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Chapter 1 

 Digital Logic Circuits 

Many scientific, industrial and commercial advances have been 
made possible by the advent of computers. Digital Logic Circuits 
form the basis of any digital (computer) system. In this topic, we 
will study the essential features of digital logic circuits, which are 
at the heart of digital computers. Digital Logic circuits may be 
subdivided into Combinational Logic Circuits and Sequential Logic 
Circuits. 

 

1.1 Logic Gates 

 
1.1.1 AND gate 

 

AND Operation:AND operation is represented by C = A • B  

Its associated TRUTH TABLE is shown below. A truth table gives 

the value of output variable (here C) for all combinations of input 

variable values (here A and B). Thus in an AND operation, the 

output will be 1 (True) only if all of the inputs are 1 (True). 

 



                                                Fig. 1.1 AND Gate 

 
Table: 1.1 Truth table for AND gate 

 

The following relationships can be easily derived from this circuit:  

A.A = A 

 1.A = A 

 0.A = 0 

 A.Ā = 0  

 A.B = B. 

A A.(B.C) = (A.B).C = A.B.C  

 

1.1.2 OR gate 

 

OR Operation: OR operation is represented by C = A + B  

Here A, B & C are logical (Boolean) variables and the + sign 

represents the logical addition, called an ‘OR’ operation. The 

symbol for the operation (called an OR gate) is shown in Fig. 4. Its 

associated TRUTH TABLE is shown below. Thus in an OR 

operation, the output will be 1 (True) if either of the inputs is 1 

(True). If both inputs are 0 (False), only then the output will be 0 

(False). Notice that though the symbol + is used, the logical 



addition described above does not follow the rules of normal 

arithmetic addition. 

 

 
Fig.1.2 OR Gate 

 

 
Table: 1.2 Truth table for OR gate 

 

The following relationships can be easily derived from this circuit: 
 

A+Ā = 1 
A+A = A 
0+A = A 
1+A = 1 

 

(A+B)+C=A+(B+C)=A+B+C 

 

1.1.3 NOT Operation 

  NOT operation is represented by C = Ā 



 

The NOT gate has only one input which is then inverted by the 

gate. Here, A is the 'complement' of A. The symbol and truth table 

for the operation are shown below: 

 

 

Fig.1.3 NOT Gate 

Truth table 

 

Table: 1.3 Truth table for NOT gate 

 

1.1.4 NAND Gate: 

We could combine AND and NOT operations together to form a 
NAND gate. Thus the logical expression for a NAND gate is     

C =  (A · B) ' 
 
The symbol and truth table are given in the following figure. The 
NAND gate symbol is given by an AND gate symbol with a circle 
at the output to indicate the inverting operation. 
 



 

 

Fig.1.4 NAND Gate 

 

Table: 1.4 Truth Table for NAND gate 

 
 
 
1.1.5 NOR Gate: 
 

Similarly, OR and NOT gates could be combined to form a NOR 

gate. 



 

Fig 1.5 NOR Gate 

 

Table: 1.5 Truth Table for NOR gate 

 

1.1.6 Exclusive OR Operation: 

 
In logic circuits, exclusive OR operation is represented as shown 
below. 
  

C = A   B 



 

Fig 1.6 Exclusive OR Gate 

 

Table: 1.6 Truth Table for Exclusive-OR gate 

 

1.2 Boolean Algebra 
 

The operation of almost all modern digital computers is based on 
two-valued or binary systems. Binary systems were known in the 
ancient Chinese civilization and by the classical Greek 
philosophers who created a well-structured binary system, called 
propositional logic. Propositions may be TRUE or FALSE, and are 
stated as functions of other propositions which are connected by 
the three basic logical connectives: AND, OR, and NOT. For 
example the statement: 

 



“I will take an umbrella with me if it is raining or the weather 
forecast is bad” 

connects the proposition I will take an umbrella with me 
functionally to the two propositions it is raining and the weather 
forecast is bad. We can see that the umbrella proposition can be 
fully determined by the raining and weather ones. In functional 
terms we can be consider the truth value of the umbrella 
proposition as the output of the truth values of the other two. We 
can represent this by means of a simple block diagram 

 

The meaning of the OR connective is that the corresponding 
output is TRUE if either one of the input propositions is TRUE, 
otherwise it is FALSE. Since there are only two possible values for 
any proposition, we can easily calculate a truth value for I will take 
an umbrella for all possible input conditions. This produces the  

Truth Table of the basic OR function: 

      

Raining        Bad Forecast Umbrella 

FALSE          FALSE 
FALSE          TRUE 
TRUE            FALSE 
TRUE            TRUE 

FALSE 
TRUE 
TRUE 
TRUE 

 
Table: 1.7 

We can make the propositions as complex as we require. For 
example, if we want to include the proposition I will take the car, 
we may make a statement such as: “If I do not take the car then I 
will take the umbrella if it is raining or the weather forecast is bad”. 
However, to find the correct block diagram we have to state the 



proposition in a well-structured way using brackets to indicate how 
the proposition is composed. The correct representation is: 

 
(Take Umbrella) = (NOT (Take Car)) AND ((Bad Forecast) 

OR (Raining)) 

 

Notice that we have changed the IF verbal construction into an 
equation with binary variables. The block diagram is shown in 
Figure 2. To simplify the handling of complex binary connectives, 
the mathematician George Boole developed Boolean Algebra in 
the last century, using 

ordinary algebraic notation, and 1 for TRUE and 0 for FALSE. In 
this course we will use the symbol _ for the AND and + for the OR 
connectives which we call Boolean operators. The NOT operator, 
which is unary, we will denote with a post fix prime, eg A0 means 
NOT A. (Alternatives that you may see in books are ˄ for AND, V 
for OR, and either over-score or prefix ¬ for NOT). Sometimes, 
when the meaning is clear from the context, we may omit the AND 
symbol. Using the values 1 for TRUE and 0 for FALSE the truth 
tables of the three basic operators are as follows. 

 
 
 
 

AND  ·              OR +              NOT' 

A   B   R   A   B   R   A   R 
0   0   0   0   0   0   0   1 
0   1   0   0   1   1   1   0 
1   0   0   1   0   1 
1   1   1   1   1   1 
 
 
 



Boolean operations are carried out in a well-defined order or 
“precedence”, which is defined as follows: 

 
 

Operator 

 

Symbol 

 

Precedence 

 

NOT 
 

AND  

 
OR 

 

' 

· 
 

+ 

 

Highest 
 

Middle 

 
Lowest 

 

Table: 1.8 

 
Expressions inside brackets are always evaluated first, overriding 
the precedence order. The Boolean equation of the block diagram 
(Figure 2) in fully bracketed form is given by: 

  
                                 U = ((C0) _ ((W) + (R))) 

 
By taking advantage of the precedence rules, we can simplify it by 
removing brackets: 

  
                                    U = C0 _ (W + R) 
 
We can use the basic truth tables for AND, OR and NOT to 
evaluate the overall truth table of a more complex expression. For 
example, to find out whether we should take our umbrella or not 
we can evaluate the overall truth of the proposition given in the 
above equation for every possible input combination. We shall call 
this the Truth Table Method. In this case, there are eight possible 
different combinations of input values since there are three 
independent inputs and 8 = 23. 
 
 
 
 
 
 
 
 



 
   R W C   X1 = R +W X2 = C0   U = X1 _ X2 

0  0  0        0                1           0 
0  0  1        0                0            0 
0  1  0        1                1           1 
0  1  1        1                0           0 
1  0  0        1                1           1 
1  0  1        1                0           0 
1  1  0        1                1           1 
1  1  1        1                0           0 

 
Table: 1.9 

 
Like all algebras, there are rules to manipulate Boolean 
expressions. The most simple are the rules that concern the unary 
operator NOT: 

(A') '  = A 

A · A' = 0 

A + A' = 1 

 
General rules like the distributive, commutative, and associative 
rules hold for the AND and OR binary operators as follows. 
 
Associative                   (A · B) · C = A · (B · C) 

     (A + B) + C = A + (B + C) 
 

Commutative                         A · B = B · A 
          A + B = B + A 

 
Distributive              A · (B + C) = A · B + A · C 
                                A + (B · C) = (A + B) · (A + C) (the weird one!) 
 
In addition, there are simplification rules for Boolean equations. 
There are three important groups of simplification rules. The first 
one uses just one variable: 
 



                                               A · A = A 
    A + A = A 

 
The second group uses Boolean constants 0 and 1: 
 
                                                A · 0 = 0 
                                                A · 1 = A 
                                               A + 0 = A 

   A + 1 = 1 
 
The third group involves two or more variables and contains a 
large number of possible simplification rules (or theorems) such 
as: 
 

A + A · (B) = A     (proof: A + A · B = A · (1 + B) = A · 1 = A) 

 
Note that in this expression either A or B may stand for any 
complex Boolean expression. 
 
There are two important rules which constitute de Morgan’s 
theorem: 
 
                                       (A + B) ' = A' · B' 
                                        (A · B) ' = A' + B' 
 
This theorem is widely used in Boolean logic design. The theorem 
holds for any number of terms, so: 

 
(A + B + C) ' = ((A + B) + C) ' = ((A + B) ') · C' = A' · B' · C' 

 
and similarly: 
 

(A · B · C ·…. · X) = A' + B' + C' + …. + X' 
 
You may have noticed by now that rules are often given in pairs. It 
makes sense that in a binary system there is some kind of 
symmetry between the two operators. For Boolean algebra this 
symmetry is called duality. Every equation has its dual which one 



can generate by replacing the AND operators with ORs (and vice 
versa) and the constants 0 with 1s (and vice versa). 
For example, the dual equation of the important simplifying rule: 
 
                                            A + A · B = A 
is: 
 
         A · (A + B) = A (proof: A · A + A · B = A + A · B = A ) 
 
Do not mix up or get confused between a dual expression which is 
generated by the above rules and the complement (or inverted) 
expression which is generated by applying the NOT operator. The 
rules are similar, but they mean very different things. 
 
Finally, let us simplify the proposition I am not taking an umbrella. 

(U) ' = (C' · (W + R)) ' 
   apply de Morgan’s theorem   U' = (C') ' + (W + R) ' 

     apply de Morgan’s theorem again   U' = (C') ' +W' · R' 
                                       and simplify   U' = C +W' · R' 
 

 

 
1.3 Map Simplification 

1.3.1 Karnaugh Maps 
 
From the previous examples we can see that rules of Boolean 
algebra can be applied in order to simplify expressions. Apart from 
being laborious (and requiring us to remember all the laws) this 
method can lead to solutions which, though they appear minimal, 
are not. The Karnaugh map provides a simple and straight-
forward method of minimising boolean expressions. With the 
Karnaugh map Boolean expressions having up to four and even 
six variables can be simplified easily. The simplified logical 
expression is then used so that minimum hardware 

is employed in the implementation of logical circuits. A Karnaugh 
map provides a pictorial method of grouping together expressions 
with common factors andtherefore eliminating unwanted variables. 
The values inside the squares are copied from the output column 



of the truth table, therefore there is one square in the map for 
every row in the truth table. Around the edge of the Karnaugh map 
are the values of the two input variable. A is along the top and B is 
down the left hand side. The diagram below explains this. 

 

Boolean Expressions in Two Variables: 

Consider the following truth table. 

 

Table: 1.10 

The logical expression X is given by X=Ā.B̄+A.B 

The Karnaugh map of the above truth table is shown in the 
following figure. The values inside the squares are copied from the 
output column of the truth table, therefore there is one square in 
the map for every row in the truth table. Around the edge of the 
Karnaugh map are the values of the two input variable A and B 
and their inverses. 
 

In other words, we may say that Karnaugh map is a graphical 

representation of the truth table. 

 



 

Fig:1.7 Map simplification for two variables 

Consider the logical expression Y=A.B+Ā.B 

Its Karnaugh map is shown below. The two adjacent squares may 

be combined together as shown by the loop. 

 

Fig:1.8 Map simplification for two variables 

Referring to the map above, the two adjacent 1's are grouped 
together. Through inspection it can be seen that variable A has its 
true and false form within the group. This eliminates variable A 
leaving only variable B which only has its true form. The 
minimised answer therefore is Y = B. 
 

It simply means that we are combining the two terms of the above 

expression Y as shown below: 

Y=B(A+Ā)=B 

Therefore, as the variable A changes from its normal form to its 
inverse form (Ā) when we move from one square to the adjacent 
one, the simplified expression of Y will be independent of A. 



 
Taking another example, the expression Z=Ā.B+A.B+A.B̄ 

is simplified as follows. 

 

Fig:1.9 Map simplification for two variables 

 

First, combining the two adjacent squares in row 1, we get B. 
Next, combining the two adjacent squares in column 1, we get A. 
Hence, we get Z as shown below: 

 
Z = B + A 

Therefore we can easily conclude that, combining two 
adjacent squares in Karnaugh map eliminates one variable 
from the resulting Boolean expression of the corresponding 
squares. 
 

Boolean Expressions in Three Variables: 

Consider the following truth table. 



 

Table: 1.11 

The corresponding Boolean expression using SOP is: 

X=Ā.B̄.C̄+Ā.B̄.C+Ā.B.C̄+A.B.C̄ 

Figure below shows the Karnaugh map of the above truth table. 

The expression X may be simplified by combining two adjacent 

squares as shown. 

 

 



Fig: 1.10 Map simplification for three variables 

 

The simplified expression of X is: X= Ā.B̄+B.C̄ 

Now, consider another expression Y given below: 

Y=A.B.C̄+A. B̄.C̄+ Ā.B̄.C̄+ Ā.B.C̄ 

The Karnaugh map of Y is shown below. In this case, we are able 

to combine four adjacent squares. Note that 

 

Fig: 1.11 Map simplification for three variables 

 

Y can also be obtained as: 

Y=A.C̄(B+ B̄)+ Ā.C̄(B̄+B) 

=A.C̄+Ā.C̄=C̄ 

Consider another example: 

Z=A.B̄.C+ Ā.B̄.C+ A. B̄.C̄+ Ā.B̄.C̄ 

 

 



The corresponding Karnaugh map is shown below: 

 

Fig: 1.12 Map simplification for three variables 

 

In this case also, we are able to combine 4 adjacent squares. 

Note that 

Combining the two adjacent squares in columns 2 and 3 of row 1, 

the variable A gets eliminated, and we are left with Z1=B̄.C 

Combining the two adjacent squares in columns 2 and 3 of row 2, 

the variable A gets eliminated and we are left with Z2= B̄.C̄ 

 
Combining these two expressions, Z= B̄.C+ B̄.C̄=B 

 
Finally, let us consider another expression W below: 
 

W=A.B.C+ Ā.B.C+A.B.C̄+Ā.B.C̄ 

 
The Karnaugh map of W is shown below. Note that the resulting 
expression should be independent of A and C. So, W is simplified 
as: W = B 



 
 

Fig: 1.13 Map simplification for three variables 

 

 

Therefore, we can conclude that combining four adjacent 
squares in Karnaugh map eliminates two variables from the 
resulting Boolean expression of the corresponding squares. 
 

Boolean Expressions in Four Variables 

 
Knowing how to generate Gray code should allow us to build 
larger maps. Actually, all we need to do is look at the left to right 
sequence across the top of the 3-variable map, follow a similar 
sequence for the other two variables and write it down on the left 
side of the 4-variable map. 
 

Karnaugh map of four variables A, B, C and D is shown in the 
following figure. As we have shown in the previous examples, we 
may easily prove that: 
 
Combining eight adjacent squares in Karnaugh map 
eliminates three variables from the resulting Boolean 
expression of the corresponding squares. 
 



 
 

Fig: 1.14 Map simplification for four variables 

 

 

Example: Simplify the Boolean expression: 
 

X= Ā.B̄.C̄.D+ Ā.B̄.C.D+ Ā.B.C̄.D+ Ā.B.C.D 

 
Karnaugh map of X is shown in Figure 12.24. As we could 

combine 4 adjacent squares as shown below, the simplified 
expression should be independent of two variables. Adjacent 
squares in a row suggest that the resultant expression should be 
independent of B. Similarly, adjacent squares in a column suggest 
that it should also be independent of C. Hence, the simplified 
expression of X is given by :  X = Ā.D 
 



 
Fig: 1.15 Map simplification for four variables 

 
 
Example: Simplify the following Boolean expression using 

Karnaugh map. 
 

Y=A.B.C̄.D+A. B̄.C̄.D+ Ā.B̄.C̄.D+ Ā.B.C̄.D+ Ā.B̄.C̄.D̄+ Ā.B.C̄.D̄+ 

Ā.B.C.D̄+Ā.B.C.D+ Ā.B̄.C.D 

 
Solution: Karnaugh map of Y is shown below. There are four loops 

enclosing 4-adjacent squares. First, consider the loop 1. The 
resulting expression for these squares should be independent of C 
and D. Next, consider loop 2. The resulting expression of these 
squares should be independent of B and D. Thirdly, consider loop 

3. The resulting expression of these squares should be 
independent of B and C. Finally, consider loop 4. 
 
The resulting expression of these squares should be independent 
of A and B. Hence, we get 
 

Y=Ā.B+Ā.C̄+Ā.D+C̄.D 



 

 

Fig: 1.16 Map simplification for four variables 

Reductions could be done with Boolean algebra. However, the 
Karnaugh map is faster and easier, especially if there are many 
logic reductions to do. 

Karnaugh maps: Complete Simplification Process 

1. Draw out the pattern of output 1’s and 0’s in a matrix of input 
values 

2. Construct the K map and place 1s and 0s in the squares 
according to the truth table. 

3. Group the isolated 1s which are not adjacent to any other 1s. 

(single loops) 

4. Group any pair which contains a 1 adjacent to only one other 1. 
(double loops) 



5. Group any quad that contains one or more 1s that have not 
already been grouped, making       

    sure to use the minimum number of groups. 

6. Group any pairs necessary to include any 1s that have not yet 
been grouped, making sure to  

    use the minimum number of groups. 

7. Form the OR sum of all the terms generated by each group. 

Compared to the algebraic method, the K-map process is a more 
orderly process requiring fewer steps and always 

producing a minimum expression. It must be noted that the 
minimum expression is generally NOT unique. 

  

1.4 Combinational Logic Circuits 

Combinational circuit is a circuit in which we combine the 
different gates in the circuit, for example encoder, decoder, 
multiplexer and demultiplexer. Some of the characteristics of 
combinational circuits are following − 

 The output of combinational circuit at any instant of time, 
depends only on the levels present at input terminals. 

 The combinational circuit do not use any memory. The 
previous state of input does not have any effect on the 
present state of the circuit. 

 A combinational circuit can have an n number of inputs 
and m number of outputs. 



 

Fig: 1.17 Combinational circuit 

1.4.1 Half Adder 

Half adder is a combinational logic circuit with two inputs and two 
outputs. The half adder circuit is designed to add two single bit 
binary number A and B. It is the basic building block for addition 
of two single bit numbers. This circuit has two 
outputs carry and sum. 

Block diagram: 

 
Fig: 1.18 Half Adder 



 
 

Table: 1.12 Truth table for half adder 

 

Circuit Diagram 

 

Fig: 1.19  Circuit diagram for half adder 

1.4.2 Full Adder 

Full adder is developed to overcome the drawback of Half Adder 
circuit. It can add two one-bit numbers A and B, and carry c. The 
full adder is a three input and two output combinational circuit. 

Block diagram: 



 
 

 Fig: 1.20 Full Adder 

                            
 

Table: 1.13 Truth table for Full adder 

 

 

 

 

 



Circuit Diagram 

 

Fig: 1.21 Circuit diagram for Full adder 

1.4.3 N-Bit Parallel Adder 

The Full Adder is capable of adding only two single digit 
binary number along with a carry input. But in practical we need 
to add binary numbers which are much longer than just one bit. 
To add two n-bit binary numbers we need to use the n-bit parallel 
adder. It uses a number of full adders in cascade. The carry 
output of the previous full adder is connected to carry input of the 
next full adder. 

1.4.4 A 4 Bit Parallel Adder 

In the block diagram, A0 and B0 represent the LSB of the four 
bit words A and B. Hence Full Adder-0 is the lowest stage. Hence its 
Cin has been permanently made 0. The rest of the connections are 
exactly same as those of n-bit parallel adder is shown in fig. The four 

bit parallel adder is a very common logic circuit. 



Block diagram: 

 

Fig: 1.22 A 4bit parallel adder 

1.4.5 Multiplexers 

Multiplexer is a special type of combinational circuit. There 
are n-data inputs, one output and m select inputs with 2m = n. It 
is a digital circuit which selects one of the n data inputs and 
routes it to the output. The selection of one of the n inputs is done 
by the selected inputs. Depending on the digital code applied at 
the selected inputs, one out of n data sources is selected and 
transmitted to the single output Y. E is called the strobe or enable 
input which is useful for the cascading. It is generally an active 
low terminal that means it will perform the required operation 
when it is low. 

 

 

 

 

 



Block diagram: 

 
Fig: 1.23 An n:1 multiplexer 

Block Diagram:  

 
Fig:1.24 A 2:1 multiplexer 



 

 

Table: 1.14  

1.4.6 Demultiplexers:  

A demultiplexer performs the reverse operation of a 
multiplexer i.e. it receives one input and distributes it over several 
outputs. It has only one input, n outputs, m select input. At a time 
only one output line is selected by the select lines and the input is 
transmitted to the selected output line. A de-multiplexer is 
equivalent to a single pole multiple way switch as shown in fig. 

 

Block diagram: 

 
Fig:1.25 A 1:2 demultiplexer 



 

Truth Table 

 

       Table: 1.15 

1.5 Flip flops 

In electronics, a flip-flop or latch is a circuit that has two stable 

states and can be used to store state information. A flip-flop is 
a bistable multivibrator. The circuit can be made to change state 
by signals applied to one or more control inputs and will have one 
or two outputs. It is the basic storage element in sequential logic. 
Flip-flops and latches are a fundamental building block of digital 
electronics systems used in computers, communications, and 
many other types of systems. 

Flip-flops and latches are used as data storage elements. 
A flip-flop stores a single bit (binary digit) of data; one of its two 

states represents a "one" and the other represents a "zero". Such 
data storage can be used for storage of state, and such a circuit is 
described as sequential logic. When used in a finite-state 
machine, the output and next state depend not only on its current 
input, but also on its current state (and hence, previous inputs). It 
can also be used for counting of pulses, and for synchronizing 
variably-timed input signals to some reference timing signal. 

https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Bistable_multivibrator
https://en.wikipedia.org/wiki/Sequential_logic
https://en.wikipedia.org/wiki/Digital_electronics
https://en.wikipedia.org/wiki/Digital_electronics
https://en.wikipedia.org/wiki/Binary_digit
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Sequential_logic
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine


Flip-flops can be either simple (transparent or opaque) 
or clocked (synchronous or edge-triggered). Although the term 
flip-flop has historically referred generically to both simple and 
clocked circuits, in modern usage it is common to reserve the 
term flip-flop exclusively for discussing clocked circuits; the simple 
ones are commonly called latches. 

1.5.1 SR Flip-Flop 

The SR flip-flop, also known as a SR Latch, can be considered 

as one of the most basic sequential logic circuit possible. This 
simple flip-flop is basically a one-bit memory bistable device that 
has two inputs, one which will “SET” the device (meaning the 
output = “1”), and is labelled S and another which will “RESET” the 
device (meaning the output = “0”), labelled R. 

Then the SR description stands for “Set-Reset”. The reset 
input resets the flip-flop back to its original state with an 
output Q that will be either at a logic level “1” or logic “0” 
depending upon this set/reset condition. 

A basic NAND gate SR flip-flop circuit provides feedback 
from both of its outputs back to its opposing inputs and is 
commonly used in memory circuits to store a single data bit. Then 
the SR flip-flop actually has three inputs, Set, Reset and its 
current output Q relating to it’s current state or history. The term 
“Flip-flop” relates to the actual operation of the device, as it can be 
“flipped” into one logic Set state or “flopped” back into the 
opposing logic Reset state. 

1.5.2 The NAND Gate SR Flip-Flop 

The simplest way to make any basic single bit set-reset SR flip-
flop is to connect together a pair of cross-coupled 2-
input NAND gates as shown, to form a Set-Reset Bistable also 
known as an active LOW SR NAND Gate Latch, so that there is 
feedback from each output to one of the other NANDgate inputs. 
This device consists of two inputs, one called the Set, S and the 

https://en.wikipedia.org/wiki/Clock_signal


other called the Reset,R with two corresponding outputs Q and its 

inverse or complement Q (not-Q) as shown below. 

The Basic SR Flip-flop 

 

Fig:1.27 SR Flip-flop 

 

The Set State 

Consider the circuit shown above. If the input R is at logic level “0” 
(R = 0) and input S is at logic level “1” (S = 1), 
the NAND gate Y  has at least one of its inputs at logic “0” 

therefore, its output Q must be at a logic level “1” (NAND Gate 
principles). Output Q is also fed back to input “A” and so both 
inputs to NAND gate X are at logic level “1”, and therefore its 

output Q must be at logic level “0”. 

Again NAND gate principals. If the reset input R changes state, 
and goes HIGH to logic “1” with Sremaining HIGH also at logic 
level “1”, NAND gate Y inputs are now R = “1” and B = “0”. Since 

one of its inputs is still at logic level “0” the output at Q still 
remains HIGH at logic level “1” and there is no change of state. 
Therefore, the flip-flop circuit is said to be “Latched” or “Set” 
with Q = “1” and Q = “0”. 



Reset State 

In this second stable state, Q is at logic level “0”, (not Q = “0”) its 
inverse output at Q is at logic level “1”, (Q = “1”), and is given 
by R = “1” and S = “0”. As gate X has one of its inputs at logic “0” 

its outputQ must equal logic level “1” (again NAND gate 
principles). Output Q is fed back to input “B”, so both inputs 
to NAND gate Y are at logic “1”, therefore, Q = “0”. 

If the set input, S now changes state to logic “1” with 
input R remaining at logic “1”, output Q still remains LOW at logic 
level “0” and there is no change of state. Therefore, the flip-flop 
circuits “Reset” state has also been latched and we can define this 
“set/reset” action in the following truth table. 

It can be seen that when both inputs S = “1” and R = “1” the 

outputs Q and Q can be at either logic level “1” or “0”, depending 

upon the state of the inputs S or R BEFORE this input condition 

existed. Therefore the condition of S = R = “1” does not change 

the state of the outputs Q and Q. 

 

 

 

 

 

 

 



Truth Table for this Set-Reset Function 

 

State S R Q Q Description 

Set 

1 0 0 1 Set Q » 1 

1 1 0 1 no change 

Reset 

0 1 1 0 Reset Q » 0 

1 1 1 0 no change 

Invalid 0 0 1 1 Invalid Condition 

 

Table: 1.16 

However, the input state of S = “0” and R = “0” is an undesirable 

or invalid condition and must be avoided. The condition of S = R = 

“0” causes both outputs Q and Q to be HIGH together at logic 

level “1” when we would normally want Q to be the inverse of Q. 

The result is that the flip-flop looses control of Q and Q, and if the 

two inputs are now switched “HIGH” again after this condition to 

logic “1”, the flip-flop becomes unstable and switches to an 

unknown data state based upon the unbalance as shown in the 

following switching diagram. 

 

 



1.5.2 The D-type Flip Flop 

One of the main disadvantages of the basic SR NAND 
Gate bistable circuit is that the indeterminate input condition of 
“SET” = logic “0” and “RESET” = logic “0” is forbidden. This state 
will force both outputs to be at logic “1”, over-riding the feedback 
latching action and whichever input goes to logic level “1” first will 
lose control, while the other input still at logic “0” controls the 
resulting state of the latch. 

But in order to prevent this from happening an inverter can 
be connected between the “SET” and the “RESET” inputs to 
produce another type of flip flop circuit known as a Data 
Latch, Delay flip flop, D-type Bistable, D-type Flip Flop or just 
simply a D Flip Flop as it is more generally called. 

The D Flip Flop is by far the most important of the Clocked 
Flip-flops as it ensures that ensures that inputs S and R are never 
equal to one at the same time. The D-type flip flop are constructed 
from a gated SR flip-flop with an inverter added between 
the S and the R inputs to allow for a single D(data) input. 

Then this single data input, labelled D, is used in place of 
the “set” signal, and the inverter is used to generate the 
complementary “reset” input thereby making a level-sensitive D-
type flip-flop from a level-sensitive RS-latch as now S = D and R = 
not D as shown. 

D-type Flip-Flop Circuit 

http://www.electronics-tutorials.ws/sequential/seq_1.html
http://www.electronics-tutorials.ws/sequential/seq_1.html
http://amazon.in/s/?field-keywords=Sequential+Logic%3A+Analysis+and+Synthesis
http://amazon.in/s/?field-keywords=Sequential+Logic%3A+Analysis+and+Synthesis


 

 

Fig: 1.28 D-type Flip-flop 

 

 We remember that a simple SR flip-flop requires two inputs, one 
to “SET” the output and one to “RESET” the output. By connecting 
an inverter (NOT gate) to the SR flip-flop we can “SET” and 
“RESET” the flip-flop using just one input as now the two input 
signals are complements of each other. This complement avoids 
the ambiguity inherent in the SR latch when both inputs are LOW, 
since that state is no longer possible. 

Thus this single input is called the “DATA” input. If this data 
input is held HIGH the flip flop would be “SET” and when it is LOW 
the flip flop would change and become “RESET”. However, this 
would be rather pointless since the output of the flip flop would 
always change on every pulse applied to this data input. 

To avoid this an additional input called the “CLOCK” or 
“ENABLE” input is used to isolate the data input from the flip flop’s 
latching circuitry after the desired data has been stored. The effect 
is that D input condition is only copied to the output Q when the 
clock input is active. This then forms the basis of another 
sequential device called a D Flip Flop. 



The “D flip flop” will store and output whatever logic level is 
applied to its data terminal so long as the clock input is HIGH. 
Once the clock input goes LOW the “set” and “reset” inputs of the 
flip-flop are both held at logic level “1” so it will not change state 
and store whatever data was present on its output before the 
clock transition occurred. In other words the output is “latched” at 
either logic “0” or logic “1”. 

Truth Table for the D-type Flip Flop 

Clk D Q Q Description 

↓ » 0 X Q Q 
Memory 

no change 

↑ » 1 0 0 1 Reset Q » 0 

↑ » 1 1 1 0 Set Q » 1 

 

Table: 1.17 

Note that: ↓ and ↑ indicates direction of clock pulse as it is 

assumed D-type flip flops are edge triggered 

1.5.3 The JK Flip Flop 

This simple JK flip Flop is the most widely used of all the flip-flop 

designs and is considered to be a universal flip-flop circuit. The 

sequential operation of the JK flip flop is exactly the same as for 

the previous SR flip-flop with the same “Set” and “Reset” inputs. 

The difference this time is that the “JK flip flop” has no invalid or 

forbidden input states of the SR Latch even when S and R are 

both at logic “1”. 



The JK flip flop is basically a gated SR Flip-flop with the addition 

of a clock input circuitry that prevents the illegal or invalid output 

condition that can occur when both inputs S and R are equal to 

logic level “1”. Due to this additional clocked input, a JK flip-flop 

has four possible input combinations, “logic 1”, “logic 0”, “no 

change” and “toggle”. The symbol for a JK flip flop is similar to that 

of an SR Bistable Latch as seen in the previous tutorial except for 

the addition of a clock input. 

The Basic JK Flip-flop 

 

Fig: 1.28 J-K Flip-flop 

Both the S and the R inputs of the previous SR bistable have now 
been replaced by two inputs called the J and K inputs, 
respectively after its inventor Jack Kilby. Then this equates 
to: J = S and K = R. 

The two 2-input AND gates of the gated SR bistable have 
now been replaced by two 3-input NAND gates with the third input 
of each gate connected to the outputs at Q and Q. This cross 
coupling of the SR flip-flop allows the previously invalid condition 
of S = “1” and R = “1” state to be used to produce a “toggle action” 
as the two inputs are now interlocked. 

http://amazon.in/s/?field-keywords=Sequential+Logic%3A+Analysis+and+Synthesis
http://www.electronics-tutorials.ws/sequential/seq_1.html


If the circuit is now “SET” the J input is inhibited by the “0” 
status of Q through the lower NAND gate. If the circuit is “RESET” 
the K input is inhibited by the “0” status of Q through the 
upper NAND gate. As Q and Q are always different we can use 
them to control the input. When both inputs J and K are equal to 
logic “1”, the JK flip flop toggles as shown in the following truth 
table. 

Table: 1.18 The Truth Table for the JK Function 

same as 

for the 

SR Latch 

Input Output 

Description 

J K Q Q 

0 0 0 0 
Memory 

no change 
0 0 0 1 

0 1 1 0 

Reset Q » 0 

0 1 0 1 

1 0 0 1 

Set Q » 1 

1 0 1 0 

toggle 

action 

1 1 0 1 

Toggle 

1 1 1 0 

 



Then the JK flip-flop is basically an SR flip flop with feedback 
which enables only one of its two input terminals, either SET or 
RESET to be active at any one time thereby eliminating the invalid 
condition seen previously in the SR flip flop circuit. Also when both 
the J and the K inputs are at logic level “1” at the same time, and 
the clock input is pulsed either “HIGH”, the circuit will “toggle” from 
its SET state to a RESET state, or visa-versa. This results in the 
JK flip flop acting more like a T-type toggle flip-flop when both 
terminals are “HIGH”. 

1.5.4 T Flip-flop 

This Flip-flop is obtained from JK type when J and K are 
connected to provide a single input designated by T, Hence the T 
Flip-flop has only two conditions 

When T = 0 (J=K=0), the clock transition does not change the 
state of the Flip-flop. 

When T = 1 (J=K=1), the clock transition complements the state of 
the Flip-flop. And the conditiond can be expressed as:  

    Q(t+1)= Q(t) +o T 

Edge Triggered Flip-flops  

Edge triggered flip flops are most commonly used to 
synchronizethe state change duringa clock pulse transition. In this 
type of flip flopsoutput transitions occur at a specific level of the 
clock pulse. Whenever the pulse input levels exceeds the 
threshold level the inputs are locked out so that the flip flop is 
unresponsive to further changes in inputs until clock pulse returns 
to 0 and another pulse occurs 

Master – slave Flip-flop 

Another type of flip- flops known as master- slave flip flops are 
used in some systems. Here the circuits consist of two flip- flops, 



the first is the master and the second is the slave. The master 
responds to positive level of the clock and the slave responds to 
negative level of the clock. Here the output changes during the 1-
to-0 transition of clock signal. 

1.6 Sequential Logic Circuits 

A circuit with interconnection of flip-flops and gates is called a 
sequential circuit. The combinational circuit consists of gates but 
when included with flip-flops the circuit is termed as sequential 
circuit. 

sequential logic is a type of logic circuit whose output 
depends not only on the present value of its input signals but on 
the sequence of past inputs, the input history. This is in contrast 
to combinational logic, whose output is a function of only the 
present input. That is, sequential logic has state (memory) while 

combinational logic does not. Or, in other words, sequential logic 
is combinational logic with memory. 

Sequential logic is used to construct finite state machines, 
a basic building block in all digital circuitry, as well as memory 
circuits and other devices. Virtually all circuits in practical digital 
devices are a mixture of combinational and sequential logic. 

In other words, the output state of a “sequential logic circuit” is a 
function of the following three states, the “present input”, the “past 
input” and/or the “past output”. Sequential Logic circuitsremember 

these conditions and stay fixed in their current state until the next 
clock signal changes one of the states, giving sequential logic 
circuits “Memory”. 

https://en.wikipedia.org/wiki/Digital_signal
https://en.wikipedia.org/wiki/Combinational_logic
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Finite_state_machine


 

Fig: 1.29 Example sequential circuit 

1.6.1 State Tables and State Diagrams 

We have examined a general model for sequential circuits. 
In this model the effect of all previous inputs on the outputs is 
represented by a state of the circuit. Thus, the output of the circuit 
at any time depends upon its current state and the input. These 
also determine the next state of the circuit. The relationship that 
exists among the inputs, outputs, present states and next states 
can be specified by either the state table or the state diagram. 

State Table 

The state table representation of a sequential circuit consists of 
three sections labelled present state, next state and output. The 

present state designates the state of flip-flops before the 
occurrence of a clock pulse. The next state shows the states of 
flip-flops after the clock pulse, and the output section lists the 
value of the output variables during the present state. 



State Diagram 

In addition to graphical symbols, tables or equations, flip-flops can 
also be represented graphically by a state diagram. In this 
diagram, a state is represented by a circle, and the transition 
between states is indicated by directed lines (or arcs) connecting 
the circles. An example of a state diagram is shown in Figure 3 
below. 

 

Fig: 1.30 State Diagram 

The binary number inside each circle identifies the state the circle 
represents. The directed lines are labelled with two binary 
numbers separated by a slash (/). The input value that causes the 
state transition is labelled first. The number after the slash symbol 
/ gives the value of the output. For example, the directed line from 
state 00 to 01 is labelled 1/0, meaning that, if the sequential circuit 
is in a present state and the input is 1, then the next state is 01 
and the output is 0. If it is in a present state 00 and the input is 0, it 



will remain in that state. A directed line connecting a circle with 
itself indicates that no change of state occurs. The state diagram 
provides exactly the same information as the state table and is 
obtained directly from the state table. 

Consider a sequential circuit shown in Figure 4. It has one input x, 
one output Z and two state variables Q1Q2 (thus having four 
possible present states 00, 01, 10, 11). 

 

Fig:1.31  A Sequential Circuit 

The behaviour of the circuit is determined by the following 
Boolean expressions: 

 Z = x*Q1 

 D1 = x' + Q1 

 D2 = x*Q2' + x'*Q1' 

These equations can be used to form the state table. Suppose the 
present state (i.e. Q1Q2) = 00 and input x = 0. Under these 



conditions, we get Z = 0, D1 = 1, and D2 = 1. Thus the next state 
of the circuit D1D2 = 11, and this will be the present state after the 
clock pulse has been applied. The output of the circuit 
corresponding to the present state Q1Q2 = 00 and x = 1 is Z = 0. 
This data is entered into the state table as shown in Table 

Present 

State 

Q1Q2 
 

Next State 

x = 0 x = 1 
 

Output 

x = 0 x = 1 
 

0 0 

0 1 

1 0 

1 1 
 

1 1 0 1 

1 1 0 0 

1 0 1 1 

1 0 1 0 
 

0 0 

0 0 

0 1 

0 1 
 

 

 

Table: 1.19 State table for the sequential 

circuit in Figure 1.31s 

 

 

 

 

 

 

 

 

 



The state diagram for the sequential circuit in Figure 1.31 is 

 
Fig: 1.32. State Diagram of circuit in Fig: 1.31  

 

 

 

 

 

 

 

 

 



State Diagrams of Various Flip-flops: 

NAME STATE DIAGRAM 

SR 

 

JK 

 

D 

 

T 

 

 
Table: 1.20. State diagrams of the four types of flip-flops. 

 



You can see from the table that all four flip-flops have the 
same number of states and transitions. Each flip-flop is in the set 
state when Q=1 and in the reset state when Q=0. Also, each flip-
flop can move from one state to another, or it can re-enter the 
same state. The only difference between the four types lies in the 
values of input signals that cause these transitions. 

A state diagram is a very convenient way to visualise the 
operation of a flip-flop or even of large sequential components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 

Digital Components 

2.1 Integrated Circuits 

An integrated circuit (IC), sometimes called a chip or microchip, is 

a semiconductor wafer on which thousands or millions of tiny 
resistors, capacitors, and transistors are fabricated. An IC can 
function as an amplifier, oscillator, timer, counter, 
computer memory, or microprocessor. A particular IC is 
categorized as either linear (analog) or digital, depending on its 
intended application. 

Linear ICs have continuously variable output (theoretically 
capable of attaining an infinite number of states) that depends on 
the input signal level. As the term implies, the output signal level is 
a linear function of the input signal level. Ideally, when the 
instantaneous output is graphed against the instantaneous input, 
the plot appears as a straight line. Linear ICs are used as audio-
frequency (AF) and radio-frequency (RF) amplifiers. 
The operational amplifier(op amp) is a common device in these 

applications. 

Digital ICs operate at only a few defined levels or states, 

rather than over a continuous range of signal amplitudes. These 
devices are used in computers, computer networks, modems, and 
frequency counters. The fundamental building blocks of digital ICs 
are logic gates, which work with binary data, that is, signals that 
have only two different states, called low (logic 0) and high (logic 
1). 

Integrated circuits are used in virtually all electronic equipment 
today and have revolutionized the world 
of electronics. Computers, mobile phones, and other digital home 
appliances are now inextricable parts of the structure of modern 
societies, made possible by the low cost of integrated circuits. 

http://searchcio-midmarket.techtarget.com/definition/microchip
http://searchcio-midmarket.techtarget.com/definition/semiconductor
http://searchcio-midmarket.techtarget.com/definition/transistor
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In the early days of simple integrated circuits, the 
technology's large scale limited each chip to only a few transistors, 
and the low degree of integration meant the design process was 
relatively simple. Manufacturing yields were also quite low by 
today's standards. As the technology progressed, millions, then 
billions[17] of transistors could be placed on one chip, and good 
designs required thorough planning, giving rise to new design 
methods. 

The first integrated circuits contained only a few 
transistors. Early digital circuits containing tens of transistors 
provided a few logic gates, and early linear ICs had as few as two 
transistors. The number of transistors in an integrated circuit has 
increased dramatically since then. The term "large scale 
integration" (LSI) was first used by IBM scientist Rolf 
Landauer when describing the theoretical concept that term gave 
rise to the terms "small-scale integration" (SSI), "medium-scale 
integration" (MSI), "very-large-scale integration" (VLSI), and "ultra-
large-scale integration" (ULSI). The early integrated circuits were 
SSI. 

SSI circuits were crucial to early aerospace projects, and 
aerospace projects helped inspire development of the 
technology. Integrated circuits began to appear in consumer 
products by the turn of the decade, a typical application 
being FM inter-carrier sound processing in television receivers. 

The first MOS chips were small-scale integrated chips 
for NASA satellites. 

The next step in the development of integrated circuits, 
taken in the late 1960s, introduced devices which contained 
hundreds of transistors on each chip, called "medium-scale 
integration" (MSI). 

In 1964, Frank Wanlass demonstrated a single-chip 16-bit 
shift register he designed, with an incredible (for the time) 120 
transistors on a single chip. 

https://en.wikipedia.org/wiki/Integrated_circuit#cite_note-17
https://en.wikipedia.org/wiki/Y_diagram
https://en.wikipedia.org/wiki/Y_diagram
https://en.wikipedia.org/wiki/IBM
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https://en.wikipedia.org/wiki/NASA
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Name Signification Year 
Number of 

transistors 

Number of 

logic gates 

SSI 
small-scale 

integration 
1964 1 to 10 1 to 12 

MSI 
medium-scale 

integration 
1968 10 to 500 13 to 99 

LSI 
large-scale 

integration 
1971 500 to 20,000 100 to 9,999 

VLSI 
very large-scale 

integration 
1980 

20,000 to 

1,000,000 

10,000 to 

99,999 

ULSI 
ultra-large-scale 

integration 
1984 

1,000,000 and 

more 

100,000 and 

more 

Table: 2.1 

MSI devices were attractive economically because while they cost 
little more to produce than SSI devices, they allowed more 
complex systems to be produced using smaller circuit boards, less 
assembly work (because of fewer separate components), and a 
number of other advantages. 



Further development, driven by the same economic factors, led to 
"large-scale integration" (LSI) in the mid-1970s, with tens of 
thousands of transistors per chip. 

SSI and MSI devices often were manufactured by masks created 
by hand-cutting Rubylith; an engineer would inspect and verify the 
completeness of each mask. LSI devices contain so many 
transistors, interconnecting wires, and other features that it is 
considered impossible for a human to check the masks or even do 
the original design entirely by hand; the engineer depends on 
computer programs and other hardware aids to do most of this 
work.[24] 

Integrated circuits such as 1K-bit RAMs, calculator chips, and the 
first microprocessors, that began to be manufactured in moderate 
quantities in the early 1970s, had under 4000 transistors. True LSI 
circuits, approaching 10,000 transistors, began to be produced 
around 1974, for computer main memories and second-generation 
microprocessors. 

2.1.1 VLSI 

The final step in the development process, starting in the 1980s 
and continuing through the present, was "very-large-scale 
integration" (VLSI). The development started with hundreds of 
thousands of transistors in the early 1980s, and continues beyond 
several billion transistors as of 2009. 

Multiple developments were required to achieve this 
increased density. Manufacturers moved to smaller design rules 
and cleaner fabrication facilities, so that they could make chips 
with more transistors and maintain adequate yield. The path of 
process improvements was summarized by the International 
Technology Roadmap for Semiconductors (ITRS). Design 
tools improved enough to make it practical to finish these designs 
in a reasonable time. The more energy-
efficient CMOS replaced NMOS and PMOS, avoiding a prohibitive 
increase in power consumption. 
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In 1986 the first one-megabit RAM chips were introduced, 
containing more than one million transistors. Microprocessor chips 
passed the million-transistor mark in 1989 and the billion-transistor 
mark in 2005. The trend continues largely unabated, with chips 
introduced in 2007 containing tens of billions of memory 
transistors. 

2.1.2 ULSI, WSI, SOC and 3D-IC 

To reflect further growth of the complexity, the term ULSI that 

stands for "ultra-large-scale integration" was proposed for chips of 
more than 1 million transistors.[27] 

Wafer-scale integration (WSI) is a means of building very 
large integrated circuits that uses an entire silicon wafer to 
produce a single "super-chip". Through a combination of large size 
and reduced packaging, WSI could lead to dramatically reduced 
costs for some systems, notably massively parallel 
supercomputers. The name is taken from the term Very-Large-
Scale Integration, the current state of the art when WSI was being 
developed.[28] 

A system-on-a-chip (SoC or SOC) is an integrated circuit in 
which all the components needed for a computer or other system 
are included on a single chip. The design of such a device can be 
complex and costly, and building disparate components on a 
single piece of silicon may compromise the efficiency of some 
elements. However, these drawbacks are offset by lower 
manufacturing and assembly costs and by a greatly reduced 
power budget: because signals among the components are kept 
on-die, much less power is required (see Packaging).[29] 

A three-dimensional integrated circuit (3D-IC) has two or 
more layers of active electronic components that are integrated 
both vertically and horizontally into a single circuit. Communication 
between layers uses on-die signaling, so power consumption is 
much lower than in equivalent separate circuits. Judicious use of 
short vertical wires can substantially reduce overall wire length for 
faster operation. 
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2.2 Decoders 

The Binary Decoder is another combinational logic circuit 
constructed from individual logic gates and is the exact opposite to 
that of an “Encoder” we looked at in the last tutorial. The name 
“Decoder” means to translate or decode coded information from 
one format into another, so a digital decoder transforms a set of 
digital input signals into an equivalent decimal code at its output. 

Binary Decoders are another type of Digital Logic device 
that has inputs of 2-bit, 3-bit or 4-bit codes depending upon the 
number of data input lines, so a decoder that has a set of two or 
more bits will be defined as having an n-bit code, and therefore it 

will be possible to represent 2n possible values. Thus, a decoder 
generally decodes a binary value into a non-binary one by setting 
exactly one of its n outputs to logic “1”. 

If a binary decoder receives n inputs (usually grouped as a 
single Binary or Boolean number) it activates one and only one of 
its 2n outputs based on that input with all other outputs 
deactivated. 

 

 

Fig: 2.1 

So for example, an inverter ( NOT-gate ) can be classed as a 1-to-
2 binary decoder as 1-input and 2-outputs (21) is possible because 
with an input Ait can produce two outputs A and A (not-A) as 
shown. 

Then we can say that a standard combinational logic 
decoder is an n-to-mdecoder, where m ≤ 2n, and whose 

http://amazon.in/s/?field-keywords=Fundamentals+of+Digital+Logic
http://www.electronics-tutorials.ws/logic/logic_4.html


output, Q is dependent only on its present input states. In other 
words, a binary decoder looks at its current inputs, determines 
which binary code or binary number is present at its inputs and 
selects the appropriate output that corresponds to that binary 
input. 

A Binary Decoder converts coded inputs into coded outputs, 
where the input and output codes are different and decoders are 
available to “decode” either a Binary or BCD (8421 code) input 
pattern to typically a Decimal output code. Commonly available 
BCD-to-Decimal decoders include the TTL 7442 or the CMOS 
4028. Generally a decoders output code normally has more bits 
than its input code and practical “binary decoder” circuits include, 
2-to-4, 3-to-8 and 4-to-16 line configurations. 

An example of a 2-to-4 line decoder: 

 

 

Fig: 2.2 



 

   Fig: 2.3                                    Table: 2.2 

This simple example above of a 2-to-4 line binary decoder 
consists of an array of four AND gates. The 2 binary inputs 
labelled A and B are decoded into one of 4 outputs, hence the 
description of 2-to-4 binary decoder. Each output represents one 
of the miniterms of the 2 input variables, (each output = a 
miniterm). 

The binary inputs A and B determine which output line 
from Q0 to Q3 is “HIGH” at logic level “1” while the remaining 
outputs are held “LOW” at logic “0” so only one output can be 
active (HIGH) at any one time. Therefore, whichever output line is 
“HIGH” identifies the binary code present at the input, in other 
words it “de-codes” the binary input. 

Some binary decoders have an additional input pin 
labelled “Enable” that controls the outputs from the device. This 
extra input allows the decoders outputs to be turned “ON” or 
“OFF” as required. These types of binary decoders are commonly 
used as “memory address decoders” in microprocessor memory 
applications. 

We can say that a binary decoder is a demultiplexer with 
an additional data line that is used to enable the decoder. An 
alternative way of looking at the decoder circuit is to regard 
inputs A, B and C as address signals. Each combination 
of A, B or C defines a unique memory address. 



We have seen that a 2-to-4 line binary decoder (TTL 
74155) can be used for decoding any 2-bit binary code to provide 
four outputs, one for each possible input combination. However, 
sometimes it is required to have a Binary Decoder with a number 
of outputs greater than is available, so by adding more inputs, the 
decoder can potentially provide 2n more outputs. 

 

 

Fig: 2.4 

So for example, a decoder with 3 binary inputs ( n = 3 ), would 
produce a 3-to-8 line decoder (TTL 74138) and 4 inputs ( n = 4 ) 
would produce a 4-to-16 line decoder (TTL 74154) and so on. But 
a decoder can also have less than 2n outputs such as the BCD to 
seven-segment decoder (TTL 7447) which has 4 inputs and only 7 
active outputs to drive a display rather than the full 16 (24) outputs 
as you would expect. 

 Here a much larger 4 (3 data plus 1 enable) to 16 line 
binary decoder has been implemented using two smaller 3-to-8 
decoders. 

 

 



A 4-to-16 Binary Decoder Configuration. 

 

Fig: 2.5 

Inputs A, B, C are used to select which output on either decoder 

will be at logic “1” (HIGH) and input D is used with the enable 

input to select which encoder either the first or second will output 

the “1”. 

However, there is a limit to the number of inputs that can 

be used for one particular decoder, because as n increases, the 

number of AND gates required to produce an output also 

becomes larger resulting in the fan-out of the gates used to drive 

them becoming large.This type of active-“HIGH” decoder can be 

implemented using just Inverters, ( NOT Gates ) and AND gates. It 

is convenient to use an AND gate as the basic decoding element 

for the output because it produces a “HIGH” or logic “1” output 



only when all of its inputs are logic “1”.But some binary decoders 

are constructed using NAND gates instead of AND gates for their 

decoded output, since NAND gates are cheaper to produce 

than AND’s as they require fewer transistors to implement within 

their design.The use of NAND gates as the decoding element, 

results in an active-“LOW” output while the rest will be “HIGH”. As 

a NAND gate produces the AND operation with an inverted output, 

the NAND decoder looks like this with its inverted truth table. 

2-to-4 Line NAND Binary Decoder

 

Fig: 2.6 

 

Table: 2.3 



Then for the NAND decoder, only one output can be LOW and 
equal to logic “0” at any given time, with all the other outputs being 
HIGH at logic “1”. 

Decoders are also available with an additional “Enable” input pin 
which allows the decoded output to be turned “ON” or “OFF” by 
applying a logic “1” or logic “0” respectively to it. So for example, 
when the enable input is at logic level “0”, (EN = 0) all outputs are 
“OFF” at logic “0” (for AND gates) regardless of the state of the 
inputs A and B. 

Generally to implement this enabling function the 2-
input AND or NAND gates are replaced with 3-
input AND or NAND gates. The additional input pin represents the 
enable function. 

2.3 Multiplexers 

Multiplexing is the generic term used to describe the operation of 
sending one or more analogue or digital signals over a common 
transmission line at different times or speeds and as such, the 
device we use to do just that is called a Multiplexer. 

The multiplexer, shortened to “MUX” or “MPX”, is a 

combinational logic circuit designed to switch one of several input 
lines through to a single common output line by the application of 
a control signal. Multiplexers operate like very fast acting multiple 
position rotary switches connecting or controlling multiple input 
lines called “channels” one at a time to the output. 

Multiplexers, or MUX’s, can be either digital circuits made 
from high speed logic gates used to switch digital or binary data or 
they can be analogue types using transistors, MOSFET’s or relays 
to switch one of the voltage or current inputs through to a single 
output. 

The most basic type of multiplexer device is that of a one-
way rotary switch as shown. 

http://amazon.in/s/?field-keywords=Digital+Fundamentals


Generally, the selection of each input line in a multiplexer 
is controlled by an additional set of inputs called control lines and 

according to the binary condition of these control inputs, either 
“HIGH” or “LOW” the appropriate data input is connected directly 
to the output. Normally, a multiplexer has an even number of 
2N data input lines and a number of “control” inputs that 
correspond with the number of data inputs. 

Note that multiplexers are different in operation 
to Encoders. Encoders are able to switch an n-bit input pattern to 
multiple output lines that represent the binary coded (BCD) output 
equivalent of the active input. We can build a simple 2-line to 1-
line (2-to-1) multiplexer from basic logic NAND gates as shown. 

 

 Fig: 2.7     Table: 2.4 

The input A of this simple 2-1 line multiplexer circuit constructed 
from standard NAND gates acts to control which input ( I0 or I1 ) 
gets passed to the output at Q. 



From the truth table above, we can see that when the data select 
input, A is LOW at logic 0, input I1passes its data through 
the NAND gate multiplexer circuit to the output, while input I0 is 
blocked. When the data select A is HIGH at logic 1, the reverse 
happens and now input I0 passes data to the output Q while 
input I1 is blocked. 

So by the application of either a logic “0” or a logic “1” at A we can 
select the appropriate input, I0 orI1 with the circuit acting a bit like a 
single pole double throw (SPDT) switch. Then in this simple 
example, the 2-input multiplexer connects one of two 1-bit sources 
to a common output, producing a 2-to-1-line multiplexer and we 
can confirm this in the following Boolean expression. 

Q = A.I0.I1 + A.I0.I1 + A.I0.I1 + A.I0.I1 

and for our 2-input multiplexer circuit above, this can be simplified 
too: 

Q = A.I1 + A.I0 

We can increase the number of data inputs to be selected further 
simply by following the same procedure and larger multiplexer 
circuits can be implemented using smaller 2-to-1 multiplexers as 
their basic building blocks. So for a 4-input multiplexer we would 
therefore require two data select lines as 4-inputs 
represents 22 data control lines give a circuit with four 
inputs, I0, I1, I2, I3 and two data select lines A and B as shown. 

 

 

 

 



4-to-1 Channel Multiplexer 

 

 

 Fig: 2.8     Table: 2.4 

The Boolean expression for this 4-to-1 Multiplexer above with 

inputs A to D and data select lines a, b is given as: 

Q = abA + abB + abC + abD 



In this example at any one instant in time only ONE of the four 
analogue switches is closed, connecting only one of the input 
lines A to D to the single output at Q. As to which switch is closed 
depends upon the addressing input code on lines “a” and “b“, so 
for this example to select input Bto the output at Q, the binary 
input address would need to be “a” = logic “1” and “b” = logic “0”. 

Then we can show the selection of the data through the 
multiplexer as a function of the data select bits as shown. 

Multiplexer Input Line Selection 

 

 

Fig: 2.9 

Adding more control address lines will allow the multiplexer to 
control more inputs but each control line configuration will connect 
only ONE input to the output. 

Then the implementation of the Boolean expression above using 
individual logic gates would require the use of seven individual 
gates consisting of AND, OR and NOT gates as shown. 

 

 

 

 



4 Channel Multiplexer using Logic Gates 

 

    Fig: 2.10 

The symbol used in logic diagrams to identify a multiplexer is as 

follows. 

 

Fig: 2.11 

 



2.4 Registers 

Flip-flop is a 1 bit memory cell which can be used for storing the 
digital data. To increase the storage capacity in terms of number 
of bits, we have to use a group of flip-flop. Such a group of flip-flop 
is known as a Register. The n-bit register will consist of n number 
of flip-flop and it is capable of storing an n-bit word. Other than 
flip-flops registers can also have combinational gates which 
perform certain data processing tasks. The flip-flops hold the 
binary information and the combinational gates control when and 
how new information is transferred into the registers. To store N 
bits, a register must have N flip-flops, one for each bit to be 
stored. 



 

Fig: 2.13 a four bit register using D Flip-flops 

 State Diagram of circuit inIn this example, the 4-bit register is 
implemented by four D flip-flops. Note the input CLK comes from 
an AND gate that puts out the logical AND of the system clock 
(Clock) and the LOAD signal.  When LOAD is 0, the flip-flops are 
cut off from the input and do not change state in response to the 



input.  The design calls for LOAD to be 1 for almost one clock 
pulse, so that the system clock and LOAD are both high for 1/2 
clock cycle.  At this time, the register is loaded. 

 

 

Fig: 2.14 a four bit register using  

State Diagram of circuit in the figure at right shows a short-hand 
notation used when drawing registers that contain a number of 
flip-flops identically configured. It should be obvious that the figure 
represents a 4-bit register. 

2.5 Shift Registers 

The Shift Register is another type of sequential logic circuit that 
can be used for the storage or the transfer of data in the form of 
binary numbers. This sequential device loads the data present on 
its inputs and then moves or “shifts” it to its output once every 
clock cycle, hence the name “shift register”. 

A shift register basically consists of several single bit “D-
Type Data Latches”, one for each data bit, either a logic “0” or a 
“1”, connected together in a serial type daisy-chain arrangement 
so that the output from one data latch becomes the input of the 
next latch and so on. 



Data bits may be fed in or out of a shift register serially, 
that is one after the other from either the left or the right direction, 
or all together at the same time in a parallel configuration. 

The number of individual data latches required to make up 
a single Shift Register device is usually determined by the number 
of bits to be stored with the most common being 8-bits (one byte) 
wide constructed from eight individual data latches. 

Shift Registers are used for data storage or for the 

movement of data and are therefore commonly used inside 
calculators or computers to store data such as two binary 
numbers before they are added together, or to convert the data 
from either a serial to parallel or parallel to serial format. The 
individual data latches that make up a single shift register are all 
driven by a common clock ( Clk ) signal making them synchronous 
devices. 

Shift register IC’s are generally provided with 
a clear or reset connection so that they can be “SET” or “RESET” 

as required. Generally, shift registers operate in one of four 
different modes with the basic movement of data through a shift 
register being: 

 Serial-in to Parallel-out (SIPO)  -  the register is loaded with 
serial data, one bit at a time, with the stored data being 
available at the output in parallel form. 

 Serial-in to Serial-out (SISO)  -  the data is shifted serially 
“IN” and “OUT” of the register, one bit at a time in either a 
left or right direction under clock control. 

 Parallel-in to Serial-out (PISO)  -  the parallel data is loaded 
into the register simultaneously and is shifted out of the 
register serially one bit at a time under clock control. 

 Parallel-in to Parallel-out (PIPO)  -  the parallel data is 
loaded simultaneously into the register, and transferred 
together to their respective outputs by the same clock pulse. 

 



The effect of data movement from left to right through a shift 
register can be presented graphically as: 

 

Fig: 2.15.a shift register 

Also, the directional movement of the data through a shift register 
can be either to the left, (left shifting) to the right, (right shifting) 
left-in but right-out, (rotation) or both left and right shifting within 
the same register thereby making it bidirectional. In this tutorial it 

is assumed that all the data shifts to the right, (right shifting). 

 

 

 

 

 

 



2.5.1 Serial-in to Parallel-out (SIPO) Shift Register 

 

Fig: 2.16 a 4-bit Serial-in to Parallel-out Shift Register 

 

The operation is as follows. Lets assume that all the flip-
flops ( FFA to FFD ) have just been RESET ( CLEAR input ) and 
that all the outputs QA to QD are at logic level “0” ie, no parallel 
data output. 

If a logic “1” is connected to the DATA input pin 
of FFA then on the first clock pulse the output of FFA and 
therefore the resulting QA will be set HIGH to logic “1” with all the 
other outputs still remaining LOW at logic “0”. Assume now that 
the DATA input pin of FFA has returned LOW again to logic “0” 
giving us one data pulse or 0-1-0. 

The second clock pulse will change the output of FFA to 
logic “0” and the output of FFB and QB HIGH to logic “1” as its 
input D has the logic “1” level on it from QA. The logic “1” has now 
moved or been “shifted” one place along the register to the right 
as it is now at QA. 



When the third clock pulse arrives this logic “1” value 
moves to the output of FFC ( QC ) and so on until the arrival of the 
fifth clock pulse which sets all the outputs QA to QD back again to 
logic level “0” because the input to FFA has remained constant at 
logic level “0”. 

The effect of each clock pulse is to shift the data contents 
of each stage one place to the right, and this is shown in the 
following table until the complete data value of  0-0-0-1 is stored in 
the register. This data value can now be read directly from the 
outputs of QAto QD. 

2.5.2 Serial-in to Serial-out (SISO) Shift Register 

This shift register is very similar to the SIPO above, except were 
before the data was read directly in a parallel form from the 
outputs QA to QD, this time the data is allowed to flow straight 
through the register and out of the other end. Since there is only 
one output, the DATA leaves the shift register one bit at a time in 
a serial pattern, hence the name Serial-in to Serial-Out Shift 
Register or SISO.The SISO shift register is one of the simplest of 

the four configurations as it has only three connections, the serial 
input (SI) which determines what enters the left hand flip-flop, the 
serial output (SO) which is taken from the output of the right hand 
flip-flop and the sequencing clock signal (Clk). The logic circuit 
diagram below shows a generalized serial-in serial-out shift 
register. 

 

Fig: 2.17 a 4-bit Serial-in to Serial-out Shift Register 



You may think what’s the point of a SISO shift register if 
the output data is exactly the same as the input data. Well this 
type of Shift Register also acts as a temporary storage device or it 
can act as a time delay device for the data, with the amount of 
time delay being controlled by the number of stages in the 
register, 4, 8, 16 etc or by varying the application of the clock 
pulses. Commonly available IC’s include the 74HC595 8-bit 
Serial-in to Serial-out Shift Register all with 3-state outputs. 

2.5.3 Parallel-in to Serial-out (PISO) Shift Register 

The Parallel-in to Serial-out shift register acts in the opposite way 
to the serial-in to parallel-out one above. The data is loaded into 
the register in a parallel format in which all the data bits enter their 
inputs simultaneously, to the parallel input pins PA to PD of the 
register. The data is then read out sequentially in the normal shift-
right mode from the register at Q representing the data present 
atPA to PD. 

This data is outputted one bit at a time on each clock cycle 
in a serial format. It is important to note that with this type of data 
register a clock pulse is not required to parallel load the register as 
it is already present, but four clock pulses are required to unload 
the data. 

 

Fig: 2.18 a 4-bit Parallel-in to Serial-out Shift Register 

As this type of shift register converts parallel data, such as 
an 8-bit data word into serial format, it can be used to multiplex 



many different input lines into a single serial DATA stream which 
can be sent directly to a computer or transmitted over a 
communications line. Commonly available IC’s include the 
74HC166 8-bit Parallel-in/Serial-out Shift Registers. 

2.5.4 Parallel-in to Parallel-out (PIPO) Shift Register 

The final mode of operation is the Parallel-in to Parallel-out Shift 
Register. This type of shift register also acts as a temporary 
storage device or as a time delay device similar to the SISO 
configuration above. The data is presented in a parallel format to 
the parallel input pins PA to PD and then transferred together 
directly to their respective output pins QA to QA by the same clock 
pulse. Then one clock pulse loads and unloads the register. This 
arrangement for parallel loading and unloading is shown below. 

 

Fig: 2.19 a 4-bit Parallel-in to Parallel-out Shift Register 

The PIPO shift register is the simplest of the four 
configurations as it has only three connections, the parallel input 



(PI) which determines what enters the flip-flop, the parallel output 
(PO) and the sequencing clock signal (Clk). 

Similar to the Serial-in to Serial-out shift register, this type 
of register also acts as a temporary storage device or as a time 
delay device, with the amount of time delay being varied by the 
frequency of the clock pulses. Also, in this type of register there 
are no interconnections between the individual flip-flops since no 
serial shifting of the data is required. 

2.6 Binary Counters 

A counter is a device which stores (and sometimes displays) the 
number of times a particular event or process has occurred, often 
in relationship to a clock signal. The most common type is 
a sequential digital logic circuit with an input line called the "clock" 
and multiple output lines. The values on the output lines represent 
a number in the binary or BCD number system. Each pulse 
applied to the clock input increments or decrements the number in 
the counter. 

A counter circuit is usually constructed of a number of flip-
flops connected in cascade. Counters are a very widely-used 
component in digital circuits, and are manufactured as 
separate integrated circuits and also incorporated as parts of 
larger integrated circuits. 

2.6.1 Asynchronous (ripple) counter 

An asynchronous (ripple) counter is a single d-type flip-

flop, with its J (data) input fed from its own inverted output. This 

circuit can store one bit, and hence can count from zero to one 

before it overflows (starts over from 0). This counter will increment 

once for every clock cycle and takes two clock cycles to overflow, 

so every cycle it will alternate between a transition from 0 to 1 and 

a transition from 1 to 0. Notice that this creates a new clock with a 

50% duty cycle at exactly half the frequency of the input clock. If 
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this output is then used as the clock signal for a similarly arranged 

D flip-flop (remembering to invert the output to the input), one will 

get another 1 bit counter that counts half as fast. Putting them 

together yields a two-bit counter: 

 

Fig: 2.20 An Asynchronous ripple counter 

 

 

 

 

 

 

 

 

Table: 2.5 
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You can continue to add additional flip-flops, always 
inverting the output to its own input, and using the output from the 
previous flip-flop as the clock signal. The result is called a ripple 
counter, which can count to 2n - 1 where n is the number of bits 

(flip-flop stages) in the counter. Ripple counters suffer from 
unstable outputs as the overflows "ripple" from stage to stage, but 
they do find frequent application as dividers for clock signals, 
where the instantaneous count is unimportant, but the 
division ratio overall is (to clarify this, a 1-bit counter is exactly 
equivalent to a divide by two circuit; the output frequency is 
exactly half that of the input when fed with a regular train of clock 
pulses). 

The use of flip-flop outputs as clocks leads to timing skew 
between the count data bits, making this ripple technique 
incompatible with normal synchronous circuit design styles. 

2.6.2 Synchronous counter 

In synchronous counters, the clock inputs of all the flip-flops are 
connected together and are triggered by the input pulses. Thus, all 
the flip-flops change state simultaneously (in parallel). The circuit 
below is a 4-bit synchronous counter. The J and K inputs of FF0 
are connected to HIGH. FF1 has its J and K inputs connected to 
the output of FF0, and the J and K inputs of FF2 are connected to 
the output of an AND gate that is fed by the outputs of FF0 and 
FF1. A simple way of implementing the logic for each bit of an 
ascending counter (which is what is depicted in the image to the 
right) is for each bit to toggle when all of the less significant bits 
are at a logic high state. For example, bit 1 toggles when bit 0 is 
logic high; bit 2 toggles when both bit 1 and bit 0 are logic high; bit 
3 toggles when bit 2, bit 1 and bit 0 are all high; and so on. 

Synchronous counters can also be implemented with 
hardware finite-state machines, which are more complex but allow 
for smoother, more stable transitions.Hardware-based counters 
are of this type.A simple way of implementing the logic for each bit 
of an ascending counter (which is what is depicted in the image to 
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the right) is for each bit to toggle when all of the less significant 
bits are at a logic high state 

 

Fig: 2.21 A 4-bit synchronous counter using JK flip-flop 

 

 

 

 



Chapter 3 

Data Representation 

3.1 Data types 

Information that a Computer is dealing with 
 
* Data 

- Numeric Data: Numbers( Integer, real) 
- Non-numeric: Data Letters, Symbols 
 

* Relationship between data elements 
- Data Structures: Linear Lists, Trees, Rings, etc 
 

* Program(Instruction) 

Data 
Numeric data - numbers(integer, real) 
Non-numeric data - symbols, letters 
 
3.1.1 Number System 
 

Nonpositional number system 
- Roman number system 

 
Positional number system 

- Each digit position has a value called a weight    

associated with it 
- Decimal, Octal, Hexadecimal, Binary 

Base (or radix) R number 
- Uses R distinct symbols for each digit 
- Example AR = an-1 an-2 ... a1 a0 .a-1…a-m 

V(AR) = ∑ 𝑎𝑖𝑅𝑅
𝑛−1

𝑖=−𝑚
 

 



R = 10 Decimal number system,  

R = 2 Binary number system 

R = 8 Octal number system 

R = 16 Hexadecimal 

3.1.2 WHY POSITIONAL NUMBER SYSTEM IN THE DIGITAL  

         COMPUTERS ? 

Major Consideration is the COST and TIME 

- Cost of building hardware 

Arithmetic and Logic Unit, CPU,Communications 

- Time to processing 

Arithmetic - Addition of Numbers - Table for Addition 

* Non-positional Number System 

- Table for addition is infinite 

--> Impossible to build, very expensive even 

if it can be built 

* Positional Number System 

- Table for Addition is finite 

--> Physically realizable, but cost wise 

the smaller the table size, the less 



expensive --> Binary is favorable to Decimal 

3.1.3 CONVERSION OF BASES 

Base R to Decimal Conversion 

 V(A) = Σ ak Rk 

 A = an-1 an-2 an-3 … a0 . a-1 … a-m  

(736.4)8 = 7 x 82 + 3 x 81 + 6 x 80 + 4 x 8-1 

 = 7 x 64 + 3 x 8 + 6 x 1 + 4/8 = (478.5)10 

 (110110)2 = ... = (54)10 

 (110.111)2 = ... = (6.785)10 

 (F3)16 = ... = (243)10 (0.325)6 = ... = (0.578703703 
.................)10 

Decimal to Base R number 

Separate the number into its integer and fraction parts and 
convert each part  

separately. 

- Convert integer part into the base R number 

--> successive divisions by R and accumulation of the 
remainders. 

 - Convert fraction part into the base R number 

 --> successive multiplications by R and accumulation of 
integer digits 



COMPLEMENT OF NUMBERS 

Complements - to convert positive to negative or vice 
versa  

Two types of complements for base R number system: - 
R's complement and (R-1)'s  

Complement 

The (R-1)'s Complement 

 Subtract each digit of a number from (R-1)  

Example - 9's complement of 83510 is 16410 - 1's 
complement of 10102 is 01012(bit by bit 

complement operation) 

The R's Complement  

Add 1 to the low-order digit of its (R-1)'s complement 

Complements - to convert positive to negative or vice 
versa  

Example 

 - 10's complement of 83510 is 16410 + 1 = 16510  

- 2's complement of 10102 is 01012 + 1 = 01102  

 

 

 



FIXED POINT NUMBERS 

Numbers: Fixed Point Numbers and Floating Point 
Numbers 

 Binary Fixed-Point Representation 

 X = xnxn-1 xn-2 ... x1x0. x-1x-2 ... x-m 

 Sign Bit(xn): 0 for positive - 1 for negative 

 Remaining Bits(xnxn-1 xn-2 ... x1x0. x-1x-2 ... x-m) 

Following 3 representations: 

Signed magnitude representation  

Signed 1's complement representation  

Signed 2's complement representation 

Example: Represent +9 and -9 in 7 bit-binary number  

Only one way to represent +9 ==> 0 001001  

Three different ways to represent -9:  

In signed-magnitude: 1 001001 

 In signed-1's complement: 1 110110  

In signed-2's complement: 1 110111  

Numbers: Fixed Point Numbers and Floating Point Numbers In 
general, in computers, fixed point numbers are represented either 
integer part only or fractional part only. 



CHARACTERISTICS OF 3 DIFFERENT REPRESENTATIONS 

Complement 

 Signed magnitude: Complement only the sign bit 

Signed 1's complement: Complement all the bits including 
sign bit  

Signed 2's complement: Take the 2's complement of the 
number, including its sign bit. 

Maximum and Minimum Representable Numbers and 
Representation of Zero  

X = xn xn-1 ... x0 . x-1 ... x-m 

Signed Magnitude  

Max: 2n - 2-m 011 ... 11.11 ... 1 

 Min: -(2n - 2-m) 111 ... 11.11 ... 1  

Zero:  +0 000 ... 00.00 ... 0 

 -0 100 ... 00.00 ... 0 

 Signed 1’s Complement 

 Max: 2n - 2-m 011 ... 11.11 ... 1  

Min: -(2n - 2-m) 100 ... 00.00 ... 0  

Zero:  +0 000 ... 00.00 ... 0  

-0 111 ... 11.11 ... 1 



 Signed 2’s Complement 

 Max: 2n - 2-m 011 ... 11.11 ... 1 

 Min: -2n 100 ... 00.00 ... 0  

Zero: 0 000 ... 00.00 ... 0 

When we type some letters or words, the computer 
translates them in numbers as computers can understand only 
numbers. A computer can understand positional number system 
where there are only a few symbols called digits and these 
symbols represent different values depending on the position 
they occupy in the number. 

 The data types found in memory of digital 
computers may be classified as beibg one of the following 
categories: 

- Numbers used for arithmetic computations 
- Alphabetical letters used in data processing 
- Other discrete symbols used for special purposes 

A value of each digit in a number can be determined using 

 The digit 
 The position of the digit in the number 
 The base of the number system (where base is defined as 

the total number of digits available in the number system). 

3.1.4 Decimal Number System 

The number system that we use in our day-to-day life is the 
decimal number system. Decimal number system has base 10 as 
it uses 10 digits from 0 to 9. In decimal number system, the 
successive positions to the left of the decimal point represent 
units, tens, hundreds, thousands and so on. 



Each position represents a specific power of the base (10). For 
example, the decimal number 1234 consists of the digit 4 in the 
units position, 3 in the tens position, 2 in the hundreds position, 
and 1 in the thousands position, and its value can be written as 

(1x1000)+ (2x100)+ (3x10)+ (4xl) 

(1x103)+ (2x102)+ (3x101)+ (4xl00) 

1000 + 200 + 30 + 4 

1234 

As a computer programmer or an IT professional, you should 
understand the following number systems which are frequently 
used in computers. 

 
S.N. Number System and Description 

1 
Binary Number System 

Base 2. Digits used : 0, 1 

2 
Octal Number System 

Base 8. Digits used : 0 to 7 

3 
Hexa Decimal Number System 

Base 16. Digits used : 0 to 9, Letters used : A- F 



 
3.1.5 Binary Number System 

 

Characteristics of binary number system are as follows: 

 Uses two digits, 0 and 1. 
 Also called base 2 number system 
 Each position in a binary number represents a 0 power of 

the base (2). Example 20 
 Last position in a binary number represents a x power of 

the base (2). Example 2xwhere x represents the last 
position - 1. 

Example: 

Binary Number : 101012 

Calculating Decimal Equivalent: 

 

Step Binary 
Number 

Decimal Number 

Step 1 101012 ((1 x 24) + (0 x 23) + (1 x 22) + (0 x 21) + (1 x 
20))10 

Step 2 101012 (16 + 0 + 4 + 0 + 1)10 



Step 3 101012 2110 

Note : 101012 is normally written as 10101. 

 
3.1.6 Octal Number System 

 

Characteristics of octal number system are as follows: 

 Uses eight digits, 0,1,2,3,4,5,6,7. 
 Also called base 8 number system 
 Each position in an octal number represents a 0 power of 

the base (8). Example 80 
 Last position in an octal number represents a x power of 

the base (8). Example 8xwhere x represents the last 
position - 1. 

Example: 

Octal Number : 125708 

Calculating Decimal Equivalent: 

Step Octal 
Number 

Decimal Number 

Step 1 125708 ((1 x 84) + (2 x 83) + (5 x 82) + (7 x 
81) + (0 x 80))10 

Step 2 125708 (4096 + 1024 + 320 + 56 + 0)10 



Step 3 125708 549610 

Note : 125708 is normally written as 12570. 

 
3.1.7 Hexadecimal Number System 

 

Characteristics of hexadecimal number system are as follows: 

 Uses 10 digits and 6 letters, 
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. 

 Letters represents numbers starting from 10. A = 10. B = 
11, C = 12, D = 13, E = 14, F = 15. 

 Also called base 16 number system 
 Each position in a hexadecimal number represents a 0 

power of the base (16). Example 160 
 Last position in a hexadecimal number represents a x 

power of the base (16). Example 16x where x represents 
the last position - 1. 

Example: 

Hexadecimal Number : 19FDE16 

Calculating Decimal Equivalent: 

Step Binary 
Number 

Decimal Number 

Step 1 19FDE16 ((1 x 164) + (9 x 163) + (F x 162) + (D x 161) + (E 
x 160))10 



Step 2 19FDE16 ((1 x 164) + (9 x 163) + (15 x 162) + (13 x 161) + 
(14 x 160))10 

Step 3 19FDE16 (65536+ 36864 + 3840 + 208 + 14)10 

Step 4 19FDE16 10646210 

 

REPRESENTATION OF NUMBERS 

Binary Decimal Octal Hexadecimal 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

00 
01 
02 
03 
04 
05 
06 
07 
10 
11 
12 
13 
14 
15 
16 
17 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

 
Table: 3.1 

 

 

 



3.2 Complements 

In mathematics and computing, the method of complements is a 
technique used to subtract one number from another using only 
addition of positive numbers. This method was commonly used 
in mechanical calculators and is still used in modern computers. 

3.2.1 Decimal number complements: 

 9’s complement of the decimal number N = (10n – 1) – N  

    = n (9’s) – N 

 i.e. {subtract each digit from 9}  

Example -> 9’s complement of 134795 is 865204  

Similarly  

1’s complement of the binary number N = (2n -1) – N = n (1’s) – N  

Example -> 1’s complement of 110100101 is 001011010  

which can be obtained by replacing each one by a zero and each 
zero by one. 

3.2.2 r’s complement: 

10’s complement of the decimal number N = 10n – N = (r-1)’s 
complement + 1  

Example -> 10’s complement of 134795 is 865205  

Example -> find the 9’s and 10’s complements of 314700.  

Answer  -> 9’s complement = 685299  

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Mechanical_calculator
https://en.wikipedia.org/wiki/Computers


10’s complement=685300 

Rule: To find the 10’s complement of a decimal number leave all 
leading zeros unchanged. Then subtract the first non-zero digit 
from 10 and all the remaining digits from 9’s. 

 The 2’s complement of a binary number is defined in a similar 
way. 

Example: Find the 1’s and 2’s complements of the binary number 
1101001101  

Answer -> 1’s complement is 0010110010  

     2’s complement is 0010110011 

Example: Find the 1’s and 2’s complements of 100010100  

Answer -> 1’s complement is 011101011  

     2’s complement is 011101100 

Subtraction using r’s complement 

To find M-N in base r, we add M + r’s complement of N  

Result is M + (rn – N) 

1) If M > N then result is M – N + rn (rn is an end carry and can be 
neglected. 

2) If M < N then result is rn –(N-M) which is the r’s complement of 
the result. 

Example: Subtract (76425 – 28321) using 10’s complements.  

Answer -> 10’s complement of 28321 is 71679  



Then add -> 7 6 4 2 5  
     + 7 1 6 7 9  
     1 4 8 1 0 4 (Discard 1) 

Therefore the difference is 48104 after discarding the end carry 

Example: subtract (28531 – 345920)  

Answer -> It is obvious that the difference is negative. We also 
have to work with the same number of digits, when dealing with 
complements.  

10’s complement of 345920 is 654080  

Then add -> 0 2 8 5 3 1  
      + 6 5 4 0 8 0  
--------------------- 

     (No end carry)    6 8 2 6 1 1  

Therefore the difference is negative and is equal to the 10’s 
complement of the answer.  

Difference is -> - 317389  

The same rules apply to binary. 

Example: subtract (11010011 – 10001100) 

Answer -> 2’s complement of 10001100 is 01110100 

Then add -> 1 1 0 1 0 0 1 1 
      + 0 1 1 1 0 1 0 0  
--------------------------- 

              (Discard) 1 0 1 0 0 0 1 1 1  

The difference is positive and is equal to 01000111  



The same rules apply to subtraction using the (r-1)’s 
complements. The only difference is that when an end carry is 
generated, it is not discarded but added to the least significant 
digit of the result. Also, if no end carry is generated, then the 
answer is negative and in the (r-1)’s complement form. 

Example: Subtract (76425 – 28321) using 9’s complements.  

Answer -> 9’s complement of 28321 is 71678  

Then add -> 7 6 4 2 5 
      + 7 1 6 7 8  
      1 4 8 1 0 3  
                     1 

             (Difference) 4 8 1 0 4 

Example: subtract (11010011 – 10001100) using 1’s complement.  

Answer -> 1’s complement of 10001100 is 01110011  

Then add -> 1 1 0 1 0 0 1 1  
     + 0 1 1 1 0 0 1 1  
     1 0 1 0 0 0 1 1 0  
                             1  

         (Difference) 1 0 1 0 0 0 1 1 1 

3.2.3 1’s Complement 

 1’s complement of a binary number is obtained simply by 
replacing each 1 by 0 and each 0 by 1. Alternately, 1’s 
complement of a binary can be obtained by subtracting each bit 
from 1. 

 Example. Find 1’s complement of (i) 011001 (ii) 00100111  

 

 



Solution. (i) Replace each 1 by 0 and each 0 by 1 

 0  1   1   0   0   1  
 ↓  ↓   ↓    ↓   ↓   ↓  
 1  0   0   1   1   0  

So, 1’s complement of 011001 is 100110. 

 (ii) Subtract each binary bit from 1.  

11 1 1 1 1 1 1  
         –0 0 1 0 0 1 1 1 
           1 1 0 1 1 0 0 0      ← 1’s complement  

one can see that both the method gives same 
result.  

3.2.4 2’s Complement  

2’s complement of a binary number can be obtained by 
adding 1 to its 1’s complement.  

Example. Find 2’s complement of (i) 011001 (ii) 0101100 

Solution. (i)  01 1 0 0 1 ← Number  
 10 0 1 1 0 ← 1’s complement  
 ___ __+ 1 ← Add 1 to 1’s complement  
 10 0 1 1 1 ← 2’s complement  

 

(ii)  01 0 1 1 0 0 ← Number  
10 1 0 0 1 1 ← 1’s complement  
              + 1 ← Add 1 to 1’s complement  
10 1 0 1 0 0 ← 2’s complement  

 

 



3.3 Fixed and Floating point representation 

3.3.1 Fixed point representation 

 Unsigned numbers are used to represent positive number, 
but to represent negative numbers we need negative notation. In 
normal arithmetic representation a negative number is indicated 
by minus sign, but in computers everything can be represented 
only by 1’s and 0’s. in addition to sign a number can also have 
decimal point, the position of the binary number is necessary to 
represent fraction, integer etc.. 

3.3.2 Integer representation 

 When an integer binary number is positive its represented 
by 0, and when the number is negative the sign is represented by 
1. The number can be represented in three different ways: 

(i) Signed –Magnitude representation 
(ii) Signed – 1’s complement representation 
(iii) Signed – 2’s complement representation 

For example consider a signed number 14 stored in 8-bit register 

+14 is represented as 00001110, the left most bit is ‘0’ 
representing a positive number, but whereas -14 can be 
represented three different ways: 

 10001110 in Signed magnitude 

 11110001 in signed 1’s complement representation 

 11110010 in signed 2’s complement representation 

 

 



3.3.2 Floating point representation 

Scientific Notation: 

 Science deals regularly with very large and very small 
numbers.  

 To do so it adopts Floating Point Notation.  Below are 

some examples:     

e.g. 1.      the distance between the Earth and Sun:  

1.496x1011 meters = 149600000000 

  

e.g. 2.      the distance between an atomâ€™s nucleus and 
an electron:  

0.529x10-10 meters = 0.0000000000529 

  

 

Since the base of the number system can be inferred, the "x10" 
part is required.  

But a way was needed to distinguish the "mantissa" (e.g. 1.496 
and 0.529 above) from the "exponent" (1011 and 10-10 above) .  
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So these are alternately expressed in the form:  +1.496E11, and 
+.529E-10 

Floating-Point notation in Binary consists of 3 parts:  

1. a Sign bit ["0" is non-negative  (+), "1" is negative (-) 
2. the Exponent and 
3. the Mantissa. 

  In an 8-bit pattern example below, the most significant (the 
right-most) bit is the sign-bit, followed by a 3-
bit exponent (expressed in excess notation) followed by a 
4-bit mantissa.  

Important Note: in a normalized floating point notation, the 

mantissa must begin, i.e., the most significant bit of the 
mantissa must be a "1" and the radix point is assumed to 

be at the left of the mantissa. In this course, we will always 
use the normalized system. 

  

A.  Decoding Binary Floating Point Notation 

1.      Analyse bit pattern according to the 3 field patterns 
(sign, exponent, mantissa) 

2.      Extract the mantissa and place the radix point on its left 
side.  E.G.,   .1001 

3.      Extract the contents of the exponent field and interpret 
it using the Excess notation. (This 3-bit example is 

excess (4) notation so it represents 5-4 or +1.) 

4.      Move the radix the same number of positions as was 
determined from Step 3 above. 



        Move the radix right the number of bit position 
indicated by the exponent value if the 
exponent is positive value. 

      Move the radix left the number of bit position 
indicated by the exponent value (add 0's as 
necessary as placeholders) if exponent is 
negative value. 

5.  Using the original sign bit, represent the decoded number 
(in decimal.) 

    E.G.  01011001 

      Sign  Exponent     Mantissa 

      Bit    in Excess(4)  (Normalized) 

  

The Sign bit is 0 so the number represented is a non-negative 
(+) number 

Next, the number 101 in excess (4) notation is 5-4 that is +1; a 
positive exponent moves the radix to the right and a 
negative exponent moves the radix to the left. 

The (normalized) mantissa 1001 is assumed to be .1001; after 
applying the exponent by moving the radix 1 position to the 
right, it becomes 1.001 or 1 and 1/8th. 

Therefore the number 01011001 (in normalized floating point 

notation) represents the value +11/8 

 

 



3.4 Other binary codes 

In the coding, when numbers, letters or words are represented by 
a specific group of symbols, it is said that the number, letter or 
word is being encoded. The group of symbols is called as a code. 
The digital data is represented, stored and transmitted as group 
of binary bits. This group is also called as binary code. The binary 
code is represented by the number as well as alphanumeric 
letter. 

Advantages of Binary Code 

Following is the list of advantages that binary code offers. 

 Binary codes are suitable for the computer applications. 
 Binary codes are suitable for the digital communications. 
 Binary codes make the analysis and designing of digital 

circuits if we use the binary codes. 
 Since only 0 & 1 are being used, implementation becomes 

easy. 

Classification of binary codes 

The codes are broadly categorized into following four categories. 

 Weighted Codes 
 Non-Weighted Codes 
 Binary Coded Decimal Code 
 Alphanumeric Codes 
 Error Detecting Codes 
 Error Correcting Codes 

Weighted Codes 

Weighted binary codes are those binary codes which obey the 
positional weight principle. Each position of the number 
represents a specific weight. Several systems of the codes are 



used to express the decimal digits 0 through 9. In these codes 
each decimal digit is represented by a group of four bits. 

 

Fig: 3.1 

Non-Weighted Codes 

In this type of binary codes, the positional weights are not 
assigned. The examples of non-weighted codes are Excess-3 
code and Gray code. 

Excess-3 code 

The Excess-3 code is also called as XS-3 code. It is non-
weighted code used to express decimal numbers. The Excess-3 
code words are derived from the 8421 BCD code words adding 
(0011)2 or (3)10 to each code word in 8421. The excess-3 codes 
are obtained as follows − 

 

 

 

 



 

Example 

 

Table 3.1 

Gray Code 

It is the non-weighted code and it is not arithmetic codes. That 
means there are no specific weights assigned to the bit position. 
It has a very special feature that, only one bit will change each 
time the decimal number is incremented as shown in fig. As only 
one bit changes at a time, the gray code is called as a unit 
distance code. The gray code is a cyclic code. Gray code cannot 
be used for arithmetic operation. 



 

Table 3.2 

Application of Gray code 

 Gray code is popularly used in the shaft position encoders. 
 A shaft position encoder produces a code word which 

represents the angular position of the shaft. 

Binary Coded Decimal (BCD) code 

In this code each decimal digit is represented by a 4-bit binary 
number. BCD is a way to express each of the decimal digits with 
a binary code. In the BCD, with four bits we can represent sixteen 
numbers (0000 to 1111). But in BCD code only first ten of these 
are used (0000 to 1001). The remaining six code combinations 
i.e. 1010 to 1111 are invalid in BCD. 



 

Table 3.3 

 

Advantages of BCD Codes 

 It is very similar to decimal system. 
 We need to remember binary equivalent of decimal 

numbers 0 to 9 only. 

Disadvantages of BCD Codes 

 The addition and subtraction of BCD have different rules. 
 The BCD arithmetic is little more complicated. 
 BCD needs more number of bits than binary to represent 

the decimal number. So BCD is less efficient than binary. 

Alphanumeric codes 

A binary digit or bit can represent only two symbols as it has only 
two states '0' or '1'. But this is not enough for communication 
between two computers because there we need many more 
symbols for communication. These symbols are required to 
represent 26 alphabets with capital and small letters, numbers 
from 0 to 9, punctuation marks and other symbols. 

The alphanumeric codes are the codes that represent 
numbers and alphabetic characters. Mostly such codes also 
represent other characters such as symbol and various 
instructions necessary for conveying information. An 
alphanumeric code should at least represent 10 digits and 26 
letters of alphabet i.e. total 36 items. The following three 



alphanumeric codes are very commonly used for the data 
representation. 

 American Standard Code for Information Interchange 
(ASCII). 

 Extended Binary Coded Decimal Interchange Code 
(EBCDIC). 

 Five bit Baudot Code. 

ASCII code is a 7-bit code whereas EBCDIC is an 8-bit code. 
ASCII code is more commonly used worldwide while EBCDIC is 
used primarily in large IBM computers. 

3.5 Error Detection codes 

What is Error? 

Error is a condition when the output information does not match 
with the input information. During transmission, digital signals 
suffer from noise that can introduce errors in the binary bits 
travelling from one system to other. That means a 0 bit may 
change to 1 or a 1 bit may change to 0. 

 

Fig: 3.2 

 
 



Error-Detecting codes 

Whenever a message is transmitted, it may get scrambled by 
noise or data may get corrupted. To avoid this, we use error-
detecting codes which are additional data added to a given digital 
message to help us detect if an error occurred during 
transmission of the message. A simple example of error-
detecting code is parity check. 

Error-Correcting codes 

Along with error-detecting code, we can also pass some data to 
figure out the original message from the corrupt message that we 
received. This type of code is called an error-correcting code. 
Error-correcting codes also deploy the same strategy as error-
detecting codes but additionally, such codes also detect the exact 
location of the corrupt bit. 

In error-correcting codes, parity check has a simple way to 
detect errors along with a sophisticated mechanism to determine 
the corrupt bit location. Once the corrupt bit is located, its value is 
reverted (from 0 to 1 or 1 to 0) to get the original message. 

How to Detect and Correct Errors? 

To detect and correct the errors, additional bits are added to the 
data bits at the time of transmission. 

 The additional bits are called parity bits. They allow 
detection or correction of the errors. 

 The data bits along with the parity bits form a code word. 

Parity Checking of Error Detection 

It is the simplest technique for detecting and correcting errors. 
The MSB of an 8-bits word is used as the parity bit and the 



remaining 7 bits are used as data or message bits. The parity of 
8-bits transmitted word can be either even parity or odd parity. 

 

Fig: 3.3 

Even parity -- Even parity means the number of 1's in the given 

word including the parity bit should be even (2,4,6,....). 

Odd parity -- Odd parity means the number of 1's in the given 

word including the parity bit should be odd (1,3,5,....). 

Use of Parity Bit 

The parity bit can be set to 0 and 1 depending on the type of the 
parity required. 

 For even parity, this bit is set to 1 or 0 such that the no. of 
"1 bits" in the entire word is even. Shown in fig. (a). 

 For odd parity, this bit is set to 1 or 0 such that the no. of 
"1 bits" in the entire word is odd. Shown in fig. (b). 



 

Fig: 3.4 

How Does Error Detection Take Place? 

Parity checking at the receiver can detect the presence of an 
error if the parity of the receiver signal is different from the 
expected parity. That means, if it is known that the parity of the 
transmitted signal is always going to be "even" and if the received 
signal has an odd parity, then the receiver can conclude that the 
received signal is not correct. If an error is detected, then the 
receiver will ignore the received byte and request for 
retransmission of the same byte to the transmitter. 

 

Fig: 3.4 



Chapter 4 

Register Transfer and Micro 

operations 

4.1 Register Transfer language 

In computer science, register transfer language (RTL) is a kind 
of intermediate representation (IR) that is very close to assembly 
language, such as that which is used in acompiler. Academic 
papers and textbooks also often use a form of RTL as an 
architecture-neutral assembly language.  

Microoperations  

• Digital systems are modular in nature, with modules containing 
registers, decoders, arithmetic elements, control logic, etc.  

• These digital components are defined by the registers that they 
contain and the operations performed on their data. These 
operations are called microoperations.  

• Microoperations are elementary operations performed on the 
information stored in one or more registers. 

Hardware Organization  

• The hardware organization of a digital computer is best defined 
by specifying:  

– The set of register that it contains and their function.  

– The sequence of microoperations performed on the  

   binary information stored in the registers. 
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– The control signals that initiates the sequence of 

   microoperations. 

Register Transfer Language 

 • A register transfer language is a notation used to describe the 
microperation transfers between registers.  

• It is a system for expressing in symbolic form the microoperation 
sequences among register that are used to implement machine-
language instructions. 

Digital systems are composed of modules that are constructed 
from digital components, such as registers, decoders, arithmetic 
elements, and control logic  

 

• The modules are interconnected with common data and 
control paths to form a digital computer system  

• The operations executed on data stored in registers are 
called microoperations  

• A microoperation is an elementary operation performed on 
the information stored in one or more registers  

• Examples are shift, count, clear, and load  

• Some of the digital components from before are registers that 
implement microoperations  

• The internal hardware organization of a digital computer is 
best defined by specifying  

 The set of registers it contains and their functions  



 The sequence of microoperations performed on the 
binary information stored  

 The control that initiates the sequence of 
microoperations  

• Use symbols, rather than words, to specify the sequence of 
microoperations  

• The symbolic notation used is called a register transfer 
language  

• A programming language is a procedure for writing symbols 
to specify a given computational process  

• Define symbols for various types of microoperations and 
describe associated hardware that can implement the 
microoperations  

 4.2 Register Transfer  

Registers are denoted by capital letters and are 

sometimes followed by numerals, e.g., 

– MAR – Memory Address Register (holds addresses for the     
memory unit) 

– PC – Program Counter (holds the next instruction’s address) 

– IR – Instruction Register (holds the instruction being executed) 

– R1 – Register 1 (a CPU register) 

• We can indicate individual bits by placing them in parentheses, 
e.g., PC(8-15), R2(5), etc. 

 
 



Block Diagrams of Registers 

Fig: 4.1 Block diagram for Registers 

Designate information transfer from one register to another by  

R2 ← R1  

This statement implies that the hardware is available  

o The outputs of the source must have a path to the 
inputs of the destination  

o The destination register has a parallel load capability  

If the transfer is to occur only under a predetermined control 
condition, designate it by 

      If (P = 1) then (R2 ← R1)  

or,  

     P:R2← R1,  

where P is a control function that can be either 0 or 1  



Every statement written in register transfer notation implies the 
presence of the required hardware construction  

 

Fig: 4.2 Transfer from R1 to R2 when P=1 

It is assumed that all transfers occur during a clock edge transition  

All microoperations written on a single line are to be executed at 
the same time T: R2 ← R1, R1 ← R2 , the above transfers will be 
done when T = 1. 



 

Table: 4.1 

4.3 Bus and Memory Transfers 

A computer consists of many registers and data paths, which are 
used for transferring the data from one register to another register. 
Consider that separate wires are used for linking registers, than 
the huge number of wires in the circuit will create a mess and 
increase the complexity of the system. This issue is resolved by 
using common bus system in which, the information is transferred 
in multiple configuration register. In a bus structure, common lines 
are used where; each line is used for transferring each bit of the 
binary data at a time. 

Multiplexers are used for constructing a common bus and 
are allowed to select the source register whose information will be 
placed on the bus. Consider an example in which there are 
four registers A, B, C, and D. All these register contains 4 bits 
numbered from 0 to 3. The bus consist four multiplexers and two 
selection lines namely, S0 and S1, which are connected to the 
selection input of all four multiplexers. The following table 
represents the working of bus system. 



 

Fig: 4.3 Bus system for four registers 

S0 S1 Register Selected 

0 0 A 

0 1 B 

1 0 C 

1 1 D 

Table: 4.2 Function table for bus in fig: 4.3 

When 0 is selected in both selection lines i.e. S0S1 = 00, 
then we get A0 as output from the MUX0. Similarly we will get A1 
from MUX1, A2 from MUX2, and A3 from MUX3. Considering 
these outputs from the four multiplexers, we will get A3A2A1A0 at 
the common bus. Hence, register A will be selected for the 
transfer. 



Similarly, when S0S1 = 01, then the output from the 
multiplexer will be B3B2B1B0 and register B will be selected for 
the data transfer. When S0S1 = 10, then the output from the 
multiplexer will be C3C2C1C0 and register C will be selected for 
the data transfer. When S0S1 = 11, then the output from the 
multiplexer will be D3D2D1D0 and register D will be selected for 
the data transfer. 

When the data is transferred from the bus to register or from 
the register to bus, following notations is used. 

BUS <- A, B <- BUS 

In the above notation, the data from the register A is being 
transferred to the BUS and the data from the BUS is loaded to 
the register B. This notation can also be represented as B <- A, if 
the bus exist in the system. 

Find all the help you need for your homework 
help and assignment help at Transtutors.com. Our team of experts 
is capable of providing homework help and assignment help for all 
levels ranging from school level to undergraduate and graduate 
level. With us you can be rest assured that all the resource for 
the homework help and assignment help provided will be original 
and plagiarism free. 

 Rather than connecting wires between all registers, a 
common bus is used  

 A bus structure consists of a set of common lines, one for 
each bit of a register  

 Control signals determine which register is selected by the 
bus during each transfer  

 Multiplexers can be used to construct a common bus  

 Multiplexers select the source register whose binary 
information is then placed on the bus  

 The select lines are connected to the selection inputs of 
the multiplexers and choose the bits of one register  





In general, a bys system will multiplex k registers of n bits 
each to produce an n-line common bus. This requires n 
multiplexers – one for each bit. The size of each multiplexer must 
be k x 1. The number of select lines required is log k. To transfer 
information from the bus to a register, the bus lines are connected 
to the inputs of all destination registers and the corresponding 
load control line must be activated . Rather than listing each step 
as  

            BUS ← C, R1 ← BUS, 

 

use R1 ← C, since the bus is implied 

  
Three State Buffers 

In digital electronics three-state, tri-state, or 3-state logic allows an 
output port to assume a high impedance state in addition to the 0 
and 1 logic levels, effectively removing the output from the circuit. 
This allows multiple circuits to share the same output line or lines 
Three-state buffers can also be used to implement efficient 
multiplexers, especially those with large numbers of inputs.      

 

Fig: 4.4 Graphic symbols for three state buffers 

The three-state buffer gate has a normal input and a control input 
which determines the output state  

• With control 1, the output equals the normal input  

• With control 0, the gate goes to a high-impedance state  

https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/High_impedance
https://en.wikipedia.org/wiki/Logic_level
https://en.wikipedia.org/wiki/Multiplexer


• This enables a large number of three-state gate outputs to be 
connected with wires to form a common bus line without 
endangering loading effects  

 

Fig: 4.5 Bus lines with three-state buffers 

Decoders are used to ensure that no more than one 
control input is active at any given time. This circuit can replace 
the multiplexer in Figure 4.3. To construct a common bus for four 
registers of n bits each using three-state buffers, we need n 
circuits with four buffers in each. Only one decoder is necessary to 
select between the four registers  

Memory Transfer 

The transfer of information from a memory word to the outside 
environment is called a read operation. The transfer of a new 
information which has to be stored into the memory is called a 
write operation. A symbol M will be used to represent a memory 
word. It is also necessary to specify the address of M when writing 



memory transfer operations; this is indicated by enclosing the 
address in square brackets following the letter M. 

The read operation can be stated as: 
 

           Read: DR ← M[AR] 
 
The write operation can be stated as:  
 

           Write: M[AR] ← R1  

 
Microoperations 

Microoperations are classified into four categories: 

– Register transfer microoperations (data moves from       

   register to register) 

– Arithmetic microoperations (perform arithmetic on data in  

   registers) 

– Logic microoperations (perform bit manipulation on data  

   in registers) 

– Shift microoperations (perform shift on data in registers) 

4.4 Arithmetic Microoperations 
 
Unlike register transfer microoperations, arithmetic 
microoperations change the information content. 
 
The basic arithmetic microoperations are: 

 
– addition 



– subtraction 
– increment 
– decrement 
– shift 

 
The Register Transfer Language statement R3 <- R1 + R2 

indicates an add microoperation. We can similarly specify the 
other arithmetic microoperations. Multiplication and division are 
not considered. Multiplication is implemented by a sequence of 
adds and shifts. Division is implemented by a sequence of 
substracts and shifts. 
 

 
Table: 4.3 Arithmetic microoperations 

Binary Adder 

We implement a binary adder with registers to hold the data and a 
digital circuit to perform the addition (called a binary adder). The 
binary adders is constructed using full adders connected in 
cascade so that the carry produced by one full adder becomes an 
input for the next. 

Adding two n-bit numbers requires n full adders. The n data bits 
for A and B might come from R1and R2 respectively 



 

Fig: 4.6 4-bit binary adder 

Adder-Subtracter 

Subtracting A – B is most easily done by adding B’ to A and then 
adding 1. This makes it convenient to combine both addition and   
subtraction into one circuit, called an addersubtracter. 

• M is the mode indicator 

– M = 0 indicates addition (B is left alone and C0 is 0) 

– M = 1 indicates subtraction (B is complement and C0 is 1). 

 

Fig: 4.7 4-bit adder-subtractor  

 



Binary Incrementer 

The binary incrementer adds 1 to the contents of a register, e.g., a 
register storing 0101 would have 0110 in it after being 
incremented. • There are times when we want incrementing done 
independent of a register. We can accomplish this with a series of 
cascading half-adders. 

The increment microoperation adds one to a number in a register 
This can be implemented by using a binary counter – every time 
the count enable is active, the count is incremented by one. If the 
increment is to be performed independent of a particular register, 
then use half-adders connected in cascade. An n-bit binary 
incrementer requires n half-adders  

 

Fig: 4.8 4-bit binary incrementer  

 
Arithmetic Circuit 

Each of the arithmetic microoperations can be implemented in one 
composite arithmetic circuit  

• The basic component is the parallel adder  



• Multiplexers are used to choose between the different 
operations  

• The output of the binary adder is calculated from the      

  following sum: D = A + Y + C
in  

We can implement 7 arithmetic microoperations (add, add with 
carry, subtract, subtract with borrow, increment, decrement and 
transfer) with one circuit. • We provide a series of cascading full 
adders with Ai and the output of a 4x1 multiplexer. The  
multiplexers’ inputs are two selects, Bi, Bi’, logical 0 and logical 1. 
Which of these four values we provide (together with the carry) 
determines which microoperation is performed. 



 

Fig: 4.9 4-bit Arithmetic Circuit 



 

Table: 4.4 Arithmetic circuit function table 

When S1S0 = 00, the MUX provides B. The result is Add (for Cin 
= 0) or Add With Carry (for Cin =1). 

When S1S0 = 01, the MUX provides B’. The result is Subtract with 
Borrow (for Cin = 0) or Subtract (for Cin = 1). 

When S1S0 = 10, the MUX provides 0. The result is Transfer (for 
Cin = 0) or Increment (for Cin =1). 

When S1S0 = 11, the MUX provides 1. The result is Decrement 
(for Cin = 0) or Transfer (for Cin =1). 

4.5 Logic Microoperations 

Logic operations specify binary operations for strings of bits stored 
in registers and treat each bit separately  

Example: the XOR of R1 and R2 is symbolized by  

P: R1 ← R1 ⊕ R2  

Example: R1 = 1010 and R2 = 1100  

1010 Content of R1  



1100 Content of R2  
0110 Content of R1 after P = 1  

Symbols used for logical microoperations:  

o OR: ∨  

o AND: ∧  

o XOR: ⊕  

The + sign has two different meanings: logical OR and summation  

• When + is in a microoperation, then summation  

• When + is in a control function, then OR  

• Example: P + Q: R1 ← R2 + R3, R4 ← R5 ∨ R6  

• There are 16 different logic operations that can be performed 
with two binary variables  

 

Table: 4.5 Truth tables for 16 functions of two variables 



 
Table: 4.5 Sixteen Logic Microoperations 

 

The hardware implementation of logic microoperations requires 
that logic gates be inserted for each bit or pair of bits in the 
registers. All 16 microoperations can be derived from using four 
logic gates  

 



 
Fig: 4.10 One stage of logic circuit 

 

Logic microoperations can be used to change bit values, delete a 
group of bits, or insert new bit values into a register  

Logic Operations allow us to manipulate 

individual bits in ways that we could not do 

otherwise. 

• These applications include: 

– selective set 

– selective complement 

– select clear 

– mask 



– insert 

– clear 

 selective-set 
 
The selective-set operation sets to 1 the bits in A where 
there are corresponding 1’s in B  

1010 A before  
1100 B (logic operand)  
1110 A after  
 
A ← A ∨ B  

 selective-complement 
 
The selective-complement operation complements bits in A 
where there are corresponding 1’s in B  

1010 A before  
1100 B (logic operand)  
0110 A after  
A ← A ⊕ B  

 selective-clear 
 
The selective-clear operation clears to 0 the bits in A only 
where there are corresponding 1’s in B  

1010 A before  
1100 B (logic operand)  
0010 A after  
A ← A ∧ B 

 mask 
 



The mask operation is similar to the selective-clear 
operation, except that the bits of A are cleared only where 
there are corresponding 0’s in B  
 

1010 A before  
1100 B (logic operand)  
1000 A after  
 
A ← A ∧ B  

 insert  
 
The insert operation inserts a new value into a group of 
bits. This is done by first masking the bits to be replaced 
and then Oring them with the bits to be inserted 

0110 1010 A before  
0000 1111 B (mask)  
0000 1010 A after masking  
0000 1010 A before  
1001 0000 B (insert)  
1001 1010 A after insertion  

 clear 
 
The clear operation compares the bits in A and B and 
produces an all 0’s result if the two number are equal  

1010 A  
1010 B  
0000 

 A ← A ⊕ B  
 

If A& B are both 1 or both 0, this produces 0.This is done 
using the logical-AND operation and B. 

 



4.6 Shift Microoperations 

Shift microoperations are used for serial transfer of data. They are 
also used in conjunction with arithmetic, logic, and other data-
processing operations. 

There are three types of shifts: logical, circular, and arithmetic  

• A logical shift is one that transfers 0 through the serial input  

• The symbols shl and shr are for logical shift-left and shift-   

  Right  by one position R1 ← shl R1 

• The circular shift (aka rotate) circulates the bits of the register 
around the two ends without loss of information  

• The symbols cil and cir are for circular shift left and right  

 

Table: 4.6 Shift Microoperations 

 





 The arithmetic shift shifts a signed binary number to the left 
or right  

• To the left is multiplying by 2, to the right is dividing by 2  

• Arithmetic shifts must leave the sign bit unchanged  

• A sign reversal occurs if the bit in R
n-1 

changes in value after 

the shift  

• This happens if the multiplication causes an overflow  

• An overflow flip-flop V
s 
can be used to detect the 

overflow V
s 
= R

n-1 
⊕ R

n-2 
 

If V
s 
= 0, there is no overflow, but if  V

s  
= 1, there is  an overflow 

and a sign reversal after the shift. V
s 
 must be transferred into the 

overflow flio-flop with the same clock pulse that shifts the register.

 

Fig: 4.11 Arithmetic right shift 

 A bi-directional shift unit with parallel load could be used to 
implement this  

• Two clock pulses are necessary with this configuration: one 
to load the value and another to shift  

• In a processor unit with many registers it is more efficient to 
implement the shift operation with a combinational circuit  



• The content of a register to be shifted is first placed onto a 
common bus and the output is connected to the 
combinational shifter, the shifted number is then loaded 
back into the register  

• This can be constructed with multiplexers  

 

 

Fig: 4.12 Combinational circuit shifter 

 

 



4.7 Arithmetic Logic Shift Unit 

The arithmetic logic unit (ALU) is a common operational unit 
connected to a number of storage registers. To perform a 
microoperation, the contents of specified registers are placed in 
the inputs of the ALU. The ALU performs an operation and the 
result is then transferred to a destination register. The ALU is a 
combinational circuit so that the entire register transfer operation 
from the source registers through the ALU and into the destination 
register can be performed during one clock pulse period  

 

Fig: 4.13 One stage of Arithmetic logic shift unit 



 

Table: 4.7  Function table for arithmetic logic shift unit 

 



Chapter 5 

Basic Computer Organization and Design 

Here we start our discussion definitions and a review of the basic 
organization of a computer and of a CPU. We also specify the 
internal components of the CPU, i.e. the registers and data paths. 
We next describe the instruction formats and instructions for this 
CPU. The Basic Computer has three different formats for its 
instructions; each of the 25 instructions follows only one of  these 
three formats. We will review these formats and the overall 
function of each  instruction. Next we look at the control signals 
used in this design. These signals are used to trigger micro-
operations and coordinate data manipulation within the computer. 
We also show the hardware to generate these signals. We then 
get to the heart of th e design: the machine cycles which fetch, 
decode and execute these instructions. By using the control 
signals to enable micro-operations properly, the CPU realizes its 
instruction set. We first look at the fetch and indirect cycles. Then 
we review the individual execute cycles. We next look at 
input/output operations and interrupts. The Basic Computer has 
one input port and output port, so we don’t have to worry about 
port addressing in our design. Inputs and outputs are used to 
trigger interrupts in this computer. We examine the I/O hardware 
and the interrupt cycle code. We then present an example of the 
hardware design for one of the internal components to further 
illustrate the design process. Finally, concluding remarks are 
presented. 

5.1 Instruction Codes 

Instruction code can be defined as a group of bits that tell the 

computer to perform a specific operation 

 

The instruction code is an opcode plus additional information, 
such as a memory address. It is not the micro-operations. In terms 



of programming, it is closest to a single assembly language  
instruction. 
 

A program  can be defined as a set of instructions that specify the 
operations, operands, and the sequence by which processing has 

to occur. 

 

The computer reads each instruction from memory and 
places it in a control register. The control then interprets the binary 
codeof the instruction and proceeds to execute itby issuing a 
sequence of microoperations. 

Instruction Code :  

 A group of bits that instruct the computer to perform a  
   Specific operation 
 It is usually divided into parts(refer to Fig. 5-1 instruction  
   format) 

Operation Code : 

 The most basic part of an instruction code 
 A group of bits that define such operations as add,  
   subtract, multiply, shift, and complement 

 
Stored Program Organization  

A stored program concept is one in which first the program and 
data are stored in the main memory and then the processor 
fetches instructions and executes them, one after another. 
A stored-program computer is one which stores program 
instructions in electronic memory. Often the definition is extended 
with the requirement that the treatment of programs and data in 
memory be interchangeable or uniform. 

https://en.wikipedia.org/wiki/Instruction_(computer_science)
https://en.wikipedia.org/wiki/Instruction_(computer_science)


The CPU coordinates data transfers between itself and 
memory or I/O devices. The paths shown here not only carry data, 
but also the control signals which cause data to be transferred. 
They also carry address information which is used to select the 
correct memory location or I/O port address. 

 

The control unit issues signals to coordinate functions of 
the ALU, the registers and external hardware. By issuing these 
signals in the proper order, they cause a sequence of operations 
to occur. By performing this sequence, an instruction is fetched, 
decoded and executed. 

 
 

 

Fig: 5.1 Stored Program Organization 

 

The simplest way to organize a computer is 

»One processor register : AC (Accumulator) 



The operation is performed with the memory operand  
   and the content of AC 
 

»Instruction code format with two parts : Op. Code + address 

Op. Code : specify 16 possible operations (4 it)  

Address : specify the address of an operand (12 bit) 

If an operation in an instruction code does not need an  
   operand from memory, the rest of the bits in the      
   instruction(address field) can be used for other purpose 

 
»Memory : 12 bit = 4096 word(Instruction and Data are stored) 

 
Store each instruction code(program) and operand  
   (data) in 16-bit memory word 

 
 
 
Addressing Modes 
 

Immediate operand :  
 
»the second part of an instruction code(address field)  
  specifies an operand 

Direct address operand :  
 
»the second part of an instruction code specifies the  
  address of an operand 

Indirect address operand :  
 
»the bits in the second part of the instruction designate an  
  address of a memory word in which the address of the  
 operand is found 
 

One bit of the instruction code is used to distinguish between  
   A direct and an indirect 
 



 
Fig: 5.2 Demonstration of direct and indirect address 

 
Effective Address: 

 
The operand address in computation-type instruction or the  
   target address in a branch-type instruction 
 
 

5.2 Computer Registers 

In a computer, a register is one of a small set of data holding 
places that are part of a computer processor . A register may hold 
a computer instruction , a storage address, or any kind of data 
(such as a bit sequence or individual characters). Some 
instructions specify registers as part of the instruction. For 

http://searchcio-midmarket.techtarget.com/definition/processor
http://searchcio-midmarket.techtarget.com/definition/instruction


example, an instruction may specify that the contents of two 
defined registers be added together and then placed in a specified 
register. A register must be large enough to hold an instruction - 
for example, in a 32-bit instruction computer; a register must be 32 
bits in length. In some computer designs, there are smaller 
registers - for example, half-registers - for shorter instructions. 
Depending on the processor design and language rules, registers 
may be numbered or have arbitrary names. 

 

 
Table: 5.1 List of registers for basic computer 

 

Since memory is 4K in size, it requires 12 address bits. 
Each word of memory contains 16 bits of data. The address 
register (AR) is 12 bits wide, since this system requires that many 
bits in order to access memory. Similarly, the program counter 
(PC) is also 12 bits wide. Each data word is 16 bits wide. The 
Data Register (DR) must also be 16 bits wide, since it receives 
data from and sends data to memory. The accumulator (AC) acts 
on 16 bits of data. The Instruction Register (IR) receives 
instruction codes from memory which are 16 bits wide. Of note: 
TR is a temporary register. Only the CPU can cause it to be 
accessed. The programmer cannot directly manipulate the 
contents of TR. Most CPU’s have one or more temporary registers 
which it uses to perform  instructions. 



 

Fig: 5.3 Basic computer registers and memory 

The input and output registers (INPR and OUTR) are 8 bits 
wide each. For this CPU, I/O instructions only transfer 8 bits of 
data at a time. The 3-bit sequence counter (SC) is used to 
generate the correct timing (T) states. Other 1-bit registers are the 
carry out (E), the indirect register (I), the interrupt enable (IEN) 
and the input and output flags (FGI and FGO). 

 
Basic computer registers and memory :  

 

 Data Register(DR) : hold the operand(Data) read from 

memory 

 Accumulator Register(AC) : general purpose processing 
register 
 

 Instruction Register(IR) : hold the instruction read from 

memory 
 



 

 Temporary Register(TR) : hold a temporary data during 

processing 
 

 Address Register(AR) : hold a memory address, 12 bit 
width 
 

 Program Counter(PC) :   

»hold the address of the next instruction to be read from  
  memory after the current instruction is executed 
»Instruction words are read and executed in sequence  
  unless a branch instruction is encountered 
»A branch instruction calls for a transfer to a  
  nonconsecutive instruction in the program 
»The address part of a branch instruction is transferred to  
  PC tobecome the address of the next instruction 
»To read instruction, memory read cycle is initiated, and  
  PC is incremented by one(next instruction fetch) 

 

 
 Input Register(INPR) : receive an 8-bit character from an 

input device 
 

 Output Register(OUTR) : hold an 8-bit character for an 

output device 
 

 
Common Bus System 

A wire or a collection of wires that carry some multi-bit information 
is known as bus. Main purpose of bus is to transfer information 
form one system to another. The basic computer has eight 
registers (AC, PC, DR, AC, IR, TR, INPR, OUTR), a memory unit 
and a control unit. Path must be provided to transfer information 
from one register to another and between memory and registers. 
The number of wires will be excessive if connections are made 
between the output of each register and input of other registers. A 



more efficient scheme is to use a common bus. Thus common bus 
provides a path between memory unit and registers. 

 

Fig: 5.4 Basic computer registers connected to a common bus 

This is the internal design of the CPU for the Basic Computer. The 
CPU is designed around an internal common bus with a common 
clock. Each register can place its data onto the bus, and has 
internal tri-state buffers on the outputs. The control unit must 
make sure that at most one register (or memory unit) places 

data onto the bus at one time.   

The memory unit is external to the CPU. It always receives 
its address from the address register (AR) and makes its data 



available to the CPU bus. It receives data from the CPU bus as 
well. Read and write signals are supplied by the control unit.  

The address registers, program counter (PC) and data 
register (DR) each load data onto and receive data from the 
system bus. Each has a load, increment and clear signal derived 
from the control unit. These signals are sychronous; each register 
combines these signals with the system clock to activate the 
proper function. Since AR and PC are only 12-bits each, they use 
the low order 12 bits of the bus. 

The accumulator makes its data available on the bus but 
does not receive data from the bus. Instead, it receives data solely 
from an ALU, labeled “Adder and Logic” in the diagram. To load 
data into AC, place it onto the bus via DR and pass it directly 
through the ALU. The synchronous load, increment and clear 
signals act as in the previous registers. Note that E, the 1-bit carry 
flag, also receives its data from the ALU.  

The input register, INPR, receives data from an external 
input port, not shown here, and makes its data available only to 
AC. The output register makes its data available to the output port 
via hardware not shown here. We will examine these two 
components in more detail later in this module.  

The instruction register, IR, can only be loaded; it cannot 
be incremented nor cleared. Its output is used to generate Di and 
Ti. We will look at that hardware later in this module.  

TR is a temporary register. The CPU uses this register to 
store intermediate results of operations. It is not accessible by the 
external programs. It is loaded, incremented and cleared like the 
other registers.  

5.3 Computer Instructions 

The basic computer has three instruction formats. Each format 
has 16 bits. The operation code part of the instruction contains 



three bits and the meaning of the remaining 13 bits depends on 
the operation code encountered. A memory-reference instruction 
uses 12 bits to specify an address and one bit to specify the 
addressing mode I. I is equal to 0 for direct address and to 1 for 
indirect address. The register-reference instructions are 
recognized by the operation code 111and with a 0 in the leftmost 
bit of the instruction. A register-reference instruction specifies an 
operation on or a test of the AC register. An operand from memory 
is not needed; therefore the other 12 bits are used to specify the 
operation or test to be executed. Similarly, an input-output 
instruction does not need a reference to memory and is 
recognized by the operation code 111 with a 1 in the left most bit 
of the instruction. The remaining 12 bits are used to specify the 
type of input-output operation or test performed. 

 

Fig: 5.5 Basic computer instruction formats 

 



 

Table: 5.2 Basic computer instructions 

Instruction Set Completeness 

Before investigating te operations performed by the instructions, 

let us discuss the type of instructions that must be included in a 

computer. A computer should have a set of instructions so that the 



user can construct machine language programs to evaluate any 

function that is known to be computable. The set of instructions 

are said to be complete if the computer includes a sufficient 

number of instructions in each of the following categories: 

 1. Arithmetic, logical and shift instructions 

 2. Instructions for  moving information to and from memory 
                and processor registers. 
 
 3. Program control instructions together with instructions  
     that check status conditions. 

 4. Input and output instructions 

5.4 Timing and Control 

All sequential circuits in the Basic Computer CPU are driven by a 
master clock, with the exception of the INPR register. 

At each clock pulse, the control unit sends control signals to 
control inputs of the bus, the registers, and the ALU. 

The control unit (CU) is a component of a 
computer's central processing unit (CPU) that directs operation of 
the processor. It tells the computer's memory, arithmetic/logic unit 
and input and output devices how to respond to a program's 
instructions.  

It directs the operation of the other units by providing 
timing and control signals  Most computer resources are managed 
by the CU, It directs the flow of data between the CPU and the 
other devices. John von Neumann included the control unit as part 
of the von Neumann architecture. In modern computer designs, 
the control unit is typically an internal part of the CPU with its 
overall role and operation unchanged since its introduction. 

https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Central_processing_unit


Control unit design and implementation can be done by two 
general methods: 

Hardwired control units are implemented through use 
of sequential logic units, featuring a finite number of gates that can 
generate specific results based on the instructions that were used 
to invoke those responses Hardwired control units are generally 
faster than microprogrammed designs.  

Their design uses a fixed architecture—it requires changes 
in the wiring if the instruction set is modified or changed. This 
architecture is preferred in reduced instruction set 
computers (RISC) as they use a simpler instruction set. 

A controller that uses this approach can operate at high 
speed; however, it has little flexibility, and the complexity of the 
instruction set it can implement is limited.  

The hardwired approach has become less popular as 
computers have evolved. Previously, control units for CPUs used 
ad-hoc logic, and they were difficult to design. 

The idea of microprogramming is an intermediate level to 
execute computer program instructions. Microprograms were 
organized as a sequence of microinstructions and stored in 
special control memory. The algorithm for the microprogram 
control unit is usually specified by flowchart description.[4] The 
main advantage of the microprogram control unit is the simplicity 
of its structure. Outputs of the controller are organized in 
microinstructions and they can be easily replaced. 

https://en.wikipedia.org/wiki/Sequential_logic
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Reduced_instruction_set_computing
https://en.wikipedia.org/wiki/Reduced_instruction_set_computing
https://en.wikipedia.org/wiki/Flowchart
https://en.wikipedia.org/wiki/Control_unit#cite_note-4


 

Fig: 5.6 Control unit of a basic computer 

The T signals occur in sequence and are never skipped 
over. The only two options during a T-state are to proceed to the 
next T-state or to return to Tstate 0. The D signals decode the 
instruction and are used to select the correct execute routine. I is 
used to select the indirect routine and also to select the correct 
execute routine for non-memory reference instructions. R is used 
for interrupt processing and will be explained later. 



 

Fig: 5.7 Example of control timing signals 

This circuit generates the T signals. The sequence 
counter, SC, is incremented once per clock cycle. Its outputs are 
fed into a 3-8 decoder which generates the T signals. Whenever a 
microoperation sets SC to zero, it resets the counter, causing T0 
to be activated during the next clock cycle. The D signals are 
generated similarly to the T signals. Here the source is IR(14-12) 
instead of SC. Also note that IR won’t change during the 
instruction execution. 

 

 



5.5 Instruction Cycle 

The time period during which one instruction is fetched from 
memory and executed when a computer is given an instruction in 
machine language. There are typically four stages of an 
instruction cycle that the CPU carries out: 

 Fetch the instruction from memory. This step brings the 
instruction into the instruction register, a circuit that holds 

the instruction so that it can be decoded and executed. 

 Decode the instruction. 

 Read the effective address from memory if the instruction 
has an indirect address. 

 Execute the instruction. 

Steps 1 and 2 are called the fetch cycle and are the same for each 
instruction. Steps 3 and 4 are called the execute cycle and will 

change with each instruction. 

Each computer's CPU can have different cycles based on different 
instruction sets, but will be similar to the following cycle: 
 

1. Fetching the instruction: The next instruction is fetched 

from the memory address that is currently stored in 
the program counter (PC), and stored in the instruction 
register (IR). At the end of the fetch operation, the PC 
points to the next instruction that will be read at the next 
cycle. 
 

2. Decode the instruction: During this cycle the encoded 

instruction present in the IR (instruction register) is 
interpreted by the decoder. 
 

3. Read the effective address: In case of a memory 

instruction (direct or indirect) the execution phase will be in 
the next clock pulse. If the instruction has an indirect 
address, the effective address is read from main memory, 
and any required data is fetched from main memory to be 

http://www.webopedia.com/TERM/I/instruction.html
http://www.webopedia.com/TERM/M/memory.html
http://www.webopedia.com/TERM/M/machine_language.html
http://www.webopedia.com/TERM/C/CPU.html
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https://en.wikipedia.org/wiki/Instruction_register
https://en.wikipedia.org/wiki/Indirect_address
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processed and then placed into data registers (Clock 
Pulse: T3). If the instruction is direct, nothing is done at 
this clock pulse. If this is an I/O instruction or a Register 
instruction, the operation is performed (executed) at clock 
Pulse. 
 

4. Execute the instruction: The control unit of the CPU 

passes the decoded information as a sequence of control 
signals to the relevant function units of the CPU to perform 
the actions required by the instruction such as reading 
values from registers, passing them to the ALU to perform 
mathematical or logic functions on them, and writing the 
result back to a register. If the ALU is involved, it sends a 
condition signal back to the CU. The result generated by 
the operation is stored in the main memory, or sent to an 
output device. Based on the condition of any feedback 
from the ALU, Program Counter may be updated to a 
different address from which the next instruction will be 
fetched. 

The cycle is then repeated. 

Initiating the cycle 

The cycle starts immediately when power is applied to the system 
using an initial PC value that is predefined for the system 
architecture (in Intel IA-32 CPUs, for instance, the predefined PC 

value is 0xfffffff0 ). Typically this address points to instructions in 

a read-only memory (ROM) (not the random access memory or 
RAM) which begins the process of loading the operating system. 
(That loading process is called booting.) [1] 

Fetch the Instruction 

Step 1 of the Instruction Cycle is called the Fetch Cycle. This step 
is the same for each instruction. 

https://en.wikipedia.org/wiki/IA-32
https://en.wikipedia.org/wiki/Read-only_memory
https://en.wikipedia.org/wiki/Random_Access_Memory
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Booting
https://en.wikipedia.org/wiki/Instruction_cycle#cite_note-1


1) The CPU sends PC to the MAR and sends a READ command 
on the control bus 

2) In response to the read command (with address equal to PC), 
the memory returns the data stored at the memory location 
indicated by PC on the databus. 

3) The CPU copies the data from the databus into its MDR (also 
known as MBR (see section Circuits Used above))... 

4) A fraction of a second later, the CPU copies the data from the 
MDR to the Instruction Register (IR) 

5) The PC is incremented so that it points to the following 
instruction in memory. This step prepares the CPU for the next 
cycle. 

The Control Unit fetches the instruction's address from 
the Memory Unit 

Decode the Instruction 

Step 2 of the instruction Cycle is called the Decode Cycle. The 
decoding process allows the CPU to determine what instruction is 
to be performed, so that the CPU can tell how many operands it 
needs to fetch in order to perform the instruction. The opcode 
fetched from the memory is decoded for the next steps and moved 
to the appropriate registers. The decoding is done by 
the CPU's Control Unit. 

Read the effective address 

Step 3 is deciding which operation it is. If this is a Memory 
operation - in this step the computer checks if it's a direct or 
indirect memory operation: 

 Direct memory instruction - Nothing is being done. 

https://en.wikipedia.org/wiki/Memory_Unit
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/Control_Unit


 Indirect memory instruction - The effective address is being 
read from the memory. 

If this is a I/O or Register instruction - the computer checks its kind 
and executes the instruction. 

Execute the Instruction 

Step 4 of the Instruction Cycle is the Execute Cycle. Here, the 
function of the instruction is performed. If the instruction involves 
arithmetic or logic, the Arithmetic Logic Unit is utilized. This is the 
only stage of the instruction cycle that is useful from the 
perspective of the end user. Everything else is overhead required 
to make the execute stage happen. 



 

Figure 5.8 Register transfers for the fetch phase 



 

Fig:5.9 Flow chart for instruction cycle 

Register Reference Instructions 

 

There are 12 instructions which fall in the category of register 
reference instructions. These instructions are specified by the 



instruction code from 0 to 11 bits. They are also transferred to AR 
at time T. the control operations and micro operations for the 
register reference instruction are listed below. These instructions 
are executed with the clock transition in accordance with the 
timing variable. The control functions and micro operations are 
distinguished from one another by just one bit. The 
seven instructions of the reference register are used for the 
CLEAR, COMPLEMENT, CIRCULAR SHIFT, and 
INCREMENT micro operations. Four instructions are for SKIP of 
next instruction in sequence when some stated condition is 
satisfied. It can be achieved by incrementing the PC i.e. the 
program counter. 

  

Explanation of the instructions: 

CLEAR- It is used for resetting the register. The value of register 
after CLEAR is ‘0’. 

COMPLEMENT- It is making the complement of the given data. 
By complement we mean to say 2’s complement. 

CIRCULAR SHIFT- circular shift can be defined as the shifting of 
the bits of data in circular fashion. 

INCREMENT- it is for incrementing the value by 1. 

SKIP- it is for skipping the instruction. 



 

Table: 5.3 Execution of register reference instructions 

5.6 Memory Reference Instructions 

 

For the instructions to be carried out in a sequential manner we 

need the proper definition of the micro operations to be executed 

under it. So we need a precise defined form of them. As we know 

that instructions are read from the memory into the registers so 

the term memory reference instructions came into the picture. 

We have around seven memory reference instruction. 

Listed below are: 

  

1.       AND to AC 

This instruction as the name suggests performs the function of 

ANDing on the bits of AC (accumulator) and the memory word. 

The result is stored in accumulator (AC). The control function for 

this instruction uses the decoder. Two timing signals are also 

needed for this instruction to be carried out. Clock transition is 

also associated with the next timing signal. The same clock 



transition clears the SC and transfers the control to timing signal 

to start new instruction cycle. 

 

 

  

2.       ADD to AC 

This instruction adds the content of the memory word to AC which 

is specified by the effective address. The result i.e. the SUM is 

transferred to AC and the output is transferred to E flip flop. Here 

also the same two timing signals are used again but with different 

decoders. After the instruction is fetched from the memory and 

decoded, only the single output of the decoder will be active and 

rest all will be deactivated.  And this output will determine the 

sequence of micro operations that control has followed. 

  

 

 

3.       LDA: Load to AC 

Load means to transfers. This instruction transfers the memory 

word specified by the effective address to the accumulator or in 

other words we can say it load the memory word into 

the accumulator. It is first necessary to read the memory word into 

another register named DR and then transfer the content of the 

same into the AC  

(accumulator). The reason for this is that the delay which is 

encountered whiles the adding and logic operations. 



 

  

  

 4.       STA: Store AC 

This instruction is just the opposite in functioning of the LOAD. 

Here the content is stored from the AC into the memory word 

specified by the effective address. Now the output of the AC is 

directly connected to the bus, so we can expect only one micro 

operation for this entire instruction. 

 

 

  

5.       BUN: Branch Unconditionally 

This instruction has the responsibility to transfer the entire 

program to the instruction which is specified by the effective 

address. We now know that program counter (PC) holds the 

address of the instruction to be read from the memory and 

program is a set of instructions to be carried out to accomplish the 

particular task. BUN instruction allows the programmer to specify 

an instruction out of the program and modify the program. 

 

 

  

6.       BSA: Branch and Save Return Address 

As the name tells the function of this instruction, it allows the 

branching in the execution of instruction. By branching we mean 



that the instructions can have sub routine or procedure. When this 

instruction is executed, it stores the address of the next instruction 

to be executed as PC (Program counter). 

 

 

Fig: 5.10 Example of BSA instruction execution 

  

 

 

7.       ISZ: Increment and Skip if Zero 

This is a increment instruction which increments the word 

specified by the effective address, and if by any chance it founds 

that its value is zero then the value of PC is incremented by 1. It is 

in general practice to store a negative number in the memory 

word. 

 



 

 

 

 

Fig 5.9 Flow chart for memory reference instructions 

 



5.7 Input-Output and Interrupt 
 

A computer can serve no useful purpose unless it communicates 
with the external environment. Instructions and data stored in 
memory must come from some input device. Computational 
results must be transmitted to the user through some output 
device. Commercial computers include many types of input output 
devises 

Input Output Configration 

 

Fig 5.12 Input Output Configuration 

Input Register(INPR) and  Output Register(OUTR) are two 

registers communicate with a communication interface serially and 
with the AC in parallel. The Basic Computer has one 8-bit input 
port and one 8-bit output port. Each port interface is modeled as 
an 8-bit register which can send data to or receive data from 



AC(7-0). Whenever input data is to be made available, the 
external  input port writes the data to INPR and sets FGI to 1. 
When the output port requests data, it sets FGO to 1. 

As will be shown shortly, the FGI and FGO flags are used to 
trigger interrupts (if interrupts are enabled by the IEN flag). 

Input Output Instructions 

Input and Output instructions are needed for transferring 
information to and from AC register, for checking the flag bits, and 
for controlling the interrupt facility. Input-Output instructions have 
an operation code 1111 and are recognized by the control when 
D7 =  1 and I = 1. 

 

Table: 5.5 Input Output Instructions 

Once data is made available to the CPU, it can be read in 
using the INP instruction. Note that this not only reads the data 
into the accumulator, but also resets FGI to zero. This tells the 
input port that it may send more data. In a similar manner, the 
OUT instruction writes data to OUTR and resets FGO to zero, 
notifying the output port that data is available. The SKI and SKO 
instructions skip an instruction if there is a pending input or output 
request. This is useful in determining the I/O request which 
caused an interrupt to occur. ION and IOF enable and disable 
interrupts. Interrupts will be explained more fully shortly. 



 In the Basic Computer, I/O requests are processed as 
interrupts. This process is followed for input requests. The input 
will only be processed if interrupts are enabled. It will be ignored, 
but will remain pending, if interrupts are disabled. 

 Outputs are handled similarly to inputs. Note that both 
input and output interrupts call an interrupt service routine at 
location 0. There is only one routine for both input and output, so it 
must distinguish between the two. This is where the SKI and SKO 
instructions become useful. 

Program Interrupt 

An interrupt occurs if the interrupt is enabled (IEN = 1) AND an 
interrupt is pending (FGI or FGO = 1). u Before processing the 
interrupt, complete the current instruction. u Call the interrupt 
service routine at address 0 and disable interrupts. It is of the 
utmost importance to complete the current instruction, otherwise 
the CPU will not perform properly. The interrupt service routine is 
called by the CPU in a manner similar to the execution of the BSA 
instruction. 



 

Fig: 5.13 Flowchart for Interrupt cycle 



 

Fig: 5.14 Demonstration of interrupt cycle 

Interrupt Cycle 

An interrupt is asserted by setting R to 1. This occurs when 
interrupts are enabled (IEN) and there is either an input or output 
request (FGI+FGO). We must also have completed the current 
fetch cycle (T0’T1’T2’). When we look at the code to implement 
the interrupt cycle, we see why we must wait until after T2 to set R 
to 1. If we set R to 1 during T0, for example, the next micro-
instruction would be RT1, right in the middle of the interrupt cycle. 
Since we want to either perform an entire opcode fetch or an 
entire interrupt cycle, we don’t set R until after T2. The interrupt 
cycle acts like a BSA 0 instruction. During T0 we write a 0 into AR 
and copy the contents of PC, the return address, to TR. We then 
store the return address to location 0 and clear the program 
counter during T1. In T2, we increment PC to 1, clear the interrupt 
enable, set R to zero (because we’ve finished the interrupt cycle) 
and clear SC to bring us back to T0.  Note that IEN is set to 0.  



Activating an interrupt request: 
 

T0’ T1’ T2’(IEN)(FGI + FGO): R <- 1 
 

Interrupt cycle: 
 
RT0: AR <- 0, TR <- PC 
RT1: M[AR] <- TR, PC <- 0 
RT2: PC <- PC + 1, IEN <- 0, R <- 0, SC <- 0 

This disables further interrupts. If another interrupt 
occurred while one was being serviced, the second interrupt 
would write its return address into location 0, overwriting the 
interrupt return address of the original routine. Then it would not 
be possible to return to the program properly. 

Modified fetch phase 

 R’T0: AR <- PC 
R’T1: IR <- M[AR], PC <- PC+1 
R’T2: AR <- IR(11-0), I <- IR15,D0, D1, ... D7 <- Decode  
         IR(14-12) 
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