
COMPUTER
ORGANIZATION

(D

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

NAGARJUNA NAGAR,

COMPUTER
ORGANIZATION

DMCA103)

(MCA)

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

NAGARJUNA NAGAR,

GUNTUR

ANDHRA PRADESH

ORGANIZATION

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

Chapter 1

 Digital Logic Circuits

Many scientific, industrial and commercial advances have been
made possible by the advent of computers. Digital Logic Circuits
form the basis of any digital (computer) system. In this topic, we
will study the essential features of digital logic circuits, which are
at the heart of digital computers. Digital Logic circuits may be
subdivided into Combinational Logic Circuits and Sequential Logic
Circuits.

1.1 Logic Gates

1.1.1 AND gate

AND Operation:AND operation is represented by C = A • B

Its associated TRUTH TABLE is shown below. A truth table gives

the value of output variable (here C) for all combinations of input

variable values (here A and B). Thus in an AND operation, the

output will be 1 (True) only if all of the inputs are 1 (True).

 Fig. 1.1 AND Gate

Table: 1.1 Truth table for AND gate

The following relationships can be easily derived from this circuit:

A.A = A

 1.A = A

 0.A = 0

 A.Ā = 0

 A.B = B.

A A.(B.C) = (A.B).C = A.B.C

1.1.2 OR gate

OR Operation: OR operation is represented by C = A + B

Here A, B & C are logical (Boolean) variables and the + sign

represents the logical addition, called an ‘OR’ operation. The

symbol for the operation (called an OR gate) is shown in Fig. 4. Its

associated TRUTH TABLE is shown below. Thus in an OR

operation, the output will be 1 (True) if either of the inputs is 1

(True). If both inputs are 0 (False), only then the output will be 0

(False). Notice that though the symbol + is used, the logical

addition described above does not follow the rules of normal

arithmetic addition.

Fig.1.2 OR Gate

Table: 1.2 Truth table for OR gate

The following relationships can be easily derived from this circuit:

A+Ā = 1
A+A = A
0+A = A
1+A = 1

(A+B)+C=A+(B+C)=A+B+C

1.1.3 NOT Operation

 NOT operation is represented by C = Ā

The NOT gate has only one input which is then inverted by the

gate. Here, A is the 'complement' of A. The symbol and truth table

for the operation are shown below:

Fig.1.3 NOT Gate

Truth table

Table: 1.3 Truth table for NOT gate

1.1.4 NAND Gate:

We could combine AND and NOT operations together to form a
NAND gate. Thus the logical expression for a NAND gate is

C = (A · B) '

The symbol and truth table are given in the following figure. The
NAND gate symbol is given by an AND gate symbol with a circle
at the output to indicate the inverting operation.

Fig.1.4 NAND Gate

Table: 1.4 Truth Table for NAND gate

1.1.5 NOR Gate:

Similarly, OR and NOT gates could be combined to form a NOR

gate.

Fig 1.5 NOR Gate

Table: 1.5 Truth Table for NOR gate

1.1.6 Exclusive OR Operation:

In logic circuits, exclusive OR operation is represented as shown
below.

C = A B

Fig 1.6 Exclusive OR Gate

Table: 1.6 Truth Table for Exclusive-OR gate

1.2 Boolean Algebra

The operation of almost all modern digital computers is based on
two-valued or binary systems. Binary systems were known in the
ancient Chinese civilization and by the classical Greek
philosophers who created a well-structured binary system, called
propositional logic. Propositions may be TRUE or FALSE, and are
stated as functions of other propositions which are connected by
the three basic logical connectives: AND, OR, and NOT. For
example the statement:

“I will take an umbrella with me if it is raining or the weather
forecast is bad”

connects the proposition I will take an umbrella with me
functionally to the two propositions it is raining and the weather
forecast is bad. We can see that the umbrella proposition can be
fully determined by the raining and weather ones. In functional
terms we can be consider the truth value of the umbrella
proposition as the output of the truth values of the other two. We
can represent this by means of a simple block diagram

The meaning of the OR connective is that the corresponding
output is TRUE if either one of the input propositions is TRUE,
otherwise it is FALSE. Since there are only two possible values for
any proposition, we can easily calculate a truth value for I will take
an umbrella for all possible input conditions. This produces the

Truth Table of the basic OR function:

Raining Bad Forecast Umbrella

FALSE FALSE
FALSE TRUE
TRUE FALSE
TRUE TRUE

FALSE
TRUE
TRUE
TRUE

Table: 1.7

We can make the propositions as complex as we require. For
example, if we want to include the proposition I will take the car,
we may make a statement such as: “If I do not take the car then I
will take the umbrella if it is raining or the weather forecast is bad”.
However, to find the correct block diagram we have to state the

proposition in a well-structured way using brackets to indicate how
the proposition is composed. The correct representation is:

(Take Umbrella) = (NOT (Take Car)) AND ((Bad Forecast)

OR (Raining))

Notice that we have changed the IF verbal construction into an
equation with binary variables. The block diagram is shown in
Figure 2. To simplify the handling of complex binary connectives,
the mathematician George Boole developed Boolean Algebra in
the last century, using

ordinary algebraic notation, and 1 for TRUE and 0 for FALSE. In
this course we will use the symbol _ for the AND and + for the OR
connectives which we call Boolean operators. The NOT operator,
which is unary, we will denote with a post fix prime, eg A0 means
NOT A. (Alternatives that you may see in books are ˄ for AND, V
for OR, and either over-score or prefix ¬ for NOT). Sometimes,
when the meaning is clear from the context, we may omit the AND
symbol. Using the values 1 for TRUE and 0 for FALSE the truth
tables of the three basic operators are as follows.

AND · OR + NOT'

A B R A B R A R
0 0 0 0 0 0 0 1
0 1 0 0 1 1 1 0
1 0 0 1 0 1
1 1 1 1 1 1

Boolean operations are carried out in a well-defined order or
“precedence”, which is defined as follows:

Operator

Symbol

Precedence

NOT

AND

OR

'

·

+

Highest

Middle

Lowest

Table: 1.8

Expressions inside brackets are always evaluated first, overriding
the precedence order. The Boolean equation of the block diagram
(Figure 2) in fully bracketed form is given by:

 U = ((C0) _ ((W) + (R)))

By taking advantage of the precedence rules, we can simplify it by
removing brackets:

 U = C0 _ (W + R)

We can use the basic truth tables for AND, OR and NOT to
evaluate the overall truth table of a more complex expression. For
example, to find out whether we should take our umbrella or not
we can evaluate the overall truth of the proposition given in the
above equation for every possible input combination. We shall call
this the Truth Table Method. In this case, there are eight possible
different combinations of input values since there are three
independent inputs and 8 = 23.

 R W C X1 = R +W X2 = C0 U = X1 _ X2

0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 1 1 1
0 1 1 1 0 0
1 0 0 1 1 1
1 0 1 1 0 0
1 1 0 1 1 1
1 1 1 1 0 0

Table: 1.9

Like all algebras, there are rules to manipulate Boolean
expressions. The most simple are the rules that concern the unary
operator NOT:

(A') ' = A

A · A' = 0

A + A' = 1

General rules like the distributive, commutative, and associative
rules hold for the AND and OR binary operators as follows.

Associative (A · B) · C = A · (B · C)

 (A + B) + C = A + (B + C)

Commutative A · B = B · A
 A + B = B + A

Distributive A · (B + C) = A · B + A · C
 A + (B · C) = (A + B) · (A + C) (the weird one!)

In addition, there are simplification rules for Boolean equations.
There are three important groups of simplification rules. The first
one uses just one variable:

 A · A = A
 A + A = A

The second group uses Boolean constants 0 and 1:

 A · 0 = 0
 A · 1 = A
 A + 0 = A

 A + 1 = 1

The third group involves two or more variables and contains a
large number of possible simplification rules (or theorems) such
as:

A + A · (B) = A (proof: A + A · B = A · (1 + B) = A · 1 = A)

Note that in this expression either A or B may stand for any
complex Boolean expression.

There are two important rules which constitute de Morgan’s
theorem:

 (A + B) ' = A' · B'
 (A · B) ' = A' + B'

This theorem is widely used in Boolean logic design. The theorem
holds for any number of terms, so:

(A + B + C) ' = ((A + B) + C) ' = ((A + B) ') · C' = A' · B' · C'

and similarly:

(A · B · C ·…. · X) = A' + B' + C' + …. + X'

You may have noticed by now that rules are often given in pairs. It
makes sense that in a binary system there is some kind of
symmetry between the two operators. For Boolean algebra this
symmetry is called duality. Every equation has its dual which one

can generate by replacing the AND operators with ORs (and vice
versa) and the constants 0 with 1s (and vice versa).
For example, the dual equation of the important simplifying rule:

 A + A · B = A
is:

 A · (A + B) = A (proof: A · A + A · B = A + A · B = A)

Do not mix up or get confused between a dual expression which is
generated by the above rules and the complement (or inverted)
expression which is generated by applying the NOT operator. The
rules are similar, but they mean very different things.

Finally, let us simplify the proposition I am not taking an umbrella.

(U) ' = (C' · (W + R)) '
 apply de Morgan’s theorem U' = (C') ' + (W + R) '

 apply de Morgan’s theorem again U' = (C') ' +W' · R'
 and simplify U' = C +W' · R'

1.3 Map Simplification

1.3.1 Karnaugh Maps

From the previous examples we can see that rules of Boolean
algebra can be applied in order to simplify expressions. Apart from
being laborious (and requiring us to remember all the laws) this
method can lead to solutions which, though they appear minimal,
are not. The Karnaugh map provides a simple and straight-
forward method of minimising boolean expressions. With the
Karnaugh map Boolean expressions having up to four and even
six variables can be simplified easily. The simplified logical
expression is then used so that minimum hardware

is employed in the implementation of logical circuits. A Karnaugh
map provides a pictorial method of grouping together expressions
with common factors andtherefore eliminating unwanted variables.
The values inside the squares are copied from the output column

of the truth table, therefore there is one square in the map for
every row in the truth table. Around the edge of the Karnaugh map
are the values of the two input variable. A is along the top and B is
down the left hand side. The diagram below explains this.

Boolean Expressions in Two Variables:

Consider the following truth table.

Table: 1.10

The logical expression X is given by X=Ā.B̄+A.B

The Karnaugh map of the above truth table is shown in the
following figure. The values inside the squares are copied from the
output column of the truth table, therefore there is one square in
the map for every row in the truth table. Around the edge of the
Karnaugh map are the values of the two input variable A and B
and their inverses.

In other words, we may say that Karnaugh map is a graphical

representation of the truth table.

Fig:1.7 Map simplification for two variables

Consider the logical expression Y=A.B+Ā.B

Its Karnaugh map is shown below. The two adjacent squares may

be combined together as shown by the loop.

Fig:1.8 Map simplification for two variables

Referring to the map above, the two adjacent 1's are grouped
together. Through inspection it can be seen that variable A has its
true and false form within the group. This eliminates variable A
leaving only variable B which only has its true form. The
minimised answer therefore is Y = B.

It simply means that we are combining the two terms of the above

expression Y as shown below:

Y=B(A+Ā)=B

Therefore, as the variable A changes from its normal form to its
inverse form (Ā) when we move from one square to the adjacent
one, the simplified expression of Y will be independent of A.

Taking another example, the expression Z=Ā.B+A.B+A.B̄

is simplified as follows.

Fig:1.9 Map simplification for two variables

First, combining the two adjacent squares in row 1, we get B.
Next, combining the two adjacent squares in column 1, we get A.
Hence, we get Z as shown below:

Z = B + A

Therefore we can easily conclude that, combining two
adjacent squares in Karnaugh map eliminates one variable
from the resulting Boolean expression of the corresponding
squares.

Boolean Expressions in Three Variables:

Consider the following truth table.

Table: 1.11

The corresponding Boolean expression using SOP is:

X=Ā.B̄.C̄+Ā.B̄.C+Ā.B.C̄+A.B.C̄

Figure below shows the Karnaugh map of the above truth table.

The expression X may be simplified by combining two adjacent

squares as shown.

Fig: 1.10 Map simplification for three variables

The simplified expression of X is: X= Ā.B̄+B.C̄

Now, consider another expression Y given below:

Y=A.B.C̄+A. B̄.C̄+ Ā.B̄.C̄+ Ā.B.C̄

The Karnaugh map of Y is shown below. In this case, we are able

to combine four adjacent squares. Note that

Fig: 1.11 Map simplification for three variables

Y can also be obtained as:

Y=A.C̄(B+ B̄)+ Ā.C̄(B̄+B)

=A.C̄+Ā.C̄=C̄

Consider another example:

Z=A.B̄.C+ Ā.B̄.C+ A. B̄.C̄+ Ā.B̄.C̄

The corresponding Karnaugh map is shown below:

Fig: 1.12 Map simplification for three variables

In this case also, we are able to combine 4 adjacent squares.

Note that

Combining the two adjacent squares in columns 2 and 3 of row 1,

the variable A gets eliminated, and we are left with Z1=B̄.C

Combining the two adjacent squares in columns 2 and 3 of row 2,

the variable A gets eliminated and we are left with Z2= B̄.C̄

Combining these two expressions, Z= B̄.C+ B̄.C̄=B

Finally, let us consider another expression W below:

W=A.B.C+ Ā.B.C+A.B.C̄+Ā.B.C̄

The Karnaugh map of W is shown below. Note that the resulting
expression should be independent of A and C. So, W is simplified
as: W = B

Fig: 1.13 Map simplification for three variables

Therefore, we can conclude that combining four adjacent
squares in Karnaugh map eliminates two variables from the
resulting Boolean expression of the corresponding squares.

Boolean Expressions in Four Variables

Knowing how to generate Gray code should allow us to build
larger maps. Actually, all we need to do is look at the left to right
sequence across the top of the 3-variable map, follow a similar
sequence for the other two variables and write it down on the left
side of the 4-variable map.

Karnaugh map of four variables A, B, C and D is shown in the
following figure. As we have shown in the previous examples, we
may easily prove that:

Combining eight adjacent squares in Karnaugh map
eliminates three variables from the resulting Boolean
expression of the corresponding squares.

Fig: 1.14 Map simplification for four variables

Example: Simplify the Boolean expression:

X= Ā.B̄.C̄.D+ Ā.B̄.C.D+ Ā.B.C̄.D+ Ā.B.C.D

Karnaugh map of X is shown in Figure 12.24. As we could

combine 4 adjacent squares as shown below, the simplified
expression should be independent of two variables. Adjacent
squares in a row suggest that the resultant expression should be
independent of B. Similarly, adjacent squares in a column suggest
that it should also be independent of C. Hence, the simplified
expression of X is given by : X = Ā.D

Fig: 1.15 Map simplification for four variables

Example: Simplify the following Boolean expression using

Karnaugh map.

Y=A.B.C̄.D+A. B̄.C̄.D+ Ā.B̄.C̄.D+ Ā.B.C̄.D+ Ā.B̄.C̄.D̄+ Ā.B.C̄.D̄+

Ā.B.C.D̄+Ā.B.C.D+ Ā.B̄.C.D

Solution: Karnaugh map of Y is shown below. There are four loops

enclosing 4-adjacent squares. First, consider the loop 1. The
resulting expression for these squares should be independent of C
and D. Next, consider loop 2. The resulting expression of these
squares should be independent of B and D. Thirdly, consider loop

3. The resulting expression of these squares should be
independent of B and C. Finally, consider loop 4.

The resulting expression of these squares should be independent
of A and B. Hence, we get

Y=Ā.B+Ā.C̄+Ā.D+C̄.D

Fig: 1.16 Map simplification for four variables

Reductions could be done with Boolean algebra. However, the
Karnaugh map is faster and easier, especially if there are many
logic reductions to do.

Karnaugh maps: Complete Simplification Process

1. Draw out the pattern of output 1’s and 0’s in a matrix of input
values

2. Construct the K map and place 1s and 0s in the squares
according to the truth table.

3. Group the isolated 1s which are not adjacent to any other 1s.

(single loops)

4. Group any pair which contains a 1 adjacent to only one other 1.
(double loops)

5. Group any quad that contains one or more 1s that have not
already been grouped, making

 sure to use the minimum number of groups.

6. Group any pairs necessary to include any 1s that have not yet
been grouped, making sure to

 use the minimum number of groups.

7. Form the OR sum of all the terms generated by each group.

Compared to the algebraic method, the K-map process is a more
orderly process requiring fewer steps and always

producing a minimum expression. It must be noted that the
minimum expression is generally NOT unique.

1.4 Combinational Logic Circuits

Combinational circuit is a circuit in which we combine the
different gates in the circuit, for example encoder, decoder,
multiplexer and demultiplexer. Some of the characteristics of
combinational circuits are following −

 The output of combinational circuit at any instant of time,
depends only on the levels present at input terminals.

 The combinational circuit do not use any memory. The
previous state of input does not have any effect on the
present state of the circuit.

 A combinational circuit can have an n number of inputs
and m number of outputs.

Fig: 1.17 Combinational circuit

1.4.1 Half Adder

Half adder is a combinational logic circuit with two inputs and two
outputs. The half adder circuit is designed to add two single bit
binary number A and B. It is the basic building block for addition
of two single bit numbers. This circuit has two
outputs carry and sum.

Block diagram:

Fig: 1.18 Half Adder

Table: 1.12 Truth table for half adder

Circuit Diagram

Fig: 1.19 Circuit diagram for half adder

1.4.2 Full Adder

Full adder is developed to overcome the drawback of Half Adder
circuit. It can add two one-bit numbers A and B, and carry c. The
full adder is a three input and two output combinational circuit.

Block diagram:

 Fig: 1.20 Full Adder

Table: 1.13 Truth table for Full adder

Circuit Diagram

Fig: 1.21 Circuit diagram for Full adder

1.4.3 N-Bit Parallel Adder

The Full Adder is capable of adding only two single digit
binary number along with a carry input. But in practical we need
to add binary numbers which are much longer than just one bit.
To add two n-bit binary numbers we need to use the n-bit parallel
adder. It uses a number of full adders in cascade. The carry
output of the previous full adder is connected to carry input of the
next full adder.

1.4.4 A 4 Bit Parallel Adder

In the block diagram, A0 and B0 represent the LSB of the four
bit words A and B. Hence Full Adder-0 is the lowest stage. Hence its
Cin has been permanently made 0. The rest of the connections are
exactly same as those of n-bit parallel adder is shown in fig. The four

bit parallel adder is a very common logic circuit.

Block diagram:

Fig: 1.22 A 4bit parallel adder

1.4.5 Multiplexers

Multiplexer is a special type of combinational circuit. There
are n-data inputs, one output and m select inputs with 2m = n. It
is a digital circuit which selects one of the n data inputs and
routes it to the output. The selection of one of the n inputs is done
by the selected inputs. Depending on the digital code applied at
the selected inputs, one out of n data sources is selected and
transmitted to the single output Y. E is called the strobe or enable
input which is useful for the cascading. It is generally an active
low terminal that means it will perform the required operation
when it is low.

Block diagram:

Fig: 1.23 An n:1 multiplexer

Block Diagram:

Fig:1.24 A 2:1 multiplexer

Table: 1.14

1.4.6 Demultiplexers:

A demultiplexer performs the reverse operation of a
multiplexer i.e. it receives one input and distributes it over several
outputs. It has only one input, n outputs, m select input. At a time
only one output line is selected by the select lines and the input is
transmitted to the selected output line. A de-multiplexer is
equivalent to a single pole multiple way switch as shown in fig.

Block diagram:

Fig:1.25 A 1:2 demultiplexer

Truth Table

 Table: 1.15

1.5 Flip flops

In electronics, a flip-flop or latch is a circuit that has two stable

states and can be used to store state information. A flip-flop is
a bistable multivibrator. The circuit can be made to change state
by signals applied to one or more control inputs and will have one
or two outputs. It is the basic storage element in sequential logic.
Flip-flops and latches are a fundamental building block of digital
electronics systems used in computers, communications, and
many other types of systems.

Flip-flops and latches are used as data storage elements.
A flip-flop stores a single bit (binary digit) of data; one of its two

states represents a "one" and the other represents a "zero". Such
data storage can be used for storage of state, and such a circuit is
described as sequential logic. When used in a finite-state
machine, the output and next state depend not only on its current
input, but also on its current state (and hence, previous inputs). It
can also be used for counting of pulses, and for synchronizing
variably-timed input signals to some reference timing signal.

https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Bistable_multivibrator
https://en.wikipedia.org/wiki/Sequential_logic
https://en.wikipedia.org/wiki/Digital_electronics
https://en.wikipedia.org/wiki/Digital_electronics
https://en.wikipedia.org/wiki/Binary_digit
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Sequential_logic
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine

Flip-flops can be either simple (transparent or opaque)
or clocked (synchronous or edge-triggered). Although the term
flip-flop has historically referred generically to both simple and
clocked circuits, in modern usage it is common to reserve the
term flip-flop exclusively for discussing clocked circuits; the simple
ones are commonly called latches.

1.5.1 SR Flip-Flop

The SR flip-flop, also known as a SR Latch, can be considered

as one of the most basic sequential logic circuit possible. This
simple flip-flop is basically a one-bit memory bistable device that
has two inputs, one which will “SET” the device (meaning the
output = “1”), and is labelled S and another which will “RESET” the
device (meaning the output = “0”), labelled R.

Then the SR description stands for “Set-Reset”. The reset
input resets the flip-flop back to its original state with an
output Q that will be either at a logic level “1” or logic “0”
depending upon this set/reset condition.

A basic NAND gate SR flip-flop circuit provides feedback
from both of its outputs back to its opposing inputs and is
commonly used in memory circuits to store a single data bit. Then
the SR flip-flop actually has three inputs, Set, Reset and its
current output Q relating to it’s current state or history. The term
“Flip-flop” relates to the actual operation of the device, as it can be
“flipped” into one logic Set state or “flopped” back into the
opposing logic Reset state.

1.5.2 The NAND Gate SR Flip-Flop

The simplest way to make any basic single bit set-reset SR flip-
flop is to connect together a pair of cross-coupled 2-
input NAND gates as shown, to form a Set-Reset Bistable also
known as an active LOW SR NAND Gate Latch, so that there is
feedback from each output to one of the other NANDgate inputs.
This device consists of two inputs, one called the Set, S and the

https://en.wikipedia.org/wiki/Clock_signal

other called the Reset,R with two corresponding outputs Q and its

inverse or complement Q (not-Q) as shown below.

The Basic SR Flip-flop

Fig:1.27 SR Flip-flop

The Set State

Consider the circuit shown above. If the input R is at logic level “0”
(R = 0) and input S is at logic level “1” (S = 1),
the NAND gate Y has at least one of its inputs at logic “0”

therefore, its output Q must be at a logic level “1” (NAND Gate
principles). Output Q is also fed back to input “A” and so both
inputs to NAND gate X are at logic level “1”, and therefore its

output Q must be at logic level “0”.

Again NAND gate principals. If the reset input R changes state,
and goes HIGH to logic “1” with Sremaining HIGH also at logic
level “1”, NAND gate Y inputs are now R = “1” and B = “0”. Since

one of its inputs is still at logic level “0” the output at Q still
remains HIGH at logic level “1” and there is no change of state.
Therefore, the flip-flop circuit is said to be “Latched” or “Set”
with Q = “1” and Q = “0”.

Reset State

In this second stable state, Q is at logic level “0”, (not Q = “0”) its
inverse output at Q is at logic level “1”, (Q = “1”), and is given
by R = “1” and S = “0”. As gate X has one of its inputs at logic “0”

its outputQ must equal logic level “1” (again NAND gate
principles). Output Q is fed back to input “B”, so both inputs
to NAND gate Y are at logic “1”, therefore, Q = “0”.

If the set input, S now changes state to logic “1” with
input R remaining at logic “1”, output Q still remains LOW at logic
level “0” and there is no change of state. Therefore, the flip-flop
circuits “Reset” state has also been latched and we can define this
“set/reset” action in the following truth table.

It can be seen that when both inputs S = “1” and R = “1” the

outputs Q and Q can be at either logic level “1” or “0”, depending

upon the state of the inputs S or R BEFORE this input condition

existed. Therefore the condition of S = R = “1” does not change

the state of the outputs Q and Q.

Truth Table for this Set-Reset Function

State S R Q Q Description

Set

1 0 0 1 Set Q » 1

1 1 0 1 no change

Reset

0 1 1 0 Reset Q » 0

1 1 1 0 no change

Invalid 0 0 1 1 Invalid Condition

Table: 1.16

However, the input state of S = “0” and R = “0” is an undesirable

or invalid condition and must be avoided. The condition of S = R =

“0” causes both outputs Q and Q to be HIGH together at logic

level “1” when we would normally want Q to be the inverse of Q.

The result is that the flip-flop looses control of Q and Q, and if the

two inputs are now switched “HIGH” again after this condition to

logic “1”, the flip-flop becomes unstable and switches to an

unknown data state based upon the unbalance as shown in the

following switching diagram.

1.5.2 The D-type Flip Flop

One of the main disadvantages of the basic SR NAND
Gate bistable circuit is that the indeterminate input condition of
“SET” = logic “0” and “RESET” = logic “0” is forbidden. This state
will force both outputs to be at logic “1”, over-riding the feedback
latching action and whichever input goes to logic level “1” first will
lose control, while the other input still at logic “0” controls the
resulting state of the latch.

But in order to prevent this from happening an inverter can
be connected between the “SET” and the “RESET” inputs to
produce another type of flip flop circuit known as a Data
Latch, Delay flip flop, D-type Bistable, D-type Flip Flop or just
simply a D Flip Flop as it is more generally called.

The D Flip Flop is by far the most important of the Clocked
Flip-flops as it ensures that ensures that inputs S and R are never
equal to one at the same time. The D-type flip flop are constructed
from a gated SR flip-flop with an inverter added between
the S and the R inputs to allow for a single D(data) input.

Then this single data input, labelled D, is used in place of
the “set” signal, and the inverter is used to generate the
complementary “reset” input thereby making a level-sensitive D-
type flip-flop from a level-sensitive RS-latch as now S = D and R =
not D as shown.

D-type Flip-Flop Circuit

http://www.electronics-tutorials.ws/sequential/seq_1.html
http://www.electronics-tutorials.ws/sequential/seq_1.html
http://amazon.in/s/?field-keywords=Sequential+Logic%3A+Analysis+and+Synthesis
http://amazon.in/s/?field-keywords=Sequential+Logic%3A+Analysis+and+Synthesis

Fig: 1.28 D-type Flip-flop

 We remember that a simple SR flip-flop requires two inputs, one
to “SET” the output and one to “RESET” the output. By connecting
an inverter (NOT gate) to the SR flip-flop we can “SET” and
“RESET” the flip-flop using just one input as now the two input
signals are complements of each other. This complement avoids
the ambiguity inherent in the SR latch when both inputs are LOW,
since that state is no longer possible.

Thus this single input is called the “DATA” input. If this data
input is held HIGH the flip flop would be “SET” and when it is LOW
the flip flop would change and become “RESET”. However, this
would be rather pointless since the output of the flip flop would
always change on every pulse applied to this data input.

To avoid this an additional input called the “CLOCK” or
“ENABLE” input is used to isolate the data input from the flip flop’s
latching circuitry after the desired data has been stored. The effect
is that D input condition is only copied to the output Q when the
clock input is active. This then forms the basis of another
sequential device called a D Flip Flop.

The “D flip flop” will store and output whatever logic level is
applied to its data terminal so long as the clock input is HIGH.
Once the clock input goes LOW the “set” and “reset” inputs of the
flip-flop are both held at logic level “1” so it will not change state
and store whatever data was present on its output before the
clock transition occurred. In other words the output is “latched” at
either logic “0” or logic “1”.

Truth Table for the D-type Flip Flop

Clk D Q Q Description

↓ » 0 X Q Q
Memory

no change

↑ » 1 0 0 1 Reset Q » 0

↑ » 1 1 1 0 Set Q » 1

Table: 1.17

Note that: ↓ and ↑ indicates direction of clock pulse as it is

assumed D-type flip flops are edge triggered

1.5.3 The JK Flip Flop

This simple JK flip Flop is the most widely used of all the flip-flop

designs and is considered to be a universal flip-flop circuit. The

sequential operation of the JK flip flop is exactly the same as for

the previous SR flip-flop with the same “Set” and “Reset” inputs.

The difference this time is that the “JK flip flop” has no invalid or

forbidden input states of the SR Latch even when S and R are

both at logic “1”.

The JK flip flop is basically a gated SR Flip-flop with the addition

of a clock input circuitry that prevents the illegal or invalid output

condition that can occur when both inputs S and R are equal to

logic level “1”. Due to this additional clocked input, a JK flip-flop

has four possible input combinations, “logic 1”, “logic 0”, “no

change” and “toggle”. The symbol for a JK flip flop is similar to that

of an SR Bistable Latch as seen in the previous tutorial except for

the addition of a clock input.

The Basic JK Flip-flop

Fig: 1.28 J-K Flip-flop

Both the S and the R inputs of the previous SR bistable have now
been replaced by two inputs called the J and K inputs,
respectively after its inventor Jack Kilby. Then this equates
to: J = S and K = R.

The two 2-input AND gates of the gated SR bistable have
now been replaced by two 3-input NAND gates with the third input
of each gate connected to the outputs at Q and Q. This cross
coupling of the SR flip-flop allows the previously invalid condition
of S = “1” and R = “1” state to be used to produce a “toggle action”
as the two inputs are now interlocked.

http://amazon.in/s/?field-keywords=Sequential+Logic%3A+Analysis+and+Synthesis
http://www.electronics-tutorials.ws/sequential/seq_1.html

If the circuit is now “SET” the J input is inhibited by the “0”
status of Q through the lower NAND gate. If the circuit is “RESET”
the K input is inhibited by the “0” status of Q through the
upper NAND gate. As Q and Q are always different we can use
them to control the input. When both inputs J and K are equal to
logic “1”, the JK flip flop toggles as shown in the following truth
table.

Table: 1.18 The Truth Table for the JK Function

same as

for the

SR Latch

Input Output

Description

J K Q Q

0 0 0 0
Memory

no change
0 0 0 1

0 1 1 0

Reset Q » 0

0 1 0 1

1 0 0 1

Set Q » 1

1 0 1 0

toggle

action

1 1 0 1

Toggle

1 1 1 0

Then the JK flip-flop is basically an SR flip flop with feedback
which enables only one of its two input terminals, either SET or
RESET to be active at any one time thereby eliminating the invalid
condition seen previously in the SR flip flop circuit. Also when both
the J and the K inputs are at logic level “1” at the same time, and
the clock input is pulsed either “HIGH”, the circuit will “toggle” from
its SET state to a RESET state, or visa-versa. This results in the
JK flip flop acting more like a T-type toggle flip-flop when both
terminals are “HIGH”.

1.5.4 T Flip-flop

This Flip-flop is obtained from JK type when J and K are
connected to provide a single input designated by T, Hence the T
Flip-flop has only two conditions

When T = 0 (J=K=0), the clock transition does not change the
state of the Flip-flop.

When T = 1 (J=K=1), the clock transition complements the state of
the Flip-flop. And the conditiond can be expressed as:

 Q(t+1)= Q(t) +o T

Edge Triggered Flip-flops

Edge triggered flip flops are most commonly used to
synchronizethe state change duringa clock pulse transition. In this
type of flip flopsoutput transitions occur at a specific level of the
clock pulse. Whenever the pulse input levels exceeds the
threshold level the inputs are locked out so that the flip flop is
unresponsive to further changes in inputs until clock pulse returns
to 0 and another pulse occurs

Master – slave Flip-flop

Another type of flip- flops known as master- slave flip flops are
used in some systems. Here the circuits consist of two flip- flops,

the first is the master and the second is the slave. The master
responds to positive level of the clock and the slave responds to
negative level of the clock. Here the output changes during the 1-
to-0 transition of clock signal.

1.6 Sequential Logic Circuits

A circuit with interconnection of flip-flops and gates is called a
sequential circuit. The combinational circuit consists of gates but
when included with flip-flops the circuit is termed as sequential
circuit.

sequential logic is a type of logic circuit whose output
depends not only on the present value of its input signals but on
the sequence of past inputs, the input history. This is in contrast
to combinational logic, whose output is a function of only the
present input. That is, sequential logic has state (memory) while

combinational logic does not. Or, in other words, sequential logic
is combinational logic with memory.

Sequential logic is used to construct finite state machines,
a basic building block in all digital circuitry, as well as memory
circuits and other devices. Virtually all circuits in practical digital
devices are a mixture of combinational and sequential logic.

In other words, the output state of a “sequential logic circuit” is a
function of the following three states, the “present input”, the “past
input” and/or the “past output”. Sequential Logic circuitsremember

these conditions and stay fixed in their current state until the next
clock signal changes one of the states, giving sequential logic
circuits “Memory”.

https://en.wikipedia.org/wiki/Digital_signal
https://en.wikipedia.org/wiki/Combinational_logic
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Finite_state_machine

Fig: 1.29 Example sequential circuit

1.6.1 State Tables and State Diagrams

We have examined a general model for sequential circuits.
In this model the effect of all previous inputs on the outputs is
represented by a state of the circuit. Thus, the output of the circuit
at any time depends upon its current state and the input. These
also determine the next state of the circuit. The relationship that
exists among the inputs, outputs, present states and next states
can be specified by either the state table or the state diagram.

State Table

The state table representation of a sequential circuit consists of
three sections labelled present state, next state and output. The

present state designates the state of flip-flops before the
occurrence of a clock pulse. The next state shows the states of
flip-flops after the clock pulse, and the output section lists the
value of the output variables during the present state.

State Diagram

In addition to graphical symbols, tables or equations, flip-flops can
also be represented graphically by a state diagram. In this
diagram, a state is represented by a circle, and the transition
between states is indicated by directed lines (or arcs) connecting
the circles. An example of a state diagram is shown in Figure 3
below.

Fig: 1.30 State Diagram

The binary number inside each circle identifies the state the circle
represents. The directed lines are labelled with two binary
numbers separated by a slash (/). The input value that causes the
state transition is labelled first. The number after the slash symbol
/ gives the value of the output. For example, the directed line from
state 00 to 01 is labelled 1/0, meaning that, if the sequential circuit
is in a present state and the input is 1, then the next state is 01
and the output is 0. If it is in a present state 00 and the input is 0, it

will remain in that state. A directed line connecting a circle with
itself indicates that no change of state occurs. The state diagram
provides exactly the same information as the state table and is
obtained directly from the state table.

Consider a sequential circuit shown in Figure 4. It has one input x,
one output Z and two state variables Q1Q2 (thus having four
possible present states 00, 01, 10, 11).

Fig:1.31 A Sequential Circuit

The behaviour of the circuit is determined by the following
Boolean expressions:

 Z = x*Q1

 D1 = x' + Q1

 D2 = x*Q2' + x'*Q1'

These equations can be used to form the state table. Suppose the
present state (i.e. Q1Q2) = 00 and input x = 0. Under these

conditions, we get Z = 0, D1 = 1, and D2 = 1. Thus the next state
of the circuit D1D2 = 11, and this will be the present state after the
clock pulse has been applied. The output of the circuit
corresponding to the present state Q1Q2 = 00 and x = 1 is Z = 0.
This data is entered into the state table as shown in Table

Present

State

Q1Q2

Next State

x = 0 x = 1

Output

x = 0 x = 1

0 0

0 1

1 0

1 1

1 1 0 1

1 1 0 0

1 0 1 1

1 0 1 0

0 0

0 0

0 1

0 1

Table: 1.19 State table for the sequential

circuit in Figure 1.31s

The state diagram for the sequential circuit in Figure 1.31 is

Fig: 1.32. State Diagram of circuit in Fig: 1.31

State Diagrams of Various Flip-flops:

NAME STATE DIAGRAM

SR

JK

D

T

Table: 1.20. State diagrams of the four types of flip-flops.

You can see from the table that all four flip-flops have the
same number of states and transitions. Each flip-flop is in the set
state when Q=1 and in the reset state when Q=0. Also, each flip-
flop can move from one state to another, or it can re-enter the
same state. The only difference between the four types lies in the
values of input signals that cause these transitions.

A state diagram is a very convenient way to visualise the
operation of a flip-flop or even of large sequential components.

Chapter 2

Digital Components

2.1 Integrated Circuits

An integrated circuit (IC), sometimes called a chip or microchip, is

a semiconductor wafer on which thousands or millions of tiny
resistors, capacitors, and transistors are fabricated. An IC can
function as an amplifier, oscillator, timer, counter,
computer memory, or microprocessor. A particular IC is
categorized as either linear (analog) or digital, depending on its
intended application.

Linear ICs have continuously variable output (theoretically
capable of attaining an infinite number of states) that depends on
the input signal level. As the term implies, the output signal level is
a linear function of the input signal level. Ideally, when the
instantaneous output is graphed against the instantaneous input,
the plot appears as a straight line. Linear ICs are used as audio-
frequency (AF) and radio-frequency (RF) amplifiers.
The operational amplifier(op amp) is a common device in these

applications.

Digital ICs operate at only a few defined levels or states,

rather than over a continuous range of signal amplitudes. These
devices are used in computers, computer networks, modems, and
frequency counters. The fundamental building blocks of digital ICs
are logic gates, which work with binary data, that is, signals that
have only two different states, called low (logic 0) and high (logic
1).

Integrated circuits are used in virtually all electronic equipment
today and have revolutionized the world
of electronics. Computers, mobile phones, and other digital home
appliances are now inextricable parts of the structure of modern
societies, made possible by the low cost of integrated circuits.

http://searchcio-midmarket.techtarget.com/definition/microchip
http://searchcio-midmarket.techtarget.com/definition/semiconductor
http://searchcio-midmarket.techtarget.com/definition/transistor
http://searchcio-midmarket.techtarget.com/definition/amplifier
http://searchcio-midmarket.techtarget.com/definition/oscillator
http://searchmobilecomputing.techtarget.com/definition/memory
http://searchcio-midmarket.techtarget.com/definition/analog
http://searchcio-midmarket.techtarget.com/definition/digital
http://whatis.techtarget.com/definition/AF-audio-frequency-or-af
http://searchnetworking.techtarget.com/definition/radio-frequency
http://whatis.techtarget.com/definition/logic-gate-AND-OR-XOR-NOT-NAND-NOR-and-XNOR
https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Mobile_phone
https://en.wikipedia.org/wiki/Home_appliance
https://en.wikipedia.org/wiki/Home_appliance

In the early days of simple integrated circuits, the
technology's large scale limited each chip to only a few transistors,
and the low degree of integration meant the design process was
relatively simple. Manufacturing yields were also quite low by
today's standards. As the technology progressed, millions, then
billions[17] of transistors could be placed on one chip, and good
designs required thorough planning, giving rise to new design
methods.

The first integrated circuits contained only a few
transistors. Early digital circuits containing tens of transistors
provided a few logic gates, and early linear ICs had as few as two
transistors. The number of transistors in an integrated circuit has
increased dramatically since then. The term "large scale
integration" (LSI) was first used by IBM scientist Rolf
Landauer when describing the theoretical concept that term gave
rise to the terms "small-scale integration" (SSI), "medium-scale
integration" (MSI), "very-large-scale integration" (VLSI), and "ultra-
large-scale integration" (ULSI). The early integrated circuits were
SSI.

SSI circuits were crucial to early aerospace projects, and
aerospace projects helped inspire development of the
technology. Integrated circuits began to appear in consumer
products by the turn of the decade, a typical application
being FM inter-carrier sound processing in television receivers.

The first MOS chips were small-scale integrated chips
for NASA satellites.

The next step in the development of integrated circuits,
taken in the late 1960s, introduced devices which contained
hundreds of transistors on each chip, called "medium-scale
integration" (MSI).

In 1964, Frank Wanlass demonstrated a single-chip 16-bit
shift register he designed, with an incredible (for the time) 120
transistors on a single chip.

https://en.wikipedia.org/wiki/Integrated_circuit#cite_note-17
https://en.wikipedia.org/wiki/Y_diagram
https://en.wikipedia.org/wiki/Y_diagram
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Rolf_Landauer
https://en.wikipedia.org/wiki/Rolf_Landauer
https://en.wikipedia.org/wiki/Frequency_modulation
https://en.wikipedia.org/wiki/Small-scale_integration
https://en.wikipedia.org/wiki/NASA
https://en.wikipedia.org/wiki/Frank_Wanlass

Name Signification Year
Number of

transistors

Number of

logic gates

SSI
small-scale

integration
1964 1 to 10 1 to 12

MSI
medium-scale

integration
1968 10 to 500 13 to 99

LSI
large-scale

integration
1971 500 to 20,000 100 to 9,999

VLSI
very large-scale

integration
1980

20,000 to

1,000,000

10,000 to

99,999

ULSI
ultra-large-scale

integration
1984

1,000,000 and

more

100,000 and

more

Table: 2.1

MSI devices were attractive economically because while they cost
little more to produce than SSI devices, they allowed more
complex systems to be produced using smaller circuit boards, less
assembly work (because of fewer separate components), and a
number of other advantages.

Further development, driven by the same economic factors, led to
"large-scale integration" (LSI) in the mid-1970s, with tens of
thousands of transistors per chip.

SSI and MSI devices often were manufactured by masks created
by hand-cutting Rubylith; an engineer would inspect and verify the
completeness of each mask. LSI devices contain so many
transistors, interconnecting wires, and other features that it is
considered impossible for a human to check the masks or even do
the original design entirely by hand; the engineer depends on
computer programs and other hardware aids to do most of this
work.[24]

Integrated circuits such as 1K-bit RAMs, calculator chips, and the
first microprocessors, that began to be manufactured in moderate
quantities in the early 1970s, had under 4000 transistors. True LSI
circuits, approaching 10,000 transistors, began to be produced
around 1974, for computer main memories and second-generation
microprocessors.

2.1.1 VLSI

The final step in the development process, starting in the 1980s
and continuing through the present, was "very-large-scale
integration" (VLSI). The development started with hundreds of
thousands of transistors in the early 1980s, and continues beyond
several billion transistors as of 2009.

Multiple developments were required to achieve this
increased density. Manufacturers moved to smaller design rules
and cleaner fabrication facilities, so that they could make chips
with more transistors and maintain adequate yield. The path of
process improvements was summarized by the International
Technology Roadmap for Semiconductors (ITRS). Design
tools improved enough to make it practical to finish these designs
in a reasonable time. The more energy-
efficient CMOS replaced NMOS and PMOS, avoiding a prohibitive
increase in power consumption.

https://en.wikipedia.org/wiki/Rubylith
https://en.wikipedia.org/wiki/Integrated_circuit#cite_note-24
https://en.wikipedia.org/wiki/VLSI
https://en.wikipedia.org/wiki/International_Technology_Roadmap_for_Semiconductors
https://en.wikipedia.org/wiki/International_Technology_Roadmap_for_Semiconductors
https://en.wikipedia.org/wiki/Electronic_design_automation
https://en.wikipedia.org/wiki/Electronic_design_automation
https://en.wikipedia.org/wiki/CMOS
https://en.wikipedia.org/wiki/NMOS_logic
https://en.wikipedia.org/wiki/PMOS_logic

In 1986 the first one-megabit RAM chips were introduced,
containing more than one million transistors. Microprocessor chips
passed the million-transistor mark in 1989 and the billion-transistor
mark in 2005. The trend continues largely unabated, with chips
introduced in 2007 containing tens of billions of memory
transistors.

2.1.2 ULSI, WSI, SOC and 3D-IC

To reflect further growth of the complexity, the term ULSI that

stands for "ultra-large-scale integration" was proposed for chips of
more than 1 million transistors.[27]

Wafer-scale integration (WSI) is a means of building very
large integrated circuits that uses an entire silicon wafer to
produce a single "super-chip". Through a combination of large size
and reduced packaging, WSI could lead to dramatically reduced
costs for some systems, notably massively parallel
supercomputers. The name is taken from the term Very-Large-
Scale Integration, the current state of the art when WSI was being
developed.[28]

A system-on-a-chip (SoC or SOC) is an integrated circuit in
which all the components needed for a computer or other system
are included on a single chip. The design of such a device can be
complex and costly, and building disparate components on a
single piece of silicon may compromise the efficiency of some
elements. However, these drawbacks are offset by lower
manufacturing and assembly costs and by a greatly reduced
power budget: because signals among the components are kept
on-die, much less power is required (see Packaging).[29]

A three-dimensional integrated circuit (3D-IC) has two or
more layers of active electronic components that are integrated
both vertically and horizontally into a single circuit. Communication
between layers uses on-die signaling, so power consumption is
much lower than in equivalent separate circuits. Judicious use of
short vertical wires can substantially reduce overall wire length for
faster operation.

https://en.wikipedia.org/wiki/Random_Access_Memory
https://en.wikipedia.org/wiki/Integrated_circuit#cite_note-27
https://en.wikipedia.org/wiki/Wafer-scale_integration
https://en.wikipedia.org/wiki/Integrated_circuit#cite_note-28
https://en.wikipedia.org/wiki/System-on-a-chip
https://en.wikipedia.org/wiki/Integrated_circuit#Packaging
https://en.wikipedia.org/wiki/Integrated_circuit#cite_note-29
https://en.wikipedia.org/wiki/Three-dimensional_integrated_circuit

2.2 Decoders

The Binary Decoder is another combinational logic circuit
constructed from individual logic gates and is the exact opposite to
that of an “Encoder” we looked at in the last tutorial. The name
“Decoder” means to translate or decode coded information from
one format into another, so a digital decoder transforms a set of
digital input signals into an equivalent decimal code at its output.

Binary Decoders are another type of Digital Logic device
that has inputs of 2-bit, 3-bit or 4-bit codes depending upon the
number of data input lines, so a decoder that has a set of two or
more bits will be defined as having an n-bit code, and therefore it

will be possible to represent 2n possible values. Thus, a decoder
generally decodes a binary value into a non-binary one by setting
exactly one of its n outputs to logic “1”.

If a binary decoder receives n inputs (usually grouped as a
single Binary or Boolean number) it activates one and only one of
its 2n outputs based on that input with all other outputs
deactivated.

Fig: 2.1

So for example, an inverter (NOT-gate) can be classed as a 1-to-
2 binary decoder as 1-input and 2-outputs (21) is possible because
with an input Ait can produce two outputs A and A (not-A) as
shown.

Then we can say that a standard combinational logic
decoder is an n-to-mdecoder, where m ≤ 2n, and whose

http://amazon.in/s/?field-keywords=Fundamentals+of+Digital+Logic
http://www.electronics-tutorials.ws/logic/logic_4.html

output, Q is dependent only on its present input states. In other
words, a binary decoder looks at its current inputs, determines
which binary code or binary number is present at its inputs and
selects the appropriate output that corresponds to that binary
input.

A Binary Decoder converts coded inputs into coded outputs,
where the input and output codes are different and decoders are
available to “decode” either a Binary or BCD (8421 code) input
pattern to typically a Decimal output code. Commonly available
BCD-to-Decimal decoders include the TTL 7442 or the CMOS
4028. Generally a decoders output code normally has more bits
than its input code and practical “binary decoder” circuits include,
2-to-4, 3-to-8 and 4-to-16 line configurations.

An example of a 2-to-4 line decoder:

Fig: 2.2

 Fig: 2.3 Table: 2.2

This simple example above of a 2-to-4 line binary decoder
consists of an array of four AND gates. The 2 binary inputs
labelled A and B are decoded into one of 4 outputs, hence the
description of 2-to-4 binary decoder. Each output represents one
of the miniterms of the 2 input variables, (each output = a
miniterm).

The binary inputs A and B determine which output line
from Q0 to Q3 is “HIGH” at logic level “1” while the remaining
outputs are held “LOW” at logic “0” so only one output can be
active (HIGH) at any one time. Therefore, whichever output line is
“HIGH” identifies the binary code present at the input, in other
words it “de-codes” the binary input.

Some binary decoders have an additional input pin
labelled “Enable” that controls the outputs from the device. This
extra input allows the decoders outputs to be turned “ON” or
“OFF” as required. These types of binary decoders are commonly
used as “memory address decoders” in microprocessor memory
applications.

We can say that a binary decoder is a demultiplexer with
an additional data line that is used to enable the decoder. An
alternative way of looking at the decoder circuit is to regard
inputs A, B and C as address signals. Each combination
of A, B or C defines a unique memory address.

We have seen that a 2-to-4 line binary decoder (TTL
74155) can be used for decoding any 2-bit binary code to provide
four outputs, one for each possible input combination. However,
sometimes it is required to have a Binary Decoder with a number
of outputs greater than is available, so by adding more inputs, the
decoder can potentially provide 2n more outputs.

Fig: 2.4

So for example, a decoder with 3 binary inputs (n = 3), would
produce a 3-to-8 line decoder (TTL 74138) and 4 inputs (n = 4)
would produce a 4-to-16 line decoder (TTL 74154) and so on. But
a decoder can also have less than 2n outputs such as the BCD to
seven-segment decoder (TTL 7447) which has 4 inputs and only 7
active outputs to drive a display rather than the full 16 (24) outputs
as you would expect.

 Here a much larger 4 (3 data plus 1 enable) to 16 line
binary decoder has been implemented using two smaller 3-to-8
decoders.

A 4-to-16 Binary Decoder Configuration.

Fig: 2.5

Inputs A, B, C are used to select which output on either decoder

will be at logic “1” (HIGH) and input D is used with the enable

input to select which encoder either the first or second will output

the “1”.

However, there is a limit to the number of inputs that can

be used for one particular decoder, because as n increases, the

number of AND gates required to produce an output also

becomes larger resulting in the fan-out of the gates used to drive

them becoming large.This type of active-“HIGH” decoder can be

implemented using just Inverters, (NOT Gates) and AND gates. It

is convenient to use an AND gate as the basic decoding element

for the output because it produces a “HIGH” or logic “1” output

only when all of its inputs are logic “1”.But some binary decoders

are constructed using NAND gates instead of AND gates for their

decoded output, since NAND gates are cheaper to produce

than AND’s as they require fewer transistors to implement within

their design.The use of NAND gates as the decoding element,

results in an active-“LOW” output while the rest will be “HIGH”. As

a NAND gate produces the AND operation with an inverted output,

the NAND decoder looks like this with its inverted truth table.

2-to-4 Line NAND Binary Decoder

Fig: 2.6

Table: 2.3

Then for the NAND decoder, only one output can be LOW and
equal to logic “0” at any given time, with all the other outputs being
HIGH at logic “1”.

Decoders are also available with an additional “Enable” input pin
which allows the decoded output to be turned “ON” or “OFF” by
applying a logic “1” or logic “0” respectively to it. So for example,
when the enable input is at logic level “0”, (EN = 0) all outputs are
“OFF” at logic “0” (for AND gates) regardless of the state of the
inputs A and B.

Generally to implement this enabling function the 2-
input AND or NAND gates are replaced with 3-
input AND or NAND gates. The additional input pin represents the
enable function.

2.3 Multiplexers

Multiplexing is the generic term used to describe the operation of
sending one or more analogue or digital signals over a common
transmission line at different times or speeds and as such, the
device we use to do just that is called a Multiplexer.

The multiplexer, shortened to “MUX” or “MPX”, is a

combinational logic circuit designed to switch one of several input
lines through to a single common output line by the application of
a control signal. Multiplexers operate like very fast acting multiple
position rotary switches connecting or controlling multiple input
lines called “channels” one at a time to the output.

Multiplexers, or MUX’s, can be either digital circuits made
from high speed logic gates used to switch digital or binary data or
they can be analogue types using transistors, MOSFET’s or relays
to switch one of the voltage or current inputs through to a single
output.

The most basic type of multiplexer device is that of a one-
way rotary switch as shown.

http://amazon.in/s/?field-keywords=Digital+Fundamentals

Generally, the selection of each input line in a multiplexer
is controlled by an additional set of inputs called control lines and

according to the binary condition of these control inputs, either
“HIGH” or “LOW” the appropriate data input is connected directly
to the output. Normally, a multiplexer has an even number of
2N data input lines and a number of “control” inputs that
correspond with the number of data inputs.

Note that multiplexers are different in operation
to Encoders. Encoders are able to switch an n-bit input pattern to
multiple output lines that represent the binary coded (BCD) output
equivalent of the active input. We can build a simple 2-line to 1-
line (2-to-1) multiplexer from basic logic NAND gates as shown.

 Fig: 2.7 Table: 2.4

The input A of this simple 2-1 line multiplexer circuit constructed
from standard NAND gates acts to control which input (I0 or I1)
gets passed to the output at Q.

From the truth table above, we can see that when the data select
input, A is LOW at logic 0, input I1passes its data through
the NAND gate multiplexer circuit to the output, while input I0 is
blocked. When the data select A is HIGH at logic 1, the reverse
happens and now input I0 passes data to the output Q while
input I1 is blocked.

So by the application of either a logic “0” or a logic “1” at A we can
select the appropriate input, I0 orI1 with the circuit acting a bit like a
single pole double throw (SPDT) switch. Then in this simple
example, the 2-input multiplexer connects one of two 1-bit sources
to a common output, producing a 2-to-1-line multiplexer and we
can confirm this in the following Boolean expression.

Q = A.I0.I1 + A.I0.I1 + A.I0.I1 + A.I0.I1

and for our 2-input multiplexer circuit above, this can be simplified
too:

Q = A.I1 + A.I0

We can increase the number of data inputs to be selected further
simply by following the same procedure and larger multiplexer
circuits can be implemented using smaller 2-to-1 multiplexers as
their basic building blocks. So for a 4-input multiplexer we would
therefore require two data select lines as 4-inputs
represents 22 data control lines give a circuit with four
inputs, I0, I1, I2, I3 and two data select lines A and B as shown.

4-to-1 Channel Multiplexer

 Fig: 2.8 Table: 2.4

The Boolean expression for this 4-to-1 Multiplexer above with

inputs A to D and data select lines a, b is given as:

Q = abA + abB + abC + abD

In this example at any one instant in time only ONE of the four
analogue switches is closed, connecting only one of the input
lines A to D to the single output at Q. As to which switch is closed
depends upon the addressing input code on lines “a” and “b“, so
for this example to select input Bto the output at Q, the binary
input address would need to be “a” = logic “1” and “b” = logic “0”.

Then we can show the selection of the data through the
multiplexer as a function of the data select bits as shown.

Multiplexer Input Line Selection

Fig: 2.9

Adding more control address lines will allow the multiplexer to
control more inputs but each control line configuration will connect
only ONE input to the output.

Then the implementation of the Boolean expression above using
individual logic gates would require the use of seven individual
gates consisting of AND, OR and NOT gates as shown.

4 Channel Multiplexer using Logic Gates

 Fig: 2.10

The symbol used in logic diagrams to identify a multiplexer is as

follows.

Fig: 2.11

2.4 Registers

Flip-flop is a 1 bit memory cell which can be used for storing the
digital data. To increase the storage capacity in terms of number
of bits, we have to use a group of flip-flop. Such a group of flip-flop
is known as a Register. The n-bit register will consist of n number
of flip-flop and it is capable of storing an n-bit word. Other than
flip-flops registers can also have combinational gates which
perform certain data processing tasks. The flip-flops hold the
binary information and the combinational gates control when and
how new information is transferred into the registers. To store N
bits, a register must have N flip-flops, one for each bit to be
stored.

Fig: 2.13 a four bit register using D Flip-flops

 State Diagram of circuit inIn this example, the 4-bit register is
implemented by four D flip-flops. Note the input CLK comes from
an AND gate that puts out the logical AND of the system clock
(Clock) and the LOAD signal. When LOAD is 0, the flip-flops are
cut off from the input and do not change state in response to the

input. The design calls for LOAD to be 1 for almost one clock
pulse, so that the system clock and LOAD are both high for 1/2
clock cycle. At this time, the register is loaded.

Fig: 2.14 a four bit register using

State Diagram of circuit in the figure at right shows a short-hand
notation used when drawing registers that contain a number of
flip-flops identically configured. It should be obvious that the figure
represents a 4-bit register.

2.5 Shift Registers

The Shift Register is another type of sequential logic circuit that
can be used for the storage or the transfer of data in the form of
binary numbers. This sequential device loads the data present on
its inputs and then moves or “shifts” it to its output once every
clock cycle, hence the name “shift register”.

A shift register basically consists of several single bit “D-
Type Data Latches”, one for each data bit, either a logic “0” or a
“1”, connected together in a serial type daisy-chain arrangement
so that the output from one data latch becomes the input of the
next latch and so on.

Data bits may be fed in or out of a shift register serially,
that is one after the other from either the left or the right direction,
or all together at the same time in a parallel configuration.

The number of individual data latches required to make up
a single Shift Register device is usually determined by the number
of bits to be stored with the most common being 8-bits (one byte)
wide constructed from eight individual data latches.

Shift Registers are used for data storage or for the

movement of data and are therefore commonly used inside
calculators or computers to store data such as two binary
numbers before they are added together, or to convert the data
from either a serial to parallel or parallel to serial format. The
individual data latches that make up a single shift register are all
driven by a common clock (Clk) signal making them synchronous
devices.

Shift register IC’s are generally provided with
a clear or reset connection so that they can be “SET” or “RESET”

as required. Generally, shift registers operate in one of four
different modes with the basic movement of data through a shift
register being:

 Serial-in to Parallel-out (SIPO) - the register is loaded with
serial data, one bit at a time, with the stored data being
available at the output in parallel form.

 Serial-in to Serial-out (SISO) - the data is shifted serially
“IN” and “OUT” of the register, one bit at a time in either a
left or right direction under clock control.

 Parallel-in to Serial-out (PISO) - the parallel data is loaded
into the register simultaneously and is shifted out of the
register serially one bit at a time under clock control.

 Parallel-in to Parallel-out (PIPO) - the parallel data is
loaded simultaneously into the register, and transferred
together to their respective outputs by the same clock pulse.

The effect of data movement from left to right through a shift
register can be presented graphically as:

Fig: 2.15.a shift register

Also, the directional movement of the data through a shift register
can be either to the left, (left shifting) to the right, (right shifting)
left-in but right-out, (rotation) or both left and right shifting within
the same register thereby making it bidirectional. In this tutorial it

is assumed that all the data shifts to the right, (right shifting).

2.5.1 Serial-in to Parallel-out (SIPO) Shift Register

Fig: 2.16 a 4-bit Serial-in to Parallel-out Shift Register

The operation is as follows. Lets assume that all the flip-
flops (FFA to FFD) have just been RESET (CLEAR input) and
that all the outputs QA to QD are at logic level “0” ie, no parallel
data output.

If a logic “1” is connected to the DATA input pin
of FFA then on the first clock pulse the output of FFA and
therefore the resulting QA will be set HIGH to logic “1” with all the
other outputs still remaining LOW at logic “0”. Assume now that
the DATA input pin of FFA has returned LOW again to logic “0”
giving us one data pulse or 0-1-0.

The second clock pulse will change the output of FFA to
logic “0” and the output of FFB and QB HIGH to logic “1” as its
input D has the logic “1” level on it from QA. The logic “1” has now
moved or been “shifted” one place along the register to the right
as it is now at QA.

When the third clock pulse arrives this logic “1” value
moves to the output of FFC (QC) and so on until the arrival of the
fifth clock pulse which sets all the outputs QA to QD back again to
logic level “0” because the input to FFA has remained constant at
logic level “0”.

The effect of each clock pulse is to shift the data contents
of each stage one place to the right, and this is shown in the
following table until the complete data value of 0-0-0-1 is stored in
the register. This data value can now be read directly from the
outputs of QAto QD.

2.5.2 Serial-in to Serial-out (SISO) Shift Register

This shift register is very similar to the SIPO above, except were
before the data was read directly in a parallel form from the
outputs QA to QD, this time the data is allowed to flow straight
through the register and out of the other end. Since there is only
one output, the DATA leaves the shift register one bit at a time in
a serial pattern, hence the name Serial-in to Serial-Out Shift
Register or SISO.The SISO shift register is one of the simplest of

the four configurations as it has only three connections, the serial
input (SI) which determines what enters the left hand flip-flop, the
serial output (SO) which is taken from the output of the right hand
flip-flop and the sequencing clock signal (Clk). The logic circuit
diagram below shows a generalized serial-in serial-out shift
register.

Fig: 2.17 a 4-bit Serial-in to Serial-out Shift Register

You may think what’s the point of a SISO shift register if
the output data is exactly the same as the input data. Well this
type of Shift Register also acts as a temporary storage device or it
can act as a time delay device for the data, with the amount of
time delay being controlled by the number of stages in the
register, 4, 8, 16 etc or by varying the application of the clock
pulses. Commonly available IC’s include the 74HC595 8-bit
Serial-in to Serial-out Shift Register all with 3-state outputs.

2.5.3 Parallel-in to Serial-out (PISO) Shift Register

The Parallel-in to Serial-out shift register acts in the opposite way
to the serial-in to parallel-out one above. The data is loaded into
the register in a parallel format in which all the data bits enter their
inputs simultaneously, to the parallel input pins PA to PD of the
register. The data is then read out sequentially in the normal shift-
right mode from the register at Q representing the data present
atPA to PD.

This data is outputted one bit at a time on each clock cycle
in a serial format. It is important to note that with this type of data
register a clock pulse is not required to parallel load the register as
it is already present, but four clock pulses are required to unload
the data.

Fig: 2.18 a 4-bit Parallel-in to Serial-out Shift Register

As this type of shift register converts parallel data, such as
an 8-bit data word into serial format, it can be used to multiplex

many different input lines into a single serial DATA stream which
can be sent directly to a computer or transmitted over a
communications line. Commonly available IC’s include the
74HC166 8-bit Parallel-in/Serial-out Shift Registers.

2.5.4 Parallel-in to Parallel-out (PIPO) Shift Register

The final mode of operation is the Parallel-in to Parallel-out Shift
Register. This type of shift register also acts as a temporary
storage device or as a time delay device similar to the SISO
configuration above. The data is presented in a parallel format to
the parallel input pins PA to PD and then transferred together
directly to their respective output pins QA to QA by the same clock
pulse. Then one clock pulse loads and unloads the register. This
arrangement for parallel loading and unloading is shown below.

Fig: 2.19 a 4-bit Parallel-in to Parallel-out Shift Register

The PIPO shift register is the simplest of the four
configurations as it has only three connections, the parallel input

(PI) which determines what enters the flip-flop, the parallel output
(PO) and the sequencing clock signal (Clk).

Similar to the Serial-in to Serial-out shift register, this type
of register also acts as a temporary storage device or as a time
delay device, with the amount of time delay being varied by the
frequency of the clock pulses. Also, in this type of register there
are no interconnections between the individual flip-flops since no
serial shifting of the data is required.

2.6 Binary Counters

A counter is a device which stores (and sometimes displays) the
number of times a particular event or process has occurred, often
in relationship to a clock signal. The most common type is
a sequential digital logic circuit with an input line called the "clock"
and multiple output lines. The values on the output lines represent
a number in the binary or BCD number system. Each pulse
applied to the clock input increments or decrements the number in
the counter.

A counter circuit is usually constructed of a number of flip-
flops connected in cascade. Counters are a very widely-used
component in digital circuits, and are manufactured as
separate integrated circuits and also incorporated as parts of
larger integrated circuits.

2.6.1 Asynchronous (ripple) counter

An asynchronous (ripple) counter is a single d-type flip-

flop, with its J (data) input fed from its own inverted output. This

circuit can store one bit, and hence can count from zero to one

before it overflows (starts over from 0). This counter will increment

once for every clock cycle and takes two clock cycles to overflow,

so every cycle it will alternate between a transition from 0 to 1 and

a transition from 1 to 0. Notice that this creates a new clock with a

50% duty cycle at exactly half the frequency of the input clock. If

https://en.wikipedia.org/wiki/Event_(philosophy)
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Clock_signal
https://en.wikipedia.org/wiki/Sequential_logic
https://en.wikipedia.org/wiki/Digital_logic
https://en.wikipedia.org/wiki/Binary_number
https://en.wikipedia.org/wiki/Binary_coded_decimal
https://en.wiktionary.org/wiki/increment
https://en.wiktionary.org/wiki/decrement
https://en.wikipedia.org/wiki/Flip-flop_(electronics)
https://en.wikipedia.org/wiki/Flip-flop_(electronics)
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Flip-flop_(electronics)#dflip-flop
https://en.wikipedia.org/wiki/Flip-flop_(electronics)#dflip-flop
https://en.wikipedia.org/wiki/Duty_cycle

this output is then used as the clock signal for a similarly arranged

D flip-flop (remembering to invert the output to the input), one will

get another 1 bit counter that counts half as fast. Putting them

together yields a two-bit counter:

Fig: 2.20 An Asynchronous ripple counter

Table: 2.5

Cycle Q1 Q0 (Q1:Q0)
dec

0

0

0

0

1

0

1

1

2

1

0

2

3

1

1

3

4

0

0

0

You can continue to add additional flip-flops, always
inverting the output to its own input, and using the output from the
previous flip-flop as the clock signal. The result is called a ripple
counter, which can count to 2n - 1 where n is the number of bits

(flip-flop stages) in the counter. Ripple counters suffer from
unstable outputs as the overflows "ripple" from stage to stage, but
they do find frequent application as dividers for clock signals,
where the instantaneous count is unimportant, but the
division ratio overall is (to clarify this, a 1-bit counter is exactly
equivalent to a divide by two circuit; the output frequency is
exactly half that of the input when fed with a regular train of clock
pulses).

The use of flip-flop outputs as clocks leads to timing skew
between the count data bits, making this ripple technique
incompatible with normal synchronous circuit design styles.

2.6.2 Synchronous counter

In synchronous counters, the clock inputs of all the flip-flops are
connected together and are triggered by the input pulses. Thus, all
the flip-flops change state simultaneously (in parallel). The circuit
below is a 4-bit synchronous counter. The J and K inputs of FF0
are connected to HIGH. FF1 has its J and K inputs connected to
the output of FF0, and the J and K inputs of FF2 are connected to
the output of an AND gate that is fed by the outputs of FF0 and
FF1. A simple way of implementing the logic for each bit of an
ascending counter (which is what is depicted in the image to the
right) is for each bit to toggle when all of the less significant bits
are at a logic high state. For example, bit 1 toggles when bit 0 is
logic high; bit 2 toggles when both bit 1 and bit 0 are logic high; bit
3 toggles when bit 2, bit 1 and bit 0 are all high; and so on.

Synchronous counters can also be implemented with
hardware finite-state machines, which are more complex but allow
for smoother, more stable transitions.Hardware-based counters
are of this type.A simple way of implementing the logic for each bit
of an ascending counter (which is what is depicted in the image to

https://en.wikipedia.org/wiki/Ratio
https://en.wikipedia.org/wiki/Synchronous_circuit
https://en.wikipedia.org/wiki/Finite-state_machine

the right) is for each bit to toggle when all of the less significant
bits are at a logic high state

Fig: 2.21 A 4-bit synchronous counter using JK flip-flop

Chapter 3

Data Representation

3.1 Data types

Information that a Computer is dealing with

* Data

- Numeric Data: Numbers(Integer, real)
- Non-numeric: Data Letters, Symbols

* Relationship between data elements
- Data Structures: Linear Lists, Trees, Rings, etc

* Program(Instruction)

Data
Numeric data - numbers(integer, real)
Non-numeric data - symbols, letters

3.1.1 Number System

Nonpositional number system
- Roman number system

Positional number system

- Each digit position has a value called a weight

associated with it
- Decimal, Octal, Hexadecimal, Binary

Base (or radix) R number
- Uses R distinct symbols for each digit
- Example AR = an-1 an-2 ... a1 a0 .a-1…a-m

V(AR) = ∑ 𝑎𝑖𝑅𝑅
𝑛−1

𝑖=−𝑚

R = 10 Decimal number system,

R = 2 Binary number system

R = 8 Octal number system

R = 16 Hexadecimal

3.1.2 WHY POSITIONAL NUMBER SYSTEM IN THE DIGITAL

 COMPUTERS ?

Major Consideration is the COST and TIME

- Cost of building hardware

Arithmetic and Logic Unit, CPU,Communications

- Time to processing

Arithmetic - Addition of Numbers - Table for Addition

* Non-positional Number System

- Table for addition is infinite

--> Impossible to build, very expensive even

if it can be built

* Positional Number System

- Table for Addition is finite

--> Physically realizable, but cost wise

the smaller the table size, the less

expensive --> Binary is favorable to Decimal

3.1.3 CONVERSION OF BASES

Base R to Decimal Conversion

 V(A) = Σ ak Rk

 A = an-1 an-2 an-3 … a0 . a-1 … a-m

(736.4)8 = 7 x 82 + 3 x 81 + 6 x 80 + 4 x 8-1

 = 7 x 64 + 3 x 8 + 6 x 1 + 4/8 = (478.5)10

 (110110)2 = ... = (54)10

 (110.111)2 = ... = (6.785)10

 (F3)16 = ... = (243)10 (0.325)6 = ... = (0.578703703
.................)10

Decimal to Base R number

Separate the number into its integer and fraction parts and
convert each part

separately.

- Convert integer part into the base R number

--> successive divisions by R and accumulation of the
remainders.

 - Convert fraction part into the base R number

 --> successive multiplications by R and accumulation of
integer digits

COMPLEMENT OF NUMBERS

Complements - to convert positive to negative or vice
versa

Two types of complements for base R number system: -
R's complement and (R-1)'s

Complement

The (R-1)'s Complement

 Subtract each digit of a number from (R-1)

Example - 9's complement of 83510 is 16410 - 1's
complement of 10102 is 01012(bit by bit

complement operation)

The R's Complement

Add 1 to the low-order digit of its (R-1)'s complement

Complements - to convert positive to negative or vice
versa

Example

 - 10's complement of 83510 is 16410 + 1 = 16510

- 2's complement of 10102 is 01012 + 1 = 01102

FIXED POINT NUMBERS

Numbers: Fixed Point Numbers and Floating Point
Numbers

 Binary Fixed-Point Representation

 X = xnxn-1 xn-2 ... x1x0. x-1x-2 ... x-m

 Sign Bit(xn): 0 for positive - 1 for negative

 Remaining Bits(xnxn-1 xn-2 ... x1x0. x-1x-2 ... x-m)

Following 3 representations:

Signed magnitude representation

Signed 1's complement representation

Signed 2's complement representation

Example: Represent +9 and -9 in 7 bit-binary number

Only one way to represent +9 ==> 0 001001

Three different ways to represent -9:

In signed-magnitude: 1 001001

 In signed-1's complement: 1 110110

In signed-2's complement: 1 110111

Numbers: Fixed Point Numbers and Floating Point Numbers In
general, in computers, fixed point numbers are represented either
integer part only or fractional part only.

CHARACTERISTICS OF 3 DIFFERENT REPRESENTATIONS

Complement

 Signed magnitude: Complement only the sign bit

Signed 1's complement: Complement all the bits including
sign bit

Signed 2's complement: Take the 2's complement of the
number, including its sign bit.

Maximum and Minimum Representable Numbers and
Representation of Zero

X = xn xn-1 ... x0 . x-1 ... x-m

Signed Magnitude

Max: 2n - 2-m 011 ... 11.11 ... 1

 Min: -(2n - 2-m) 111 ... 11.11 ... 1

Zero: +0 000 ... 00.00 ... 0

 -0 100 ... 00.00 ... 0

 Signed 1’s Complement

 Max: 2n - 2-m 011 ... 11.11 ... 1

Min: -(2n - 2-m) 100 ... 00.00 ... 0

Zero: +0 000 ... 00.00 ... 0

-0 111 ... 11.11 ... 1

 Signed 2’s Complement

 Max: 2n - 2-m 011 ... 11.11 ... 1

 Min: -2n 100 ... 00.00 ... 0

Zero: 0 000 ... 00.00 ... 0

When we type some letters or words, the computer
translates them in numbers as computers can understand only
numbers. A computer can understand positional number system
where there are only a few symbols called digits and these
symbols represent different values depending on the position
they occupy in the number.

 The data types found in memory of digital
computers may be classified as beibg one of the following
categories:

- Numbers used for arithmetic computations
- Alphabetical letters used in data processing
- Other discrete symbols used for special purposes

A value of each digit in a number can be determined using

 The digit
 The position of the digit in the number
 The base of the number system (where base is defined as

the total number of digits available in the number system).

3.1.4 Decimal Number System

The number system that we use in our day-to-day life is the
decimal number system. Decimal number system has base 10 as
it uses 10 digits from 0 to 9. In decimal number system, the
successive positions to the left of the decimal point represent
units, tens, hundreds, thousands and so on.

Each position represents a specific power of the base (10). For
example, the decimal number 1234 consists of the digit 4 in the
units position, 3 in the tens position, 2 in the hundreds position,
and 1 in the thousands position, and its value can be written as

(1x1000)+ (2x100)+ (3x10)+ (4xl)

(1x103)+ (2x102)+ (3x101)+ (4xl00)

1000 + 200 + 30 + 4

1234

As a computer programmer or an IT professional, you should
understand the following number systems which are frequently
used in computers.

S.N. Number System and Description

1
Binary Number System

Base 2. Digits used : 0, 1

2
Octal Number System

Base 8. Digits used : 0 to 7

3
Hexa Decimal Number System

Base 16. Digits used : 0 to 9, Letters used : A- F

3.1.5 Binary Number System

Characteristics of binary number system are as follows:

 Uses two digits, 0 and 1.
 Also called base 2 number system
 Each position in a binary number represents a 0 power of

the base (2). Example 20
 Last position in a binary number represents a x power of

the base (2). Example 2xwhere x represents the last
position - 1.

Example:

Binary Number : 101012

Calculating Decimal Equivalent:

Step Binary
Number

Decimal Number

Step 1 101012 ((1 x 24) + (0 x 23) + (1 x 22) + (0 x 21) + (1 x
20))10

Step 2 101012 (16 + 0 + 4 + 0 + 1)10

Step 3 101012 2110

Note : 101012 is normally written as 10101.

3.1.6 Octal Number System

Characteristics of octal number system are as follows:

 Uses eight digits, 0,1,2,3,4,5,6,7.
 Also called base 8 number system
 Each position in an octal number represents a 0 power of

the base (8). Example 80
 Last position in an octal number represents a x power of

the base (8). Example 8xwhere x represents the last
position - 1.

Example:

Octal Number : 125708

Calculating Decimal Equivalent:

Step Octal
Number

Decimal Number

Step 1 125708 ((1 x 84) + (2 x 83) + (5 x 82) + (7 x
81) + (0 x 80))10

Step 2 125708 (4096 + 1024 + 320 + 56 + 0)10

Step 3 125708 549610

Note : 125708 is normally written as 12570.

3.1.7 Hexadecimal Number System

Characteristics of hexadecimal number system are as follows:

 Uses 10 digits and 6 letters,
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

 Letters represents numbers starting from 10. A = 10. B =
11, C = 12, D = 13, E = 14, F = 15.

 Also called base 16 number system
 Each position in a hexadecimal number represents a 0

power of the base (16). Example 160
 Last position in a hexadecimal number represents a x

power of the base (16). Example 16x where x represents
the last position - 1.

Example:

Hexadecimal Number : 19FDE16

Calculating Decimal Equivalent:

Step Binary
Number

Decimal Number

Step 1 19FDE16 ((1 x 164) + (9 x 163) + (F x 162) + (D x 161) + (E
x 160))10

Step 2 19FDE16 ((1 x 164) + (9 x 163) + (15 x 162) + (13 x 161) +
(14 x 160))10

Step 3 19FDE16 (65536+ 36864 + 3840 + 208 + 14)10

Step 4 19FDE16 10646210

REPRESENTATION OF NUMBERS

Binary Decimal Octal Hexadecimal

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Table: 3.1

3.2 Complements

In mathematics and computing, the method of complements is a
technique used to subtract one number from another using only
addition of positive numbers. This method was commonly used
in mechanical calculators and is still used in modern computers.

3.2.1 Decimal number complements:

 9’s complement of the decimal number N = (10n – 1) – N

 = n (9’s) – N

 i.e. {subtract each digit from 9}

Example -> 9’s complement of 134795 is 865204

Similarly

1’s complement of the binary number N = (2n -1) – N = n (1’s) – N

Example -> 1’s complement of 110100101 is 001011010

which can be obtained by replacing each one by a zero and each
zero by one.

3.2.2 r’s complement:

10’s complement of the decimal number N = 10n – N = (r-1)’s
complement + 1

Example -> 10’s complement of 134795 is 865205

Example -> find the 9’s and 10’s complements of 314700.

Answer -> 9’s complement = 685299

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Mechanical_calculator
https://en.wikipedia.org/wiki/Computers

10’s complement=685300

Rule: To find the 10’s complement of a decimal number leave all
leading zeros unchanged. Then subtract the first non-zero digit
from 10 and all the remaining digits from 9’s.

 The 2’s complement of a binary number is defined in a similar
way.

Example: Find the 1’s and 2’s complements of the binary number
1101001101

Answer -> 1’s complement is 0010110010

 2’s complement is 0010110011

Example: Find the 1’s and 2’s complements of 100010100

Answer -> 1’s complement is 011101011

 2’s complement is 011101100

Subtraction using r’s complement

To find M-N in base r, we add M + r’s complement of N

Result is M + (rn – N)

1) If M > N then result is M – N + rn (rn is an end carry and can be
neglected.

2) If M < N then result is rn –(N-M) which is the r’s complement of
the result.

Example: Subtract (76425 – 28321) using 10’s complements.

Answer -> 10’s complement of 28321 is 71679

Then add -> 7 6 4 2 5
 + 7 1 6 7 9
 1 4 8 1 0 4 (Discard 1)

Therefore the difference is 48104 after discarding the end carry

Example: subtract (28531 – 345920)

Answer -> It is obvious that the difference is negative. We also
have to work with the same number of digits, when dealing with
complements.

10’s complement of 345920 is 654080

Then add -> 0 2 8 5 3 1
 + 6 5 4 0 8 0

 (No end carry) 6 8 2 6 1 1

Therefore the difference is negative and is equal to the 10’s
complement of the answer.

Difference is -> - 317389

The same rules apply to binary.

Example: subtract (11010011 – 10001100)

Answer -> 2’s complement of 10001100 is 01110100

Then add -> 1 1 0 1 0 0 1 1
 + 0 1 1 1 0 1 0 0

 (Discard) 1 0 1 0 0 0 1 1 1

The difference is positive and is equal to 01000111

The same rules apply to subtraction using the (r-1)’s
complements. The only difference is that when an end carry is
generated, it is not discarded but added to the least significant
digit of the result. Also, if no end carry is generated, then the
answer is negative and in the (r-1)’s complement form.

Example: Subtract (76425 – 28321) using 9’s complements.

Answer -> 9’s complement of 28321 is 71678

Then add -> 7 6 4 2 5
 + 7 1 6 7 8
 1 4 8 1 0 3
 1

 (Difference) 4 8 1 0 4

Example: subtract (11010011 – 10001100) using 1’s complement.

Answer -> 1’s complement of 10001100 is 01110011

Then add -> 1 1 0 1 0 0 1 1
 + 0 1 1 1 0 0 1 1
 1 0 1 0 0 0 1 1 0
 1

 (Difference) 1 0 1 0 0 0 1 1 1

3.2.3 1’s Complement

 1’s complement of a binary number is obtained simply by
replacing each 1 by 0 and each 0 by 1. Alternately, 1’s
complement of a binary can be obtained by subtracting each bit
from 1.

 Example. Find 1’s complement of (i) 011001 (ii) 00100111

Solution. (i) Replace each 1 by 0 and each 0 by 1

 0 1 1 0 0 1
 ↓ ↓ ↓ ↓ ↓ ↓
 1 0 0 1 1 0

So, 1’s complement of 011001 is 100110.

 (ii) Subtract each binary bit from 1.

11 1 1 1 1 1 1
 –0 0 1 0 0 1 1 1
 1 1 0 1 1 0 0 0 ← 1’s complement

one can see that both the method gives same
result.

3.2.4 2’s Complement

2’s complement of a binary number can be obtained by
adding 1 to its 1’s complement.

Example. Find 2’s complement of (i) 011001 (ii) 0101100

Solution. (i) 01 1 0 0 1 ← Number
 10 0 1 1 0 ← 1’s complement
 ___ __+ 1 ← Add 1 to 1’s complement
 10 0 1 1 1 ← 2’s complement

(ii) 01 0 1 1 0 0 ← Number
10 1 0 0 1 1 ← 1’s complement
 + 1 ← Add 1 to 1’s complement
10 1 0 1 0 0 ← 2’s complement

3.3 Fixed and Floating point representation

3.3.1 Fixed point representation

 Unsigned numbers are used to represent positive number,
but to represent negative numbers we need negative notation. In
normal arithmetic representation a negative number is indicated
by minus sign, but in computers everything can be represented
only by 1’s and 0’s. in addition to sign a number can also have
decimal point, the position of the binary number is necessary to
represent fraction, integer etc..

3.3.2 Integer representation

 When an integer binary number is positive its represented
by 0, and when the number is negative the sign is represented by
1. The number can be represented in three different ways:

(i) Signed –Magnitude representation
(ii) Signed – 1’s complement representation
(iii) Signed – 2’s complement representation

For example consider a signed number 14 stored in 8-bit register

+14 is represented as 00001110, the left most bit is ‘0’
representing a positive number, but whereas -14 can be
represented three different ways:

 10001110 in Signed magnitude

 11110001 in signed 1’s complement representation

 11110010 in signed 2’s complement representation

3.3.2 Floating point representation

Scientific Notation:

 Science deals regularly with very large and very small
numbers.

 To do so it adopts Floating Point Notation. Below are

some examples:

e.g. 1. the distance between the Earth and Sun:

1.496x1011 meters = 149600000000

e.g. 2. the distance between an atomâ€™s nucleus and
an electron:

0.529x10-10 meters = 0.0000000000529

Since the base of the number system can be inferred, the "x10"
part is required.

But a way was needed to distinguish the "mantissa" (e.g. 1.496
and 0.529 above) from the "exponent" (1011 and 10-10 above) .

javascript:void(0)

So these are alternately expressed in the form: +1.496E11, and
+.529E-10

Floating-Point notation in Binary consists of 3 parts:

1. a Sign bit ["0" is non-negative (+), "1" is negative (-)
2. the Exponent and
3. the Mantissa.

 In an 8-bit pattern example below, the most significant (the
right-most) bit is the sign-bit, followed by a 3-
bit exponent (expressed in excess notation) followed by a
4-bit mantissa.

Important Note: in a normalized floating point notation, the

mantissa must begin, i.e., the most significant bit of the
mantissa must be a "1" and the radix point is assumed to

be at the left of the mantissa. In this course, we will always
use the normalized system.

A. Decoding Binary Floating Point Notation

1. Analyse bit pattern according to the 3 field patterns
(sign, exponent, mantissa)

2. Extract the mantissa and place the radix point on its left
side. E.G., .1001

3. Extract the contents of the exponent field and interpret
it using the Excess notation. (This 3-bit example is

excess (4) notation so it represents 5-4 or +1.)

4. Move the radix the same number of positions as was
determined from Step 3 above.

 Move the radix right the number of bit position
indicated by the exponent value if the
exponent is positive value.

 Move the radix left the number of bit position
indicated by the exponent value (add 0's as
necessary as placeholders) if exponent is
negative value.

5. Using the original sign bit, represent the decoded number
(in decimal.)

 E.G. 01011001

 Sign Exponent Mantissa

 Bit in Excess(4) (Normalized)

The Sign bit is 0 so the number represented is a non-negative
(+) number

Next, the number 101 in excess (4) notation is 5-4 that is +1; a
positive exponent moves the radix to the right and a
negative exponent moves the radix to the left.

The (normalized) mantissa 1001 is assumed to be .1001; after
applying the exponent by moving the radix 1 position to the
right, it becomes 1.001 or 1 and 1/8th.

Therefore the number 01011001 (in normalized floating point

notation) represents the value +11/8

3.4 Other binary codes

In the coding, when numbers, letters or words are represented by
a specific group of symbols, it is said that the number, letter or
word is being encoded. The group of symbols is called as a code.
The digital data is represented, stored and transmitted as group
of binary bits. This group is also called as binary code. The binary
code is represented by the number as well as alphanumeric
letter.

Advantages of Binary Code

Following is the list of advantages that binary code offers.

 Binary codes are suitable for the computer applications.
 Binary codes are suitable for the digital communications.
 Binary codes make the analysis and designing of digital

circuits if we use the binary codes.
 Since only 0 & 1 are being used, implementation becomes

easy.

Classification of binary codes

The codes are broadly categorized into following four categories.

 Weighted Codes
 Non-Weighted Codes
 Binary Coded Decimal Code
 Alphanumeric Codes
 Error Detecting Codes
 Error Correcting Codes

Weighted Codes

Weighted binary codes are those binary codes which obey the
positional weight principle. Each position of the number
represents a specific weight. Several systems of the codes are

used to express the decimal digits 0 through 9. In these codes
each decimal digit is represented by a group of four bits.

Fig: 3.1

Non-Weighted Codes

In this type of binary codes, the positional weights are not
assigned. The examples of non-weighted codes are Excess-3
code and Gray code.

Excess-3 code

The Excess-3 code is also called as XS-3 code. It is non-
weighted code used to express decimal numbers. The Excess-3
code words are derived from the 8421 BCD code words adding
(0011)2 or (3)10 to each code word in 8421. The excess-3 codes
are obtained as follows −

Example

Table 3.1

Gray Code

It is the non-weighted code and it is not arithmetic codes. That
means there are no specific weights assigned to the bit position.
It has a very special feature that, only one bit will change each
time the decimal number is incremented as shown in fig. As only
one bit changes at a time, the gray code is called as a unit
distance code. The gray code is a cyclic code. Gray code cannot
be used for arithmetic operation.

Table 3.2

Application of Gray code

 Gray code is popularly used in the shaft position encoders.
 A shaft position encoder produces a code word which

represents the angular position of the shaft.

Binary Coded Decimal (BCD) code

In this code each decimal digit is represented by a 4-bit binary
number. BCD is a way to express each of the decimal digits with
a binary code. In the BCD, with four bits we can represent sixteen
numbers (0000 to 1111). But in BCD code only first ten of these
are used (0000 to 1001). The remaining six code combinations
i.e. 1010 to 1111 are invalid in BCD.

Table 3.3

Advantages of BCD Codes

 It is very similar to decimal system.
 We need to remember binary equivalent of decimal

numbers 0 to 9 only.

Disadvantages of BCD Codes

 The addition and subtraction of BCD have different rules.
 The BCD arithmetic is little more complicated.
 BCD needs more number of bits than binary to represent

the decimal number. So BCD is less efficient than binary.

Alphanumeric codes

A binary digit or bit can represent only two symbols as it has only
two states '0' or '1'. But this is not enough for communication
between two computers because there we need many more
symbols for communication. These symbols are required to
represent 26 alphabets with capital and small letters, numbers
from 0 to 9, punctuation marks and other symbols.

The alphanumeric codes are the codes that represent
numbers and alphabetic characters. Mostly such codes also
represent other characters such as symbol and various
instructions necessary for conveying information. An
alphanumeric code should at least represent 10 digits and 26
letters of alphabet i.e. total 36 items. The following three

alphanumeric codes are very commonly used for the data
representation.

 American Standard Code for Information Interchange
(ASCII).

 Extended Binary Coded Decimal Interchange Code
(EBCDIC).

 Five bit Baudot Code.

ASCII code is a 7-bit code whereas EBCDIC is an 8-bit code.
ASCII code is more commonly used worldwide while EBCDIC is
used primarily in large IBM computers.

3.5 Error Detection codes

What is Error?

Error is a condition when the output information does not match
with the input information. During transmission, digital signals
suffer from noise that can introduce errors in the binary bits
travelling from one system to other. That means a 0 bit may
change to 1 or a 1 bit may change to 0.

Fig: 3.2

Error-Detecting codes

Whenever a message is transmitted, it may get scrambled by
noise or data may get corrupted. To avoid this, we use error-
detecting codes which are additional data added to a given digital
message to help us detect if an error occurred during
transmission of the message. A simple example of error-
detecting code is parity check.

Error-Correcting codes

Along with error-detecting code, we can also pass some data to
figure out the original message from the corrupt message that we
received. This type of code is called an error-correcting code.
Error-correcting codes also deploy the same strategy as error-
detecting codes but additionally, such codes also detect the exact
location of the corrupt bit.

In error-correcting codes, parity check has a simple way to
detect errors along with a sophisticated mechanism to determine
the corrupt bit location. Once the corrupt bit is located, its value is
reverted (from 0 to 1 or 1 to 0) to get the original message.

How to Detect and Correct Errors?

To detect and correct the errors, additional bits are added to the
data bits at the time of transmission.

 The additional bits are called parity bits. They allow
detection or correction of the errors.

 The data bits along with the parity bits form a code word.

Parity Checking of Error Detection

It is the simplest technique for detecting and correcting errors.
The MSB of an 8-bits word is used as the parity bit and the

remaining 7 bits are used as data or message bits. The parity of
8-bits transmitted word can be either even parity or odd parity.

Fig: 3.3

Even parity -- Even parity means the number of 1's in the given

word including the parity bit should be even (2,4,6,....).

Odd parity -- Odd parity means the number of 1's in the given

word including the parity bit should be odd (1,3,5,....).

Use of Parity Bit

The parity bit can be set to 0 and 1 depending on the type of the
parity required.

 For even parity, this bit is set to 1 or 0 such that the no. of
"1 bits" in the entire word is even. Shown in fig. (a).

 For odd parity, this bit is set to 1 or 0 such that the no. of
"1 bits" in the entire word is odd. Shown in fig. (b).

Fig: 3.4

How Does Error Detection Take Place?

Parity checking at the receiver can detect the presence of an
error if the parity of the receiver signal is different from the
expected parity. That means, if it is known that the parity of the
transmitted signal is always going to be "even" and if the received
signal has an odd parity, then the receiver can conclude that the
received signal is not correct. If an error is detected, then the
receiver will ignore the received byte and request for
retransmission of the same byte to the transmitter.

Fig: 3.4

Chapter 4

Register Transfer and Micro

operations

4.1 Register Transfer language

In computer science, register transfer language (RTL) is a kind
of intermediate representation (IR) that is very close to assembly
language, such as that which is used in acompiler. Academic
papers and textbooks also often use a form of RTL as an
architecture-neutral assembly language.

Microoperations

• Digital systems are modular in nature, with modules containing
registers, decoders, arithmetic elements, control logic, etc.

• These digital components are defined by the registers that they
contain and the operations performed on their data. These
operations are called microoperations.

• Microoperations are elementary operations performed on the
information stored in one or more registers.

Hardware Organization

• The hardware organization of a digital computer is best defined
by specifying:

– The set of register that it contains and their function.

– The sequence of microoperations performed on the

 binary information stored in the registers.

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Intermediate_representation
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Compiler

– The control signals that initiates the sequence of

 microoperations.

Register Transfer Language

 • A register transfer language is a notation used to describe the
microperation transfers between registers.

• It is a system for expressing in symbolic form the microoperation
sequences among register that are used to implement machine-
language instructions.

Digital systems are composed of modules that are constructed
from digital components, such as registers, decoders, arithmetic
elements, and control logic

• The modules are interconnected with common data and
control paths to form a digital computer system

• The operations executed on data stored in registers are
called microoperations

• A microoperation is an elementary operation performed on
the information stored in one or more registers

• Examples are shift, count, clear, and load

• Some of the digital components from before are registers that
implement microoperations

• The internal hardware organization of a digital computer is
best defined by specifying

 The set of registers it contains and their functions

 The sequence of microoperations performed on the
binary information stored

 The control that initiates the sequence of
microoperations

• Use symbols, rather than words, to specify the sequence of
microoperations

• The symbolic notation used is called a register transfer
language

• A programming language is a procedure for writing symbols
to specify a given computational process

• Define symbols for various types of microoperations and
describe associated hardware that can implement the
microoperations

 4.2 Register Transfer

Registers are denoted by capital letters and are

sometimes followed by numerals, e.g.,

– MAR – Memory Address Register (holds addresses for the
memory unit)

– PC – Program Counter (holds the next instruction’s address)

– IR – Instruction Register (holds the instruction being executed)

– R1 – Register 1 (a CPU register)

• We can indicate individual bits by placing them in parentheses,
e.g., PC(8-15), R2(5), etc.

Block Diagrams of Registers

Fig: 4.1 Block diagram for Registers

Designate information transfer from one register to another by

R2 ← R1

This statement implies that the hardware is available

o The outputs of the source must have a path to the
inputs of the destination

o The destination register has a parallel load capability

If the transfer is to occur only under a predetermined control
condition, designate it by

 If (P = 1) then (R2 ← R1)

or,

 P:R2← R1,

where P is a control function that can be either 0 or 1

Every statement written in register transfer notation implies the
presence of the required hardware construction

Fig: 4.2 Transfer from R1 to R2 when P=1

It is assumed that all transfers occur during a clock edge transition

All microoperations written on a single line are to be executed at
the same time T: R2 ← R1, R1 ← R2 , the above transfers will be
done when T = 1.

Table: 4.1

4.3 Bus and Memory Transfers

A computer consists of many registers and data paths, which are
used for transferring the data from one register to another register.
Consider that separate wires are used for linking registers, than
the huge number of wires in the circuit will create a mess and
increase the complexity of the system. This issue is resolved by
using common bus system in which, the information is transferred
in multiple configuration register. In a bus structure, common lines
are used where; each line is used for transferring each bit of the
binary data at a time.

Multiplexers are used for constructing a common bus and
are allowed to select the source register whose information will be
placed on the bus. Consider an example in which there are
four registers A, B, C, and D. All these register contains 4 bits
numbered from 0 to 3. The bus consist four multiplexers and two
selection lines namely, S0 and S1, which are connected to the
selection input of all four multiplexers. The following table
represents the working of bus system.

Fig: 4.3 Bus system for four registers

S0 S1 Register Selected

0 0 A

0 1 B

1 0 C

1 1 D

Table: 4.2 Function table for bus in fig: 4.3

When 0 is selected in both selection lines i.e. S0S1 = 00,
then we get A0 as output from the MUX0. Similarly we will get A1
from MUX1, A2 from MUX2, and A3 from MUX3. Considering
these outputs from the four multiplexers, we will get A3A2A1A0 at
the common bus. Hence, register A will be selected for the
transfer.

Similarly, when S0S1 = 01, then the output from the
multiplexer will be B3B2B1B0 and register B will be selected for
the data transfer. When S0S1 = 10, then the output from the
multiplexer will be C3C2C1C0 and register C will be selected for
the data transfer. When S0S1 = 11, then the output from the
multiplexer will be D3D2D1D0 and register D will be selected for
the data transfer.

When the data is transferred from the bus to register or from
the register to bus, following notations is used.

BUS <- A, B <- BUS

In the above notation, the data from the register A is being
transferred to the BUS and the data from the BUS is loaded to
the register B. This notation can also be represented as B <- A, if
the bus exist in the system.

Find all the help you need for your homework
help and assignment help at Transtutors.com. Our team of experts
is capable of providing homework help and assignment help for all
levels ranging from school level to undergraduate and graduate
level. With us you can be rest assured that all the resource for
the homework help and assignment help provided will be original
and plagiarism free.

 Rather than connecting wires between all registers, a
common bus is used

 A bus structure consists of a set of common lines, one for
each bit of a register

 Control signals determine which register is selected by the
bus during each transfer

 Multiplexers can be used to construct a common bus

 Multiplexers select the source register whose binary
information is then placed on the bus

 The select lines are connected to the selection inputs of
the multiplexers and choose the bits of one register

In general, a bys system will multiplex k registers of n bits
each to produce an n-line common bus. This requires n
multiplexers – one for each bit. The size of each multiplexer must
be k x 1. The number of select lines required is log k. To transfer
information from the bus to a register, the bus lines are connected
to the inputs of all destination registers and the corresponding
load control line must be activated . Rather than listing each step
as

 BUS ← C, R1 ← BUS,

use R1 ← C, since the bus is implied

Three State Buffers

In digital electronics three-state, tri-state, or 3-state logic allows an
output port to assume a high impedance state in addition to the 0
and 1 logic levels, effectively removing the output from the circuit.
This allows multiple circuits to share the same output line or lines
Three-state buffers can also be used to implement efficient
multiplexers, especially those with large numbers of inputs.

Fig: 4.4 Graphic symbols for three state buffers

The three-state buffer gate has a normal input and a control input
which determines the output state

• With control 1, the output equals the normal input

• With control 0, the gate goes to a high-impedance state

https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/High_impedance
https://en.wikipedia.org/wiki/Logic_level
https://en.wikipedia.org/wiki/Multiplexer

• This enables a large number of three-state gate outputs to be
connected with wires to form a common bus line without
endangering loading effects

Fig: 4.5 Bus lines with three-state buffers

Decoders are used to ensure that no more than one
control input is active at any given time. This circuit can replace
the multiplexer in Figure 4.3. To construct a common bus for four
registers of n bits each using three-state buffers, we need n
circuits with four buffers in each. Only one decoder is necessary to
select between the four registers

Memory Transfer

The transfer of information from a memory word to the outside
environment is called a read operation. The transfer of a new
information which has to be stored into the memory is called a
write operation. A symbol M will be used to represent a memory
word. It is also necessary to specify the address of M when writing

memory transfer operations; this is indicated by enclosing the
address in square brackets following the letter M.

The read operation can be stated as:

 Read: DR ← M[AR]

The write operation can be stated as:

 Write: M[AR] ← R1

Microoperations

Microoperations are classified into four categories:

– Register transfer microoperations (data moves from

 register to register)

– Arithmetic microoperations (perform arithmetic on data in

 registers)

– Logic microoperations (perform bit manipulation on data

 in registers)

– Shift microoperations (perform shift on data in registers)

4.4 Arithmetic Microoperations

Unlike register transfer microoperations, arithmetic
microoperations change the information content.

The basic arithmetic microoperations are:

– addition

– subtraction
– increment
– decrement
– shift

The Register Transfer Language statement R3 <- R1 + R2

indicates an add microoperation. We can similarly specify the
other arithmetic microoperations. Multiplication and division are
not considered. Multiplication is implemented by a sequence of
adds and shifts. Division is implemented by a sequence of
substracts and shifts.

Table: 4.3 Arithmetic microoperations

Binary Adder

We implement a binary adder with registers to hold the data and a
digital circuit to perform the addition (called a binary adder). The
binary adders is constructed using full adders connected in
cascade so that the carry produced by one full adder becomes an
input for the next.

Adding two n-bit numbers requires n full adders. The n data bits
for A and B might come from R1and R2 respectively

Fig: 4.6 4-bit binary adder

Adder-Subtracter

Subtracting A – B is most easily done by adding B’ to A and then
adding 1. This makes it convenient to combine both addition and
subtraction into one circuit, called an addersubtracter.

• M is the mode indicator

– M = 0 indicates addition (B is left alone and C0 is 0)

– M = 1 indicates subtraction (B is complement and C0 is 1).

Fig: 4.7 4-bit adder-subtractor

Binary Incrementer

The binary incrementer adds 1 to the contents of a register, e.g., a
register storing 0101 would have 0110 in it after being
incremented. • There are times when we want incrementing done
independent of a register. We can accomplish this with a series of
cascading half-adders.

The increment microoperation adds one to a number in a register
This can be implemented by using a binary counter – every time
the count enable is active, the count is incremented by one. If the
increment is to be performed independent of a particular register,
then use half-adders connected in cascade. An n-bit binary
incrementer requires n half-adders

Fig: 4.8 4-bit binary incrementer

Arithmetic Circuit

Each of the arithmetic microoperations can be implemented in one
composite arithmetic circuit

• The basic component is the parallel adder

• Multiplexers are used to choose between the different
operations

• The output of the binary adder is calculated from the

 following sum: D = A + Y + C
in

We can implement 7 arithmetic microoperations (add, add with
carry, subtract, subtract with borrow, increment, decrement and
transfer) with one circuit. • We provide a series of cascading full
adders with Ai and the output of a 4x1 multiplexer. The
multiplexers’ inputs are two selects, Bi, Bi’, logical 0 and logical 1.
Which of these four values we provide (together with the carry)
determines which microoperation is performed.

Fig: 4.9 4-bit Arithmetic Circuit

Table: 4.4 Arithmetic circuit function table

When S1S0 = 00, the MUX provides B. The result is Add (for Cin
= 0) or Add With Carry (for Cin =1).

When S1S0 = 01, the MUX provides B’. The result is Subtract with
Borrow (for Cin = 0) or Subtract (for Cin = 1).

When S1S0 = 10, the MUX provides 0. The result is Transfer (for
Cin = 0) or Increment (for Cin =1).

When S1S0 = 11, the MUX provides 1. The result is Decrement
(for Cin = 0) or Transfer (for Cin =1).

4.5 Logic Microoperations

Logic operations specify binary operations for strings of bits stored
in registers and treat each bit separately

Example: the XOR of R1 and R2 is symbolized by

P: R1 ← R1 ⊕ R2

Example: R1 = 1010 and R2 = 1100

1010 Content of R1

1100 Content of R2
0110 Content of R1 after P = 1

Symbols used for logical microoperations:

o OR: ∨

o AND: ∧

o XOR: ⊕

The + sign has two different meanings: logical OR and summation

• When + is in a microoperation, then summation

• When + is in a control function, then OR

• Example: P + Q: R1 ← R2 + R3, R4 ← R5 ∨ R6

• There are 16 different logic operations that can be performed
with two binary variables

Table: 4.5 Truth tables for 16 functions of two variables

Table: 4.5 Sixteen Logic Microoperations

The hardware implementation of logic microoperations requires
that logic gates be inserted for each bit or pair of bits in the
registers. All 16 microoperations can be derived from using four
logic gates

Fig: 4.10 One stage of logic circuit

Logic microoperations can be used to change bit values, delete a
group of bits, or insert new bit values into a register

Logic Operations allow us to manipulate

individual bits in ways that we could not do

otherwise.

• These applications include:

– selective set

– selective complement

– select clear

– mask

– insert

– clear

 selective-set

The selective-set operation sets to 1 the bits in A where
there are corresponding 1’s in B

1010 A before
1100 B (logic operand)
1110 A after

A ← A ∨ B

 selective-complement

The selective-complement operation complements bits in A
where there are corresponding 1’s in B

1010 A before
1100 B (logic operand)
0110 A after
A ← A ⊕ B

 selective-clear

The selective-clear operation clears to 0 the bits in A only
where there are corresponding 1’s in B

1010 A before
1100 B (logic operand)
0010 A after
A ← A ∧ B

 mask

The mask operation is similar to the selective-clear
operation, except that the bits of A are cleared only where
there are corresponding 0’s in B

1010 A before
1100 B (logic operand)
1000 A after

A ← A ∧ B

 insert

The insert operation inserts a new value into a group of
bits. This is done by first masking the bits to be replaced
and then Oring them with the bits to be inserted

0110 1010 A before
0000 1111 B (mask)
0000 1010 A after masking
0000 1010 A before
1001 0000 B (insert)
1001 1010 A after insertion

 clear

The clear operation compares the bits in A and B and
produces an all 0’s result if the two number are equal

1010 A
1010 B
0000

 A ← A ⊕ B

If A& B are both 1 or both 0, this produces 0.This is done
using the logical-AND operation and B.

4.6 Shift Microoperations

Shift microoperations are used for serial transfer of data. They are
also used in conjunction with arithmetic, logic, and other data-
processing operations.

There are three types of shifts: logical, circular, and arithmetic

• A logical shift is one that transfers 0 through the serial input

• The symbols shl and shr are for logical shift-left and shift-

 Right by one position R1 ← shl R1

• The circular shift (aka rotate) circulates the bits of the register
around the two ends without loss of information

• The symbols cil and cir are for circular shift left and right

Table: 4.6 Shift Microoperations

 The arithmetic shift shifts a signed binary number to the left
or right

• To the left is multiplying by 2, to the right is dividing by 2

• Arithmetic shifts must leave the sign bit unchanged

• A sign reversal occurs if the bit in R
n-1

changes in value after

the shift

• This happens if the multiplication causes an overflow

• An overflow flip-flop V
s
can be used to detect the

overflow V
s
= R

n-1
⊕ R

n-2

If V
s
= 0, there is no overflow, but if V

s
= 1, there is an overflow

and a sign reversal after the shift. V
s
 must be transferred into the

overflow flio-flop with the same clock pulse that shifts the register.

Fig: 4.11 Arithmetic right shift

 A bi-directional shift unit with parallel load could be used to
implement this

• Two clock pulses are necessary with this configuration: one
to load the value and another to shift

• In a processor unit with many registers it is more efficient to
implement the shift operation with a combinational circuit

• The content of a register to be shifted is first placed onto a
common bus and the output is connected to the
combinational shifter, the shifted number is then loaded
back into the register

• This can be constructed with multiplexers

Fig: 4.12 Combinational circuit shifter

4.7 Arithmetic Logic Shift Unit

The arithmetic logic unit (ALU) is a common operational unit
connected to a number of storage registers. To perform a
microoperation, the contents of specified registers are placed in
the inputs of the ALU. The ALU performs an operation and the
result is then transferred to a destination register. The ALU is a
combinational circuit so that the entire register transfer operation
from the source registers through the ALU and into the destination
register can be performed during one clock pulse period

Fig: 4.13 One stage of Arithmetic logic shift unit

Table: 4.7 Function table for arithmetic logic shift unit

Chapter 5

Basic Computer Organization and Design

Here we start our discussion definitions and a review of the basic
organization of a computer and of a CPU. We also specify the
internal components of the CPU, i.e. the registers and data paths.
We next describe the instruction formats and instructions for this
CPU. The Basic Computer has three different formats for its
instructions; each of the 25 instructions follows only one of these
three formats. We will review these formats and the overall
function of each instruction. Next we look at the control signals
used in this design. These signals are used to trigger micro-
operations and coordinate data manipulation within the computer.
We also show the hardware to generate these signals. We then
get to the heart of th e design: the machine cycles which fetch,
decode and execute these instructions. By using the control
signals to enable micro-operations properly, the CPU realizes its
instruction set. We first look at the fetch and indirect cycles. Then
we review the individual execute cycles. We next look at
input/output operations and interrupts. The Basic Computer has
one input port and output port, so we don’t have to worry about
port addressing in our design. Inputs and outputs are used to
trigger interrupts in this computer. We examine the I/O hardware
and the interrupt cycle code. We then present an example of the
hardware design for one of the internal components to further
illustrate the design process. Finally, concluding remarks are
presented.

5.1 Instruction Codes

Instruction code can be defined as a group of bits that tell the

computer to perform a specific operation

The instruction code is an opcode plus additional information,
such as a memory address. It is not the micro-operations. In terms

of programming, it is closest to a single assembly language
instruction.

A program can be defined as a set of instructions that specify the
operations, operands, and the sequence by which processing has

to occur.

The computer reads each instruction from memory and
places it in a control register. The control then interprets the binary
codeof the instruction and proceeds to execute itby issuing a
sequence of microoperations.

Instruction Code :

 A group of bits that instruct the computer to perform a
 Specific operation
 It is usually divided into parts(refer to Fig. 5-1 instruction
 format)

Operation Code :

 The most basic part of an instruction code
 A group of bits that define such operations as add,
 subtract, multiply, shift, and complement

Stored Program Organization

A stored program concept is one in which first the program and
data are stored in the main memory and then the processor
fetches instructions and executes them, one after another.
A stored-program computer is one which stores program
instructions in electronic memory. Often the definition is extended
with the requirement that the treatment of programs and data in
memory be interchangeable or uniform.

https://en.wikipedia.org/wiki/Instruction_(computer_science)
https://en.wikipedia.org/wiki/Instruction_(computer_science)

The CPU coordinates data transfers between itself and
memory or I/O devices. The paths shown here not only carry data,
but also the control signals which cause data to be transferred.
They also carry address information which is used to select the
correct memory location or I/O port address.

The control unit issues signals to coordinate functions of
the ALU, the registers and external hardware. By issuing these
signals in the proper order, they cause a sequence of operations
to occur. By performing this sequence, an instruction is fetched,
decoded and executed.

Fig: 5.1 Stored Program Organization

The simplest way to organize a computer is

»One processor register : AC (Accumulator)

The operation is performed with the memory operand
 and the content of AC

»Instruction code format with two parts : Op. Code + address

Op. Code : specify 16 possible operations (4 it)

Address : specify the address of an operand (12 bit)

If an operation in an instruction code does not need an
 operand from memory, the rest of the bits in the
 instruction(address field) can be used for other purpose

»Memory : 12 bit = 4096 word(Instruction and Data are stored)

Store each instruction code(program) and operand
 (data) in 16-bit memory word

Addressing Modes

Immediate operand :

»the second part of an instruction code(address field)
 specifies an operand

Direct address operand :

»the second part of an instruction code specifies the
 address of an operand

Indirect address operand :

»the bits in the second part of the instruction designate an
 address of a memory word in which the address of the
 operand is found

One bit of the instruction code is used to distinguish between
 A direct and an indirect

Fig: 5.2 Demonstration of direct and indirect address

Effective Address:

The operand address in computation-type instruction or the
 target address in a branch-type instruction

5.2 Computer Registers

In a computer, a register is one of a small set of data holding
places that are part of a computer processor . A register may hold
a computer instruction , a storage address, or any kind of data
(such as a bit sequence or individual characters). Some
instructions specify registers as part of the instruction. For

http://searchcio-midmarket.techtarget.com/definition/processor
http://searchcio-midmarket.techtarget.com/definition/instruction

example, an instruction may specify that the contents of two
defined registers be added together and then placed in a specified
register. A register must be large enough to hold an instruction -
for example, in a 32-bit instruction computer; a register must be 32
bits in length. In some computer designs, there are smaller
registers - for example, half-registers - for shorter instructions.
Depending on the processor design and language rules, registers
may be numbered or have arbitrary names.

Table: 5.1 List of registers for basic computer

Since memory is 4K in size, it requires 12 address bits.
Each word of memory contains 16 bits of data. The address
register (AR) is 12 bits wide, since this system requires that many
bits in order to access memory. Similarly, the program counter
(PC) is also 12 bits wide. Each data word is 16 bits wide. The
Data Register (DR) must also be 16 bits wide, since it receives
data from and sends data to memory. The accumulator (AC) acts
on 16 bits of data. The Instruction Register (IR) receives
instruction codes from memory which are 16 bits wide. Of note:
TR is a temporary register. Only the CPU can cause it to be
accessed. The programmer cannot directly manipulate the
contents of TR. Most CPU’s have one or more temporary registers
which it uses to perform instructions.

Fig: 5.3 Basic computer registers and memory

The input and output registers (INPR and OUTR) are 8 bits
wide each. For this CPU, I/O instructions only transfer 8 bits of
data at a time. The 3-bit sequence counter (SC) is used to
generate the correct timing (T) states. Other 1-bit registers are the
carry out (E), the indirect register (I), the interrupt enable (IEN)
and the input and output flags (FGI and FGO).

Basic computer registers and memory :

 Data Register(DR) : hold the operand(Data) read from

memory

 Accumulator Register(AC) : general purpose processing
register

 Instruction Register(IR) : hold the instruction read from

memory

 Temporary Register(TR) : hold a temporary data during

processing

 Address Register(AR) : hold a memory address, 12 bit
width

 Program Counter(PC) :

»hold the address of the next instruction to be read from
 memory after the current instruction is executed
»Instruction words are read and executed in sequence
 unless a branch instruction is encountered
»A branch instruction calls for a transfer to a
 nonconsecutive instruction in the program
»The address part of a branch instruction is transferred to
 PC tobecome the address of the next instruction
»To read instruction, memory read cycle is initiated, and
 PC is incremented by one(next instruction fetch)

 Input Register(INPR) : receive an 8-bit character from an

input device

 Output Register(OUTR) : hold an 8-bit character for an

output device

Common Bus System

A wire or a collection of wires that carry some multi-bit information
is known as bus. Main purpose of bus is to transfer information
form one system to another. The basic computer has eight
registers (AC, PC, DR, AC, IR, TR, INPR, OUTR), a memory unit
and a control unit. Path must be provided to transfer information
from one register to another and between memory and registers.
The number of wires will be excessive if connections are made
between the output of each register and input of other registers. A

more efficient scheme is to use a common bus. Thus common bus
provides a path between memory unit and registers.

Fig: 5.4 Basic computer registers connected to a common bus

This is the internal design of the CPU for the Basic Computer. The
CPU is designed around an internal common bus with a common
clock. Each register can place its data onto the bus, and has
internal tri-state buffers on the outputs. The control unit must
make sure that at most one register (or memory unit) places

data onto the bus at one time.

The memory unit is external to the CPU. It always receives
its address from the address register (AR) and makes its data

available to the CPU bus. It receives data from the CPU bus as
well. Read and write signals are supplied by the control unit.

The address registers, program counter (PC) and data
register (DR) each load data onto and receive data from the
system bus. Each has a load, increment and clear signal derived
from the control unit. These signals are sychronous; each register
combines these signals with the system clock to activate the
proper function. Since AR and PC are only 12-bits each, they use
the low order 12 bits of the bus.

The accumulator makes its data available on the bus but
does not receive data from the bus. Instead, it receives data solely
from an ALU, labeled “Adder and Logic” in the diagram. To load
data into AC, place it onto the bus via DR and pass it directly
through the ALU. The synchronous load, increment and clear
signals act as in the previous registers. Note that E, the 1-bit carry
flag, also receives its data from the ALU.

The input register, INPR, receives data from an external
input port, not shown here, and makes its data available only to
AC. The output register makes its data available to the output port
via hardware not shown here. We will examine these two
components in more detail later in this module.

The instruction register, IR, can only be loaded; it cannot
be incremented nor cleared. Its output is used to generate Di and
Ti. We will look at that hardware later in this module.

TR is a temporary register. The CPU uses this register to
store intermediate results of operations. It is not accessible by the
external programs. It is loaded, incremented and cleared like the
other registers.

5.3 Computer Instructions

The basic computer has three instruction formats. Each format
has 16 bits. The operation code part of the instruction contains

three bits and the meaning of the remaining 13 bits depends on
the operation code encountered. A memory-reference instruction
uses 12 bits to specify an address and one bit to specify the
addressing mode I. I is equal to 0 for direct address and to 1 for
indirect address. The register-reference instructions are
recognized by the operation code 111and with a 0 in the leftmost
bit of the instruction. A register-reference instruction specifies an
operation on or a test of the AC register. An operand from memory
is not needed; therefore the other 12 bits are used to specify the
operation or test to be executed. Similarly, an input-output
instruction does not need a reference to memory and is
recognized by the operation code 111 with a 1 in the left most bit
of the instruction. The remaining 12 bits are used to specify the
type of input-output operation or test performed.

Fig: 5.5 Basic computer instruction formats

Table: 5.2 Basic computer instructions

Instruction Set Completeness

Before investigating te operations performed by the instructions,

let us discuss the type of instructions that must be included in a

computer. A computer should have a set of instructions so that the

user can construct machine language programs to evaluate any

function that is known to be computable. The set of instructions

are said to be complete if the computer includes a sufficient

number of instructions in each of the following categories:

 1. Arithmetic, logical and shift instructions

 2. Instructions for moving information to and from memory
 and processor registers.

 3. Program control instructions together with instructions
 that check status conditions.

 4. Input and output instructions

5.4 Timing and Control

All sequential circuits in the Basic Computer CPU are driven by a
master clock, with the exception of the INPR register.

At each clock pulse, the control unit sends control signals to
control inputs of the bus, the registers, and the ALU.

The control unit (CU) is a component of a
computer's central processing unit (CPU) that directs operation of
the processor. It tells the computer's memory, arithmetic/logic unit
and input and output devices how to respond to a program's
instructions.

It directs the operation of the other units by providing
timing and control signals Most computer resources are managed
by the CU, It directs the flow of data between the CPU and the
other devices. John von Neumann included the control unit as part
of the von Neumann architecture. In modern computer designs,
the control unit is typically an internal part of the CPU with its
overall role and operation unchanged since its introduction.

https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Central_processing_unit

Control unit design and implementation can be done by two
general methods:

Hardwired control units are implemented through use
of sequential logic units, featuring a finite number of gates that can
generate specific results based on the instructions that were used
to invoke those responses Hardwired control units are generally
faster than microprogrammed designs.

Their design uses a fixed architecture—it requires changes
in the wiring if the instruction set is modified or changed. This
architecture is preferred in reduced instruction set
computers (RISC) as they use a simpler instruction set.

A controller that uses this approach can operate at high
speed; however, it has little flexibility, and the complexity of the
instruction set it can implement is limited.

The hardwired approach has become less popular as
computers have evolved. Previously, control units for CPUs used
ad-hoc logic, and they were difficult to design.

The idea of microprogramming is an intermediate level to
execute computer program instructions. Microprograms were
organized as a sequence of microinstructions and stored in
special control memory. The algorithm for the microprogram
control unit is usually specified by flowchart description.[4] The
main advantage of the microprogram control unit is the simplicity
of its structure. Outputs of the controller are organized in
microinstructions and they can be easily replaced.

https://en.wikipedia.org/wiki/Sequential_logic
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Reduced_instruction_set_computing
https://en.wikipedia.org/wiki/Reduced_instruction_set_computing
https://en.wikipedia.org/wiki/Flowchart
https://en.wikipedia.org/wiki/Control_unit#cite_note-4

Fig: 5.6 Control unit of a basic computer

The T signals occur in sequence and are never skipped
over. The only two options during a T-state are to proceed to the
next T-state or to return to Tstate 0. The D signals decode the
instruction and are used to select the correct execute routine. I is
used to select the indirect routine and also to select the correct
execute routine for non-memory reference instructions. R is used
for interrupt processing and will be explained later.

Fig: 5.7 Example of control timing signals

This circuit generates the T signals. The sequence
counter, SC, is incremented once per clock cycle. Its outputs are
fed into a 3-8 decoder which generates the T signals. Whenever a
microoperation sets SC to zero, it resets the counter, causing T0
to be activated during the next clock cycle. The D signals are
generated similarly to the T signals. Here the source is IR(14-12)
instead of SC. Also note that IR won’t change during the
instruction execution.

5.5 Instruction Cycle

The time period during which one instruction is fetched from
memory and executed when a computer is given an instruction in
machine language. There are typically four stages of an
instruction cycle that the CPU carries out:

 Fetch the instruction from memory. This step brings the
instruction into the instruction register, a circuit that holds

the instruction so that it can be decoded and executed.

 Decode the instruction.

 Read the effective address from memory if the instruction
has an indirect address.

 Execute the instruction.

Steps 1 and 2 are called the fetch cycle and are the same for each
instruction. Steps 3 and 4 are called the execute cycle and will

change with each instruction.

Each computer's CPU can have different cycles based on different
instruction sets, but will be similar to the following cycle:

1. Fetching the instruction: The next instruction is fetched

from the memory address that is currently stored in
the program counter (PC), and stored in the instruction
register (IR). At the end of the fetch operation, the PC
points to the next instruction that will be read at the next
cycle.

2. Decode the instruction: During this cycle the encoded

instruction present in the IR (instruction register) is
interpreted by the decoder.

3. Read the effective address: In case of a memory

instruction (direct or indirect) the execution phase will be in
the next clock pulse. If the instruction has an indirect
address, the effective address is read from main memory,
and any required data is fetched from main memory to be

http://www.webopedia.com/TERM/I/instruction.html
http://www.webopedia.com/TERM/M/memory.html
http://www.webopedia.com/TERM/M/machine_language.html
http://www.webopedia.com/TERM/C/CPU.html
http://www.webopedia.com/TERM/F/fetch.html
http://www.webopedia.com/TERM/E/execute.html
https://en.wikipedia.org/wiki/Program_counter
https://en.wikipedia.org/wiki/Instruction_register
https://en.wikipedia.org/wiki/Instruction_register
https://en.wikipedia.org/wiki/Instruction_register
https://en.wikipedia.org/wiki/Indirect_address
https://en.wikipedia.org/wiki/Indirect_address

processed and then placed into data registers (Clock
Pulse: T3). If the instruction is direct, nothing is done at
this clock pulse. If this is an I/O instruction or a Register
instruction, the operation is performed (executed) at clock
Pulse.

4. Execute the instruction: The control unit of the CPU

passes the decoded information as a sequence of control
signals to the relevant function units of the CPU to perform
the actions required by the instruction such as reading
values from registers, passing them to the ALU to perform
mathematical or logic functions on them, and writing the
result back to a register. If the ALU is involved, it sends a
condition signal back to the CU. The result generated by
the operation is stored in the main memory, or sent to an
output device. Based on the condition of any feedback
from the ALU, Program Counter may be updated to a
different address from which the next instruction will be
fetched.

The cycle is then repeated.

Initiating the cycle

The cycle starts immediately when power is applied to the system
using an initial PC value that is predefined for the system
architecture (in Intel IA-32 CPUs, for instance, the predefined PC

value is 0xfffffff0). Typically this address points to instructions in

a read-only memory (ROM) (not the random access memory or
RAM) which begins the process of loading the operating system.
(That loading process is called booting.) [1]

Fetch the Instruction

Step 1 of the Instruction Cycle is called the Fetch Cycle. This step
is the same for each instruction.

https://en.wikipedia.org/wiki/IA-32
https://en.wikipedia.org/wiki/Read-only_memory
https://en.wikipedia.org/wiki/Random_Access_Memory
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Booting
https://en.wikipedia.org/wiki/Instruction_cycle#cite_note-1

1) The CPU sends PC to the MAR and sends a READ command
on the control bus

2) In response to the read command (with address equal to PC),
the memory returns the data stored at the memory location
indicated by PC on the databus.

3) The CPU copies the data from the databus into its MDR (also
known as MBR (see section Circuits Used above))...

4) A fraction of a second later, the CPU copies the data from the
MDR to the Instruction Register (IR)

5) The PC is incremented so that it points to the following
instruction in memory. This step prepares the CPU for the next
cycle.

The Control Unit fetches the instruction's address from
the Memory Unit

Decode the Instruction

Step 2 of the instruction Cycle is called the Decode Cycle. The
decoding process allows the CPU to determine what instruction is
to be performed, so that the CPU can tell how many operands it
needs to fetch in order to perform the instruction. The opcode
fetched from the memory is decoded for the next steps and moved
to the appropriate registers. The decoding is done by
the CPU's Control Unit.

Read the effective address

Step 3 is deciding which operation it is. If this is a Memory
operation - in this step the computer checks if it's a direct or
indirect memory operation:

 Direct memory instruction - Nothing is being done.

https://en.wikipedia.org/wiki/Memory_Unit
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/Control_Unit

 Indirect memory instruction - The effective address is being
read from the memory.

If this is a I/O or Register instruction - the computer checks its kind
and executes the instruction.

Execute the Instruction

Step 4 of the Instruction Cycle is the Execute Cycle. Here, the
function of the instruction is performed. If the instruction involves
arithmetic or logic, the Arithmetic Logic Unit is utilized. This is the
only stage of the instruction cycle that is useful from the
perspective of the end user. Everything else is overhead required
to make the execute stage happen.

Figure 5.8 Register transfers for the fetch phase

Fig:5.9 Flow chart for instruction cycle

Register Reference Instructions

There are 12 instructions which fall in the category of register
reference instructions. These instructions are specified by the

instruction code from 0 to 11 bits. They are also transferred to AR
at time T. the control operations and micro operations for the
register reference instruction are listed below. These instructions
are executed with the clock transition in accordance with the
timing variable. The control functions and micro operations are
distinguished from one another by just one bit. The
seven instructions of the reference register are used for the
CLEAR, COMPLEMENT, CIRCULAR SHIFT, and
INCREMENT micro operations. Four instructions are for SKIP of
next instruction in sequence when some stated condition is
satisfied. It can be achieved by incrementing the PC i.e. the
program counter.

Explanation of the instructions:

CLEAR- It is used for resetting the register. The value of register
after CLEAR is ‘0’.

COMPLEMENT- It is making the complement of the given data.
By complement we mean to say 2’s complement.

CIRCULAR SHIFT- circular shift can be defined as the shifting of
the bits of data in circular fashion.

INCREMENT- it is for incrementing the value by 1.

SKIP- it is for skipping the instruction.

Table: 5.3 Execution of register reference instructions

5.6 Memory Reference Instructions

For the instructions to be carried out in a sequential manner we

need the proper definition of the micro operations to be executed

under it. So we need a precise defined form of them. As we know

that instructions are read from the memory into the registers so

the term memory reference instructions came into the picture.

We have around seven memory reference instruction.

Listed below are:

1. AND to AC

This instruction as the name suggests performs the function of

ANDing on the bits of AC (accumulator) and the memory word.

The result is stored in accumulator (AC). The control function for

this instruction uses the decoder. Two timing signals are also

needed for this instruction to be carried out. Clock transition is

also associated with the next timing signal. The same clock

transition clears the SC and transfers the control to timing signal

to start new instruction cycle.

2. ADD to AC

This instruction adds the content of the memory word to AC which

is specified by the effective address. The result i.e. the SUM is

transferred to AC and the output is transferred to E flip flop. Here

also the same two timing signals are used again but with different

decoders. After the instruction is fetched from the memory and

decoded, only the single output of the decoder will be active and

rest all will be deactivated. And this output will determine the

sequence of micro operations that control has followed.

3. LDA: Load to AC

Load means to transfers. This instruction transfers the memory

word specified by the effective address to the accumulator or in

other words we can say it load the memory word into

the accumulator. It is first necessary to read the memory word into

another register named DR and then transfer the content of the

same into the AC

(accumulator). The reason for this is that the delay which is

encountered whiles the adding and logic operations.

 4. STA: Store AC

This instruction is just the opposite in functioning of the LOAD.

Here the content is stored from the AC into the memory word

specified by the effective address. Now the output of the AC is

directly connected to the bus, so we can expect only one micro

operation for this entire instruction.

5. BUN: Branch Unconditionally

This instruction has the responsibility to transfer the entire

program to the instruction which is specified by the effective

address. We now know that program counter (PC) holds the

address of the instruction to be read from the memory and

program is a set of instructions to be carried out to accomplish the

particular task. BUN instruction allows the programmer to specify

an instruction out of the program and modify the program.

6. BSA: Branch and Save Return Address

As the name tells the function of this instruction, it allows the

branching in the execution of instruction. By branching we mean

that the instructions can have sub routine or procedure. When this

instruction is executed, it stores the address of the next instruction

to be executed as PC (Program counter).

Fig: 5.10 Example of BSA instruction execution

7. ISZ: Increment and Skip if Zero

This is a increment instruction which increments the word

specified by the effective address, and if by any chance it founds

that its value is zero then the value of PC is incremented by 1. It is

in general practice to store a negative number in the memory

word.

Fig 5.9 Flow chart for memory reference instructions

5.7 Input-Output and Interrupt

A computer can serve no useful purpose unless it communicates
with the external environment. Instructions and data stored in
memory must come from some input device. Computational
results must be transmitted to the user through some output
device. Commercial computers include many types of input output
devises

Input Output Configration

Fig 5.12 Input Output Configuration

Input Register(INPR) and Output Register(OUTR) are two

registers communicate with a communication interface serially and
with the AC in parallel. The Basic Computer has one 8-bit input
port and one 8-bit output port. Each port interface is modeled as
an 8-bit register which can send data to or receive data from

AC(7-0). Whenever input data is to be made available, the
external input port writes the data to INPR and sets FGI to 1.
When the output port requests data, it sets FGO to 1.

As will be shown shortly, the FGI and FGO flags are used to
trigger interrupts (if interrupts are enabled by the IEN flag).

Input Output Instructions

Input and Output instructions are needed for transferring
information to and from AC register, for checking the flag bits, and
for controlling the interrupt facility. Input-Output instructions have
an operation code 1111 and are recognized by the control when
D7 = 1 and I = 1.

Table: 5.5 Input Output Instructions

Once data is made available to the CPU, it can be read in
using the INP instruction. Note that this not only reads the data
into the accumulator, but also resets FGI to zero. This tells the
input port that it may send more data. In a similar manner, the
OUT instruction writes data to OUTR and resets FGO to zero,
notifying the output port that data is available. The SKI and SKO
instructions skip an instruction if there is a pending input or output
request. This is useful in determining the I/O request which
caused an interrupt to occur. ION and IOF enable and disable
interrupts. Interrupts will be explained more fully shortly.

 In the Basic Computer, I/O requests are processed as
interrupts. This process is followed for input requests. The input
will only be processed if interrupts are enabled. It will be ignored,
but will remain pending, if interrupts are disabled.

 Outputs are handled similarly to inputs. Note that both
input and output interrupts call an interrupt service routine at
location 0. There is only one routine for both input and output, so it
must distinguish between the two. This is where the SKI and SKO
instructions become useful.

Program Interrupt

An interrupt occurs if the interrupt is enabled (IEN = 1) AND an
interrupt is pending (FGI or FGO = 1). u Before processing the
interrupt, complete the current instruction. u Call the interrupt
service routine at address 0 and disable interrupts. It is of the
utmost importance to complete the current instruction, otherwise
the CPU will not perform properly. The interrupt service routine is
called by the CPU in a manner similar to the execution of the BSA
instruction.

Fig: 5.13 Flowchart for Interrupt cycle

Fig: 5.14 Demonstration of interrupt cycle

Interrupt Cycle

An interrupt is asserted by setting R to 1. This occurs when
interrupts are enabled (IEN) and there is either an input or output
request (FGI+FGO). We must also have completed the current
fetch cycle (T0’T1’T2’). When we look at the code to implement
the interrupt cycle, we see why we must wait until after T2 to set R
to 1. If we set R to 1 during T0, for example, the next micro-
instruction would be RT1, right in the middle of the interrupt cycle.
Since we want to either perform an entire opcode fetch or an
entire interrupt cycle, we don’t set R until after T2. The interrupt
cycle acts like a BSA 0 instruction. During T0 we write a 0 into AR
and copy the contents of PC, the return address, to TR. We then
store the return address to location 0 and clear the program
counter during T1. In T2, we increment PC to 1, clear the interrupt
enable, set R to zero (because we’ve finished the interrupt cycle)
and clear SC to bring us back to T0. Note that IEN is set to 0.

Activating an interrupt request:

T0’ T1’ T2’(IEN)(FGI + FGO): R <- 1

Interrupt cycle:

RT0: AR <- 0, TR <- PC
RT1: M[AR] <- TR, PC <- 0
RT2: PC <- PC + 1, IEN <- 0, R <- 0, SC <- 0

This disables further interrupts. If another interrupt
occurred while one was being serviced, the second interrupt
would write its return address into location 0, overwriting the
interrupt return address of the original routine. Then it would not
be possible to return to the program properly.

Modified fetch phase

 R’T0: AR <- PC
R’T1: IR <- M[AR], PC <- PC+1
R’T2: AR <- IR(11-0), I <- IR15,D0, D1, ... D7 <- Decode
 IR(14-12)

	1.4.1 Half Adder
	Block diagram:
	Circuit Diagram

	1.4.2 Full Adder
	Block diagram:
	Circuit Diagram

	1.4.3 N-Bit Parallel Adder
	1.4.4 A 4 Bit Parallel Adder
	Block diagram:

	1.4.5 Multiplexers
	Block diagram:
	Block Diagram:

	1.4.6 Demultiplexers:
	Block diagram:
	Truth Table

	1.5.1 SR Flip-Flop
	1.5.2 The NAND Gate SR Flip-Flop
	The Basic SR Flip-flop
	The Set State
	Reset State
	Truth Table for this Set-Reset Function

	1.5.2 The D-type Flip Flop
	D-type Flip-Flop Circuit
	Truth Table for the D-type Flip Flop

	1.5.3 The JK Flip Flop
	The Basic JK Flip-flop

	2.1.1 VLSI
	The final step in the development process, starting in the 1980s and continuing through the present, was "very-large-scale integration" (VLSI). The development started with hundreds of thousands of transistors in the early 1980s, and continues beyond ...
	2.1.2 ULSI, WSI, SOC and 3D-IC
	A 4-to-16 Binary Decoder Configuration.
	2-to-4 Line NAND Binary Decoder
	Fig: 2.6
	4-to-1 Channel Multiplexer
	Multiplexer Input Line Selection
	4 Channel Multiplexer using Logic Gates
	2.5.1 Serial-in to Parallel-out (SIPO) Shift Register
	Fig: 2.16 a 4-bit Serial-in to Parallel-out Shift Register

	2.5.2 Serial-in to Serial-out (SISO) Shift Register
	Fig: 2.17 a 4-bit Serial-in to Serial-out Shift Register

	2.5.3 Parallel-in to Serial-out (PISO) Shift Register
	Fig: 2.18 a 4-bit Parallel-in to Serial-out Shift Register

	2.5.4 Parallel-in to Parallel-out (PIPO) Shift Register
	Fig: 2.19 a 4-bit Parallel-in to Parallel-out Shift Register
	2.6.1 Asynchronous (ripple) counter
	2.6.2 Synchronous counter
	In synchronous counters, the clock inputs of all the flip-flops are connected together and are triggered by the input pulses. Thus, all the flip-flops change state simultaneously (in parallel). The circuit below is a 4-bit synchronous counter. The J a...

	3.1.4 Decimal Number System
	3.1.5 Binary Number System
	Characteristics of binary number system are as follows:
	Example:

	3.1.6 Octal Number System
	Characteristics of octal number system are as follows:
	Example:

	3.1.7 Hexadecimal Number System
	Characteristics of hexadecimal number system are as follows:
	Example:

	Advantages of Binary Code
	Classification of binary codes
	Weighted Codes
	Fig: 3.1
	Non-Weighted Codes
	Excess-3 code
	Example
	Table 3.1
	Gray Code
	Table 3.2
	Application of Gray code

	Binary Coded Decimal (BCD) code
	Table 3.3
	Advantages of BCD Codes
	Disadvantages of BCD Codes

	Alphanumeric codes
	What is Error?
	Fig: 3.2
	Error-Detecting codes
	Error-Correcting codes
	How to Detect and Correct Errors?
	Parity Checking of Error Detection
	Use of Parity Bit
	Fig: 3.4
	How Does Error Detection Take Place?
	Fig: 3.4 (1)
	Fig: 4.2 Transfer from R1 to R2 when P=1
	Table: 4.1
	4.3 Bus and Memory Transfers
	Table: 4.2 Function table for bus in fig: 4.3
	In digital electronics three-state, tri-state, or 3-state logic allows an output port to assume a high impedance state in addition to the 0 and 1 logic levels, effectively removing the output from the circuit. This allows multiple circuits to share th...
	Initiating the cycle
	Fetch the Instruction
	Decode the Instruction
	Read the effective address
	Execute the Instruction
	Register Reference Instructions

