
DATA BASE
MANAGEMENT SYSTEMS
 (

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

NAGARJUNA NAGAR,

DATA BASE
MANAGEMENT SYSTEMS

(DMCA106)

(MCA)

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

NAGARJUNA NAGAR,

GUNTUR

ANDHRA PRADESH

MANAGEMENT SYSTEMS

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

 Database Management Systems

 NOTES

1

UNIT – I

1. INTRODUCTION

Objective

The major objective of this lesson is to provide basics of database concepts
and technology.

After reading this chapter, you understand:

 The elementary concepts data, information and database.

 Database management system and structure.

 Differences between conventional data processing and database

management system.

 Systematic database design approaches covering conceptual

design, logical design and an overview of physical design.

 Various database models.

Structure of Lesson

Introduction
Database System Applications
Traditional File Processing System
What is Database Management System [DBMS]
Evaluation Of Database Systems
Database Approach
Views Of Data
Data Models
Database Languages
Database Users
Database Administrator
Transaction Management
Database System Structure
Summary
Technical terms
Model Questions

 Database Management Systems

 NOTES

2

Introduction

Database Management system consists of a collection of interrelated data
and a set of programs to access those data. The collection of data usually
referred as database. Here a database holds information regarding an
enterprise.

DBMS is a general-purpose software system that facilitates the processes
defining, constructing and manipulating databases for various applications.

In simple words, DBMS is a computerized record keeping system that lets
the user to perform various operations over the database.
The main objective of DBMS is to provide an environment that is both
convenient and efficient to use in retrieving and storing data.

Data: Data refers to facts, symbols, events, entities, variable, names or any

other, which has little meaning. Database that contains the facts like
Employee Name, City, College etc, For Ex:

 Krishna ECIL Hyderabad

The data may contain facts, text, images, sound and video segments.

Information: Processed data is known as Information.

Database:

It is an organized collection of logically related data. The data are structured
so as to be easily stored, manipulated and retrieved by users. For better
retrieval and sorting, each record is usually organized as a set of data
elements (facts). The items retrieved in answer to queries become
information that can be used to make decisions.

For example a student may maintain a small database, which includes
contacts like student number, name, address, phone no etc, in his computer.

Meta Data:

Meta Data describes the structure of the primary database and it also
describes the properties or characteristics of data. These properties may
include data definitions, data structures, rules or constraints.
 (Or)
Data about the data is known as meta data. The metadata describe the
properties of data, but not include that data.

Database System Applications

Database System Application is an application program that is used to
perform a series of database activities on behalf of database users.

 Database Management Systems

 NOTES

3

The basic operations or activities are:

 CREATE

 READ

 UPDATE

 DELETE

Database applications are widely used. Here are some representative
applications:

 Banking
 Airlines
 Universities
 Credit card Transactions
 Telecommunications
 Finance
 Sales
 Manufacturing
 Human Resources.

Traditional file Processing System

In the beginning of computer-based data processing, there were no
databases. To be useful for business applications, computers must be able
to store, manipulate, and retrieve large files of data. So, an organization's
information was stored as groups of records in separate files. Computer file
processing systems were developed for this purpose.

A file is a collection of records. A record in turn is a collection of several
interrelated data items. In early days, user data is managed in terms of
physical files in disks.

 Disadvantages of File Processing System:

The file processing system has several disadvantages. They are:

Data Redundancy:

Data redundancy means duplication of data. As the data may be stored in
several files, it may be repeated in multiple files, which leads to memory
wastage and access cost. It in turn leads to data inconsistency, i.e., in
various copies of the same data, one updating may lead to the necessary
changes in all the remaining copies. It becomes tedious for the user.

Difficulty in Accessing Data:

As no special application programs are available at that time, it becomes
tedious for the user to access the data in this system. In other words we

 Database Management Systems

 NOTES

4

can say that the conventional file processing system does not allow us to
access needed data in convenient and efficient manner.

Data Isolation:

Because the data are scattered over the memory in terms of various files,
and the files may be in various format, it is difficult to write new application
programs to retrieve the necessary data.

Integrity Problems:

Data validity is the most vital aspect in DBMS. To check the validity of the
data, certain consistency constraints are to be imposed. Such constraints
are difficult to be enforced in traditional file processing system. For example,
salary of an employee should not be less than or equal to zero.

Atomicity Problem:

In general a transaction is atomic, i.e., it must be either completely done or
undone. As the computer system is an electronic device, it may subject to
fail sometimes. If a failure occurred during the execution of a transaction, it
may lead to data inconsistency. For example, consider bank transaction to
transfer an amount of Rs.1000 from account A to account B. If a failure
occurred in the middle, it may be possible that Rs.1000 may be removed
from account A and was not credited to account B. Clearly, we say that
while transferring the amount both credit and debit are to be done
simultaneously.

Concurrent Access Anomalies:

Concurrent access may be done to the same transactions in multi-user
environments. It may again lead to inconsistency. For example, consider
bank account A containing Rs.5000. If two customers withdraw funds (say
Rs.1000 and Rs.2000 respectively) from the account at the same time, the
transaction may leave incorrect data. The system may show the same
balance Rs.5000 to both the customers and they may feel that they can
withdraw a maximum amount of Rs.4500 leaving the remaining amount as
minimum balance. It may lead to inconsistent data.

Security Problem:

The entire database must not be available to all the database users. If the
access is provided, improper and illegal operations may be performed over
the database, which in turn leave inconsistent data. Hence certain security
measures like individual user and their respective passwords are to be
imposed over the database.

 Database Management Systems

 NOTES

5

What is DBMS?

A Database Management System (DBMS) is a software package to facilitate
the creation and maintenance of a computerized database. A Database
System (DB) is a DBMS together with the data itself.

 (Or)

A Database Management system consists of a collection of interrelated data
and a set of programs to access those data. The collection of data usually
referred as database. Here a database holds information regarding an
enterprise.

 (Or)

A Database Management System is a general-purpose software system that
facilitates the processes defining, constructing and manipulating databases
for various applications.

 (Or)

A Database Management System is a computerized record keeping system
that lets the user to perform various operations over the database.

Evaluation of Database Systems

DBMS were first introduced during the 1960’s. This was called “proof-off-
concept” period in which the feasibility of managing vast amounts of data
with DBMS was demonstrated.

The DBMS became a commercial reality in the 1970’s. The Hierarchical and
network models were introduced in this decade. The relational model was
first defined by E. F. Codd an IBM research fellow in 1970, and became
commercially successful in the 1980’s.

Client/server computing and Internet applications became important in the
1990’s. Multimedia data, including graphics, sound, images, and video also
became more common, and so object-oriented databases were introduced.
Combination of relational and object-oriented databases is known as object-
relational databases are now available. In the future multidimensional data
will become more important.

Database Approach

In traditional file processing each user defines and implements the files
needed for specific application as part of the programming application. In
database approach a single repository of data is maintained and accessed

 Database Management Systems

 NOTES

6

by various users. It emphasizes the integration and sharing of the data
through out the organization.

Advantages of Database Approach:

Program-Data Independence:

The separation of data description (metadata) from the application programs
that use the data leads to data independence. Data descriptions are
stored in a central location called the repository. Organization's data can

change and evolve without changing the application programs that process
the data.

Minimal Data Redundancy:

Traditionally, information systems were developed using a file-processing
approach. Each application had its own files, and data was not shared
among applications, resulting in a great deal of data redundancy, or
repetition of the same data value.

The database approach was developed to minimize data redundancy by
creating separate files for each entity. Files are referred to as tables, and a
database is a collection of related tables. Data files are integrated into a

single logical structure. While not completely eliminating redundancy, the
designer can control the type and amount of redundancy.

Improved Data Consistency:

Data consistency is obtained by reducing redundancy. Updating data
values is simplified, as each value is stored in one place only. Storage is
not wasted.

Improved Data Sharing:

Database is designed as a shared resource. Authorized users are granted
permission to use the database, and provided with user views to facilitate
this use.

Improved Productivity of Application Development:

To improve productivity the cost and time for developing new business
applications are reduced. The programmer can concentrate on the specific
functions required for the new application and DBMS provides a number of
high-level productivity tools such as forms and report generators and high-
level languages that automate some of the activities of database design and
implementation.

 Database Management Systems

 NOTES

7

Enforcement of Standards:

Standards include naming conventions, data quality standards, and uniform
procedures for accessing, updating, and protecting data.

Improved Data Accessibility and Responsiveness:

End users without programming experience can retrieve and display data
(using SQL).

Reduced Program Maintenance:

Data are independent of the application programs that use them and either
one can be changed without a change in the other.

Data Integrity:

The term data integrity refers to the degree to which data is accurate and
reliable. Integrity Constraints are rules that all data must follow. For

example if month is a field, then a number greater than 12 is invalid. Similar
examples are number of days in a month, number of hours in a day, etc.
Other invalid values could be pay rates, temperatures (too high or too low)
etc.

Disadvantages of Database Approach:

New, Specialized Personnel:

New individuals need to be hired and/or trained, and frequently retrained or
upgraded to implement databases.

Installation, Management Cost and Complexity:

A multi-user DBMS is a large and complex suite of software that has a high
initial cost and requires a staff of trained personnel to install and operate. A
substantial annual maintenance and support costs are needed. Hardware
and Data Communications systems may need upgrading. Security software
is often required to ensure proper concurrent of shared data.

Conversion Costs:

Old file processing system converted to modern database technology will
cost money and time.

Need for Explicit Backup and Recovery:

Data may be damaged or destroyed, due to hardware failure, physical
damage caused by fires or floods, and software or human errors. A
backup, or copy, must be made periodically. DBMS’s include backup

 Database Management Systems

 NOTES

8

routines or rely on system utilities. Recovery is replacing the damaged

database with good backup. Users have to renter data of any transactions
lost since the last backup

Organizational Conflict:

Conflicts on data definitions, data formats and coding, rights to update
shared data, and associated issues are difficult to resolve.

Security:

In addition to User ID and password, specific privileges can be assigned to
each user, defining that user's access to the data. Read-only privilege
permits that user only to look at the data; no changes are allowed. Update
privilege allows the user to make changes to the data. DBMS has

privileges at the field level; a user may be able to change some fields, just
look at others, and not even see some fields.

View of Data

A Database is a collection of interrelated files and set of programs that allow
users to access and modify these files. The main objective of three-schema
architecture is to separate database from application programs.

A commonly used view of data approach is the three-level architecture
suggested by ANSI/SPARC (American National Standards
Institute/Standards Planning and Requirements Committee). Under this
approach, a database is considered as containing data about an enterprise.

The three levels of the architecture are three different views of the data. The
design of each such level is considered as a schema and hence the whole
design is referred as three-schema architecture. With the three schemas,
program data independency can corresponding operation independency can
be achieved. This process is also referred to as data abstraction.

o Internal Level or Internal Schema or Physical Level.

o Conceptual Level or Conceptual Schema or Logical Level.

o External Level or External Schema or View Level.

 Database Management Systems

 NOTES

9

The three level database architecture allows a clear separation of the
information meaning (conceptual view) from the external data representation
and from the physical data structure layout.

External Schema:

The highest level of data abstraction is nothing but external schema. It
describes only a part of the entire database. It is basically presentation level.
Several users of the database have their own view of data. Each has a
separate design of approach. In general, the end users and even the
application programmers are only interested in a subset of the database. For
example, a department head may only be interested in the departmental
finances and student enrolments but not the library information. The librarian
would not be expected to have any interest in the information about
academic staff. The payroll office would have no interest in student
enrolments.

Logical or Conceptual Schema:

The conceptual view is the information model of the enterprise and contains
the view of the whole enterprise without any concern for the physical
implementation. In this level, we describe what data are to be stored and
what relationships exist among the data. The database administrators use
this level of abstraction.

Internal Schema:

The lowest level of data abstraction describes how the data is actually
stored. In this level, complex data structures of low level are described in
detail. In other words, the internal view is the view about the actual physical
storage of data. It tells us what data is stored in the database and how.

Three Levels Of Data Abstraction

 Database Management Systems

 NOTES

10

Data Models

A data model tells about the underlying structure of a database. It is a
collection of conceptual tools like describing the data, data relationships,
data semantics and consistency constraints. The various data models that
have been proposed fall into three categories:

 Object based Data Model.

 Record based Data Model.

 Semi Structured Data Model

 Physical Data Model.

Object based data model:

This data model is used in describing data at the logical and view levels and
it specify fairly flexible structures. There is another classification of in this
model:

 Entity-Relationship model.

 Object- oriented data model.

Entity Relationship data model:

The entity – relationship data model is a logical representation of the data
for an organization or for a business area or the entity-relationship (E-R)
data model is based on a perception of real world that consists of a
collection of basic objects called entities and relationships among these
objects. An entity is a thing or object or physical construct. An employee, a
student, a product are considered as entities. A relationship is an
association of several entities.

Object Oriented Data model:

Like E-R data model, the object oriented data model is also based on a
collection of objects. An object is an instance, which holds a set of values
within itself. An object may contain the body of the operations that work on
the data. The bodies are known to be methods. Unlike E-R data model,
each object has its own unique identity, independent of the values that it
contains.

Record Based Data model:

Record based data models are also used for describing data at logical level
and view level as well. These data models are used to specify the overall
structure of the database and to provide a higher level implementation.
Record based data models, as they are named, maintain fixed format
records of several types. The three widely acceptable record based data
models are:

 Database Management Systems

 NOTES

11

 Relational data model.

 Hierarchical data model.

 Network data model.

Relational data model:

The relational data model uses the concept of
relations to represent each and every file of a
system. Relations are nothing but two-dimensional
arrays (or tables) that represent data in a most
efficient way or a relational data model are a
collection of tables and associated relationships
among those data. Each table is a combination of multiple rows and
columns, and each column has unique name. In other words a relational
data model is exactly, a way of looking at data i.e., creation and
manipulation of data. In another way, we can say that a database
management system that manages information in terms of tables is nothing
but RDBMS. The relational data model is concerned with three aspects:

1. Data structure.
2. Data integrity.
3. Data manipulation.

Network data model:

Data in network data model is represented by a collection of records and
relationships among data are represented by links which are viewed as
pointers. Literally the records are represented as graphs.

Hierarchical data model:

The hierarchical data model is similar to network data model in the sense
that data and relationships among the data are represented as records and
links respectively. In this data model, unlike network data model, records are
organized in terms of tree structure.

 

 

 

 

 

 

 Database Management Systems

 NOTES

12

Physical Data models:

The physical data model is used to describe data at lowest level. Unlike
other data models, physical data models are very less in use. Two widely
known ones are:

 Unifying data model.

 Frame-memory data model.

Semi-structured Data Models: The semi-structured data model permits the

specification of data where individual data items of the same type may have
different sets of attributes. This is quiet against to the above mentioned data
models. The XML (Extensible Markup Language) is widely used to represent
semi-structured data.

Database Languages

A database system provides a data-definition language to specify the
database schema and a data-manipulation language to express database
queries and updates. In fact, the data-definition and data-manipulation are
not two separate languages. Instead they simply form a database language,
such as the widely used SQL language.

Data Manipulation Language

A data-manipulation language (DML) is a language that enables users to
access or manipulate data as organized by the appropriate data model (i.e.,
relational data model). The types of access are:

 Retrieval of information stored in the database
 Insertion of new information into the database
 Deletion of information from the database
 Modification of information stored in the database

There are basically two types of DMLs: Procedural & Declarative.

Procedural DMLs require a user to specify what data are needed and how

to get those data.

Declarative DMLs (also referred as nonprocedural DMLs) require a user to

specify what data are needed without specifying how to get those data.
Declarative DMLs are easier to learn than the procedural DMLs. A query is a
statement requesting the retrieval of information. Implementing queries is
possible through any query language. There are number of query languages
in use. One of the best one is SQL (structured query language).

 Database Management Systems

 NOTES

13

Data Definition language

We define any database schema by a set of definitions expressed by a data
definition language (DDL). The data definition language used to define
structure of database and it allows maintaining the data integrity and
consistency. In order to maintain integrity one should enforce constraints
over the database to be designed. Once a constraint is applied, the
database checks the data before performing any operation like insertion,
deletion and update.

Domain Constraints:

A domain of possible values must be associated with every attribute.
Domain constraints are the most elementary form of integrity constraint.
They can be tested easily by the system whenever a new data item is
entered in to the database.

Referential integrity:

There are certain cases, where a column of values in one relation refer to
the column of values in another relation. In such cases one can enforce
referential integrity to maintain consistency.

Assertions:

An assertion is any condition that the database must always satisfy.
Domain constraints and integrity constraints are special forms of assertions.
However, every assertion may not be applied through the above two
approaches. For example, “every loan must have a customer who maintains
an account with a minimum balance of Rs.3000” , must be expressed as an
assertion. If the assertion is valid, then any future modification to the
database is allowed only if it does not cause that assertion to be violated.

Authorization:

Sometimes the users may be differentiated while accessing the database.
Some of the users must have access to partial database only. In such
situations one can go for authorization. The authorization may be read
authorization, update authorization, and delete authorization. Once delete
authorization is given to a user, he will be allowed to perform delete
operation over a relation. Moreover, either all or none of the users may hold
authorization to a particular database.

Database Users and Administrators

A primary goal of database system is to retrieve information from and store
new information in the database. People who work with a database can be
categorized as database users or database administrators.

 Database Management Systems

 NOTES

14

Database users

There are four different types of database-system users, differentiated by
the way they expect to interact with the system. Different types of user
interfaces have been defined for different types of users.

Naive Users:

Persons who are unsophisticated users and who interact with the system by
invoking one of the application programs that have been written previously
are naïve users. For example a bank teller who transfers Rs. 500 from
account A to account B invokes a program called transfer. People, who wish
to check their balance over the worldwide web, are the other example for
naïve users. Naïve users use the forms as their user interfaces and can
read the reports.

Application Programmers:

Persons who are computer professionals and who write application
programs are application programmers. Application programmers can
choose from many tools to develop user interfaces. RAD (Rapid Application
Development) Tools are the tools that enable an application programmer to
construct forms and reports with minimal programming effort.

Sophisticated Users:

Persons who interact with the system without writing programs are
sophisticated users. Instead, they form their requests in a database query
language. They submit each query to the query processor. The job of a
query processor is to bread down the DML statements in to instructions so
that they can be understood by the storage manager. Analysts who submit
queries to explore or extract data in the database will fall in this category.

Specialized Users:

They are sophisticated users who write specialized database applications
that do not fit into the traditional data processing framework. CAD systems,
knowledge based expert systems are the examples for such specialized
database applications.

End Users:

Persons who add, delete, and modify data in the database and who request
and receive information from it.

DBA

The database administrator (DBA) is the person (or group of people)
responsible for overall control of the database system. The DBA would

 Database Management Systems

 NOTES

15

normally have a large number of tasks related to maintaining and managing
the database.

The DBA's responsibilities include the following:

 Schema Definition. The DBA creates the original database schema
by executing a set of data definition statements in the DDL.

 Storage Structure and access-method definitions.

 Schema and physical organization modification. The DBA carries out

changes to the schema and physical organization to reflect the
changing needs of the organization, or to alter the physical
organization to improve performance.

 Granting of authorization for data access. By granting different types

of authorization, the database administrator can regulate which parts
of the database the users can access. The authorization information
is kept in a special system structure that the database system
consults whenever someone attempts to access the data in the
system.

 Routine maintenance. Examples of the database administrator’s

routine maintenance activities are:

 Periodically backup the database, either on to tapes or on to remote

servers, to prevent loss of data incase of natural calamities like
flooding.

 Ensuring that enough disk space is available for normal operations,

and upgrading disk space as required.

Monitoring jobs running on the database and ensuring that performance
is not degraded by very expensive tasks submitted by some users.

Transaction management

A transaction is a collection of operations that performs a single logical

function in a database application. Each transaction is a unit of both
atomicity and consistency.

Transaction management component ensures that the database remains in
a consistent (correct) state despite system failures (e.g., power failures and
operating system crashes) and transaction failures.

Concurrency control manager controls the interaction among the concurrent
transactions, to ensure the consistency of the database

 Database Management Systems

 NOTES

16

Database System Structure

A database system is partitioned into modules that deal with each of the
responsibilities of the overall system. The functional components of a
database system can be broadly divided into the storage manager ad the
query processor components.

Storage manager is a program module that provides the interface between
the low level data stored in the database and the application programs and
queries submitted to the system.

The query processor helps the database system in simplifying and facilitate
to access data.

Database system
Architecture

 Database Management Systems

 NOTES

17

History of database systems

Data processing drives the growth of computers, as it has from the earliest
days of commercial computers. In fact, automation of data processing tasks
predates computers. Punched cards are used widely as a means of entering
data into computers.

1950s and early 1960s:

Magnetic tapes were developed for data storage. Payrolls and inventory
databases were automated, with the data stored on tapes. The tasks like
copying data from one tape to another, read data from the tape and sending
to printer were performed. In fact, data was read in sequential manner only
from the tapes and data sizes were much larger than the main memory.

Late 1960s and 1970s:

Wide spread use of hard disks in the late 1960s changed the scenario for
data processing greatly, since hard disks allowed random access to data.
The data over the hard disk can be anywhere; the position of the data was
immaterial. With disks, network and hierarchical databases could become
easy to maintain.

1980s:

Initially relational data models were tough to manage when compared to
network and hierarchical databases. By early 1980s, relational database
have become so easy to manage; eventually they replaced network and
hierarchical data bases. Relational databases were introduced by E.F.
Codd.

The first relational product SQL was introduced in this time. The other
relational products are IBM’s DB2, Sybase and Ingres. The 1980s also saw
much research on parallel and distributed databases as well as object based
databases.

Early 1990s:

The SQL language was designed primarily for decision support applications,
which are query intensive. Many database vendors have introduced parallel
database products.

Late 1990s:

The introduction of worldwide web has changed the scenario rapidly.
Databases were deployed much more extensively than ever before.
Databases have reliability and have 24x7 availability. Web interfaces were
introduced.

 Database Management Systems

 NOTES

18

Early 2000s:

In early 200s, we have seen the emerging of XML and the associated query
language X Query as a new database technology.

Summary

A database management system (DBMS) is a computer program designed
to manage a database; a large set of structured data, and run operations on
the data requested by numerous users. Typical examples of DBMS use
include accounting, human resources and customer support systems. The
primary goal of a DBMS is to provide an environment that is both convenient
and efficient for the people to use in retrieving and storing information. The
three levels of the architecture are three different views of the data. The
design of each such level is considered as a schema and hence the whole
design is referred as three-schema architecture level.

Data model is a model that describes in an abstract way as to how data is
represented in an information system or a database management system.
Important data models are: entity- relationship, relational, network and
hierarchical data models. A database administrator (DBA) is a person who is
responsible for the environmental aspects of a database. A transaction is a
collection of operations that performs a single logical function in a database
application. Each transaction is a unit of both atomicity and consistency.

Technical Terms

Query: A specific set of instructions for extracting particular data from a
database.

Metadata: Data is useful when placed in some context. Metadata are data
that describe the properties or characteristics, such as definitions,
structures, and rules or constraints, of other data.

Data Processing: Systematically performing a series of actions with data.

May be done by manual, mechanical, electromechanical, or electronic
(primarily computer) means.

Security: The process of protecting information from unauthorized use. An

example is the use of credit card numbers on the Internet to purchase
merchandise and services.

 Database Management Systems

 NOTES

19

Model Questions

1. What is file processing? Explain the major disadvantages of file
processing?

2. What is Database management system? Explain the advantages
of database management system?

3. Give the architecture of data base management system and
explain each block ?

4. What are five main functions of Database Administrator (DBA)?
5. Explain clearly about DDL and DML?

References

Database System Concepts

 Silberschatz, Korth, and Sudarshan

An Introduction to Database Systems

Bipin Desai

An Introduction to Database Systems
C. J. Date

DATABASE MANAGEMENT SYSTEMS

B.Tech(COMPUTER SCIENCE)

III YEAR

Lesson Writer

P.Ammi Reddy , M.Tech.,

Vasireddy Venkatadri Institute of Technology
Nambur (P.O.), GUNTUR – Dt.

Editor & Advisor for the Course

Prof. E.SREENIVASA REDDY, M.Tech., Ph.D.
Principal

Vasireddy Venkatadri Institute of Technology
Nambur (P.O.), GUNTUR – Dt.

Director
Prof.V.CHANDRASEKHARA RAO, M.Com., Ph.D.

CENTRE FOR DISTANCE EDUCATION

ACHARAYA NAGARJUNA UNIVERSITY
NAGARJUNA NAGAR – 522 510

Ph: 0863-2293299,2293356,08645-211023,Cell:98482 85518
08645-21102 4 (Study Material)

Website: www.anucde.com, e-mail:anucde@yahoo.com

http://www.anucde.com/

 Database Management Systems

 NOTES

20

2. ENTITY-RELATIONSHIP MODEL

Objective

The main objective of this lesson is to develop the skills necessary for the
design and evaluation of database management systems through the
Entity - Relationship data model.

After reading this chapter, you should understand:

 What is an entity?

 What is a Relation?

 Various types of Attributes

 Relationship sets

 Mapping Cardinalities

Structure of the Lesson

2.1 Basic Concepts
2.2 Entity sets
2.3 Relationship sets
2.4 Mapping Constraints
2.5 E-R Diagrams
2.6 Weak Entity Sets
Summary
Technical Terms
Model Questions
References

Introduction

The entity –relationship data model is a logical representation of the data
for an organization or for a business area or The entity-relationship (E-R)
data model is based on a perception of real world that consists of a
collection of basic objects called entities and relationships among these
objects.

An entity is a thing or object or physical construct. An employee, a
student, a product are considered as entities. A relationship is an
association of several entities.

 Database Management Systems

 NOTES

21

Entity Sets

An entity is a person, place, object event or concept in the user
environment about which the organization wishes to maintain data.

(Or)

The Entity-Relationship (ER) model, a high-level data model that is useful
in developing a conceptual design for a database.

(Or)

An entity is an object that exists and is distinguishable from other objects.

For instance, “Krishna” with Emp-ID V053 is an entity, as he can be
uniquely identified as one particular employee in the organization.

 Person: EMPLOYEE, STUDENT, and PATIENT
 Concept: ACCOUNT, COURSE, and WORK CENTRE

The overall logical structure of database can be expressed graphically by
an E-R diagram, which is built up from the following components:

Rectangles - To represent entities.
Ellipses - To represent attributes.
Diamonds - To represent relationships among entities.
Lines - To link attributes to entities.

 Database Management Systems

 NOTES

22

Basic E-R notations

Associative entity relationship identifying
relationship

Multi-valued attribute Derived attribute

Figure 2.1 Basic E-R notations

Entities are the principal data object about which information is to be

collected. Entities are usually recognizable concepts, either concrete or
abstract, such as person, places, things, or events, which have relevance
to the database.

Entities are classified as independent or dependent. An independent
entity is one that does not rely on another for identification. A dependent
entity is one that relies on another for identification.

An entity occurrence (also called an instance) is an individual occurrence

of an entity. An occurrence is analogous to a row in the relational table.

Entity sets is a set of entities of the same type that share the same
properties, or attributes. The set of all persons who are students at a
given Institute can be defined as the entity set student.

The entity-relationship model is based on a perception of the world as
consisting of a collection of basic objects (entities) and relationships
among these objects.

Entity Attribute Weak Entity

 Database Management Systems

 NOTES

23

Attribute:

Attributes are also termed Properties. Attributes or Properties are
characteristics of an entity. Examples: Customer Number, Order Number,
Order Date, Product Number.

Attributes describe the entity of which they are associated. A particular
instance of an attribute is a value.

The domain of an attribute is the collection of all possible values an
attribute can have. The domain of Name is a character string.
In the example shown below, attribute names are shown as a
combination of upper and lower case characters inside bubbles. Here
customer is an entity. Customer Name, Customer Number and Phone
Number are properties or attributes.

Figure 2.2 sample E-R diagram

The following attribute types, as used in the E-R model can
characterize an attribute.

Simple Attributes:

An Attribute is one that cannot be divided into sub parts. (Or) A simple
attribute is one component that is atomic.

Composite Attribute:

 A composite attribute has multiple components, each of which is atomic
or composite. (Or) An attribute can be broken down into component
parts. The most common example is Name, which can usually be broken
down into the First Name, Middle Name, and Last Name.

CUSTOMER

Customer

Number
Customer

Name

Phone

Number

 Database Management Systems

 NOTES

24

Figure 2.3 composite attribute

Another example is the attribute, Address, which can be broken down
into Street, City, State, and Zip Code.

Single Valued Attributes:

An entity attribute that holds exactly one value is a single-valued attribute.

Multi-valued Attributes:

A multi-valued attribute is an attribute that may take on more than one
value for a given entity instance. For example, the employee entity type
in given picture has an attribute name Skill, whose values record the skill
(or skills) for that employee.

Figure 2.4 multi-valued attribute

Derived Attributes:

An attribute whose values can be calculated from related attribute values.
(Or) A derived attribute can be obtained from other attributes or related
entities

Figure 2.5 derived attribute

Name

Middle

Name

Last

Name

First Name

 Employee
Dependent

Person Age Date of birth

 Database Management Systems

 NOTES

25

Relationships

A relationship type is a set of associations among entity types.

For example, the student entity type is related to the team entity type
because each student is a member of a team. In this case, a relationship
or relationship instance is an ordered pair of a specific student and the
student's particular Computers team, such as (Hanuman, Computers),
where computers 8261 is Hanuman’s team number.

We arrange the diagram so that the relationship reads from left to right, "a
student is a member of a team". Alternatively, we can arrange the
components from top to bottom.

A relationship set is a set of relationships of the same type.
Formally it is a mathematical relation on (possibly non-distinct) sets.

If are entity sets, then a relationship set R is a subset of

,

Where is a relationship.

For example, consider the two entity sets customer and account. We
define the relationship CustAcct to denote the association between

customers and their accounts. This is a binary relationship set. Going
back to our formal definition, the relationship set CustAcct is a subset of
all the possible customer and account pairings.

This is a binary relationship. Occasionally there are relationships
involving more than two entity sets.

The role of an entity is the function it plays in a relationship. For example,
the relationship works-for could be ordered pairs of employee entities.
The first employee takes the role of manager, and the second one will
take the role of worker.

A relationship may also have descriptive attributes. For example, date
(last date of account access) could be an attribute of the CustAcct

relationship set.

Figure 2.6 ER diagram notation for relationship

type, MemberOf

 Database Management Systems

 NOTES

26

Cardinality Constraint

An E-R scheme may define certain constraints to which the contents of a
database must conform.

A mapping cardinality is a data constraint that specifies how many
entities an entity can be related to in a relationship set.

Example: A student can only work on two projects, the number of
students that work on one project is not limited.

A binary relationship set is a relationship set on two entity sets. Mapping
cardinalities on binary relationship sets are simplest.

Consider a binary relationship set R on entity sets A and B. There are
four possible mapping cardinalities in this case:

One-to-One:

An entity in A is related to
at most one entity in B, and
an entity in B is related to
at most one entity in A.
observe fig

 Figure 2.4.1

One-to-Many:

An entity in A is related to any
number of entities in B, but an
entity in B is related to at most
one entity in A.

 Figure 2.4.2

Many-to-One:

An entity in A is related to
at most one entity in B, but
an entity in B is related to
any number of entities in A.

 Figure 2.4.3

 Database Management Systems

 NOTES

27

Many-to-Many:

An entity in A is related to any number of entities in B, but an entity in B is
related to any number of
entities in A.

The appropriate mapping
cardinality for a particular
relationship set depends on
the real world being
modeled.

 Figure 2.4.4

E-R Diagrams

The following are different types of E-R diagrams:

Figure 2.5.1- E-R Diagram corresponding to customer and loan

Figure 2.5.2 - E-R Diagram with all types of attributes

 Database Management Systems

 NOTES

28

Figure 2.5.3 - Relationship with Attributes

Figure 2.5.4 – E-R diagram with multiple relationships

The other category of relationship follows:

 Unary Relationships

 Binary Relationships

 Ternary Relationships

Unary Relationship: An entity that holds a relation with the entity of

same set.

Binary Relationship: A relationship that holds between two entities is a

binary relationship.

 Database Management Systems

 NOTES

29

Ternary Relationship: A relationship that can be hold among three

entities is a ternary relationship.

Figure 2.5.5 - Unary Relationship

Figure 2.5.6 - Binary Relationship

Person

Marries

 Database Management Systems

 NOTES

30

 Ternary Relationship

Figure 2.5.7 - One-to-Many

Figure 2.5.8 - Many-to-One

 Database Management Systems

 NOTES

31

Figure 2.5.9 - Many-to-Many

The other way of representing cardinalities

Figure 2.5.9

Figure 2.5.10

 Database Management Systems

 NOTES

32

An alternative Notation for Cardinalities

Weak Entity Sets

An entity set may not have sufficient attributes to form a primary key.
Such an entity set is termed a weak entity set. An entity set that has a
primary key is termed as Strong Entity Set. For example:

Figure 2.5.11

Figure 2.5.12

 Database Management Systems

 NOTES

33

E-R Diagram for Banking Enterprise

Figure 2.5.13

 Database Management Systems

 NOTES

34

Summary

The Entity-Relationship Model is a conceptual data model that
views the real world as consisting of entities and relationships. The model
visually represents these concepts by the Entity-Relationship diagram.
The basic constructs of the ER model are entities, relationships, and
attributes. Entities are concepts, real or abstract, about which information
is collected. Relationships are associations between the entities.
Attributes are properties, which describe the entities. Next, we will look at
the role of data modeling in the overall database design process and a
method for building the data model. An attribute may be simple,
composite, single valued, multi-valued and derived attribute.

Technical Terms

Entity: An entity is an object that exists and is distinguishable from other

objects.

Attribute: Attributes describe the entity of which they are associated. A
particular instance of an attribute is a value.

Domain: The domain of an attribute is the collection of all possible values
an attribute can have.

Simple attribute: An Attribute that cannot be divided into sub parts.

Composite Attribute: A composite attribute has multiple components,

each of which is atomic or composite.

Multi-valued Attribute: A multi-valued attribute is an attribute that may

take on more than one value for a given entity instance.

Relationship Type: Relationship type is a set of associations among

entity types.

Mapping Cardinality: A mapping cardinality is a data constraint that
specifies how many entities an entity can be related to in a relationship
set.

 Database Management Systems

 NOTES

35

Model Questions:

 What is an attribute? Explain various types of attributes?

 Explain Entity set and Relationship set?

 Write about mapping Cardinalities?

 Explain the importance of E-R Data Model?

Reference

Database System Concepts

 Silberschatz, Korth, and Sudarshan

Modern Database Management

F. McFadden, J. Hoffer

 Database Management Systems

 NOTES

36

3. EXTENDED E-R MODEL

Objective

The main objective of this lesson is to analyze the basic E-R diagrams in
detail in such a way that the design and evaluation of database
management systems becomes even more efficient.

After reading this chapter, you should understand:

 What is an Extended E-R Diagram?

 What is Generalization?

 What is Specialization?

Structure of the Lesson

Basic Concept
Specialization
Generalization
Constraints
Aggregation
UML
Summary
Technical Terms
Model Questions
References

Basic Concept

Although the basic concepts can model most database features, some aspects
of a database may be more aptly expressed by certain extensions to the basic E-
R model. In this section of lesson, we discuss extended E-R features of
specialization, generalization, higher level and lower level entity sets, attribute
inheritance and aggregation.

Specialization

An entity set may include subgroupings of entities that are distinct in
some way from other entities in the set. For instance, a subset of entities
within an entity set may have attributes that are not shared by all the
entities in the entity set. The E-R model provides a means for
representing these distinctive entity grouping. For example a person may
be classified into the following:

 Database Management Systems

 NOTES

37

 Employee

 Customer

Further a bank employee may further classified as the following

 Teller

 Officer

 Secretary

Now, the above entity can be represented as follows:

Specialization may be represented as triangle or circle. Here, ‘ISA’ is the
representation. The ISA relationship may be referred as super class-
subclass relationship.

Figure 3.1

 Database Management Systems

 NOTES

38

Generalization

The refinement from an initial entity set into successive levels of entity
subgroupings represents a top-down design process in which distinctions
are made explicit. Clearly we can form a generic entity type from sub
types. Generalization and Specializations are inverse to one another.

The other examples are:

The entity Employee may be generated from two sub entity types (or sub
types) called Part-time Employee and Full-Time Employee.
The entity Patient may be generated from two sub entity types (or sub
types) called Inpatient and Outpatient.

The superclass entity type is also referred to as Higher level entity form
(Ex. Employee)
The subclass entity type is reffered to as Lower level entity form (Ex.
Teller, secretary and officer).

Constraints

Certain Constraints may be imposed on the extended E-R models. They
are:

 Completeness Constraint

 Disjointness Constraint

Completeness Constraint is further divided into 2 constraints:

Total Specialization:

It means that each of the super type or higher form entity must any one of
the sub type entity sets or lower forms.

For example, an Employee may be either the part-time or full-time,
nothing beyond the scope.

Partial Specialization:

It means that each super type or higher form entity may not belong to any
lower level entity sets.

For example, suppose a vehicle is defined as super class and car and
bus are as the sub types. Now any vehicle may be either the car or bus
and even it can be a cab.

 Database Management Systems

 NOTES

39

Disjointness Constraint also further has two constraints:

Disjoint Rule:

It requires that an entity belong to no more than one lower level entity set.
For example, an account type may be either savings or current but not
both.

Overlapping Rule:

It requires that an entity may belong to more than one lower level entity
set within a single generalization. For example, a Person may be both
employee and customer as well.

Attribute Inheritance

A crucial property of the higher level and lower level entities created by
specialization and generalization is attibute inheritance. The attributes of
higher level or super type are said to be inherited by lower level entity
sets. For example, customer and employee inherit the attributes of
Person.

Aggregation

One limitation of E-R model is that it cannot express relationships among
relationships. The best solution for this is to use aggregation. Aggregation
is abstraction through which relationships are treated as higher-level
entities. Observe the following examples:

Figure 3.5.1 E-R diagram with redundant Relationships

 Database Management Systems

 NOTES

40

We can eliminate this redundancy through aggregation. Observe the
following diagram:

E-R Diagram with Aggregation

Figure 3.5.2

Summary of Symbols to be used:

Figure 3.5.3

 Database Management Systems

 NOTES

41

Figure 3.5.4

 Figure 3.5.5

 Database Management Systems

 NOTES

42

UML Diagrams (Unified Modeling Language)

The UML is a standard developed by OMG (Object Modeling Group) for
creating specifications of various components of a software system.
Some of the parts of UML are:

Class Diagram: A class diagram is similar to E-R Diagram.

Use Case Diagram: Use case diagrams show the interaction between
users and the system, in particular the steps of tasks that users perform
(such as drawing money or registering a course).

Activity Diagram: Activity Diagram depicts the flow of tasks between

various components of a system.

Implementation Diagram: It shows the system components and their

interconnections both at software level and hardware level.

Summary

Database design mainly involves the design of the database schema.
The E-R data model is a widely used data model for database design. It
provides a convenient graphical approach to view the data, relationships
and constraints.

The specialization and Generalization gives more affective way of
representation of entities. Aggregation is an abstraction in which
relationship sets are treated as higher form of entities.

The UML provides a graphical means of modeling various components of
a software system.

Technical Terms

Specialization: An entity set may include subgroupings of entities that

are distinct in some way from other entities in the set.

Generalization: It is a process of generating a higher-level entity type

from sub types

UML: The UML provides a graphical means of modeling various

components of a software system.

Class Diagram: A class diagram is similar to E-R Diagram.

Use Case Diagram: Use case diagrams show the interaction between
users and the system, in particular the steps of tasks that users perform
(such as drawing money or registering a course).

 Database Management Systems

 NOTES

43

Activity Diagram: Activity Diagram depicts the flow of tasks between

various components of a system.

Implementation Diagram: It shows the system components and their

interconnections both at software level and hardware level.

Model Questions

1. What is an E-E-R model?

2. Differentiate Specialization, Generalization and

Aggregation?

3. Explain Attribute Inheritance?

Reference

Database System Concepts

 Silberschatz, Korth, and Sudarshan

Modern Database Management

F. McFadden, J. Hoffer

 Database Management Systems

 NOTES

44

UNIT - II

1. RELATIONAL DATA MODEL

Objective

After completion of this lesson, we can understand,

 What is a Relation?

 What are the various relational algebra operations?

Structure of Lesson

Introduction
Basic Structure
Database Schema
Keys
Query Languages

Relational Algebra
Additional Relational Algebra Operations
Extended Relational Algebra Operations
Null values

Introduction

The relational model was formally introduced by Dr. E. F. Codd in 1970
and has evolved since then, through a series of writings. The model
provides a simple, yet rigorously defined, concept of how users perceive
data. The relational model represents data in the form of two-dimension
tables. Each table represents some real-world person, place, thing, or
event about which information is collected.

A relational database is a collection of two-dimensional tables. Literally a
relation is nothing but a table. The organization of data into relational
tables is known as the logical view of the database. That is, the form in

which a relational database presents data to the user and the
programmer. The way the database software physically stores the data
on a computer disk system is called the internal view. The internal view

differs from product to product and does not concern us here.

 Database Management Systems

 NOTES

45

Basic structure

A Relational database consists of a collection of tables, each of which is
assigned a unique name. A row in a table represents a relationship
among a set of values.

A relational database is a finite set of relation schemas (called a
database schema) and a corresponding set of relation instances (called
a database instance).

The relational database model represents data as a two-dimensional
tables called a relations and consists of three basic components:

1. A set of domains and a set of relations
2. Operations on relations
3. Integrity rules

In the relational model, data is represented as a two-dimensional table
called a relation. Relations have names and the columns have names
called attributes. The elements in a column must be atomic - an

elementary type such as a number, string. Date, or timestamp and from a
single domain.

A relation r(R) is a mathematical relation of degree n on the domains dom
(A1), dom (A2)... dom (An) which is a subset of the Cartesian product of
the domains that define R:

Example:

An employee relation is a table of names, birth dates, social security
numbers, ...

The contents of a relation are rarely static thus the addition or deletion of
a row must be efficient.

Properties of a Relation

Relations possess certain properties. All of them are immediate
consequences of the definition of relation given earlier, and all of them
are very essential. The properties of a relation are as follows:

 There are no duplicate tuples

 Tuples are unordered, top to bottom

 Attributes are unordered, left to right

 All attribute values are atomic

 Database Management Systems

 NOTES

46

The degree of a relation is the number of attributes n of its relational

schema.

The domain D is set of atomic values. Atomic means each value in the

domain is an individual item. Examples of a domain:

 USA_Phone_Numbers: The set of 10-digit phone numbers valid in
United States.

 Employee_Ages : A set of age values ranges from 18 to 58.

Example of relation:

Figure 1.1.1

Jones
Smith
Curry

Lindsay

customer-name

Main
North
North

Park

customer-street

Harrison
Rye
Rye

Pittsfield

customer-city

Customer

Attributes

Tuples

 Database Management Systems

 NOTES

47

Codd Rules

In 1985, E.F Codd proposed an informal set of twelve rules by which a
database could be evaluated to see how relational it is. Very few
commercial databases exist which meet or satisfy all twelve rules. The
rules are:

1. All information in a relational database is represented explicitly at
the logical level and in exactly one way – by values in tables.

2. Each and every datum (atomic value) in a relational database is

guaranteed to be logically accessible by resorting to a
combination of table name, primary key and column value. If a
database satisfies rule 2, every atomic value should be easily
retrievable.

3. Null values are supported in a fully relational DBMS for

representing missing information in a systematic way,
independent of data type. A null means an unknown value or not
applicable value (or irrelevant).

4. The database description is represented at the logical level in the

same way as ordinary data, so that authorized users can apply
the same relational language to its interrogation.

5. A relational system may support several languages and various

modes of terminal use. However they must support the following:
data definition, view definition, data manipulation, authorization,
integrity constraints, and transaction management.

6. All views that are theoretically updateable are also updateable by

the system.

7. The capability of handling one or more relations with a single
operation must be ensured.

8. Physical data Independence must be ensured.

9. Logical data Independence should also be ensured.

10. Integrity constraints specific to a particular relational database

must be definable in a relational data sub language and stored in
the catalog, not in the application programs.

11. A relational DBMS must have distribution independence.

 Database Management Systems

 NOTES

48

12. If a relation system has a low-level language, that low-level
language cannot be used to subvert or bypass the integrity rules
and constraints expressed in the higher-level relational language.

Database Schema

A database schema is a set of relation schemas for the relations in a

design. Changes to a schema or database schema are expensive thus
careful thought must go into the design of a database schema.

Relation Schema - relationName (attribute1:dom1, ..., attributen:domn)

A relation schema e.g. employee (name, birthDate, ssn), consists of

1. The name of the relation. Relation names must be unique across the

database.

2. The names of the attributes in the relation along with there associated

domain names. An attribute is the name given to a column in a

relation instance. All columns must be named and no two columns in
the same relation may have the same name. A domain name is a

name given to a well-defined set of values. Column values are
referenced using its attribute name (A) or alternatively, the relation
name followed by the attribute name (R.A)

3. The integrity constraints (IC). Integrity constraints are restrictions on

the relational instances of this schema.

Relation Instance:

A relation instance is a table with rows and named columns. The rows in
a relation instance (or just relation) are called tuples. The cardinality of
the relation is the number of tuples in it. The names of the columns are
called attributes of the relation. The number of columns in a relation is
called the arity of the relation. The type constraint that the relation

instance must satisfy is

1. The attribute names must correspond to the attribute
names of the corresponding schema and

2. The tuple values must correspond to the domain values
specified in the corresponding schema.

Database Instance

A database instance is a finite set of relation instances.

 Database Management Systems

 NOTES

49

Database schema example:

Movie (title, year, length, filmType)
Employee (name, birthDate, ssn)
Department (Name, empSSN, employeeName, function)

Keys

We must specify how tuples in the relation must be distinguished. This is
expressed in terms of their attributes. That is, the values of the attributes
of a tuple must be such that they can uniquely identify the tuple. In other
words, no two tuples in a relation are allowed to have exactly the same
value for all attributes.

A Super Key is a set of one or more attributes that, taken collectively,

allow us to uniquely identify a tuple in a relation. For example, customer
ID of a customer relation is a super key. Even the combination of
customer ID and Customer Name can be the super key.

A key K is a Candidate key if K is minimal super key. Example:
{customer-name} is a candidate key for Customer, since it is a super key
{assuming no two customers can possibly have the same name), and no
subset of it is a super key.

A primary key is an attribute that holds uniqueness property and not null

property. Every table should possess a primary key

Query Languages

A query language is a language in which a user requests information from
the database. These languages are typically of a level higher than that of
a standard programming language. Query language can be categorized
as being either procedural or non procedural. In a procedural language,
the user instructs the system to perform a sequence of operations on the
database to compute the desired result. In a non procedural language,
the user describes the information desired without giving a specific
procedure for obtaining that information.

Most commercial relational-database systems offer a query language that
includes elements of both the procedural and non-procedural
approaches. The relational algebra is procedural, whereas the tuple
relational calculus and the domain relational calculus are non-

procedural.

 Database Management Systems

 NOTES

50

Fundamentals of Relational Algebra

A Relational algebra is a notation for representing the types of operations,
which can be performed on relational databases. It is used in a RDBMS
as the intermediate language for query optimization. Thus an
understanding of it is useful for database implementation and for
database tuning.

A relation is a set of k-tuples, for some k called the arity of the relation. In

general, names are given to the components of the tuple (a tuple
corresponds to a record - Pascal or structure - C with fields
corresponding to the names of the components). Note: this definition
implies that each tuple is unique. Each relation is described by a schema,
which consists of a relation name and a list of attribute names - relation-
name (attribute-list). R(A1, ..., An), R.Ai.

A relational algebra is an algebraic language based on a small number
of operators, which operate on relations (tables). It is the intermediate
language used by a RDBMS. Queries are expressed by applying special
operators to relations.

Fundamental operations

The Select Operation:

The Select Operating selects the tuples that satisfy a given condition or
predicate.

A Greek Letter Sigma can denote the Select operation

Relation r A B C D

















1
5
12
23

7
7
3
10

 Database Management Systems

 NOTES

51

The Project Operation:

The project operation is a unary operation that returns its argument
relation, with the specified attributes only. The resultant relation does not
have any duplicate rows.

Project is denoted by Greek letter pi.

Example:

Relation r: A B C









10
20
30
40

1
1
1
2

A C









1
1
1
2

=

A C







1
1
2

• A,C (r)

A=B ^ D > 5 (r)

A B C D









1
2
3

7
1
0

 Database Management Systems

 NOTES

52

The Union Operation:

The union operation allows combining the data from two relations.

 It is denoted by U
It creates the set union of two compatible relations.

For a union operation r U s to be valid, we require that the following
conditions hold.

 Both relations must have the same number of columns.
 The names of the attributes are the same in both relations.
 Attributes with the same name in both relations have the same

domain.

Set Difference:

The set difference operation, denoted by -, allows finding tuples that are

in one relation but are not in another. The expression r-s results in a
relation containing those tuples in r but not in s. for set difference
operations; we must ensures that the set difference are taken between
compatible relations. Therefore, for a set difference operation r-s to be

Relations r, s:
A B







1
2
1

A B





2
3

r
s

 r  s: A B









1
2
1
3

 Database Management Systems

 NOTES

53

valid, we require that the relations r and s be of the same arity and that
the domain of the I’th attribute of r and I’th attribute of s be the same.

Cartesian product:

Cartesian product operation, denoted by a cross (X), allows us to

combine information from any two relations.

Relations r, s:

r – s:

A B







1
2
1

A B





2
3

r
s

A B





1
1

Relations r, s:

A B





1
2

C D









10
10
20
10

E

a
a
b
b r

s

 Database Management Systems

 NOTES

54

Renaming:

The attribute names in the attribute list replace the attribute names of the
relation.

Additional Relational Operations

We define additional operations that do not add any power to the
relational algebra, but that simplify common queries.

 Set intersection

 Natural join

 Division

 Assignment

Set intersection:

Finds the common tuples in two relations with like attributes.

Notation: r Ç snDefined as: r Ç s ={ t | t Î r and t Î s }
Assume: r, s have the same arity
attributes of r and s are compatible
Note: r Ç s = r - (r - s)

r x s: A B
















1
1
1
1
2
2
2
2

C D
















10
19
20
10
10
10
20
10

E
a
a
b
b
a
a
b
b

 Database Management Systems

 NOTES

55

Example

R ^ S

Divide:

Takes two relations, with attributes {X1...XN,Y1...YM} and {Y1...YM}
respectively, and returns a relation with attributes {X1...XN} representing
all the tuples in the first with matched every tuple in the second relation.

Join:

Creates new relation from all combinations of tuples in two relations with
some matching, While this relation has the potential to be computationally
expensive the join-condition typically allows the operation to be relatively
inexpensive.

 The join defined above is called a theta-join.
 Equijoins are joins where the join-condition only

involves equalities.
Natural Joins:

The natural join of two relations R and S, denoted R|><|S is only those
tuples of R×S that agree on some list of attributes.

The natural join may be defined by

1. Compute R×S
2. For each attribute A that names both a column in R and a column

in S, select from R×S those tuples whose values agree in the
columns for R.A and S.A.

A B







1
2
1

A B





2
3

r
s

A B

 2

 Database Management Systems

 NOTES

56

3. For each attribute A above, project out the column S.A and call
the remaining column R.A, simply A. (example:
employee(id,name), salary(id,salary); the natural join employee-
salary(id,name,salary)

The theta join of two relations R and S denoted R|><|<|CS is only those tuples
of R×S that satisfy the condition C.

1. Compute R×S
2. Select from the product only those tuples that satisfy the

condition.
Renaming
ρS(A1,...,An)(R) is the same relation as R but its name is S with the
attributes named. A1,...,An.

Example:

Relations r, s:

A B











1
2
4
1
2

C D











a
a
b
a
b

B

1
3
1
2
3

D

a
a
a
b
b

E










r











1
1
1
1
2











a
a
a
a
b

A B C D E











s

r s

 Database Management Systems

 NOTES

57

Example Queries on Relational Algebra

1. Find all loans of over $1200

 amount > 1200 (loan)

2. Find the loan number for each loan of an amount greater than $1200

 loan-number (amount > 1200 (loan))

3. Find the names of all customers who have a loan, an account, or both,

from the bank

customer-name (borrower) U customer-name (depositor)

4. Find the names of all customers who have a loan and an account at

bank.

customer-name (borrower) ^ customer-name (depositor)

5. Find the names of all customers who have a loan at the Perryridge

branch.

 customer-name (branch-name=“Perryridge” (borrower.loan-

number = loan.loan-number(borrower x loan)))

6. Find the names of all customers who have a loan at the Perryridge

branch but do not have an account at any branch of the bank.

 Database Management Systems

 NOTES

58

 customer-name (branch-name = “Perryridge” (borrower.loan-

number = loan.loan-number(borrower x loan))) – customer-

name(depositor)

SUMMARY

The relational algebra provides the basic set of operations to manipulate
one ore more relations. In order to implement operations a set of symbols
are kept in use. The operations include all the set operations along with
additional set of operations like join and rename.

Model Questions

1. What is Relational Data Model? Explain.
2. List out various Relational Algebra operations with examples?
3. How relational algebra can be mapped on to SQL.

 Database Management Systems

 NOTES

59

2. RELATIONAL CALCULUS

Objective

After completion of this chapter, you understand:

 Tuple Relational Calculus

 Domain Relational Calculus

Structure of Lesson:

Introduction
Tuple Relational Calculus
Domain Relational Calculus
Summary
Technical terms

Introduction

Relational Calculus combines SELECT and PROJECT commands
into one command for listing the required attributes. While doing
this, the WHERE clause will specify selection criterion.

Relational Calculus is an alternative to Relational Algebra.
Relational Calculus is Non-Procedural where as Relational Algebra
is Procedural. In Relational Calculus, the JOIN operation is implicit
using WHERE clause which establishes associations between
relations. This means that a single retrieval command can join
several relations. But, in Relational Algebra, the Join operation is
binary.

The relational calculus is based on the first order logic. There are
two variants of the relational calculus:

 The Domain Relational Calculus (DRC), where variables
stand for components (attributes) of the tuples.

 The Tuple Relational Calculus (TRC), where variables stand
for tuples.

 Database Management Systems

 NOTES

60

Tuple relational calculus

The queries used in TRC are of the following form: x (A) ∣ F (x)
where x is a tuple variable A is a set of attributes and F is a formula.

The resulting relation consists of all tuples t (A) that satisfy F (t).

The SQL language is based on the tuple relational calculus, which
in turn is a subset of classical predicate logic. Queries in the TRC
all have the form:

{Query Target | Query Condition}

The Query Target is a tuple variable, which ranges over tuples of
values. The Query Condition is a logical expression such that

 It uses the Query Target and possibly some other variables.
 If a concrete tuple of values is substituted for each

occurrence of the Query Target in Query Condition, the
condition evaluates to a Boolean value of true or false.

The result of a TRC query with respect to a database instance is
the set of all choices of values for the query variable that make the
query condition a true statement about the database instance. The
relation between the TRC and logic is in that the Query Condition is
a logical expression of classical first-order logic.

1.INGRES & QUEL uses TUPLE RELATIONAL CALCULUS.

2.The expression of tuple calculus consists of tuple variable,
conditions (<,>,<=
and >=) and Well formed formulas.

3.Tuple Relational Calculus is based on no.of tuple variables.

4.A tuple variable is mapped to an individual tuple from the
database.

The general form of tuple calculus query is:

 { t | COND(t)}

Where t is a tuple and COND(t) is an expression involved in t.

 Database Management Systems

 NOTES

61

The result of such query is that the set of all tuples t that satisfy
COND(t).

For example

 To find all the employees whose salary is above $5000.

 { t | EMPLOYEE(t) and t.SALARY > 5000 }

The other examples follow:

{ t.FNAME, t.LNAME | EMPLOYEE(t) and t.SALARY > 5000 }

Retrieve the birth date and address of employee whose name
is Krishna Prasad P.

{ t.BDATE, t.ADDRESS | EMPLOYEE(t) and t.FNAME =
‘Krishna’ and t.LNAME = ‘Prasad’ and t.INIT = ‘P’ }

A General Expression of the tuple relational calculus is of the
form:

{ t1.A1, t2.A2…….tn = An | COND(t1,t2……tn, tn+1……tm+n) }

In addition, two special symbols called quantifiers can appear in
formulas. They are:

 Existential Quantifier ()

 Universal Quantifier ()

Example:

1. Retrieve all the employees names and address who work in
research dept.

{ t.FNAME, t.LNAME | EMPLOYEE(t) and (d) (DEPARTMENT(d)
 and d.DNAME = ‘Research’ and d.DNUMBER = t.DNO) }

 Database Management Systems

 NOTES

62

2. Make a list of project numbers for projects that involve a
person ‘Smith’ as an employee.

{ p.PNUMBER | PROJECT(p) and (((e)(w)
(EMPLOYEE(e) and WORKSON(w) and w.PNO =
p.PNUMBER and e.LNAME = ‘Smith’ and e.SSN =
w.ESSN) }

Domain relational calculus

Domain Relational Calculus is the second form of relational
calculus. It uses domain values or variables that take on values
from an attribute domain, rather than values for an entire tuple.
However, the DRC is closely related to TRC.

DRC acts as a theoretical basis for Query by Example.

Queries in the DRC have the form:

{X1, ..., Xn | Condition}

The X1, ..., Xn are a list of domain variables. The condition is a
logical expression of classical first-order logic.

The language QBE is based on DOMAIN RELATIONAL
CALCULUS. It differs from tuple calculus in the type of variables
used. An expression is of the form:

{ X1,X2…………..Xn | COND(X1,X2…….Xn, Xn+1,……..Xm+n) }

Example:

Retrieve the birth dates and address of the employee whose
name is ‘John B.Smith’

{ uv | ((q) (r) (s) (t) (w) (x) (y) (z)
(EMPLOYEE(qrstuvwxyz) and q = ‘John’ and r = ‘B’ and s = ‘Smith’
) }

 or

{ uv | EMPLOYEE(‘John’, ‘Smith’, ‘B’, t,u,v,w,x,y,z) }

 Database Management Systems

 NOTES

63

Query by Example

QBE is the name of both Data manipulation language and an early
database system that included this language. QBE has two
versions: text based, graphical based. The following diagram
illustrates QBE in Ms Access:

 Figure 2.1 Example of QBE in MS-Access

Relational algebra Vs Relational Calculus

The relational algebra and the relational calculus have the same
expressive power; i.e. all queries that can be formulated using
relational algebra can also be formulated using the relational
calculus and vice versa. E. F. Codd first proved this in 1972. This
proof is based on an algorithm by which an arbitrary expression of
the relational calculus can be reduced to a semantically equivalent
expression of relational algebra.

It is sometimes said that languages based on the relational calculus
are "higher level" or "more declarative" than languages based on
relational algebra because the algebra (partially) specifies the order
of operations while the calculus leaves it to a compiler or interpreter
to determine the most efficient order of evaluation.

 Database Management Systems

 NOTES

64

Summary

The current chapter concentrates on relational calculus which
provides an extension to the relational algebra. The relational
calculus includes two basic categories: domain relational calculus
and tuple relational calculus.

Domain Relational Calculus concentrates on a set of domains in
the relations.

Tuple Relational Calculus plays a role in managing the rows in a

relation.

Model Questions

1. Explain Relational calculus in detail.
2. Differentiate TRC and DRC with example.
3. Differentiate Relational Algebra and Relational calculus.

 Database Management Systems

 NOTES

65

3. SQL-I

Objective

 After reading this chapter, you will understand:

 What is SQL?

 What are the various components of SQL?

 Basic SQL commands.

Structure of the Lesson

Introduction
Features of SQL
Basic Structure

Rename Operation
Tuple Variable
String Operators
Ordering the display of Tuples
Duplicates

Set Operations
Aggregate functions
Null Values
Nested Sub queries
Summary
Technical Terms

 Database Management Systems

 NOTES

66

Introduction

Oracle is a Relational Database Management System (RDBMS). Oracle
being RDBMS, stores data in tables called relations. These relations are
two-dimensional representation of data, where rows called tuples
represent records and columns called attributes represent pieces of
information contained in the record.

Oracle provides a rich set of tools to allow design and maintenance of the
database. Major tools are,

Server Side Tools

RDBMS Kernel : Database Engine
ORACLE Workgroup or
Enterprise Server :It is the Database Server

Client side Tools

SQL * DBA : Database Administrator’s
tool set
SQL * PLUS : It is a separate Oracle

Client side tool

PL / SQL : Procedural Language SQL,

allows Procedural processing
of SQL statements.

DEVELOPER 2000 : ORACLE’S GUI tool for

Forms. It does the job of
front-end development.

Features of SQL

IBM developed the original version of SQL, originally called SEQUEL as a
part of System R project in the early 1970s. SQL (pronounced "ess-que-
el") stands for Structured Query Language. SQL is used to communicate
with a database. According to ANSI (American National Standards
Institute), it is the standard language for relational database management
systems. SQL statements are used to perform tasks such as update data
on a database, or retrieve data from a database. Some common
relational database management systems that use SQL are: Oracle,
IBM’S DB2, Sybase, Microsoft SQL Server, Access, INGRES, etc.
Although most database systems use SQL, most of them also have their
own additional proprietary extensions that are usually used on their
system only.

 Database Management Systems

 NOTES

67

Features:

 SQL is English like language.

 SQL is a non-procedural language.

 SQL is a 4GL (4th Generation Language).

 SQL processes set of records rather than a single record
at a time.

 SQL provides commands for a variety of tasks including
Querying data.

 Inserting, Updating and Deleting rows in a table.

 Creating, Modifying and Deleting database objects.

 Controlling access to a database and database objects.

 A range of users including DBA, Application programmer,
management personal and types of end users can use
SQL.

The SQL language has several parts:

Data Definition Language (DDL): The SQL DDL provides commands for

creating relational schemas (or tables), deletion of relations and
restructuring the existing relations.

Data Manipulation Language (DML): The SQL DML includes a query

language based on both relational algebra and tuple relational calculus
(TRC). It includes all the commands to perform insertion, deletion and
updation of rows in a relation.

Integrity: The SQL DDL provides all the integrity constraints to maintain

correctness of data.

View Definition: The SQL DDL includes all the commands to generate
views.

Transaction Control: SQL includes commands for specifying the “begin
and end” transactions.

Embedded and Dynamic SQL: SQL defines how SQL statements can

be embedded within general purpose programming languages like C,
C++, Java, COBOL.

Authorization: The SQL DDL includes commands for specifying access
rights to relations and views, as security to the relations is much important
to maintain.

 Database Management Systems

 NOTES

68

Database Objects:

Each user owns a single schema. Schema Objects can be created and
maintained with SQL.

The following are the list of schema objects:

 Tables

 Indexes

 Views

 Synonyms

 Clusters

 Sequences

 Database triggers

 Stored functions and procedures

 Packages.

The basic relational schema used here in this lesson follows:

Note: The highlighted columns in the above relations are the primary key

columns used to uniquely identify rows.

Data Definition

The set of relations in a database must be specified to the system by
means of a data definition language. The DDL allows specification of not
only a set of relations, but also information about each relation, including,

 The schema for each relation

 Database Management Systems

 NOTES

69

 The domain of values associated with each attribute

 The integrity constraint

 Set of indices to be maintained for each relation

 The security and authorization information for each relation

 The Physical storage structure of each relation on disk

Basic Domain Types

The SQL standard supports a variety of built-in domain types (or SQL
data types).

Char (n): a fixed length character string with user specified length n.

Varchar (n): a variable length character string with user specified length

n.

Numeric (p, d): a fixed-point number with user specified precision. The

decimal number consists of p digits and d of the digits after the decimal
points.

Float (n): a floating point number, with precision of atleast n digits.
Date: it is of date format. It is of the form day-MON-year.

Basic Structure

Schema Definition follows:

Create table r (A1 D1, A2 D2……………….An Dn,

{Integrity-constraint1},…..{integrity constraint k});

where r is the relation name, A1……An are the attribute names, D1…..Dn
are the domain types. Integrity constraints are meant for validating the
data to be inserted.

One of the Integrity Constraints that is essential is primary key constraint.
It is for uniquely identifying a row or record in a relation.

To remove a relation from the existing database, use the following form:
 Drop table r;

To alter the existing structure of a relation, use another instruction that is
given below:

 Alter table r {add/Modify} A D;

 Database Management Systems

 NOTES

70

A is the name of attribute to be added/or modified.

We can drop attribute from the relation r as follows:

 Alter table r drop A;

Basic Structure of SQL Queries

The Basic structure of an SQL expression consists of select, from and
where clauses.

SELECT Statement

Select clause lists attributes to be copied - corresponds to relational
algebra project. From clause corresponds to Cartesian product - lists
relations to be used. Where clause corresponds to selection predicate in
relational algebra.

Typical query has the form

Select col1, col2, col3….col n from <relation name> where
<condition>;

Where each represents an attribute, each a relation, and P is a
predicate. This is equivalent to the relational algebra expression

If the where clause is omitted, the predicate P is true.
The list of attributes can be replaced with a * to select all. SQL forms the
Cartesian product of the relations named, performs a selection using the
predicate, then projects the result onto the attributes named. The result of
an SQL query is a relation. SQL may internally convert into more efficient
expressions.

The relation schemes for the banking example used throughout the
textbook are:

 Branch-scheme = (bname, bcity, assets)
 Customer-scheme = (cname, street, ccity)
 Depositor-scheme = (cname, account#)
 Account-scheme = (bname, account#, balance)
 Loan-scheme = (bname, loan#, amount)

 Database Management Systems

 NOTES

71

 Borrower-scheme = (cname, loan#)

Finding the names of all branches in the account relation.

 select bname
 from account

distinct vs. all: Elimination or non-elimination of duplicates. For
example, finding the names of all branches in the account relation.

 select distinct bname
 from account

By default, duplicates are not removed. We can state it explicitly using all.

For example

 select all bname

 from account

select * means select all the attributes.

Arithmetic operations can also be in the selection list. The predicates can
be more complicated, and can involve:

o Logical connectives and, or and not.

o Arithmetic expressions on constant or tuple values.
o The between operator for ranges of values.

For example to find account number of accounts with balances between
$90,000 and $100,000.

 select account#
 from account
 where balance between 90000 and 100000.

Rename Operation

SQL provides a mechanism for renaming both relations and attributes. It
uses the as clause, taking the form

 Old-name as new-name

The as clause can appear in both the select and from clauses.

 Database Management Systems

 NOTES

72

EX:

 select distinct cname, borrower.loan# as loan_id

 from borrower, loan

where borrower.loan# = loan.loan# and bname= “SFU"

Tuple Variable

A tuple variable in SQL must be associated with a particular relation.
Tuple variables are defined in the form clause by way of the as clause.

select distinct cname, T.loan#
 from borrower as S, loan as T
 where S.loan# = T.loan#

We define a tuple variable in the from clasue by placing it after the name
of the relations with which it is associated, with the keyword as inbetween
.

 The tuple varaibles are most useful for comparing two tuples in same
relation.

String Operator

The most commonly used operation on strings is pattern matching using
the operator like. String matching operators % (any substring) and _

(underscore, matching any character).

Ex : ``___%'' matches any string with at least 3 characters.

Patterns are case sensitive, e.g., ``Jim" does not match ``jim". Use the
keyword escape to define the escape character.

Ex : like ``ab%tely\% \'' escape ``\'' matches all the strings beginning with
``ab'' followed by a sequence of characters and then ``tely'' and then ``%
\''.

Backslash overrides the special meaning of these symbols. We can use
not like for string mismatching.

Ex : Find all customers whose street includes the substring ``Main''.

select cname
from customer
where street like ``%Main%''

 Database Management Systems

 NOTES

73

SQL also permits a variety of functions on character strings, such as
concatenating (using ``||''), extracting substrings, finding the length of
strings, converting between upper case and lower case, and so on.

Ordering the Display of Tuples

SQL allows the user to control the order in which tuples are displayed.
order by makes tuples appear in sorted order (ascending order by
default). desc specifies descending order. asc specifies ascending

order.

 select *
 from loan
 order by amount desc, loan# asc

Sorting can be costly, and should only be done when needed.

Duplicates

Formal query languages are based on mathematical relations. Thus no
duplicates appear in relations. As duplicate removal is expensive, SQL
allows duplicates. To remove duplicates, we use the distinct keyword.
To ensure that duplicates are not removed, we use the all keyword.

Multiset (bag) versions of relational algebra operators.

if there are copies of tuples in , and satisfies selection , then

there are copies of in .

for each copy of tuple in , there is a copy of tuple in .

if there are copies of tuple in , and copies of tuple in , there is

copies of tuple in .

An SQL query of the form

 select

 from
 where P
is equivalent to the algebra expression

 Database Management Systems

 NOTES

74

using the multiset versions of the relational operators , and .

Set operations

SQL has the set operations union, intersect and except operate on

relations and correspond to the relational-algebra operations , and .
We shall now construct queries involving the UNION, INTERSECT and
EXCEPT operations of two sets; the set of all customers who have an
account at the bank which can be derived by

Select customer-name from depositor

And the set of customers who have a loan at the bank, which can be
derived by

Select customer-name from borrower

1. Union: Return all distinct rows retrieved by either of the queries.

Ex: select job from emp union select desg from employee;

2. Union All: Returns all rows (including duplicate) retrieved by

either of the queries.

3. Intersect: Returns only rows retrieved by both of the queries.

Aggregate Functions

The aggregate functions are the functions that take a collection (a set or
multi set) of values as input and return a single value.

 Average value -- avg

 Minimum value -- min

 Maximum value -- max

 Total sum of values -- sum

 Number in group -- count

 Database Management Systems

 NOTES

75

The input to sum and avg must be collection of numbers, but the other
operators can operate on collections of nonnumeric data types, such as
strings.

Ex: select bname, avg (balance) from account

 group by bname

select bname, count (distinct cname) from account, depositor

 where account.account# =
depositor.account#
 group by bname

select bname, avg (balance) from account

 group by bname having avg (balance) > 1200

select depositor.cname, avg (balance)
 from depositor, account, customer

where depositor.cname =
customer.cname and

 account.account# = depositor.account#
 and ccity=``Vancouver'' group by depositor.cname

 having count (distinct account#)  3

If a where clause and a having clause appear in the same query, the
where clause predicate is applied first. Tuples satisfying where clause
are placed into groups by the group by clause. The having clause is
applied to each group. Groups satisfying the having clause are used by
the select clause to generate the result tuples. If no having clause is
present, the tuples satisfying the where clause are treated as a single
group.

NULL Values

With insertions, we saw how null values might be needed if values were

unknown. Queries involving nulls pose problems. If a value is not known,
it cannot be compared or be used as part of an aggregate function.

All comparisons involving null are false by definition. However, we can
use the keyword null to test for null values:

 select distinct loan# from loan

where amount is null

 Database Management Systems

 NOTES

76

Nested Sub queries

SQL provides a mechanism for nesting subqueries. A subquery is a
select-from-where expression that is nested with in another query. A
common use of subqueries is to perform the tests for set membership,
make set comparisons and determine set cardinality.

SET MEMBERSHIP: The in connective tests for set membership,

where the set is a collection of values produced by a select clause. The
not in connective tests for the absence of set membership.

Examples:

select distinct cname from borrower where cname in

(select cname from account where bname= “SFU'')

we use the not in construct in the similar way.

SET COMPARISON: (SOME/ANY or ALL)

These operators may be used in WHERE or HAVING clauses for sub-
queries, that returns more than one row. These Operators compares a
value with each value returned by a sub-query and returns a value.

Example: To compare set elements in terms of inequalities, we can write

 select distinct T.bname
 from branch T,branch S
 where T.assets > S.assets
 and S.bcity=``Burnaby''

or

select bname
from branch
where assets > some

 (select assets
 from branch
 where bcity=``Burnaby'')

We can use any of the equality or inequality operators with some. If we
change > some to > all, we find branches whose assets are greater than
all branches in Burnaby

 Database Management Systems

 NOTES

77

TEST FOR EMPTY RELATIONS: (EXISTS)

This operator tests whether a value is present in the list or not. If the
value exists it returns True, otherwise it returns False.

Example : To Find all customers who have a loan and an account at
the bank.

select cname from borrower where exists

 (select * from depositor
 where depositor.cname = borrower.cname)

TEST FOR THE ABSENCE OF DUPLICATE TUPLES: (unique)

The unique construct returns the value true if the argument subquery
contains no duplicate rows.

Example : To Find all customers who have only one account at the SFU
branch.
select T.cname from depositor as T
 where unique (select R.cname

 from account, depositor as R
 where T.cname = R.cname and
 R.account# = account.account# and
 account.bname = ``SFU")

Summary

SQL is a query language that allows access to data residing in relational
database management systems (RDBMS), such as Sybase, Oracle,
Informix, DB2, Microsoft SQL Server, Access and many others. To
retrieve information users execute 'queries'. SELECT is the most

important and the most complex SQL statement. You can use it and the
SQL statements INSERT, UPDATE, and DELETE to manipulate data.
You can use the SELECT statement to retrieve data from a database, as
part of an INSERT statement to produce new rows, or as part of an
UPDATE statement to update information. A query, in its simplest form is
constructed using the following basic query statements SELECT, FROM,
WHERE and ORDER BY. The SELECT clause defines what columns or
fields you want to see in your results, the FROM clause defines from what
table the columns reside in, the WHERE clause defines any special
criteria that must be met in order to be displayed, and finally the ORDER
BY clause in which you define the sequence you want to display the

 Database Management Systems

 NOTES

78

results. While the only two query clauses that are required are SELECT
and FROM, they are almost always accompanied by the WHERE and
ORDER BY clauses to restrict the amount of data retrieved and to
present it in an orderly fashion. Oracle SQL supports the following four
set operations: UNION, MINUS, INTERSECT.

Model Questions:

1. Explain the features of SQL.
2. Explain the Structure of SQL Statements in detail.
3. What is a Sub query? Explain with Examples?
4. What is an aggregate function? List out various aggregate

functions supported by SQL.

 Database Management Systems

 NOTES

79

4. SQL- II

Objective

The objective of this chapter is to introduce the main concepts of
data storage and retrieval in the context of database information
systems using Structured Query Language (SQL).

After reading this chapter, you should understand:

 What is View?
 Understand how to create views
 Structure of complex queries
 Joined relations
 Understand Data Definition Language
 What is Dynamic SQL?

Structure of the Lesson

Views

Complex Queries
Modifications of the Database

Joining relations

Embedded SQL

Dynamic SQL
Summary

Technical Terms

Model Questions

Views

A view is like a window through which data on tables can be viewed
or changed. A view is derived from another table or view, which is
referred as the base table. A view is stored as a SELECT statement
only but has no data of its own. It manipulates data in the
underlying base table.

A view in SQL is defined using the create view command:

 Database Management Systems

 NOTES

80

Create view v as (query expression)

Where (query expression) is any legal query expression.

Ex: To create a view all-customer of all branches and their

customers:

 create view all-customer as
 (select bname, cname
 from depositor, account
 where depositor.account# = account.account#)
 union
 (select bname, cname from borrower, loan
 where borrower.loan# = loan.loan#)

Complex Queries

Complex queries are often hard or impossible to write as a single
SQL block or a union/intersection/difference of SQL blocks. An
SQL block consists of a single select from where statement,
possibly with group by and having clauses. There is a way
composing multiple SQL blocks to express a complex query:

Derived Relations: SQL allows a sub query expression to be used
in the from clause. If we use such an expression, then we must
give the result relation a name, and we can rename the attribute.
We do this renaming by using the as clause. For example to find
average account balance of those branches where the average
account balance is greater than $1,000.

select bname, avg-balance
 from (select bname, avg(balance)
 from account group by bname)
 as result(bname, avg-balance)
 where avg-balance > 1000;

Modification of the Database

Deletion: Deletion is expressed in much the same way as a query.

Instead of displaying, the selected tuples are removed from the
database. We can only delete whole tuples.

 Database Management Systems

 NOTES

81

A deletion in SQL is of the form

 delete from r where P

Tuples in r for which P is true are deleted. If the where clause is
omitted, all tuples are deleted. A delete command operates on only
relation. If we want to delete tuples from several relations, we
must use one delete command for each relation.

1. Delete all of Smith's account records.

 delete from depositor
 where cname=``Smith''

2. Delete all loans with loan numbers between 1300 and
1500.

 delete from loan
 where loan# between 1300 and 1500

3. Delete all accounts at branches located in Surrey.

 delete from account
 where bname in
 (select bname from branch
 where bcity=``Surrey'')

Insertion: To insert data into a relation, we either specify a tuple,
or write a query whose result is the set of tuples to be inserted.
Attribute values for inserted tuples must be members of the
attribute's domain.

Examples:

1. To insert a tuple for Smith who has $1200 in account A-9372
at the SFU branch.

 insert into account
 values (“SFU'', “A-9372'', 1200)

2. To provide each loan that the customer has in the SFU
branch with a $200 savings account.

 insert into account
 select bname, loan#, 200
 from loan where bname=``SFU''

 Database Management Systems

 NOTES

82

We can prohibit the insertion of null values using the
SQL DDL.

Update: We may wish to change a value in a tuple without
changing the values in the tuple. For this purpose update
statement is used.

Example: To increase all balances by 5 percent.

 update account

 set balance=balance * 1.05

This statement is applied to every tuple in account.

In general, where clause of update statement may contain any
legal construct in a where clause of a select statement (including
nesting). A nested select within an update may reference the
relation that is being updated. As before, all tuples in the relation
are first tested to see whether they should be updated, and the
updates are carried out afterwards.

Example: To pay 5% interest on account whose balance is
greater than average, we have

 update account
 set balance=balance * 1.05
 where balance >
 select avg (balance) from account;

Transactions:

A transaction consists of a sequence of query and/or update
statements. The SQL standard specifies that a transaction
begins implicitly when an SQL statement is executed.

Commit work: Commits the current transaction; i.e., it makes

the updates performed by the transaction become permanent in
the database. After the transaction is committed, a new
transaction is automatically started.

Rollback work: Causes the current transaction to be rolled
back; i.e., it undoes all the updates performed by the SQL

 Database Management Systems

 NOTES

83

statements in the transaction. Thus the database state is
restored to what it was before the first statement of the
transaction was executed.

Joined Relations

SQL provides the basic Cartesian-product mechanism for joining
tuples of relations, and it also provides other mechanism for joining
relations, including condition joins and natural joins.

Examples: Here there are two relations, named loan and borrower.

 Loan

.

Borrower

Inner join:

loan inner join borrower on
 loan.loan# = borrower.loan#

Notice that the loan# will appear twice in the inner joined
relation.

Amount

3000
4000

1700

branch-name

Downtown
Redwood

Perry ridge

loan-number

L-170
L-230
L-260

customer-name loan-number

Jones
Smith
Hayes

L-170
L-230
L-155

 Database Management Systems

 NOTES

84

 Result of loan inner join borrower.

left outer join:

 loan left outer join borrower on loan.loan# = borrower.loan#

 Result of loan left outer join borrower.

natural inner join:

 loan natural inner join borrower

 Result of loan natural inner join borrower.

Join Types: inner join, left outer join, right outer join, full outer
join.

The keyword inner and outer are optional since the rest of the join
type enables us to deduce whether the join is an inner join or an
outer join. It also provides two other join types, These are

cross join: an inner join without a join condition.
union join: a full outer join on the ``false'' condition, i.e., where
the inner join is empty.

Join conditions: natural, on predicate, using .

brnch-

name
amount

Downtow
n
Redwood

3000
4000

cust-
name

Loan-no

Jones
Smith

L-170

L-230

loan-no

L-170
L-230

 Database Management Systems

 NOTES

85

The use of join condition is mandatory for outer joins, but is
optional for inner joins (if it is omitted, a Cartesian product
results).

Embedded SQL

SQL provides a powerful declarative query language. However,
access to a database from a general-purpose programming
language is required because,

o SQL is not as powerful as a general-purpose
programming language. There are queries that cannot
be expressed in SQL, but can be programmed in C,
Fortran, Pascal, Cobol, etc.

o Non-declarative actions such as printing a report,
interacting with a user, or sending the result to a GUI -
- cannot be done from within SQL.

The SQL standard defines embedding of SQL as embedded SQL
and the language in which SQL queries are embedded is referred
as host language. The result of the query is made available to the
program one tuple (record) at a time. To identify embedded SQL
requests to the preprocessor, we use EXEC SQL statement:

 EXEC SQL embedded SQL statement END-EXEC

 A semi-colon is used instead of END-EXEC when SQL is
embedded in C or Pascal.

Embedded SQL statements: declare cursor, open, and fetch

EXEC SQL

 declare c cursor for
 select cname, ccity
 from deposit, customer
 where deposit.cname = customer.cname
 and deposit.balance > :amount
END-EXEC

where amount is a host-language variable.

 Database Management Systems

 NOTES

86

 EXEC SQL open c END-EXEC

This statement causes the DB system to execute the query and to
save the results within a temporary relation.

A series of fetch statement are executed to make tuples of the
results available to the program.

 EXEC SQL fetch c into :cn, :cc END-EXEC

The program can then manipulate the variable cn and cc using the
features of the host programming language.

A single fetch request returns only one tuple. We need to use a
while loop (or equivalent) to process each tuple of the result until

no further tuples (when a variable in the SQLCA is set).

We need to use close statement to tell the database system to
delete the temporary relation that held the result of the query.

 EXEC SQL close c END-EXEC

Embedded SQL can execute any valid update, insert, or delete
statements.

Dynamic SQL

BDL includes basic SQL instructions in the language syntax, but
only a limited number of SQL instructions are supported this way.
Dynamic SQL Management allows you to execute any kind of SQL
statement, hard coded or created at runtime, with or without SQL
parameters, returning or not returning a result set.

In order to execute an SQL statement with Dynamic SQL, you must
first prepare the SQL statement to initialize a statement handle,
then you execute the prepared statement one or more times:

When you no longer need the prepared statement, you can free the
statement handle to release allocated resources:

 Database Management Systems

 NOTES

87

 Database Management Systems

 NOTES

88

When using insert cursors or SQL statements that produce a result
set (like SELECT), you must declare a cursor with a prepared
statement handle.

Prepared SQL statements can contain SQL parameters by using ?
Placeholders in the SQL text. In this case, the EXECUTE or OPEN
instruction supplies input values in the USING clause.

To increase performance efficiency, you can use the PREPARE
instruction, together with an EXECUTE instruction in a loop, to
eliminate overhead caused by redundant parsing and optimizing.
For example, an UPDATE statement located within a WHILE loop
is parsed each time the loop runs. If you prepare the UPDATE
statement outside the loop, the statement is parsed only once,
eliminating overhead and speeding statement execution.

Summary

SQL View is a virtual table, which is based on SQL SELECT query.
Essentially a view is very close to a real database table except for
the fact that the real tables store data, while the views don’t. The
view’s data is generated dynamically when the view is referenced.

Most database applications do a specific job. For example, a simple
program might prompt the user for an employee number, then
update rows in the EMP and DEPT tables. In this case, you know
the makeup of the UPDATE statement at pre-compile time. That is,
you know which tables might be changed, the constraints defined
for each table and column, which columns might be updated, and
the data type of each column.

However, some applications must accept (or build) and process a
variety of SQL statements at run time. For example, a general-
purpose report writer must build different SELECT statements for
the various reports it generates. In this case, the statement's
makeup is unknown until run time. Such statements can, and
probably will, change from execution to execution. They are aptly
called dynamic SQL statements.

Unlike static SQL statements, dynamic SQL statements are not
embedded in your source program. Instead, they are stored in
character strings input to or built by the program at run time. They
can be entered interactively or read from a file.

 Database Management Systems

 NOTES

89

Dynamic SQL allows you to write SQL that will then write and
execute more SQL for you. This can be a great time saver because
you can: Automate repetitive tasks, write code that will work in any
database or server and write code that dynamically adjusts itself to
changing conditions

Technical Terms

View: A logical table whose data are not physically stored. You
define a view to access a subset of the columns stored in a row.
Access a set of columns stored in different rows or avoid creating a
redundant copy of data that is already stored.

Join: The JOIN is a SQL command used to retrieve data from two

or more database tables with existing relationship based upon a
common attribute.

DDL: DDL Data Definition Language. A language used by a

database management system which allows users to define the
database, specifying data types, structures and constraints on the
data. Examples are the CREATE TABLE, CREATE INDEX,
ALTER, and DROP statements. Note: DDL statements will implicitly
commit any outstanding transaction.

Dynamic SQL: SQL statements are created, prepared, and
executed while a program is executing. It is, therefore, possible with
dynamic SQL to change the SQL statement during program
execution and have many variations of a SQL statement at run
time.

Model Questions

1. What is a view? How to create views in SQL?
2. Write short notes on Complex Queries?
3. Explain the concept of modifications of the Database?
4. How to joining relations in SQL? Explain?
5. Write short notes Embedded SQL and Dynamic SQL?

 Database Management System

 NOTES

109

6. Storage & File Structure

Objective

 Different types of Physical Storage Media

 RAID

Structure of the Lesson

 Overview of Physical Storage Media
 Magnetic Disks

 Physical Characteristics of Disks

 Performance Measures of Disks
 Optimization of Disk-Block Access
RAID

 Improvement of Reliability and Redundancy
 RAID Levels

Choice of RAID level
 Hardware Issues
Tertiary Storage

 Optical Disks
Magnetic Tapes

Storage Access

 Buffer Manager
 Buffer-Replacement Policies
Technical terms
Model questions

Overview of Physical Storage Media:

Several types of data storage exist in most computer systems.
These storage media are classified by the speed with which data
can be accessed, by the cost per unit of data to buy the medium,
and by the medium’s reliability. The following are the available
types:

 Cache

 Main Memory

 Flash Memories

 Magnetic Disk Storage

 Database Management System

 NOTES

110

 Optical Storage

 Tape Storage

Figure 6.1 Memory Hierarchy

Cache:

The cache is the fastest and most expensive among all the
other mediums. Cache memory is very small; its usage is managed
by the computer hardware. It improves the efficiency of the
hardware. However, the database system is nowhere concern
about the management of cache.

Main Memory:

The storage medium used for data that are available to be
operated is main memory. The general-purpose machine
instructions operate on main memory. It is smaller in size though it
holds mega bytes and gigabytes of storage. The content of main
memory is usually lost as the power supply is lost.

Flash Memory:

Flash memory differs from main memory in that data survive
power failure. Reading data from the flash memory takes less than
100 nanoseconds, which is roughly as fast as reading data from

 Database Management System

 NOTES

111

main memory. However, writing data to flash memory is more
complicated- data can be written once, which takes about 4 to 10
milliseconds, but cannot be overwritten directly. Flash memory is a
form of electrically erasable programmable read-only memory
(EEPROM).

Flash memories are more popular as a replacement for
magnetic disks for storing small volumes of data. Flash memories
are portable in size. Universal Serial Bus (USB) acts as an
interface for flash memories. They can be used in digital cameras,
video cameras and other devices.

Magnetic disk storage:

The physical medium for the long term on line storage of
data is the magnetic disk. Usually, the entire database is stored on
magnetic disk. The data is moved from disk to main memory so
that it is accessed properly.

The size of the magnetic disks currently ranges from a few
gigabytes to 400 gigabytes. Disk storage survives power failures
and system crashes.

Optical Storage:

 The most popular forms of optical storage are the compact
disk (CD), which can hold about 700 megabytes of data and has a
playtime of about 80 minutes, and the digital video disk (DVD),
which can hold 4.7 or 8.5 gigabytes of data per side of the disk.
The optical disks are available in read only forms like CD-ROM and
DVD-ROM.

Tape Storage:

Non-volatile, used primarily for backup (to recover from disk
failure), and for archival data. Tape storage is referred as
sequential storage. It is much slower than disk. Very high capacity
(40 to 300 GB tapes available). Tape can be removed from drive,
storage costs much cheaper than disk, but drives are expensive.
Tape jukeboxes are available for storing massive amounts of data.

Primary storage:

The fastest storage media but volatile (cache, main memory).

 Database Management System

 NOTES

112

Secondary storage:

The next level in hierarchy, non-volatile, moderately fast access
time also called on-line storage. Secondary storage devices are
flash memory, magnetic disks etc.

Tertiary storage:

Lowest level in hierarchy, non-volatile, slows access time also
called off-line storage. Tertiary storage devices are magnetic tape,
optical storage etc.

Magnetic disks

Magnetic disks provide the bulk of secondary storage for modern
computer systems. Disk capacities have been growing at over 50
percent per year, but the storage requirements of large applications
have also been growing very fast.

Physical Characteristics of Disk

Physically, disks are relatively simple each platter has a flat circular
shape. Its two surfaces are covered with a magnetic material, and
information is recorded on the surfaces. Platters are made from
rigid metal or glass.

 Figure 6.2 Magnetic Disk

 Database Management System

 NOTES

113

When the disk is in use, a drive motor spins it at a constant high
speed. There is a Read-write head positioned very close to the
platter surface (almost touching it). The disk surface is logically
divided into circular tracks, which are subdivided into sectors.

A sector is the smallest unit of data that can be read from or
written to the disk. Sector sizes are typically 512 bytes; there are
about 50,000 to 100,000 tracks per platter, and 1 to 5 platters per
disk. The inner tracks are of smaller length and outer tracks contain
more sectors than the inner tracks. Typical sectors per track: 200
(on inner tracks) to 400 (on outer tracks).

The read-write head stores information on a sector
magnetically as reversals of the direction of magnetization of the
magnetic material. To read-write a sector disk arm swings to
position head on right track platter spins continually; data is
read/written as sector passes under head. The disk platters
mounted on a spindle and the heads mounted on a disk arm are
together known as head-disk assemblies. Since the heads on all
the platters move together, when the head on one platter is on the
ith track, the tracks on all the other platters are also on the ith track.

Hence the ith tracks of all the platters together are called the ith
cylinder. Earlier generation disks were susceptible to head-

crashes. Surface of earlier generation disks had metal-oxide
coatings, which would disintegrate on head crash and damage all
data on disk. Current generation disks are less susceptible to such
disastrous failures, although individual sectors may get corrupted.

A Disk controller Interfaces between the computer system
and the actual hardware of the disk drive. A disk controller accepts
high-level commands to read or write a sector, and initiates actions,
such as moving the disk arm to the right track and actually reading
or writing the data. Disk controllers also attach checksums to each
sector to verify whether data is read back correctly. If data is
corrupted, with very high probability stored checksum won’t match
recomputed checksum. If such an error occurs, the controller will
retry the read several times; if the error continues to occur, the
controller will signal a read failure.

Another task that disk performs is remapping of bad sectors.
If the controller detects that a sector is damaged when the disk is
initially formatted or when an attempt is made to write the sector, it
can logically map the sector to a different physical location. Figure
3 shows how disks are connected to a computer system. There are

number of common interfaces for connecting disks to personal
computers and workstations:

 Database Management System

 NOTES

114

 Figure 6.3 Disk Subsystem

 The AT attachment (ATA) interface.

 The new version of ATA, which is STA serial
ATA.

 The small-computer-system-interconnect (SCSI).

Performance of Measured Disks

The main measures of the qualities of disk are capacity, access
time, data-transfer rate, and reliability.

Access time is the time takes from when a read or write request is
issued to when data transfer begins. To access data on a given
sector of a disk, the arm must move so that it is positioned over the
correct track, and then must wait for the sector to appear under it
as the disk rotates.

Seek time is the time it takes to reposition the arm over the correct
track.

Average seek time is the average of seek times. If all tracks have

the same number of tracks and we discard the time required for the
head to start moving and to stop moving average seek time the
average seek time is 1/3. Taking these factors into account, the
average seek time is the 1/2 of maximum seek time. Average
seek time range between 4 to 10 milliseconds on typical disks.

Rotational latency is the time spent waiting for the sector to be

accessed to appear under the head. Average latency time is 1/2
the time for a full rotation of the disk. Rotational speeds of disks
range from 4 to 11 milliseconds on typical disks. The access time is
the sum of seeks time and the rotational latency, and ranges from
8 to 20 milliseconds.

 Database Management System

 NOTES

115

Data-transfer rate is the rate at which data can be retrieved from

or stored to the disk. Current disks support maximum transfer rates
of 25 to 100 megabytes per second. Transfer rates are lower than
the maximum transfer rates for inner tracks of the disk, since they
have fewer sectors.

Mean time to failure (MTTF), which is a measure of the reliability

of the disk. The mean time to failure of a disk is the amount of that,
on average; we can expect the system to run continuously without
any failure. The mean time to failure of disks ranges from 57 to 136
years. Probability of failure of new disks is quite low, corresponding
to a “theoretical MTTF” of 30,000 to 1,200,000 hours for a new
disk.

Optimization of Disk-Block Access

Requests for disk I/O are generated both by the file system and by
the virtual memory manger found in most operating systems. Each
request specifies the address on the disk to be referenced; that
address is in the form of a block number.

A Block is a logical unit consisting of a fixed number of contiguous

sectors. Data is transferred between disk and main memory in
blocks. Block sizes range from 512 bytes to several kilobytes. Data
are transferred between disk and main memory in units of blocks.
The lower levels of the file-system manager convert block
addresses into the hardware level cylinder, surface, and sector
number.

Scheduling: If several blocks from a cylinder need to be
transferred disk to main memory, we may be able to save access
time by requesting the blocks in the order in which they will pass
under the heads. If the desired blocks are on different cylinders, it
is advantageous to request the blocks in an order that minimizes
disk-arm movement. Disk-arm-scheduling algorithms attempt to

order accesses to tracks in a fashion that increases the number of
accesses that can be processed. Elevator algorithm move disk
arm in one direction (from outer to inner tracks or vice versa),
processing next request in that direction, till no more requests in
that direction, then reverse direction and repeat.

RAID (Redundant Array of Inexpensive Disks)

The data-storage requirements of some applications (Web,
database and multimedia applications) have been growing so fast
that a large number of disks are needed to store their data, even
though disk drive capacities have been growing very fast. A variety

 Database Management System

 NOTES

116

of disk-organization technique called redundant arrays of
independent disks (RAID), have been proposed to achieve
improved performance and reliability.

Improvement of Reliability and Redundancy

Reliability:

The chance that some disk out of a set of N disks will fail is much
higher than the chance that a specific single disk will fail. Suppose
that the mean time to failure of a disk is 100,000 hours, or slightly
over 11 years. Then, the mean time to failure of some disk in an
array of 100 disks will be 100,000/100=1000 hours, or around 42
days, which is not long at all. If we store only one copy of the data,
then each disk failure will result in loss of a significant amount of
data. Such a high rate of data loss is unacceptable. The solution to
the problem of reliability is to introduce redundancy.

Redundancy:

Store extra information that can be used to rebuild information lost
in a disk failure.

Mirroring (or shadowing):

The simplest way to achieve redundancy is duplicate every disk.
This technique is called mirroring or shadowing. A logical disk then
consists of two physical disks and every write is carried out on both
disks. Reads can take place from either disk. If one disk in a pair
fails, data still available in the other. Data loss would occur only if a
disk fails, and its mirror disk also fails before the system is
repaired. Probability of combined event is very small. Mean time to
data loss depends on mean time to failure, and mean time to
repair.

E.g. MTTF (mean time to failure) of 100,000 hours, mean

time to repair of 10 hours gives mean time to data loss of 500*106
hours (or 57,000 years) for a mirrored pair of disks (ignoring
dependent failure modes).

RAID Levels:

Mirroring provides high reliability, but it is expensive. Striping
provides high data-transfer rates, but does not improve reliability.
Various alternative schemes aim to provide redundancy at lower
cost by combining disk striping. These schemes have different
cost-performance trade-offs. These schemes are classified into

 Database Management System

 NOTES

117

RAID levels. Different RAID organizations have differing cost,
performance and reliability characteristics.

RAID Level 0:

This level refers to disk arrays with striping at the level of
blocks, but without any redundancy. Figure (a) shows an array of

size 4.

RAID Level 1:

 This level refers to disk mirroring with block striping. Figure
(b) shows a mirrored organization that holds four disks worth of
data.

Figure 6.4 RAID levels

 Database Management System

 NOTES

118

RAID Level 2:

This level is known as memory-style error-correcting-code (ECC)
organization, employs parity bits. Memory systems have long used
parity bits for error detection and correction. Each byte in a memory
system may have a parity bit associated with it that records
whether the number of bits in the byte that are set to 1 is
even(parity=0) or odd(parity=1).If one of the bits in the byte gets
damaged, the parity of the byte changes and thus will not match
the stored parity. Similarly if the stored parity bit gets damaged, it
will not match the computed parity. Thus all 1-bit errors will be
detected by the memory system. Error-correcting schemes store
two or more extra bits, and can reconstruct the data if a single bit
gets damaged. The idea of error correcting codes can be used
directly in disk arrays by striping bytes across disks. Figure(c)

shows the level 2 scheme. For example, the first bit of each byte
could be stored in disk 1, the second bit in disk 2, and so on until
the eighth bit is stored in disk 8, and the error-correction bits are
stored in further disks.

RAID Level 3:

Bit-Interleaved Parity Organization. Improves on level 2 by
exploiting the fact that disk controllers unlike memory systems can
detect whether a sector has been read correctly, so a single parity
can be used for error correction as well as detection. The idea is if
one of the sectors gets damaged, the system knows exactly which
sector it is. Figure (d) shows the level 3 scheme. For each bit in

the sector, the system can figure out whether it is 1 or 0 by
computing the parity of corresponding bits from sectors in the other
disks. If the parity of the remaining bits is equal to the stored parity,
the missing bit is 0, otherwise, it is 1.

RAID Level 4:

Block-Interleaved Parity uses block-level striping, and keeps a
parity block on a separate disk for corresponding blocks from N
other disks. This scheme is shown pictorially in figure (e). If one of

the disks fails, the parity block can be used with the corresponding
blocks from the other disks to restore the blocks of the failed disk.

A block read accesses only one disk, allowing other requests to be
processed by other disks. Thus, the transfer rate for each access is
slower, but multiple read accesses can proceed in parallel, leading
to higher I/O rates for independent block reads than Level 3. The
transfer rates for larger reads are high, since all disks can be read
in parallel. A write of a block has to access the disk on which the

 Database Management System

 NOTES

119

block is stored, as well as the parity disk, since the parity block has
to be updated.

RAID Level 5:

Block-Interleaved Distributed Parity; partitioning data and parity
among all N + 1 disks, rather than storing data in N disks and parity
in one disk. Figure (f) shows the setup. The P’s are distributed

across all the disks. For example, with an array of 5 disks, the
parity block for nth set of blocks is stored on disk (n mod 5) + 1,

with the data blocks stored on the other 4 disks. Higher I/O rates
than Level 4. Block writes occur in parallel if the blocks and their
parity blocks are on different disks. The pattern shown gets
repeated on further blocks.

RAID Level 6:

P+Q Redundancy scheme: similar to level 5, but stores
extra redundant information to guard against multiple disk failures.
Level 6 uses error-correcting codes instead of using parity. In the
scheme in figure (g), 2 bits of redundant data are stored for every
4 bits of data.

Choice of RAID level

The factors to be taken into account in choosing a RAID levels are:

 Monetary cost of extra disk-storage requirements.

 Performance requirements in terms of number of I/O
operations.

 Performance when disk has failed.

 Performance during rebuilds.

RAID 0 is used only when data safety is not important. For
example, data can be recovered quickly from other sources. Level
2 and 4 never used since 3 and 5 subsumes them. Level 3 is not
used anymore since bit-striping forces single block reads to access
all disks, wasting disk arm movement, which block striping (level 5)
avoids. Level 6 is rarely used since levels 1 and 5 offer adequate
safety for almost all applications. So competition is between 1 and

 Database Management System

 NOTES

120

5 only. Level 1 provides much better write performance than level
5. Level 5 requires at least 2 blocks reads and 2 blocks writes to
write a single block, whereas Level 1 only requires 2 block writes.
Level 1 preferred for high update environments such as log disks.

Hardware Issues

Another issue in the choice of RAID implementations is at
the level of hardware. RAID can be implemented with no change at
the hardware level, using only software modification. Such RAID
implementations are called software RAID.

However, there are significant benefits to be had by building
special purpose hardware to support RAID, which we outline
below; systems with special hardware support are called hardware
RAID systems.

Some hardware RAID implementation permit hot swapping;

that is, faulty disks can be removed and replaced by new ones
without turning power off. Hot swapping reduces the mean time of
repair.

In a large database system, some of the data may have to reside
on tertiary storage. The two most common tertiary storage media are
optical disks and magnetic tapes.

Tertiary Storage

Optical Disks

Compact disks have been a popular medium for distributing

software, multimedia data such as audio and images, and other
electronically published information. They have a fairly large capacity
(640 megabytes), and they are cheap to mass-produce.

Digital video disks (DVDs) have now replaced compact disks in
applications that require larger amounts of data. Disks in the DVD-5
format can store 4.7 gigabytes of data (in one recording layer), while
disks in the DVD-9 format can store 8.5 gigabytes of data (in two
recording layers). Recording on both sides of a disk yields even larger
capacities; DVD-10 and DVD-18 formats, which are the two-sided
versions of DVD-5 and DVD-9, can store 9.4 gigabytes and 17 gigabytes,
respectively. CD and DVD drives have much longer sought times (100
milliseconds is common) than do magnetic disk drives, since the head
assembly is heavier.

Rotational speeds are typically lower than those of magnetic

disks, although the faster CD and DVD drives have rotation speeds of

 Database Management System

 NOTES

121

about 3000 rotations per minute, which is comparable to speeds of lower-
end magnetic-disk derives. Rotational speeds of CD drives originally
corresponded to the audio CD standards, and the speeds of DVD drives
originally corresponded to the DVD video standards, but current-
generation drives rotate at many times the standard rate.

Data-transfer rates are somewhat less than for magnetic disks. Current
CD derives read at around 3 to 6 megabytes per second, and current
DVD drives read at 8 to 20 megabytes per second. Like magnetic-disk
drives, optical disks store more data in outside tracks and less data in
inner tracks. The transfer rate of optical derives is characterized as n x,
which means the derive supports transfers at n times the standard rate;
rates of around 50x for CD and 16x for DVD are now common.

The record-once version of optical disks (CD-R, and ,DVD-R) are
popular for distribution of data and particularly for archival storage of data
because they have a high capacity, have a longer lifetime than magnetic
disks, and can be removed and stored at a remote location. Since they
cannot be over written, they can be used to store information that should
not be modified, such as audit trails. The multiple-write versions (CD-RW,
DVD-RW, DVD+RW, and DVD-RAM) are also used for archival
purposes. Jukeboxes are devices that store a large number of optical
disks (up to several hundred) and load them automatically on demand to
one of a small number of drives (usually 1 to 10).

Magnetic Tapes

Although magnetic tapes are relatively permanent, and can hold large
volumes of data, they are slow in comparison to magnetic and optical
disks. Even more important, magnetic tapes are limited to sequential
access. Thus, they cannot provide random access for secondary-storage
requirements, although historically, prior to the use of magnetic disks,
tapes were used as a secondary-storage medium.

Tapes are used mainly for backup, for storage of infrequently used
information, and as an off-line medium for transferring information from
one system to another. Tapes are also used for storing large volumes of
data, such as video or image data that either, do not need to be
accessible quickly or are so voluminous that magnetic-disk storage would
be too expensive.

A tape is kept in a spool, and is wound or rewound past a read - write
head. Moving to the correct spot on a tape can take seconds or even
minutes, rather than milliseconds; once positioned, however, tape drives
can write data at densities and speeds approaching those of disk drives.
Capacities vary, depending on the length and width of the tape and on
the density at which the head can read and write. The market is currently
fragmented among a wide variety of tape formats. Currently available
tape capacities range from a few gigabytes with the Digital Audio Tape
(DAT) format, 10 to 40 gigabytes with the Digital Linear Tape (DLT)

 Database Management System

 NOTES

122

format, 100 gigabytes and higher with the Ultrium format, to 330
gigabytes(with Ampex helical scan tape formats). Data-transfer rates
are of the order of a few to tens of megabytes per second.

A database is mapped into a number of different files that are maintained
by the underlying operating system. These files reside permanently on
disks, with backups on tapes. Each file is partitioned into fixed-length
storage units called blocks, which are the units of both storage allocation
and data transfer.

A block may contain several data items. The form of physical data
organization being used determines the exact set of data items that a
block contains. We shall assume that no data item spans two or more
blocks. This assumption is realistic for most data processing applications.

A major goal of the database system is to minimize the number of block
transfers between the disk and memory. One way to reduce the number
of disk accesses is to keep as many blocks as possible in main memory.
The goal is to maximize the chance that, when a block is accessed, it is
already in main memory, and thus, no disk access is required. The
subsystem responsible for the allocation of buffer space is called the
buffer manager.

Storage Access

Buffer Manager

If you are familiar with operating-system concepts, you will note that the
buffer manager appears to be nothing more than a virtual-memory
manager, like those found in most operating systems. One difference is
that the size of the database may be much more than the hardware
address space of machine, so memory addresses are not sufficient to
address all disk blocks. Further, to serve the database system well, the
buffer manager must use techniques more sophisticated than typical
virtual-memory management schemes:

Buffer replacement strategy:

When there is no room left in the buffer, a block must be removed from
the buffer before a new one can be read in. Most operating systems use
least recently used (LRU) scheme, in which the block that was

referenced least recently is written back to disk and is removed from the
buffer. This simple approach can be improved on for database
applications.

Pinned blocks:

For the database system to be able to recover from crashes, it is
necessary to restrict those times when a block may be written back to
disk. For instance, most recovery systems require that a block should not
be written to disk while an update on the block is in progress. A block that
is not allowed to be written back to disk is said to be pinned. Although

 Database Management System

 NOTES

123

many operating systems do not support pinned blocks, such a feature is
essential for a database system that is resilient to crashes.

Forced output of blocks:

There are situations in which it is necessary to write back the block to
disk, even though the buffer space that it occupies is not needed. This
write is called the forced output of a block.

Buffer-Replacement Policies

The goal of a replacement strategy for blocks in the buffer is to minimize
accesses to the disk. For general-purpose programs, it is not possible to
predict accurately which blocks will be referenced. Therefore, operating
systems use the past pattern of block references as a predictor of future
references. The assumption generally made is that blocks that have been
referenced recently are likely to be referenced again. Therefore, if a block
must be replaced, the least recently referenced block is replaced. This
approach is called the least recently used (LRU) block-replacement
scheme.

LRU is an acceptable replacement scheme in operating systems.
However, a database system is able to predict the pattern of future
references more accurately than an operating system. A user request to
the database system involves several steps. The database system is
often able to determine in advance which blocks will be needed by
looking at each of the steps required to perform the user-requested
operation. Thus unlike operating systems, which must rely on the past to
predict the future, database systems may have information regarding at
least the short-term future.

Several types of data storage exist in most computer systems. They are
classified by speed with which they can access data, by either cost per
unit of data to buy the memory, and by their reliability. Among the media
available are cache, main memory, flash memory, magnetic disks, optical
disks, and magnetic tapes.

Two factors determine the reliability of storage media: whether a power
failure or system crash causes data to be lost, and what the likelihood is
of physical failure of the storage devise.

We can reduce the likelihood of physical failure by retaining multiple
copies of data. For disks, we can use mirroring. Or we can use more
sophisticated methods based on redundant arrays of independent disks
(RAID).

By striping data across disks, these methods offer high throughput rates
on large accesses; by introducing redundancy across disks, they improve
reliability greatly. Several different RAID organizations are possible, each
with different cost, performance and reliability characteristics. RAID level
1 and RAID level 5 are the most commonly used.

 Database Management System

 NOTES

124

Technical Terms

Cache memory:

High-speed memory closely attached to a CPU, containing a copy of the
most recently used memory data. When the CPU's request for
instructions or data can be satisfied from the cache, the CPU can run at
full rated speed. In a multiprocessor or when DMA is allowed, a bus-
watching cache is needed.

Main Memory:

Refers to physical memory that is internal to the computer. The word
main is used to distinguish it from external mass storage devices such as
disk drives. Another term for main memory is RAM.

Flash memory:

Flash memory is a non-volatile memory device that retains its data after
the power is removed.

Optical Storage:

The generic name given to a series of optical disks of which CD ROMs,
CD-R i.e. CD-Recordable drive which has read and write capacity. Using
this device about 650Mb of data can be written in about 15 minutes.
Standard CD-R disks can only be written to once (WORM … Write Once,
Read Many) but there is a type of disk called CD-RW. With suitable
drives these disks can be written, erased and rewritten. DVD (Digital
Versatile Disks) are also examples of Optical Disks

Platter:

The actual disk inside of a disk drive. Its surface is coated with a
magnetic material that records data. Both sides of the platter are used,
and a typical disk drive has several platters, stacked like pancakes

Seek time:

The length of time required moving a disk drive's read/write head to a
particular location on the disk. The major part of a hard disk's access time
is actually seek time.

RAID:

Redundant Array of Independent (or inexpensive) Disks; a collection of
storage disks with a controller (or controllers) to manage the storage of
data on the disks.

http://www.webopedia.com/TERM/M/physical.html
http://www.webopedia.com/TERM/M/memory.html
http://www.webopedia.com/TERM/M/computer.html
http://www.webopedia.com/TERM/M/mass_storage.html
http://www.webopedia.com/TERM/M/device.html
http://www.webopedia.com/TERM/M/disk_drive.html
http://www.webopedia.com/TERM/M/RAM.html

 Database Management System

 NOTES

125

Access time:

The amount of time it takes a computer to locate an area of memory for
data storage or retrieval.

 Disk Controller:

The hardware that controls the writing and reading data to and from and
to a disk drive. It can be used with floppy disks or hard drives. It can be
hard-wired or built into a plug-in interface board.

Checksums:

A checksum is a form of redundancy check, a very simple measure for
protecting the integrity of data by detecting errors in data that is sent
through space (telecommunications) or time (storage). It works by adding
up the basic components of a message, typically the bytes, and storing
the resulting value.

Model Questions

1. List the physical storage media available on the computers you
use routinely. Give the speed with which data can be
accessed on each media.

2. How does the remapping of bad sectors by disk controllers
affect data retrieval rates?

3. Define RAID. Explain all the RAID levels in brief.

4. Give an example of a database application in which the
reserved space method of representing variable length
records is preferable to the pointer method.

 Database Management Systems

 NOTES

90

5. INTEGRITY & SECURITY

Objective

 What is Domain Constraint

 What is Referential Integrity

 What are Assertion

 Various Security Issues

Structure of the Lesson

Domain Constraints
Referential Integrity
 Referential Integrity in E-R Model

Database Modification
Referential Integrity in SQL

Assertions
Triggers

Need For Triggers
Triggers in SQL

Securities and Authorization
Security Violations
Authorization
Authorization and Views
Granting Of Privileges
Privileges in SQL
Roles
Limitations of SQL Authorization

Encryption and Authentication
Summary
Technical Terms
Model Questions

Domain Constraints

A domain of possible values must be associated with every
attribute. The number of standard domain types, such as integer
types, characters types, and date/type times are defined in SQL.
Declaring an attribute to be of a particular domain acts as a
constraint on the values that it can take. Domain constraints are
the most elementary form of integrity constraints. They are tested

 Database Management Systems

 NOTES

91

easily by the system whenever a new data item is entered into the
database.

The definition of domain constraints not only allows us to test
values inserted in the database, but also permits us to test queries
to ensure that the comparisons made make sense. The create
domain clause can be used to define new domains.

 create domain Dollars numeric(12,2)

 create domain Pounds numeric(12,2)

We cannot assign or compare a value of type Dollars to a value of
type Pounds. However, we can convert type as below

 (cast r.A as Pounds)

(Should also multiply by the dollar-to-pound conversion-rate)

SQL provides drop domain and alter domain clauses to drop or
modify domains that have been created with create domain.

The check clause in SQL permits domains to be restricted in

powerful ways that most programming language type systems do
not permit. The check clause permits the schema designer to
specify a predicate that must be satisfied by any value assigned to
a variable whose type is the domain.

create domain hourly-wage numeric(5,2)

 constraint value-test check(value > = 4.00)

 The domain has a constraint that ensures that the hourly-

wage is greater than 4.00.
 The clause constraint value-test is optional; useful to

indicate which constraint an update violated.

The check clause can also be used to restrict a domain not to
contain any null values;

create domain AccountNumber char(10) constraint
 account-number-null-test check(value not null)

 Database Management Systems

 NOTES

92

The domain can be restricted to contain only a specified set of
values by using the in clause.

Create domain AccountType char(10)

 constraint account-type-test
 check(value in (‘Checking’,’Saving’))

Reference Integrity

Ensures, a value that appears in one relation for a given set of
attributes also appears for a certain set of attributes in another
relation. This condition is called referential integrity.

Example: If “Perryridge” is a branch name appearing in one of the
tuples in the account relation, then there exists a tuple in the
branch relation for branch “Perryridge”.

Definition:

Let r1(R1) and r2(R2) be relations with primary keys K1 and K2

respectively. The subset a of R2 is a foreign key referencing K1 in

relation r1, if for every t2 in r2 there must be a tuple t1 in r1 such

that
t1[K1] = t2[a].

Referential integrity constraint also called subset dependency
since its can be written as

 Πa (r2) Í ΠK1 (r1)

Referential Integrity in E-R model

Referential-integrity constraints arise frequently. If we derive our
relational-database schema by constructing tables from E-R
diagrams, then every relation arising from a relationship set has
referential-integrity constraints.

Consider relationship set R between entity sets E1 and E2. The

relational schema for R includes the primary keys K1 of E1 and K2

of E2. Then K1 and K2 form foreign keys on the relational

schemas for E1 and E2 respectively.

 Database Management Systems

 NOTES

93

Another source of referential-integrity constraints is weak entity
sets. The relation schema for a weak entity set must include the
primary key attributes of the entity set on which it depends. The
relation schema for each weak entity set includes a foreign key that
leads to a referential-integrity constraint.

Database modification:

Database modifications can cause violations of referential integrity.
We list here the test that we must make for each type of database
modification to preserve the following referential-integrity constraint.

  (r2)  K (r1)

Insert:

If a tuple t2 is inserted into r2, the system must ensure that there is

a tuple t1 in r1 such that t1[K] = t2 [] that is

 t2 []  K (r1)

Delete:

If a tuple, t1 is deleted from r1, the system must compute the set of

tuples in r2 that reference t1:

  = t1[K] (r2)

If this set is not empty, either the delete command is rejected as an
error, or the tuples that reference t1 must themselves be deleted.

The latter solution may lead to cascading deletions, since tuples

may reference tuples that reference t1, and so on.

R E
1

E
2

 Database Management Systems

 NOTES

94

Update:

We must consider two cases for update; updates to the referencing

relation r2 and updates to the referenced relation r1.

If a tuple t2 is updated in relation r2 and the update modifies values
for foreign key a, then a test similar to the insert case is made: Let
t2’ denote the new value of tuple t2.

The system must ensure that

 t2’[]  K(r1)

If a tuple t1 is updated in r1, and the update modifies values for the
primary key (K), then a test similar to the delete case is made. The
system must compute

  = t1[K] (r2)

using the old value of t1 (the value before the update is applied). If
this set is not empty, the update may be rejected as an error, or the
update may be cascaded to the tuples in the set, or the tuples in
the set may be deleted.

Referential Integrity in SQL:

Foreign keys can be specified as part of the SQLcreate table
statement by using the foreign key clause. We illustrate foreign
key declarations by using the SQL DDL definitions of part of our
bank database shown in table below.

create table customer
(customer-name char(20),

customer-street char(30),
customer-city char(30),
primary key (customer-name))

create table branch
(branch-name char(15),

branch-city char(30),
assets integer,
primary key (branch-name))

 Database Management Systems

 NOTES

95

create table account
(account-number char(10),
branch-name char(15),
balance integer,
primary key (account-number),
foreign key (branch-name) references branch)

create table depositor
(customer-name char(20),
account-number char(10),
primary key (customer-name, account-number),
foreign key (account-number) references account,
foreign key (customer-name) references customer)

The primary key clause lists attributes that comprise the primary
key. The unique key clause lists attributes that comprise a
candidate key. The foreign key clause lists the attributes that

comprise the foreign key and the name of the relation referenced
by the foreign key. A foreign key references the primary key
attributes of the referenced table. SQL supports a version of the
references clause where a list of attributes of the referenced
relation can be specified explicitly. The specified list of attributes
must be declared as a candidate key of the referenced relation.
We can use the following short form as part of an attribute definition
to declare that the attribute forms a foreign key.

 Branch-name char (15) references branch

When a referential-integrity constraint is violated, the normal
procedure is to reject the action that caused the violation.

 Consider this definition of an integrity constraint on the relation
account:

create table account
 . . .
 foreign key(branch-name) references branch
 on delete cascade
 on update cascade
 . . .)

 Database Management Systems

 NOTES

96

Due to the on delete cascade clauses, if a delete of a tuple in

branch results in referential-integrity constraint violation, the delete
“cascades” to the account relation, deleting the tuple that refers to
the branch that was deleted. The cascading updates are similar.

If there is a chain of foreign-key dependencies across multiple
relations, with on delete cascade specified for each dependency, a
deletion or update at one end of the chain can propagate across
the entire chain. If a cascading update to delete causes a constraint
violation that cannot be handled by a further cascading operation,
the system aborts the transaction. As a result, all the changes
caused by the transaction and its cascading actions are undone.

Referential integrity is only checked at the end of a transaction.
Intermediate steps are allowed to violate referential integrity
provided later steps remove the violation. Otherwise it would be
impossible to create some database states, e.g. insert two tuples
whose foreign keys point to each other.

The Null values in foreign key attributes complicate SQL referential
integrity semantics, and are best prevented using not null. If any

attribute of a foreign key is null, the tuple is defined to satisfy the
foreign key constraint.

Assertions

An assertion is a predicate expressing a condition that we wish the
database always to satisfy. The domain constraints and referential-
integrity constraints are special forms of assertions.

An assertion in SQL takes the form

 create assertion <assertion-name> check

<predicate>
Here is how the two examples of constraints can be written. Since
SQL does not provide a “for all X, P(X)” construct (where P is
predicate), we are forced to implement the construct by the
equivalent “not exists” X such that not P(X)” construct, which can
be written in SQL. We write

create assertion sum-constraint check
 (not exists (select * from branch
 where (select sum(amount) from loan
 where loan.branch-name =
 branch.branch-name)

 Database Management Systems

 NOTES

97

 >= (select sum(amount) from account
 where loan.branch-name =
 branch.branch-name)))

Every loan has at least one borrower who maintains an account
with a minimum balance or $1000.00.

 create assertion balance-constraint check
 (not exists (
 select * from loan
 where not exists (
 select *
 from borrower, depositor, account
 where loan.loan-number = borrower.loan-number
 and borrower.customer-name =

depositor.customer-name
 and depositor.account-number =

account.account-number
 and account.balance >= 1000)))

When an assertion is made, the system tests it for validity, and
tests it again on every update that may violate the assertion. This
testing may introduce a significant amount of overhead; hence
assertions should be used with great care.

Triggers

A trigger is a statement that is executed automatically by the
system as a side effect of a modification to the database. To
design a trigger mechanism

1. Specify the conditions under which the trigger is to be
executed.

2. Specify the actions to be taken when the trigger
executes.

The above model of triggers is referred to as the event-condition-
action model for triggers. The database stores triggers just as if
they were regular data, so that they are persistent and are
accessible to all database operations. Once we enter a trigger into
the database, the database system takes on the responsibility of
executing it whenever the specified event occurs and
corresponding condition is satisfied.

 Database Management Systems

 NOTES

98

Need of Triggers

Triggers are useful mechanisms for altering humans or for doing
certain tasks automatically when certain conditions are met. For
example a warehouse wishes to maintain a minimum inventory of
each item; when the inventory level of an item falls below the
minimum level, an order should be placed automatically. This is
how the business rule can be implemented by triggers. On an
update of the inventory level of an item, the trigger should compare
the level with the minimum inventory level for the item, and if the
level is at or below the minimum, a new order is added to an order
relation.

Triggers in SQL:

The trigger definition specifies that the trigger is initiated after any
update of the relation account is executed. An SQL update
statement could update multiple tuples of the relation, and the for
each row clause in trigger code would then explicitly iterate over
each updated row. The referencing row as clause creates a
variable nrow (called a transition variable), which stores the value

of an updated row after the update.

create trigger overdraft-trigger after update on
account
referencing new row as nrow
 for each row
when nrow.balance < 0
begin atomic
 insert into borrower
 (select customer-name, account-

number
 from depositor
 where nrow.account-number =
 depositor.account-number);
 insert into loan values
 (n.row.account-number, nrow.branch-
name,
 –
nrow.balance);
 update account set balance = 0
 where account.account-number =
nrow.account-number
end

 Database Management Systems

 NOTES

99

The when statement specifies a condition, namely nrow.balance<0.

The system executes the rest of the trigger body only for the tuple
that satisfy the condition. The begin atomic … end clause serves

to collect multiple SQL statements into a single compound
statement. The two insert statements with the begin … end

structure carry out the specific tasks of creating new tuples in the
borrower and loan relations to represent the new loan. The update

statement serves to set the account balance back to 0 from its
earlier negative value.

The triggering event and actions can take many forms:

Triggering event can be insert, delete or update. Triggers

on update can be restricted to specific attributes.

Example: create trigger overdraft-trigger after update of balance
on account

Values of attributes before and after an update can be

referenced
referencing old row as : for deletes and updates

 referencing new row as : for inserts and updates

Triggers can be activated before an event, which can serve
as extra constraints. Example, convert blanks to null.

 create trigger setnull-trigger before update on r
 referencing new row as nrow
 for each row
 when nrow.phone-number = ‘ ‘
 set nrow.phone-number = null

Security and authorization

The data stored in the database need protection from unauthorized
access and malicious destruction or alteration, in addition to the
protection against accidental introduction of inconsistency that
integrity constraints provide.

Security Violations

The forms of malicious access are:

 Database Management Systems

 NOTES

100

 Unauthorized reading of data (theft of information)

 Unauthorized modification of data

 Unauthorized destruction of data

Database security refers to protection from malicious
access. Absolute protection of the database from malicious
abuse is not possible, but the cost to the perpetrator can be
made high enough to deter most if not all attempts to access
the database without proper authority.

We must take several security levels to protect the
database, these are

Database system:

Some database system users may be authorized to access only a
limited protection of the database. Other user may be allowed to
issue queries only. It is the responsibility of the database system to
ensure that these authorization restrictions are not violated.

Operating System:

The weakness in the operating-system security may serve as a
means of unauthorized access to the database.

Network:

Since almost all database systems allow remote access through
terminals or networks, software-level security within the network
software is as important as physical security, both on the Internet
and in private networks.

Physical:

Sites with computer systems must be physically secured against
armed or surreptitious entry by intruders.

Human:

Users must be authorized carefully to reduce the chance of any
user giving access to an intruder in exchange for a bribe or other
favors.

 Database Management Systems

 NOTES

101

Security at all these levels must be maintained if database security
is to be ensured. A weakness at a low level of security (physical or
human) allows circumvention of strict high-level (database) security
measures.

Authorization

We may assign a user several forms of authorization on parts of
the database. For example,

 Read authorization - allows reading, but not modification of
data.

 Insert authorization - allows insertion of new data, but not
modification of existing data.

 Update authorization - allows modification, but not deletion
of data.

 Delete authorization - allows deletion of data.

In addition to these forms authorization for access to data, we may
grant a user authorization to modify the database schema:

 Index authorization - allows creation and deletion of
indices.

 Resources authorization - allows creation of new relations.

 Alteration authorization - allows addition or deletion of
attributes in a relation.

 Drop authorization - allows deletion of relations.

Authorization and views

Users can be given authorization on views, without being given any
authorization on the relations used in the view definition. Ability of
views to hide data serves both to simplify usage of the system and
to enhance security by allowing users access only to data they
need for their job. A combination or relational-level security and
view-level security can be used to limit a user’s access to precisely
the data that user needs.

For example, a bank clerk needs to know the names of the
customers of each branch, but is not authorized to see specific loan
information. Thus, the clerk must be denied to have access to the
loan relation, but grant access to the view cust-loan, which consists

 Database Management Systems

 NOTES

102

only of the names of customers and the branches at which they
have a loan. This can be defined as

create view cust-loan as
 select branchname, customer-name
 from borrower, loan
 where borrower.loan-number = loan.loan-number

The clerk is authorized to see the result of the query:

select *
from cust-loan

When the query processor translates the result into a query on the
actual relations in the database, we obtain a query on borrower and
loan. Authorization must be checked on the clerk’s query before
query processing replaces a view by the definition of the view.

Creation of view does not require resources authorization since no

real relation is being created. The creator of a view gets only those
privileges that provide no additional authorization beyond that he
already had. For example, if creator of view cust-loan had only
read authorization on borrower and loan, he gets only read

authorization on cust-loan.

Granting Previleges

A user who has been granted some form of authorization may be
allowed to pass on this authorization to others users. However, we
must be careful how authorization may be passed among users, to
ensure that such authorization can be revoked at some future time.

The passage of authorization from one user to another may be
represented by an authorization graph. The nodes of this graph are
the users. The root of the graph is the database administrator.
Consider graph for update authorization on loan.
An edge Ui →Uj indicates that user Ui has granted update

authorization on loan to Uj.

 Database Management Systems

 NOTES

103

A user has an authorization if and only if there is a path from the
root of the authorization graph down to the node representing the
user.

Suppose if Database Administrator decides to revoke the
authorization of user U1, since U4 has authorization from U1, that

authorization should be revoked as well. However, U5 was granted

authorization by both U1 and U2. If U2 eventually revokes

authorization from U5, U5 loses the authorization.

Privileges in SQL:

SQL offers a fairly powerful mechanism for defining authorizations.
Privileges is one of the mechanism which includes delete, insert,
select and update. The select privilege corresponds to the read

privilege. SQL also includes a reference privileges that permits a
user/role to declare foreign keys when creating relations.

 The SQL data definition language includes commands to
grant and revoke privileges. The grant statement is used to confer
authorization. The basic form of the statement is

grant <privilege list>
 on <relation name or view name> to <user list>

<user list> is a user-id and it is public, which allows all valid users
the privilege granted. Granting a privilege on a view does not imply
granting any privileges on the underlying relations. The grantor of
the privilege must already hold the privilege on the specified item
(or be the database administrator).

U

1

U

4

U

2
U

5

U

3

DB

A

 Database Management Systems

 NOTES

104

The following grant statement grants users U1, U2, and U3 select
authorization on the relation. It allows read access to relation, or
the ability to query using the view. For example,
grant users U1, U2, and U3 select authorization on the branch
relation:

grant select on branch to U1, U2, U3

insert: The ability to insert tuples.
update: The ability to update using the SQL update statement.
delete: The ability to delete tuples.
references: Ability to declare foreign keys when creating relations.
usage: Authorizes a user to use a specified domain
all privileges: Used as a short form for all the allowable privileges

Roles

Roles permit common privileges for a class of users, can be
specified just once by creating a corresponding “role”. Privileges
can be granted to or revoked from roles, just like user. Roles can
be assigned to users, and even to other roles. Roles can be
created by SQL 1999 as follows:

 create role teller

create role manager grant select on branch to teller

grant update (balance) on account to teller

grant all privileges on account to manager

grant teller to manager
grant teller to alice, bob
grant manager to

Thus the privileges of a user or a role consists of

 All privileges directly granted to the user/role.

 All privileges granted to roles that have been granted to the

user/role.

 Database Management Systems

 NOTES

105

Limitations of SQL authorizations

The current SQL standards for authorization have some
shortcomings. Suppose, we cannot restrict students to see only
(the tuples storing) their own grades, but not the grades of anyone
else, authorization must then be at the level of individual tuples,
which is not possible in the SQL standards authorization.

Furthermore, with the growth in Web access to databases,
database accesses come primarily from application servers. End
users don't have database user id’s, they are all mapped to the
same database user id. All end-users of an application (such as a
web application) may be mapped to a single database user. The
task of authorization in above cases on the application program has
no support from SQL.

 Benefit: Fine-grained authorizations, such as to individual
tuples, can be implemented by the application.

 Drawback: Authorization must be done in application code,
and may be dispersed allover an application

 Checking for absence of authorization loopholes becomes
very difficult since it requires reading large amounts of
application code

Encryption and authentication

The various provisions that a database system may take for
authorization may still not provide sufficient protection for highly
sensitive data. In such cases, data may be stored in encrypted
form. It is not possible for encrypted data to be read unless the
reader knows how to decipher (decrypt) them. Encryption also

forms the basis of good schemes for authenticating user to a
database.

Encryption:

There are a vast number of techniques for the encryption of data.
Simple encryption techniques may not provide adequate security,
since it may be easy for an unauthorized user to break the code.
As an example of a weak encryption technique, consider the
substitution of each character with the next character in the
alphabet, thus

 Database Management Systems

 NOTES

106

 Perryridge
Becomes
 Qfsszsjehf

Properties of good encryption technique:

 Relatively simple for authorized users to encrypt and decrypt
data.

 Encryption scheme depends not on the secrecy of the
algorithm but on the secrecy of a parameter of the algorithm
called the encryption key.

 Extremely difficult for an intruder to determine the encryption
key.

Data Encryption Standard (DES) substitutes characters and
rearranges their order on the basis of an encryption key which is
provided to authorized users via a secure mechanism. Scheme is
no more secure than the key transmission mechanism since the
key has to be shared.

Advanced Encryption Standard (AES) is a new standard

replacing DES, and is based on the Rijndael algorithm, but is also
dependent on shared secret keys.

 Public-key encryption is based on each user having two keys:

 public key – publicly published key used to encrypt data, but
cannot be used to decrypt data.

 private key -- key known only to individual user, and used to
decrypt data.

Encryption scheme is such that it is impossible or extremely hard to
decrypt data given only the public key. The RSA public-key
encryption scheme is based on the hardness of factoring a very
large number (100's of digits) into its prime components.

Authentication:

Authentication refers to the task of verifying the identity of a
person/software connecting to a database. The simplest from of
Authentication consists of a secret password, which must be

 Database Management Systems

 NOTES

107

presented when a connection is opened to a database. Password
based authentication is widely used, but is susceptible to sniffing on
a network. If an eavesdropper is able to “sniff” the data being sent
over the network, she may be able to find the password as it is
being sent across the network. Once the eavesdropper has a user
name and password, she can connect to the database, pretending
to be the legitimate user.

A more secure scheme involves a challenge-response system.

The database system sends a challenge string to the user. The
user encrypts the challenge string using a secret password as
encryption key, and then returns the result. The database system
can verify the authenticity of the user by decrypting string with the
same secret password, and checking the result with the original
challenge string. This scheme ensures that no passwords travel
across the network. User can use public-key encryption system by
DB sending a message encrypted using user’s public key, and user
decrypting and sending the message back.

The interesting application of public-key encryption is in digital
signatures to verify authenticity of data; digital signatures play the

electronic role of physical signatures on documents. The private
key is used to sign data, and the signed data can be made public.
Anyone can verify them by the public key, but no one could have
generated the signed data without having the private key.

Summary

In earlier chapters, we considered several forms of constraints,
including key declarations and the declaration of the form of a
relationship. In this chapter, we considered several additional forms
of constraints, and discussed mechanisms for ensuring the
maintenance of these constraints. Domain constraints specify the
set of possible values that may be associated with an attribute.
Such constraints may also prohibit the use of null values for
particular attributes. Referential-integrity constraints ensure a value
that appears in one relation for a given set of attributes also
appears for a certain set of attributes in another relation.

A user may have several forms of authorization on parts of the
database. Authorization is a means by which the database system
can be protected against malicious or unauthorized access. A user
who has been granted some form of authority may be allowed to

 Database Management Systems

 NOTES

108

pass on this authority to other users. However, we must be careful
about how authorization can be passed among users if we are to
ensure that such authorization can be revoked at some future
time.

Model Questions

1. What is a Constraint? Explain the need of the constraints in

database management.

2. Why triggers are so important in databases?

3. Discuss about privileges in SQL.

4. Discuss about Security and Authorization.

 Database Management System

 NOTES

126

7. INDEXING AND HASHING

Objective

 Index-sequential file organization.

 Algorithms for updating indices.

 How B+--tree is more advantageous than index-sequential
file organization.

 Updations on B+ -trees.

Structure of the Lesson

 Basic Concepts
 Ordered Indices
 Primary Index
 Dense and Sparse Indices
 Multilevel Indices
 Index Update
Secondary Indices
B+ -Tree Files
Structure of a B+ -Tree
Updates on B+ -Trees
B+ -Tree File Organization
B+ -Tree Index Files
Multiple Key Access
Static Hashing
Dynamic hashing
Comparison of Order Indexing and Hashing
Index Definition in SQL
Summary
Technical terms

Model questions

 Database Management System

 NOTES

127

Basic Concepts

An index for a file in a database system works in much the
same way as the index in the textbook. If you want to learn about a
particular topic in the textbook, we can search for the topic in the
index at the back of the book, find the pages where it occurs, and
then read the pages to find the information we are looking for. The
words in the index are in stored order, making it easy to find the
word we are looking for. Moreover, the index is much smaller than
the book, further reducing the effort needed to find the words we
are looking for.

Database system indices play the same role as book
indices in libraries. For example, to retrieve an account record
given the account number, the database system would look up an
index to find on which disk block the corresponding record resides,
and then fetch the disk block, to get the account record.

Keeping a stored list of account numbers would not work
well on very large databases with millions of accounts, since the
index would itself be very big: further, even though keeping the
index stored reduces the search time, finding an account can still
be rather time-consuming. Instead, more sophisticated indexing
techniques may be used. We shall discuss several of these
techniques in this chapter.

There are two basic kinds of indices:

Ordered indices:

Based on a sorted ordering of the values.

Hash indices:

Based on a uniform distribution of values across a range of
buckets. The bucket to which a value is assigned is determined by
a function, called a hash function. We shall consider several
techniques for both ordered indexing and hashing. No one
technique is the best. Rather, each technique is best suited to
particular database applications. Each technique must be
evaluated on the basis of these factors:

 Database Management System

 NOTES

128

Access types:

The types of access that are supported efficiently. Access
types can include finding records with a specified attribute value
and finding records whose attribute values fall in a specified range.

Access time:

The time taken to find a particular data item, or set of items,
using the technique in question.

Insertion time:

The time it takes to insert a new data item. This value
includes the time it takes to find the correct place to insert the new
data item, as well as the time it takes to update the index structure.

Deletion time:

The time it takes to delete a data item. This value includes
the time it takes to find the item to be deleted, as well as the time it
takes to update the index structure.

Space overhead:

The additional space occupied by an index structure.
Provided that the amount of additional space is moderate, it is
usually worth- while to sacrifice the space to achieve improved
performance.

We often want to have more than one index for a file. For
example, we may wish to search for a book by author, by subject
or by title. An attribute or set of attributes used to look up records
in a file is called a search key. Note that this definition of key differs
from that used in primary key, candidate key and super key. This
duplicate meaning for key is (unfortunately) well established in
practice. Using our notion of a search key, we see that if there are
several indices on a file, there are several search keys.

Ordered indices

To gain fast random access to records in a file, we can use
an index structure. Each index structure is associated with a

 Database Management System

 NOTES

129

particular search key. Just like the index of a book or a library
catalog, an ordered index stores the values of the search keys in
sorted order, and associates with each search key the records that
contain it.

The records in the indexed file may themselves be stored in
some sorted order, just as books in a library are stored according
to some attribute such as the Dewey decimal number. A file may
have several indices, on different search keys. If the file containing
the records is sequentially ordered, a primary index is an index
whose Search key also defines the sequential order of the file.
Primary indices are also called clustering indices. The search key
of a primary index is usually the primary key, although that is not
necessarily so. Indices whose search key specifies an order
different from the sequential order of the file are called secondary
indices, or non-clustering indices.

Primary index

 In sections, we assume that all files are ordered sequentially
on some search key. Such files, with a clustering index on the
search key, are called index-sequential files. They represent one of
the oldest index schemes used in database systems. They are
designed for applications that require both sequential processing of
the entire file and random access to individual records.

Figure 1 shows a sequential file of account records taken
from our banking example.

Figure 1 Sequential file for account records.

 Database Management System

 NOTES

130

In the example of Figure 1, the records are stored in search-
key order, with branch name used as the search key.

Dense and Sparse Indices

An index record, or index entry consists of a search-key
value, and pointers to one or more records with that value as their
search-key value. The pointer to a record consists of the identifier
of a disk block and an offset within the disk block to identify the
record within the block. There are two types of ordered indices that
we can use:

Dense Index:

An index record appears for every search-key value in the
file. In a dense clustering index, the index record contains the
search-key value and a pointer to the first data record with that
search-key value. The rest of the records with the same search-
key value would be stored sequentially after the first record, since,
because the index is a clustering one, records are sorted on the
same search key. Dense index implementations may store a list of
pointers to all records with the same search-key value; doing so is
not essential for clustering indices.

Sparse Index:

An index record appears for only some of the search key
values. As it is true in dense indices, each index record contains a
search key value and a pointer to the first data record with that
search-key value. To locate a record, we find the index entry with
the largest search-key value that is less than or equal to the
search-key value for which we are looking. We start at the record
pointed by that index entry, and follow the pointers in the file until
we find the desired record.

Figure 2 and Figure 3 show dense and sparse indices,
respectively, for the account file. Suppose that we are looking up
records for the Perryridge branch. Using the dense index of Figure
2, we follow the pointer directly to the first Perryridge record.

 Database Management System

 NOTES

131

Figure 2 Dense Index

We process this record, and follow the pointer in that record

to locate the next record in search-key (branch name) order. We
continue processing records until we encounter a record for a
branch other than Perryridge.

Figure 3 Sparse Index

 If we are using the sparse index (Figure 3), we do not find
an index entry for “Perryridge”. Since the last entry (in alphabetical
order) before “Perryridge” is “Mianus”, we follow that pointer. We
then read the account file in sequential order until we find the first
Perryridge record, and begin processing at that point.

 Database Management System

 NOTES

132

As we have seen, it is generally faster to locate a record if
we have a dense index rather than a sparse index. However,
sparse indices have advantages over dense indices in that they
require less space and they impose less maintenance overhead for
insertions and deletions.

There is a trade-off that the system designer must make
between access time and sparse overhead. Although the decision
regarding this trade-off depends on the specific application, a good
compromise is to have a sparse index with one index entry per
block. The reason this design is a good trade-off is that the
dominant cost in processing a database request is the time that it
takes to bring a block from disk into main memory. Once we have
brought in the block, the time to scan the entire block is negligible.
Using this sparse index, we locate the block containing the record
that we are seeking.

Multilevel Indices

Even if we use a sparse index, the index itself may become
too large for efficient processing. It is not unreasonable, in practice,
to have a file with 100,000 records, with 10 records in each block.
If we have one index record per block, the index has 10,000
records. Index records are smaller than data records, so let us
assume that 100 index records fit on a block. Thus, our index
occupies 100 blocks. Such large indices are stored as sequential
files on disk.

If an index is sufficiently small to be kept in main memory,
the search time to find an entry is low. However, if the index is so
large that it must be kept on disk, a search for an entry requires
several disk-block reads. Binary search can be used on the index
file to locate an entry, but the search still has a large cost. If the
index occupies b blocks, binary search requires as many as
+log2(b) +blocks to read (+ x + denotes the least integer that is
greater than or equal to x; i.e., we round upward.) For our 100-
block index, binary search requires seven blocks reads. On a disk
system where a block read takes 30milliseconds, the search will
take 210milliseconds, which is long. Note that, if overflow blocks
have been used, binary search will not be possible. In that case, a
sequential search is typically used, and that requires b block reads,
which will take even longer. Thus, the process of searching a large
index may be costly.

 Database Management System

 NOTES

133

To deal with this problem, we treat the index just as we
would treat any other sequential file, and construct a sparse index
on the clustering index, as in Figure 4.

 Figure 4. Two-level sparse index (Multilevel Index)

To locate a record, we first use binary search on the outer
index to find the record for the largest search-key value less than
or equal to the one that we desire. The pointer points to a block of
the inner index. We scan this block until we find the record that has
the largest search-key value less than or equal to the one that we
desire. The pointer in this record points to the block of the file that
contains the record for which we are looking.

Using the two levels of indexing, we have read only one
index block, rather than the seven we read with binary search, if
we assume that the outer index is already in main memory. If our
file is extremely large, even the outer index may grow too large to
fit in main memory. In such a case, we can create yet another level
of index. Indeed, we can repeat this process as many times as
necessary. Indices with two or more levels are called multilevel
indices. Searching for records with a multilevel index requires

 Database Management System

 NOTES

134

significantly fewer I/O operations than does searching for records
by binary search. Each level of index could correspond to a unit of
physical storage. Thus, we may have indices at the track, cylinder
and disk levels.

A typical dictionary is an example of a multilevel index in the
non-database world. The header of each page lists the first word
alphabetically on that page. Such a book index is a multilevel
index: the words are at the top of each page of the book index from
a sparse index on the contents of dictionary pages.

Multilevel indices are closely related to tree structures, such
as the binary trees used for in-memory indexing.

Index Update

Regardless of what form of index is used, every index must

be updated a record is either inserted into or deleted from the file.
We first describe algorithms for updating single level indices.

Insertion. First, the system performs a lookup using the
search key value that appears in the record to be inserted .the
action the system takes next depends on whether the index is
dense or sparse:

Dense indices:

1. If the search-key value does not appear in the index, the system

inserts an index record with the search-key value in the index
at the appropriate position.

2. Otherwise the following actions are taken:

If the index record stores pointers to all records with the
same search-key value, the system adds a pointer to the new
record to the index record.

Otherwise, the index record stores a pointer to only the first
record with the search-key value. The system then places the
record being inserted after the other records with the same search-
key values.

Sparse indices: We assume that the index stores an entry
for each block. If the system creates a new block, it inserts the first

 Database Management System

 NOTES

135

search-key value (in search-key order) appearing in the new block
into the index. On the other hand, if the new record has the least
search-key value in its block, the system updates the index entry
pointing to the block; if not, the system makes no change to the
index.

Deletion:

To delete a record, the system first looks up the record to be
deleted. The actions the system takes next depend on whether the
index is dense or sparse:

Dense indices:

1. If the deleted record was the only record with its particular
search-key value, then the system deletes the corresponding index
record from the index.

2. Otherwise the following actions are taken:

If the index record stores pointers to all records with the
same search-key value, the system deletes the pointer to the
deleted record from the index record.

Otherwise, the index record stores a pointer to only the first
record with the search-key value. In this case, if the deleted record
was the first record with the search-key value, the system updates
the record to point to the next record.

Sparse Indices:

1. If the index does not contain an index record with the search-key
value of the deleted record, nothing needs to be done to the index.

2. Other wise the system takes the following actions:

If the deleted record was the only record with its search-key,
the system replaces the corresponding index record with an index
record for the next search-key value (in search-key order). If the
next search-key value already has an index entry, the entry is
deleted instead of being replaced.

Other wise, if the index record for the search-key value
points to the record being deleted, the system updates the index
record to point to the next record with the same search-key value.

 Database Management System

 NOTES

136

Insertion and deletion algorithms for multilevel indices are

simple extension of the scheme just described. On deletion or
insertion, the system updates the lowest-level index as described.
As far as the second level is concerned, the lowest level index
merely a file containing records-thus, if there is any change in the
lowest -level index, the system updates the second-level index as
described. The same technique applies to further levels of the
index, if there are any.

Secondary Indices

Secondary indices must be dense, with an index entry for
every search-key value, and a pointer to every record in the file. A
clustering index may be sparse, storing only some of the search-
key values, since it is always possible to find records with
intermediate search-key values by a sequential access to a part of
the file, as described earlier. If a secondary index stores only some
of the search-key values, records with intermediate search-key
values may be any where in the file and, in general, we cannot find
them with out searching the entire file.

 A secondary index on a candidate key looks just like a
dense clustering index, except that the records pointed to by
successive values in the index are not stored sequentially. In
general, however, secondary indices may have a different
structure from clustering indices. If the search-key of the clustering
index is not a candidate key, if suffices if the index points to the
first record with a particular value for the search key, since the
other records can be fetched by a sequential scan of the file.

 In contrast, if the search key of a secondary index is not a
candidate key, it is not enough to point to just the first record with
each search-key value. The remaining records with same search-
key value could be any where in the file, since the records are
ordered by the search key of the clustering index, rather than by
the search key of the secondary index. Therefore, a secondary
index must contain pointers to all the records.

We can use an extra level of indirection to implement
secondary indices on search keys that are not candidate keys. The
pointers in such a secondary index do not point directly to the file.
Instead, each points to a bucket that contains pointers to the file.
Figure 5 Secondary index on account file, on non-candidate key
balance.

 Database Management System

 NOTES

137

Figure 5. Secondary index an account file, on non-candidate key

balance

Figure 5 shows the structure of a secondary index that uses
an extra level of indirection on the account file, on the search key
balance.

A sequential scan in clustering index order is efficient
because records in the file are stored physically in the same order
as the index order. How ever, we cannot (except in rare special
cases) store a file physically ordered by both the search key of the
clustering index and the search key of a secondary index. Because
secondary key order and physical -key order differ, if we attempt to
scan the file sequentially in secondary-key order, the reading of
each record is likely to require the reading of a new block from
disk, which is very slow.

The procedure described earlier for deletion and insertion
can also be applied to secondary indices; the actions taken are
those described for dense indices storing a pointer to every record
in the file. If a file has multiple indices, whenever the file is
modified, every index must be updated.

Secondary indices improve the performance of queries that
use keys other than the search-key of the clustering index.

However, they impose a significant overhead on

modification of the database. The designer of a database decides

 Database Management System

 NOTES

138

which secondary indices are desirable on the basis of an estimate
of the relative frequency of queries and modifications.

B+ Tree Index Files

The main disadvantage of the index-sequential file organization is
that performance degrades as the file grows, both for index
lookups and for sequential scans through the data.

The B+ -tree index structure is the most widely used of
several index structures that maintain their efficiency despite
insertion and deletion of data. A B+ -tree index takes the form of a
balanced tree in which every path from the root of the tree to a leaf
of the tree is of the same length. Each non-leaf node in the tree
has between [n/2] and n children, where n is fixed for a particular
tree.

Structure of a B+ - tree structure

A B+ -tree index is a multilevel index, but it has a structure that
differs from that of the multilevel index sequential file.

Figure 6 Typical node of a B+ -tree

Figure 6 shows a typical node of a B+ -tree .It contains up to
n-1 search key values k1, K2…kn-1, and n pointers p1, p2…pn. The
search key values within a node are kept in sorted order; thus, if
i<j, then ki < kj.

We consider first the structure of the leaf nodes. For
i=1,2,…., n-1, pointer pi points to either a file record with search-
key value ki or bucket of pointers, each of which points to a file
record with search key value ki. The bucket structure is used only
if the search key does not form a candidate key, and if the file is
not sorted in the search key value order.

 Database Management System

 NOTES

139

Figure 7 A leaf node for account B+ - tree index (n=3)

Figure 7 shows one leaf node of a B+ - tree for the account
file, in which we have chosen n to be 3,and the search key is
branch-name. Note that, since the account file is ordered by
branch-name, the pointers in the leaf node point directly to the file.

 Now that we have seen the structure of a leaf node, let us
consider how search key values are assigned to a particular node.
Each leaf can hold up to n-1 values. We allow leaf nodes to
contain as few as [(n-1)/2] values. The range of values in each leaf
does not overlap. Thus, if Li and Lj are leaf nodes and i<j, then
every search -key value in Li is less than every search-key value in
Lj. If the B+ -tree index is to be a dense index, every search key
value must appear in some leaf node.

Now we can explain the tree of the pointer Pn. Since there
is a linear order on the leaves based on the search key values that
they contain, we use Pn to chain together the leaf nodes in search-
key order. This ordering allows for efficient sequential processing
of the file.

The non leaf nodes of the B+ -tree form a multilevel (sparse)
index on the leaf nodes .The structure of the non leaf nodes is the
same as that for leaf nodes, except that all pointers are pointers to
tree nodes. A leaf node may hold upto n pointers, and must hold at
least [n/2] pointers. The number of pointers in a node is called the
fan out of the node.

 Let us consider a node containing m pointers. For
i=2,3,…,m-1, pointer Pi points to the subtree that contains search-

 Database Management System

 NOTES

140

key values less than Ki and greater than or equal to the K i-1 .
Pointer Pm points to the part of the subtree that contains those key
values greater than or equal to K m-1 and pointer P1 points to the
part of the subtree that contains those search-key values less than
K1.

The root node can hold fewer than [n/2] pointers; however, it

must hold at least two pointers, unless the tree consists of only one
node. It is always possible to construct a B+ -tree, for any n, that
satisfies the proceeding requirements.

Figure 8 B+ -tree for account file (n=3)

Figure 8 shows a complete B+ -tree for the account file(n=3). For
simplicity, we have omitted both the pointers to the file itself and
the null pointers. Figure 9 shows a B+ -tree for the account file
with n=5.

 Database Management System

 NOTES

141

 Figure 9 B+-tree for account file with n=5.

Updates on B+ -Trees

Insertion and deletion are more complicated, since it may be
necessary to split a node that becomes too large as the result of
an insertion, or to coalesce node (that is, combine nodes) if node
becomes too small (fewer than [n/2] pointers). Furthermore, when
a node is split or a pair of nodes is combined, we; must ensure that
balance is preserved. To introduce the idea behind insertion and
deletion in a B+ -tree, we shall assume temporarily that nodes
never become too large or too small. Under this assumption,
insertion and deletion are performed as defined next.

Insertion. First we find the leaf node in which the search-key
value would appear. If the search-key value already appears in the
leaf node, we add the new record to the file and, if necessary, add
to the bucket a pointer to the record. If the search-key value does
not appear, we insert the value in the leaf node and position it such
that the search keys are still in order. We then insert the new
record in the file and, if necessary, create a new bucket with the
appropriate pointer.

Deletion. First we find the record to be deleted, and remove
it from the file. We remove the search-key value from the leaf node
if there is no bucket associated with that search-key value or if the
bucker becomes empty as a result of the deletion.

We now consider an example in which a node must be split.
Assume that we wish to insert a record with a branch-name value
of “Clearview” into the B+ -tree. we find that “Clearview” should

 Database Management System

 NOTES

142

appear in the containing “Brighton” and “Downtown”. There is no
room to insert the search-key value “Clearview”. Therefore, the
node is split into two nodes. Figure 10 shows the two leaf nodes
that result from inserting “Clearview” and splitting the node
containing “Brighton” and “Downtown”.

Figure 10 Split of leaf node on insertion of “Clearview”

In general, we take the n search-key values (the n-1 values
in the leaf node plus the value being inserted), and put the first
[n/2] in the existing node and the remaining values in a new node.

Having spilt a leaf node, we must insert the new leaf node
into the B+ -tree structure. In our example, the new node has
“Downtown “as its smallest search-key value. We need to insert
this search-key value into t he parent of the leaf node that was
split. The B+ -tree of figure 11 shows the result of the insertion.

Figure 11 Insertion of “Clearview” into the B+ -tree of

figure 8.

 Database Management System

 NOTES

143

The search-key value “Downtown” was inserted into the
parent. It was possible to perform this insertion because there was
room for and added search-key value .If there were no room, the
parent would have had to be spilt. If the root itself is split, proceed
recursively up the tree until either an insertion does not cause a
split or a new root is created.

We now consider deletions that cause tree node s to
contain too few pointers, first, let us delete “Downtown” from the B+

-tree of figure 11. We locate the entry for “Downtown” by using our
lookup algorithm. When we delete the entry for “Down town” from
its lea node, the leaf becomes empty. Since, in our example n = 3
and 0< [“(nm-1)/2], this node must be eliminated from the B+ -tree.
To delete a leaf node, we must delete the pointer to it from its
parent. In our example, this deletion leaves the parent node, which

formerly contained three pointers, with only two pointers. Since 2
[n/2], the node is still sufficiently large, and the deletion operation is
complete. The resulting B+ -tree appears in figure 12.

Figure 12 Deletion of “Downtown” from the B+ -tree of fig-11

When we make a deletion from a parent of a leaf node, the
parent node itself may become too small. That is exactly what
happens if we delete “Perryridge” from the B+ -tree of figure 12.
Deletion of the Perryridge entry causes a leaf node to become
empty. When we delete the pointer to this node in the latter’s
parent. The parent is left with only one pointer. Since n=3, [n/2] =
2, and thus only one pointer is too few. However, since the parent
node contains useful information, we cannot simply delete if.
Instead, we look at the sibling node (the nonleaf node containing
the one search key, Mianus). This sibling node has room to

 Database Management System

 NOTES

144

accommodate the information contained in our now-too-small
node, so we coalesce these nodes, such that the sibling node now
contains the keys “Mianus” and “Redwood”. The other node (the
node containing only the search key “Redwood”) now contains
redundant information and can be deleted from its parent (which
happens to be the root in our example); figure 13 shows the result.

 Figure 13 Deletion of “Perryridge” from the B+ -tree of figure 12

Notice that the root has only one child pointer after the
deletion, so it is deleted and its sole child becomes the root. So the
depth of the B+ -tree has been decreased by1.

It is not always possible to coalesce nodes. As an
illustration, delete “Perryridge” from the B+ -tree of figure 11. In this
example, the “Down town” entry is still part of the tree. Once again,
the leaf node containing “Perryridge” becomes empty. The parent
of the leaf node becomes too small (only one pointer). However, in
this example, the sibling node already contains the maximum
number of pointers:” three. Thus if cannot accommodate an
additional pointer. The solution in this case is to redistribute the
pointers such that each sibling has two pointers. The result
appears in figure 14.

 Database Management System

 NOTES

145

 Figure 14 Deletion of “Perryridge” from the B+ -tree of figure 11

Note that the redistribution of values necessitates a change

of a search-key value in the parent of the two siblings.

 Although insertion and deletion operations on B+ -trees are
complicated, they require relatively few I/O operations, which is an
important benefit since I/O operations are expensive. It can be
shown that the number of I/O operations needed for a worst-case
insertion of deletion is proportional to log[n/2] (K), where n is the
maximum number of pointers in anode, and K is the number of
search-key values. In other words, the cost of insertion and
deletion operations is proportional to the height of the B+ -tree, and
is therefore low. It is the speed of operation on B+ -tree that makes
them a frequently used index structure in database
implementations.

B+ -Tree File Organization

The main drawback of index sequential files organization is
the degradation of performance as the file grows: with growth, an
increasing percentage of index records and actual records become
out of order, and are stored in overflow blocks. We solve the
degradation of index lookups by using B+ -tree indices on the file.
We solve the degradation problem for storing the actual records by
using the leaf level of the B+ -tree to organize the blocks containing
the actual records. We use the B+ -tree structure not only as an
index, but also as an organizer for records in a file. In a B+ -tree file
organization, the leaf nodes of the tree store records, instead of

 Database Management System

 NOTES

146

storing pointers to records. Figure 15 shows an example of a B+ -
tree file organization.

Figure 15 B+ -tree file organization

Since records are usually larger than pointers, the maximum
number of records that can be stored in a leaf nod e is less than
the number of pointers in a nonleaf node. However, the leaf nodes
are still required to be at least half full.

 Insertion and deletion of records from a B+ -tree file
organization are handled in the same way as insertion and deletion
of entries in a B+ -tree index. When a record with a given key value
v is inserted, the system locaters the block that should contain the
record by searching the B+ -tree insertion, the system splits the
block in two, and redistributed the records in it)(in the B+ -tree-key
order) to create space for the new record. The split propagates up
the B+ -tree in the normal fashion. When we delete a record, the
system first removes it from the block containing it. If a block B
becomes less than half full as result, the records in B are
redistributed with the records in an adjacent block B’. Assuming
fixed-sized records, each block will hold at least one-half as many
records as the maximum that it can hold. The system updates the
nonleaf nodes of the B+ -tree in the usual fashion.

 When we use a B+ -tree for file organization, space
utilization is particularly important since the space occupied by the
records is likely to be much more than the space occupied by keys
and pointers. We can improve the utili9zatrioni of space in a B+ -

 Database Management System

 NOTES

147

tree by invoking more sibling nodes in redistribution during splits
merges. The technique is applicable to both le4af nodes and
internal nodes, and works as follows.

During insertion, if a node is full the system attempts to
redistribute some of its entries to one of the adjacent nodes, to
make space for a new entry. If this attempt fails because the
adjacent nodes are themselves full, the system splits the node,
and splits the entries evenly among one of the adjacent nodes and
the two nodes that it obtained by splitting the original node. Since
the three nodes together contain one more record than can fit in
two nodes, each node will be about two-thirds full. More precisely,
each node will have at least [2n/3] entries, where n is the
maximum number of entries that the node can hold. ([x] denotes
the greatest integer that is less than or equal to x; that is, we drop
the fractional part, if any).

During deletion of a record, if the occupancy of a node falls
below [2n/3], the system attempts to borrow an entry form one of
the sibling nodes. If both sibling nodes have [2n/3] records, instead
of borrowing an entry, the system redistributes the entries in the
node and in the two siblings evenly between two of the nodes, and
deletes the third node. We can use this approach becauswe3 the
total number of entries is 3[2n/3]-1, which is less than 2n. With
three adjacent nodes used for redistribution, each node can be
guaranteed to have [2n/4] entries. In general, if m nodes (m-
1siblings) are involved in redistribution, each node can be
guaranteed to contain at least [(m-1) n/m] entries. However, the
cost of update becomes higher as more sibling nodes are involved
in the redistribution.

B-Tree Index Files

B-tree indices are similar to B+ - tree indices. The primary
distinction between the two approaches is that a B+ - tree
eliminates the redundant storage of search-key values. In the B+ -
tree of a figure given, the search keys “downtown” “mianus”
“Redwood,” and “perryridge” appear twice. Every search key value
appears in some leaf node; several are repeated in the non-leaf
node.

 A B -tree allows search-key values to appear only once.
Figure 16 shows a B -tree that represents the same keys as the B+
-tree.

 Database Management System

 NOTES

148

Figure 16 B -tree equivalent of B+ -tree in figure 10.12

Since search keys are not repeated in the B+ -tree, we may be able
to store the index in fewer tree nodes than in the corresponding B+
-tree index.

 However, since search keys that appear in non-leaf nodes appear
nowhere else in the B+ -tree, we are forced to include an additional
pointer field for each search key in a non-leaf node. These
additional pointers point to either file records or buckets for the
associated search key.

A generalized B -tree leaf node appears in figure 17a; a non-leaf
node appears in figure 17b; Leaf nodes are the same as in B+ -
trees.

Figure 17 Typical nodes of a B+ -tree. (a) Leaf node. (b) Non-leaf node

 Database Management System

 NOTES

149

In non-leaf nodes, the pointers Pi are the tree pointers that

we used also for B+ -tree, while the pointers Bi are bucket or file–
record pointers.

In the generalized B -tree in the figure, there discrepancy
keys in the leaf node, but there are m-1 keys in the non-leaf node.
This discrepancy occurs because non-leaf nodes must include
pointers Bi, thus reducing the number of search keys that can be
held in these nodes. Clearly, m<n, but the exact relationship
between m and n depends on the relative size of search keys and
pointers.

Multiple Key Access

We can use multiple indices for certain types of queries.

Example: select account_number from account

 where branch_name = “Perryridge” and
balance = 1000;

The Possible strategies for processing query using indices on
single attributes:

 Use index on branch_name to find accounts with branch
name Perryridge; test balance = 1000

 Use index on balance to find accounts with balances of
$1000; test branch_name = “Perryridge”.

 Use branch_name index to find pointers to all records
pertaining to the Perryridge branch. Similarly use index on
balance. Take intersection of both sets of pointers
obtained.

Composite search keys are search keys containing more than

one attribute.

E.g. (branch_name, balance)

Lexicographic ordering: (a1, a2) < (b1, b2) if either
a1 < b1, or

a1=b1 and a2 < b2

Suppose we have an index on combined search-key
 (branch_name, balance).

 Database Management System

 NOTES

150

With the where clause
 where branch_name = “Perryridge” and balance = 1000

the index on (branch_name, balance) can be used to fetch only
records that satisfy both conditions.

Using separate indices in less efficient — we may fetch many
records (or pointers) that satisfy only one of the conditions.

Can also efficiently handle
 where branch_name = “Perryridge” and balance < 1000

But cannot efficiently handle
 where branch_name < “Perryridge” and balance = 1000

It may fetch many records that satisfy the first but not the second
condition.

Static Hashing

A bucket is a unit of storage containing one or more records (a
bucket is typically a disk block).

In a hash file organization we obtain the bucket of a record
directly from its search-key value using a hash function. Hash
function h is a function from the set of all search-key values K to
the set of all bucket addresses B. Hash function is used to locate
records for access, insertion as well as deletion. Records with
different search-key values may be mapped to the same bucket;
thus entire bucket has to be searched sequentially to locate a
record.

 Database Management System

 NOTES

151

 Figure 18. Hash file organization (buckets)

Hash file organization of account file, using branch_name as key

 There are 10 buckets,

 The binary representation of the ith character is assumed to
be the integer i The hash function returns the sum of the

binary representations of the characters modulo 10

E.g. h (Perryridge) = 5 h (Round Hill) = 3 h(Brighton) = 3

 Worst hash function maps all search-key values to the same
bucket; this makes access time proportional to the number
of search-key values in the file.

 Database Management System

 NOTES

152

 An ideal hash function is uniform, i.e., each bucket is
assigned the same number of search-key values from the
set of all possible values.

 Ideal hash function is random, so each bucket will have the
same number of records assigned to it irrespective of the
actual distribution of search-key values in the file.

 Typical hash functions perform computation on the internal
binary representation of the search-key.

 For example, for a string search-key, the binary
representations of all the characters in the string could be
added and the sum modulo the number of buckets could be
returned. .

Handling of Bucket Overflows:

Bucket overflow can occur because of Insufficient buckets.It
maintains skew in distribution of records. This can occur due to
two reasons:

 multiple records have same search-key value

 chosen hash function produces non-uniform distribution of
key values

Although the probability of bucket overflow can be reduced, it
cannot be eliminated; it is handled by using overflow buckets

Overflow chaining – the overflow buckets of a given bucket are

chained together in a linked list. It is also scheme is called closed
hashing.

An alternative, called open hashing, which does not use overflow
buckets, is not suitable for database applications.

 Database Management System

 NOTES

153

Figure 19. overflow buckets

Hashing can be used not only for file organization, but also for
index-structure creation.

A hash index organizes the search keys, with their associated

record pointers, into a hash file structure. Strictly speaking, hash
indices are always secondary indices if the file itself is organized
using hashing; a separate primary hash index on it using the same
search-key is unnecessary.

However, we use the term hash index to refer to both secondary
index structures and hash-organized files.

 Database Management System

 NOTES

154

Figure 20. Example of hash index

Deficiencies in Static Hashing:

 In static hashing, function h maps search-key values to a
fixed set of B of bucket addresses.

 Databases grow or shrink with time.

 If initial number of buckets is too small, and file grows,
performance will degrade due to too much overflows.

 If space is allocated for anticipated growth, a significant
amount of space will be wasted initially (and buckets will be
under full).

 If database shrinks, again space will be wasted.

One solution for this is periodic re-organization of the file with a
new hash function. The other better solution is to allow the number
of buckets to be modified dynamically.

 Database Management System

 NOTES

155

Dynamic Hashing

Dynamic Hashing is good for database that grows and shrinks in
size. It allows the hash function to be modified dynamically. The
Extendable hashing is one form of dynamic hashing

Hash function generates values over a large range — typically b-
bit integers, with b = 32.

At any time use only a prefix of the hash function to index into a
table of bucket addresses.

Let the length of the prefix be i bits, 0 £ i £ 32.

Bucket address table size = 2i. Initially i = 0

Value of i grows and shrinks as the size of the database grows and
shrinks.

Multiple entries in the bucket address table may point to a bucket
(why?)

Thus, actual number of buckets is < 2i The number of buckets also
changes dynamically due to coalescing and splitting of buckets.

Figure 21. General Structure For Extendible Hashing

 Database Management System

 NOTES

156

Use of Extendible Hashing:

Each bucket j stores a value ij

All the entries that point to the same bucket have the same values
on the first ij bits.

To locate the bucket containing search-key Kj:

1. Compute h(Kj) = X.
 2. Use the first i high order bits of X as a displacement

into bucket address table, and follow the pointer to
appropriate bucket.

To insert a record with search-key value Kj

 follow same procedure as look-up and locate the bucket,
say j.

 If there is room in the bucket j insert record in the bucket.

 Else the bucket must be split and insertion re-attempted.

 Overflow buckets used instead in some cases

Disadvantages of extendable hashing:

 Extra level of indirection to find desired record

 Bucket address table may itself become very big (larger
than memory)

 It cannot allocate very large contiguous areas on disk either.

 Changing size of bucket address table is an expensive
operation.

One solution to this is use B+-tree structure to locate desired record
in bucket address table

Comparison of Ordered Indexing & hashing

 Cost of periodic re-organization

 Relative frequency of insertions and deletions

 Is it desirable to optimize average access time at the
expense of worst-case access time?

 Database Management System

 NOTES

157

 Expected type of queries:

o Hashing is generally better at retrieving records
having a specified value of the key.

o If range queries are common, ordered indices are to
be preferred

In fact, we can watch the following in practice:

 PostgreSQL supports hash indices, but discourages use
due to poor performance.

 Oracle supports static hash organization, but not hash
indices.

 SQLServer supports only B+-trees.

Index Definition SQL

Syntax:

Create an index

 create index <index-name> on <relation-name>

 (<attribute-list>);

E.g.: create index b-index on branch(branch_name)

Use create unique index to indirectly specify and enforce the
condition that the search key is a candidate key is a candidate key.

Not really required if SQL unique integrity constraint is supported

To drop an index drop index <index-name>

Most database systems allow specification of type of index, and
clustering.

Summary

Many queries reference only a small portion of the records
in a file. To reduce the overhead in searching for these records, we
can construct indices for the files that store the database.

 Database Management System

 NOTES

158

Index-sequential files are one of the oldest index schemes

used in database systems. To permit fast retrieval of records in
search-key order, records are stored sequentially, and out-of-order
records are chained together. To allow fast random access, we
use an index structure.

There are two types of indices that we can use: dense
indices and sparse indices. Dense indices contain entries for every
search-key value, whereas sparse indices contain entries only for
some search-key values.

If the sort order of a search key matches the sort order of a
relation, an index on the search key is called a primary index. The
other indices are called secondary indices. Secondary indices
improve the performance of queries that use search keys other
than the primary one. However, they impose an overhead on
modification of the database.

The primary disadvantage of the index-sequential file
organization is that performance degrades as the file grows. To
overcome this deficiency, we can use a B+ -tree index.

We can use B+ -trees for indexing a file containing records,
as well as to organize records into a file.

Technical Terms

Access time: The average time interval between a storage
peripheral (usually a disk drive or semiconductor memory)
receiving a request to read or write a certain location and returning
the value read or completing the write.

Primary index: An index used to improve performance on
the combination of columns most frequently used to access rows in
a table.

Secondary index: An index that is maintained for a data file,
but not used to control the current processing order of the file. For
example, a secondary index could be maintained for customer
name, while the primary index is set up for customer account
number.

 Database Management System

 NOTES

159

Clustering index: The index that determines how rows are
physically ordered in a tablespace.

Tree: A hierarchical structure like an organization chart.

B -tree: Also called a multiway tree, a B-tree is a fast data-indexing
method that organizes the index into a multi-level set of nodes.
Each node contains a sorted array of key values (the indexed
data).

B -tree indexes A type of index that uses a balanced tree structure
for efficient record retrieval. B-tree indexes store key data in
ascending or descending order.

Model Questions

1. Differentiate Dense Index and Sparse Index in detail

2. What is the difference between a primary index and a
 Secondary index?

3. Construct a B+ -tree for the following set of key values:

 (12,13,56,77,1,17,9,94,28,10)

4. Discuss B – trees and B+ tree index files with examples.

 Database Management System

 NOTES

160

UNIT – III

1. RELATIONAL DATABASE DESIGN

Objective

 To learn what is the purpose of database design?

 To learn basic Normal Forms

 To learn how to remove redundancies and anomalies

 To Define what a Functional Dependency is

 To learn about the Decomposition

Structure of the Lesson

 Introduction
 Features of Good Relational Design
 First Normal Form
 Pitfalls in Relational – Database Design
 Functional Dependencies
 Basic Concepts
 Closure Set of Functional Dependencies
 Closure Of Attribute Sets
 Canonical Cover
 Desirable Properties Of Decomposition
 Loss Less Decomposition
 Dependency Preservation
 Second Normal Form

Third Normal Form
 Decomposition Algorithm
 Summary
 Technical Terms
 11.6 Model Questions

 Database Management System

 NOTES

161

Introduction

In general, the main goal of relational database design is to
generate a set of relation schemas that allows us to retrieve
information easily. This is accomplished by designing schemas that
are in appropriate normal forms. To determine whether a relational
schema is in one of the desirable normal forms, we need
information about the real world enterprise that we are modeling
with the database.

Here we introduce a formal approach to relational database
design based on the notation of functional dependencies. We then
define normal forms in terms of functional dependencies and other
types of data dependencies.

In some other way, whenever we design databases we are
faced with a number of problems relating to things like data
integrity, security, and efficiency. We are also faced with problems
relating to the structure of the data we are planning to use.

Normalization is a design technique that is widely used as a
guide in designing relational databases. Normalization is essentially
a two-step process that puts data into tabular form by removing
repeating groups and then removes duplicated data from the
relational tables. Normalization theory is based on the concepts of
normal forms. A relational table is said to be a particular normal

form if it satisfied a certain set of constraints. There are currently
five normal forms that have been defined. In this section, we will
cover the first three normal forms that were defined by E. F. Codd.

Normalization theory is built around the concept of normal
forms. A relation is said to be in a particular normal form if it
satisfies a certain specified set of constraints.

For example, a relation is said to be in first normal form
(abbreviated 1NF) if and only if it satisfies the constraint that it
contains atomic values only (thus every normalized relation is in
1NF, which accounts for the “first”). Numerous normal forms have
been defined.

Features of Good Relational Designs

Databases have a reputation for being difficult to construct
and hard to maintain. In fact, Database design has nothing to do
with using computers. It has everything to do with research and

 Database Management System

 NOTES

162

planning. The design process should be completely independent of
software choices. The basic elements of the design process are:

 Defining the problem or objective

 Researching the current database

 Designing the data structures

 Constructing database relationships

 Implementing rules and constraints

 Creating database views and reports

 Implementing the design

Among the above, most important step in database design is
the first one: defining the problem the database will address or the
objective of the database. It is important however, to draw a
distinction between:

 How the database will be used and

 What information needs to be stored in it

A database is essentially a collection of data tables, so the
next step in the design process is to identify and describe those
data structures. Each table in a database should represent some
distinct subject or physical object.

Once the data structures are in place, the next step is to

establish the relationships between the databases. First you must
ensure that each table has a unique key that can identify the
individual records in each table. Any field in the database that
contains unique values is an acceptable field to use as a key.
Usually we can generate relational schemas directly from the E-R
diagrams.

In order to achieve the relational database design, one can

implement a new concept called normalization and it is an essential
part of database design.

Normalization is a process of decomposing a relation in to

several sub relations so that they can be managed properly.

Normalization is the process of efficiently organizing data in

a database. There are two goals of the normalization process:
eliminating redundant data (for example, storing the same data in
more than one table) and ensuring data dependencies make sense
(only storing related data in a table). Both of these are worthy goals

 Database Management System

 NOTES

163

as they reduce the amount of space a database consumes and
ensure that data is logically stored.

Normalization draws heavily on the theory of functional
dependencies.

Normalization theory defines six normal forms (NFs). Each
normal form involves a set of dependency properties that a schema
must satisfy and each gives guarantees about presence/absence of
update anomalies. That means higher normal forms have less
redundancy so that less update problems.

 A brief history of normal forms:

 First, Second, Third Normal Forms (1NF,2NF, 3NF)

 Boyce-Codd Normal Form (BCNF)

 Fourth Normal Form (4NF)

 Fifth Normal Form (5NF)

NF hierarachy: 5NF ->4NF ->BCNF ->3NF ->2NF ->1NF

1NF allows most redundancy; 5NF allows least redundancy.

1NF
All attributes have atomic values we assume this as
part of relational model

2NF
All non-key attributes fully depend on key (i.e. no
partial dependencies) avoids much redundancy

3NF,
BCNF

No attributes dependent on non-key attributes (i.e. no
transitive dependencies) avoids remaining redundancy

4NF Removes problems due to multi-valued dependencies

5NF Removes problems due to join dependencies

In practice, BCNF and 3NF are the most important.

1NF:

Eliminate Repeating Groups - Make a separate table for each set of
related attributes, and give each table a primary key.

2NF:

Eliminate Redundant Data - If an attribute depends on only part of
a multi-valued key, remove it to a separate table.

 Database Management System

 NOTES

164

3 NF:

Eliminate Columns Not Dependent On Key - If attributes do not
contribute to a description of the key, remove them to a separate
table.

BCNF:

Boyce-Codd Normal Form - If there are non-trivial dependencies
between candidate key attributes, separate them out into distinct
tables.

4 NF:

Isolate Independent Multiple Relationships - No table may contain
two or more 1:n or n:m relationships that are not directly related.

5 NF:

Isolate Semantically Related Multiple Relationships - There may be
practical constraints on information that justify separating logically
related many-to-many relationships.

11.1.2 First Normal Forms

The first of the normal forms that we study, first normal,

imposes a very basic requirement on relations; unlike the other
normal forms, it does not require additional information such as
functional dependencies.

A domain is atomic if elements of the domain are
considered to be indivisible units. We say that a relation schema R
I in first normal form (1NF) if the domains of all attributes of R are
atomic.

A set of names is an example of a non atomic value. For
example, if the schema of a relation employee included an attribute
children whose domain elements are sets of names, the schema
would not be in first normal form.

Composite attributes, such as an attribute address with
component attributes street and city, also have non atomic
domains.

 Database Management System

 NOTES

165

Integers are assumed to be atomic, so the set of integers is
an atomic domain; the set of all sets of integers is a non-atomic
domain. The distinction is that we do not normally consider
integers to have subparts, but we consider sets of integers to have
subparts—namely, the integers making up the set. But the
important issue is not what the domain itself is, but rather how we
use domain elements in our database.

The domain of all integers would be non atomic if we
considered each integers to be an ordered list of digits.

As a practical illustration of the point, consider an
organization that assigns employees identification numbers of the
following form: The first two letters specify the department and the
remaining four digits are a unique number within the department for
the employee. Examples of such numbers would be CS0012 and
EE1127. Such identification numbers can be divided into smaller
units, and are therefore non atomic. If a relation schema had an
attribute whose domain consists of identification numbers encoded
as above the schema would not be in first normal form.

When such identification numbers are used, the department
of an employee can be found by writing code that breaks up the
structure of an identification number. Doing so requires extra
programming, and information gets encoded in the application
program rather than in the database. Further problems arise if
such identification numbers are used as primary keys: When an
employee changes department, the employees identification
number must be changed everywhere it occurs, which can be a
difficult task, or the code that interprets the number would give a
wrong results.

The use of set valued attributes can lead to designs with
redundant storage of data, which in turn can result inconsistencies.
For instance, instead of the relationship between accounts and
customers being represented as a separate relations depositor, a
database designer may be tempted to store a set owners with each
account, and a set of accounts with each customer. Whenever an
account is created, or the set of owners of an account is updated,
the update has to be performed at two paces; failure to perform
both updates can leave the database in an inconsistent state.
Keeping only one of these sets would avoid repeated information,
but would complicate some queries. Set valued attributes are also
more complicated to write queries with, and, or complicated to
reason about.

 Database Management System

 NOTES

166

Pitfalls in Relational Database Design

Before we continue our discussion of normal forms, let us look
at what can go wrong in bad database design. Among the
undesirable properties that a bad design may

 Repetition of information

 Inability to represent certain information

We shall discuss these problems with the help of a modified
database design for our banking example: suppose the information
concerning loans is kept in one single relation, lending, which is
defined over the relation schema
Lending-schema = (branch-name, branch-city, assets,
 customer-name, loan-number, amount)

 Below table, shows an instance of the relation
lending(lending-schema). A tuple t in the lending relation has the
following intuitive meaning:

 t[assets] is the asset figure for the branch named t[branch-
name].

 t[branch-city] is the city in which the branch named t[branch-
name] is located.

 t[loan-number] is the number assigned to a loan made by
the branch named.

 t[branch-name] to the customer named t[customer-name].

 t[amount] is the amount of the loan whose numbers is t[loan-
name].

Suppose that we wish to add a new loan to our database.

Say, the loan is made by the Perryridge branch to Adams an
amount of $1500. Let the loan-number be L-31. In our design, we
need a tuple with values on all the attributes of lending-schema.
Thus, we must repeat the asset and city data for the Perryridge
branch, and must ass the tuple. (Perryridge, Horseneck,
1700000,Adams,L-31,1500)

Sample Lending Relation

To the lending relation in general, the set and city data for a branch
must appear once for each loan made by that branch.

The repetition of information in our alternative design is
undesirable. Repeating information wastes space. Furthermore, it

 Database Management System

 NOTES

167

complicates updating the database. Suppose, for example, that the
assets of the Perryridge branch change from 1700000 to 1900000.
Under our original design, one tuple of the branch relations needs
to be changed. Under our alternative design, may tuples of the
lending relations need to be changed. Thus, updates are more
costly under the alternative design than under the original design.
When we perform the update in the alternative database, we must
ensure that every tuple pertaining to the Perryridge branch is
updated, or else our database will show two different asset values
for the Perryridge branch.

That observation is central to understanding why the alternative
design is bad. We know that a bank branch has a unique value of
assets, so given a branch name we can uniquely identify the assets
value. On the other hand, we know that a branch may make many
loans, so given a branch name we cannot uniquely determine a
loan number.

In other words, we say that the functional dependency

Branch-name- assets

Holds on Lending-schema, but we do not except the functional
dependency branch-nameloan-number to hold. The fact that a
branch has a particular value of assets, and the fact that a branch
makes a loan are independent.

Functional Dependencies

Functional dependencies play a key role in differentiating good
database designs from bad database designs. A functional
dependency is a type of constraint that is a generalization of the

notion of key.

 Basic relation in use

 Database Management System

 NOTES

168

Basic Concepts

 Functional dependencies are constraints on the set of legal
relations. They allow us to express facts about the enterprise that
we are modeling with our database. We defined the notion of a
superkey as follows. Let R be a relation schema. A subset K of R
is a superkey of R if, in any legal relation r(R), for all pairs t1 and t2

of tuples in such that t1 t2, then t1[k]  t2[k]. That is, no two tuples
in any legal relation r(R) may have the same value on attribute set
k.

 The notion of functional dependency generalizes the notion of
super key. Consider a relation schema R, let   R and  R

.The functional dependency

  

 Holds on schema R if, in any legal relations r(R), for all pairs of
tuple t1 and t2 in r such that t1[]=t2[], it is also the case that

t1[]=t2[].

 Using the functional-dependency notation, we say that K

superkey of R if K  R. That is, K is a super key if, whenever
t1[k]=t2[k], it id also the case that t1[R]=t2[R] (that is, t1 = t2).

Functional dependencies allow us to express constraints that we
cannot express with super keys. Consider the schema

Loan-info-schema = (customer-name, loan-number,
 branch-name, amount)

Which is simplification of the lending-schema that we saw earlier.
The set of functional dependencies that we expect to hold on this
relation schema is
 loan-numberamount
 loan-numberbranch0-name

We would not, however, expect the functional dependency

 loan-numbercustomer-name

to hold, since, in general, a given loan can be made to more than
one customer (for example to both members of a husband-wife
pair).

 Database Management System

 NOTES

169

1. To test relations to see whether they are legal under a given
set of functional dependencies. If a relation r is legal under a
set F of functional dependencies, we say that r satisfies F.

2. To specify constraints on the set of legal relations. We shall
thus concern ourselves with only those relations that satisfy
a given set of functional dependencies. If we wish to
constrain ourselves to relations on schema R that satisfy a
set F of functional dependencies, we say that F holds on R.

 Consider a relation R, attribute Y of R is functionally dependent
on attribute X of R if and only if each X-value in R has associated
with it precisely one Y-value in R (at any one time). It is

represented by R.X  R.Y

The concept of functional dependencies is the basis for the
first three normal forms. A column, Y, of the relational table R is
said to be functionally dependent upon column X of R if and only

if each value of X in R is associated with precisely one value of Y at
any given time. X and Y may be composite. Saying that column Y
is functionally dependent upon X is the same as saying the values
of column X identify the values of column Y. If column X is a
primary key, then all columns in the relational table R must be
functionally dependent upon X.
A shorthand notation for describing a functional dependency is:

R.x —>; R.y

Which can be read as in the relational table named R, column x
functionally determines (identifies) column y.
Full functional dependence applies to tables with composite

keys. Column Y in relational table R is fully functional on X of R if it
is functionally dependent on X and not functionally dependent upon
any subset of X. Full functional dependence means that when a
primary key is composite, made of two or more columns, then the
other columns must be identified by the entire key and not just
some of the columns that make up the key.

Closure set of Functional Dependencies

We need to consider all functional dependencies that hold.
Given a set of functional dependencies, we can prove that
certain other ones also hold. We say these ones are logically

implied by .

 Database Management System

 NOTES

170

Suppose we are given a relation scheme ,
and the set of functional dependencies:

Then the functional dependency is logically implied.

To see why, let and be tuples such that

As we are given A B, it follows that we must also have

Further, since we also have B H, we must also have

Thus, whenever two tuples have the same value on , they

must also have the same value on , and we can say that A H .

The closure of a set of functional dependencies is the set

of all functional dependencies logically implied by .

We denote the closure of by . To compute , we can use
some rules of inference called Armstrong's Axioms:

o Reflexivity rule: if is a set of attributes and ,

then holds.
o Augmentation rule: if holds, and is a set of

attributes, then holds.
o Transitivity rule: if holds, and holds,

then holds.

These rules are sound because they do not generate any
incorrect functional dependencies. They are also complete as they

generate all of .

 Database Management System

 NOTES

171

To make life easier we can use some additional rules, derivable
from Armstrong's Axioms:

o Union rule: if and , then holds.
o Decomposition rule: if holds, then

and both hold.
o Pseudotransitivity rule: if holds, and

holds, then holds.

Applying these rules to the scheme and set mentioned above, we
can derive the following:

o A H, as we saw by the transitivity rule.
o CG HI by the union rule.
o AG I by several steps:

 Note that A C holds.
 Then AG CG, by the augmentation rule.

 Now by transitivity, AG I.

Closure of Attribute Sets

To test whether a set of attributes is a superkey, we need to
find the set of attributes functionally determined by .

1. Let be a set of attributes. We call the set of attributes
determined by under a set of functional dependencies
the closure of under , denoted .

2. The following algorithm computes :

3. If we use this algorithm on our example to calculate
then we find:

o We start with result = AG.
o A B causes us to include B in result.
o A C causes result to become ABCG.

 Database Management System

 NOTES

172

o CG H causes result to become ABCGH.
o CG I causes result to become ABCGHI.
o The next time we execute the while loop, no new

attributes are added, and the algorithm terminates.

Canonical Forms

To minimize the number of functional dependencies that need to be
tested in case of an update we may restrict to a canonical cover

.

A canonical cover for is a set of dependencies such that
logically implies all dependencies in , and vice versa.

 must also have the following properties:

Every functional dependency in contains no extraneous
attributes in (ones that can be removed from without changing

). So is extraneous in if and

Logically implies .

Every functional dependency in contains no extraneous
attributes in (ones that can be removed from without changing

). So is extraneous in if and

Logically implies .

Each left side of a functional dependency in is unique. That is
there are no two dependencies and in such that

.

To compute a canonical cover for ,

o Use the union rule to replace dependencies of the
form and with .

o Test each functional dependency to see if
there is an extraneous attribute in .

o Test each functional dependency to see if
there is an extraneous attribute in .

 Database Management System

 NOTES

173

o Continue until there are no changes occurring in the
loop.

An example: for the relational scheme , and the set
of functional dependencies

We will compute .

We have two dependencies with the same left hand side:

We can replace these two with just A BC.

 is extraneous in AB C because B C logically implies AB C .
Then our set is

We still have an extraneous attribute on the right-hand side of the
first dependency. is extraneous in A BC because A B and B

C logically imply that A BC .
o So we end up with

Desirable Properties of Decomposition

Consider a schema

Lending-schema = (bname, assets, bcity, loan#, cname,
amount)

which we saw was a bad design.

The set of functional dependencies we required to hold on this
schema was:

 bname assets bcity
 loan# amount bname

If we decompose it into

 Database Management System

 NOTES

174

 Branch-schema = (bname, assets, bcity)

 Loan-info-schema = (bname, loan#, amount)
 Borrow-schema = (cname, loan#)

we claim this decomposition has several desirable properties.

Lossless Decomposition

We claim the above decomposition is lossless. How can we decide
whether decomposition is lossless?

o Let be a relation scheme.
o Let be a set of functional dependencies on .
o Let and form a decomposition of .
o The decomposition is a lossless-join decomposition of

 if at least one of the following functional
dependencies are in :

1.
2.

Why is this true? Simply put, it ensures that the attributes
involved in the natural join () are a candidate key for at least

one of the two relations.

This ensures that we can never get the situation where
spurious tuples are generated; as for any value on the join
attributes there will be a unique tuple in one of the relations.

We'll now show our decomposition is loss less-join by showing a
set of steps that generate the decomposition:

o First we decompose Lending-scheme into

o Since bname assets bcity, the augmentation rule for

functional dependencies implies that

 Database Management System

 NOTES

175

o Since Branch-scheme Borrow-scheme = bname, our
decomposition is lossless join.

o Next we decompose Borrow-scheme into

o As loan# is the common attribute, and

This is also a loss less-join decomposition.

Dependency Preservation

Another desirable property in database design is dependency
preservation.

We would like to check easily that updates to the database do not

result in illegal relations being created.

It would be nice if our design allowed us to check updates without

having to compute natural joins.

To know whether joins must be computed, we need to determine
what functional dependencies may be tested by checking each

relation individually.

Let F be a set of functional dependencies on schema R.

Let be a decomposition of R.

The restriction of F to is the set of all functional dependencies

in that include only attributes of .

Functional dependencies in a restriction can be tested in one

relation, as they involve attributes in one relation schema.

The set of restrictions is the set of dependencies that
can be checked efficiently.

We need to know whether testing only the restrictions is sufficient.

 Database Management System

 NOTES

176

Let .

F' is a set of functional dependencies on schema R, but

in general, .

However, it may be that .

If this is so, then every functional dependency in F is implied by F',
and if F' is satisfied, then F must also be satisfied.

A decomposition having the property that is a
dependency-preserving decomposition.

The algorithm for testing dependency preservation follows this
method:

 compute

 for each schema in D do
 begin

 := the restriction of to

 ;

 end

 for each restriction do

 begin

 end

 compute ;

 if () then return (true)

 else return (false);

We can now show that our decomposition of Lending-schema is
dependency preserving.

The functional dependency

 Database Management System

 NOTES

177

 bname assets bcity

can be tested in one relation on Branch-schema.

The functional dependency

 loan# amount bname

can be tested in Loan-schema.

As the above example shows, it is often easier not to apply the
algorithm shown to test dependency preservation, as computing

takes exponential time.

An Easier Way To Test For Dependency Preservation

Really we only need to know whether the functional dependencies

in F and not in F' are implied by those in F'.

In other words, are the functional dependencies not easily
checkable logically implied by those that are?

Rather than compute and , and see whether they are equal,

we can do this:

Find F - F', the functional dependencies not checkable in one

relation.

See whether this set is obtainable from F' by using Armstrong's
Axioms.

This should take a great deal less work, as we have (usually) just a
few functional dependencies to work on.

Second Normal Form

A relation schema R is in 2NF if every non-prime attribute is fully
functionally dependent on any key of R

Prime attribute: An attribute that is part of some key non-prime
attribute: An attribute that is not part of any key.

 Database Management System

 NOTES

178

Third normal Form

A relation R is in third normal form (3NF) with respect to a set F of
functional dependencies id, for all functional dependencies in F+ of

the form   , where   R <R and   R, at least one of the
following holds:

    Is trivial (i.e.,   )

  Is a super key for R

 Each attribute A in  –  is contained in a candidate key
for R.

Decomposition Algorithm

Let Fc be a canonical cover for F;
i := 0;

for each functional dependency    in Fc do

 if none of the schemas Rj, 1  j  i contains  
 then begin
 i := i + 1;

 Ri :=  
 end

if none of the schemas Rj, 1  j  i contains a candidatekey

for R
 then begin

 i := i + 1;
 Ri := any candidate key for R;
 end
return (R1, R2, ..., Ri)

Summary

The main purpose of normalization is to maintain well-
organized data in terms of tables by reducing redundancy, update
anomalies and to simplify the enforcement of integrity constraints.
Last but not least, to provide a good design that is easy to
understand and provides base to extensibility.

First normal form: A table is in the first normal form if it contains no
repeating columns.

Second normal form: A table is in the second normal form if it is in
the first normal form and contains only columns that are dependent
on the whole (primary) key.

 Database Management System

 NOTES

179

Third normal form: A table is in the third normal form if it is in the
second normal form and contains only columns that are no
transitively dependent on the primary key.

When you follow these rules, the tables of the model are in the third
normal form, according to E. F. Codd, the inventor of relational
databases. When tables are not in the third normal form, either
redundant data exists in the model, or problems exist when you
attempt to update the tables.

Technical Terms

Normalization:

A series of steps followed to obtain a database design that
allows for efficient access and storage of data. These steps reduce
data redundancy and the chances of data becoming inconsistent.

Transitive dependency:

Let R be a relation and let a, b and c are the attributes of R
then we say that R satisfies transitive dependency if there exists
ab and bc and consequently ac.

Functional Dependency:

Many-to-one relationship shared by columns of values in
database tables. A functional dependency from column X to column
Y is a constraint that requires two rows to have the same value for
the Y column if they have the same value for the X column.

Non-Loss Decomposition:

Without losing of data, dividing the relation into multiple
number of relations called Non loss Decomposition.

Model Questions

1. What does Data Normalization mean? What are the rules
for Normalization?

2. Explain the First normal Form [1NF] with an example?
3. Explain the concept of functional Dependency?
4. What is Decomposition? Write about Loss-less

Decomposition?

 Database Management System

 NOTES

180

2. ADVANCED NORMAL FORMS

Objective

 To learn about advanced Normal Forms

 To differentiate 3NF and BCNF

 To learn about Fourth Normal form

 To know about Multivalued Dependencies

 To introduce more normal forms fifth and domain-key NF

Structure of the Lesson

Advanced Normalization
Comparison Between 3 NF and BCMF
Fourth Normal Form

Multi-valued Dependencies
Definition of Fourth Normal Form

More Normal Forms
Summary
Technical Terms
Model Questions

Advanced Normal Forms

After 3NF, all normalization problems involve only tables,
which have three or more columns, and all the columns are keys.
Many practitioners argue that placing entities in 3NF is generally
sufficient because it is rare that entities that are in 3NF are not in
4NF and 5NF. They further argue that the benefits gained from
transforming entities into 4NF and 5NF are so slight that it is not
worth the effort. However, advanced normal forms are presented
because there are cases where they are required.

Comparison between 3NF and BCNF

Of the two normal forms for relational-database schemas,
3NF and BCNF, there are advantages to 3NF in that we know that
it is always possible to obtain a 3NF design without sacrificing a
loss less join or dependency preservation. Nevertheless, there are
disadvantages to 3NF: If we do not eliminate all transitive relations

 Database Management System

 NOTES

181

schema dependencies, we may have to use null values to
represent some of the possible meaningful relationships among the
data items, and there is the problem, consider again the Banker-
schema and its associated functional dependencies. Since banker-
name-branch-name, we may want to represent the relationship
between values for banker-name and values for branch-name in
our database. If we are to do so, however, either there must be a
corresponding value for customer-name, or we must use a null
value for the attribute customer-name.

 An instance of Banker-schema

As an illustration of the repetition of information problem,
consider the instance of Banker-schema in the Banker-schema
relation. Notice that the information indicating that Johnson is
working at the Perryridge branch is repeated.

Recall that our goals of database design with functional
dependencies are:

1. BCNF
2. Loss less join
3. Dependency preservation

Since it is not always possible to satisfy all three, we may be

forced to choose BCNF and dependency preservation with 3NF.

It is worth noting that SQL does not provide a way of
specifying functional dependencies, except for the special case of
declaring super keys by using the primary key or unique
constraints. It is possible, although a little complicated, to write
assertions that enforce a functional dependency- preserving
decomposition; if we use standard SQL we would not be able to

 Database Management System

 NOTES

182

efficiently test a functional dependency whose left-hand side is not
a key.

 Although testing functional dependencies may involve a join if
the decomposition is not dependency preserving, we can reduce
the cost by using materialized views, which many database
systems support. Given BCNF decomposition that is not
dependency preserving, we consider each dependency in a
minimum cover Fc that is not preserved in the decomposition. For
each such dependency   , we define materialized views that

computes a join of all relations in the decomposition, and projects
the results on  . The functional dependency can be easily tested

on the materialized view, by means of a constraint unique(). On

the negative side there is a space and time overhead due to the
materialized view, but on the positive side, the application
programmer need not worry about writing code to keep redundant
data consistent on updates. It is the job of the database system to
maintain the materialized view, keep up to date when the database
is updated.

 Thus, in case we are not able to get a dependency-
preserving BCNF decomposition, it is generally preferable to opt for
BCNF, and use techniques such as materialized views to reduce
the cost of checking functional dependencies.

Fourth Normal Form

Some relation schemas, even though they are in BCNF, do
not seem to be sufficiently normalized, in the sense that they still
suffer from the problem of repetition of information. Consider again
our banking example: Assume that, in an alternative design for the
bank database schema, we have the schema:

BC-schema=(loan-number, customer-name, customer-street,
customer-city)

The astute reader will recognize this schema as a non-BCNF
schema because of the functional dependency.

Customer- name customer—street customer-city

That we asserted earlier, and because customer- name is
not a key for BC-schema. However, assume that our bank is
attracting wealthy customers who have several addresses. (Say a
winter home and a summer home). Then we no longer wish to

 Database Management System

 NOTES

183

enforce the functional dependency Customer- name customer—
street customer-city. If we remove this functional dependency, we
find BC-schema to be in BCNF with respect to our modified set of
functional dependencies. Yet, even though BC-schema is now in
BCNF, we still have the problem of repetition of information that we
had earlier.

 To deal with this problem, we must define a new form of
constraint, called a multivalued dependency. As we did for
functional dependencies, we shall use multivalued dependencies to
define a normal form for relation schemas. This normal form,
called fourth normal form (4NF), is more restrictive than BCNF. We
shall see that every 4 NF schema is also in BCNF, but there are
BCNF schemas that are not in 4 NF.

Multi-valued Dependency

Functional dependencies rule out certain tuples from being
in a relation. If AB, then we cannot have two tuples with the same
A value but different B values. Multivalued dependencies, on the
other hand, don’t rule out the existence of certain tuples. Instead,
they require that other tuples of a certain form be present in the
relation.

For this reason, functional dependencies sometimes are referred to
as equality-generating dependencies, and multivalued
dependencies are referred to as tupel-generating dependencies.

Let R be a relation schema and let    and   R. The

multivalued dependency   .

 holds on R if in any legal relation r(R), for all pairs for tuples t1
and t2 in r such that t1[] = t2 [], there exist tuples t3 and t4 in r

such that:

 t1[] = t2 [] = t3 [] t4 []

 t3[] = t1 []

 t3[R – ] = t2[R – ]

 t4 [] = t2[]

 t4[R – ] = t1[R – ]

 Database Management System

 NOTES

184

 Tabular representation of  

 Basic table

This definition is less complicated than it appears to be. Figure
gives a tabular picture of t1,t2,t3 and t4 . Intuitively, the multivalued
dependency   says that the relationship between  and 

is independent of the relationship between  and R-  . If the

multivalued dependency   is a trivial multivalued

dependency on schema R then,   is trivial if    or 

  = R

 To illustrate the difference between functional and
multivalued dependencies, we consider the BC- schema again, and
the relation bc. We must repeat the loan number once for each
address, for each loan a customer has.

This repetition is unnecessary, since the relationship
between a customer and his address is independent of the
relationship between that customer and a loan. If a customer (say,
smith) has a loan (say, loan number l-23). We want that loan to be
associated with all Smiths addresses. Thus, the relation of figure is
illegal. To make this relation legal. We need to add the tuples (L-23,
smith, main, Manchester) and (L-27, smith, north, rye) to the bc
relation of figure.

Comparing the preceding example with our definition of
multivalued dependency, we see that we want the multivalued
dependency

Customer-name - customer -street customer -city

 Database Management System

 NOTES

185

To hold (The multivalued dependency customer-name loan-
number will do as well. We shall soon see that they are equivalent).

 As with functional dependencies, we shall use multivalued
dependencies in two ways:

1. To test relations to determine whether they are legal under a
given set of functional and multivalued dependencies.

2. To specify constraints on the set on legal relations; we shall

thus concern ourselves with only those relations that satisfy
a given set of functional and multivalued dependencies.

Relation bc: Am example of redundancy in a BCNF relation.

An illegal bc relation.

Note that, if a relation r fails to satisfy a given multivalued
dependency, we can construct a relation rl that does satisfy the
multivalued dependency by adding tuples to r.

 Let D denote a set of functional and multivalued
dependencies. The closure D+ of D is the set of all functional and

multivalued dependencies logically implied by D. As we did for
functional dependencies, we can compute D+ from D, using the
formal definitions of functional dependencies and multivalued
dependencies. We can manage with such reasoning for very
simple multivalued dependencies. Luckily, multivalued
dependencies that occur in practice appear to be quite simple. For
complex dependencies, it is better to reason about sets of
dependencies by using a system of inference rules.

For the definition of multivalued dependency, we can derive the
following rule:

 Database Management System

 NOTES

186

If  --  then,   .

In other words, every functional dependency is also a multivalued
dependency.

Definitions of Fourth Normal Form

Consider again our BC-schema example in which the multi-

valued dependency customer-name customer-street customer-
city hold, but no nontrivial functional dependencies hold, although
BC- schema is in BCNF, the deign is not ideal, since we must
repeat a customers address information for each loan. We shall
see that we can use the given multivalued dependency to improve
the database design by decomposing BC-schema into a fourth
normal form decomposition.

A relation schema R is in fourth normal form (4NF) with
respect to a set D of functional and multivalued dependencies if, for

all multivalued dependencies in D+ of the form   where 

 R and   R , at least one of the following holds

   is a trivial dependency.

 is a super key for schema R.

A database design is in 4NF if each member of the set of

relation schemas that constitutes the design is in 4 NF.

Note that the definition of 4NF differs from the definition of
BCNF in only the use of multi-valued dependencies instead of
functional dependencies. Every 4NF schema is in BCNF. To see
this fact, we note that, if a schema R is not in BCNF then, there is

 Database Management System

 NOTES

187

A nontrivial functional dependency   holding on R, where 

is not a super key. Since  implies   , R cannot be in

4NF.
 Let R be a relation schema, and let R1, R2, R3,………….,Rn
be a decomposition of R. To check if each relation schema R i in
the decomposition is in 4NF, we need to find what multivalued
dependencies hold on each Ri. Recall that, for a set F of functional
dependencies, the restriction Fi of F to Ri is all functional
dependencies in F+ that include only attributes of Ri. Now consider
a set D of not functional and multivalued dependencies. The
restriction of D to Ri is the set Di consisting of

1. All functional dependencies in D+
 that include only attributes

of Ri.

 result := {R};

done := false;

compute F+;

while (not done) do

 if (there is a schema Ri in result that is not in

BCNF)

 then begin

 let    be a nontrivial functional

 dependency that holds on Ri

 such that   Ri is not in F+,

 and    = ;

 result := (result – Ri)  (Ri – ) 

(, );

 end

 else done := true;

Note: Each Ri is in BCNF, and decomposition is loss

less join.

 Database Management System

 NOTES

188

2. All multivalued dependencies of the form

  Ri

where   Ri and   is in D+.

More Normal Forms

The fourth normal form is by no means the “ultimate” formal
form. As we saw earlier, multivalued dependencies help us
understand and tackle some forms of repetition of information that
cannot be understood in terms of functional dependencies. There
are types of constraints called join dependencies that generalize
multivalued dependencies, and lead to another normal form called
project-normal form (PJNF) (PJNF called fifth normal form in
some books). There is a class of even more general constraints,
which leads to a normal form called domain-key normal form.

 A practical problem with the use of these generalized
constraints is that they are not only hard to reason with, but there is
also no set of sound and complete inference rules of r reasoning
about the constraints. Hence PJNF and domain-key normal form
are used quite rarely. Appendix C provides more details about
these normal forms.

 Conspicuous by its absence from our discussion of normal
forms is second normal form (2NF). We have not discussed it,

because it is of historical interest only.

 Database Management System

 NOTES

189

Summary

The third normal form requires that all columns in a relational
table are dependent only upon the primary key. A more formal
definition is: A relational table is in third normal form (3NF) if it is
already in 2NF and every non-key column is non transitively
dependent upon its primary key. In other words, all nonkey
attributes are functionally dependent only upon the primary key.
The advantage of having relational tables in 3NF is that it
eliminates redundant data, which in turn saves space and reduces
manipulation anomalies.

Boyce-Codd normal form (BCNF) is a more rigorous version
of the 3NF dealing with relational tables that had (a) multiple
candidate keys, (b) composite candidate keys, and (c) candidate

keys that overlapped.

Fourth normal form (4NF) is based on the concept of
multivalued dependencies (MVD). A Multivalued dependency
occurs when in a relational table containing at least three columns,
one column has multiple rows whose values match a value of a

single row of one of the other columns.

In brief, observe the following:

3rd Normal Form (3NF)

A table is in 3NF if it is in 2NF and if it has no transitive

dependencies.

Boyce-Codd Normal Form (BCNF)

A table is in BCNF if it is in 3NF and if every determinant is a

candidate key.

4th Normal Form (4NF)

A table is in 4NF if it is in BCNF and if it has no multi-valued

dependencies.

 Database Management System

 NOTES

190

5th Normal Form (5NF)

A table is in 5NF, also called “Projection-join Normal Form” (PJNF),
if it is in 4NF and if every join dependency in the table is a

consequence of the candidate keys of the table.

Domain-Key Normal Form (DKNF)

A table is in DKNF if every constraint on the table is a logical
consequence of the definition of keys and domains.

Technical Terms

Domain: A domain is the set of allowable values for one or more

attributes.

Functional Dependency: A many-to-one relationship shared by
columns of values in database tables. A functional dependency
from column X to column Y is a constraint that requires two rows to
have the same value for the Y column if they have the same value
for the X column.

Multivalued Dependency: Multi-valued dependency (MVD) is a
generalization of functional dependency (FD), in the sense that
every FD is a MVD. (A-->> B)

Join Dependency?
 Let R be a relation, and let A, B,…..Z be arbitrary subsets of the
set of attributes of R. Then we say that R satisfies the JD if and
only if R is equal to the join of its projections on A, B,……Z.

Model Questions :

1. Compare third normal form and BCNF?
2. What is meant by Multivalued Dependency? Explain with

an example?
3. Write about Fourth Normal form?

 Database Management System

 NOTES

191

3. DATABASE SYSTEM ARCHITECTURES

AND THE SYSTEM CATALOG

Objectives

The major objective of this lesson is to provide basics of database

concepts and technology.

After reading this chapter, you understand:

 The elementary concepts data of System Architectures for

DBMSs
 Discuss about Catalogs for Relational DBMSs.
 Discuss about System Catalog Information in ORACLE
 Discuss about Catalog Information Accessed by DBMS Software

Modules
 Distinguish between Data Dictionary and Data Repository

Systems

Structure

System Architectures for DBMSs

Catalogs for Relational DBMSs

System Catalog Information in ORACLE

Other Catalog Information Accessed by DBMS Software Modules

Data Dictionary and Data Repository Systems

System Architectures for DBMSs

Architectures for DBMSs followed trends similar to those of general

computer systems architectures. Earlier architectures used mainframe

computers to provide the main processing for all functions of the system,

including user application programs, user interface programs, as well as all

the DBMS functionality. The reason was that most users accessed such

systems via computer terminals that did not have processing power and

only provided display capabilities. So, all processing was performed

remotely, and only display information and controls were sent from the

 Database Management System

 NOTES

192

computer to the display terminals, which were connected to the central

computer via various types of communications networks.

As the prices of hardware declined, most users replaced their terminals

with personal computers (PCs) and workstations. At first, database

systems used these computers in the same way as they had used display

terminals, so that the DBMS itself was still a centralized DBMS where all

the DBMS functionality, application program execution, and user interface

processing were carried out in one machine. Gradually DBMS systems

started to exploit the available processing power at the user side, which led

to client-server DBMS architectures.

Client-Server Architecture

We first discuss client-server architecture in general, then see how it is

applied to DBMSs. The client-server architecture was developed to deal

with computing environments where a large number of PCs, workstations,

file servers, printers, database servers, Web servers, and other equipment

are connected together via a network. The idea is to define specialized

servers with specific functionalities. For example, it is possible to connect a

number of PCs or small workstations as clients to a file server that

maintains the files of the client machines. Another machine could be

designated as a printer server by being connected to various printers;

thereafter, all print requests by the clients are forwarded to this machine.

Web servers or E-mail servers also fall into the specialized server category.

In this way, the resources provided by specialized servers can be accessed

by many client machines. The client machines provide the user with the

appropriate interfaces to utilize these servers as well as with local

processing power to run local applications. This concept can be carried

over to software, with specialized software such as a DBMS or a CAD

(computer-aided design) package being stored on specific server machines

and being made accessible to multiple clients. Some machines would be

only client sites (for example, diskless workstations or workstations/PCs

with disks that have only client software installed). Other machines would

be dedicated servers. Still other machines would have both client and

server functionality.

The concept of client-server architecture assumes an underlying framework

that consists of many PCs and workstations as well as a smaller number of

mainframe machines, connected via local area networks and other types of

computer networks. A client in this framework is typically a user machine

that provides user interface capabilities and local processing. When a client

requires access to additional functionality such as database access that

does not exist at that machine, it connects to a server that provides the

needed functionality. A server is a machine that can provide services to the

 Database Management System

 NOTES

193

client machines, such as printing, archiving, or database access. Two main

types of basic DBMS architectures were created on this underlying client-

server framework (Note 1). We discuss those next.

Client-Server Architectures for DBMSs

The client-server architecture is increasingly being incorporated into

commercial DBMS packages. In relational DBMSs, many of which started

as centralized systems, the system components that were first moved to

the client side were the user interface and application programs. Because

SQL provided a standard language for RDBMSs, it created a logical

dividing point between client and server. Hence, the query and transaction

functionality remained at the server side. In such an architecture, the server

is often called a query server or transaction server, because it provided

these two functionalities. In RDBMSs, the server is also often called an

SQL server, since most RDBMS servers are based on the SQL language

and standard.

In such client-server architecture, the user interface programs and

application programs can run at the client side. When DBMS access is

required, the program establishes a connection to the DBMS which is on

the server side and once the connection is created, the client program can

communicate with the DBMS. A standard called Open Database

Connectivity (ODBC) provides an Application Programming Interface (API),

which allows client-side programs to call the DBMS, as long as both client

and server machines have the necessary software installed. Most DBMS

vendors provide ODBC drivers for their systems. Hence, a client program

can actually connect to several RDBMSs and send query and transaction

requests using the ODBC API, which are processed at the server sites. Any

query results are sent back to the client program, which can process or

display the results as needed. Another related standard for the JAVA

programming language, called JDBC, has also been defined. This allows

JAVA client programs to access the DBMS through a standard interface.

The second approach to client-server was taken by some object-oriented

DBMSs. Because many of those systems were developed in the era of

client-server architecture, the approach taken was to divide the software

modules of the DBMS between client and server in a more integrated way.

For example, the server level may include the part of the DBMS software

responsible for handling data storage on disk pages, local concurrency

control and recovery, buffering and caching of disk pages, and other such

functions. Meanwhile, the client level may handle the user interface, data

dictionary functions, DBMS interaction with programming language

compilers, global query optimization/concurrency control/recovery,

structuring of complex objects from the data in the buffers, and other such

 Database Management System

 NOTES

194

functions. In this approach, the client-server interaction is more tightly

coupled and is done internally by the DBMS modules some of which reside

in the client rather than by the users. The exact division of functionality

varies from system to system. In such client-server architecture, the server

has been called a data server, because it provides data in disk pages to the

client, which can then be structured into objects for the client programs by

the client-side DBMS software itself.

Catalogs for Relational DBMSs

We now turn our attention to the second topic of this chapter, which is the

DBMS catalog, and discuss catalogs for relational DBMSs (Note 2). The

information stored in a catalog of an RDBMS includes the relation names,

attribute names, and attribute domains (data types), as well as descriptions

of constraints (primary keys, secondary keys, foreign keys, NULL/NOT

NULL, and other types of constraints), views, and storage structures and

indexes. Security and authorization information is also kept in the catalog;

this describes each user’s privileges to access specific database relations

and views, and the creator or owner of each relation.

In relational DBMSs it is common practice to store the catalog itself as

relations and to use the DBMS software for querying, updating, and

maintaining the catalog. This allows DBMS routines (as well as users) to

access the information stored in the catalog—whenever they are

authorized to do so using the query language of the DBMS, such as SQL.

The primary key of REL_AND_ATTR_CATALOG is the combination of the

attributes {REL_NAME, ATTR_NAME}, because all relation names should

be unique and all attribute names within a particular relation should also be

unique (Note 3). Another catalog relation can store information such as

tuple size, current number of tuples, number of indexes, and creator name

for each relation.

To include information on secondary key attributes of a relation, we can

simply extend the preceding catalog if we assume that an attribute can be a

member of one key only. In this case we can replace the

MEMBER_OF_PK attribute of REL_AND_ATTR_CATALOG with an

attribute KEY_NUMBER; the value of KEY_NUMBER is 0 if the attribute is

not a member of any key, 1 if it is a member of the primary key, and i > 1

for the secondary key, where the secondary keys of a relation are

numbered 2, 3, ..., n. However, if an attribute can be a member of more

than one key, which is the general case, the above representation is not

sufficient. One possibility is to store information on key attributes separately

in a second catalog relation RELATION_KEYS, with attributes

{REL_NAME, KEY_NUMBER, MEMBER_ATTR}, which also together form

 Database Management System

 NOTES

195

the key of RELATION_KEYS. This is shown in Figure 1. 3(a). The DDL

compiler assigns the value 1 to KEY_NUMBER for the primary key and

values 2, 3, ..., n for the secondary keys, if any. Each key will have a tuple

in RELATION_KEYS for each attribute that is part of that key, and the

value of MEMBER_ATTRIBUTE gives the name of that attribute. A similar

structure can be used to store information involving foreign keys. If

constraints are given names so they can be dropped later, then a unique

attribute CONSTRAINT_NAME must be added to the catalog tables that

describes constraints (including those that describe keys).

Next, let us consider information regarding indexes. In the general case

where an attribute can be a member of more than one index, the

RELATION_INDEXES catalog relation can be used. The key of

RELATION_INDEXES is the combination {INDEX_NAME,

MEMBER_ATTR} (assuming that index names are unique).

MEMBER_ATTR is the name of an attribute included in the index.

The definitions of views must also be stored in the catalog. A view is

specified by a query, with a possible renaming of the values appearing in

the query result. We can use the two catalog relations to store view

definitions. The first, VIEW_QUERIES, has two attributes {VIEW_NAME,

QUERY} and stores the query (as a text string) corresponding to the view.

The second, VIEW_ATTRIBUTES, has attributes {VIEW_NAME,

ATTR_NAME, ATTR_NUM} to store the names of the attributes of the

view, where ATTR_NUM is an integer number greater than zero specifying

the correspondence of each view attribute to the attributes in the query

result. The key of VIEW_QUERIES is VIEW_NAME, and that of

VIEW_ATTRIBUTES is the combination {VIEW_NAME, ATTR_NAME}.

The preceding examples illustrate the types of information stored in a

catalog. In a real system, the catalog will typically include many more

tables and information. Most relational systems store their catalog files as

DBMS relations. However, because the catalog is accessed very frequently

by the DBMS modules, it is important to implement catalog access as

efficiently as possible. It may be more efficient to use a specialized set of

data structures and access routines to implement the catalog, thus trading

generality for efficiency. An additional problem is that of system

initialization; the catalog tables must be created before the system can

function!

In conclusion, we take a conceptual look at the basic information stored in

the parts of a relational catalog for describing tables (relations). A high-level

EER schema diagram describing the information about schemas, relations,

attributes, keys, views, and indexes. The SCHEMA entity type in the figure

represents the schemas that have been defined in a RDBMS. The entity

 Database Management System

 NOTES

196

type RELATION is a weak entity type owned by (or identified by)

SCHEMA—with partial key RelName—to represent the relations that

appear in a particular schema. Two disjoint subclasses, BASE_RELATION

and VIEW_RELATION, are created for RELATION. The entity type

ATTRIBUTE is a weak entity type owned by BASE_RELATION, and its

partial key is AttrName. BASE_RELATIONs also have general key and

foreign key constraints, as well as indexes, whereas VIEW_RELATIONs

have their defining query, as well as the AttrNum described earlier to

specify correspondence of view attributes to query attributes. Notice that an

additional unspecified constraint is that all attributes related to a KEY or

INDEX entity—via the relationships KEY_ATTRS or INDEX_ATTRS—must

be related to the same BASE_RELATION entity to which the KEY or

INDEX entity is related. KeyType specifies whether the key is a foreign,

primary, or secondary key. FKEY is a subclass for foreign keys and is

related to the referenced relation via the REFREL relationship.

System Catalog Information in ORACLE

The various commercial database products adopt different conventions and

terminology with regard to their system catalog. However, in general, the

catalogs contain similar metadata describing conceptual, internal, and

external schemas. In this section, we examine parts of the system catalog

for the ORACLE RDBMS as an example of a catalog for a commercial

system.

In ORACLE, the collection of metadata is called the data dictionary. The

metadata is information about schema objects, such as tables, indexes,

views, triggers, and more. Access to the data dictionary is allowed through

numerous views, which are divided into three categories: USER, ALL, and

DBA. These terms are used as prefixes for the various views. The views

that have a prefix of USER contain schema information for objects owned

by a given user. Those with a prefix of ALL contain schema information for

objects owned by a user as well as objects that the user has been granted

access to, and those with a prefix of DBA are for the database

administrator and contain information about all database objects.

As already mentioned, the system catalog contains information about all

three levels of database schemas: external (view definitions), conceptual

(base tables), and internal (storage and index descriptions). To illustrate in

ORACLE, we examine some of the catalog views relating to each of the

three schema levels. The catalog (metadata) data can be retrieved through

SQL statements as can the user (actual) data.

We start with the conceptual schema information. To find the objects

owned by a particular user, ‘SMITH’, we can write the following query:

 Database Management System

 NOTES

197

 SELECT *

FROM ALL_CATALOG

WHERE OWNER = ‘SMITH’;

 The result of this query, which indicates that three base tables are owned

by SMITH: ACCOUNT, CUSTOMERS, and ORDERS, plus a view

CUSTORDER. The meaning of each column in the result should be clear

from its name.

 To find some of the information describing the columns of the ORDERS

table for ‘SMITH’, the following query could be submitted:

SELECT COLUMN_NAME, DATA_TYPE, DATA_LENGTH,

NUM_DISTINCT,

LOW_VALUE, HIGH_VALUE

 FROM USER_TAB_COLUMNS

 WHERE TABLE_NAME = ‘ORDERS’;

The result of this query could be as shown in Figure 1.6. Because the

USER_TAB_COLUMNS table of the catalog has the prefix USER_, this

query must be submitted by the owner of the ORDERS table. The last three

columns specified in the SELECT-clause of the SQL query play an

important role in the query optimization process. The NUM_DISTINCT

column specifies the number of distinct values for a given column and the

LOW_VALUE and HIGH_VALUE specify the lowest and highest value,

respectively, for the given column. We should note that these values, called

database statistics, are not automatically updated when tuples are

inserted/deleted/modified. Rather, the statistics are updated, either by

exact computation or by estimation, whenever the ANALYZE SQL

statement in ORACLE is executed as follows:

 ANALYZE TABLE ORDERS

 COMPUTE STATISTICS;

This SQL statement would update all statistics for the ORDERS relation

and its associated indexes. To access information about the internal

schema, the USER_TABLES and USER_INDEXES catalog tables can be

queried. For example, to find storage information about the ORDERS table,

the following query can be submitted:

 Database Management System

 NOTES

198

SELECT PCT_FREE, INITIAL_EXTENT, NUM_ROWS, BLOCKS,

EMPTY_BLOCKS,

AVG_ROW_LENGTH

 FROM USER_TABLES

 WHERE TABLE_NAME = ‘ORDERS’;

 The result of this query, which contains a subset of the available storage

information in the catalog. The information includes from left to right the

minimum percentage of free space in a block, the size of the initial storage

extent in bytes, the number of rows in the table, the number of used data

blocks allocated to the table, the number of free data blocks allocated to

the table, and the average length of a row in the table in bytes.

 The information from USER_TABLES also plays a useful role in query

processing and optimization. The storage information about the indexes is

just as important to the query optimizer as the storage information about

the relations. For example, the number of index blocks that have to be

accessed when searching for a specific key can be computed as the sum

of BLEVEL and LEAF_BLOCKS_PER_KEY (Note 5). This information is

used by the optimizer in deciding how to execute a query efficiently. For

information about the external schema, the USER_VIEWS table can be

queried as follows:

SELECT *

 FROM USER_VIEWS;

 SELECT COLUMN_NAME, DATA_TYPE, DATA_LENGTH

 FROM USER_TAB_COLUMNS

WHERE TABLE_NAME = ‘CUSTORDER’;

More detailed information about ORACLE’s data dictionary facilities can be

found in the ORACLE RDBMS Database Administrator’s Guide and the

ORACLE SQL Language Reference Manual.

Other Catalog Information Accessed by DBMS

Software Modules

The DBMS modules use and access a catalog very frequently; that is why it

is important to implement access to the catalog as efficiently as possible. In

this section we discuss the different ways in which some of the DBMS

software modules use and access the catalog. These include the following:

 Database Management System

 NOTES

199

1. DDL (and SDL) compilers: These DBMS modules process and check

the specification of a database schema in the data definition language

(DDL) and store that description in the catalog. Schema constructs and

constraints at all levels conceptual, internal, and external are extracted

from the DDL and SDL (storage definition language) specifications and

entered into the catalog, as is any mapping information among levels, if

necessary. Hence, these software modules actually populate (load) the

catalog’s minidatabase (or metadatabase) with data, the data being the

descriptions of database schemas.

2. Query and DML parser and verifier: These modules parse queries, DML

retrieval statements, and database update statements; they also check the

catalog to verify whether all the schema names referenced in these

statements are valid. For example, in a relational system, a query parser

would check that all the relation names specified in the query exist in the

catalog and that the attributes specified belong to the appropriate relations

and have the appropriate type.

3. Query and DML compilers: These compilers convert high-level queries

and DML commands into low-level file access commands. The mapping

between the conceptual schema and the internal schema file structures is

accessed from the catalog during this process. For example, the catalog

must include a description of each file and its fields and the

correspondences between fields and conceptual-level attributes.

4. Query and DML optimizer (Note 6): The query optimizer accesses the

catalog for access path, implementation information, and data statistics to

determine the best way to execute a query or DML command. For

example, the optimizer accesses the catalog to check which fields of a

relation have hash access or indexes, before deciding how to execute a

selection or join condition on the relation.

5. Authorization and security checking: The DBA has privileged commands

to update the authorization and security portion of the catalog. All access

by a user to a relation is checked by the DBMS for proper authorization by

accessing the catalog.

6. External-to-conceptual mapping of queries and DML commands:

Queries and DML commands specified with reference to an external view

or schema must be transformed to refer to the conceptual schema before

they can be processed by the DBMS. This is accomplished by accessing

the catalog description of the view in order to perform the transformation.

 Database Management System

 NOTES

200

Data Dictionary and Data Repository Systems

The terms data dictionary and data repository are used to indicate a more

general software utility than a catalog. A catalog is closely coupled with the

DBMS software; it provides the information stored in it to users and the

DBA, but it is mainly accessed by the various software modules of the

DBMS itself, such as DDL and DML compilers, the query optimizer, the

transaction processor, report generators, and the constraint enforcer. On

the other hand, the software package for a stand-alone data dictionary or

data repository may interact with the software modules of the DBMS, but it

is mainly used by the designers, users, and administrators of a computer

system for information resource management. These systems are used to

maintain information on system hardware and software configurations,

documentation, applications, and users, as well as other information

relevant to system administration.

If a data dictionary system is used only by designers, users, and

administrators, not by the DBMS software, it is called a passive data

dictionary; otherwise, it is called an active data dictionary or data directory.

The types of active data dictionary interfaces. Data dictionaries are also

used to document the database design process itself, by storing

documentation on the results of every design phase and the design

decisions. This helps in automating the design process by making the

design decisions and changes available to all the database designers.

Modifications to the database description are made by changing the data

dictionary contents. Using the data dictionary during database design

means that, at the conclusion of the design phase, the metadata is already

in the data dictionary.

Summary

In this lesson we first gave an overview of the centralized versus client-

server system architectures, and described how these architectures are

used in the database context. We discussed how earlier database systems

were centralized, and how the emergence of the environment of networked

workstations, PCs, and mainframes led to client-server computing. We

showed how relational systems evolved into SQL servers (also called query

servers or transaction servers), and discussed how the newer object

databases further divide basic functionality between client and server,

leading to data servers.

We then discussed the type of information that is included in a DBMS

catalog. We discussed catalog structure for a relational DBMS and showed

how it can store the constructs of the relational model, including information

 Database Management System

 NOTES

201

concerning key constraints, indexes, and views. We also gave a conceptual

description in the form of an EER schema diagram of the relational model

constructs and how they are related to one another. We covered some

specifics about the system catalog in the ORACLE RDBMS. We then

discussed how different DBMS modules access the information stored in a

DBMS catalog, and gave an overview of other types of information stored

in a catalog. Finally, we briefly discussed data dictionary/repository

systems and how they differ from catalogs.

 Review Questions

1. What is the difference between centralized and client-server

architectures in general?

2. How did relational DBMSs evolve from the centralized architecture

to the client-server architecture? What is ODBC used for in this

context?

3. How do object databases differ from relational systems in a client-

server system architecture?

4. What is meant by the term metadata?

5. How are relational DBMS catalogs usually implemented?

6. Discuss the types of information included in a relational catalog at

the conceptual, internal, and external levels.

7. Discuss how some of the different DBMS modules access a catalog

and the type of information each accesses.

8. Why is it important to have efficient access to a DBMS catalog?

9. What are the three different view categories for catalog information

in ORACLE and why are they important?

 Database Management System

 NOTES

202

UNIT – IV

1. INTRODUCTION TO TRANSACTION

PROCESSING CONCEPTS & THEORY

Structure of Lesson

Transaction concepts

Transaction state

Implementation of Atomicity and Durability

Concurrent Executions

Serializability

Recoverability

Implementation of Isolation

Transaction Definition in SQL

Testing for Serializability

Summary

Technical terms

Model questions

Introduction to Transactions & their properties

The term transaction refers to a collection of operations that
form a single logical unit of work. The concept of transaction
provides a mechanism for describing logical units of database
processing. Transaction processing systems are the systems with
large databases and hundreds of concurrent users executing
database transactions. Online Reservation System, Banking

 Database Management System

 NOTES

203

System, Credit Card Processing, Stock markets are some of the
examples of such transaction processing systems.

Requirements of a transaction processing system are, high
availability & fast response time.

A transaction is an executing program that performs a
logical unit of database processing. A transaction includes one or
more database access operations. The operations include
insertion, deletion, modification or retrieval operations. For
instance, transfer of money from one account to another is a
transaction consisting of two updates, one to each account.

A database system must ensure proper execution of
transactions despite failures. Such a database system is classified
based on the number of users who can use the system
concurrently. A DBMS is single-user if at most one user at a time
can use the system, and it is multi-user if many users can use the
system. Multiple users can access the database because of the
concept of multiprogramming. Multiprogramming allows the user to
execute multiple programs or processes at the same time.

The concurrency may be achieved either interleaved fashion
or by implementing multiple CPUs in parallel. The following
example illustrates the same. Consider A, B, C and D as
processes or transactions to be executed; here from time t1 to t2, A
and B are executing in interleaved fashion where as from t3 to t4, C
and D are executing in parallel.

A

B

A

B

D

C

t

1

t

2

t

3

t

4

Time

CPU2

CPU1

FIG. 1 Interleaved processing Vs Parellel

Processing of concurrent trasactions

 Database Management System

 NOTES

204

Desirable properties of a Transaction:

To ensure integrity of the data, a database system that
executes a transaction should possess several properties, often
called the ACID properties. The following are the ACID properties:

 Atomicity: a transaction is an atomic unit of processing; it is
performed in its entirety or not performed at all. In some
other way, a transaction is either completely done or
completely undone.

 Consistency: a transaction is constancy preserving if its

complete execution take(s) the database from one
consistent state to another.

 Isolation: a transaction should appear as though it is being

executed in isolation from other transactions. That is, the
execution of a transaction should not be interfered with by
any other transactions executing concurrently.

 Durability or permanency: the changes applied to the

database by a committed transaction must persist in the
database. These changes must not be lost because of any
failure.

The acronym ACID is derived from all the first letter of each
of the properties mention above.

The atomicity of a transaction requires that we execute a
transaction to its completion. It is the responsibility of a transaction
recovery sub system of a DBMS to ensure atomicity. If a
transaction gets failed during its execution, the affect of such a
transaction over the database must be undone.

The preservation of consistency is the responsibility of the
programmer who writer the database programs or of the DBMS
module that enforces integrity constraints. A consistent state of the
database satisfies the constraints specified in the schema as well
as any other constraints on the database should hold.

Isolation is enforced by the concurrency control subsystem
of the DBMS. Every transaction does not make its updates visible
to other transactions until it is committed. There is an approach of
specifying isolation, that is, levels. A transaction is said to have
Level 0 isolation if it does not overwrite the dirty reads of higher
level transactions. Level 1 isolation has no lost updates; and level 2
isolation has no lost updates and no dirty reads. Finally Level 3

 Database Management System

 NOTES

205

isolation (also called true isolation) has, in addition to degree 2
properties, repeatable reads.

Finally durability is the responsibility of recovery subsystem
of the DBMS. Certain recovery protocols are to be applied in order
to enforce durability and atomicity.

Transaction States

In the absence of failures, a transaction is completed
successfully. However, not every time, a transaction is complete its
execution successfully. Such a transaction is terms as aborted.

Any aborted transaction must not show its affect on the database.
Hence it requires being undone. Once the changes of the aborted
transaction are made undone, we say that the transaction has been
rolled back. Any successful transaction is said to be committed.

Once a transaction is committed, its updates may not be
rolled back. The only way of aborting the updates of a committed
transaction is to perform a compensating transaction over the
database. For example, for a transaction adds Rs.200 to an
account, the compensating transaction subtracts Rs.200 from the
same account. However, a compensating transaction cannot be
generated every time. Hence creation of such compensating
transaction is left to the user.

The following is an abstract transaction model, which
includes a set of states of a transaction:

Active: It is the initial state; the transaction stays in this state while
it is executing.

Partially committed: a transaction is said to be partially committed

if it completes execution of its last statement.

Fig. 2 Transaction states

 Database Management System

 NOTES

206

Failed: A transaction is said to be failed after the discovery that the

normal execution can no longer proceed.

Aborted: After the transaction has been rolled back and the

database has been restored to its previous state before the
transaction started its execution.

Committed: A transaction is said to be committed after successful

completion.

The following is the state diagram for a transaction during its
execution.

A transaction starts in the active state. When it finishes its
final statement, it enters into partially committed state. At this point,
the transaction has completed its execution, but it is still possible
that it may have to be aborted, since the actual output may still be
temporarily residing in main memory, and thus a hardware failure
may preclude its successful completion. If at all, no failure is
occurred the transaction may be committed.

A transaction that enters in a failure state after the system
determines that the transaction can no longer proceed with its
normal execution (because of hardware failures or logical errors).
Such a transaction must be rolled back. Then, it enters the aborted
state. At this point, the system has two options, either the
transaction may be restarted or it can be killed completely by the

system.

The transaction may be restarted only if the transaction was
aborted as a result of some hardware or software error. A restarted
transaction is considered as a new transaction.

The transaction may be killed only if the error is corrected by
rewriting the application program that causes the transaction.

Transaction and its Operations:

A transaction includes one or more database access
operations. The operations include insertion, deletion, modification
or retrieval operations.

The database operations that form a transaction can either
be embedded within application program or they can be specified
interactively via a high-level query language such as SQL. One way
to represent transaction boundaries is by specifying explicit Begin
Transaction and End Transaction.

 Database Management System

 NOTES

207

A transaction that performs only retrieval operation is said to be
read-only transaction.

read_item(X): reads a database item named X into a program

variable. Assume the program variable is also named as X.

Execution of read_item(X) includes the following operations:

1. Find the address of the disk block
that contains item X.

2. Copy that disk block into a buffer
in main memory.

3. Copy item X from the buffer to
the program variable X.

write_item(X): writes the value of program variable X into the data
item named X.

Execution of write_item(X) includes the following operations:

1. Find the address of the disk block that contains
item X.

2. Copy that disk block into a buffer in main
memory.

3. Copy item X from the program variable name d
X into its correct location in the buffer.

4. Store the updated block from the buffer block
to disk.

Implementation of Atomicity and Durability

The recovery management component of a database
system can support atomicity and durability by a variety of
schemes. We first consider a simple, but extremely inefficient,
scheme called the shadow copy scheme. This scheme is based
on making copies of the database and assumes that only one
transaction is active at a time. This scheme also assumes that the
database is simply a file on the disk. A pointer called db-pointer is
maintained on the disk; it points to the current copy of the
database.

In the shadow copy scheme, a transaction that wants to
update the database first creates a complete copy of the database.
All updates are done to the new copy of the database, leaving the
original copy, the shadow copy, untouched. If at all at any point of
time the transaction has been aborted, the system merely deletes
the new copy. The old copy of the database remains unaffected.

 Database Management System

 NOTES

208

If the transaction completes, it is committed as follows. First
the operating system is asked to make sure that all pages of the
new copy of the database have been written out to disk (UNIX
system uses fsync command for this purpose.) After the operating
system has written all the pages to disk, the database system
updates the pointer db-pointer to point to the new copy of the
database; the new copy then becomes the current copy of the
database. The old copy of the database is then deleted. The
following figure depicts the scheme, showing the database state
before and after the update.

Now let us watch how the scheme works in case of
transaction and system failures. First consider the transaction
failure. If the transaction fails at any time before db-pointer is
updated, the old contents of the database are not affected. We can
abort the transaction by just deleting the new copy of the database.
Once the transaction is committed, all the updates that it performed
are in the database pointed to by db-pointer. Thus, either all
updates of the transaction are reflected, or none of the effects are
reflected, regardless of transaction failure.

Now consider the issue of system failure. Suppose that the
system fails at any time before the updated db-pointer is written to
disk. Then, when the system restarts, it will read db-pointer and will
thus see the original content of the database, and none of the

Old copy of

database

Old copy of the

database (to be

deleted)

New copy of

database

(a) Before

update

(b) After

update

Figure 3 Shadow copy technique for atomicity and durability

 Database Management System

 NOTES

209

effects of the transaction will be visible on the database. Next,
suppose that the system fails after the db-pointer has been updated
on disk. Before the pointer is updated, all the updated pages of the
new copy of the database were written to disk. Again, we assume
that, once a file is written to disk, its content will not be damaged
even if there is a system failure. Therefore, when the system
restarts, it will read db-pointer and will thus see the contents of the
database after all the updates performed by the transaction.

Thus, the atomicity and durability properties of transactions
are ensured by the shadow-copy implementation of the recovery-
management component.

Consider an example of text editor away from database
concept. Many text editors use essentially implements the
approach just described above. An entire editing session can be
modeled as a transaction. The actions like reading, writing and
updating are related to the transaction operations. A new file is
used to store updated file. At the end of the editing session, if the
updated file is to be saved, the text editor uses a file rename
command to rename the new file to have the actual name of the
file. The rename is assumed as an atomic operation and deletes
the old file.

Unfortunately this implementation is extremely inefficient in
the context of large databases, since executing a single transaction
requires copying the entire database.

A Schedule S of n Transactions T1, T2, T3, ……. Tn is an
ordering of operations of the transactions subject to the constraint
that, for each transaction Ti that participates in S, the operation Ti in
S must appear in the same order in which they occur in T i.

However, that operation from other transactions T j can be
interleaved with the operations of Ti in S.

Concurrent Executions

Transaction-processing systems usually allow multiple
transactions to run concurrently. Allowing multiple transactions to
update data concurrently causes several complications with
consistency of the data, as we saw earlier. Ensuring consistency in
spite of concurrent execution of transactions requires extra work; it
is far easier to insist that transactions run serially-that is, one at a
time, each starting only after the previous one has completed.
However, there are two good reasons for allowing concurrency;

 Database Management System

 NOTES

210

Improved throughput and resource utilization:

A transaction consists of many steps. Some involve I/O
activity; others involve CPU activity. The cup and the disks in a
computer system can operate in parallel. Therefore, I/O activity can
be done in parallel with processing at the CPU. The parallelism of
the CPU and the I/O system can therefore be exploited to run
multiple transactions in parallel. While a read or write on behalf of
one transaction is in progress on one disk, another transaction can
be running in the CPU. While another disk may be executing a
read or write on behalf of a third transaction. All of this increases
the throughput of the system-that is, the no of transactions
executed in a given amount of time. Correspondingly, the
processor and disk utilization also increase; in other words, the
processor and disk spend less time idle, or not performing any
usual work.

Reduced waiting time:

There may be a mix of transactions running on a system,

some short and some log. If transactions run serially, a short
transaction may have to wait for a preceding long transaction to
complete, which can lead to unpredictable delays in running a
transaction. If the transactions are operating on different parts of
the database, it is better to left them run concurrently, sharing the
CPU cycles and disk accesses among them. Concurrent execution
reduces the unpredictable delays in running the transactions.
Moreover, it also reduces the average response time: the average

time for a transaction to be completed after it has been submitted.

The motivation for using concurrent execution in a database

is essentially the same as the motivation for using
multiprogramming in an operating system. When several
transactions run concurrently, database consistency can be
destroyed despite the correctness of each individual transaction. In
this section. We present the concept of schedules to help identify
those executions that are guaranteed to ensure consistency.

The database system must control the interaction among the

concurrent transactions to prevent them from destroying the
consistency of the database. It does so through a variety of
mechanisms called concurrency-control schemes. Consider the
simplified banking system, which has several accounts, and a set
of transactions, that access and update those accounts. Let T1 and
T2 be two transactions that transfer funds from one account to

 Database Management System

 NOTES

211

another. Transactions T1 transfers $50 from account A to account
B. it is defined as

 T1: read (A);

 A: =A-50;
 Write (A);
 Read (B);

 B: =B+50;

 Write(B)

Transactions T2 transfers 10 percent of the balance from account A
to account B. it is defined as

 T2: read (A);

 Temp: =A*0.1;
 A:=A-temp;

 Write (A);

 Read (B);

 B: =B+temp;

 Write(B)

Suppose the current values of accounts A and B are $1000 and

$2000, respectively. Suppose also that the two transactions are
executed one at a time in the order T1 followed by T2. This

execution sequence appears in fig 15.3.In the figure; the sequence
of instruction steps in the chronological order from top to bottom.
With instructions of T1 appearing in the left column and instructions
of T2 appearing in the right column. The final values of accounts A
and B, after the execution in it takes place, are $855 and $2145,
respectively. Thus, the total amount of money in accounts A and B
– that is, the sum of A+B is preserved after the execution of both
transactions.

 Database Management System

 NOTES

212

T1 T2

read(A)

A:=A-50

Write(A)

read(B)

B:=B+50

write(B)

read(A)

temp:=A*0.1

A:=A-temp
write(A)
read(B)
B:=B+ temp
write(B)

Figure 4 Schedule 1-a serial schedule in which T1 is followed by

T2.

Similarly, if the transactions are executed one at a time in
the order followed by T2 followed by T1, then the corresponding
execution sequence is that of figure 5 Again, as expected, the sum
A+B is preserved, and the final values of accounts A and B are

$850 and $2150,respectively.

The execution sequences just described are called
schedules. They represent the chronological order in which
instructions are executed in the system. clearly, a schedule for a
set of transactions must consist of all instructions of those
transactions, and must preserve the order in which the instructions
appear in each individual transaction. For, example, in transaction
T1, the instruction write (A) must appear before the instruction read
(B), in any valid schedule. In the following discussion, we shall refer
to the fist execution sequence (T1 followed by T2) as schedule
1,and to the second execution sequence (T2 followed by T1) as

schedule 2.

 Database Management System

 NOTES

213

T1 T2

read(A)

A:=A-50

write(A)

read(B)

B:=B+50

Write(B)

read(A)

temp:
=A*0.1

A: =A-temp

write(A)
read(B)
B: =B+ temp
write(B)

Figure 5 Schedule 2-a serial schedule in which T2 is followed

by T1.

These schedules are serial. Each serial schedule consists of

a sequence of instructions from various transactions, where the
instructions belonging to one single transaction appear together in
that schedule. Thus, for a set of n transactions, there exist n!
Different valid serial schedules.

When database system executes several transactions

concurrently, the corresponding schedule no longer needs to be
serial. If two transactions are running concurrently, the operating
system may execute one transaction for a little while, then perform
a context switch, execute the second transaction for some time,
and then switch back to the first transaction for some time, and so
on. With multiple transactions, the CPU time is shared among all
the transactions.

Several execution sequences are possible, since the various
instructions from both transactions may now be interleaved. In
general, it is not possible to predict exactly how many instructions
of a transaction will be executed before the CPU switches to
another transaction. Thus, the number of possible schedules for a
set of n transactions is much larger than n! .

 Database Management System

 NOTES

214

Returning to our previous example, suppose that two
transactions are executed concurrently. One possible schedule
appears in figure 5. After this execution takes place, we arrive at

the same state as the one in which the transactions are executed
serially in the order T1 followed by T2. The sum A + B is indeed

preserved.

T1 T2

read(A)

A: =A-50

write(A)

read(B)

B:=B+50
Write(B)

read(A)

temp: =A*0.1
A:=A-temp

write(A)

read(B)
B:=B+ temp
write(B)

Figure 6 Schedule 3-a Concurrent Schedule equivalent to

schedule 1.

Not all concurrent executions result in a correct state. To illustrate,
consider the schedule of figure 7.

 Database Management System

 NOTES

215

T1 T2

read(A)

A:=A-50

write(A)

read(B)

B:=B+50

Write(B)

read(A)

temp:=A*0.1
A:=A-temp

write(A)
read(B)

B:=B+ temp
write(B)

Figure 7 Schedule 4-a concurrent schedule.

After the execution of this schedule, we arrive at a state
where the final values of accounts A and B are $950 and
$2100,respectively. This final state is inconsistent state, since we
have gained $50 in the process of the concurrent execution.
Indeed, the sum A + B is not preserved by the execution of the two

transactions.

If control of concurrent execution is left entirely to operating

systems, many possible schedules, including ones that leave the
database in an inconsistent state, such as the one just described,
are possible. It is the job of the database system to ensure that any
schedule that gets executed will leave the database in a consistent
state. The concurrency-control component of the database system
carries out this task.

We can ensure consistency of the database under
concurrent execution by making sure that any schedule that
executed has the same effect as a schedule that could have
occurred without any concurrent execution. That is, the schedule
should, in some sense, be equivalent to a serial schedule.

 Database Management System

 NOTES

216

Serializability

The database system must control concurrent execution of

transactions, to ensure that the database state remains consistent.

Since transactions are programs, it is computationally
difficult to determine exactly what operations a transaction performs
and how operations of various transactions interact. For this
reason, we shall not interpret the type of operations that a
transaction can perform on data item. Instead, we consider only
two operations: read and write. We thus assume that, between a
read (Q) instruction and a write (Q) instruction on a data item Q, a

transaction may perform an arbitrary sequence of operations on the
copy of Q that is residing in the local buffer of the transaction. Thus,

the only significant operations of a transaction, from a scheduling
point of view, are its read and write instructions. We shall therefore
usually show only read and write instructions in schedules, as we
do in schedule 3 in figure 8.

T1 T2
read(A)

write(A)

read(B)

Write(B)

read(A)

write(A)

read(B)
write(B)

Figure 8 Schedule 3-showing only the read and write instructions.

In this section, we discuss different forms of schedule

equivalence; they lead to the notions of conflict serializability and
view serializability.

Conflict serializability:

Let us consider a schedule s in which there are two consecutive
instructions Ii and Ij refer to different data items, and then we can
swap Ii and Ij without affecting the results of any instruction in the
schedule. However if Ii and Ij refer to the same data item Q, then
the order of the two steps may matter. Since we are dealing with

 Database Management System

 NOTES

217

only read and write instructions, there are four cases that we need
to consider:

1) Ii=read (Q), Ij=read (Q). The order of Ii and Ij does not matter,
since Ti and Tj read the same value of Q, regardless of the order.

2) Ii=read (Q), Ij=write (Q). If Ii comes before Ij, then Ti does not
read the value of Q that is written by Tj in instruction Ij. if Ij comes
before Ii, then Ti reads the value of Q that is written by Tj. Thus, the
order of Ii and Ij matters.

3) Ii=write (Q), Ij=write (Q) .the order of Ii and Ij matters for reasons
similar to those of the previous case.

4) Ii=write (Q), Ij=write (Q). Since both instructions are write
operations, the order of these transactions does not affect either Ti
or Tj. However, the value obtained by the next read (Q) instruction
of S is affected. Since the result of only the latter of the two write
instructions is preserved in the database .If there is no other write
(Q) instruction after Ii and Ij in s, then the order of Ii and Ij directly
affects the final value of Q in the database state that results from
schedule S.

Thus, only in the case where both Ii and Ij are read instructions

does the relative order of their execution not matter.

We say that Ii and Ij conflict if they are operations by different
transactions on the same data, and at least one of these
instructions is a write operation.

To illustrate the concept of conflicting instructions, we consider
schedule 3, in figure 13.5. The write (A) instruction of T1 conflicts
with the read (A) instruction of T2. However, the write (A)
instruction of T2 does not conflict with the read (B) instruction of T1,
because the two instructions access same data items.

 Let Ii and Ij be consecutive instructions of a schedule S. if Ii and Ij
are instructions of different transactions and Ii and Ij do not conflict,
then we can swap the order of Ii and Ij to produce a new schedule
S`. We expect S to be equivalent to S`, since all instructions appear
in the same order in both schedules except for Ii and Ij, whose

order does not matter.

 Database Management System

 NOTES

218

Since the write (A) instruction of T2 in schedule 3 of figure 13.5.2
does not conflict with the read (B) instruction of T1, we can swap
these instructions to generate an equivalent schedule, schedule 5,
in figure 9.

T1 T2

Read(A)

write(A)

read(B)

Write(B)

read(A)

write(A)

read(B)
write(B)

Figure 9 Schedule 5-schedule 3 after swapping of a pair of

instructions.

Regardless of the initial system state, schedules 3 and 5 both
produce the same final system state:

 We continue to swap no conflicting instructions:

 Swap the read (B) instruction of T1 with the read (A)
instruction of T2.

 Swap the write (B) instruction of T1 with the write (A)
instruction of T2.

 Swap the write (B) instruction of T1 with the read (A)
instruction of T2.

 Database Management System

 NOTES

219

T1 T2

read(A)

write(A)

read(B)

Write(B)

read(A)

write(A)
read(B)
write(B)

Figure 10 Schedule 6 – a serial schedule that is equivalent to

schedule 3.

 Thus, we have shown that schedule 3 is equivalent to a serial
schedule. This equivalence implies that, regardless of the initial
system state, schedule 3 will produce the same final state as will
some serial schedule.

If a schedule S can be transformed into a schedule S` by a
series of swaps of non-conflicting instructions, we say that S and S’

is conflict equivalent.

In our previous examples, schedules 1 is not conflict
equivalent to schedule 2. However, schedule 1 is conflict
equivalence to schedule 3,because the read (B) and write (B)
instruction of T1 can be swapped with the read (A) and write (A)
instruction of T2.

The concept of conflict equivalence leads to the concept of
conflict serializability. We say that a schedule s is conflict
serializable if it is conflict equivalent to a serial schedule. Thus,
schedule 3 is conflict serializable, since it is conflict equivalent to a
serial schedule. Thus, schedule 3 is conflict serializable, since it is
conflict equivalent to the serial schedule 1.

 Finally, consider schedule 7 of figure 11; it consists of only

the significant operations (that is, the read and write) of
transactions T3 and T4. This schedule is not conflict serializable,
since it is not equivalent to either the serial schedule <T3, T4> or
the serial schedule <T4, T3>

 Database Management System

 NOTES

220

T3 T4

read(Q)

write(Q)

write(Q)

Figure 11 Schedule 7.

It is possible to have two schedulers that produce the same
outcome, but that are not conflict equivalent. For example,
consider transaction T5, which transfers $10 from account B to A.

Let schedule 8 be as defined in figure 12 we claim that
schedule 8 is not conflict equivalent to the serial schedule <T1, T5>,

T1 T5

read(A)

A:=A-50

write(A)

read(B)

B:=B+50

Write(B)

read(A)
B:=B-10

write(B)

read(B)

A:=A+10
write(A)

Figure 12 Schedule 8.

Since, in schedule 8, the write (B) instruction of T5 conflicts
with the read (B) instruction of T1.Thus, we cannot move all the
instructions of T1 before those of T5 by swapping consecutive
nonconflicting instructions. However, the final values of accounts A
and B after the execution of either schedule 8 or the serial
schedule <T1, T5> are the same -$960 and $2040 respectively.

 We can see from this example that there are less stringent
definitions of schedule equivalence than conflict equivalence. For
the system to determine that schedule 8 produces the same

 Database Management System

 NOTES

221

outcome as the serial schedule<T1, T5>, it must analyze the
computation performed by T1 and T2, rather than just the read and
write operations. In general, such analysis is hard to implement and
is computationally expensive. However, there are other definitions
of schedule equivalence based purely on the read and write
operations. We will consider one such definition in the next section.

View serializability

In this section, we consider a form of equivalence that is less
stringent than conflict equivalence, but that, like conflict
equivalence, is based on only the read and write operations of
transactions.

Consider two schedules S and S’, where the same set of
transactions participates in both schedules. The schedules Sand S’
are said to be view equivalent if three conditions are met.

 For each data item Q, if transaction T, reads the initial value
of Q in schedule s, then transaction T, must, in schedule S’, also
read the initial value of Q.

1. For each data item Q, if transaction T, executes read (Q) in
schedule S, and if that value was produced by a write (Q)
operation executed by transaction T3, then the read (Q)
operation of transaction Ti must, in schedule s1, also read
the value of Q that was produced by the same write (Q)
operation of transaction Tj.

2. For each data item Q, the transaction (if any) that performs
the final write (Q) operation in schedule s must perform the
final write (Q) operation in schedule s`.

 Condition 1 and 2 ensure that each transaction reads the
same values in both schedules and, therefore, performs the same
computation. Condition 3,coupled with conditions 1 and 2, ensures
that both schedules result in the same final system state.

 In our previous examples, schedule 1 is not view equivalent
to schedule 2, since, in schedule 1,the value of account a read by
transaction T2 was produced by T1, whereas this case does not

hold in schedule 2. However, schedule 1 is view equivalent to
schedule 3, because the values of account A and B read by
transaction T2 were produced by T1 in both schedules.

 Database Management System

 NOTES

222

The concept of view equivalence leads to the concept of

view serializability .we say that a schedule s is view serializable if it
is view equivalent to a serial schedule.

As an illustration, suppose that we augment schedule 7 with

transaction T6, and obtain schedule 9 in figure 13. Schedule 9 is

view serializable. Indeed, it is view equivalent to the serial schedule
<T3, T4, and T6>, since the one read (Q) instruction reads the initial
value of Q in both schedules, and to T6 performs the final value of
Q in both schedules.

T3 T4 T6

read(Q)

write(Q)

write(Q)

write(Q)

Figure 13 Schedule 9-a view-serializable schedule

Every conflict serializable schedule is also view serializable,
but there are view serializable schedules that are not conflict
serializable, since every pair of consecutive instructions conflicts,
and, thus, no swapping of instructions is possible.

Observe that, in schedule 9, transactions T4 and T6 perform
write (Q) operations without having performed a read (Q) operation.
Writes of this sort are called blind writes. Blind writes appear in any
view-serializable schedule that is not conflict serializable.

Recoverability

So far, we have studied what schedules are acceptable from
the viewpoint of consistency of the database, assuming implicitly
that there are no transaction failures. We now address the effect of
transaction failures during concurrent execution.

 If a transaction Ti fails, for whatever reason, we need to undo the
effect of this transaction to ensure the atomic property of the
transaction .In a system that allows concurrent execution, it is

 Database Management System

 NOTES

223

necessary also to ensure that any transactions Tj that is dependent
on Ti is also aborted. To achieve this surety, we need to place
transactions on the type of schedules permitted in the system.

Recoverable schedules

Consider schedule 11 in figure 14 in which T9 is a
transaction that performs only one instruction: read (A). Suppose
that the system allows T9 to commit immediately after executing the
read (A) instruction. Thus, T9 commits before T8 does. Now,
suppose that T8 fails before it commits. Since T9 has read the value
of data item a written by T8, we must abort T9 to ensure transaction
atomicity. However, T9 has already committed and cannot be

aborted. Thus, we have a situation where it is impossible to recover
correctly from the failure of T8.

T8 T9

read(A)

write(A)

read(B)

read(A)

Figure 14 Schedule 10.

Schedule 10, with the commit happening immediately after

the read (A) instruction, is an example of a non-recoverable
schedule, which should not be allowed. Most database system
requires that all schedules be recoverable. A Recoverable schedule
is one where, for each pair of transactions Ti and Tj such that Tj

reads a data item previously written by Ti, the commit operation of
Ti appears before the commit operation of Tj;

Cascades Schedules

Even if a schedule is recoverable, to recover correctly from

the failure of a transaction Ti, we may have to roll back several
transactions. Such situations occur if transactions have read data
written by Ti. As an illustration, consider the partial schedule of
figure 15.

 Database Management System

 NOTES

224

T10 T11 T12

read(A)

read(B)

write(A)

read(A)
write(A)

read(A)

Figure 15 Schedule 11.

Transaction T10 writes a value of A that is read by
transaction T11.Transaction T11 writes a value of A that is read by
transaction T12.suppose that, at this point, T10 fails. T10 must be
rolled back. Since T12 is dependent on T11, T12 must be a rolled

back. This phenomenon, in which a single transaction failure leads
to a series of transaction rollbacks, is called cascading rollback.

Cascading rollback is undesirable, since it leads to the
undoing of a significant amount of work. It is desirable to restrict the
schedules to those where cascading rollbacks cannot occur. Such
schedules are called cascade less schedules. Formally, a cascade
less schedule is one where, for each pair of transactions Ti and Tj
appear before the read operation of Tj. It is easy to verify that every
cascadeless schedule is also recoverable.

Implementation of Isolation

So far, we have seen what properties a schedule must have
if it is to leave the database in a consistent state and allow
transaction failures to be handled in a safe manner. Specifically,
schedules that are conflict or view serializable and cascadeless
satisfy these operations.

There are various concurrency- control schemes that we can
use to ensure that, even when multiple transactions are executed
concurrently, only acceptable schedules are generated, regardless

 Database Management System

 NOTES

225

of how the operating-system time –shares resources among the
transactions.

As a trivial example of a concurrency control scheme,
consider this scheme; a transaction acquires a lock on the entire
database before it starts and releases the lock after it has
committed. While a transaction holds a lock, no other transaction is
allowed to acquire the lock, and all must therefore wait for the lock
to be released. As a result of the locking policy, only one
transaction can execute at a time. Therefore, only serial schedules
are generated. These are trivially serializable, and it is easy to
verify that they are casacdeless as well.

A concurrency control scheme such as this one leads to
poor performance, since it forces transactions to wait for preceding
transactions to finish before they can start. In, other words, it
provides a poor degree of concurrency. As explained in sec 15.4
concurrent execution has several performance benefits.

The goal of concurrency control schemes is to provide a
high degree of concurrency, while ensuring that all schedules that
can be generated are conflict or view serializable, and are
cascadeless.

Transaction Definition in SQL

 A data-manipulation language must include a construct for
specifying the set of actions that constitute a transaction. The SQL
standard specifies that a transaction begin implicitly. Transactions
ended by one of these SQL statements.

Commit work commits the current transaction and begins a new
one.

 Rollback work causes the current transactions to abort.

The keyword work is optional in both the statements. If a
program terminates with out either of these commands, the
updates are either committed or rolled back which of the two
happens is not specified by the standard and depends on the
implementation.

The standard also specifies that the system must ensure
both serializability and freedom from cascading rollback. The
definition of serializability used by the standard is that a schedule
must have the same effect, as would some serial schedule. Thus,
conflict and view serializability are both acceptable.

 Database Management System

 NOTES

226

This SQL-92 standard also allows a transaction to specify
that it may be executed in a manner that causes it to become
nonserializable with respect to other transactions.

Testing for serializability

When designing concurrency control schemes, we must
show that schedules generated by the scheme are serilaizable. To
do that, we must first understand how to determine, given a
particular schedule s, whether the schedule is serializable.

We not present a simple and efficient method for
determining conflict serializability of a schedule. Consider a
schedule S. we construct a directed graph, called a precedence
graph, from sties graph consists of a pair G=(V, E), where V is a
set of vertices and E is a set of edges. This set of vertices consists

of all the transactions participating in the schedule. The set of
edges consists of all edges Ti->Tj for which one of three condition

blocks.

1) Ti executes write (Q) before Tj executes read (Q)

2) Ti executes read (Q) before Tj executes write (Q)

3) Ti executes write (Q) before Tj executes write (Q)

In an edge Ti->Tj exists in the precedence graph, and then in any
serial schedule s1 equivalent to s, Ti must appear before Tj.

 For example, the precedence graph for schedule 1 in figure
16 contains the single edge T1->T2, since all the instructions of T1
are executed before the first instruction of T2 is executed

Figure 16 Precedence graph for (a) schedule 1 and (b)
schedule 2.

Similarly, Figure 16 shows the precedence graph for
schedule 2 with the single edge T2->T1, since all transactions of T2
are executed before the first instruction of T1 is executed. The
precedence of graph for schedule 4 appears in figure 17.

 Database Management System

 NOTES

227

Figure 17 Precedence graph for schedule 4.

It contains the edge T1->T2, because T1 executes read (A)
before T2 executes write (A). It also contains the edge T2->T1,
because T2 executes read (B) before T1 executes Write (B).

 If the precedence graph for s has a cycle, then schedule s is
not conflict serializable. If the graph contains no cycles, then the
schedule s is not serializable.

A serializability order of the transactions can be obtained
through topological sorting, which determines a linear order
consistent with the partial order of the precedence graph. There
are, in general, several possible linear orders that can be obtained
through topological sorting. For example, the graph of figure 18 a
has the two acceptable linear orderings shown in figures 18 b and
c.

 Database Management System

 NOTES

228

Figure 18 Illustration of topological sorting.

Thus, to test for conflict serializability, we need to construct
the preceding graph and to invoke a cycle detection algorithm.
Cycle-detection algorithms can be found in standard textbooks on
algorithms. Cycle –detection algorithms, such as those based on
depth-first search, require on the order of n2 operations, where n is
the number of vertices in the graph. Thus, we have a practical
scheme for determining conflict serializability.

Returning to out previous examples, note that the
precedence graphs for schedules 1 and 2 indeed do not contain
cycles. The precedence graph for schedule 4, on the other hand,
contains a cycle, indicating that this schedule is not conflict
serializability.

Testing for view serializability is rather complicated. In fact, it
has been shown that the problem of testing, for view serializability
is itself NP-complete. Thus, almost certainly there exists there
exists no efficient algorithm to test for view serializability .see the
bibliographical notes for references on testing for view
serializability.however, concurrency-control schemes can still use
sufficient conditions for view serializablity. That is, if the sufficient

 Database Management System

 NOTES

229

conditions are satisfied, the schedule is view serializable, but there
may be view-serializable schedules that do not satisfy the sufficient
condition.

Summary

A transaction is a unit of program execution that accesses
and possibly updates various data items. Understanding the
concept of a transaction is a critical for understanding and
implementing updates of data in a database in such a way those
concurrent executions and failures of various forms do not result in
the database becoming inconsistent.

Transactions are required to have the ACID properties:
atomicity, consistency, isolation, and durability.

Concurrent execution of transaction improves throughput to
transactions and system utilization, and also reduces waiting time
of transaction. When several transactions execute concurrently in
the database, the consistency of data may no longer be preserved.
It is therefore necessary for the system to control the interaction
among the concurrent transactions.

Serializability of schedules generated by concurrently
executing transactions can be ensured through one of a variety of
mechanisms called concurrency-control schemes. Schedules must
be recoverable, to make sure that if transaction A sees the effects
of transaction B, and B then aborts, then B also gets aborted.

The concurrency-control-management component of the
database is responsible for handling the concurrency-control
schemes. The recovery-management component of a database
responsible for ensuring the atomicity and durability properties of
transactions.

Technical Terms

1. Transaction:

The term transaction refers to a collection of operations that
forma single logical unit of work. For instance, transfer of money
from one account to another is a transaction consisting of two
updates, one to each account.

2. Concurrent Execution:

We say that two programs are executed concurrently when
they are in effect executed simultaneously. This can be

 Database Management System

 NOTES

230

accomplished by actually executing them simultaneously, or by
interleaving the actions of one with the actions of the other.

3.Recoverability:

The measure of ease and time to repair facilities to
operational status.

4. Topological sorting:

In graph theory, a topological sort of a directed acyclic graph
(DAG) is a linear ordering of the nodes of the graph such that x
comes before y if there's a directed path from x to y in the DAG. An
equivalent definition is that each node comes before all nodes to
which it has edges. Any DAG has a topological sort, and in fact
most have many.

5. Precedence graph:

A way of representing the order constraints among a
collection of statements. The nodes of the graph represent the
statements, and there is a directed edge from node A to node B if
statement A must be executed before statement B. A precedence
graph with a cycle represents a collection of statements that cannot
be executed without deadlock.

6. Lock:

In computer science, a lock is a mechanism for enforcing
limits on access to a resource in an environment where there are
many threads of execution. Locks are one way of enforcing
concurrency control policies.

7. Isolation:

In database systems, isolation is a property that the changes
made by an operation are not visible to other simultaneous
operations on the system until its completion. This is one of the
ACID properties.

8. Durability:

 In computer science, durability is the ACID property that
guarantees that transactions that are successfully committed will
survive permanently and will not be undone by system failure.

 Database Management System

 NOTES

231

Model Questions

1. List the AICD properties. Explain the usefulness of each.

2. Suppose that there is a database system that never fails. Is
a recovery manager required for this system?

3. Explain the distinction between the terms serial schedule
and serializable schedule.

4. During its execution, a transaction passes through several
states, until it finally commits or aborts. List all possible
sequences of states through which a transaction may pass.

5. What is a recoverable schedule? Why is recoverability of
schedules desirable?

 Database Management System

 NOTES

232

2. CONCURRENCY CONTROL

Objective

 What is Concurrency Control?

 Lock-Based Protocols

 Timestamp-Based Protocols

 Validation-Based Protocols

 Multiple Granularities

 Multi-version Schemes

 Deadlock Handling

Structure of the Lesson

Lock Based Protocols
Time stamp based Protocols
Validation Based protocols
Multiple granularities
Multi-version schemes
Deadlock based Protocols

When several transactions execute concurrently in the

database, however, the isolation property may no longer be
preserved. To ensure that it is, the system must control the
interactions among the concurrent transactions; this control is
achieved through one of the variety of mechanisms called
concurrency control schemes.

The concurrency control schemes that we discuss here are
all based on Serializability property.

Lock Based Protocols

One way to ensure Serializability is to require that data items
be accessed in a mutually exclusive manner; that is, while one
transaction is accessing a data item, no other transaction can
modify that data item. The most common method used to
implement this requirement is to allow a transaction to access a
data item only if it is currently holding a lock on that item.

 Database Management System

 NOTES

233

Locks

There are various modes in which a data item may be locked.
Here we restrict our attention to two modes:

1. Shared: If a transaction Ti has obtained a shared- mode lock
(denoted by S) on item Q, then Ti can read, but cannot write,
Q.

2. Exclusive: If a transaction Ti has obtained an exclusive-
mode lock (denoted by X) on item Q, then Ti can both read
and write Q.

 S X

S True false

X False False

 Lock compatibility matrix

T1 T2 T3 T4

Lock –X (B)

Read (B)
B:=B-50
Write (B)

Unlock (B)
Lock – X (A)

Read (A)
A: = A+50
Write (A)

Unlock (A)

Lock –S (A)

Read (A)
Unlock (A)

Lock – S (B)
Read (B)

Unlock (B)
Display (A+B)

Lock –X (B)

Read (B)
B:= B-50
Write (B)

Lock –X (A)
Read (A)
A: =A+50
Write (A)

Unlock (B)
Unlock (A)

Lock –s (A)
Read (A)

Lock – s (B)
Read (B)

Display (A+B)
Unlock (A)
Unlock (B)

T1 T2 Concurrency Control
Manager

Lock – X(B)

 Grant- X(B, T1)

Read(B)
B:= B-50
Write(B)
Unlock(B)

 Database Management System

 NOTES

234

 Lock- S(A)
 Grant – S(A,T2)

Read(A)
Unlock(A)
Lock-S(B)

 Grant – S(B, T2)
Read(B)
Unlock(B)
Display(A+B)

Lock – X(A)

 Grant – X(A, T2)

Read(A)
A: = A+50
Write(A)
Unlock(A)

Schedule – 1

Granting of Locks

When a transaction requests a lock on a data item over a
particular mode, and no other transaction has a lock on the same
data item in a conflicting mode, the lock can be granted. However,
care must be taken to avoid the following scenario. Suppose,
transactionT2 has a shared mode lock on a data item, and another
transaction T1 requests an exclusive mode lock on the data item.
Unless we take care, the transactions may get into situation where
the transactions have no progress. Such a situation is known to be
starvation.

We can avoid starvation of transactions by granting locks in the

following manner: when a transaction Ti requests a lock on a data
item Q in a mode that conflicts with M. the concurrency-control
manager grants the lock provided that

1. There is no other transaction holding a lock on Q in a mode

those conflicts with M.
2. There is no other transaction that is waiting for a lock on Q

and that made its lock request before Ti.

 Database Management System

 NOTES

235

Two-Phase Locking Protocol

One protocol that ensures serializability is that the two-phase
protocol. A transaction is said to follow the two-phase locking
protocol if all locking operations (read, write locks) precede the first
unlock operation in the transaction. Such a transaction requires to
be divided into two phases:

1. Growing phase: a transaction may obtain locks, but may
not release any lock.

2. Shrinking phase: A transaction may release locks, but may
not obtain any new lock.

Initially, a transaction is in the growing phase. The transaction

acquires locks as needed. Once the transaction releases a lock, it
enters the shrinking phase, and it can issue no more lock requests.

For example, transactions T3 and T4 are two-phase. On the
other hand, transactions T1 and T2 are not two-phase. Note that
unlock instructions do not need to appear at the end of the
transaction. For example, in the case of transaction T3, we could
move the unlock (B) instruction to just after the lock-X(A) instruction
and still retain the two-phase locking property. The two-phase
locking can ensure conflict serializability. Consider any transaction.
The point in the schedule where the transaction has obtained its
final lock (the end of growing phase) is called the lock point of the
transaction.

Two-phase locking may limit the amount of concurrency that
can occur in a schedule. Cascading rollbacks can be avoided by a
modification of two phase locking called, strict 2PL. This protocol
requires not only that locking be two phase, but also that all
exclusive-mode locks taken by a transaction be held until that
transaction commits. This requirement ensures that any data
written by an uncommitted transaction are locked in exclusive
mode until the transaction commits, preventing any other
transaction from reading the data.

Another variant of two-phase locking is the rigorous two-
phase locking protocol, which requires that all locks be held until
the transaction commits. We can easily verity that, with rigorous
2PL, transactions can be serialized in the order in which they

 Database Management System

 NOTES

236

commit. Most database systems implement either strict or rigorous
2PL.

 There can be conflict serializable schedules that cannot
be obtained if two-phase locking is used.

 However, in the absence of extra information (e.g.,
ordering of access to data), two-phase locking is needed
for conflict serializability in the following sense:

Given a transaction Ti that does not follow two-phase locking, we
can find a transaction Tj that uses two-phase locking, and a
schedule for Ti and Tj that is not conflict serializable.

Two-phase locking with lock conversions:

– First Phase:

1. can acquire a lock-S on item
2. can acquire a lock-X on item
3. can convert a lock-S to a lock-X (upgrade)
4.

– Second Phase:
–

1. can release a lock-S
2. can release a lock-X
3. can convert a lock-X to a lock-S (downgrade)

This protocol assures serializability. But still relies on the
programmer to insert the various locking instructions.

A transaction Ti issues the standard read/write instruction, without
explicit locking calls.

The operation read(D) is processed as:

 if Ti has a lock on D
 then
 read(D)
 else begin
 if necessary wait until no other

 Database Management System

 NOTES

237

 transaction has a lock-X on D
 grant Ti a lock-S on D;
 read(D)
 end

write(D) is processed as:

 if Ti has a lock-X on D
 then
 write(D)
 else begin
 if necessary wait until no other trans. has any lock on D,
 if Ti has a lock-S on D
 then
 upgrade lock on D to lock-X
 else
 grant Ti a lock-X on D
 write(D)
 end;
All locks are released after commit or abort

Implementation of Locking:

The main aspects of implementation of locking are:

1. A lock manager can be implemented as a separate process
to which transactions send lock and unlock requests

2. The lock manager replies to a lock request by sending a lock
grant messages (or a message asking the transaction to roll
back, in case of a deadlock)

3. The requesting transaction waits until its request is
answered

4. The lock manager maintains a data-structure called a lock
table to record granted locks and pending requests

5. The lock table is usually implemented as an in-memory hash
table indexed on the name of the data item being locked.

 Database Management System

 NOTES

238

Lock Table

1. Black rectangles indicate granted locks, white ones indicate
waiting requests

2. Lock table also records the type of lock granted or requested

3. New request is added to the end of the queue of requests for
the data item, and granted if it is compatible with all earlier
locks

4. Unlock requests result in the request being deleted, and
later requests are checked to see if they can now be granted

5. If transaction aborts, all waiting or granted requests of the
transaction are deleted

a. lock manager may keep a list of locks held by each
transaction, to implement this efficiently

Graph based Protocols

 Database Management System

 NOTES

239

Two phase locking protocol is both necessary and sufficient for
ensuring serializability where as Graph-based protocols are an
alternative to two-phase locking.

Impose a partial ordering  on the set D = {d1, d2 ,..., dh} of all
data items.

1. If di  dj then any transaction accessing both di and
dj must access di before accessing dj.

2. Implies that the set D may now be viewed as a
directed acyclic graph, called a database graph.

 The tree-protocol is a simple kind of graph protocol.

 Only exclusive locks are allowed.

 The first lock by Ti may be on any data item. Subsequently,
a data Q can be locked by Ti only if the parent of Q is
currently locked by Ti.

 Data items may be unlocked at any time.

 A data item that has been locked and unlocked by Ti cannot
subsequently be relocked by Ti

 Tree based protocol

 Database Management System

 NOTES

240

Tree Protocol

1. The tree protocol ensures conflict serializability as well as
freedom from deadlock.

2. Unlocking may occur earlier in the tree-locking protocol than
in the two-phase locking protocol.

a. shorter waiting times, and increase in concurrency

b. protocol is deadlock-free, no rollbacks are required

3. Drawbacks

a. Protocol does not guarantee recoverability or cascade
freedom

i. Need to introduce commit dependencies to
ensure recoverability

b. Transactions may have to lock data items that they do
not access.

i. increased locking overhead, and additional
waiting time

ii. potential decrease in concurrency

4. Schedules not possible under two-phase locking are
possible under tree protocol, and vice versa

 Database Management System

 NOTES

241

Serializable Schedule u Tree Protocol

 Time stamp based Protocols

Validation Based protocols

In validation based protocols, execution of transaction Ti is done in
three phases.

1. Read and execution phase: Transaction Ti writes only to
temporary local variables.

2. Validation phase: Transaction Ti performs a ``validation test'' to
determine if local variables can be written without violating
serializability.

 Database Management System

 NOTES

242

3. Write phase: If Ti is validated, the updates are applied to the
database; otherwise, Ti is rolled back.

The three phases of concurrently executing transactions can be
interleaved, but each transaction must go through the three phases
in that order.

Assume for simplicity that the validation and write phase occur
together, atomically and serially i.e., only one transaction executes
validation/write at a time.

It is also called as optimistic concurrency control since
transaction executes fully in the hope that all will go well during
validation.

Each transaction Ti has 3 timestamps:

1. Start(Ti) : the time when Ti started its execution

2. Validation(Ti): the time when Ti entered its validation
phase

3. Finish(Ti) : the time when Ti finished its write phase

Serializability order is determined by timestamp given at validation
time, to increase concurrency thus TS (Ti) is given the value of
Validation(Ti).

This protocol is useful and gives greater degree of concurrency if
probability of conflicts is low because the serializability order is not
pre-decided, and relatively few transactions will have to be rolled
back.

If for all Ti with TS (Ti) < TS (Tj) either one of the following condition
holds:

a. finish(Ti) < start(Tj)
b. start(Tj) < finish(Ti) < validation(Tj) and the set of

data items written by Ti does not intersect with the set
of data items read by Tj.
then validation succeeds and Tj can be committed.
Otherwise, validation fails and Tj is aborted.

 Database Management System

 NOTES

243

Justification: Either the first condition is satisfied, and there is no
overlapped execution, or the second condition is satisfied and

 the writes of Tj do not affect reads of Ti since they occur after
Ti has finished its reads.

 the writes of Ti do not affect reads of Tj since Tj does not
read any item written by Ti.

Schedule produced using Validation

Multiple granularities

1. Allow data items to be of various sizes and define a
hierarchy of data granularities, where the small granularities
are nested within larger ones

2. Can be represented graphically as a tree (but don't confuse
with tree-locking protocol)

3. When a transaction locks a node in the tree explicitly, it
implicitly locks all the node's descendents in the same mode.

4. Granularity of locking (level in tree where locking is done):

 Database Management System

 NOTES

244

a. fine granularity (lower in tree): high concurrency,
high locking overhead

b. coarse granularity (higher in tree): low locking
overhead, low concurrency

The levels, starting from the coarsest (top) level are:

1. database
2. area
3. file
4. record

Intension of Locking modes

In addition to S and X lock modes, there are three additional lock
modes with multiple granularity:

 intention-shared (IS): indicates explicit locking at a lower

level of the tree but only with shared locks.

 intention-exclusive (IX): indicates explicit locking at a lower
level with exclusive or shared locks.

 shared and intention-exclusive (SIX): the subtree rooted
by that node is locked explicitly in shared mode and explicit
locking is being done at a lower level with exclusive-mode
locks.

Intention locks allow a higher level node to be locked in S or X
mode without having to check all descendent nodes.

 Database Management System

 NOTES

245

Compatibility Matrix of Lock modes:

Transaction Ti can lock a node Q, using the following rules:

1. The lock compatibility matrix must be observed.

2. The root of the tree must be locked first, and may be
locked in any mode.

3. A node Q can be locked by Ti in S or IS mode only if
the parent of Q is currently locked by Ti in either IX or
IS mode.

4. A node Q can be locked by Ti in X, SIX, or IX mode
only if the parent of Q is currently locked by Ti in
either IX or SIX mode.

5. Ti can lock a node only if it has not previously
unlocked any node (that is, Ti is two-phase).

6. Ti can unlock a node Q only if none of the children of
Q are currently locked by Ti.

Observe that locks are acquired in root-to-leaf order, whereas they
are released in leaf-to-root order.

 Database Management System

 NOTES

246

Deadlock based Protocols

System is deadlocked if there is a set of transactions such that
every transaction in the set is waiting for another transaction in the
set.

Consider the following two transactions:

 T1: write (X) T2: write(Y)
 write(Y) write(X)

Schedule with deadlock:

Deadlock prevention protocols ensure that the system will never
enter into a deadlock state. Some prevention strategies:

1. They require that each transaction locks all its data
items before it begins execution (pre-declaration).

2. They impose partial ordering of all data items and
require that a transaction can lock data items only in
the order specified by the partial order (graph-based
protocol).

Following schemes use transaction timestamps for the sake of
deadlock prevention alone.

Wait-die scheme — non-preemptive

1. Older transaction may wait for younger one to release
data item. Younger transactions never wait for older
ones; they are rolled back instead.

 Database Management System

 NOTES

247

2. a transaction may die several times before acquiring
needed data item

Wound-wait scheme — preemptive

a. Older transaction wounds (forces rollback) of
younger transaction instead of waiting for it.
Younger transactions may wait for older ones.

b. May be fewer rollbacks than wait-die scheme.

Both in wait-die and in wound-wait schemes, a rolled back
transaction is restarted with its original timestamp. Older
transactions thus have precedence over newer ones, and
starvation is hence avoided.

Timeout-Based Schemes:

a. A transaction waits for a lock only for a
specified amount of time. After that, the wait
times out and the transaction is rolled back.

b. thus deadlocks are not possible
c. Simple to implement; but starvation is possible.

Also difficult to determine good value of the
timeout interval.

Deadlocks can be described as a wait-for graph, which consists of
a pair G = (V,E),

 V is a set of vertices (all the transactions in the system)

 E is a set of edges; each element is an ordered pair Ti Tj.

If Ti  Tj is in E, then there is a directed edge from Ti to Tj, implying
that Ti is waiting for Tj to release a data item.

When Ti requests a data item currently being held by Tj, then the
edge Ti Tj is inserted in the wait-for graph. This edge is removed
only when Tj is no longer holding a data item needed by Ti.

The system is in a deadlock state if and only if the wait-for graph
has a cycle. It must invoke a deadlock-detection algorithm
periodically to look for cycles.

 Database Management System

 NOTES

248

Wait for graph without a cycle Wait for graph with a cycle

Deadlock Recovery:

When deadlock is detected:

 Some transaction will have to rolled back (made a victim) to
break deadlock.

 Select that transaction as victim that will incur minimum cost.

 Rollback -- determine how far to roll back transaction

 Total rollback: Abort the transaction and then restart it.

 More effective to roll back transaction only as far as
necessary to break deadlock.

 Starvation happens if same transaction is always chosen as
victim. Include the number of rollbacks in the cost factor to
avoid starvation

Summary:

When several transactions execute concurrently in the
database, the consistency of the data may no longer be preserved.
It is necessary for the system to control the interaction among the
concurrent transactions, and this control is achieved through one of
a variety of mechanisms called concurrency control. To ensure
serializability, we introduce various concurrency control schemes.

 Database Management System

 NOTES

249

All these schemes either delay an operation or abort the
transaction that issued the operation. The most common schemes
are locking protocols, timestamp based, validation based and
multiversion schemes.

A two phase locking protocol allows a transaction to lock a new
item only if that transaction has not yet unlocked any data item. It
ensures serializability.

A time stamp ordering scheme ensures serializability by selecting
an ordering in advance between every pair of transactions.

A validation scheme is appropriate concurrency control method in
cases where a majority of transactions are read only transactions,
and thus the rate of conflicts among these transactions is low.

Model Questions:

1. What is concurrency control? List out various various
concurrency control schemes in detail.

2. Explain two phase locking in detail?

3. Explain the need of time stamp ordering and discuss how it
works?

4. What is a dead lock protocol? Explain its functionality in
detail.

	Database Users and Administrators
	Data Processing: Systematically performing a series of actions with data. May be done by manual, mechanical, electromechanical, or electronic (primarily computer) means.
	Security: The process of protecting information from unauthorized use. An example is the use of credit card numbers on the Internet to purchase merchandise and services.
	Model Questions
	CUSTOMER
	Name
	Middle Name
	Last Name
	First Name
	Curry
	Query Languages
	Additional Relational Operations
	Renaming
	Example Queries on Relational Algebra
	1. Find all loans of over $1200

	Model Questions
	Client side Tools
	SQL * PLUS : It is a separate Oracle Client side tool
	PL / SQL : Procedural Language SQL, allows Procedural processing of SQL statements.
	Rename Operation
	SQL provides a mechanism for renaming both relations and attributes. It uses the as clause, taking the form
	Old-name as new-name
	The as clause can appear in both the select and from clauses.
	Tuple Variable
	A tuple variable in SQL must be associated with a particular relation. Tuple variables are defined in the form clause by way of the as clause.
	String Operator
	Ordering the Display of Tuples

	Duplicates
	Set operations
	Aggregate Functions
	Nested Sub queries
	Summary

	Modification of the Database
	Embedded SQL
	EXEC SQL

	Dynamic SQL
	Objective
	Structure of the Lesson
	Overview of Physical Storage Media
	Magnetic disks
	Magnetic disks provide the bulk of secondary storage for modern computer systems. Disk capacities have been growing at over 50 percent per year, but the storage requirements of large applications have also been growing very fast.

	Figure 6.3 Disk Subsystem
	Improvement of Reliability and Redundancy

	Technical Terms
	Model Questions
	5. INTEGRITY & SECURITY
	Objective
	Structure of the Lesson
	Domain Constraints
	Referential Integrity
	Referential Integrity in E-R Model
	Encryption and Authentication

	Domain Constraints (1)
	A domain of possible values must be associated with every attribute. The number of standard domain types, such as integer types, characters types, and date/type times are defined in SQL. Declaring an attribute to be of a particular domain acts as ...
	The definition of domain constraints not only allows us to test values inserted in the database, but also permits us to test queries to ensure that the comparisons made make sense. The create domain clause can be used to define new domains.
	create domain Dollars numeric(12,2)
	create domain Pounds numeric(12,2)
	SQL provides drop domain and alter domain clauses to drop or modify domains that have been created with create domain.
	The check clause in SQL permits domains to be restricted in powerful ways that most programming language type systems do not permit. The check clause permits the schema designer to specify a predicate that must be satisfied by any value assigned to ...
	Reference Integrity

	This condition is called referential integrity.
	Assertions
	Need of Triggers
	Security Violations
	In addition to these forms authorization for access to data, we may grant a user authorization to modify the database schema:
	A user who has been granted some form of authorization may be allowed to pass on this authorization to others users. However, we must be careful how authorization may be passed among users, to ensure that such authorization can be revoked at some fut...

	Model Questions
	Deficiencies in Static Hashing:
	Normalization theory is built around the concept of normal forms. A relation is said to be in a particular normal form if it satisfies a certain specified set of constraints.
	For example, a relation is said to be in first normal form (abbreviated 1NF) if and only if it satisfies the constraint that it contains atomic values only (thus every normalized relation is in 1NF, which accounts for the “first”). Numerous normal for...
	11.1.2 First Normal Forms
	Pitfalls in Relational Database Design
	Sample Lending Relation

	Functional Dependencies
	Basic Concepts
	Closure set of Functional Dependencies
	Closure of Attribute Sets
	Canonical Forms
	Desirable Properties of Decomposition
	Lossless Decomposition
	Dependency Preservation
	Second Normal Form
	Third normal Form
	Decomposition Algorithm
	Summary
	Technical Terms
	Functional Dependency:
	Many-to-one relationship shared by columns of values in database tables. A functional dependency from column X to column Y is a constraint that requires two rows to have the same value for the Y column if they have the same value for the X column.
	Non-Loss Decomposition:
	Without losing of data, dividing the relation into multiple number of relations called Non loss Decomposition.
	Model Questions
	be a decomposition of R. To check if each relation schema Ri in the decomposition is in 4NF, we need to find what multivalued dependencies hold on each Ri. Recall that, for a set F of functional dependencies, the restriction Fi of F to Ri is all fun...
	More Normal Forms
	Summary
	Technical Terms
	Model Questions :

	Figure 4 Schedule 1-a serial schedule in which T1 is followed by T2.
	Figure 5 Schedule 2-a serial schedule in which T2 is followed by T1.
	Figure 6 Schedule 3-a Concurrent Schedule equivalent to schedule 1.
	Figure 7 Schedule 4-a concurrent schedule.
	Figure 8 Schedule 3-showing only the read and write instructions.
	Figure 9 Schedule 5-schedule 3 after swapping of a pair of instructions.
	Figure 10 Schedule 6 – a serial schedule that is equivalent to schedule 3.
	Transaction Definition in SQL
	Summary
	Technical Terms
	Model Questions

