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Lesson: 1 FUNDAMENTAL CONCEPTS OF ALGEBRA

1.0 Introduction : In this lesson we give a series of definitions to assure completeness and to fix
our notations that we follow through out this book.

1.1 Definition : A system (S. ) where 'S" is a nonempty set and . is a binary operation on 'S
is said to be a semigroup if

a-(b-c)=(a-b)-c forall a,b,cin S

1.2 Definition : A system (G,0,—.+) where G is a nonempty set, '0' is a zero-ry operation, '-' is a
| unary operation and '+' is a binary operation on G is said to be a group.
If (1) (a+b)+c=a+(b+c) forall a.b.c in G.
(2) a+0=0+a=a forall aeG
(3) a+(-a)=(-a)+a=0 forall acG
1.3 befinition : Asystem (R,0,—,+,-) where R is anonempty set, 0 and 1 are zero-ary operations,
'_' IS a unary operation and '+' and '-' are binary operations on R is called a ring if
(1) . (R.0,—.+) is an abelion group.
(2) (R.1,.) is a semigroup.
(3) a(b+tc)=ab+ac
(a+b)-c= a-c+b~c. forall a,b.c in R

1.4 Definition : Aring (R,(),l,—,+,-) is said to be a division ring if 01 and for every a#0, there
exists an element be R, suchthat ub=1=bu.
1.5 Definition : A cummutative diyision ring is called a field.

1.6 Definition : A class of systems sharing a given set of operations and satisfying a given set of
identities is called an equationally defined class.

1.7 Examples : The class of all groups is an equationally defined class, similarly the class of all
semigroups, the class of all rings, the class of all cummutative rings are all equiationally defined
classes. But the class of all division rings is hot an equationally defined class.
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1.8 Definition : A system (S,<) where S is a nonempty set and '<' is abinary relation on S is

called an ordered set if the binary relation ' <' is reflexive, antisymmetric and transitive.

1.9 Definiion : An ordergd set (S, S) is called a simply ordered set if for any twb elements a and.

b of S, either a<b or b<a.

| 1.10 Definition : Let (.5,<) be an ordered set and A< S. Then

(a) An element xe S is called a lower bound of 4 if x<a forall xe 4.
(b)‘ An elerhent yeS is called an upper bound of 4if a<y forall ae 4. |

(c) Anelement x; €S is called the greatest lower bound of 4 if x is a lower bound of

A and for any lower bound x of 4, xy <x. The least upper bound of 4 is denoted
bylub 4.

1.11 Definition : An ordered set (S,<) is said to be a semilattice if for any two elements g and

b of S, the set {a.b} has greatest lower bound in S . Itis denote by a b Inotherwords.

1.12 Definition : A system (S, <, A) is said to be a semilattice if, (S.<) is an ordered set and

'A' is a binary operation on S such that forany a,beS, anb = gﬂb{a,b}.

1.13 Remark : Let ¢ and 5 be any two elements 01; an ordered set (S,S) .Thenanelement xe S
is the glb{a,b} if and only if forany c e S, ¢<x implies and is implied by ¢ <q and ¢<b.
Proof : Suppose x=g£b{a,b} .Let ¢ be ény element of S . Assume that c<x. Since x<a andk |
x<b wehave c< a: and c¢<b . Now assume that ¢<a and ¢<b, which implies ¢ is a lower
bound of {a.b}. Since x=glh{a,b} wehave c<x.Thus c<x implies and implied by ¢ <a and
¢%b.

Cohversely suppdse that forany ce S, ¢<x implies and is implied by c<a and c<b .

Since x <x,we have x<a and x <h = x is a lower bound of {a.b} . Suppose y is any
lower bound of {a.b} = y<a and y <b,whichimplies y < x.Therefore x is the greatest lower

bound of {a.b}.: &
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1.14 Remark : Any simply ordered set is a semilattice.

Proof : Suppose (‘S, .<_) is a simply.ordered set. Let q,beS. Since S is simiply ordered set, we

have either a<bh or b<a.

If a<b,then a=glb{a,b}.If b<a then b=glb{a,b}. Thus any two elements of S have

glb.Hence S is a semilattice.
1.15 Remark : If (S,S,A) is a semilattice, then forany a,be S, aAb is unique.

Proof : Suppose x=unb=y. Since x is alower bound of a and b, we have x<g and x<b.

Since y is the gflb{a,b} we have x < y . Similarly y < x . Hence x=y Therefore aAb is a
unique element. '

1.16 Example : Let N be the set of all natural numbers. For any a,be N, we define a <b if and
only if a divides b. Then (N,<) is an ordered set which is not a simply ordered set but a

semilattice Further forany a.he N, anbh=ged{a.h}.

1.17 Exakmple :Let X be any nonempty set and let ]P’(X) bé the set 6f aII su.bsets OfA Forany
A,B eP(X), we define 4< B iff AcB. Then P(X) is an ordered set which is not a simply
ordered set. Forany 4,BeP(X), gfb{A,B}:AﬂB which is the intersection of 4 and B . Thus
P(X) is a semilattice. |

1.18 Theorem : The class of all semilattices can be equationally defined as the class of all

semigroups (S.A) satisfying the commutative law and idempotent law.

Proof : Suppose (S’,S,/\) is a semilattice. Then 'A' is a binary operation on S such that for any
a,be S, anb = gth{a,b}. Now we shall prove that for any a,be S, anb=glh{a,b}. Let
x=anr(hanc) = x=glh{a.bac} = x<qg and x<hac. Since hrc=glh{h.c}, we have
bac<band bac<c = x<p and x<c.Thus x is alower bound of {a’,b,c}:Suppose X is
any lower bound of {a,b,c} = xg<a, xp<band xg<c = xp<aand xgshbarc = xgsx.Thus
x=g(h{a,b,c}. Similarly it can be shownthat y=(a rb)Ac =g(b {a.b.c} . Therefore x=y Thus

for any a,b,ceS, an(bac)=(anb)rc. Hence (S.A) is a semigroup. Further for a.be S
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anbh =gtb{a,bl=glb{b,a} =bra andforany aeS, ana=gla{a}=a. Thus (S,A) is a
semilattice satisfying commutative and idempotent laws.

Conversely suppose that (S, /\) is @ semigroup satisfying commutative and idempotent laws.

Forany a,beS,wedefine g<p ifandonlyif anb=a.Sinceforany g §, ana=a we
have g <g forany a €S . Therefore '<'is reflexive. Suppose a<b and b<a = anrb=a and

bra=b.But anb=bnra = a=b. Therefore'<'is antisymmetric. Suppose a<b and b<c =

onb=a and hac=h Now a/\c:(a/\b)/\c = a/\(bAC):a/\h:a.Therefore a<c= '<'is

transitive. Hence (S.<) is an ordered set. Now we show that for any a,be S, anb = glb{a,b}.

Suppose x<anb. Since (anb)ab=anr(bab)=anb we have anb<b. Since
, (a/\b)Aa = a/\(b/\a)za/\(a/\b):(a/\a)/\b =anb, wehave anb<a :>x_£a and x<b.

Conversely suppose that x<a and x<b.

Now xA(anb)=(xAa)ab=xrb=x=x<anb.Thus we have x<anb if and only if

x<a and x<b . Therefore a nb=glb{a,b} . Hence (S.<,A) is a semilattice. Thus the class of

all semilattices is equal to the class of all semigroups satisfying commutative and idempotent
laws. Hence the class of all semilattices is equationally defined as the class of semigroups satisfying
the commutative and idempotent laws.

1.19 Definition : A system (S.<.A.v) where (S.<) is an ordered set and A and v are two

binary operations on S such that forany a,be S, anb=glb{a,b} and av b=lub{a,b} is called
a lattice.

1.20 Remark : Every simply ordered set (S.<) is a lattice.

Proof: Let (S,S) be a simply ordered set. Let a,be S, Since S is simply ordered set, we have
either u<bh or b<u fu<bh, then unb=u and uvb=b If b<a then anb=b and avb=a.

Thus for any two elements a.b in S, anb and av b exist. Therefore (S,<,A,v) is a lattice.

1.21 Remark : If (S, S,/\,v) is a lattice and a.h e S, thenan element x € § is the lub{a,b} if and

only if forany c€ S, x <c¢ implies and impliedby a<c and b <c.
Proof : The proof is similar to the proof of the Remark 1.13. °
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1.22 Remark : If (£,<) is an ordered set, then for any two elements a and b in S, a=b if and
onlyifforany ce S, ¢ <a implies and implied by ¢ < b . Equivolently forany ce S. a<c implies
and impliedby h< .

1.23 Definition : A lattice (S.<,A.v) is said to oe a lattice with 0 and 1 if there exists two
distinguished elements 0 and 1 in S such that 0 < <1 for all aeS . The lattice with 0 and 1 is

written as (S, <, ALV, 0,1).

1.23 Definition : Suppose (S.<,A,v,0,1) is a fattice with 0 and 1 and let ae S. An element

a' e S is said to b= a complement of ¢, if ana’'=0 and ava' =1.If every element of S has a
complement, ther: S is called a complemented lattice. A complemented lattice is denoted by
(S.<. A v, 'L 0.1).

1.23 Definition : A lattice (S.<.A,v.0.1) is said to be a distributive lattice if for any

a,b,ceS,an(bvc) =(anb)v(anc)

1.24 Remark : If {S,<.A,v,".0.1) is a complemz=ni=g distributive lattice, then forany a €, the

somplement &' 2f ¢ is unique.

>roof : Suppose a € S and suppose that ¢ a 1 @ are complements of g in §. = ara =0 and

anay=0 and «va=l=ava,.
Now uj=ay Al (oa<l)

—ayn(ava)

~(a na) (@ nay)

=0v(a ray)

=a) Aay (0<ayruy)

Also ay=ay Al =ar A(avay)

=(ay na)v(ayvay)

:()\/((_]2/\(1]\_



=Distance Education » ' 6 —=Acharya Nagarjuna University}=

=(ay nqy)
=aNay
Therefore a; =a, . Hence the complement of g is unique.

1.25 Remark : If (S,S,/\,v) is a distributive lattice, then for any a,b,ce S, av(b/\c):

(avb)a(ave).

Proof : (avb)n(ave) = [(avb)ra]v][(avb)ac]
—av[(anc)v(bac)]
=[av(anc)]v(bnc)

=av(b/\c)

1.26 Definition : Aring R is said to be a Boolean ring if a’>=a forall aeR.

1.27 Definition : A system (S,0,',A) where (S.A) is a semilattice and 0 is an element of S and
"1 " is a unary operation on S is called a Boolean algebra if for any a,be S, a Ab'=0 if and only if

anb=a(a<b).
1.28 Theorem : If (S,0,, A) is a Boolean algebra, then for any element a € S, a"=(a')' =

Proof : Since a'<a’ we have a'rna'=a'=d A(d') =0=>d'ra"=0 =a"ra'=0 =da"'<a.

m "

)'=O =a<a".

nm

Similarly since a"<a" we have a"<a’ and a""<a" =a"" Ad'=0=ad'A(a

Therefore a’'=a" .

Since g<g wehave ana'=0=ara"=0 :>a/\(a")':O =a<qa". Hence a=a".
-1.29 Theorem : A Booleag algebra becomes a complemented distributive lattice by defining
avb=(a'Ab') and 1=0".
in which the above equations are provable identities.

onversely any complemented distributive lattice is a Boolean algebra

Proof :Suppose (5,0, A) is a Boolean algebra. For any a,beS, define avb = (a’/\b')' and -

1=0" Now we show that (S.0.1..A.v) is a complemented distributive lattice. Clearly for any
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a,be S, anb and gvp existin S and anb=glb{a,b} Now we show that avb=_(ub{a,b}.
Let ¢ be any element of §. We have uv b<c

iff (' Ab') <c

iff (a' AD') Ac'=0

iff ¢’<a'Ab'

iff ¢'<a’ and ¢'<p’

iff ¢'’Aau=0and ¢'Ab=0
iff g<cand p<e¢ ‘

Therefore avb=lub{a,b}. Hence (S.<, A, V) is alattice. Now we show that for any a,b, ¢
in S, a/\(bvc)=(a/\b)v(b/\c).
Suppose x is any element of S. Then
an(bac)<xiff an(bve)ax'=0
iff (anx)A(bve)=0

iff (a/\x')/\(b'/\c') =0

iff (a/\x').<_b'/\c'

iff anx'<b" and anx'<c’

iff arx'Ab=0and aArx A c=0

iff anb<x and anc<x
iff (a/\b)v(a/\c)Sx
Therefore an(bAc)=(anb)v(anc). Hence (S,<,A,v) is adistributive lattice. For any
aeS,since a<a,wehave and'=0 and ava' = (a'/\a")l = (a'/\a)|=0'=1 . Therefore 4’ is
the complement of u. Hence (5,<,0,1,',A,v) is a complemented distributive lattice. Conversgly
,suppose that (S,<.0,1',A,v) is a complemented distributive lattice. Clearly (S,<,A) is a
semilattice..First we prove that (S,0,,A) isa“ .ean algebra. -

Let g,beS . Suppose and'=0.
Now a=anl=an(bvd)={anb)v(and) ~(anb)v0=anb. Suppose anb=a.

5

Now a/\b"“=(d/\b)/\b’=a/\(b/\b’)=a/\0=0. Thus we have forany a,b,e S, aAb'=0 if and
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onlyif a Ab=a. Therefore (5.0, 1) isa Boolean algebra. Further we have to show that the identtities
avb = (a’/\b’)' and 0'=1 are valid in S. For any abeS, (avb)/\(oz’/\bj),J
- (a/\a'/\b')v(b‘/\ a'Ab')=0v0=0 and (avb)v(a'/\b') = (avbva')/\(avbvb') ={[al=1
Therefore 4\ p is the complement of a'/\b’:>avb=(a’/\b’)'._Since 0Al=0 and Ovi=1.We

have 1 is the complement of 0 = 0'=1. Hence the theorem.

1.30 Definition : An ordered set (S, <) is said to be a semilattice if any two elements have least
upper bound. o g '

1.31 Definition : A system (S,1,,v) is said to be Boolean algebra if (S, V) is semilattice and for
any a.be S, avb=ag ifandonlyif avb'=1.
1.32 Remark :If (S,0.,',A) is a Boolean algebra then so is (S.1,,v).

Proof :Suppose (5,0, A) is a Boolean algebra =(S,0.1,,A,V) is a complemented distributive

lattice where 0'=1 and forany a,be S, avb:(a’/\b')'. Since for any a,be S,avb=lub{a,b},

{Klve have that (S,v) is a semilattice. Now for any a,bhe S,
avb'=1 iff (aab") =1 iff (a'Ab")=0
iff a'n(b) =0 if dnb'=d
iff (a’/\b')’:a iff évbza
Therefore (S.1,',v) is a Boolean algebra.

1.33 Theorem : A Boolean algebra (,0,".) becomes a Boolean ring (S,0,1,~,+,-) by defining

| | |
[le', ~a=a, atb=ab'vba' where gvb=(a'b’) . Conversely any Boolean ring can be regarded

Eas a Boolean algebra with a'=1—a and the above definitions of 1,— and + then become provable

1ident_ities.

Proof :Suppose (S.0,',+) is a Boolean algebra = (S.) is a semilattice in which for any a.beS

a.b=glb{a,b} andforany a,beS a-b'=0iff a-b=a.

Define 1=0" and —a=a forany ae S andforany a.be S
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uvb=(u'd") and u+b=ub'vbd" .
Now we shall prove that (S.0,1,—,+,) is a Boolean ring.

Clearly '-' is a unary operation and '+' and '-' are binary operations on S . Let a,b,ce S .

We have (a+b)+c = (ab'va'b)+c
=(ab'va'b)c vc(ab’va'b)t
=ab'cva'bc' ve [(ab’)l (a'b)'jf

=ab'c'va'bc' ve [(a’ v b) (b' v a):]
=ab'c'va'b'c'vea'b vebb' vea'avcha
= ab'c' v ba'c'vca'b' v abe

Similarly a+(b+c) =ab'c'vba'c'va'b'v abc  Therefore a+(b+c)=(a+h)+c. Hence'+
is assosiative.

Forany ge§, a+0=g.0' v 0.a' = a.lv0=a.l=a. Similarly 0+a=a. Therefore'0'is the

additive identity in S. Forany a€S,a +(—a) = a+a = ga'va'a=0v0=0. Therefore —qa is the
additive inverse of g

Also for any a,b€ S, atb=ab'vba'=bda'vab'=b+a. = '+ is commutative. Hence

(S,0.—.+) is an abelion group. For any a,b,ce S, (a-b)-c=a- (b - ¢) (given in the Hypothesis).
Forany ae S.a - 1=a=1-a.Hence (S.1,:) is a semigroup with identity. Further forany a.b.c = S
a-(b+c)=a- (bc'veb')=abc'vach'.
- Also g-b+a-c =‘ab-(a,c)'vac(ab)'
=ab(a've')vac(a'vh')
=aba'vabc'vaga' vach
=abc' v ach'

Therefore a - (b+cy=a -b+a-¢. Similarly it can be shown that (a+b)-c=a-c+b-c.
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Hence both the distributive laws hold good. Therefore (S,0,1,—.+.-) is a ring. Since a-a=a we
have that it is a Boolean ring.

Conversely suppose that (S.,0.1,—,+,) is a Boolean ring. Clearly (S.-) is a semigroup

satisfying the idempotent law and commutative law. Let a,be S .

Suppose a.b’=0:>a(1 —b):O:aaab:O = a=ab . Conversely suppose that a=ab=a—ab=0

=a(l-b)=0=ab'=0. Thus forany a,he S, ab'=0 if and only if ab=a . Therefore (S,O,',-) is
a Boolean algebra. ’

Now 0'=1-0=1. Since § is a Boolean ring we have g+a=0 forall ae S=—a=a forall

aes.-

a(1-b)vb(1-a)

Forany a,be S, ab'vba'

I

(a—ab)v(b=ba)

= [(a— ab)' (b -ba)']

1

:[[1—(a—ab)] [l~(b—bcz)]]
:[(l~a+ab)(l—b+ba)]‘ = [(1+a+ab)(1+b+ba)]'
=1+(1+b+ha+a+ab+aba+ab+abb+ab ba)
=a+b

Hence (S,O, % ) is a Boolean algebra where a'=1—a forany g e S in which the identities

1=0", —a=a and a+b=ab'v ba’' are provable.

1.34 Definition : An ordered set (S ,S) is said to be a complete lattice if every subset of S has
both infimum and supreimum.

1.35 Remark : If (S.<) is an ordered set in which every subset has infimum, then any subset of

S has suprimum.

Proof : Suppose {?:) is an ordered set in which every subset has infimum. Let 7 S. Let 4 be

the set of all upper bounds of 7. Let 1€ 7. Since A is the set of all upper bounds of 7. we have
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t<aq forall ae A:St is a lower bound of 4. Thus every element of 7 is a lower bound of 4.
Since every subset of S has infimum, it follows that Inf 4 existsin S say ay = g is the greatest
lower bound of A=t <aqyVieT = aq is an upper bound of 7. Suppose b5 is any upper bound of
T=t<bVtel =beA=ag<b. Thus g is the last upper bound of 7 .i.e.ay=SupT . Thus

every subset of S has suprimum.

~ 1.36 Definition : An ordered set (S,<) is called a well ordered set if every non empty subset has
a least element. »
1.37 Remark : A well ordered set with greatest element is a complete lattice.

1.38 Definition : A Boolean algebra is said to be complete if it is a complete lattice.

1.39 Definition : Let (5,<) be a complete lattice. By a closure operation on S we mean a

C
mapping g ¢ of S into it self such that a sac,(ac) <a® and g <b implies g <b€ for all
a, beS.
1.40 Definition : An element a of a complete lattice S with closure operation on it is said to be

closed if a<a i.e. a°=a.

1.41 Example : Let G be any group, Then P(G), the power set of G is a complete lattice under
set inclusion. For any subset 4 of G, let A€ be the smallest subgroup of G containing 4. Then
Ar> AC is a closure operation on P(G).

1.42 Theorem : Given a closure operation on a complete lattice; the inf of any set of closed elements
is again closed. Hence the set of all closed elements form a complete lattice. Conversely any
subset of a complete Lattice which is closed under the operation 'inf' can be obtained in this way.

Proof : Let S be any complete lattice with a closure operation. Let 77 be the set of all closed
elements of S w.r.t. the closure operation. Let X be any subset of 7. Since XS and Sis

complete, inf X exists. Let a=inf X . Now we shall show that'q' is also-closed. Forany xe X,
we have a <x =a°<x°.Since x isaclosed element, we have x°=x =2a<xVxe X =dafis

a lower bund of X = a€<a. But a<a®=a=a°. Therefore ¢ is also closed and hence is in 7.

Thus for every subset 4 of T inf 4 exists in 7. Hence T is a complete lattice.
Conversely suppose that T is any subset of S such that the infimum of every subset of T

isin 7. For any g S, define of =inf {‘t eT/a St} By definition, ¢ is a lower bund of the set
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4
{teT/aSt}. Hence a < a‘. For any aeS,(aC) = inf{fET/aCSt} and a“ =inf{teT/a<1t}.
C
Since the infimum of any subset of 7 isin T, we have aceTzace{teT/aCSt}:(ac) <daf

Forany a,he S suchthat 4 <p wehave {reT/b<tic{reT/a<t} =inf{teT/a<t]
<inf{reT/b<t}=a"<b°.

Hence the operation a—>a® of S in to itself is a closure operation. let g be any closed

element =a=a° =inf{reT/a<t}. Since a“cT we have that T . Thus T contains every

closed element. Let ae T =aelreT/a<t}=a"<a But a<a®=a=a°: Hence q is closed.

Thus 7 is precisely the set of all closed elements of §'.

1.43 Problem :Show that in any Booleanring R , forany a € R.a+a=0 andforany a,b € R,ab=ba.

Proof : We know that in a Boolean ring R, a’=a for all ae R. Therefore (a+ ,‘,‘7 —d+a

:>a2+a2+ a2+a2 —a+a=a+a+a+a=a+a=a+a=0

Also forany a,be R, (a+b)(a+b):a+b:>a2+ab+ba+b2=a+b
=a+ab+ba+b=a+b=>ab+ba=0=ab=ba
1.44 Problem : If S is any lattice, then forany a,b € S; an(avb)=a and av(anb)=a.
Proof : Since a<a and 4 < v b, we have ¢ is a lower bound of fa,avb}.
—a<gtbla,avb}ie a<an(avb)
But an(avb)<a=a=an(avb)

Also av (anb)is an upper bound of @ and anb=>as<av(anb). Since anb<a and
u < u we have that « is an upper bound of « and uAb=>u v (unb)<u. Therefore a=av (anb).
Prof. G. Koteswara Rao

Department of Mathematics
Acharya Nagarjuna University



Lesson: 2  SUBRINGS, HOMOMORPHISMS, IDEALS

2.0 Introduction : In this lesson, the most important notions in ring theory namely ideals and
homomorphisms are introduced and it is shown that there is a1 - 1 correspondence between
ideals and congruence relations of a rings.

2.1 Definition : Let (R.0,1,—,+,-) be aring. A subset S of R is called a subring of R if S is
closed under all the operations of R i.e., OeS,1e€S for any aeS,—aeS and for any
a,beS, abe S, a+beS. Inother words (S.0.1, —,+.-) is aring.

2.2 Theorem : The subrings of a ring form a complete lattice under inclusion. The inf of any family
of subrings is their intersection. The sup of a simply ordered family of subrings is their union.

Proof : Let ¥ be the class of all subrings of aring R. Forany S.7 Y, we define S<T if and
onlyif S = 7 .Clearly ' < is an ordered relationon y , sothat (Y,S) is an ordered set. Let {Sa } be

any family of elements of Y. Put S=(1S,,. Clearly S is a subring of R . (Since the intersection of

any family of subrings is a subring). Also ScS, Va=S5 <S5, Va.Hence § is alower bound of

{S,}. Suppose T is alowerbound of {S,}=>TcS,Va=TcNS,=S=T<S.

Hence S is the greatest lowerbound of {S,, } = S=inf {S, } . Let {S,} be a simply ordered
family of elements of Y. Put S=US,, since 0 € S, V o and 1S, Va wehave 0eS and [€S.
Suppose a €S=a&Sp for some . Since Sp is a subring, we have —d€Sp =-ge§. Let
u,b,e S . If u and bare in one Sy, then u+beSy and a.beSy = a+beS and a-beS.
Suppose @ €Sp and beS, forsome f and 7. Since {S, | is asimply orderedset, either Sp < S,

or S, SSp.= eitherboth g and b arein Sg orin S, . = either a+5 and gp arein Sz orin Sy

=a+band gb arein S .
Thus § is closed under all the operations 0,1,—,+ and ''. Hence S is a subring of R.

Since S=US, we have S, cSVa =S, <SVa. Hence S is an upper bound of {S,|.

Suppose 7 is an upperbound of {S,}= S, <T ¥V a=S5,cTVa =US,cT . Hence

ScT=8<T.

.S is the least upper bound of {S,}.i.e., S=Sﬁp{Sa}.
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2.3 Definition : Let R and S be rings. A mapping ¢:R — S is called a homomorphism, if 4
preserves all the operations. i.e., ¢(0} 5,4(1)=1,¢(-a)=—¢(a) ¢(a+b)=¢(a)+¢(b) and
p(ab) - p(a)p(h) forall bR |
2.4 Definition : A homomorphism ¢ of R into S is called

(a) a monomorphism if ¢ is one - one.

(b) an epimorphism if ¢ is on to.

(c) an isomorphism if ¢ ‘is both one-one aﬁd onto.
2.5 Definition : A homomorphism ¢ of Rinto itself is called an Endomorphism.
2.6 Definition : An isomorphism ¢ of R onto itself is called an automorphism.
2.7 Rerﬁark :fg:R—S and «//:S —>T are homomorphisms of rings then wo¢ is.a homomorphism
from R into T defined by (vog)(a) =y (4(a)) VaeR.

2.8 Theorem : Suppose ¢:R— S and y:S—>T are homorphisms of rings.

(1) If ¢ and ¥ are monomorphisms, then so is yog
; (2) If ¢ and ¥ are epimorphisms, then so is yog¢ -
(3) If wog¢ is a monomorphism, thensois ¢ :

(4) If wog is an epimorphism, then sois ¥
Proof : (1) Suppose t//o¢(a)=n//o¢(b):>y/(¢(a));.//(¢(b))

Since y is a monomorphism, ¢(a)=¢(b)

Again since ¢ is a monomorphism. We have a=»5 . Hence yog is mono.
The proofs of (2), (3) and (4) are left as excercise. '

2.9 Corollary : A homomorphism ¢: R —> S is an isomorphism if and only if there exists a
homomorphism :S — R such that goy is an automorphism of S and wog is an automorphism

of R.
Proof : Suppose ¢: R — S is an isomorphism. Define ¢:5 — R as follows. Let ¢ S Sihce ¢ is

onto there exist an element <R 3¢ (r)=s. Since ¢ is one - one, this e R is unique. Now define
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l//(S)=I‘. It can be verified that y -is a homomorphism and ¥ is also one-one and onto. Hence

doy is a homomorphism of S onto S whichis one - one and wog is a homomorphism of ® on

to R whichis also one - one. Therefore goy is an automorphism of S and wog¢ is an automorphism
of R. '

Conversly suppose that there exist a homorphism :S — R such that goy is an

automorphism of S and yog¢ is an automorphism of R. Since goy Is epi, we have ¢ is epi.

Since wo¢ is mono we have ¢ is mono. Hence ¢is an isomorphism.

2.10 Definition : Let R and S be rings. A binary relation 9 between R and S is called a
homomorphic relationif 06 0, 181 and r, 8 s and r, 8 s, implies —1; 8 —s,, r]"+r20 s1+8;

and nrn HS] 5.
2.11 Definition : A homomorphic relation from R into R is called a homomorphic relation on R .

2.12 Definition : A homomorphic relation 49 onaring R is called congruence relation if g is an
equivalence relationon R . i.e., g is reflexive, symmetric, and transitive.

2.13 Theorem (Find Lay) : If g is a reflexive homomorphic relationon aring R, then @ is symmetric
and transitive.

Proof:leta @b = —-a 0 -5

Now afa, —a@—b and bOb together implies that a—a+b 6 a—-b+b=>bB8a .0 is
symmetric. Suppose afdb and b8c. Since bOb, we have —h 8 —b. Now abb, -h0—-b and

b 8 c together implies a—h+h8 b—bh+c= a O c. Hence @ is transitive.

2.14 Definition : Let @ be a congruence relation on aring R . The set of all equivalence classes of

R or cosets of R determined by the equivalence classes is denoted by % Forany reR ,, the

equivalence class containing » is denoted by @ » which is equal to {r’eR/rer’ } _

2.15 Theorem : If ¢ is a congruence relation on aring R and % is the class of all equivalence

classes of R under the equivalence relation g, then % has the structure of a ring w.r.t. suitable

operations.

Proof : For any fa, 65 in % we define —(0a)=0(-a) and Ba+0b=0(a+b) and

6’q-¢9b =0(ab).
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First we shall prove that all the three operations are well defined.

Suppose fa=0a' and 8b=6b".
‘= aba and b0b'= —ab—a' .Hence O(-a)=0(-d).
Also a+b 0 o +b' and abfd'b' = O(a+b)=0(d'+b") and 6(ab)=60(a'h’). - Al

the three operations are well defined. Now we show that (%-00, 61,=, +,‘-> is a ring with 40 as -

Zero glement and @1 as the unity element.
‘For any fa, 6b, O¢ in %
Oa+(0b+0c) =0a+6(b+c) = €(a+(rb+c))
= 0((a+b)+c)
= 0(a+b)+0(c)

2(6’a+9b)+00

Hence + is associative.

For any Bae%, fa+600 = 6(a+0) = Ga= 00+6a
-.00is the zero element of % .
Forany Oae®/ 0a+0(-a)=00 = §(-a)+0a
.. 6(—a) is the additive inverse of g .
For any 0a,9be%,€a+9b =9‘(a+b)=9(b‘+a)
=60b+60a

; LR
Hence + is abelian in /9

Hence (%,6’0,—,+) is an abelian group.
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Similarly it can be prove that (%,6’1,-) is a semi group with identity. Further, for any
6a,0b.0¢ in B,
Oa(6b+0c) = 0a Ob +0a Oc and

(Ga+6b)6c = 6a Bc+6b Oc

Hence two distributive laws hold good in R/g .
Therefore (%,90,91,*7 +,-) is a ring.

2.16 Definition : Let R be aring and let g be a congruence relation on R so that % is aring.
Define ﬂ:R—)% by 7 (r)=6r forany reR.Then xis a homomorphism which is on to: This 7

is called the canonical epimorphism of R on to %

2.17 Theorem : If ¢:R— S is a homomorphism, then there exists a congruence relation @ on R

and an epimorphism 7:R— % and a monomorphism K:%%S such that ¢ = Kor .
Proéf: For ény r,r'.,e R define r@r' iff ¢(r)=¢(r')‘clearly 060 and161.
Suppose 101" = §(r) = () = $(r)=-4(+)
=¢(-r)=¢(-r)

=>-ré-r
Suppose.ry 6 1y and 1f 6 75 = ¢(n) = $(r2) and $(rf) = #(r3)
= p(n+#) = $()+0() = $(r)+B(13) = (12 +13)
and  4(n 1) =4(n) ¢(n) = ¢(r) (r3)=¢(r273)
oA+ Ortrs and n K 01y 1

-, @ is a homomorphic relatioh on R.
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Forany reR, ¢(r)=¢(r) =>rfr Vrer
Now r@r' = ¢(r) = ¢(r') = ¢(r') =¢(r)=r'6r forany r.r'e R
b ié symmetric
Suppoée r@r and r'@r"  =¢(r)=¢(r') and ré(r') = ¢(r")
=4(r)=¢(r")=>ror.
. @ is transitive. Hence g is a congruence relationon R .
Let % be the family of equivalence classes of R determined by ¢ and let 7: R — % be

the’canonicaj epimorphism of R on to % defined by 7z(r) =0r forany , ¢ R.

Define K:%—-)S by K (6r) =¢(r) for any 9re%-

Suppose Or = 0r'=rfr'=¢(r) = ¢(r")

Hence K is well defined.
Now K (60)=¢(0)=0 |
K(@l) = ¢(1)=O
K(@r+6r)= K(Q(r+r'))=¢(r+r’) =g (r)+o(r')
=K (0r)+ K (6r)

K(6r.or") = K(H(r r’)) =g(rr')=¢(r)p(r')= K(6r) K(0r")

. K is a homomorphism of rings.
Suppose K (6r) = K(0r') for some Or, Or'e % _
=¢(r)=¢(r') = r0r' =6r=0r' . Hence K is a monomorphism.

Forany reR, Kor(r) = K(ﬂ(r)): K(0r)=¢(r)

e = Komr=¢
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2.18 Theorem : The congruence relations on a ring form a complete Lattice under inclusion. The
infimum of any family of congruence relations is their intersection. The sup of a simply ordered
family of congruence relations is their union.

Proof: Let S be the set of all congruence relationsonaring R . Every elementof S is a subset of
RxR . Let 6,8, S . We declare that 8, <6, iff 4, 8, as subsets of RxR. Now forany § ¢ S,

Since.#c @ we have g <4 . Hence '<' is reflexive. Suppose &, <&, and 6, <6,, =0, cé, and
92 g@l
=6,=06,. o '<'is antisymmetric.
Suppose 6, <6, and 6, <0; =0,c6, and 6, by =6, 6,

Hence 6 <6;. Therefore '<'is transitive.

Thus (S,<) is an ordered set.

Let {6, } be any family of elements of S. Put =6, .
Clearly g is a congruence relationon R and <6, V «.

Hence @ is a lower bound of {Qa}. If @ is any other lower bound of

{0,}20'<0,V a=6cl,Va=0'cNb,=0=0'<0

-, 6 is the greatest lower bound of {6, } .

Hence infimum of any family of congruence relations is their intersection.

Now suppose that {Ha}.is a simply ordered family of congruence relations on R . For any
8p and 6, { } either 930, or 8, = 0p. Hence it can be verified that #=U6, is also a
congruence relation on R . Clearly 8, <6 Va =@ is an upperbound of {6, } . If ¢'is an upper
bound of {Ha} ,we have ¢, <0’ Va = 6,ct'Va =Ul, cl=0cH =0<6". . 0 isthe Iast‘

upper bound of {Ha} . Thus the sup of a simply ordered family of congruence relations is their
‘union.

2.19 Definition : If R is a ring, then an additive subgroup K of R is said to be an ideal of R if
areK and rae K forall re R and ae k.

2.20 Remark : The intersection of any family of ideals of aring R is anideal of R .
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Proof: 1. Let {Ka} be any family of ideals of aring R. Put K=K, . Since the intersection of

subgroups of a group is also a subgroup, it follows that K is also an additive subgroup of R . Let
acK andreR=aeK,Va =raekK, and areK,Va=rack and areK.

K isideal of R.
2.21 Definition : Suppose G is any additive abelian groupand 4 and B are two subgroups. We
define their sum 4+ B as the set of all elements ¢ +b where ae 4 and p < B. If {Aa} is a family

of subgroups G, we define their sum B=Y" 4, as the set of all elements of the form ».a,

where g, € 4, V « and all but a finite numer of a,'s are zero.
2.22 Remark : (1) If 4 and B are two subgroups of an additive abelian group G, then A+ B is
also a subgroup of G . Furtherif {4, } is a family of subgroups of G , then > A, the sum of {4}
is also a subgro.up of . | |
Proof : Since 0 =0+ 0 € A4+B, we have that 4+ Bis a non-empty subset of G. Let
at+beA+Band c+de A+B=a,ce A and b.de B. Now (a+b)—(c+d) =(a—c)+(b-d)e
A+B (va-ceAdand b—d € B)

A+B is a subgroup of G .

Since 0eY A4, ,we have Y A, #¢ . Let aeY A, and be A4, .

= a=dg ton. +a, and b=by +...... +b,, . We may assume with out loss of generality
that the components of ¢ and p are same, by adding some zeroes if necessary.

Now a—-bz(aa] —bal)+(aa2 —ba2)+ ........ +(aa —ban),

Since ag, —by, € Ay, for i=12,...n; it follows that a-be} 4, . Hence’ZAa is a
subgroup of G .
2.23 Result (2) : If {4, }is a family of ideals of aring R, then ¥ 4, is also an ideal of R .

Proof : Clearly 3 4, is an additive subgroup of R .

Let a=a,, +ounee. +aan €X>A4, and ,cp. Now ar=ag 1+ ... +ayr and
ra=rag ... +rag . Since each A4, is an ideal, we have 4a, €4, and
rag, € Aal_ Vi=are} A, and raey A, .

XAy is anyideal of R.
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2.24 Theroem : There is a one-to-one correspondence between the ideals K and the congruence
relations @ ofthering R suchthat »—r'e K iff »@7'. Thus is an isomorphism between the lattice
of ideals and the lattice of congruence relations.

Proof : Let 5% be the set of all ideals of the ring R andlet ¢ be the set of all congruence relations
on R . We define ¢ : ¥ — ¢ as follows. Let k € ~4". Define a binary relation Bxon R by adb

iff a—beK forany a,be R .
Since e K, a—-acK YaeR = abaVaec R. Hence @ is reflexive.
In particular 060 and 1 6 1.

Suppose af@b and cd =a-beK and c-deK .

Since K isanideal of R. (a—b)+(c—d)eK=(a+c)— (b+d)e K =(a+c)0(b+d).

Also ac—bd = ac—ad+ad~bd = a(c—d)+(a-b)d. Since a—be K and c-de K,
we have u(c-d)eKand (u—-b)d ek

=ac—-bde K = ac 6 bd

Thus ¢ is a homomorphic relation which is reflexive and hence ¢ is a congruence relation

on R . Denote this by O .

Define ¢(K) =0 . Clearly 4 is well defined. Let X and ./ be two ideals of R .

3¢(K) =¢(J) =0k =6, .
letae K >a-0eK=al0rg0=a0;,0=>a-0eJ=aeJ.

Thus K cJ. Similarly J c K . Therefore K=J .Hence ¢ is 1-1.Let § € € be a:\ element,
put K={aeS/af0}. It can be verified that K is an ideal of R and hence ke K . Now af b iff

a-b 0 b-biffa—b 0 0 iff a—be K .Hence 0=0x . Thus ¢(K)=6.Hence ¢ is onto. Thus ¢ is
a one-to-one correspondence between ~%" and ¢. Let K and S be two elements of K. Now we

show that Oxns = Ok (0. Let a,be R. Now abgnsb iff a—be K]S .
iff a~heK and a-be S

iff a0xb and abgb.
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=0kns = 0k Nbs.Hence ¢p(KNS)=g(K)N(S).
Further ¢(K v S) .:¢(K+S):¢9K+S. .
Now we show that Oy s = Og v Og .
Suppose a Oy b > a-beK= a-be K+S = a by, s b.
=0 < O, 5. Similarly Ogc O, s

- Ok g is an upper bound of &g and &g . Let 9 be any upper bound of 8¢ and ¢ =
Oy <6 and O 6 ‘

Suppose a0k sb =a-be K+S = a-b=x+y forsome xeK and yeS.
=>a-b—-x=yeS and a-b-y=xekK
Su-b0Ogxand u-b Oy
= (a-b)+(a-b) O (x+y)=>a-b 00 (- a-b=x+y)
=alb=0g,gc0.

Thus Ok g is the least upper bound of & and Oy .

LP(KvS)=0kvls = (K)ve(S) Hence ¢ is a lattice homorphism. Since ¢ is a

bijection it follows that ¢ is a lattice isomorphism.

2.25 : Definition : If there is an isomorphism between two rings R and S, we say that R and S
are are isomorphic and write as R =S. ’

2.26 Remark :Inaring R, if @ and K are the corresponding congruence relation on R and ideal
aa R/ = R
of R, then we write /9 —- /K

2.27 Theorem : If ¢ is a homomorphism of aring R into another ring S , then #(R)=R/ ¢! (0)

where 4! (0)= {re%(r):o} which is the kernal of ¢ .

Proof : Since 4:R >S is a homomorphism there exists a congruence relation ¢ on R and an
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epimorphism II:R e%\ and a monomorphism K :%—>S such that g=KoII.

Now #(R) =KOIL(R) = K (B7)= B/ (.. K is mono).
But the corresponding ideal of the congruence relation g is given by 80 and

00={ac R /al0} - {ac R /$(a)=4(0)=0} - 4~ (0).

Hence % = %_1(0)

2.28 Definition : A lattice (S,A, V) is said to be a modular lattice if a and b are any elements

suchthat g <p, then forany element ce S, (avec)ab =av(cab).

2.29 Theorem : The set of allideals inaring R form a complete modular lattice under set inclusion.
The inf of any family of ideals is their intersection. The sup of any family of ideals is their sum.

Proof : Let ~7 be the set of all ideals of R . Clearly ~¢ is an ordered set underset inclusion. Let
{4, } be any family of ideals of R. Then A=(14, isalsoanideal of R and A= inf{4,}. Thus ¥
is a complete lattice. Let 4 and B be ideals such that Ac B. Suppose C is any ideal. Now we

'shall prove that (AvC)AB=Av(CAB). ie., (4+C)NB=A4+(CNB). Let

xe(A+C)NB=>xeca+c forsome ae 4 and ceC and x e B. Since ac 4, we have ae B.

Now ye Band ae B =>x-a=ceB=>ceCB.
Hence x=a+ce A+(CNB)

(4+C)NB< A+(CNB). Similarly it can be verified that
A+(CNB)c(4+C)NB .. A+(CNB)=(4+C)NB.
Thus ; is a modular lattice.

Let {B,} be any family of ideals. Suppose B=Y B,, . Then clearly B is an ideal containing

B, ¥ a = B is an upper bound of {B,}. Let C be any upperbound of {B,}=B, cC V a
=Y»B,cC.ie,BcC= B=ZC.

Therefore B is the least upperbound of {B,, | . Thus the sup. of any family of ideals is their sum.
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2.30 Definition : If 4 and B are additive subgroups of aring R, then we define 4B as the set of
~ n ¥
all finite sums El a; b; where «; € 4 and b, € B. We define (‘4-’B> (A over B) as the set

{reR/rBc A} and we define (A .. B) (A under B) as the set {r € R/Ar < B} and for any

r e R the set rB={rb/b<—:B}.

The sets (A-' B) and (A "5 B) are called residual quotients.

2.31 Remark : If 4 and B are subgroups of a ring R, then 4B, A‘B and A.B are also
subgroups of R.

2.32 Theorem: If 4, B, C and {4,} and {B, }are all subgroups of R . Then the following are
valied.

() 4BCC iff AcC e B if B(4-.C)

) (A ~B)+C = (4. CB)

@ (4.B).c=4(B.C)

4) A~ (B-C)=(BA).C

©),  (S4)B = (4 5)

© (N4e -+ B) = N4 B)

@ (.4.'ZBQ)=ﬂ(A By |

2.33 Result:If A, B areideals ofaring R,thensoare 48 ,( A-B)and ( A"B)ﬁ“Moreove,r(1)

AR=A=Ra @ (4. R)=4=(R+,4) @) (4. 4)=R=(4".4) @ 4B< ANB
Proof: (1) Since Ais anideal we haveforany a€ 4, re R, ar € A Every element of AR is the

n v
form fgl 47 where a;e A and € R and neW .
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n
G GB A, - AR e 4,

Since each a, ;€ A we have

/

Since / e R, we haveforany gec 4, a=a.l € AR = Ac AR.

Therefore 4= AR. Similarly 4 = R4 .

(2) Let ae A4, since A4 is an ideal, aRgA:me(A.'R)

:>Ag(A.'R). Let xe(A.'R):ngA:x.leA:meA

" Therefore (A-'R)Q A

Then Az(A.'R) similarly A=(R 7 A).

Prof. G. Koteswara Rao
Department of Mathematics
Acharya Nagarjuna University



Lesson : 3 MODULES, DIRECT PRODUCTS

3.0 introduction : In this lesson, another important algebric system namely module is introducec
and the direct products are studied.

3.1 Definition : Let R be a ring. An additive abelian group A is said to be a right R - module

denoted by Ay if there exists a mapping (a.r)>ar from AR into A saﬁwﬁng.
(1) a(r+s)=ar+as v ac A r seR
2) (a+b)r=ar+br vy abe A and ¢ R
(3) a(r-s)=(ar)s v ageAd and r.se R
(4) did = u v uc A

N

3.2 Definition : An additive abelian group 4 is said to be a left R module if there is a mapping

(r, a)i—-)m from Rx A—> A satisfying the corresponding above four identities.

3.3 Example:

1. LetA _be an abelian group. Then 4 isa Z- hodule. Where forany ae 4, ne Z,
an = a+da+.....+a (n times) if n is positive and
an=—(a+a+...+a) (-n times) if n is negative.
a0=0

2. If R isaring, then R itself an R - module.

3. Let .1 be any abelian group and Let I be the set of all endomorphisms of 4. Let 0 be the

zero endomorphism defined by «0=0 for all ae 4. Let | be the identity endomorphism
definedby @ - 1 =q forallae 4 Forall f,ge F.Define f+g and fg and —f by
a(f+g)=af +agand a(f g) :((a)f)g and a(—f) = —af forall ae 4. Then it can

be verified that (F6 i:'—.+..) isaring. Forany ae A, /e F .wedefine af'=(a) f  This operation

gives us that 4 is a right " -module A .
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3.4 Theorem : Let [': R — F' be'a homomorphism of rings where R is a ring and F is the ring of
endomorphisms of an additive abelian group 4.Forany a€ 4 and r € R , we define ar :a(F(r)).
Then A4 is aright R - module. Further every right R-module may be obtained in this way.

Proof: Let a.bec4 and r.s€ R.

Now (a+b)r=(a+b)(Tr)=a(Tr)+b(Tr) - (- Tr is an endomorphism)

=ar+br

a(r+s) =al (r+s)

=a(I'(r)+I'(s)) (By the definition of addition of maps)
—aT(r)+aT(s)
=ar+as
a(r.s)=al(r s)=a(lr)T(s)  (~I is a homomorphism)
=((a)Tr)T () (composition of maps)
=(ar)1 (s)=(ar)s
al =al(l)=al=a- (T ishomo, T'(1)=/)
Hence 4 is aright R - module.

Conversly Let A, be any right R - module. Let F° be the set of all endomorphism of the

additive abelian group We know that I~ is aring Define T:R > /7 by T(r) as the endomorphism

on A givenby (a)I'(r)=ar forany a e 4. It can be verified that T is a ring homomorphism and

the R - module structure is determined by [~ since ar=(a)T(r).

3.4 Remark : Suppose Ay is aright R - module. Every re R can be seen as a unary operation on
A given by atr>ar satisfying (a+b)r=ar+br for any a.be A. Thus the R - module Ay is

regarded as a system (4,0,—.+. R) where (4.0.—-.+) is an abelian group and each element , of

R is a unary operation on 4 satisfying
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(a+b)r = ar+br forall a,be 4.

3.5 Definition : Let Ap be aright R - module. An additive subgroup B of A is called a submodule

of Ag if Bg is an R - module.

3.6 Definition : Let 4 and By be two right modules. A mapping ¢: 4 — B is said to be a module
homomorphism if ¢(0)=0, ¢(x+y)=¢(x)+d(y) (-x)=-¢(x) and ¢(xr) =¢(x)r for all

reR, x,ye A.i.e. ¢ is agroup homomorphism satisfying ¢(ar) = ¢(a)r forall ae 4, reR.

3.7 Definition : Zorn's Lemma : If every simply ordered subset of a nonempty ordered set (S, S)

has an upper bound in S, then S has at least one maximal element m in the sense that m < s for
any s €S implies m=s .

3.8 Definition : Axiom of Choise : The Cartesion product of a non-empty family of non-empty

sets is non-empty. i.e., If {Sa }aeA is a family of sets where A=¢ and S, #¢ VaeA, thenthere

is at least one map f:A—> U S, suchthat f(a)eS, VaeA.
ael

3.9 Theorem : Let 7 be any subset of the module Ay . Then any submodule B of Ap which has

no elementin common with 77 except possikly () is contained in a submodule A7 which is maximal
with respect to this property.

Proof : Let P be the set of all submodules of 4y, which contains B and whose intersection with
7 is contained in the submodule {O} Since Be P, itfollows that P =¢ ..Now P is an ordered set
under set inclusion. Let {Ba }aeA be any simply ordered family of submodules in p. Put

B=II B, Since [B,} is a simply ordered family, it follows that B is also a submodule of 4.
aeA

Suppose if possible an element 02 xe B\T = x e B, forsome a e A= 0= xe B, (1T . Which
is a contradiction since each B, has no element common with 7 except possibly 0. Hence

BNTc{0}.Hence pe p, clearly B is an upper bound of {B,} since B, < B Vo . Thus every

simply ordered set in P has an upper bound in P . Hence by Zorn's Lemma, P has at least one
maximal element A/ . = M is a submodule of 4 which is maximal w.r.t. the property that it has no

element in common with 7 except possibly 0.
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% 3.10 Definition : If R is aring, then a submodule of the right R - module Ry is called a right ideal

of R.

3.11 Definition : An ideal (right ideal) of a ring R is said to be a proper ideal (right ideal) if it does
not contain 1. ]

3.12 Theorem : Every proper ideal (right ideal) of aring R is contained in a maximal préper ideal
(right ideal).

Proof : Take 7={1} or {0,1}. Let P be any properideal of R . Let P be the set of all ideals whose

intersection with 7 is contained in {0} . Since P is a proper ideal, 1¢ P Hence P17 {0} .

Hence p €P =P #¢ . Now P is an ordered set under set inclusion. If {4, | is any simply ordered
family of elements of P. Put 4=UA, . Since {Aa} is simply ordered, 4 is an ideal of R. Since
each A,€lP, we have lg¢ A4, Va=1¢gA. Hence 4 is also a proper ideal and hence

ANT c{0}=A€P.Clearly 4, <A Va=> A isan upper bound of {4, }. Thus we have that every

simply ordered set has an upper bound in P . By Zorn's lemma, P has a maximal element M . Now
M is a maximal proper ideal containing P .

3.13 Definition : If {4y}, ., is any family of sets. The Cartessian Product of {4,,} is defined as

the set of all mappings x:A— U A4, suchthat x(a) e 4, Va.If x is any element of the Cartesian
ael

product of {4y §, . , then x is denoted by x={x, } . Where x, =x(a) for every o . The Cartesian

product is denoted by pd, or 74, .

3.14 Remark : If {4,} where A={1,2,....n}, then the Cartesian product is denoted by

ael

Ay x Ay x.....x A, Anyelement xin 4;x Ay x.....x A, is written as x=(x{.X5,......, X, ) where
x;€4; fori=12.....n.
3.15 Definition : Suppose {Ra }ae] is a family of Rings. Let 7R, be the Cartesian product of the

sets {R,}

el - VE define all the ring operations by

(1) 0={0,} where U, =0 in R, Va.

2) 1={1,} where1,=1in R, Va
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(3) Forany x={x,}.—x={-x,} where —x, is the additive inverse of x, in R, Va .

(4) Forany x={x,} and y={y,} in 7R;, x+y={x,+y,} and xw={x, y,}
where x, +y,€R, and x, y,eR, Va.

So that 7R, is aring with the above operations. i.e.. (ﬂRa.O.l.—. +.-) is aring.

3.16 Definition : Suppose {Aa }aeA is a family of R - modules. The Caresian product. 74, is
called the direct product of R - modules {4, } if we define all module opertions on 74, which

makes 74, as an R - module.

3.17 Remark : We define the module operations on A=74,, as follows.

(1) 0={0,} where 0, is the zero element of 4, V.
(2)  If x={x,}inA then —x={-x,}.

@) I x={x,}. y={ye} inA then x+y = {x, +, ).

@)  Ifx={x,} inAand , ¢ g, then xr={x,r}.

3.18 Definition : If {Aa}aEA is any family of subgroup of an abelian additive group A, then the

sum of {Aa}aeA is defined as the set of all elements of the form ZA 4y where a, €A, Va and
ae

all but a finite no. of a,'s are zeroes. The sum is denoted by 2> Ay . We say that the sum
£ ' ael

Y A, is a direct sum if 0 can not be written non trivially as a sum of elements of the 4, 'si.e. if
aeA

0= Y a, where a,e4, then a, =0 VaeA.

ael
3.19 Definition : An element g of aring R is said to be an idémpotentf‘if a’=a.
3.20 Definition : An element a of aring R is said to be a central element if ar=ra ¥ rc R.
3.21 Definition : Suppose 4y, 4,....., 4,, are subgroups of a group 4 . We say that 4 is the direct
sumof 4, 4,...., 4, if every elément a of 4 can be uniquely expressed as a=a) +ay +.....+ ay,

. where g;e 4; for i=1,...,n.
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3.22 Definition : Suppose {Aa }aEA is a family of subgroups of a group 4. We say that 4 is the

direct sum of {Aa} ac ifevery element a € 4 can be uniquely expressed as g= Y a ., Where
aeB

a, € 4, and all most all the a,,'s are zeroes except for finite number.

3.23 Problem : Suppose {Ba}aeA is a family of submodules of a module 4. Then the sum

2 B isdirectiff By X B,=0, vV ageA.

aeA - rEa

Proof : Suppose ZA By is direct =0 cannot be written nontrivially as a sum of elements of the
_ ae

B,'s.Let x€ B, X B,

'+

xe ) B.=>x=3% b,

=>xeByand T rea

Put x=b,.Now X b,—x=0= % b,—~b,=0
ra r#o

=>3b,=0=b.=0VreA. Inparticular b, =0=x=0.

Thus BN ¥ B.=0

Y rta

S
X

) \
Conversly suppose that B,N ¥ B, =0Va

r#a

Suppose 0-Y a, where at least one «, #0
: X

=0=a,+ X a,= 2 a,==a,

r#a r#Eo

But aae Ba ,and Z are Z Br
r#a rea

- 4, eB,N Y B=>BNY B #0 (v, #0)
rxo r#a

Which is a contradiction. -, 0 cannot be written as non:trivially as the sum of elements of
the B,'s.
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3.24 Theorem : Let R be aring. Then the following are equivalent.

(@ R is isomorphic to a finite direct product of rings R; (i=1,2....n).

n
(b) There exist central orthogonal idempotents ¢; € R such that 1= _Zl i and ¢; R=R;

I:
(c) R is afinite direct sum of ideals K;=R; for i=1,2,..n.

Proof : Assume (a) Let ¢:R — Ry x Ry x... R, be an isomprphism of R onto the direct product of

rings R; (i=1.2,...n).

i=1,2,...n.8ince ¢ is anisomorphism forevery ;j, 3 is a unique ¢; in R3¢(e,-)=e,~,since e[.z =€;

for i=1,2,....n we have ¢(€i2)=¢(€,-)\7'1'. Since ¢ is one one, eizzei for i=1,2.....n. Since
d(ej+...+e,) =€ +€3 +....+€, =(L1.....,1) which is the unity element in the direct product it

follows that e; +.....+e,, is the unity inR.
= o +ey ke =1
Define ¢,:e; R—>R; by ¢;(e; ) = 7;(#(r)) Vi
Clearly ¢; is a homomorphism. Since it is the composition of homomorphisms 7; and ¢.
Suppose 4 (e; )= (¢;)=;(0(1) =, (9(5))
=¢€;¢(r)=5;4(s)
=6(e)9(0) = #(e)9(5)
=¢(eir)=o(e;s)
Cyh
Hence ¢; is one one. Let r;c R;. Since ¢ isonto, 3reR 3> #()=(0,0,.....,7,0,0,....,0)

* where 7 is inthe ;' place, zero else where. = ¢;(¢(r))=r; = 7; ¢(r)=r,= ¢;(e;r)=1;. Hence

¢; is on to. Thus ¢; is an isomorphism of ¢;R onto R;. Hence (a)=>(b) assume (b).
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Put K;=¢; R, clearly K; is anideal of p for i=1,2,...n and K;=R; Vi.
Let reR:>r:1.r;(e1+....+en)r=e‘r+....+e,,,r
=reKi+Ky+..+K,=>R=K;+K; +...+K,

Let xeK;N X K; for some ;.
JEi

=>x=e;r; and x=ejnt..te_1h_1+te€41liprtem +e,r,.

= x=e,~x =er; :e,-(el n+..te 11 te 1t t...te, rn) =0
n
S K

This is true for /- 1,2,...n. Hence the sum = i is adirect sum

i=
~Hence (b)=(c)
Assume (c) Let ¢; be an isomorphism of K; onto R;.
Define ¢: R— Ry xRy x...x R, as follows. Let reR.

=r=aq +a +....+a, for some unique set of elements «,a,,....,a,, where a;k; for
i=1,2,..n.

Define ¢(r)=(d (ar). 2 (a2)ccervee.. B, (a,))

Clearly ¢ is a homomorphism.

Suppose ¢(r)=¢(s) suppose r=ap+ay+...ta,
s=bj+by+...+h,

=¢i(a;)=¢;(b;) for i=1.2....n

=a;=b; for i=1.2,...n

EES P ".¢ is one one

Let (17.79....1;y ) E( Ry X Ry X...x R,))

Put'a;=¢7! (r)Vi. Putr=a+..+ay

Now reR and ¢(r)=(n.m,....1y)

o9 is on to. Hence ¢ is an isomorphism of R onto R; x Ry x...x R,

Hence (c):>(a)f :



Lesson : 4 DIRECT SUM OF MODULES

4.0 Introduction : In this lesson, the direct sum of a family of modules is defined and some equivalent
condlition to a direct sum of a modules is given.

4.1 Definition : Suppose A= 7 A, is the direct product of R-modules. If 7,:4—> 4, and
aelA

K, :4, — A are the canonical epimorphism and monomorphism respectively, then
”aOkﬂ =1 if a=p

=0if a= p
4.2 Definition : A submodule A of the direct product Z ; 4; of R-modules bonsisting of all 4€ .7[1 4;
! le

such that a(i)=0 for all but finite number.

4.3 Definition : A submodule 4 of the direct product g A of R - modules consisting of all
1

\

ae\r A; 3a;=0 for all but finite number of ;'s is called the (external) direct sum of R - modules
i

{Af}iel~ is denoted by /ezl 4;

*

4.4 Remark : If {A,-}I.el is a family of R - modules and A= X 4; is the direct sum of R modules
iel

and for every iel z;:4— 4; is the canonical epimorphism and k;:4; — A is the canonical

monomorphism, then ¥ K,;07z;(a)=a forall ge 4.
iel

Proof: Let ge 4 =a(i)=0Vi#i.iy......I, for some ij.iy.....i,, in [.

Forany i=i|,i,...i, K;07;(a)=0

n
Hence Zlkl()ﬂ', (Cl)z Z Ki,- Oﬂ-il‘ (a):a

i€ r=1
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4.5 Definition : Let 4 be an R - module. A family {/i};, of endomorphism of 4 is said to be a

complete system of orthogonal idempotent endomorphisms.
if (1) 1i07;=0fori=;

(2) 1i0fi=/i forall 7.

(3) Y fi(a) is afinite sum and is equal to a forall a€ 4 .
iel ‘ :

4.6 Theorem : The following statements are equivalent concerning R - modules
(1) Ap is isomorphic with the (external) direct sum of R - modules {A,'},-E/
(2)  Ai has a complete system of orthogonal idempotent endomorphisms

{E,‘};‘, g A_:.A,' Yi

1<

3) Ap is the (internal) direct sum of submodules {B,f},el where B;=4; V i.

Proof : Assume (1)

Let  be an isomorphism of Ap on to E/ Af. Let 7; be the canonical epimorphism of

>. A;onto 4; and let K; be the canonical monomorphism of 4; into ii‘l A
iel T

Put ¢ :v/“' 0K; 07,0y - Clearly €; is an endomorphism of Ap forall j. Now we show

that {Ei}iel is a complete system of orthogonal idempotent endomorphisms.

Suppose i # j then €; 06,:((//“0 k;0 7,0 w) 0 (w7 0k;07;0 W): 0

Suppose i=j.Then g; 0 g; :(a//'l 0K,;07; Oy )O(t//"' OK,-Ozr,-Ow):e,-

Let ac A=y (a)e ¥ 4; =y (a)(i)=0 for all i except for finite number of j's (s¢
iel

fsByseeensip
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-1 In, -
Se (a)-% (z// 0K,0m0 ://)(a),— v (V/ "0 K,0 17,0 t//)(a) which is a finite sum

iel il i=i

and 2 &i(a)= Z(W-l 0K;0mx; 0!//) (a)

iel iel
&P (0m)(v()

=y (v(a))=a

-'~{€i},~€, is a complete system of orthogonal idempoteht endomorphisms of Ap.

Further Ef(A)=(l//"] OK,Oﬂ,-O(//)A

=(l//“] 0K; Oir,-)(t//(A))

~(v7' 0K, )(n,. [;;[ A,-B

=(¢,//_1 OK,-)A[ =y (4) 24 Vi
' Thus (H)=(2)
Assume (2)

Let {E,—}ie[ be a complete system of orthogonal idempotént endomorphisms of 4 such :

that €; A= 4; forall ;.

Put B;=¢; 4 for every ;. Clearly each B, is a submodule of 4 and B; =4;.
Now we show that Ay is the (internal) direct sum of submodules {Bi},-el. Let e 4.

By the hypothesis Y €; (a) =a and the sum is finite.

iel
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Foreach icl,g; (a)e B;=ac Y B
iel

.'.A-_— Z Bl

iel

Let a€ B;(1 Y B;=>a=>b; for some b; € B; and
J#i

a=bj +bj; +b; +....+b; where N Yy

J#i

. Ag is the internal direct sum of submodules {B,-},.EI where B;=A4;Vi. -

Thus (2)=(3)
Assume (3)
Let w; be anisomorphism of B; onto 4; for every 4,
Define w:4— 3 4; és follows.
iel
let e 4.

a=

Since /g is the internal direct sum of submodules {5;},_,, we have E[ %i Where

h-e B;Yi and h; =0 except for finite number of ;'

Now define v (a)={w; (5;)}

iel "

- Clearly ;(b;)=0 except for finite number of i's.

Hence {wi(bi)}e 2 4

iel
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Clearly v is a homomorphi:c,m.

Suppose y(a)=y(a'} where a= ¥ b; and al:,-g,b;

iel

={vi ()}, ={wi ()},

=y, (b;) = yi(bj) Vi
=h=h = a=a

.. ¢ is one one.
Let {ai},., € T 4
iel
Since y; isonto Vi, 3b;€ B; > y;(b;)=a; Vi

Put a= 3 b;

iel

Now 4 e 4 and l//(a) :{‘/li (bi)},'e] :{ai}iel
Sy is onto

Sy is isomorphism.

Thus (3)=(1)

Problem : Prove that the sum E/ Bi' of submodules of Ag is direct ®Viel, Bi1 ¥ B;=0
VeI

Proof : Suppose B= ) B; is a direct sum of submodules of Ap.
iel

= every element 4 e B can be uniquely expressed as a=3.b;

where b; € B; and the sum is finite.

Let aeBI-ﬂ )y Bj =a=b; and
J#I

=S b,
’ JE/‘ J where bje B; and b; € B; forall j=i.
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=b;=bj +bj) tetb; =0==b;+bj +bj) +...+b;

Since . B, is a direct sum, we must have b; =0=b_,-] +b_/2 +....+ij

: Jj#l
D -
Conversly suppose that 5 ﬂi:/, BJ 0

Let a EEI B; By definition '¢' can be written as

azl,ezl b where b; € B; and the sum is finite.

a= Z, b - Z bl X '
Suppose il : Py ! where b;, bje B;

Fix some e/, now by —bj = X (bj-b;)
iel
i¢i0

jbl() —bl,() EBiO ﬂ Z BJZO

J#iy
:>b[0 =b;0
This is true for every iy e/

b,-':bl’ Viel

Thus every element of 3 B; can be uniquely expressed as the sum of elements of B,;.

:igl B; is a direct sum.

Prof. G. Koteswara Rao
Department of Mathematics
Acharya Nagarjuna University



Lesson : 5 CLASSICAL ISOMORPHISM THEOREMS -1

5.1 Introduction : In this lesson we introduce some important types of modules namely Artinian
and Noetherian modules. An important characterization of Noetherian module is proved.

5.2 Theorem : If ¢ is a homomorphism of an R - module 4 into an R - module B, then

¢(A)§A/¢_] (0) where ¢(A4) i$ the image of ¢ and ¢! (0) is the kernel of ¢ .

Proof : Define '/’3%_1 (O)—)(ﬁ(A) by W(X+¢_] (O)) =¢(x)Vxe A,

Suppose W<X+¢_] (0))=V/(J’+¢—l (O)) =¢(x)=¢(»)
=>¢(x-y)=0
=x-yed”' (0)

:>x+¢_] (0)=y+¢—l (O)
LYo ds one - one.

Let bep(A4)=>b=¢(x) for some x € 4.

Now x+¢~' (0)e 4/¢7'(0) and -l//(x+¢_l;(0))=¢(x)=b

Sy is onto.

Let x+471(0).y+¢7'(0)e4/¢7' (0) and ae R.
Now [ (x+47 (0))+(3+47 (@) =¥ [(x+3) +67 (0)]
| =¢(x+y)
=¢(x)+4(»)

=y (x+47'(0))+y(y+47(0))
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. Also W(a<x+¢—)(0)”=l//(a'x+¢_](O));¢(d}c):a¢(x)

:al//(x+¢_l (O))

.y is a module homomorphism.

; v .
Therefore ¢ is a module isomorphism of A—l (0) onto ¢(B).

Hence %—l (0)E¢(A)

5.3 Theorem : Let ¢ be a submodule of Ap. Every sub-module of A/C has the form B/C

A/ )

here Cc Bc 4 and’yz(/(”l / i
e )

Proof: Let B’ be any submodulé of the quotient module 4/C and Let 7:4 —> 4/ C bethe canonical
_epimorphism of 4 ontov%,:}r"‘](B") is' a sub-module of 4. Put B=z"'(B'). Since
77! (0)cn™! (B') where Ccn! (B)=B >CcB and 7(B)=B'=8/-p"

Thus we have B/C is asub-module of 4/C.

Let ﬂ':’y—)(%) . be the canonical epimorphism of ’y onto (fl% :
s e A

~

=7'07 is an epimorphism of 4 onto (1%’)

Now Kir(n'Oﬂ)z(ﬁ'O#)ﬂ ({0)*—*—7[_l (gﬂ"l_l (0)) =" (%)
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(%¢

A/ ~
. By the above theorem /B=

B/
(/C)
|
5.4 Theorem : If B and C are sub-modules of | . then £+_C§ ¢ .
B BNC

Proof : We have that B+ 1s again an R - module and B i1s a submodule of B+(C'.

~

. B+C _ . .
Let 7:B+C > -'*73-—— be the canonical epimorphism.

Let K:C— B+C be the canonical monomorphism defined by k(x) =x.

+C

iror every xe (' = ok is @ module homomorphism of C into 5

Put q}:n(;k. Now vekerg <¢(x)=0 and xe(
< ok (x)=0 and xe C
<:>/r(x):() and xe C
ﬂ<:>x+ B=P8 and xeC
<xeh and xe O
< xe BN
~kerg = BN C

Further ¢(C)=mok(C)=n(C)=r(B)+7(C)

: Ny g \ — g; (k —— =
But we have «73((!) el Bf?( B
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5.5 Lemma (Zasson Laws) : If BcBc A4 and ("cCc 4 are modules over R, then

B+BNC _C'+BNC
B+BNC' ~C+CNB"

: _ BNC
Proof : Now we show that both the R.H.S. and L.H.S. are isomorphic to (BNC+BNC)-

Put B;=B+(BNC’)
Bz —‘:‘-BﬂC

‘ B] +BZ > Bz
By the above theorem we have B~ BNB

But B, +B,=B'+(BNC")+(BNC)
=B'+(BNC) (~ BNC" <BNC)
Also BiNB,=[ B'+(BNC')|N(BNC)
~(BNC) +[ B'N(BNC)] (By modular lawsince BNC" BN C and B’ is any module)
= (BNC')+(B'NC)

B'+(BNC) _ BNC
Thus we have B’+(BﬂC') = (BﬂC’)+(B’ﬂC)

o C'+(BﬂC) - BNC
Similarly, we have '~ +(B’ﬂC) = (BﬂC’)+(B’ﬂC)

B+(BNC) _ C'+(BNC)
Therefore we have B’+(BﬂC’) C’v+(B'ﬂC)

n

5.6 Definition : A sequence of submodules 4yc 4 c....... cAd,,=A of A where each 4; is a

submodule of 4;,1 for i=0,1, 2,...... ,m~—1, is called a chain of submodules of 4p ‘and m is called
4i 11

A

1

the length of the chain and for i=0.1.2.....m -1 are called the factors of the chain
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5.7 Definition : A chain of submodules of 4 givenby 4)c 4 c....c 4, =4 is called a refinement

of the chain By c Bjc....c B,,= A of submodules of A if {BO,BI, ..... Y.Bn} g{AO,AI,Az ..... ,Am} In

particular if {By.By,.....B,} is a proper subset of {4j.4...A4,}, then we say that chain

Ayc 4 c....c 4y, = A4 is a proper refinement of the chain Byc Bjc....c B, =

6.8 Theorem : Given two chains of submodules of Ap
B=AycA4C....cA4,=4 and B=Byc B,c...c B,=A4, then both the chains can be

refined. So that the resulting refinements have the same length and the factors of the refinements

are isomorphic in some or other order.

Proof : For i:O,bl, 2,.....m—1, we introduce the chain of submodules 4;, © 4; €4, <....c 4

between 4; and 4; | suchthat 4;=4; and 4; = A4;;’

For j=0,1,2,....,n—1, we introduce the chain of submodules, Bo, <58, =B, <...c By,

between Bj and Bj+l such that Bj:BOj and ij =Bj+1 as follows.
Forany i=0,1,2,......... m-1,and j=0.1,2,...n we define 4;, :Ai"‘(AiJr]ﬂBj)

Forany i=0,12,...m and j=0,1,2,...,n, we define B; = B;+(B;.1N 4)
Thus we have the following chains

B=dy=4y, C Ay C..cAy =h=4 4 C..c4y

my,_» Rt 1t

which is equalto 'mn .

Further for any fixed '/ > 0=;sm | and for ;=0,1,2,...n we have 4; <44 and
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B; cB; By Zasson - Laws Lemma, we have

Ai+,(Ai‘+1nBj) B;_1+B;N4;

Ai+Af+lnBj—-l . Bj—1+BjﬂAi
i Aij CBi+1j_|
AI = BI

Similarly for any fixed j30< j<»n-1 andforevery i=0,1,2,...m we have by using 4;_1< 4; -

and B; C Bjy.

Ao+ 4 N8By Bj+(B_/+lﬂAi)

4 +4NB; “B;+B; N4y

BN s By

Ay, Biog

J
Hence the factors are isomorphic in some or other order.

5.9 Definition : A chain of sub-modules of 4 which is of the form 0=4pc 4 c....c4,,=4

where 4; # A4; ) for i=0,1,2,...m—1is qalled a composition series of the module 4 if it cannot be
properly refined i.e., it has no proper refinement.

/510 (JORDAN HOLDER)

Let 0=4pc 4 c..c4,=4 and 0=BycB,c...cB,,=4 be two composition series of
.1. Then m=nand there exists a permuatation ¢ of the numbers 0,1,2,...m—1 such that
A1 Be(i)+1
A B for i=0,1,2,...m—1.

eli

Proof : By Schreier's theorem, the given two chains can be refined such that the resulting refinements
are of same length and the factors of the refinements are isomorphic in some or other order. Since

both of the given chains are composition series of 4, they cannot be properly refined. Hence any
refinements of the given chains are themselves. Hence they must have same lengths and the

factors of them are isomorphic in some or other order = m=n and there is a permutation ¢ on the
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Ay Be(i)+1
set {0,1,2,....m—1} such that “A—'" = —
S )

[

5.11 Definition : A module ' 4'is said to be Artinian if every non-empty set of submodules has a
minimal element. '

5.12 Remark : A module A4 is Artinian iff every descending sequence of submodules becomes
ultimately stationary.

Proof : Assume that 4 is Artinian. Suppose 4,24, D..... be a descending sequence of
submodules of 4.

Put A={Al-/ie N}.Now 4 is anon-empty set of submodules. Since 4 is Artinian, 4 has
a minimal element say 4, = 4, C4; Vi But 4,4, for n2ny= 4, =4, for n2ny. Thus

the sequence is stationary from n=n. Conversely suppose that every descending sequence of

submodules becomes ultimately stationary. Let 4 be any non-empty set of submodules of 4.
Suppose 4 has no minimal element. Choose an element 4; in 4. Since 4, is not a minimal

element, 3 anelement 4, 3 4 24, and 4;# 4, . Again since 4, is not minimal, 3 an element

Ay 3 Ay 2 Ay and A4, # A3 . Continuing this process we get a descending sequence of submodules

of 4 givenby 7 f %) 3‘42 3 which is not ultimately stationary which is a contradiction. Hence
* A" has a minimal element therefore A is Artinian.

5.13 Definition : A module 4 is said to be Noetherian if every non-empty set of submodules has
a maximal element. '

5.14 Remark : A module 4 is Noetherian iff every ascending sequence of submodules of 4 is
ultimately stationary. .

5.15 Theorem : A module is Noetherian iff every submodule is finitely geherated.

Proof : Suppose 4 module 4 IS Noetherian. Lel” ' be any sub-module of 4. Let 3 be the set
of all finitely generated submodules of B . Since A is Noetherian, I has a maximal element say

-

(". Suppose if poseible '+ B = 3 anelement h € B suchthat he (. Put C;=C+bR . Now (| Is
also finitely generated submodules if B [C'} is generated by the set of generaters of C together
with b]. Hence (e 3. Also €} contains . Since ¢ is maximalin 5, We have C,=C =4

which is a contradiction. Hence C = B. Therefore, B is finitely generated.

Conversly suppose that every submodule of 4 is finitely generated. Let 4, c 4, C.... be
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an ascending sequence of submodules of 4. Put B=U4;. Clearly B is a submodule of 4. By
hypothesis B is finitely generated. Suppose B is generated by {b),by.....by | =by.by,...by areall
in U4; =34, which contains all the ;'s for i=12,....k=Bc Ay, . But 4, =B Thus we

have 4, =B= for n>ny, 4, =4y, . Hence the given ascending sequence of submodules of A

is ultimately stationary. Therefore 4 is Noetherian.

5.16 Let B be asuh-module of Az . Then 4 is Artinian (Noetherian) if and onlyif B and A/ B are
~ Artinian (Noetherian).

Proof : Assume that 4 is Artinian

Let B; 2B, D..... be adescending sequence of submodules of B = This is a descending

sequence of submodules of 4. Since 4 is Artinian, the given sequence is ultimately stationary.
Hence B is Artinian.

Let 20y o be a descending sequence of submodules of 4/B. Since C; is a
sub-module of 4/ B, we have C‘,—:A% for_some same sub-module 4; of 4 containing B . This

is true for every i = 3 a sequence {A,,} of sub-module of 4 each of them containing £ such that

2l __4’41 / . 14] Az ' . &
C;= /BV1:> B2 /g is an ascending sequence of submodules of A4/B
=4 24H24D....... is an ascending sequence of submodules of 4. Since 4 is Noetherian, we

have that there exists a positive integer ny > for nz2ny, 4,=4, .

A A . .
— %: ”0/§ VnZnoDCanOVnZno- Hence the given descending sequence of

submodules of A4/ Bis ultimately stationary. .. 4/ B is Noetherian. Conversely for every submodule
B of A, B and A/B are Artinian. Let 4|04 DA3D........ be any descénding sequence of

submodules = 4 NBo 4 NBo 4N Bo...... is a descending sequence of submodules of B.
Since B is Artinian, 3 a positive integer Ny 312N, :>AnﬂB=A,,,l (B . (Since B is Artinian, 3).
iy A,-+BDAI'+1+B A+B

Vi = — Vi and
B B B

Since 4;24;,1Vi we have 4;+B>

is a

A1+BQA2+BD

A
stubmoduleof —B—V i= I g2 is a descending sequence of submodules of 4/ B.
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4.+B Ay +B ,
e T

\\ﬁince A/ B is Noetherian, 3 a positive integer Ny> for n2 Ny,

B B
PR A,+B Ay +B
N\fmax{Nl,-Nz} = for n> N, where 4,NB =AyB and 2—=—~

B iR
Now for any n>N | :
A=A, n(A +B) A ﬂ(AN+B) A +(BnA ) = Ay +(BnAN)=A

The given descending sequence of submodules of Ais ultlmately stationary. Hence A
is Artmlan :

517 Corollary A flmte dlrect product of modules is Artinian (Noethenan) if and only if each factor
is Artinian (Noetherian).

Proof : It is enough to prove thls corrolary in the case of direct product of two modules.

Suppose A= BxClS the direct product of two modules B and C. Assume that'4'is
; At '
Artinian we have Ox Cis a submodule of 4=Bx(C and OxC =B and also OxC=C.

A
. Since A4 is Artlman Ox(C is Artinian and 5 ~ 0 C is Artinian = B and (¢ are Artinian.

Convorsely assume that B and ( are Artinian = OxC is Artinian ( OxC = C)

Sy §i A
Since —O C_ =B and B is Artinian: We have OxC is. Artinian. Thus Ox C is a submodule
A

of 4 such that O Cand OxC are Artinian :A IS Artmnan

Prof. G. Koteswara Rao
Department of Mathematics
Acharya Nagarjuna University



Lesson : 6 CLASSICAL ISOMORPHISM THEOREMS - 2

6.1 lntroduc'tion‘: In this lesson a famous Lemma known as Fittings Lemma is proved and a
famous theorem which is proved by great mathematicians Krull, Remak, Schmidt, and Wedderburn
~ is given.

6.2 Theorem : A module 4 has a composition series if and only if it is Artinian and Noetherian.
Proof : Assume that 4 has a composifion series of length 'n'. Let A o4 o....04,.. ... be a
descending sequence of submodules of 4. Suppose if possible this sequence is not ultimately

stationary =>3n+1 submodules A, A4...... Ay such  that  4#4 4 and

0= A, 1 © A, E ok = = 4 =4 is a chain of length more than 'n' . Since the

length of a composition series is /7, we cannot have a chain of length more than n. Hence the
given descending sequence is ultimately stationary.

Similarly if 44 c.......... b Mo _is an ascending chain of submodules which is
not ultlmatley stationary, we can get a chain of submodules of Iength more than "n', which is also

-not possible. Hence every ascendmg sequence of submodules of 4 is also ultimately stationary.
Therefore 4 is Artinian and Noetherian. Conversely suppose that 4 is Artinian and Noetherian.

Since A4 is Artinian, 3 a minimal submodule A] ¢O'Agaih if we consider the set of all submodules

of 4 which contains 4, properly it contain a minimal element say 4, . Continuing thls process,

we get an ascending sequence of submodules of 4, such that
(0)=Ay CAC .. and for each i, Aisrisa mini'mal element among the sub modules

“of 4 contamlng A; properly = for each i there cannot be any submodule B> 4, cBc 4,
* *

Since 4 is Noetherian. This sequence is ultimately stationary say from AN. => There is no
submodule of 4 containing Ay properly. ':>An=A for n>N. Henkce
(0)=4g < 4 c......c Ay = A is a composition series of 4. Therefore 4 has a composition series.

6.3 Theorem : An endomorphism of an Artinian (Noevtheriarn) module is an automorphism if and
only if it is mono (epi).

Proof: Let f be an endomorphism of an Artinian module 4. If f is an automorphism, thenkclearly

~itis mdnb. Conve«"r"sely suppose that f/ is mono. Now f(A) is a submodule of 4 and fz(A) is
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a submodule of f(4), etc.....Hence Ao f(_A)sz (A) 2. is a descending sequence of

submodules of 4. Since 4 is Artinian, 3 aninteger N >for n> N, _/'”(A):fN (A)- In partiicular
N N+1
I (4) =177 (4).

Let he A:>fN(b)efN (A):fN“L1 (A):/‘N (b)sz+1 (a) forsome ge 4. Since f
is mono, we have ¥ is also mono. =b= f(a).Thus f isonto. Hence f is an automorphism.
Let f be an endomorphims of a Noetherian module 4. If f is an autiomorphism, then

clearly f is-an espimorphism. Conversely assume that f is an epimorphism. Now ! (0) isa

submodule of 4. Also f_2(0)=f_l(f_l(0)) is a submodule of 4 containing

- H0) [x &if 7 (O):>f(x)=O:>f(f(x))=0:>f(x)ef_] (0):>x_ef_l (f_l (0))}
Continuing this process for every »n, we have an ascending sequence of submodules of 4 given
by 0c £~ (0) € /2 (0)= /> (0) S

Since 4 is Noetherian, this séquence is ultimately stationary = 3 an integer § such that
fd,— nzN, " (0)=f—N (0). In particular N (o)zf‘(N“)(o). Suppose f(a)=0 for some

ae A. Since f is epimorphism, we have that " is also epimorphism
=3beBafN(B)=a= (1" (8))=r(a)=0
—he VN 0) = £V (0) = £V (b)=0=>a=0
. f is mono. Hence f is an automorphism.

6.4 Fitting's Lemma : If / is an endomorphism of the Artinian and Noetherian module Ap, then

for same n,4 = /" (A4)+ f~"(0) as a direct sum.

Proof : We know that /(1) is a submodule of Aand f?(4) is a submodule of f(4) etc.,
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Hence we have a descending sequence of submodules of 4 given by

,42/‘(,4)3]‘2(.4):_; ‘‘‘‘‘‘‘ since 4 is Artinian, 3 a positive integer » such that
f"(A):f”“ (A):le”(A). Since f"'(A4) is a submodule of 4 and since A is Noetherian, we
have /" (A4) is a Noetherian module. Now if we restrict the /7 to f"(4) we get that " is
endomorphism of /" (.4) which is epimorphism. Hence 7" is an automorphism of 7" (4).Hence
" ismono = " (0)N £ (4)=0.

Let ae A= f"(a)ef"(A4). Since -_/'" : /"(4)> f"(A) is an epimorphism.

3/ (b)e /" (4) such that /" (77(®))=r"(a) Geiae s
= 2 (b)=1f"(a) = f”(a—j’” (b))zO

=a-f"(b)ef"(0)=ae ["(A4)+7"(0)

L A=f"(A)+ 77" (0) and £ (A)N fT(0)=0

Hence A is the direct sum of /" (A4)and f~"(0).

Jefinition : A non-zero module is called an indecomposable module if it is not isomorphic to
'irect product of non-zero modules. equivalently if it is not the direct sum of non-zero submodules.

orrollary : If Ap isindecomposable, Artinian and Noetherian, then endo-morphism of A4y is
*nilpotent or an automorphism.

“:Let f be anendomorphism of Az which is indecomposable, Artinian and Noetherian. By

's Lemma. 7 a positive integer ';;' such that 1 is the direct sum of the submodules, f”'( A)
—H (0) Since A is indecomposable, either /" (A):() or /7" (()):O. If £ (A):() we have

= f is nilpotent. If £ (0):0 it follows that #”” is mono = f is also automorphism.

aorem: If Ay isindecomposable, Artinian and Noetherian, and g =/, + f5 +........ + [, isan

3:‘;;h'ism where f;€ Homp(A.A). Then some f; is an automorphism.



Distance Education ) — : 4 = = -Acharya Nagarjuna Universi@E

Proof : First we prove this in the case n=2. Suppose 'g' is an automorphism of 4 which is

indecomposable, Artinian and Noetherian and g= f, + f, where f; and f, are endomorphism
of A.

Since g=f;+f, wehave =g~ fi+g7! £,. Now g™! # is an endomorphism of
A4 — either g /1 is nilpotent or an automorphism. If g /1 is an automorphism, we have

-1 ; ; =] pl st = .
g(g A )=f1 is an automorphism. Suppose g : /1 isnilpotent =1 —g ! /1 is an automorphism.

automorphism. Assume that the truth of the result for n—1. Put h= f, +.....+ f,,. Now g= f{+h
— either f| is an automorphism or / is an automorphism. If f; is not an automorphism, then ;

is an automorphism. By induction hypothesis, same f; where 2<i<n is an automorphism. Hence
the result. - :

6.8 Lemma : Let 1 be an isomorphism of the Artinian module 4= 4;x 4, onto B=B;x B, such ‘
that A(a;,0) = (). Bay) where ¢ is anisomorphism of 4; onto By and S is ahomomorphism

of Al into Bz.Then AzEBz.
Proof : Suppose (4 )=0=1(q,0)=(aa},0) Va e 4.

e A _ A{A4) " B
Now 2= 4 %0 ~a(4)x0 B0

= By Suppose b’(Al );tO. Now we produce an isomorphism
4 of 4 onto B.Suchthat u(a;.0)=(c(ar),0) forevery aje 4. |
Define u:dj x4y —>B/xB, as follows. Let (@, a,) belongs to 4 x4, and Suppose
Alay,ap)=(by, by ) . Now define /1(611,612)=(b1~.b2—,3064(.bl)).

Forany aj € 4, A(a.0)=(aa).fa).

.'.y(al,O):(aal, Bay - fa” (aa ))z(aal,O)

Now we show that u is one - one. Suppose p(ay.a3)=(0,0). Supppose
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May.az) = (blab2)3ﬂ(al>az):(bl’ by—pa”! bl) :>(blsbz -pa” (bl))=0 =b=0and b, =0
= A(ap, ay)=(0.0). Since 1 Is one -one. We have a;=a,=0..4 isone-one. = 17!, isa
monomorphism which is an endomorphism of the Artinian module A.

— 47! 14 is an automorphism.

= i is an isomorphism.

Thus x4 is an isomorphism of 4xA4, onto B;xB, such that

,u(al,O)=(aa|,O)Va1 EA] :>A2§Bz

j=12,.....n then m=n and A,-EA} after some renumbering.

Proof : Let 3.4 4' be the given isomorphism. Let K. K; and 7;, 7f_',~ be canonical

monomorphism and epimorphisms respectively for /=1, 2......... mand j=12,.... ..,n associated
with the corresponding products. Put ; =71 010 K; and Bi=7; o lo Kjfori=1,2,.... ,m and
F=152 50 ]

m m
we know that Zl K, 0, is the identity mapping on A. = AZ] a; 0By is the identity mapping
1= :

=

of 4;.Since 4 is Artinian and Noetherian, we have 4 is also Artinian and Noetherian. = 4; is an

m
indecomposable, Artinian and Noetherian module such that _Z] ;04 is an automorphism of
. 1=

A= Atleast one ¢; 0 f3; say a; 0 f; is an automorphism of 4.

= f1 0 y is not nilpotent (if 5 0c is nilpotent where (3, oal)” =0)

:>a10(ﬁ0a1)”=O:(a]O,Bl)nH:O which cannot happen since ;04 is an

automorphism.
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=B 0 is an endomorphism of the Artinian, Noetherian and indecompsable module 4,

and f3; 0¢y is not nilotent = f; 0y is-an automorphism.

.oy is an isomorphism of 4, onto 4.

Further A(;,0,0,......0) = (10K, (a1))

=L AR J—" ,0))=71 0 0K (o)) = o (o).
Hence A(4,0,0,....... 0) A (oq g FL S— *) where ¢, is an isomorphism of 4, onto
A{. Therefore by the above Lemma Ay X..........x Ay = A X.cooonv.. ;.

Assume that n=m. We repeat this process until A, is left on one side. Since 4, is
indecomposable, there cannot be more than one on the right-side.

Hence n=m and An =4y,
6.10 Theorem : The central idempotents of aring # form a Boolean Algebra B(R).
Proof : Let B(R) bethe set of all céntral idempotents of R . Clearly O B(R). Suppose ¢ € B(R)
: Puf e=1-e. wa (e')2 = ( l—e)(l,—e) = (l—e):e' and forany re R,
er=(-¢e)r= r;—er =r-re=r(l-e)=re
. e is also a central idempotent of R . Hence ¢’ eB'(R).
Suppose e and farein Z?(R):>efeB(R)

Further forany ¢;.e5.¢3 in B(R), (e -e;)es=e (e2-e3) . ~(B(R)..) is a semigroup which

satisfy idempotent law and commutative laws.
:(B(R).*) is a semi-lattice. Now O€ B(R) and ' is a unary operation on B(R). Forany
e, f€B(R), ef' =0 iff e(1-f)=0iff ef =e.

( B(R), 0" ) is a Bolean Algebra.

'6.11 Definition : A minimal non-zero element of a Boolean Algebra is called an ‘atom’.
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6.12 Lemma : If ¢ is a central idempotentin R then eR is indecomposable if and only if ¢ is an
atom of B(R).

Proof : Suppose ¢R is indecomposable. Suppose if possible e is not an atom of B(R).
= there exists a non-zero element fin B(R)af <e.
—e=f+(e—f) where f and (e- f) are orthogonal non-zero idempotents.

—eR=f R+(e— f)R is a direct sum of ideal which are non-zero.

= eR is not indecomposable. Which is a contradiction.

~.e is an atom of B(R).

Conversely suppose that ¢ is an atom. Suppose if possible eR is decomposable.

= ¢R is the direct sum of non-zero ideals.
Suppose eR=A® B where 4 and B areideals of R.
Since eceR, e= f+g forsome unique fe 4 and ge B.

Since fge A[1B=0 we have f and g are orthogonal.
e=’=f2+g’=> [ +g’=f+g
2 2

=>f“-f=g"-geANB=0

2
= f?=fand g"=¢
Alsoforany re R, er= fr+gr and re= rf +rg
But er=re = fr=rf and gr=rg.

- f and g are orthogonal central idempotents of R. Since ef = f where f <e and
~ since eg=g we have g<e. Hence e is not an atom, which is a contradiction. ..eR is

indecomposable.

6.13 Theorem : If R is a direct sum of indecomposable ideals, then there are the only
indecomposable direct summands of R
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Proof : Suppose R is the direct sum of ideals K;, K5,.......,K,, of R which are indecomposable.

= there exists central orthogonal idempotents e.e,........... ,e, in R such that

........ ,n;sothat R=¢; R+........+¢, R . Since each
e; R is indecomposable, we have that each e; is an atom of B(R). Suppose if possible ¢ is

another atom of B(R) such that ex=e; for i=1,2,...n.

n
—e=e-1=3 ee;=0
i1

~. The only atoms of B(R) are e|.e;........... e,

............ e, R are the only indecomposable direct summands of R .

Prof. G. Koteswara Rao
Department of Mathematics
Acharya Nagarjuna University



Lesson:7  SELECTED TOPICS ON COMMUTATIVE
RINGS

7.0 Introduction : In this lesson, the radical and prime radical of a commulative ring are defined
and characterised. The famous Birchoff's theorem is also proved.

7.1 Definition : An element r of aring R is called a unit, if 3 an element
se Ramv=sr=]
7.2 Definition : An element » of a ring R is called a zero-divisor if 3 an element s #0> either
rs=0 or sr=0. '
Remark : A unit is not a zero-divisor.

 Proof: Let » be a unit =3 anelement se Rars=sr=1
Suppose If possible r is a zero-divisior =3 an element 1 =05 either rr=0 or /r=1.

Suppose rt=0
Now ¢=1.t=(sr)r = 5.0=0, a contradiction. .. is not a zero-divisor.
7.3 Definition : A commutative ring is called a field if 0#1 and every non-zero élemenAt is a unit.

74:A commutative ring is called an integral demain if 0#1and Q is the only zero-divisor.

7.5 Lemma : An element of a commutative ring is a unitif and only if it lies i inno proper ideal and this
is true if and only |f |t Iles in no maximal ideal.

Proof : Let » be any element of a commutative ring R .
Suppose r is a unit =3 an element se R 3> rs=1. If 4 is an ideal containing r, then
rse A=le A.Hence A=R . Thus r lies in no proper ideal. ' ‘

Conversely suppose that r lies in no proper ideal of R . Since rRis an ideal of R anc
rerR , we must have rRis not proper = rR=R.

= rs=1 for some s& R =>ris a unit.

Suppose r does“hot lie in any proper ideal of R . Since every max:mal ideal is also a proner
ideal, it follows that r does not lie in‘any maximal ideal.

Conversely suppose that r does not lie m any maximal ideal since any pror)ef ldtw i
contained in a max;mal ideal, it follows that » does not lie in any proper ideal.
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7.6 Definition : A proper ideal P in aring is called a prime ideal if for any two ideals A and B,
ABCP implies either Ac P or Bc P

7.7 Theorem : The proper ideal A/ of the com:mutative ring R is maximal if and only if for every
reM,3IxeR31-rxeM .

Proof : Suppose M is a maximal ideal of R. et r ¢ M . Now M +rR is an ideal containing M/
properly. (Since re M +rR and » ¢ M)

Since A7 is a maximal idea! we must save that A/ +*rR=R.
>leM +rR =>1=m+rx forsome y : R and for some me M .

>1—-rxeM forsome xeR.

Converselvy suppose that forevery . M. - anelement xe R 31-rxe M
Suppose M , is any ideal containing / properly =3reM; and rg M .
=>3Jan xe Ral—-rxeM:>1—fxe M. But re M\i=>rxeM;=1eM,.
Hence M|=R.

Therefore M is a maximalideal of ;.

7.8 Theorem : The properideal p of the cor mutanve ring R is prime if and only if for all elements
a and . ube P implies uelP xktcP.

Proof : Suppose that p is pnime. Supposz uhe P where a and b are elements of
RD(a,?)(lvk)g(ab)RgP

Now R and pR areide::is o° R a /‘7 1 prirme = either aRc P or bBRc P . If aRc P,
then ae P . if bR P thenbet .. & “orbelf.

Ccnversely suppose that <4 P i sizzcihe ae P orbelP .
Soopose 4 and B areidzai: of I ABc .”. Suppose Ag P
=31 anelementae A3az . ?-é'a ,;' be any element of B. |
=he ABc P. By hypothe s eitt - ue P or beP. But ag P’

=i =1 Thisis true for ever: 1 - Hence 2~P' - P is prime

-
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: o . . R
7.9 Theorem : The ideal ,\y of the commutative ring g is maximal if and only if Iv: is a field.

_ . . R
Proof : Suppose A7 is maximal. Let r+ M be a non-zero element of H:W M

Since ) is maximal, 3 anelement xeR 31-rxe M .

S1+M =rx+M=(r+M)(x+M) = (x+M)(r+M)

. R ' R R
H +M . . ‘- __. x e, ¢ : :>’~__ 5 .[If: .
ence (r+M) is a unitin 1/ - Thus every non-zero element of - is a unit = is a field

R
Conversly suppose that E is a field. Let r¢M = r+ M is a non-zero element of

R R
H:HM is a unit in %

R
=3 enelement x+ M in HB(F+M)(X+M)=1+M

=mx+M=1+M =1—rxeM forsome xe R= M is maximal.

R 2
7.10 Theorem : The.ideal p of a commutative ring R is prime if and only if P is an integral

domain.
. . R
Proof : Suppose P is prime. Suppose (r+P)(s+P)=P in 2= rs+P=P,

=rseP.Since P isprime, either reP or seP.

R
= either r+P=P or s+P=P. Hence 7 is an integral domain. Conversely

R A
suppose that 7 is an integral domain. Let ¢ and 4 be two elements suchthat abe P =>ab+P=P

R R
=(a+P)(b+P)=P in . Since - is an integral domain, we have either a+ P=P or b+ P=P =

either ae P or be P = P is a prime ideal.



==( Distance Educatior } 4 < Acharya Nagarjuna Universit\y'/E

Remark : Every field is an integral domain.

Proof: Let R be afield = R is a commutative ring with 10 in which every non-zero element is a
unit. But we know that every unit is not a zero-divisor.

= every non-zero element is not a zero-divisor.

="0" is only the zero-divisor of R = Ris an integral domain.
7.11 Theorem : Every maximal ideal of commutative ring is a prime ideal.
Proof : Let M be a maximal idea! of a commutative ring R
sy Richons : . L
:>_\J is a field = _W“IS an integral domain =M is a prime ideal.
& {
Remark : A prime ideal need not be a maximal ideal in a commutative ring.

Ex : Let z be the ring of integers. In this commutative ring (0) is a prime ideal but not a maximal
ideal. -

7.12 Theorem : If the ideal A is contained in the prime ideai B, there exist minimal elements in the

set of all prime ideals p suchthat AcPc B.

Proof : Let 3 be the set of all prime ideals P such that 4 c P B . Clearly Jis non-en .ty since
Be . Now T is a partially ordered set under set inclusion.

e 5 :
Let {Pa be any chain of elementsin 5. Put P_OQA Iy . Now we show that P is a prime

}aeA

ideal. Let abe P=>abe P, V.axe A . Suppose a ¢ p—3agcA sa¢ b,  Nowwe showthat pe P.

Let P be any element of {7, } . Since {F,} is a chain, we have either 5 <y or By < Iy .
Suppose Ppc F, = agPp (',-'a%PaO ) But ab € Pg and Py is prime.

Hence b€ Py

" Suppose £y, € Pg Since a0y and a ¢ F,, we musthave b€ P, =be Py Thus / € Py

forevery feA=be ) P,=P.

aelA
.. P is prime.

Since Ac P, cBVaeA. wehave A< N F,cB=>AcPcB.

ae
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= Pe3.Also PcP,VaeA

= P is a lower bound of {£,} _,

Thus every chain in J has a lower bound in 5. Hence by Zorn's lemma < has a minimal
element.

7.13 Definition : The intersection of all maximal ideals of a commutative ring R is called the
radical of R and itis denoted by Rad R .

7.14 Definition : The intersection of all maximal prime ideals of a ring R is called the prime radical
of R anditis denoted by rad R .

7.15 Theorem : The radical of R consists of all elements » € R such that 1—rx is a unit for all

xeR.

~ Proof:letreRadR=>reM for every maximalideal M/ .Let x€ R. = rxe M for'every méXimal
ideal M = |—rxge M for every maximal ideal M = |-rx is a unit. ‘

(if 1-rx is not a unit, then the ideal generated by 1—rx is a proper ideal and which is contained in

amaximal ideal say M, =>1-rxe M;.)
Thus 1—rx is‘aunit Vxe R.

Conversely let ;- be any elementof R>1 —rx isaunit Vxe R.

=1-rxe¢ M forevery maximalideal V xe R=r e M forevery maximalideal = r € Rad R.

.Rad R={r/1-rx isaunitVxe R}

7.16 Definition : An element » € R is called nilpotent if /7 —( for some natural number n.
7.17 Theorem : The prime radical of a commutative ring R consists of all nilpotent elements of R.

Proof : Let » ‘be any nilpotent element and suppose ,"”—-(. Let P be any prime ideal of

R=r"eP=r. r"lcp= either . c p or ;" !¢ p. Continuing this process we get that r € P

This is true for every prime ideal P. Hence r e rad R .

Conversely suppose that r e rad R . Suppose if possible ;"7 () for every positive integer

n, put T:{l,r,rz,rj, ,,,,,,, } clearly 0¢T . Let P be anideal of R which is maximal with respect to

the property that it does not meet T.
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Suppose g¢ P and h¢ P= P+aR and P+bhR are ideals which contain P properly’

= P+aR and P+hR mee* | .
=3r"e(P+aR)NT and r" e(P+bR)NT .

—pmtn — m r"e(P+aR)(P+bR) c P+abR
> +ubR meets [ .
= P +ab R must contain P properly.
=abe¢P

Thus gg p and bg P=abgP. ..Pisprime.

Since P does not meet 7 we have r ¢ P. Thus r ¢ rad R which is a contradiction... » is
nilpotent.

Thus rad R={ r/r is nilpotent dement of R }.

7.18 Lemma : If T is a subset of a commutative ring which is closed under finite products and

does not contain 0, then any ideal which is maximal in the set of ideals not meeting 7 is a prime
ideal.

Proof : Since T is closed under finite products and 1 is treated as an empty product, it follows that
1leT-

Now T has the properties (1) H.treT=>H1eT.
(2) leT
(3) 0gT.

Let X be the family ideals 4 such that .1 does not meet 7. Let A7 be a maximal element
in 3. Now we show that M is prime. Suppose 4 ¢ A/ and b¢ M = M +aR and M +bR contain
M properly.

Hence they meet T=3ne(M+aR)NT and 1,e(M+bR)NT. Now
fytye(M+aR)(M +bR)c(M +abR) and also 11, eT .
— A +ak R contains A7 properly =>ahg M . - M isa prime ideal.

7.19 Definition : A commutative ring R is called semiprimitive if it's radical is 0.
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7.20 Definition : A commutative ring R is called semiprime if its prime radical is O.
Remark : (1) R 1s semi-primitive - iff for any » #0,1—rx i1s not a unit for some x e R.

(2) p is semiprime iff it has no non-zero nilpotent elements.

(3) If R is a commutative ring then rad Rc Rad R (.- every maximal ideal is a prime ideal)
R R
7.21 Theorem (1) : If R is a commutative ring, then Rad R is semipfimitive and rad is semi

prime.

) R
Proof : Let #: R~ Rad R be the canonical epimorphism. Let zz(r) be any element in the radical
of M_R: for any z(x) in Rad R 7 (1)-7(r)7(x) is a unit =7z (1-rx) is a unit for every

xreR. Let x be any element of R=>7(1-rx) is a unit =3IyeR>z(1-rx)z(y)=7(1)

=5 ﬂ(l—(l—rx)y) =)

_' :lf(f—'rx)yéRadR:>(1—rx)y isaunitin R=1-rx is aunitinR.

=reRad'R=>n(r)=0. + ha Rad R~ :>m is a semiprimitive.

(2) Let 7:R— be the canonical epimorphism.

ra

R 23 n ——
Suppose 7 (r) be‘any nilpotent element of _mj(”(’ )" =0 for some n..

v ; k
:>7z(r")=0:>r" eRadR:>(r") =0 for some K =" == is nilpotent.

rad R “rad R 'S semiprime.

=re rédR:>7r(r)=o .'.rad[

7.22 Definition : We say that aring R is a subdirect product of a family of rings {Si lie 1} if there
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is a monomorphism £:R - S= ‘72'] S; such that for any ;, 7; 0k is an epimorphism of R onto S;
- le

where 7z; is the canonical epimorphism of zS; onto S;.
7.23 Theorem : R is a subdirect product of the rings {S; /i € I} if and only if 3 afamily {X; /i e I}

R
of ideals of RaSi;_—I-E-Vi and NK;=0.

l
Proof : Suppose R is a subdirect product of the rings {S[ liel } .Foreach j, let ; be the canonical
epimorphis'm of zS; onto §;. Let £ be a monomorphism of R into 7zS; such that 7,0k is an
epimorphism of R onto S; Vi.

, R
Let K; be the Kernel of 7,0k Vi={K;/ic I} is a family of ideals of R37—~=5;7;,

!

Suppose r €k, =z; K(r)=0¥i = K(r)=0.Since k is mono, we have r=0. Thus we have

N K;=0
iel ’

R .
Conversely suppose that 3 a family {K,- lie 1} of ideals > ﬂK,;O and Si Ez Vi Let w; be

1

R &

an isomorphism of S; onto ZV’. Define k:R—>7 S, by K(V)={!//,' I7T,-(f)} VYreR.ltcanbe
/A

verified that k¥ is a homomorphism. Suppose k(r)=0:>a//,-"l z:(r) =0 Vi (r)=0vi-
=>r+K;=K;Vi=>rek;Vi=reK;=0

=r=0 .. k is a monomorphism.
o B
Further for any ;, ﬂiOK(")=7fi(‘//i ”i(r)) =y mi(r)
:”i 0k = ‘/’i‘].ﬂ'i v, Since l//i“l and r; are o‘nto mapping;'s, we have that 7;0k is an
epimorphism Vi .

= R is a subdirect product of the'rings {;/i e I'}

7.24 Corollary : Acommutative ring is a.subdirect product of fields (integral domains) iff it is
semiprimitive (semiprime).



=== Lesson : 7 ) ' — K —= Rings and Modules =

Proof : Let R be a commutative ring. Suppose R is a subdirect product of fields {F;/ie}= 3

R

B : .
afamily {K;/iel} of ideals 317:'57{ Vi and NK;=0.Since F, is a field we have that X isa
‘ I ! i

m/ Ki=0 it follows that the intersection of

field Vi:>K,~ is a maximal ideal for every ; ¢ /.. Since e
all maximal ideals is zero = Rad R=0= R is semiprimitive conversely suppose that R is

semiprimitive. Let {Ma}aeA be the family of maximal ideals of R . Since R is semiprimitive, we

R |

N My =0=R is 5 subdirect product of the rings {M J .
x JaeA

have s

R
Since each M, is a maximal ideal, we have that 7 is a field V. . R is a subdirect
a .

product of fields.

(2) Suppose R is a subdirect product of integral domain {S,- }I.E[ =3 afamily {K, /i e]} of ideals
R

Wi
of R3Si5ZV’ and (1K;=0. Since S; is an integral domain we have 7 is an integral domain
4 : : ]

Vi= K; is a prime ideal V; .
Since ) K;=0, it follows that the intersection of all prime idealsis 0 = rad R=0=R is
iel '
semiprime.

Conversely suppose that R is semiprime. Let { £, /@ € A} be the family of all prime ideals

of R= N £, =0 (. R is semiprime, rad R =0) = R is a subdirect product of {%a}

ae aeA’

Since each F, is prime, we have that %a is an integral domain V¢ .

7.25 : A commutative ring R is semiprime iff it is isomorphic to a subring of a direct product of
integral domains. 38 , ,

Proof : Suppose R is semiprime = k s a subdirect product of a family of integral domains

{S;/i e I}=3a monomorphism. k:R —zS; = R is isomorphic to a subring of 7z5;.

Conversely suppose that R is isomorphic to a subring of the direct product of integral
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domain say {Ra}(x(:/\- Now 7 R, isadirest product of integral domain.
aeA

V:>7rR

kP is also a subdirect product of integral domains.

= 7 R, P : b4
gep @ issemiprime = Every subring of o

A Ry s also semiprime = R is semiprime.

7.26 Corollary : A commutative ring R is semiprime iff it is isomorphic to subring of a direct
product of fields '

Proof : Suppose R is semiprime = Itis isomorphic to subring of direct product of integral domains

say {Ry }aeA' We know that every integral domain can be embeded in a field. Let /,, be a field

5R, isembededin F, Va.Now 7R, is a subring of the direct product of fields a’éA Fa .

= R is isomorphic to a subring of 7/, a direct product of fields. Conversely suppose that
R is isomorphic to a subring of a direct product 7 F,, of fields. Since 7 F,, is a subdirect product of

fields and hence integral domains, it follows that 7 F,, is semiprime = R is semiprime since it is
isomorphic to a subring of a semiprime ring.

7.27 Definition : Aring R is called subdirectly irreducible if the intersection of all non-zero ideals
is non-zero.

7.28 Theorem : (Brikhoff) Every ring is a subdirect product of subdirectly irreducible rings.
Proof : Let ¥ # 0 be any non-zero element of R . Let K,. be the ideal which is maximal in the set

of all ideals that are contained in R—{r}. Thatis K, is the ideal which is maximal with respect to

the property that r ¢ K, .
Now consider the family {K,}reR* where pR* is the set of all non-zero elements of R.

Now rQe*KF =0 (1f 520, then se K, ). Hence R is a subdirect product of rings {R / K}, _ps.

R
Now we show that for each » € R¥, 7 is subdirectly irreducible. Let %{r be any non zero ideal
A :

of %{r = 4 is anideal of R containing K, properly. By the property of K, , we msut have

_ A R
red=r+K,isin p . Thusevery non-zeroideal of ;— contains the non-zero element r +X,..
r r
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R R

Hence the intersection of all non-zero ideals of K is non-zero. Hence k_ issubdirectly irreducible.
¥

£
Thus R is subdirect product of subdirectly irreducible rings.

7.29 Problem : (1) If  is nilpotent then 1—r is a unit.

Proof : Since » is nilpotent, 3 a positive integer 5 " =(0. We may assume that » is the least

positive integer 3,7 =(.i.e. ;7 14(.

Now'(l"’)(l'”‘*”2+ ------- +"n_l)=1. Hence 1-r is invertable =1—7 is a unit.

(2) Show that an ideal P of a commutative ring is Prime iff R —er is closed under finite products.
Proof : Suppose P isprime. Let g eR—P and a, e R—P =a;¢P and a, ¢ P.
Since P is prime weé have ajay ¢ p=>ajayeR-P .
| =a¢P and a, ¢ P
Since P is prime we have agja, ¢ P=>aja, e R—P.
Conversely suppose that R— P is closed under products.

Let 4b € P. Suppose if possible g P and bg P=abg P which is a contradiction.

Therefore ae P or be P= P is prime.

.. Prof. G. Koteswara Rao
. Department of Mathematics
Acharya Nagarjuna University



Lesson : 8 PRIME IDEALS IN SPECIAL COMMUTATIVE
RINGS

0.0 Introduction : In this lesson, a special class of commutative rings namely Boolean rings and
commutative regular rings are studied.

8.1 Definition : A subset F° of a Boolean Algebra (S.0,',A) is called a filter if
(1) 0eF
(2) a,beF =~ AbeF
(3) ageF and a<b=>beF.

8.2 Definition : A filter F is said to be a proper filterif Og F .

8.3 Definition : A maximal proper filter is called an ultrafilter.

Remark : The filters of a Boolean algebra (S,1,',v) are called dual filters.

" 8.4 Theorem : If a Boolean algebra is regarded as a ring, the dual filters are precisely the ideals,
hence the dual ultrafilters are precisely the maximal ideals.

Proof : Let K be a dual filter of a Boolean Algebra (S,l,',v) since 1'e K, we have 0eK . Let

gekKand seS.Theh as<a =ase K. Similarly sqc K. Let a,be K =ab' €K and ba'eK .
=ab'vba'eK=a+be K. . . K isanideal
Conversely suppose that K isanideal = 0e K=1'eK .

Suppose gye A and b<u=b=ube K
Suppose a,be K =>avb =(a'd’)' =((1-a)(1-b))' =1-(1-b-a +ab) =b+a-abeK
. K is a dual filter.

Thus the dual filters of S are precisely the ideals of S .

8.5 Theorem : The following statements concerning the Boolean ideal K of a Booleanring B are
equivalent.

(a) K is maximal

(b) K is prime
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(c) For every element, s of R, either gy« X or ¢' € X but not both.

Proof : Assume (a). Since the Boolean ring is a commutative ring it follows that every maximal
ideal is a prime ideal.

Hence (a)=>(b)

Assume (b). Since K is aproperideal, we have 1¢ K Let s« B.Wehave s+5' =1¢ K= Both
of s and ¢’ cannotbein XK.

But ss' =s(1-s) = s—s> =0¢ek.
Since K is prime, either s K or s’ K . Hence (b)=(c).
Assume (c) Since K is an ideal, we have 0e K =>0'¢K=>1¢K .
= K is a proper ideal.
Let s be any element 3s¢ K =>s5'eK
Now l=s'+s€ K+sB =1-sxe K forsome xe B
.. K is a maximal ideal.
Hence (c)=(a)
8.6 Corollary : The following statements concerning the Booleanring S are equivalent.
(a) S is afield
(b) S is an integral domain

(c) S has exactly two elements.

Proof : Let K =(0) be the zero ideal of S which is a Boolean ideal. Assume (a) =S is a field

S _ S '
:>—I€ is afield = K is a maximal ideal = K is a prime ideal :E is an integral domain = S is

an integral domain. Hence (a)=(5).

S
Assume (b)= X is an integral domain = K is prime.

= Forany g S, either g K or s'e K but not both.



==(Lesson : 8 == . { Rings and Modules =

Since s.s' =0 K and K is prime, eithers =0 or s'=0.
= Either s=0 or s=0"=1. Hence s={0,1}. Hence (5)=>(c).

Assume (c) i.e., $={0,1}. Then clearly S is a field. Hence (c)=(a)

8.7 Corollary : A boolean ring is semiprimitive. Thus an element of a Boolean ring is 0 iff it s
mapped on to "0" by every homomorphism of the ring into the two element Boolean ring. -

8.8 Definition : A ring R is said to be a regular ring, for every a € R, the exists an element
aeRsada=a ‘
8.9 Theorem : In a commutative regular ring R we have the following properties.

(1 Every non-unit is a zero - divisior

(2) Every prime ideal is maximal

3) Every principal ideal is a direct summand
Proof (1) : Suppose "a" is not a zero-divisior. Since R is regular, 3 an element
d'eR>a=ad'a=a(l1-a'a)=0. Since "a" is not a zero-divisor we have 1-d'a = 0 =>d’'a=1="a"
is a unit.

Hence every non-unit is a zero-divisor.

(2) Let P be a prime ideal suppose a & p. By regularity, 3a'>aa’a = a =>a(a’a—1)=0€P . Since
Pis prime and g ¢ P, we have d'a—1eP. Hence P is a maximal ideal.
(3) Let 4R be a principal ideal.‘ Let 4 be an element >ada=a. Fu
aa =e:>e2 — dada =ada=e=e is an idempotent. Hence R is the direct sum of ¢R axd
(1-e)R.But eR=aR.

-.aR is a direct summand of R .

8.10 Theorem : Every commutative regular ring R is semiprimitive.

I
~

Proof : Suppose RadR#0. Let 0zacRadR. Since R is regular, 3 an element
deRsada=a=(1-ad’)a=0=1-ad" is a zero-divisor, =1-aad “is not a unit

—1- aa’ € M, for some maximal ideal 17/, .

But ae M| =aa’ e M| =1 M, which is a contradiction.

- Rad R =0= R is semiprimitive.
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8.11 Definition : A commutative ring is called local if it has exactly one maximal ideal A/ .

8.12Remark : If R is alocalring, then Rad R is the unique maximal ideal of R . If R is anintegral
domain, then (0) is a prime ideal and hence rad R=0.

Ex : We shall given an example of a local integral domain which is not a field Let R be the ring of
formal power series.

a(x) = ayg+ax+.... over afield F . Clearly R is an integral domain.

An element a(x)=ay+ax+..... of Ris a unitiff ay#0. Hence a(x) € Rad R iff for every
b(x)eR,1-a(x) b(x) is a unitiff for every b(x)eR, 1—ag by #0. Iff ay=0.

Hence Rad R = xR . Which is the principal ideal generated by x.

Suppose ¢(x) € xR=> ¢y #0=>c¢(x) isaunit =c(x)R = R

. xR is amaximal ideal. Since xR = Rad R, itis the only maximal ideal of R . Hence Ris
a local ring. :
8.14 Theorem : Let R be a commutative ring. The following conditions are equivalent.

(1) R has a unique maximal ideal As .

(2) All non-units of R are contained in a proper ideal A/ .

(3) The non-units form an ideal M .

Proof : Assume (1). Let x be any non-unit = x is in @ maxi..:a «deal.

=>xeM

Hence every non-unitis in 17 . Therefore (1)=>(2)

Assume (2) : All the non-units of R contained in the proper ideal M since M is proper, every

element of J/ is a non unit. = M is precisely the set of all non-units of R . Hence (2)=(3).

"Assume (3) : Let A7 be aideal consisting of all non-units = M is proper. Let M| be any maximal
" ideal = Every element of A7 is a non-unit = M| c M . Since M, is maximaland M is proper,

we must have M; =M . Therefore A is the only maximal ideal of R .. (3)=(1).
8.15 Definition : A ring R is said to be fully primary if it has a unique prirﬁe ideal. /

s

8.16 Theorem : Let g be a commutative ring, The following conditions are equivalent.
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(1) Every zero-divisor is nilpotent
(2) R has a minimal prime ideal P and This contains all zero-divisors.

Proof : Assume (1). Let P be the set of all zero-divisors of R . Since every nilpotent element is a

zero-divisor, if follows that P is the set of all nilpotent elements of R (- every zero-divisor is
nilpotent)

= P= rad R = P is contained in every prime ideal of R. Suppose a¢ p and b ¢ p. Suppose

ab e p = ab is a zero-divisor.

—=35#0 >abs=0.If bs=0 then b is a zero-divisor. Hence be P If bs#0,then "g4" is

a zero-divisor and hence g e P . Any way it is a contradiction. .ab¢ P . Hence P is prime.

Thus P is a miniimal prime ideal which cantains all zero-divisors.

Hence (1)=(2)
Assume (2) : Let P be a min’ al prime ideal which contains all zero-divisors. Suppose , is a
zero-divisor = r € P. Suppose it possible ;- is not nilpotent. Let T={sk /ge P and k >0 any
natural number} . Clearly i:},ro e T and r=1r"e T .Also T is closed under finite products. [Let
a.heT and suppose - ™ and p-;," forsome sg P.rgP and m=>0, n>0. Since P is
prime ideal we have stg P . Now ab=st ¥™T" < 7] Suppose if possible <7 = = s+* for some

s¢ p and k>0 and % 20 = s is a zero-divisor = s € P which is a contradiction. .. 0 ¢7 .

Let M be a maximal element among the set of all ideals which does not meet 7. We know
thatMis prime = M cR-T .

If seR—1,then se p(otherwise s} ) >R-1cP.
Thus we have M cR-TcP=>Mc P where M and P are prime ideals and P is a
minimal prime ideal = M =P=R—-T . Since r € T we have » ¢ P . Whichis a contradiction. ..7 is

nilpotent. Thus (2)=(1).

8.17 Definition : A ring R is said to be primary if every zero-divisor is nilpotent or if R has a
minimal prime ideal P and this contains all zero-divisors.
8.18 Theorem : Let R be a commutative ring, then the following conditions are equivalent.

(1) R has a unique prime ideal P .

(2) R is local'and R&d R = rad R
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(3) Every non-unit is nilpotent
(4) R is primary and all non-units are zero-divisors.

Proof : Assume (1) : Let P be the unique prime ideal. Since every maximal ideal is a prime ideal,
there can be only one maximalideal. Since P is proper, it is contained in a maximal ideal. Hence
there is at least one maximal ideal. Hence P itself is the only maximal ideal.

= R is local and Rad R=rad R .(1)=(2).
AsSume (2) Let » be any non-unit = r is in a maximal ideal. But R is local = Rad R is the only
maximal ideal = re Rad R. = rerad R=>r is anilpotent. ..(2)=(3).
Assume (3) Let » be any non-unit =r is nilpotent. Let n be the least positive integer
Sl Ot g where 10— i85 A zero-divisor. Thus every non-unit is a zero-divisor.
Let , be any zero-divisor =7 is a non-unit =r |s nilpotent.
Therefore R is primary. Hence (3)=(4).

Assume (4) : Let P bethe set ofall zero-divisors which is minimal prifme ideal. Suppose r ¢ P =r

is'not a zero-divisor =>r is a unit. Hence P is a maximal ideal = P is the only prime ideal. Hence

(4)=(1).

8.19 Definition : If Kis any subsetof the commutative fing R , then we write K* = {r €k K :0}
‘and is called the annihilator of X .
8.20 Remark : K * is always an ideal and we denote (K *)* by K ** and Ac B=>B*c 4*.

8.21 Theorem (Mechoy) : Let R be a subdirectly irreducible commutative ring with smallest non-
zeroideal J. ther the annihilator J* of J is the set of all zero-divisors and j * is @ maximalideal
and J**=§ .

Proof : Let » be any zero-divisor =rs=0 for some s =0
=yser* and s %20
=r* is.anon-zero ideal of R.

T Jor¥*sre J*
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“Hence J* contains all zero-divisors. Let ¢ J* = rx=0VxeJ. = ry=0 for some non-
zero yeJ=>r is azero divisor.

Therefore J* is the set of all zero-divisors.

Clearly 1¢ .J*=.J* is proper =.J * is a proper ideal.

Suppose r ¢ J*=ry=0 for some ye.J=ryRis a non zero ideal and rngJ('.'yeJ)
Since J is the smallest non-zero ideal, we have J =ryR = y=ry x for some x € R= y(1-rx)=0
= j(l-rx)=0V jeJ=>1-rxeJ *=J* is maximal ideal.

Let xeJ.Nowforany yeJ*, wehave xy=0=xeJ** = JcJ**. Let OzaeJ**.

Now gR is a non-zero ideal. = JcaR=ar #0 forsome , ¢ g suchthat g e.J. Since gr 0.

We have re¢J* Since J* is maximal, we have 1l-rxeJ* for some

xeR=a(l-rx)=0=>a=arxe J = J**CJ. Hence J=J**.

8.22 Corollary : If R is subdirectly irreducible and semiprime, then R is a field.
Proof : Let J be the smallest non-zero ideal of R . Since R is semiprime, we have rad R=0 =3

no non-zro nilpotent element. — 2 #0=.J ¢ J* Hence J*=0="0" is amaximalideal. = R is
afield. '

8.23 Theorem : A commutative ring R is subdirectly irreducible if and only if it contains an element

j such that jR has non-zero intersection with all non-zero ideals and it's annihilator .j* is a
maximal ideal. '

Proof : Suppose R is subdirectly irreducible = 3 a smallest non-zeroideal j.Forany 0% je J,

we have jR=J and j*=J%*. Hence j* is maximal. Clearly jR has non-zero intersection with all
non-zero ideal.

Conversely supposet hat, 3 an element ; such that jR has non-zero intersection with all
non-zero ideals and j * is maximal. Now we show that jR is contained in every non-zero ideal of
R . Let A be any non-zero ideal of R. Let 02ae A= aR(\jR#0. Let O=%xeaR(jR

=x=ar=jsfor some ,cR and seR=>sej*. Since j* is maximal,
EJteRal—stej*':?j(l—st)=O
= j=jst=art

‘= jRcart Rc ar gA
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Thus jR is contained in every non-zero ideal of R . Hence R is subdirectlly irreducible.
8.24 Problem : Show thatin aregularring R, foreachelement € R 3 anelement r'srr'r = r
and #'rr' =" and r' is uniquely determined by ;.

Proof : Since R is regular, there exists an element se R>rsr=r.

Put »' =srs
Now rr'r = rsrsr=rsr=r and r'rr' = v’

Clearly ,’ is uniquely determined by .

Prof. G. Koteswara Rao
Department of Mathematics
Acharya Nagarjuna University



Lesson : 9 THE COMPLETE RING OF QUOTIENTS OF A
COMMUTATIVE RING

9.0 Introduction : There are several ways of constructing the rational numbers from the integers, .
some of which go back to Euclid's theory of proportions. One of those such methods is the following.

~ The fraction 4/6 may be regarded as a partial endomorphism of the additive group of integers; its

domain is the ideal 6z and it sends 6z onto 4z, where z € Z, the ring of integers. Similarly the
fraction /9 has domain 9Z and sends 9z onto 6z. These two fractions are equivalent in the sense
that they agree on the intersection of their domains, the ideal 18z, since both send 18z onto 12z.
Ratios are then defined as equivalence classes of fractions. This method may also be applied to
any commutative ring to construct its "complete ring of quotients" provided only certain ideals are
admitted as domains. g 25

9.1 Definition : Anideal D in a commutative ring R is called a dense ideal of R if, forall re R,

rD=(0) implies r =0.
9.2 Remark : R is dense.

Forlet r e R suchthat rR=(0)=r=r.1=0=r=0.

.. R is dense.

9.3 Remark : If D isdense and D c D', then D' is dense.
Forlet r e R suchthat rD' = (0)= rD=(0)("Dc D)
=r=0 (- D isdense)

.. D' is dense.

9.4 Remark : If D and D’ are dense, so are D' and D1 D' . For let re R such that
rDD'=(0)=rdD'=(0) forall d e D=>rd=0 forall d e D (-~ D' is dense)

=rD = (0)=r=0 (D is dense)
-.DD’ is dense.

Since DD' < D(\ D' and DD’ is dense, by remark 9.3, D\ D' is den'_se.

9.5 Remark : If R=(0), then (0) is not dense.
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For, since R=(0), choose » e R suchthat r = 0. We know that x0=0 forany xe R=r0=0.

If (0) is a dense ideal of R, then =0, a contradiction. 30 (0) is not dense ideal of R .

9.6 Definition : By a fraction we mean an element f € Hompg (D. R),where D is adense ideal of

R . (i.e., every R-homomorphism from D into R, where D is a dense ideal of R, is calied a
fraction).

Thus £ is a group homomorphism of D into R such that f(dr)=(fd)r forany 4 e D

and e R.
We defi"ﬁe,' for any feHomR(D.R).—- f:D—>R, a R-homomorphism, by

(-f)(d) = ~(f(d)) forall deD.

We also introduce fractions 0. 1€ Hompg (R.R), by writing ()(;) =0 and 1 (r)=r for all

r e R - Addition and multiplication of fractions are defined as follows :
Let /, < llomy (D;, R) for i=1,2. Define (/4 /> )(d)= /i (d)+ f>(d)forall d e DN\ D, .

Then fi +'f2 EHomR(D] ﬂDz, R)
(N A)d)= fi(/2(d)) forall de £ D, Then fi fzeHomR(fz"‘ D, R)
Here ;' D, ¥{reD2 /f:, (r)e D)

By remark 9.4, D, Dy isadenseideal of R. Since D, D, < 5 | D, byremark9.3, £7! pyis
a dense ideal of R.

Let F* be the set of all fractions.

9.7. Remark : (F, 6,+ ) is an additive abelian semigroup with zero.
Forlet f; e Homg (D;,R) for i=1,2,3 and D; be a dense ideal of R for i=1,2,3 ,
First we sho{/; that 7} + /5 is an R-homomorphism of D, (1D, into R . '
Forany x,ye DD, , consider (f+ /2 )(x+y)=f,(x+y)+ /o (x+y)

=f1(x)+ A (¥)+ f2(x)+ A (») ¢ fy and f> are R - homomorphisms).
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=f(x)+ L (x)+/1(»)+ f(¥) (- Ris acommutative ring)

(N 2)(3) N+ 2)y

=(A+ L) (x+y)=(/A+5)(x)+(f/+ /) (y) forall x.ye DN D,

Forany d e Dy D, and r € R, consider (.f]' +15)(dr)= |
= fi(dr)+ fo(dr)=fi(d)r+ f2(d)r (' fyand £, are R-homomorphisms)
=(f(@)+ o (d))r =((A+ L)) -

" f; + f» is an R-homomorphisms of D; D, into R .

Since Dy and D, are dense ideals of R, D, (1D, is also a dense ideal of R (by remark 9.4)
Hence f|+ freF
Clearly (/i +/2)(d) = (f2+/1)(d) forall d e DN Dy
=h+/f=fa+fion DIND;. |
LAY A=EATA
It is easy to verify that (ﬁ +f2)+f3 and f +(f2 +f3) are R-homomorphisms of
DyND,ND; into R and they are equalon DD, N D5 andso (fi+/2)+ /3 = fi+( o+ 13).

Let f € Homg (D, R), where D is adense ideal of R .

Forany 4 e D, consider (f+5)(d)=f(d)+0(d)

= f(d) 1 0= £ (d)
= f+0=f onD

Af¥0=f

(F ,6,+) is an additive abelian semigroup with zero.
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9.8 Remark:Forany feF, f-1=1-f=Ff

We define a relation 0 on F as follows. Forany /|, /, € I, define £,6f, if and only if f
and f, agree on the intersection of their domains; thatis, f(d)=/>(d) forall d e D;ND,.

9.9Lemma:Forany f|, /5€F, f,0 f, ifandonlyif f; and f, agree on some dense ideal of R .

Proof: Let f}, e F
Suppose fi0f,, where f; € Homy(D,,R) for i=1,2.
Then fi(d)=f>(d) forall d e D,ND,

Since D, and D, are dense ideals of R, by remark 9.4, Dy D, is adense ideal of R . So
fi and £, agree on the dense ideal D; D, of R.

Conversely suppose that f; and /> agree on some dense ideal D of R. Then

fi(d)=/>(d) forall de D.

Forany xe D;(1D, andforany Je D,
Consider f, (x)d = £ (xd) (.. 1 is an R-homomorphism) -
=f2(xd) (~>xdeD and f; and f,agree on D).
=f>(x)d | (- f> is an R - homomorphism)
= (A(x)-1 (x))d' =0 forall d e D andforall x eD/ND,
=(/1(x)-f2(x)) D =(0) forall xeD ND, |
= fi(x) = f2(x) =0 forall xe D, D, (- D is a dense ideal of R).
= fi(x)= fr(x) forall xe DN D,

=01

Thus f,0 f; ifand only if f, and f, agree on some dénse ideal of R .
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~ 9.10 Lemma : g is a congruence relation on the system (F, .i,~,+,~) :

Proof : Clearly g is reflexive.

Suppose fi, f; € F suchthat /8 f,. Then f; and f, agree on some dense ideal D of
R (By Lemma 9.9).

= fi(d)=f2(d) forall d e D= f,(d) = f,(d) forall d e D= £, and f;
agree on the dense ideal D of R .

= 0/

.0 is symmetric
Supppse f, /2,3 € F such that /,60 /> and /56 f5.
Then fi(d)= f,(d) forall d e DD,
and f5(d)=f;(d) forall d e Dy N Dy
Now D n D,ND;isa dense ideal of  and Dy ND,NDyc DD, and
DDy ND; < Dy N Ds
= fi(d)=f2(d) and f>(d)=f;(d) forall d € Dy Dy N Dy
= fi(d)=/5(d) forall de DyND, N D5 -
= f; and f3 agree on the dense ideal D, (1D, (1 Ds
= /10 f3 (by lemma9.9)
.8 is transitive and hence @ is an equivalénce relation on F
Clearly 090 and 16 1

Suppose f|, /o€ F suchthat /{0 f>. Then f; and f, agree on!’some dense ideal D of
R = fi(d)=/f3(d) forall deD.

=—fi(d)==f(d) forall déD
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= (=A)(d)=(-f2)(d) forall d e D
=(-£1)0(-1,)

Suppose . /2. f3. /4l such that £0f; and £, 0 f,. Then f(d)=/;3(d)for all
deDND; and fo(d)=f4(d) forall g e Dy Dy .

Now Dy D, Dy Dy4is a dense ideal of R and D,(\D, N Dy Dy< DN D5 and
D]ﬂDzﬂD3ﬂD4gDzﬂD4.

Forany d e DD, N D3N D, , consider (/i +/,)(d) = fi(d)+ 2(d)
A fald) = (A A)(d) |

. fi+/> and f3+ f; agree on the dense ideal D; (D, D3\ Dy

Hence by Lemma 9.9, (/i +/5)0(f5+ /)

Since £i0/; and f>,0f,, wehave f,(d)=/;(d) forall d e Dy D; and f>{d)=f4(d)
forall d € D, N\ Dy

Now f; /> € Homp (fz“ Dy. R) and 3/ € Homp  f37' Ds. R),

where f5' Dy={d e Dy/ fy(d)eDy} and f;' Dy={d e D,/ f,(d)eDs}
Since fz_l Dy and £ Dy are dense ideals of R, by remark 9.4,

fz“ DN f;' Dy is adense ideal of R

Letde 5" DN Dy =>defy' Dyand de £ Dy

=deD; and f,(d)eD; and d e D, and f;(d)eD;

=deDyNDy = f(d)=f4(d)eDNDs.

= f1 (1 (d))= (i (d))= (A L) (d)=(1 1;)(d) foral
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de fy' DN Dy
= fi /> and f5 f4 agree on the dense ideal fz—] Dy ﬂ./;{' Dy

So by lemma 9.9, (] /2)0( /3 f3)

.8 is a congruence relation on (F ;0:1,=, +)

For any feF, 6(f) denotes the equivalence class containing f, that is,

0(f)={geF/f0g}. We denote the class of all equivalence classes under g by

Theorem 9.11 : If R is a commutative ring, then the system (F’O’l’_’ +’% =Q(R) isalsoa

yuta‘tive ring. h extends R and will be called its complete ring of quotients.

Proof : Define +, « and — on % as follows.

Forany 6(£),0(/2)ef/,, define 0(£)+0(%)=0(fi+1),

0()-0(/2)=0(/i /2) and =0(/1) = 0(-/))

Now we will show that +, « and — are well defined.

suppose 6( 1), 8(12). 0(3). 6(/a) €17, are such that
6(£1)=6(f3) and 6(f2)=6(/4). Then £,6 f; and 1,6 fy

Since @ is a congruence relation, (}‘1 _/‘Q)H(]‘j _/‘4), (/‘1 +f2)0(_/'3 +j4)

and (-£1)0(-13)=0(h /1) =0(f /1) 0(fi+ /o) = O( 3+ fa)

and 0(~1)=0(~£3) = (/) 0(f2) =01 /3)6(14);

0(/)+0(f2) =0(£3)+0(1s) and -6( f)==0(13)

..+, ¢ and — are well defined.



=X Distance Education = 3 { Acharya Nagarjuna University}=

Let 9(_}’1),0(_1‘2)6%. We know that fi+/,=/>+/; on the dense ideal

DINDy =(fi+£)0(Hh+h)=0(fi+1)=0 (H+h) =0(#)+0(hH)=0(H)+0(h)

. +is cummutative.

Let 6(f})- (f')) 6. % We } mowthakt

(fi+/2)+ /5 = fi+(f2+/3) onthe dense ideal D, ﬂsz»ﬂ»D3 .
:>((ﬁ+fzv)%./é)9(fi+(f2+f3)) ' | |
=0((h+h)+15)=0(h+(H+5))

=(0(/)+0(£))+0(f) =0(4)+(0(f)+6(%))

R T associati've.

Let 0 F/H Then feF and OcF . 5uppose Dis the domam of f Then the domam

of £+0 and 0+ f is D(YR=D and f+0=f and 0+ f=f on D.
:>(f+6)9 f and (0+£)0 f
=0(f+0)=6(s) and 6(0+1)=06(f)
= 0(f)+0(0)=0(/) and 0(0)+0(1)=0(/)
+.6(0) is the additive identity in /7.
Let &/( / )6179/ . Then f e F . Suppose the domain of f is D, where D is a dense ideal of
R. Then —f e F=6(- %
Now, for any ¢ e D, consider (f +(-/))(d) = f (d)+(-1)(d)

=7(d)~ £ (d)=0=0(d)=(f+(=))(d) = 0(d) forall d € D= f +(~f) and {

agree on the dense ideal D.
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=(f+(=1))0 0=0(f+(-r))=6(0)

=0(/)+0(-f) = 6’((_))

~.0(~f) is the additive inverse of &( /) in %

Hence % is an additive abelian group.

Let 6(/1).0(f2)€ % and assume that f; € Homp (D;, R) for i=1,2. Then by the
definition of f; 15, the domainof £} /5 is {x © D%é (x)eDl} e fz_1 Dy : which is a denise ideal of
R = A feF=0(f £)el)

=0(A)0 (f2)e %
So n,is closed on %

Let (). 9(_f2)6% .Then f;e Homp(D;,R) for i=1,2; where D and D, are dense

ideals of R . Then by remark 9.4, D\ D, is a dense ideal of R .

For xe Dy and y e D, , consider fi f>(xy)=/i f>(yx)
=f(A0x) = A(AH(¥)x) (- f, is an R - homomorphism)
=£i(x/2(»)) = Ai(x) £2(») (- £ is an R - homomorphism)
= /() fi(x) = £2(» i (x)) (- /5 s an R-homomorphism)
= (A (x)y)=1(fi(x)) ( fi is an R-homomorphism)

=/ fi(x y)

= fif(x»)=/f2 fi(x)) forall xe D and forall ye Dy —-(1)
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Let de Dy Dy. Then d=x| yj+Xy yy+reeeeeee +X, V,, where xj,x5, -, x,€ D, and

i i
Consider fi f(d)=/fi fa (i 1 +x2y2++ %, V)

S A (G y+xays 4t %y )

A (B )+ A (s ra) ot fo (30 n))

=fi(f2(n)x+a(y2)x+ -+ f2(9,)%,) (- f3 is an R - homomorphism).
=fi(2n)x)+ (2 (2)x2)+e o (2 () 5n)
=h (L () + fi(fa (2 y2)) 4+ A (f (30 90))

(v fy s i R -homomorphism and R is commutative)

=h2(an)+h fH(xey2)++ fi (% va)
=K han)+ L filxny)+ o+ fi(% ve) By (1)

=hhi(an+xyyyte +%,n)= /2 f1(d)

- fifs(d)=1F21i (d) forall d € Dy Dy

ie. fi /o and f,f; agree on the dense ideal D, D, .
(/i £)0(f f)=0(f £)=0(: )
=0(/)0(2)=0(£)0(4)

oo is commutative.

Let 0(f; % and assume that fie Homg (D;,R), where D; is a dense ideal of R for
i=12,3.
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It is easy to verify that % (fz~| D]) is the domain of (/} /2) f3 and f(f> /3) and
I (f{1 D]) is a dense ideal of R and also (£ /») /3. f1( /> f3)vagree on f3_l (fz_l D])

= (/1£) A0 (L 1B)=0((F £H)F)=0(A#(£5))
=(0(1)0(12))0(13)=6(1)(0(12) 0(1‘3))
« is associative on £/
Let G(f,-).e% and assume that f; e Homg (D;.R) for i=1,2,3. Then f; (fo+f3)eF
and fi o+ fi f3€F

Since fz”] Dy and f3" D, are dense ideals of R, by remark 9.4, fz_' D, ﬂf{' D is a

dense ideal of R.
Forany J e _f;] DN f5" Dy, consider (fi (f2+/3))(d)
= A((H+A)@) = AL @)+ £(d))=£((d)+£i( ()
=fi KL (d)+ fi f5(d) = (/i fa+ /1 /3)(d)
= fi(fa+13) and h f2+ K f; agree on the densé ideal £ DN /37 D,
= /(L +)0(N Fa+h ) (By lemma9.9)

S0(h(H+1))=0(h L+ 1)

0 (R)(0(f2)+0(f))=0(4)0(f2)+0(4)0(1)

.+ and . satisfy the left distributive law.

Similarly we can prove the right distributive law also.

Hence F;é is a commutative ring.

Now we will show that there is a monomorphism from R into Q(R)z%
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Let re R

Define %IR—>R as %(S)=VS forall e R
r
Clearly 1 is well defined.
5
For any s;,5, € R, consider T(Sl +s2) = r(s] +s2)
=rsy+rs; = %(51)%(52)
:>§(s] +57) = %(s1)+§(s2) forall 5,55 € R
% is an additive group homomorphism.
For x,ye R, consider %(xy)="(xy)= ("x)y =§(x)y
= (x)=2(x)y

1 1

r r
T is an R - homomorphism and hence T F
r
LeF -
:39(1je /0
r\
So for each FERsH(TJE%=Q(R)

“Now define w:R —>Q(R) as w(r)= 9(%) forall reR.

Now we will show that ¥ is a monomorphism.

Let ’,.l,rzeR SUCh that r] :]"2 271S:r2s for a” SER.
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)

1

U
gl
t
~
Il

4 14
7—2-(S) forall s€ R:>Tl and —- agree on R

=L62=0(1)-6( 2] = (1) =v(»)
- is well defined.

Let n,meR.Thenn +neR and p neR

n+r i |
For any s € R, consider J_]_;(S):(r‘ +"2)S :"“SVHZS:LII(S)WLITZ(S) 7 (%+%j(5)
o OIS and 1a422 agree on R .

1 1 1

o m,w:]g(r_m_z) 29[&3) =.9(ﬂj+9(2j
EER MY 1 1 1

=y +r) =y(n)+y(n)

Forany se R, consider ﬁ%z—(?) '=5(”1 72)5‘ =N ("”2'S3

B n
:>‘—12— and Tl Tz agreeon R .

LA [1 "_z]
1 1 1,
o) (3322 o))
1 1 1. 1 1 1

=y (nn) =viny(n)

s

. AR S-S et o2
Itis easy to verify that™ - = 0 and e lonR.
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ageéand%ei

=6(3)=0(3) ana (1) - (1)
=y (0) =9(6), which is the zero element in QO(R).

and l//(l)=9(i),’which is the unity element in O(R).

Forany re R, consider ‘/’(—") =5’[:—1£) = —*9(§] = ~i/f(f‘)

\
NS

~w:R—>QO(R) is a ring homomorphism.
= r L
Suppose , ¢ R such that w(r) =9(0):9(TJ :g(o)

r b r i
D,T 60 3; and () agree on some dense ideal [ of R.

e .';..((1) - 0(d) forall ye D

—=rD = (0):>r=0 (-, '8 adense ideal of R).

S is one - one.

Thus ¥:R—Q(R) is a monomorphism and hence Q(R) extends R.

5
9.12 Remark : The mapping ’(’{f "6(]‘)) is called the canonical monomorphism of R into
i '

O(R) “
Let R be acommutative ringand 4 e R be a non-zero-divisor. Then dR is a dense ideal of

r ¥ ; ,
R.LetreR. DefinegidR%R as ;Z(dX) = rx forany x € R. Then itis easy to verify that -:? is

s v . .
afn R-homomorphism and hence 276 Homg (AR, R} and this = is called a classical fraction

associated with the dense ideal ¢R,
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9.13 Theorer'ni_: The equivalence classes 6’(—2), re R, dnot a zero-divisor, from a subri_ng 'of
~Q(R). which is called the classical ring of quotients of R and is denoted by O, (R).

Proof: Let R be a commutative ring.

r

0(_
5 - d B 3
Write 0, (R) = / € R and deRand d isnptazero-divisor

A

|

| Claim : O (R)is a subring of Q(R).

TS {..

g " . r :
Let 8| = | and 6| == |€Qcr (R). Then 7 and - are fractions. Now d; d; R is adense
dy d, dy a0 4, |

ndy +nd

ideal of R and € Homp (dydy R, R)

For dydyse dyd, R, consider (%*‘%](dl dy s)
= (dydy s)+ -2 (dy dy s) =ndys +rydy s
dy d;

d- )i
=(ndy+rd)s = (r_];—gg"—lﬁ (dydas)
1 dy |

ALh nditnd .
) ¥ d, ad T gz agreeon the dense ideal d\d,R .

SN, n gl ndtnd
dy dy dyd;
\

) P ndy +15d
=8| L +e(-2— =0(———-——' 2.2 'JeQ,(R)
deJ dzJ dyd, ¢ .
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- For dyd,se d,dzR conS|der d d (dld 5)= ( 2(“’l dzs))
hr
;;-(’2‘11 S)—ﬁ’zs —:—dz—z(dl d, 5)

Il Iz Ilr

i 4, dy and d, ; agree on the dense ideal djd, R .-
:,(n )g[wJ
dy dy ) \did,
So[ N1 ) gf N7
: dy d dyd,

:9(;—")-0(%} (dldz)egd( )

.0 (R) is closed under addition and multiplication.

Let 65 )< (R). Tren L Homg (dR.)
For any ds e dR, consider '(‘3)(4") = “(5‘ (ds))
~(rs)=(-r)s= _dr (ds)

’
s (;) and —‘—1— agree on the dense ideal dR

"‘(‘3)9(3{)"’0({5)) -o(3)
=-0()-6( L )eu(r)
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oot |

(5)

1
Since 1 R and 1 is not a zero divisor, E(]S) =ls =5 =

1 s .
:>T and | agree on R:%Hl 39(%) =601

—~0(1) < U (R)

-

0

It is easy to verify ih ~1 and ( agree on R and hence

o[ 3] -0(0)=0(3)e 0 ()

Thus O (R) is a subring of O(R).
9.14 Definition : A fraction f/ defined on a dense ideal D is said to be an irreducible fraction if
there does not exist a fraction g defmed on adenseideal G such that D < G properly anc =3

7N

(simply a fractlon is catied irreducible if it cannot be extended to a larger domain).

' 9.15 Theorem : Every equivaience class of fractions contains exactly one irreducible fraction and
this extends all fractions in the class.

Proof : Let 8( /) be the equivalence class containing 7. Forany £}, /, € 8(f), define f, < fo/if
andonlyif Dy c D, where D is the domain of f; for i=1,2. Theniitis easy to verify that (6( f).<)

is an ordered set. Let { /;/i €/} bea chainin 8(f). Theneach f; is a fraction defined on a dense

ideal D, of R. Write D= ] I3 Then D is a dense ideal of R.

Define g: D — R a3 follows.
Let e D. Then d e D), forsome je /.
Put g(d)=f;(d) i also d € D; then f;(d)=1;(d);since f; and f; agree on D;(1D;]

Since each f; is an R-homomorphism, it is easy to verify that g:D — R is an R -
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homomorphism and hence g € HomR(D,R). Clearly g is an upper bound of {I%e ]}. So by

Zorn's cemma, &( 1) contains a maximal element. Let », with domsin # , be a maximal element

in (/). Now we will show that  is an irreducible fraction. Let ¢ be a fraction with domain L

such that ¢ is an extension of , and H < L.
Then %,:h:ﬂ and j agreeon H =(6h
=0 f(hel(f))=Leb(f)

Since fe@(f) and j; < ¢ and } is maximalin 0(_[) ,we have 4=/ and L=H . Therefore
i is ireducible. Next we will show that , extends all fractions in &{f). Let ge8(f). Then
fBg .Since f0h and f@g,wehave gfh.Now g is afraction or: some denseideal Djand } is
afraction on the dense ideal D,, where D, = . Then Dy +D, is a dense dieal of R.
Define k:Dy+Dy =R as k{d+dy)=g(d)+h(dy) for all d)+dyeDy+D, , where
dyeDyand dyeD,. '
Now we wi||rshow that f is weli defined.

Suppose d| +d, € Dy + D, such that d| +d, =0
=d=—dyeDND,

Since geh, g and } agreeon D, (1D, .

= g(h) = h{ch)=h(-dz) =~ h(ds)
=g(d))+h(dy) =0=k(d, +dp)=0

- k is weli defined.

Since g and A are R-homomorphisms, it is easy to verify that £ is an R-homomorphism
and hence k € Homg ( Dy + Dy, R). Clearly f is anextension of g and /. Since 4 is an imeducible

fraction, we have h=k . Therefore & is an extension of g .
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Thus hextends all fractions in 8( f).

Let i be another irreducible fraction in 0( f ) . Since h is an extension of every fraction in
6{f) and J isirreducible, we have h=h'. Hence 8( f) contains exactly one irreducible fraction.

9.16 Theorem : The following statements concerning the commutative ring R are equivalent.

(1)  Every irreducible fraction has domain R.

(2) Foreveryfraction f there exists an element s € P suchthat fd=sd foralld e D,the
domain of f.

(3 Q(R)=R canonically.

Proof : Let R be a commutative ring.

Assume (1) : i.e., every irreducible fraction has domain R.Let f be any fraction with domain D.

Then 8(f) is the equivalence class containing 1 . Then by theorem in 9,15, 8(f) contains an
{reducible fraction 4, which is also an extension of S . By our assumption, s has domain R. Put

h(1)=s.Thenforany d e D, f(d)=h(d)=h(1d) = h(1)d =sd . Thusfor f,there exists s € R
such that f (d)=sd forall deD.
So (1)=(2)

~ Assume (2) : i.e., for every fraction f, there exists an element s € R such that f(d)=sd forall
d e D, thedomain of f .

Define y:R —>Q(R) as

W(r)=9(y) forall reR.
Then y is a monomorphism (The proof is given in theorem 9.11)

Next we will show that y is onto.

Let 9(f) € Q(R). Then f is a fraction with domain D, a dense ideal of R. By our

assumption there exists s ¢ Rsuch that [ (d )=sd foralldeD.
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= f(d) *\;(d) forall deD.
= f and -;— agreeqn D=/ 9(‘;')

Consider ¥ (s) = 9(%)=9(f)
SYois ontov
Hence v is an isomorpﬁism of R onto O(R).
ie., R=Q(R) canonically
So (2)=>(3)
Assume (3) : ie., R= Q(R) canomcauy

Let y:R ——»Q(R) be the canonical isomorphism. Let f* be any irreducible fraction. Then
8(f)eQ(R). Since y is onto, there exists s € R such that

v (s)=6(/ )=>9[{-‘) = eﬂf):f,a({-)

43?60(f)

Now ~ 1 is irreducible. Since 8( /) contains exactly one irreducible fraction, wehav f ‘%

= Thedomainof fis R..

Thus every irreducible fraction has domain R

o (3)=(1)
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9.17 Remark : If R satisfies any one of the equivalent conditions in the above theorem, we say that
R is rationally complete.

r
9.18 Remark : We identify R with its canonical image in Q(R). Thus we write ¢ (T) ==

9.19 Remark : For any g € O(R), put g 'R= {r E/Rqr & R}'- Then 471 R is adense ideal of R .

For, It is easy to verify that 4! Ris an ideal of R. Since ¢ € Q(R), ¢=6(/) for some
fraction f with domain D .

Forany d e D, consider 90 =0(1)0[ %)= 6[ 14 =9('—“{QJ - 7(d)

=>qgdeR forany deD.
=>qgDcR=> Dc_-__‘q"l qu“ R isdense (- D is dense)
9.20 Theorem : If R is any commutative ring, then Q(R) is rationally complete.

Proof : Let R be a commutative ring.

Claim : O(R) is rationally complete.
Let ¢ be any fraction over O(R) and X be its domain.

Put D={re K\ R/¢r <R}
Now we will show that D is a dense ideal of R

Suppose r e R such that rD=(0)
Let k e K. Then gk € O(R).

Put D'=k"' RN (¢ k)_l R . Then by remark 9.19 and remark 9.4, D’ is adense ideal of R
ahq ©¥ <R and (¢k) D'c R . Therefore ¢(kD')< R. So kD' < RN K and ¢{kD')< R and hence
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Consider (rk) D' = r(kD") < rD =(0)=(rk) D' = (0) = rk=0 (- [ is adense ideal of R)
Since k e K is arbitrary, we have 7K =(0)=r=0 (- K is a dense ideal of Q(R)). Thus,
forany e R, rD=(0)=r=0.
Consequently D is adense ideal of R .

Now define /:D— R as f(d)=¢d forall jeD.

Then f € Homp(D,R)=6(f)eQ(R)

Now we will show that for any & ¢ k , ¢k =60(f)k

Let k ¢ k andlet @’e D' = k™' RN($k)™ R

Consider (gk)d' =¢(kd')=f(kd') (.-kD'c D)
=(6(1)) (k') =(6 (1) k)"
={gk-6(f)k)d'=0

Since d’e D' is arbitrary, we have (gk-0(f)k)D'=(0).

| =¢k-0(f)k=0 (-D' isa densé ideal of R).

=pk=0(/)k.

Thus for the fraction ¢ over O(R) with domain K, there exists 0(f)eOQ(R). pk=0(f)k
forall ke K .

‘Therefore, by théorem 9.16, Q(R ) is rationally complete.

9.21 Remark : If 8(/)eQ(R) and D is adense ideal of R suchthat 0( ) D=(0), then 6(f)=0.

For, let 8( f)eQ(R) and D be adense idealof R suchthat @(/)D =(0).Let D bethe

domain of f .

Forany d e D and dye Dy, ddyeD . Then by our supposition, H(f)dd, =0, which is the
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zero elementin O(R).

=6(f) 9(‘1‘1') e(o)

o[ L0 _opy

:>y/( S (dd, )) = y (0);-where y is the canonical monomorphism of g into C(R).

= f(dd,)=0 (v istne - one)
.Thus forany d e D, dy € Dy, [ (ddy} = 0 = 0(d d))
= f arid  agree on the-dense ideal DD,
= £80 = 6(f)=6(0)
Thus if 0(f)eQ(R~) andif D isadenseideal of R such that H(f)Dz(O), then 6(f)=0

2.22 Definition : Let S be a commutativ ,;ﬂng A sub group D of S is called dense if, for any
ceS, sD=(0) implies 5=0.

9.23 Definition : :Let S be a commutative ring ahd R beasubringof S.Then S iscalled the ring

of quotients of R if and only if, for all s €S, sTTR={reR isdensein S.
i sreR

9.24 Remark : S is a ring of quotients of R if and only if, for all s S and re S, 1 #0 impliés
t (S—l R)¢(0) In other words, for all s ¢S, for all 0=¢ € S, these exists r e R such that g & R
2nd tr 20 ‘

9.25 Theorem : Let R bea subnng of the commutatwe ring 'S . Then the following three statements
are equivalent :

{1) S is a ring of quotients of R.
(2) Forall 0seS,s”! R is adenseideal of R and S(S°l R)==0°

(3) Thefe exists a monomorphism of S into O(R) which induces the canonical
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monomorphism of R into O(R).

Proof : Assume (1) :i.e., S is a ring of quotients of R . Then for any se S. s~ ! R isadenseideal

of R. = forall 0=se S, s~ R is adenseideal of R.

Let 045 S.Since 5 'R isdensein S, we have -8'(-\'4 R)i(O)

So (1)=(2)

Assume (2) :i.e., forall 0=se S.s~!R is a dense ideal of R and s(s_1 R)¢(0)

Let seS. Define ¢ 'Rk as ;'(d)‘:.vd forall Jes 'R. Then § is an R -

homomorphism and hence .AYGHOmR(SMl R. R). Consequently 9(.;')EQ(R). So, for any
seS,O(E)eQ(R).

Define y:S—Q(R) as t//(s)=8(;) forall jeS.
Clearly v is well defined.

Now we will show that c,V is a ring homomorphism
Let 51,5,€S and assume 5, #0 and 5, #0. Then by our assumption Sl‘" R-and 52‘1 R

~ are dense ideals of R. Then by a known result, s;' R () s;' R is a dense ideal of R. Also

.| '
$2 (sl 'R ) Is a dense ideal of R.
Forany d es;' RNs;' R, Consider s +s, (d)=

=(s1+85)d =sd+s5,d = ?AI (d)+5‘; (d) = (;; +-;;)(d)

—

=5 +5, and g +5, agree on the dense ideal 5! RMNs;' R

(i75)0(5n+5) = 0(s75) = 0(5+5)
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ﬁe(émz) =9(§!)+9('€2)

m—

.ﬁ.,yl(s,+sz)=6(sB+sz)=t9(§,)*H(@)——:y/(s,)ﬂ//(_sz)
Forany d 63? (Sfl R)_, consider s, s, (d)=5; 5, (d)
=51 (s2d) =51 (52 d) =§,(§(d)) =(‘A| -‘;)(d)

P -~ o~ "“H =
=5 57 and 5, 5, agreec ‘hedense ideal 52 (sl ] R)

—— —~ e~ — o~~~

:>( 51 87 )6’(3’, 32) =3 49(3, .ez)zf)(s; 52)

—— ~ ’\)

=6(s1%) = 6(5)6(5

~y sy s5y) =9(~*’3’.§2) =6(°§)“9<'€) =y (s1)y(s2)

Similarly we can show that y (—s) =—y/(s) forall s ¢ § and y/(l)=6(?) and y/(0)=0(0)

..y is a ring homomorphism.

Now we will show that ¢ is one - one.

Suppose s e § such that (s)=0 in O(R)
::»9(3):0(-0—):36’32; =0 on 4! R
( -1 Y _ . -1
=s|s R) =(0)=s=0 (.- for 0#x€S. x(x _R):(O))

~y(s)=0=>5=0

So v is one - one and hence ¥ is a monomorphism.

. r -~ r
Forany r e R,r~'R=R. Then r(d) = rd = ~(d) forall ye R=r and T agreeon .
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~w(r) =0(r)=9(—;f) forall reR.

=70%=0(7)-6(

b | N

Hence g%,;;1\?-—>Q(R) is the canonical monomorphism of R into O(R).

Thus ¥ induces the canonical monomorphism of R into Q(R)
so (2)=(3)

Assume (3) ii.e., there exists a monomorphism of S into Q(R) which induces the canonical
monomorphism of R into O(R). So we may assume that RS Q(R). To show S is a ring of
quotients of R, it is enough if we show that, forany se S, s"'R isdensein S.

Let s€S. Then se O(R) and s=6( 1) for some fraction f defined on a dense ideal D
of R. Then D s~1 R . Now we will show that s"'R is dense in S. Suppose ¢ eS such that

:(.;"R);(O)ﬂ Then (=0(/") for some 6(/')eQ(R). Since I(S“‘R)=(0)g we have

9(./“)(6‘—! R)=(0) =6( /') D=(0). Then by remark 9.21, (/")=0 and hence ¢=0.

Thus I(S"IR)‘—‘(O) forany ;e S implies t=0

-yl R isdensein S Hence S is aring of quotients of R .
- so (3)=()
Corollary 9.26 : If S is aring of quotients of the commutative ring R and D is a dense ideal of R,
then Dis densein S.

Proof : Suppose S is aring of quotients of the commutative ring R and D is'a dense ideal of # .
Since S 1s a ring of quotients of R, by theorem 9.25, there exists a monomorphism of S into

{(R) which induces the canonical monomorphism of R into O(R)}. So we may assume that

RcScO(R).
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Suppose [ e § such that 2D=(0). Since Sc Q(R). 1=6( /) for some 6{ f)eO(R) then
~. ")D=(0). By remark 9.21, #(/)=0 and hence r=0. Thusfor ;¢ §, tD::(O) implies r=0.

~ange ) isdensein S.

9.27 Theorem : Upto isomorphism over R, O(R) is the only rationally complete ring of quotients
af the commulative ring R . '

Proof : Let S be any ring of quotients of R such that S is rationally complete. Now we will show

that O R)=S. Since S is a ring of quotients of R, by theorem 9.25, we may assume that
RcScQ(R). Let ge Q(R).Put D={seS/qseS}.Then g~! Rc p.Weknowthat 4! p isa
Zanse ideal of g . By corollary 9.26, q"' R is densein § . Since q"'RgD. Dis densein §. But

L 1sanidealof S.So [ is adenseidealof 5.

Define g:D — S as g(d)=qd for all e D . Then g is a fraction over S. Since S is
retionally complete, by theorem 9.16, there exists s € S éuch that g(a' ) =sd forall d € D.Then
qc;;:sd for all d € D. Since q“l Rc D isdense in Q(R), gx=sx for all xeq"lAR implies that
q=s.Thisimplies g € S . Since g € Q(R) is arbitrary, O(R)<.S . Consequently S=0(R). Thus

O(R) is the only rationally complete ring of quotients of the commutative ring R .

Dr. V. SAMBASIVA RAO
Department of Mathematics
Acharya Nagarjuna University



Lesson : 10 RINGS OF QUOTIENTS OF COMMUTATIVE
SEMI-PRIME RINGS

10.0 Introduction : In this lesson, itis proved that if R is acommutative ring then. O(R) is regular -

if and only if R is semiprime. Also it is proved that the annihilator iieals ina commutative semiprime
ring form a Boolean algebra. Further the lower subset.of-an-ordered set is defined and it is-proved
that the lower sets of a Boolean algebra, regarded as a ring, arqlts annihilator ideals.

10:1 Definition : Let R be a commutative ring-and K be a sub set of R. Then

K { reR/rK (0)} is called the annihilator of K.
10.2 Remark : K" is an ideal of R.
40.3 Remark : An idéal K of R is dense if and only if "K*:;(o).
10.4 Remark : For any sub groups K| ahd Ky of R .
(K +K;) = KiNK;
10.5 Lemma : For any ideal K in a commutative ;erni_ - primMe ring R', we have KK *=(O).
K +K is dense.

Proof : Let K be ar ideal of a commutative ring R , First we show that KN K" =(0).
e o
Consider (KNK") < K" K=(0)=(KkNK"} =(0)

= KN k" is 2 nilpotent ideal of R.. -

Since R is semi-prime, by a known result, (0) 7§ the only nilpotent ideal of

R KK -(0).

P

Next we will show that ¥ + k" is dense.

Since k" is an ideal of R, by the above proof, we have k* N k* =(0). But
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(K+K*) = K*ﬂK**D(K+K*) =(0)

— K+ K" is adense ideal of R.

10.6 Theorem : If R is a commutative ring, then Q(R) is regular if and only if R is semi-prime.
?roof : Let R be a commutative ring. Then Q(R) is also a commutative ring.

Assume Q(R) is regular. Since every commutative‘regular ring is semi primitive, Q(R) is
semiprimitive. Then Rad(Q(R))=(0). Since rad(Q(R))cRad(Q(R)), we have
"rad(Q(R))=(O):>Q(R} is semiprime = R is semi prime.

Thus if Q(R) is regular, then R is semiprime
conversely suppose that R is semiprime.

To show Q(R) is regular, it is enough if we show that, for 8(f)€Q(R), there exists
{1 )eQ(R) suchthat 8(f) 0(1) 0(f) =6(f).ie., O(F 1 F)=6(f)

ie. [ fOF.
Let 8(f)eQ(R). Then f is a fraction with domain D adense ideal of R . Let K be the

Kemei of . Then K< D . Since R is semi-prime, by lemma 10.5, KN K =(0).
=DNKNK" =(0)=> The restriction of / to D) K isa monomorphism.

Write E:f(DﬂK*).Then E is anideal of R. By lemma 10.5, g+ £* isadenseideal of R .
Define f.F+E" —» R as follows.
Let yeE+E". Then x=f(d)+r, where f(d)Gf(DﬂK \) and re k.

Define f'(x) =d . Then f'(f(d))=d and f’(r)=0,r

First we show that.f is well defined
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Suppose x;=f(d;)+n and xy=f(dy)+meE+E such that
Y =x,= f(dy)- f(dy)=r,—n e ENE" =(0)
= /f(di) = /(dz) and ri =1,
=d,=d, (-~ f is amonomorphism on DN K")

=f'(x) =1"(x2)
- f" is well defined.

It is easy to verify that /" is an R-homomorphism.
~. f' is a fraction over E+E" ZI}O(}’)GQ(R)
By Lemma 10.5, x + K" is adenseideal of R . Since K + k¥~ and D are dense ideals of

R, we have Dﬂ(K+K*) is a dense ideal of R . By modula/rlaw, K+(DﬂK*)=Dﬂ(K%K*)
= K+(DNK") is adense ideal of R
Forany x=k+deK +(DNK"), consider f 1" f(x)
=1 fk+d)=f (] (k+d))
=7 ' (f(k)+7(d))=71 f'(f(d)) (~keK and K is the kernal of /)
=17 (£(@)=F(d)=f (k)+ 1 (d) =1 (k+d)=1 (x)
— 7 ' f and / agree on the dense ideal K +(Dﬂ K )
[ 1 r0r=0(1r717 )=f9(.f’)=>9(/‘)«9(.f")ﬁ(.f)=9(f)

Thus for (/)€ O(R), there exists 6( /" yeQ(R) such that
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0(f)0(1)0(f)=06(f)=0(R) is regular
Hence the theorem is proved.

10.7 Lemma : For any subsets K and J of a commutative ring R, we have

() KcJ=J ck’

2  kck”

(3) K' = K
Proof : (1) Suppose KcJ

Let < s". Then xJ=(O):>xK=(O) (Kc_;J)
:>xeK*
nJ K

(2)  Since KK =K' K=(0),wehave g k" .

*

3 By (2), Kek" =Kk <k’ By(®))

*

Againby (2), K" c K* .,

=R
10.8 Definition : Let R be a commutative ring. Anideal J of R is called an annihilator ideal of R

if J— k" for some subset K of R.

Note that for each subset K of R, K is an annihilator ideal of R . If J is an annihilator
ideal of 1, bylemma 10.7, ;. %
10.9 T*=arem : The annihilator ideals in a commutative semi prime ﬁng form a cor;fplete Boolean

algeb 72 (R). wtih intersection as inf and * as complementation. -
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Prbbf: Let R be a commutative semi-prime ring and let B (R) be the set of all annihilator ideals

of R.

It is easy to verify that B (R) is an ordered set under set inclusion [Here the ordering on

B (R) isdefinedas 4 < B ifandonlyif Ac B forany 4, Be B (R)]. For any family {K;/ie I}
: *
%
of subsets of R, it is easy to verify that ﬂl K; = ( 2 K,'J . Then the intersection of any family of
ie iel
annihilator ideals is again an annihilator ideal of R and it belongs to B (R). Hence B (R)isa
complete semilattice with intersection as inf. To show B (R) is a Boolean algebra, it is enough if

we showthat J (1K~ =(0) ifandonlyif Jc K forany J,KeB"(R).Let J,K e B"(R). Suppose

JcK.Then JNK cKNK =(0)=JNK =(0).
So JcK=JNK =(0)
Conversely suppose that JN K" =(0)
Consider JK*=J and JK* c K =JK cINK"
=JK =(0) (~JNK" =(0))
:QJQK** =K
So JNK =(0)=JcK
Hence B (R) is a complete Boolean algebra.

10.10 Lemma : If M, is an R-submodule of O(R) andif g(M N R)=(0), g € O(R), then gM =(0)

Proof : Let M be a right R-submodule of O(R) and g€ Q(R) such that ¢(MNR)=(0). Let
X It LSl
me M - Then D=m"] R:{reR/mreR} is dense in Q(R). Now mD c M and mDc R and

so mD < MR . Consider gmDc q(M N R)=(0)
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:qu‘=(0):>qmv=0£-.-D is dense in Qv(R)).
Since m e M is arbitrary, gM =(0).
10.11 Theorem : The mapping K%)Kﬂ R is an isomorphism of B (Q(R)) onto B (R).

Proof : Let B" (R) be the lattice of all annihilator ideals of R and B™ (Q(R)) be the lattice of all

annihilator ideals of O(R).
Define y:B" (Q(R))—> B" (R) as

w(K)=KNR forall K e B (Q(R))

Claim : v is a Boolean isomorphism. |
First we show that, forany K € B' (O(R)). KN Re 5 (R).Let K € B"(QO(R)). Then K
is annihilator ideal of O(R). This implies K=K** .write Af= K" . Then Mis an ideal of Q(R) and

consequently an R-submodule of Q(R). Now we will show that K ) R:(M N R)*.

Let e KNR.Then re K and re R=>reM and reR =rM=(0) and reR.

Since M Rc M , we have (M R)=(0)
=re(MNR) |
~KNRc(MNR)

Conversely let XE(MﬂR)* . Then x(MNR)=(0).

By lemma 10.10, xM =(0)=>xeM and xeR.
=>xeM NR=xeKNR

.-.\(MﬂR)*gKﬂR and hence KﬂR:(MﬂR)*:KﬂReB*(R)
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| Tm; show that for any X e B*(Q(R)), W(K)éB*(R)
vﬁCIearly v is well defined and y (0)=0.
' For any K,;ngé*(Q(R)). v(KiNK>) = KiNK,NR
- =(KNR)N(KNR) =y (K )Ny (K;)
Next we will show that, for any K e BI*(Q(R)), w(K*)=(t//(K))*
ie, K'"NR=(KNR)
Let Ke B (Q(R)). Then K is an annihilator ideal of O(R).
let xe K*NR=xe K" and xe R=>xK=(0) and x ¢ R.
= x(KNR)=(0) and xeR=xe(KNR) .
~K'NR<(KNRY
Conversely supposé that xe(KﬂR)*:x(KﬂR)=(0) and xe R
=xK=(0) and x e R (By Lemma 10.10)
| DXEK*OR
~(KNR) cK"NR andhence K*NR=(KNR)'

=y (&) =(v(K))

Hence y is a Boolean homomorphism.

Next we will show that ¥ is one - one.

Suppose K € B"(Q(R)) such that y (K)=(0)=K NR=(0)
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'Since K e B (Q(R)) we have K=M" where M=K.*
Then KnR=(Aan)* =(MNR) =(0)
If possible supeose tﬁat K #(0). Choose r e K such that r #0. Then
reM* =SrM=(0)=r(MNR)=(0)
=re(MN R)* =(MN R)* #(0); a controdiction.
Se, K=(0). Thus 1,//(K) (0)=K=(0).

Hence ¥ is one - one.

Next we will show that y is onto

‘Let T B"(R). Then /=" for some JcR.
Write K ={q €Q(R)/q) =(0)} Then K is an annihilator ideal of Q(R). Now we show that

‘ J*:K(]R.Consmer er*Qx.fz(aJ) and xe ReoxeK and ye R <xe KR,
~J =KNR

Consider y(K)=KNR=J =1
Hence v is onto.

Thus v is an isomorphism of 3" (O(R)) onto B”(R).
10.12 Theorem: If R is commutatwe aem|prlme and rationally complete, every annihilator ideal of
R is a direct summand. : S

Proof: Let R bea commuta’uve Sl ;prime and ratlonauy complete rng and K, be an annihilator- .
ideal of R .

oy ne

Since R is a commutative s: ‘miprime ring, by lemma 10.5, ¥ + K “isa dense ldeal of R.

Define f:K+K —>R as f(a+b) a for all a+beK+K where ae K and beK* It is

easy to verify that fisan R-homomorphlsm and so f is afraction over R For any a e K, I ,(a)za
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and forany pe K, f(b)=0. Since K+ K" is dense and since R is rationally complete, by

theorem 9.16, there exists an element ¢ e R such that f(a+b)=e(a+b) for all a+beK+K’

=a=c(a+b)forall g+ peK + K" and f(a)=ca forall e K. Forany g+bhe K+ K", consider

a=f(a+b)=e(a+h).

=’ (a+b)=ee(a+b)=ea=f(a)=a=e(a+b)
2 ' :
:>(e —e)(a+b)=0 forall g 4+heK +K

_—_>(e2—e)(K+K*):(O)382—€:0 ’ (K+K* is dense)
=>e= ez

Since a=f(a)=ea forany g K, we have K ceK . Clearly eKc K . So K=cK ceR.
Since f(a+b)= e(a+b) forany a+he K+K", we have f(b)=eb forall be K" . Since
f(b)=0 forany pe k" ‘we have eb=0 forall he K~ A
* *. ‘
=(l-¢)K =K
LK =(1-e)K c(1-¢)R

We know that ¢cR®(1—¢) R=R = ¢RN(1-¢) R=(0)
—.\L’R(l ~0)RT(O)T>0R;((1 -c’)R)*gK** (‘.'K*g(l—c)k)

:>eRc K —K (' 'K is an annihilator ideal)
K= eR and hence K is a direct summand of R .
10.13 Corollary : If R is commutative semi prime and rationally complete, then B" (R)=B(R),
the Boolean algebra of central idempotents of R .

Proof : Let R be a commutatlve semi pnme and ratxonally complete ring. Then (R) the fam:ly

of all annihilator ldeals of R, is a Boolean algebra and B(R )i the set of all central idempotents of

R , is a Boolean algebra.
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Define y:B(R)—> B*(R) as y(e)=eR forall e€ B(R).

Since R=eR®(1-¢)R forany e B(R), we have eRN(1-¢) R=(0)=eR(1-¢R)=(0)
:>eR=((1—e)R)* forany e € B(R)

= ¢R is an annihilator ideal of R and hence ¢Re B (R) forall e e B(R).
Now we will show that ¥ is an isomorphism.

Clearly (0)=0.
Forany e, f € B(R), w(ef)=efR=eRN fR=y ()N (f)

Let e B(R). Then 1-e is the complement of e.

*

Consider g,(e')=y/(1—e)z(l-e)ze=(ek)*=(W(e))

.'.l//(e')=((//(e))* forany ee B(R)
" Thus v is a Boolean homomorphism.

: Next we will show that ¥ is one-one.
" Suppose ¢.f e B(VR). such that y(¢)=y (/)
:>eR=ﬂé
Since o ¢ uR‘ . we hav'e cc fR—>c— fir forsome e R.
Similarly f=es for some seR.
. Consider e= fr=f fr (" f is an idempotent)
= fe=ef=ces=es=f
=e=/
~yl(e)=y(f)=e=f

So y is one - one.
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Next we will show that v is onto.

Let K e B*( R). Then X is an annihilator ideal of R . Then by the above theorem, X is a
direct summand of R. This implies there exists an idea J of R such that R=K+J and
KNJ=(0). Now le K+J=>l=e+f for some ¢e X and feJ. Forany xeK and yeJ,
xye K(J.Then xy=0.Now 1-e=feJ.

Consider e(l—e)=ef=0:>e2

=e=>¢ is an idempotent. Clearly eR c K .
Let x e K . Consider (1-—e)x=f$c=0:>x=exe eR

- KceR and hence K =R

Now consider ¥ (e)=eR=K =y is onto.

Hence y:B(R)— B (R) is an isomorphism.

10.14 Corollary : If R is commutative semi prime, then B (R)= B*(Q(R))EB(Q(R)).

Proof : Let R be a commutative semiprime ring. Then by theorem 10.8, Q(R) is tegular. Since
Q(R)is a commutative, regular ring, by a known theorem, Q(R) is semiprimitive and hence

O(R) is semiprime. By theorem 9.20, Q(R) is rationally complete. Since Q(R) is commutative
semiprime and rationally complete, by coroll'ary 10.13, B’ (Q(R))= B(Q(R)). Also by theorem
10.11, B" (R)=B" (Q(R)). Hence B" (R)=B" (Q(R))=B(Q(R)).

10.15 Lemma : If R is a Boolean ring,bthen O(R) is a Boolean ring.

Proof : Let R be a Booleanring. Let 8( f)eQ(R). Then f € Homp (D, R) for some dense ideal

D of R.Then f2 isdefinedon p2and p=p? (-+ R is a Boolean ring).

For any ;leD, consider f2(d)=7(f(d))=1(f(d.d))

=/(7(d)d) (= <Home(D.R))
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=f(d) f(d) (-.-feHomR(D,}e))
=(f(d))2 =f(d) (R isaBooleanring).
= f2(d)=f(d) forall deD

= 1701=06(1%)=0(/)=0(1)0(/)=0(/)

~.Q(R) is a Boolean ring.

Hence the theorem.

Let (S,S) be any ordered set. With any subset X of .S, we associate xV —the set of all
upper bounds of X and x” = the set of all lower bounds of X . Write (XV )A=XVA and
(X’\ )V — XV
10.16 Lemma : Let (S,<) be an c-fdered setand X, Y be subsets of S. Then

(1) XcY=Y cxY and Yoo Xt

(20 Xcx¥”and XgXAV

(3) XVAYZ ¥V and xAVA = xA
Proof : Given that (S,<) is an ordered setand X and Y are subsets of S

~(1y. ! Suppose X¥c¥

ik 1 zeYV Then 2 is an upper bound of Y= y<z for all er :>x<z for all

xex(~Xc¥)=>z is an upper bound of X .
=>ze XY

yYeXY
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Similarly we can show that y" < x*

(2) Let x e X . Since every element in yVv is an upper bound of X, we hav‘e x <z for all

ze XV = x isalower bound of ¥V —xexV"
Since x e X is arbitrary, we have y - xV/
Similarly we can show that x = x "V

(3) From (2), we have xV < xV/ Y

Again from (2), X < xV”. Then from (1), we have

..'X'V/\\/ =XV

Similarly we can show that xy "V~ = x/

10.17 Remark : From lemma 10.16, it is easy to verify that \v A and A v are closure operations on
the set of all subsets of S'.

10.18 Definition : Let (S,S) be an ordered set. Asub set } of S is called a lower setif y = x"
for some subset X of S.

10.19 Remark : By (3) of lemma 10.16, y =y V"

10.20 Theorem : The lower sets of (S,<) form a complete lattice D(S). The canonical mapping

YWA

p:S—> D(S) defined by 4(x)={x}"" has the property that x <y iff u(x)c u(y) for any
x,ye S thus (D(S),g)may be regarded as an extension of (S,s) - Moreover each element of
D(S) is the sup and inf of subsets of x(S).

Proof : Let (S,<)be an ordered setand D(5)be the set of all lower sets of S . Clearly D(S) is an
ordered set under set inclusion.

Let {¥,} _. beany sub class of D(S)

aeA
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Claim: (1 Ya eD(S)
aeA

Since each Y, is a lower set of S, we have :Y(;’A for all ¢y e A. By Lemma 10.16;
VA
[ Yag[ N Ya]
aeA aeA ]

VA V
Suppose xe( N YaJ bxﬁyforallye( N YQJ

ae ae

Fix feA. Then each upper bound of iz is an upper bound of aQA Ya:x is a lower

Vv
bound of Y/,
:xng’\ =Yg

xe N Y,

Since f € Ais arbitrary, we have ik

[ N Ya] < N Y, andhence N Y, =( N Yaw

aeA aeN aeA aeA

= N Y, eD(S)

aeA

Clearly aQA Y2 is the infimum of {Ya }aeA

Also clearly S is the greatest element in D(S). So D(S) is a complete lattice.

Define ,u:S——-)D(S) as #(_x)={x}v’\ for all xes§.
Clearly uis a mapping.
First we show that x < y if and onlyif u(x)<u(y) forany x,yeS.

Let x,ye S
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Suppose x <y . Then {y}" g.{x}v {xP P ef{yb

= u(x)cu(y)
Conversely suppose that u (x); H (y)

VA

={xp ety =)

VAV C{x}\//\\/

={y}  c{x}'= forieS, y<s implies that x </.

Since y<y,wehave x<y.
So u(x)cu(y)=x<y

Thus forany x,ye S, x< yifand only if u(x)< ().

Now we will show that u is one - one

Suppose x,ye S such that lu(x):/u(y):){x}\//\ - {y}w
SV = {y}v’\vg{x}v ={v}” (Bylemma 10.16)
== =y

~.j1 is one-one. Hence (D(S). <) is an extension of (S, <).

Next we will show that for X e D(S) , X is the supremum of some subset of 1S and X is

the infimum of some subset of .S .

Let X e D(S). Then X isalowersetof §— x=x"".
First we will show that X =sup{u(s) / u(s)< X}.
Clearly X is an upper bound of {4(s)/ u(s)< X}
Forany seS, ,u(s)gX

= {s}VA ey
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SseX ('-'SG{S}VA) fett (1)

Suppose Y € D(S) such that Y is an upper bound of {1(s) /(s )c: X} Then for any

ses, ,u(s)cX :>,u( )<Y . Thatls forany seS,se X=se? .
~XcY.Thus X:sup{y(s) /u(s)c X}
Next we will show that X=1nf{u(s) /Xc;y(s)}

Clearly X is a lower bound of {x(s)/ X < u(s)}

VA

Forany s€S, ng(s):Xc;{s} :>{s}chV

= for €S, s<I implies re X"

Since <, we have se X".

Alsoif se XV and s<f thente X" (- < is'transitive)
© - Xcu(s) ifandonlyif s XY forany S €S —eeees @)

Suppose Y is a lower bound of {y(s) _/Xg,u(s)} . Then ng(.c):ng(s).

e, se XV =>selV (by(2)

This shows that YV VY VYV c XV =YX ("X and Y are lower sets of §).
- X s infimum of {x(s) /X cu(s)}

10.21 Remark : D(S)_is called the Dedekind - Mac Neille completion of S

10.22 Theorem : The lower sets of a Boolean algebra, regarded as a ring R , are its. annihilator

ideals, thatis D(R)=8"(R) )

Proof: Let R be a Boolean algebra. Then R is a Boolean ring and the ordenng <onRisasb
ifandanly if a=ab . -
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Let K be any subset of R. Now we will show that for any » € R, € K" if and only if

l—reK*-

Let r € R . Suppose , ¢ KV ifand onlyif is an upper bound of K if and only if ¢ <% forall

ke K ifandonlyif k=kr forall e Kk ifandonlyif k(1-r)=0 forall k€ K ifandonlyif |—r ¢ K
o ekV ifandonlyif 1-r e K
Next we will show that x ¢ K" if and onlyif l—-xe KV.
Consider x e K ifand only if xk =0 forall k¢ K
if and only if (1-x)k=k forall ke K ifandonly if |- xe KV
~xeK ifandonlyif |—xe K

Now we will show that K** = KVA

LetseK** = s/=0 forall [€ K" s (1)
Forany ,c gV, 1-xe K. Then by (1), s(1-x)=0 for any xe KV =s<x for any
xeKY =>s5se KY"
KT KA
Conversely let r ¢ KV =r is a lower bound of gV.
=r<xforany xe KV - (2)
Forany ye K", 1-ye k" . Thenby (2), forany y e K~,

r<l-y=r=r(l-y) forany yec K"

osd
-

=r=r—ry forany ye K"

*

=ry=0 forany yeK*:reK*

«*

KVAck* andhence - gVA_ Kk
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Suppose K € D(R) ifand only if K is a lower set of R, if and only if K=K"" if and

onlyif g=x* ifandonlyif K isan annihilator ideal of R if and only if K € B" (R).

Hence B" (R)=D(R)
10.23 Corollary : If R is a Boolean ring, then its Dedekind - Mac Neille completion is
isomorphic over R to its complete ring of quotients.
Proof: Let R be a Boolean ring. Then R is a commutative semiprime ring. By corollary 10.14,
B (R)= B (Q(R));_B(Q(R)). Since R is a Boolean ring, Q(R) is also a Boolean ring. Then
B(Q(R))=0Q(R). Since R is aBoolean ring, R is also a Boolean algebra. Then by theorem

10.22, D(R)=B"(R).Hence D(R)=Q(R).

Dr. V. SAMBASIVA RAO
Department of Mathematics
Acharya Nagarjuna University



Lesson - 11 - Prime Ideal Spaces

11.0 Introduction : In this lesson, the properties of the topological space of all prime ideals
of a commutative ring are studied. If 7 is a prime ideal space of a commutative ring R such that

A][:(O) , then it is proved that the complete Boolean algebra of annihilator ideals of R is isomorphic

to the complete Boolean algebra of regular open subsets of 7 . Further it is proved that a Boolean
algebra is isomorphic to the algebra of all subsets of a set if and only if it is complete and atomic.

A topological space is a system (X i ) where T is a set of subsets of X which is closed

-under union and finite intersection. The elements of 7' are called open sets. Thus we have the
following:

1.  Any union of open sets is open (In particular, the empty set is open)‘.
2. If 7} and ¥, are open,sois V; (V5.

3. X is open.

A topological space is called compact if any family of open sets which covers the space
contains afinite sub family which already covers the space. A setis called closed if its complement
is open. The closure of a set is the intersection of all closed sets containing:it.

Throught this lesson 7 denotes the set of all prime ideals of a commutative ring R unless
otherwise stated.

11.1 Definition : Let R be a commutative ring. For any subset 4 of R, define
r(4)={Pen/aZP}.

11.2 Remark : I'(4)=T(4'), Where 4’ is the intersection of all prime ideals of R containing
A, hence an ideal of R. Thus-forreach subset 4 of R, there exists an ideal B of R such that
I(4)=r(8).

11.3 Theorem : 7 becomes a topological space, if as open sets we take all sets of the form

I‘(A):{P en/ A ;c_P} , Where /4 is any subset of R .If 7 contains all maximalideals, then 7 is

commpact.

Proof : Let R be a commutative ring, and 7 be the set of all prime ideals of R.
Write T={T"(4) / AC R} .
By remark 11.2, T = {I'(4) / 4 isan ideal'of R}.

Claim: 7 is atopologyon r.
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Let {T'(4i) / iel} be any sub family of 7 ...

Consider (/ |'(4;)={Pex /| 4¢P forsome iel}

iel

iel iel

={Pe7z/ S P}= F(ZAI‘]

U T(diJeT |

icl ;

So T is closed under arbitrary unions.

LetT(4), T (B)eT.

Consider F(A)ﬂI'(B)={Pe“ﬂ/Ag;Pand Bgpr)
= {Pern/ABg P} =T(4B)

~.T(4)NC(B)eT This shows that 7 is closed under finite intersections.

Consider ['({o}) = {Per/OgP}=¢.
Vi o _ L «
Consider I'(R)={Pen/RgP}=n

mel.

So T is a topology on 7 and hence (ﬂ,‘T)iS a fopologi:c:all;pace.
Suppose 7 is the class of all maximal ideals of R. | .
Then (z.T) is a topological ;pacel' | Yo

Now we will show thét 7 is ‘cérﬁpéct.

Fing
[

Suppose {F(Ai) / ie]} is an open conver for 7. Then 7% = lgl r(4)= F(Z Aij = 2.4
: iel iel
is contained in no maximal ideal of R andso 1€ Y 4;.
iel
/
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=7 is compact.

11.4 Remark : Forany subset 4 of g, ['(4)= UA T'(a), thus the sets I'(a) form a basis
ae

of the open sets of 7, in the sense that they are open and every open set is a union of basic open
sets.

11.5 Remark : 1 is a mapping from the set of subsets of R into the set of subsets of 7 .

11.6 Definition : Foranysubset VV of 7, define AV = ﬂ P
PeV

11.7 Renark : Ar is the prime radical of R, depending on whether 7- is the set of all prime
ideals or only of all maximal ideals of R .

11.8 Remark: A is'amapping from the set of all subsets of 7 into the set of subsets of R .

11.9 Definition : Let I be a sub set of a topological space X . The-union of all open sub
sets of X containedin V' is called the interior of V. The interior of the complement of V' is called
the exterior of V. '

11.10 Remark : We denote the interior of I by Int (} ) and the exterior of ¥ by Ext(V).

11.11 Theorem : Foranysubset I of 7, I' AV is the exterior of V. If Az=0, then for any
subset 4 of R, AT A is the anmhllator A of A L e
Proof: Let VV be asubsetof 7.

~ Consider QeTAV <AV gQ < there exists re R such that re p forall pey and
reQ @ Qel(r)and Pel(r) forall Pel and this means that there exists a basic open set
I'(r) containing Q and I'(r)NV=¢ < QeF(r)c_:V’, which is the complement of ¥
=Qeln(V') = OeEu(V).

Thus T AV = Ext(V)
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5 Suppose _Aﬂ=(0). Now we will show that AFA:A*, the annihilator of 4, for any subset
A of R.

Let 4 be asubset of R.
Suppose reAT' 4 = r € P for all Pel'(4).
=reP forall Pen suchthat Ag¢P.

= forall Per , Ag P implies reP.

= rAcP forall Pex = rd c Az = rd=(0) (- Az=0)
:>re‘A*

- 3
AT AcC A

Conversely suppose that re 4" = rd = (0) > rdc A
— rd c P forall Pex
= forpen,Ag Pvimp!ies repP

~=reP forall P el (4)

DreAFA

% : *
A cAl Aandhence AT 4=4

11.12 Definition : 4 subset 4 of atopological space X is called a regular open set if 4

is the interior of 4, where 4 is the closure of A .

Remark 11.13: Let 4 be a subset of a topological space X . Then A is a regular open set
if and only if 4 is the interior of some closed set if and only if 4 is the exterior of some open set.

For, let 4 be asubset of a topological space X . Suppose 4 is aregular openset. Then
by definition, A is the interior of 4. Since A is closed, we have A is the interior of the closed set
A. So 4 is the interior of some closed set. Conversely suppose that 4 is the interior of B for
some closed subset B of X. Then AcB— Ac B.

= Int (2 ) c Int (B)
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= [nt(—/i ) c A ( A= Int(B))
Since A c 4, we have Ini (4)c Im(ﬂ)_

Since A4 is the interior of B, which is an open set, we have A=[nt(A) :

. nt(A)C Int(4) = Ac Ini(4)

So A=1nt(2) and hence /4 is a regular open set.

Thus A is aregular open set if and only if 4 is the interior of some closed set.

Next we will show that 4 is the interior of some closed set if and only if 4 is the exterior of
some open set.

Suppose 4 is the interior of some closed set B.

Write C=B'. Then C is anopen setand 4 is the interior of the complement of C. So 4

is the exterior of the open set C .

Conversely suppose that 4 is the exterior of some open set G . Then by definition, 4 is

the interior of the complement of G . Since G is open, Complement of G is closed. Hence 4 is
the interior of some closed set. Thus A4 is the interior of some closed set if and only if 4 is the
exterior of some open set G .

11.14 Problem : Forany subset £ of topological space X , (Int(E)) = E'

Solution : Let E be a subset of a topological space X .

Consider xe([nt(E))' < x¢nt(E) < for every open set G containing x, G ¢ E <

For every open set G containing x, there exists ye G such that y¢E <> for every open set G

containing x. G N E ¢ <:>,\9 cE

~(m(E)) =E
11.15 Problem : Show that the interior of any closed set is the interior of its own closure.

Solution : Let x be atopological space and 4 be a closed subset of X .
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 Claim: Int(A4) = Int(m)

Suppose x € Ini (11’1! (A)) = there exists an open set G

suchthat x e G < Int (4) < A = A (" A is closed)

= x € G ¢ A= x is an interior pointof A = x € Int(4)
oo Int (Int(A)) c Int(A)

Clearly Int(A) < Int(A)

Since Int,( Int(A)) s the largest opeh set contained in Int (4) and since Iﬁt(A) is an

open set contained in Int(A)v, we have Int (4) c Int( Int(A)).

o Int(A) = Int ( m)

11.16 Problem : If 4 is a regular open subset of a topological space X , then show that
Ext(Ext(A))=A. |

Solution : Let 4 be aregular open subset of topological space X - Then A=Int (2)
Consdor Ext (B(4)) = (it (4) = e (m()])
= Int ( (A')') (By problem 11.14)
= Int (2) =A

Thus Ext(Ext(A)) =A.

11.17 Problem : Prove that the regular open sets in any topological space form a Boolean
algebra. iy E ;

Solution : Let x be a topological space and <% be the set of all regular open sets in x .
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Claim : <% is aBoolean algebra.

- Colearly </ is an ordered set under set inclusion.

Let 4, Be 7. The A = Int(A)and B=1Int( B)
= AN B= Int(Z ) n Int(E) = Int(ANB).

. ANB = Int(_/i N 73) and Zﬂf}" is a closed set.

By remark 11.13, (B is a regular open set. So A\B e~/

Define * on ~7 as A" =Ext(A) forany Ae ~7

Let_A e /. Since .evgry regular open set is an open §¢t, A is an open set.

Consider A" = Ext(A) = Int(A'), which is interior of the closed 4= 4" is a regular

open set (By remark 11.13)

:>A*e -

. % is aunary operation on 7.
Since ¢ = Int(q—)) and X = Int()—(),we have ¢ , X e ~%.
Next we will show that A(B" = ¢ <> A< B forany 4, Be~x.

Let 4, Be ~7 Suppose .A(];Bs_F =¢ = ANExt(B)=¢.

> ANInt(B)=¢ = 4 g(]nt(B'))l = (B’)' (By problgm 11.14)

= AC B

Since A is an open set and Int( 73) is the largest open set contained in B, we have
Ac Int( l_?) )

L AcB(+B is a :rég\j(lérgcﬁ;gnﬂset) o

N TRy e Ee iy e
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Conversely suppose that 4 < B. Then A(\B' = ¢

Consider ANB" = ANExt(B) = ANIu(B') < ANB' = ¢

= ANB =¢

So AcB= ANB =¢

Thusforany 4, Be~7, ANB =¢ < Ac B
Hence ~# is a Boolean algebra.

11.18 Theorem : If 7 is a prime ideal space of the commutative ring R such that Az=(0),

I" is anisomorphism of the complete Boolean algebra of annihilator ideals of R onto the complete
Boolean algebra of regular open sets of 7. Moreover, if 7 contains all maximal ideals of R, I
induces an isomorphism of the Boolean algebra of direct summands of R onto the Boolean algebra
of the (simultaneously) closed and open sets in 7 .

Proof: Let R be acommutative ring and 7 be a space of prime ideals of R suchthat Az =(0):

By theorem 10.9, B*(R), the set of all annihilator ideals of R, is a complete Boolean

algebra and by problem 11.17, the set ~/ of all regular open sets in 7 is a Boolean algebra.

*

Forany 4e B (R), consider I'(4) = F(A* ) =T (Al (AT4))

=TA (rA(r(A))) = Ext(Exf(f(A)))
=T (4) = Ext(Ext(F(A))) =TI(4)= Exz(lm((r(A))')j

= I'(A4) is a regular open set.

So for any AeB*(R), I(A)er

*

Forany I/ e <%, consider (AFA(V))* = AL (AT (ATA(V)))
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= ATA(TA(TA(V))) = ATA(Ext(Ext(V))) = ATA(V)
("~ V is a regular open set)
= AT A(V') is an annihilator ideal of R

So ATA(V) e B (R) forany ' e -

First we show that " is a Boolean homomorphism.
Forany 4, B e B"(R), consider [(ANB) ={Pex/ANB P}
={Pen/ABg P} ={Pen/Ag P and Bg P} =T (4)NI(B)
. = (4N B)=I'(4)NT(B)
Consider I'((0))- {Per/(0)& P} = ¢
=T((0)) = ¢, which s the zero element in ~.
Lt dcB'(R). Consider ['( 4"} = T'(AT(4)) = TA(T'(4))

*

= Evr(T(A)) = r(/l*) (T(4)) , which is the complement of T'(A4) in ~7

I

~T:B (R) — % is a Boolean homomorphism.
Next we will show that I" and AT'A are inverses to each other.

Forany Ae B*(R), consider ATAT (A4) = AI'(AI'(4))

*

=AF(A*) A =A(" A is an annihilator idealof R)
= AT AI'(A) = A for any AeB*(R). L
Forany J/ « ~%, consider TATA(V) = FA(FA(V))

=TA(Ext(V)) = Ext(Ext(V))=V (- V is a regular open set)
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=>TATA(V)=V forany I e ~7
.+ T and AT'A are inverse mappings to each other.
- Hence 1 is an isomorphism.

‘Assume 7 is the space of all maximal ideals of R .

First we show that an ideal 4 of R is a direct summand of R if and only if 4 is an"

annihilator ideal of R for which 4 + A* =R

Suppose .1 is anideal of R such that 4 is a direct summand of R. Then there exists.an
ideal J of Rsuch that 4+J =R and 4NJ =(0). Consider 4/ < ANJ = 4J=(0)

=AcJ .
Letxe s ‘\:>’ ’xj=‘0‘foj‘réll jed
Since R=A4+J ,wehavele A+J =>1=¢e+ f,for
~.some ee 4 andforsome feJ = l-e=feJ
=x(l—e)=0=> x=xee 4
Th|s shows that _J_"‘ ;;_A and‘,henc‘e a=J
Similarly’wé can show that .J= A"
“-. A is an annihilator ideal of R and A4 + A =R.
» Conyerséiy SUphosé that 4 isvén annihilator ideal of R such that A+ A = R’.

.

Let xe AN A" = x e 4 and xy=0 forall ye 4

= xx =0= x =0 (- R is asemiprime ring)

AN A = (O) Sod+A =Rand AN A = (0) and hence 4 is a direct summand of R. -

that A+ 4" =R.

Since 7z contains all maximal ideal of R, thisis equivalentto I’ (A + A*) =I'(R) andthis

* Thus anideal 4 is adirectsummand of R ifand onlyif 4 is aﬁ;annihilator idéé'lvoif R such

o

s
+ e
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isifand only if T(A)UTAT(4) =7 ( [(4+47)=T(4)UT A F(A))

\ \

s

Now T'AT (4) is the extenior of I" (4). Hence an annihiratorideal 4 is a direct summand
of R if and only if the associated regular open set T’ (A) is the complement of its exterior if and

only if I" (4) is both open and closed. Hence T incluces an isomorphism of the Boolean algebra

of direct summands of R onto the Boolean algebra of the (Simultaneously) closed and open sets -
of .

11.19 Corollary : If 7 is the set of all prime (= maximal) ideals of the Boolean ring R, then.

R is isomorphic to the algebra of closed and open subsets of 77 . Moreover, its Dedekind-MacNeille
completion is isomorphic to the algebra of regular open subsets of 7.

Proof: Since R is aBooleanring, R is semiprime and the maximal ideals of R are precisely
the prime ideals of R and R=B(R), the Boolean algebra of all idlempotents of R. lfee B(R),
then eR is a direct summand of R . Alsoitis clearthatif 4 is a direct summand of R  then 4=eR
for some ee B(R). Let ~#" be the Boolean algebra of all direct summands of .R. Define
w: B(R) >~ as y(e) = eR forall e B(R). Thenitis easy to verify that y is an isomorphism
and hence B(R)=~# By theorum 11.18, <7 is isomorphic to the Boolean algebra of both open
and closed sets. Hence R is isomorphic to the Boolean algebra of all both open and closed sets.

Since R is a Boolean ring, by theorum 10.22, D(R) = B" (R). By theorum 11.18, B'(R) is

isomorphic to the Boolean algebra of all regular open subsets of 7. Hence the Dedekind MacNeille
completion is isomorphic to the algebra of all regular open subsets of 7 .

11.20 Definition : A Boolean algebra R is said to be Dedekind Complete if the cononical

monomorphism ,u.R——)D(R), the lower subsets of R, is an lsomorphlsm (i.e.
p(r)={r}""forallreR).

11.21 Definition : A Boolean algebra R is said to be atomic if for every element e R

there exists an atom (minimal non-zero element) a € R suchthat a < r.

11.22 Theorem : A Boolean algebra is isomorphic to the algebra of all subsets of a set if and
only if it is complete and atomic.

Proof: Let R be a Boolean algebra

Suppose R is isomorphic to the algebra of all subsets of asét’iy . i.e. R=P(X).
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Now we will show that P(.X) is atomic and complete.

Let ¥ € P(X) such Y=¢. Choosey e Y. Then {y} # ¢ and clearly {y} is an atom in
P(X)and {y} < Y. Therefore P(.X) is atomic.

Let ~7 be a lower subset of P(X) .Then =7 =7 V" . Write A= UB Then 4 e P(X)
Besr

Now we will show‘that AN =X

Consider Yed o AcY<s’'Bey foral pge <%

oYe Y

Ay =Y =AY = V= oK (o s alower subset of P(X))

This shows that if ~% € D(P(X)), there exists 4 € P(X) such that p(4)= ~7
. The canonical monomorphism x:P(X)—D(P(X)) is onto and hence an isomorphism.
So P(X) is Dedik;nd complete

Hence P(X) is atomic and Dedekind complete.

Since R = P(X), R is atomic and Dedekind complete.

Conversely suppose that R is atomic and Dedekind complete.

First we show that for any atom a € R, a isamaximalidealof R . Let a e R be an atom.
It is easy to verify that 4 is anideal of R . Since a # 0, we have 1 ¢ a . So a" is a proper ideal of
R . Let A/ beanyideal of R such that u C M < R. Suppose d" # M . Then there exists r € M
suchthat r¢a = ar =0 and ar<a = a = ar (" a is atom)

:>a(1—r)=O:>1—rea* =>1-reM jleM('.' r e}\/{)

>M ZR,

- 4 is amaximal ideal of R .

Let 7 be the set of all maximal ideals of the form a*, where a is an atom of R.
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*
. _Ja ;
le. 7 { /cns an atom of R}

Suppose r € R suchthat » # 0. Since R is atomic, there exists an atom a € R such that a <r.

*
Sar=a#0=>r¢a =>r¢Anx

LAT= (0) :

Hence 7 is a space of all maximal ideal a , Where-g is anatomin R, such that A7z=(0).

Since R is a Boolean algebra, each maximal ideal of R is a prime ideal of R and conversely. By

theorem 11.18, B (R) is isomorphic to the Boolean algebra of all regular open subsets of 7.
Suppose a e R is an atom. Now I'(a) = {b*EE/aeéb*}

Leth eT(a)=ag¢h =ab=0

Also 0 2ab<a and 0 #zab<b=a=ab=b (-+ g and p are atoms)

This shows that I'(a) = {a*} . Therefore every singleton setin 7 is an open set

— Every subset of 7 is an openset = every subset of 7 is both open and closed =
every subset of 7 is a regular open set. Hence B (R) is isomorphic to the algebra of all subsets
of 7. Since R is a Boolean algebra, by theorum 10.22, D(R) = B (R). Since R is Dedekind

complete, D(R)z'R. Hence R is isomorphic to the algebra of all subsets of 7.

11.23 Corollary : If R is any atomic Boolean algebra, its completion is isomorphic to the
algebra of all subsets of atoms of R .

Proof: Suppose R is an atomic Boolean algebra.
If we proceed as in the converse part of the above theorum 11.22, we have D(R) - B (R)

and B (R) is isomorphic to the algebra of all subsets of 7.

Let A be the set of all atoms of R .
Now we will show that there is a bijection betweeen A and 7.

Define f:A—7 as f(a)= a forall aeA

Clearly 1 is well defined and onto.
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Now we will show that f- is one - one.
Suppose a, be A suchthat f(a)=/(b). Then g =b".
If ab=0,then g e b” = aed’ = aa =0 |
: a =0 ( R is a Boolean algebra), whichis a contradiction to the fact that a is an atom.

soab #0. Since 0#ab<a and 0=ab < b and since g and p are atoms, we have a=ab
and b=ab. and therefore a=5. ' ‘

So f(a)=f(b)=a=b

- f is one - one and hence f s bijection.

Consequently P(7) = P(A)

Since D(R) = B*(R), P(7) = P(A) and B*(R) = P(x), we have D(R) is i‘somorphic
to P(A), which is thé algéb;a of 4l subsets of atoms:of R. Thus if R is an atomic Boolean

algebra, its completion D(R) is isomorphic to the algebra of all subsets of atoms of R .

Dr. V. SAMBASIVA RAO
Department of Mathematics
Acharya Nagarjuna University



Lesson - 12 Primitive Rings

Introduction 12.0:

In this lesson primitive ideals of a ring and primitive rings are defined and studied. The
Jacobson density theorem, which is one of the basic theorems in primitive rings is studied. Also a

prime ideal of aring is defined and it is shown that a primitive ideal is a prime ideal. R stands foran
associative ring with unity 1 which is not necessarily commutative.

Definition 12.1:

A module Ay is called irreducible iff it has exactly two submodules.

So, if A is an irreducible module then {0} and 4 are the only submodules of 45 and

{0} = 4.
We know that a right ideal As of R is a maximal right ideal of R if
1. M=#R ,
2. U isarightideal of R and Mg'U c R implies U=M or U=R.
We also know that a right ideal A7 of R is a minimal right ideal of R if
1. - M={0}
2. [/ is aright ideal of R and {0} € U < Mimplies U ={0} or U=M .

- We know that if Az is arightideal of R then R/ M = {r+M/re R} is a right R - module,

J:and if B is submodule of R /M then B = K /M for some right ideal KX of R containing M .
Using this one can prove the following.

‘Remark 12.2:
Let A be arightideal of R. Then R/ M is anirreducible R - module if and only if A/ isa
maximal right ideal of R .
Remark 12.3:
Let M be arightideal of R. Then M is irreducible if and only if A7 is a minimal right ideal
of R.

Definition: Anelement » € R is called right invertible (left invertible) in R if there exists an element

s € Rsuchthat rs=1(sr=1) and » is called a unitin R if itis right invertible and left in<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>