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Lesson 1 

 Sets and Operations 
 
 
Objectives 
 
At the end of the Lesson the student must be able to: 
 

(i) Understand the fundamental idea of certain mathematical concepts.          
(ii) Learn the various operations on sets. 
(iii)Constructions of different equivalence relations on a set 
(iv) Learn the basic notion of algebraic systems and algorithms 
 
 

Structure 
 
1.1 Introduction 
1.2  Sets 
1.3 Operations on Sets 
1.4 Computer Representation of Sets 
1.5 Answers to Self Assessment Questions 
1.6 Summary 
1.7 Technical Terms 
1.8 Model Questions 
1.9 References  

 
 
1.1 Introduction 
 
The theory of sets was originated in the year 1895 by the German mathematician G. Cantor who 

defined a set as a collection or aggregate of definite and distinguishable objects selected by 

means of some rules or description.  It is one of the principal foundation of mathematics, and 

nearly every mathematical object of interest is a set of some kind.  Our aim of this lesson is to 

develop the techniques for logical constructions.  
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1.2 Sets 
 
A set is considered as a primitive term and thus formally undefined but we have an idea of what 

constitutes a set. 

 

1.2.1 Definition: A set is a well defined collection of objects in which we can say whether a 

given object is in the collection.  The fact that a is a member of a set   A   is denoted by   a ∈ A 

and we call it as ‘a  belongs to  A’.  The members of a set are called elements.   

 

For example:  S = {2, 4, 6, 8, 10} is a set. 

 

A set is usually specified either by listing all of its elements inside a pair of braces or by stating 

the property that determines whether or not an object x belongs to the set.   We might write S = 

{x1, x2, …, xn}.  

 

1.2.2 Example: If  E is the set of even positive integers, we describe E by writing either E =            

{2, 4, 6, …}  or   E = {x  x is an even integer and x > 0}. 

We write 2 ∈ E when we want to say that 2 is in the set E, and -3 ∉ E to say that -3 is not in the 

set E. 

 

1.2. 3 Notations: Some of the more important set notations are given below: 

ℕ: The set of all natural numbers = {n  n is a natural number} = {1, 2, 3, …}; 

ℤ: The set of all integers = {x  x is an integer} = {…, -1, 0, 1, 2, …}; 

ℚ: The set of all rational numbers = {p/q  p, q ∈ ℤ where q ≠ 0}; 

ℝ: The set of all real numbers = {x  x is a real number}; 

ℂ: The set of all complex numbers = {z  z is a complex number}.   
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1.2.4 Definitions: If   x   is not an element of   A   then we write   x ∉ A.  Suppose   A   and   B  

are two sets.   We say that   A   is a subset of   B (written as  A ⊆ B) if every element of   A   is 

also an element of B.  Two sets   A   and   B   are said to be equal (denoted by A = B) if   A   is a 

subset of   B, and   B   is a subset of A.  A set B is a proper subset of A if B ⊂ A (that is, B is a 

subset of A, but not equal to A).  Trivially, every set is a subset of it self.  A set which contains 

no elements at all is called the Null set (denoted by Φ).  

 

For example, ℕ  ⊂ ℤ ⊂ ℚ ⊂ ℝ ⊂ ℂ . 

 

1.2.5 Example: Consider the sets A = {x  x is an even positive integer} and B = { x  x is a 

positive integer}.  Then A ⊆ B. 

 

1.2.6 Definition:  Let A be a set.  Then the set of all subsets of A,  is called the power set of  A.  

It is denoted by ℘(A).   

 

1.2.7 Example: Let A = {1, 2, 3}.  Then   ℘(A) = {Φ, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3} , A} 

 

1.2.8 Problem: If the set A has n elements, then the number of elements in  ℘(A) is 2n. 
 

Solution: Suppose  A  has  n  elements.  Let  m  be an integer such that  0 ≤ m ≤ n.  We can select   

m   elements from the given set   A   in   nCm ways.   So  A   contains   nCm   distinct subsets 

containing  m  elements.  Therefore the number of elements in  

℘(A)     =  number of subsets containing 0 number of elements  

              +  number of subsets containing only 1 element  

              +  …  +  number of subsets containing n elements  

          =   nC0  +  nC1  +  nC2  +  …  +   nCn  
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          =  2n. 

 

1.2.9 Definition: A Venn diagram is a pictorial representation of sets in which the universal set  

U is represented by a rectangle and the sets within U by circles. 

 
 

1.2.10 Definition: A set A is called finite if it contains only finite number of elements.  If A 

contains n distinct elements we write by A  = n.  A set which is not finite is called infinite. 

 

1.2.11 Examples:  

Finite sets: 

 (i) Set of months in a year 

(ii) The set of vowels in English alphabets, 

(iii) The set of students in a class. 

Infinite Sets: 

(i) Set of integers 

(ii) Set of real numbers 

(iii) {1, 1/3, 1/9, 1/27, …} 

 

Self Assessments Question 1:  

List all the elements of the following sets 

(i) {x / x ∈ ℤ, x2 < 12} 

(ii) {x / x ∈ ℕ, x is prime and x < 20 } 

(iii) {x / x ∈ ℕ, x is even and  10 < x < 20} 

A                                              
   
  

                              B 
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Self Assessment Question 2: Let A = {x, y, z}.  Which of the following are subsets of A? which 

are proper subsets of A ? 

(i) {x};  (ii) {y, z, x};  (iii) {a, x, y}. 
 

Self Assessment Question 3: If S = {0, 1}, then write ℘(S). 
 

Self Assessment Question 4: Write the elements in the following sets. 

(i) A = {x / x is a multiple of 2 and x is odd};  

(ii)      B = {x / x is the number shows on the die, x > 6}.  

 

 

1.3 Operations on Sets  

In this section we will discuss several operations that will combine gives sets to yield new sets.  

These operations, which are analogous to the familiar operations on the real numbers, play a key 

role in many applications.  

 

1.3.1 Definitions:  (i) If   A   and   B   are two sets,  then the set {x  /  x ∈ A  or  x ∈ B}   is 

denoted by A ∪ B  and we call it as the union of  A and  B.   

 

(ii) The set   {x  /  x  ∈  A  and   x  ∈  B} is denoted by   A ∩ B   and we call it as the 

intersection  of   A   and   B.    

 

(iii) If   A   and   B   are two sets, then the set {x ∈ B / x ∉ A} is denoted by   B – A  (or B \ A) 

and it is called as the complement   A   in  B.  

 

(iv) The set that contains no members is called the empty set and it is denoted by  φ.   Empty set 

is a subset of every set.   
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1.3.2 Example: (i) Suppose   A  =  {a, b, c}   and   B  =  {a, b, c, 3, 4}.  Then   A   is a subset of   

B.   If   X  =  {c, b, a},  then   A  =  X.    

If   D  =  {a, b, 2, 4},  then   A ∩ D  =  {a, b}   and  A ∪ D  =  {a, b, c, 2, 4}. 

 

1.3.3 Example: Let ℝ be the universal set and suppose that A = {x ∈ ℝ  0 < x ≤ 3} and  B =             

{x ∈ ℝ  2 ≤ x < 4}. Then 

A ∩ B = {x ∈ ℝ  2 ≤ x ≤ 3}; 

A  ∪ B = {x ∈ ℝ  0 < x < 4}; 

A \ B = {x ∈ ℝ  0 < x < 2}; 

Aʹ =  {x ∈ ℝ  x ≤ 0 or x > 3}. 

 

1.3.4 Note: The operations of union and intersection can be defined for three or more sets in the 

similar way. 

A ∪ B ∪ C = {x / x ∈ A or x ∈ B or x ∈ C}   and   A ∩ B ∩ C = {x / x ∈ A, x ∈ B, x ∈ C } 

  

In general, let   Ai   be a collection of sets – one for each element   i   belongs to  I,  where  I  is 

some set (I  may be the set of all positive  integers).  We define  

I
Ii

iA
∈

  =   {a  /  a ∈ Ai  for all   i ∈ I},   and  

 U
Ii

iA
∈

  =   {a  /  a ∈ Ai   for some   i ∈ I}.  

A collection  {Ai}i∈ I  of sets is said to be mutually disjoint if   Ai ∩ Aj  =  φ  for all     i ∈ I,  j ∈ I  

such that   i ≠ j. 
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1.3.5 Example: (i) Write  Ai = {i, i+1, i+2, …} for each i ∈ N, the set of natural numbers.  Then 

it is easy to observe that  U
Ni

iA
∈

 =  N   and   I
Ii

iA
∈

=  φ. 

(ii)  If   Bi  =  {2i, 2i +1}  for all   i ∈ N,   then  {Bi}i∈N   is a collection of mutually disjoint sets. 

 

1.3.6 Definition: Let A and B are two sets.  We define their symmetric difference as the set                 

A ∆ B = (A - B) ∪ (B - A).  Sometimes it is denoted by A ⊕ B. 

 

1.3.7 Example: If A = {1, 2, 3, 4} and B = {1, 2, 5, 7}, then A ⊕ B = {3, 4, 5, 7}. 

 

Self Assessment Question 5: Let A = {a, b, c, d, e, f}, B = {b, c, g} and C = {a, c, e}.  Compute 

(i) A ∪ B ∪ C, (ii) A ∩ B ∩ C ; (iii) A – B ; (iv) B ⊕ C.  

 

1.3.8 Theorem: The set operations satisfy the following properties. 

1. A ∪ B = B ∪ A; A ∩ B = B ∩ A                                                     (commutative properties) 

2. A ∪ (B ∪ C) = (A ∪ B) ∪ C;   A ∩ (B ∩ C) = (A ∩ B) ∩ C                         (Associative) 

3. A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C);  A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)             (Distributive) 

4. A ∪ A = A; A ∩ A = A                                                                                             (Idempotent)    

5. ' '(A )  = A 

6. A ∪ A′ = U 

7. A ∩ A′ = Φ  

8. Φ′ = U 

9. U′ = Φ 

10. (A ∪ B)′ = A′ ∩ B′ ; (A ∩ B)′ = A′ ∪ B′                                                       (D’ Morgan laws)  

11. A ∪ Φ = A; A ∩ Φ = Φ; A ∪ U = U ; A ∩ U = A                                                   (Universal)             

 

1.3.9 Note:  For any two sets P and Q, we have  

(i). |P ∪ Q| ≤  |P| + |Q| where |A| denote the number of elements in A.   
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(ii). |P ∩ Q| ≤  min (|P|,  |Q|) 

(iii). |P ⊕ Q| = |P| + |Q| - 2|P ∩ Q| where ⊕  is the symmetric difference. 

 

1. 3.10 Theorem: Let A1 and A2 be two sets.  Then |A1 ∪ A2| = |A1| + |A2| - |A1 ∩ A2|. 

This can be extended to any finite number of sets, which is known as principle of inclusion and 

exclusion, given following. 

 

1.3.11 Theorem: If A1, A2, …, An are finite sets, then |A1 ∪ A2 ∪ … ∪ An| = ∑
=

n

i
iA

1
||                        

- ||
1

ji
nji

AA I∑
≤≤≤

 + ∑
≤<<≤

∩∩
nkji

kji AAA
1

||  + …. + (-1)n-1|A1 ∩ A2 ∩ ….∩ An|. 

 

1.3.12 Example: Thirty cars were assembled in a factory.  The options available were a radio, an 

air conditioner, and white wall-tires.  It is known that 15 of the cars have radios, 8 of them have 

air conditioners, and 6 of them have white wall-tires.  Moreover, 3 of them have all three options.  

Find out “at least how many cars do not have any options at all”. 
 

Solution:  Let A1, A2 and A3 denote the sets of cars with the given options respectively. 

|A1| = 15, |A2| = 8, |A3| = 6,  |A1 ∩ A2 ∩ A3| = 3. 

Now by the principle of inclusion and exclusion, 

 |A1 ∪ A2 ∪ A3| = 15 +8 + 6 - |A1 ∩ A2| - |A1 ∩ A3| - |A2 ∩ A3| + 3  

            = 32 - |A1 ∩ A2| - |A1 ∩ A3| - |A2 ∩ A3|  

 ≤  32 – 3 – 3 – 3  

 = 23. 

(here we used the fact : |Ai ∩ Aj ∩ Ak| ≤ |Ai ∩ Aj| for any i, j,  k) 

Therefore there are at most 23 cars have one or more options.  

This means there are at least 7 cars that do not have any options. 
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Self Assessment Question 6: A sample of 80 people have revealed that 24 like cinema and 62 

like television programmes.   Find the number of people who like both cinema and television 

programmes.  

 

1.3.13 Problem: Determine the number of integers between 1 to 250 that are divisible by any of 

the integers 2, 3, 5 and 7. 
 

Solution: Write A1 = {x ∈ ℤ+ / x ≤ 250 and x is divisible by 2} 

Similarly A2, A3, A4 are set of integers ≤ 250 that are divisible by 3, 5 and 7 respectively. 

|A1| = 





2
250 = 125 where  x  denotes the integer smaller than or equal to x. 

|A2| = 





3
250 = 83, |A3| = 





5
250 = 50, |A4| = 





7
250 = 35,  

|A1 ∩ A2|  = 




×32

250 = 41,  |A1 ∩ A3| = 




×52

250 = 25,  |A1 ∩ A4| = 17,  |A2 ∩ A3| = 16,  |A2 ∩ A4| = 

11,  |A3 ∩ A4| = 7, |A1 ∩ A2 ∩ A3| = 





×× 532
250 = 8,  

|A1 ∩ A2 ∩ A4| = 5, |A1 ∩ A3 ∩ A4| = 3, |A2 ∩ A3 ∩ A4| = 2, |A1 ∩ A2 ∩ A3 ∩ A4| = 1. 

Therefore |A1 ∪ A2 ∪ A3 ∪ A4| = | 25 + 83 + 50 + 35 – 41 – 25 – 17 – 16 – 11 – 7 + 8 + 5 + 3 + 2 

– 1 = 193. 

 

1.3.14 Definition: (i)  If   S   and   T   are two sets, then the set  {(s, t)  /  s ∈ S  and  t ∈ T}  is 

called the Cartesian product of   S   and   T   (here   (a, b)  =  (s, t)   ⇔   a = s   and b = t).   The 

Cartesian product of   S   and   T   is denoted by S × T.   Thus 

    S × T   =   {(s, t)  /  s ∈ S  and  t ∈ T}.  

Note that if   S   and   T   are two sets,  then   S × T   and  T × S   may not be equal.  

(ii) If   S1, S2, .., Sn   are  n  sets,  then the Cartesian product is defined as  S1 × S2 × … × Sn   =   

{(s1, s2, …, sn)  /  si ∈ Si  for 1 ≤  i ≤ n}.  
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Here the elements of   S1 × S2 × … × Sn   are called ordered n-tuples.  For any two n-tuples, we 

have  (s1, s2, …, sn)  =  (t1, t2, …, tn)   ⇔  si = ti,   1  ≤  i  ≤  n. 
 

 

1.3.15 Examples: (i) If   X  =  {a, b}   and   Y  =  {x, y},  then X ×Y  =  {(a, x), (a, y), (b, x), (b, 

y)} and Y × X  =  {(x, a) (x, b), (y, a), (y, b)}.  Note that    X  × Y   ≠   Y × X.   
 

(ii) If  A  =  {a, b},   B  =  {2},   C  =  {x}, then A × B × C  =  {(a, 2, x), (b, 2, x))}. 

 

1.3.16 Example:  List the elements of    S × T,  T × S   when T  =  {a, b, c, d}  and  S  =  {1, 2, 

4}.   Observe that the intersection of   S × T and T × S  is empty. 

 

 

1.4 Computer Representation of Sets 
 

One method to represent sets using computer is to store the elements of the set in an unordered 

fashion.  In this method, the operations like union, intersection or difference of two sets would be 

time consuming since large amount of time will be required for searching of elements.  A 

method using an arbitrary ordering of the elements of the universal set to store the elements can 

overcome this problem. 

A set can be represented in a computer using characteristic function, defined as follows. 

 

1.4.1 Definition: Let A be a subset of the Universal set U = {x1, x2, …, xn}.  The characteristic 

function of A is defined as a function from U to {0, 1} by the following: 

fA(xi) =  i

i

1  if   x A
0  if   x A

∈
 ∉

.  
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1.4.2 Example: Take A = {2, 3, 7} and U = {1, 2, …, 10}, then  fA(1) = 0, fA(2) = 1, fA(3) = 1, 

fA(7) = 1. and fA(11) is undefined.  It can be verified that fA is everywhere defined and onto, but 

not one one.    

 
1.4.3 Theorem: Characteristic functions of subsets satisfy the following properties: 

(i) fA ∩ B  = fA fB 

(ii) fA ∪ B = fA + fB - fAfB. 

Proof: (i) By definition, fA ∩ B (x) = 
1,   if  x A B
0,   if  x  A B

∈ ∩
 ∉ ∩

. 

Now fA(x)fB(x) = 1  ⇔  fA(x) = 1  and fB(x) = 1 ⇔  x ∈ A ∩ B and fA(x)fB(x) = 0 ⇔ x ∉ A ∩ B.  

Therefore   fA ∩ B  = fA fB. 
 

(ii) Now x ∈ A ⇒ fA(x) + fB(x) – fA(x)fB(x) = 1 + fB(x) – fB(x) = 1.   

Similarly, x ∈ B ⇒ fA(x) + fB(x) – fA(x)fB(x) =  fA(x) + 1 – fA(x) = 1. 

If x ∉ A and x ∉ B, then fA(x) + fB(x) – fA(x)fB(x) = 0, since fA(x) = 0 =  fB(x). 

Therefore fA(x) + fB(x) – fA(x)fB(x) = 
1,   if  x A B
0,   if  x  A B

∈ ∩
 ∉ ∩

.   Hence fA ∪ B = fA + fB - fAfB. 

 

1.4.4 Note:  A sequence is a list of objects arranged in order, such as first element, second 

element, third element and so on.  Let  U = {x1, x2, …, xn} be the universal set and A be subset 

of U.  List the elements of A in some order (the order we choose is of no importance).  Then the 

characteristic function fA defined as fA(xi) =  i

i

1  if   x A
0  if   x A

∈
 ∉

.  Thus fA can be represented by a 

sequence of 0’s and 1’s of length n.  

 

   

1.5 Answers to Self Assessment Questions 
SAQ 1: 
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(i) {-3, -2, -1, 0, 1, 2, 3} 

(ii) {2, 3, 5, 7, 11, 13, 17, 19}  

(iii) {12, 14, 16, 18} 

SAQ 2:  

(i), (ii) are the subsets of A, (iii) is not a subset of A; Moreover (i) is a proper subset of A. 

 

SAQ 3:  

℘(S) = {Φ, {0}, {1}, S}. 

SAQ 4: 

(i), (ii): Empty sets 

 

SAQ 5:  

(i) {a, b, c, d, e, f, g}; (ii) {c}; (iii) {a, d, e, f}; (iv) {a, b, e, g}. 

 

SAQ 6:  

Let A = set of people who like cinema, B = set of people who like TV.  Then |A| = 24, |B| = 62.  

By the principle of inclusion and exclusion, we get |A ∪ B| = |A| + |B| - |A ∩ B|  ⇒ 80 = 24 + 62 - 

|A ∩ B|.  Therefore |A ∩ B| = 6.             

 

 

1.6 Summary 
 

In this lesson we introduced the basic concept related to sets and the different ways of 

representing them.  Some properties common to operations on sets were discussed.  Cartesian 

product of sets was studied.  Lastly we discussed the principle of inclusion and exclusion, 

characteristic functions and properties.  
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1.7 Technical Terms 

 
Set              Well defined collection of objects.  

Subset (written as   A ⊆ B)    Every element of   A   is also an element of B 

Null set      Set contains no elements (denoted by Φ).  

Power set of A      The set of all subsets of A (denoted by ℘(A)).   

Union      A ∪ B = {x  /  x ∈ A  or  x ∈ B}. 

Intersection      A ∩ B = {x  /  x  ∈  A  and   x  ∈  B}. 

Complement     {x ∈ B / x ∉ A} (the complement  A  in  B).  

Symmetric difference    A ∆ B = (A-B) ∪ (B-A).   

Cartesian Product    S × T = {(s, t)  /  s ∈ S  and  t ∈ T}. 

Characteristic function   fA(xi) =  i

i

1  if   x A
0  if   x A

∈
 ∉

.  

 

   

1.8 Model Questions  
 

1. Draw Venn diagram and verify the following properties 

(i). A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C);  

      A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (Distributive) 

(ii). A ∪ A = A; A ∩ A = A   (Idempotent)    

(iii). ' '(A )  = A 

 

2. State Principle of Inclusion and Exclusion. 

 

3. How many arrangements of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 contain at least one of the 

patterns 289, 234 or 487 ? 
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4. A Computer company must hire 20 programmers to handle system programming jobs and 30 

programmers for applications programming.  Of those hired, 5 are expected to perform jobs of 

both types.  How many programmers must be hired ? 

 

5.  Let A = {2, 4}.  Which of the following sets are equal to A ? 

(a)  B = {4, 2}         (b)  C = {x / x2 – 6x + 8 = 0}   

(c)  D = {x / x ∈ ℕ, x is even and 1 < x < 5}     (d)  E = {x / x – 4 = 0  and  x + 2 = 0} 
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Lesson 2 

Mathematical Induction and Matrices 

 

Objectives 
  
At the end of the Lesson the student must be able to: 
 

(i) To know the principle of mathematical induction 
(ii) To find the nth term of the series 
(iii)To apply the mathematical induction to write the proofs. 
(iv) Properties of matrices. 
(v) Know the different types of matrices.  
 
 

Structure 
2.1 Introduction  

2.2 Mathematical Induction 

2.3 Matrices and Operations 

2.4 Types of Matrices and Properties  

2.5 Answers to Self Assessment Questions  

2.6 Summary 

2.7 Technical Terms  

2.8 Model Question 

2.9 References     

 

 

2.1 Introduction 
 

In this lesson we discussed the principle of Mathematical induction has a very special place in 

mathematics because of its simplicity and vast amount of applications. This lesson acts as 
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foundations on which all mathematical knowledge is built.  The theory of matrices, introduced 

by French mathematician Cayley.  A matrix is a powerful tool in the study of branches of 

Mathematics, Engineering and Technology and business applications. The concept was initially 

developed for solving equations. 

 

 

2.2 Mathematical Induction 

 

2.2.1 Definition: A function f: N → R (where N is the set of natural numbers and R the set of 

real numbers) is called a sequence of real numbers denoted by   

( ){ } ( ) ( ) ( ){ }f n f 1 , f 2 ...., f n ,....=  where ( )f n  is called the n th term of the sequence.  A 

sequence may also be denoted by ( )na  or ( )nu  where na or nu  is the n th term of the sequence. 

 

2.2.2 Definition: If ( )nu is a sequence, then ∑un = u1 + u2 + … + un + … is called a series which 

may be finite or infinite according as the number of terms in it is finite or infinite. 

 

2.2.3 Definition: A sequence of the form a , a d, a 2d , ......a n 1 d,...+ + + −  is called an 

Arithmetic Progression (A.P.) whose first term is a, common difference is d  and n th term 

denoted by nt a n 1 d= + − . 

If nS  denotes the sum of the first n  terms of the above A. P ,  then  

         ( ) ( )nS a a d ...... a n 1 d= + + + + + −  

  ( )n n2a n 1d or a l
2 2
 = + − +  , where l = the last term na n 1d t= + − =  
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Observations:   

(i) n n 1d t t −= −  is independent of n , a constant. 

(ii)  If each term of an A. P is multiplied or added by a constant the resulting sequence is also in 

A. P  

(iii)If the corresponding terms of two A. P ’s are added, the resulting sequence is also in A. P . 

(iv) If a, A, b are in A. P , then A is called the arithmetic mean between the extremes banda is 

given by  a bA
2
+

=  

(v)  If 1 2 na , x , x , ...x ,b  are in A. P , then 1 2 nx , x , ...x  are the n  AM ’s between banda , and 

their sum ( )n
nS a b
2

= +  

 

Self Assessment Question 1: Find the n th term of the following series 

  (a)  1 + 3 + 5 + 7 +….. 

  (b)  7 + 3 – 1 – 5 + …….. 

  (c)  1 + 
2
3  + 2 + 2

5 + ……... 

  (d)  1 + 3 + 9 + 27 + …….. 

 

2.2.4 Definition: A sequence of the form 2 n 1a , ar , ar ....ar ,...− is called a geometric 

progression (G.P.), whose first term is a, common ratio is r and the n th  term n 1
nt ar −= .  If nS  

denotes the sum of the first n  terms of the above G. P , then   

  n 1
nS a ar ..... ar −= + + +  

              
( ) ( )n na 1 r a r 1

or , r 1
1 r r 1

− −
= ≠

− −
 

   or  Sn na if r 1= = . 
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Also ( )n
a lr lr aS r 1
1 r r 1
− −

= = ≠
− −

 where l = the last term n 1
nt ar −= =  

If r 1 and n< → ∞ , then the sum S of infinite P.G  is  aS
1 r

=
−

   ( )nSince r 0→  

 

Observations: 

(i) n

n 1

t
r a

t −
= =  term independent of an =  constant ratio 

(ii)  If each term of a P.G is multiplied by a constant, the resulting sequence is also in P.G  

(iii)If a ,G , b  are in G. P , the G is called the geometric mean between the extremes a and b  

and  is given by G ab= ± .  

(iv) If 1 2 na, x , x ......x , b  are in P.G , then n21 x.......x,x  are the n  M.G ’s between 

a and b  and the 
k

th k 1bk G.M a
a

+ =  
 

 

(v)  Also product of the n  G.M s ( )
n
2ab=  

 

2.2.5 Definition: A sequence of the form 1 1 1 1, , , ... , ,
a a d a 2d a n 1 d+ + + −

… is a 

harmonic progression whose n th  term 
( )

n
1t

a n 1 d
=

+ −
 

Observations: 

i) There is no formula to find the sum of the first n  terms of the H. P  

ii) If a , H , b  are in H. P ., then H is the harmonic mean between the extremes a and b and is 

given by 2abH
a b

=
+

 

iii) Problems on H. P . are solved by dealing with the corresponding A. P . 
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2.2.6 Principle of Mathematical Induction  

Mathematical induction is the process of proving a general theorem or formula involving the 

positive integer n from particular cases.  

A proof by mathematical induction consists of the following two steps. 

(i) Show by actual substitution that the theorem is true for n 1=  

(ii)  Assuming the theorem to be true for n m= , prove that it is also true for n m 1= +  

Note that here m is a particular value of n .  From (i) the theorem is true for n 1=  and from (ii) it 

is true for n 1 1 2= + = ; since it is true for n 2=  it follows from (iii) that it is also true for 

n 2 1 3= + =  and so on.  Hence theorem is true for all positive integral values of n . 

 

Second Principle of Mathematical Induction: Let S(n) be a statement about integers for n ∈ N 

(set of natural numbers) and suppose S(n0) is true for some integer n0.  If S(n0),  S(n0+1), …, S(k) 

imply that S(k+1) for k ≥ n0, then the statement    S(n) is true for all integers n greater than n0. 

 

2.2.7 Example: Prove by mathematical induction that the sum of the first n  natural numbers is 

( )n n 1
2
+

. 

 

Solution: That is to prove that 1 + 2 + 3 + … + n =  
( )n n 1

2
+

 

Step (i):  For n 1= , left side = 1, right side 
( )1 1 1

1
2
+

= = .  Hence the result is true for n 1= . 

Step (ii):  Induction Hypothesis: Assume that the result to be true for n = m.  Then                        

1 + 2 + 3 + … ( )m m 1
m

2
+

=    

Step (iii): We now show that the above result is true for n m 1= + . Adding the ( )thm 1+ term 

viz., m 1+  to both sides we obtain. 
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1 + 2 + 3 + …+ ( ) ( ) ( )
m m 1

m m 1 m 1
2
+

+ + = + +  

                                  ( ) ( ) ( )m 1 m 2mm 1 1
2 2

+ + = + + =  
 

               
( ) ( )m 1 m 1 1

2

+ + +
=  

Which is the same as the given result for n m 1= +  

Hence by mathematical induction, the result is true for all + ve integral values of n . 

 

2.2.8 Example: Prove by mathematical induction that  

   
( ) ( )2 2 2 2 n n 1 2n 1

1 2 3 .... n
6

+ +
+ + + + =  

 

Solution: Step(i): If n 1= , left side 21 1= =  and the right side  

( )( )1 1 1 2 . 1 1 1 . 2 . 3 1
6 6

+ +
= = = .  Hence the result is true for n = 1. 

Step(ii):  Induction Hypothesis: Now assume that the result to be true for n = m. 

 Then 
( ) ( )2 2 2 2 m m 1 2m 1

1 2 3 .... m
6

+ +
+ + + + = . 

Adding the ( )thm 1+  term i.e. ( )2m 1+  to both sides of the above equation, we get,  

( ) ( ) ( ) ( )2 22 2 2 m m 1 2m 1
1 2 ... m m 1 m 1

6
+ +

+ + + + + = + +  

           
( ) ( ) ( ){ }m 1

m 2m 1 6 m 1
6
+

= + + +  

                                 
( ) ( )2m 1

2m 7m 6
6
+

= + +  

                                         
( )( ) ( )m 1 m 2 2m 3

6
+ + +

=  
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( ) ( ) ( )( )m 1 m 1 1 2 m 1 1

6

+ + + + +
=  

Therefore the result is true for n m 1= + . Hence by mathematical induction the given result is 

true for all positive integers n. 

 

2.2.9 Example: Prove that 
( )22

3 3 3 3 n n 1
1 2 3 ..... n

4
+

+ + + + = , by mathematical induction. 

 

Solution:  (i) For n 1= , left side 31 1= =  and right side 
( )221 1 1 1 . 4 1

4 4
+

= = =  

Hence it is true for n 1=  

(ii) Induction Hypothesis: Assume the result is true for n m= .  Then 

( )22
3 3 3 3 m m 1

1 2 3 ... m
4
+

+ + + + = . 

Adding the ( )thm 1+  term viz., ( )3m 1+  to both sides , 

( ) ( ) ( )
22

3 33 3 3 m m 1
1 2 ... m m 1 m 1

4
+

+ + + + + = + +  

( ) ( )
2

2m 1
m 4m 4

4
+

= + +
( ) ( )2 2m 1 m 2

4
+ +

=  
( ) ( )2 2m 1 m 1 1

4
+ + +

=  

Therefore the result is true for n m 1= + . Hence by mathematical induction the given result is 

established for  all positive integers.  

 

2.2.10 Problem: Prove by mathematical induction  

( ) ( )
1 1 1 1 n....

2.5 5 . 8 8 . 11 3n 1 3n 2 6n 4
+ + + + =

− + +
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Solution: 

(i) If n 1= , left side 1 1
2.5 10

= = ,  right side 1 1
6 .1 4 10

= =
+

.  Therefore the result is true for 

n 1=  

(ii) Induction Hypothesis: Assume the result to be true for n m= . 

 
( ) ( )

1 1 1 1 m.....
2 .5 5 . 8 8 . 11 6m 43m 1 3m 2

+ + + + =
+− +

  

Adding the ( )thm 1+  term, 
( ) ( )

1

3m 2 3m 5+ +
 to both sides.  

We have,   
( )( )

1 1 1....
2 .5 5. 8 3m 2 3m 5

+ + +
+ +

 

         
( )( )

m 1

6m 4 3m 2 3m 5
= +

+ + +
 

( )
( ) ( )
m 3m 5 2

2 3m 2 3m 5

+ +
=

+ +

m 1
6m 10

+
=

+
 

This is the value of n
6n 4+

 when m 1+  is substituted for n.  Therefore the proposition is true for 

all positive integral values of n.  

 

2.2.11 Problem: Prove by mathematical induction that n2 n>  for all positive integer n. 

 

Solution: Let ( )P n  be the given proposition. Now ( )P 1  implies 2 > 1 which is true. Hence 

( )P 1  is true  

Induction hypothesis:  Let us assume that ( )P m  is true. That is m2 m>  Now  

m 1 m2 2 . 2 2m+ = > .  We know that 2m m m m 1= + ≥ +  for all m N∈ .  

m 1Therefore 2 m 1+ > + .  Hence ( )P m 1+  is true. 
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Therefore by induction ( )P n  is true for all n. 

 

2.2.12Example: Show by induction that ( ) ( )n n 1 2 n 1+ +  is divisible by 6.  

 

Solution: Let ( ) ( ) ( )P n n n 1 2n 1= + +  

Now ( ) ( ) ( )P 1 1 . 1 1 2 1 6= + + =  , this is divisible by 6.  

Assume that ( )P m  is divisible by 6.    

That is, ( ) ( )m m 1 2m 1+ +  is divisible by 6.   

Therefore ( ) ( )m m 1 2m 1 6k+ + =  for some integer k.  

Now   

P(m+1) = (m+1) [(m+1) + 1] [2 (m+1)+1] 

      ( ) ( ) ( )m 1 m 2 2m 3= + + +  

      ( ) ( ) ( )m 1 m 2 2m 1 2= + + + +  

                 ( ) ( ) ( ) ( ) ( )m 1 m 2 2m 1 2 m 1 m 2= + + + + + +  

      ( ) ( ) ( ) ( ) ( ) ( )m m 1 2m 1 2 m 1 2m 1 2 m 1 m 2= + + + + + + + +  

      ( ) ( )6k 2 m 1 3m 3= + + +    by induction hypothesis  

      ( )26k 6 m 1= + +  

Since each term on the  R.H.S  is divisible by 6 their sum is also divisible by 6.  

Hence ( )P m 1+  is divisible by 6.  Therefore by induction ( )P n  is divisible by 6 for all n N∈  
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2.3   Matrices and Operations 
 
2.3.1 Definition: A matrix A is a rectangular array of numbers arranged as m horizontal rows, n 

vertical columns.  It is written as 

11 12 1

21 22 2
.
.
.
.

1

.......

.........

n

n

m mn

a a a
a a a

A

a a

 
 
 
 
 =
 
 
 
  

 

The element in the ith row and jth column is aij. So A is also written as 1 i m

1 j n
ija ≤ ≤

≤ ≤

    or simply [aij]. A 

is called an m × n matrix. We also write the (i, j)th entry as (A)ij.  When m = n, then A is called a 

square matrix (also called n – square matrix A). 

 

2.3.2 Example: 
2 5 4 1

A 1 0 6 5 ,
4 6 8 6

− − 
 =  
 − − 

 [ ]

5
0 0 2

4
B 2 1 5 , C , D 4 1 4

8
5 0 6

1

 
  −   = = = −  −
 −   − 

are 

respectively,  3 × 4 , 1 × 3,  4 ×1and 3 × 3 matrices respectively. 

 

2.3.3 Definition:  Two matrices ijA a =    and ijB b =    are said to be equal if (i) the number of 

rows and columns of A and B are the same, (ii) aij = bij for all i, j. 

 

Self Assessment Question 2:  How many entries are there in an m × n matrix ? 

 

2.3.4 Definition: Let ijA a =   and ijB b =    be two m × n matrices.  Then  the sum A + B is 

defined as an m × n matrix as follows: 
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1 i m

1 j n
ij ijA B a b ≤ ≤

≤ ≤

 + = +   

Observation: To get the sum of A and B, we add to an entry in A, the entry in B in the same 

place. We can add only two matrices of the same size. 

 

2.3.5 Definition: Let ijA a =   and ijB b =    be two m × n matrices then A – B is defined as an 

m x n matrix as follows:  1 i m

1 j n
ij ijA B a b ≤ ≤

≤ ≤

 − = −   

 

2.3.6 Definition:  Let ijA a =    and k be a scalar (any real number).  Then kA is defined as  

1 i nij
1 j n

kA ka ≤ ≤
≤ ≤

 =    

 

Self Assessment Question 3: If 
2 3 4

A
5 6 7
 

=  
 

 and 
7 8 9

B
1 2 3
 

=  
 

, find A + B, A – B, 2A.  

 

2.3.7 Definition: (i) The matrix that all its entries zero, that is 
0 0 0

0 0 0

 
 
 
  

L

M

L

, is called the zero 

matrix.  We denote as O.  

(ii) The matrix of type 

1 0 0
0 1 0

0 0 1

 
 
 
 
 
 

K

L

M

K

 is called the n–square unit matrix.  The number of rows 

is equal to the number of columns in the unit matrix.  It is denoted by In.  

(iii) A square matrix is a diagonal matrix if only the entries on the diagonal are nonzero and 
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other entries are 0’s.  For example, 

2 0 0 0
0 4 0 0
0 0 1 0
0 0 0 3

 
 
 
 −
 
 

. 

 

2.3.8 Definition: If ijA a =    is an m × n matrix then the transpose of A denoted by AT is 

defined as T
ji 1 j n

1 i m
A a ≤ ≤

≤ ≤
 =   . The transpose of an m × n matrix is an n × m matrix. 

 

The following theorem lists properties of addition of matrices.  

 

2.3.9 Properties: If A, B, C are m × n matrices and k and l are scalars, 

a) A + (B + C) = (A + B) + C 

b) A + 0 = 0 + A where 0 is the m × n zero matrix. 

c) A + (– A) = (– A) + A = 0 (Here –A denotes (– 1) A) 

d) A + B = B + A 

e) k(A+B) = kA + kB 

f) (k+l) A = kA + lA 

g) (kl) A = k (lA) = l(kA) 

h) lA = A 

i) (A+B)T = AT + BT 

j) ( )TTA = A 

k) (In)T = In 

 

2.3.10 Definition: If A is an m × n matrix and B is an n × p matrix, then the product of A and B, 
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denoted by AB, is an m × p matrix and is defined by ( ) i1 1k i2 2k in nkikAB a b a b ... a b= + + + , for 

1 i m , 1 k p≤ ≤ ≤ ≤ .  The matrix (AB)ik can be understood as follows. 

[ ]i1 i2 ina , a , .... a is the ith row of A, 

1k

2k

nk

b
b

b

 
 
 
 
 
 

M
 is the kth column of B and both these have n 

elements.  For calculating (AB)ik, multiply the respective elements of ith row of A and kth column 

of B and add them. The resulting number is (AB)ik.  We can define the product of three matrices 

A, B, C when the number of columns of A = Number of rows of B; and Number of columns of B 

= Number of rows of C. 

Let A, B, C be three matrices. Then the following hold well whenever the sums and products of 

matrices appearing below are defined. 

a) (AB) C = A (BC)                                                            (Associative law) 

b) A (B+C) = AB + AC                                               (Left distributive law) 

c) (B+C) A = BA + CA                                             (Right distributive law). 

 

2.3.12 Example: Let
2 0 1

A
1 0 1

 
=  − 

and
1 2

B 4 6
0 1

 
 =  
  

.  Now A is a 2 × 3 matrix and B is a 3 × 2 

matrix. So AB is a 2 × 2 matrix, given by  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 1 0 4 1 0 2 2 0 6 1 1 2 5
AB

1 1 0 4 1 0 1 2 0 6 1 1 1 1
 + + + +  

= =   − + + − + + − −  
. 

 

Self Assessment Question 4: Find BA for matrices A and B given in Example 2.3.11. 

 

2.3.13 Note: We have seen that A + B = B + A when A and B are matrices of the same size. But 
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AB ≠ BA in general. It can happen that one of the products is defined whereas the other product 

is not defined.  Consider the following example. 

 

2.3.14 Problem:  Give two matrices A and B such that 

a) AB is defined but BA is not. 

b) BA is defined but AB is not. 

c) Both are defined but AB ≠ BA 

d) Both are defined and AB = BA 

 

Solution:  a) Assume 
1 2 3

A
2 0 1

 
=  − 

  and  
4 2 1

B 3 5 0
0 1 2

− − 
 =  
 − 

.  Then AB is defined as the 

number of columns of A = 3 = number of rows of B.  Number of columns of B = 3 ≠ number of 

rows of A. Hence BA is not defined. 

b)  If  
4

A 3
0

− 
 =  
  

and 
1 2 3

B
2 0 1

 
=  − 

then BA is defined, as number of columns of B = 3 = 

number of rows of A.  Number of columns of A = 1 ≠ number of rows of rows of B. Hence 

AB is not defined. 

c) Assume 
2x3

1 2 3
A

2 0 1
 

=  − 
 and 

3x2

4 2
B 3 5

0 1

− 
 =  
  

 

 Then AB
2 15
8 3
 

=  − 
  and BA 

8 8 10
7 6 14
2 0 1

− − − 
 = − 
 − 

.  Hence AB BA≠  
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d)  Consider 
0 1 2

A 2 1 3
3 4 0

 
 = − 
  

 and 
1 0 0
0 1 0
0 0 1

B
 
 =  
  

 

 

Then 
0 1 2 1 0 0

AB 2 1 3 0 1 0
3 4 0 0 0 1

   
   = −   
      

 
0 1 2
2 1 3
3 4 0

 
 = − 
  

  and  

 
1 0 0 0 1 2

BA 0 1 0 2 1 3
0 0 1 3 4 0

   
   = −   
      

 
0 1 2
2 1 3
3 4 0

 
 = − 
  

 

Thus AB = BA.  

 

Now we list the properties of multiplication. 

 

2.3.15 Properties:  If A is an m × n matrix and B is an n × p matrix and k is any scalar, then 

a) (AB)T = BTAT 

b) AIn = A and Im A = A 

c) k (AB) = (kA)B = A(kB) 

d) OA = O, BO = O where the four zero matrices are k × m, k × n, p × t and n × t 

matrices respectively (for some k and t). 

 

 

2.4 Types of Matrices 

 

2.4.1 Definition: A matrix  ijA a =    is called symmetric if A = AT .  That is, A is symmetric if 

and only if aij = aji for 1 ≤ i ≤ m, 1 ≤ j ≤ n.  If A = -AT then A is called skew symmetric.  In a 

Skew-symmetric matrix, all the diagonal elements are zero. 
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2.4.2 Example: A =  
a h g
h b f
g f c

 
 
 
  

  is a symmetric matrix, since AT= A. 

 A  =  
0 h g
h 0 f
g f 0

− 
 − 
 − 

  is a Skew-symmetric matrix. 

 

2.4.3 Properties:  (i) A + AT  is a Symmetric matrix 

(ii) A – AT  is a Skew-symmetric matrix 

(iii) A = 
2
1  (A + AT) + 

2
1  (A – AT). 

 

2.4.4 Definition: A square matrix A is called an orthogonal matrix if the product of the matrix 

A and its transpose matrix AT  is an identity matrix. 

That is, AAT= I = ATA. 

 

2.4.5 Definition: A Boolean matrix is an m × n matrix whose entries are either 0 or 1.   

We define three operations of Boolean matrices which have useful application: Boolean join, 

meet and product of matrices. 

Let ijA a =    and B = ijb    be two m × n Boolean matrices.  We define A ∨ B = ijC c =   , the 

join of A and B by cij = 
ij ij

ij ij

1   if    a = 1  or  b = 1

0 if  both a   or  b  are 0




 

The meet of A and B, denoted by A ∧ B = D =   ijd   , is defined as 

ij ij
ij

1   if    a = 1  or  b = 1
d

0 otherwise
= 
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2.4.6 Example: Consider two matrices A = 
1 0 0
0 1 1
1 0 0

 
 
 
  

 and B = 
1 1 1
0 0 1
1 0 1

 
 
 
  

.   

Then A ∨ B =  
1 1 1
0 1 1
1 0 1

 
 
 
  

 and A ∧ B = 
1 0 0
0 0 1
1 0 0

 
 
 
  

. 

 

2.4.7 Properties: If A, B and C be three matrices of order m × n, then  

1. A ∨ A = A   

2. A ∧ A = A 

3. A ∨ B = B ∨ A 

4. A ∧ B = B ∧ A 

5. A ∨ (B ∨ C) = (A ∨ B) ∨ C 

6. A ∧ (B ∧ C) = (A ∧ B) ∧ C 

7. A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C) 

8. A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C) 

 

2.4.8 Definition: Let ijA a =    be an m × p Boolean matrix and B = ijb    be an p × n Boolean 

matrix.  Then the Boolean product of A and B denoted by A ⊙ B is m × n Boolean matrix  

ijC c =    defined by  cij = ik kj1   if    a = 1  or  b = 1, for some k, 1  k p 

0 otherwise 

≤ ≤



 

The (i, j)th element of C can be computed as follows:  
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(i) Select ith row of A and jth column of B ans arrange them side by side. 

(ii) Compare the corresponding entries.  If even a single pair of corresponding entries consists of 

two 1’s, then cij = 1.  Otherwise cij = 0. 

 

2.4.9 Example: Let A =   

1  1  0
0  1  1
1  1  0
0  1 0

 
 
 
 
 
 

 and B =
0 1 0 1
1 0 0 1
1 1 1 0

 
 
 
 
 

.  Now A ⊙ B = 

1 1 0 1
1 1 1 1
1 1 0 1
1 0 01

 
 
 
 
 
 

. 

 

2.4.10 Note: The Boolean product is associative. 

 

 

2.5 Answers to Self Assessment Questions 

 

SAQ 1:  

(a)    Forms an A.P. in which ( )na 1, d 2 and t 1 n 1 2 2n 1= = = + − = − . 

(b) Forms an A.P. in which ( ) ( )na 7, d 4, t 7 n 1 4 11 4n= =− = + − − = −  

(c) Forms an A.P. in which ( ) ( )n
1 1 1a 1, d , t 1 n 1 n 1 .
2 2 2

= = = + − = +  

(d)  Forms a G.P. in which n 1 n 1
na 1, r 3 , t 1 . 3 3− −= = = =  

 

SAQ 2:  

 mn entries 

 

SAQ3: 



Acharya Nagarjuna University                       2.19                            Centre for Distance Education 

 

A B+
9 11 13
6 8 10
 

=  
 

,  A-B = 
5 5 5

4 4 4
− − − 
 
 

,  2A 
4 6 8

10 12 14
 

=  
 

. 

 

SAQ 4: 

0 0 3
2 0 10
1 0 1

 
 
 
 − 

 

 

 

2.6 Summary 

 

In this lesson we studied the different types progressions like A.P., G. P. and H. P.  The Principle 

of Mathematical induction is a useful tool in proving mathematical statements.  We have also 

discussed the concept of matrices.  The different types matrices is defined, and operations on 

matrices with illustrations given.  The Boolean matrix is useful in digital computing analysis.  

 

 
2.6 Technical Terms 
 
Mathematical induction:   Consists of the following two steps. 

(i) Show by actual substitution that the theorem is true for 

n 1=  

(ii) Assuming the theorem to be true for n m= , prove that it 

is also true for n m 1= +  

Sum of the first n natural numbers:  1 + 2 + 3 + … + n =  
( )n n 1

2
+
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Sum of squares of first n natural numbers: 
( ) ( )2 2 2 2 n n 1 2n 1

1 2 3 .... n
6

+ +
+ + + + =  

Sum of cubes of first n natural numbers:  
( )22

3 3 3 3 n n 1
1 2 3 ..... n

4
+

+ + + + = , 

Addition:   Let ijA a =    m × n and ijB b =    m ×  n.  

1 i m

1 j n
ij ijA B a b ≤ ≤

≤ ≤

 + = +   

Subtraction:   Let ijA a =    m × n and ijB b =    m ×  n. 

1 i m

1 j n
ij ijA B a b ≤ ≤

≤ ≤

 − = −   

Multiplication by a scalar:  Let ijA a =    and k be a scalar (any real number).  Then 

1 i nij
1 j n

kA ka ≤ ≤
≤ ≤

 =    

Transpose matrix:  If ijA a =    is an m × n matrix then the transpose of A 

denoted by AT is defined as T
ji 1 j n

1 i m
A a ≤ ≤

≤ ≤
 =   . The 

transpose of an m × n matrix is an n × m matrix. 

Product of matrices:  If A is an m × n matrix and B is an n × p matrix then the 

product of A and B, denoted by AB, is an m ×  p matrix 

and is defined by 

( ) i1 1k i2 2k in nkikAB a b a b ....... a b= + + + , for 

1 i m , 1 k p≤ ≤ ≤ ≤ . 

Symmetric matrix:  A = AT .   

Skew Symmetric matrix:  A = -AT  
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Orthogonal matrix:  The product of the matrix A and its transpose matrix AT  is 

an identity matrix.  That is, AAT= I = ATA. 

 
 
2.8 Model Questions 
 

1. Find the sum of first n natural numbers by the principle of mathematical induction. 

2. Find the sum of the squares of  first n natural numbers by the principle of mathematical 

induction 

3. Find the sum of the cubes of first n natural numbers by the principle of mathematical 

induction. 

4.  Show by induction that ( ) ( )n n 1 2 n 1+ +  is divisible by 6.  

5. Find the values of x, y, z and t satisfying the matrix relationship. 

      
x 3 z 4 t 2 1 4 2t 5

2y 5 4x 5 3t 1 5 2x 1 20
+ + − − +   

=   + + + − + −   
 

6. Find the values for x, y, z that satisfy the matrix relationship 

        
2 x 2 6 4 x 2

3
y z 1 2z y z 3

+     
= +     − +     

 

7. If 
1 2 0 1 2 3

A , B
1 1 0 1 1 1
   

= =   −   
 and 

1 2
C 1 1

1 1

 
 =  
  

. Show that AB = AC. (Cancellation laws 

donot hold for matrices) 

8. If 
1 2

A ,
3 1
 

=  
 

 show that A2 – 2A – 5I = 0. 

9. If 
1 2

A
3 1
 

=  − 
find AAT and ATA 
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10. If 
1 2

A
4 3
 

=  − 
evaluate A2 and A3. 
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Lesson 3 

Normal Forms and Logical Inference  
 
Objectives 
  
At the end of the Lesson the student must be able to: 
 

(i) Understand the propositions.          
(ii) Learn the validity of the arguments and tautologies. 
(iii)Learn the disjunctive and conjunctive normal forms.  
(iv) Understand the equivalence forms and inference rules. 
 
 

Structure 
 
3.1  Introduction 
3.2  Statements, Propositions and Tautologies 
3.3  Equivalence forms  
3.4  Normal forms   
3.5  Logical Inferences  
3.6  Answers to Self Assessment Questions 
3.7  Summary 
3.8  Technical Terms 
3.9  Model Questions 
3.10 Reference  

 

 

3.1 Introduction 
 

Logic means reasoning. The main aim of logic is to provide rules by which one can determine 

the validity of any particular argument or reasoning. The rules are called rules of inference. 

These rules should be independent of any particular argument or discipline or particular language 

used in the argument. We need an objective language to frame the rules or theory. The basic unit 
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of our objective language is called a primary statement (variable). We assume that these 

statements cannot be further broken down or analyzed into simpler statements.  

 

The basic unit of our objective language is called a prime statement (variable) (or declarative 

sentence or Proposition).  We assume that these primary statements cannot be broken down 

further or analyzed into simpler statements.  These primary statements have only one of the two 

possible values TRUE (T) or FALSE (F).  These values T or F are referred as truth value of the 

primary statement.  We often denote the truth value TRUTH (T) by ‘1’ and the truth value 

FALSE (F) by ‘0’. 

 

Consider the following Examples: 

(i)   Moscow is the capital city of Italy. 

(ii) 2 + 3 = 5. 

(iii)Hyderabad is the capital city of Andhra Pradesh. 

(iv) New Delhi is the capital city of HUNGARY. 

(v) Open the door 

(vi) 1 + 2 = 3 

 

The statement (v) is not a primary statement because it has neither the truth value ‘T’ nor ‘F’.  

The remaining five statements are primary statements.  Statements (ii), (iii) and (vi) have the 

truth value ‘T’ (or 1), and the statements (i) and (iv) have the truth value ‘F’ (or 0). 

 

3.1.1 Example: Consider the case of a Researcher in Mathematics who has arrived at a 

reasonable conjecture.  To verify this conjecture the Mathematician tries to construct a proof that 

will show that the statement of the conjecture follows logically from the accepted Mathematical 

statements.  If he succeeds in this endeavor, he considers that he has proved his conjecture 

accepted Mathematical statement.  Another Mathematician will accept this new statement only if 

he agrees that the proof is correct, or if he can construct a proof of his own.  It appears that there 

lie some general rules and procedures for constructing proofs. 
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We shall mean, by formal logic, a system of rules and procedures used to decide whether or not a 

statement follows from some given set of statements.  A familiar example from Aristotelian logic 

is: 

 

 (i).  All men are mortal 

 (ii). Socrates is a man 

Therefore (iii). Socrates is mortal. 

 

According to the logic, if any three statements have the following form 

(i) All M are P 

(ii) S is M 

Therefore (iii) S is P 

 

then (iii) follows from (i) and (ii).  The argument is correct, no matter whether the meanings of 

statements (i), (ii), and (iii) are correct.  All that required is that they have the forms (i), (ii), and 

(iii).  In Aristotelian logic, an argument of this type is called syllogism. 

 

The formulation of the syllogism is contained in Aristotle’s organon.  It had a great fascination 

for medieval logicians, for almost all their work centered about ascertaining its valid moods.  

The three characteristic properties of a syllogism are as follows: 

 

(i). It consists of three statements.  The first two statements are called as premises, and the third 

statement is called as conclusion.  The third one (conclusion) being a logical consequence of the 

first two (the premises). 

 

(ii). Each of the three sentences has one of the four forms given in the Table  
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Classification Examples 
Universal and affirmative judgment All X is Y 

All monkeys are tree climbers 
All integers are real numbers 
All men are mortal 

Universal and negative judgment No X is Y 
No man is mortal 
No monkey is a tree climber 
No negative number is a positive number 

Particular and affirmative judgment Some X is Y 
Some men are mortal  
Some monkeys are tree climbers 
Some real numbers are integers 

Particular and negative judgment Some X is not Y 
Some men are not mortal 
Some monkeys are not tree climbers 
Some real numbers are not integers 

 

So a syllogism  is an argument consisting of two propositions called premises and a third 

proposition called the conclusion. 

 

 

3.2 Statements, Propositions and Tautologies 

 

3.2.1 Definition: A Proposition is a statement that is either true or false, but not both. 

 

3.2.2 Example: (i) “x > 3” is a statement.  This statement is neither true nor false because the 

value of the variable x is not specified.  Therefore “x > 3” is not a proposition. 

(ii). “10 > 3” is a statement.  This statement is true.  Therefore “10 > 3” is a proposition. 

(iii). “10 < 3” is a statement.  This statement is false (or not true).  Therefore “10 < 3” is a 

proposition. 

 

3.2.3 Examples:  (i). “x + y + 4 = 7” is a statement but it is not a proposition. 

(ii). “x ≥ 3” and “x ≥ 5” are statements but not propositions 
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(iii). “x ≥ 3 for all x such that x ≥ 5” is a statement.  This statement is true.  Therefore it is a 

proposition.                                

 

3.2.4 Examples:  (i) “Hyderabad is the capital of Andhra Pradesh” is a statement.  This is a true 

statement.  Therefore it is a proposition. 

(ii) “Guntur is the capital of Andhra Pradesh” is a statement which is false.  Therefore it is a 

proposition. 

(iii) “What is the time now ?”.  This is not a statement.  So this is not a proposition. 

(iv) “Read this carefully” is not a statement.  So this is not a proposition. 

 

Self Assessment Question 1: Verify whether or not the following are propositions. 

(i) 1 + 1 = 2, (ii).  2 + 2 = 3, (iii) x + y = 5 ⇒ x + y – 1 = 4, (iv). x = 2 ⇒ x2 = 4.  

 

3.2.5 Negation:  The negation of a statement is formed by means of the word “not”.  If “p” is a 

statement, then the negation of p is “~p”.  “~p” is read as “not-p”.  The symbol “~” is called 

“curl” or “twiddle” or “tilde”.  The notation “~p” is that of asserting the falsity of “p”.  If “p” 

considered to be false, then “~p” will be considered to be true. 

 

3.2.6 Example:  Let p be the statement “New York is a city”.  Now ~p is the statement “Not, 

New York is a city” (equivalently, “New York is not a city”). 

 

3.2.7 Definition:  Let p be a statement.  The statement “it is not the case that p” is another 

statement, called the negation of p. 

 

3.2.8 Examples: (i). Let Q be the statement “All integers are real numbers”, then the negation of 

this statement is ~Q : Not, all integers are real numbers or 

~Q: All integers are not real numbers. 
 

(ii). Consider the statement given below 
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           S: All angles can be trisected using straightedge and compass alone. 

    ~S: There exists atleast one angle that cannot be trisected by using straightedge and compass 

alone. 
 

(iii). Consider the statement given below 

          U: No angle can be trisected by suing straightedge and compass alone. 

        ~U: Some angles can be trisected by using straightedge and compass alone. 

The truth Table for the negation of a statement 

 
P ~P 
T F 
F T 

 

Here T stands for “True” and F stands for “False”. 

 

3.2.9 Definition:  Let P and Q be statements.  The statement “P and Q” (denoted by                    

P ∧ Q) is true when both P and Q are true; and is false otherwise.  P ∧ Q is called the 

conjunction of P and Q. 

 

3.2.10 Example:  Consider the statement 

P: “The number twelve is rational and positive”,  

A translation of P into symbols is not possible, since the word “positive” is not a statement.  If 

the statement P is changed to form: 

The number twelve is rational and the number twelve is positive. 

Then a direct translation is “A & B”, where “A” and “B” are translations given below. 

A: the number twelve is rational, B: The number twelve is positive. 

Truth Table for conjunction 

P Q P ∧ Q 
T T T 
T F F 
F T F 
F F F 
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3.2.11 Example:  Let P be the statement that “Today is a Friday” and Q be the statement “It is 

raining today”.  Then P ∧ Q is the statement “Today is a Friday and it is raining today”. 

 

3.2.12 Example: (i) He will succeed or die in the attempt. 

(ii).  A simple closed curve in the plane divides it into two regions such that any point not on the 

curve is either inside or outside the curve. 

 

3.2.13 Definition:  The disjunction “or” is used to connect two classes (or sentences) to form a 

larger sentence.  The meaning of this connection seems generally to be dependent on the 

meanings of the parts connected.  If “P” and “Q” are statements, the “P ∨ Q” is a statement that 

is true either when “P” is true or “Q” is true or both are true.  “P ∨ Q” is false only when both 

“P” and “Q” are false. 

Truth Table for disjunction 

P Q P ∨ Q 
T T T 
F T T 
T F T 
F F F 

 

3.2.14 Example:  Let P be the statement that “Today is a Friday” and q be the statement that “It 

is raining to day”.  The P ∨ Q is the statement “Today is a Friday or it is raining today”. 

 

3.2.15 The Conditional (or Implication): The Conditional sentences are of type “if ………….., 

then…………” 

 

3.2.16 Example:  Suppose x and y represent certain angles (see the following figure).  Consider 

the following statements 

A: x and y have their sides parallel 

B: x = y 
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The above two statements may be combined as: 

“If x and y have their sides parallel, then x = y” or “x and y having their sides parallel implies that 

x = y”. 

For this, consider the following diagram: 

 
 Fig. 3.2.16 (i)                   Fig.. 3.2.16 (ii) 

This figure represents two angles of 450 with their sides parallel.  Therefore x = y. 

3.2.17 Definition: Let P and Q be propositions.  The implication (denoted by P → Q or                      

P ⇒ Q) is the proposition that is false when P is true and Q is false; and true otherwise.  In this 

implication P is called the hypothesis (or antecedent or premise) and Q is called the conclusion 

(or consequence). 

Truth Table for “Implication” is given below 

P Q P → Q 
T T T 
T F F 
F T T 
F F T 

 

3.2.18 Examples: (i). “If x > 10, then x > 2” (or “x > 10 ⇒ x > 2”) is a true statement (because if 

“x > 10” is true, then “x > 2” is also true) 

(ii) If “today is a Sunday, then tomorrow is a Monday”  (or today is a Sunday ⇒ tomorrow is a 

Monday) is true. 

(iii). If “today is a Sunday, then tomorrow is a Saturday” is not true. 

 

y = 450x = 450 
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3.2.19 Note:  “P → Q” can be read in any one of the following ways  

                     (i).   P implies Q 

                     (ii).  Q is a (logical) consequence of P 

                     (iii). P is a sufficient condition for Q 

                     (iv). Q is a necessary condition for P 

                     (v).   If P then Q 

                     (vi).  If P, Q 

                     (vii). P only if Q 

                     (viii).Q if P 

                     (ix).   Q whenever P. 

 

3.2.20 Example:  If “x = 5”, then “2x = 10” is a true statement. 

 

3.2.21 Bi conditional (or imply and implied by or iff): Let P and Q be propositions.  The bi-

conditional P ↔ Q is the proposition that is true when P and Q have the same truth values and is 

false otherwise. 

P Q P⇌Q 
T T T 
T F F 
F T F 
F F T 

 

3.2.22 Note:  (i). p ↔ q may be read as “p is and only if q” 

 (ii).  p ↔ q means “p → q and q → p” 

 (iii). It is clear that p ↔ q is true precisely when both p → q and q → p are true. 

 

3.2.23 Definition: A tautology is an expression which has truth value T for all possible values of 

the statement variables involved in that expression. A contradiction is an expression which has 

truth value F for all possible values of the statement variables involved in that expression. For 

example, P ∨ ∼P is a tautology and P∧ ∼P is a contradiction 
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3.2.24 Example: Construct the truth table for ((p ∧ ∼ q) → r) → (p → (q ∨ r)) 
 

Solution: Let E denote the expression as in the following table. 

p q r p ∧ ∼ q (p ∧ ∼ q) → r p → (q ∨ r)  E 
T T T F T T T 
T T F F T T T 
T F T T T T T 
T F F T F F T 
F T T F T T T 
F T F F T T T 
F F T F T T T 
F F F F T T T 

 
 

3.2.25 Example: (In this example, we denote the truth value T by ‘1’ and the truth value F by 

‘0’). Consider the statement (p ∨ q) ∧ r  where p, q and r are three propositions.  

                                          Truth table for (p ∨ q) ∧ r  

p q r p ∨ q r  (p ∨ q) ∧ r  
0 0 0 0 1 0 
0 0 1 0 0 0 
0 1 0 1 1 1 
0 1 1 1 0 0 
1 0 0 1 1 1 
1 0 1 1 0 0 
1 1 0 1 1 1 
1 1 1 1 0 0 

 

Self Assessment Question 2:  Construct the truth table for  p ∧ q  
 

3.2.26 Problem: Show that [p ∧ (p ∨ q)] ∧ p  is a contradiction. 
 

Solution:   Now we write down the truth table  
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p q p ∨ q p ∧ (p ∨ q) p  [p ∧ (p ∨ q)] ∧ p  
0 0 0 0 1 0 
0 1 1 0 1 0 
1 0 1 1 0 0 
1 1 1 1 0 0 

 

Observing the table, we can conclude that [p ∧ (p ∨ q)] ∧ p  is always false.  Hence                       

[p ∧ (p ∨ q)] ∧ p  is a contradiction. 

 

3.3 Equivalence of formulas  
3.3.1 Definition: Let A and B be two statements involving the variables P1, P2. ..., Pn.  We say 

that A and B are equivalent if the truth value of A is equal to the truth value of B for every               

2n-possible sets of truth values assigned to P1, P2, ..., Pn and is denoted by A ⇔ B.  In other 

words A ⇔  B is a tautology. 

3.3.2 Example: Prove that (p → q) ⇔ ∼ p ∨ q. 
 

Solution:   

p q p → q ∼ p ∨ q  
T T T T 
T F F F 
F F T T 
F F T T 

Therefore (p → q) ⇔ ∼ p ∨ q. 

 

3.3.3 Example: Prove that  ∼(p ∨ q) ⇔ ∼ p ∧ ∼ q 
 

Solution:  

p q ∼ (p ∨ q) ∼ p ∧ ∼q  
T T F F 
T F F F 
F T F F 
F F T T 

Hence ∼(p ∨ q) ⇔ ∼ p ∧ ∼ q. 
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Self Assessment Question 3:  Prove that ~(P ∧ Q) → (~P ∨ (~P ∨ Q)) ⇔ ~P ∨ Q. 

 

 

3.4 Normal Forms 
 

3.4.1 Definition: Let P1, P2 , ..., Pn be n statement variables. The expression * * *
1 2 ... nP P P∧ ∧ ∧  

where *
iP  is either Pi or ∼Pi is called a minterm.  There are 2n such minterms.  

The expression * * *
1 2 ... nP P P∨ ∨ ∨ , where *

iP  is either Pi or ∼Pi is called a maxterm.  There are 2n 

such maxterms.  

 

3.4.2 Example: Let P. Q, R be the three variables. 

Then the minterms are:  P ∧ Q ∧ R, P ∧ Q ∧ ∼ R, P ∧ ∼ Q ∧ R, P ∧ ∼ ∧ ∼ R, ∼ P ∧ Q ∧ R, ∼ P ∧ 

Q ∧ ∼ R, ∼ P ∧ ∼ Q ∧ R, ∼ P ∧ ∼ Q ∧ ∼ R. 

 

3.4.3 Definition: (i) For a given formula, an equivalent formula consisting of disjunction’s of 

minterms only is known as its disjunctive normal form (DNF) or sum of products canonical 

form.  

(ii) For a given formula, an equivalent formula consisting of conjunction of maxterms only is 

known as its conjunctive normal form (CNF) or product of sums canonical form.  

 

3.4.4 Note: (i) DNF can be computed either by truth table or by direct computation. 

(ii) If the DNF for a formula F is known then disjunction of the minterms which do not appear in 

the DNF of F is the DNF of ∼ F. 

(ii) Since F  ⇔ ∼ (∼ F), we can compute CNF of F using D’Morgan’s law. 

 

3.4.5 Example: Obtain the DNF and CNF of the following formula: 
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(∼ P ∨ ∼ Q) → (P ⇌ ∼ Q) 
 

Solution: Let E be the expression that (∼ P ∨ ∼ Q) → (P ⇌ ∼ Q). 

E ⇔  (∼ P ∨ ∼ Q) → ((P → ∼ Q) ∧ ( ∼ Q → P))   

   ⇔ (∼ P ∨ ∼ Q) → ((∼ P → ∼ Q) ∧ (Q ∨  P))  

   ⇔ ∼ (∼ P ∨ ∼ Q) ∨ ((∼ P ∨  ∼ Q) ∧ (Q ∨  P))  

   ⇔ (P ∧ Q) ∨ (( ∼ P ∧ Q) ∨ (∼ P ∧ P)) ∨ (∼ Q ∧ Q) ∨ (Q ∧ P) 

   ⇔ (P ∧ Q) ∨ (∼ P ∧ Q) ∨ (P ∧ Q) 

   ⇔ (P ∧ Q) ∨ (∼ P ∧ Q),  which   is in disjunctive normal  form. 

Now ∼ E ⇔ (P ∧ ∼ Q) ∨ (∼ P ∧ ∼ Q) or  

E ⇔ ∼ (∼ E) ⇔ (∼P ∨ Q) ∧ (P ∨ Q), which is the CNF. 

Using Truth Tables: Consider the following table. 

P Q E 
T T T 
T F F 
F T T 
F F F 

 

The DNF of E is the disjunction of the minterms with truth values T.  Therefore  

E ⇔ (P ∧ Q) ∨ (∼ P ∧ Q). 

 

3.4.6 Example: Obtain the DNF and CNF for  

(P → (Q ∧ R)) ∧ (∼ P → (∼ Q ∧ ∼ R)) 
 

Solution: Let the expression E be (P → (Q ∧ R)) ∧ (∼ P → (∼ Q ∧ ∼ R)) 

Now E ⇔ (∼ P ∨ (Q ∧ R)) ∧ (P ∨ (∼ Q ∧ ∼ R)) 

            ⇔ (∼ P ∨ Q ) ∧ (∼ P ∨ R)  ∧ (P ∨ ∼ Q) (P ∨ ∼ R) 

⇔ (∼ P ∨ Q ∨ R)  ∧ (∼ P ∨ Q ∨ ∼ R)  ∧ (∼ P ∨  Q ∨ ∼ R) ∧ (∼ P ∨ ∼ Q ∨ R) 

⇔ (P ∨ ∼ Q ∨ R) ∧ (P ∨ ∼ Q ∨ ∼ R) ∧ (P ∨ Q ∨ ∼ R) 
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⇔ (∼ P ∨ Q ∨ R) ∧ (∼ P ∨ Q ∨ ∼ R) ∧ (∼ P ∨ ∼ Q ∨ R) ∧ (P ∨ ∼ Q ∨ R) ∧ (P ∨ ∼ Q ∨ ∼ R) ∧ (P 

∨ Q ∨ ∼ R). 

This  is the CNF for E.  Now  

∼ E ⇔ (∼ P ∨ ∼ Q ∨ ∼ R) ∧ (P ∨ Q ∨ R). 

Therefore E ⇔ ∼ (∼ E) ⇔ (P ∧ Q ∧ R) ∨ (∼ P ∧ ∼ Q ∧ ∼ R), which is the DNF of E. 

 

 

Self Assessment Question 4: Write the following in the DNF and the CNF. 

(a) ∼ P ∨ Q 

(b) (P ∧ Q) ∨ (∼ P ∧ R) ∨ (Q ∧ R). 

(c) P → ((P → Q) ∧ ∼ (∼ Q ∨ ∼ P)) 

 

 

3.5 Logical Inferences 
 

The main function of logic is to provide rules of inference or principles of reasoning. 

 

3.5.1 Definition: Any conclusion which is arrived at by following the rules is called a valid 

conclusion and argument is called a valid argument.  

 

Let A and B be two statement formulas. We say that “B logically follows from A” or “B is a 

valid conclusion of A”, if and only if A —b B is a tautology, that is,  A ⇒ B. 

 

3.5.2 Validity using truth table 

 

Let P1, P2, …, Pn be the variables appearing in the premises H1, H2, ..., Hm and the conclusion C. 

Let all possible combinations of truth values are assigned to P1, P2, …, Pn and let the truth values 

of H1, H2, ..., Hm and C are entered in the table. We say that C follows logically from premises 
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H1, H2, ..., Hm if and only if H1 ∧ H2 ∧ … Hm ⇒ C. This can be checked from the truth table 

using the following procedure: 

I. Look at the rows in which C has the value F. 

2. In every such row if at least one of the values of H1, H2, ..., Hm is F then the conclusion is 

valid. 

 

3.5.3 Example:  Show that the conclusion C: ∼ P follows from the premises 

H1: ∼ P  ∨ Q, H2: ∼ (Q ∧ ∼ R) and H3: ∼ R. 
 

Solution: Given that C: ∼ P, H1: ∼ P  ∨ Q, H2: ∼ (Q ∧ ∼ R) and H3: ∼ R. 

P Q R H1 H2 H3 C 
T 
T 
T 
T 
F 
F 
F 
F 

T 
T 
F 
F 
T 
T 
F 
F 

T 
F 
T 
F 
T 
F 
T 
F 

T 
T 
F 
F 
T 
T 
T 
T 

T 
F 
T 
T 
T 
F 
T 
T 

F 
T 
F 
T 
F 
T 
F 
T 

F 
F 
F 
F 
T 
T 
T 
T 

 

The rows in which C has the truth values F at least one of H1, H2, H3 has truth value F. Thus C 

logically follows form H1, H2, and H3. 

 

3.5.4 Validity using rules of Inference:  

 

We now describe the process of derivation by which one demonstrates that a particular formula 

is a valid consequence of a given set of premises.  The following are the three rules of inference. 

 

Rule P: A premise may be introduced at any point in the derivation. 

Rule T: A formula S may be introduced in a derivation If Sis tautologically implied by any one 

or more of the preceding formulas in the derivation.  
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Rule CP: If we can derive S from R and a set of premises then we can derive R → S from the set 

of premises alone. 
 

Before we proceed with the actual process of derivation, we flat some important implications and 

equivalences that will be referred to frequently.  Not all the implications and equivalences listed 

in tables respectively are independent of one another. One could start with only a minimum 

number of them and derive the others by using the above rules of inference. 

 

3.5.5 Example: Show that the conclusion C: ∼ P follows from the premises  

H1: ∼ P  ∨ Q, H2: ∼ (Q ∧ ∼ R) and H3: ∼ R. 
 

Solution: We get  

         (1) ∼ R                    Rule P (assumed premise) 

                                        (2) ∼ (Q ∧ ∼ R)      Rule P  

                             {2}     (3) ∼ Q ∨ R            Rule T 

                             {3}     (4) R ∧ ∼ Q            Rule T 

                             {4}     (5) ∼ R → ∼ Q        Rule T 

                             {1, 5} (6) ∼ Q                    Rule T 

                                        (7) ∼ P ∨ Q            Rule P 

                             {7}     (8) ∼ Q → ∼ P        Rule T 

                             {6, 8} (9) ∼ P                    Rule T 

Hence C logically follows from H1, H2, and H3. 

 

3.5.6 Example: Show that S ∨ R is tautologically implied by (P∨Q)∧(P → R) ∧(Q → S). 
 

Solution:    We have 

                                        (1)  P ∨ Q              Rule P  

                             {1}     (2) ∼ P → Q           Rule T  

                                       (3)  Q →  S             Rule P 
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                            {2, 3} (4) ∼ P → S             Rule T 

                                       (5) ∼ S → P             Rule T (as P → Q ⇔ ∼ Q → ∼ P) 

                                       (6) P → R                Rule P 

                           {5, 6}  (7) ∼ S → R             Rule T 

                           {7}      (8) S ∨ R                  Rule T 

 

3.5.7 Example: Show that R → S can be derived from the premises P → (Q → S), ∼ R ∨ P and 

Q. 
 

Solution: We get  

                                        (1)   R                  Rule P  

                                        (2) ∼R ∨ P           Rule P  

                            {2}      (3) R →  S           Rule T 

                            {1, 3}  (4) P                     Rule T 

                                       (5) P → (Q → S)  Rule P  

                            {4, 5} (6) Q → S             Rule T 

                                       (7) Q                     Rule P 

                            {7, 6}  (8) S                    Rule T 

                                        (9) R → S           Rule CP    

 

3.5.8 Validity by Indirect Method:   

 

In order to show that a conclusion C follows logically from the premises H1, H2, ..., Hm we 

assume that C is FALSE and consider ∼C as an additional premise. If H1 ∧  H2 ∧  ... ∧  Hm ∧ ∼ C 

is a contradiction, then C follows logically from H1, H2, ..., Hm. 

 

3.5.9 Example:  Show that  ∼ (P ∧ Q) follows from  ∼ P ∧ ∼Q. 
 

Solution: Assume  ∼ (∼ (P ∧ Q)) as an additional premise. Then 
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                                        (1)   ∼ (∼ (P ∧ Q))                   Rule P  

                     {1}             (2) P ∧ Q                                 Rule T  

                                        (3) P                                         Rule T 

                                        (4) ∼ P ∧ ∼ Q                           Rule P 

                       {4}           (5) ∼ P                                      Rule T 

                       {3, 5}       (6) P ∧ ∼ P                                Rule T 

 

Therefore P ∧ ∼ P is a contradiction. Hence by the indirect method of proof ∼(P ∧ Q) follows 

from  ∼ P ∧ ∼ Q.  

 

3.6 Answers to Self Assessment Questions:  

SAQ 1.  

(i) “1 + 1 = 2” is a true statement and hence it is a proposition. 

(ii).  “2 + 2 = 3” is a statement which is false.  Therefore it is a proposition. 

(iii).   “x + y = 5 ⇒ x + y – 1 = 4” is a true statement.  Therefore it is a proposition. 

(iv). “x = 2 ⇒ x2 = 4” is a true statement.  Therefore it is a proposition. 

 

SAQ 2.  

 Truth table for p∧ q  is given below 

p q p  
 

q  
 

p ∧ q  
 

0 0 1 1 1 
0 1 1 0 0 
1 0 0 1 0 
1 1 0 0 0 

 

SAQ 3 

SAQ 4.  

(a) CNF: (∼ P ∨ Q) 
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         DNF: (∼ P ∧ ∼ Q) ∨ (∼ P ∧ Q) ∨ (P ∧ Q) 

    (b) DNF: (P ∧ Q) ∨ (∼ P ∧ R) ∨ (Q ∧ R) 

          CNF: (∼ P ∨ Q ∨ ∼ R) ∧ (∼ P ∨ Q ∨ R) ∧ (P ∨ ∼ Q ∨ R) ∧ (P ∨ Q ∨ R). 

    (c) DNF: (∼ P ∧ Q) ∨ (∼ P ∧ ∼ Q) ∨ (P ∧ Q) 

         CNF: (∼ P ∨ Q).  

 

 

3.7 Summary 
 
Logic was discussed by its ancient founder Aristotle (384 BC – 322 BC) from two quite different 

points of view. On one hand he regarded logic as an instrument or organ for appraising the 

correctness or strength of the reasoning; On the other hand, he treated the principles and methods 

of logic as interesting and important topics of the study.  The study of logic will provide the 

reader certain techniques for testing the validity of a given arguments. Logic provided the 

theoretical basis for many areas of computer science such as digital logic design, automata 

theory and computability, and artificial intelligence.  In this lesson we have discussed the truth 

tables, validity of arguments using the rules of inference.  Further, we studied the various normal 

forms and logical equivalences using the rules.  

 

3.8 Technical Terms  
 

Proposition:  A Proposition is a statement that is either true or false, but 

not both. 

Implication:  Let P and Q be propositions.  The implication (denoted by 

P → Q or P ⇒ Q) is the proposition that is false when P is 

true and Q is false; and true otherwise.   
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Bi conditional:  Let P and Q be propositions.  The bi-conditional P ↔ Q is 

the proposition that is true when P and Q have the same 

truth values and is false otherwise. 

Tautology:   A tautology is an expression which has truth value T for all 

possible values of the statement variables involved in that 

expression.  

Contradiction:  is an expression which has truth value F for all possible 

values of the statement variables involved in that 

expression.  
Equivalent forms:  A ⇔  B is a tautology. 

DNF:  For a given formula, an equivalent formula consisting of 

disjunction’s of minterms or sum of products canonical 

form.  

CNF:  For a given formula, an equivalent formula consisting of 

conjunction of maxterms or product of sums canonical 

form.  

Rule P:  A premise may be introduced at any point in the derivation. 

Rule T:  A formula S may be introduced in a derivation If Sis 

tautologically implied by any one or more of the preceding 

formulas in the derivation.  

Rule CP:  If we can derive S from R and a set of premises then we 

can derive R → S from the set of premises alone. 

 

 

3.9 Model Questions  
 

1. Prove that the equivalence ∼ (p ∧ q) ⇔ ∼ p ∨ ∼ q. 
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2. Show the validity of the following argument for which premises are given in the left and 

conclusion on the right: 

(a) P → Q, Q → R                             P → R 

(b) ∼ Q, P → Q                                  ∼ P 

(c) ∼ (P ∧ ∼ Q), ∼ Q ∨ R, ∼ R            ∼ P 

(d) (P ∧ Q) → R, ∼ R ∨ S, ∼ S           ∼ P ∨ ∼ Q. 

 

3. Prove the following using the Rule CP if necessary: 

(a) P → Q ⇒ P → (P ∧ Q) 

(b) P, P → (Q → (R ∧ S)) ⇒ Q → S 

(c) P → (Q → R), Q → (R → S) ⇒ P → (Q → S).  

 

4. Show that the following statements constitute a valid argument “If A works hard then either B 

or C enjoys himself. If B enjoys himself then A will not work hard. If D enjoys himself then C 

will not. Therefore, if A works hard D will not enjoy himself.” 

 

5. “If there was a meeting then catching the bus was difficult.  If they arrived on time catching 

the bus was not difficult.  They arrived on time.  Therefore there was no meeting”.  Show that the 

statement constitutes a valid argument. 

 

6. Show that R → S can be derived from the premises P → (Q → S), ∼ R ∨ P and Q. 
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Lesson 4 

Predicate Logic 
Objectives 
  
At the end of the Lesson the student must be able to: 
 

(i) Understand the fundamental idea of logical statements.          
(ii) Learn the symbolic representation of statements. 
(iii)Learn the predicate formulas  
(iv) Understand the logical quantifiers. 
 
 

Structure 
 
4.1  Introduction 

4.2  Predicates 

4.3  Quantifiers  

4.4  Free and Bound Occurrences  

4.5  Rules of Inference 

4.6 Answers to Self Assessment Questions  

4.7 Summary 

4.8  Technical Terms 

4.9  Model Questions 

4.10 Reference  

 

 

4.1 Introduction  

 

Let us first consider the two statements: 

John is a bachelor 

Smith is a bachelor. 



Discrete Mathematics                                       4.2                                                 Predicate Logic 

Obviously, if we express these statements by symbols, we req two different symbols to denote 

them. Such symbols do not reveal the features of these two statements; viz., both are statements 

about two different individuals who are bachelors. If we introduce some symbol to denote “is a 

bachelor” and a method to join it with symbols denoting the names of individuals, then we will 

have a symbolism to denote statements about any individual’s, being a bachelor. Now we 

introduce the predicates. 

 

 

4.2 Predicates 
 

The part “is a bachelor” is called a predicate. Another so which led to some similar device for 

the representation of statements is by the following argument. 

 

All human beings are 

John is a human being. 

Therefore, John is a mortal. 

 

We shall symbolize a predicate by a capital letter and individuals or objects in general by small 

letters. We shall soon see letters to symbolize statements as well as predicates will not confusion. 

Every predicate describes something about one or more objects. 
 

We again consider the statements 

1. John is a bachelor. 

2. Smith is a bachelor. 

Denote the predicate “is a bachelor” symbolically by the predicate letter B, “John” by j, and 

“Smith” by s.  Then statements (1) and (2) can be written as B(j) and B(s) respectively.  In 

general, any statement of the type “p is Q” where Q is a predicate and p is the subject can be 

denoted by Q(p).  
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A predicate requiring m (m >0) names is called an m-place predicate. For example, B in (1) and 

(2) is a 1-place predicate. Another example is that “L: is less than” is a 2-place predicate. In 

order to extend our definition to m = 0, we shall call a statement a 0-place predicate because no 

names are associated with a statement. 

 

4.2.1 Example: Consider, now, statements involving the names of two objects, such as 

Jack is taller than Jill.                                  --------(1) 

Canada is to the north of the United States. --------(2) 

 

The predicate “is taller than” and “is to the north of” are 2-place predicates names of two objects 

are needed to complete a statement involving these predicates. 

If the letter G symbolizes “is taller than,” j1 denotes “Jack,” j2 denotes “Jill,” then statement (1) 

can be translated as G (j1, j2). Note that the order in which the names appear in the statement as 

well as in the predicate is important.  

 

Similarly, if N denotes the predicate “is to the north of,” c: Canada, and s: United States, then (2) 

is symbolized as N(c, s). Obviously, N(s, c) is the statement “The United States is to the north of 

Canada.” 

 

4.2.2 Examples: 3-place predicate: Susan sits between Ralph and Bill. 

4-place predicate: Green and Miller played bridge against Johnston and Smith. 

 

4.2.3 Note:  An n-place predicate requires n names of objects to be inserted in fixed positions in 

order to obtain a statement.  

 
4.2.4 Definition: A simple statement function of one variable is defined to be an expression 

consisting of a predicate symbol and an individual variable. Such a statement function becomes a 

statement when the variable is replaced by the name of any object. 



Discrete Mathematics                                       4.4                                                 Predicate Logic 

 

4.2.5 Example: Let H be a predicate ‘is beautiful’, s be the name ‘Senthil’ and m be the name 

‘Mythily’. Then H(x) is a simple statement function.  

If we replace x by s or m, then H(x) becomes a statement, x is used as a place holder. 

 

4.2.6 Note: Statement functions are obtained from combining one or more simple statement 

functions and the logical connectives. Statement functions of two or more variables can be 

defined in a similar manner.  

 

4.2.7 Example: In the statement function G(x, y): x is richer than y if x and y are replaced by 

names ‘Raja’ and ‘Kutti’ then we have the statements:  

G(r, k): Raja is richer than Kutti. 

G(k, r): Kutti is richer than Raja. 

 

There is another way for obtaining statements. In this regard we introduce the notion of 

quantifiers such as ‘all’ and ‘some’. 

 

Self Assessment Question 1: Give some examples of first order predicates. 

 

 

4.3 Quantifiers 

  
4.3.1 Definition: The word ‘all’ is called the universal quantifier and is denoted by (x) or for 

all x.  This symbol is placed before the statement function.  

 

4.3.2 Example: For example, consider the statement functions: 

M(x): is a mathematician. 

I(x): x is intelligent. 
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Then (x) (M(x) → I(x)) denotes the statement “for all x, if x is a mathematician then x is 

intelligent”. 

 

4.3.3 Note: The statements (x) (M(x) → I(x)) and (y) (M(y) → I(y)) are equivalent. 

 

4.3.4 Example: Let G(x, y): x is richer than y. Then  

(x)(y) (G(x, y) → ∼ G(y, x)) denotes the statements “For any x and any y, if x is richer 

than y then y is not richer than x”. 

 

4.3.5 Definition: The word ‘some’ is called the existential quantifier and is denoted by ∃x. This 

also means ‘for some’, ‘there is at least one’ or ‘there exists some’. The symbol ∃! x is read 

“there is a unique x such that”. 

 

4.3.6 Example:  Let 

M(x): x is a man 

C(x): x is clever 

I(x): x is an integer 

E(x): x is even  

P(x): x is prime. 

Then  

∃ x M(x) symbolizes “There exists a man” 

∃ x (M(x) ∧ C(x)) symbolizes “There are some men who are clever”. 

∃ x (I(x) ∧ E(x)) symbolizes “Some integers are even” or “There are some integers which are 

even”. 

∃! x (E(x) ∧ P(x)) symbolizes “There exists unique even prime”. 

 

Self Assessment Question 2: Translate each of the statement into symbols, using quantifiers, 

variables and predicate symbols. 
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Let P(x): x can speak Telugu and Q(x): x knows the language C++  

(a) There is a student who can speak Telugu and who knows C++ 

(b) There is a student who can speak Telugu but does not know C++ 

(c) Every student either can speak Telugu or knows C++ 

(d) No student can speak Telugu or knows C++. 

 

4.3.7 Definition: Variables which are quantified stand for only those objects which are members 

of a particular set or class. Such a set is called the universe of discourse or the domain or 

simply universe. 

 

4.3.8 Note: The universe may be, the class of human beings, or numbers (real, complex, and 

rational) or some other objects. The truth value of a statement depends upon the universe. 

 

4.3.9 Example:  consider the predicate Q(x): x is less than 10 and the statements (x) Q(x) and ∃ 

x Q(x). 

Now, consider the following universes: 

U1: {—1, 0, 1, 2, 4, 6, 8} 

U2: {3, —2, 12, 14, 10} 

U3: {l0, 20, 30, 40} 

The statement (x) Q (x) is true in U1 and false in U2 and U3. 

The statement ∃ x Q(x) is true in U1 and U2 and false in U3. 

 

4.3.10 Example: Let the universe of discourse be the set of integers.  Determine the truth values 

of the following sentences: 

1. (x) (x2 ≥ 0) 

2. (x) (x2-5x+6 = 0) 

3. ∃(x) (x2-5x+6 = 0) 

4. (y)(∃ x (x2 = y))  
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Solution: 1. True, 2. False, 3. True, 4. Flase. 

 

Self Assessment Question 3: Symbolize the statement “All men are giants.” 

 

4.3.11 Example: Consider the statement “Given any positive integer, there is a greater positive 

integer.” Symbolize this statement with and without using the set of positive integers as the 

universe of discourse. 
 

Solution: With Universe of discourse:  

Let the variables x and y be restricted to the set of positive integers.  

Then the above statement can be paraphrased as follows:  For all x, there exists a y such that y is 

greater than x. If G(x, y) is “x is greater than y” then the given statement is  

(x) (∃y) (G(y, x). 

With out universe of discourse: Let P(x) stands for x is a positive integer.  Then we can 

symbolize the given statement as (x) (P(x) → (∃y) (P(y) ∧ G(y, x))). 

 

 

4.4 Free and Bound Occurrences  
 

4.4.1 Definition: The expression P(x1, x2, …, xn) where x1, x2, …, xn are individual variables and 

P is an n-place predicate, is called an atomic formula. 

For example: R, Q(x), P(x, y), A(x, y, z), P(a, y) …. etc. 

 

4.4.2 Definition: A well-formed formula (wff) of predicate calculus is obtained by using the 

following rules. 

a) An atomic formula is a wff. 

b) If A is a wff, then ∼ A is a wff. 

c) If A and B are wff, then (A ∧ B), (A ∨ B), (A → B) and (A ⇌ B) are also wff. 
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d) If A is a wff and x is any variable, then (x)A and (∃x) A are wff. 

e) Only those formulas obtained by using rules (1) to (4) are wff.  

 

4.4.3 Definition: In a formula a part of the form (x) p(x) or ∃ x p(x) is called an x-bound part. 

Any occurrence of x in an x-bound part is called a bound occurrence of x while any occurrence 

of x or of any variable that is not a bound occurrence is called a free occurrence. The formula 

p(x) either in (x) p(x) or ∃ x p(x) is called the scope of the quantifier.  In a statement every 

occurrence of a variable must be bound and no variable should have a free occurrence. 

 

4.4.4 Example: Consider the following formulas: 

(x)P(x, y) ----------------------------------------------(1) 

(x)(P(x) → Q(x)) ------------------------------------ (2) 

(x) (P(x) → (∃y)R(x, y)) -----------------------------(3) 

(x)(P(x) → R(x)) ∨ (x)(P(x)—.Q(x)) --------------(4) 

(∃x)(P(x)  ∧ Q(x))                           ---------------- (5) 

(∃x)P(x) ∧ Q(x)                        ----------------------(6) 

In (1), P(x, y) is the scope of the quantifier, and both occurrences of a are bound occurrences, 

while the occurrence of y is a free occurrence. 

In (2), the scope of the universal quantifier is P(x) → Q(x), and all occurrences of x are bound. 

In (3), the scope of (x) is P(x) → (∃y) R(x,y), while the scope of  (∃y) is R(x, y). All occurrences 

of both x and y are bound occurrences. 

In (4), the scope of the first quantifier is P(x) → R(x), and the scope of the second is   P(x) → 

Q(x). All occurrences of x are bound occurrences. 

In (5), the scope of (∃x) is P(x) ∧ Q(x).  

In (6), the scope of (∃x) is P(x), and the last occurrence of x in Q(X) is free. 

 

4.4.5 Example: Symbolize the following: 

1. All birds can fly. 
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2. All babies are innocent. 

3. There is an integer such that it is odd and prime. 

4. Not all birds can fly. 
 

Solution:  We get 

1. Denote B(x): x is a bird; F(x): x can fly. 

Then the symbolic form of “All birds can fly” is (x) (B(x) — F(x)) 

2. Denote B(x): x is a baby; I(x): x is innocent. 

Then the symbolic form of “All babies are innocent” is (x) (B(x) → I(x)) 

3. Denote O(x): x is odd; P(x): x is prime. 

Then the symbolic form of “There is an integer such that it is odd and prime” is  

∃ x (O(x) ∧ P(x)). 

4. B(x): x is a bird; F(x): x can fly. 

Then the symbolic form of “Not all birds can fly” is   

∼ [(x)(B(x) → F(x))] or ∃ x (B(x) ∧ ∼ F(x)). 

 

Self Assessment Question 4: Symbolize the expression “All the world respect selfless Leaders”. 

 

4.4.6 Example: Let  

P(x): x is a person 

F(x, y): x is the father of y 

M(x, y): x is the mother of y. 

Write the predicate “ x is the father of the mother of y” 
 

Solution: In order to symbolize the predicate we name a person called z as the mother of y. 

Obviously,  we want to say that x is the father of z and z mother of y.  

It is assumed that such a person z exists. We symbolize the predicate 

(∃z) (P(z) ∧ F(x, z) ∧ M(z, y))  
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4.4.7 Example:  Symbolize the expression “All the world loves a lover.” 
 

Solution: First note that the quotation really means that everybody loves a lover. 

Now let P(x): x is a person; L(x): x is a lover; R(x, y): x loves y.  

The required expression is  

(x) (P(x) → (y)(P(y) ∧ L(y) → R(x, y))). 

 

Self Assessment Question 5:   Write the negation of the following. 

(a). For each integer x, if x is even then x2 + x is even. 

(b). There is an integer x such that x2 = 9.  

 

 

4.5 Rules of Inference  
 

4.5.1 Definitions: (a) Universal specification (US): If (x) P(x) is assumed to be true then the 

universal quantifier can be dropped to obtain P(c) is true, where c is an arbitrary object in the 

universe. 

(b) Universal generalization (UG): If P(c) is true for all c in the universe then the universal 

quantifier may be prefixed to obtain (x) P(x). 

(c) Existential specification (ES): If ∃ x P(x) is assumed to be true then P(c) is true for some 

element c in the universe. 

(d) Existential generalization (EG): If P(c) is true for some element c in the universe then ∃ x 

P(x) is true. 

 

4.5.2 Example:  Consider the following statements: 

All men are selfish. 

All kings are men. 

Prove that all kings are selfish. 
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Solution: Let 

M(x): x is a man. 

K(x): x is a king. 

S(x): x is selfish. 

The above arguments are symbolized as, 

(1)       (x)M(x) →  S(x))                           P 

(2)       M(c) → S(c)                                  US, (1) 

(3)      (x)(K(x) →  M(x))                          P 

(4)       K(c) → M(c)                                 US, (3) 

(5)       K(c) → S(c)                                  (2), (4) and inference rule 

(6)      (x) (K(x) → S(x))                          UG 

 

4.5.3 Example: Show that (x)(P(x) → Q(x)) ∧ (x)(Q(x) → R(x)) ⇒  (x)(P(x) → R(x)) 
 

Solution: The given statement is symbolized as 

(1)              (x)(P(x) → Q(x))                           P 

(2)              P(y) →  Q(y)                                 US (1) 

(3)             (x)(Q (x) → R(x))                           P 

(4)             Q(y) → R(y)                                   US (3) 

(5)             P(y) → R(y)                                    (2), (4), and Inference Rule 

(6)            (x)(P(x) → R(x))                              UG, (5). 

 

4.5.4 Example:  Show that ∃ x(P(x) ∧ Q(x)) ⇒  (∃ xP(x)) ∧ (∃ x Q(x)). 
 

Solution: The given statement can be symbolized as 

(1)                  ∃ x(P(x) ∧ Q(x))                         P 

(2)                  P(y) ∧ Q(y)                                 ES, (1), y fixed 

(3)                  P(y)                                             T 

(4)                 Q(y)                                             T 
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(5)                  ∃ x P(x)                                       EG, (3) 

(6)                  ∃x Q(x)                                       EG, (4) 

(7)                  ∃xP(x) ∧ ∃ xQ(x)                       T  

 

4.5.5 Formulas with more than one quantifiers:  Consider the case in which the quantifiers 

occur in combinations. 

If P(x, y) is a 2-place predicate formula, then the following possibilities exist. 

(x)(y)P(x, y); (x)(∃y)P(x, y); (∃x)(y)P(x, y) 

(∃x)(∃y)P(x, y); (y)(x)P(x, y); (∃y)(x)P(x, y) 

(y)(∃x)P(x, y); (∃y)(∃x)P(x, y) 

There is logical relationship among sentences with two quantifiers if the same predicate is 

involved in each sentence.  

 
 

4.5.6 Example: Show that ∼ P(a, b) follows logically from (x) (y) P(x, y) → W(x, y) and                      

∼ W(a, b). 
 

Solution: We get  

(1) (x)(y) P(x, y) → W(x, y)           P 

(2) (y) P(a, y) → W(a, y)                US, (1) 

(3) P(a, b) → W(a, b)                      US, (2)   
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(4) ∼ W(a, b)                                    P 

(5) ∼ P(a, b)                                     T, (3), (4) 

 

 

4.6 Answers to Self Assessment Questions 
 

SAQ1.           

(i)  All men are mortal 

 (ii). Given any thing in the Universe, it is mortal 

 (iii). California is human 

 (iv).  Aristotle is human 

 (v).  there exists a thing in the Universe which is mortal 

 (vi). there exists atleast one human who is mortal  

 
SAQ2.  
     (a) ∃x (P(x) ∧ Q(x)) 

     (b) ∃x (P(x) ∧ ∼ Q(x)) 

     (c)  ∀x (P(x) ∨ Q(x)) 

     (d)  ∀ x ∼ (P(x) ∨ Q(x)) 

 

SAQ3.  

Let G(x): x is a giant; M(x): x is a man. 

Without universe of discourse: (x) (M(x) — G(x)). 

With universe of discourse as “class of men”: (x)G(x). 

 

SAQ4.   

We can write 

P(x): x is a person. 
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S(x): x is a selfless leader.  

R(x, y): x respects y. 

Then the given expression is  (x) (P(x) → (y) (P(y) ∧ S(y) → R (x, y)). 

SAQ5.   

(a). The given expression is (x) (E(x) →  S(x)), where E(x): x is even, S(x) : x2 + x is even.  

Therefore the Negation is ∃x (E(x) → ∼ S(x)). 

(b). The given expression is ∃ x P(x) where P(x): x2 = 9. Therefore the Negation is  (x) (∼ P(x)).  

  

 

4.7 Summary 
In this lesson we discussed the n-place predicates, formulas with more than one quantifiers and 

writing the symbolic form of the predicate statements. The role of free and the bound 

occurrences in proving the mathematical theorems are very useful. The universal and existential 

quantifiers are defined.  With the help of the rules of inference, we have derived the logical 

implications and the equivalences.   

 

 

4.8 Technical Terms 
 

Quantifiers:  Existential quantifier, denoted by ∃x and universal 

quantifier, is denoted by (x) or ∀x. 

Atomic Formula:  The expression P(x1, x2, …, xn) where x1, x2, …, xn are 

individual variables and P is an n-place predicate.  

Free and Bound Occurrence:  (x) p(x) or ∃ x p(x)  

Universal specification (US):  If (x) P(x) is assumed to be true then the universal 

quantifier can be dropped to obtain P(c) is true, where c is 

an arbitrary object in the universe. 
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Universal generalization (UG):  If P(c) is true for all c in the universe then the universal 

quantifier may be prefixed to obtain (x) P(x). 

Existential specification (ES):  If ∃ x P(x) is assumed to be true then P(c) is true for some 

element c in the universe. 

Existential generalization (EG):  If P(c) is true for some element c in the universe then ∃ x 

P(x) is true. 

 

 

4.9 Model Questions 
 

1. Symbolize the following: 

(a) Not all birds can fly. 

(b) Some men are giants. 

(c) Not all men are giants. 

(d) All flowers are beautiful. 

(e) Not every graph is planar.  

 

2. Let U be the set of integers. Determine the truth values of the following: 

(a) (x)(x2 – x – 1 ≠ 0) 

(b) ∃ x(x2 - 3 = 0) 

(c) (x)(∃ y(x2 = y)) 

(d) (x)(x2 — l0x + 21 = 0). 

 

3. Write the negations of the following expressions: 

(a) There is an integer x such that x is even and x is prime. 

(b) Not all graphs are planar. 

(c) All men are bad. 

(d) Every graph is not connected. 
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4. Show that P(x) ∧ (x)Q(x) ⇒ ∃ x(P(x) ∧ Q(x)). 

 

5. Show that P(a) logically follows from (x)(∼ P(x) → Q(x)),  (x) (∼ Q(x)). 

 

6. Check the validity of the following arguments: 

a) All men are mortal. Socrates is a man. Therefore, Socrates mortal. 

b) Lions are dangerous animals. There are lions. Therefore, there are dangerous animals. 

c) Some rational numbers are powers of 3. All integers are rati numbers. Therefore, some 

integers are powers of 3. 
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Lesson 5 

Relations 
 

Objectives  
  

At the end of the Lesson the student must be able to: 

(i) Learn the relation between two sets. 
(ii) Understand the properties of relations. 
(iii)Learn to draw a digraph for a given relation. 
(iv) Know the matrix representation of a relation. 
(v) Apply the concept to different types of relations 

 

 

Structure 
 

5.1 Introduction 

5.2 Relations 

5.3 Matrix Representation 

5.4 Digraph Representation and Properties 

5.5 Answers to Self Assessment Questions 

5.6 Summary 

5.7 Technical Terms 

5.8 Model Questions 

5.9 References 

 

5.1 Introduction 
 

A relation may involve equality or inequality. A mathematical concept of a relation deals with 

the way the variables are related or paired. A relation may signify a family tie between such as 
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“is the son of”, “is the father of” etc. In mathematics the expressions like  “is less than”, “is 

greater than”, “is perpendicular”, “is parallel to”, are relations.  In this lesson we shall consider 

the relations, called binary relations. 

 

 

5.2 Relations 

 

5.2.1 Definition: A relation R from a set A to another set B is a subset of A × B.  That is,                      

R ⊆ A × B. 

 

5.2.2 Note: (i) If (a, b) ∈ R, then we say that a related to b by R and we write aRb. 

(ii) If a is not related to b by R, we write a R b. 

(iii)If B = A, then R ⊆ A×A is a relation on A. 

 

5.2.3 Example:  Take A = {1, 2, 3, 4, 5}.  Define a relation ‘R’ on A as aRb ⇔ a > b 

Then R ={ (5,1), (5,2), (5, 3), (5,4), (4,3),(4,2),(4,1), (3,2), (3,1), (2,1)} is a relation on A. 

 

5.2.4 Example:  Take Z+, the set of positive integers.  

Define aRb ⇔  a divides  b 

Then clearly  4R12, since 4 divides 12, but not 5R16. 

 

5.2.5 Example:  Let R denote the set of real numbers. 

Define a relation S = {(a, b) | 4a2 + 25b2 ≤ 100}. Then S is a relation on R. 

 

5.2.6 Definition:  Let R be a relation from A to B . 

The domain of R is defined as Dom R = {x ∈ A | (x, y) ∈ R for some y ∈ B}  

and the range of R is defined as Ran R = { y ∈ B | (,x y)∈ R for some x ∈ A}. 
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5.2.7 Notation:  For any x ∈ A, we denote,  

R(x) = {y ∈ B | (x, y) ∈ R} 

R(A1) = {y ∈ B | (x, y) ∈ R  for some x ∈ A1}where A1 is a subset of A. 

 

5.2.8 Definition:  Let R be a relation on a set S.  We define the inverse of the relation R  as the 

relation R–1 , where  b R–1a ⇔  a R b.  The complement relation R is a relation   such that aR b 

⇔ a R b. 

 

 

5.2.9 Example:  Take A = {Set of all living people}. Define B = {(x, y) | x is parent of y} and C 

= {(y, x) | y is child of x}.  Then each of B and C is the inverse of other. 

 

5.2.10 Example: Take A = {1, 2, 3}. Define R = {(1, 2), (1, 3), (2, 2), (2, 3)}. 

Then R = {(1, 1), (2, 1), (3, 1), (3, 2), (3, 3)}. 

 

Self Assessment Question 1:  Take A = { 2, 3, 5},  B = { 6, 8, 10 }. Define R from A to B as 

follows:  (a, b) ∈ R ⇔ a divides b 

The write the relations R and R–1.  Also write Dom (R) and Dom (R–1). 

 

5.2.11 Definition:  A relation R on a set A is said to be identity relation, denoted by IA, if                     

IA = {(x, x) | x ∈ A} 

 

5.2.12 Example:  Take A = {1, 2, 3}, then IA = {(1, 1), (2, 2), (3, 3)} 

 

5.2.13 Definition:  A relation R on a set A is said to be a universal relation if R = A× A. 

 

5.2.14 Example: Take A = {(a, b)}. Define R = {(a, a), (a, b), (b, a), (b, b)}, which is a universal 

relation. 
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5.2.15 Definition:  A relation R on a set A is  

(i) reflexive if a R a for all a ∈ A. 

(ii) irreflexive if a R a  for every a ∈ A. 

(iii) symmetric if  a R ∈ ⇒ b R a 

(iv) anti– symmetric if a R b , b R a ⇒ a = b 

(v) asymmetric if a R b implies b R a. 

(vi) transitive if  a R b and b R c ⇒ aRc 

 

5.2.16 Example:  (i) Take T = {(a, b) | a, b ∈ a,   a = b}. Since a = a for all a ∈ A and so                     

(a, a) ∈ R for all a ∈  A. Therefore R is reflexive. 

Suppose (a, b) ∈ R. Then a = b, which is same as b = a.  Therefore (b, a) ∈ R. So R is symmetric. 

Suppose (a, b) ∈ R, (b, c ) ∈ R. Then a = b, b = c 

This means a = c and so (a, c) ∈ R. 

Therefore R is transitive. 

R is not irreflexive 

R is antisymmetric. 
 

(ii) Take A = Z+, the set of positive integers. 

Define R = {(a, b) | a < b} 

R is not reflexive, since a   a. 

R is irreflexive, since (a, a) ∉ R for every a ∈ A. 

R is not symmetric, since if a < b, but not b < a. 

R is transitive, since a < b, b < c ⇒ a < c 

R is asymmetric 

 

(iii) Take A = Z+ and define R = (a, b) | b = a2} 

Then R is not reflexive 
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R is not symmetric 

R is asymmetric 

R is not asymmetric 

R is not transitive, since (2, 4), (4, 16) ∈ R but (2, 16) ∉ R. 

 

5.2.17 Example: Take A = {1, 2, 3, 4} and define R = {(1, 2), (2, 3), (1, 3), (3, 4)} Then R is not 

reflexive, since (1, 1) ∉ R 

R is not symmetric, since (2, 3) ∈ R but (3, 2) ∉ R 

R is not transitive, since (2, 3) ∈ R, (3, 4)∈ R, but (2, 4) ∉ R. 

R is irreflexive 

R is asymmetric  

R is antisymmetric 

 

5.2.18 Problem:  Let A = { 1, 2, 3, 4}. Define R1, R2, R3 as follows 

R1 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4)} 

R2 = {(1, 1), (2, 2), (3, 3)} 

R3 = {(1, 1), (1, 3), (3, 1), (1, 2), (3, 3), (4, 4)} 

Determine whether there are reflexive, symmetric, anti – symmetric or transitive. 
 

Solution: R1: Reflexive, symmetric, transitive not anti-symmetric (since  1R12, 2R11 but 1 ≠ 2) 
 

R2: Symmetric, not reflexive (since (4,4) ∉ R2) transitive, antisymmetric  

R3:  Not reflexive (since (2,2) ∉R3) 

Not symmetric (since (1,2) ∈ R3 , (2,1) ∉ R3  

Not transitive (since (3, 1), (1, 2) ∈ R3 , but (3, 2) ∉ R3. 

Not antisymmetric (since (1,3), (3,1) ∈ R3 but 1 ≠ 3) 

 

 

5.3 Matrix Representation 
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5.3.1 Definition:  Let A = {a1, a2, …, an} and B = {b1, b2, … , bn}.  If R is relation from A to B, 

then R can be represented by matrix MR = (Mij)m×n, defined ( ) i j
ij m n i j

1  if (a ,a ) R
M

0  if (a ,a ) R×

∈=  ∉
, 

where Mij  is the element in the ith row and jth column. MR can be first obtained by first 

constituting a table, whose columns are preceded by a column consisting of successive elements 

of A and where rows are headed by row consisting of successive elements of B.  If (ai, bj) ∈ R, 

then we enter 1 in the ith row and jth column. 

 

5.3.2 Example:  Let A = {1, 2, 3} and = {(x, y) | x < y}. Write MR. 
 

Solution: R = {(1, 2), (1, 3), (2, 3)}. Since (1, 2) ∈ R, we have m12 = 1; (1, 3)∈ R, we have m12 = 

1; also m23 = 1. 

Therefore R

0 1 1
M 0 0 1

0 0 0

 
 =  
  

 

 

5.3.3 Example: Let A = { 1, 2, 3, 4}. Define a R b ⇔ a < b.  Then R

0 1 1 1
0 0 1 1

M
0 0 0 1
0 0 0 0

 
 
 =
 
 
 

 

 

5.3.4 Example:  Write the relation for the relation matrix R

1 0 0
M 0 0 1

1 1 0

 
 =  
  

 

 

Solution:  Since M is a 3× 3 matrix, take A = {a1, a2, a3} and B = {b1, b2, b3} 

Then R = {(a1, b1), (a2, b2), (a2, b3), (a3, b1)} 
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Self Assessment Question 2:  Given the relation R = {(1, 4), (1, 5), (4, 1), (4, 4) (5, 5)} on A = 

{1, 4, 5}. Find MR 

 

5.3.5 Definition:  A relation R is transitive if and only if MR = [mij] has the property: mij = 1 

and mik = 1 ⇒ mik = 1 

 

5.3.6 Example:  Define a relation R represented by a matrix R

1 0 0
M 0 1 1

0 1 1

 
 =  
  

 

Here, m22 = 1, m23 = 1 ⇒ m23 = 1 

         m23 = 1, m32 = 1 ⇒ m22 = 1 

         m33 = 1, m32 = 1 ⇒ m32 =1 

Therefore the relation R is transitive. 

 

 

5.4 Digraph Representation and properties 
 

A relation can be represented pictorially by drawing its graph. 
 

5.4.1 Definition: Let R be a relation on a set A (finite).  Denote each element of A by small 

circles, called vertices. Draw an arrow, called an edge from ai to aj if and only ai R aj. The 

diagram so obtained is called the directed graph or digraph of the relation R. 

 

5.4.2 Definition: If  R is a relation on A and if a ∈ A, then the indegree of A is the number of 

elements b ∈ A such (b, a) ∈ R and out degree of a is the number  of elements b ∈ A of element 

b ∈ A such that (a, b) ∈ R. 
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5.4.3 Example: Let A = { 1, 2, 3, 4} and R = { (1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4), 

(4,1)}. 

The corresponding  digraph of R is  

 

 

 

 

 

 

In this graph  

Indegree of 1 = 3,   outdegree of 1 = 1 

Indegree of 2 = 2, outdegree 2 = 3 

 

5.4.4 Problem: Let  A = { 1,2, 3, 4) and R

1 1 0 1
0 1 1 0

M
0 0 1 1
1 0 0 0

 
 
 =
 
 
 

.  Write the relation and construct 

the digraph. 
 

Solution:  The relation (aj, aj) ∈ R ⇔ aij  = 1 

Therefore  R is { (1, 1), (1, 2), (1, 4), (2, 2), (2, 3), (3, 3), (3, 4), (4, 1)} 

 

The digraph is  

 

 

 

 

 

 

2 

1 

4

3 Fig. 5.4.3 

1 

43 

Fig. 5.4.4 

2 
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Self Assessment Question 3:   Let A = {a, b, c, d} and R = {(a, a), (b, b), (c, d), (c, b), (c, c),               

(d, b), (d, d)}. Draw the diagraph of R. 

 

5.4.5 Problem: Write the relation as a set of ordered pairs from the digraph shown below: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution: Since (2, 2) is an edge, (2, 2) ∈ R 

Since (2, 1) is an edge, (2,1) ∈ R 

Since (2, 3) is an edge, (2,3) ∈ R 
 

Since (4, 5) is an edge, (4,5) ∈ R, …. 

Therefore the relation R = {(2, 1), (2, 2), (2, 3), (3, 2), (3, 4),(4, 4), (4, 5)}. 

 

Self Assessment Question 4:  Find the relation determined by the digraph. 

 

 

 

 

 

 

 

2 

4

5 

Fig. 5.4.5 

3

1 

b 

d 

c a 
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5.4.6 Definition: Let R be a relation on the set A. A path of length n in R from a to b is a finite 

sequence P = a1, x1, x2, …, xn-1, b  beginning with a and ending with b such that  a R x1 ,  x1 Rx2 , 

…xn-1 Rb. 

 

5.4.7 Note: A path of length n involves n + 1 elements of A, not necessarily distinct. 

 

5.4.8 Definition: A path beginning and ending at the same vertex is called a cycle. 

 

5.4.9 Example: Consider the following digraph of the relation R on A = {1, 2, 3, 4, 5}.  The 

Paths in this digraph are: 
 

 

 

 

 

 

 

P1: 1, 2, 5, 4, 3 is a path from vertex  1 to vertex 3, of length 4. 

P2: 1, 2, 5, 1 is a path of length 3 from 1 to 1 (Cycle) 

P3: 1, 2, 3 is a path from 1 to 3, if length 2. 

P4: 2, 2 is a path of length one from 2 to 2. 

 

5.4.10 Definition: Let P1  = ax1 x2, …. , xr –1  b be a path of length r from a to b, and  P2: by1y2, 

…, ys – 1 c be a path from b to c.  Then the path P: ax1x2 ,… xr –1 by1y2, .., ys-1c is a path from a to 

c  of length (r + s) in R.  This path P is called the composition of two paths P1 and P2 in R. 

 

5.4.11 Example: Take A = { a, b, c, d, e} and R = (a, a), (a, b), (b, c), (c, e), (c, d), (d, e)}. 

Compute R2. 
 

Solution:  Since (a, a) ∈ R and (a, a) ∈ R, we have (a, a) ∈ R2. 

1 

3

4 

Fig. 5.4.9 

2 

5
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Since (a, a) ∈ R and (a, b) ∈ R, we have (a, b) ∈ R2 

Since (a, b) ∈ R and (b, c) ∈ R, we have (a, c) ∈ R2 

Since (b, c) ∈ R and (c, e) ∈ R, we have (b, e) ∈ R2 

Since (b, c) ∈ R and (c, d) ∈ R, we have (b, d) ∈ R2 

Since (c, d) ∈ R and (d, e) ∈ R, we have (c, e) ∈ R2 

Therefore the diagraph is: 

 

 

 

 

 

 

 

 

R2 = {(a, a), (a, b), (a, c), (b, e), (b, d) (c, e)} 

 

5.4.12 Notation: (ai, aj) ∈ R∞ ⇔ there is some path in R from ai to aj. 

 

5.4.13 Example: Compute R∞  for the above example. 
 

Solution: There is a path from a to a, we have (a, a)∈ R∞. There is a path form a to b, we have  

(a, b) ∈ R∞. 

Therefore  R∞ = {(a, a), (a, b), (b, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, d), (c, d), (d, e)}. 

 

5.4.14 Example: Let A = {1, 2, 3}, B = {p, q, r}, C =  {x, y, z}: 

and let R = { 1, p), (1, r), (2, q), (2, r)} and S = { (p, q), (q, x), (q, y), (r, z)} 

Now we compute RoS. 

(1, p) ∈ R and  (p y) ∈ S ⇒ (1, y) ∈ RoS 

a 

c

e 

Fig. 5.4.11 

b 

d 
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(1, r) ∈ R, (r, z) ∈ S ⇒ (1, z) ∈ RoS 

(2, q) ∈ R, (q, x) ∈ S ⇒ (2, x) ∈ RoS 

(2, r) ∈ R, (r, z) ∈ S ⇒ (2, z) ∈ RoS 

Therefore RoS = {(1, y), (1, z), (2, x), (2, z)} 

 

Self Assessment Question 5: Let R = (1, 1), (2, 1), (3, 2)}. Compute R2. 

 

5.4.15 Some Properties: 
 

1. If  R1 and R2  are relation form A  to B, R3 and R4 are relations form B to C, then 

(i) If R1 ⊆ R2 and R3 ⊆ R4, then R1oR3 ⊆  R2 ⊆ R4. 

(ii) (R1∪R2)  ∪ R3  = (R1oR3) ∪ (R2oR3) 

2. If R: A → B, S: B → C, T: C→D  then (RoS)oT = Ro(SoT) 
 

3. (RoS) –1 = S–1o R–1. 

 

5.4.16 Definition: The matrix for the composite of relations can be found using the Boolean 

product of the matrices.  Suppose R is a relation form A to B and S is a relation form B to C. 

Suppose that A, B and C and m, b and p elements respectively. Let  MR = [rij] m×n, MS =[sij] n×p  

and  MRoS = [tij] m×p . tij = 1 ⇔ rik= 1 = skj for some k. 

 

5.4.17 Note: MRoS = MR . MS. 

 

5.4.18 Theorem:  Let R be a relation on A = {a1, a2, …,an}.  Then MR
n = MRε MRε …ε MR    (n 

factors)  = (MR)n = MR
n , where ε is an operator representing the Boolean multiplication of 

matrices. 
 

Proof: By induction on n: 
 

Step 1:  n = 2. 

Let MR = Mij  and MR
2 = nij 
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(i, j )th element of MR
2 = 1. 

       ⇔        ith row of MR  and jth column of MR have a 1 in the same relative position  

 say k 

⇔              mik  = 1  and mkj = 1  for 1 ≤ k ≤ n 

⇔       ai R ak and  ak R aj 

⇔        ai R2 aj 

 

Thus (i,j)th element of MRε MR = 1 ⇔ nij = 1 

Hence MR
2 = MRε MR 

Therefore the theorem is true for  n = 2. 
 

Step 2: Induction Hypo: Assume the result is true for n = k 
 

Step 3: Let MR
k = [yij] and MR

k+1 = [xij]  and MR = [mij]   

If  xij = 1, then there is a path of length (k +1 ) from ai to aj. 

Let as be the vertex that this path reaches just before the last vertex aj. 

Then there is a path of length k from ai to as and a path of length 1 from as to aj  

Therefore  yis = 1  and msj = 1 

This mean MR
kε MR has a 1 in the (i, j)th position. 

Similarly, we can  prove that MR
kε MR has a 1 in the (i, j)th position, then xij = 1 

Now MR
k = ε … ε MR ( k factors) ( by indu. Hypothesis) 

So MR
k+1 = MR

kε  MR 

= {MRε MR ε …ε MR}ε  MR 

= MR ε …ε MR (k + 1 factors) 

Therefore the result is true for all n. 

 

5.4.19 Example: Let MR  and MS respectively denote the matrices of the relations R and S. 
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R S

1 0 1 0 1 0
M 0 1 0 ,   M 1 1 0

0 0 0 0 0 1

   
   = =   
      

 

 

RoS R

1 0 1 0 1 0
Then M M MS 0 1 0  1 1 0

0 0 0 0 0 1

0 1 1
                                      1 1 0

0 0 0

   
   = =    
      

 
 =  
  

 

 

5.4.20 Definition: (i) Let R and S two relations on a set A. Then we define R∪S as follows:  

x(R∪S)y ⇔ xRy or xSy.  Note that MR∪S = MR ∨ MS, where ∨ denotes the Boolean addition. 

(ii) Define R ∩ S as  x(R ∩ S)y ⇔ xRy and xSy.  Note that MR ∩ S  = MR∧MS 

 

5.3.21 Example: Consider a relation R defined on A = {1, 2, 3} whose matrix representation is 

R

1 0 0
M 1 1 1

0 0 1

 
 =  
  

.  Compute R–1 and the complement R1 

 

Solution:  We have MR
-1 = (MR

1) =   the transpose of MR. 

1 1 0
0 1 0
0 1 1

 
 =  
  

 

R-1 = {(1, 1), (1, 2), (2, 2), (3, 2), (3, 3)} 

Also MR
1 can be obtained by changing 0 to 1 and 1 to 0 in MR. 
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Therefore MR
1 = 

0 0 1
1 0 1
1 0 0

 
 
 
  

.  That is R1 = {(1, 2), (1, 3), (3, 1) (3, 2)}. 

 

5.4.22 Definition:  Define xR*y ⇔ x = y or R∞ y. 

Then MR
* = I ∨ MR∨ (MR)2 ∨ (MR)3 ∨ …, where I is the unit matrix. 

 

5.4.23 Problem: Let R be the relation on A = { 1, 2, 3, 4, 5, 6} such that  R = { (1, 2), (1,6), 

(2,3), (3,3), (3,4), (4,1), (4,3), (4,5) (6,4)} 

Find (i) R2      (ii)  MR
2           (iii) MR

∞          (iv) a cycle  starting at 2     (v)  a cycle starting at 6. 
 

Solution:  (i) R2 = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4), (3, 5), (4, 2), (4, 3), (4, 4), (4, 6),            

(6, 1), (6, 3)}. 

(i) 2
R

0 0 1 1 0 0
0 0 1 1 0 0
1 0 0 1 1 0

M
0 1 1 1 0 1
0 0 0 0 0 0
1 0 1 0 0 0

 
 
 
 

=  
 
 
 
 

 

(ii) R

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

M
11 1 1 1 1 1
0 0 0 0 0 0
1 1 1 1 1 1

∞

 
 
 
 

=  
 
 
 
 

 

(iii) Cycle staring at 2:  2 → 3→ 4→ 1→ 2 

(iv) Cycle staring  at 6: 6→ 4→ 1→ 6. 
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5.5 Answers to Self Assessment Questions 

 

SAQ1. 

   {(2, 8) (2, 10), (3, 6), (5, 10)} 

R-1 = {(8, 2), (10, 2), (6, 3), (10, 5)} 

  Dom (R) = {2, 3, 5} = Ran R-1 

Dom (R-1) = {8, 10, 6} = Rang. R. 

 

SAQ 2.   

R

0 1 1
M 1 1 0

0 0 1

 
 =  
  

 

 

SAQ 3.  

 

 

 

 

 

 

 

SAQ4.  

The relation   R = {(a, a), (a, c), (b, c), (c, d), (c, c), (d, c)} 

 

SAQ 5.  

R2 = {(1, 1), (2, 1), (3, 1)} 

 

 

a 

d

b 

c 
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5.6 Summary   

 

In this lesson some basic concepts of relations and their pictorial representations were discussed. 

Sufficient number of illustrations provided to understand the concepts. Also the matrix array 

representation of relations was discussed. For a given relation, the matrix relation was given and 

vice versa. 

 

 

5.6. Technical Terms 

 

Relation:  R ⊆ A× B 

Domain of a relation:   Dom r = { x ∈ A | (x, y)∈ R for some y ∈ b} 

Range of a relation:  Range R = { y ∈ B | (x, y) ∈ R for some x ∈ A} 

Matrix Relation:  ( ) i j
ij m n i j

1  if  (a ,  a ) R
m

0  if  (a ,  a ) R ×

∈=  ∉
 

Digraph:  Edge ai to aj ⇔ ai R aj and (ai , aj)∈ R∞:   There is a path in 

R from ai to aj. 

Boolean product:    Let MR = [ rij]m×n,    MS = [ sij]n×p    and  

   MRoS = [tij]m×p 

   Tij = 1 ⇔ rik = 1 = skj for some k. 

Union of two relations:    x (R∪S ) y ⇔ x R y or x S y 

Intersection of two relations:  x (R ∩S ) y ⇔ x R y and x S y. 

 

 

5. 7 Model Questions  
 

1. Define a relation and give example. 
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2. Let A = {1, 2, 3,4, 6} and R be a relation on A such that a R b ⇔ a  is a multiple of b. Find 

the domain, range, matrix and digraph of R. 

 

 

3. Let A = { 1, 2, 3} , R and S be two relations defined on A as R = { (1,1), (1, 3), (2,1), (2,2), 

(2,3), (3, 2)}  and S = { (1,1), (2,2), (2,3), (3,1), (3,3) }. Determine SoR. 

 

4. Determine the domain and range of relation R, on set of integers, R = {(x, y) | x is a multiple 

of 3 and y is a multiple of 5}. 

 

5. Let R = {(1,2), (3,4), (2,2)} and S = {(4,2), (2,5), (3,1), (1,3)}.  Find RoS, SoR, RoRoR, SoS. 

 

6. Describe  the relation if A = {1, 2, 3, 4} and B = {1, 4, 6, 8, 9} and a R b ⇔ b = a2. Also find 

the domain and range of R. 

 

7. Determine whether the relation R on the set of all integers Z, is reflexive, symmetric, 

antisymmetric and  / or transitive. 

(i) (x, y) ∈ R ⇔ x ≠ y 

(ii) (x, y ) ∈ R ⇔ x is a multiple of y 

(iii) (x, y) ∈ R ⇔ | x + y | = z  

 

8. Give an example of a relation on the set of positive integers which is  

(i) symmetric, reflexive but not transitive  

(ii) reflexive, transitive but not symmetric 

(iii) symmetric, transitive, but not reflexive 

(iv) reflexive but neither symmetric nor transitive 

(v) neither symmetric nor antisymmetric 
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Lesson 6 

Equivalence Relations  
 

Objectives  
 

At the end of the Lesson the student must be able to: 
 

(i)  Learn various properties of relations. 
(ii) Understand equivalence relations. 
(iii)Know the closure of relation and apply this to find reflexive, symmetrical transitive closure 

relations. 
(iv) Know the matrix representation of closure relations. 
(v) Learn graphical representation of closure relations. 
(vi) Apply Warshall’s algorithm to find the transitive closure. 

 
 
Structure 

 
6.1  Introduction 
6.2 Equivalence Relations 
6.3 Closure Relations 
6.4 Matrix Representation of Closure Relations 
6.5 Composition of Relations 
6.6 Graphical Representation of Closure Relation 
6.7 Answers to Self Assessment Questions 
6.8 Summary 
6.9 Technical Terms 
6.10 Model Questions 
6.11 References  

 
 
6.1 Introduction 
 
In this lesson we deal a particular type of relation called equivalence relation.  We discuss the 

various representations of these relations such as graphical and matrix forms. We also define 

closure relations on a set, obtain different properties these and apply Warshall algorithm to find the 

transitive closure of relations. 
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6.2 Equivalence Relations 
 
 
6.2.1 Definition: A relation R on a set A is called an equivalence relation if R is reflexive, 

symmetric and transitive. 

 

6.2.2 Example:  

(i) Take A = {1, 2, 3, 4}. Define   

 R = {(1, 1), (1, 2), (2, 1), (2, 2) (3, 3) (3, 4), (4, 3), (4, 4). Then R is a reflexive, symmetric 

and transitive.  Therefore R is an equivalence relation. 

(ii) Take A = Z, the set of integers.  Define:  R = {(a, b) | a ≤ b}.    Now a ≤ a for all a ∈ Z, R 

is reflexive.  a ≤ b ⇒ b  a,  R is not symmetric 

 a ≤ b ,   a ≤ c ⇒ a ≤ c,   R is  transitive. Therefore R is not an equivalence relation. 

(iii) Take A = Z, the set of integers.   

 Define:  R = {(a, b} | a ≡ r (mod 2), b = r (mod 2)}. That is (a, b) ∈ R ⇔  a and b give the 

same remainder r when divided by 2.  R is an equivalence relation. 

 

6.2.3 Problem:  Let R be a relation on A. Then  

(i) If R is reflexive, then R–1 is also reflexive. 

(ii) R is symmetric ⇔  R = R–1. 

(iii) R is antisymmetric ⇔ R ∩ R–1 ⊆  IA. 
 

Solution: (i) (a, a) ∈ R for all a ∈ A  ⇒   (a, a) ∈ R–1 for all a ∈ A. Therefore R–1 is reflexive. 

(ii)  Take (a, b) ∈ R–1 ⇒ (b, a) ∈ R ⇒  (a, b) ∈ R (since R is symmetric).  

Therefore R–1 ⊆ R,   Similarly we can show that R ⊆ R–1. 

Converse: Suppose R = R–1. Let (a, b) ∈ R.  Then (a, b) ∈ R–1 and so (b, a) ∈ R.  

Hence R is symmetric. 

(iii)   Suppose R is antisymmetric.  Let (a, b) ∈ R ∩ R–1   ⇒ (a, b) ∈ R and (a, b) ∈ R–1    
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Since (a, b) ∈ R–1, we have (b, a) ∈ R.  Now (a, b) ∈ R  and  (b, a) ∈ R.  Since R is antisymetric, 

we have a = b.  This is true for  all (a, b) ∈ R ∩ R–1 .  Hence every element of R ∩ R–1 is the form 

(a, a) where a ∈ A. Therefore R ∩ R–1 ⊆  IA. 

 

6.2.4 Note:  Suppose R and S are relations on a set A.  Then  

(i) If R and S are reflexive, then R ∪ S and R ∩ S are reflexive. 

(ii) If R and S re symmetric, then R ∪ S and R ∩ S are symmetric. 

(iii) If R and S are transitive, then R ∪ S and R ∩ S are transitive. 

 

6.2.5 Remark: If R and S are transitive, then R ∪ S need not be transitive. 
 

Proof: Take A = {1, 2, 3} and define transitive relations. R = { (1, 1) (2, 2), (1, 2), (2,1) }, and  S = 

{ (2,2), (3,3), (2,3) (3, 2)} on A.   

Therefore R ∪ S = {(1, 1) (2, 2), (1, 2), (2,1), (3,3), (2,3) (3, 2)}.  Now   (1, 2) ∈ R ∪ S and (2, 3) ∈ 

R ∪ S, but  (1, 3) ∉  R ∪ S.  Therefore R ∪ S is not transitive. 

 

6.2.6 Result:   If R and S are equivalence relations on the set A, then  

(i) R–1  is an equivalence relation 

(ii) R ∩ S is an equivalence relation. 
 

Proof:  Reflexive:  (a, a) ∈ R–1, since (a, a) ∈ R for all a ∈ A. 

Symmetric:    (a, b) ∈ R–1    

         ⇒ (b, a) ∈ R  

         ⇒ (a, b) ∈ R (since R is symmetric) 

  ⇒ (b, a) ∈ R–1    

  Transitive:  (a, b), (b, c) ∈ R–1    

       ⇒ (b, a), (c, d) ∈ R 

                  ⇒ (c, b), (b, a) ∈ R 
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      ⇒ (c, a) ∈ R (since R is transitive) 

      ⇒ (a, c) ∈ R–1    

Therefore R–1 is an equivalence relation. 

 

Self Assessment Question 1: Verify R ∩ S is an equivalence relation on A if R and S are 

equivalence relations on A 

 

6.2.7 Problem: Let R = Set of real numbers.  Define  

( )(i) a,b R  |a|=|b|∈ ⇔  

( )(ii) a,b R  a b∈ ⇔ ≥  

( )(iii) a,b R  |a| > |b|∈ ⇔  

Which of these are equivalence relations? 
 

Solution:  

(i) Equivalence relation 

(ii) Not Symmetric and so it is not an equivalence relation 

(iii) Not Symmetric and so not equivalence relation. 

 

6.2.8 Definition: Let S be a non empty set. A class {Ai}i∈I is said to be a partition for S if it satisfies  

ji

i
i I

(i)  A A  for all i j

(ii) A S
∈

∩ = φ ≠

=U  

 

6.2.9 Theorem: Let P be a partition of the Set A. Define a relation R on R as   a R b ⇔  a and b are 

the numbers of the same block. Then R is an equivalence relation on A. 
 

Proof:  Reflexive:  a and b are in the same block for the a∈A and so a R a. 

Symmetric:  a R b ⇒  a and b are in the same block 

⇒ b and a are in the same block  
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⇒  b R a 

Transitive:  a R b, b R c ⇒ a, b, c are in the same block ⇒ a R C. 

Therefore R is equivalence relation. 

 

6.2.10 Properties of Equivalence Relations: 
Let R be an equivalence relation defined by A. Let a, b ∈ A be arbitrary elements. Then 

[ ]

[ ] [ ] [ ]

[ ] [ ] ( )

[ ] [ ] [ ] [ ]

(i) a a

(ii) b a a b

(iii) a b a, b R

(iv) a b  or a b

∈

∈ ⇒ =

= ⇔ ∈

= ∩ = φ

  

 

Proof: Proofs of (i), (ii) and (iii) are trivial. 

Now we will prove (iv) 

Consider [ ] { } [ ] [ ]a x |  x A  and x R a  Assume that a b= ∈ ∩ ≠ φ  

[ ] [ ]

[ ] [ ]

[ ] [ ] ( )

  x A such that  x a b

 x a   and  x b

 x R a  and  x R b

 a R x  and x R b    (since R is symmetric)

 a R b        ( since R is transitive)

 a b        by (iii)

⇒ ∃ ∈ ∈ ∩

⇒ ∈ ∈

⇒

⇒

⇒

⇒ =

 

This completes the proof. 

 

6.2.11 Theorem: Let R be an equivalence relation defined on A. Then R induces a partition on A. 
 

Proof:  Let a ∈ A. Write ( ) { }R a x A | a R x= ∈ .   

Since R is reflexive, we have a R a and so a ∈ R(a). 

Therefore R(a) is non empty. Also every element of A is some R(x). 
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Next we show that any two sets R(a) and R (b) for some a and b, are either identical or disjoint.  

Suppose ( ) ( )R a R b∩ ≠ φ  then 

( ) ( )c R a R b  for some c A.∈ ∩ ∈  

( ) c R(a) amd c R b
 aRc   and   bRc
 aRc  and  cRb  (since R is symmetric)
 aRb  (since R is transitive)
 b  R(a)
 a R(b)  (since R is symmetric)

⇒ ∈ ∈

⇒
⇒
⇒
⇒ ∈
⇒ ∈

 

Also x ∈ R(b) ⇒  bRx ⇒ bRx ⇒ xRb ⇒ xRa, (since bRa) ⇒ aRx ( since R is symmetric) 

⇒ x ∈ R (a).  Therefore R(b) ⊆ R (a). In a similar way we can verify that R(a) ⊆ R (b) and hence 

R(a) = R(b) . Thus R induces a partition P of A by the subsets r (a) as: 

(i) every element of A is in one of the elements of P. 

(ii) R (a) ∩ R(b) ≠ φ ⇒  R (a) = R(b). 

The sets R(a) are called equivalence classes of R, denoted by [a]. 

 

6.2.12 Notation: The partition P is denoted by A/R. The element of A/R are called quotient sets of 

A with respect to R. 

 

6.2.13 Example: Let A = {1, 2, 3, 4} and P = {{1, 2, 3}, {4}} be a partition of A.                        

Find the equivalence relation determined by P. 
 

Solution:  Each element in the block is related to every other element in the same block and only to 

those elements. 

Therefore R = { (1,1), (1, 2), (1, 3),  (2, 2), (3, 3), (2, 3), (3,1), (3, 2), (2,1),  (4, 4) } 

 

6.2.14 Example: Let  R = {(1, 1), (1, 2) (2, 1), (2, 2) (3, 4), (4, 3), (3,3), (4, 4)} be an equivalence 

relation on A = { 1,2,3,4}.  Write the set A/ R. 
 

Solution:  R (1) = {1, 2}; R (2) = {1, 2}; R (3) = {3, 4}; R (4) = {3, 4}. 
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The partition is {{1, 2}, {3, 4}}.  Therefore A/ R = {[1], [3]}. 

 

6.2.15 Problem: Write the procedure for construction of A / R. 
 

Solution:   

Step (1):  Choose  a ∈ A and find R (a) = { x ∈ A | a R x }. 

Step (2):   Verify whether R(a) = A or not.  If R (a) ≠ A, choose b ∈ A and b ∉ R(a) and find R(b). 

Step  (3): If R (a) ∪ R(b) ≠ A,  choose c ∈ A such that  c ∉ R(a) ∪ R(b), and find R(c). 

Step (4): Repeat step (3) until all the elements of A are included in the computed equivalence 

classes. 

 

6.2.16 Example:  Take Z, the set of integers.  Define  R = {(a, b) | (b – a) is divisible by 3} 

Reflexive:  0 = a – a is divisible by 3, so (a, a) ∈ R. 

Symmetric:  (a, b) ∈ R ⇔ a – b is divisible by 3 

⇔ – ( a – b) is divisible by 3 

⇔ b – a is divisible by 3 

⇔ (b, a) ∈ R. 

Transitive:  (a, b) ∈ R and (b, c) ∈ R  ⇒ a – b and b – c divisible by 3 ⇒ a – b + b – c is divisible 

by 3 ⇒ a – c is divisible by 3 ⇒ (a, c) ∈ R.  Therefore R is an equivalence relation. 

[a]  =  { x ∈ Z | xRa} = { x ∈ Z | x – a is divisible by  3} =  {x ∈ Z | x = 3k + a for some integer k} 

In particular 

[0] = {x ∈ Z | x = 3k + 0 for some integer k} = {…, –9, –6, –3, 0, 3, 6, 9, …} 

[1]  =  { x ∈ Z | x = 3k + 1  for some integer k} = {…, –8, –5, –2, 1, 4, 7, …} 

[2]  =  { x ∈ Z | x = 3k + 2  for some integer k}=  { …, –7, –4, –1, 2 5,8, 11, …} 

Clearly [0] ∪ [1] ∪ [2] = Z.  Also these classes are pair wise disjoint. 

Therefore Z / R = {[0], [1], [2]}. 
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Self Assessment Question 2 

Show that the relation (x, y) R (a, b) ⇔ x2 + y2 = a2 + b2 is an equivalence relation. 

 

6.2.17 Problem: If {(a, b, c), (b, d, f)} is partition pf the set A= {a, b, c, d, e, f}; determine the 

corresponding equivalence relation R. 
 

Solution: R = {(a, a), (a, c), (a, e), (c, e), (c, c), (e, e), ( e, c), (e, a), (b, b), (d, d),(f, f), (b, d), (b, f), 

(d, f), (f, d), (d, b),  (c, a)}. 

 

 

6.3 Closure Relations 
 

6.3.1 Definition: Let R be a relation on a set A. R may or may not have some property P, such as 

reflexivity, symmetry or transitivity. If there is a relation S with property P containing R such that S 

is a subset of every relation with P containing R, the S is called the closure of R with respect to P.  

 

6.3.2 Definition: Let R be a relation on a set S. The reflexive closure of R is the smallest reflexive 

relation R1which contains R. 

 

6.3.3 Note: R1 = R ∪ ∆ , where ∆ is the diagonal relation on S, i.e.,  ∆ = { (a, a) | a ∈ S}. 

 

6.3.4 Definition: The symmetric closure of R is the smallest symmetric relation containing R. That 

is R ∪ R–1 is symmetric closure R, where R–1 is the inverse of the relation R. It is denoted by R(s). 

 

6.3.5 Definition: Transitive closure of a relation R is the smallest transitive relation containing R. 

 

6.3.6 Example: Consider the set S = {1, 2, 3, 4} 

(i) The relation R = { (1,2), (2, 1), (1, 1), (2, 2)} is not reflexive, since (3, ,3) ∉ S. 

Consider ∆ = { (1,1,), (2, 2), (3, 3), (4, 4)}.  
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Now the reflexive closure R1 = R∪ ∆ = {(1, 2), (2, 1), (1, 1), (2, 2), (3, 3), (4, 4)}. 

Observe that R1 (the reflexive closure of R, sometimes we denote as R(r) is obtained by 

supplementing with exactly essential ( non more, no less) in order to get a reflexive relation 

containing R. 

(ii)  Consider the relation K = { (1,2), (4, 3), (2, 2), (2, 1), (3, 1)}, which is not symmetric on S.  

Now K –1 = {(2, 1), (3, 4), (2, 2) (1, 2), (1, 3)}. The symmetric closure K(s) of K is given by  K(s)  = 

K ∪ K–1  = { (1, 2), (2, 1), (4, 3), (3, 4), (3, 1), (1, 3)}. 

 

6.3.7 Note:  Given a relation R on a set A. To make a relation R transitive, add all pairs of R2, all 

pairs  of R3, …,all pairs of Rm ( assume that | A| = m ), unless these pairs are already in R. 

Then the transitive closure of R, denoted by R∞ or R(T)  

R(T) = R ∪ R2 ∪  … ∪ Rm. 

 

6.3.8 Properties of Transitive closure: 

(i) R(T) is transitive 

(ii) R ∈ R(T) 

(iii) If S is any other transitive relation that contains R, then R(T) ∈ S. 

 
 

6.4 Matrix Representation of Closure Relations 

 
6.4.1 Definition:  Let  M be the relation matrix of the relation R. Then  

(i) the symmetric closure of R, denoted by MS, defined as  MS = M ∨ M′  where M′ is the transpose 

of M. 

(ii) The reflexive closure of R, denoted by MR, defined as MR = M ∨ In   where n is the cardinality 

of the set of for which the relation defined and In is the identity matrix of size n. 

(iii)  The transitive closure of R, denoted by MT or 
R

M ∞ defined as MT = M ∨ M2 ∨ M3 ∨ ….∨ Mn. 
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6.4.2 Example:  Take A = {1, 2, 3} and R = {(1, 2), (2, 3), (3, 1)}. Find the reflexive, symmetric 

and transitive closure of R, using composition of matrix relation of R. 
 

Solution:  Let M be the matrix relation R then 
0 1 0

M 0 0 1
1 0 0

 
 =  
  

 

(i)  The Reflexive closure of R,  MR = M ∨ I3  
0 1 0 1 0 0 1 1 0
0 0 1 0 1 0 0 1 1
1 0 0 0 0 1 1 0 1

     
     = ∨ =     
          

 

One can write the reflexive closure R(r), using the above matrix  as R(r)  = {(1, 1), (1, 2), (2, 2), (2, 

3), (3, 1), ( 3, 3)}. 

(ii)  The symmetric closure of R, is MS = M ∨ M′ 
0 1 0 0 0 1
0 0 1 1 0 0
1 0 0 0 1 0

   
   = ∨   
      

   
0 1 1
1 0 1
1 1 0

 
 =  
  

.  

One can write the symmetric closure R(S) , using the above matrix as 

R(S) = {(1, 2), (1,3), (2,1), (2,3), (3,1), (3,2)}  

 
(iii)  To find the transitive closure of R, we first find M2 and M3 (since the cardinality of the set A = 
3). 

          2
0 1 0 0 1 0 0 0 1

M 0 0 1 0 0 1 1 0 0
1 0 0 1 0 0 0 1 0

  
     
     = =     
          

    and  

 

 M3 = M2. M  
0 0 1 0 1 0
1 0 0  0 0 1
0 1 0 1 0 0

   
   =    
      

 
1 0 0
0 1 0
0 0 1

 
 =  
  

 

 
Therefore the transitive closure of R, MT = M ∨ M2 ∨ M3  
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0 1 0 0 0 1 1 0 0
0 0 1  1 0 0 0 1 0
1 0 0 0 1 0 0 0 1

     
     = ∨ ∨     
          

 
1 1 1
1 1 1
1 1 1

 
 =  
  

.  One can write the transitive closure of R,  

RT = { (1,10), (1,2), (1,3), (2,1), (2,1), (2,2), (2,3), (3,1), (3,2) (3,3)}. 
 
 
Self Assessment Question 3:  Consider the relation R = { (0,1), (1,2), (2,3) } on A = { 0, 1, 2, 3.  

Write the reflexive, symmetric and transitive closures of R, using (i) composition of relation and (ii) 

composition of matrix relation. 

 

 

6.5 Composition of Relations 
 

6.5.1 Definition: Let R be a relation from A to B, S be a relation from B to C.  Then the relation 

SoR from A to C is defined by a (SoR) c ⇔  a R b and b S c for some b ∈ B for all a ∈ A and                  

c ∈ C. 

 

6.5.2 Example: Take A = {1, 2, 3, 4} 

Define R = {(1, 1), (1, 2) (2, 3), (2, 4), (3,4), (4,1), (4,2)}  and  

             S = {(3,1), (4, 4), (2,3), (2,4), (1,1), (1, 4)} 

 Then since (1,1) ∈ R, (1,1)∈ S   we have (1,1) ∈ SoR 

          since (1,2) ∈ R, (2,3)∈ S  we have  (1, 3)∈ SoR 

          since (2,3) ∈ R, (3,1)∈ S  we have  (2, 1)∈ SoR 

Continuing this way we set  

SoR = { (1,1), (1,4), (1,3), (2,1), (2,4), (3,4), (4,1), (4,4), (4,3)} 

Similarly, 

RoR = { (1,1), (1,2), (1,3), (1,4), (2,4), (2,1), (2,2), (3,1), (3,2), (4,1), (4,2), (4,3), (4,4)} 
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Self Assessment Question 4:  Take  A = { 1,2,3,4,5} . Define R = { (1,2), (3,4), (2,2) } and                        

S = { (4, 2), (2,5), (3,1), (1,3) }.  Write (i)  RoS (ii)  SoR (iii) Ro (SoR) (iv) (RoS)oR, (v) SoS 

 

6.5.3 Problem:  If R1 and R2 are relations from A to B, R and R4 are relations from B to C, then             

(i) If R1 ⊆ R2  and R3 ⊆ R4 , then R1 o R3 ⊆ R2 o R4. 

(ii) (R1 ∪ R2) o R3 = R1 o R3 ∪ R2 o R3. 
 

Solution:  (i) Take (x, y) ∈ R1 o R3.   By def; (x, y) ∈ R1 and (y, z) ∈ R3 for some y ∈ B 

Now (x,y) ∈ R1 ⊆ R2  ⇒ (x, y) R2 

(y, z) ∈ R3 ⊆ R4 ⇒ (y, z) ∈ R4 

Therefore (x, z) ∈ R2 o R4.  Hence  R1 o R3 ⊆ R2 o R4. 

(ii)Since R1 ⊆ R1o R2 , we have R1oR3 ⊆(R1∪ R2) o R3                  (by (i)) 

Similar way, R2 o R3 ∈ (R1∪ R2)oR3 

Therefore R1 o R3 ∪ R2 o R3 ⊆ (R1∪ R2) o R3 

On the other hand, take (x, z) ∈ (R1∪ R3) o R3 

⇒  ∃ y ∈ B such that (x, y) ∈ R1∪ R2  and (y, z) ∈ R3. 

If (x, y)∈ R1, then (x, z) ∈ R1o R3 

If (x, y)∈ R2 then (x, z) ∈ R2 o R3 

Therefore (x, z) ∈ R1 o R3 ∪ R2 o R3.  Thus (R1 ∪ R2) o R3  = R1 o R3 ∪ R2 o R3. 

 

6.5.4 Problem:  If R is a relation from A to B, S is a relation form B to C, and T is a relation  from 

C to D, then  (RoS)o T = Ro(SoT) 
 

Solution:   We show that  (x, v) ∈ (R oS) oT ⇔ ∃ y ∈B, Z∈C  such  that   (x, y) ∈ R, (y, z)∈ S and 

(x,v)∈ T     ------- (say condition (A)) 

Take (x, v) ∈ (RoS)oT ⇒ there exists z ∈ C such that (z, z) ∈ RoS and (z, v) ∈ T.  Since                        

(x,z) ∈ RoS, there exists y ∈ B such that (x, y) ∈ R and (y,z) ∈ S. 
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Thus condition (A) holds.  In a similar way, one can verify that (x, v) ∈ Ro(SoT) ⇔ ∃ y ∈ B and             

z ∈ C such that (, y) ∈ R, (y, z) ∈ S and (x, v) ∈ T.  Thus we can conclude that (RoS)oT = 

Ro(SoT). 

 

6.5.5 Problem: If R is a relation from A to B and S is a relation from B to C, then (RoS)-1 = S-1o R-1  

 

Solution: Since R is a relation from A to B we have R–1 is a relation from B to A. Similar way,              

S-1 is a relation from C to B.  Therefore S–1oR–1 is a relation from C to B. 

If  (x, y) ∈ R, (y,z ) ∈ S, then (x, z) ∈ R o S ⇒ (z, x) ∈ (R o S–1) 

But (z, y) ∈ S–1 and (y, x) ∈ R–1, we have (z, x) ∈ S–1 o R–1. 

This is true for any x ∈ A and z ∈ C. Hence (RoS)–1  = S–1 o R–1   

 

6.5.6 Problem: If R is a relation on a set A, then R is transitive  ⇔ R2 ⊆ R. 
 

Solution: Suppose R is transitive, take (x, y) ∈ R2 ⇒ ∃ z ∈ A such that (x, z) ∈ R, (z, y) ∈ R.  

Since R is transitive, we have (x, y) ∈ R  Thus  R2 ⊆ R 

Converse: Suppose R2 ⊆ R. Take (x, y) ∈ R, and (y, z) ∈ R.   Then (x, z) ∈ RoR = R2 ⊆ R. Thus R 

is transitive.  

 

6.5.7 Theorem: Let A, b, C be finite sets. Let R be a relation from A to B and S be a relation from 

B to C.   Then  MRoS = MR ⋅ MS where MR and MS  represents relation matrices  of R and S 

respectively. 
 

Proof:  Let A = {a1, a2 , …, am},  B = { b1, b2 , …, bn},  and C =  { c1, c2 , …, cp} 

Suppose MR = [aij ] ,  MS = [bij ], MRoS = [dij ] 

Then dij = 1  ⇔ (ai, cj) ∈ RoS 

⇔ (ai, bk) ∈ R   and (bk, cj) ∈ S  for some bk ∈ B 

⇔ aik = 1 = bkj  for some k  1≤ k ≤ n. 
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If dij = 0, then (ai, ak)∉ R  or (ak , aj)∉ S. This condition is identical to the condition needed for MR . 

MS  to have 1or 0 in position I, j and thus MRoS  =  MR . MS  . 

 

6.5.8 Theorem: Let R be a relation on a set A. Then R∞ is the transitive closure of R. 
 

Proof: Clearly ⊆ R∞.  For a, b ∈ A, 

a R∞ b ⇔ there is a path in R from a to b.  Now a R∞b and b R∞c ⇒ there is a path from a to b in R, 

and a path from b to c in R ⇒ there is a path from a to c in R.  This path is the composition of paths 

from a to b and b to c. 

Next we verify that R∞  is the smallest transitive relation containing R. 

Let  S be any transitive relation such that R ⊆ S to show that R∞⊆ S. 

Since S is transitive, we have Sn ⊆ S for all n that is, if a and b are connected by a path of length n, 

then aSb and  .
n 1

S S
∞

∞

=

= ⊆U  

Since  R ⊆ S,  n
n 1

R R R S
∞

∞

=

= ⊆ ⊆U . Thus R∞ is the transitive closure of R. 

 

 

6.6 Graphical Representation of Closure relation 
 

6.6.1 Definition: Consider the relation R on a set A (finite set). We add all missing arrows (edges) 

from points themselves in the digraph of the relation R, we get the reflexive closure of R.  If we add 

missing reverses of all arrows in the digraph of R we get the symmetric closure of R.   If we add an 

arrow connecting a point x to y whenever some sequence of arrows in the diagraph of R connected 

to x and y and there was not an arrow from x to y already. 

 

6.6.2 Example: Let R = { (1,2), (2, 3), (3,1)} on the set A = { 1,2,3}.  Find the reflexive, symmetric 

and transitive closure of R, using the graphical representation of R. 
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Solution:  Consider the graphical representation of R 

 
 

(i) To get the reflexive closure, we add all the arrows to themselves shown below. 

 

 

 

 

 

 

 

 

(ii) To find the symmetric closure of R, add missing reverses of all the arrows in graphical 

representation of R. 

 

 

 

 

 

(iii) To find the 2 transitive closure; 

since  1 → 2 → 3 → 1 ,  we add  arrow  1 to 1 

since  2 → 3→ 1→ 2,   we  add  arrow 2 to 2 

since 3 → 1 → 2 → 3  , we add arrow  3 to 3 

since 1 → 2 → 3, we add  1 to 3 

1 2

3 

Fig. 6.6.2 (a) 

1 2

3 

Fig. 6.6.2 (b) 

1 2

3 

Fig. 6.6.2 (c) 
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since 2 → 3 → 1 , we add 2 to 1 

since 3 → 1 → 2, we add 3 to w  
 

Finally we get 

 

 

 

 

 

 

 

Self Assessment Question 5:  Let R = { (1,2), (2,3), (3,4), (2,1)} be a relation on A = {1,2,3,4}. 

Find the transitive closure of R∞  using digraph. 

 

6.6.3 Warshall’s Algorithm:  Graphical representation and matrix representation methods are not 

suitable for large sets and relations. Warshall’s algorithm is more efficient method for computing 

the transitive closure of a relation. 
 

Procedure: 

Let R be a relation on a set A = { a1, a2 …, an}  we generate a sequence of matrices P0, P1, 

P2,…Pk,…,Pn  for a graph on n vertices with Pn = P ( the path matrix) 

Initially P0 = A (the adjacency matrix) 

Iteration (1): 

The existence of paths from any vertex to any vertex either directly via an edge or indirectly 

through the intermediate or pivot vertex say a1.Let p1 denotes the resulting matrix with its general 

element Pij
(1) obtained as follows:  

 

      1,       if there exists an edge from ai to aj or there is a path (of length 2)                   

Pij
(1)                          from ai, to a1 and a1 to aj.  

                              0,           otherwise 

1 2

3 

Fig. 6.6.2 (d) 
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Iteration (2): 

In this iteration, explore any paths from any vertex to any other vertex with a1and a2 or both as 

pivots. We compute P2  and  consider its general element  Pij
(2)     as follows: 

                   

( )
j ii j

2
ij 1 2

if  there exists an edge from a to a  or a path from a to a using only pivots
1,

P  (intermediate vertices from {a ,a }

0, otherwise




= 



 

Continuing this way, in general 
 

kth iteration:   

 

( )
ji

k
j 1 kij i 2

   if  there exists an edge from a to a  or
1,

P     a path from a to a  using only pivots from {a ,a ,...a }

0. otherwise




= 



 

 

We can compute Pij
(k) from the previous iteration Pij

(k-1) as follows 

Pij
(k) = Pij

(k-1) ∨  ( Pik
(k-1) ∧  Pkj

(k-1) ) 

In other words : 

Pij
(k) = 1  if Pij

(k-1) = 1 

or  both  Pij
(k-1) = 1 and Pkj

(k-1) = 1 

The only way that  the value of Pij
(k)  can change  0 is to find a path through ak, that is, there is a path 

from ai to ak and a path from ak  to aj. 

 

Algorithm: 

 MR  = n ×n  non zero matrix 

P(0)  = MR 

For  k = 1 to n 
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begin  

 for i = 1 to n 

begin 

for j = 1 to n 

Pij
(k) = Pij

(k-1) ∨  ( Pik
(k-1) ∧ Pkj

(k-1) ) 

end 

end { Pij
(n) } 

 

6.6.4 Example: Find the matrix of transitive closure of R using Warshall algorithm for the relation 

given by the digraph. 
 

 

 

 

 

 

Solution: Relation matrix ( )0
R

0 0 0 1
1 0 1 0

M P
1 0 0 1
0 0 1 0

 
 
 = =
 
 
 

 

Observe that (0) (0) (0) (0) (0) (0)
14 21 23 31 34 43P P P  P P P 1= = = = = =  

Therefore  P(1) also have  1 in the corresponding places 

Since ( )0 (0) (1)
21 14 24P 1 P ,   where  P 1= = =  

Therefore ( )0(1)

0 0 0 1
1 0 1 1

P P
1 0 0 1
0 0 1 0

 
 
 = =
 
 
 

 

Observe that  (1) (1) (1) (1) (1) (1)
14 21 23 31 34 34P P P  P P P 1= = = = = =  

Since there is no 1 and 2nd column of P(1), there is no edges that have b as terminal vertex. 

a b

Fig. 6.6.4 

d c
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So no new path is obtained when we permit b as terminal vertex, and therefore, no new 1’s are 

inserted in P(1). 

Thus (2)

0 0 0 1
1 0 1 1

P
1 0 0 1
0 0 1 0

 
 
 =
 
 
 

 

 
Since (2) (2) (3)

43 34 44P 1  and  P   and we have P 1= =   and since (2) (2) (3)
43 31 41P 1 ,   P , we have  P 1= =  

 

Therefore (3)

0 0 0 1
1 0 1 1

P
1 0 0 1
0 0 1 1

 
 
 =
 
 
 

 

 
Finally , P(4)  has 1 as its (i, j)th entry if there is a path from vi  to vj that has only v1 = a, v2 = b,                 

v3 = c and / or  v4 = d as intermediate vertices. 

Now      

( )3 (3) (4)
14 41 11

(3) (3) (4)
14 43 13

(3) (3) (4)
34 43 33

P 1  and  P 1,  we have P 1

P 1  and P 1, we have P 1

P 1  and  P 1,  we have P 1

= = =

= = =

= = =

 

Thus (4)

1 0 1 1
1 0 1 1

P
1 0 1 1
1 0 1 1

 
 
 =
 
 
 

  is the matrix of transitive closure. 

 

 

6.7 Answer to Self Assessment Questions 
 

SAQ1.  

 (i) Symmetric 
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(ii) Reflexive, transitive 

(iii)  Symmetric 

 

SAQ2.  

Verification of equivalence relation is straight forward. For any point (x, y) the sum x2 + y2 is the 

square of its distance from the origin. The equivalence classes are, the sets of points in the plane 

which have the same distance from the origin. 

 

SAQ3.  

 R(r) = { (0,1), (1,), (2,2), (3,3), (0,1) (1,2) (2,3)} 

     R(S) = { (0,1), (1,0), (1,2), (2,1), (2,3), (3,2)} 

     R(T)  = { (0,1), (0,2), (0,3), (1,2), (1,3), (2,3)} 

 

SAQ 4.  

(i) RoS = {(1,5), (3,2),(2,5)} 

(ii) SoR = {(4,2), (3,2), (1,4)} 

     (iii)Ro(SoR) = { (3,2)} 

     (iv)(RoS)oR ={(3,2)} 

     (v) SoS = {(4,5), (3,3), (1,1)} 

 

SAQ 5. 

R∞ = { (1,1), (1,2), (1,3),(1,4), (2,1), (2,2), (2,3), (2,4), (3,4)} 

 

 

6.8 Summary 
 

In this lesson we studied the special types of relations called equivalence relations. Properties of 

equivalence relations and equivalence classes were studied. The various like graphical and matrix 
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representations of these equivalence relations were studied. The algorithms for closure relations and 

applications were given.  

 

 
6.9 Technical terms 
 
Equivalence Relation:  Reflexive, symmetric, transitive  

Partition: Pair wise disjoint close of subsets whose union is the given 

set. 

Reflexive closure (R(r)): Smallest reflexive relation which contains the relation R. 

Symmetric closure (R(s)): Smallest symmetric relation containing the relation R. 

Transitive closure (R(∞)): Smallest transitive relation containing the relation R. 

Warshall’s Algorithm: Computing the transitive closure of a given relation for                        

longer number of sets. 

  

 

6.10 Model Questions 

1.Determine whether the relation R represented by the matrix  R
1 0 0

M 0 1 1
0 1 1

 
 =  
  

  is an equivalence  

relation.                                                                          (Ans : Yes) 

 

2.Find the transitive closure of the given relation using Warshall’s  algorithm 

(i) R = { (1,2), (2,3), (3,4), (2,1)} on  A = { 1,2,3,4} 

(ii) R

1 1 0 0
1 0 0 0

M
0 0 0 0
0 0 1 0

 
 
 =
 
 
 

  on A = { 1, 2, 3, 4} 

(Ans :  (i) R(∞) = { (1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (3,4)} 
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           (ii)  R(∞)) = {(1,1), (1,2), (2,1), (2,2), (4,4)} } 

 

3.Let A = { 1,2,3,4}  and R = { (1,1), (1,4), (2,1) (2,2),(3,3), (4,4)}. Find the transitive closure of R. 

(Ans:  { (1,1), (,4), (2,1), (2,2), (2,4), (3,3), (4,4)}) 

 

4.Define the relation R on Z+×Z+ as (a, b) R (c, d) ⇔  a+ d = b + c . show that R is an equivalence 

ration. What is [ (1,2)]? 

(Ans: [(1, 2)] = {(1, 4), (2, 5), (3, 6), (4, 7)…}) 

 

5.Define a relation ρ on the set  IR × IR of all ordered pairs on the complex plane. 

 For (a, b), (c, d) ∈ IR × IR, define (a, b) ρ (c, d) ⇔ a = c. 

(i) Show that ρ is an equivalence relation 

(ii) Describe the distinct equivalence class of ρ. 

            (Ans: [a] = {(x, y) | x= a} for each real number a. 

        Geometrically : The equivalence classes are all vertical lines in the Cartesian plane). 

 

6.Let R be a relation with the following diagraph. Using Warshall’s algorithm, find the matrix of 

transitive closure of R. 

 

 

 

 

 

(Ans : 
R

1 1 1 1 1
0 1 1 0 0

M 0 1 1 0 0
1 1 1 1 1
1 1 1 1 1

∞

 
 
 
 =
 
 
  

     ) 

 

a b

Fig. 6.10.6 

e d

c
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Lesson 7 

 Functions  
 

Objectives 
At the end of the Lesson the student must be able to: 
 

(i) Understand the definition of function.          
(ii) Distinguish the types of functions. 
(iii)Learn the composition of relations and floor, ceiling functions  
(iv) Illustrations on different types of functions. 

 

 

Structure 
7.1  Introduction 

7.2  Functions 

7.3  Types of Functions 

7.4  Composition of functions 

7.5  Classification of Functions 

7.6 Answers to Self Assessment Questions 

7.7  Summary 

7.8 Technical Terms 

7.9 Model Questions 

7.10 References 

   
 

7.1 Introduction 
 

In this lesson, we study a particular class of relations called function.  Functions play an 

important role in Mathematics, computer science and many applications.  First we consider the 
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discrete functions which transform a finite set into another finite set.  Computer output can be 

considered as a function of the input.  Functions can also be used for counting and for 

establishing the cardinality of sets.  We also discuss the different types of functions and some of 

their applications.  

 

 

7.2 Functions 
 

A function is a special case of relation.   Let A, B be two non-empty sets and R be a relation 

from A to B, then R may not relate an element of A to an element of B or it may relate an 

element of A to more than one element of B.  But a function relates each element of A to unique 

element of B. 

 

7.2.1 Definition: Let   S   and   T   be sets.  A function   f   from   S   to   T   is a subset   f   of             

S × T   such that 

     (i) for  s  ∈  S,  there exists  t ∈ T  with  (s, t) ∈ f;  

    (ii)  (s, u) ∈ f   and    (s, t) ∈ f   ⇒  t = u.   

If   (s, t) ∈ f, then we write   (s,  f(s))   or   f(s)  =  t.   

Here t is called the image of   s;  and   s  is called the preimage of  t.  

The set  S  is called the domain of  f  and  T  is called the codomain.   

The set {f(s) / s ∈ S} is a subset of T  and it is called the image of   S   under  f  (or image of  f).   

We denote the fact:  ‘f is a function from S to T’ by  “ f : S → T”.  

 

7.2.2 Example:  Let X = {a, b, c} and Y = {0, 1}.  Then observe the following. 

(i) f = {(a, 0), (b, 1), (c, 0)} is function.  Hence f(a) = 0, f(b) = 1, f(c) = 0. 

(ii) g = {(a, 0), (a, 1), (b, 0), (c, 1)} is not a function as a is related to 0 and 1. 

(iii) h = {(a, 0), (b, 1)} is not a function as c is  not related to any element in Y. 
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(iv) k = {(a, 0), (b, 0), (c, 0)} is a function. Domain of k is = {a, b, c} and the range of k is 

= {0}. 

 

We can write function by some rule. 

 

7.2.3 Example:  Let R be the set of real numbers.  Define f(x) = x2 for every x ∈ R.  This 

represents a function f = {(x, x2)  x ∈ R}. 

 

7.2.4 Example: Let f: N → N be a function such that  

1,  if  x is  odd
f(x) =  

0,  if  x is even




.  

Then the domain and the range of f respectively are N and {0, 1}. 

 

7.2.5 Example:  Let f: N → N be a function such that f(x) = x (mod 3).  That is f(x) is the 

remainder obtained when x is divided by 3.  Then the domain of f is N and the range of f is               

{0, 1, 2}. 

 

Self Assessment Question 1:  Let A = {a, b, c, d} and B = {1, 2, 3}.  Verify f = {(a, 1), (b, 2), 

(c, 1), (d, 2)} is a function or not ?.  If it is a function specify its range. 

 

 

7.3 Types of Functions 

 

7.3.1 Definition:  f: S → T is said to be one-one function (or injective function) if  it satisfies 

the following condition:     f(s1) = f(s2)   ⇒   s1 = s2.   

 

7.3.2 Definition:  f : S → T  is said to be onto function (or surjective function) if it satisfies the 

following condition:   t ∈ T   ⇒   there corresponds an element  s  in  S  such that  f(s)  =   t.  
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7.3.3 Definition:   A function is said to be a bijection if it is both one-one and onto. 

 

7.3.4 Examples:  (i) f: R → R such that f(x) = 3x+2 is an one-to-one and onto function.  

(ii) f: N → {0, 1} such that  
1,  if  x is  odd

f(x) =  
0,  if  x is even




 is an onto function but not an one-one 

function. 

(iii) f: N → N defined by f(x) = x2 + 2.  It is an one-one function not an onto function, since there 

is no x ∈ N such that f(x) = 1. 

(iv) f: R → R be such that f(x) = x  where    x  is the absolute value of x.  Then f is neither 

one-one nor onto. 

 

7.3.5 Theorem: Let X and Y be two finite set with same number of elements.  A function                  

f: X → Y is one-to-one if and may is it is onto. 
 

Proof: Let X = {x1, x2, …, xn} and Y = {y1, y2, …, yn}.  If f is one-to-one then {f(x1), f(x2), …, 

f(xn)} is a set of n distinct elements of Y and hence f is onto. 

If f is onto then {f(x1), f(x2), …, f(xn)} form the entire set Y, so must all be different.  Hence f is 

one-to-one. 

 

Observation: From the above theorem, if we want a bijection between two finite sets, it is a 

must that the two sets have same number of elements.  

 

7.3.6 Example: The function σ : Z+ → Z+ such that σ (x) = x + 1 is called the Peano’s successor 

function.  Here σ (1) = 2, σ (2) = 3, ….  The range of σ is the set {2, 3, 4, …}. 

 

7.3.7 Definition: For any real number x, we define the floor of x as   

 x   = the greatest integer less than or equal to x = max {n / n ≤ x, n is an integer} 
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7.3.8 Example: Take x = 2.52, then 

  x   =  max {n / n ≤ x, n is an integer} = max {1, 2}  = 2. 

 

7.3.9 Definition:  For any real number x, we define the ceiling of x as  

 x   = the least integer greater than or equal to x = min {n / n ≥ x, n is an integer}. 

 

7.3.10 Example: Take x = 3.732, then  

 x  = min {n / n ≥ x, n is an integer} = min {4, 5, 6, 7…} = 4. 

 

Self Assessment Question 2:  Specify the types of the following function: 

(i).  X = ℝ,  Y = {x / x ∈ ℝ and x > 0} and f(x) = |x| 

(ii).  f: ℕ → ℕ and f(j) = j (mod 4). 

 

 

7.3.11 Geometric Interpretation: Floor and Ceiling functions may be understood from their 

graphical (or geometrical) representation consider the line f(x) = x, the diagonal on I, III 

coordinates, take x = e = 2.71828….   we describe floor and ceiling of e as follows: 
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From the graph, e  = 2            x  = ………... 

                           e  = 3            x   =  _____ 

-e = -3,  -e = -2 

7.3.12 Properties:  

 (i)  From the above graph, it can be observed that, the two functions x  and x  are equal at 

integer points.  That is, x  = x ⇔ x is an integer ⇔ x  = x. 

(ii)  x - x  = [ x is not an integer] 

That is, x -  x = 




otherwise   0,
integeran not  is  if    1, x

 

• • • • •• • • • • •• • •

•

•

•

•

•

•

•

•

Fig. 7.3.11 
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(iii)  x - 1 <  x and x + 1 > x    ⇒ x –1 < x  ≤ x  ≤  x < x + 1 

(iv) -x = -x and  -x = -x . 

       (v)  For any real number x,   x  ≤ x and  x  ≥ x. 

 

7.3.13 Some Rules on floor and ceiling functions: 

 In all the following cases, x is real and n is an integer. 

1. x  = n ⇔ n ≤ x < n + 1 

2. x  = n ⇔ x –1 < n ≤ x 

3. x  = n ⇔ n –1 < x ≤ n 

4. x  = n ⇔ x ≤ n < x + 1. 

 

7.3.14 Example: The above rules can be illustrated,  by taking x = 4.5. 

         4.5  = 4 ⇔ 4 ≤ 4.5 < 5 

         4.5  = 4 ⇔ 3.5 < 4 ≤ 4.5 

         4.5  = 5 ⇔ 4 < 4.5 ≤ 5 

         4.5  = 5 ⇔ 4.5 ≤ 5 < 5.5 

 

7.3.15 Example:  Let X be the set of all statements in logic and Y denotes the set {T, F} where T 

and F are truth values.  The assignment of truth values to each statement in X can be considered 

as a function from X to Y. 

 

7.3.16 Example: (i) Compiler transforms a program written in a high level language into a 

machine language. 

(ii) The output from a computer is a function of its input. 

 

7.3.17 Definition: Let f: X → Y be a function and let A ⊆ X.  fA: A → Y is called the restriction 

of f to A if fA(x) = f(x) for any x ∈ A.  If g is the restriction of f then f is called the extension of 

g. 
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7.3.18 Example: Let f: R → R be such that f(x) = x2.  Then fN: N → R is such that f(n) = n2 is 

the restriction of f to N. 

 

7.3.19 Problem:  Let X = {a, b, c} and Y = {0, 1}.  List all the functions from X to Y. 
 

Solution: The set X × Y = {(a, 0), (a, 1), (b, 0), (b, 1), (c, 0), (c, 1)} contains 6 elements.  Hence 

there are 26 of subsets of X × Y.  Out of these subsets only the following 23 = 8 subsets are 

functions. 

f0  = {(a, 0), (b, 0), (c, 0)} 

f1  = {(a, 0), (b, 0), (c, 1)} 

f2  = {(a, 0), (b, 1), (c, 0)} 

f3  = {(a, 0), (b, 1), (c, 1)} 

f4  = {(a, 1), (b, 0), (c, 0)} 

f5  = {(a, 1), (b, 0), (c, 1)} 

f6  = {(a, 1), (b, 1), (c, 0)} 

f7  = {(a, 1), (b, 1), (c, 1)} 

We can observe that, in general, if X has m elements and Y has n elements then there will be nm 

function from X to Y. 

 

7.3.20 Example: For each positive integer n, we define a function fn: Z+ → N such that fn(x) = r, 

where x = r (mod n), 0 < r < n.  That is, r is the remainder obtained when x is divided by n.  

 

7.3.21 Example: (Factorial function): f: N → Z+ such that f(n) = n! for n > 0 and f(0) is defined 

by f(0) = 1. 

 

7.3.22 Example: (Hashing function):  To determine to which list a particular record should be 

assigned, we create a hashing function from the set of keys to the set of list numbers.  A unique 

identifier for a record is called a key.   
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For example, suppose 10, 000 customer account records are to be stored and processed.  The 

computer is capable of searching 100  items at a particular time.  We create 101 linked lists for 

storage.   We define a hashing function from the set of 7-digit account numbers to the set {0, 1, 

2, …, 100} as h(n) = n (mod 101).  Thus 

h(2473871) = 2473871 (mod 101) = 78. 

This means the record with account number 2473871 be assigned to list 78. Range of h is {0, 1, 

2, …, 100}.  

 

Self Assessment Question 3:  Show that f: ℝ → ℝ such that f(x) = 3x + 2 is an one to one and 

onto function. 

 

 

7.4 Composition of Functions  

 

7.4.1 Definition: Let  g: S → T  and   f : T → U.  The composition of  f  and  g  is a function       

fog : S → U  defined by  (fog)(s)  =  f(g(s))  for all  s  in  S.    

That is, fog = {(s, u)  s ∈ S, u ∈ U and ∃ t ∈ T and t = g(s) and u = f(t)}. 

 

7.4.2 Example: Let X = {1, 2, 3}, Y = {a, b} and Z = {p, q, r}.  Let f: X → Y defined by f =    

{(1, a), (2, b), (3, a)} and g: Y → Z defined by g = {(a, r), (b, q)}.  Then gof = {(1, q), (2, q),            

(3, r)}. 

 

7.4.3 Problem: Let f: R → R and g: R → R where R is the set of real numbers.  If f(x) = x2-2 and 

g(x) = x + 4.  Find gof and fog    
 

Solution: (gof)(x) = g(f(x)) = g(x2-2) = (x2-2) + 4 = x2 + 2; and  

(fog)(x) = f(g(x)) = f(x + 4) = (x + 4)2 – 2 = x2 + 8x +14. 
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7.4.4 Definition: Let f: X → Y, g: Y → Z and h: Z → W are functions.  Then the compositions 

are fog: X → Z and hog: Y → W can be formed.  We can also form the compositions ho(gof) 

and (hog)of which ae functions from X → W. 

 

Observation: Composition of functions is associative: ho(gof) = (hog)of. 

 

7.4.5 Example:  Let f(x) = x + 3, g(x) = x – 4 and h(x) = 5x are functions from R → R where R 

is the set of real numbers.  Find fo(goh) and (fog)oh. 
 

Solution: Now fo(goh) (x) = f(goh)(x) 

                                           = f[g(h(x))] 

                                        = f[g(5x)] 

                                = f(5x-4) 

                                = 5x -4 +3 

                                          = 5x – 1.   

Also, (fog)oh (x) = (fog)(h(x)) 

                            = (fog)(5x) 

                            = f(g(5x)) 

                            = f(5x-4) 

                            = 5x-4+3 

                             = 5x-1. 

Therefore fo(goh) = (fog)oh. 

 

7.4.6 Problem: Show that if  g : S → T  and  f : T → U are one-one functions, then   fog   is also 

one-one. 
 

Solution: Suppose that   (fog)(s)  =  (fog)(t)  for  s, t ∈  S.   By the definition of  composition of 

maps, we have  f(g(s))  =  f(g(t)).  Since  f  is one-one, we get  g(s) = g(t).  Since  g  is one-one,  

we get  s = t.  Therefore  fog  is one-one. 
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7.4.7 Problem: If  g : S → T   and   f : T → U   are onto, then so is  fog.   
 

Solution:   Let  u ∈ U.  To show  that  fog  is onto, we have to find an element   s   in   S   such 

that   (fog)(s) = u.  Since   f   is onto, there exists   t   in   T   such that  f(t) = u.  Now since  g  is 

onto there exists   s   in  S  such that g(s) = t.  It is clear that     (fog)(s)  =  f(g(s))  =  f(t)  =  u.  

Hence   fog   is an onto function. 

 

7.4.8 Theorem:  If f: X → Y and g: Y → Z are bijections then gof: X → Z is also a bijection. 
 

Proof: Combination of the above two problems. 

 

7.4.9 Definition: A function   f : S →T  is said to have an  inverse if there exists a function  g  

from  T  to  S  such that   (gof)(s)  =  s   for all  s  in  S   and   (fog)(t) =  t  for all  t  in T.  We call 

the function   ‘g’   the  inverse of   f. A function   f : S → S   is said to be an identity function if 

f(s)  =  s   for all   s   in  S.  The identity function on  S  is denoted by either  I or  IS.  Inverse of a 

function   f,   if it exists,  is denoted by   f -1.  Two functions  f : A → B  and  g : C → D  are said 

to be equal if   A  =  C,   B  =  D  and   f(a)  =  g(a)   for all elements   a   in   A = C.   If  two 

functions   f   and   g   are equal,  then  we  write   f  =  g. 

 

7.4.10 Theorem:  Let f: X → Y be a function and Ix is the identity function of X, then foIx = Ixof 

=  f.  
 

Proof: Now foIx(x) = f(Ix(x)) = f(x).  Similarly we get Ixof(x) = f(x). 

Observation:  The identity function is one-one and onto.   

A function g  is inverse of  f  ⇔  fog  and  gof  are identity functions.  

 

7.4.11 Problem: Find out two functions   f   and   g  defined from  R  to  R,  where  R  is the set 

of all real numbers  such that    fog  ≠  gof. 
 



Discrete Mathematics                                       7.12                                                           Functions 

Solution: Define   f(x)  =  2x   and   g(x)  =  x + 5   for all   x  in  R.   

Then   (fog)(1)  =  f(g(1))  =  f(1 + 5)  =  f(6)  =  12.  

           (gof)(1)  =  g(f(1))  =  g(2)  =  2 + 5  =  7.   

This shows that the two functions are not equal at 1. 

 

7.4.12 Problem: Prove that a function f  has an inverse    ⇔   f  is one-one and onto. 
 

Solution: Suppose the inverse of  f : S → T is  g : T→ S.   

By definition,  gof(s)  =  s   for all  s  in  S  and  fog (t)  =  t  for all  t  in  T.   

To show   f   is one-one, suppose   a, b  ∈ S   such that  f(a)  =  f(b).   

By applying the function  g  on both sides, we get  gof(a)  =  gof(b).   

Since   gof   is identity,   we get    a = gof(a) = gof(b) = b.   

Hence   f   is one-one.  To show  f  is onto,  let  t  be an element of  T.  Write x = g(t).  Then  x  is 

in  S  and  f(x) = f(g(t)) = fog(t) = t.   Hence  f  is onto. 

Converse:  Suppose  f   is one-one and onto.   

Define  g : T → S as   g(t)  =  s   where   f(s) =  t.  To verify that   g   is a function, suppose g(t) = 

a   and   g(t) = b.    Then   f(a)  =  t,   f(b)  =  t.   

So f(a) = f(b) which implies   a = b (since f is one-one).  Therefore   g   is a function.   

For all  s  in S, we have that gof(s)  =  g(f(s))  =  g(t)  =  s   (where  t  =  f(s)).   

Also for all   t   in  T, we have  fog(t) = f(g(t)) = f(s) = t.  Hence  g  is an inverse of  f. 

 

7.4.13 Note:  Inverse of a function is unique.   Identity function on a set is unique.  Identity 

element in a set with respect to a binary operation is unique. 

 

7.4.14 Notation: If S is a non-empty set, then we write A(S)  =   {f  /  f : S  → S  is a bijection}. 

 

7.4.15 Theorem: For   f ∈ A(S),  there corresponds an element  f -1  in  A(S)   such that  fof -1 =  I  

=  f -1of. 
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Proof:  Define   f -1 : S → S   by   f -1(y)  =  x,   if  f(x) = y.  

Then   f -1  is a function and (f -1of)(x)  =  f -1(f(x)) = f -1(y) = x = I(x).  

So f -1of = I.  Similarly   (fof -1)(y)  =    f(f -1(y))  =  f(x)  =  y  =  I(y).    

This implies   fof -1  =  I.   Therefore    fof -1  =  I  =  f -1of.  

 

7.4.16 Theorem: Let f: X → Y and g: Y → X.  Then g = f-1 if and only if gof = Ix and fog = Iy.  
 

Proof:  Let gof = Ix and fog = Iy.  

Then g(f(x)) = x and f(g(y)) = y for all x ∈ X and y ∈ Y. 

This means range of f = Y and the range of g = X. 

Hence both f and g are onto.  Now to show f is one one. 

Suppose f(x1) = f(x2) ⇒ x1 = g(f(x1)) = g(f(x2)) = x2.  Therefore f is one-to-one.  Similarly g is 

one-to-one. 

Hence both f and g are one-to-one and onto functions and so are invertible.  Now 

f-1(y) = f-1(f(g(y))) =  (f-1of)(g(y))) = Ix(g(y)) = g(y). 

Hence f-1 = g.  Similarly we can prove that g-1 = f.   

 

7.4.17 Theorem: Let f: X → Y and g: Y → Z are invertible functions.  Then (i) (f-1)-1 = f,                  

(ii) (gof)-1 = f-1og-1. 
 

Proof: (i) To show that f-1 is one one and onto. 

Now f-1(y1)  = f-1(y2) ⇒  x1 = x2 where f(x1) = y1 and f(x2) = y2 , since f is onto. 

⇒ f(x1) =  f(x2)  (since f is one one) 

⇒ y1 = y2. 

Therefore f-1 is one one. 

 Also, take x ∈ X.  Then there exist a unique y ∈ Y such that f(x) = y.  That is there exists y ∈ Y 

such that f-1(y) = x.  Hence f-1 is onto.  Since f-1 is the inverse relation of f and vice versa, we get 

that (f-1)-1 = f.  
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(ii) Since f, g are one one and onto, we have that (gof) is one one and onto.  Hence (gof) is 

invertible.  Also f, g are invertible.    Hence (gof)-1, f-1, g-1 and f-1og-1 exist.   Now  (gof)-1 and          

f-1og-1  are functions from Z to X.  

Now for any x ∈ X, let y  = f(x) and z = g(y). 

Then (gof)(x) = z and (gof)-1(z) = x for all x ∈ X, y ∈ Y, z ∈ Z. 

Also x = f-1(y) and y = g-1(z) so that  

(f-1og-1) (z) =   f-1(g-1 (z)) = f-1(y) =x,  for all x ∈ X, y ∈ Y, z ∈ Z. 

   Hence (gof)-1 (z) = f-1og-1(z) for all z ∈ Z.  Thus (gof)-1 = f-1og-1.  

 

7.4.18 Example:  Let X = {1, 2, 3, 4} and Y = {a, b, c, d}. 

(i) For the function f = {(1, a), (2, a), (3, b), (4, d)}, the inverse relation f-1 = {(a, 1),             

(a, 2), (b, 3), (d, 4)} is not a function since c has no relative and a has two relatives.  

Hence f is not invertible. 

(ii) For the function g = {(1, d), (2, c), (3, b), (4, a)}, the inverse relation g-1 = {(a, 4),            

(b, 3), (c, 2), (d, 1)} is a function.  Hence g is invertible. 

 

Self Assessment Question 4: Let A = {1, 2, 3, 4} and B = {a, b, c, d}, and let f = {(1,a), (2, a), 

(3, d), (4,c)}.  Verify that f is a function but f-1 is not a function. 

 

7.4.19 Example:  Let f: R → R, where R is the set of real numbers, be defined by  f(x) = 2x 1
3
− .  

Then f-1(y) = 3y 1
2
+ . 

 

7.4.20 Example: Let f: R → R and g: R → R be defined as f(x) = 2x + 1 and g(y) = y
3

.  Verify 

whether or not (gof)-1 = f-1og-1. 
 

Solution: Now consider  
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(gof)(x) = g(f(x)) = g(2x+1) = 2x 1
3
+  and (gof)-1 (z) = 3z 1

2
− . 

Now f-1(y) = y 1
2
−  and g-1(z) = 3z. 

Then (f-1og-1) (z) = f-1(g-1(z)) = f-1(3z) = 3z 1
2
− . 

 

7.4.21 Problem:  Show that the mapping f: R → R defined by f(x) = ax + b where a, b, x ∈ R,      

a ≠ 0 is invertible.  Define its inverse. 
 

Solution: Take x1, x2 ∈ R.  Now f(x1)  = f(x2) ⇒ ax1+ b = ax2 + b ⇒ ax1 = ax2 ⇒ x1 = x2.  

Therefore f is one one.   

Take y ∈ R.  Now y = f(x) ⇒ y = ax + b ⇒ x = (y b)
a
− .  Therefore for y ∈ R, there exists 

(y b)
a
−  ∈ R such that f( (y b)

a
− ) = a ( (y b)

a
− ) + b = y – b + b = y. 

This shows that f-1 exists and it is defined by f-1(y) = (y b)
a
− . 

 

Self Assessment Question 5: Let f: X → Y and g: Y → Z are functions such that (gof) is onto.  

Prove that ‘g’ is onto. 

 

7.4.22 Problem: If  S  contains more than two elements, then there exists   f, g  ∈ A(S)  such that   

fog ≠ gof. 
 

Solution: Since  S  contains more than two elements, we have    |S| > 2  ⇒  |S|  ≥ 3.  Let a, b, c 

∈ S  be three distinct elements.   Define f : S  → S  by  f(a) = b,  f(b) = c,  f(c) = a  and  f(x)  =  x   

for all   x  ∈  S \ {a, b, c}.  Define   g : S → S   by   g(a)  =  b,  g(b)  =  a,   and  g(x)  =  x   for all   

x ∈ S \ {a, b}.   Then   f, g  are bijections and hence   f,  g  ∈ A(S).  Now  (gof)(a)  =  g(f(a))  =  
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g(b)  =  a   and  (f.g)(a)   =   f(g(a))    =   f(b)  =  c.  Therefore (gof)(a)  =  a  ≠  c  =  (fog)(a).  

This shows that   gof  ≠  fog. 

 

7.4.23 Problem:  If   S   is a non-empty set with   |S| ≤ 2, then for any two elements   f, g ∈ A(S),  

we have  fog  =  gof. 
 

Solution: If  |S| = 1, then  S  = {x}.    Now there exists only one bijection f : S → S defined by   

f(x)  =  x .  So in this case, the result is clear.  Now suppose that  the set  S contains two elements  

x and y.  Define  f : S → S  and  g: S → S   by   f(x) = x,  f(y) = y,  g(x) = y,   g(y) = x.  Clearly               

f, g are bijections and  A(S) = {f, g}.   

Since  f  is identity mapping on  S,  we have  fog  =  Iog  =  g  =  goI  =  gof.  This completes the 

solution. 

 

7.4.24 Problem: If  |S|  =  n,  then show that |A(S)| = n!. 
 

Solution: Suppose   S  =  {xi  / 1 ≤  i ≤ n}.  If   f ∈ A(S),  then  f   is a bijection.   

To define f : S → S, we have to define f(xi)   as an element of  S  for each  1 ≤  i ≤  n.    

To define  f(x1)  there are  n  possible ways  (because  f(x1) ∈ {x1, x2, …, xn}).   

Since   f   is one-one, we have that   f(x1)  ≠  f(x2).   

So after defining   f(x1),  to define   f(x2)   there are  (n-1)  ways, because   f(x2)  ∈  {x1, x2, …, xn} 

\ {f(x1)}.  Thus  f(x1)  and   f(x2)  both can be defined in  n(n-1)  ways.  Now for   f(x3)   there are  

(n-2)  ways and so on.  Hence   f(x1), f(x2), …, f(xn)  can be defined in   n(n-1)(n-2) …2×1  =  n!   

ways.  Therefore  n!  number of bijections can be defined from  S  to  S.    This means                       

A(S)  =  n!. 

 

 

7.5 Classification of Functions   

 

Functions can be classified mainly into two ways. 
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(a) Algebraic function, (b) Transcendental function. 

 

7.5.1 Definition: A function which consists of a finite number of terms involving powers and 

roots of the independent variable x and the four fundamental operations of addition, subtraction, 

multiplication and division is called algebraic function. 

 

7.5.2 Example: (i) Polynomial function:  A function of the form a0xn + a1xn-1+ …+ an where n is 

a positive integer and   a0, a1, …, an are real constants and a0 ≠ 0,  is called a polynomial of x in 

degree n.  (for example, f(x) = 5x3 + 4x2 + 7x + 9 = 0 is a polynomial of degree 3). 

(ii) Rational function: A function of the form f (x)
g(x)

 where f(x) and g(x) are polynomials in x and 

g(x) ≠ 0, is called a rational function. (for example, 
2x x 1
x 3
+ +
+

). 

(iii) Irrational function: The functions involving radicals  are called irrational functions (for 

example, f(x) = 3 x 5+  is an irrational function. 

 

7.5.3 Definition: A function which is not algebraic is called Transcendental function. 

 

7.5.4 Example: (i) Trigonometric functions and Inverse Trigonometric functions: the functions 

like sin x, cos x, tan x, sec x, cosec x, cot x; and sin-1x, cos-1x, tan-1x, sec-1x,  cosec-1x, cot-1x  

where the angle x is measured in radians. 

 

(ii) Exponential and logarithmic functions: A function f(x) = ax (a > 0) satisfying the law a1 = a 

and ax.ay = ax+y is called the exponential function. The inverse of the exponential function is 

called the logarithmic function.  If y = ax then x = logay is a logarithmic function. 
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7.6 Answers to Self Assessment Questions  

 

SAQ 1. 

Yes, ‘f’ is a function.  Range = {1, 2} 

 

SAQ 2. 

(i) onto  (ii) Neither one-one nor onto. 

 

 

7.7 Summary  

 

In this lesson we studied the special kind of relations called functions.  We have discussed the 

properties of function and illustrations.    Some types of functions like one one and onto 

functions and intern bisection functions discussed; related results concern to the composition of 

functions were obtained.  The special case of discrete functions like floor and ceiling were 

introduced and interpreted these geometrically.  Sufficient number of examples and results were 

provided. 

 

7.8 Technical Terms  

 

Function:    f   ⊆  S × T   such that   (i) for  s  ∈  S,  there exists  t ∈ T  

with  (s, t) ∈ f; (ii)  (s, u) ∈ f   and    (s, t) ∈ f   ⇒  t = u.   

One-one function (or injective function):      f(s1) = f(s2)   ⇒   s1 = s2.   

Onto function (or surjective function): t ∈ Codomain   implies that   there corresponds an 

element  s  in  S  such that  f(s)  =   t.  

Bijection:  Both one one and onto. 

The floor function:    x   = the greatest integer less than or equal to x = max {n 

/ n ≤ x, n is an integer} 
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The ceiling function:    x   = the least integer greater than or equal to x = min {n / 

n ≥ x, n is an integer}. 

Restriction:   Let f: X → Y be a function and let A ⊆ X.  fA: A → Y is 

called the restriction of f to A if fA(x) = f(x) for any x ∈ A 

Composition of f and g:   fog = {(s, u)  s ∈ S, u ∈ U and ∃ t ∈ T and t = g(s) and u = 

f(t)}. 

Inverse function:   A function   f : S →T  is said to have an  inverse if there 

exists a function  g  from  T  to  S  such that   (gof)(s)  =  s   

for all  s  in  S   and   (fog)(t) =  t  for all  t  in T.  We call 

the function   ‘g’   the inverse of   f.  

Equality:  Two functions f : A → B  and  g : C → D  are said to be 

equal if   A  =  C,   B  =  D  and   f(a)  =  g(a)   for all 

elements   a   in   A = C.   If  two functions   f   and   g   are 

equal,  then  we  write   f  =  g. 

Algebraic function:  A function which consists of a finite number of terms 

involving powers and roots of the independent variable x 

and the four fundamental operations of addition,  

subtraction, multiplication and division is called algebraic 

function. 

Transcendental function:  A function which is not algebraic is called Transcendental 

function. 

 

 

7.9 Model Questions  

 

1. Define the terms (i) Function, (ii) One one function, (iii) Onto function, (iv) Identity 

function. 
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2. State whether true or false 

(i) the relation {(3, 1), (2, 2), (3, 0), (1, 1), (1, 3)} 

(ii) the relation {(x, y)  x2 = y for all x, y ∈ Z+ } is a function 

(iii)the relation {(x, y)  x and y are natural numbers and x < y}.      

 

3. Show that the function f: R → R defined by f(x) = x2+1 is one one and onto.  Find f-1. 

 

4. A function f is defined on the set of integers as follows:  

 f(x) = 
x  if     0 x < 1
x + 2   if   1 x < 3
4x -5   if   3 x < 5

≤
 ≤
 ≤

.  Find (i) the domain  of the function, (ii) the range of the function, 

(iii) state whether f is one one or not.  

 

5. Determine which of the following functions f: R → R are one to one and which are onto. 

(i) f(x) = x + 1 

(ii) f(x) = x3 

(iii)f(x) = x  + x  for all x ∈ R.  

 

6. Let A = {-1, 0, 2, 5, 6, 11}.  If f: A → B is defined by f(x) = x2-x-2 for all x ∈ A.  Find the 

range of f  if f is onto. 

 

7. Let X = Y = Z = R (the set of real numbers).  Define f: X → Y, g: Y → Z are defined by f(x) 

= x + 1, g(y) = y2+2.  Find gof, fof, gog, fog. 

 

8. Let R be the set of real numbers. Define f(x) = x +2, g(x) = x-2, and h(x) = 3x for all x ∈ R.  

Find gof, fog, fof, gog, hog, hof, fogoh. 
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9. Let A = R-{3} and let f: A → B be defined by f(x) = x 2
x 3
−
−

.  Show that f is one one and onto.  

Find f-1. 

 

10. Let X and Y be two finite sets with same number of elements.  Prove that a function                        

f: X → Y is one-to-one if and only if it is onto. 

 

11. Let f: R → R be defined by f(x) = x2 – 2.  Find f-1. 

 

12. Compute the floor and ceiling of the values  

(i) 5, (ii) 6.01, (iii) -4.8, (iv) 0.5, (v) 8.2. 
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Lesson 8  

Permutation Functions and Recursions 
 

 

Objectives 
 

At the end of the lesson the student must be able to: 
 

(i) Understand the notion of permutation function.          
(ii) Distinguish the types of permutation. 
(iii)Learn to express the given permutation into transpositions.   
(iv) Applications of recursion to find gcd. 

 

 

Structure 
8.1 Introduction 

8.2 Permutation Function 

8.3 Cyclic Permutations 

8.4 Recursion 

8.5 Answers to Self Assessment Questions 

8.6 Summary 

8.7 Technical Terms 

8.8 Model Questions 

8.9 References 
 

 

8.1 Introduction 
 

In this lesson we consider a permutation function of a set.  A special type of permutation called 

cyclic permutation was discussed.  We observe that a permutation can be expressed as a product 
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(usual composition of mappings) of disjoint cycles (or transpositions).  Further we discussed the 

concept of recursion, which is a very elegant and powerful tool that can often be used to describe 

rather complex process in a very understandable way. We also give the computation of the 

greatest common divisor using the recursion.  

 

 

8.2 Permutation Functions 
 

8.2.1 Definition: Let A = {x1, x2, x3, …, xn} be a set with n elements.  A bijection (one to one 

and onto map) from A to A is called a permutation of A.  Function values of a permutation p on 

A namely  p(x1), p(x2), …,p(xn) are given in the following form  

p = 1 2 n

1 2 n

x x     ....        x
p(x ) p(x )   ....     p(x )
 
 
 

 

 

8.2.2 Note: A permutation is just a rearrangement of elements of A.  

 

8.2.3 Example: Consider the set A = {1, 2, 3}.  There are 3! = 6 permutations.  These are   

IA = 
1   2   3
1   2   3
 
 
 

, p1 = 
1   2   3
1   3   2
 
 
 

, p2 = 
1   2   3
2   1   3
 
 
 

, 

 p3 = 
1   2   3
2   3   1
 
 
 

, p4 = 
1   2   3
3   1   2
 
 
 

, p5 = 
1   2   3
3   2   1
 
 
 

. 

 

Observation:  In the above example, the inverse of p4 is p3 and the inverse of p2 is p2.   

 

8.2.4 Definition: If the set S contains n elements, then the group 

A(S) = {f : S → S / f is a bijection} 
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has n! elements. Since S has n elements we denote A(S) by Sn and this  A(S) = Sn is called the 

symmetric group  of degree n. If φ ∈ A (S) = Sn, then φ is  a one  to  one mapping of S onto itself. 

 

8.2.5 Example: If S = {x1, x2, x3, x4} and φ ∈ A(S) by φ (x1) = x2, φ (x2) = x4, φ (x3) = x1, φ (x4) = 

x3 is denoted by φ = 








31

43

42

21

xx
xx

   
xx
xx

 or   







31
43

   
42
21

. If θ = 







42
43

   
13
21

 and ψ = 









42
43

   
31
21

 then  ψθ  = 







43
43

   
12
21

 (verify).  Here we use  ψθ (x) = ψ(θ (x)) (the usual 

composition of mapping) for all x ∈ S. 

 

8.2.6 Example: Permutation multiplication is not usually commutative.  Let σ =  
1 2 3 4

   
4 1 2 3
 
 
 

 

and τ =
1 2 3 4

   
2 1 4 3
 
 
 

.  Then στ =  
1 2 3 4

   
1 4 3 2
 
 
 

 but τσ = 
1 2 3 4

   
3 2 1 4
 
 
 

. 

 

 

8.3 Cyclic Permutations  
 

8.3.1 Definition: A permutation σ ∈ Sn is a cycle of length k if there exists elements a1, a2, …, ak 

∈ S such that σ(a1) =  a2, σ(a2) =  a3, …, σ(ak) =  a1 and σ(x) =  x for all other elements x ∈ S.  

We will write (a1, a2, …, ak) to denote the cycle σ.  Cycles are the building blocks of the 

permutations.  

 

8.3.2 Example: Let P be a cyclic permutation of length 4 defined as  

P = ( )
1 2 3 4 5

1 3 4 5
3 2 4 5 1
 

= 
 

 

P can also be written as ( )3 4 5 1  or ( )4 5 1 3  or ( )5 1 3 4  
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8.3.3 Example: Let A = {1, 2, 3, 4, 5, 6}.  Compute  ( )2 1 3 5 °  ( )1 6 2   

 

Solution:  We have 

( )2 1 3 5 ° ( )1 6 2 = 
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
3 1 5 4 2 6 6 1 3 4 5 2 6 3 5 4 2 1
     

° =     
     

 

The composition is not cyclic. 

Now ( )1 6 2 ° ( )2 1 3 5  = 
1 2 3 4 5 6

.
3 6 5 4 1 2
 
 
 

  This is also not a cyclic. 

Further ( )2 1 3 5 °  ( )1 6 2  ≠ ( )1 6 2 ° ( )2 1 3 5 . 

 

8.3.4 Example:  The permutation σ = 
1  2  3  4  5  6  7
6  3  5  1  4  2  7
 
 
 

 = (1 6 2 3 5 4) is a cycle of length 6, 

whereas τ = 
1  2  3  4  5  6
1  4  2  3  5  6
 
 
 

 = (2 4 3) is a cycle of length 3.   Also, not, every permutation is a 

cycle.  Consider the permutation  
1  2  3  4  5  6 
2  4  1  3  6  5
 
 
 

 = (1 2 4 3)(5 6). 

 

8.3.5 Example: Compute the product of cycles σ = (1 3 5 2),  τ = (2 5 6). 
 

Solution: στ = (1 3 5 6). 

 

8.3.6 Note:  Two cycle (a1, a2,…, ak) and (b1, b2, …, bk) are said to be disjoint if ai ≠ bj for all               

i and j.  

For instance, the cycles (1 3 5) and (2 7) are disjoint; however, the cycles (1 3 5) and     (3 4 7) 

are not.  Calculating their products, we get that  

(1 3 5)(2 7) = (1 3 5)(2 7) 

(1 3 5) (3 4 7) = (1 3 4 7 5). 
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8.3.7 Theorem: A permutation of a finite set that is not the identity or a cycle can be written as a 

product (composition) of disjoint cycles of length greater than or equal to 2. 
 

Proof: Let θ (non identity with length  ≥ 2) be a permutation. 

The its cycles are of the form (s, sθ, …, sθi-1). Write 

ψ = the product of distinct cycles of θ. 

Since each cycle forms an equivalence class, if we take two cycles, they are either equal or 

disjoint.  Therefore any two distinct cycles are disjoint. 

Suppose ψ = c1⋅ c2 ⋅ …⋅ cn where c1, c2 ,  …, cn are disjoint cycles.  Let s1 ∈ s.  Now since  c1, c2 ,  

…, cn is a collection of disjoint cycles, we have that s1 occurs in ck for some 1 ≤ k ≤ n.  (clearly 

s1 is not any other cycle, since any distinct cycles are disjoint).  Also s1ck = s1θ.  If  i ≠ k, s1ci = s1 

(since s1 is not in ci).  Hence s1(ψ) = s1(c1⋅ c2 ⋅ …⋅ ck-1 ⋅ ck⋅ ck+1 ⋅ …⋅ cn) = s1(c1⋅ c2 ⋅ …⋅ ck-1)⋅ (ck+1 

⋅ …⋅ cn) = s1ck(ck+1 ⋅ …⋅ cn) = s1θ (since s1 ∼ s1θ, we have that s1θ is also not in ci for i ≥ k + 1).  

Therefore s1ψ = s1θ for all s1 ∈ S.  Hence ψ = θ.  

   

8.3.8 Example: Write 
1 2 3 4 5 6 7 8
4 3 2 5 1 8 7 6

p  
=  
 

 as a product of disjoint cycles.  

 

Solution: Take A = {1, 2, 3, 4, 5, 6, 7, 8}. Start with element 1. 

Now p(1) = 4, p(4) = 5, p(5) = 1, we get a cycle ( )1 4 5 . 

Next we choose x such that x ∈ A and x is not appeared in the cycle. 

Choose 2.  Now p(2) = 3, p(3) = 2. 

Thus we get a cycle ( )2 3 . 

Next choose 6, we get the cycle  ( )6 8  and p(7) = 7. 

Thus p = ( )6 8 ° ( )2 3 ° ( )1 4 5 . 

 

8.3.9 Note: The product is unique except for the order of the cycles. 
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The simplest permutation is a cycle of length 2.  Such cycles are called transpositions.   

 

8.3.10 Theorem: Every cycle can be written as a product of transpositions.  
 

Proof: Take a cycle (a1 a2 … an). 

Now (a1 a2 … an) = ( )1 na a ° ( )1 1na a −  …° ( )1 3a a ° ( )1 2a a . 

Therefore any cycle can be written as the product of transpositions. 

 

8.3.11 Example: ( )1 4 2 3 5  = ( )1 5 ° ( )1 3 ° ( )1 2 ° ( )1 4 . 

 

8.3.12 Theorem: Every permutations of a finite set with at least two elements can be expressed 

as a product of transpositions.  

 

8.3.13 Definition: (i) A permutation is said to be an odd permutation if is the product of an odd   

number of transpositions (or 2- cycles). 

(ii) A permutation is said to be an even permutation if is the product of an even number of 

transpositions (or 2 – cycles). 

 

8.3.14 Example: (i) Consider the permutation (1 6)(2 5 3) = (1 6)(2 3)(2 5) = (1 6)(4 5)(2 3)               

(4 5)(2 5).  There is no unique way to represent permutation as the product of transpositions.   

For instance, we can write the identity permutation as (1 2)(2 1), as (1 3)(2 4)(1 3)(2 4), and in 

many other ways.  

(ii) No permutation can be written as the product of both an even number of transpositions and 

an odd number of transpositions.  

For instance, we could represent the permutations (1 6) by (2 3)(1 6)(2 3) or by (3 5)(1 6)(1 3)            

(1 6)(1 3)(3 5)(5 6) but (1 6) will always be the product of an odd number of transpositions. 

 

8.3.15 Note: (i) The product of two even permutations is an even permutation. 
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(ii) The product of an even permutation and an odd one is odd (like wise for the product of an 

odd and even permutation). 

(iii) The product of two odd permutations is an even permutation.  

 
8.3.16 Theorem: Let A = {a1, a2, …, an} be a finite set with n elements and n > 2.  Then there are 

!
2
n  odd permutations. 

 

Proof: Let An be the set of all even permutations and Bn be the set of all odd permutations.  

Define f: An → Bn by 

f(p) = oq po for p ∈ An and q0 be a particular transposition. 

f is one-to-one:   

For p1, p2 ∈ An,  

f(p1) = f(p2) ⇒  

0 1 0 2

0 0 1 0 0 2

0 0 1 0 0 2

1 2 0 0

1 2

( ) ( )
( ) ( )

   since    A A A

q p q p
q q p q q p
q q p q q p

I p I p q q I
p p

⇒ =

⇒ =

⇒ =

⇒ = =

⇒ =

o o

o o o o

o o o o

o o o

 

Therefore f is one-to-one. 

f is onto:  Let q ∈ Bn.  Then 0q qo ∈ An and f( 0q qo ) 

= 0q o  ( 0q qo ) 

= ( 0q o 0 )q qo  

                                                            = IA q  o  

                                                            = q. 

Therefore f is onto. 

Thus f is an one-to-one and onto function from a finite set An to a finite set Bn.  Hence An and Bn 

have same number of elements. 

We have An ∩ Bn = φ and An ∪ Bn = n!. 
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Thus n ! = An ∪ Bn  = An + Bn - An ∩ Bn = 2 An = 2 Bn. 

Therefore  An  = !
2
n =  Bn .  

 

Self Assessment Question 1:  Let A = {1, 2}.  Write all the permutations on A. 

 

Self Assessment Question 2: Let A = {1, 2, 3, 4, 5, 6}  

and 1 2 3

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
, ,

3 4 1 2 6 5 2 3 1 5 4 5 6 3 2 5 4 1
p p p     
= = =     
     

 

  Find 1 1
1 3 1 1 3 2( ) , ( ) , ( ) ( ).i p ii p p iii p p p− −o o o  

 

 Self Assessment Question 3:  Express the following permutations into a product of 

transpositions and check whether they are even or odd.  

  (i) 
1 2 3 4 5 6 7 8
6 5 7 8 4 3 2 1
 
 
 

, 

(ii) 
1 2 3 4 5 6 7 8
2 3 1 4 6 7 8 5
 
 
 

,  

(iii) 
1 2 3 4 5 6 7 8
3 4 6 5 2 1 8 7
 
 
 

. 

 

 

8.4 Recursion  
 
In computer programming, recursion plays an important role.  It is an important facility in many 

programming languages.  

 

Recursion is the technique of defining a function, a set or an algorithm in terms of itself. That is, 

the definition will be in terms of previous values.  
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8.4.1 Definition: A function f: N → N, where N is the set of non-negative integers is defined 

recursively if the value of f at 0 is given and for each positive integer n, the value of f at n is 

defined in terms of the values of f at k, where 0 ≤  k < n.  
 

Observation: f defined (above) may not be a function. Hence, when a function is defined 

recursively it is necessary to verify that the function is well defined. 

 

8.4.2 Example: The sequence 1, 4, 16, 64, ... , can be defined explicitly by the formula 

f(n) = 4n for all integers n ≥ 0. 

The same function can also be defined recursively as follows: 

f(0) = 1, f(n + 1) = 4f(n), for n > 0 

To prove that the function is well defined we have to prove existence and uniqueness of such 

function.  In this case, existence is clear as f(n) = 4n. 

 

8.4.3 Theorem (Recursion Theorem): Let F be a given function from a set S into S.  Let s0 be 

fixed element of S.  The there exists a unique function f: N → N where N is the set of non-

negative integers satisfying  

(i) f(0) = s0 

(ii) f(n + 1) = F(f(n)) for all integers n ∈ N. 

(Here the condition (i) is called initial condition and (ii) is called the recurrence relation). 

 

8.4.4 Example: Define n! recursively and compute 5! recursively.  
 

Solution: We have f: N → N.  Then   

(i) f(0) = 1 

(ii) f(n + 1) = (n + 1)f(n) for all n ≥ 0. 

Clearly f(n) = n!. 

Now we compute 5! recursively as follows: 
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                    5! = 5. 4! 

                        = 5. 4. 3! 

                        = 5. 4. 3. 2! 

                        = 5. 4. 3. 2. 1! 

                        = 5. 4. 3. 2. 1. 0! 

                        = 5. 4. 3. 2. 1. 1 

                        = 120. 

 

8.4.5 Note: Any sequence in arithmetic progression or geometric progression can be defined 

recursively.  Consider the sequence a, a + d, a + 2d, ….  Then  

A(0) = a, A(n + 1) = A(n) + d.  

Consider another sequence a, ar, ar2, ….  Then  

G(0) = a, G(n +1) = r G(n).   

 

8.4.6 Definition:  The Fibonacci sequence can be defined recursively as  

(i) F0 = 1 = F1 

(ii) Fn+1 = Fn + Fn-1 for n > 1. 

 

Then 
F2 = F1 + F0 = 2 
F3 = F2 + F1 = 3 
F4 = F3 + F2 = 5 

 
….. 

 
Here, there are two initial conditions. 
 
 

8.4.7 Example:  Define  f(x) = 

        when   x  is  even
2

1    when  x   is  odd
2

x

x



 −


. 
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Solution: Define f: N → N such that  f(0) = 0 and f(x + 1) = x – f(x). 
 
Then f(6) = 5 – f(5) = 5 – [4- f(4)] 

                                = 5 - 4 + [3-(3)] 

                                = 5- 4 + 3 -2 + [1 – f(1)] 

                                = 5 – 4 + 3 -2 +1 -  [0 – f(0)] 

                                = 3. 

 

and  f(5) = 4 – f(4)  

               = 4 – [3 - f(3)] 

               = 4 – 3 + 2 - [1-f(1)] 

               = f – 3 + 2 -1 + [0 – f(0)] 

               = 2. 

 

8.4.8 Example: Using recursion theorem, verify that the object defined by the recursive 

definition is a function. That is.,  

(i) g(0) = 1 

(ii) g(n + 1) = 3[g(n)]2 + 7 for all n > 0 
 

Solution:  We obtain (i) s0 = 1 

(ii) f(k) = 3k2 + 7, where f: N → N 

Then g(0) = s0. And g(n +1) f(g(n)). Thus g is a well-defined function.  

 

8.4.9 Definition: If m and n are two non-negative integers then the (greatest common divisor) 

g.c.d. (m, n) is defined as the largest positive integer d such that d divides both m and n. 

Euclidean algorithm computes the greatest common divisor (g.c.d.) of two non-negative integers. 

We can find g.c.d. (m, n) recursively as follows: 

g.c.d. (n, m)                if  n > m
. . .  (m, n) = m                              if  n = 0

g.c.d. (n, mod (m, n)) Otherwise
g c d
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where mod (m, n) is the remainder obtained when m is divided by n. 
 

Observation:  

a) The first part interchanges the order of m and n if n > m.  

b) Second part is the initial condition.  

c) Third part is the recursive part mod (m, n) will become 0 in a finite number of steps. 

 

8.4.10 Example: Calculate the g.c.d. (20, 6). 
 

Solution: g.c.d. (20, 6) = g.c.d. (6, mod (20, 6))               (since 20 = 6• 3 + 2)   

                     = g.c.d. (6, 2) 

                     =  (2, mod (6, 2))                          

                     = g.c.d. (2, 0) 

                     = 2.  

 

8.4.11 Example: Calculate the g.c.d. (81, 36). 
 

Solution: g.c.d. (81, 36) = g.c.d. (36, 9) 

                                       = g.c.d. (9, 0) 

                                       = 9.  

 

8.4.12 Example: Calculate the g.c.d. (22, 8). 
 

Solution: g.c.d. (22, 8) = g.c.d. (8, mod (22, 8)) 

                                     = g.c.d. (8, 6) 

                                     = g.c.d. (6, mod (8, 6)) 

                                     = g.c.d. (6, 2) 

                                     = g.c.d. (2, 0) 

                                     = 2. 
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Self Assessment Question 4: Calculate the g.c.d. (144, 118). 

 

8.4.13 Note: The recursive definition can be extended to functions of more than one variable. 

 

Consider the following example. 
 

8.4.14 Example: Define f(x, y) = x + y recursively. 
 

Solution: Here, we keep x fixed and use recursion on y. We define 

(i) f(x, 0) = x 

(ii) f(x, y + 1) = f(x, y) + 1. 

Take x = 2, y = 3.  Now f(2, 3) = f(2, 2) + 1 

                                                  = f(2, 1) + 1 + 1 

                                                  = f(2, 0) + 1 + 1 +1 

                                                  = 2 + 1 + 1 +1 

                                                  = 5. 

 

8.4.15 Example: Define g(x, 0) = 0, g(x, y + 1) = g(x, y) + x.  Take x = 3, y = 4.  Then 

 g(3, 4) = g(3, 3) + 3  

            = g(3, 2) + 3 + 3 

            = g(3, 1) + 3 + 3 + 3 

            = g(3, 0) + 3 + 3 + 3 + 3 = 12 (since g(3, 0) = 0).  

 

 

8.5 Answers to Self Assessment Questions  

 
SAQ1.  

1 2

1 2 1 2
,

1 2 2 1
p p   
= =   
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SAQ 2. 

 

1
1

3 1

1
1 3 2

1 2 3 4 5 6
 ( )

3 4 1 2 6 5

1 2 3 4 5 6
( )

2 5 6 3 1 4

1 2 3 4 5 6
( ) ( )

4 5 1 2 6 3

i p

ii p p

iii p p p

−

−

 
=  
 

 
=  
 

 
=  
 

o

o o

 

 

SAQ3.  

(i) Odd permutation: (1 8) (1 4) (1 5) (1 2) (1 7) (1 3) (1 6).o o o o o o   

(ii) Odd permutation: (5 8) (5 7) (5 6) (1 3) (1 2).o o o o  

(iii) Odd permutation: (7 8) (2 5) (2 4) (1 6) (1 3).o o o o  

 

SAQ4.  

g.c.d. (144, 118) = 2. 

 

 

8.6 Summary 
 

In this lesson we introduced the notion permutation function.  Various permutations defined on a 

given set; and a special type of permutation called cyclic permutation was discussed.  It also 

observed that a permutation can be expressed as a product of transpositions.  Further we 

discussed the concept of recursion, which is very useful in writing efficient algorithms and is an 

important facility in many programming languages. The computation of the greatest common 

divisor using the recursion illustrated.  
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8.7 Technical Terms  
 

Permutation:  Let A = {x1, x2, x3, …, xn} be a set with n elements.  A 

bijection (one to one and onto map) from A to A is called a 

permutation of A.   

Symmetric Group:  If the set S contains n elements, then the group A(S) =                 

{f : S → S / f is a bijection} has n! elements. Since S has n 

elements we denote A(S) by Sn and this  A(S) = Sn is called 

the symmetric group  of degree n. 

Cycle of length k:  A permutation σ ∈ Sn is a cycle of length k if there exists 

elements a1, a2, …, ak ∈ S such that σ(a1) =  a2, σ(a2) =  a3, 

…, σ(ak) =  a1 and σ(x) =  x for all other elements x ∈ S.  

We will write (a1, a2, …, ak) to denote the cycle σ.   

Odd permutation:  The product of an odd number of transpositions (or                     

2- cycles). 

Even permutation:  The product of an even number of transpositions (or                      

2-cycles). 

Recursion Theorem:  Let F be a given function from a set S into S.  Let s0 be 

fixed element of S.  The there exists a unique function                    

f: N → N where N is the set of non-negative integers 

satisfying (i) f(0) = s0;   (ii) f(n + 1) = F(f(n)) for all 

integers n ∈ N. 

Fibonacci sequence:  (i) F0 = 1 = F1; (ii) Fn+1 = Fn + Fn-1 for n > 1. 

Greatest Common Divisor:   The gcd of two non-negative integers m and n is defined as 

the largest positive integer d such that d divides both m and 

n.  
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8.8 Model Questions  
 

1.  Let A = {1, 2, 3, 4, 5, 6, 7, 8}.  Compute the products. 

(i) ( ) ( )3 5 7 8 1 3 2o  

(ii) ( ) ( ) ( )2 6 3 5 7 8 2 5 3 4o o . 

 

2. Show that the recursive definitions  

(i) h(0) = 9 and  

(ii) h(b + 1) = 5h(n) + 24 for n > 0 defines a function. 

 

3. Find the g.c.d. of 345 and 112. 

 

4. Compute 8! Recursively. 

 

5. Let A = {a1, a2, …, an} be a finite set with n elements and n > 2.  Then prove that there are !
2
n  

odd permutations. 

 

6. Show that a permutation of a finite set that is not the identity or a cycle can be written as a 

product (composition) of disjoint cycles of length greater than or equal to 2. 
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Lesson 9 

Permutations and Combinations 

 
 
Objectives  
 
At the end of the lesson the student must be able to: 

 
(i) Learn the principles of counting with certain natural objects. 
(ii) Apply the techniques of generating function to partitions and compositions. 
(iii)Apply the principles of inclusion and exclusion to various models. 

 
 
Structure 

 
9.1 Introduction 

9.2 Principle of Counting  

9.3 Permutations  

9.4 Combinations  

9.5 Answers to Self Assessment Questions  

9.6 Summary 

9.7 Technical Terms 

9.8 Model Questions 

9.9 References  

 

 

9.1 Introduction  
 

Combinatorics is the study of arrangements of objects, is an important part of discrete 

mathematics.  In this lesson, we shall study the permutations, combinations with some 

illustrations.  An experiment means a physical process that has a number of observable 
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outcomes.  Simple examples are tossing of a coin which has two possible outcomes HEAD and 

TAIL, rolling a die which has six possible outcomes 1, 2, …, 6.  We would like to know how 

many possible outcomes are there in selecting 10 student representatives from 3000 students.   

When we consider the outcomes of several experiments we shall follow the following rules. 

 

 

9.2 Principle of Counting  
 

9.2.1 Rules: 

(i).  Rule of Sum:  If the object A may be chosen in ‘m’ ways, and B in ‘n’ ways, then “either A 

or B” (exactly one) may be chosen in m + n ways.  This can be generalized for any ‘p’objects. 
 

(ii). Rule of Product:  If the object A may be chosen in m ways and the object B in n ways, then 

both “A and B” may be chosen in this order in ‘mn’ ways.  This can be generalized for any ‘p’ 

objects. 

 

9.2.2 Example:  If there are 42 ways to select a representation for class A and 50 ways to select a 

representative for the class B, then  

(i). By the rule of product, there are 42 × 50 ways to select the representative for both the class A 

and class B; 

(ii). By the rule of sum, there will be 42 + 50 ways to select a representative for either class A or 

class B. 

 

9.2.3  Example:  Suppose a license plate contains 2 letters followed by four digits, with the first 

digit is not zero.  How many different license plates can be printed ?. 
 

Solution:  Each letter can be printed in 26 different ways. 

Since the first digit is other than zero, this can be selected in 9 ways. 

Second, third and fourth digits in 10 ways. 
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Therefore by the rule of product, there are 26 ×  26 ×  9 ×  10 ×  10 ways. 

Special case:  All are distinct 

First letter can be printed in 26 ways. 

Second letter can be printed in 25 ways. 

First digit can be printed in 9 ways (other than ‘0’). 

Second digit can be printed in 9 ways (any one from 0 to 9 except choosen first digit) 

Third digit can be printed in 8 ways 

Fourth digit can be printed in 7 ways. 

Therefore by the rule of product, there are 26 × 25 × 9  ×9 × 8 × 7 ways. 

 

Self Assessment Question 1:   

a) How many different binary bit strings of length 7 are there? 

b) Suppose that a State’s license plates consist of three letters followed by 4 digits. How 

many different plates can be formed if repetitions are allowed? 

c) A company produces combination locks. The combinations consist of three numbers 

from 0 to 9 inclusive. No number can occur more than once in the combination. How 

many different combinations for locks can be attained? 

d) How many possible outcomes are there when 100 dice are rolled? 

e) A new-born child can be given I or 2 names. In how many ways can a child be named 

if we can choose from 100 names? 

 

 

9.3 Permutation of distinct things   

 

Let us recollect that the first of the members of an  r-permutation of n distinct things may be 

choosen in n ways.  The second is choosen in (n - 1) ways, …., the rth is choosen in n – (n - 1) 

ways. 
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So by the repeated application of product rule, the number required is                        

n(n - 1)….(n – (r - 1)) ways, n ≥ r., it is denoted by p(n, r). 

If r = n, then p(n, n) = n(n - 1) … (n – n + 1)  = n(n - 1) … 2.1 = n!. 

Therefore p(n , r) = 
r)....2.1(n

1))....2.1(r2).....(n1)(nn(n
−

−−−−   

    = 
r)!(n

n!
−

  

    = 
r)n r,p(n

n) p(n,
−−

  

or  p(n, n) = p(n, r). p(n –r, n - r). 

 

9.3.1 Problem:  Prove that p(n, r) = p(n – 1, r) + r.p(n – 1, r - 1) 
 

Solution:  Write p(n, r) = n(n - 1) … (n – (r- 1))  =  (n - 1)(n - 2) ….. n – (r - 1)[(n - r) + r] 

Which is equal to p(n – 1, r) + r.p(n –1, r - 1), on multiplication. 

 

9.3.2 Permutations with repetitions:  The number of permutations of n objects taken ‘r’ at a 

time with unlimited repetition, which is same as the number of ways of filling r blank spaces 

with n objects.   

After choosing the object in n ways, the next object can also be choosen in ‘n’ ways and so on.  

Therefore, in this case there are n ×  n ×  …. ×  n = nr = U(n, r) ways. 

 

 

9.3.3 Example: A bit is either 0 or 1: a byte is a sequence of 8 bits. Find (a) the number of bytes 

that can be formed (b) the number of bytes that begin with 11 and end with 11, (c) the number of 

bytes that begin with 11 and do not end with 11, and (d) the number of bytes that begin with 11 

or end with 11. 
 

Solution:(a) Since the bits 0 or 1 can repeat, the eight positions can be filled up either by 0 or 1 

in 28 ways. Hence the number of bytes that can be formed is 256. 

r times
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(b) Keeping two positions at the beginning by 11 and the two positions the end by 11, there are 

four open positions which can be filled up in 24 = 16 ways. Hence the required number is 16. 

(c) Keeping two positions at the beginning by 11, the remaining six open positions can be 

filled up by 26 = 64 ways. Hence the required number is 64 -16 = 48. 

(d) 64 bytes begin with 11, likewise, 64 bytes end with 11. In the sum of these numbers, 

64 + 64 = 128, each byte that both begins and ends with 11 is counted twice. Hence the required 

number is l28-16 = ll2 bytes. 

 

9.3.4 Example: A computer password consists of a letter of the alphabet followed by 3 or 4 

digits. Find (a) the total number of passwords that can be formed, and (b) the number of 

passwords in which no digit repeats. 
 

Solution: (a) Since there are 26 alphabets and 10 digits and the digits can be repeated, by product 

rules the number of 4-character password is 26.10.10.10. = 26000. Similarly the number of                   

5-character password is 26.10.10.10.10. = 260000. Hence the total number of passwords is 

26000 + 260000 = 286000. 
 

(b) Since the digits are not repeated, the first digit after alphabet can be taken from any one out 

of 10, the second digit from remaining 9 digits and so on. Thus the number of 4- character 

password is 26.10.9.8 = 18720 and the number of 5-character password is 26.10.9.8.7 = 131040 

by the product rule. Hence, the total number of passwords is 149760. 

 

9.3.5 Example: How many 6-digit telephone numbers have one or more repeated digits? 
 

Solution: Six-digit numbers can be formed in 106 ways. There are P(10, 6), 6-digit numbers 

without repetitions. Hence there are 106-P(10, 6) numbers have one or more digits repeated.  

 
Self Assessment Question 2:  In how many ways can the letters of the word ‘SUNDAY’ be 

arranged? How many of them begin with S and end with Y? How many of them do not begin 

with S but end with? 

 



Discrete Mathematics                                       9.6                       Permutations and Combinations 

9.3.6 Problem:  Find the sum of all the four digit number that can be obtained by using the digits 

1, 2, 3, 4 once in each. 
 

Solution:  The number of permutations (arrangements) can be made using 4 numbers (1, 2, 3, 4) 

taking 4 at a time is p(4, 4) = 
0!
4!  = 24. 

Each number occur 6 times in unit place, 6 times in 10th place, 6 times in 100th place, 6 times in 

1000 place. 

Therefore sum of the numbers in the unit place is = 6.1 + 6.2 + 6.3 + 6.4 = 60; 

Total sum of the digits in the 10th place = 60 ×  10 

Total sum of the digits in the 100th place = 60 ×  100 

Total sum of the digits in the 1000th place = 60 ×  1000 

Therefore total sum of all 24 numbers = 66,660. 

 

9.3.7 Example: In how many ways 4 examinations can be scheduled within a six-day period so 

that no two examinations are scheduled on the same day? 
 

Solution: P(6, 4) = 6 × 5 × 4 as 4 examinations can be considered as distinct balls and 6 days as 

distinct boxes.  

 

9.3.8 Example: Determine the number of 5-digit decimal numbers that contain no repeated digits 

and does not have a leading 0. 
 

Solution: There are 10 digits 0, 1, 2, 3, 4, 5, 6 7, 8, 9. Here n = 10. We can form 5 digit numbers 

with no repeated digits in P(10, 5) = 10 × 9 × 8 ×  7 × 6 = 30240 ways. 

Among these 30240 numbers there are 9 × 8 × 7 × 6 = 3024 numbers with leading 0. Thus there 

are 30240 — 3024 = 27216, 5-digit numbers with no repetition and without leading zero.  

 

9.3.9 Example: Suppose there are 6 boys and 5 girls. 

(i) In how many ways can they sit in a row? 
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(ii) In how many ways can they sit in a row if the boys and girls are each to sit together? 

(iii) In how many ways they can sit in a row if the girls are to sit together and the boys do not sit 

together? 

(iv) How many seating arrangements are there with no two girls sitting together? 
 

Solution: (i) There are 6 + 5 = 11 persons and they can sit in P( 11, 11) = 11! ways. 

(ii) The boys among themselves can sit in 6! ways and the girls among themselves can sit in 5! 

ways. They can be considered as 2-units and can be permuted in 2! ways. Thus the required 

seating arrangements can be in 2! 6! 5! ways. 

(iii) The boys can sit in 6! ways and girls in 5! ways. Since girls have to sit together they are 

considered as one unit. Among the 6 boys either 0 or 1 or 2 or 3 or 4 or 5 or 6 have to sit to the 

left of the girls unit. Of these seven ways 0 and 6 cases have to be omitted as the boys do not sit 

together. Thus the required number of arrangements = 5 × 6! × 5!. 

(iv) The boys can sit in 6! ways. There are seven places where the girls can be placed. Thus total 

arrangements are P(7, 5) × 6!.  

 

9.3.10 Example: In how many ways can the letters of English alphabet be arranged so that there 

are exactly 5 letters between the letters a and b. 
 

Solution: There are P(24, 5) ways of arranging 5 letters between a and b; 2 ways to place a and 

b; and 20! ways to arrange any 7-letter word treated as one unit with the remaining 19 letters. 

Thus there are P(24, 5) × 2 × 20! ways.  

 

9.3.11 Example: Find the number of ways in which 5 boys and S girls can be seated in a row if 

the boys and girls are to have alternate seats. 
 

Solution:  

Case (i): Boys can be arranged among themselves in 5! ways. 

_B_B_B_B_B 

There are 6 places for girls. Hence there are P(6, 5) × 5! arrangements.  
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Case (ii) Girls can be arranged in 5! ways. 

_G_G_G_G_G_ 

There are 6 places for boys. Hence there are P(6, 5) × 5! ways.  

Hence taking the two cases into account there are 2 × P (6, 5) × 5! arrangements in total.  

 

 

9.4 Combinations 
 

The number of ways to select r objects from n distinct objects is called an r combinations of n 

objects and is denoted by C(n, r).  Observe C(n, 1) = n, C(n, n) = 1 and C(n, 0) = 1.  The other 

notations are nCr and  
n
r
 
 
 

. 

 

9.4.1 Theorem:  The r objects of each r-combination can be permuted among r! different                     

r-permutations, each of which corresponds to a single combination.  If the number or                        

r-combinations of n objects without repetition (denoted by C(n, r)).  Then  C(n, r) = 
r)!- (n

n!  

 

Proof: Any r permutations of n objects without repetition can be obtained by selecting r objects 

and then arranging the r objects in all possible orders. 

Selection can be made in C(n, r) ways and arrangements can be made in r! ways. 

Thus P(n, r) = r! C(n, r). 

This implies that C(n, r) = 
r!r)!- (n

n!  =  







r
n

. 

 

Note that C(n – 1, r - 1) + C(n – 1, r) = C(n, r). 
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9.4.2 Problem:  How many ways may one right and one left shoe be selected from six pairs of 

shoes without obtain a pair. 
 

Solution:  Any one of the left shoe can be selected in six ways.  We have five choice for 

selecting a right shoe without obtaining a pair.  Therefore the total number of ways selecting one 

left and one right shoe is = 6 × 5 = 30 ways. 

 

9.4.3 Problem:  A new national flag is to be designed with six vertical strips in yellow, green, 

blue, and red.  In how many ways can this be done so that no two adjacent strips have the same 

colour. 
 

Solution:  The first strip can be selected in four different ways.  Since no two adjacent strips 

have the same colour, the second strip can be selected in three different ways.  In a similar way, 

3rd , 4rth, 5th  and 6th strips are selected in three different ways.  Therefore the total number of 

ways selecting the different colours in the strips are 4 ×  3 ×  3 ×  3 ×  3 ×  3 = 4 ×  35 = 972 

ways.  

 

9.4.4 Problem:  (i).  How many positive integers less than one million can be formed using 7’s 

8’s and 9’s only ? 

(ii). How many using 0’s, 8’s and 9’s only ?. 
 

Solution:  (i).  We find the number of integers used from 1 to 9,99,999. 

Number of single digits (less than 10) are 7, 8, 9.  

Number of integers formed using two digits are 3 ×  3 = 32. 

Similarly, number of integers with 3 digits is 3 ×  3 ×  3 = 33, …, the number of integers with 6 

digits is 36. 

Therefore the total number of positive integers less than 1 million can be formed using 7, 8, 9 

only = 3 + 32 + 33 + 34 + 35 + 36 = 1092. 
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(ii).  Number of positive integers contuining one digit is 2 (zero is not considered); number of 

positive integers containing two digits = 2 ×  31., and so on, number of positive integers 

containing six digits is 2 ×  35. 

Therefore the total number of integers containing 0, 8, 9 is = 2 + 2(3 + 32 +…+ 35) = 728.  

 

9.4.5 Definition: The permutations considered so far are called linear permutations as the objects 

are being arranged in a row (line). Suppose we arrange them in a circle, see the fig. 

                             
Figure:  Circular permutation. 

The arrangements are considered to be the same if the objects are in the same order clockwise. 

Therefore keeping c1 in a fixed position there are (n -1)! arrangements for the remaining objects. 

We have the following theorem. 

 

9.4.6 Note: There are (n-1)! permutations of n distinct objects in a circle. 

 

9.4.7 Example: How many ways are there to seat 10 boys and 10 girls around a circular table? If 

boys and girls sit alternate how many ways are there? 
 

Solution: There are total 19! seating arrangements. 10 boys can be arranged in 10! ways. There 

are 9 gaps for girls and can be placed in 9! ways. 

Thus, we have 10! × 9! ways.  

 

9.4.8 Theorem: There are 2r subsets of a set A with r elements. 
 

Proof: Consider the problem of placing r elements of A in two boxes. Corresponding to each 

placement we can define a subset of A by taking the elements placed in box 1 and discarding the 
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elements placed in box 2. Since there are 2r ways to place r elements, there are 2r subsets of A. 

That is P(A) contains 2r elements.  

 

9.4.9 Example: There are 2r, r-digit binary sequences. Out of these 2r sequences how many of 

them have even number of l’s? 
 

Solution: Pair off these binary sequences such that two sequences in a pair differ only in the rth 

digit. Clearly one of the two sequences in a pair has even number of l’s and other has odd 

number of l’s. Hence there are 1
2
× 2r = 2r-1,  r-digit binary sequences that contain even number 

of l’s.  

 

9.4.10 Note:  Consider n objects of which m1 are first kind, m2 are of second kind, …., mk are of 

kth kind, then nm
k

1i
i =∑

=

.   

 

9.4. 11 Theorem:  The number of distinguishable permutations of n objects in which the first 

object appears in m1 times, second object in m2 ways, …. and so on, 
!!....mm!m

n!

k21

, where mk is 

the kth object appears in mk times. 
 

Proof:  Let x be the number required.  In permutation among x, make m1 all distinct.  Since m1 

objects can be permuted among themselves, one permutation will give rise to m1!.  Therefore x 

permutations give x.m1! permutations.  Now make m2 identical objects all distinct.  Then we get 

xm1! m2! Permutations of n objects in which m3 are alike, … mk are alike.  Continuing this 

process we get xm1! m2! … mk! as the number of permutations of n objects of which are all 

distinct and hence equal to n!. 

Therefore x =
!!....mm!m

n!
k21

. 
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9.4.12 Example:  Find the number of different letter arrangements can be formed using 

“MATHEMATICS”. 
 

Solution:  Total number of letters n = 11 (with repetitions) 

Number of M’s = 2 

Number of T’s = 2 

Number of A’s = 2.  

And the letters H, C, S, E, each is 1. 

Therefore the required number of permutations is 
1!1!1!1!2!2!2!

11!  = 6652800. 

 

Self Assessment Questions 3: 

a) Compute P(8, 5) and P(7, 4). 

b) In how many ways can 10 people arrange themselves 

I. In a row of 10 chairs? 

II. In a row of 7 chairs? 

III. In a circle of 20 chairs? 

c) In how many ways can 7 women and 3 men be seated in a row if the 3 men must always 

sit next to each other? 

d) How many 5-digit even numbers can be formed using the figures 0, 1, 2, 3, 5, 7 and 8 

without using a figure more than once? 

 

9.4.13 Example:  (a) In how many ways a committee of 3 be formed chosen from 10 people.  

(b) How many committees of 3 or more can be chosen from 10 people? 
 

Solution: (a) C(10, 3) ways 

(b) C(l0, 3) + C(l0, 4) + C(10, 5) + ... + C(10, 10), which is also equal to 210-C(10, 1) C(l0, 2). 

 

Self Assessment Question 4: Find the number of arrangements of the letters in the word: 

ACCOUNTANT.   



Acharya Nagarjuna University                         9.13                          Centre for Distance Education 

 

9.4.14 Example: How many ways can 3 integers be selected from the integers 1, 2, 3, ..., 30 so 

that their sum is even. 
 

Solution: There are 15 odd integers 1, 2, 5, ..., 29 and 15 even integers 2, 4, 6, ..., 30. Sum of 3 

integers will be even only if 

(i) All the 3 are even. 

(ii) Two of them odd and one even. 

Hence the total number of ways to select 3 integers out of the given 30 integers is C(15, 3) + 

C(15, 2)C(15, 1) = 560 ways. 

 

9.4.15 Problem: Find the number of subsets of a set with n elements, in a different way.  
 

Solution: The number of subsets with r ≤ n elements is given by C(n, r). Hence altogether there 

are C(n, 0) + C(n, 1) + ... + C(n, n) subsets of A. But from binomial theorem, we have the 

number of subsets of a set with n elements as 

C(n, 0) + C(n, 1) + ... + C(n, n) = 2n 

 

9.4.16 Example: A multiple choice test has 15 questions and 4 choices for each answer. How 

many ways can the 15 questions be answered so that, 

(a) exactly 3 answers are correct? (b) at least 3 answers are correct? 
 

Solution: 

(a) Exactly 3 answers are correct is 312 C(15, 3) 

(b) At least 3 answers correct are 415 - [315 + 314 C(15, 1) + 313C(15, 2)]. 

 

9.4.17 Example: A student is to answer 12 out of 15 questions in an examination. How many 

choices does the student have? 

a) in all? 

b) if he must answer the first two questions. 
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c) if he must answer the first or second question but not the both. 

d) if he must answer exactly 3 of the first-five questions.  

e) if he must answer at least 3 of the first-five questions. 
 

Solution:  

(a) C(15, 12) ways 

(b) If the first-two questions are to be answered he has to select 10 questions out of remaining 

13. Thus he has C(1 3, 10) choices.  

(c) If he answers the first question he could not choose the second question. So he has to choose 

11 questions from the remaining 13 questions. Hence he has C(13, 11) choices. Similarly, if he 

answers the second question he has C(13, 11) choices. Total number of choices = 2 × C(13, 11). 

(d) To choose 3 from the first 5 he has C(5, 3) choices. Other 9 questions have to be chosen from 

the next 10 questions. He has C(l0, 9) choices. Thus in total he has C(5, 3)C(10, 9) choices. 

(e) He can choose 3 from the first-five and 9 from the next 10 questions. Or, he can choose 4 

from the first-five and 8 from the next 10 questions. Or, he can choose 5 from the first-five and 7 

from the next 10 questions. Thus he has  

C(5, 3)C(10, 9) + C(5, 4)C(10, 8) + C(5, 5)C(10, 7) 

choices. 

 

9.4.18 Note:  (Combinations with repetitions) Suppose that r selections are to be made from n 

items without regard to the order and that unlimited repetitions are allowed, assuming at least r-

copies of n items.  The number of ways of these selection can be made is C(n + r – 1, r) = 

1)!-(nr!
1)!-r(n + . 

 

9.4.19 Example:  The number of ways to choose 3 out of 7 days (repetitions allowed) is                        

C(7 + 3 -1, 3) C(9, 3) = 84. 
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9.4.20 Example: When 3 dice are rolled the number of different outcomes is C(6 + 3 -1, 3) = 56 

as rolling 3 dice is same as selecting 3 (here r = 3) numbers from numbers 1, 2, 3, 4, 5, 6, (here n 

= 6) with repetitions allowed.  

 

9.4.21 Example: Find the number of ways to seat 5 boys in a row of 12 chairs using 

permutations and using combinations. 
 

Solution: (a) Using permutations:  

The problem is to arrange 12 objects that are of 6 different kinds. The 6 different objects are 5 

boys and 7 unoccupied chairs (these 7 considered as a single object). Thus the number of 

arrangements is 12! 12!
1!1!1!1!1!7! 7!

=  

 

(b) Using combinations: Five boys can be arranged in a row in 5! ways.  Distribute the 7 

unoccupied chairs arbitrarily in 6 places (in the gaps between any two boys or at the two ends). 

Then 

Total number of ways = 5! × C(6 + 7 -1, 7) = 5! × C(12, 7) = 5! × 12!
5! 7!×

 =  12!
7!

. 

 

9.4.22 Example:  In how many ways can a lady wear five rings on the fingures (not the thumb) 

of her right hand ? 
 

Solution:  There are five rings and four fingures.  Five rings can be permuted in p(5, 5) ways.  

The number of unrestricted combinations of 4 objects taken 5 at a time is 






 −+
5

154
 = 








5
8

.  

Therefore the total number of ways = 5! 







5
8

  = 6720.  
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Self Assessment Question 5: How many different two digit positive integers can be formed 

from the digits:0, 1, 2, 3, 4, 5, 6, 7, 8, 9. (i) When repetition is not allowed, (ii) When repetition 

is allowed. 

 

 

9.5 Answers to Self Assessment Questions  
SAQ1.  

a) 27 

b) 263× 104 

c) 10 × 9 × 8 = 720 
d) 6100 

e) 100 + (100 × 99) 

 

SAQ2.  

The word SUNDAY consists of 6 letters, which can be arranged in P (6, 6) = 6! = 720 ways.  If 

‘S’ occupies first place and Y occupies last place, then other four letters U, N, D, A can be 

arranged in 4! = 24 ways.  If S does not occupy the first place but Y occupies last place, the first 

place can be occupied in 4 ways by any one of U, N, D, A.  For the second place, again 4 letters 

are available, including S.  The 3rd, 4th and 5th places can be filled by 3, 2, 1 ways.  Hence the 

required number of arrangements = 4 × 4 × 3 × 2 × 1 = 96. 

 

SAQ3.  

a) 6720, 840 

b) I) 10!,  II)  P(10, 7), III)  9!. 

c) 3! 8! 

d) 1080 (allowing leading zero).  

 

SAQ4.  



Acharya Nagarjuna University                         9.17                          Centre for Distance Education 

The number of arrangements =
!1!2!2!2!2

!10  = 226800. 

 

5. (i) 90, (ii)100. 

 

 

9.6 Summary 
 

In this lesson we studied the basic principles of counting.  Techniques for counting are important 

in computer science especially in probability theory and in the analysis of algorithms.  Some 

illustration on permutations and combination with distinct objects are given.  These are also 

useful in graph theoretical algorithm. 

 

 

9.7 Technical Terms 
 

P(n , r)  = 
r)....2.1(n

1))....2.1(r2).....(n1)(nn(n
−

−−−−    = 
r)!(n

n!
−

  

 

C(n, r)  = n!
r!(n - r)!

 

 

Combinations with repetitions:  Suppose that r selections are to be made from n items 

without regard to the order and that unlimited repetitions 

are allowed, assuming at least r-copies of n items.  The 

number of ways of these selection can be made is                     

C(n + r – 1, r) = 
1)!-(nr!
1)!-r(n + . 
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9.8 Model Questions  

 

1. How many numbers between 4000 and 6000 can be formed by using the integers 1, 2, 3, 4, 5, 

6, 7 and 8 if any integer is not used more than once? 

 

2. There are 6 books on mathematics, 3 on computer science, and 5 on electronics. In how many 

ways can these be placed on a shelf if books on the same subjects are to be together? 

 

3. Six papers are set in an examination of which two are mathematics. In how many ways can the 

examination papers be arranged if the mathematics papers are not to be together? 

 

4. Find the number of different arrangements that can be made out of the letters of the word 

‘TRIANGLE’ if the vowels are to come together. 

 

5. How many 4 – digit numbers can be formed by using 2, 4, 6, 8 when repetition of  digits is 

allowed? 

 

6. In how many ways can 4 prizes be distributed among 5 persons when 

(i). No person gets more than 1 prize  

(ii). A person may get any number of prizes.   

(iii). A person gets all the prizes.   

       

7. Out of 15 boys and 9 girls, how many different committees can be formed each 

consisting of 6 boys and 4 girls? 

 

8. How many cards must you pick up from a standard 52 card deck to be sure of getting at least 

one red card.  

 

9. A dice are rolled thrice, find the numbers of different outcomes 
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10. A bag contains 5 red marbles and 6 white marbles. Find the number of ways of selecting 4 

marbles such that 2 are red and 2 are white. 

 

11. There are 12 points P1, P2, ..., P12 in the plane, no three of them on the same line. 

(a) How many triangles can be formed? 

(b) How many of the triangles contain the point P1 as a vertex? 

 

12. How many diagonals are there in a regular polygon of n sides? 

 

13. How many ways can 5 days be chosen from each of the 12 months of an ordinary year of 365 

days? 
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Lesson 10 

Partitions and Binomial Coefficients 

 
 
Objectives  
 
At the end of the lesson the student must be able to: 

 
(i) Learn the partitions of integers and sets. 
(ii) Know the properties of binomial coefficients and combinatorial identities. 
(iii)Application of multinomial theorem. 
(iv) Convert the discrete numeric functions and generating function. 

 
 
Structure 

 
10.1 Introduction 

10.2 Partitions  

10.3 Binomial Coefficients  

10.4 Multinomial Coefficients    

10.5 Discrete Numeric Functions 

10.6 Answers to Self Assessment Questions 

10.7 Summary 

10.8 Technical Terms 

10.9 Model Questions 

10.10 References 

 
 
10.1 Introduction  
 
In this lesson we start with the partition of integers and the sets.  We present some basic 

identities involving binomial coefficients. In formulas arising from the analysis of algorithms in 
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computer science, the binomial coefficients occur.  We extended the notion of binomial to 

multinomial and obtained provided suitable illustrations. We end with the representations of 

discrete numeric functions and the corresponding generating functions.     

 
 
10.2 Partitions 
 

10.2.1 Definition: Let S be a set with n distinct elements, and let t be a positive integer. A                  

t-partition of the set S is a set {A1, A2, ..., At} of t subsets of S, such that  

(i) S=A1 ∪ A2 ∪ .... ∪ At 

(ii) Ai   ∩ Aj  =  φ (empty set) i ≠ j 

The subsets Ai, are called parts or cells or blocks of S. 

 

Note that (i) We will omit ‘t’ and simply call partition. 
 

(ii) An ordered partition of S is a partition with a specified order on the subsets. 

 

10.2.2 Example: For S = {a, b, c, d}; A1 = {a, b}, A2 = {c}, A3 = {d} form a 3-partition of S. 

Then (A1, A2, A3), (A1, A3, A2), (A2, A1, A3), (A2, A3, A1), (A3, A1, A2) and (A3, A2, A1) form 6 

different ordered partitions of S using the subsets A1, A2, A3.  

 

10.2.3 Note: An ordered partition of S is of type (q1, q2, ..., qt) if  Ai   = qi. That is., Ai contains 

qi elements. 

 

10.2.4 Example: For the set S = {a, b, c, d), write A1 = {a), A2 {b}, A3 = {c, d}. Then (A1, A2, 

A3) is a partition.  This is of a type (1, 1, 2) partition. 

 

The following theorem gives the number of ordered partitions of a set. 
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10.2.5 Theorem:  The number of ordered partition of a set with n elements of type (q1, q2, ..., qt) 

is  P(n, q1, q2, ..., qt) = 
1 2

!
! !... !t

n
q q q

. 

 

Proof: q1 elements of the first set can be chosen in C(n, q1) ways and q2 elements of the second 

set in C(n-q1, q2) ways etc. 

Thus the number of ordered partitions of type (q1, q2, ..., qt) is C(n, q1), C(n-q1, q2) … C(n- q1-q2 

…-qt-1, qt), which is equal to P(n, q1, q2, …, qt). 

 

10.2.6 Example: Let S = {a, b, c, d}. The number of ordered partition of type (1, 2, 1) is                        

P(4, 1, 2, 1) = 4!
1!2!1!

 = 12. 

 

10.2.7 Example: A store has 10 red flags, 5 white flags, 4 yellow flags and 6 blue flags. In how 

many ways can the flags be displayed? 
 

Solution: Total number of flags n = 25. They are partitioned into (10, 5, 4, 6) type ordered 

partitions. The number of such ordered partitions is  

25!
10!5!4!6!

 

 

10.2.8 Theorem (unordered partitions): Let S be a set with n elements and n = qt. Then the 

number of unordered partitions ‘of S of type (q1, q2, ..., qt) is  1 !
! ( !)t

n
t q

 

 

Proof: Each unordered t-partition gives rise to t! ordered partitions. Hence the theorem follows.  

 

10.2.9 Example:  In how many ways 12 of the 14 people will be distributed into 3 teams of 4 

each? 
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Solution: The number of ways where 12 people can be chosen from 14 is C(14, 12). Hence there 

are  

C(14, 12) 3
1 12!
3! (4!)

 

unordered (4, 4, 4) type partitions. 

 

10.2.10 Definition: Let A1, A2, ..., An be subsets of S.  Then a minset generated by A1, A2, …, 

An is of the form B1 ∩ B2 ∩ ... ∩ Bn, where Bi, may be either Ai, or  '
iA  ( '

iA  = S – Ai). 

 

10.2.11 Theorem: Let A1, A2, ..., An are subsets of S. Then the non-empty minsets generated by 

A1, A2, ..., An form a partition of S. 
 

Proof: Let A1, A2, ..., An are n subsets of S. Then there are k = 2n minsets M1, M2, …, Mk 

(generated by A1, A2, ..., An).  Further  
1

.
k

i
i

M S
=

⊆U   Now  let x ∈ S. Then x ∈ Ai  or '
iA  for i = 1, 

2, ..., n.  

Thus x will be in one of the minsets. Hence S = 
1

.
k

i
i

M
=
U   

Hence M1, M2, ..., Mk form a partition of S. 

 

10.2.12 Example: Let S = {1, 2, 3, ..., 9). Give a partition of S into minsets generated by A1 = 

{1, 2, 5), A2 = {5, 6, 8, 9) and A3 = {2, 3, 4}. 
 

Solution: We have  
'
1A  = {3, 4, 6, 7, 8, 9} 

'
2A = {1, 2, 3, 4, 7} 

'
3A  = {1, 5, 6, 7, 8, 9} 

M1 = A1 ∩ A2 ∩ A3 = φ 
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M2 = '
1A  ∩ A2 ∩ A3 = φ 

M3 = A1 ∩ '
2A  ∩ A3 = {2} 

M4 = A1 ∩ A2 ∩ '
3A = {5} 

M5 = '
1A  ∩ '

2A  ∩ A3 = {3, 4} 

M6 =  '
1A  ∩ 2A  ∩ '

3A = {6, 7, 8} 

M7 = A1 ∩ '
2A  ∩ '

3A = {1} 

M8 = '
1A  ∩ '

2A  ∩ '
3A = {7} 

form partition of S. 

 

Self Assessment Questions 1: 

1. Let S = {1, 2, 3, 4, 5) and A1 = {2, 3, 4) and A2 = {3, 4, 5} are subsets of S. Find the partition 

of S into minsets generated by A1and A2. 

 

2. Let S = {l, 2, 3, 4, 5, 6); A1={2, 5, 6}, A2={1, 2, 3}, A3={1, 4, 6}. Find the partition of S into 

minsets generated by A1, A2 and A3. 

 

 

10.3 Binomial Coefficients  
 

10.3.1 Definition: Let n is a positive integer, we have (a + b)n = an + nan-1b +   n(n-1)  
2!

an-2b2 + 

… +   n(n-1)(n - 2)(n - r +1)   
2!

 an-rbr + … + bn. 

 This is known as binomial theorem.  The coefficients are C(n, 0), C(n, 1), ..., C(n, r), ...,               

C(n, n). These coefficients are called binomial coefficients, where 
( )

!( , )
! !

nC n r
r n r

=
−
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10.3.2 Properties of binomial coefficients (Combinatorial Identities): 

An identity that results from some counting process is called a combinatorial identity. Some 

identities involving binomial coefficients are given below: 

1. C(n, 0) + C(n, l) + … + C(n, n) = 2n. 
 

2.C(n, 1) + C(n, 3) +  …. = C(n,0) + C(n,2) + ….  = 2n-1. 
 

3. C(n, r)=C(n, n-r) 
 

4. Newton’s Identity: C(n, r).C(r, k)=C(n, k).C(n-k, r-k) for integers n ≥ r ≥ k ≥ 0.  
 

5. Pascal Identity: C(n+ l, r) = C(n, r) + C(n, r-1) 
 

6. Vandermonde’s Identity: 

 C(n + m, r) = C(n, 0). C(m, r) + C(n, 1). C(m, r- l) + … + C(n, r). C(m,0) 

= 
0
C(m, r - k).C(n,k)

r

k=
∑  for integers n ≥ r ≥ 0 and m ≥ r ≥ 0. 

 

The combinatorial proofs of (3), (4) and (6) are given below and the remaining identities left as 

exercises. 

 

10.3.3 Problem: Prove the identity C (n, r) = C (n, n — r): 
 

Proof (combinational version): If r objects are chosen from n objects there are n-r objects are 

left. Thus selection of r objects from n objects is the same as to pick out the n-r objects that are 

not to be selected. Hence to every r-combination automatically there is an associated (n-r) 

combination and conversely. This proves the identity. 

 

10.3.4 Problem: Prove the Pascal Identity C(n+1, r) = C(n, r) + C(n, r-l) where n and r are 

positive integers with r ≥ n. 
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Proof (combinatorial version):  A choice of r of the n +1 objects x1, x2 , …, xn  may or may not 

include xn+1.  If it does not, then r objects have to be chosen from x1, x2 , …, xn  and there are              

C(n, r) such choices.  

If it does contain xn+1 then r-1 further objects have to be chosen from x1, x2 , …, xn  and there are 

C(n, r-1) such choices. So by the rule of sum, the total number of choices is     C (n, r) + C(n, r-1) 

which must be equal to C (n + 1, r). 

Hence C (n + 1, r) = C(n, r)+ C(n, r-1). 

 

10.3.5 Pascal’s formula: Pascal’s formula gives a recurrence relation for the computation of 

Binomial coefficient, given the initial data C(n, 0) = C(n, n) = 1 for all n. Notice that no 

multiplication is needed for this computation. One can obtain the numbers by constructing a 

triangular array using very simple arithmetic. The triangular array is usually called Pascal’s 

triangle. One can label the rows of the triangular array by n = 0, 1, 2 and the positions within the 

nth row as k = 0, 1, 2, …, n. The zero row of the triangle is the single entry 1  and the first row be 

a pair of entries each equal to 1. This gives the first two rows, The nth row of the triangle, which 

contains n + 1 numbers, can be formed from the preceding row by the following rules 

(a) The first (k = 0) and the last (k = n) entries are both equal to 1. 
 

(b) For l ≤ k ≤ n-l, the kth entry in the nth row is the sum of the (k-1)th and kth entries 

in the (n -1) rows. 
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A basic property of binomial coefficients is illustrated by Pascal’s triangle. If we evaluate th 

numbers, we can find that we obtain the same numbers as in the first six rows of Pascal’s 

triangle. Each number in the triangle is the sum of the two numbers above it, i.e., the number just 

above i and to the right, and the number just above it and to the left.  
 

For example, take n = 5 and k = 3, we have
5 4 4
3 3 2
     

= +     
     

, which is the particular case of 

Pascal’s identity.  

 

 

10.4 Multinomial Coefficients 
 

The expression in the form x1 + x2 is a binomial, a multinomial is an expression of the form                   

x1 + x2 + … + xn, with n ≥ 3. Just as binomial coefficients appear in the expansion of powers of a 

binomial, multinomial coefficients appear when a power of a multinomial is expanded. 
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10.4.1 Multinomial Theorem:  For real numbers a1, …, ak and for n ∈ N, we have  

1

1

1 1
1...

( ... ) ... .
...

k

k

nnn
k k

kn n

   n
a a a a

n n+ +

 
+ + =  

 
∑  

Here 
1... k

n
n n
 
 
 

 stands for 
1 2

!
! !... !k

n
n n n

 is called the multinomial coefficient and the sum is over 

all possible ways to write n as n1 + n2 + … + nk. 

 

10.4.2 Example: Find the number of arrangement of the letters in the word ACCOUNTANT.  
 

Solution: Total number of letters in the word ACCOUNTANT is 10. Out of which A occurs 

twice, C occurs twice, N occurs twice, T occurs twice and the rest are all different. Since some of 

the letters are repeated, we apply multinomial theorem.  

Hence the number of arrangements is 10! 226800
2!2!2!2!

= . 

 

10.4.3 Note: Like the term “binomial coefficient,” the term “multinomial coefficient” comes 

from considering algebraic expressions. Given real numbers a1, a2, …, ak, consider the power   

(a1 + ... + ak)n = (a1 + ... + ak) (a1 + ... + ak) ... (a1 + ... + ak). 

After performing this product but before collecting like terms, a typical term in this product has 

the form  1
1 ... knn

ka a  

The coefficient of 1
1 ... knn

ka a  after collecting like terms is equal to the number of ways of picking 

n1 factors equal to a1, and n2 factors equal to a2, and so on, as we multiply the n copies of a1 + a2 

+ ... + ak. This is precisely the multinomial coefficient 
1 2... k

     n
n n n
 
 
 

 

 

10.4.4 Example: Find the coefficient of x3 y2 z2 in (x + y + z)9 ? 
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Solution: This is the same as how many ways one can choose x from three brackets, a y from 2 

brackets and a z from two brackets in the expansion. 

(x + y + z) (x + y + z) … (x + y + z) (9 times) 

This can be done in 
    9
3  2  2
 
 
 

= 9! 15120.
3!2!2!

=  

 

 

10.5 Discrete Numeric Functions 
 

The functions whose domain is the set of natural numbers and whose range is the set of real 

numbers are called sequences or discrete numeric functions or simply numeric functions. We 

encounter these functions very often in digital computation.  

a0, a1, a2,  ..., ar., ... denote the values of the function at 0, 1, 2, ..., r, …. We can specify a 

numeric function by exhaustively listing its values or by a representation. 

 

10.5.1 Example:  

(a) {20, 21, 22, ..., 2r...} can be given the representation ar = 2r,  r ≥ 0. 
 

(b) ar = 7r3 + 1, r ≥ 0 represents {1, 8, 57, ...}. 
 

(c) br =  1

2 ,0 11

3 , 12r

r r

r−

≤ ≤


≥
  

are some of the numeric functions. 

 

10.5.2 Example: Suppose we deposit Rs 100 in a bank at an interest rate of 7% per year, 

compounded annually. The amounts at the end of the first, second, third, ... year are      Rs 107, 

Rs 114.49, Rs. 122.50, respectively. 

The amount at the end of each year is a numeric function (100, 107, 114.49, 122.50, ...).  
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That is ar = 100(1.07)r , r ≥ 0. 
  

10.5.3 Example: In a process control system a monitoring device measures the temperature 

inside a chemical reaction chamber once every 10 sec.  Let ar denote the rth reading in degree in 

centigrade.  Determine an expression for ar if it is known that the temperature rises from 100° to 

125°  at a constant rate in the first 100 seconds and stays at 125° afterward. 
 

Solution: The uniform rate of rising the temperature = 125 100
100
− = 0.25. 

The temperature at the first reading a1 = (100 + 0.25 × 1)° 

 

The temperature at the second reading a2 = (100 + 0.25 × 2)° 

 

Similarly the temperature at the rth reading ar = (100 + 0.25r)° 

 

Thus the required numeric function  ar = 100 + 0.25r.  

 

10.5.4 Definition: The sum of two numeric functions is a numeric function whose value at r is 

equal to the sum of the values of the two numeric functions at r.  The product is defined as the 

numeric function whose value at r is equal to the product of values of the two numeric functions 

at r. 

 

10.5.5 Example: Let  

 

r

-r

0,0 r 2 3- 2 ,0 r 1,
2 + 5 r + 2, r 2r ra b

≤ ≤  ≤ ≤ = = 
≥  
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Then 

r

r-1

3 - 2 ,0 r 1
4, r = 2

2 7, 3
r r rc a b

r r

 ≤ ≤


= + = 


+ + ≥

 

 

and  -r -r+1 

0,0 r 2

r2 + 2 + 5r +10, r 3.r r rd a b
≤ ≤= = 

≥
 

 

Self Assessment Question 3: Let a and b be two numeric functions given by   

 

r

-r

0,0 r 4 1- 2 ,0 r 2,
2 + 3, r 5 2 + 2, r 2r ra b

≤ ≤  ≤ ≤ = = 
≥ ≥  

.  Find a + b and a⋅ b. 

 

10.5.6 Definition: Let ‘a’ be a numeric function.  Then modulus of ‘a’ denoted by a  is a 

numeric function defined as  a  = r r

r r

a  if  a  is non negative
-a  if  a  is non negative




 

 

10.5.7 Note: Let a be a numeric function and α be a real number. Then αa is the numeric 

function whose value at r is α times the value of a at r. αa is called a scaled version of a of with 

scaling factor α. We use a  to denote the numeric function whose value at r is equal to  ar . 

 

10.5.8 Example: Let a be a numeric function with ar = (-1)r
2

2
r

, r ≥ 0 and if b =  a , then  br = 

2
2
r

, r ≥ 0. 
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10.5.9 Generating Function: This is an alternative way to represent numeric functions.  A 

numeric function a can also be represented as (a0, a1, …, ar, …).  The infinite series a0 + a1z + 

a2z2 + … + arzr + … is called the generating function of the numeric function a. 
 

(a) The generating function for (30, 31, 32, …, 3r, ….) is  30 + 31z + 32z2 + … + 3rzr + ….  The 

closed form of this series is 1
1 3z−

. 

 

(b) The generating function for the numeric function ar = 7 × 3r, r ≥ 0 is A(z) = 9
1 3z−

. 

 

10.5.10 Result: Let A(z) and B(z) are the generating functions of the numeric functions a = {ar} 

and b = {br}.  Then  

(i) C(z) = A(z) + B(z) is the generating function f the numeric functions a + b. 

(ii) D(z) = α A(z) is the generating function of αa. 

 

10.5.11 Example: Find the generated function of 1, 1, 1, 1,1, 1, 1. 
 

Solution:  The generating function is given by 

G(x) = 1 + x + x2 + x3 + x4 + x5 + x6 = 
7 1

1
x
x
−
−

. 

 

10.5.12 Example: Let ar = 2r and br = 3r are two numeric functions.  Then A(z) = 1
1 2z−

 and 

B(z) = 1
1 3z−

are generating functions of  ar and br.  Then the generating function of cr = 2r + 3r is  

C(z) = A(z) + B(z) = 1
1 2z−

 + 1
1 3z−

. 
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10.5.13 Example: Generating function for 2r3r (using partial fractions) is D(z) =  1
1 2z−

 1
1 3z−

 

= 3
1 3z−

 - 2
1 2z−

. 

 

Self Assessment Question 4: Obtain the generating function of the numeric function ar = 3r+2,             

r ≥ 0. 

 

10.5.14 Example: Obtain the numeric function corresponding to the generating function
5

1 3
x

x−
. 

 

Solution: We that the numeric function a for the generating function 1
1 3x−

 is given by   ar = 3r.  

Therefore the numeric function for the generating function 
5

1 3
x

x−
 will be x5a = b such that 

5

0,0 4

3 , 5r r

r
b

r−

≤ ≤= 
≥

. 

 

10.5.15 Example:  Determine the numeric function corresponding to each of the following 

generating function.  

(i) G(x) = 2
1

5 6x x− +
  

 (ii) G(x) = 
2

4
(1 )
(1 )

x
x

+
−

 

 

Solution: (i) G(x) = 2
1

5 6x x− +
 =  1

(5 )(1 )x x− −
 

 = 1 1 1
4 1 5x x
 − − − 
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 = 1 1 1
14 1 4.5[1 ]
5

x x
−

− −
. 

Therefore ar = 1
1 1 1 1 1.1 1 .
4 20 5 4 5

r

r+
  − = −      

 

 

(ii) G(x) = 
2

4
(1 )
(1 )

x
x

+
−

 = (1 + x2)(1-x)-4  

                                = (1 + x2) 2 34.5 4.5.61 4 ...
2! 3!

x x x + + + +  
 

Therefore ar = 4.5.6...( 3) 4.5.6...( 1)
! ( 2)!
r r

r r
 + +

+ − 
  = 4.5.6...( 1)

( 2)!
r

r
 +
 − 

( 2)( 3) 1
( 1)

r r
r r

 + +
+ − 

 

 

= 4.5.6...( 1)
( 2)!

r
r

 +
 − 

xr (2r2 + 4r + 6) = 
3( 1)( 2 3)
3

r r r+ + + . 

Therefore the corresponding numeric function is cr = 3.3r – 2.2r = 3r+1- 2r+1. 

 

10.5.16 Accumulated sum of a numeric function:  The accumulated sum of a numeric function 

a is a numeric function whose value at r is equal to
0

r

i
i

a
=
∑ .  If A(z) is the generating function for a 

then the generating function for the accumulated sum is 1 ( )
1

A z
z−

. 

 

10.5.17 Example: Let a be a numeric function given by ar = 100(1.05)r, r ≥ 0.  Obtain the 

accumulated sum of a. 
 

Solution: Let b be the accumulated sum of a.  Then  

br = 1

0 0

100100(1.05) [(1.05) 1], 0.
1

r r
r r

i
i i

a r
r

+

= =
= = − ≥

+∑ ∑  
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10.6 Answers to Self Assessment Questions 
 

SAQ1.  

M1 = {3, 4}, M2 = {2}, M3 = {5}, M4 = {1} form a partition into mun-sets. 

  

 

SAQ2.  

M1 = {2}, M2 = {6}, M3 = {5}, M4 = {1}, M5 = {4}, M6 = {3} form a partition into mun-sets. 

 

SAQ3.  

r

r

-r

1- 2 ,0 r 2

2 + 2, 3 r 4

2 5, 5
r r rc a b

r r

 ≤ ≤


= + = ≤ ≤


+ + ≥

 

-r -r+1 

0,0 r 4

r.2 + 2 + 3r + 6, r 5.r r rd a b
≤ ≤= = 

≥
 

 

SAQ4.  

G(x) = x-2
2

21 9 91 3
1 3 1 3 1 3

xx x
x x x

−   − − = =    − − −   
. 

 

 

10.7 Summary  
 

In this lesson we presented notions of partition of integers and sets and various useful results.   In 

formulas arising from the analysis of algorithms in computer science, the binomial coefficients 

occur.  For a given numeric function the corresponding generating function (vice versa) is 
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obtained.  Multinomial coefficients are the generalizations of binomial coefficients, are given 

with suitable examples. 

 

 

10.8 Technical Terms  
 

Partition:  Let S be a set with n distinct elements, and let t be a 

positive integer. A t- of the set S is a set {A1, A2, ..., At} of 

t subsets of S, such that  (i) S=A1 ∪ A2 ∪ .... ∪ At  ; 

 (ii) Ai   ∩ Aj  =  φ (empty set) i ≠ j. The subsets Ai, are 

called parts or cells or blocks of S. 

Newton’s Identity:  C(n, r).C(r, k)=C(n, k).C(n-k, r-k) for integers n ≥ r ≥ k ≥ 0.  

Pascal Identity:  C(n+ l, r) = C(n, r) + C(n, r-1) 

Vandermonde’s Identity:  C(n + m, r) = C(n, 0). C(m, r) + C(n, 1). C(m, r- l) + … + 

C(n, r). C(m,0) = 
0
C(m, r - k).C(n,k)

r

k=
∑  for integers n ≥ r ≥ 

0 and m ≥ r ≥ 0. 

Multinomial Theorem:   For real numbers a1, …, ak and for n ∈ N, we have  

1

1

1 1
1...

( ... ) ... .
...

k

k

nnn
k k

kn n

   n
a a a a

n n+ +

 
+ + =  

 
∑  Here 

1... k

n
n n
 
 
 

 

= 
1 2

!
! !... !k

n
n n n

 and n = n1 + n2 + … + nk. 

Sum and Product:  The sum of two numeric functions is a numeric function 

whose value at r is equal to the sum of the values of the two 

numeric functions at r. The product is defined as the 

numeric function whose value at r is equal to the product of 

values of the two numeric functions at r. 
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Modulus:  Let ‘a’ be a numeric function. a  = 

r r

r r

a  if  a  is non negative
-a  if  a  is non negative




 

Generating Function:  The infinite series a0 + a1z + a2z2 + … + arzr + … 

corresponding the numeric function a = (a0, a1, …, ar, …) 

Accumulated sum of a numeric function:  
0

r

i
i

a
=
∑ .   

 

 

10.9 Model Questions  

 

1. Prove that C(n, 1) + C(n, 3) +  …. = C(n,0) + C(n,2) + ….  = 2n-1. 

 

2. Prove that C(n, r)=C(n, n-r) 

 

3.  Prove that C(n, r).C(r, k)=C(n, k).C(n-k, r-k) for integers n ≥ r ≥ k ≥ 0.  

 

4. Find the coefficient of x3y4 in the expansion of (2x + y2)5. 

4. Let a and be two numeric functions given by 
0, r = 0

1, r = 0
2, r = 1 ,

0, r 1
0, r  2

r ra b


= =  ≥ ≥

 

Determine (a + b) and a⋅b. 

 

5. Determine the numeric functions corresponding to the generating functions:  

(i) 3
1

1 z−
 

(ii) (1 + z)n + (1- z)n 
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(iii) 2
1
6 5z z− +

 

(iv) 2 3
1

(1 )(1 )(1 )z z z− − −
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Lesson 11 

Recurrences Relations  
 

Objectives   
 
At the end of the Lesson the student must be able to: 
 

(i) Learn the solving of recurrences. 
(ii) Use of generating functions to solve the recurrence relations. 
(iii)Know the applications of recurrence relations. 
 

 

Structure 
11.1 Introduction 

11.2 Recurrence Relation 

11.3 Particular Solution 

11.4 Applications of Recurrences  

11.5 Generating Function 

11.6 Answers to Self Assessment Questions 

11.7 Summary 

11.8 Terminal Questions 

11.9 Model Questions 

11.10 References 

 

 

11.1 Introduction 
 

A sequence can be defined by giving a general formula for its nth term or by writing few of its 

terms.  An alternative approach is to represent the sequence by finding a relationship among its 

terms.  Such relations are referred as recurrences. Recurrence relations are used to model a wide 
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variety of problems both in computer and non-computer sciences.  In this unit we provide few 

applications of recurrences and a brief visit to the integer functions. 

 

 

11.2 Recurrence Relation 

 

A recurrence relation for the sequence {an} is an equation that expresses an in terms of one or 

more of the previous terms of the sequence, namely a0, a1, …, an – 1 for all integers n with n ≥ n0, 

where n0 is a non negative integer.   
 

A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation. 

 

11.2.1 Example:  Let {an} be a sequence that satisfies the recurrence relation an = an – 1- an – 2 for 

n = 2, 3, 4, … and suppose that a0 = 3 and a1 = 5.  What are a2 and a3 ? 
 

Solution: From the recurrence relation a2 = a1 – a0 = 5 – 3 = 2 and  a3 = a2 – a1 = 2 – 5 = - 3.  In 

a similar way we can find a4, a5 and also each successive term. 

 

11.2.2 Example:  Determine whether the sequence {an} is a solution of the recurrence relation an 

= 2 an – 1- an – 2 for n = 2, 3, 4, … where (i).  an = 3n for every non negative integer n and (ii).  an 

= 2n. 
 

Solution:  (i). Suppose that an = 3n for every non negative integer n.  For n ≥ 2, we have that              

2an – 1 – an – 2 = 2[3(n - 1)] – 3(n - 2) = 3n = an. 

Therefore {an}, where an = 3n, is a solution of the recurrence relation. 

(ii).  Suppose an = 2n for every non negative integer n.  Now a0 = 1, a1 = 2, a2 = 4.  Consider            

2a1 – a0 = 2.2 – 1 = 3 ≠ a2.  Therefore {an}, where an = 2n is not a solution of the recurrence 

relation. 
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11.2.3 Definition:  A recurrence relation of the form C0ar + C1ar – 1 + C2ar – 2 + … + Ckar – k = 

f(r), where Ci’s are constants, is called a linear recurrence relation with constant coefficients. 

Here, if both C0 and Ck are non-zero, then it is known as kth order recurrence relation. 

 

11.2.4 Example:  2ar + 3ar – 1 = 2r is the first order linear recurrence, with constant coefficients. 

 

11.2.5 Fibonacci sequence of numbers:  The sequence of the form {1, 1, 2, 3, 5, 8, 13, …} is 

called the Fibonacci sequence.  This sequence starts with the two numbers 1, 1 and contains 

numbers that are equal to the sum of their two immediate predecessors.  The recurrence relation 

can be written as ar = ar – 1 + ar – 2, r ≥ 2, with a0 = 1 and a1 = 1. 

 

11.2.6 Note:  an = rn, where r is constant, is a solution of the recurrence relation                        

an = C1an – 1 + C2an – 2 + …. + Ckan – k  if and only if rn = C1rn – 1 + C2rn – 2 + … + Ckrn – k.  

Dividing both sides by rn – k and the right hand side is subtracted from the left, we obtain the 

equation rk – C1rk – 1 – C2rk – 2 - …. – Ck – 1r – Ck = 0 ………….(i). 

Therefore the sequence {an} with an = rn is a solution if and only if r is a solution of the equation 

(i).  Equation (i) is called the characteristic equation of the recurrence relation. 

 

11.2.7 Theorem:  Let C1 and C2 be real numbers. Suppose that r2 – C1r – C2 = 0 has two distinct 

roots r1 and r2.  Then the sequence {an} is a solution of the recurrence relation an = C1an – 1 + 

C2an – 2 if and only if an = α1
nr1  + α2

nr2  for n = 0, 1, 2, ... where α1 and α2 are constants.   

 

11.2.8 Example:  Find the solution of the the recurrence relation an = an – 1 + 2an – 2 with a0 = 2 

and a1 = 7. 
 

Solution:  The characteristic equation of the recurrence relation is r2 – r – 2 = 0.  Its roots are r = 

2 and r = -1.  Therefore the sequence {an} is a solution to the recurrence if and only if an = α12n + 

α2(-1)n, for some constants α1 and α2.  Now a0 = 2 = α1 + α2, a1 = 7 = α1 = 3 and α2 = -1.  

Therefore the solution to the recurrence relation is  an = 3.2n – (-1)n. 
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11.2.9 Theorem:  Let C1 and C2 be real numbers with C2 ≠ 0.  Suppose that r2 – C1r – C2 = 0 has 

only one root r0.  A sequence {an} is a solution of the recurrence relation  an = C1an – 1 + C2an – 2 

if and only if an = α1
nr0  + α2n nr0 , for n = 0, 1, 2, …, where α1 and α2 are constants. 

 

11.2.10 Example:  Find the solution of the recurrence relation an = 6an – 1 – 9an – 2 with the initial 

conditions a0 = 1 and a1 = 6. 
 

Solution:  The characteristic equation r2 – 6r + 9 = 0.  The only root is r = 3.  Therefore the 

solution to the recurrence relation is an = α13n + α2n3n, for some constants α1 and α2.  Using the 

initial conditions, we get a0 = 1 = α1, a1 = 6 = α1.3 + α2.3.  Solving these simultaneous equations, 

we get α1 = 1 and α2 = 1.  Therefore the solution to the recurrence relation is an = 3n + n3n. 

 

11.2.11 Theorem:  Let C1, C2, …, Ck be real numbers.  Suppose that the characteristic equation 

rk – C1rk – 1 - … – Ck = 0 has k distinct roots r1, r2, …, rk.  Then a sequence {an} is a solution of 

the recurrence relation an = C1an – 1 + C2an – 2 + …. + Ckan – k if and only if an = α1
nr1  + α2

nr2  + … 

+ αk
n

kr , for n = 0, 1, 2, ..., where α1, α2, …, αk are constants. 

 

11.2.12 Example:  Find the solution to the recurrence relation an = 6an – 1 – 11an – 2 +      6an – 3 

with initial conditions: a0 = 2,  a1 = 5  and a2 = 15. 
 

Solution: The characteristic equation of the given recurrence relation is  r3 – 6r2 + 11r – 6 = 0 ⇒ 

(r -1)(r - 2)(r - 3) = 0.  

The roots of this equation r =1, r = 2, r = 3.  

Therefore the solutions to this recurrence relation are  an = α1.1n + α2.2n + α3.3n.   

From the given initial condition, a0 = 2, we get a0 = 2 = α1 + α2 + α3. 

Similarly, for a1 = 5 = α1 + α2.2 + α3.3;  a2 = 15 = α1 + α2.4 + α3.9.   

Solving the above three simultaneous equations we get α1 = 1, α2 = -1 and α3 = 2.  Therefore the 

unique solution to this recurrence relation is an = 1 – 2n + 2.3n. 
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11.2.13 Theorem:  Let C1, C2, …, Ck be real numbers.  Suppose that the characteristic equation 

rk – C1rk – 1 - … – Ck = 0 has t-distinct roots r1, r2, …, rt with multiplicities m1, m2, …, mt, 

respectively, so that mi ≥ 1, for i = 1, 2, …, t and m1 + m2 + … + mt = k.  Then a sequence {an} is 

a solution of the recurrence relation an = C1an – 1 + C2an – 2 + … + Ckan – k if and only if an =              

(α1,0 + α1,1.n + …. + 1
1,1

1

1

−
−

m
m nα ) nr1  + … + (αt,0 + αt,1n + … + 1

1,
−

−
t

t

m
mt nα ) n

tr , for   n = 0, 1, 2, …, 

where αi, j are constants for 1 ≤ i ≤ t and 0 ≤ j ≤ mi –1. 

 

11.2.14 Example:  Find the solution to the recurrence relation an = -3an – 1 – 3an – 2 – an – 3 with 

initial conditions a0 = 1, a1 = -2 and a2 = -1. 
 

Solution: The characteristic equation to the given recurrence is r3 + 3r2 + 3r + 1 = 0                  

⇒ (r + 1)3 = 0.  Therefore r = -1 is a root of multiplicity 3.  By Theorem …., the solutions are of 

the form an = α1,0(-1)n + α1,1.n(-1)n + α1,2.n2(-1)n.  Use the given initial conditions, find the 

constants α1,0, α1,1, α1,2. 

Now a0 = 1 = α1,0;  a1 = -2 = -α1,0 – α1,1 – α1,2;  a2 = -1 = α1,0 + 2α1,1 + 4α1,2. 

Solving these simultaneous equations, we get α1,0 = 1,  α1,1 = 3,  and α1,2 = -2.  Hence the unique 

solution to the given recurrence is an = (1 + 3n – 2n2)(-1)n. 

 

 

11.3 Particular Solution 
 

The particular solution depends on the form of f(r).  The particular solution for some simple 

functions f(r) are  given in the following table. 

f(r) Particular solution 

Constant k Constant P if k is not a root of the 

characteristic equation.  If k is a root of 

multiplicity m then Prm. 
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Polynomial of degree t  in r, F1rt +  

F2rt-1+…+ Ft+1βr 

 

Polynomial of degree t in r, P1rt + P2rt-1 + 

… + Pt+1Pβr if β is not a root of the 

characteristic equation.  If β is a root of 

multiplicity of m, then Prmβr. 

(F1rt +  F2rt-1+…+ Ft+1)βr 

 

(P1rt + P2rt-1 + … + Pt+1)βr if β  is not a root 

of the characteristic equation.  

rm(P1rt + P2rt-1 + … + Pt+1)βr if β is a root of 

multiplicity m.  

 

11.3.1 Note: The total solution of a recurrence relation is the sum of the homogeneous solution 

and the particular solution.  The arbitrary constants in the homogeneous solution can be 

determined using boundary conditions. 

 

11.3.2 Example: Solve an -5an-1 + 6an-2 = 1 

 

Solution:  The characteristic equation is r2 - 5r + 6 = 0.  The roots are 3, 2. 

The homogeneous solution is A1(3)n + A2(2)n . 

Particular solution of the form P, substituting in the given relation, we get  

P-5P + 6P = 1 or P = 1
2

. 

Therefore the total solution is an = A1(3)n + A2(2)n +  1
2

. 

 

11.3.3 Example:  Solve an - 4an-1 + 4an-2 = (n +1)2 given a0 = 0 and a1 = 1. 
 

Solution: The characteristic equation is   r2 - 4r + 4 = 0.  The roots are 2, 2.  Therefore the 

homogeneous solution is (A1n + A2)2n. 

Particular solution is of the form P1n2 + P2n + P3.  Substituting in the given relation, we get                

P1n2 + P2n + P3 – 4 P1(n-1)2 – 4P2(n-1) – 4P3 + 4P1(n-2)2 + 4P2(n-2) + 4P3 = n2 + 2n + 1. 

That is., 
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P1n2 + (P2 - 8P1)n +(P3 - 4P2 +12P1) =  n2 + 2n + 1. 

Equating the coefficients, we obtain that  

P1 = 1, P2 - 8P1 = 2, P3 - 4P2 +12P1 = 1. 

Hence P1 = 1, P2 = 10, P3 = 29.  

Therefore the total solution is  

an  = (A1n + A2)2n + n2 + 10 n + 29. 

Given that a0 = 0 and a1 = 1, we get  

0 = A2 + 29 ⇒ A2 = -29 and  

1 = (A1 + A2)2 + 1 + 10 + 29 ⇒ A1 = 19
2

. 

Therefore the total solution is  

an = (19
2

n-29)2n + n2 + 10 n + 29. 

 

11.3.4 Example:  Solve an - 3an-1 - 4an-2 = 3n given a0 = 0 and a1 = 2. 
 

Solution: The characteristic equation is   r2 - 3r - 4 = 0.  The roots are -1, 4.  

Therefore the homogeneous solution is A1(-1)n  + A24n. 

Particular solution is of the form P3n. Also 3 is not a root of the characteristic equation.  Hence 

substituting an = P3n in the given equation, we get 

P3n - 3P3n-1 +– 4 P3n-2 = 3n. 

This implies that P = 9
4

− .  Hence the total solution is an = A1(-1)n + A2(4)n 9
4

− 3n. 

Further a0 = 1 and a1 = 2. Then  

1 = A1 + A2
9
4

− ; 2 = A1 + 4A2
27
4

− . 

We get A1 =
17
20

, A2 = 12
5

.  Therefore the total solution is  

an = 17
20

(-1)n + 12
5

(4)n - 9 (3)
4

n− . 
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11.3.5 Example: Solve an — 4an-1 + 4an-2 = 2n 
 

Solution: Characteristic equation is r2 – 4r + 4 = 0. The roots are 2, 2. Homogeneous solution is 

of the form (A1n + A2)2n. Since 2 is a double root of the characteristic equation, the particular 

solution is of the form Pn22n. Substituting in the given relation, we get 

Pn22n - 4P(n- 1)2 2n-1 + 4P(n-2)22n-2 = 2n 

That is., 2P2n = 2n which implies P = 1/2. Thus particular solution is 1
2

 n2 (2)n = (2)n-1 

Hence the total solution is an = (A1n + A2)2n + n2 (2)n-1. 

 

11.3.6 Example: Solve an -2an-1  = (n + 1)2n. 
 

Solution: Characteristic equation is r2 – 2r = 0. The roots are 0, 2. The homogeneous solution is 

A(2)n.  Since 2 is a root (multiplicity 1) of the characteristic equation, the particular solution is of 

the form n(P1n + P2)2n. Substituting, 

That is.,  

n(P1n + P2)2n - 2{(n-1)[P1(n -1) + P2]}2n-1 = (n +1)2n. 

That is., (2P1n + P2 – P1)2n = (n +1)2n 

Equating the coefficients, we get 

P1 = 1
2

 and P2 = 3
2

. 

Thus particular solution is 1 3 2
2 2

nn n + 
 

 and P2 = 3
2

. 

Hence the total solution is An = A(2)n + (n2 + 3n)2n-1. 

 

Self Assessment Questions:  

1. Solve the recurrence relation an = 5an-1 – 6an-2,  n ≥ 2, given a0 = 1, a1 = 4. 

2. Solve the recurrence an = 4an-1 – 4an-2, n ≥ 2 with initial conditions a0 =1, a1 = 4. 
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11.4 Applications of Recurrences 
 

11.4.1 The Problem of tower of Hanoi 

Given a tower of eight disks, initially stacked in decreasing size on one of the three pegs.  The 

objective is to transfer  the entire tower to one of the other pegs, moving only one disk at a time 

and never moving a larger on to smaller (these rules are called Lucas Rules) (This was invented 

by the French mathematician Edouard Lucas in 1883). 

Let Tn be the minimum number of moves that will transfer n disks from one peg to another under 

Lucas rules.  Then clearly T0 = 0, since no moves are needed to transfer a tower of n = 0 disks. 

By observation, T1 = 1,  T2 = 3 
 

Now transfer the top disks to the  

middle peg, then move the third, then bring 

 the other two onto it.  So we get 

 T3 = 7 = 2.3 + 1 = 2 T2 + 1. 

 

Induction hypo:  Assume for n-1 disks.  That is., Tn-1 = 2.Tn-2 + 1. 

Suppose that there are n-disks.  We first transfer the (n-1) smallest disks to a different peg.  It 

requires Tn-1 moves. 

Then move the largest (it requires one move), and finally transfer the (n-1) smallest disks back 

onto the largest (it requires another Tn-1 moves). 

Thus we can transfer n disks (n > 0) in at most 2 Tn-1 + 1 moves. 

Thus Tn ≤ 2 Tn + 1 for n > 0. 

This shows that 2Tn-1 + 1 moves are suffices for our construction. 

Next we prove that 2Tn-1 + 1 moves are necessary. 

We must move the largest disk.  When we do, the n-1 smallest disks must be on a single peg, and 

it has taken atleast Tn-1 moves to put them there (we might move the largest disk more than 

once). 

A

C

B
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After moving the largest disk for the last time, we must transfer the n-1 smallest disks (which 

must be again on a single peg) back onto the largest; This requires Tn-1 moves. 

Hence Tn ≥ 2Tn-1 + 1 for n > 0. 

Therefore 




>+=
=

− 0n  for 12TT
0T

1nn

0  

These set of equalities above is the recurrence for the Tower of Honai problem. 

From this it is clear that T3 = 2.3 +1 = 7, T4 = 2.7 +1 = 15, and so on. 

 

11.4.2 Remark: Tn can also be identified as Tn = 2n – 1 for n ≥ 0. 

The proof of this remark makes use of the principle of mathematical induction.  

 

 

11.5 Generating Functions   

 

A generating function is a polynomial of the form  f(x) = a0 + a1x + a2x2 + … + anxn + …, which 

has infinitely many non-zero terms.  There is a correspondence between generating functions and 

sequences. (That is,  a0 + a1x + a2x2 + … ↔ a0, a1, a2, ….). 

 

11.5.1 Example: (i). The generating function of the sequence 1, 2, 3, … of natural numbers is 

f(x) = 1 + 2x + 3x2 + …. 

(ii). The generating function of the arithmetic sequence 1, 4, 7, 10, … is                        

f(x) = 1 + 4x + 7x2 + 10x3 + …. 

 

11.5.2 Note:  Let f(x) = a0 + a1x + a2x2 + … and g(x) = b0 + b1x + b2x2 + … be two generating 

sequences, then f(x) + g(x) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x2 + … and  f(x)g(x) = (a0b0) + (a1b0 

+ a0b1)x + (a0b2 + a1b1 + a2b0)x2 + …, the coefficient of xn in the product f(x)g(x) is the finite 

sum: a0bn + a1bn – 1 + a2bn – 2 + … + anb0. 
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11.5.3 Example:  If f(x) = 1 + x + x2 + … + xn + … and g(x) = 1 – x + x2 – x3 +… + (-1)nxn + …, 

then f(x) + g(x) = (1 + 1) + (1 -1)x + (1 + 1)x2 + … + (1 + (-1)n)xn + …   

                         =  2 + 2x2 + 2x4 + … 

f(x)g(x) = 1 + [1(-1) + 1(1)]x + [1(1) + 1(-1) + 1(1)]x2 + … 

  = 1 + x2 + x4 + x6 + … 

 

11.5.4 Problem:  Solve the recurrence relation an = 3an – 1, n ≥ 1, a0 = 1 using generating 

function. 
 

Solution:  Consider the generating function f(x) = a0 + a1x + a2x2 + … + anxn + … of the 

sequence a0, a1, a2 … 

3x.f(x) = 3a0x + 3a1x2 + … + 3an – 1xn + … 

f(x) – 3x.f(x) = a0 + (a1 – 3a0)x + (a2 – 3a1)x2 + …. + (an – 3an - 1)xn + … 

Since a0 = 1, a1 = 3a0 and in general, an = 3an – 1, we get (1 – 3x) f(x) = 1 

⇒ f(x) = x31
1
−  = (1 – 3x)-1 = 1 + 3x + (3x)2 + … + (3x)n + … 

Therefore an, which is the coefficient of xn in f(x), is equal to 3n. 

 

11.5.5 Problem: Solve the recurrence relation an = 2an-1 – an-2,  n ≥ 2, given a0 = 3, a1 = -2 using 

the generating function. 
 

Solution: Let f(x) = a0 + a1x + a2x2 + … + anxn + … 

                   2xf(x) =        2a0x + 2a1x2 + … + 2an-1xn + … 

                    x2f(x) =                    a0x2 + … +  an-2xn + … 

Therefore f(x) – 2xf(x) + x2f(x) = a0 + (a1 – 2a0)x + (a2 –2a1+ a0)x2 + …  

+ (an – 2an-1 + an-2)xn + … = 3 – 8x (since a0 = 3, a1 = -2 and an – 2an-1 + an-2 = 0 for        n ≥ 2). 

On simplification, we get f(x) = 
( )21

1
x−

(3 – 8x) 

                                                =  ( 1 + 2x+ 3x2 + … + (n+1) xn + …)(3 – 8x) 

                                                =  3 – 2x – 7x2 – 12x3 + … + (-5n + 3)xn + …. 
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Therefore the coefficient of xn, that is.; an = 3 –5n is the solution. 

 

Self Assessment Question 3: 

 If f(x) = 1 + x + x2 + …., + xn + ….. and g(x) = 1 – x + x2 – x3 + ….. + (-1)nxn + …. Find f(x) + 

g(x), and f(x).g(x). 

 

11.5.6 Table of some generating functions 

 

Sequence Generating Function 

1 1
1 z−

 

(-1)r 1
1 z+

 

ar 1
1 az−

 

(-a)r 1
1 az+

 

r + 1 
2

1
1 ( )z−

 

R 
2(1 )

z
z−

 

r2 

3
(1 )

(1 )
z z

z
+
−

 

rar 

2(1 )
az
az−

 

1
!n
 

ez 

C(n, r) (1+z)r 
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11.5.7 Example: Solve the recurrence relation ar -7ar-1 + l0ar-2 = 0 for n ≥ 2 given that a0 = 10, a1 

= 41 using generating functions. 
 

Solution: Multiplying the given equation by zr and summing from 2 to ∞, we get 

1 2
2 2 2

7 10 0r r r
r r r

r r r
a z a z a z

∞ ∞ ∞

− −
= = =

− + =∑ ∑ ∑  

⇒ [A(z) – a0 –a1z] – 7z [A(z) – a0] + 10 z2 [A(z)] = 0 

⇒ [A(z) - a0 - a1z] — 7z[A(z) - a0] + 10z2[A(z)] = 0 

⇒ A(z) = 0 1 0
2

( 7 )
1 7 10

a a a z
z z

+ −

− +
 =  0 1 0( 7 )

(1 2 )(1 5 )
a a a z

z z
+ −
− −

  

                                                   = 1 2
1 2 1 5

C C
z z
+

− −
 

   = 1 2
0 0

2 5r r r r

r r
C z C z

∞ ∞

= =
+∑ ∑  

Thus ar = C12r + C25r,  r ≥ 2. Given that a0 = 10, a1 = 41. Substituting, we get C1 = 3, C2 = 7. 

Thus ar = 3.2r + 7.5r. 

 

11.5.8 Example: Solve ar -5ar-1 + 6ar-2 = 2r + r, where r ≥ 2, with a0 = 1, a1=1. 
 

Solution:  Multiplying the given equation by zr and summing from 2 to ∞, we get    

1 2
2 2 2 2 2

5 6 2r r r r r r
r r r

r r r r r
a z a z a z z rz

∞ ∞ ∞ ∞ ∞

− −
= = = = =

− + = +∑ ∑ ∑ ∑ ∑  

⇒ [A(z) – a0 –a1z] – 5z [A(z) – a0] + 6z2 [A(z)] =  
24 1 1

1 2 (1 )r
z z

z z

 
+ − − − 

 

Therefore A(z) = 
2 4

2 2
1 8 27 35 14 .
(1 ) (1 2 ) (1 3 )

z z z
z z z

− + − +
− − −

 

By substituting a0 = 1, a1 = 1, we get  
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A(z) = 2 2
5 / 4 1/ 2 3 2 17 / 4
1 1 2 (1 3 )(1 ) (1 2 )z z zz z

+ − − +
− − −− −

 

Thus, we have   

ar = 5 1 17( 1) 3 2 2( 1)2
4 2 4

r rr r+ + − × − + +  = 15 172 5 2 3
4 2 4

r r rr r ++ − − × +  

 

11.5.9 Example:  Solve the recurrence relation corresponding to the Fibonacci sequence an =             

an – 1 + an – 2, n ≥ 2, a0 = 0 and a1 = 1.   
 

Solution:   We get  1 2
2 2 2

0r r r
r r r

r r r
a z a z a z

∞ ∞ ∞

− −
= = =

− + =∑ ∑ ∑ . 

⇒ [A(z)-a1z-a0]-z[A(z)-a0]-z2A(z) = 0 

⇒ A(z)[1-z-z2] = a0 + (a1-a0)z  = 0 

Substituting a0 = 1 and a1 = 1, we obtain 

A(z) = 2 2
1 (1 1) 1
1 1

z
z z z z

+ −
=

− − − −
 = 1

1 5 1 51 1
2 2

z z
  + −
− −  

  

  =  1 2

1 5 1 51 1
2 2

C C

z z
+

+ −
+ −

.  

Hence C1 = 1 1 5
25
+ , C2 = 1 1 5

25
+

−  

Hence ar = 
1 1

1 1 5 1 1 5
2 25 5

r r+ +
   + −

−      
   

. 

 

 

11.6 Answers to Self Assessment Questions 

 

SAQ1. 

 an = -2n + 2(3n).  
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SAQ2.   

an = 2n + n(2n) = (n + 1).2n. 

 

SAQ3.  
 f(x) + g(x) = 2 + 2x2 + 2x4 + …. 

f(x).g(x) = 1 + x2 + x4 + x6 + ….. 

 

 

11.7 Summary 
 

The applications of recurrence relations were discussed.  The reader will be able to solve the 

recurrences using the generating function techniques; also it gives the tool for practical problems 

involving the difference equations, and problems on analytical number theory.  

 

 

11.8 Technical Terms  
 

Recurrence Relation:  The sequence {an} is an equation that expresses an in terms 

of one or more of the previous terms of the sequence, 

namely a0, a1, …, an – 1 for all integers n with n ≥ n0, where 

n0 is a non negative integer.   

Linear Recurrence:  A recurrence relation of the form C0ar + C1ar – 1 + C2ar – 2 + 

… + Ckar – k = f(r), where Ci’s are constants, with constant 

coefficients. Here, if both C0 and Ck are non-zero, then it is 

known as kth order recurrence relation. 

 

Fibonacci sequence of numbers:   The sequence of the form {1, 1, 2, 3, 5, 8, 13, …} is called 

the Fibonacci sequence.  This sequence starts with the two 
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numbers 1, 1 and contains numbers that are equal to the 

sum of their two immediate predecessors.  The recurrence 

relation can be written as ar = ar – 1 + ar – 2, r ≥ 2, with a0 = 1 

and a1 = 1. 

Generating Functions:  A polynomial of the form  f(x) = a0 + a1x + a2x2 + … + anxn 

+ …, which has infinitely many non-zero terms.  There is a 

correspondence between generating functions and 

sequences. (That is,  a0 + a1x + a2x2 + … ↔ a0, a1, a2, ….). 

 

 

11.9 Model Questions 
 

1. Solve the recurrence relation an = -3an-1 + n, n ≥ 1, where a0 = 1. 

 

2. Solve an = 2an-1 + 3an-2 + 5n, n ≥ 2, given a0 = -2, a1 = 1. 

 

3. Solve the recurrence relation an = 3an-1, n ≥ 1 given a0 = 1. 

 

4. Solve the recurrence an = -3an-1 + 10an-2, n ≥ 2, given a0 = 1, a1 = 4. 

 

5. Solve the recurrence relation an = -an-1 + 2n – 3, n ≥ 1, given a0 =1. 
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Lesson 12 

 Semigroups and Monoids  
 

Objectives  
 

At the end of the Lessson the student must be able to: 
 

(i) Understand the algebraic systems with one binary operation.          
(ii) Generalize the structure of semigroup to a monoid. 
(iii)Learn the results on homomorphism and isomorphisms. 
(iv) Apply the results to codes in later lessons. 

 

 

Structure 
 

12.1 Introduction 

12.2 Semigroups 

12.3 Homomorphism and Isomorphism 

12.4 Monoids 

12.5 Answers to Self Assessment Questions 

12.6 Summary 

      12.7 Technical Terms 

      12.8 Model Questions 

      12.9 References 

 

           

12.1 Introduction  
 

We begin our study of algebraic structures by investigating sets associated with single operations 

that satisfy certain reasonable axioms; that is, we wish to define an operation on a set in a way 
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that will generalize such familiar structures as the integers Z together with the single operations 

of addition, matrix multiplication.  We consider some algebraic systems with one binary 

operation on the set. These systems have useful applications in the theory of finite state 

machines, coding theory, and sequential mechanics.  

 

 

12.2 Semigroups  
 

A binary operation on a set   S  where S is non-empty,  is a function from   S × S   into S.                  

An n-ary operation on a set   S   is a function from S× S × … × S  (n times) into  S.   A unary 

operation is a function from   S   into S.  If    f    is a binary operation on   S,  then for any two 

elements  a, b  in  S  the image of   (a, b)   under  f  is denoted by   afb.  

 

A non empty set together with a number of operations (one or more m-ary) operations defined on 

the set is called an algebraic system.  Generally the binary operations denoted by “*, o, , +,  .” 

etc. 

 

12.2.1 Definition:  Let S be a non empty set.  Then the operation * on S is said to be associative 

if (a * b) * c = a * (b * c) for all a, b, c ∈ S. 
 

Consider the following example 

(i). Take Z+ = the set of positive integers.  The binary operation ‘+’ (usual) on Z+ is an 

associative operation. 

(ii). Define * on Z+ as a * b = a2 + b, where ‘+’ is usual addition. 

For any 2, 3, 4 ∈ Z+ , 2 * 3 = 22 + 3 = 4 + 3 = 7,  (2 * 3) * 4 = 7 * 4 = 49 + 4 = 53. 

Whereas 2 * (3 * 4) = 17.  Therefore ‘*’ on Z+ is not associative. 

 

12.2.2 Example:  (i). Take Z+ = the set of positive integers.  The binary operation ‘+’ (usual) on 

Z+ is an associative operation. 
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(ii). Define  on Z+ as a  b = a2 + b, where ‘+’ is usual addition. 

For any 2, 3, 4 ∈ Z+ , 2  3 = 22 + 3 = 4 + 3 = 7,  (2  3)  4 = 7  4 = 49 + 4 = 53. 

Where 2  (3  4) = 17.  Therefore ‘ ’ on Z+ is not associative. 

 

12.2.3 Definition:  Let (A, *) be an algebraic system where * is a binary operation on A.  (A, *) is 

called a semigroup if the following conditions are satisfied: 

(i) ‘*’ is a closed operation.  That is.,  a * b ∈ A for all a, b ∈ A. 

(ii) ‘*’ is an associative operation.  That is., a * (b * c) = (a * b) * c, for all a, b, c ∈ A. 

 

12.2.4 Example:  (i). Take E = {2, 4, 6, ….}.  Define ‘+’ on E as usual addition.  Then (E, +) is a 

semigroup. 

 (ii). Take A = {a1, a2,…,an} be a non empty set.   Let A* be the set of all finite sequences of 

elements of A.   That is, A* consists of all words that can be formed from the set A.   Let α, β  be 

elements of A* .  The operation catenation is a binary operation . on A*.    For any two strings α = 

a1a2…an  and β = b1 b2…bk  ,  then α.β = a1a2…an b1 b2…bk .   It can be verified that for any α, β 

and  ϒ of A* , α.(β.ϒ) =   (α.β).ϒ).  Therefore (A*,.)  is a semi group.  

(iii) Let S be any set and P(S) the power set of S.  Then (P(S), ∪) is a semi group, where ∪ is the 

set union.    

(iv) The set Z (the set of integers) with the binary operation subtraction is not a semigroup, since 

subtraction is not associative.     

 

12.2.5 Example:  The set ℕ, of natural numbers is a semigroup, under the operation *, where             

x * y = max{x, y}. 
 

Solution:  (x * y) * z = max{max(x, y), z} = max{x, y, z} = max{x, max(y, z)} =  x * (y * z).  

Therefore * is associative.  Thus (ℕ, *) is a semigroup. 
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12.2.6 Example: Test whether the set ℤ (the set of integers), with binary operation * such that           

x * y = xy is a semigroup. 
 

Solution: Consider (2 * 2) * 3 = 22 * 3 = 4 * 3 = 43 = 64 and 2 *(2 * 3) = 2 * 23 = 2 * 8 = 28 = 

256.  Therefore (ℤ, *) is not a semigroup. 

 

Self Assessment Question 1: Let A = {x, y}.   Whether or not the following tables define a 

semigroup on A?   

* x y 

x x y 

y x x 

 

Self Assessment Question 2: Whether or not (ℤ+,* ) where a*b = a is a semigroup?  

 

Self Assessment Question 3: Let S = {a, b}.  Write the operation table for the functions on 

semigroup S.  Is the semigroup commutative?  

 

Self Assessment Question 4: Let A = {a, b, c} and consider the semigroup (A*, .) where ‘.’ is the 

operation of catenation.  If α = abac, β = cba and γ = babc, compute 

            (i). (α.β).γ     (ii). γ.(α.α )  (iii). (γ.β).α . 

 

12.2.7 Definition:  (i).  Let (S, *) be a semigroup and let T be a subset of S.  If T is closed under 

the operation * (That is., a * b ∈ T whenever a and b are elements of T), then (T, *) is called a 

subsemigroup  of (S, *). 

 

12.2.8 Definition: Let (S, *) be a semigroup.  For a ∈ S, we define a1 = a and an = an-1* a, n ≥ 2.   

For non-negative integers m, n we have am * an = am+n.   

 



Acharya Nagarjuna University                         12.5                        Centre for Distance Education                           

12.2.9 Example: (i) Let (S, *) be a semigroup and T = {ai  a ∈ S and i ∈ Z+}.  Then for ai, aj ∈ 

T, we have ai * aj = ai+j ∈ T (since a ∈ S and i + j  ∈ Z+).  Therefore T is closed with respect to 

the operation *.  Hence (T, *) is a subsemigroup of (S, *). 

 

12.2.10 Definition: Let (S, *) be a semigroup.  An element a ∈ S is called a left-cancelable 

element if a*x = a*y ⇒ x = y, for all x, y ∈ S. 

 

12.2.11 Problem: Show that if a and b are left-cancelable elements of a semigroup (S, *), then 

a*b is also a left cancelable element. 
 

Solution: Take x, y ∈ S.  

Now (a * b)*x = (a * b)* y ⇒  a * ( b * x) =  a * (b * y)              (by associative property) 

                                           ⇒ b * x = b * y                                  (since a is left cancelable) 

                                           ⇒ x = y                                             (since b is left cancelable) 
 

Observation: We can define right cancelable element in a semigroup and the problem is true for 

right cancelable elements also. 

 

   

12.3 Homomorphism and Isomorphism 

 

12.3.1 Definition: Let (S, *) and (S1, o) be two semigroups.  A function f: S → S1 is called an 

isomorphism from (S, *) to (S1, o) if  

 (i)  f is one-to-one  (that is, one-one and onto) 

 (ii) f(a * b) = f(a) o f(b) for all a, b ∈ S  (homomorphism condition). 

A homomorphism of a semigroup into itself is called a semigroup endomorphism. 

 

12.3.2 Example: Consider (N, +) and  (Zm, +m).  Define g: N → Zm by g(a) = [i] where i is  the 

remainder obtained when a is divided by m, for a ∈ N.  
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For a, b ∈ N, let g(a) = [i]  and g(b) = [j].  Then  

g(a + b) = [(a + b) (mod m)]  = [(i + j) (mod m)] = [i] +m [j] = g(a) +m g(b). 

Hence g is a homomorphism.  Further g(0) = [0].  Hence g preserves the identity.  

 

12.3.3 Result:  If f is an isomorphism from (S, *) to (S1, o), then f-1 is an isomorphism from               

(S1, o) to (S, *). 
 

Proof:  Let a1, b1 ∈ S1.  Since f is onto, there exist a, b ∈ S such that f(a) = a1, f(b) = b1.  Then              

f -1(a1ob1) = f-1(f(a)of(b)) = f-1(f(a * b))  (Since f is homomorphism)  

                                        = (f-1of)(a * b) 

                                        = a * b 

                                       = f-1(a1) * f-1(b1).  

Therefore f-1 is an isomorphism. 

 

12.3.4 Problem:  Show that the semigroups (Z, +) and (E, +) where E is the set of all even 

integers, are  isomorphic. 
 

Solution:  Define f: Z→ E by f(n) = 2n. 

f is one-one:  Suppose f(n1) = f(n2)  ⇒ 2n1 = 2n2  ⇒ n1 = n2. 

f is onto:  Suppose b ∈ E.  Then b is an even integer.  Write a = 
2
b  ∈ Z 

Now f(a) = 







2
bf  = 








2
2 b  = b.  Therefore f is one-one and onto. 

f is homomorphism:  Let m, n ∈ Z. 

f(m + n) = 2(m + n) = 2m + 2n = f(m) + f(n).  

Therefore f is a homomorphism and hence (Z, +) and (E, +) are isomorphic. 

 

12.3.5 Definition:  An equivalence relation ‘R’ on the semigroup (S, *) is called a congruence 

relation if aR a1 and bRb1 imply (a * b) R (a1 * b1). 



Acharya Nagarjuna University                         12.7                        Centre for Distance Education                           

Observation: a ≡ b (mod n)  ⇒ a = qn + r and b = tn + r for some q, t, r ∈ ℤ  ⇒ a – b is a 

multiple of n.  That is.,  n| a – b. 

 

12.3.6 Example:  Semigroup (ℤ, +) and the equivalence relation R on ℤ defined by aRb if and 

only if a ≡ b (mod 2).  If a ≡ b (mod 2), then 2| a – b. 

Now a ≡ b (mod 2) and c ≡ d (mod 2)  ⇒ 2| a – b  ad 2 | c – d. 

⇒ a – b = 2m,  c – d = 2n, where m, n ∈ ℤ 

Adding (a - b) + (c – d) = 2(m + n)  ⇒ (a + c) – (b + d) = 2(m + n).   

Therefore  (a + c) ≡ (b + d) (mod 2). 

This shows that the relation is a congruence relation. 

 

12.3.7 Example:  Consider the semigroup (ℤ, +) where ‘+’ is the ordinary addition.  Let f(x) =   

x2 – x – 2.  Define a relation R on ℤ by a R b ⇔ f(a) = f(b).   

Clearly aRa                                       (reflexive);   

aRb ⇔ f(a) = f(b) ⇔ bRa                 (symmetric);  

aRb and bRc ⇔ f(a) = f(b) and f(b) = f(c)  

⇔ f(a) = f(c)  ⇔  aRc                       (transitive) 

Therefore ‘R’ is an equivalence relation. 

To verify R is a congruence relation.  But R is not a congruence relation; 

f(-1) = f(2) = 0  ⇒  -1R2;   f(-2) = f(3) = 4  ⇒  -2R3,  but (-1 + (-2)) is not ‘R’ related to  (2 + 3) 

since f(-3) = 10 and f(5) = 8.  

 

12.3.8 Definition: If (S, *) and (T, o) are semigroups, then (S × T, ∆) is a semigroup, where ∆ 

defined by (s1, t1) ∆ (s2, t2) = (s1 * s2, t1 o t2).  This will become a semigroup, called product 

semigroup.  If eS and eT are the identities of S and T then (eS, eT) is the identity element in S × T. 
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12.3.9 Definition: An equivalence relation R on a semigroup (S, *) is called a congruence 

relation if aRa1 and bRb1 imply (a*b) R (a1*b1). 

 

12.3.10 Example:  Consider the semigroup (Z, +) and the equivalence relation R on Z defined by 

aRb if and only if a ≡ b (mod 2).  That is aRb  ⇔ a-b is divisible by 2.  Clearly R is an 

equivalence relation on Z.  

To verify that R congruence relation. Suppose aRb and cRd.    

Then a ≡ b (mod 2) and c ≡ d (mod 2) ⇒ a-b = 2m and c- d =  2n, where m and n are integers.   

Adding we get (a-b) + (c-d) = 2m+2n.  That is (a + c) – (b +d) = 2(m+n).  This means that (a + c) 

≡ (b + d) (mod 2).   

  

12.3.11 Note:  Let (S, *) be a semigroup and R is an equivalence relation on S.  Then R 

determines a partition of S.  Let [a] = R(a) be the equivalence class containing a.  Denote S/R = 

{[a] / a ∈ S}. 

 

12.3.12 Theorem:  Let R be a congruence relation on the semigroup (S, *).  Consider the relation 

⊗ from S/R × S/R to S/R in which the ordered pair ([a], [b]) is for a and b in S, related to [a * b]. 

(i).  ⊗ is a function from S/R × S/R to S/R. 

 ⊗([a], [b]) = [a] ⊗ [b] = [a ⊗ b]. 

(ii). (S/R, ⊗) is a semigroup. 
 

Proof:  (i). To verify that ⊗ is a function:  Suppose ([a], [b]) = ([a1], [b1]).   

Then aRa1 and bRb1.  Since R is a congruence relation on S, we have a*bRa1*b1                        

⇒ [a*b] = [a1*b1]  

⇒ [a] ⊗ [b] = [a1] ⊗ [b1].   

That is., ⊗([a], [b])  = ⊗([a1], [b1]).  

This shows that ⊗ is a binary operation on S/R.  

Next we verify that ⊗ is associative. 
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Now [a] ⊗ ([b] ⊗ [c]) = [a] ⊗ [b*c]  

                                    = [a*(b*c)] = [(a*b)*c] (by associativity of *) 

                                    = [a * b] ⊗ [c] = ([a] ⊗ [b]) ⊗ [c].   

Therefore ⊗ satisfies associative property.  Hence S/R is a semigroup. 

 

12.3.13 Definition:  The semigroup S/R verified above is called the quotient semigroup or 

factor semigroup. 

 

12.3.14 Example:  Take a semigroup (Z, +).  Define a relation ‘R’ on Z as follows:  Let n be a 

positive integer,  aRb ⇔ a ≡ b (mod n). 

We verify that ‘R’ is an equivalence relation. 

Clearly a ≡ a (mod n) and so aRa.  Suppose aRb, then a ≡ b (mod n)   

⇔ n| a – b 

⇔ n| -(a - b) 

⇔ n| b – a   

 ⇔ b ≡ a (mod n).  Therefore aRb ⇒ bRa. 

Suppose a ≡ b (mod n) and b ≡ c (mod n).  

 Then n| a – b and n| b – c   ⇒ n| (a - b) + (b - c)  ⇒ n| a – c.  

Therefore a ≡ c (mod n).  

Therefore aRb, bRc ⇒ aRc.  So R is an equivalence relation.   

Take n = 4.  The equivalence classes determined by the congruence relation ≡ (mod 4) on Z.  (It 

is denoted by Z4). 

[0] = {….. –8, -4, 0, 4, 8, 12, …..} = [4] = [8] = …….. 

[1] = {……-7, -3, 1, 5, 9, 13, ..…} = [5] = [9] = …….. 

[2] = {…… -6, -2, 2, 6, 10, 14, …} = [6] = [10] = ……. 

[3] = {…… -5, -1, 3, 7, 11, 15, …} = [7] = [11] = …….. 

Define ⊕ on Z4  as follows: 
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⊕  [0] [1] [2] [3] 

[0] [0] [1] [2] [3] 

[1] [1] [2] [3] [0] 

 [2] [2] [3] [0] [1] 

[3] [3] [0] [1] [2] 

 

In general, [a] ⊕ [b] = [a + b].  Thus Zn has the ‘n’ equivalence classes                        

[0], [1], [2], ….,[n - 1] and that [a] ⊕ [b] = [r], where r is the remainder when a + b is divided by 

n.  The following theorem establishes a relation between the structure of a semigroup (S, *) and 

the quotient semigroup (S/R, ⊕), where R is a congruence relation on (S, *).   

 

12.3.15 Theorem:  Let R be congruence relation on a semigroup (S, *) and let (S/R, ⊗) be the 

corresponding quotient semigroup.  Then the function fR: S → S/R defined by fR(a) = [a] is an 

onto homomorphism. 
 

Proof:  Take [a] ∈ S/R.  Then fR(a) = [a], so fR is an onto function.  Let a, b ∈ S, then fR(a * b) = 

[a * b] = [a] ⊗ [b] = fR(a) ⊗ fR(b).  Therefore fR is a homomorphism. 

 

The proof of the following theorem follows from 12.3.12 and 12.3.15 
 

12.3.16 Fundamental Theorem of homomorphism:  Let f: S → T be a homomorphism of the 

semigroup (S, *) onto the semigroup (T, o).  Let R be the relation on S defined by a R b ⇔                

f(a) = f(b) for a and b in S.  Then (i) R is a congruence relation; (ii). (T, o) and the quotient 

semigroup (S/R, ⊗) are isomorphic. 

 

12.3.17 Theorem:  Let f: S → T be a homomorphism of the semigroup (S, ⋅) onto the semigroup 

(T, *).  Let R be a relation defined on S by aRb ⇔ f(a) = f(b) for all a, b ∈ S.  Then  

(i) R is a congruence relation 
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(ii) (S/R, Θ) is isomorphic to (T, *) 

Proof:  (i) Reflexive: Since f(a) = f(a), we have that aRa.   

Symmetric: aRb ⇒ f(a) = f(b) ⇒ f(b) = f(a) ⇒ bRa. 

Transitive: aRb and bRc ⇒ f(a) = f(b) = f(c) ⇒ aRc. 

Therefore R is an equivalence relation. 

To verify that R is congruence, let aRa1 and bRb1.  

 This means that f(a) = f(a1)  and f(b) = f(b1).  This implies that f(a) * f(b) = f(a1) * f(b1).  That is, 

f(a⋅b) =  f(a1⋅b1).  

 Therefore (a⋅b)R(a1⋅b1).  Hence R is a congruence relation. 

(ii) Consider the quotient semigroup (S/R, Θ).  Define h: S/R → T as  

h([a]) = f(a).   

To show h is well defined: Suppose [a] = [b].  Then  aRb.  This implies that f(a) = f(b). 

Take b ∈ T.  Since f is onto there exists a ∈ S such that f(a) = b.  This means that  

h([a]) = f(a) = b.   

To show that h is one one, suppose h([a]) = h([b]) ⇒ f(a) = f(b) ⇒ aRb ⇒ [a] = [b]. 

Also h([a] Θ[b]) = h([a⋅b]) = f(a⋅b) = f(a)*f(b).  Therefore h is a homomorphism and hence an 

isomorphism. 

 

  

12.4 Monoids 
 

12.4.1 Definition:  Let (A, *) be an algebraic system where * is a binary operation on A.  An 

element e in A is said to be a left identity (respectively, right identity) if for all x ∈ A,  e * x = x 

(respectively, x * e = x) holds. 

 

12.4.2 Example:  (i). Define ‘*’ on A = {a, b, c, d} as follows: 
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* a b  c d 

a d a b c 

b a b       c d 

 c a b c c 

d a b c d 

 

Here both b and d are left identities. 

 

(ii). Define ‘o’ on A = {a, b, c, d} as follows: 

o a b c d 

a a b c d 

b b a c d 

 c c d a b 

d d d b c 

 

Here a is a right identity.  

 

12.4.3 Definition:  An element in an algebraic system is said to be an identity if it is both a left 

identity and a right identity.  It can be observed that if e is a left identity, then either e is also a 

right identity or there is no right identity at all. 

 

12.4.4 Note:  Observe that if e is a left identity, then either e is also a right identity or there is no 

right identity at all. 

 

12.4.5 Definition:  Let (M, *) be an algebraic system, where * is a binary operation on A.   (M, *) 

is called a monoid if the following conditions are satisfied: 

(i)  * is a closed operation 

(ii) * is an associative operation 

(iii)  existance of identity. 
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 Self Assessment Question 5:  Let A = {x, y}.   Verify whether or not the following tables define 

a monoid on A? 

   

 

 

 

Self Assessment Question 6: Verify (ℤ+,* ) where a*b = max{a, b}, a semigroup or monoid?  

 

12.4.6 Theorem:  For any binary operation * on a set M if identity element exists then it is 

unique. 
 

Proof: Suppose e1, e2 are two identity elements in M. 

 Then  e1 =  e1*e2 (since e2 is an identity) 

               =  e2 (since e1 is an identity). 

Hence the identity element if it exists is unique.  

 

12.4.7 Example:  Let X be a non empty set.  Write XX = {f / f: X → X}.  

 Let ‘o’ denotes the operation of composition of mappings.   

That is., (fog)(x) = f(g(x)) for all f, g ∈ XX and  x ∈ X.  

 Now ‘o’ is a binary operation on XX.  

 Also f(x) = x for all x ∈ X is the identity, as  (gof)(x) = g(f(x)) = g(x) = f(g(x)) = (fog)(x) for all g 

∈ XX.  Therefore (XX, o) is a monoid. 

 

12.4.8 Problem: Show that the set N of natural numbers is a semigroup under the operation *, 

where x * y  = max {x, y}.  Is it a moniod ? 
 

Solution:  Now 

(x*y)*z = max {max{x, y}, z} = max {x, y, z} 

* x y 

x x y 

y y y 
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x*(y*z) = max {x, max{y, z}} = max {x, y, z}.  Hence * is associative.  Thus (N, *) is a semi-

group. Also x*0 = max{x, 0} = max {0, x} =  0*x = x.  Therefore (N, *) is a monoid.    

 

12.4.9 Example:  (i). For any set S, (℘(S), ∪) where ℘(S) is a power set of S, is a commutative 

semigroup.  It is also a monoid with the empty set φ as the identity element. 

(ii)  The set (ℤ, +) is a monoid with identity 0. 

(iii) Let (M, *) be a monoid with identity ‘e’ and let T be a non empty subset of M.  If T is closed 

under the operation ‘*’ and e ∈ T, then (T, *) is called submonoid of (S, *). 
 

 Observation:  (i). The associative property holds in any subset of a semigroup so that a 

subsemigroup (T, *) of a semigroup (S, *) is itself a semigroup.  (ii). A submonoid of a monoid is 

itself a monoid. 

 

12.4.10  Example:  Let T be the set of even integers.  Then (T, .) is a subsemigroup of the 

monoid (Z, .) where “.” is usual multiplication.  But (T, .) is not a submonoid, since the identity  

1 ∉ T. 

 

12.4.11 Example:  (i). Suppose (S, *) is a semigroup, and let a ∈ S.  For any n ∈ Z+, we define 

the integral powers of an recursively as follows: 

a1 = a,  an = an-1 * a,  n ≥ 2.  Write T = {an / n ∈ ℤ+}.  

Then (T, *) is a subsemigroup of (S, *). 

(ii).  Let (S, *) be a monoid and a ∈ S.  

Define a0 = e, a1 = a, an = an – 1 * a, n ≥ 2 (as in (i)) 

Write T1 = {an / n ∈ Z+, ∪ {0}}.  Then (T1, *) is a submonoid of (S, *). 

 

12.4.12 Definition: Let (M, *) be a monoid.  An element a ∈ M is called an idempotent element 

if a2 = a.  
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12.4.13 Theorem: For any commutative monoid (M, *), show that the set of idempotent 

elements of M forms a sub-monoid. 
 

Proof: Let (M, *) be any commutative monoid with identity e.  

Write T  = {x  x is an idempotent elements of M }.  Now e * e = e and so e ∈ T .  Therefore T is 

non-empty. 

Take x, y ∈ T. 

Now (x * y) * (x * y) =  (x * y) * (y * x)  (since M is commutative) 

                                   =  x * (y  *  y) * x  (since M is associative) 

                                   = x * (y * x)           (since y ∈ T is an idempotent) 

                                   = x * (x * y)          (since M is commutative) 

                                   = (x * x) * y           (since M is associative) 

                                   = x * y                    (since x ∈ T is an idempotent). 

Therefore x * y ∈ T.  Hence (T, *) is a sub-monoid of (M, *). 

 

12.4.14 Theorem: Let (S, ⋅) and (T, *) be two monoids with identities e and e1 respectively and 

f: S → T be an isomorphism.  Then f(e) = e1. 
 

Proof:   Let b ∈ T.  Since f is onto, there exists a ∈ S such that f(a) = b.   

Now b = f(a) = f(a ⋅ e) = f(a) * f(e) = b * f(e). 

Similarly, b = f(e) * b.    Hence f(e) is an identity in T.  Since identity is unique, we have f(e) = 

e1. 

 

   

12.5 Answers to Self Assessment Questions 
 

SAQ 1. 

Semigroup. 
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SAQ 2.  

Yes 

 

SAQ 3.  

Let f1(a) = a, f1(b) = a, f2(a) = a, f2(b) = b, f3(a) = b, f3(b) = a, f4(a) = b, f4(b) = b.  These are the 

only functions on S.  It  is not commutative. 

 

 

 

 

 

 

SAQ 4. 

(i). abaccbababc, (ii). babcabacabac, (iii). babccbaabac 

 

SAQ 5. 

Monoid. 

 

SAQ 6. 

Monoid: (identity exists). 

 

  
12.6 Summary 
 

The algebraic structures with one binary operation were discussed.  Some important 

characterizations of the algebraic systems Semigroups and Monoid were given.  The 

homomorphism between two semigroups (and monoids) were discussed and we established the 

fundamental theorem.  The algebraic structures semigroups and monoids have many application 

in the finite automata and to perform efficient codes. 

o f1 f2 f3 f4 

f1 f1 f1 f4 f4 

f2 f1 f2 f3 f4 

f3 f1 f3 f2 f1 

f4 f1 f4 f4 f4 
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12.7 Technical Terms 

 

Associative Operation:    (a * b) * c = a * (b * c) for all a, b, c ∈ S. 

Semigroup:  Closed  and associative operation.   

Subsemigroup:  (T, *) is  a subsemigroup  of (S, *) if T is closed under the 

operation * (That is., a * b ∈ T whenever a and b are 

elements of T).  

Semigroup Isomorphism:   A function f: S → S1 is called an isomorphism from (S, *) to 

(S1, o) if (i)  f is one-to-one  (that is, one-one and onto), (ii) 

f(a * b) = f(a) o f(b) for all a, b ∈ S  (homomorphism 

condition). 

Congruence Relation:   An equivalence relation ‘R’ on the semigroup (S, *) with 

aR a1 and bRb1 imply (a * b) R (a1 * b1). 

Left (right) identity:   An element x in A where (A, *) is an algebraic system, is a 

left identity (respectively, right identity) if for all x ∈ A,             

e * x = x (respectively, x * e = x) for all x.   

Monoid:  Algebraic system which is closed, associative, and  

existance of identity with respect to the defined operation. 

Idempotent element:  An element a in a monoid satisfies the condition: a2 = a.  

 

 

12.8 Model Questions  

 

1. Define the terms semigroup and monoid. Give one example of each. 

 

2. Let S = {a, b}.  Write the operation tables for (P(S), ∪) and (P(S), ∩).  Verify these are 

semigroups. 
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3. Prove that the intersection of two subsemigroups of a semigroup is also a subsemigroup of it.  

 

4. Prove that the intersection of two submonoids of a monoid (S, *) is a submonoid of (S, *). 

 

5. Prove that for any commutative monoid (M, *), show that the set of idempotent elements of 

M forms a sub-monoid. 

 

6. State and prove fundamental theorem of homomorphism of semigroups. 

 

7. Define an isomorphism between two semigroups.  Prove that the semigroups     (Z, +) and    

(E, +) where E is the set of all even integers, are  isomorphic. 

 

8. Consider the semigroup (Z, +).  Let R be the relation on Z such that aRb ⇔ a+b is even.  

Prove that R is a congruence relation on.  
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Lesson 13 

 Group Theory   

 

Objectives  
 

At the end of the Lesson the student must be able to: 
 

(i) Understand the algebraic systems with one binary operation.          
(ii) Generalize the structure of semigroup to a monoid. 
(iii)Know the axioms of a group and its substructures. 
(iv) Learn the normal subgroups properties. 
(v) Get the idea of fundamental theorem of homomorphism. 

 
 

Structure 
 

13.1 Introduction 

13.2 Groups and Subgroups 

13.3 Cosets and Lagranges’s Theorem 

13.4 Normal subgroups and Homomorphisms  

13.5 Permutation Groups 

13.6 Answers to Self Assessment Questions 

13.7 Summary 

      13.8 Technical Terms 

      13.9 Model Questions 

      13.10 References 

 
 

13.1 Introduction  
 

We begin our study of algebraic structures by investigating sets associated with single operations 

that satisfy certain reasonable axioms; that is, we wish to define an operation on a set in a way 
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that will generalize such familiar structures as the integers Z together with the single operations 

of addition, matrix multiplication.  We  study the important algebraic object known as group 

which serve as one of the fundamental building blocks for the abstract algebra.  In fact group 

theory has several applications in every area where symmetry occurs.  Applications of groups 

also can be found in physics, chemistry.  Some of exciting applications of group theory have 

arisen in fields such as particle physics, and binary codes. 

 

 

13.2 Groups 
 

13.2.1 Definition: We recollect that for a non empty set G, a binary operation on G is mapping 

from G × G  to G.  In general, binary operations are denoted by *, . , o etc. 

 

13.2.2 Definition: A non empty set G together with a binary operation * is called a group if the 

algebraic system (G, *) satisfies the following four axioms: 

(i) Closure: a, b are elements of G, implies a*b is an element of G. 

(ii) Associative: (a*b)*c = a*(b*c) for all elements a, b, c in G. 

(iii) Identity: there exists an element ‘e’ in G such that a*e = e*a = a for all  a ∈ G. 

(iv) Inverse: For any element a in G there corresponds an element b in G such that a*b = e = 

b*a. 

 

13.2.3 Note: The element e of G (given in identity axiom) is called an identity element.  The 

element b (given in the inverse axiom) is called an inverse of a in G.  

 

13.2.4 Definition: Let (G, *) be a group.  Then (G, *) is said to be a commutative group (or 

Abelian group) if it satisfies the commutative property: a*b = b*a  for all a, b in G. 
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13.2.5  Example: Take G = {-1, 1}.  Then (G, .) is a commutative group w. r. t. the usual 

multiplication of numbers. 

Closure:   Clearly,  a.b is in G  for all a, b in G. 

Associative:  Since 1, -1 are real numbers, this axiom holds. 

Identity axiom: 1. a = a = a.1 for all elements a ∈ G. 

                          Hence 1 is the identity element. 

Inverse: The element 1 is the inverse of 1 and -1 is the inverse of  -1 

Commutative:  (-1).1 = 1. (-1).  Therefore commutative law holds in (G, .).   

Hence (G, .) is a commutative group. 

 

13.2.6 Example: (i) (Z, +) where Z is the set of all integers is an abelian group. 0 is the identity 

element and –a is the inverse of a.   

(ii) The set of all n×n matrices under matrix addition is an abelian group with 0 matrix (null 

matrix) as the identity element and –A is the inverse of A. 

(iii) (N, +) where N is the set of natural numbers, is not a group.  Since no element has an inverse 

in N with respect to addition.  

(for example, 3 ∈ N but the additive inverse of 3 = -3 ∉ N). 

(iv) The set of all non-singular n×n matrices forms a group under matrix multiplication with In, 

the identity matrix of order n, as the identity element and A-1 as the inverse of the matrix A.  

Since for any two matrices A and B we have AB ≠ BA, we can conclude that this is not an 

abelian group.  

 

Self Assessment Question 1:  Let S = {0, 1}.  Define the operation + on S as follows: 

0+0 = 0, 0+1 = 1, 1+0 = 1 and 1+1 = 0.  Verify that (S, +) is a group. What is the identity 

element and write the inverses of each element in S.  

 

13.2.7 Problem: Let Zm be the set of all equivalence classes for the relation congruent modulo m 

and +m is the modulo m addition.  Take m = 5 and verify that (Z5, +5) is an abelian group. 
 

. -1 +1 

-1 1 -1 

1 -1 1 
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Solution: We give the table of values with respect to the operation +5 on Z5. 

Clearly Z5 = {[0], [1], [2], [3], [4]}. 

+5 [0] [1] [2] [3] [4] 

[0] [0] [1] [2] [3] [4] 

[1] [1] [2] [3] [4] [0] 

[2] [2] [3] [4] [0] [1] 

[3] [3] [4] [0] [1] [2] 

[4] [4] [0] [1] [2] [3] 

From the table we can conclude that (Z5, +5) is an abelian group. 

 

Self Assessment Question 2: Define the operation * on the set of all integers as follows:  a * b = 

a + b – ab.  Verify whether (Z, *) forms a group. 

 

13.2.8 Problem: Let p be a prime number.  Consider the set (Zp-{[0]}, ×p) where ×p is 

multiplication modulo p.   Verify that for p =5, Z5 forms a commutative group with respect to 

multiplication modulo 5. Write the inverses of each element. 
 

Solution: The multiplication table for (Z5-{[0]}, ×5) is given below. 

Clearly Z5 -{[0]} = {[1], [2], [3], [4]}. 

×5 [1] [2] [3] [4] 

[1] [1] [2] [3] [4] 

[2] [2] [4] [1] [3] 

[3] [3] [1] [4] [2] 

[4] [4] [3] [2] [1] 
 

From the table, the identity element is [1]; the inverse of  [2] is [3],  the inverse of [3] is [2], the 

inverse of [4] is [4]. 
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Self Assessment Question 3: Give an example of abelian group of 2 × 2 matrices over relas with 

respect to  Multiplication. 

 

13.2.9 Theorem:  Given a, b in a group G.  Then (i) The equations a.x = b and y.a = b have 

unique solutions for x and y in G.   

(ii) The cancellation laws:  a.u = a.w ⇒ u = w; and  u.a = w.a ⇒ u = w for all u, w in G hold. 
 

Proof: (i) Let a, b in G.  

Since G is a group, we have a-1 is in G ⇒ a-1.b, b.a-1 are in G (by closure property).  Write x =              

a-1.b and y = b.a-1.   

Consider a.x = a.(a-1.b) = (a.a-1).b = e.b = b.  Similarly y.a = b.  

 Therefore x = a-1.b and y = b.a-1 are required solutions.   

Next we show that these solutions are unique.  

Suppose x1, x2 are two solutions of a.x = b.  

Then a.x1 = b and a.x2 = b.  So a.x1 = b = a.x2.  

Now x1 = e.x1 = (a-1.a)x1 = a-1.(a.x1) =  a-1.(a.x2) = (a-1.a).x2 = e.x2 = x2.Therefore x1 = x2.  Hence 

a.x = b has unique solution.  Similarly we show that y.a = b has unique solution.   
 

(ii) Now we will prove that the cancellation laws holds good in G.  

 Suppose a.u = a.w.  Consider u. 

Now u = e.u = (a-1.a).u = a-1.(a.u) = a-1.(a.w) = (a-1.a).w = e.w = w.   

Now suppose u.a = w.a.  Consider u. 

Now u = u.e = u.(a.a-1) = (u.a).a-1 = (w.a).a-1 = w.(a.a-1) = w.e = w.   

Hence both the left and right cancellation laws hold in G. 

 

13.2.10 Result: Let G be a non-empty set and ‘.’ be a binary operation on G which is associative.  

If for all a ∈ G there exists e ∈ G such that e.a = a and for all a ∈ G, there exists b ∈ G such that 

b.a = e then (i)  a.m = a.n ⇒ m = n (ii) for all a ∈ G, a.e = a (e is right identity) (iii) for all a ∈ G 

there exists b ∈ G such that a.b = e.  
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Proof: (i) Suppose a.m = a.n.  Consider m = e.m (b.a)m = b(a m) = b(a n) = (ba)n = en = n.  

Therefore m = n  

(ii) Given that e.a = a for all a ∈ G.  Now e.e = e ⇒ (ba).e = ba (since ba = e)  ⇒ b(ae) = ba ⇒ 

ae = a (by (i)).   

(iii) Let a ∈ G.  By our assumption ba = e.  Consider b(ab) = (ba)b = eb = b = be (by (ii)) ⇒ 

b(ab) = be ⇒ ab = e.   

This completes the proof. 

 

13.2.11 Theorem:  If G is a group, then  

(i) The identity element of G is unique. 

(ii) Every element in G has unique inverse in G. 

(iii) For any a in G, we have (a-1)-1 = a. 

(iv) For all a, b in G, we have (a.b)-1 = b-1.a-1. 
 

Proof: (i) Let e, f be two identity elements in G.  Since e is the identity we have e.f = f.  Since f is 

the identity we have e.f = e.  Therefore e = e.f = f.  Hence the identity element is unique.  

(ii) Let a be in G and a1, a2 are two inverses of a in G. 

Now a1 = a1.e                                  (since e is the identity)  

             = a1.(a.a2)                           (since a2 is the inverse of a) 

             = (a1.a).a2                                        (by associativity)  

             = e.a2                                  (since a1 is the inverse of a) 

             = a2. 

Hence the inverse of an element in G is unique. 

(iii) Let a ∈ G.  Since a.a-1 = e = a-1.a, we have that a is the inverse of a-1.   

Hence (a-1)-1 = a. 

(iv)  Let a, b ∈ G.  Consider (b-1.a-1)(a.b) = b-1.(a-1.a).b = b-1.e. b = b-1.b = e.   

Similarly e = (a.b).(b-1.a-1). This shows that (a.b)-1 = b-1.a-1. 
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13.2.12 Definition: Let (G, o) be a group. A non-empty subset H of G is said to be a subgroup 

of G if H itself forms a group under the product in G. 

 

13.2.13 Theorem: A non-empty subset H of a group G is a subgroup of G if and only if                      

(i) a, b ∈ H ⇒  ab ∈ H and (ii) a ∈ H ⇒  a-1 ∈ H. 
 

Proof: Suppose that H is a subgroup of G  

⇒ H itself is a group under the product in G.   Therefore (i), (ii) holds.  

Converse: Suppose H satisfies (i) and (ii). By (i), H satisfies the closure property. 

For any a, b, c ∈ H, we have that a, b, c ∈ G implies that a(bc) = (ab)c. 

Therefore (H, .) is a subgroup of (G, .). 

 

13.2.14 Problem: If H is a non-empty finite subset of a group G and H is closed under 

multiplication, then H is a subgroup of G. 
 

Proof: Suppose H is a non-empty finite subset of a group G and H is closed under multiplication. 

Now we have to show that H is a subgroup of G. 

It is enough to show that a∈H ⇒ a-1 ∈ H                                   

Since H is a non-empty, there exists a∈H.   Now a, a ∈ H ⇒ a2 ∈ H. 

Similarly a3 ∈ H, … , am ∈ H, … . 

Therefore H ⊇ {a, a2, …}. Since H is finite, we have that there must be repetitions in a, a2, …. 

Therefore there exists integers r, s with r > s > 0 such that ar = as  

⇒ ar . a-s = a0  

⇒ ar-s = e ⇒ e ∈ H (since r-s > 0 and a∈H ⇒ ar-s ∈ H). 

Since r-s-1 ≥ 0, we have ar-s-1 ∈ H and a. ar-s-1 = ar-s = e ∈ H. 

Hence ar-s-1 acts as the inverse of a in H. Hence H is a subgroup. 

 

13.2.15 Example: (i) The set of even integers with respect to addition (E, +) is a subgroup of the 

group (Z, +).   
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(ii) If k is a positive integer then (kZ, +) is a subgroup of (Z, +). 

 

13.2.16 Example: Consider G = Z, the group of integers with respect to addition. Write  H =    

{5x / x ∈ G}.   Suppose a, b ∈ H ⇒ a = 5x, b = 5y for some x, y ∈ G  

⇒ a + b = 5x + 5y = 5(x + y) ∈ H. Also –a = -5x = 5(-x) ∈ H.  

Therefore H is a subgroup of G. 

 

13.2.17 Example: Let (G, ⋅) be a group.  Let H = {x  x ∈ G and x⋅y = y⋅x for all y ∈ G}.  Prove 

that H is a subgroup of G. 
 

Solution: Since e ⋅ y = y ⋅ e for all y ∈ G, we have e ∈ H. 

Take x1, x2 ∈ H.  Then x1⋅ y = y ⋅ x1 and x2 ⋅ y = y ⋅ x2 for all y ∈ G. 

Now (x1⋅ x2) ⋅ y =  x1 ⋅ (x2 ⋅ y) 

                        = x1 ⋅ (y ⋅ x2) 

                        = (x1 ⋅ y ) ⋅ x2  

                        = (y ⋅ x1)⋅ x2  

                        = y ⋅ (x1 ⋅ x2). 

Therefore x1 ⋅ x2 ∈ H. 

Take x ∈ H.  Now x ⋅ y = y ⋅ x for all y ∈ G. 

Now x-1⋅ y = (y-1⋅ x)-1 = (x ⋅ y-1)-1 (since x ∈ H ⇒ x ⋅ y-1 = y-1 ⋅ x) = y ⋅ x-1 for any y ∈ G. 

This shows that x-1 ∈ H.  Hence (H, ⋅ ) is a subgroup of (G, ⋅ ). 

 

13.2.18 Theorem: Let (G, *) be a group.  He be any non-empty subset of G.  Then H is a 

subgroup of G if and only if a * b-1 ∈ H whenever a, b ∈ H. 

 

13.2.19 Definition: Let G be a group.  If G contains only a finite number of elements then G is 

called a finite group.  If G contains infinite number of elements then G is called an infinite 

group. If G is a finite group then the Order of G is the number of elements in G.   If G is infinite 
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group, then we say that order of G is infinite.  The Order of G is denoted by O(G). If G is a group 

and a ∈ G, then the order of ‘a’ is defined as the least positive integer m such that am = e.  If 

there is no positive integer n such that an = e then ‘a’ is said to be of infinite order. 

 

13.2.20 Example: (i) Let G be the set of all integers and + be the usual addition of numbers.  

Then (G, +) is an Abelian group.  Here ‘0’ is the additive identity and –x is the additive inverse 

of x, for any x in G.  This (G, +) is an infinite group and so O(G) is infinite. 

(ii) Consider Q, the set of rational numbers, and R the set of all real numbers.  Clearly these two 

are infinite Abelian groups w. r. t. usual addition. 

(iii) From the above, it is clear that the set G consisting of –1 and 1 is a group w. r. t. usual 

multiplication.  This group is a finite group and O(G) = 2. 

 

13.2.21 Problem: Let G be a group, a ∈ G.  Then  (a) = {ai / i = 0, ± 1, …} is a subgroup of G. 
 

Solution: Let x, y ∈ (a) ⇒ x = ai and y = aj for some i, j ∈ Z. Now x. y = ai. aj = ai+j∈ (a) (since             

i + j ∈ Z).  

Also x-1 = (ai)-1 = a-i ∈ (a) (since ai. a-i = ai-i = a0 = e ⇒ (ai)-1 = a-i). 

Therefore  x, y ∈ (a) ⇒ x. y ∈ (a) and x-1 ∈ (a). Hence (a) is a subgroup of G. 

 

13.2.22 Definition: (i) Let G be a group and a ∈ G. Then (a) = {ai / i = 0, ± 1, …} is called the 

cyclic subgroup generated by the element a ∈ G.  In other words, G is said to be a cyclic group 

if there exists an element a ∈ G such that G = (a). 

 

13.2.23 Examples: (i) The set of integers with respect to addition, (Z, +), is a cyclic group with 

generator 1. 

(ii) The multiplicative group, the cube roots of unity, {1, ω, ω2}  is a cyclic group with 

generators ω and ω2. 

(Verification: ω0 = 1, ω1 = ω, ω2 = ω2, ω3 = 1 and (ω2)0 = 1, (ω2) 1 = ω2, (ω2)2 = ω4 = ω). 
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Self Assessment Question 4: Write, if cyclic, the generators of the group {1, -1, i, -i} with 

respect to multiplication.  

  

13.2.24 Theorem:  Every cyclic group is abelian. 
 

Proof: Let G be a cyclic group and let a be a generator of G. 

Now G = (a) = {an  n ∈ Z}.  Take g1, g2 ∈ G.  Then there exists integers r and s such that  g1 = ar 

and g2 = as. Therefore g1⋅g2 =  ar ⋅ as = ar+s = as+r = as⋅ ar = g2 ⋅g1.  Hence G is abelian. 

 

13.2.25 Note: If a cyclic group G is generated by an element a of order n, then am is a generator 

of G if and only if the greatest common divisor of m and n is 1. 

 

13.2.26 Example:  Consider the cyclic group of order 8, generated by a.  That is, {a, a2, a3, a4, a5, 

a6, a7, a8}.  Since  gcd (7, 8) = 1, we have a7 is the generator; since gcd (5, 8) = 1, we have a5 is 

the generator; since gcd (3, 8) = 1, we have a3 is the generator.  Therefore the set of generators 

are {a, a3, a5, a7}.  

 

13.2.27 Note: Let Z be the integers and let n > 1 be a fixed integer. By an example 2.25 of 

equivalence relation, where we defined a ≡ b (mod n) (a is congruent to b mod n) if n | (a – b). 

The class of a, [a], consists of all a + nk, where k runs through all the integers. We call it the 

congruence class of a. 

 

13.2.28  Theorem: Zn forms a cyclic group under the addition [a] + [b] = [a + b]. 
 

Proof: Consider Zn = {[0], [1], ..., [n – 1]}. We define the operation  + in Zn as [a] + [b] =                  

[a + b].  Suppose that [a] = [a1] then n | (a – a1). Also from [b] = [b1], n | (b – b1).  Hence                  

n|((a – a1) + (b – b1)) ⇒ n | ((a + b) – (a1 + b1)). Therefore (a + b) ≡ (a1 + b1) (mod n). Therefore 

[a + b] = [a1 + b1]. Hence + is well defined in Zn. 
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The element [0] acts as the identity element and [-a] acts as –[a], the inverse of [a].It can be 

verified that Zn is a group under +. Also it is a cyclic group of order n generated by [1].  

 

 

13.3 Cosets and Lagranges Theorem  

 

13.3.1 Notation:  If ~ is an equivalence relation on S, then [a], the class of a, is defined by [a] = 

{b ∈ S / b ~ a}.  

 

13.3.2 Definition: Let G be a group, H be a subgroup of G, a, b ∈ G. We say that  a is 

congruent to b (mod H), written as a ≡ b (mod H) if a b-1 ∈ H.  

 

13.3.3 Theorem: The relation a ≡ b (mod H) is an equivalence relation. 
 

Proof: (i) Reflexive: Since H is a subgroup of G, we have that aa-1 = e∈H for a∈G ⇒ a ≡ a 

(mod H). 

(ii) Symmetric: Suppose a ≡ b (mod H) ⇒ ab-1∈H ⇒ (ab-1)-1 ∈ H (since H is a subgroup of G)  

⇒ (b-1)-1 a-1 ∈ H ⇒ ba-1 ∈ H ⇒ b ≡ a (mod H). 

(iii) Transitive: Suppose a ≡ b(mod H), b ≡ c (mod H) ⇒ ab-1 ∈ H, bc-1 ∈ H  

⇒ (ab-1) (bc-1)  ∈ H (since H is a subgroup of G)⇒ a(b-1b)c-1 ∈ H ⇒ aec-1∈ H ⇒ac-1∈H ⇒ a≡c 

(mod H). 

Therefore the relation a ≡ b (mod H) satisfies (i) reflexive, (ii) symmetric, (iii) transitive 

properties. Thus the relation is an equivalence relation. 

 

13.3.4 Definition: If H is a subgroup of G and a ∈ G, then write Ha = {ha / h ∈ H} is called the 

right coset  of H in G. aH = {ah / h ∈ H} is called the left coset (or the left coset of H 

determined by H).  
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13.3.5 Note: (i) We denote the set of  left cosets of H in G by G/H is the quotient set with respect 

to the equivalence relation ≡ (mod H).  

It clear that if H is a normal subgroup, then the coset relation is a congruence relation. 
 

Verification: Let a ≡ p (mod H) and b ≡ q (mod H).  Then by definition, p-1a ∈ H and q-1b ∈ H.   

Let  p-1a  = h1 and  q-1b = h2  for some h1, h2 ∈ H. 

Now (pq)-1(ab) = (q-1p-1)(ab) = q-1 (p-1a) b =  q-1 (h1 b) = q-1(b h3) (since bH = Hb) 

= (q-1b)h3 = h2h3 ∈ H.  Therefore (ab) ≡ (pq) (mod H).  Thus ≡ (mod H) is a congruent relation 

on G. 

(ii) Consider the quotient set G/H.  Define the operations on G/H as aH*bH = (ab)H.  Then    

(G/H, *) is a group.  We call this as the quotient group.   

 

13.3.6  Example: Consider the group (Z4, +4) given in the following table. 

Clearly Z4 = {[0], [1], [2], [3]}. 

+4 [0] [1] [2] [3] 

[0] [0] [1] [2] [3] 

[1] [1] [2] [3] [0] 

[2] [2] [3] [0] [1] 

[3] [3] [0] [1] [2] 

 

Then H = {[0], [2]} is a subgroup of G.  Now we will list the left cosets determined by the 

elements of Z5 as follows. 

Left coset determined by [0] is {[0], [2]}. 

Left coset determined by [1] is {[1], [3]}. 

Left coset determined by [2] is {[0], [2]}. 

Left coset determined by [3] is {[1], [3]}. 

These are the only two distinct left cosets of H in G. 
 

Observation:  (i) If a ∈ H, then aH = H. 
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(ii) Right coset can be defined in the same manner. 

 

Self Assessment Question 5: Write the left cosets of H = {0, 3} in the group Z6. 

 

13.3.7 Lemma: For all a ∈ G, Ha = {x ∈ G / a ≡ x (mod H)} = [a]. 
 

Proof: Consider [a] = {x ∈ G / a ≡ x (mod H)}, the equivalence class under the equivalence 

relation defined as a ≡ b (mod H) if a b-1 ∈ H.  Let x ∈ Ha ⇒ x = ha for some h ∈ H. Since                      

h ∈ H we have that a x-1 = a(ha)-1 = a a-1 h-1 = e h-1 = h-1 ∈ H ⇒ a x-1 ∈ H ⇒ a ≡ x (mod H)  ⇒ 

x ∈ [a].  

Converse: Suppose x ∈ [a] ⇒ a ≡ x (mod H) ⇒ a x-1 ∈ H ⇒ (a x-1)-1 ∈ H   ⇒ x a-1 ∈ H ⇒ x a-1 

= h for some h ∈ H ⇒ x = ha ∈ Ha. Therefore  [a] = Ha 

 

13.3.8 Problem: There is a one-to-one correspondence between any two right cosets of              

H in G. 
 

Proof: Let H be a subgroup of G and Ha, Hb be two right cosets of H in G (for some a, b ∈ G).  

Define φ: Ha → Hb by φ(ha) = hb for all ha ∈ Ha.  

φ is one-one: Let h1a, h2a ∈ Ha such that φ(h1a) = φ(h2a) 

                                ⇒ h1b = h2b  

                                ⇒ h1 = h2                  (by cancellation Law)  

                                ⇒ h1a = h2a. 

Therefore φ is one-one. 

φ is onto: Let hb ∈ Hb ⇒ h ∈ H. Now ha ∈ Ha and φ(ha) = hb. Therefore φ is onto.  

 

13.3.9 Note: Since H = He we have that H is also a right coset of H in G and by the Problem 

13.3.7,  any right coset of H in G have O(H) elements.  
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13.3.10 Theorem (Lagranges): If G is a finite group and H is a sub group of  G, then O(H) is  a 

divisor of O(G).       
 

Proof: Let G be a finite group and H is a subgroup of G with O(G) = n, O(H) = m, (since G is 

finite, H is also finite).  

We know that any two right cosets are either disjoint or identical. 

 Now suppose Ha1, Ha2, …, Hak are only distinct right coset of H in G  

⇒ G  = Ha1 ∪ Ha2 ∪ … ∪ Hak  

⇒ O(G) = O(Ha1) + O(Ha2)+ … + O(Hak)  

= O(H) + O(H) + … + O(H) (k times)   (since every right coset has O(H) elements) 

⇒ O(G) = k. O(H) 

⇒ n = k.m ⇒ (n/m) = k.  

Hence O(H) divides O(G). 
 

Observation: Converse of the Lagranges theorem is not true: that is, “If G is a finite group and  

k | O(G) then there exists a subgroup H of G such that O(H) = k” is not true. 

 

13.3.11 Example: Consider the symmetric group S4.  We know that S4 = {f : A → A / f is a 

bijection and A = {1, 2, 3, 4}}.  Clearly |S4| = 24 (= 4!).  Now A4 = the set of all even 

permutations in S4.  Then |A4| = 12.  It can be verified that any six elements of A4 can not form a 

subgroup.  Therefore 6 | O(A4) but A4 contains no subgroup of order 6. (refer the section:  

Permutation Groups). 

 

13.3.12 Definitions: (i) If H is a subgroup of G, then the index of H in G is the number of 

distinct right cosets of H in G.  It is denoted by i(H) or  we denote as  λ  =  G / H.   

 

13.3.13 Example: In the example (Z4, +4),  H = {[0], [2]} is a subgroup.  Z4 partitioned into two 

left cosets {[0], [2]} and {[1], [3]}.  Then   G  = 4 and  H  = 2 and so the index of H in G is λ 

= 2. 
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13.3.14 Lemma: If G is a finite group and a ∈ G, then O(a) | O(G).  
 

Proof: Suppose G is a finite group and a ∈ G and O(G) = n, O(a) = m.  

Let H = {a,a2, … am = e}. Clearly H is a subgroup of G.  

Now we have to show that O(H) = m.  

Suppose O(H) < m ⇒ ai = aj for some 0 ≤ i, j ≤ m ⇒ ai. a-j = aj. a-j (if j < i) ⇒ ai-j = a0 = e where    

0< i - j < m, which is a contradiction (since m is the least positive integer such that am =e).  

Therefore O(H) = m = O(a).  

Now by Lagranges theorem we have that O(H) | O(G) ⇒ O(a) | O(G).  

 

13.3.15 Corollary: If G is a finite group and a ∈ G, then aO(G) = e. 
 

Proof: By the above Corollary 2.40, we have that O(a) | O(G) 

 ⇒ there exists m such that O(G) = m..O(a). Now aO(G)  = am.O(a)  = [aO(a)]m = em = e. 

 

 

13.4 Normal Subgroups and Homomorphisms 
 

13.4.1 Definition: A subgroup N of G is said to be a normal subgroup of G if for every g ∈ G 

and n ∈ N such that gng-1 ∈ N.   It is clear that a subgroup N is a normal subgroup of G if and 

only if gNg-1⊆ N for all g ∈ G. 

 

13.4.2 Definition: (i) A mapping φ: G → G1 where G, G1 are groups, is said to be a 

homomorphism if for all a, b ∈ G we have that φ(ab) = φ(a). φ(b).  

(ii) If φ is a homomorphism of G into G1, then the kernal of φ (denoted by ker φ) is defined by 

ker φ = {x ∈ G / φ (x) = e1, where e1 is the identity in G1}.  Further if φ is one one and onto then 

we call it as an isomorphism. 
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Self Assessment Question 6: Let G be a group of real numbers under addition and let G1 be the 

group of non-zero real numbers with the ordinary multiplication.  Define φ: G → G1 by φ(a) = 2a.  

Verify φ is a homomorphism.   

 

Self Assessment Question 7: Define f: (R, +) → (R+, ⋅) by f(x) = ex.   Verify that f is an 

isomorphism. 

 

13.4.4 Problem: If φ is a  homomorphism of G into G1, then  

(i) φ(e) = e1 where e1 is the identity element of G1.  (ii) φ(x-1) = [φ(x)]-1 for all x in G. 
 

Proof: (i) Let x ∈ G ⇒ φ(x) ∈ G1.  

Now φ(x) = φ(x).e1
 and φ(x) = φ(xe) = φ(x). φ(e) (since φ is homo.). 

 Therefore φ(x). e1 = φ(x). φ(e)  

                         ⇒ e1 = φ(e)       (by cancellation laws). 

 (ii) By (i), e1 = φ(e) = φ(xx-1) = φ(x). φ(x-1)  

         ⇒ φ(x-1) is the inverse of φ(x).  

That is φ(x-1) = [φ(x)]-1. This is true for all x ∈ G. 

 

13.4.5 Problem: If φ is a homomorphism of G into G1 with kernal K, then K is a normal 

subgroup of G.        
 

Proof: First we show that K ≠ φ. Since φ(e) = e1 where e1 is the identity in G1, we have that e ∈ 

ker φ = K. Therefore K ≠ φ. Now we show that K is closed under multiplication and every 

element in K has inverse in K. 

 Let x, y ∈ K ⇒ φ(x) = e1 and φ(y) = e1  

⇒ φ(xy) = φ(x). φ(y) (since φ is homomorphism)  

              = e1. e1 = e1 

 ⇒ xy ∈ K. Therefore closure axiom holds.  
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Let x ∈ K ⇒ φ(x) = e1. Now  φ(x-1) = [φ(x)]-1 = [e1]-1 = e1.  

Therefore x-1 ∈ K. Thus every element in K has its inverse in K.  Hence K is a subgroup of G.  

 Next we show that K is a normal. Take g ∈ G, k ∈ K.  

 φ(gkg-1) = φ(g)φ(k)φ(g-1) 

               = φ(g).e1.φ(g-1)  (since k∈K ⇒ φ(k) = e1)  

               = φ(g).φ(g-1) = φ(g).[φ(g)]-1  = e1  

⇒ φ (gkg-1) = e1 ⇒ gkg-1 ∈ K. Hence K is a normal subgroup  of G.  

 

13.4.6 Theorem (Fundamental theorem of homomorphism): Let φ be a homomorphism of G 

on to G1 with kernal K. Then G/K ≅ G1.  
 

Proof: Since φ is an onto homomorphism from G to G1, we have φ (G) = G1. That is G1 is the 

homomorphic image of φ. Define f: G/K → G1 by f(Ka) = φ(a) for all Ka ∈ G/K.  

f is well defined: Let a, b ∈ G and Ka = Kb  

                   ⇒ ab-1 ∈ K 

                   ⇒ φ (ab-1) = e1       

                   ⇒ φ (a). [φ (b)]-1 = e1 

                   ⇒ φ (a) = φ (b)  

                   ⇒ f (Ka) = f (Kb).  

f is 1-1: Suppose f(Ka) = f(Kb) 

                  ⇒ φ (a) = φ (b)  

                  ⇒ φ (a). [φ (b)]-1 = e1       

                   ⇒ φ (a). φ (b-1) = e1 

                   ⇒ φ (ab-1) = e1  

                   ⇒ ab-1 ∈ K 

                   ⇒ Ka = Kb.  

Therefore f is 1-1. 
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f is onto : Let y ∈ G1. Since φ: G → G1 is onto, we have that there exists x ∈ G such that φ (x) = 

y. Since x ∈ G, we have Kx ∈ G/K. Now f(Kx) =  φ(x) = y. Therefore f is onto. 

f is homomorphism : Let Ka, Kb ∈ G/K.  

f (Ka.Kb) = f (Kab) = φ(ab) = φ(a).φ(b) (since φ is homomorphism) = f(Ka).f(Kb). Therefore f is a 

homomorphism.  

Hence f: G/K → G1 is an isomorphism. 

  

 

13.5 Permutation Groups 

 

13.5.1 Definition: If the set S contains n elements, then the group A(S) = {f : S → S / f is a 

bijection } has n! elements. Since S has n elements we denote A(S) by Sn and this  A(S) = Sn is 

called the symmetric group of degree n.  If φ ∈ A (S) = Sn, then φ is  a one  to  one mapping of S 

onto itself. 

 

13.5.2 Example: If S = {x1, x2, x3, x4} and φ ∈ A(S) by φ(x1) = x2, φ(x2) = x4, φ(x3) = x1,  φ(x4) = 

x3 is denoted by φ = 








31

43

42

21

xx
xx

   
xx
xx

 or   







31
43

   
42
21

. If θ = 







42
43

   
13
21

 and ψ = 









42
43

   
31
21

 then ψθ  = 







43
43

   
12
21

 (verify).  Here we use  ψθ (x) = ψ(θ (x)) for all x ∈ S. 

 

13.5.3 Example: Permutation multiplication is not usually commutative.  Let σ =  

1 2 3 4
   

4 1 2 3
 
 
 

 and τ = 
1 2 3 4

   
2 1 4 3
 
 
 

.  Then στ =  
1 2 3 4

   
1 4 3 2
 
 
 

 but τσ =  
1 2 3 4

   
3 2 1 4
 
 
 

. 

 

13.5.4 Definition: A permutation σ ∈ Sn is a cycle of length k if there exists elements a1, a2, …, 

ak ∈ S such that σ(a1) =  a2, σ(a2) =  a3, …, σ(ak) =  a1 and σ(x) =  x for all other elements x ∈ S.  
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We will write (a1, a2, …, ak) to denote the cycle σ.  Cycles are the building blocks of the 

permutations.  

 

13.5.5 Example:  The permutation σ = 
1 2 3 4 5 6 7
6 3 5 1 4 2 7
 
 
 

 = (1 6 2 3 5 4) is a cycle of length 6, 

whereas τ = 
1  2  3  4  5  6
1  4  2  3  5  6
 
 
 

 = (2 4 3) is a cycle of length 3.  Also, not, every permutation is a 

cycle.   Consider the permutation  
1 2 3 4 5 6 
2 4 1 3 6 5
 
 
 

 = (1 2 4 3)(5 6). 

 

Self Assessment Question 8: Compute the product of cycles σ = (1 3 5 2),  τ = (2 5 6). 

 

13.5.6 Note:  Two cycle (a1, a2,…, ak) and (b1, b2, …, bk) are said to be disjoint if ai ≠ bj for all i 

and j.  

For instance, the cycles (1 3 5) and (2 7) are disjoint; however, the cycles (1 3 5) and (3 4 7) are 

not.  Calculating their products, we find that  

(1 3 5)(2 7) = (1 3 5)(2 7)  

(1 3 5) (3 4 7) =(1 3 4 7 5). 

It is observed that the product of two cycles that are not disjoint may reduce to something less 

complicated; the product of disjoint cycles cannot be simplified.  

The simplest permutation is a cycle of length 2.  Such cycles are called transpositions.   

Since (a1, a2,…, an) = (a1an) (a1an-1)… (a1a3) (a1a2), any cycle can be written as the product of 

transpositions. 

 

13.5.7 Definition:  (i) A permutation is said to be an odd permutation if is the product of an odd  

 number of transpositions (or 2- cycles). 

(ii) A permutation  is said to be an even permutation if  is the product of an even number of 

transpositions (or 2 – cycles). 



Discrete Mathematics                                       13.20                                                  Group Theory 

 

Self Assessment Questions 9:  Determine which of the following permutations is even or odd 

(i). (1 3 5);  (ii) (1 3 5 6);   (iii) 







3 4 1 2
4 3 2 1

;  (iv). 







1 4 2 3 5
5 4 3 2 1

; (v). (1 3)(1 2 4)(1 5 3). 

 

13.5.8 Example: Consider the permutation (1 6)(2 5 3) = (1 6)(2 3)(2 5) = (1 6)(4 5)(2 3)(4 5)           

(2 5).  As we can see, there is no unique way to represent permutation as the product of 

transpositions.  For instance, we can write the identity permutation as (1 2)(2 1), as (1 3)(2 4)            

(1 3)(2 4), and in many other ways.  However, no permutation can be written as the product of 

both an even number of transpositions and an odd number of transpositions.  

For instance, we could represent the permutations (1 6) by (2 3)(1 6)(2 3) or by (3 5)(1 6)(1 3)           

(1 6)(1 3)(3 5)(5 6) but (1 6) will always be the product of an odd number of transpositions 

 

Self Assessment Question 10: Write the following whether even or odd. 

 (i) The product of two even permutations. 

(ii) The product of an even permutation and an odd one. (like wise for the product of an odd and 

even permutation). 

(iii) The product of two odd permutations.  

 

 

13.6 Answers to Self Assessment Questions 

 
SAQ1.  

It forms a group. 0 is the identity and each element has its own inverse. 

 

SAQ2.  
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It can be verified that * is closed and associative. 0 (zero element in the set of integers) acts as 

identity.  For 3 ∈ Z, there is no x ∈ Z such that 3 + x -3x = 0, since 3 + x -3x = 0 ⇒ x = 3
2

 ∉ Z.  

Hence Z is not a group with the defined operation *.  

 

SAQ 3. 

Take G = {A, B, C, D}, where A = 







10
01

, B = 






−
10
01

 C = 







−10
01

 D = 







−

−
10

01
.  A is the  

identity in G.  Table of multiplication as follows: 

 

. A B C D 

A A B C D 

B B A D C 

C C D A B 

D D C B A 

 

SAQ 4.  

It is a cyclic group with generators i and –i. 

 

SAQ 5. 

The left cosets are  H = {0, 3}, 1+H = {1, 4}, 2+H = {2, 5}. 

 

SAQ 6.  

φ(a + b) = 2a+b = 2a. 2b = φ(a). φ(b).  Therefore φ is a homomorphism. 

 

SAQ 7.  

f is one one and homomorphism is clear. To show f is onto, take x ∈ R+.  Then φ(ln x) = eln x = x 

where ln x ∈ R.  Therefore φ is onto. 
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SAQ 8.   

The product is στ = (1356). 

 

SAQ 9.  

(i). even,  (ii). odd,  (iii). even,  (iv). even,  (v). odd. 

 

SAQ 10.  

(i) even, (ii) odd, (iii) even. 

 

 

13.7 Summary 

 
The algebraic structures with one binary operation were discussed.  Some important 

characterizations of the algebraic system: Groups were given.   Some fundamental results are 

obtained.   Cyclic  subgroups play a fundamental part in the classification of abelian groups.  The 

special types of groups, referred as permutation groups are the tool to study the geometric 

symmetries and finding solutions of polynomial equations. We also discussed the Lagrange’s 

theorem, which provides a powerful tool for analyzing finite groups.   

 

 

13.8 Technical Terms  
 

Binary operation:  Mapping from G × G  to G.   

Group:   The algebraic system (G, *) satisfies: Closure, associative, 

existence of  identity,  and the Inverse.  

Commutative group (or Abelian group):  a*b = b*a for all a, b in G. 

Subgroup:  A subset H of G  which itself forms a group under the same 

operation in G. 
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Order of an element:  Least positive integer m such that am = e.   

Cosets:   H is a subgroup of G and a ∈ G, Ha = {ha / h ∈ H} is the 

right coset  and  aH = {ah / h ∈ H} is the left coset..  

Lagranges Theorem:  If G is a finite group and H is a sub group of  G, then O(H) 

is  a divisor of O(G).       

Index of H in G:  The number of distinct right cosets of H in G.  

Normal subgroup:   N is normal in G if gNg-1⊆ N for all g ∈ G. 

Homomorphism:  φ: (G, +) → (G1, .) such that φ(ab) = φ(a). φ(b) for all a and 

b in G. 

Kernal of φ (denoted by ker φ):  ker φ = {x ∈ G / φ(x) = e1, where e1 is the identity in G1}.  

Fundamental theorem of homomorphism:  Let φ be a homomorphism of G on to G1 with kernal 

K. Then G/K ≅ G1.  

Cycle permutation:   A permutation σ ∈ Sn is a cycle of length k if there exists 

elements a1, a2, …, ak ∈ S such that σ(a1) =  a2, σ(a2) =  a3, 

…, σ(ak) =  a1 and σ(x) =  x for all other elements x ∈ S.   

Odd permutation:  The product of an odd  number of transpositions (or 2- 

cycles). 

Even permutation:  The product of an even number of transpositions (or 2 – 

cycles). 

 

 

13.9 Model Questions  
 

1. Consider the group (ℤ, +).  Let H = {3n / n ∈ ℤ}.  Show that the set H is a subgroup  of ℤ. 

 

2. Prove that (G, +6) is cyclic where G = {0, 1, 2, 3, 4, 5}. 

 

3. If ‘*’ is a binary operation in Q+ defined by  
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(i). a * b = 
3

ab  

(ii). a * b =  
2

ab  

where a, b ∈ Q+ (set of all positive rationals).  Show that (Q+, *) is are abelian groups. 

 

4.  Examine which of the following are groups.  For those which fail to be groups mention which 

group axoims do not hold. 

(i). G = ℝ, the set of reals, with respect to ‘*’ where a * b = a for all a ∈ℝ. 

(ii). G = ℤ, the integers, with a * b = a + b + 1, a, b, ∈ ℤ. 

 

5. Find the inverse of each of the following permutations 

(i). 







2 4 3 1
4 3 2 1

,     (ii). 







4 5 1 3 2
5 4 3 2 1

,   (iii). 







2 1 4 3
4 3 2 1

. 

 

6. Express each of the following as a product of transpositions and hence determine whether it is 

odd or even. 

(i). 







3 1 2
3 2 1

,     (ii). 







1 2 3
3 2 1

,      (iii). 







1 2 3 4
4 3 2 1

. 

 

7. If G is  a group such that (ab)2 = a2b2 for all a,b ∈ G, then show that G is abelian. 

 

8. In the following, determine whether the systems described are groups.  If they are not, point 

out which of the group axioms fail to hold.  

(a) The set of all integers. Operation: aob = a-b. 

(b) The set of all positive integers. Operation: aob = a.b. 

(c) {ao, a1, … , a6} where aioaj = ai+j if i + j < 7 and aioaj = ai+j-7 (that is, if i + j ≥ 7). 

(d) The set of all rational numbers with odd denominators. Operation: aob = a + b. 
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9. If a group G has only three elements, show that it must be abelian. 

 

10. Let G be the set of all real 2 × 2 – matrices 







do
ba

where ad ≠ 0.  Prove that G forms a group 

under matrix multiplication.  Is G is abelian? 

 

11. State and prove Lagrange’s theorem. 

 

12. State and prove fundamental theorem of homomorphism of groups. 
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Lesson 14 

Advanced Algebras and Group Codes 
 

Objectives  
 

At the end of the Lesson the student must be able to: 

(i) Learn the algebraic systems with two binary operations. 
(ii) Know the structures rings and integral domain. 
(iii)Understand the fundamental idea of coding system.          
(iv) Know the hamming distance between the code words. 
(v) Learn the group codes, linear codes and parity check codes 
(vi) Apply the concepts to real world problem in communication technology 

 
 

Structure 
14.1 Introduction 
14.2 Rings and Integral Domain  
14.3 Codes 
14.4 Hamming Distance 
14.5 Linear Codes 
14.6 Parity Check Matrix  
14.7 Answers to Self Assessment Questions 
14.8 Summary 
14.9 Technical Terms 
14.10Model Questions 
14.11 References    

 

14.1 Introduction 
 

Groups were studied in the previous chapter and the definition of a group involves a single 

binary operation.  We know that there are two binary operations: addition and multiplications on 

the number such as integers, rational, real or complex.  With respect to addition they form a 

group.  Also the non zero rational, real or complex numbers form a group under multiplication.  
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Many of the properties of numbers depend simultaneously on both operations of addition and 

multiplication.  These two operations are interrelated and lead us to study the algebraic systems 

with two binary operations.   One such system is a ring.   Further Coding theory is an application 

of algebra that has become increasingly important over the last several decades.  When we 

transmit data, we are concerned about sending a message over a channel that could be affected 

by noise.  We wish to be able to encode and decode the information in a manner that will allow 

the detection, and possible the correction, of errors caused by noise. This situation arises in many 

areas of communications, including radio, telephone, television, computer communication.  

Probability, combinatorics, group theory, linear algebra play important roles in coding theory. 

  

 

14.2 Rings and Integral domains 
 

14.2.1 Definition:  A non empty set R is said to be a ring (or an associative ring) if there exists 

two operations + and “.”on R such that (i) (R, +) is an abelian group  (ii) (R, .) is a semi-group 

and (iii) for any a, b, c ∈ R we have a(b + c) = ab + ac, (a + b)c = ac + bc. 

  

14.2.2 Definition: Let (R, +, .) be a ring.  If 1 ∈ R such that a.1= 1.a = a for every  a ∈ R, then 

we say that R is a ring with identity (or unit) element.  If a.b = b.a   for all a, b ∈ R, then R is 

said to be a commutative ring. 

 

14.2.3 Examples: (i) (Z (set of integers), +, .) is a commutative ring with identity. 

(ii) (2Z(set of  even integers), +, .) is a commutative ring with out identity. 

(iii) (Q(set of rationals), +, .) is a commutative ring with identity. 

 (iv) (Zn,(integers modulo n) +, .) is a commutative ring with identity. 

 

14.2.4 Definition: (i) If R is a commutative ring then 0 ≠ a ∈ R is said to be a zero divisor if 

there exits 0 ≠ b ∈ R such that ab = 0.   
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(ii) A commutative ring is said to be an integral domain if it has no zero divisors. 

(iii) A ring R is said to be a Boolean ring if x2 = x for all x ∈ R (in other words, each element of 

R is an idempotent).    

 

14.2.5 Example: Let R be the set of all formal square arrays 







dc
ba

 where a, b, c, d are any real 

numbers.  

Define 








11

11

dc
ba

 + 








22

22

dc
ba

 = 







++
++

2121

2121

ddcc
bbaa

. It is easy to see that R forms an abelian group under 

addition with 







00
00

 as the zero element and 







−−
−−

dc
ba

 is the inverse of 







dc
ba

. We define the 

multiplication in R by 







dc
ba

. 







ut
sr

 = 







++
++

ducsdtcr
buasbtar

. 

 The element 







10
01

 acting as multplicative unit element. Clearly R is a ring . 

Since 







00
01

. 







01
00

 =  







00
00

, we have that R is not an integral domain. 

Since 







00
01

. 







01
00

 =  







00
00

 ≠ 







01
00

 = 







01
00

 







00
01

, we have that R is not commutative. 

 

Self Assessment Question 1: Prove that if a, b ∈ R, then (a+b)2 = a2 + ab + ba + b2. 

 

Self Assessment Question 2: If R is a Boolean ring then R is a commutative ring. 

 

14.2.6 Definition:  A ring R is said to be a division ring if (R*,.) is a group (here  R* = R – {0}).  

A division ring is said to be a field if it is commutative (we will learn this concept in the next 

section). 
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14.2.7  Problem: If  R is a ring then for all a, b  ∈ R we have  

(i) a0 = 0 = 0a 

(ii) a(-b) = (-a)b = -ab  

(iii) (-a)(-b) = ab.  If in addition if R has identity 1, then  

(iv) (-1)a = -a,  (-1) (-1) = 1. 
  

Solution: (i) a0 = a(0 + 0) = a0 + a0. Now  

0 + a0 = a0 = a0 + a0 ⇒ a0 = 0 (by right cancellation law).  

Similarly, we can prove that   0 = 0a.  

(ii) 0 = a0 = a(b+(-b)) = ab + a(-b) 

 ⇒ -(ab) = a(-b) and 0 = 0b = (a+(-a))b  = ab+(-a)b 

⇒-(ab)=(-a)b.         

(iii) (-a) (-b) = -(a (-b)) = -(-(ab)) = ab. 

(iv) from (ii), (-1)a = -(1a) = -a. 

 (v) from (iii), (-1) (-1) = 1.1 =1. 

 

14.2.8 Example: Consider the ring (Zm, +m, ×m) for all m ∈ Z.  For m = 6, we have [2] ×m[3] = 

[0] but [2] ≠ [3].  Also for m = 7, (Zm, +m, ×m) is an integral domain. 

 

14.2.9 The Pigeon Hole Principle:  If a objects are distributed over m places and if a > m, then 

some place receives at least two objects.  

 

14.2.10 Theorem: A finite integral domain is a field.                                                      
 

Proof: We know that in an integral domain we have ab = 0 ⇒ a = 0 or b = 0. Now it suffices to 

show that every non-zero element has multiplicative inverse. Let D be an integral domain. Now 

we show  

(i) there exists  1 ∈ D such that a . 1 = a for all a ∈ D,  

(ii) 0 ≠ a ∈ D ⇒ there exists b ∈ D such that ab = 1.  
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Let D = {x1, x2, …, xn} and 0 ≠ a ∈ D. Now x1a, x2a, …, xna  are all distinct 

(If xia = xja, then (xi – xj)a = 0 ⇒ xi –xj = 0 ⇒ xi = xj (since a ≠ 0)).  

Therefore D = {x1a, x2a …, xna }.  Since a ∈ D,  a = xka for some 1 ≤ k ≤ n. 

Again siince D is commutative, we have xka = a = axk.  

We show xk is the identity element. For this, let y ∈ D, then y = xia for some i. 

Now consider y.xk = (xia) xk = xi (axk) = xia = y.  

Thus yxk = y for all y ∈ D. Therefore xk is the identity element. 

For xk ∈ D = {x1a, x2a, …, xna} ⇒ xk = xja for some 1 ≤ j ≤n. 

Therefore xj is the multiplicative inverse of a. Hence D is a field.  

 

14.2.11 Definition: A subset T of a ring (S, +, ⋅) is called a subring if (T, +, ⋅) is itself a ring. 

 

14.2.12 Example:  The set of all even integers is a subring of (Z, +, ⋅). 

 

14.2.13 Definition: Let (R, +, .), (R1, +, .) be two rings. A mapping φ : R → R1 is said to be a 

homomorphism (or a ring-homomorphism) if (i) φ(a + b) = φ(a) + φ(b), (ii) φ(ab) = φ(a) φ(b) 

for all a, b ∈ R. 

 

Self Assessment Question 3:  If φ: R→ R1 is a homomorphism, then verify that  (i) φ(0) = 0,           

(ii) φ(-a) = -φ(a) for all a ∈ R. 

 

14.2.14 Definition: (i) Let φ: R → R1 be a homomorphism.  Then the set {x ∈ R / φ(x) = 0} is 

called the kernal of φ and is denoted by kerφ .   

(ii)  A homomorphism φ: R → R1 is said to be an isomorphism if φ is one one and, onto. 

(iii) R and R1 are said to be isomorphic, if there exist an isomorphism  φ: R → R1. 

 

14.2.15 Problem: Let φ: R → R1 be a homomorphism.  
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Then (i) kerφ = {0} ⇔ φ is one one. 

(ii) If φ is onto then φ is an isomorphism if and only if kerφ = {0}, where 0 is the additive 

identity if R.  
 

Solution:  (i) Suppose ker φ = {0}.  To  show φ is 1-1.  

Suppose x, y ∈ R such that φ(x) = φ(y).  Then  φ(x) - φ(y) = 0 

 ⇒ φ(x) + φ(-y) = 0 

 ⇒ φ(x – y) = 0 ⇒ x – y ∈ ker φ = {0} 

 ⇒ x -  y = 0  

⇒ x = y.  Therefore φ is one one. 

Converse:  Suppose φ is one one.  Since φ(0) = 0, we have 0 ∈ ker φ  

⇒ {0} ⊆ ker φ.  Now let y ∈ ker φ 

 ⇒ φ(y) = 0 = φ(0)                   (since φ(0) = 0) 

 ⇒ y = 0                                   (since φ is one one) 

 ⇒ ker φ ⊆ {0}.  Therefore ker φ = {0}.  

(ii) Suppose φ is an isomorphism.  Since  φ is one one, we have ker φ = {0} (by (i)).  

Converse:  Suppose kerφ = {0} ⇒ φ is 1-1 (by (i)).  

Since φ is onto, we have φ is a bijection.  Hence φ is an isomorphism. 

  

 

14.3 Codes  
 

Let us examine a simple model of a communications system for transmitting and receiving coded 

messages.  The model represented by at least three essential parts: Transmitter, Channel and 

Receiver.   

The channel conveys the message sent by the transmitter to the receiver.  But in practice, a 

communication channel is subjected to variety of disturbances.  These disturbances distort the 

message being transmitted.  Such disturbance is called noise.  The main object of a 
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communication system is to minimize the distortion due to noise and to recover the original 

message in some optimal manner. 

  

Uncoded messages may be composed of letters or characters, but typically they consist of binary 

m-tuples. These messages are encoded into codewords, consisting of binary n-tuples, by a devise 

called an encoder.  The message is transmitted and then decoded.  We will consider the 

occurrences of errors during transmission.  An error occurs if there is a change in one or more 

bits in the codeword.  A decoding scheme is a method that either converts an arbitrarily received 

n-tuple into meaningful decoded message or gives an error message for that n-tuple. 

 

Encoding and decoding messages: 

m-digit message 

↓ 

Encoder 

↓ 

n-digit code word 

↓ 

Transmitter 

↓ 

Noise 

 ↓ 

Receiver 

↓ 

n-digit received word 

↓ 

Decoder 

↓ 

m-digit received message or error 
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Consider the set Z2 = {0, 1} and additive group (Z2, +), where + denotes addition modulo 2.  

Then, for any positive integer n, we have  
n
2Z  = Z2×  Z2 ×…× Z2 (n factors) = {(a1, a2, …, an) / ai ∈ Z2 for each i}. 

 

Thus, every element of n
2Z  is an n-tuple  (a1, a2, …, an) in which every entry is either 0 or 1.  

Some times the n-tuple can be written as a1 a2 … an called a word or a string.  Each ai (either 0 or 

1) is called a bit. 

 

14.3.1 Example:  11001 is a word in 5
2Z .  That is  (1,1,0,0,1) ∈ 5

2Z .   

Suppose a string c = c1 c2 … cn ∈ n
2Z  is transmitted form a point A through a transmitted channel 

T.  In normal situations, this word would be received at a point B with out any change.  But in 

practice, transmission channel experience disturbances (which is referred as noise) that may 

cause a 0 to be received as a 1 (or vice versa).  Therefore the word  c transmitted from A is 

received as a different word r ∈ n
2Z  at B.  Let the word r will be of the form r =  r1 r2 … rn where 

each ri is either 0 or 1, rj ≠ cj for some j, 1≤ j ≤ n. 

 

Point A 

c = c1 c2 … cn ∈  n
2Z  

↓ 

T: Transmitted channel 

↓ 

Point B 

 r = r1 r2 … rn ∈  n
2Z  

 



Acharya Nagarjuna University                         14.9                        Centre for Distance Education 

If ri = ci for all values of I except k values (k < n), we say that r differs from c in k places. The 

word r is denoted by T(c).  Some times, it is convenient to write r as r = c + E where E ∈  n
2Z . 

 

14.3.2 Binary Symmetric Channel:  It is a model consists of a transmitter capable of sending a 

binary signal, either a 0 or a 1, together with a receiver.  Let p be the probability that the signal is 

correctly received.  Then q = 1-p is the probability of an incorrect reception.  If a 1 is sent, then 

the probability that a 1 is received is p and the probability that a 0 is received is q.  The 

probability that no errors occur during the transmission of a binary codeword of length n is pn.   

For example, if p = 0.999 and a message consisting of 10,000 bits is sent, then the probability of 

a perfect transmission is (0.9999)10,000 ≈ 0.00005.    

 

14.3.3 Note:  Let n > m.  We define a one-to-one function E: Bm→ Bn where B = {0, 1} = Z2.  

Sometimes we use E for the encoding function. 

A code word is any element in the image of E.  That is if b ∈ Bm then E(b) ∈ Bn.  We transmit 

the code word by means of a  channel.  Then each code word x = E(b) is received as the work x1 

∈ Bn.  If the channel is noiseless then x1 = x for all x ∈ Bn.  But in general, errors do occur. 

 

14.3.4 Theorem:  If a binary n-tuple (x1, x2, …, xn) is transmitted across a binary symmetric 

channel with probability p that no error will occur in each coordinate, then the probability that 

there are errors in exactly k coordinates is  k n kn
q p

k
− 

 
 

 

 

Proof:  Fix k different coordinates.  We first compute the probability that an error has occurred 

in this fixed set of coordinates.  The probability of an error occurring in a particular one of these 

k coordinates is q; the probability that an error will not occur in any of the remaining n-k 

coordinates is p.  The probability of each of these n independent events is qkpn-k.  

The number of possible error patterns with exactly k errors occurring is equal to  
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( )

n n!
k k! n k !
 

=  − 
, the number of combinations of n things taken k at a time.  Each of these error 

patterns has probability qkpn-k of occurring; hence the probability of all these error patterns is 

k n kn
q p

k
− 

 
 

. 

 

14.3.5 Example:  Suppose that p = 0.995 and a 500-bit message is sent.  The probability that the 

message was sent error-free is pn = (0.995)500 ≈ 0.082. 

The probability of exactly one error occurring is  

 

n 1n
q p

1
− 

 
 

  = 500(0.005)(0.995)499 ≈ 0.204. 

The probability that exactly two errors is  

 

2 n 2n
q p

1
− 

 
 

  =  500 499
2
⋅ (0.005)2(0.995)498 ≈ 0.257. 

The probability of more than two errors is approximately 

1 - 0.082 - 0.204 - 0.257 = 0.457 

 

Self Assessment Question 4:  The word c = 1010110 is transmitted through a binary symmetric 

channel.  If E = 0101101 is the error pattern, find the word r received.   

 

Self Assessment Question 5: The word c = 1010110 is transmitted through a binary symmetric 

channel that c is received as r = 1011111.  Determine the error pattern. 

 

14.3.6 Definition: Let D = [dij] be m×p  and E = [eij] be  p×n Boolean matrices.  We define the 

mod-2 Boolean product D⊗E as the m×n matrix F = [fij] , where fij = di1e1j + … + dipepj, 1 ≤ i ≤ 

m, 1 ≤ j ≤ n.  
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14.3.7 Example: The product of 

1   0
1  1  0 1×1+1×1+ 0×0    1×0 +1×1+ 0×1 0  1

1   1 =
0  1  1 0×1+1×1+1×0    0×0 +1×1+1×1 1  0

0   1

 
      ⊗ =            

 

. 

Property:  Let D and E be m×p Boolean matrix and F be a p×n Boolean matrix.  Then 

(D + E)⊗ F = (D⊗F) + (E⊗F) (distributivity for + and ⊗). 

 

14.3.8 Block Codes:  If we are to develop efficient error-detecting and error-correcting codes, 

we will need more sophisticated mathematical tools.  Group theory will allow faster methods of 

encoding and decoding messages. A code is an (n, m) block code if the information that is to be 

coded can be divided into blocks of m binary digits, each of which can be encoded into n binary 

digits.   

 

14.3.9 Parity Check Code:  

Define an encoding function E: m
2Z  → m 1

2Z +  by E(e1 e2 … em) =  e1 e2 … em+1 where em+1 =   

0  if  e  contains even number of  1s
1  if  e  contains odd number of  1s


 .   Using the definition of E: 3

2Z → 4
2Z , 

 E(000) = 0000,  E(001) = 0011,  E(011) = 0110, …,  E(111) = 1111 

 

 

14.4 Hamming Distance:    

 

14.4.1 Definition: Let x = (x1, x2, …,xn) and y = (y1, y2, …,yn) be binary n-tuples.  The 

hamming distance or distance d(x,y), between x and y is the number of bits in which x and y 

differ.  
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14.4.2 Note: The distance between two codewords is the minimum number of transmission 

errors required to change one codeword into the other.   

 

14.4.3 Definition:  The minimum distance of encoding function E: Bm → Bn is the minimum 

distance between all pairs of code words. 

That is,  dmin = min. {d(x,y)  where x and y are distinct code words}. 

 

14.4.4 Definition: The weight w(x) of a binary code word x is the number of 1’s in x.  It is also 

denoted by x .  From the definition, it is clear that w(x) = d(x, 0) where 0 = (00…0).  

 

14.4.5 Example: Find the weights of the following words in  B7 where B = Z2. 

(i) x = 0100101, 

(ii) y = 1100101, 

(iii) z = 1111101. 
 

Solution: The weights are (i) w(x) = 3, (ii) w(y) = 4, (iii) w(z) = 6. 

 

14.4.6 Example:  Let x = (10101), y = (11010) and z = (00011) be all of the codewords in some 

code C.  Then we have the following hamming distances. 

d(x, y) = 4, d(x, z) = 3, d(y, z) = 3. 

The minimum distance for this code is 3.  Also we have the following weights. 

w(x) = 3, w(y) = 3, w(z) = 2. 

 

14.4.7 Problem: Let x and y be binary n-tuples.  Then w(x + y) = d(x, y). 
 

Solution: Suppose that x and y are binary n-tuples.  Then the distance between x and y is exactly 

the number of places in which x and y differ.  But  x and y differ in a particular coordinate 

exactly when the sum in the coordinate is 1, since  

1 + 1 = 0,  0 + 0 = 0, 1 + 0 = 1, 0 + 1 = 1.  Consequently, the weight of the sum must be the 

distance between the two codewords. 
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14.4.8 Note:  For all x, y ∈   m
2Z  we have w(x + y) ≤ w(x) + w(y).  

 

14.4.9 Problem: Let x, y, z ∈ n
2Z .  Then  

(i) d(x, y) ≥ 0 

(ii) d(x, y) = 0 exactly when x = y 

(iii) d(x, y) = d(y, x) 

(iv) d(x, y) ≤ d(x, z) + d(z, y). 
 

Solution: (i) Since w(x+y) ≥ 0, we have that d(x, y) ≥ 0. 

(ii) d(x, y) = 0 ⇔ w(x + y) = 0 ⇔ x + y contains only 0’s  

                                                  ⇔ x and y contains only 1’s or only 0’s ⇔ x = y. 

(iii) d(x, y) = w(x + y) = w(y + x) = d(y, x) 

(iv) d(x, z) = w(x + z) 

                       = w(x + y + y + z)         (since y + y = 0 in Z2) 

                       ≤ w(x + y) + w (y + z)  (by the above note) 

                        = d(x + y) + d(y + z) 

 

14.4.10 Note: (i) The function d satisfies the condition in the above problem is called a hamming 

metric and the pair ( n
2Z , d) is called a Hamming metric space. 

(ii) For a specified word a ∈ n
2Z  and a positive integer k, we define the sphere with center a and 

the radius k units is  S(a, k) = {x ∈ n
2Z / d(x, a) ≤ k}. 

 

14.4.11 Definition:  Let x1, x2, …, xn denote the codewords in a block code.  The conditional 

probability P(xi y) for i= 1, 2, …, n where P(xi  y) is the probability that xi was the transmitted 

word given that y was the received word.  If P(xk  y) is the largest of all conditional probabilities 
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computed, then xk was the transmitted word.  Such a criterion for determining the transmitted 

word is known as the maximum likelihood decoding criterion. 

 

14.4.12 Note:  Suppose that  x  = (1101) and y = (1100) are codewords in some code.  If we 

transmit (1100) and an error occurs in the rightmost bit, then (1100) will be received.  Since 

(1100) is a codeword, the decoder will decode (1100) as the transmitted message.  This code is 

clearly not very appropriate for error detection.  The problem is that d(x, y) = 1.  If x = (1100) 

and y = (1010) are codewords, then d(x, y) = 2.  If x is transmitted and a single error occurs, then 

y can never be received.  Consider the following table of distances of all 4-bit codewords in 

which the first three bits carry information and the fourth is an even  parity check bit.  We can 

see that the minimum distance is 2.     

 

Distances between 4-bit codewords. 

 0000 0011 0101 0110 1001 1010 1100 1111 

0000 0 2 2 2 2 2 2 4 

0011 2 0 2 2 2 2 4 2 

0101 2 2 0 2 2 4 2 2 

0110 2 2 2 0 4 2 2 2 

1001 2 2 2 4 0 2 2 2 

1010 2 2 4 2 2 0 2 2 

1100 2 4 2 2 2 2 0 2 

1111 4 2 2 2 2 2 2 0 

    

14.4.13 Theorem:  An (m, n) encoding function E: Bm→ Bn can detect k or fewer errors if and 

only if its minimum distance is at least k +1. 
 

Proof:  Part 1: Suppose the minimum distance between any two code works is at least (k+1).  Let 

b ∈ Bm and x = E(b) ∈ Bn.  Then x is transmitted and received as x1.  If x1 were a code word 
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different from x then d(x, x1) > k+1.  So x would be transmitted with (k+1) or more errors.  Thus 

if x is transmitted with k or fewer errors then x1 cannot be a code word.  

This means that E can detect k or fewer errors. 
 

Part 2:  Suppose the minimum distance between the code words is r < k and let x and y are code 

words with d(x, y) = r.   

If x1 = y, that is, if x is transmitted and received as y then r < k errors have been committed and 

have not been detected.  This it is not true that E can detect k or fewer errors.  Hence the 

minimum distance is at least (k+1).  

 

14.4.14 Example:  Consider the following table of 5-bit codewords with the hamming distances 

for an error correcting code. 

 00000 00111 11100 11011 

00000 0 3 3 4 

00111 3 0 4 3 

11100 3 4 0 3 

11011 4 3 3 0 

 

The codeword c1 = (00000), c2 = (00111), c3 = (11100), c4 = (11011) determine a single error 

correcting code. 

 

 

14.5 Linear Codes  

 

14.5.1 Definition: Let E: m
2Z → n

2Z , n > m be an encoding function and C = {E(w)w∈ m
2Z } be 

the set of codes.  Then C is called a group code if C is a subgroup of n
2Z .   
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14.5.2 Example: Consider the encoding function E: 2
2Z → 6

2Z  of the triple repetition code.  For 

this code, we have 

E(00) = 000000, E(10) = 101010, E(01) = 010101, E(11) = 111111 so that C = {000000,  

101010, 010101, 111111}.  

Also 6
2Z  is a finite group under the component wise addition modulo 2 and also C ⊆ 6

2Z .  

(Further the reader can verify that it is an abelian group). 

It can be easily verified that C is closed under component wise addition modulo 2.   Therefore C 

is a subgroup.  Hence C is a group code. 

 

14.5.3 Problem:  Let dmin be the minimum distance for a group code C.   Then dmin is the 

minimum of all the nonzero weights of the nonzero codewords in C.  That is,  

dmin  = min {w(x)  x ≠ 0}. 
 

Solution: dmin = min {d(x, y)  x ≠ y} 

                       = min {d(x, y)  x + y ≠ 0} 

                       = min {w(x + y)  x + y ≠ 0} 

                       = min {w(z)  z ≠ 0}. 

 

14.5.4 Definition:  The inner product of two binary n-tuples to be  x⋅y = x1y1 + … + xnyn, where 

x = (x1, x2, …,xn)t  and y = (y1, y2,…, yn)t are column vectors.  We can also write an inner 

product as the product of a row matrix with a column matrix. That is, x⋅y = xty =                        

(x1 x2, …xn)

1

2

n

y
y
.
.
.
y

 
 
 
 
 
 
 
  
 

  =  x1y1 + … + xnyn.   

For instance, if x = (011001)t and y = (110101)t,   then x⋅y = 0.  
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14.5.5 Notation:  Mm×n (Z2) = the set of all m×n matrices with entries in Z2.  We adopt the usual 

matrix operations except that all addition and multiplication operations occur in Z2. 

 

14.5.6 Definition: The null space of a matrix H ∈  Mm×n (Z2) defined to be the set of all binary    

n-tuples x such H⊗x = 0.  We denote the null space of a matrix H by Null (H). 

 

14.5.7 Example:  Suppose H = 
01010
11110
00111

 
 
 
 
 

.  For a 5-tuple x = (x1, x2, …,x5)t  to be in the null 

space of H, H ⊗ x = 0. 

Equivalently, the following system of equations must be satisfied: 

                      x1 +  x4  = 0  

        x1 + x2 + x3 + x4  = 0  

                x3 + x4 + x5 = 0  

The set of binary 5-tuples satisfying these equations is  

(00000)  (11110) (10101) (01011).  This code is easily determined to be a group code. 

 

14.5.8 Problem:  Let H ∈  Mm×n (Z2).  Then prove that the null space of H is a group code. 
 

Solution: Closure: Let x, y ∈ Null(H) for some H ∈  Mm×n (Z2).  

Then H⊗x = 0 and H⊗y = 0.  So H⊗(x + y) = H⊗x + H⊗y = 0 + 0 = 0.  Therefore x + y is in the 

null space of H and so must be a code word. 

Inverse:  Each element of n
2Z is its own inverse. 

Hence Null(H) is a code word. 

 

14.5.9 Definition:  A code is a linear code if it is determined by the null space of some matrix  

H ∈ Mm×n (Z2).  
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14.5.10 Example:  Let C be the code given by the matrix H = 
000111
011011
101001

 
 
 
 
 

.   Suppose that the                

7-tuple x = (010011)t is received.  Now H⊗x = 
0
1
1

 
 
 
 
 

.  Therefore the received word is not a code 

word. 

 
14.5.11 Theorem: Let m and n be non-negative integers with m < n, r = n-m, and let H be an               

n × r Boolean matrix.  Then the function fH: Bm→ Br defined by fH(x) = x ⊗ H, x ∈ Bn is a 

homomorphism from the group Bn to the group Br.  
 

Proof: Take x, y ∈ Bn.  Then fH(x + y) = (x + y)⊗H 

                                                              = (x⊗H) + (y⊗H) (by distributive law) 

                                                               = fH(x) + fH(y). 

Hence fH is a homomorphism from Bn to Br. 

 

14.5.12 Corollary: Let m, n, r ∈ H and fH be Bm→ Br defined by fH(x) = x ⊗ H, x ∈ Bn is a 

homomorphism from the group Bn to the group Br.  Then N = {x ∈ Bn  x ⊗ H = 0}. 
 

Proof: Since N is the kernel of the homomorphism, it follows that N is a normal subgroup. 

 

 

14.6 Parity Check Matrix: 

 

14.6.1 Definition: Let m < n and r = n –m.  An n × r Boolean matrix: 
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11 12 1r

21 22 2r

m1 m2 mr

h   h    h
h h     h

h  h h
1       0       0
0       1       0 

0       0       1

 
 
 
 
 
 
 
 
 
 
  
 

L

L

M

L

L

L

M

L

  

is called a parity check matrix, whose last r rows form an r × r identity matrix.    

 

14.6.2 Note: N = {x ∈ Bn  x ⊗ H = 0} where ⊗ is the Boolean matrix multiplication, is a 

normal subgroup of Bn.   We use H to define an encoding function eH: Bm→ Bn.  If b = b1b2…bm, 

then we define  

x = eH(b) =  b1b2…bm x1x2…xr where  

x1 = b1h11 + b2h21 + … + bmhm1, 

x2 = b1h12 + b2h22 + … + bmhm2, 

… 

xr = b1h1r + b2h2r + … + bmhmr. 

 

14.6.3 Theorem: Let x = y1y2…ym x1x2…xr ∈ Bn.  Then x ⊗H = 0 (that is x ∈ N) if and only if x 

= eH(b) for some b ∈ Bm.  
 

Proof:  Suppose that x ⊗H = 0.  Then  

y1h11+ y2h21+ … + ymhm1 + x1 = 0 

y1h12+ y2h22+ … + ymhm2 + x2 = 0 

… 

y1h1r+ y2h2r + … + ymhmr + xr = 0. 

The first equation is of the form a + x1 = 0 where a =  y1h11+ y2h21+ … + ymhm1.  

Adding a to both sides, we obtain 
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a + (a + x1) = a + 0 = a 

⇒ (a + a) + x1 = a 

⇒ 0 + x1 = a,  since a + a = 0 

⇒ x1 = a. 

This can be done for each row.  Therefore x1 =    y1h1i +  y2h2i + … + ymhmi , 1 ≤ i ≤ r. 

Let b1 = y1, b2 = y2, …, bm = ym, we see that x1, x2, …, xr satisfy the equations in the above note.  

Thus b = b1b2…bm ∈ Bm and x = eH(b). 

Converse: If x = eH(b) the equations in the above note can be rewritten by adding xi to both sides 

of the ith equation, i = 1, 2, …, n, as 

 b1h11 + b2h21 + … + bmhm1 + x1 = 0, 

 b1h12 + b2h22 + … + bmhm2 + x2 = 0 

… 

b1h1r + b2h2r + … + bmhmr + xr = 0, which shows that x ⊗H = 0. 

 

14.6.4 Corollary: The set EH(Bm)  = {EH(b)  b ∈ Bm} is a subgroup of Bn and is a group code. 

 

14.6.5 Example: For the parity check matrix  

H = 

0  1  1
0  1  1
1  0  0
0  1  0
0  0  1

 
 
 
 
 
 
 
 

  determine (2, 5) encoding function EH: B2→ B5. 

 

Solution: We have B2 = {00, 01, 10, 11}.  Then EH(00) = 00 x1x2x3, where  

x1 = 0⋅ 0 + 0⋅0 = 0   

x2 = 0⋅ 1 + 0⋅1 = 0 

x3 = 0⋅ 1 + 0⋅1  = 0.  Therefore EH(00) = 00000.  

Now EH(01) = 01 x1x2x3, where  

x1 = 0⋅ 0 + 1⋅0 = 0   
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x2 = 0⋅ 1 + 1⋅1 = 1 

x3 = 0⋅ 1 + 1⋅1  = 1.  Therefore EH(01) = 01011.  

Continue in this way we get that EH(10) = 10011 and EH(11) = 11000.  Thus EH(B2) = {00000, 

01011, 10011, 11000}. 

 

14.6.6 Definition: Consider an (m, n) encoding function E: Bm→ Bn.  Let x = E(b) for b ∈ Bm is 

received as x1 ∈ Bn.  An onto function D: Bn→ Bm is called an (n, m) decoding functrion 

associated with E if D(xe) = b1 ∈ Bm is such tht when the transmission channel has no noise then 

b1 = b.  That is D o E = IB
m  where IB

m  is the identity function of Bm. 

 

14.6.7 Note: The function D decodes properly received words correctly, but the decoding of 

improperly received words may or may not be correct. 

 

14.6.8 Example:  Consider the parity check code and the corresponding decoding function is       

D: m 1
2Z + →  m

2Z  defined by D(r1 r2 … rmrm+1) = r1 r2 … rm. 

Using the definition of D: 4
2Z → 3

2Z ,  

D(0000) = 000, D(0001) = 000, …, D(1010) = 101, D(1100) = 110,…, D(1111) = 111.    

 

14.6.9 Method:  Given an (m, n) encoding function E: Bm→ Bn,  we need to determine an (n, m) 

decoding  function D: Bn→ Bm  associated with E. We adopt the maximum likelihood technique, 

for determining a decoding function D for a given E. 

Since Bm has 2m elements, there are 2m code words in Bn.  We first list the code words in a fixed 

order:  

x(1), x(2), …, 
m(2 )x .  If the received word is xt, we compute d(x(i), xt) for 1 ≤ i ≤ 2m and choose the 

first code word, say it is x(s), such that  

m

i (s)
t t1 i 2

min {d(x , x )} d(x , x ).
≤ ≤

=  
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That is, x(s) is a code word that is closest to xt and the first in the  list.  If x(s) = E(b), we define the 

maximum likelihood decoding function ⋅ associated with E by  D(xt) = b.  Observe that D 

depends on the particular order in which the code words in E(Bn) are listed.  If the code words 

are listed in a different order, we may obtain a different maximum likelihood decoding function 

D associated with E. 

 

14.6.10 Theorem: Suppose that E is an (m, n) encoding function and D is a maximum likelihood 

decoding function associated with E.  Then (E, D) can correct k or fewer errors if and only if the 

minimum distance of E is at least 2k+1. 
 

Proof:  Part (i):   Assume that the minimum distance of E is at least 2k+1. 

Let b ∈ Bm and x = E(b) ∈ Bn.  Suppose that x is transmitted with k or fewer errors and xt is 

received.  This means d(x, xt) ≤ k.  If z is any other code word, then  

2k+1 ≤ d(x, z) ≤ d(x, xt) + d(xt, z) ≤ k + d(xt, z). 

Thus d(xt, z) ≥ 2k + 1 –k =  k +1.  This means that x is the unique code word that is closest to xt, 

so D(xt) = b.  Hence (E, D) corrects k or fewer errors. 
 

Part (ii): Assume that the minimum distance between code words is r ≤ 2k, and let x = E(b) and 

x1 = E(b1) be code words with d(x, x1) = r.  Suppose that x1 precedes x in the  list of code words 

used to define D.  

Write x = b1b2…bn, x1 =  1 1 1
1 2 nb b ...b .   Then bi ≠ 1

ib  for exactly r integers i between 1 and n.  

Assume that b1 ≠ 1
1b , …,  br  ≠ 1

rb , but bi = 1
ib  when  i > r.  Any other case handled in the similar 

way. 
   

We now recollect the statement of Lagranges’ theorem  

(Statement:  Let G be a finite group and let H a subgroup of G.  Then O(G)/O(H) = [G:H] is the 

number of distinct left cosets of H in G).  In particular, the number of elements in H must divide 

the number of elements in G. 
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14.6.11 Coset Decoding:  A linear code C is a subgroup of n
2Z .  Coset or standard decoding uses 

the cosets of C in n
2Z  to implement maximum-likelihood decoding.  Suppose that C is an (n, m) 

linear code.  A coset C of n
2Z  is written in the form x + C, where x ∈ n

2Z  .  By Lagranges 

theorem,  there are 2n-m distinct cosets of C in  n
2Z .  An n-tuple of least weight in a coset is called 

a coset leader. 

 

14.6.12 Example: Let C be the (5, 3) linear code given by the parity check matrix  

H = 
01100
10010
11001

 
 
 
 
 

.  The code consists of the codewords (00000) (01101) (10011) (11110).  There are 

25-2 = 23 cosets of c in 5
2Z , each with order 22 = 4.  These cosets are listed in the following table. 

 

 Cosets 

C (00000) (01101) (10011) (11110) 

(10000) + C (10000) (11101) (00011) (01110) 

(01000) + C (01000) (00101) (11011) (10110) 

(00100) + C (00100) (01001) (10111) (11010) 

(00010) + C (00010) (01111) (10001) (11100) 

(00001) + C (00001) (01100) (10010) (11111) 

(10100) + C (00111) (01010) (10100) (11001) 

(00110) + C (00110) (01011) (10101) (11000) 

 

Self Assessment Question 6:  Compute the hamming distances between the following pairs of n-

tuples (i) (011010), (011100) (ii) (00110), (01111). 
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Self Assessment Question 7:  Consider the encoding function E: B2 → B5 defined by E(00) = 

00000, E(01) = 01110, E(10) = 00111, E(11) = 11111.  What is the minimum distance of the 

code words. 

 

Self Assessment Question 8:  Verify that the (3, 7) encoding function defined by E(000) = 

0000000, E(001) = 0010110, E(010) = 0101000, E(011) = 0111110, E(100) = 1000101, E(101) = 

1010011, E(110) = 1101101, E(111) = 1111011, is a group code. 

 

Self Assessment Question 9: With doing any addition, explain why the following set of 4-tuples 

in  4
2Z  cannot be a group code. 

(0110) (1001) (1010) (1100) 

 

Self Assessment Question 10: Determine the (3, 6) encoding function corresponding to the 

parity-check matrix H = 

1  0  0
0  1  1
1  1  1
1  0  0
0  1  0
0  0  1

 
 
 
 
 
 
 
  
 

. 

 

 

14.7 Answers to Self Assessment Questions 
 

SAQ 1.  

Consider (a+b)2 = (a + b) (a + b) = a(a + b) + b(a  + b) = a2 + ab + ba  + b2 

 

SAQ2.  

Let a ∈ R. Consider a2 + a2 = a + a = (a + a)2 = a2 + a2 + a2 +a2. 

 Therefore       a2 +a2 = a2 + a2 + a2 + a2 
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                       ⇒ 0 = a2 + a2 = a + a  

                       ⇒ a = -a---- (1). 

Now for any a, b ∈ R consider  

a + b = (a + b)2 = a2 + ab + ba + b2 = a + ab + ba + b   

⇒ 0 = ab + ba    

⇒ ab = -ba  = ba (by the condition (1)).   Hence R is  commutative. 

 

SAQ 3.  

(i) Consider 0 + φ(0) = φ(0) = φ(0 + 0) = φ(0) + φ(0) ⇒ φ (0)  = 0.  

(ii) 0 = φ(0) = φ(a + (-a)) = φ(a) + φ(-a) ⇒ φ(-a) = -φ(a). 

 

SAQ4.  

Given c = 1010110 ∈  7
2Z  and error pattern E = 0101101 ∈ 7

2Z .  

Therefore the received word is r = c + E = 1010110 + 0101101 = 1111011  

(where + is the addition in 7
2Z , that is addition is component wise,   

1+1 = 0, 1+0 = 1, 0+1 = 1, 0+0 = 0). 

It is clear that r differs from c in the second, fourth, fifth and seventh places (total 4 places). 

 

SAQ 5. 

The error pattern E is given by r = c + E, where + is the component wise addition in  7
2Z .  Let E 

=  e1 e2 … e7, we have r = c + e1 e2 … e7. 

This implies 1011111 = 1010110 + e1 e2 … e7. 

Since the addition is component wise in 7
2Z , we have 1 = 1 + e1 ⇒ e1 = 0, 0 = 0 + e2 ⇒ e2 = 0, 1 

= 1 + e3 ⇒ e3 = 0, 1 = 0 + e4 ⇒ e4 = 1, 1 = 1 + e5 ⇒ e5 = 0, 1 = 1 + e6 ⇒ e6 = 0,     1 = 0 + e7 ⇒ 

e7 = 1.  Therefore E = 0001001. 

 

SAQ6.  
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(i) 2, (ii) 2.  

 

SAQ 7.  

The minimum distance is 2. 

 

SAQ 8. 

  The set E(B3) = {0000000, 0010110, 0101000, 0111110, 1000101,1010011,  1101101, 

1111011} is closed, 0000000 is the identity element and each element is its own inverse.  

Therefore E(B3)  is a subgroup of B7 and hence a group code. 

 

SAQ 9.  

(0000) ∉ C.   

 

SAQ10.  

EH(000) = 000000,  EH(001) = 001111, EH(010) = 010011, EH(011) = 011100, EH(100) = 

100100, EH(101) = 101011, EH(110) = 110111, EH(111) = 111000. 

 

 

14.8 Summary  

 

This lesson provides the brief idea about the encoding and decoding the messages in a 

transmitted channel.  This concept is an application of modern algebra.   The student able to 

apply the concepts of semigroups, groups, cosets and several useful algebraic techniques in 

sending messages in terms of encoding and decoding functions.   Parity check is useful in 

solving practical problems in communications systems.  
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14.8 Technical Terms  
 

Ring:  A non empty set R is said to be a ring (or an associative 

ring) if there exists two operations + and “.”on R such that 

(i) (R, +) is an abelian group  (ii) (R, .) is a semi-group and 

(iii) for any a, b, c ∈ R we have a(b + c) = ab + ac, (a + b)c 

= ac + bc. 

Division ring:  Let (R*,.) is a group (here  R* = R – {0}).  A division ring is 

said to be a field if it is commutative (we will learn this 

concept in the next section). 

The Pigeon Hole Principle:   If a objects are distributed over m places and if a > m, then 

some place receives at least two objects.  

Homomorphism:  A mapping φ : R → R1 is said to be a homomorphism (or a 

ring-homomorphism) if (i) φ(a + b) = φ(a) + φ(b), (ii) φ(ab) 

= φ(a) φ(b) for all a, b ∈ R. 

Hamming distance: or distance d(x,y), between x and y is the number of bits in 

which x and y differ.  

The minimum distance:   dmin = min. {d(x,y)  where x and y are distinct code 

words}. 

The weight of the Code word:   W(x) of a binary code word x is the number of 1’s in x.  It 

is also denoted by x.  It is clear that w(x) = d(x, 0) where 0 

= (00…0).  

Group Code:  Let E: m
2Z → n

2Z , n > m be an encoding function and C = 

{E(w)w∈ m
2Z } be the set of codes.  Then C is called a 

group code if C is a subgroup of n
2Z .   
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Null space:  The matrix H ∈  Mm×n (Z2) defined to be the set of all 

binary n-tuples x such H⊗x = 0.  We denote the null space 

of a matrix H by Null (H). 

Linear Code:  A code is a linear code if it is determined by the null space 

of some matrix  H ∈ Mm×n (Z2).  
 

Parity Check Matrix:  Let m < n and r = n –m.  An n × r Boolean matrix: 

 

11 12 1r

21 22 2r

m1 m2 mr

h   h    h
h h     h

h  h h
1       0       0
0       1       0 

0       0       1

 
 
 
 
 
 
 
 
 
 
  
 

L

L

M

L

L

L

M

L

 is called a parity check matrix, whose 

last r rows form an r × r identity matrix.    

 

 

14.10 Model Questions    
 

1. Compute the weighs of the following n-tuples 

(i) (011010), (ii) (01111). 
 

2:  In each of the following codes, what is the minimum distance (that is, dmin )for the code 

(i) (011010) (011100) (110111) (110000) 

(ii) (000000) (011100) (110101) (110001) 

3: An encoding function E: 3
2Z → 4

2Z  is defined by the generator matrix  G = 
1001
0101
0011

 
 
 
 
 

 

(i) Find the set of all code words assigned by E. 
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(ii) Determine the associated parity-check matrix. 
 

4:  For an encoding function E: 4
2Z  → 6

2Z , the parity check matrix is given by H = 
101010
110101
 
 
 

.  

Decode the received words: 010101, 111010, 111110. 
 

5.  Let x = y1y2…ym x1x2…xr ∈ Bn.  Then x ⊗H = 0 (that is x ∈ N) if and only if x = EH(b) for 

some b ∈ Bm.  
 

6. Suppose that E is an (m, n) encoding function and D is a maximum likelihood decoding 

function associated with E.  Then (E, D) can correct k or fewer errors if and only if the minimum 

distance of E is at least 2k+1. 
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Lesson 15 

Residue Arithmetic  
 

Objectives  
 
At the end of the Lesson the student must be able to: 
 
          (i) Know the basics of number theory. 
         (ii) Understand the prime factorization of integers. 
        (iii) Apply the Fermat’s and Euler theorems. 
         (iv) Learn the residues and mixed-base system.  
 

 

Structure 
15.1 Introduction 

15.2 Divisibility 

15.3 Residue Arithmetic 

15.4 Mixed-base System 

15.5 Answers to Self Assessment Questions 

15.6 Summary 

          15.7 Technical Terms 

          15.8 Model Questions 

          15.9 References 

 

 

15.1 Introduction 
 

The integers are the building blocks of mathematics.  In this lesson we will study the properties 

of divisibility, prime factorizations.  The applications of number theory are in the fields of 

efficient algorithms, cryptography and other computer related branches. We introduce the 
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residue number system, which is an alternative to the fixed-base number systems, like decimal 

and binary number systems. The fixed-base number systems in digital computers have many 

advantages.   

 

15.2 Divisibility  
 

15.2.1 Definition: (Principle of induction) If  Z  is a set of integers such that   

  a) 1 ∈ Z,  

  b) n ∈ Z     ⇒  n + 1 ∈ Z,  

then all integers greater than equal to  1  belongs to  Z. 

 

15.2.2 Definition: (The Well Ordering Principle) If  A  is a non-empty set of positive integers,  

then  A  contains a smallest member. 

 

15.2.3 Definition: For two integers  d  and  n,  we say that  d  divides  n  (we write  d | n)  if  n = 

cd  for some integer  c.  In this case we also say that d is a factor of n.  If  d  does not divide n,  

we write  d ∤ n. 

 

15.2.4 Properties of divisibility: 

       (i)  n  | n  (reflexive property) 

      (ii)  d  | n  and  n  | m  ⇒  d  | m  (transitive property) 

     (iii)  d  | n  and  d | m  ⇒  d  | an + bm  for any two integers   a  and  b  (linearity) 

     (iv)  d  | n  ⇒  ad  |am  (multiplication property) 

      (v)  ad  | an  and  a ≠ 0  ⇒  d | n  (cancellation law) 

     (vi)  1  | n  ( 1 divides every integer) 

    (vii)  n  | 0  (every integer divides zero) 

   (viii)  0  | n  ⇒  n = 0  (zero divides only zero) 

     (ix)  d  | n  and  n ≠ 0  ⇒  |d| ≤ |n|   (comparison property) 
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      (x)  d | n  and  n  |d  ⇒  |d| = |n| 

     (xi) d | n and d ≠ 0  ⇒  (n / d) | n.   

 

15.2.5 Definition: (i) If  d | n,  then  
d
n   is called the divisor conjugate to d.   

 (ii) If  d  divides both  a  and  b,  then  d  is called a common divisor of  a  and  b. 

(iii) If  d ≥ 0,  d  is a divisor of  a  and  b  and  c  is a divisor of  a  and  b,  implies  c  divides  d;  

then  d  is called the greatest common divisor (gcd) of  a  and  b. 

 

15.2.6 Definition: Every pair of integers  a  and  b  have  g.c.d.  If  d  is the greatest common 

divisor of  a  and  b,  then  d = ax + by  for some integers  x  and  y.  The g.c.d  of  a, b  is denoted 

by  (a, b)  or by  aDb.  If  (a, b) = 1, then a and b are said to be relatively prime. 

 

15.2.7 Properties: (of greatest common divisor): 

     (i) (a, b) = (b, a)  or  aDb = bDa  (commutative law) 

    (ii)  (a, (b, c)) = ((a, b), c)   (associative law) 

   (iii)  (ac, bc) = |c|(a, b)  (distributive law) 

   (iv)  (a, 1) = (1, a) = 1  and  (a, 0) = (0, a) = |a|. 

 

15.2.8 Euclid’s lemma:  If  a | bc  and  (a, b) = 1, then  a | c.   

 

15.2.9 Definition: (i) An integer  n  is said to be prime if  n > 1 and if the only positive divisors 

of  n  are  1  and  n. 

   (ii) If n > 1 and n  is not prime,  then  n  is called composite number. 

 

15.2.10 Note:  (i) (Euclid) There are infinite number of prime numbers. 

   (ii)  If a prime  p  does not divide  a, then (p, a) = 1.  

 (iii) If a prime  p  divides  ab, then  p | a  or  p | b.  More generally, if  a prime  p  divides a 

product   a1. a2 … an, then  p | ai  for at least one  i. 
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15.2.11 Fundamental Theorem of Arithmetic: Every integer  n > 1 can be written as a product 

of prime factors in only one way,  apart from the order of the factors. 

[Example: 3000  =  2 × 2 × 2 × 5 × 5 × 5 × 3  =  23.53.31] 

 

15.2.12 Note: (i) Let  n  be an integer.  If the distinct prime factors of  n  are  p1, p2, … pr  and if  

pi  occurs as a factor  ai  times, then we write    

                             n = 1a
1p × 2a

2p × … × ra
rp  or  n = ∏

=

r

1i

ia
ip  

and is called the factorization of  n  into prime powers. 

(ii) We can express 1 in this form by taking each exponent  ai  to be zero.  

(iii) If  n = ∏
=

r

1i

ia
ip ,  then the set of positive divisors of  n  is the set of numbers of the form  

∏
=

r

1i

ic
ip ,  where  0 ≤ ci ≤ ai  for  i = 1, 2, …, r. 

(iv) If two positive integers  a  and  b  have the factorization  a = ∏
=

r

1i

ia
ip ,  b = ∏

=

r

1i

ib
ip ,  then 

their  g.c.d.  has the factorization   (a, b) = ∏
=

r

1i

ic
ip   where  ci = min{ai, bi} 

 

15.2.13 Division Algorithm: Given integers a and  b  with  b > 0.  Then there exists a unique 

pair of integers q and r such that  a = bq + r, with  0 ≤ r < b. Moreover,  r = 0  ⇔ b | a. 

 
Self Assessment Questions: 
  
1. Find the gcd of 858 and 325. 
 
2. If a|c and b|c, then is it true that “ab|c”? 
 
3. If gcd of {a, b} = 1, then what is the gcd of a + b and a – b is? 
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4. Are every two consecutive integers are co-prime? 
 

15.2.14 Euclidean Algorithm:  Given positive integers a  and  b, where  b ∤ a.   Let  r0 = a,              

r1 = b  and  apply the division algorithm repeatedly to obtain a set of remainders r2, r3, …, rn, rn+1  

defined successively by the relations   

r0 = r1q1 + r2    0 < r2 < r1,    

r1 = r2q2 + r3  0 < r3 < r2 

…… 

rn-2 = rn-1qn-1 + rn 0 < rn < rn-1 

rn-1 = rnqn + rn+1 rn+1 = 0 

Then   rn, the last non zero remainder in this process, is the g.c.d. of  a  and  b. 

 

15.2.15 Definition: The greatest common divisor of three integers  a, b, c  is denoted by  (a, b, c)  

and is defined as  (a, b, c) = (a, (b, c)). 

Note that from the properties of g.c.d, we have  (a, (b, c)) = ((a, b), c).  So the g.c.d. depends 

only on  a, b, c  and not on the order in which they are written.  

 

15.2.16 Definition: The g.c.d. of  n  integers a1, a2, …, an  is defined inductively by the relation  

(a1, a2, …, an) = (a1, (a2, …, an)). Again this number is independent of the order in which the  ai  

appear. 

 

15.2.17 Note: If  d = (a1, a2, …, an), then  d  is a linear combination of the  ai.  That is, there exist  

integers  x1, x2, …, xn  such that  (a1, a2, …, an) = a1x1 + a2x2 + … + anxn. 

 (ii) If   d = 1, then numbers are said to be relatively prime. 

(iii) If  (ai, aj) = 1 whenever  i ≠ j, then the numbers a1, a2, …, an  are said to be relatively prime 

in pairs. 

(iv)  If a1, a2, …, an  are relatively prime in pairs, then  (a1, a2, …, an) = 1. 
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15.2.18 Problem: If p > 1 and 2p – 1 is prime, then p is prime.  Is the converse true?  Justify. 
 

Solution: If p is not prime, then p = mn, where m, n > 1. 

Therefore 2p – 1 = 2mn – 1 = (2m)n – 1n.  Take 2m = a. 

Now 2m = a = an – 1n where a = 2m > 2 

                    = (a – 1)(an-1 + an-2 + … + 1n-1) 

Now each of the two factors on right hand side is greater than 1 and therefore 2p – 1 is 

composite, a contradiction. 

Converse is not true: For example, take p = 11 is prime, but 211 – 1 is divisible by 23 and so it is 

not prime. 

 

 

15.3 Residue Arithmetic  

 

We introduce the residue number system. It is an alternative to the fixed-base number systems, 

like decimal and binary number systems. The fixed-base number systems in digital computers 

have many advantages. However these systems have speed restrictions in performing arithmetic 

operations. The residue number system does not have many advantages of fixed-base systems. 

However addition, subtraction and multiplication can be performed on a ‘residue computer’ in 

less time. But the residue number system has the following disadvantages, too. 

1. Comparison of numbers is difficult. 

2. It is difficult to determine overflow. 

3. Division is complex. 

4. Not convenient to represent fractions. 
 

Now, let us introduce residue number system. Let m be a positive integer.  From unique 

factorization theorem, we have 
1 2

1 21 2 ... ...rn n n
r rm p p p m m m= =  
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where pi  are prime numbers and ni are positive integers for i = 1, 2, :.., r and 
in

i im p= . 

Clearly g.c.d. (mi, mj) = 1 for i ≠ j. That is, 1 2... rm m m are relatively prime.  

 

15.3.1 Definition: Let x be any number in Zm and let xi = x mod mi, for i = 1, 2, ..., r. Then the r-

tuple (x1, x2, ..., xr) is called the residue or the modular representation of x. 

Modular representation of any element x ∈ Zm is an r-tuple in *
mZ  = 

1 2
...

nm m mZ Z Z× × × .  There 

are m = 1 2... rm m m  elements in *
mZ . 

 

15.3.2 Theorem: (Chinese remainder theorem). There exists a one-to-one correspondence 

between Zm and *
mZ . 

 

Proof: Let g: Zm → *
mZ  be such that g(x) = (x1, x2, …, xr)   

                       = (x mod m1, x mod m2, ..., x mod mr). 

First, we prove g is one-to-one. If possible let x ≠ y and g(x) = g(y) for some x,y, ∈ Zm. That is, x 

mod mi = y mod mi for i = 1,2, ..., r. This means (x-y) is divisible by mi for each i or (x-y) is 

divisible by m since 1
im− ’s are pair-wise relatively prime. This is, a contradiction as (x - y) is not 

divisible by m. Therefore, g is one-to-one. 

Since Zm and *
mZ have the same number of elements, g is onto. Hence the proof. 

 

15.3.3 Note: From the above Theorem, it follows that the residue representation of any number 

in Zm is unique and conversely. 

 

15.3.4 Example:  Let m = 15. Then m = 3 × 5 so that m1 = 3 and m2 = 5 and *
15Z  = Z3 ×  Z5. The 

residue representation for the numbers in Z15 is given in Table.  
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x 3 5 x 3 5 

0 

1 

2 

3 

4 

5 

6 

7 

0 

1 

2 

0 

1 

2 

0 

1 

0 

1 

2 

3 

4 

0 

1 

2 

8 

9 

10 

11 

12 

13 

14 

2 

0 

1 

2 

0 

1 

2 

3 

4 

0 

1 

2 

3 

4 

 

Now let us define addition and multiplication on *
mZ  in terms of the corresponding operations in 

imZ  for i = 1, 2, ..., r. 

Let x, y ∈ Zm and (x1, x2, ..., xr) and (y1,  y2, ..., yr) in *
mZ  be their residue representations. Then, 

we define 

(x1, x2, ..., xr)  ⊕m (y1,  y2, ..., yr)) = (x1 
1m+ y1, x2 

2m+ y1,  … , xr 
rm+ yr ) 

(x1, x2, ..., xr)  ⊗m (y1,  y2, ..., yr)) = (x1 
1m× y1, x2 

2m× y1,  … , xr 
rm× yr ) 

In a similar manner, we can define subtraction. 
 

Observation:  (
imZ ,

1m+ ) are cyclic groups. Hence ( *
mZ ,⊗m) is also a cyclic group. 

 

15.3.5 Theorem: The mapping g: Zm → *
mZ  is an isomorphism. 

The proof is out of the scope of the book. 

 

15.3.6 Example:  Let m = 15, x =6 and y = 11. 

From the above table, we get g(x) = g(6) = (0, 1) 

                                               g(y) = g(11) = (2, 1) 

Therefore g(6) ⊕15 g(11) = (0 +3 2, 1 +5 1) = (2, 2) = g(2) = g(6 +15 11). 
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Similarly, g(6) ⊗15 g(11) = (0 ×3 2, 1 ×5 1) = (0, 1) = g(6) = g(6 ×15 11). 
 

Note that when m is large, it is difficult to construct the table of residue digits. 

 

15.3.7 Theorem: (Cancellation law of multiplication): Let c ∈ Zm and g.c.d (c, m) = 1.  Then for 

any two elements a, b ∈ Zm,  (c a) mod m = (c b) mod m ⇒ a mod m = b mod m. 
 

Proof: Let c a  = pm + r1 and cb = qm + r2.  Then    

(c a) mod m = (c b) mod m ⇒ r1 = r2  

⇒ ca – pm = cb – qm  

⇒ c(a-b) = (p-q)m. 

Therefore c(a-b) is divisible by m. 

Since gcd (c, m) = 1, it follows that (a-b) is divisible by m.  That is,  

a mod m = b mod m.  

 

15.3.8 Corollary: If gcd (a, m) = 1, then the equation of the form (a x) mod m = b mod m has a 

unique solution for x mod m. 

 

15.3.9 Definition: For 0 ≤ a < m, if there exists a' such that (a'a) mod m = 1, then a1 is called the 

multiplicative inverse of a. 

 

15.3.10 Theorem: Multiplicative inverse a' exists and is unique if and only if gcd (a, m) = 1 and  

a ≠ 0.  

 

15.3.11 Example: The following table gives the inverses of elements in Z5 and Z8.  
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m = 5 m = 8 

A a' a a' 

1 1 1 1 

2 3 2 none 

3 2 3 3 

4 4 4 none 

  5 5 

  6 none 

  7 7 

 

15.3.12 Theorem: (Fermat’s Theorem):  If a is an integer and m is a prime then                        

am mod m = a mod m. 
 

Proof: (By induction on a)  

Case (i): a = 0.  Then the theorem is clearly true. 

Case (ii) Induction Hypo: Assume that the theorem is true for a = k. 

That is km mod m = k mod m. 

Now from Binomial theorem,  

(k + 1)m = 1 2( 1) ... 1
1! 2!

m m mm m mk k k− −−
+ + + +  

Since m is prime, each term except the first and last in the RHS is a multiple of m and it follows 

that  

(k + 1)m mod m = (km + 1) mod m. 

Using induction hypothesis, we get  

(k +1)m mod m = (k +1) mod m. 

Hence from the principle of mathematical induction, the theorem is true for all non-negative 

integers.  This can be extended to all integers. 

 

15.3.13 Note: (i) Fermat’s theorem can be proved using Lagrange’s theorem for finite groups.  



Acharya Nagarjuna University                         15.11                        Centre for Distance Education 

(ii) a' = am-2 mod m, when m is a prime. 

 

15.3.14 Example: Let m = 7.  We get 2' = 25 mod 7 = 32 mod 7 = 4 and 3' = 35 mod 7 = 243 

mod 7 = 5. 

 

15.3.15 Note: The above formula can be used only when m is a prime.  We will generalize this 

formula to compute the inverse even, when m is not a prime. 

We define f(p) = Number of elements in {1, 2, …, p-1}, which are relatively prime to p. 

Thus f(2) = 1, f(3) = 2, f(4) = 2, …. 

If p is a prime then f(p) = p -1.  Also f(pn) = pn – pn-1, where n is positive integer.  Thus  

f(8) = f(23) = 23 – 22 = 4.  

 

Self Assessment Question 5: Compute the inverse of each element in Z5 using Fermat’s 

theorem. 

 

15.3.16 Theorem: (Euler): Let a and m are positive integers which are relatively prime.  Then 

af(m) mod m = 1.  Hence a' = af(n) – 1mod m. 
 

Proof: Let a and b are positive integers which are relatively prime to m.  Then  gcd (a, m) = gcd 

(b, m) = 1. 

We will prove that gcd ((a b) mod m, m) = 1. 

Suppose the converse is true.  Let gcd ((a b) mod m, m) = ⋅, where d > 1. 

That is, ⋅ divides both (a b) mod m and m.   

 d dividing  (a b) mod m ⇒ either ⋅ divides a or d divides b ⇒ gcd (a, m) = d or gcd(b, m) = d. 

This is a contradiction. 

Therefore, (a b) mod m and m are relatively prime. 
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Now let {z1, z2, …, zf(m)} be the set of distinct elements which are relatively prime to m.  This set 

is same as {(a z1) mod m, (a z2) mod m, …, (a zf(m)) mod m} in some order, where 0 < a < m and 

a is relatively prime to m. 

This means the set {z1, z2, …, zf(m)} is a group of order f(m) with respect to multiplication.  By 

using Lagrange’s theorem, it can be verified that every element a of this group satisfies, af(m) 

mod m = 1.  Hence the theorem.  

 

15.3.17 Note: The inverse can be computed using the formula, 

a' = af(m)-1 mod m. 

 

15.3.18 Example: For m = 8 and a = 3, we have 3' = 34-1 mod 8 = 27 mod 8 = 3, since f(8) = 4.  

 

Self Assessment Question 6: Compute the inverse of each element in Z12 using Euler’s theorem. 

 

15.3.19 Note: Fermat’s theorem is a special case of Euler’s theorem with f(m) = m – 1, when m 

is  a prime. 

Now, we will give an explicit procedure for determining the z ∈ Zm, which corresponds to a 

given element in  *
mZ .  

Let i mm Z∈ for i = 1, 2, …, r be such that their residue representation has 1 in the ith component 

and a 0 in all other components.  That is,  

mod 1i im m =  and mod 0im =  for i ≠ j. 

Then for any number (x1, x2, …, xr) ∈ *
mZ  we can write the corresponding number x ∈ mZ  as  

x = 
1

mod
r

i i
i

m x m
=

 
  
 
∑  

 

15.3.20 Example: Let m = 30 so that m1 = 2, m2 = 3 and m3 = 5. 
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(2)

1
30 mod 30 15
2

f
m  = = 

 
 

(3)
2

2
30 mod 30 10 mod30 10
2

f
m  = = = 

 
 

(5)
4

3
30 6 mod 30 6
2

f
m  = = = 

 
 

Hence for (x1, x2, x3) ∈ *
30Z , x = (15x1 + 10x2 + 6x3) mod 30. 

For (1, 1, 2) ∈ *
30Z , x = (15 × 1 + 10 × 1 + 6 × 2) mod 30 = 7. 

 

15.3.21 Definition: The above method involves operations modulo m which is not suitable for a 

computer which uses operation modulo mi.  So we give a new formulation called mixed-base 

number system. 

 

 

15.4 Mixed-base number system  

 

In this system, any number x ∈ Zm can be represented by x = 
1

3 1 2 2 1 1
1

...
r

r j
j

a m a m m a m a
−

=
+ + + +∏  

where m = m1m2…mr, each mixed-base digit ai is in the interval 0 ≤ ai < m∩ and weight wi  of 

each ai  is given by    
1

1

r

j
j

m
−

=
∏  for i = 2, 3, …, r.   

Any positive integer in the interval 0 ≤ x < 
1

r

i
i

m
=
∏ can be represented in this system uniquely.  

 

15.4.1 Note: The system reduces to decimal number system when mi = 10 for all i.  The mixed-

base digits a1, a2, …, ar can be obtained sequentially in the following manner:  
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Let   (x1, x2, …, xr) ∈ *
mZ .  Then a1 = x mod m1 = x1 

a2 = (x2 – a1) c12 mod m2  

a3 = [(x3 – a1)c13 – a2] c23  mod m3  

ai = ((…(x - a1)c1i –a2)c2i - … ai-1)ci-1, i mod mi  for 1 < i ≤ r where cij = ( ) 1if m
im − mod mj for 1 ≤ i 

< j ≤ r. 

 

15.4.2 Example: Let m = 30 so that m1 = 2, m2 = 3, m3 = 5.  Also, let x = (x1, x2, x3)  = (1, 1, 4).  

Then  

2( ) 1 (3) 1 2 1
12 21 mod 2 mod 3 2 mod 3 2mod 3.f m fc m m− − −= = = =  

3( ) 1 4 1
13 31 mod 2 mod 5 3mod5.f mc m m− −= = =  

3( ) 1 (5) 1 3
23 32 mod 3 mod 5 3 mod 5 2mod 5.f m fc m m− −= = = =  

a1 = x1 =1 

a2 = (x2 – a2) c12 mod m2 = (1-1) 2 mod 3 =0 

a3 = [(x3 – a1)c13 – a2] c23  mod m3 = [(4-1)3 - 0]2 mod 5 = 3. 

Then for unique factorization theorem,   

1 2
1 21 2 ... ...rn n n

r rm p p p m m m= =  

Then x = 6a3 + 2a2 + a1 = 6 × 3 + 2 × 0 + 1 = 19. 
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15.5 Answers to Self Assessment Questions  
 

SAQ 1.  

gcd of 858 and 325 is 13.  

 

SAQ2.  

If it is not true.  For example, take a = 3, b = 6, c = 12.  Now 3|12 and 6|12 but 3.6∤ 12. 

 

SAQ 3.  

Either 1 or 2. 

 

SAQ 4.  

Yes, the gcd of {n, n+1}, n ∈ ℤ is equal to 1. 

 

SAQ5.  

The inverse of 1 = 1, the inverse of 2 = 3, the inverse of 3 = 2, the inverse of 4 = 4. 

 

SAQ 6.  

The inverse of 1 = 1, the inverse of 5 = 5, the inverse of 7 = 7, the inverse of 11 = 11. 

 

 

15.6 Summary 
 

In this lesson we have studied the basic number theory.  We studied some important theorems 

like Fermat’s and Euler’s with suitable examples.  Finding of inverse elements using these 

theorems were illustrated. Applications of Chinese remainder theorem in modular arithmetic has 
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key role in cryptography and in analysis of algorithms.  The mixed number system also 

introduced in this lesson. 

 

 

15.7 Technical Terms 
 

The Well Ordering Principle:  If  A  is a non-empty set of positive integers,  then  A  

contains a smallest member. 
 

Euclid’s lemma:   If  a | bc  and  (a, b) = 1, then  a | c.   
 

Fundamental Theorem of Arithmetic: Every integer  n > 1 can be written as a product of prime 

factors in only one way,  apart from the order of the factors. 

Division Algorithm:  Given integers a and  b  with  b > 0.  Then there exists a 

unique pair of integers q and r such that  a = bq + r, with  0 

≤ r < b. Moreover,  r = 0  ⇔ b | a. 

Chinese remainder theorem:  There exists a one-to-one correspondence between Zm and 
*
mZ . 

Fermat’s Theorem:   If a is an integer and m is a prime then am mod m = a mod 

m. 

Euler:  Let a and m are positive integers which are relatively 

prime.  Then af(m) mod m = 1.  Hence a' = af(n) – 1mod m. 

Mixed based system:  The method involves operations modulo m which is not 

suitable for a computer which uses operation modulo mi.  

So we give a new formulation called mixed-base number 

system. 
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15.8 Model Questions 
 

1. State and Prove Fermat’s theorem. 

 

2. State and Prove Euler’s theorem. 

 

3. Give the residue representation of all integers in Z60 with m1 = 4, m2 = 3, and m3 = 5.  

 

4. Explain the mixed base number system. 
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Lesson 16 

 Partially Ordered Sets and Lattices 
 

Objectives  
 
At the end of the Lesson the student must be able to: 
 
          (i) Know the order relations. 
         (ii) Diagram representation of partial ordered sets. 
        (iii) Know the properties of partial order relations  
 

Structure 
16.1 Introduction 

16.2 Partial Ordered Sets 

16.3 Representation of Posets 

16.4 Answers to Self Assessment Questions 

16.5 Summary 

16.6 Technical Terms 

16.7 Model Questions 

16.8 References 

                                 

                            

16.1 Introduction 
 

There are various types of relations defined on a set.  In this unit our interest is partially ordered 

relation which is defined on a set, referred as a partially ordered set.  This would lead to the 

concepts of lattices and Boolean algebras.  We discuss the different properties of partial order 

relations on a set, and representation of posets.  
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16.2 Partially Ordered Sets 
 

16.2.1 Definition:  A relation R on a set A is called a partial order if R is reflexive, anti-

symmetric and transitive.   The set S with a partial order R is called a partially ordered set or 

Poset and it is denoted by (A, R).  In general, a partial order R on a set is denoted by ≤. 

 

Note that if   (a, b) ∈ R, then we write   a  ≥  b.  If   a  ≥  b   and   a ≠ b, then we write   a > b. 

 

16.2.2 Example: Let A = Z+ the set of all positive integers.  Define R on A as aRb if and only if 

a ≤ b.  Then (A, ≤) is a partially ordered set.  It is clear that (A, <) is not a Poset, since it does not 

satisfy reflexive. 

 

16.2.3 Example: 

(i) The relations ‘≤’ and ‘≥’ are the partial orderings on the set of real numbers.   

(ii) Let X be the power set of the set A.   Then define R on X as S1RS2 if and only if S1 ⊆ S2 for 

S1, S2 ∈ X. Then the relation inclusion ‘⊆’ is a partial ordering on X.   

 

16.2.4 Example: Let  A  be a non-empty set and  S = P(A), the power set of   A.   

Define a relation   R  on  S  as  R  =  {(X, Y)  /  X, Y  are in  P(A)  such that  X  contains  Y}. Now 

we verify that the relation is reflexive.   

For this take  X ∈ S.  Then  X  is a subset of  A.   Since  X  contains  X,  we have   (X, X) ∈ R.   

Therefore  R  is reflexive.   To verify the anti-symmetric condition, let (X, Y), (Y, X) ∈ R.  Then 

X contains Y, and Y contains X,  which imply X = Y.  Hence the relation is anti-symmetric.  To 

verify the transitive condition, let (X, Y), (Y, Z) ∈ R.  Then  X  contains  Y, and  Y  contains  Z.  

So   X contains Z,  which implies  (X, Z) ∈ R.  Hence  R  is transitive.  Therefore    S   is a  POset. 

 
Self Assessment Question 1:  Determine whether the relation R is a partial ordered on theℤ . 
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 (i).  a R b ⇔ a = 2b 

 (ii). a R b ⇔ b2 / a, where a, b ∈ℤ .      

 

Self Assessment Question 2: Determine which of the following are equivalence relations and / 

or partial ordering relations for the given sets. 

 (i)  S = {lines in the plane}; xRy ⇔ x is parallel to y 

 (ii) N = {set of natural numbers}; xRy ⇔ |x – y| ≤ 5.  

 

16.2.5 Definition: Let (A, ≤) be any Poset.  Two elements a and b of A are comparable if either 

a ≤ b or b ≤ a.  If every pair of elements is comparable then it is called a linearly ordered set or 

a chain.  The Poset  (Z+, R) where  R is defined on A as aRb if and only if a ≤ b is a chain. 

 

16.2.6 Definition:  Let  P1, P2, …, Pk be POsets.  The lexicographic product of   P1, P2, …, Pk  

is defined to be the POset   P1 × P2 × … × Pk   with (a1, a2, …, ak)  <  (b1, b2, …, bk)  if    a1 < b1   

or  if  ai  =  bi  for  i = 1, …, m  and  am+1 <  bm+1  for some  m  <  k. 

 

16.2.7 Problem: Prove that the lexicographic product of the POsets P1, …, Pk is a partial order 

on   P1 × P2 × … × Pk. 
 

Proof: (i) Now we verify the reflexive property.   Let   (a1, …, ak) ∈ P1 × … × Pk.   Since                    

ai  ≤  ai,  for all  1 ≤  i  ≤ k,  we have that (a1, …, ak)   ≤   (a1, …, ak).  

(ii) Now we verify the transitive property. Suppose  (a1, …, ak)  ≤  (b1, …, bk)  and                  

(b1, …, bk) ≤  (c1, …, ck).  

Case-(i): Suppose   ai  =  bi   for all  1 ≤ i ≤ k.  

Then clearly (a1, …, ak)  =  (b1, …, bk)  ≤  (c1, …, ck).  If   bi  =  ci,  for all 1 ≤ i ≤ k,  then we have 

that  (a1, …, ak)  ≤  (b1, …, bk)  =  (c1, …, ck). 

Case-(ii): Suppose   a1 <  b1.  If   b1 < c1,  then   a1 < c1  and hence  (a1 … ak) ≤ (c1 … ck). 
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Case-(iii):   Suppose   ai = bi   for   1 ≤ i ≤ m  and  am+1  <  bm+1   for  m < k..  If  b1 < c1,  then   a1 

=  b1 < c1 and so  (a1 … ak) ≤  (c1 … ck).  Otherwise, since   (b1 … bk) ≤  (c1 … ck), there exists  

m1  such that   bi  =  ci,  for all   1 ≤ i ≤ m1   and   
1m1b
+

<  
1m1c
+

 for   m1  < k.  

If   m < m1,  then   ai  =  bi  =  ci  for all 1 ≤ i ≤ m   and   am+1 <  bm+1  ≤  cm+1.   If  m  >  m1,  then  

ai  =  bi  =  ci   for all  1 ≤ i ≤ m1 and   am=1  =  
1m1b
+

 <  
1m1c
+

.    

Hence   (a1, …, ak)  ≤  (c1, …, ck). 

(iii).  Now we verify the anti-symmetric property. Suppose   (a1, …, ak)  ≤   (b1, …, bk)  and            

(b1, …, bk) ≤ (a1, …, ak).  If  (a1, …, ak)  ≠   (b1, …, bk),  then there exists  m <  k such that   ai = 

bi  for  1 ≤ i ≤ m   and  am+1 ≠ bm+1. If  (a1, …, ak)  <   (b1, …, bk), then am+1 < bm+1.  If     (b1, …, 

bk)  <  (a1, …, ak),  then  bm+1 <  am+1. This imply that   am+1 < bm+1 and bm+1 < am+1, a 

contradiction (since Pm+1 is a POset and am+1, bm+1 ∈ Pm+1).   This shows that the relation is 

 

16.2.8 Definition:  A finite POset can be diagrammed on the plane. If  S   is a  POset  and   a, b   

are in  S   such that  a > b and there is no   c   in   S   such that   a > c   and   c > b,  then  we say 

that    a  covers  b.   

 

16.2.9 Example: If  a  covers  b,  then represent the point corresponding to  a,  above the point 

for  b  and join the points  (This fact is illustrated in the following Fig-1). 
 

Now consider the Fig - 2.  In this, we can observe that:  

D  covers  E;   B  covers  C;   F  covers  C;  A  covers  F.  

Also note that B joined to  E  by a sequence of line segments all going downwards.  

So we have    B  ≥  E. 

  

 

 

a 

b 

a covers b 

A

B F

C

D

E

Fig-1 
Fig-2 
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16.2.10 Definition: (i) An element   x   of a POset  S  is said to be a minimal element if  it 

satisfies the following condition: y ∈ S   and   x  ≥  y   ⇒    y = x..   

(ii)  An element  ‘a’  of   S   is said to be a maximal element if it satisfies the following 

condition:  b ∈ S   and   b ≥ a    ⇒     b = a. 

 

16.2.11 Definition: A POset  S  is said to be a totally ordered (or ordered) set if for  a, b  in  S  

exactly one of the conditions:    a  >  b,   a  =  b,   or   b  >  a   holds. 

 

16.2.12 Problem: In a finite POset   S,  show that there is always atleast one maximal element 

and one minimal element. 
 

Solution: Part-I: (For maximal element): In a contrary way, suppose   S   contains no maximal 

element.  Let   x1 ∈ S.  Since  x1  is not maximal, there exists  x2  in  S such that   x2  >  x1.   Since  

x2  is not maximal, there exists  x3  in  S  such that    x3 > x2.  If we continue this process, we get 

an infinite sequence of distinct elements x1, x2, x3, …, such that xi+1  >  xi   for each i.  This is a 

contradiction to the fact that   S   contains only a finite number of elements (since   S   is a finite 

POset). Hence we conclude that   S   contains a maximal element. 

Part-II: This part of the proof is parallel to that of part-I.        

 

16.2.13 Definition: (i) A chain in a POset is a sequence a0, a1, …, an  of elements of the  POset  

such that ai > ai+1.  The length of this chain is said to be   n. 

 

16.2.14 Definition:   Let   (P, ≥)  be a  POset and  A ⊆  P.  An element  x ∈ P  is called a lower 

bound for  A   if   a  ≥  x,    for all  a ∈ A.  A lower bound  x of  A  is called a greatest lower 

bound of A   if   x  ≥  y  for all lower bounds   y  of  A.   
 

An element   x ∈ P   is called an upper bound for  A  if  x  ≥ a,  for all  a ∈ A.  An upper  bound   

x   is called a least upper bound of   A if   b  ≥  a   for all upper bounds   b   of   A. 
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16.2.15 Note: Let   R   be the set of all real numbers,  φ  ≠  A  ⊆  R.  If  A  has a lower bound, 

then its greatest lower bound is called infimum   and it is denoted by    inf A. If  A has an upper 

bound, then its least upper bound is called its   supremum  and it is denoted by  sup A.  

For any subset   A  of   R  (the set of all real numbers),   we have that   inf A  =  min A   and                

sup A  =  max A. 

 

16.2.16 Zorn’s Lemma: If   P is a partially ordered set in which every chain has an upper bound, 

then P possesses a maximal element. 

 

 

16.3 Diagram Representation of Posets  
 

16.3.1 Definition: The covering matrix of a finite POset P =  { pi  /  1  ≤  i  ≤  n }  is the matrix  

(
jib ) n × n  where 

jib   =  1   if   pi   covers   pj  or   i  =  j;  

                                  =  0   otherwise. 

 

16.3.2 Example:  The diagram of a POset was given on the right side.   The covering matrix                     

of this POset is given by  
















100
110
011

.  

 
 

16.3.3 Note: (i) The  chain    p0  >  p1  >  p2 >  … >   pk   is said to have  length  k. 
 

(ii) An element  p  of a finite POset is on level  k  if there exists a  sequence    p0  >  p1 >  …  > pk  

=  p  and any other such sequence has length less than or equal to  k. 
 

(iii) Suppose   p  is on level k  and   p0  >  p1  >  …  >  pk  =  p.  Then  p0  is a maximal element of 

the POset.  (if  p0  is not maximal, then there exists  p1  such that   p1  >  p0.   

b 

c 

a 
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Then  p1 > p0 > p1 > … > pk  is of length  (k + 1), a contradiction to the fact  p  is on level  k). 
 

(iv) Fix j. An element  pj  is maximal  ⇔  pj  has no cover  ⇔  
jib  =  0  for all   i  ≠  j   and   i  = 

1, 2, …,  n.  ⇔  jth   column of  (
jib ) contains 1 in the  jth  row and  0  else where.  

⇔ The sum of the elements in the  jth  column is  1. 
 

(v) If the sum of the elements of the  jth column of the covering matrix is  “1”,  then the 

corresponding  jth  element is a maximal element (that is, the element is of level  0). 

 

16.3.4 Definition: A partial ordering ≤ on A poset, represented by a diagram called Hasse 

diagram.  In a Hasse diagram, each element is represented by a small circle.    

 

16.3.5 Example: Consider the POset with the diagram. Here  a  is of level  0; b  is of level  1;   c  

is of level  1; d  is of level  2;   e  is of level  2;  f  is of level 3. 

 

 

 

 

16.3.6 Example: Let A = {a, b, c}. Then p(A) = { φ,  {a}, {b}, {c}, {a, b}, {b, c}, {c, a}, {a, b, c}}. 

Consider the poset (p(A), ⊆ ). Then Hasse diagram is shown below.  

 

 
 

 

 

a 
b c 

d e 

f 

{a} {b} 
{c} 

{a, c} 

{b, c} 

{a, b, c} 

φ 
o 

o 

o 
o

o 

{a,b}o 

o 

o 
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16.3.7 Example: Let A = {2, 7, 14, 28, 56, 84) and a ≤ b if and only if a divides b. Then Hasse 

diagram for the poset (A, ≤) is  

Since 2 divides 14, we join 2 and 14 with a line segment; 7 divides 14 so we join 7 and 14 by a 

line segment; and so on. 

                                                 
 

16.3.8 Example: Let n be a positive integer and Dn denotes the set of all divisors of n. Consider 

the partial order ‘divides’ in Dn.  The Hasse diagrams for D6,, D24 and D30 are given in the 

following figures.   

D6 = {l, 2, 3, 6},    

D24 = {1, 2, 3, 4, 6, 8, 12, 24} 

D30 = {1, 2, 3, 5, 6, 10, 15, 30}. 
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16.3.8 Example: Consider the Posets S and T represented in the following figures (a)   and (b). 

 

                   
Then the Poset (S × T, ≤) is given in figure (c). 

 

16.3.9 Example: Consider the Posets (D4, ≤) and (D9, ≤) given in (a) and (b).  The Hasse 

diagram for L = D4 × D9 under the partial order, is given by  figure (c). 
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16.3.10 Observations: (i) The elements in level -1 are called atoms. 

(ii) For a given Poset Hasse diagram need not be unique.  

(iii) Hasse diagram for the dual Poset (A, ≥) can be obtained by rotating the Hasse diagram of the 

Poset (A, ≤) through 1800. 

 

Self Assessment Question 3:  Let A = {1, 2, 3, 4, 5, 6}.  The relation “|” (divides) is a partial 

order relation on A.   Draw the Hasse diagram of (A, “|”).             

                           

Self Assessment Question 4: Consider the partial ordered set S = {1, 2, 3, 4, 5, 6, 7, 8} under the 

relation whose  Hasse diagrams shown below.  Consider the subsets S1 = {1, 2}, S2 = {3, 4, 5} of 

A.  Find  (i). All the lower and upper bounds of  S1 and S2                                    

 (ii). glb S1, lub S1, glb S2, lub S2. 

 

 

 

 

 

 

 3 2 1 
o o 

4 

6 

o o 

o o 
o 

o 

8 

7 

5 
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16.4 Answers to Self Assessment Questions  
 

SAQ 1.  

(i).  No               (ii). No 

 

SAQ 2.  

(i).  It is an equivalance relation, but not partial ordering as R is not antisymmetric. 

 (ii). Not transitive and so it is neither.  

 

SAQ 3. 

  

 

 

 

 

SAQ 4.  

Upperbounds of S1 are 3, 4, 5, 6, 7 and 8                        

         Lowerbounds of S1 are none. 

         glb (S1) : none 

         lub (S1) : none 

         Upperbounds of S2 are 6, 7 and 8 

        

         Lowerbounds of S2 are 1, 2 and 3 

         glb (S2) = 3 

         lub (S2) = none. 
 

 

4 

5 

o 

o 

6 

3 2 

1 

o 

o 

o o 
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16.5 Summary 
 

The structures of partial ordered sets and lattices are useful in sorting and search procedures, and 

constructions of logical representations for computer circuits.  The diagrammatic forms of lattices 

are useful in search, path procedures.  We observed the interrelations between the algebraic 

structures POsets and Lattices and obtained some of their important equivalences.  These 

concepts are base for the Boolean algebra and logical circuits. 

 

 

16. 5 Technical Terms  
 

Partial order:  Reflexive, anti-symmetric and transitive.    

Comparable:  Let (A, ≤) be any Poset.  Two elements a and b of A are if 

either a ≤ b or b ≤ a.   

Linearly ordered set or a chain:  Every pair of elements is comparable. 

Lexicographic product: Let  P1, P2, …, Pk be POsets.  The of   P1, P2, …, Pk  is 

defined to be the POset   P1 × P2 × … × Pk   with (a1, a2, …, 

ak)  <  (b1, b2, …, bk)  if    a1 < b1   or  if  ai  =  bi  for  i =                 

1, …, m  and  am+1 <  bm+1  for some  m  <  k. 

Minimal element:    y ∈ S, a poset  and   x  ≥  y   ⇒    y = x..   

Maximal element:   b ∈ S, a poset  and   b ≥ a    ⇒     b = a. 

Totally ordered (or ordered): For  a, b  in  S  (a poset) exactly one of the conditions:                        

a  >  b,   a  =  b,   or   b  >  a   holds. 

Greatest lower bound of A:   A lower bound   x of  A  is called a greatest lower bound of 

A   if   x  ≥  y  for all lower bounds   y  of  A.   

Zorn’s Lemma:  If   P is a partially ordered set in which every chain has an 

upper bound, then P possesses a maximal element. 
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Covering matrix:  Let  P =  { pi  /  1  ≤  i  ≤  n } be a poset.  Then the matrix  

(
jib ) n × n  where  

jib   =  1   if   pi   covers   pj  or   i  =  j;  

and =  0   otherwise. 

Hasse diagram:  Representation of Poset by a diagram.    

Atom:   Elements in level zero 

 

 

16.7 Model Questions 
 

1. Determine which of the following are partial order? 

          (i).  R1 = {(a, b) ∈ ℤ × ℤ  / |a - b| ≤ 1} on ℤ  

         (ii).  R2 = {(a, b) ∈ ℤ × ℤ  / |a| ≤ |b| } on ℤ  

        (iii). R3 = {(a, b) ∈ ℤ × ℤ  / a divides b in ℤ } on ℤ  

        (iv). R4 = {(a, b) ∈ ℤ × ℤ  / a-b ≤ 0}                                        

 

2. Define a relation R on ℤ, the set of all integers as: aRb ⇔ a + b is even for all a, b ∈ ℤ.  Is R a 

partial order relation on ℤ ?          

 

3. Let A = {1, 2, 3, 4, 5, 6}.  The relation “|” (divides) is a partial order relation on A.   Draw the 

Hasse diagram of (A, “|”).                                       

 

 

16.8 References 
 

1.  Akerkar Rajendra and Akerkar Rupali. “Discrete Mathematics”, Pearson Education 
(Singapore) Pvt. Ltd, New Delhi, 2004. 

 



Discrete Mathematics                                       16.14                                     Partially Ordered Sets 
 
2.  Fraleigh J.B. “A First Course in Abstract Algebra”, Narosa Publ. House, New Delhi, 1992  
 
3.  Herstein I. N. “Topics in Algebra”, Blaisdell, New York, 1964.  
 
4. Satyanarayana Bhavanari “Partially Ordered Sets and Finite Machines”, Satyasri Maths 

Study Centre, (0863 – 2232138) Guntur, 2002. 
 
5. Satyanarayana Bhavanari “Lattices and Boolean Algebras”, Satyasri Maths Study Centre, 

Guntur, (0863 – 2232138)  2002. 
 
6.  Somasundaram Rm. “Discrete Mathematical Structures” Prentice Hall India Pvt. Limited, 

New Delhi, 2003. 
 
7. Trembly, J.P., and Manohar, R. “Discrete Mathematical Structures with Applications to 

Computer Science”, Mc-Graw Hill, 1975. 
 
 
 

Name of the Lesson Writer:  Mr. T. V. Pradeep Kumar 

 



Lesson 17 

                                                                                Lattices 

 
Objectives  
 

At the end of the Lesson the student must be able to: 

(i) Learn the structure of a lattice. 
(ii) Know the properties of lattices. 
(iii)Draw the lattice diagrams. 
(iv) Learn bounded and complemented lattice. 
(v) Learn distributive and modular lattice and its characterization. 
 

 

Structure 
   17.1 Introduction 

    17.2 Definitions and Examples 

    17.3 Properties of Lattices 

    17.4 Bounded and Complemented Lattices 

    17.5 Distributive Lattices 

    17.6 Answers to Self Assessment Questions 

    17.7 Summary 

    17.8 Technical Terms 

    17.9 Model Questions 

    17.10 References           

 

17.1 Introduction 
 

In this lesson we discussed the algebraic structure defined a lattice.  Properties of lattices were 

discussed.  Lattices with universal lower and universal upper bounds considered. Diagram 

representations of lattices are observed.  Two equivalent form of lattice are defined. Some 
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characterizations of complemented and distributive lattices are obtained. The concepts are play 

important role in logical circuits and Boolean algebras. 
 

 

17.2 Definitions and Examples  
 

17.2.1 Definition:   Let   (P, ≥)  be a  POset and  A ⊆  P.  An element  x ∈ P  is called a lower 

bound for  A   if   a  ≥  x,    for all  a ∈ A.  A lower bound   x of  A  is called a greatest lower 

bound  (infimum) of A   if   x  ≥  y  for all lower bounds   y  of  A.   

An element   x ∈ P   is called an upper bound for  A  if  x  ≥ a,  for all  a ∈ A.  An upper  bound   

x   is called a least upper bound (supremum) of   A if   b  ≥  a   for all upper bounds   b   of   A. 

 

17.2.2 Example: Consider the Poset (Z+, ≤), where ≤ denotes divisibility.  Let A = {1, 2, 3, 4, 6, 

8, 12, 24} = D24.  Clearly A is a subset of Z+.  Now the upper bounds set of A = {24, 48, 72, …}.  

Here 24 is the least upper bound and 1 is the glb. 

Note that for any subset   A  of   R  (the set of all real numbers),   we have that   inf A  =  min A   

and    sup A  =  max A. 

 

17.2.3 Definition: A poset  (L, ≤)  is said to be a lattice (or  lattice ordered) if supremum of    x   

and   y;   and  infimum of    x   and   y   exist for every pair  x, y  ∈  L.  
 

17.2.4 Note:  (i)  Every chain is lattice ordered  

(ii) Let  (L, ≤)  be a lattice ordered set;  and    x,   y  ∈ L.  Then we have the following:   x  ≤  y    

⇔    sup (x, y)  =  y     ⇔    inf  (x, y)  =  x.  

 

17.2.5 Definition: A lattice   (L, ∧, ∨)   is a set   L   with two binary operations  ∧  (called as  

meet or  product) and   ∨  (called as join or sum)  which satisfy the following laws, for all   x, y, 

z  ∈  L:                         
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  x  ∧ y  =  y ∧ x,  and    x ∨ y  =  y ∨ x                                       (Commutative laws). 

  x ∧ (y ∧ z)  =  (x ∧ y) ∧ z,   and     x ∨ (y ∨ z)  =   (x ∨ y) ∨ z    (Associative laws). 

  x ∧ (x ∨ y)  =  x;     and    x ∨ (x ∧ y)  =  x                                  (Absorption laws).   

 

17.2.6 Examples: (i). Let Z+  be the set of positive integers.  Define a relation ‘D’ on   Z+  by 

aDb     ⇔     a  divides  b for any a, b ∈ Z+ .  Then   (Z+, D) is a lattice, in which, a ∧ b   =   gcd 

{a, b}    and    a  ∨  b   =   lcm {a, b}. 

 

Self Assessment Question 1: Verify whether the set L = {1, 2, 3, 4, 6, 12}, the factors of 12 

under the relation ‘divisibility’ forms a lattice. 
 

Let   X   be a  non-empty set and consider  (P(X) , ⊆), the power set with the inclusion relation.   

Then for any   A, B   in   P(X),   we have that  A ∧ B  =  A  ∩  B  and  A ∨ B  =  A  ∪  B. 
 

 

17.2.7 Definition: Let  (L,  ≥)  be a lattice.  If every non-empty subset of  L  has greatest lower 

bound and least upper bound, then   L  is said to be a complete lattice.   

 

17.2.8 Examples:  (i) Let P be the set of all integers with usual ordering.  Clearly it is a lattice.  

The set of all even integers is a subset of P and it has no upper bound or lower bound.  Hence P 

is not a complete lattice. 

(ii) If   P = { i  /  1 ≤ i ≤ n }  and  ≥  is the usual ordering of integers, then   P   is a complete 

lattice. 

 

17.2.9 Definition: A subset  S  of a lattice   L   is called a sublattice of   L   if   S   is a lattice with 

respect to the restriction of   ∧   and   ∨   from   L   to   S. It is clear that  a subset   S   of   L   is a 

sublattice of the lattice L   ⇔   S   is “closed” with respect to   ∧   and  ∨  (that is,   s1,  s2 ∈ S   ⇒   

s1 ∧ s2 ∈ S   and   s1 ∨ s2 ∈ S).  
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17.2.10 Example: Let (A, ≤) be a lattice and S be a non-empty subset of L.  Then   (S, ≤) is called 

a sublattice of (L, ≤) if a ∨ b ∈ S and a ∧ b be S for a, b ∈ S. 

 

17.2.11 Example: The lattice (Dn, ≤) is a sublattice of (Z+, ≤) where ≤ is the divisibility relation. 

 

17.2.12 Example:  Consider the lattice A shown in fig (a) and the partially ordered subset S of L 

shown fig (b).  Now (S, ≤) is not a sublattice, since b ∧ c ∉ S.  The partially ordered shown in 

fig(c).  

 

17.2.13 Definition: Let (A, ≤) be a lattice.  An element  g ∈ A is called the greatest element of A 

if a ≤ g for all a ∈ A.  Similarly, an element s ∈ A is called the smallest (least) element of A if s 

≤ a for all a ∈ A. 

 

17.2.14 Example: (i) Consider   ℕ   =   the set of all natural numbers.   Define   a  ≤  b   ⇔   a   

divides   b,  for all  a,  b  ∈  ℕ.   Then   (ℕ, ≤)   is a POset. For any   x,  y  ∈  ℕ,   we write   x∧ y  

=  gcd {x, y}   and   x∨ y  =  lcm {x, y}.   Then  (ℕ, ≤)  is a lattice.   Here 1  is the zero element.   

The greatest element does not exist. 

(ii) Let   A   be a set.   Consider   ℘(A)  =  the power set of   A.   (℘(A), ⊆ )  is a POset  (where   

⊆   is the set inclusion)   For any    X,  Y  ∈  ℘(A),  we write    X ∧Y   =  X ∩ Y    and    X ∨  Y  =  

X ∪ Y.   Then   (℘(A), ⊆ )   is a lattice.   In this lattice,   φ   is the smallest element and   A   is the 

greatest element.      

 

 

17.3 Properties of Lattices 

 

17.3.1 Properties:  Let    (L, ∧, ∨)   be an algebraic lattice  and x ∈ L.  
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1. x ∧ x   =   x,  x ∨ x  =   x                                                               (idempotent) 

2. x ∨ y = y ∨ x, x ∧ y = y ∧ x                                                      (commutative) 

3. x ∨ (y ∨ z) = (x ∨ y) ∨ z, x ∧ (y ∧ z) = (x ∧ y) ∧ z                     (Associative) 

4. x ∨ (x ∧ y) = x,  x ∧ (x ∨ y) = a                                                   (Absorption)  

  

17.3.2 Theorem: Let (L, ≤) be a lattice.  For a, b ∈ L, 

(i) a ≤ b ⇔ a ∧ b = a 

(ii) a ≤ b ⇔ a ∨ b = b 
 

Proof:  Assume that a ≤ b. 

Since a ≤ a, we have that a is a lower bound of a and b. Therefore a ≤ a ∧ b and a ∧ b is the glb of 

a and b.   

By definition of a ∧ b, we have a ∧ b ≤ a.  Therefore by antisymmetric property, we have a ∧ b = 

a. 

Conversely suppose that a ∧ b = a.  Then by definition of a ∧ b, a = a ∧ b ≤ b.   

Thus we have a ∧ b = a  ⇒ a ≤ b. 

In a similar way we can prove (ii). 

  

17.3.3 Problem: Let a and b be two elements in a lattice (L, ≤ ).  Show that a ∧ b = b if and only 

if a ∨ b = a. 
 

Solution: Part (i): Suppose a ∧ b = b.  Now  

                          a = a ∨ (a ∧ b)                          (by absorption law) 

                              = a ∨ b                                  (supposition). 

Part (ii):  Suppose a ∨ b = a.  Now  

                            b = b ∧ (b ∨ a)                         (by absorption) 

                              = b ∧ (a ∨ b)                          (by commutative) 

                              = b ∧ a                                   (supposition) 
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                             = a ∧ b                                    (by commutative)   

      

17.3.4 Theorem: Let (L, ≤) be a lattice.  Then for a, b, c, d ∈ L, 

(i) a ≤ b ⇒ a ∨ c ≤ b ∨ c 

(ii) a ≤ b ⇒ a ∧ c ≤ b ∧ c 

(iii) a ≤ b and c ≤ d ⇒ a ∨ c ≤ b ∨ d⋅ 

(iv) a ≤ b and c ≤ d ⇒ a ∧ c ≤ b ∧ d.  
 

Proof: (i) From the above theorem 17.3.2, we have a ≤ b ⇔ a ∨ b = b. 

Now (a ∨ c) ∨ (b ∨ c) = (a ∨ c) ∨ (c ∨ b)  (by commutative) 

                                    =  a ∨ (c ∨ c) ∨ b       (by associative) 

                                    =  a ∨ (c ∨ b)            (by idempotent)  

                                    = (a ∨ b) ∨  c  

                                    = b ∨ c. 

By theorem 17.3.2, we have a ∨ c ≤ b ∨ c. 

(ii) Similar 

(iii) From the theorem 17.3.2, a ≤ b ⇔ a ∨ b = b and c ≤ d ⇒ c ∨ d = d. 

Now (a ∨ c) ∨ (b ∨ d) = a ∨ (c ∨ b) ∨ d (by associative) 

                                    = a ∨ (b ∨ c) ∨ d  (commutative) 

                                    = (a ∨ b) ∨ (c ∨ d) (associative) 

                                    = b ∨ d (since a ≤ b and c ≤ d)  

Therefore a ∨ c ≤ b ∨ d (by  theorem 17.3.2). 

(iv) Similar. 

 

17.3.5 Theorem: The following two conditions are equivalent. 

(i) (L, ≤) is a partially ordered set in which every pair of elements a, b in L, the lub {a, b} and glb 

{a, b} exist.  
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(ii) (L, ∧ , ∨ ) be an algebraic system satisfying commutative, associative, absorption and 

idempotent laws with a ≤ b if and only if a ∧ b = a.  

 

17.3.6 Theorem: (i) Let   (L, ≤)   be a lattice ordered set.  Define x ∧ y    =   inf (x, y),    and                  

x ∨ y  =  sup (x, y). Then   (L, ∧, ∨)   is an algebraic lattice.  

(ii)  Let   (L, ∧, ∨)   be an algebraic lattice.  Define    x  ≤  y    ⇔    x ∧ y  =  x, Then   (L, ≤)   is a 

lattice ordered set.  
 

Proof: Part-(i):   Let   (L, ≤)   be a lattice ordered set  and    x, y, z  ∈  L.  

Commutative laws:   x  ∧ y   =   inf (x, y)  =   inf (y, x)   =   y ∧ x,    x ∨ y   =   sup (x, y)  =                      

sup (y, x)  =  y ∨ x. 

Associative laws:     x ∧ (y ∧ z)   =   x ∧ inf (y, z)   =   inf (x, inf (y, z))   =   inf  (x, y, z)  =                       

inf (inf(x, y), z)    =   inf (x, y)  ∧  z   =  (x ∧ y)  ∧ z. Similarly, we have that  x∨(y∨ z)  =   (x ∨ y)  ∨  

z. 

Absorption laws:    x ∧ (x ∨ y)   =   x ∧ sup (x, y)   =   inf  (x, sup (x, y))  =  x. Also   x ∨ (x ∧ y)  =  

x ∨ inf (x, y)   =  sup (x, inf  (x, y))   =  x.  
 

Part-(ii):  Let   (L, ∧, ∨)   be an algebraic lattice.   Let    x, y, z  ∈  L.  

Step-(i): In this step we prove that (L, ≤)  is a partially ordered set.  

Reflexive: Follows from the idempotent laws, since x  ∧  x  =  x    and    x  ∨  x  =  x   and  so                 

x  ≤  x.  

Anti-symmetric:  Suppose   x  ≤  y   and   y  ≤  x    

⇒    x  ∧  y  =  x   and   y  ∧  x  =  y   

 ⇒    x  =  x  ∧ y   =   y ∧ x   (by commutative law)   =   y    ⇒    x  =  y.   

Transitive: Suppose    x  ≤  y   and   y  ≤  z 

⇒    x  ∧  y  =  x    and     y  ∧  z   =   y   

Now x   =   x  ∧  y   =   x  ∧  (y  ∧  z)  

                              =   (x  ∧  y)  ∧  z    (by associative  law) 
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                             =   x  ∧  z   ⇒    x  =  x  ∧  z   ⇒    x   ≤   z .   

This shows that    ≤    is transitive. So we can conclude that   (L, ≤)   is a poset.  

Step-(ii):  In this step we prove that    sup (x, y)  =  x  ∨  y.  By Remark 1.13, we have that x  ≤  y     

⇔    x ∨  y   =   y     ⇔     x   ∧  y   =   x    …. (i). 

 Let   x, y ∈ L.   Then    x  ∧  (x  ∨  y)   =   x    ⇒    x   ≤    x  ∨  y.  

Similarly    y  ≤   x  ∨  y.   Therefore    x  ∨  y   is an upper bound for   {x, y}. 

Suppose    z ∈ L   be an upper bound for   {x, y}.    

Then  x  ≤  z   and   y  ≤  z.  By (i),  we get that    x  ∨  z   =   z    and    y  ∨  z  =   z.  Now                       

(x  ∨  y)  ∨  z   =   x  ∨  (y  ∨  z)  (by associative law)  =    x  ∨  z   (by (i))   =    z   ⇒   x  ∨  y    ≤   

z.  This shows that  sup (x, y)   = x ∨  y.   In a similar way, we prove that    inf (x, y)    =   x  ∧  y. 

Step-(iii):   From the above steps (i) to (ii), we conclude that   (L, ≤)  is a lattice ordered set.  
 

Observation: From the Theorem 17.3.6, it is clear that there exists a one-to-one relationship 

between lattice ordered sets and algebraic lattices. In other words, the concepts "lattice ordered 

set" and "algebraic lattice" are equivalent.   So we can  use the term lattice for both concepts:  

lattice ordered sets and algebraic lattices.     (ii)  We write  |L|  to denote the number of elements 

of L.   (iii) If    N    is a subset of a POset, then   ∨x∈N   x   and   ∧x∈N x  denote the supremum and 

infimum of  N, respectively, whenever they exist.  We say that the supremum of   N   is the join 

of all elements of   N   and  the infimum is the meet of all elements of   N.  

 

17.3.7 Duality Principle: Any “formula” involving the operations   ∧   and   ∨   which is valid in 

any lattice    (L, ∧, ∨)   remains valid if we replace   ∧   by   ∨,   and  ∨  by   ∧  everywhere in the 

formula.  This process of replacing is called dualyzing.  
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17.4 Bounded and Complemented lattices 
 

17.4.1 Definition: If a lattice   L   contains a smallest (greatest, respectively) element with respect 

to ≤,  then this uniquely determined element is called the zero element (unit element, 

respectively).  The zero element is denoted by  0,  and the unit element is denoted by  1.   The 

elements 0 and 1 are called universal bounds.  If the elements  0  and  1  exist,  then we say that 

the lattice   L  is a bounded lattice. 

 

17.4.2 Example: In the lattice, (D36, ≤), 1 is the least element and 36 is the greatest element.  In 

general, (Dn, ≤) is a bounded lattice for any positive integer  n. 

 

17.4.3 Example: (i) In the lattice (Z+, ≤) with ≤ means usual ≤ is not a bounded lattice as 1 is the 

least element and there is no greatest element.  

 

Self Assessment Question 2: Verify whether the lattice (Z+, ≤) with ≤ defined as a ≤ b ⇔ a  b is 

a bounded lattice.   

 

17.4.4 Note: If a lattice   L  is bounded  (by  0  and  1), then  every   x   in  L satisfies 0  ≤  x  ≤  1,     

0 ∧ x  =  0,   0 ∨ x   =   x,    1 ∧ x  =  x,   and   1 ∨ x  =  1.  

 

17.4.5 Theorem: Let   L   be a lattice,   and   x, y, z  ∈ L. Then   L  satisfy the following 

distributive inequalities:  

(i)    x  ∧  (y ∨ z)   ≥   (x ∧ y)  ∨  (x ∧ z)  

(ii)   x  ∨  (y ∧ z)   ≤   (x ∨ y)  ∧  (x ∨ z)  
 

 

Proof: We know that    x  ∧  y   ≤   x,   and    x  ∧  y    ≤    y   ≤   y  ∨  z.    

So  x ∧y   is a lower bound for    x    and   y ∨ z    

⇒    x  ∧  y   ≤   x  ∧  (y  ∨  z). 
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Now   x  ∧ z   ≤  x   and   x  ∧ z   ≤   z   ≤  y ∨ z    ⇒  x  ∧ z   is a lower bound for   x   and    y ∨ z     

⇒   x  ∧ z   ≤   x  ∧  (y ∨ z).   

Therefore, we have that  x ∧(y ∨ z)   is an upper bound for    x  ∧ y  and  x ∧  z and so   (x  ∧  y)  ∨  

(x  ∧  z)    ≤     x  ∧  (y  ∨  z).  This completes the proof for (i).  The proof of (ii) is similar. 

  

17.4.6 Definition: A lattice L with 0 and 1 is called complemented if for each   x ∈ L  there 

exists at least one element   y   such that   x  ∧ y = 0   and   x  ∨  y = 1.   Each such  y  is called a 

complement of  x. We denote the complement of   x   by  x1.  
 

 

17.4.7 Example: In the lattice fig 1, a and b are complements of each other.  

 

Self Assessment Question 3: In the lattice fig 2,  write complements of a, b, and c.  

 
 

  

 

 

 

 

 

17.4.8 Example:  (i) Let   L  =  ℘(M). Then B = M \ A is the unique complement of A.       

(ii) In a bounded lattice, 1 is a complement of   0,   and   0  is a complement of  1.    (iii) Every 

chain with more than two elements is not a  complemented lattice. 

 (iv) The complement need not be unique.  For example,  in the diamond lattice, both the two 

elements   b  and  c,  are complements for the element   a.  

 (v)  Let  L be the lattice of subspaces of the vector space ℝ2.  If   T   is a complement of a 

subspace   S, then  S ∩ T = {0}  and   S + T = ℝ2.    Hence a complement is a complementary 

subspace.    

1 

 b a 

0 

o 

o 

o o  

 1 

0 

a c b 
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17.4.9 Example: (i) In a bounded lattice, 1 is a complement of   0,   and   0  is a complement of  

1.   

(ii) Every chain with more than two elements is not a complemented lattice. 

(iii) The complement need not be unique.  For example, in the diamond lattice, both the two 

elements   b  and  c,  are complements for the element   a.  

  

17.4.10 Definition: Let   L   be a lattice with zero. An element   a ∈ L   is said to be an atom if   a  

≠ 0   and if it satisfies the following condition:  b  ∈ L,   0 < b ≤ a  implies that  b  =  a. 

 

Self Assessment Question 4: Find the atoms in the following lattice.                    

 

 

 

 

 

 

 
 

 

17.5 Distributive Lattices 
 

17.5.1 Definition:  A lattice  (L, ∨,  ∧)  is called a modular lattice if  it satisfies the following 

condition:  x   ≤   z    ⇒    x ∨ (y ∧ z)  =  (x ∨ y ) ∧ z   for all   x,  y,  z   ∈ L. This condition is 

called as modular identity.   

 

17.5.2 Example: Consider the lattice    L1 = {0, a, b, c, 1} whose Hasse diagram is given. This 

lattice   L1   is a modular lattice.   This lattice called as diamond lattice. 

a

g 

b

e
c 

d

f

°

°

°

° °

°

°
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17.5.3 Example: Consider the lattice   L2  =  {0, a, b, c, 1}  whose Hasse diagram is given. This 

lattice  L2   is not a modular lattice.   Since     b  ≤  c,  by modular law,  we have that       b ∨ (a ∧ 

c)  =  (b ∨ c) ∧ c   ⇒   b  ∨ 0  =  1 ∧ c    ⇒     b  =  c, a contradiction.  Hence   L2   is not a 

modular lattice.   

 

 

 

 

 

 

 

17.5.4 Definition: A lattice   L   is said to be a distributive lattice if it satisfies the following 

laws:   (i) a ∨ (b ∧ c)  =  (a ∨ b) ∧ (a ∨ c),  and   (ii) a ∧ (b ∨ c)  =  (a ∧ b) ∨ (a∧ c), for all a, b, c 

∈ L.   These two laws are called the distributive laws.  

 

17.5.5 Example:  (i) For any set   X, the lattice   (℘(X), ∪ , ∩ )   is a distributive lattice.  

(ii) Every chain is a distributive lattice.  

 

 

 

  

 

1 

0 

a c b 

0 

1 

b 

a c 

1 

a 

b c 

0

Fig. 17.5.2 

Fig. 17.5.3 

Fig. 17.5.5 (i) 
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(iii) Consider the lattice given by the diagram 

 

 

 

 

 

Now b∧(c∨d) = b ∧ a = b, and (b∧c) ∨(b∧d) = e ∨e = e.  Therefore this is not a distributive lattice. 

 

17.5.6 Problem: In a distributive lattice, if an element has a complement, then it is unique.  
 

Solution:  Suppose   that an element a has two complements, say b and c.  That is,  

a ∨ b = 1, a ∧ b = 0, a ∨ c = 1, a ∧ c = 0. 

We have b = b ∧ 1                                                (since 1 is the universal upper bound)  

                  = b ∧ (a ∨ c)                                       (since a ∨ c = 1)  

                  = (b ∧ a ) ∨ (b ∧ c)                             (by the distributive law)  

                  = (a ∧ b) ∨ (b ∧ c)                              (since ∧ is commutative)  

                  = 0 ∨ (b ∧ c)                                      (since a ∧ b = 0)  

                  = (a ∧ c) ∨ (b ∧ c)                             (since a ∧ c = 0)               

                  = (a ∨ b) ∧ c                                      (by distributive law)  

                  = 1 ∧ c                                               (since a ∨ b =1)  

                  = c                                                     (since 1 is the universal upper bound).  

Therefore the complement is unique. 

           

17.5.7 Problem:  Prove that the following properties of a lattice   L   are equivalent:    

   (i) a ∧ (b ∨ c)  =  (a ∧ b) ∨ (a ∧ c)  for all   a,  b,  c  ∈  L;  

  (ii) (a ∧b) ∨  c  =  (a ∨ c) ∧    (b ∨ c)  for all   a,  b,  c  ∈  L;   

  (iii) (a ∧b) ∨ (b ∧ c) ∨  (c ∧ a)  =  (a ∨ b) ∧ (b ∨ c)∧(c∨a)  for all   a,  b,  c  ∈  L.  
 

a

e

b dc
Fig. 17.5.5 (ii) 
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Solution: (i) ⇒ (ii):  Suppose    a ∧ (b ∨ c)  =  (a ∧ b) ∨ (a ∧ c)  for all   a,  b,  c  ∈  L;  

 (a∨c)∧(b∨c)  =  [(a∨c)∧b]∨ [(a∨c)∧c]       (by (i))  

                        =  [(a∨c)∧b]∨c                     (by commutative and absorption laws)   

                        =   [(a ∧ b)  ∨  (c ∧b)] ∨ c    (by (i)) 

                        =  (a ∧b)  ∨  [(c ∧b) ∨ c]      (by associative law)  

                        =  (a ∧b) ∨ c                         (by absorption law). 

This proves  (ii).  

(ii) ⇒ (iii):   Suppose (ii).   

(a ∧b) ∨ (b ∧ c) ∨  (c ∧ a)  =  (a ∧b)  ∨  [(b ∧ c) ∨ (c ∧ a)]   

            = {a∨[(b∧c)∨(c∧a)]}∧{b∨[(b∧c)∨(c∧a)]}       (by  (ii))     

            = {a ∨ (b ∧ c)}  ∧ {b ∨ (c ∧ a)} (by commutative, associative and absorption)  

            =  {(a ∨ b) ∧ (a ∨  c)}  ∧ {(b ∨ c) ∧ (b ∨ a)}    (by  (ii))   

            =  (a ∨ b) ∧ (b ∨  c) ∧ (c ∨ a)                            (by idempotent law)  

(iii) ⇒ (i):  Suppose that   a ≤ c.   Then   a∧b ≤  c ∧b   ⇒   (a∧b)∨(c∧b)  =  (c∧b) ….. (A)  

Also  a  ∨  c =  c.  Now   (a ∧ c) ∨ (b ∧ c)   

                              =  (a ∧ c) ∨ [(a ∧ b)∨ (c ∧ b)]                       (by  (A))   

                              =  (a ∧ b) ∨ (b ∧ c)∨ (c ∧ a)  

                              =  (a ∨ b) ∧  (b ∨  c) ∧ (c ∨  a)                       (by   (iii)) 

                              =  (a ∨ b) ∧ (b ∨  c) ∧ c                                  (since   a  ≤  c) 

                              =  (a ∨  b) ∧ c                                                 (by absorption law).  

Now we proved that    (a ∨  b) ∧ c = (a ∧ c) ∨  (b ∧ c).   

This shows that (i) is true.  This completes the proof.  

 

17.5.8 Problem:  If L is a distributive lattice, then it is a modular lattice.  
 

Solution: Assume that   L   is a distributive lattice.   Let   x,  y,  z  ∈  L  and   x  ≤  z.    

We have that  (x ∧ y) ∨  (y ∧ z) ∨ (z ∧ x)  =  (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x).   

Since   x  ≤  z,   we have that     x ∧ z  =  x    and   x ∨ z  =  z,  and so   
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(x ∧ y) ∨  (y ∧ z) ∨ x   =  (x ∨ y) ∧ (y ∨ z) ∧ z  .  

This implies   x ∨ (y ∨ z)   =   (x ∨ y) ∧ z   (by absorption laws).  

This shows that    L   is a modular lattice.    

The converse of the above problem is not true.  That is, there exist modular lattices  which are not 

distributive.  The following example is a  modular lattice,  but not  distributive .   

 

 

 

 

 

 

 

17.5.9 Problem:  For a given lattice  L, the following two conditions are equivalent: 

     (a)  x∨ (y ∧ z) = (x∨ y) ∧ (x ∨ z), and 

     (b)  x ∧(y ∨ z) = (x ∧ y) ∨ (x∧ z)   for all x, y, z ∈ L.   
 

Solution:  Suppose that   x ∨ (y ∧ z)  =  (x ∨ y) ∧ (x ∨ z)    …  (i).       

Now   (x ∧ y) ∨  (x  ∧ z)   =   [(x ∧ y) ∨ x] ∧ [(x ∧ y) ∨ z]   (by   (i))   

                                         =   x  ∧ [(x ∧ y) ∨  z]  (by commutative and absorption laws) 

                                         =  x ∧ [z ∨ ( x ∧ y)]             (by commutative law)     

                                        =   x ∧ [(z ∨ x) ∧ (z ∧y)]      (by  (i))  

                                        =   [x ∧ (z ∨ x)] ∧ [z ∧y]      (by associative law)  

                                        =   x ∧ (z ∧y)                (by commutative and absorption law)  

Other part is similar. 

 

 

 

 

1 

0 

a c b 

Fig. 17.5.8 
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17.6 Answers to Self Assessment Questions 
 

SAQ1.  

This is a lattice. 

 

SAQ 2.  

This is not a bounded lattice, since there is no greatest element.   

 

SAQ3.  

    Complements of a are b and c;  

    Complements of b are a and c;  

    Complements of c are a and b. 

 

SAQ 4.  

The atoms are e and f.                       

 

 

17.7 Summary  

 

In this lesson we discussed the algebraic structure defined a lattice.  Properties of lattices were 

discussed.  Diagram representations of lattices are observed.  Some characterizations of 

complemented and distributive lattices are obtained.  The concepts are useful in logical circuits 

and Boolean algebras. 
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17.8 Technical Terms 
 

Lower bound:  An element  x ∈ P  is called a lower bound for  A   if   a  ≥  

x,    for all  a ∈ A.   

Upper bound:  An element   x ∈ P   is called an upper bound for  A  if  x  ≥ 

a,  for all  a ∈ A.   

Lattice:  A poset  (L, ≤)  is said to be a lattice (or  lattice ordered) if 

supremum of    x   and   y;   and  infimum of    x   and   y   

exist for every pair  x, y  ∈  L.  
Complete lattice:  If every non-empty subset of  a lattice has greatest lower 

bound and least upper bound.  

Greatest element:  An element g is called the greatest element of a lattice if a ≤ 

g for all a in a lattice. 

Bounded lattice:  A lattice with elements  0  and  1, called universal bounds.   

Complement:   x ∈ L, there exists at least one element   y   such that   x  ∧ y 

= 0   and   x  ∨  y = 1 

Atom:  If   a  ≠ 0   and satisfies:  b  ∈ L,   0 < b ≤ a  implies that  b  

=  a. 

Modular lattice:   x  ≤   z    ⇒    x ∨ (y ∧ z)  =  (x ∨ y ) ∧ z   for all   x,  y,  z  in 

a lattice.    

Distributive lattice:   A lattice that satisfies (i) a ∨ (b ∧ c)  =  (a ∨ b) ∧ (a ∨ c),  

and   (ii) a ∧ (b ∨ c)  =  (a ∧ b) ∨ (a∧ c), for all a, b, c in a 

lattice. 
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17.9 Model Questions 
 

1. Verify whether or not the following are modular lattices.       

 

 

 

 

 

 

2. Consider the lattice A = {0, a1, a2, a3, a4, a5, 1} given below.      

 

 

 

 

 

 

 

(i). Is A is a distributive lattice 

(ii).What are the complements of a1 and a2 

 

3. Write the complements a, b and c from the given lattice.                   

 

 

 

 

 

 

 

4.  Define a distributive lattice and complemented lattice. 

u 

c b a 

o 
o 

o 

o o o 

(i) 

b 

a 

o 

c 

u 

o 

o 

o o 

o 

(ii) 

a1 

a4 

a3 

0 

o o 

o o 

o 

o 

o 

1 

a5 

a2 

0 

b 

a 
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1 
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o 

o o 

o 
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5. In a distributive lattice, if an element has a complement, then prove that it is unique.  

 

6. Let (L, ≤) be a lattice.  Then for a, b, c, d ∈ L, 

(i) a ≤ b ⇒ a ∨ c ≤ b ∨ c 

(ii) a ≤ b ⇒ a ∧ c ≤ b ∧ c 

(iii) a ≤ b and c ≤ d ⇒ a ∨ c ≤ b ∨ d⋅ 

(iv) a ≤ b and c ≤ d ⇒ a ∧ c ≤ b ∧ d.  

 

7.  Let a and b be two elements in a lattice (L, ≤).  Show that a ∧ b = b if and only if   a ∨ b = a. 

 

8. (i) Let   (L, ≤)   be a lattice ordered set.  Define x ∧ y    =   inf (x, y),    and     x ∨ y  =  sup (x, y). 

Then prove that (L, ∧, ∨)   is an algebraic lattice.  

(ii)  Let   (L, ∧, ∨)   be an algebraic lattice.  Define    x  ≤  y    ⇔    x ∧ y  =  x. Then   prove that 

(L, ≤)   is a lattice ordered set.  
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Lesson 18 

Finite Boolean Algebras  
Objectives 
At the end of the Lesson the student must be able to: 
 

(i) Extend the notion of Boolean algebra from a lattice. 
(ii) Learn various properties of Boolean algebras 
(iii)Write the dnf and cnf of a Boolean function 
(iv) Learn several applications of Boolean algebras in science and engineering.  

 

 

Structure 
18.1 Introduction 

18.2 Boolean algebras 

18.3 Functions of finite Boolean algebras 

18.4 Answers to Self Assessment Questions 

18.5 Summary 

18.6 Technical Terms 

18.7 Model Questions 

18.8 References 

 

 

18.1 Introduction 
 

Boolean Algebra is an algebra of logic.  One of the earliest investigators of symbolic logic was 

George-Boole (1815-1864) who invented a systematic way of manipulating logic symbols which 

is referred as  Boolean Algebra.  It has become now an indispensable tool to computer scientists 

because of its direct applicability to switching circuits theory and the logical design of digital 

computers.  The symbols 0 and 1 used in this unit have logical significance. 
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18.2 Boolean Algebras 
 

18.2.1 Definition: A Boolean Algebra is a complemented distributive lattice.  The operations ∧ 

and ∨ are also denoted by ⊕ and *.  We denote a * b is some times as ab.  The bounds are 

denoted by 1 and 0.  Thus a Boolean algebra B with operations ⊕ and * and bounds 1 and 0 

satisfy the following properties.  

1. a ⊕ a = a;                                             a * a = a  

2. a ⊕ b = b ⊕ a;                                      a * b = b*a. 

3. a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c;                   a * (b *c) = (a * b) * c;  

4. a ⊕ (a * b) = a; a ⊕ (a * b) = a;  

5. a ⊕ (b * c) = (a ⊕ b) * (a ⊕ c);            a * (b ⊕ c) = (a * b) ⊕ (a * c) 

6. 0 ≤ a for all a ∈ L;                                a ≤ 1 for all a ∈ L;  

7. a ⊕ 0 = a;                                              a * 1 = a; 

8. a ⊕ 1 = a;                                              a * 0 = 0;  

 

Note: For a ∈ L, let a1 be the (unique) complement of a. 
 

9. a ⊕ a1 = 1;                                            a * a1 = 0  

10. 11 = 0;                                                 01 = 1; 

11. (a ⊕ b)1 = a1 * b1;                               (a * b)1 = a1 ⊕ b1  

 

Note that (i) Properties 1 to 4 are lattice properties; 5 are distributive properties; 6 and 8 are 

properties of bounds; 9 and 11 are properties of complements.  

(ii) The properties 11 are called D’ Morgan laws.   

 

18.2.2 Definition: A Boolean Algebra with finite number of elements is called a finite Boolean 

Algebra. 
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18.2.3 Example: Let S be a finite set. Consider the lattice (P(S), ⊆) with operations  

∪ and ∩, in which the universal upper bound is S, the universal lower bound is φ (empty set), 

and the complement of any set T in P(S) is the set S - T. 

Take S = {a, b, c} 

    P(S) = {s, {a}, {b}, {c}, {a, b}, {b,c}, {a, c} φ} 

Then (P(S), ⊆) is a lattice. The Boolean algebra is represented by the following diagram.  

 

 

        

   

 

 

18.2.4 Example:  Let B = {0, 1}. The operations ∨ and ∧ are given in the following tables  

 

 

 

 

 

The complement of ‘0’ is 1 and vice versa. Then (B,∨,∧,–) is a Boolean Algebra.  

 

18.2.5 Example: Let Bn be the set of n-tuples of 0’s and 1’s.  For a, b ∈ Bn, define                        

a ⊕ b = (a1 ∨ b1, a2 ∨ b2, …, an ∨ bn) and a * b = (a1 ∧ b1, a2 ∧ b2, …, an ∧ bn) where a = (a1, a2, 

…, an) and b = (b1, b2, …, bn). 

Now ai = 0 or 1 and bi = 0 or 1 for i = 1, 2, ..., n.  Also a1 = (a1
1, a2

1, …, an
1) and b = (b1

1, b2
1, …, 

bn
1) where ∨ and ∧ complementation are as in above example over {0, 1}.  Then (Bn, ⊕ , *) is a 

Boolean Algebra with bounds 0n and 1n where 0n = (0, 0, …, 0) and 1n = (1,1,…,1). 

                     
∨     0     1         
                       
0     0     1 
                       
1 1 1

                         
∧     0     1         
                       
0     0     0 
                       
1 0 1

{a} 

{a, b} 

{c} 

{b, c} {a, c} 

{b} 

S

φ

Fig. 18.2.3 
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18.2.6 Theorem: If S1 = { x1, x2, ….. xn} and S2 = {y1, y2, …. yn} are any two finite sets with n 

elements, then the lattices (P(S1), ⊆ ) and (P(S2), ⊆ ) are isomorphic. Consequently the Hasse 

diagrams of these lattices may be drawn identically. 

 

Proof: Arrange the sets as known in Fig. 1,  

so that each element of S1 is directly over the correspondingly numbered element in S2 

 

 

 

Fig. 18.2.6 

Let A be a subset of S1  

Define f (A) = subset of S2 consisting of all elements that correspond to the elements of A (see fig 

(2)) 

 

 

 

 

It can be easily seen that f is one one and onto. Also A ⊆ B if and only if   

f (A) ⊆ f (B) for all A, B ∈ P(S1). 

Therefore the lattices (P(S1), ⊆) and (P(S2), ⊆) are isomorphic. 

 

18.2.7 Example:  Let S = {a, b, c}, T = {2, 3, 5}. Define f : P(S) → P(T) by  f ({a}) = {2}, f ({b}) 

= {3}, f ({c}) = {5},  

f ({a, b}) = {2,3}, f ({b, c}) = {3, 5}, f ({a, c}) = {2, 5} 

 S1  :  x1      x2 ... xn 
  
 
 S2  :  y1 y2 …  yn 

f (A) 

 S1  :  x1      x2  x3 x4 …xn 
  
 S2  :  y1 y2 y3  y4 …yn 

A 



 Acharya Nagarjuna University                         18.5                       Centre for Distance Education 
 

f ({a, b, c}) = {2, 3, 5}, f (φ) = φ 

The Boolean lattices (P(S), ⊆) and (P(T) , ⊆) are isomorphic.  

 

18.2.8 Note: 

a) Any finite Boolean algebra has exactly 2n elements for some positive integer n. Also 

there is a unique (up to isomorphism) Boolean algebra of 2n elements for every n > 0. 

b) From the above theorem, it is clear that the lattice (P(S), ⊆) is completely determined as a 

poset by the number  |S| and does not depend in any way on the nature of the elements in S.  

c) Each lattice (P(S), ⊆) is isomorphic to Bn (n– tuples, Boolean Algebra, over {0, 1}) 

where n = |S|  

 

18.2.9 Example: Consider the lattice  

D6 = {x ∈ Z+  x  is a divisor of 6}= { 1, 2, 3, 6} 

Define f = D6 → B2 = { 0, 1} by  

f (1) = 00, f (2) = 10, f (3) = 01, f (6) = 11 

Then f is an isomorphism. These can be represented by a following diagrams  

 

 

 

 

 

 

18.2.10 Example: (i) The lattice D20 = {1, 2, 4, 5, 10, 20 } has 6 ≠ 2 n (for any positive integer n) 

elements and hence not a Boolean algebra. 

(ii) The lattice D30 = {1, 2, 3, 5, 6, 10, 15, 30} has 23 elements and hence a Boolean algebra. 

Observe that D30 is isomorphic to B3 (over {0, 1}), where the isomorphism:  

2° ° 3 

  6 
°

° 
1 

D 6 B 2 
 11
°

° 01 10 °  

°  
00 

Fig. 18.2.9 (i) Fig. 18.2.9 (ii). 
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f:D30→B3 defined by f(1) = 000,  f (2) = 100, f (3) = 010, f (5) = 001, f (6) = 110,  f (10) = 101, f 

(15) = 011, f (30) = 111. 

 

18.2.11 Note: To draw the Hasse diagram for Bn (n – tuples over {0, 1}) we join two  

n – tuples if they differ by exactly are component. 

 

18.2.12 Theorem: Let n =  p1  p2  …. pk where  pi  (1 ≤ i ≤ k) are distinct primes. Then Dn is a 

Boolean Algebra.  

 

18.2.13 Example:  

a) 210 = 2. 3. 5. 7. Therefore D210 is a Boolean algebra.  

b) 66 = 2. 3. 11,    D66 is a Boolean algebra.  

c) 646 = 2. 17. 19,   D646 is a Boolean algebra.  

 

18.2.14 Theorem: If n is a positive integer and p2 | n, where p is prime number, then Dn is not a 

Boolean algebra.  

 

18.2.15 Example: 

a) Take n = 40, then = 23 . 5, so 2 divides n three times.  Therefore D 40 is not a Boolean 

algebra.  

 

Self Assessment Question 1: Test Whether D75 is a Boolean Algebra ? 

 

18.2.16 Note: (i) Let (A, ≤ ) be a finite lattice with a universal lower bound. For any non zero 

element b, there exists at least one atom (smallest non zero element in a Boolean algebra) ‘a’ 

such that a ≤ b.  
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(ii) There is an isomorphism from Boolean lattice (A, ≤ ) to (P(S) , ⊆ ), where S is the set of 

atoms.  

 

18.2.17 Theorem: Let (A, ∨, ∧, – ) be a finite Boolean algebra. Let S be the set of atoms. Then 

(A, ∨, ∧, – ) is isomorphic to the algebraic system defined by the lattice  

(P(S) , ⊆ ). 

 

 

18.3 Functions of Boolean Algebras  

18.3.1 Definition: Let (A, ∨, ∧, –) be a Boolean algebra. A Boolean expression over (A, ∨, ∧, – ) 

is defined as : 

(i) 0 and 1 are Boolean expressions 

(ii) x1, x2, …, xn are Boolean expressions 

(iii) If α is a Boolean expression, then α1 is also a Boolean expression.  Further if α1 and α2 are 

Boolean expressions then (α1)*(α2) and (α1) ⊕ (α2) are also Boolean expressions.      

(iv) If 1x and 2x  are Boolean expressions, then 1x , 1x  ∨ 2x , 1x  ∧ 2x , 2x  are Boolean 

expressions.  

(v) No strings of symbols except those formed according to rules (i) to (iv) are Boolean 

expressions. 

 

18.3.2 Definition: Two Boolean expressions are called equivalent if one can be obtained from 

the other by a finite number of applications of the identities of Boolean Algebra. 

 

18.3.3 Example: 

a) 0 ∨ x  
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b) ( )1 2x x∨  ∧ ( )1 3x x∧  

c) 2 3∧  

are Boolean expressions. 

 

Self Assessment Question 2:  Write an equivalent Boolean expression for E (x1, x2, x3) = 

( ) ( )3121 xxxx ∧∨∧ . 

 

Self Assessment Question 3:  Find equivalent Boolean expression for    ( ) ( )yxyx ∨∧∨ 1  

 

Self Assessment Question 4: Are there any Boolean algebra having 3 or 5 elements?  Why or 

why not.  

 

18.3.4 Definition: Let f( 1x , 2x , ..., nx ) be a Boolean expression of n variables over a Boolean 

algebra {0, 1} (That is, for an assignment of values 1 (true) or  

0 (false) to the variables). The values of f for various values of 1x , 2x , ..., nx can be listed in a 

table is called truth table.  

 

18.3.5 Notation: : nf B B→  where B = { 0, 1} ( )1 2, , ..., nf x x x  = 0 or 1 where each 1x  ∈ 

{0, 1}, 1 ≤ i ≤ n (f is called a Boolean function on n variables)  

 

18.3.6 Example:  ( ) ( )1 2 3 1 2 3, ,E x x x x x x= ∧ ∧  ∨  ( ) ( )1 2 1 3,x x x x∧ ∨= ∧  over ({0, 1}), ∨, ∧ , –) 

tabulated below.  
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(x1, x2, x3) E(x1, x2, x3) 

(0, 0, 0) 

(0, 0, 1) 

(0, 1, 0) 

(0, 1, 1) 

(1, 0, 0) 

(1, 0, 1) 

(1, 1, 0) 

(1, 1, 1) 

0 

0 

1 

0 

1 

1 

0 

1 

 

18.3.7 Definition: A Boolean expression on n variables (x1, x2, ..., xn) is said to be a minterm if 

it is of the form   1 2 ... nx x x∧ ∧ ∧% % % , where  i i ix x or x=%  

 

18.3.8 Definition: A Boolean expression over ({0, 1}, ∨, ∧, –) is said to be in disjunctive 

normal form (denoted as, dnf )if it is the join of minterm. (dnf also called as sum of products of 

canonical form). 

 

18.3.9 Example: The expression 1 2 3 1 2 3 1 2 3, ,x x x x x x x x x∧ ∧ ∧ ∧ ∧ ∧  minterms.  

The expression ( ) ( ) ( )1 2 3 1 2 3 1 2 3x x x x x x x x x∧ ∧ ∨ ∧ ∧ ∧ ∧ ∧  is in dnf. 

 

18.3.10 Example: Write the following Boolean expressions in an equivalent sim of products 

canonical form in three variables x1, x2, x3. 

(i) x1 * x2
1   (ii) x2 ⊕ x3

1  (iii) (x1 ⊕ x2)1 ⊕ (x1
1 * x3). 
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Solution: From the laws of Boolean Algebra, we get  

(i)    x1 * x2
1   = x1 * x2

1 * 1 

                       =   x1 * x2
1 * (x3 ⊕ x3

1)  

                       =  (x1 * x2
1 * x3) ⊕  (x1 * x2

1 * x3
1) 

(ii) x2 ⊕ x3
1  = [x2 * (x3 ⊕ x3

1)] ⊕ [x3
1* (x2 ⊕ x2

1)]  

                     = (x2 * x3) ⊕  (x2 * x3
1) ⊕ (x3

1* x2) (x3
1 ⊕ x2

1) 

                     =  (x2 * x3) ⊕  (x2 * x3
1) ⊕ (x3

1 ⊕ x2
1) 

                     = [(x1 ⊕ x1
1) * (x2 * x3)] ⊕ [(x1 ⊕ x1

1) *  (x2 * x3
1)] ⊕ [(x1 ⊕ x1

1) * (x2
1 ⊕ x3

1)]. 

= [(x1 * x2 * x3) ⊕ (x1
1 * x2 * x3) ⊕ (x1 ⊕ x2 * x3

1) ⊕ (x1
1 * x2 * x3

1) 

 ⊕ (x1
 * x2

1 * x3
1) ⊕ (x1

1 * x2
1 * x3

1)]. 

(iii) Similar. 

 

18.3.11 Definition: A Boolean expression of n variables x1, x2, ... xn is said to be a maxterm if it 

is of the form 1 2 ... nx x x∨ ∨ ∨% % %  where i i ix x or x=%  

 

18.3.12 Definition: A Boolean expression over ({0, 1}, ∨, ∧ , –) is said to be in conjunctive 

normal form (denoted as, Cnf ) if it is a meet of maxterms. (cnf is also called as product of sums 

canonical form). 

For example, ( 1x ∨ 2x ∨ 3x  ) ∧ ( 1x ∨ 2x ∨ 3x  ) ∧( 1x ∨ 2x ∨ 3x  ) is in Cnf . 

 

18.3.13 Note: (i) Consider f : {0, 1} n → {0, 1} 

To each ( 1x , 2x , …, nx ), we have minterm,  1 2 ... nx x x∧ ∧ ∧% % % , where ix%  =    ix if the thi  
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component of the n-tuple is 1,  and  ix%  = ix  if the thi  component of the n tuple is 0. 

(ii) Given f : {0, 1} n  → {0, 1}, we can obtain a Boolean expression in dnf (respectively, cnf) 

corresponding to this function by having a minterm (respectively, maxterm), corresponding to 

each ordered n – tuple of 0’s and 1’s for which the value of the function f is 1 (respectively, 0). 

(iii) cnf of f  is the complement of dnf of f  

f : {0, 1} n  → {0, 1}, maxterm,  

               1 2 ... nx x x∨ ∨ ∨% % %  where  
0

1

th
i

j th
i

x if the i component of n tuple is
x

x if the i component of n tuple is

 −= 
−

%
%

 

 

18.3.14 Example: Consider the Boolean expression 

      ( ) ( )1 2 3 1 2 3
, ,f x x x x x x = ∧ ∨  ( )1 2 3 1x x x x  ∨ ∧ ∨ ∧    over ({0, 1}, ∧, ∨, – ).  

Write dnf and cnf. 

 

Solution: 

1x 2x 3x  f  f  

0   0   0 

0   0   1 

0   1   0 

0   1   1 

1   0   0 

1   0   1 

1   1   0 

1   1   1 

0 

0 

0 

0 

1 

0 

1 

1 

1 

1 

1 

1 

0 

1 

0 

0 
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Minterms: 1 2 3 1 2 3 1 2 3, ,x x x x x x x x x∧ ∧ ∧ ∧ ∧ ∧  

dnf f: ( ) ( ) ( )1 2 3 1 2 3 1 2 3x x x x x x x x x∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧  

Maxterm: 1 2 3 1 2 3 1 2 3, ,x x x x x x x x x∨ ∨ ∨ ∨ ∨ ∨ ,     1 2 3 1 2 3,x x x x x x∨ ∨ ∨ ∨  

Cnf: ( ) ( ) ( )1 2 3 1 2 3 1 2 3x x x x x x x x x∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨  

             ( ) ( )1 2 3 1 2 3x x x x x x∧ ∨ ∨ ∧ ∨ ∨  

Alternatively, cnf of can be found as follows : 

dnf  =f   ( ) ( ) ( )1 2 3 1 2 3 1 2 3x x x x x x x x x∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧  

             ( ) ( )1 2 3 1 2 3x x x x x x∨ ∧ ∧ ∨ ∧ ∧  

 =fdnf   ( ) ( ) ( )1 2 3 1 2 3 1 2 3x x x x x x x x x∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧  

                  ( ) ( )1 2 3 1 2 3x x x x x x∧ ∧ ∧ ∧ ∧ ∧  

              ( ) ( ) ( )1 2 3 1 2 3 1 2 3x x x x x x x x x= ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨  

                     ( ) ( )1 2 3 1 2 3x x x x x x∧ ∨ ∨ ∧ ∨ ∨  

                                 = cnf   f 

 

 

18.4 Answers to Self Assessment Questions 
 

SAQ 1. 

 Take n  = 75. Then 52 | 75 (since 75 = 3.52), we have D75 is not a Boolean algebra.  
 

SAQ 2.  

The equivalent Boolean expression is: x1 ∧ (x2 ∨x3). 



 Acharya Nagarjuna University                         18.13                       Centre for Distance Education 
 

SAQ3.    

    (i).  x. 

    (ii). x ∧ y. 

    (iii). x ∨ y. 

 

SAQ4.  

No, each Boolean Algebra must have 2n elements. 
 

 

18.5 Summary  
 

This unit provides the fundamental idea of the algebraic system namely Boolean algebra with 

two binary operations (join and meet) and a unary operation (complementation).  Several 

properties of the Boolean algebras were discussed. The reader able to know application of 

Boolean algebra in various branches like computer science, electrical engineering (switching 

networks), and communication engineering. Particularly, devices such as mechanical switches, 

diodes, magnetic dipoles, and transistors are two state devices. 
 

 

18.6 Technical Terms  
 

Finite Boolean Algebra:  A Boolean Algebra with finite number of elements is called 

a finite Boolean Algebra. 

Truth Table:  Let f( 1x , 2x , ..., nx ) be a Boolean expression of n variables 

over a Boolean algebra {0, 1} (That is, for an assignment of 

values (true) or 0 (false) to the variables). The values of f 

for various values of 1x , 2x , ..., nx can be listed in a table. 
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Boolean Function on n-variables:  : nf B B→  where B = { 0, 1} ( )1 2, , ..., nf x x x  = 0 or 

1 where each 1x  ∈ {0, 1}, 1 ≤ i ≤ n 

DNF:  The join of minterm. (or sum of products of canonical 

form). 

CNF:  The meet of maxterms (or a product of sums canonical 

form). 

 

 

18.7 Model Questions 
 

1.   Find equivalent Boolean expression for the following  

      (i). ( )( )( )11 yyyyx ∨∧∨∧  

 (ii). ( ) ( )( ) ( )yzzyxxz ∨∧∨∧∧∨ 11  

 (iii). ( ) ( )[ ] ( ) ( )[ ]111 zxzyzyzx ∧∨∧∨∨∨∧                                                                                                         

 

2.  Write the Boolean function  values for f : A2 → A, where A = {0, 1} with  f (x1, x2) =  

( ) 211 xxx ∨∧ .   

 

3.  Consider the Boolean polynomial f (x, y, z) = x ∧ (y ∨ z1).  If B = {0, 1}, compute the  truth 

table of the function f : B3 → B defined by f. 

 

4.  Consider the Boolean  polynomial f(x, y, z) = ( ) ( )( )yxyyx ∨∧∨∧ 11 . 

   If B = {0, 1}, compute the truth table of the function f: B3 → B defined by f. 

 

5.  Rewrite the given Boolean polynomial to obtain the requested format. 

     (i).   (x ∧ y1 ∧ z) ∨ (x ∧ y ∧ z) ;  two variables and one operation. 

     (ii).  (z ∨ (y ∧ (x ∨ x1)) ∧ (y ∧ z1)1 ;  one variable. 



 Acharya Nagarjuna University                         18.15                       Centre for Distance Education 
 

     (iii). (y ∨ z) ∨ x1 ∨ (w ∧ w1)1 ∨ (y ∧ z1) ;  two variables and two operations. 

 

6.  Write the disjunctive and conjuctive normal form for f (x1, x2, x3) = [ ( )[ ]321 xxx ∨∧  ] ∨ 

( )[ ]{ }1321 xxxx ∧∨∧ ,  by writing minterms and maxterms. 
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Lesson 19 

Boolean Functions and Gating Networks   
 

Objectives 
 

At the end of the Lesson the student must be able to: 

 
(i) Write the values of Boolean expressions  
(ii) Representation of Boolean algebra through gating network. 
(iii)Learn several applications of Boolean algebras in science and engineering.  

 

Structure 
19.1 Introduction 

19.2 Boolean Functions  

19.3 Gating network 

19.4 Answers to Self Assessment Questions 

19.5 Summary 

19.6 Technical Terms 

19.7 Model Questions 

19.8 References  

 

 

19.1 Introduction 
 

Some special type of net-works is used in digital computers for the processing of information in 

it.  These networks are represented by block diagrams.  Logic circuits are structures which are 

built up from certain elementary circuits called logic gates.  In this lesson we shall represent a 
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Boolean function in a gating network.  Various gates will be used for representing the 

expressions.  

 

First let us construct the truth tables for the following Boolean expressions. 

 

 

19.2 Boolean Functions  
 

Let f(x1, x2, …, xn) be a Boolean expression of n variables over a Boolean Algebra Bn.  For an 

assignment of values 1 or 0 (True or False) to the variables, we can evaluate the value of the 

expression f(x1, x2, …, xn) by substiting the variables, in the expression by their values.  The 

values of f for several of  x1, x2, …, xn can be listed in a truth table. 

 

19.2.1 Example:  

a) f1(x1, x2) = x1 ∨ x2 

b) f2(x1, x2) = x1 ∧ x2 

c) f3(x1) = x1ˈ 
 

Solution: The truth table for  x1 ∨ x2, x1 ∧ x2, x1ˈ are given below. 

x1 x2 f1 = x1 ∨ x2 f2 = x1 ∧  x2 f3 = x1ˈ 

0 0 0 0 1 

0 1 1 0 1 

1 0 1 0 0 

1 1 1 1 0 

 

19.2.2 Example: Find the truth values for f(x1, x2, x3) = (x1 ∨ x2) ∧ (x1ˈ ∨ x2ˈ ) ∧ (x2 ∨ x3ˈ
 ). 

 

Solution: The table for f(x1, x2, x3) given below. 
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x1 x2 x3 x1 ∨ x2 x1ˈ ∨ x2ˈ x2 ∨ x3ˈ f(x1, x2, x3) 

0 0 0 0 1 1 0 

0 0 1 0 1 0 0 

0 1 0 1 1 0 0 

0 1 1 1 1 0 0 

1 0 0 1 1 1 1 

1 0 1 1 1 0 0 

1 1 0 1 0 0 0 

1 1 1 1 0 0 0 

 

 

19.3 Gating Networks  
 

19.3.1 Definition: (i) Two Boolean expressions of n variables are said to be equivalent if they 

assume the same value for every assignment of values to the n variables.    

(ii) Some switches or switching circuits may be represented by some new type of diagrams 

which are called as gates.  By using these gates, we can represent any switching circuit as a 

combination of the gates. This is a symbolic representation.       
 

(ii) From (i) we can conclude that a gate (or a combination of gates) is a polynomial   p.   

(iii) A symbolic representation (that is, a combination of gates) which represents a polynomial, is 

called a gating network.  

 

19.3.2 Notation: Different gates that we use are given below: 

 

  

 

 

(i) identity-gate (symbolizes   x); a a 
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If the input is x then the output is converted into x1 by an inverter. 

 

 

 

 

AND Gate: If there be two or more inputs then the output will be a function of those inputs given 

below. 

 

 

 

 

 

OR gate: It converts two and more inputs into a single function given as follows.  

 

 

  

 

 

 

We also use a small black disk (either before or after) one of the other gates to indicate an 

inverter.  

 

19.3.3 Example: 

  

 

 

 

 

 

(iii) 
AND-gate  
(Symbolizes)   
x1x2 … xn); 

a1 
a2 

: 
an 

a1a2 … an 

(iv) 
OR-gate  

(symbolizes          

x1 + … + xn) 

 

a1 
a2 

: 
an 

a1 + … + an 

a2 
a1a2

1
a1 

(ii) 

(ii) 
NOT-gate  (or  inverter)         

(symbolizes  x1); 
a1 a 

a2 
(a1a2)1 

a1 
(i) 
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19.3.4 Note: In Boolean Algebra, we have three basic operations namely, AND, OR and NOT.  

Some other operations can be defined in terms of these operations.   

The NAND operation is the complement of OR operation and also written as not-OR and uses an 

OR system followed by a small circle.  Thus a NOR gate is equivalent to an OR gate followed by 

a NOT gate.   

The NAND operation is the complement of AND operation and written as not-AND and uses an 

AND symbol followed by a small circle.  

 

 

 

 

 

 

 

 

 

 

 

19.3.5 Example: For the expression f = (x ∧ y ∧ z) ∨ (x ∧ y1∨ z) ∨ (x1 ∧ y) design the logic 

diagram.  
 

Solution: The following logic diagram shows the given function.  

(iii) a2 
(a1a2)1 

a1 NAND-gate or 
Sheffer-operation 

a2 

a1 a1
1

 + a2     Subjunction-gate (i) 

a2 

a1 
(a1 + a2)1   NOR-gate or  
                 Pierce-operation (ii) 
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     Fig. 19.3.5 
19.3.6 Example: Find the Boolean expression for the following logic diagram. 

                            
Fig. 19.3.6 

Solution: ABC1 + BC1 + A1B. 
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19.3.7 Problem: Write down the gating network for the polynomial   p = (x1
1

 x2)1 + x3 . 
 

Solution: The required gating network is given by the Figure. 

  

 

 

 

 

19.3.8 Problem: (i) Find the polynomial   p   which corresponds to the gating network given in 

the Figure-12.  (ii) Find a simplified gating network which operates in the same way as the 

gating network given in Figure. 

 

 

 

 

 

 

 
 

Solution: (i) The polynomial that represents the given gating network is   p  =  ((x1x2)1x3 + x4) 

(x1x2 + x3
1

 x4).   (ii) By using the Quine-McCluskey algorithm we get a  simplified form   q  = 

x1x2x4 + x3
1

 x4   of   p. 

 

 

 

 

 

 

 

a3 
a2 
a1 

P (a1 , a2, a3)

a4 

a3 

a2 

a1 

a4 

a3

a2 
a1 
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  Now, the gating network which represents q  is given by the Figure-13.   

 

 

19.4 Answers to Self Assessment Questions  
 

SAQ 1.  

The required gating network is given by the Figure1. 

  

 

 

 

 

SAQ2.  

(i) The polynomial that represents the given gating network is   p = ((x1x2)1x3 + x4) (x1x2 + x3
1

 x4).   

(ii) By using the Quine-McCluskey algorithm we get a simplified form   q  = x1x2x4 + x3
1

 x4  of   

p. 

 

 

 

 
Now, the gating network which represents q  is given by the Figure. 
 

 

 

 

 

a3 
a2 
a1 

P (a1 , a2, a3)

a4 

a3

a2 
a1 
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19.5 Summary  
This lesson provides the diagram representations of Boolean algebras.  This has lot of 

importance in digital and signal communication systems. This lesson also milieu for the many 

branches of science, engineering and technology. 
19.5 Technical Terms  
 

NOR Gate 

 

 

NOT Gate 

 

 

NAND Gate 

 

 

AND Gate 

 

 

OR Gate. 

 

 

 

19.7 Model Questions 
 

1.  Write down the gating network for the polynomial   p = (x1
1

 x2)1 + x3. 
 

 

NOT-gate         a1 a 

a2 

a1 
(a1 + a2)1   NOR-gate  

a2 
(a1a2)1 

a1 
NAND-gate 

AND-gate  
a1 
a2 

: 
an 

a1a2 … an 

OR-gate   

a1 
a2 

: 
an 

a1 + … + an 
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2. (i) Find the polynomial   p   which corresponds to the gating network given in the Figure  (ii) 

Find a simplified gating network which operates in the same way as the gating network given in 

Figure. 

 

 

 

 

 

 

 

Fig. 19.7.2 

3. Draw the gating network corresponding to the Boolean function  

           (x + y)(x1 + y + z1). 

 

4. Construct a logic circuit corresopnding to Boolean function 

           f(x, y, z) = xyz + xy1z. 

 

5. Construct the truth table for the following Boolean expressions. 

(i)    (x * y) ⊕ (x * z1) 

(ii)    y * (x * (y * z)1) 
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a4

a3

a2

a1
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Lesson 20 

Minimization of Boolean Functions-Karnaugh Maps 
 

Objectives 
 

At the end of the Lesson the student must be able to: 
 

(i) Know the Boolean functions and minimization process 
(ii) Learn technique of Karnaugh map. 
(iii)Write the simplified expressions using Karnaugh map. 
(iv) Learn several applications of Boolean functions in science and engineering.  

 

 

Structure 
20.1  Introduction 

20.2  Representation of Boolean Functions  

20.3  Minimization of Boolean Functions 

20.4 Answers to Self Assessment Questions 

20.5  Summary 

20.6  Technical Terms 

20.7  Model Questions 

20.8  References  

 

 

20.1 Introduction  

 

Boolean algebra is used as a tool for expressing problems of circuit design. In the previous 

sections, we have seen some of them viz., Hasse diagrams, truth tables and logical diagrams. In 

this lesson, yet another widely -used way is discussed. This type of representation helps us to 
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simplify the functions.  We discussed a new structure, called Karnaugh map, is an area which is 

subdivided into 2n cells, one for each possible input combination for a Boolean function of n 

variables. Half the number of cells is associated with an input value of 1 for one of the variables 

and the other half the number of cells, with the input value 0 for the same variable. More 

precisely, the Karnaugh map corresponding to Boolean expressions in n variables is an area 

which is subdivided into 2n cells (squares) each of which corresponds to one of the fundamental 

products or minterms in n variables. 

 

 

20.2 Representation of Boolean Functions 

 

For example, K-map in 3 variables has 23 = 8 cells each of which correspond to one of the 

following minterms  xyz, xyz1, xy1z, xy1z1, x1yz, x1yz1, x1y1z, x1y1z1. 
 

The following fig. shows the K-maps for different variables. 

                              
                          Fig 1: K-map for 1 variable        Fig 2: K-map for 2 variable  

                    
                  Fig 3: K-map for 3 variables                   Fig 4: K-map for 4 variables  
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20.2.1 Example: Find the K-map for the following expression: 

(a) (x * y) ⊕ (x1 * y1)  

(b) (x1 * y1 * z  ⊕  x1 * y * z1 ⊕ x * y * z1) 

(c) (x1 * y1 * z * w) ⊕  (x1 * y * z * w1) ⊕ (x * y1 * z * w) ⊕ (x * y * z * w1) 
 

Solution: K- maps for the above expressions are in the following fig. 

                
 

20.2.2 Example:  For the Boolean expression represented by the following truth table, give K-

map representation.  Also write the expression. 

 

 

 

 

 

 

 

 

 

 
 

Solution: The following fig. represents the K-map for the given Boolean expression. 

x y z f(x, y, z) 

0 0 0 1 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 1 

1 1 1 0 
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The expression is x1y1z1 ⊕  x1y1z ⊕ xy1z1 ⊕ xyz1.   

 
 

 

20.3 Minimization of Boolean Expressions  
 

The process of minimization of circuits is important in circuit design. The aim of minimization is 

to reduce the number of gates to a minimum. Minimization of an expression is the selection of 

the simplest representative expression of an equivalence class to serve as our circuit. K-maps are 

used in the minimization process for functions of six or fewer variables. 

 

Two minterms or fundamental products (cells in a K-map) are said to be adjacent if they have the 

same variables and if they differ in exactly one literal which must be a complemented variable in 

one product and uncomplemented in the other. For example, 

 

1. xyz1  and xy1z1 are adjacent 

2. x1yzw and x1yz1w are adjacent 

3. x1yzw and xyz1w are not adjacent as they differ in two literals. 

 

20.3.1 Theorem:  Sum of two adjacent products P1 and P2 is a fundamental product with one less 

literal. 
 

Proof:  Two adjacent products P1 and P2 are represented as  

P1 = a1a2 … ar-1arar+1 … ak 
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 and   P2 = a1a2 … ar-1
1
ra  ar+1 … ak 

Then P1⊕ P2 = a1a2 … an-1arar+1 … ak( 1
r ra a⊕ ) = a1a2 … ar-1ar+1 … ak 

 

20.3.2 Example:  For three variables, xyz1 ⊕  xy1z1 = xz1 (y ⊕ y1) = zz1.   

 

The above result and the absorption operation xyz + xy = xy help us in grouping the terms. 

Minimization involves grouping of adjacent cells with l’s in them into a largest possible block of 

such cells. Simplified expression must contain minimum number of such blocks. 

 

20.3.3 Note: In case of two variables, a block will be either a pair of adjacent squares or an 

individual square. 

 

20.3.4 Example:  Minimize the expression f = xy ⊕ xy1 ⊕ x1y1 
 

Solution: The K-map for the given expression is shown in Fig. 

 
Therefore f contains two blocks corresponding to x and other to y1.  Hence f = x ⊕ y1. 

 

20.3.5 Note: In the case of 3 variables, a basic rectangle contains either a square, or two adjacent 

squares, or four squares which form a one-by-four or a two-by- two rectangle. A maximal basic 

rectangle is a block. 

 

20.3.6 Example: Minimize the following expressions: 

 (a) f1 = xyz ⊕ xyz1 ⊕ x1yz1 ⊕ x1y1z   

 (b) f2 = xyz ⊕ xyz1 ⊕ xy1z ⊕ x1yz ⊕ x1y1z   
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Solution: K-maps for the given expressions are given in Figures.  

                
Their minimized expressions are 

(a) x1y1z  ⊕  yz1 ⊕  xy,  (b) z ⊕ xy.  

 

Note that in the case of 4 variables, a basic rectangle is a square, two adjacent squares, four 

squares which form one-by-four or two-by-two rectangle or eight squares which form a two-by-

four rectangle. A maximal basic rectangle is a block. 

 

20.3.7 Example:  Minimize the following expressions: 

 (a) w1 ⊕ y * (x1 ⊕ z1) 

 (b) x1y1zw  ⊕  yzw1 ⊕ y1z1 ⊕  y1w1. 
 

Solution: Minimized expressions are: (a) w1 ⊕  yz1 ⊕  wx1y and  

(b) y1z1  ⊕  x1y1 ⊕  zw1. 

Their K-maps are shown in Fig.  

(a) K-map for w1 ⊕ y * (x1 ⊕ z1) 



 Acharya Nagarjuna University                         20.7                      Centre for Distance Education 

                                         
 

(b) The K-map for x1y1zw  ⊕  yzw1 ⊕ y1z1 ⊕  y1w1. 

                                      
 

Self Assessment Question 1: Express the K-map in two variables corresponding to Boolean 

expression E (x1, x2) for two variables using binary digits 0 and 1. 

 

Self Assessment Question 2: Express the K-map corresponding to Boolean expression                        

E(x, y, z) with three variables x, y, z and represent three variables using binary digits 0 and 1. 

 

20.3.8 Case of Four Variables  
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The Karnaugh map corresponding to Boolean expression E(x, y, z, t) is shown in table (a) and 

the alternative way of representing using binary digits 0 and 1 shown in table (b). There are 

exactly 16 minterms with four variables. 

 x′y′ x′y xy′ xy 

z′t x′y′z′t′ x′yz′t′ xy′z′t′ xyz′t 

 z′t x′y′z′t x′yz′t xy′z′t xyz′t 

zt′ x′yzt′ x′yzt′ xy′zt′ xyzt′ 

zt x′y′zt x′yzt xy′zt xyzt 

                                                               Table (a) 

 

 

 

 

 

 

 

                                                                Table (b) 

 

20.3.9 Example: Use Karnaugh maps to find minimal form for the following Boolean functions. 

(i)  E (x, y) = x′y′ + xy′ 

(ii) E (x, y) = x′y′ + x′y + xy′ 

(iii) E (x, y) = xy + xy′ 

(iv) E (x, y) = xy + x′y′ 
 

Solution:  (i) Boolean expression E(x, y) = x′y′ + xy′  is shown by two variables  K – map by 

putting 1 in the square which correspond to x′y′ and xy′. The remaining squares are filled with 

0’s as shown in the table. 

         xy 

   zt            

00 01 10 11 

00 0000 0100 1000 1100 

00 0001 0101 1001 1101 

10 0010 0110 1010 1110 

11 0011 0111 1011 1111 
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1 1

1 1 

1 

 

 

 

 

 

Two adjacent squares x′y′ and xy′ containing 1 have been enclosed in a rectangle. These two 

terms can be looped to give a resultant that eliminates x since it appears in both complimented 

and uncomplemented forms 

                                  so   E(x1, x2) = y′ 

We can verify this by algebraically as 

  E(x, y) =  x′y′ + xy′ 

       =  (x′ + x) y′ = 1.y′ = y′ 
 

(ii) E(x, y) = x′y′ + x′y + xy′ 

 Karnaugh-map for the given function is 

 

 

 

There are two pairs of 1s and can be combined as shown in the table. Since 1 value of first 

column and first row has been enclosed twice therefore decomposition into rectangles is not 

unique.  We should try to use largest possible rectangles. The group of horizontal 1 square give 

y′ and vertical 1 square give x′. Hence the simpler expression is  

    E (x, y) = x′  + y′ 

 

 x′ x 

y′   

 y 0 0 

 x′ x 

y′      

 

 y 

 

 0 
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1 

(iii) E(x, y) = xy + xy′ 

 

Karnaugh-map for the given function is given by 

 

 

 

 

 

 

 

We represent two squares with 1s in them by a rectangle. This is corresponding to x. 

  E(x, y) = x 

  E(x, y) = xy + x′y′ 

Karnaugh map for the given function is  

 

 

 

 

 

 

We observe that given function consists of two isolated square which represent xy and x′y′ (they 

are known also as prime implicants) 

 

 E(x, y) = xy + x′y′ is the minimal form. 

 

 

 

 x′ x 

y′  

 

    

 

 y     0 1 

 

 x′ x 

y′  

 

 

 y   

 

1 0 

1 0 

0 
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Self Assessment Question 3:  Simplify the following Boolean expressions using K– map 

(i)  E(x, y, z) = x′y′z′ + xy′z′ 

(ii) E(x, y, z) = xyz′ + xyz 

(iii)E(x, y, z) = x′y′z′ + x′yz′ + xyz′ + xy′z 

(iv) E(x, y, z) = xyz + xyz′ + x′yz′ + x′y′z 

 

20.4 Answers to Self Assessment Questions 

 

SAQ 1. 

Karnaugh Map for two variables. 

 

 x′ x 

y′ x′y′ xy′ 

 y x′y xy 

                                (a)                         (b) 

SAQ 2.  

Karnaugh  map with three variables 

 x′y′ x′y xy′ xy 

z′ x′y′z′ x′yz′ xy′z′ xyz′ 

 z x′y′z x′yz xy′z xyz 

 

 

 

 

 

 

 

 x
y  

0 1 

0 00 10 

1 01 11 

       x1 x2 

   x3            

00 01 10 11 

0 000 010 100 110 

1 001 011 101 111 
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3.  (i) Three variables K–map of the expression is shown in the table 

 

 

 

 

 

 

In the K – map the top and bottom rows of squares are considered to be adjacent. Thus the two 

1s in this map can be looped to  provide  a simpler result. 

  E (x, y, z) = y′z′ 

 

(ii) Karnaugh map for the function 

 E (x, y, z) = xyz′ + xyz 

 

 

 

 

In the grouped rectangle the square represent terms xyz′ and xyz then leaving variable z since it 

appear in both complimented and uncomplimented forms. The simplified Boolean expression is 

E = x, y.  

 

(iii) Karnaugh map corresponding to the given function  

E (x, y, z) = x′y′z′ + x′yz′ + xyz′ + xy′z is shown in the figure 

 

 

 

 

 

 x′y′ xy′ xy xy′ 

z   

 

  

 z′t 0 0 0 0 

 x′y′ xy′ xy xy′ 

z′ 0 0 1 0 

 z′t 0 0 1 0 

 x′y′ x′y xy xy′ 

z′     

 

 z 0 0 0 1 

1 0 1 0 

1                 1               0 1 
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1                 0 

We can combine two pairs of 1s. Only 1 representing the term xy′z is isolated so answer is 

  E = x′z′ + yz′ + xy′z 

 

(iii) E = (x, y, z) = xyz + xyz′ + x′y′z 

 

Karnaugh map is given by 

 

0 x′y′ x′y xy xy′ 

z′     

 

 

z 

 

 

   

 

We can observe that we have three maximal basic rectangles. Minimal Boolean function is 

  E = yz′ + xy + x′y′z 

 

 

20.5 Summary 
 

In this lesson we discussed the process of reducing the number of terms in a Boolean expression 

representing a circuit using Karnaugh map. The method described was introduced by Maurice 

Karnaugh in 1953. This method is usually applied only when the function involve six or four 

variables. The Karnaugh map is used in minimization algorithms in digital and signal process 

systems.  It has enormous applications in electronics and communications engineering and 

information technology.  

 

 

  1 

0 

10 

0 

0 
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20. 5 Technical Terms 
 

Karnaugh map:   Corresponding to Boolean expressions in n variables, the 

area is subdivided into 2n cells (squares) each of which 

corresponds to one of the fundamental products or 

minterms in n variables. 

 

Adjacent:  Two minterms or fundamental products (cells in a K-map) 

are said to be adjacent if they have the same variables and 

if they differ in exactly one literal which must be a 

complemented variable in one product and 

uncomplemented in the other.  

 

Looping:  E(x, y) with two variables x, y squares containing binary 

digit 1 can be represented by two rectangles. The horizontal 

squares represent the output of the expression E(x, y) 

corresponding x′ whereas vertical square represent the 

output corresponding to y′. Thus E(x, y) = x′ + y′ (or                   

x′∨ y′). The process of combining these digits is called 

looping. 

 

 

20.7 Model Questions  
 

1. Simplify the following Boolean expressions using K– map 

(i)  E(x, y, z) = xyz + xyz′ + xy′z + x′yz + x′y′z 

(ii) E(x, y, z) = xyz + xyz′ + x′yz′ + x′yz′ + x′y′z 
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2. Minimize the following expressions: 

                   (a)  w1 ⊕ y * (x1 ⊕ z1) 

                   (b) x1y1zw  ⊕  yzw1 ⊕ y1z1 ⊕  y1w1. 
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