

Let K be any right ideal of Z.



Then K = n Z for some n E Z.

We may assume that K =F- { o} , so that n =F- 0 .

Let'¢:K ·-)'M be a Z - homomorphism.

Put ¢(n) = m E M

Since Mis divisible, there exists an m' E M such that m'n=m.

Let x E K. Then x=rt: for some Z E Z.

Now ¢( x )=¢( nz )=¢( n)z =mz=m'nz =m'x

Thus there exists an m' EM such that ¢ (x) = m'x for all x E K .

So by a known lemma (8aer's lemma), M is injective.

Conversely,suppose M is injective as a Z - module.

Claim: M is divisible.

Let r.1eM·and O:;tZEZ

Put K =zZ

Then k is a right ideal of Z.

Define ¢:K ~ M as ¢( zx)=mx for all x E Z.

Then ¢ is a Z - homomorphism.

Since M is injective, there exists an rn' E M such that ¢ ( k ) = m' k for all k E K .

~¢(zx)=m'zx for all XEZ ..

~ I17X = /11'=x for all x E Z.

~m =m'z (take x=I)

Thus there exists an m' E M such that m'z = m .
"'.,\'J

Therefore M is divisible.

19.13 Remark : Let Q be the additive group of rational numbers. Define '-' on Q as a ~ b iff

a+b E L for all a,bE {J. Then '-' is an equivalence relation on Q.
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We denote, the class of all equivalence classes on '-' by ~.

Q -, - - - - b Q (Q)
Define '+' on Z as a+b =a+b for all a, E Z . Then Z?+

hence it is a z-module.

is an Abelian group and

19.14 Definition: Let M be an additive Abelian group. Then Homz (M' ;) is called the character

group of M, and is denoted by M* .

Any element in M* is called a character of M.

19.15 Remark: i) IfM is a left R-moduie, then M* is a right H-module bydefining'(f ': )(m)= j(rm)
for all f E M * , r E Rand m EM.

ii) If M is a right R-module, then M* is a left R-module.
. r

We call M~ the character module of the left R-module RM .

19.16 Lemma: If 0*m EM, then there exists \}' E M*· such that \}' (m) *0 .

Proof: Let 7r:Q~ ~ be the canonical epimorphism.

Since Q is divisible and every homomorphic image of divisible group is divisible, we have

that ~ is di~isible. Consequently, ~ is injective as Z-module. . .,

Let O=l=m E M

Case (i) : Suppose mz =1=0 for all 0 =1=Z E Z

Define ¢:m Z ~ ~ as ¢(mz ) = 7r ( ~) for all Z E Z .

Claim: ¢ is well-defined.

Let mz E mZ such that mz = 0

. t \.:
,li

\



~Q(rnz)=O

Therefore ¢ is well-defined.

It can be easily verified that ¢ i~a z-hornomorphisrn. Since ~ is injective, there exists a Z-

homomorphism 'I':rn~ ~ such that tp / mZ = ¢

Case - ii : Suppose rnz = 0 for some +ve integer z. r

Let Zo be the least +ve integer such that rnzo = 0

Define ¢:mZ ~ Q as ¢( rnz)=1C(~J' for all z EZ .
Z '. Zo .

<,
Claim: ¢ is well-defined.

Let mz E tnZ such that rnz = 0 ,

By division algorithm, Z= pZo +r for some integers p and r such that O~r <zo.

~r =z-pzo

~rnr=rn(z- pzo)=rnz- pmzO =0 (-:mz=O andrnzO =0)

=> r = 0 since 0~ r <Zo and Zo is the least +ve integer such that mzo = 0 .

SO Z= pZo

. z
l.e.,- is an integer.



So ¢(mz)=7r(·~J=o in Q.
Zo z

Therefore ¢ is well-defined.

It can be easily verified that ¢ is a Z - homomorphism. Since ~ is injective, there exists a

Z - homomorphism \.1':M ~ ~ such that 'II! mZ = ¢ .

So in any case, for 0 * m EM, there exists 'l'EM* such that 'f'(m) *0.

*1~.17CQroilary: There is a canonical monomorphism of Minto (M*)
. *

Proof: Defin~ ¢:M ~(M*) as follows:

Let mEM.

. * . ( ) QThen, for any 'l' EM , 'l' m E Z .

*
Then ~ is a Z - homomorphism, so ~E (M*)·

Define ¢(m )=~.
-'

It can be easily verified that ¢ is a group of homomorphism.

Claim: ¢ is one-one.

Let m e M such that ¢(m)=0.



=>\f(m}=O for all \f EM*

=>m=O (by above lemma)

Therefore rjJ is one-one

. . .. *
Thus there exists a canonic~1 monomorphism tjJ of Minto (M*)

*
19.18 Remark: If M is a right R-m,pdule, then M* is a left R-module and hence (M*) is a right

* ,
R-module. So the mapping tjJ:Af ~(A-1*) defined by tjJ(I11)=~ is a monomorphism of right R-

modules.

Remark : If tjJ:A ~ B is, a homomorphism of modules then tjJ induces' a homomorphism

l:B* ~A* given by l(\f)(a}=\f(¢"(a}) for all \fEB* and aEA

'19.20 Lemma: If .tjJ:A ~ B 'is epi, then l: B*~A* is mono.

Proof: Suppose ¢:A ~ B is an epi~orphism. It can .beeasily verified that the mapping l :B * ~ 4*
. ~ -!" • . I _ • ~ ",0 _'

defined by l (\f)( a} = \}'(¢(a}) for all \}' E B* and a E A is a homomorphism.
_ , . ,_ 1 ,.'. .' • '. ~ ,

".I' ";' .' •

Now we show that l is one - one.

* *Let 'f' EB such that ¢ ('f')=O

Claim: \}'=o

Let b e B

Sinc~ ¢ is onto, there exists a E A' such that ¢(a)=b. So \f(b )=\f( ¢(a) )=l (\f)( a)=0

Therefore 'f'=0.



* -, - *
So ¢ is one-one and hence ¢ is a monomorphism.

19.21 Proposition: Every module is isomorphic to a submodule of the character module of a free
module. ' .

Proof: Let MR be a right R-module. , ";

Then M* is a left R-module and hence (M* f is'~ right R-module.

*
By corollary 19.17, there is a monomo~phism of ~:int~ (M*) ,--------(1)

we know that every module is isomorphic to a factor of a free module.

So there exists a free-left R-module'RF on RM*'and:~:mepimorphism' ¢:f _'/M*'. ,';

Hence by the.above lemma, rp* :FA M*

"

* ( *)* *Hen,ce by the ~b~ve lemma,. ¢ : M ,~F is,aT,onon:orphism. -.------7 (2)

.!

From (1) and (2), there is a monomorphism of Minto F'f . '

Therefore M is isomorphic to a submodule of F*~ where F* is the character-module of
free module F.

. . ~: ..

Proof: Suppose R F is a free left R-module. Then its character module F* is a right R-module.

Claim: F~ is injective.

Let K be any right ideal of/R and let ¢:K ~ F* be'~~ R-~~~~niorphism.
\

We 'sh,9wthat there exists 'I'E F* such that ¢(k) = \}'k for all k E K .

Now KFj,s an additive subgroup of F consisting of all finite sums of terms kf ' where k E K
, and l' E F .-'" .

Since F is a free module, F has a basis, say {Ji liEf' --



so each element of KF has the form .II k, Ii , where k, E K and all but a finite number of
IE

the k, are zero.

Claim: If/ is well defined.

Suppose I: ki Ii =0 , where each k, E K .
iEI

=>¢(kd=O for all i e I

=> I ¢(k, ) fi = 0
iel

Therefore If/ is well-defined.

Clearly If/ is a Z - homomorphism.

But ~ is injective as a Z - module.

So there exists a Z - homomorphism 'P:F ~ ~ such that 'P / KF = If/ => 'P E F* .

Now for any k E K and I E F ,

(¢( k) )(I) =If/( /if) = tp (/if)=(tp k )(I)

=>(¢(k)){f)=(tp k)(I) for all k E K~~d IE F .

Thus there exists tp EF* such that ¢(k)= tpk for all k E K
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*. - - -So by Baer's lemma, FR IS injective.

19.23 Corollary: Every module is isomorphic to a subrnodule of an injective module.

Proof: Let MR be a right R-module.

we know that every module is isomorphic to a submodule of the character module of a free
module.

So there exists a free module R F such that M R is isomorphic to a submodule of the
\

character module }~.

By the above proposition, F~ is injective.

Thus M R is isomorhpic to a submodule of an injective module F~.

K. SIVA PRASAD
P.G. Department of Mathematics

J.K.C. College, Guntur
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Lesson - 20 INJECTIVE, MODULES
}

,
20.0 Introduction: In this lesson, injective modules are characterized in several ways. The
notion of injective hull of a module is introduced and given three equivalant conditions to the
injective hull of a module.

'- .' '. ,

20.1 Definition: A monomorphism K : M ~ B, where M and S are two modules is said to

be direct if there exists a homomorphism 1r : B ~ M such that Jr 0 K = 1 .

20.2 Remark: In the above definition, Jr is an epimorphism and K 0 Jr is an idempotent
endomorphism of S.

20~3 Remark: If K :M ~ B is direct then M is isomorphic to a direct summand of S.

20.4 Proposition: A module M is injective if and only if every monomorphism K: M ~ B
is direct.

(or)

A module M is injective if and only if it is a direct summand of every module 'of which it is
a submodule.

Proof:

Suppose M is injective

L~t B be any module and Let K.: M ~ B. be 'a homorncrphisrn,

!
Consider the identity mapping 1 :M ~ M.. ' ,

Since M is injective there exists a homomorphism Jr : B ~ M such that Jr 0 K. = I. ~.

-'/'

Therefore k is direct.

Conversely supposethat, for any module S, every monomorphism of Minto B is direct.

Claim: Mis injective.;;
We knowthat every module is isomorphic to a submodule of an injective module.

" . ':;"" '", '.; ,'. .. <,. ','" . I "

So there exists an injective module B and a monomorphism K : lyf AIB 'I I"~·

I-'--sy our supposiiton, K : M ~ B is direct.



:::::> there exists 'a tioll1om~~phisl\n7r : B --+ Jvi sucfr that ~

7roK=lM

Clearly 7r is an epimorphism
'jA.'

. PutE = K 0 7r .
, ,

Then E is an idempotent endomorphism of Band
,~-.. , : r

\.'''.

E B = (k 0 1Z")( B) = K (tr (B)) = k (M) == M

But B= EB+(! -E)B as a direct sum .

. :::::> EB is a direct summand of injective module B.~ . .'

:::::> EB is Injective.

Thus M is isomorphic to injective module EB.

:::::> M is also injective.

20.5 Corollary:

.A module M is injective if and only if it is a direct summand of a character moduleof a free.
module.

Proof: Suppose M is injective.

We know that every module is isomorphic to a sub module of the character module of a
free module. So there exists a free module F such that M is isomorphic to a sub module of the

character module F*. Hence there is a monomorphism K :M --+ p* . 'Since M is injective, by

the above proposition, K :M --+ F* is direct.

=> there exists a homomorphism 7r : F* --+ M such that 1l 0 K = 1M,

Clearly 1l is an epimorphism.

Thus M is isomorphic 10 a direct summand of a character module F* of a free module F.
-. \

" .'.. '. co . • . 0 * '
Conversely, suppose that M is a direct summand of the character module F of a free

module F. ,0', . 'j



Bya known result (proposition 19.22), F* is injective.

Therefore M is injective.

20.6 Proposition:

Every R - module is injective if and only if R is completely reducible.

Proof:

Supposethat every R - module is injective.

Claim:

R is completely reducible.

ltis enough to showthat ~::l{RR) is complemented.

Let K be any right ideal of R.

Then by our supposition, the right R - module KR is injective.

Consider the inclusion mapping ik : K ~ R .
,

Since K is injective, by proposition 20.4;,ik is direct.
~., .

=> there exists a homomorphism Jr :R4 K such that Jr° ik = I k .
\

Clearly 1r is an epimorphism.

PutE=ik°Jr

Then E is an idempotent endomorphism of Rand E R = (ik ° lr)( R) = ik (K) = K.

But R = E R + (I -E)R as a direct sum.

=> E R is a direct summand of R.

Thus K is a direct summand of R.

Therefore ~(RR) is complemented.

Conversely, supposethat R is completely reducible.

Let MR be any right R - module.

We know that every module is isomorphic to a submodule of an. iniective module.

So there exists a right R - module BR' Which is injective such that M is isomorphic to



/'
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a submodule C (say) of BR.

Since R is completely reducible, we have BR is completely reducible.

=> C is a direct summand of the injective module-B.

=> C is also injective.

Thus M is injective ( '.: M == R C)
20.7 Definition:

Let A and B be two R - modules. We say that B is an extension of Aif A is a submodule
of B.

20.8 Remark:

An~ module can be extended to an injective module.

20.9 Definition:
An extension B of a module A is called an essential extension of A if every non zero sub _,

module of B has non zero intersection with A >

20.10 Remark:

B is an essential extenssion of A iff A is a large sub module of B.

20.11 Definition:
. Let B be an essential extension of A. We say that B is a maximal essential of A if no

proper extension of B is an essential extension of A.

20.12 Lemma:

Let N be an essential extension of M and Let J be an injective module containing M, then

the identity mapping of M can be extended to a monomorphism of N inot 1 .

Proof:

Consider the identity mapping 1M: M ~ M

Then JM : M ~ J is a homomorphism.

Since I is injective and M c N: by a known result, there exists a homomorphism

t/J : N ~ 1such that t/J I M = 1M

=> t/J ( m) = I~(m) = m for all m EM.

Put K = Ker¢



Then K is a sub module of N.

=> X E K and x E M

=>¢(x)=o

=> x =0

Therefore K.,nM = {o}.

Since N is an essential extension of M, we get that K = {O}.

" .\

i.e,; Ker ¢= {()} .

So ¢ :N ~ 1 is a monomorphism, which is an extension of 1M

20.13 Proposition:

A module M is injective if.andonly ifM has no proper essential extension.

Proof:

Suppose M is injective.

Let N be an essential extenssion of M.

Consider the inclusion mapping i : M ~ N which is a monomorphism.

Since M is iniective. by a known result, i :M ~ N is direct.

So M is a direct summand of N.

=> there exists a sub module K of N such that N=M+K and M nK = {o}

Since N is an esential extension of M and M nK ={O}, we have K ={O}

So M = N.
- .~

Th·ere fore Mhas no proper essential extension.

Convensely, suppose that M has no proper essential extension.

•.~.'

'Q"l.;; .n::

Claim:

M is injective.

Let 1 be an injective module containing M.

/
Write c?= { AI A is a subrnodule of I such that An M ::;::{O} }



Clearly n'/ *¢ (·:{O}E c'f')

Also clearly r'7is a poset under set inclusion, in which every chain has an upper bound.

So, by Zorn's lemma, c'J) has-a maximal element, say MI.

Thus MI is a sub module of I and M n Ml = {O}

(M+MI))/
Now we show that 1M I is an essential extension of. 1MI'·

KI II (M +MI) /
Let I Ml be a sub module of:; MI such that YM1 n . 1Ml = {o}.

So ]( Eo':!'

B~ maximality of MI , we have K =M1.

/. (M+MI)) /
_Since M has no proper essential extension, we have 1M.I

sential extension.

.'t ~

has no proper es- -

\ ;
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Thus M is a direct summand of injective module I. Hence M is injective.

20.14 Proposition:

Every module M has a maximal essential extension N. This is unique in the following
sense:

If~TI is another maximal essential extension of M, then the identity mapping of M can be

extended to an isomorphism of N1 onto N.

Proof:

Let I be an injective module containing M.

Write r'j'= { S / S is a submodule of I and S is an essential extension of M}
\

since' f c:: ~v; we have Y:f:. ¢ .

Clearly r'j' is a poset under set inclusion.

Then each Sa is an essential extension of M Contained in I

Write S = U Sa. aED.

Then S is a submodule of I and M ~ S .

Now we show that S is an essential extension of M.

Let A be a sub module of S such that A :f:. {o}

Then A nSa =1= {o} for at least one a E 6. and A nSa is sub module of Sa. 'r-;.

since Sa is an essential extension of M, we have M nA nSa :f:. {o} .

t:
Therefore S is an essential extension of M and so S E ,,';I clearly S is an upper bound of

-----
{Sa }m,,'"

So by Zorn's lemma, "Ycontains a maximal element say N.

=> N is a maximal essentail extensionof M in 1 .
!
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Claim: N is a maximal essentail extension of M, (not just in 1, but absolutely).

Let N1 be any essential extension of M containing N (not necessarily in 1)

Then NI is an essential extension of N.

By the above lemma, the identity mapping of N can be extended to a monomorphism

¢:N1 ~J.

So ¢(N I) is also an essential extension of N in 1 , and hence ¢ (N I) isan essential

extension of M and ¢(N1
) ~ 1 .

. Sinc~ N is a maximal essential extensin of M, we have ¢(N') = N

Therefore N is a maximal essential extensionof M, (not just in 1 , but absolutely).

Any essential extensionof N is an essential extension of M.

Therefore N has no proper essential extension and hence N is injective (by proposition)

Suppose L is any maximal esential extension of M..

Then by the above lemma, the identity mapping of M can be extended to a monomor-
phism Iff of L into N.

Since L is a maximal essential extension of M, we have Iff ( L) = N.

Therefore N ~ L

20.15 Proposition:
~(} .

Let N be an extension of M. The following statements are equivalent:

i) N is a maximal essential extenson of M.

ii) N is an essential extension of M and is injective



/

iii) N:is 8_ minimal injective extension of M ..

Proof:

Assume (i) i.e., N is a maximal essential extenssion of M.

Then N has no proper esential extension and hence by a knownresult, {\Ws~njective.

So (i) ~ (ii)

Assume (ii) i.e., N is an 'essential extension of M and is injective.

Suppose M cI c N, where lis an injective extension of M:

Since 1 is injective, by a known result, 1 is a direct summand of.N,

~ the~e exists a sub module I' of N suchthat N = 1 + l' aoo-i:fT I' :z~{O}..

.Since N is an essential extension of land.1 n l' = {o} , we haveJ' ~ {o}

Therefore N = J

So (ii) => (iii).
Assume (iii) i.e., N is a minimal injective extension of M.

Let N' be a maximal essential extension of M contained in N.-

i.e., Mr;;;..N'cN

Then N' is injective.

Since N is a minimal injective extension of M, we have N = N'

Therefore N is a maximal essential extension of M.
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