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1. Introduction to Software Engineering and 

generic view of process 

Objectives 

After going through this unit, you should be able to:  

• define software engineering;  

• understand the evolution of software engineering;  

• understand the software myths;  

• learn about process frame work, patterns, and assessment; 

• understand personal and team process models. 

• learn about phases of software development life cycle models, and  

• understand software development requirements. 

1.1 The Evolving Role of Software: 

The field of software engineering is related to the development of software. 

Large software needs systematic development unlike   simple programs which 

can be developed in isolation and there may not be any systematic approach 

being followed. 

In the last few decades, the computer industry has undergone revolutionary 

changes in hardware. That is, processor technology, memory technology, and 

integration of devices have changed very rapidly. As the software is required 

to maintain compatibility with hardware, the complexity of software also has 

changed much in the recent past. In 1970s, the programs were small, simple 

and executed on a simple uniprocessor system. The development of software 

for such systems was much easier. In the present situation, high speed 

multiprocessor systems are available and the software is required to be 

developed for the whole organisation. Naturally, the complexity of software 

has increased many folds. Thus, the need for the application of engineering 

techniques in their development is realized. The application of engineering 

approach to software development leads to the evolution of the area of 

Software Engineering. The IEEE glossary of software engineering terminology 

defines the Software Engineering as: 

“(a) The application of a systematic, disciplined, quantifiable approach to the 

development, operation and maintenance of software, that is, the application 

of engineering to software. (b) The study of approaches in (a).” 

There is a difference between programming and Software Engineering. 

Software Engineering includes activities like cost estimation, time estimation, 

designing, coding, documentation, maintenance, quality assurance, testing of 

software etc. whereas programming includes only the coding part. Thus, it can 

be said that programming activity is only a subset of software development 

activities. The above mentioned features are essential features of software. 
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Besides these essential features, additional features like reliability, future 

expansion, software reuse etc. are also considered. Reliability is of utmost 

importance in real time systems like flight control, medical applications etc. 

Today, software takes on a dual role. It is a product and, at the same time, the 

vehicle for delivering a product. As a product, it delivers the computing 

potential embodied by computer hardware or, more broadly, a network of 

computers that are accessible by local hardware. Whether it resides within a 

cellular phone or operates inside a mainframe computer, software is an 

information transformer producing, managing, acquiring, modifying, 

displaying, or transmitting information that can be as simple as a single bit or 

as complex as a multimedia presentation. As the vehicle used to deliver the 

product, software acts as the basis for the control of the computer (operating 

systems), the communication of information (networks), and the creation and 

control of other programs (software tools and environments).  

Software delivers the most important product of our time information. Software 

transforms personal data (e.g., an individual’s financial transactions) so that 

the data can be more useful in a local context; it manages business 

information to enhance competitiveness; it provides a gateway to worldwide 

information networks (e.g., Inter-net) and provides the means for acquiring 

information in all of its forms. 

The role of computer software has undergone significant change over a time 

span of little more than 50 years. Dramatic improvements in hardware 

performance, profound changes in computing architectures, vast increases in 

memory and storage capacity, and a wide variety of exotic input and output 

options have all precipitated more sophisticated and complex computer-based 

systems. Sophistication and complexity can produce dazzling results when a 

system succeeds, but they can also pose huge problems for those who must 

build complex systems.  

Popular books published during the 1970s and 1980s provide useful historical 

insight into the changing perception of computers and software and their 

impact on our culture. Osborne characterized a "new industrial revolution."  

Toffler called the advent of microelectronics part of "the third wave of change" 

in human history, and Naisbitt predicted a transformation from an industrial 

society to an "information society."  Feigenbaum and McCorduck suggested 

that information and knowledge (controlled by computers) would be the focal 

point for power in the twenty-first century, and Stoll argued that the "electronic 

community" created by networks and software was the key to knowledge 

interchange throughout the world.  

As the 1990s began, Toffler described a "power shift" in which old power 

structures (governmental, educational, industrial, economic, and military) 

disintegrate as computers and software lead to a "democratization of 

knowledge." Yourdon worried that U.S. companies might loose their 
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competitive edge in software-related businesses and predicted “the decline 

and fall of the American programmer.” 

Hammer and Champy argued that information technologies were to play a 

pivotal role in the “reengineering of the corporation.” During the mid-1990s, 

the pervasiveness of computers and software spawned a rash of books by 

“neo-Luddites” (e.g., Resisting the Virtual Life, edited by James Brook and Iain 

Boal and The Future Does Not Compute by Stephen Talbot). These authors 

demonized the computer, emphasizing legitimate concerns but ignoring the 

profound benefits that have already been realized.  

During the later 1990s, Yourdon re-evaluated the prospects for the software 

professional and suggested the “the rise and resurrection” of the American 

programmer. As the Internet grew in importance, his change of heart proved 

to be correct. As the twentieth century closed, the focus shifted once more, 

this time to the impact of the Y2K “time bomb”. 

Although the predictions of the Y2K doomsayers were incorrect, their popular 

writings drove home the pervasiveness of software in our lives. Today, 

“ubiquitous computing” has spawned a generation of information appliances 

that have broadband connectivity to the Web to provide “a blanket of 

connectedness over our homes, offices and motorways”. Software’s role 

continues to expand. 

The lone programmer of an earlier era has been replaced by a team of 

software specialists, each focusing on one part of the technology required to 

deliver a complex application. And yet, the same questions asked of the lone 

programmer are being asked when modern computer-based systems are 

built: 

• Why does it take so long to get software finished? 

• Why are development costs so high? 

• Why can't we find all the errors before we give the software to 

customers? 

• Why do we continue to have difficulty in measuring progress as 

software is being developed? 

These, and many other questions, are a manifestation of the concern about 

software and the manner in which it is developed a concern that has lead to 

the adoption of software engineering practice. 

The latest trend in software engineering includes the concepts of software 

reliability, reusability, scalability etc. More and more importance is now given 

to the quality of the software product. Just as automobile companies try to 

develop good quality automobiles, software companies try to develop good 
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quality Software. The software creates the most valuable product of the 

present era, i.e., information. 

The following Table summarises the evolution of software: 

1960s  Infancy  Machine Code 

1970s  Project Years Higher Order Languages 

1980s Project Years   Project Development 

1990s Process and Production Era Software Reuse 

The problems arising in the development of software is termed as crisis. It 

includes the problems arising in the process of development of software rather 

than software functioning. Besides development, the problems may be 

present in the maintenance and handling of large volumes of software. Some 

of the common misunderstandings regarding software development are given 

below. 

1. Correcting errors is easy. Though the changes in the software are possible, 

but, making changes in large software is extremely difficult task. 

2. By proper development of software, it can function perfectly at first time. 

Though, theoretically, it seems correct, but practically software undergoes 

many development/coding/testing passes before becoming perfect for 

working. 

3. Loose objective definition can be used at starting point. Once software is 

developed using loose objective, changing it for specific objectives may 

require complete change. 

4. More manpower can be added to speed up the development. Software is 

developed by well coordinated teams. Any person joining it at a later stage 

may require extra efforts to understand the code. 

Software Standards 

Various terms related to software engineering are regularly standardized by 

organizations like IEEE (Institute of Electrical and Electronics Engineers), 

ANSI (American National Standards Institute), 0MG (Object Management 

Group), CORBA (Common Object Request Broker Architecture). 

IEEE regularly publishes software development standards. 

O\IG is international trade organisation (http:// www.omg.org) and is one of the 

largest consortiums in the software industry. CORBA defines the standard 

capabilities that allow objects to interact with each other. 
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1.2. The changing Nature of Software: 

In 1970, less than 1 percent of the public could have intelligently described 

what "computer software" meant. Today, most professionals and many 

members of the public at large feel that they understand software. But do 

they? 

A description of software might take the following form:            

 Software is (1) instructions (computer programs) that when executed provide 

desired function and performance, 

 (2) Data structures that enable the programs to adequately manipulate 

information, and 

 (3) Documents that describe the operation and use of the programs. There is 

no question that other, more complete definitions could be offered. But we 

need more than a formal definition. 

Software Characteristics 

To gain an understanding of software (and ultimately an understanding of 

software engineering), it is important to examine the characteristics of 

software that make it different from other things that human beings build. 

When hardware is built, the human creative process (analysis, design, 

construction, testing) is ultimately translated into a physical form. If we build a 

new computer, our initial sketches, formal design drawings, and bread 

boarded prototype evolve into a physical product (chips, circuit boards, power 

supplies, etc.). 

Software is a logical rather than a physical system element. Therefore, 

software has characteristics that are considerably different than those of 

hardware: 

1. Software is developed or engineered, it is not manufactured in the classical 

sense. 

Although some similarities exist between software development and hardware 

manufacture, the two activities are fundamentally different. In both activities, 

high quality is achieved through good design, but the manufacturing phase for 

hardware can introduce quality problems that are nonexistent (or easily 

corrected) for software. 

Both activities are dependent on people, but the relationship between people 

applied and work accomplished is entirely different. Both activities require the 

construction of a "product" but the approaches are different. 
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Software costs are concentrated in engineering. This means that software 

projects cannot be managed as if they were manufacturing projects.  

2. Software doesn't "wear out." 

Figure 1 depicts failure rate as a function of time for hardware. The 

relationship, often called the "bathtub curve," indicates that hardware exhibits 

relatively high failure rates early in its life (these failures are often attributable 

to design or manufacturing defects); defects are corrected and the failure rate 

drops to a steady-state level (ideally, quite low) for some period of time. As 

time passes, however, the failure rate rises again as hardware components 

suffer from the cumulative effects of dust, vibration, abuse, temperature 

extremes, and many other environmental maladies. Stated simply, the 

hardware begins to wear out. 

 

FIGURE 1: Failure curve for hardware 

Software is not susceptible to the environmental maladies that cause 

hardware to wear out. In theory, therefore, the failure rate curve for software 

should take the form of the “idealized curve” shown in Figure 2. Undiscovered 

defects will cause high failure rates early in the life of a program. However, 

these are corrected (ideally, without introducing other errors) and the curve 

flattens as shown. The idealized curve is a gross over-simplification of actual 

failure models for software. 

However, the implication is clear software doesn't wear out. But it does 

deteriorate. This seeming contradiction can best be explained by considering 

the “actual curve” shown in Figure 2. During its life, software will undergo 

change (maintenance). As changes are made, it is likely that some new 

defects will be introduced, causing the failure rate curve to spike as shown in 

Figure 2. Before the curve can return to the original steady-state failure rate, 

another change is requested, causing the curve to spike again. Slowly, the 
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minimum failure rate level begins to rise the software is deteriorating due to 

change. 

 

FIGURE 2. Idealized and actual failure curves for software 

Another aspect of wear illustrates the difference between hardware and 

software. When a hardware component wears out, it is replaced by a spare 

part. There are no software spare parts. Every software failure indicates an 

error in design or in the process through which design was translated into 

machine executable code. There-fore, software maintenance involves 

considerably more complexity than hardware maintenance. 

3. Although the industry is moving toward component-based assembly, most 

software continues to be custom built. 

Consider the manner in which the control hardware for a computer-based 

product is designed and built. The design engineer draws a simple schematic 

of the digital circuitry, does some fundamental analysis to assure that proper 

function will be achieved, and then goes to the shelf where catalogs of digital 

components exist. Each integrated circuit (called an IC or a chip) has a part 

number, a defined and validated function, a well-defined interface, and a 

standard set of integration guidelines. After each component is selected, it can 

be ordered off the shelf. 

As an engineering discipline evolves, a collection of standard design 

components is created. Standard screws and off-the-shelf integrated circuits 

are only two of thousands of standard components that are used by 

mechanical and electrical engineers as they design new systems. The 

reusable components have been created so that the engineer can concentrate 

on the truly innovative elements of a design, that is, the parts of the design 

that represent something new. In the hardware world, component reuse is a 
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natural part of the engineering process. In the software world, it is some-thing 

that has only begun to be achieved on a broad scale. 

A software component should be designed and implemented so that it can be 

reused in many different programs. In the 1960s, we built scientific subroutine 

libraries that were reusable in a broad array of engineering and scientific 

applications. These subroutine libraries reused well defined algorithms in an 

effective manner but had a limited domain of application. Today, we have 

extended our view of reuse to encompass not only algorithms but also data 

structure. Modern reusable components encapsulate both data and the 

processing applied to the data, enabling the software engineer to create new 

applications from reusable parts. For example, today's graphical user 

interfaces are built using reusable components that enable the creation of 

graphics windows, pull-down menus, and a wide variety of interaction 

mechanisms. The data structure and processing detail required to build the 

interface are contained with a library of reusable components for interface 

construction. 

Software Applications: 

Software may be applied in any situation for which a pre-specified set of 

procedural steps (i.e., an algorithm) has been defined (notable exceptions to 

this rule are expert system software and neural network software). Information 

content and determinacy are important factors in determining the nature of a 

software application. Content refers to the meaning and form of incoming and 

outgoing information. For example, many business applications use highly 

structured input data (a database) and produce formatted “reports.”  Software 

that controls an automated machine (e.g., a numerical control) accepts 

discrete data items with limited structure and produces individual machine 

commands in rapid succession. 

Information determinacy refers to the predictability of the order and timing of 

information. An engineering analysis program accepts data that have a 

predefined order, executes the analysis algorithm(s) without interruption, and 

produces resultant data in report or graphical format.  Such applications are 

determinate. A multiuser operating system, on the other hand, accepts inputs 

that have varied content and arbitrary timing, executes algorithms that can be 

interrupted by external conditions, and produces output that varies as a 

function of environment and time.  Applications with these characteristics are 

indeterminate. 

It is somewhat difficult to develop meaningful generic categories for software 

applications.  As software complexity grows, neat compartmentalization 

disappears.  The following software areas indicate the breadth of potential 

applications: 

System software: It is a collection of program written to service other 

programs. It is characterized by heavy interaction with computer hardware, 
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heavy wage by multiple users, concurrent operation that requires scheduling, 

resource sharing & sophisticated process management, complex data 

structures and multiple external interfaces. 

Real-time software: Software that monitors / analyzes / controls real world 

events as they occur is called Real-time.  Elements of real-time software 

include a data gathering component, an analysis component, a control/output 

component and a monitoring component. 

Business software: Business information processing is the largest single 

software application area.  It encompass interactive-computing in addition to 

conventional data processing application. 

Engineering & Scientific software: They have been characterized by 

“Number crunching” algorithms.  Applications range from Astronomy to 

Volcano logy, from automotive stress analysis to space shuttle orbital 

dynamics and from molecular biology to automated manufacturing. 

Embedded software: It resides in ROM and is used to control products and 

systems for the consumer and industrial markets.  It can perform very limited 

and esoteric functions or provide significant function and control capability. 

Personal computer software: A few of hundreds of applications include 

word process spread sheets, computer graphics multimedia, entertainment, 

database management, personal & business financial applications external 

software, data base access. 

Web-based software: It not only provides standalone features, computing 

functions, and content to the end user, but also is integrated with corporate 

databases and business applications. 

Artificial Intelligence software: It makes use of non-ensure algorithms to 

solve complex problems that are not amenable to computation or straight 

forward analyses.  Different applications are Robotics, Expert systems, 

Pattern recognition, artificial neural networks, theorem proving and game 

playing. 

1.3. Software Myths 

Def:  Beliefs about software and the process used to build it. Myths have a 

number of attributes.  The most knowledgeable software Engineering 

professionals recognize myths problems for managers and technical people. 

Different categories of myths are: 

Management myths 
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Managers with software responsibility like managers in most disciplines are 

often under pressure to maintain budgets, keep schedules from slip-ping, and 

improve quality. Like a drowning person who grasps at a straw, a software 

manager often grasps at belief in a software myth, if that belief will lessen the 

pres-sure (even temporarily). 

Myth:  We already have a book that's full of standards and procedures for 

building software won't that provide my people with everything they need to 

know? 

Reality: The book of standards may very well exist, but is it used? Are 

software practitioners aware of its existence? Does it reflect modern software 

engineering practice? Is it complete? Is it streamlined to improve time to 

delivery while still maintaining a focus on quality? In many cases, the answer 

to all of these questions is "no."  

Myth: My people have state-of-the-art software development tools, after all, 

we buy them the newest computers.  

Reality: It takes much more than the latest model mainframe, workstation, or 

PC to do high-quality software development.  Computer-aided software 

engineering (CASE) tools are more important than hardware for achieving 

good quality and productivity, yet the majority of software developers still do 

not use them effectively. 

Myth: If we get behind schedule, we can add more programmers and catch 

up (sometimes called the Mongolian horde concept).  

Reality: Software development is not a mechanistic process like 

manufacturing. In the words of Brooks:  "adding people to a late software 

project makes it “In the absence of meaningful standards, a new industry like 

software comes to depend instead on folklore.” later." At first, this statement 

may seem counterintuitive. However, as new people are added, people who 

were working must spend time educating the newcomers, thereby reducing 

the amount of time spent on productive development effort.  People can be 

added but only in a planned and well-coordinated manner. 

Myth: If I decide to outsource the software project to a third party, I can just 

relax and let that firm build it. 

Reality: If an organization does not understand how to manage and control 

software projects internally, it will invariably struggle when it outsources 

software projects.  

Customer myths 

A customer who requests computer software may be a person at the next 

desk, a technical group down the hall, the marketing/sales department, or an 
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outside company that has requested software under contract. In many cases, 

the customer believes myths about software because software managers and 

practitioners do little to correct misinformation. Myths lead to false 

expectations (by the customer) and ultimately, dissatisfaction with the 

developer. 

Myth: A general statement of objectives is sufficient to begin writing programs 

we can fill in the details later.  

Reality: A poor up-front definition is the major cause of failed software efforts.  

A formal and detailed description of the information domain, function, 

behavior, performance, interfaces, design constraints, and validation criteria is 

essential.  These characteristics can be determined only after thorough 

communication between customer and developer. 

Myth: Project requirements continually change, but change can be easily 

accommodated because software is flexible. 

Reality: It is true that software requirements change, but the impact of change 

varies with the time at which it is introduced.  Figure 3 illustrates the impact of 

change. If serious attention is given to up-front definition, early requests for 

change can be accommodated easily.  The customer can review requirements 

and recommend modifications with relatively little impact on cost.  When 

changes are requested during software design, the cost impact grows rapidly.  

Resources have been committed and a design framework has been 

established.  Change can cause upheaval that requires additional resources 

and major design modification, that is, additional cost.  Changes in function, 

performance, interface, or other characteristics during implementation (code 

and test) have a severe impact on cost.  Change, when requested after 

software is in production, can be over an order of magnitude more expensive 

than the same change requested earlier. 

 

FIGURE 3. The impact of change 
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Practitioner's myths 

Myths that are still believed by software practitioners have been fostered by 

50 years of programming culture. During the early days of software, 

programming was viewed as an art form.  Old ways and attitudes die hard. 

Myth: Once we write the program and get it to work, our job is done.  

Reality: Someone once said that "the sooner you begin 'writing code', the 

longer it'll take you to get done." Industry data indicate that between 60 and 80 

percent of all effort expended on software will be expended after it is delivered 

to the customer for the first time.  

Myth: Until I get the program "running" I have no way of assessing its quality.  

Reality: One of the most effective software quality assurance mechanisms 

can be applied from the inception of a project the formal technical review. 

Software reviews are a "quality filter" that have been found to be more 

effective than testing for finding certain classes of software defects. 

Myth: The only deliverable work product for a successful project is the 

working program.  

Reality: A working program is only one part of a software configuration that 

includes many elements.  Documentation provides a foundation for successful 

engineering and, more important, guidance for software support. 

Myth: Software engineering will make us creates voluminous and 

unnecessary documentation and will invariably slow us down. 

Reality: Software engineering is not about creating documents. It is about 

creating quality. Better quality leads to reduced rework. And reduced rework 

results in faster delivery times. 

Many software professionals recognize the fallacy of the myths just described. 

Regrettably, habitual attitudes and methods foster poor management and 

technical practices, even when reality dictates a better approach.  Recognition 

of software realities is the first step toward formulation of practical solutions for 

software engineering. 

1.4. A Layered Technology 

Although hundreds of authors have developed personal definitions of software 

engineering, a definition proposed by Fritz Bauer at the seminal conference 

on the subject still serves as a basis for discussion: 
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Software engineering is the establishment and use of sound engineering 

principles in order to obtain economically software that is reliable and works 

efficiently on real machines. 

Almost every reader will be tempted to add to this definition. It says little about 

the technical aspects of software quality; it does not directly address the need 

for customer satisfaction or timely product delivery; it omits mention of the 

importance of measurement and metrics; it does not state the importance of a 

mature process. And yet, Bauer’s definition provides us with a baseline. What 

“sound engineering principles” can be applied to computer software 

development? How do we “economically” build software so that it is “reliable”? 

What is required to create computer programs that work “efficiently” on not 

one but many different “real machines”?  These are the questions that 

continue to challenge software engineers. 

The IEEE has developed a more comprehensive definition when it states: 

Software Engineering: (1) The application of a systematic, disciplined, 

quantifiable approach to the development, operation, and maintenance of 

software; that is, the application of engineering to software. (2) The study of 

approaches as in (1). 

According to Fritz Bauer, software engineering is the establishment & use of 

sound engineering principles in order to obtain economically software that is 

reliable and works efficiently on real machines. 

Software engineering is a layered technology.  It can be depicted from the fall.   

 
Software engineering layers 

Any engineering approach must rest on an organizational commitment to 

quality.  Total quality management, six sigma and similar philosophies foster a 

continuous process improvement culture and this culture ultimately leads to 

the development of increasingly more effective approaches to software 

engineering.  The bedrock that supports software engineering is Quality focus. 

The foundation of software engineering is the process layer.  Software 

engineering process is the glue that holds the technology layers together and 

enables rational and timely development of computer software process 

defines a frame work that must be established for effective delivery of 

software engineering technology. It forms the basis for management control of 

software projects and establishes the context in which technical methods are 
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applied, work products are produced, milestones are established, quality is 

ensured and change is properly managed. 

Software engineering methods provide the technical “how to” for building 

software.  Methods encompass a broad array of tasks that include 

communication, requirements analysis, design modeling, program 

construction, testing and support.  These methods rely on a set of basic 

principles that govern each area of the technology and include modeling 

activities and other descriptive techniques. 

Software engineering tools provide automated a semi-automated support for 

the process and the methods.  When tools are integrated so the information 

created by one tool can be uses by another, computer aided software 

engineering system is established for the support of software development. 

1.5 Process Frame Work  

A software process can be characterized as shown in Figure.  A common 

process framework is established by defining a small number of framework 

activities that are applicable to all software projects, regardless of their size or 

complexity. A number of tasks set each a collection of software engineering 

work tasks, project milestones, work products, and quality assurance points 

enable the framework activities to be adapted to the characteristics of the 

software project and the requirements of the project team. Finally, umbrella 

activities such as software quality assurance, software configuration 

management, and measurement overlay the process model. Umbrella 

activities are independent of any one framework activity and occur throughout 

the process.   

In recent years, there has been a significant emphasis on “process maturity.” 

The Software Engineering Institute (SEI) has developed a comprehensive 

model predicated on a set of software engineering capabilities that should be 

present as organizations reach different levels of process maturity. To 

determine an organization’s current state of process maturity, the SEI uses an 

assessment that results in a five point grading scheme. The grading scheme 

determines compliance with a capability maturity model (CMM) that defines 

key activities required at different levels of process maturity. The SEI 

approach provides a measure of the global effectiveness of a company's 

software engineering practices and establishes five process maturity levels 

that are defined in the following manner: 

Level 1: Initial. The software process is characterized as ad hoc and 

occasionally even chaotic. Few processes are defined, and success depends 

on individual effort.  



                               Software Engineering 

     NOTES 

 16 

Level 2: Repeatable. Basic project management processes are established 

to track cost, schedule, and functionality. The necessary process discipline is 

in place to repeat earlier successes on projects with similar applications. 

Level 3: Defined. The software process for both management and 

engineering activities is documented, standardized, and integrated into an 

organization wide software process. All projects use a documented and 

approved version of the organization's process for developing and supporting 

software. 

This level includes all characteristics defined for level 2. 

Level 4: Managed. Detailed measures of the software process and product 

quality are collected. Both the software process and products are 

quantitatively understood and controlled using detailed measures. This level 

includes all characteristics defined for level 3. 

Level 5: Optimizing. Continuous process improvement is enabled by 

quantitative feedback from the process and from testing innovative ideas and 

technologies. This level includes all characteristics defined for level 4. 

The five levels defined by the SEI were derived as a consequence of 

evaluating responses to the SEI assessment questionnaire that is based on 

the CMM. The results of the questionnaire are distilled to a single numerical 

grade that provides an indication of an organization's process maturity.   

The SEI has associated key process areas (KPAs) with each of the maturity 

levels. 

The KPAs describe those software engineering functions (e.g., software 

project planning, requirements management) that must be present to satisfy 

good practice at a particular level. Each KPA is described by identifying the 

following characteristics: 

• Goals—the overall objectives that the KPA must achieve. 

• Commitments—requirements (imposed on the organization) that must be 

met to achieve the goals or provide proof of intent to comply with the goals. 

• Abilities—those things that must be in place (organizationally and 

technically) to enable the organization to meet the commitments. 

• Activities—the specific tasks required to achieve the KPA function. 

• Methods for monitoring implementation—the manner in which the 

activities are monitored as they are put into place. 
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• Methods for verifying implementation—the manner in which proper 

practice for the KPA can be verified. 

Eighteen KPAs (each described using these characteristics) are defined 

across the maturity model and mapped into different levels of process 

maturity. The following 

KPAs should be achieved at each process maturity level: 

Process maturity level 2 

• Software configuration management 

• Software quality assurance 

• Software subcontract management 

• Software project tracking and oversight 

• Software project planning 

• Requirements management 

Process maturity level 3 

• Peer reviews 

• Intergroup coordination 

• Software product engineering 

• Integrated software management 

• Training program 

• Organization process definition 

• Organization process focus 

Process maturity level 4 

• Software quality management 

• Quantitative process management 

Process maturity level 5 

• Process change management 
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• Technology change management 

• Defect prevention 

It establishes the foundation for a complete software process by identifying a 

small number of frame works, activities that are applicable to all software 

projects, regardless of their size or complexity.  It encompasses a set of 

umbrella activities, hat are applicable across the entire software process. 

Each frame work activity is populated by a set of software engineering actions 

a collection of related tasks that produces a major software engineering work 

product.  Each action is populated with individual work tasks that accomplish 

some part of the work implied by the action. 

Software Process Frame Work: 

 

The software process 

Task Set: It defines the actual work to be done to accomplish the objectives 

of a software engineering action.  The task set that best accommodates the 

needs in the project and the characteristics of the team is chosen.  The typical 

umbrella activities in the generic view of software engineering category 

include the following: 

• Software Project tracking and control 

• Software Configuration Management 

• Software Quality assurance 

• Risk Management 

• Formal Technical reviews 

• Measurement 
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• Reusability Management 

• Work product preparation & production 

The generic process frame work basically consists of 5 frame work activities.  

They are: 

Communication: This involves heavy communicate and collaboration with 

the customer and encompasses requirements gathering and other related 

activities. 

Planning: This establishes a plan for software engineering work that follows.  

It describes the technical tasks to be conducted, the risks that are likely, the 

resourced that will be required, the work products to be produced, and a work, 

schedule. 

Modeling: This encompasses the creation of models that allow the developer 

and the customer to better understand software requirements and the design 

that will achieve those requirements. 

Construction: This combines code generation and the testing that is required 

uncovering errors in the code. 

Deployment: The software is delivered to the customer who evaluates the 

delivered product and provides feedback based on the evaluation. 

1.6. The Capability Maturity Model Integration (CMMI)  

The CMMI represents a process meta-model in 2 different ways: 

The CMMI is a significant achievement in software engineering. It provides a 

comprehensive discussion of the activities and actions that should be present 

when an organization builds computer software. 

a. Continuous Model: It describes a process in two dimensions.  They are: 

Process area, which is formally assessed against specific goals and practices 

and rated acc to capability levels. 

Capability levels, categorized into different categories which are: 

Level 

Number Level Name Description 

0 Incomplete 

The process area is either not performed or does 

not achieve all goals and objectives defined by 

CMMI. 
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1 Performed 

All of the specific goals of the process area have 

been satisfies work tasks required to produce 

defined work products are being conducted. 

2 Managed 

All level-1 criteria have been satisfied.  In 

addition, all work associated with the process 

area confirms to an organizationally defined 

policy.  All work tasks and work products are 

monitored controlled and reviewed and area 

evaluated for adherence to the process 

description. 

3 Defined 

All level-2 criteria have been achieved.  In 

addition, the process is tailored and to guidelines 

and contributes work products, measures and 

other process improvement information to the 

organizational process assets. 

4 
Quality 

Managed 

All level-3 criteria have been achieved.  In 

addition, the process area is controlled and 

improved using measurement and quantitative 

assessment. 

5 Optimized 

All capability level-4 criteria have been achieved.  

In addition, the process area is adapted and 

optimized using quantitative means to meet 

changing customer needs and to continually 

improve the efficacy of the process area under 

consideration. 

b. Staged Model: 

It defines five maturity levels, each of which can be achieved if and only if the 

specific goals and practices associated with a set of process areas are 

achieved. 

Level Focus Process Areas 

Optimizing 

Continuous 

process 

improvement 

. Organizational Innovation & 

Deployment. 

. Causal Analysis & Resolution 
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Quantitatively 

Managed 

Quantitative 

Management 

. Organizational process 

performance 

. Quantitative project management 

Defined 
Process 

standardization 

. Requirements development 

. Technical solution 

. Product integration 

. Verification 

. Validation 

. Organizational process focus  

. Organizational process definition 

. Organizational training 

. Integrated project management 

. Integrated supplier management 

. Risk management 

. Organizational environment for 

integration 

. Integrated teaming  

Managed 
Basic project 

management 

. Requirements management 

. Project planning 

. Project monitoring & Control 

. Supplier agreement management 

.Measurement & analysis 

. Process and product quality 

assurance  

. Configuration management  

1.7. Process patterns 

The software process can be defined as collection of patterns that define a set 

of activities actions, work tasks, work products and related behaviors required 

to develop computer software.  A process pattern provides us with a template 

a consistent method for describing an important characteristic of software 

process.  By combining patterns, a software team can construct a process 

that best meets the needs of a project.  Patterns can be defined at any level of 

abstraction which can describe either a process or frame active.   

The following template describes a process pattern: 

Pattern Name: The pattern is given a meaningful name that describes its 

function within the software process. 

Intent: The objective of the pattern is described briefly in the intent. 
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Type: The pattern type is specified in type.  These are of three types namely 

TASK PATTERNS (define a software engineering action or work task that is 

part of the process and relevant to successful software engineering practice), 

STAGE PATTERNS (define a frame work activity for the process and it 

incorporates multiple task patterns that are relevant to the stage), PHASE 

PATTERNS (define the sequence of frame work activities that occur with the 

process, even when the overall flow of activities is iterative in nature). 

Initial context: The conditions under which the pattern applies are described 

in initial context. Prior to this, some information is required regarding 

• What organizational or team related activities have already occurred? 

• What is the entry state for the process?  

• What software engineering information or project information already 

exists? 

Problem: The problem to be solved by the pattern is described in the 

problem. 

Solution: 

The implementation of the patters is described in the solution.  This section 

discusses how the initial state of the process is modified a consequence of the 

initiation of the pattern.  It also describes how software engineering 

information or project information that is available before the initiation of the 

pattern us transformed as a consequence of successful execution of patters. 

Resulting content: The conditions that will result one the pattern has been 

successfully implemented are described in resulting context section.  Upon 

the completion of the pattern, some information is required regarding. 

• What organizational or team-related activities must have accrued? 

• What is the exit state for the processes?  

• What software engineering information or project informal has been 

developed? 

Related patter: A list of all process patterns that are directly related to this 

one are provided as a hierarchy or in some other diagrammatic form in related 

patterns section. 

The specific instances in which the pattern is applicable are indicated in 

known uses/ examples section. 

Advantages: 
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1. They provide an effective mechanism for describing any software 

process. 

2. They enable a software engineering organization that begins at a 

high level of abstraction. 

3. They can be reused for the definition of process variants, once they 

are developed. 

1.8 Process Assessment: 

The process itself should be assessed to ensure that it meets a set of basic 

process criteria that have been shown to be essential for a successful 

software engineering.  A number of different approaches have been proposed 

for software process assessment.  They are: 

• SCAM PI (Standard CMMI Assessment Method for Process 

Improvement): This standard provides a five-step model that incorporates 

initiating, diagnosing, establishing, acting and learning.  This uses 

SEICMMI as the basis for assessment. 

• CBA IPI (CMM-Base) Appraisal for Internal Process Improvement): 

This provides a diagnostic technique for assess the relative maturity of a 

software organization, using the SEICMMI as the basis for the 

assessment. 

• SPICE (ISO/IEC 15504): This standard defines a set of requirements for 

software process assessment.  The intent of the standard is to assist 

organizations in developing an objective evaluation of the efficacy of any 

defined software process. 

• ISO 9001: 2000 for software: This is a generic standard that applies to 

any organization that wants to improve the overall quality of the products, 

systems or services that it provides.  ISO has developed this standard to 

define the requirements for a quality management system that will serve to 

produce higher quality products and there by improve customer 

satisfaction.  The cycle adopted by this standard is “PLAN – DO – CHECK 

– ACT”. 

1.9. Personal and Team process models  

If a software model has been developed at a corporate or organizational level, 

it can be effective only if it is amenable to significant adaptation to meet the 

project team needs that is actually doing software engineering work.  Each 

software engineer would create a process that fits best his/her needs besides 

meeting the broader needs of the team & organization, which may be called 

as PERSONAL SOFTWARE PROCESS (PSP).  Alternatively, the team itself 

would create its own process besides meeting the mass own needs of 
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individuals & broader needs of organization, which may be termed as TEAM 

SOFTWARE PROCESS (TSP). 

PSP: It emphasizes personal measurement of both the work product.  In 

addition, it makes the practitioner responsible for project planning and 

empowers the practitioner to control the quality of all software work products 

that are developed.  This model defines five frame work activities.  They are: 

Planning: This activity isolates requirements and based on these, develops 

both size and resource estimates besides a defect estimate.  All metrics are 

recorded on work sheets or templates. Finally, development tasks are 

identified and a project schedule is created. 

 High-level design: External specifications for component to be constructed 

are developed and a component design is created.  Prototypes are built when 

uncertainty exists.  All issues are recorded and tracked. 

High-level design review: Formal verification methods are applied to 

uncover errors in the design. Metrics are maintained for all important tasks 

and work results. 

Development: The component level design is defined and reviewed.  Code is 

generated, reviewed, compiled and tested.  Metrics are maintained for all 

important tasks and work results. 

Post mortem: Using the measures and metrics collected, the effectiveness of 

the process is determined.  Measures and metrics should provide guidance 

for modifying the process to improve its effectiveness. 

Advantages: 

• PSP represents a disciplined, metrics – based approach to software 

engineering. 

• PSP introduction results in significant improvement of software 

engineering productivity & quality. 

• PSP stresses the need for each software engineer to identify errors 

early & to understand types of errors that he is likely to make. 

Disadvantages: 

• PSP is intellectually challenging and demands a level of commitment 

that is not always possible to obtain. 

• Training is relatively lengthy  

• Training costs are high 
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• The required level of measurement is culturally difficult for many 

software people. 

TSP: The goal of TSP is to build a “self-directed” project team that organized 

itself to produce high-quality software.  A self directed team has a consistent 

understanding of its overall goals and objectives.  It 

• defines roles & responsibilities for each team member 

• tracks quantitative project data 

• identifies a team process that is appropriate for the project and a 

strategy for implementing the process. 

• defines local standards that are applicable to the team’s software 

engineering work. 

• Continually assesses risk and reacts to it. 

• Tracks, manages and reports project status. 

TSP defines the following frame work activities: 

• Launch 

•  High-level Design 

• Implementation 

•  Integration & Test 

• Postmortem 

TSP makes use of a wide variety of scripts, forms and standards that serve to 

guide team members in their work, in which scripts define specific process 

activities and other more detailed work functions that are part of team 

process. 

Advantages: 

• TSP allows the team to adapt to changing customer needs and lessons 

learned from previous activities, with launch activity. 

• It recognizes that the best software teams are self-directed. 

• It provides distinct and quantifiable benefits inn productivity and quality. 

Lesson end Questions  

1. Indicate various problems related with software development. 
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2. What are various phases of software development? 

3. Provide some examples of software. Are there any differences between 

software and hardware? Justify? 

4. Find the distinct possible examples of Application, Languages, Packages 

and Software? 

References: 

1.  Roger S. Pressman, Software Engineering – A Practitioners Approach, 

Sixth Edition, McGraw –Hill, 2005.   

2. Sommerville I; Software Engineering(Perason) 6th Edition 

3. Brooks, F., The Mythical Man-Month, Addison-Wesley, 1975.  

4. Glass, R.L., Software Runaways, Prentice-Hall, 1997. 
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2. Process models 

2.1 The Waterfall Model 

It is also termed as the classic life cycle which suggests a systematic, 

sequential approach to software development that begins with customer 

specification of requirements and progress through planning, modeling, 

construction and deployment.  It is the oldest paradigm for software 

engineering it basically consists of five levels: 

 
Waterfall Model 

In this model, the phases are organized in a linear order.  The model was 

original proposed by Royce.  In this model, a project being with feasibility 

analysis upon successfully demonstrating the feasibility of a project, the 

requirements analysis and project planning begins.  The design starts after 

the requirement analysis is complete, and coding begins after the design is 

complete.  Once the programming is completed, the code is integrated and 

testing is done upon, successful completion of testing, the system is installed.   

Linear ordering of activities has some important consequences.  First, to 

clearly identify the end of a phase and the beginning of the risk, some 

certification mechanic has to be employed as the end of each phase.  This is 

usually done by some verification and validation (which ensures that the 

output of a phase is consistent with the input (output of previous phase) and 

overall requirements of the system). 

The outputs of all phases are often termed as “works products” and are 

usually in the form of documents.  The following documents generally form a 

reasonable set that should be produced in each project. 

• Requirements Document 

• Project plan 

• Design Document 

• Test plan of Test Reports 
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• Final code 

• Software Manuals 

 

 

A slight modification of the waterfall model is a model with feedback. Once 

software is developed and is operational, then the feedback to various phases 

may be given. 



                               Software Engineering 

     NOTES 

 29 

 

Water fall model with feedback 

Advantages: 

1. It is simple. 

2. It is conceptually straight forward and divides the large task of building 

a software system into series of phases, each phase dealing with a 

separate logical concern. 

3. It is easy to administer in a contractual setup as each phase is 

completed and its work product produced, some amount of money is 

given by customer of dev. Organization. 

Limitations: 

1. It assumes that the requirements of a system can be frozen before the 

design begins.  But, unchanging requirements is unrealistic for some 

projects. 

2. Freezing the requirements usually requires choosing the hardware.  If 

the hardware is selected early for a large project (which takes long 

time to get completed), the changing technologies that the final 

software uses becomes obsolete.  

3. It follows the “BIG – BANG” approach – the entire software is delivered 

in ors shot at the end i.e. It has the ALL or NOTHING value 

proposition. 

4. It is a document – driver process that requires formal documents at the 

end of each phase. 
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2.2 Incremental Process Models  

This is a process model that is designed to produce the software in 

increments in situation like. 

• The overall scope of development effort precludes a purely linear process, 

even though the initial software requirements are well-defined. 

• If there is a need to provide a limited of software functionality to users 

quickly and then refine and expand on that functional in later software 

releases. 

These are of two kinds.  There are: 

The Incremental Model 

It combined the elements of waterfall model applied in an iterative fashion. 

The incremental model applies linear sequences in a staggered fashion as 

calendar time progresses.  Each linear sequence produces deliverable 

“increments” of the software.  When this model is used, the first increment is 

often a Core Product i.e.  Basic requirements are addressed but many 

supplementary features remain undelivered.  The core product is used by the 

customer.  As a result of use and/or Evaluation, a plan is developed for the 

next increment, which addresses the modification of the core product for its 

betterment.  This process is repeated following the delivery of each increment, 

until the complete product in produced. 

Advantages: 

1. Incremental Model is iterative in nature. 

2. It focuses on the delivery of an operational product with each 

increment. 

3. It is useful when staffing is unavailable for a complete implementation. 

4. Increments can be planned to manage technical risks. 

The RAD Model 

 RAD (Rapid Application Development) is an incremental software process 

model that emphasizes a short development cycle.  It is a high – speed 

adaptation f waterfall model, in which rapid development in achieved by using 

a component based construction approach.  If requirements are well 

understood and project scope in constrained, the RAD process enables a 

development team to create a “fully functional system” within a very short 
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period.  RAD approach maps into the genetic frame work activities comprising 

of Communication, Planning, Modeling, Construction, and Deployment. 

Communication works to understand the business problem and the 

information characteristics that the software must accommodate. Planning is 

essential because multiple software teams work in parallel on different system 

functions. Modeling encompasses three major phases business Modeling, 

Data Modeling and Process Modeling and establisher design representation 

that serve as the basis for RAD’s construction activity. Construction 

emphasizes the use of pre-existing software components and the application 

of automatic code generation.  Finally, Development establishes a basis (4) 

for subsequent iterations, if required. 

The RAD model is illustrated in the below figure: 

 

RAD model 

Advantages: 

• Each major function of the project can be addressed by a separate 

RAD team and their integrated to form a whole.  

Drawbacks: 
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1. For large, but scalable projects, RAD requires sufficient human resources 

to create the right number of RAD teams. 

2. If developers and customers are not committed to the rapid fire activities 

necessary to complete the system in an abbreviated time frame, RAD 

projects will fail. 

3. If a system cannot be properly modularized, building the components 

necessary for RAD will be problematic. 

4. If high performance is an issue, and performance is to be achieved 

through tuning the interfaces to system components tuning the interfaces 

to system components, the RAD approach, may not work. 

5. RAD may not be appropriate when technical risks are high.  

2.3 Evolutionary Process Models  

These models were developed to meet the competitive/business presence.  It 

was mainly developed when the details of system extensions are to be 

defined even though set of system requirements are well understood.  These 

models are iterative in nature.  These are characterized in a manner that 

enables software engineers to develop increasingly more complete versions 

of software.  These are mainly of three types.  They are: 

Prototyping Model 

 In this model, a throw away prototype is built to understand the requirements, 

instead of freezing the requirements before any design or coding can proceed. 

This prototype is developed based on currently known requirements. 

Prototyping is an attractive idea for complicated and large systems for which 

there is no manual process or existing system to help determine the 

requirements.  A development process using throw away prototyping typically 

proceeds as follows:  

1. The development of the prototype typically starts when the preliminary 

version of requirements specification document has been developed. 

2. After the prototype has been developed, the end users and clients are 

given an opportunity to use it and play with it. 

3. Based on their experience, they provide feedback to the developers 

regarding the prototype. 

4. Based on the feedback, the prototype is modified to incorporate some of 

the suggested changes that can be done easily, and then users and the 

clients are again allowed to use the system. 
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5. This cycle repeats, until the feedback is given by the clients and users that 

the prototype meets the requirements of them completely. 

6. Based on the feedback, the initial requirements are modified to produce the 

final requirements specification, which is their used to develop the production 

quality system. 

 

The prototyping paradigm 

7. It begins with communication.  The software engineer and customer meet 

the define the overall objectives for the software, identify whatever 

requirements are know, and outline areas where further definition is 

mandatory. 

8. A prototyping iteration is planned quickly and modeling occurs. 

9. The Quick Design focuses on a representation of those aspects of software 

that’ll be visible to the customer / end-user and this leads to the construction 

of a prototype. 

10. The prototype is deployed and then evaluated by the customer/uses. 

11. Feedback is used to refine the requirements for the software. 

12. Iteration occurs as the prototype is tuned to satisfy that needs of the 

customer, while at the same time enabling the developer to better understand 

what needs to be done. 

Advantages: 
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1. The development approach is quick and dirty with the focus on only those 

features which are not properly understood. 

2. As the prototype is to be thrown away, only minimal documentation needs 

to be produced during prototyping. 

3. Another important cost-cutting measure is to reduce testing. 

4. It is well suited for projects where requirements are hard to determine. 

5. It is an excellent technique for reducing some types of risks associated 

with a project. 

Disadvantages: 

It can be problematic for two reasons. 

(a) The customer sees what appears to be a working version of the software, 

unaware of fact that the software quality or long-term maintainability is not 

considered to get it working and the prototype is held together.  When 

informed that the product must be re-built so that high-levels of quality can 

be maintained, the customer demands that a “few fixes” be applied to 

make the prototype a working, product. 

(b) The developer often makes implementation compromises in order to get a 

prototype working quickly.  An inappropriate operating system or 

programming language may be used simply because it is available and 

known.  An inefficient algorithm may be implemented simply to 

demonstrate capability.  After a time, the developer may become 

comfortable with these choices and forget all the reasons why they were 

inappropriate.  The less-than – ideal choice has now become an integral 

part of the system. 

The Spiral Model 

 It is an evolutionary software process model that couples the iterative nature 

of prototyping, with the controlled and systematic aspects of waterfall model.  

It provides the potential for rapid development of increasingly more complete 

version of software.  Using this model, software is developed in a series of 

evolutionary releases.  During early iterations, the release might be a paper 

model or prototype.  During later iterations, increasingly more complete 

versions of the engineered system are produced. 
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A spiral model is divided into a set of frame work activities defined by the 

software engineering team, each of which represents one segment of the 

spiral path.  As the process begins, the software team performs activities that 

are implied by a circuit around the spiral in a clock-wise direction, beginning at 

the centre.  Risk is considered as each revolution is made.  A combination of 

work products and conditions (ANCHOR-POINT-MILE STONES) that are 

attained along the path of the spiral are noted for each evolutionary process. 

The first circuit around the spiral might result in the development of a product 

specification.  Subsequent passes around the spiral might be used to develop 

a prototype and the progressively mentioned versions of the software.  Each 

pass through the planning region results in adjustments to the project plan.  

Cost and schedule are adjusted based on feedback derived from the 

customer after delivery.  In addition, the project manages adjusts the planned 

number of iterations required to complete the software. 

The first circuit around the spiral might represent a “CONCEPT 

DEVELOPMENT PROJECT” which starts at the core of the spiral and 

continues for multiple iterations until CONCEPT DEVELOPMENT is complete.  

If the concept is to be developed into an actual product, the process proceeds 

outward on the spiral and a “NEW PRODUCT DEVELOPMENT PROJECT” 

begins.  Whenever a change is initiated, the process starts at the appropriate 

entry point. 

Advantages: 

1. This model can be adapted to apply throughout the life of the computer 

software. 

2. It is a realistic approach to the development of large-scale systems and 

software. 
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3. The developer and customer better understand and react to risks at each 

evolutionary level, because, software evolves as the process progresses. 

4. This model uses PROTOTYPING as a risk reduction mechanism and also 

enables the developer to apply prototyping approach at any stage in the 

evolution of the product. 

5. It maintains the systematic step-wise approach of waterfall model, in 

corporation it into an iterative frame work that more realistically reflects the 

real would. 

6. It demands a direct consideration of technical risks at all stages of the 

project which enables the uses to reduce risks before they become 

problematic. 

Disadvantages: 

1. It may be difficult to convince customers that the evolutionary approach is 

controllable. 

2. As risk assessment is demanded, if a major risk is not uncovered and 

managed, problems will undoubtedly occur. 

The concurrent development model 

 It can be schematically represented as a series of frame work activities, 

software engineering actions and tasks and their associated states. 

The above diagram provides a schematic representation of one software 

engineering task within the modeling activity for the concurrent process 

model.  The activity modeling may be in any one of the states noted at any 

given time.  Similarly other activities or tasks can be represented in an 

analogous manner.  All activities exist concurrently, but reside in different 

states. 

• The modeling activity exists in the “NONE” state, while critical 

communication was completed. 

• It then makes a transition into the “UNDER DEVELOPMENT” state. 

• It then moves into the “AWAITING CHANGE” state as requirement 

changes are indicated by the customer. 

The concurrent process model defines a series of events that will trigger 

transitions from state to state for each of the software engineering activities, 

actions or tasks. 

For example During early stages of design, an in consistency in the analysis 

model is uncovered, by which the event, “ANALYSIS MODEL CORRECTION” 
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is generated, triggering the analysis action from “DONE” state into the 

“AWAITING CHANGES” state. 

Advantages: 

1. It is applicable to all types of software development. 

2. It provides an accurate picture of the current state of a project. 

3. It defines a network of activities. 

4. Events generated at one point in the process network trigger 

transitions among the states. 

2.4. The Unified Process 

• It is an attempt to draw on the best features and characteristics of 

conventional, software process models, but characterize them in a way 

that implements many of the best principles of agile software 

development. 

• It recognizes the importance of customer communication and streamlined 

methods for describing the customer’s view of a system. 

• it emphasizes the important role of software architecture and helps the 

architect focus on the right goals, such as understandability, reliance to 

future changes and re-use. 

• It suggests a process flow that is iterative and incremental, providing the 

evolutionary feel that is essential in modern software development. 

History: During 1990s, James Rumbaugh, Grady Booch and Ivar Jacobson 

worked on a “Unified Method” that combines the bed features of each of their 

individual methods and adopt additional features proposed by other experts in 

object oriented field.  The result was “UML” a Unified Modeling Language that 

contains a robust notation for the modeling and development of object 

oriented systems. 

Advantages: UML provides the necessary technology to support object-

oriented software engineering practice. 

Drawback: UML doesn’t provide the process frame work to guide project 

teams in their application of technology.  

To overcome the drawback of UML, all the 3 of them developed the “UNIFIED 

PROCESS” which is a frame work for object-oriented software engineering 

using UML.  Different phases of up are depicted by the foll diagram, in relation 

to genuine activities: 
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Interruption:  It encompasses both customer communication and planning 

activities.  In this phase  

• Business registration for software are identified, 

• A rough architecture for system is proposed 

• A plan for iterative incremental nature of the ensuring project is 

developed. 

Elaboration: It encompasses the customer indications and modeling activities 

of the generic process model.  This phase refines and expands the 

preliminary use-cases that were developed as part of interception phase and 

expands the architectural representation to include 5 different views (use 

case, analysis, design, implementation & deployment) of software plan is 

carefully reviewed at the culmination of this phase to ensure that the scope, 

risks and delivery dates remain reasonable.  Modifications to the plan may be 

made at this time. 

Construction: Using the architectural model as input, this phase develops or 

acquires software components that’ll make each use-case operational for end-

users.  To accomplish this, analysis and design models of elaboration phase 

are completed to reflect the final version of software increment.  All necessary 

and required features and functions of software increment are then 

implemented in source code and so, Unit tests are designed and executed for 

each, besides integration activities being conducted. 

Transition: It encompasses the latter stages of generic construction activity 

and the first part of generic deployment activity.  The software team creates 

the necessary support information that is required for the release.  Software is 

given to end-users for beta testing and use feedback reports both defects & 

necessary changes. 

Production: This phase coincides with the deployment activity of the generic 

process.  During this phase, the on-going use of software monitored, support 

for the operating environment is provided and defect reports and requests for 

changes are submitted and evaluated. 

2.5. Functional Requirements: 

These are statements of services the system should provide, how the system 

should react to particular input and how the system should behave in 

particular situations.  These may also explicitly state what the system should 

not do. 

These depend on the type of software being developed, the expected users of 

the software, and the general approach taken by the organization when 

writing requirements. They describe the system function in detail, its inputs 
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and outputs, exceptions and so on.  They define specific facilities to be 

provided by the system. In principle, the functional requirements specification 

of a system should be both complete and consistent.   Completeness means 

that all services required by the user should be defined.  Consistency means 

that the requirements should not have contradictory definitions. 

For example Function Requirements for a University library system called 

LIBSYS, used by students of faculty to order books & documents from other 

libraries. 

• The user shall be able to search either all of the initial set of databases or 

select a subset from it. 

• The system shall provide appropriate viewers for the user to read 

documents in the document store. 

• Every order shall be allocated a unique identifies (ORDER – ID), which the 

user shall be able to copy to the account’s permanent storage area. 

2.6. Non-functional Requirements 

These are constraints on the services or functions offered by the system.  

They include timing constraints, constraints on the development process and 

standards.  They often apply to the system as a whole.  They do not usually 

just apply to individual system features or services. 

As the name suggests, these requirements are not directly concerned with the 

specific functions delivered by the system.  They may select to emergent 

system properties such as salability, response lime and store occupancy.  

Alternatively, they may define constraints on the system such as the 

capabilities of the input/output devices and the data representations used in 

system interfaces. 

Failing to meet a non-functional requirement can mean that the whole system 

is unusable. For example if an air-craft system doesn’t meet its reliability 

requirements, it will not be certified as “SAFE FOR OPERATION”. on 

functional requirements neither are nor just concerned with the software 

system to be developed.  Some of them may constrain the process that 

should be used to develop the system. 

Eg: Process requirements include. 

• A specification of quality standards that should be used in the process. 

• A specification that the design must be produced with a particular CASE 

toolset and  
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• A description of the process that should be followed Non-functional 

requirements arise through user needs 

• because of budget constraints  

• because of organizational policies. 

• because of the need for interoperability with other software   or hardware 

systems. 

• because of external factors such as safety regulations or privacy 

legislation. 

Non-functional requirements are broadly classified into three types.  They are: 

Product Requirements: These specify the product behavior. Performance 

requirements on how fast the system must execute and how much memory it 

requires. 

• Reliability requirements that set out the acceptable failure rate 

• Portability requirements 

• Usability requirements 

Organizational Requirements: These are delivered from policies and 

procedures in the customer’s and developer’s organization. 

• Process standards that must be used 

• Implementation requirements such as the programming language or 

design method used 

• Delivery requirements that specify when the produced and its 

documentation are to be delivered. 

External Requirements: These are all that are derived from factors external 

to the system and its development process. 

• Inter operability requirements that define how the system interacts with 

systems in other organizations. 

• Legislative requirements that must be followed to ensure that the system 

operates within the law. 

 

Metrics for specifying non-functional requirements: 

Property Measure 
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Speed 

Processed Transactions / second 

User / Event response time 

Screen refresh time 

Size 
K-bytes 

Number of RAM chips 

Ease and Use 
Training time 

Number of help framed 

Reliability 

Mean time to failure 

Probability of unavailability 

 Rate of failure occurrence 

Availability 

Robustness 

 Time to restart after failure 

Percentage of events causing failure 

 Probability of data corruption on failure 

Portability 
 Percentage of target-dependent statements  

Number of largest systems 

 

2.7. User requirements 

The user requirements for a system should describe the functional and non-

functional requirements so that they are understandable by system users 

without detailed technical knowledge.  They should only specify the external 

behavior of the system and should avoid, as far as possible, system design 

characteristics.  The user requirements should be written in simple language, 

with simple table forms and intuitive diagrams.  While writing the user 

requirements, the following points must be considered, as various problems 

may arise. 

Several different requirements must not be expressed together as a 

single requirement 

Eg: LIBSYS shall provide a financial accounting system that maintains records 

of all payments made by users of the system.  System managers may 

configure this system so that regular users may receive discounted rates. 

Explanation:  



                               Software Engineering 

     NOTES 

 42 

The requirement includes both conceptual and detailed information.  It 

expresses the concept that there should be an accounting system as an 

inherent part of LIBSYS.  However, it also includes the detail that the 

accounting system should support discounts for regular LIBSYS users.  This 

detail should be left to system req. 

NOTE:  

1. User requirements should be separated from more detailed system 

requirements. 

2. User requirements that include too much information constrain the 

freedom of the system developer to provide innovative solutions to user 

problems and are difficult to understand.  The user requirement should 

simply focus on the key-facilities to be provided. 

3. A rationale is to be associated with each user requirement, to explain why 

the requirement has been included. 

2.8. System Requirements 

System requirements are expanded versions of the user requirements that are 

used by software engineers as the starting point for the system design.  

Ideally, they should describe the external behavior of the system and its 

operations constraints.  They should not concern with how the system should 

be designed or implemented. 

It is essential to write the user requirements in a language that non-specialists 

can understand.  These system requirements can be written in more 

specialized notations as follows, which include stylized, structured natural 

language, graphical models of the requirements such as use-cases to formal 

mathematical specifications: 

Notation Description 

Structured Natural Language 

This approach depends on defining 

standard forms or templates to 

express the requirements 

specification. 

Design Description Languages 

This approach user a language like a 

programming language but with 

more abstract features to specify the 

requirements by defining an 

operational model of the system. 
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Graphical Notations 

A graphical language, supplemented 

by text annotations is used to define 

the functional requirements for the 

system.  Use-case descriptions and 

sequence diagrams are commonly 

used now. 

Mathematical Specifications 

These are notations based on 

mathematical concepts such as finite 

state machines, or sets.  These 

unambiguous specifications reduce 

the arguments between customer & 

contractor about system functionality.  

2.9. Interface Specification: 

If a new system and existing systems must work together, the interfaces of 

existing systems have to be precisely specified. These specifications should 

be defined early in the process and included in the requirements document.  

There are three types of interfaces that may have to be defined: 

Procedural interfaces: Where existing programs or subsystems offer a range 

of services that are access by calling interface procedures.  These interfaces 

are sometimes called Application Programming Interfaces (API). 

Data structures: Those are passed from one sub-system to another.  

Graphical data models are the best notations for this type of description. 

Data Representations: That has been established for an existing sub 

system.  These interfaces are most common in embedded, real-time system.  

`ADA’ language supports this level of specification. 

2.10 The software requirements Document 

Also called as Software Requirements Specification (SRS), is the official 

statements of what the system developers should implement.  It should 

include both the user requirements for a system and a detailed specification of 

the system requirements. 

The requirements document has a diverse set of users, ranging from the 

senior management of the organization that is paying for the system to the 

engineers responsible for developing the software.  The following figure 

illustrated how the possible users of the document use it: 
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Possible users Usage 

System customers 
Specify the requirements and read them to check 

that they meet their needs.  Customers specify 

changes to the requirements. 

Managers 
Use the requirements document to plan a bid for 

the system and to plan the system development 

process 

System engineers 
Use the requirements to understand what system 

is to be developed 

System test 

engineers Use the requirements to develop validation tests 

for the system 

System maintenance 

engineers Use the requirements to understand the system 

and the relationships between its parts 

• The requirement document has to be a compromise between 

communicating the requirements to customers, defining the requirements 

in precise detail for developers and testers and including information about 

possible system evolution. 

• The level of detail to be included depends on the type of system that is 

being developed and the development process used. 

The IEEE standard suggests the following structure for requirements 

documents: 

1. INTRODUCTION 

 1.1. Purpose of the requirements document 

 1.2. Scope of the product 

 1.3. Definitions, acronyms of abbreviations  

 1.4. References 

 1.5. Overview of the remainder of the document 

2. GENERAL DESCRIPTION 

 2.1. Product perspective 

 2.2. Product functions 

 2.3. User characteristics 

 2.4. General constraints 

 2.5. Assumptions and dependencies  
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3. SPECIFIC REQUIREMENTS: 

 These cover functional requirements 

 Non functional requirements 

 Interface requirements 

The requirements may document external interfaces, describe system 

functionality & performance, specify logical d/b requirements, design 

constraints, emergent system properties and quality characteristics. 

4. APPENDICES 

5. INDEX 

The following figure illustrates a possible organization for a requirements 

document that is based on IEEE standard: 

Chapter Description 

Preface 

This should define the expected readership of the 

document and describe its version history, including 

a rationale for the creation of a new version and a 

summary of the changes made in each version. 

 

Introduction 

This should describe the need for the system.  It 

should briefly describe its functions and explain how 

it’ll work with other systems.  It should describe how 

the system fits into the overall business or strategic 

objectives of the organization commissioning the 

software. 

Glossary 

This should define the technical terms used in the 

document.  Assumptions should not be made about 

the experience or reader’s expertise. 

User 

requirements 

definition 

The services provided for the user and non-

functional system requirements should be described 

in this section.  This description may use natural 

language, diagrams or other notations that are 

understandable by customers.  Product & process 

standards which must be followed should be 

specified. 

System 

architecture 

This chapter should present a high-level overview of 

the anticipated system architecture showing the 

distribution of functions across system modules.  
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Architectural components that are reused should be 

highlighted. 

System 

requirements 

specification 

This should describe the functional of non-functional 

requirements in more detail.  If necessary, further 

detail may also be added to non-functional 

requirements. 

Eg: Interfaces to other systems may be defined. 

System Models 

This should sat out one or more system models 

showing the relationships b/w system components 

and system fits environment.  These might be object 

models, data flow models, semantic data models. 

System evolution 

This should describe the fundamental assumptions 

on which the system is based and anticipated 

changes due to hardware evolution, changing user 

needs, etc. 

Appendices 

These should provide detailed, specific information 

which is relates to the application which is being 

developed.  Examples of appendices that may be 

included are hardware and d/b descriptions.  

Index 

Several indexed to the document may be included.  

As well as a normal alphabetic index, there may be 

an index of diagrams, an index of functions, etc. 

Summary 

Software has become the key element in the evolution of computer-based 

systems and products.  Over the past 50 years, software has evolved from a 

specialized problem solving and information analysis tool to an industry in 

itself.  But early “programming” culture and history have created a set of 

problems that persist today. 

Software has become the limiting factor in the continuing evolution of 

computer based systems.  Software is composed of programs, data, and 

documents. Each of these items comprises a configuration that is created as 

part of the software engineering process.  The intent of software engineering 

is to provide a framework for building software with higher quality. 
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Software engineering covers the entire range of activities used to develop 

software. The activities include requirements analysis, program development 

using some recognized approach like structured programming, testing 

techniques, quality assurance, management and implementation and 

maintenance. Further, software engineering expects to address problems 

which are encountered during software development. 

Prescriptive software process models have been applied for many years in an 

effort to bring order and structure to software development. Each of these 

conventional models suggests a somewhat different process flow, but all 

perform the same set of generic framework activities: communication, 

planning, modeling, construction, and deployment, 

Lesion end Questions 

1. Indicate various problems related with software development. 

2. Give a comparative analysis of various types of software process models. 

3. What are various phases of software development life cycle? 

4. What are different levels of capability maturity model? 

5. Describe the law of conservation of organizational stability. 

6. Provide three examples of software projects that would be amenable to the 

incremental model 
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UNIT – II 

Structure 

1. SOFTWARE ENGINEERING PRACTICE 

1.1 Introduction 

1.2 Soft ware Engineering Practice 

1.3 Communication Practices 

1.4 Planning Practices 

1.5 Modeling Practice 

1.6 Construction Practice 

1.7 Deployment 

2. SYSTEM ENGINEERING 

2.1 Introduction 

2.2 Computer-based systems 

2.3 The system engineering hierarchy 

2.4 Business process engineering: an overview 

2.5 Product engineering: an overview 

2.6 Requirements engineering 

3. REQUIREMENT ENGINEERING 

3.1 Introduction 

3.2 Requirements engineering tasks 

3.3 Initiating the Requirements Engineering Process 

3.4 Eliciting Requirements 

3.5 Building Analysis Model 

3.6 Software Prototyping and Specification 

3.7 Validation requirements 

Objectives 

After going through this unit, you should be able to:  

• Discuss about soft ware engineering practice;  

• Discuss principles of communication practices;  

• Discuss principles planning practices and modeling practice;  

• Discuss about construction practice and deployment. 

• define system engineering hierarchy;  

• understand the Business process engineering: an overview;  

• understand the Product engineering: an overview;  

• discuss about Requirements engineering. 

• discuss about Requirements engineering tasks;  

• learn about Initiating the Requirements Engineering Process 
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• understand the Eliciting Requirements;  

• understand the Building Analysis Model;  

• understand Software Prototyping and Specification. 
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1. Software Engineering Practice 

1.1 Introduction 

A dark image of software engineering practice to be sure, but upon reflection 

many of the readers of this book will be able to relate to it. People who create 

computer software practice the art or craft or discipline' that is software 

engineering. But what is software engineering "practice"? In a generic sense, 

practice is a collection of concepts, principles, methods, and tools that a soft-

ware engineer calls upon on a daily basis. Practice allows managers to 

manage software projects and software engineers to build computer 

programs. Practice populates a software process model with the necessary 

technical and management how to have to get the job done. Practice 

transforms a haphazard unfocused approach into something that is more 

organized, more effective, and more likely to achieve success. 

1.2 Software Engineering Practice 
 

Practice is a broad array of concepts, principles, methods, and tools that you 

must consider as software is planned and developed. 

 

It represents the details the technical considerations and how to be that are 

below the surface of the software process the things that you’ll need to 

actually build high-quality computer software.  

 

The Essence of Practice 

This section lists the generic framework (communication, planning, modeling, 

construction, and deployment) and umbrella (tracking, risk management, 

reviews, measurement, configuration management, reusability management, 

work product creation, and product) activities found in all software process 

models.  

 

George Polya, in a book written in 1945, describes the essence of software 

engineering practice … 

1. Understand the problem (communication and analysis). 

• Who are the stakeholders? 

• What are the unknowns? “Data, functions, features to solve 

the problem?” 

• Can the problem be compartmentalized? “Smaller that may be 

easier to understand? 
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• Can the problem be represented graphically? Can an analysis 

model be created? 

2. Plan a solution (modeling and software design). 

• Have you seen a similar problem before? 

• Has a similar problem been solved? If so, is the solution 

reusable? 

• Can sub-problems be defined? 

• Can you represent a solution in a manner that leads to 

effective implementation? 

3. Carry out the plan (code generation). 

• Does the solution conform to the plan? 

• Is each component part of the solution probably correct? 

4. Examine the result for accuracy (testing and quality assurance). 

• Is it possible to test each component part of the solution? 

• Does the solution produce results that conform to the data, 

functions, features, and behavior that are required? 

 

Core Principles 

 

The Reason It All Exists: Provide value to the customer and the user. If you 

can’t provide value, then don’t do it. 

 

KISS—Keep It Simple, Stupid! All design should be as simple as possible, 

but no simpler.  This facilitates having a more easily understood and easily 

maintained system. 

 

Maintain the product and project “vision.” A clear vision is essential to the 

success of a S/W project. 

 

What you produce, others will consume. Always specify, design, and 

implement knowing someone else have to understand what you are doing. 

 

Be open to the Future. Never design yourself into a corner. Always ask 

“what if,” and prepare yourself for all possible answers by creating systems 

that solve the general problem, not just the specific one. 
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Plan Ahead for Reuse.  Planning ahead for reuse reduces the cost and 

increases the value of both the reusable components and the systems into 

which they are incorporated. 

 

Think!  Placing clear, complete thought before action almost always 

produces better results. 

 

1.3 Communication Practices 

Before customer requirements can be analyzed, modeled, or specified they 

must be gathered through a communication (also called requirement 

elicitation) activity. 

Effective communication (among technical peers, with the customer and 

other stakeholders, and with project managers) is among the most 

challenging activities that confront a S/W engineer. 

In this context, the following are communication principles and concepts that 

apply to customer communication: 

Listen: focus on the speaker’s words, rather than formulating your response 

to those words. Be a polite listener. 

Prepare before you communicate: Spend the time to understand the 

problem before you meet with others “research”. 

Someone should facilitate the communication activity.  Have a leader 

“moderator” to keep the conversation moving in a productive direction. 

Face-to-face communication is best. 

Take notes and document decisions. 

Collaborate with the customer. Each small collaboration serves to build 

trust among team members and creates a common goal for the team. 

Stay focused, modularize your discussion.  The facilitator should keep the 

conversation modular; leaving one topic only after it has been resolved. 

Draw pictures when things are unclear. 

(a)Once you agree to something, move on; (b) if you can’t agree to 

something, move one; (c) if a feature or function is unclear and can’t be 

clarified at the moment, move on. 

Negotiation is not a contest or a game.  It works best when both parties 

win. 
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1.1 Planning Practices 

The planning activity encompasses a set of management and technical 

practices that enable the S/W team to define a road map as it travels toward 

its strategic goal and tactical objectives. 

Regardless of the rigor with which planning is conducted, the following 

principles always apply: 

Understand the project scope. Scope provides the S/W team with a 

destination. 

Involve the customer (and other stakeholders) in the planning activity.  

The customer defines priorities and establishes project constraints.  S/W 

engineers must often negotiate order of delivery, timelines, and other related 

issues. 

Recognize that planning is iterative.  A plan must be adjusted to 

accommodate changes. 

Estimate based on what you know.  The intent of estimation is to provide 

an indication of effort, cost, and task duration, based on the team’s current 

understanding of the work to be done. 

Consider risk as you define the plan.   

Be realistic.  Even the best S/W engineers make mistakes. 

Adjust granularity as you plan.  A fine granularity plan provides significant 

work task detail that is planned over relatively short time increments.  A 

coarse granularity plan provides broader work tasks that are planned over 

longer time periods. 

Define how quality will be achieved. 

Define how you’ll accommodate changes.  “Can the customer request a 

change at any time?” 

Track what you’ve planned and make adjustments as required. 

Barry Boehm states: “You need an organizing principle that scales down to 

provide simple plans for simple projects.” 

Boehm suggests an approach that addresses project objectives, milestones, 

and schedules, responsibilities, management and technical approaches, and 

required resources. 

Boehm calls it W5HH principle, after a series of questions that lead to a 

definition of key project characteristics and the resultant project plan. 
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Why is the system being developed? Does the business purpose justify 

the expenditure of people, time and money? 

What will be done? Identify the functionality to be built. 

When will it be accomplished? Establish a workflow and timeline for key 

project tasks and identify milestones required by the customer. 

Who is responsible for a function? Define members’ roles and 

responsibilities. 

Where are they located (organizationally)? Customers also have 

responsibilities. 

How will the job be done technically and managerially? Once a scope is 

defined, a technical strategy must be defined. 

How much of each resource is needed?  The answer is derived by 

developing estimates based on answers to earlier questions. 

1.5  Modeling Practices 

The process of developing analysis and design models is described in this 

section. The emphasis is on describing how to gather the information needed 

to build reasonable models, but no specific modeling notations are presented 

in this chapter.  UML and other modeling notations are described in detail 

later in the text.  

In S/W Eng. work, two models are created: analysis models and design 

models. 

Analysis models represent the customer requirements by depicting the S/W 

in three different domains: the information domain, the functional domain, 

and the behavioral domain. 

Design models represent characteristics of the S/W that help practitioners to 

construct it effectively: the architecture, the user interface, and component-

level detail. 

Analysis Modeling Principles 

The information domain of a problem must be represented and 

understood.  The information domain encompasses the data that flow into 

the system (end-users, other systems, or external devices), the data that flow 

out of the system and the data stores that collect and organize persistent 

data objects. 

Represent software functions.  Functions can be described at many 

different levels of abstraction, ranging from a general statement of purpose to 

a detailed description of the processing elements that must be invoked. 
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Represent software behavior.  The behavior of the S/W is driven by the 

interaction with the external environment. 

The models that depict information, function, and behavior must be 

partitioned in a manner that uncovers detail in a layered fashion (or 

hierarchical). 

The analysis task should move from essential information toward 

implementation detail.  Analysis begins by describing the problem from the 

end-user perspective.  The “essence” of the problem is described without any 

consideration of how a solution will be implemented. 

Design Modeling Principles 

The software design model is the equivalent of an architect’s plans for a 

house. 

Set of principles used: 

Design must be traceable to the analysis model. The analysis model 

describes the information domain of the problem, user visible functions, 

system behavior, and a set of analysis classes that package business objects 

with the methods that service them. 

The design model translates this information into architecture: a set of 

subsystems that implement major functions, and a set of component-level 

designs that are the realization of analysis class. 

Always consider architecture.  S/W architecture is the skeleton of the 

system to be built.  Only after the architecture is built should the component-

level issues should be considered. 

Focus on the design of data as it is as important as a design.  Data 

design is an essential element of t architectural design. 

Interfaces (both user and internal) must be designed.  A well designed 

interface makes integration easier and assists the tester in validating 

component functions. 

User interface design should be tuned to the needs of the end-user. 

“Ease of use.” 

Component-level design should exhibit functional independence.  The 

functionality that is delivered by a component should be cohesive- that is, it 

should focus on one and only one function. 

Components should be loosely coupled to one another and to the 

external environment.  Coupling is achieved in many ways – via a 

component interface, by messaging through global data.  Coupling should be 

kept as low as is reasonable.  As the level of coupling increases, error 
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propagation also increases and the overall maintainability of the system 

decreases. 

Design representation (models) should be easily understood. 

The design model should be developed iteratively.  With each iteration, 

the designer should strive for greater simplicity.  

1.6  Construction Practices 

In this text “construction” is defined as being composed of both coding and 

testing. The purpose of testing is to uncover defects. Exhaustive testing is not 

possible so processing a few test cases successfully does not guarantee that 

you have bug free program. Unit testing of components and integration 

testing will be discussed in greater later in the text along with software quality 

assurance activities. 

Although testing has received increased attention over the past decade, it is 

the weakest part of software engineering practice for most organizations. 

Coding Principles and Concepts 

Preparation Principles: Before writing one line of code, be sure of: 

1. Understand the problem you are trying to solve. 

2. Understand the basic design principles. 

3. Pick a programming language that meets the needs of the S/W to be 

built and the environment in which it will operate. 

4. Select a programming environment that provides tool that will make 

your work easier. 

5. Create a set of unit tests that will be applied once the component you 

code is completed. 

Coding Principles: As you begin writing code, be sure you 

1. Constrain your algorithm by following structured programming 

practice. 

2. Select the proper data structure. 

3. Understand the software architecture. 

4. Keep conditional logic as simple as possible. 

5. Create easily tested nested loops. 

6. Write code that is self-documenting. 

7. Create a visual layout. 
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Validation Principles: After you’ve completed your first coding pass, be sure 

you 

1. Conduct a code walkthrough. 

2. Perform unit test and correct errors. 

3. Refactor the code. 

Testing Principles 

• Testing is a process of executing a program with the intent of finding 

errors. 

• A good test is one that has a high probability of finding an as-yet 

undiscovered error. 

• A successful test is one that uncovers an as-yet-undiscovered error. 

 

1.7 Deployment Practices 

Customer Expectations for the software must be managed. “Don’t 

promise more than you can deliver.” 

A complete delivery package should be assembled and tested. 

A support regime must be established before the software is delivered. 

Appropriate instructional materials must be provided to end-users. 

Buggy software should be fixed first, delivered later. 
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2. System engineering 

. 

2.1 Introduction 

Software engineering occurs as a consequence of a process called system 

engineering. Instead of concentrating solely on software, system engineering 

focuses on a variety of elements, analyzing, designing, and organizing those 

elements into a system that can be a product, a service, or a technology for 

the transformation of information or control.  

The system engineering process is called business process engineering 

when the context of the engineering work focuses on a business enterprise. 

When a product (in this context, a product includes everything from a 

wireless telephone to an air traffic control system) is to be built, the process 

is called product engineering. 

Both business process engineering and product engineering attempt to bring 

order to the development of computer-based systems. Although each is 

applied in a different application domain, both strive to put software into 

context. That is, both business process engineering and product engineering 

work to allocate a role for computer software and, at the same time, to 

establish the links that tie software to other elements of a computer-based 

system. 

In this lesson, we focus on the management issues and the process-specific 

activities that enable a software organization to ensure that it does the right 

things at the right time in the right way. 

2.2 Computer-based systems 

The word system is possibly the most overused and abused term in the 

technical lexicon. We speak of political systems and educational systems, of 

avionics systems and manufacturing systems, of banking systems and 

subway systems. The word tells us little. We use the adjective describing 

system to understand the context in which the word is used. Webster's 

Dictionary defined system in the following way: 

1. A set or arrangement of things so related as to form a unity or organic 

whole;  

2. A set of facts, principles, rules, etc., classified and arranged in an orderly 

form so as to show a logical plan linking the various parts;  
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3. A method or plan of classification or arrangement;  

4. An established way of doing something; method; procedure . . . 

Five additional definitions are provided in the dictionary, yet no precise 

synonym is suggested. System is a special word.  

Borrowing from Webster's definition, we define a computer-based system as 

A set or arrangement of elements that are organized to accomplish some 

pre-defined goal by processing information. The goal may be to support 

some business function or to develop a product that can be sold to generate 

business revenue. To accomplish the goal, a computer-based system makes 

use of a variety of system elements: 

Software: Computer programs, data structures, and related documentation 

that serve to effect the logical method, procedure, or control that is required. 

Hardware: Electronic devices that provide computing capability, the 

interconnectivity devices (e.g., network switches, telecommunications 

devices) that enable the flow of data, and electromechanical devices (e.g., 

sensors, motors, pumps) that provide external world function. 

People: Users and operators of hardware and software. 

Database: A large, organized collection of information that is accessed via 

software. 

Documentation: Descriptive information (e.g., hardcopy manuals, on-line 

help files, Web sites) that portrays the use and/or operation of the system. 

Procedures: The steps that define the specific use of each system element 

or the procedural context in which the system resides. 

The elements combine in a variety of ways to transform information. For 

example, a marketing department transforms raw sales data into a profile of 

the typical purchaser of a product; a robot transforms a command file 

containing specific instructions into a set of control signals that cause some 

specific physical action. Creating an information system to assist the 

marketing department and control software to support the robot both require 

system engineering. 

One complicating characteristic of computer-based systems is that the 

elements constituting one system may also represent one macro element of 

a still larger system. The macro element is a computer-based system that is 

one part of a larger computer-based system.  As an example, we consider a 

"factory automation system" that is essentially a hierarchy of systems. At the 

lowest level of the hierarchy we have a numerical control machine, robots, 

and data entry devices. Each is a computer based system in its own right. 

The elements of the numerical control machine include electronic and 
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electromechanical hardware (e.g., processor and memory, motors, sensors), 

software (for communications, machine control, and interpolation), people 

(the machine operator), a database (the stored NC program), documentation, 

and procedures. A similar decomposition could be applied to the robot and 

data entry device. Each is a computer-based system. 

At the next level in the hierarchy, a manufacturing cell is defined. The 

manufacturing cell is a computer-based system that may have elements of its 

own (e.g., computers, mechanical fixtures) and also integrates the macro 

elements that we have called numerical control machine, robot, and data 

entry device. 

To summarize, the manufacturing cell and its macro elements each are 

composed of system elements with the generic labels: software, hardware, 

people, database, procedures, and documentation. In some cases, macro 

elements may share a generic element. For example, the robot and the NC 

machine both might be managed by a single operator (the people element). 

In other cases, generic elements are exclusive to one system. 

The role of the system engineer is to define the elements for a specific 

computer based system in the context of the overall hierarchy of systems 

(macro elements). In the sections that follow, we examine the tasks that 

constitute computer system engineering. 

2.3 The system engineering hierarchy 

Regardless of its domain of focus, system engineering encompasses a 

collection of top-down and bottom-up methods to navigate the hierarchy 

illustrated in Figure 2.1. 

The system engineering process usually begins with a “world view.” That is, 

the entire business or product domain is examined to ensure that the proper 

business or technology context can be established. The world view is refined 

to focus more fully on specific domain of interest. Within a specific domain, 

the need for targeted system elements (e.g., data, software, hardware, and 

people) is analyzed. Finally, the analysis, design, and construction of a 

targeted system element is initiated. At the top of the hierarchy, very broad 

contexts are established and, at the bottom, detailed technical activities, 

performed by the relevant engineering discipline (e.g., hardware or software 

engineering), are conducted. 

Stated in a slightly more formal manner, the world view (WV) is composed of 

a set of domains (Di), which can each be a system or system of systems in its 

own right. 

WV = {D1, D2, D3…. Dn} 
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Each domain is composed of specific elements (Ej) each of which serves 

some role in accomplishing the objective and goals of the domain or 

component: 

Di= {E1, E2, E3 . . . Em} 

Finally, each element is implemented by specifying the technical components 

(Ck) that achieve the necessary function for an element:  

Ej = {C1, C2, C3 . . . Ck} 

In the software context, a component could be a computer program, a 

reusable program component, a module, a class or object, or even a 

programming language statement. 

It is important to note that the system engineer narrows the focus of work as 

he or she moves downward in the hierarchy just described. However, the 

world view portrays a clear definition of overall functionality that will enable 

the engineer to understand the domain, and ultimately the system or product, 

in the proper context. 

 

FIGURE 2.1 the system engineering hierarchy 

2.3.1 System Modeling 
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System engineering is a modeling process. Whether the focus is on the world 

view or the detailed view, the engineer creates models that  

• Define the processes that serve the needs of the view under consideration. 

• Represent the behavior of the processes and the assumptions on which the 

behavior is based. 

• Explicitly define both exogenous and endogenous input3 to the model. 

• Represent all linkages (including output) that will enable the engineer to 

better understand the view. 

To construct a system model, the engineer should consider a number of 

restraining factors: 

1. Assumptions that reduce the number of possible permutations and 

variations, thus enabling a model to reflect the problem in a reasonable 

manner. As an example, consider a three-dimensional rendering product 

used by the entertainment industry to create realistic animation.  One domain 

of the product enables the representation of 3D human forms. Input to this 

domain encompasses the ability to specify movement from a live human 

actor, from video, or by the creation of graphical models. The system 

engineer makes certain assumptions about the range of allowable human 

movement (e.g., legs cannot be wrapped around the torso) so that the range 

of inputs and processing can be limited. 

2. Simplifications that enable the model to be created in a timely manner. To 

illustrate, consider an office products company that sells and services a 

broad range of copiers, faxes, and related equipment. The system engineer 

is modeling the needs of the service organization and is working to 

understand the flow of information that spawns a service order. Although a 

service order can be derived from many origins, the engineer categorizes 

only two sources: internal demand and external request. This enables a 

simplified partitioning of input that is required to generate the service order.  

3. Limitations that help to bound the system. For example, an aircraft 

avionics system is being modeled for a next generation aircraft. Since the 

aircraft will be a two-engine design, the monitoring domain for propulsion will 

be modeled to accommodate a maximum of two engines and associated 

redundant systems.  

4. Constraints that will guide the manner in which the model is created and 

the approach taken when the model is implemented.  For example, the 

technology infrastructure for the three-dimensional rendering system 

described previously is a single G4-based processor. The computational 

complexity of problems must be constrained to fit within the processing 

bounds imposed by the processor.  
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5. Preferences that indicate the preferred architecture for all data, functions, 

and technology. The preferred solution sometimes comes into conflict with 

other restraining factors. Yet, customer satisfaction is often predicated on the 

degree to which the preferred approach is realized. 

The resultant system model (at any view) may call for a completely 

automated solution, a semi-automated solution, or a non-automated 

approach. In fact, it is often possible to characterize models of each type that 

serve as alternative solutions to the problem at hand. In essence, the system 

engineer simply modifies the relative influence of different system elements 

(people, hardware, software) to derive models of each type. 

2.3.2 System Simulation 

In the late 1960s, R. M. Graham made a distressing comment about the way 

we build computer-based systems: "We build systems like the Wright 

brothers built airplanes build the whole thing, push it off a cliff, let it crash, 

and start over again." In fact, for at least one class of system the reactive 

system we continue to do this today.  

Many computer-based systems interact with the real world in a reactive 

fashion. That is, real-world events are monitored by the hardware and 

software that form the computer-based system, and based on these events; 

the system imposes control on the machines, processes, and even people 

who cause the events to occur. Real-time and embedded systems often fall 

into the reactive systems category.  

Unfortunately, the developers of reactive systems sometimes struggle to 

make them perform properly. Until recently, it has been difficult to predict the 

performance, efficiency, and behavior of such systems prior to building them. 

In a very real sense, the construction of many real-time systems was an 

adventure in "flying." Surprises (most of them unpleasant) were not 

discovered until the system was built and "pushed off a cliff." If the system 

crashed due to incorrect function, inappropriate behavior, or poor 

performance, we picked up the pieces and started over again.  

Many systems in the reactive category control machines and/or processes 

(e.g.,commercial aircraft or petroleum refineries) that must operate with an 

extremely high degree of reliability. If the system fails, significant economic or 

human loss could occur. For this reason, the approach described by Graham 

is both painful and dangerous.  

Today, software tools for system modeling and simulation are being used to 

help to eliminate surprises when reactive, computer-based systems are built. 

These tools are applied during the system engineering process, while the 

role of hardware and software, databases and people is being specified. 

Modeling and simulation tools enable a system engineer to "test drive" a 

specification of the system.  
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2.4 Business process engineering: an overview 

The goal of business process engineering (BPE) is to define architectures 

that will enable a business to use information effectively.  Michael Guttman 

describes the challenge when he states: 

However, the price for this change is largely borne by the IT [information 

technology] organizations that must support this polyglot configuration.  

Today, each IT organization must become, in effect, its own systems 

integrator and architect. It must design, implement, and support its own 

unique configuration of heterogeneous computing resources, distributed 

logically and geographically throughout the enterprise, and connected by an 

appropriate enterprise-wide networking scheme. 

Moreover, this configuration can be expected to change continuously, but 

unevenly, across the enterprise, due to changes in business requirements 

and in computing technology. These diverse and incremental changes must 

be coordinated across a distributed environment consisting of hardware and 

software supplied by dozens, if not hundreds, of vendors. 

And, of course, we expect these changes to be seamlessly incorporated 

without disrupting normal operations and to scale gracefully as those 

operations expand.  

When taking a world view of a company’s information technology needs, 

there is little doubt that system engineering is required. Not only is the 

specification of the appropriate computing architecture required, but the 

software architecture that populates the “unique configuration of 

heterogeneous computing resources” must be developed. Business process 

engineering is one approach for creating an overall plan for implementing the 

computing architecture.  

Three different architectures must be analyzed and designed within the 

context of business objectives and goals: 

• Data architecture 

• Applications architecture 

• Technology infrastructure 

The data architecture provides a framework for the information needs of a 

business or business function. The individual building blocks of the 

architecture are the data objects that are used by the business. A data object 

contains a set of attributes that define some aspect, quality, characteristic, or 

descriptor of the data that are being described. For example, an information 

engineer might define the data object customer. To more fully describe 

customer, the following attributes are defined: 



                               Software Engineering 

     NOTES 

 18

Object:  Customer 

Attributes: 

name 

company name 

job classification and purchase authority 

business address and contact information 

product interest(s) 

past purchase(s) 

date of last contact 

status of contact 

Once a set of data objects is defined, their relationships are identified. A 

relationship indicates how objects are connected to one another. As an 

example, consider the objects: customer, and product A. The two objects can 

be connected by the relationship purchases; that is, a customer purchases 

product A or product A is purchased by a customer. The data objects (there 

may be hundreds or even thousands for a major business activity) flow 

between business functions, are organized within a database, and are 

transformed to provide information that serves the needs of the business. 

The application architecture encompasses those elements of a system that 

transform objects within the data architecture for some business purpose. In 

the context of this book, we consider the application architecture to be the 

system of programs (software) that performs this transformation. However, in 

a broader context, the application architecture might incorporate the role of 

people (who are information transformers and users) and business 

procedures that have not been automated. 

The technology infrastructure provides the foundation for the data and 

application architectures. The infrastructure encompasses the hardware and 

software that are used to support the application and data. This includes 

computers, operating systems, networks, telecommunication links, storage 

technologies, and the architecture (e.g., client/server) that has been designed 

to implement these technologies. To model the system architectures 

described earlier, a hierarchy of business process engineering activities is 

defined. Referring to Figure 2.2, the world view is achieved through 

information strategy planning (ISP). ISP views the entire business as an 

entity and isolates the domains of the business (e.g., engineering, 

manufacturing, marketing, finance, sales) that are important to the overall 

enterprise. ISP defines the data objects that are visible at the enterprise 

level, their relationships, and how they flow between the business domains. 

The domain view is addressed with a BPE activity called business area 

analysis (BAA). Hares describe BAA in the following manner: 

BAA is concerned with identifying in detail data (in the form of entity [data 

object] types) and function requirements (in the form of processes) of 
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selected business areas [domains] identified during ISP and ascertaining 

their interactions (in the form of matrices). It is only concerned with specifying 

what is required in a business area. 

 

FIGURE 2.2 the business process engineering hierarchy 

As the system engineer begins BAA, the focus narrows to a specific business 

domain. BAA views the business area as an entity and isolates the business 

functions and procedures that enable the business area to meet its objectives 

and goals. BAA, like ISP, defines data objects, their relationships, and how 

data flow. But at this level, these characteristics are all bounded by the 

business area being analyzed. The outcome of BAA is to isolate areas of 

opportunity in which information systems may support the business area.  

Once an information system has been isolated for further development, BPE 

makes a transition into software engineering. By invoking a business system 

design (BSD) step, the basic requirements of a specific information system 

are modeled and these requirements are translated into data architecture, 

applications architecture, and technology infrastructure. 

The final BPE step construction and integration focuses on implementation 

detail. The architecture and infrastructure are implemented by constructing 

an appropriate database and internal data structures, by building applications 

using software components, and by selecting appropriate elements of a 

technology infrastructure to support the design created during BSD. Each of 
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these system components must then be integrated to form a complete 

information system or application. The integration activity also places the new 

information system into the business area context, performing all user 

training and logistics support to achieve a smooth transition. 

2.5 Product engineering: an overview 

The goal of product engineering is to translate the customer’s desire for a set 

of defined capabilities into a working product. To achieve this goal, product 

engineering like business process engineering must derive architecture and 

infrastructure. The architecture encompasses four distinct system 

components: software, hardware, data (and databases), and people. A 

support infrastructure is established and includes the technology required to 

tie the components together and the information (e.g., documents, CD-ROM, 

video) that is used to support the components. 

Referring to Figure 2.3, the world view is achieved through requirements 

engineering. The overall requirements of the product are elicited from the 

customer. These requirements encompass information and control needs, 

product function and behavior, overall product performance, design and 

interfacing constraints, and other special needs. Once these requirements 

are known, the job of requirements engineering is to allocate function and 

behavior to each of the four components noted earlier.  

Once allocation has occurred, system component engineering commences. 

System component engineering is actually a set of concurrent activities that 

address each of the system components separately: software engineering, 

hardware engineering, human engineering, and database engineering. Each 

of these engineering disciplines takes a domain - specific view, but it is 

important to note that the engineering disciplines must establish and maintain 

active communication with one another. Part of the role of requirements 

engineering is to establish the interfacing mechanisms that will enable this to 

happen.  

The element view for product engineering is the engineering discipline itself 

applied to the allocated component. For software engineering, this means 

analysis and design modeling activities (covered in detail in later chapters) 

and construction and integration activities that encompass code generation, 

testing, and support steps. The analysis step models allocated requirements 

into representations of data, function, and behavior. Design maps the 

analysis model into data, architectural, interface, and software component-

level designs. 
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FIGURE 2.3 The product engineering hierarchy 

2.6 Requirements engineering 

The outcome of the system engineering process is the specification of a 

computer based system or product at the different levels described 

generically in Figure 2.1. But the challenge facing system engineers (and 

software engineers) is profound: How can we ensure that we have specified 

a system that properly meets the customer’s needs and satisfies the 

customer’s expectations? There is no foolproof answer to this difficult 

question, but a solid requirements engineering process is the best solution 

we currently have. 

Requirements engineering provides the appropriate mechanism for 

understanding what the customer wants, analyzing need, assessing 

feasibility, negotiating a reasonable solution, specifying the solution 

unambiguously, validating the specification, and managing the requirements 

as they are transformed into an operational system. The requirements 

engineering process can be described in five distinct steps: 

• Requirements elicitation  

• Requirements analysis and negotiation  

• Requirements specification 

• System modeling  
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• Requirements validation  

• Requirements management  

2.6.1 Requirements Elicitation  

It certainly seems simple enough ask the customer, the users, and others 

what the objectives for the system or product are, what is to be 

accomplished, how the system or product fits into the needs of the business, 

and finally, how the system or product is to be used on a day-to-day basis. 

But it isn’t simple it’s very hard. Christel and Kang identify a number of 

problems that help us understand why requirements elicitation is difficult: 

• Problems of scope. The boundary of the system is ill-defined or the 

customers/users specify unnecessary technical detail that may confuse, 

rather than clarify, overall system objectives. 

• Problems of understanding. The customers/users are not completely sure of 

what is needed, have a poor understanding of the capabilities and limitations 

of their computing environment, don’t have a full understanding of the 

problem domain, have trouble communicating needs to the system engineer, 

omit information that is believed to be “obvious,” specify requirements that 

conflict with the needs of other customers/users, or specify requirements that 

are ambiguous or untestable. 

• Problems of volatility. The requirements change over time. 

To help overcome these problems, system engineers must approach the 

requirements gathering activity in an organized manner. Sommerville and 

Sawyer suggest a set of detailed guidelines for requirements elicitation, 

which are summarized in the following steps: 

• Assess the business and technical feasibility for the proposed system. 

• Identify the people who will help specify requirements and understand their 

organizational bias. 

• Define the technical environment (e.g., computing architecture, operating 

system, telecommunications needs) into which the system or product will be 

placed. 

• Identify “domain constraints” (i.e., characteristics of the business 

environment specific to the application domain) that limit the functionality or 

performance of the system or product to be built. 

• Define one or more requirements elicitation methods (e.g., interviews, focus 

groups, team meetings). 
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• Solicit participation from many people so that requirements are defined from 

different points of view; be sure to identify the rationale for each requirement 

that is recorded. 

• Identify ambiguous requirements as candidates for prototyping. 

• Create usage scenarios to help customers/users better identify key 

requirements. 

The work products produced as a consequence of the requirements 

elicitation activity will vary depending on the size of the system or product to 

be built. For most systems, the work products include 

• A statement of need and feasibility. 

• A bounded statement of scope for the system or product. 

• A list of customers, users, and other stakeholders who participated in the 

requirements elicitation activity. 

• A description of the system’s technical environment. 

• A list of requirements (preferably organized by function) and the domain 

constraints those apply to each. 

• A set of usage scenarios that provide insight into the use of the system or 

product under different operating conditions. 

• Any prototypes developed to better define requirements. 

Each of these work products is reviewed by all people who have participated 

in the requirements elicitation. 

2.6.2 Requirements Analysis and Negotiation 

Once requirements have been gathered, the work products noted earlier form 

the basis for requirements analysis. Analysis categorizes requirements and 

organizes them into related subsets; explores each requirement in 

relationship to others; examines requirements for consistency, omissions, 

and ambiguity; and ranks requirements based on the needs of 

customers/users. As the requirements analysis activity commences, the 

following questions are asked and answered: 

• Is each requirement consistent with the overall objective for the 

system/product? 

• Have all requirements been specified at the proper level of abstraction? 

That is, do some requirements provide a level of technical detail that is 

inappropriate at this stage? 
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• Is the requirement really necessary or does it represent an add-on feature 

that may not be essential to the objective of the system? 

• Is each requirement bounded and unambiguous?  

• Does each requirement have attribution? That is, is a source (generally, a 

specific individual) noted for each requirement?  

• Do any requirements conflict with other requirements?  

• Is each requirement achievable in the technical environment that will house 

the system or product? 

• Is each requirement testable, once implemented? 

It isn’t unusual for customers and users to ask for more than can be 

achieved, given limited business resources. It also is relatively common for 

different customers or users to propose conflicting requirements, arguing that 

their version is “essential for our special needs”. 

The system engineer must reconcile these conflicts through a process of 

negotiation. Customers, users and stakeholders are asked to rank 

requirements and then discuss conflicts in priority. Risks associated with 

each requirement are identified and analyzed (see Chapter 6 for details). 

Rough guestimates of development effort are made and used to assess the 

impact of each requirement on project cost and delivery time. Using an 

iterative approach, requirements are eliminated, combined, and/or modified 

so that each party achieves some measure of satisfaction. 

2.6.3 Requirements Specification 

In the context of computer-based systems (and software), the term 

specification means different things to different people. A specification can be 

a written document, a graphical model, a formal mathematical model, a 

collection of usage scenarios, a prototype, or any combination of these. 

Some suggest that a “standard template” should be developed and used for 

a system specification, arguing that this leads to requirements that are 

presented in a consistent and therefore more understandable manner. 

However, it is sometimes necessary to remain flexible when a specification is 

to be developed. For large systems, a written document, combining natural 

language descriptions and graphical models may be the best approach. 

However, usage scenarios may be all that are required for smaller products 

or systems that reside within well-understood technical environments. 

The System Specification is the final work product produced by the system 

and requirements engineer. It serves as the foundation for hardware 

engineering, software engineering, database engineering, and human 

engineering. It describes the function and performance of a computer-based 

system and the constraints that will govern its development. The specification 
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bounds each allocated system element. The System Specification also 

describes the information (data and control) that is input to and output from 

the system. 

2.6.4 System Modeling 

Assume for a moment that you have been asked to specify all requirements 

for the construction of a gourmet kitchen. You know the dimensions of the 

room, the location of doors and windows, and the available wall space. You 

could specify all cabinets and appliances and even indicate where they are to 

reside in the kitchen.  

Would this be a useful specification? The answer is obvious. In order to fully 

specify what is to be built, you would need a meaningful model of the kitchen, 

that is, a blueprint or three-dimensional rendering that shows the position of 

the cabinets and appliances and their relationship to one another. From the 

model, it would be relatively easy to assess the efficiency of work flow (a 

requirement for all kitchens), the aesthetic “look” of the room (a personal, but 

very important requirement).  

We build system models for much the same reason that we would develop a 

blueprint or 3D rendering for the kitchen. It is important to evaluate the 

system’s components in relationship to one another, to determine how 

requirements fit into this picture, and to assess the “aesthetics” of the system 

as it has been conceived.  

2.6.5 Requirements Validation 

The work products produced as a consequence of requirements engineering 

(a system specification and related information) are assessed for quality 

during a validation step. Requirements validation examines the specification 

to ensure that all system requirements have been stated unambiguously; that 

inconsistencies, omissions, and errors have been detected and corrected; 

and that the work products conform to the standards established for the 

process, the project, and the product. 

The primary requirements validation mechanism is the formal technical 

review. The review team includes system engineers, customers, users, and 

other stakeholders who examine the system specification5 looking for errors 

in content or interpretation, areas where clarification may be required, 

missing information, inconsistencies (a major problem when large products or 

systems are engineered), conflicting requirements, or unrealistic 

(unachievable) requirements. Although the requirements validation review 

can be conducted in any manner that results in the discovery of requirements 

errors, it is useful to examine each requirement against a set of checklist 

questions. The following questions represent a small subset of those that 

might be asked: 
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• Are requirements stated clearly? Can they be misinterpreted? 

• Is the source (e.g., a person, a regulation, a document) of the requirement 

identified. Has the final statement of the requirement been examined by or 

against the original source? 

• Is the requirement bounded in quantitative terms? 

• What other requirements relate to this requirement? Are they clearly noted 

via a cross-reference matrix or other mechanism? 

• Does the requirement violate any domain constraints? 

• Is the requirement testable? If so, can we specify tests (sometimes called 

validation criteria) to exercise the requirement? 

• Is the requirement traceable to any system model that has been created? 

• Is the requirement traceable to overall system/product objectives? 

• Is the system specification structured in a way that leads to easy 

understanding, easy reference, and easy translation into more technical work 

products? 

• Has an index for the specification been created? 

• Have requirements associated with system performance, behavior, and 

operational characteristics been clearly stated? What requirements appear to 

be implicit? 

Checklist questions like these help ensure that the validation team has done 

everything possible to conduct a thorough review of each requirement.  

2.6.6 Requirements Management 

In the preceding chapter, we noted that requirements for computer-based 

systems change and that the desire to change requirements persists 

throughout the life of the system. Requirements management is a set of 

activities that help the project team to identify, control, and track 

requirements and changes to requirements at any time as the project 

proceeds.  

Like SCM, requirements management begins with identification. Each 

requirement is assigned a unique identifier that might take the form 

<requirement type><requirement> 

where requirement type takes on values such as F = functional requirement, 

D = data requirement, B = behavioral requirement, I = interface requirement, 

and P = output requirement. Hence, a requirement identified as F09 indicates 

a functional requirement assigned requirement number 9. 
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Once requirements have been identified, traceability tables are developed. 

Shown schematically in Figure 2.4, each traceability table relates identified 

requirements to one or more aspects of the system or its environment. 

Among many possible traceability tables are the following: 

Features traceability table: Shows how requirements relate to important 

customer observable system/product features.  

Source traceability table: Identifies the source of each requirement. 

 Dependency traceability table: Indicates how requirements are related to 

one another.  

Subsystem traceability table: Categorizes requirements by the 

subsystem(s) that they govern.  

Interface traceability table: Shows how requirements relate to both internal 

and external system interfaces.  

 

FIGURE 2.4 Generic traceability table 

In many cases, these traceability tables are maintained as part of a 

requirements database so that they may be quickly searched to understand 

how a change in one requirement will affect different aspects of the system to 

be built. 

2.7 System Modeling 

Every computer-based system can be modeled as information transforms 

using an input-processing-output template. Hatley and Pirbhai have extended 

this view to include two additional system features user interface processing 

and maintenance and self-test processing. Although these additional features 

are not present for every computer-based system, they are very common, 
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and their specification makes any system model more robust. Using a 

representation of input, processing, output, user interface processing, and 

self-test processing, a system engineer can create a model of system 

componentsthat sets a foundation for later steps in each of the engineering 

disciplines. 

To develop the system model, a system model template is used. The system 

engineer allocates system elements to each of five processing regions within 

thetemplate:  

(1) user interface,  

(2) input,  

(3) system function and control,  

(4) output, and 

(5) maintenance and self-test.  

The format of the architecture template is shown in Figure 2.5. Like nearly all 

modeling techniques used in system and software engineering, the system 

model template enables the analyst to create a hierarchy of detail. A system 

context diagram (SCD) resides at the top level of the hierarchy. The context 

diagram "establishes the information boundary between the system being 

implemented and the environment in which the system is to operate". That is, 

the SCD defines all external producers of information used by the system, all 

external consumers of information created by the system, and all entities that 

communicate through the interface or perform maintenance and self-test. 

 

FIGURE 2.5 System model template 

To illustrate the use of the SCD, consider the conveyor line sorting system. 

The system engineer is presented with the following (some what nebulous) 

statement of objectives for CLSS:  
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CLSS must be developed such that boxes moving along a conveyor line will 

be identified and sorted into one of six bins at the end of the line. The boxes 

will pass by a sorting station where they will be identified. Based on an 

identification number printed on the side of the box (an equivalent bar code is 

provided), the boxes will be shunted into the appropriate bins. Boxes pass in 

random order and are evenly spaced. The line is moving slowly.  

For this example, CLSS is extended and makes use of a personal computer 

at the sorting station site. The PC executes all CLSS software, interacts with 

the bar code reader to read part numbers on each box, interacts with the 

conveyor line monitoring equipment to acquire conveyor line speed, stores all 

part numbers sorted, interacts with a sorting station operator to produce a 

variety of reports and diagnostics, sends control signals to the shunting 

hardware to sort the boxes, and communicates with a central factory 

automation mainframe. The SCD for CLSS (extended) is shown in Figure 

2.6. 

 

FIGURE 2.6 System context diagram for CLSS 

Each box shown in Figure 2.6 represents an external entity that is, a 

producer or consumer of system information. For example, the bar code 

reader produces information that is input to the CLSS system. The symbol for 

the entire system (or, at lower levels, major subsystems) is a rectangle with 

rounded corners. Hence, CLSS is represented in the processing and control 

region at the center of the SCD. The labeled arrows shown in the SCD 

represent information (data and control) as it moves from the external 

environment into the CLSS system. The external entity bar code reader 

produces input information that is labeled bar code. In essence, the SCD 

places any system into the context of its external environment. 



                               Software Engineering 

     NOTES 

 30

The system engineer refines the system context diagram by considering the 

shaded rectangle in Figure 2.6 in more detail. The major subsystems that 

enable the conveyor line sorting system to function within the context defined 

by the SCD are identified. Referring to Figure 2.7, the major subsystems are 

defined in a system flow diagram (SFD) that is derived from the SCD. 

Information flow across the regions of the SCD is used to guide the system 

engineer in developing the SFD a more detailed "schematic" for CLSS. The 

system flow diagram shows major subsystems and important lines of 

information (data and control) flow. In addition, the system template partitions 

the subsystem processing into each of the five regions discussed earlier. At 

this stage, each of the subsystems can contain one or more system elements 

(e.g., hardware, software, people) as allocated by the system engineer.  

 

FIGURE 2.7 System flow diagram for CLSS 

The initial system flow diagram becomes the top node of a hierarchy of 

SFDs. Each rounded rectangle in the original SFD can be expanded into 

another architecture template dedicated solely to it. This process is illustrated 

schematically in Figure 2.8. Each of the SFDs for the system can be used as 

a starting point for subsequent engineering steps for the subsystem that has 

been described.  
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FIGURE 2.8 Building an SFD hierarchy 
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3. Requirement Engineering 

3.1 Introduction 

In the design of software, the first step is to decide about the objectives of 

software. This is the most difficult aspect of software design.  These 

objectives, which the software is supposed to fulfill, are called requirements.   

 The IEEE definition of requirement is:  

1.  A condition or capability needed by a user to solve a problem or achieve 

an objective.  

2.  A condition or capability that must be met or possessed by a system 

component, to satisfy a contract formally imposed document.  

3.  A documented representation of a condition or capability as in (1) or (2).   

Thus, requirements specify “what the system is supposed to do?” These 

requirements are taken from the user. Defining the requirements is most 

elementary & most difficult part of system design, because, at this level, 

sometimes, the user himself is not clear about it. Many software projects 

have failed due to certain requirements specification issues. Thus, overall 

quality of software product is dependent on this aspect. Identifying, defining, 

and analyzing the requirements is known as requirements analysis. 

Requirements analysis includes the following activities:  

1.  Identification of end user’s need.  

2.  Preparation of a corresponding document called SRS (Software 

Requirements Specification). 

3.   Analysis and validation of the requirements document to ensure 

consistency, completeness and feasibility.  

 4.  Identification of   further requirements during the analysis of mentioned 

requirements. 

3.2 Requirements engineering tasks 

Requirements analysis is a software engineering task that bridges the gap 

between system level requirements engineering and software design (Figure 

3.1). Requirements engineering activities result in the specification of 

software’s operational characteristics (function, data, and behavior), indicate 

software's interface with other system elements, and establish constraints 

that software must meet. Requirements analysis allows the software 

engineer (sometimes called analyst in this role) to refine the software 

allocation and build models of the data, functional, and behavioral domains 

that will be treated by software. Requirements analysis provides the software 

designer with a representation of information, function, and behavior that can 

be translated to data, architectural, interface, and component-level designs. 

Finally, the requirements specification provides the developer and the 
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customer with the means to assess quality once software is built. Software 

requirements analysis may be divided into five areas of effort:  

(1) Problem recognition,  

(2) Evaluation and synthesis,  

(3) Modeling,  

(4) Specification, and  

(5) Review.  

 

FIGURE 3.1 Analysis as a bridge between system engineering and software 

design 

Initially, the analyst studies the System Specification (if one exists) and the 

Software Project Plan. It is important to understand software in a system 

context and to review the software scope that was used to generate planning 

estimates. Next, communication for analysis must be established so that 

problem recognition is ensured. The goal is recognition of the basic problem 

elements as perceived by the customer/users. Problem evaluation and 

solution synthesis is the next major area of effort for analysis. The analyst 

must define all externally observable data objects, evaluate the flow 

and content of information, define and elaborate all software functions, 

understand software behavior in the context of events that affect the system, 

establish system interface characteristics, and uncover additional design 

constraints.  Each of these tasks serves to describe the problem so that an 

overall approach or solution may be synthesized. 

For example, an inventory control system is required for a major supplier of 

auto parts. The analyst finds that problems with the current manual system 

include (1) inability to obtain the status of a component rapidly, (2) two- or 

three-day turnaround to update a card file, (3) multiple reorders to the same 

vendor because there is no way to associate vendors with components, and 

so forth. Once problems have been identified, the analyst determines what 
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information is to be produced by the new system and what data will be 

provided to the system. For instance, the customer desires a daily report that 

indicates what parts have been taken from inventory and how many similar 

parts remain. The customer indicates that inventory clerks will log the 

identification number of each part as it leaves the inventory area.  

Upon evaluating current problems and desired information (input and output), 

the analyst begins to synthesize one or more solutions. To begin, the data 

objects, processing functions, and behavior of the system are defined in 

detail. Once this information has been established, basic architectures for 

implementation are considered. A client/server approach would seem to be 

appropriate, but does the software to support this architecture fall within the 

scope outlined in the Software Plan?  A database management system 

would seem to be required, but is the user/customer's need for associativity 

justified? The process of evaluation and synthesis continues until both 

analyst and customer feels confident that software can be adequately 

specified for subsequent development steps. 

Throughout evaluation and solution synthesis, the analyst's primary  focus is 

on "what," not "how." What data does the system produce and consume, 

what functions must the system perform, what behaviors does the system 

exhibit. During the evaluation and solution synthesis activity, the analyst 

creates models of the system in an effort to better understand data and 

control flow, functional processing, operational behavior, and information 

content. The model serves as a foundation for software design and as the 

basis for the creation of specifications for the software.  

The customer may be unsure of precisely what is required. The developer 

may be unsure that a specific approach will properly accomplish function and 

performance. For these, and many other reasons, an alternative approach to 

requirements analysis, called prototyping, may be conducted. 

3.3 Initiating the Requirements Engineering Process 

Due to the complexity involved in software development, the engineering 

approach is being used in software design. Use of engineering approach in 

the area of requirements analysis evolved the field of Requirements 

Engineering.    

 3.3.1   Requirements Engineering  

 Requirements engineering is the systematic use of proven principles, 

techniques and language tools for the cost effective analysis, documentation, 

and ongoing evaluation of user’s needs and the specification of external 

behavior of a system to satisfy those user needs. It can be defined as a 

discipline, which addresses requirements of objects all along a system 

development process.  
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 The output of requirements of engineering process is Requirements 

Definition Description (RDD). Requirements engineering may be defined in 

the context of Software Engineering.  It divides the Requirements 

Engineering into two categories.  First is the requirements definition and the 

second is requirements management.   Requirements definition consists of 

the following processes:  

 1. Requirements gathering.  

2.  Requirements analysis and modeling.  

3.  Creation of RDD and SRS.  

4.  Review and validation of SRS as well as obtaining confirmation from user.  

Requirements management consists of the following processes:  

 1.  Identifying controls and tracking requirements.  

2.  Checking complete implementation of RDD.  

3.   Manage changes in requirements which are identified later.  

3.3.2   Types of Requirements  

There are various categories of the requirements. On the basis of their 

priority, the requirements are classified into the following three types: 

1.  Those that should be absolutely met.  

2.  Those that is highly desirable but not necessary.  

3.  Those that are possible but could be eliminated.  

 On the basis of their functionality, the requirements are classified into the 

following two types:  

 i)  Functional requirements: They define the factors like, I/O formats, storage 

structure, computational capabilities, timing and synchronization.    

 ii)  Non-functional requirements:  They define the properties or qualities of a 

product including usability, efficiency, performance, space, reliability, 

portability etc.  

3.3.3 Software Requirements Specification (SRS)  

 This document is generated as output of requirement analysis.  The 

requirement analysis involves obtaining a clear and thorough understanding 

of the product to be developed. Thus, SRS should be consistent, correct, 

unambiguous & complete, document. The developer of the system can 

prepare SRS after detailed communication with the customer. An SRS clearly 

defines the following:    

• External Interfaces of the system: They identify the information which is to 

flow ‘from and to’ to the system.  

• Functional and non-functional requirements of the system.  They stand for 

the finding of run time requirements.  

• Design constraints:  
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 The SRS outline is given below:  

 1.  Introduction  

1.1 Purpose  

1.2 Scope  

1.3 Definitions, acronyms, and abbreviations  

1.4 References  

1.5 Overview  

 2.  Overall description  

2.1 Product perspective  

2.2 Product functions  

2.3 User characteristics  

2.4 Constraints  

2.5 Assumptions and dependencies  

3.  Specific requirements  

3.1    External Interfaces  

3.2    Functional requirements  

3.3    Performance requirements  

3.4    Logical Database requirements  

3.5    Design Constraints  

3.6    Software system attributes  

3.7    Organizing the specific requirements  

3.8    Additional Comments  

4.  Supporting information  

4.1 Table of contents and index  

4.2 Appendixes 

3.3.4 Problems in SRS  

There are various features that make requirements analysis difficult. These 

are discussed below:  

 1.   Complete requirements are difficult to uncover. In recent trends in 

engineering, the processes are automated and it is practically impossible to 

understand the complete set of requirements during the commencement of 

the project itself.  

 2.  Requirements are continuously generated.  Defining the complete set of 

requirements in the starting is difficult. When the system is put under run, the 

new requirements are obtained and need to be added to the system. But, the 

project schedules are seldom adjusted to reflect these modifications. 

Otherwise, the development of software will never commence.  

 3.  The general trends among software developer shows that they have over 

dependence on CASE tools. Though these tools are good helping agents, 
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over reliance on these Requirements Engineering Tools may create false 

requirements. Thus, the requirements corresponding to real system should 

be understood and only a realistic dependence on tools should be made.  

 4.   The software projects are generally given tight project schedules. 

Pressure is created from customer side to hurriedly complete the project. 

This normally cuts down the time of requirements analysis phase, which 

frequently lead to disaster(s).  

 5.  Requirements Engineering is communication intensive. Users and 

developers have different vocabularies, professional backgrounds and 

psychology. User writes specifications in natural language and developer 

usually demands precise and well-specified requirement.  

 6.  In present time, the software development is market driven having high 

commercial aspect. The software developed should be a general purpose 

one to satisfy anonymous customer, and then, it is customized to suit a 

particular application.  

 7.  The resources may not be enough to build software that fulfils all the 

customer’s requirements. It is left to the customer to priorities the 

requirements and develop software fulfilling important requirements.  

3.3.5 Requirements Gathering Tools  

The requirement gathering is an art. The person who gathers requirements 

should have knowledge of what and when to gather information and by what 

resources. The requirements are gathered regarding organisation, which 

include information regarding its policies, objectives, and organisation 

structure, regarding user staff. It includes the information regarding job 

function and their personal details, regarding the functions of the organisation 

including information about work flow, work schedules and working 

procedure.    

The following four tools are primarily used for information gathering:  

 1.  Record review: A review of recorded documents of the organisation is 

performed. Procedures, manuals, forms and books are reviewed to see 

format and functions of present system. The search time in this technique is 

more.  

 2.  On site observation: In case of real life systems, the actual site visit is 

performed to get a close look of system. It helps the analyst to detect the 

problems of existing system.  

3.  Interview: A personal interaction with staff is performed to identify their 

requirements. It requires experience of arranging the interview, setting the 

stage, avoiding arguments and evaluating the outcome.  
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 4.  Questionnaire: It is an effective tool which requires less effort and 

produces a written document about requirements. It examines a large 

number of respondents simultaneously and gets customized answers.  It 

gives person sufficient time to answer the queries and give correct answers. 

3.4 Eliciting Requirements 

Before requirements can be analyzed, modeled, or specified they must be 

gathered through an elicitation process. A customer has a problem that may 

be amenable to a computer-based solution. A developer responds to the 

customer's request for help. Communication has begun. But, as we have 

already noted, the road from communication to understanding is often full of 

potholes. 

3.4.1 Initiating the Process 

The most commonly used requirements elicitation technique is to conduct a 

meeting or interview. The first meeting between a software engineer (the 

analyst) and the customer can be likened to the awkwardness of a first date 

between two adolescents. Neither person knows what to say or ask; both are 

worried that what they do say will be misinterpreted; both are thinking about 

where it might lead (both likely have radically different expectations here); 

both want to get the thing over with, but at the same time, both want it to be a 

success.  

Yet, communication must be initiated. Gause and Weinberg suggest that the 

analyst start by asking context-free questions. That is, a set of questions that 

will lead to a basic understanding of the problem, the people who want a 

solution, the nature of the solution that is desired, and the effectiveness of 

the first encounter itself. The first set of context-free questions focuses on the 

customer, the overall goals, and the benefits. For example, the analyst might 

ask: 

• Who is behind the request for this work? 

• Who will use the solution? 

• What will be the economic benefit of a successful solution? 

• Is there another source for the solution that you need? 

These questions help to identify all stakeholders who will have interest in the 

software to be built. In addition, the questions identify the measurable benefit 

of a successful implementation and possible alternatives to custom software 

development.  

The next set of questions enables the analyst to gain a better understanding 

of the problem and the customer to voice his or her perceptions about a 

solution: 



                               Software Engineering 

     NOTES 

 39

• How would you characterize "good" output that would be generated by a 

successful solution? 

• What problem(s) will this solution address? 

• Can you show me (or describe) the environment in which the solution will 

be used? 

• Will special performance issues or constraints affect the way the solution is 

approached? 

The final set of questions focuses on the effectiveness of the meeting. Gause 

and Weinberg call these meta-questions and propose the following 

(abreviated) ist: 

• Are you the right person to answer these questions? Are your answers 

"official"?  

• Are my questions relevant to the problem that you have? 

• Am I asking too many questions? 

• Can anyone else provide additional information? 

• Should I be asking you anything else? 

These questions (and others) will help to "break the ice" and initiate the 

communication that is essential to successful analysis. But a question and 

answer meeting format is not an approach that has been overwhelmingly 

successful. In fact, the Q&A session should be used for the first encounter 

only and then replaced by a meeting format that combines elements of 

problem solving, negotiation, and specification. An approach to meetings of 

this type is presented in the next section.  

3.4.2 Facilitated Application Specification Techniques 

Too often, customers and software engineers have an unconscious "us and 

them" mind-set. Rather than working as a team to identify and refine 

requirements, each constituency defines its own "territory" and 

communicates through series of memos, formal position papers, documents, 

and question and answer sessions. History has shown that this approach 

doesn't work very well. Misunderstandings abound, important information is 

omitted, and a successful working relationship is never established. 

It is with these problems in mind that a number of independent investigators 

have developed a team-oriented approach to requirements gathering that is 

applied during early stages of analysis and specification. Called facilitated 

application specification techniques (FAST), this approach encourages the 

creation of a joint team of customers and developers who work together to 

identify the problem, propose elements of the solution, negotiate different 

approaches and specify a preliminary set of solution requirements. FAST has 

been used predominantly by the information systems community, but the 

technique offers potential for improved communication in applications of all 

kinds. 
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Many different approaches to FAST have been proposed. Each makes use of 

a slightly different scenario, but all apply some variation on the following 

basic guidelines: 

• A meeting is conducted at a neutral site and attended by both software 

engineers and customers. 

• Rules for preparation and participation are established. 

• An agenda is suggested that is formal enough to cover all important points 

but informal enough to encourage the free flow of ideas. 

• A "facilitator" (can be a customer, a developer, or an outsider) controls the 

meeting. 

• A "definition mechanism" (can be work sheets, flip charts, or wall stickers or 

an electronic bulletin board, chat room or virtual forum) is used. 

• The goal is to identify the problem, propose elements of the solution, 

negotiate different approaches, and specify a preliminary set of solution 

requirements in an atmosphere that is conducive to the accomplishment of 

the goal. 

To better understand the flow of events as they occur in a typical FAST 

meeting, we present a brief scenario that outlines the sequence of events 

that lead up to the meeting, occur during the meeting, and follow the meeting. 

initial meetings between the developer and customer occur and basic 

questions and answers help to establish the scope of the problem and the 

overall perception of a solution. Out of these initial meetings, the developer 

and customer write a one- or two-page "product request." A meeting place, 

time, and date for FAST are selected and a facilitator is chosen. Attendees 

from both the development and customer/user organizations are invited to 

attend. The product request is distributed to all attendees before the meeting 

date. 

While reviewing the request in the days before the meeting, each FAST 

attendee is asked to make a list of objects that are part of the environment 

that surrounds the system, other objects that are to be produced by the 

system, and objects that are used by the system to perform its functions. In 

addition, each attendee is asked to make another list of services (processes 

or functions) that manipulate or interact with the objects. Finally, lists of 

constraints (e.g., cost, size, business rules) and performance criteria (e.g., 

speed, accuracy) are also developed. The attendees are informed that the 

lists are not expected to be exhaustive but are expected to reflect each 

person’s perception of the system. 

As an example, assume that a FAST team working for a consumer products 

company has been provided with the following product description: Our 

research indicates that the market for home security systems is growing at a 

rate of 40 percent per year. We would like to enter this market by building a 

microprocessor-based home security system that would protect against 

and/or recognize a variety of undesirable "situations" such as illegal entry, 
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fire, flooding, and others. The product, tentatively called Safe Home, will use 

appropriate sensors to detect each situation, can be programmed by the 

homeowner, and will automatically telephone a monitoring agency when a 

situation is detected. 

In reality, considerably more information would be provided at this stage. But 

even with additional information, ambiguity would be present, omissions 

would likely exist, and errors might occur. For now, the preceding "product 

description" will suffice. The FAST team is composed of representatives from 

marketing, software and hardware engineering, and manufacturing. An 

outside facilitator is to be used.  

Each person on the FAST team develops the lists described previously. 

Objects described for Safe Home might include smoke detectors, window 

and door sensors, motion detectors, an alarm, an event (a sensor has been 

activated), a control panel, a display, telephone numbers, a telephone call, 

and so on. The list of services might include setting the alarm, monitoring the 

sensors, dialing the phone, programming the control panel, reading the 

display (note that services act on objects). In a similar fashion, each FAST 

attendee will develop lists of constraints (e.g., the system must have a 

manufactured cost of less than $80, must be user-friendly, must interface 

directly to a standard phone line) and performance criteria (e.g., a sensor 

event should be recognized within one second, an event priority scheme 

should be implemented).   

As the FAST meeting begins, the first topic of discussion is the need and 

justification for the new product everyone should agree that the product is 

justified. Once agreement has been established, each participant presents 

his or her lists for discussion. The lists can be pinned to the walls of the room 

using large sheets of paper, stuck to the walls using adhesive backed sheets, 

or written on a wall board. Alternatively, the lists may have been posted on 

an electronic bulletin board or posed in a chat room environment for review 

prior to the meeting. Ideally, each list entry should be capable of being 

manipulated separately so that lists can be combined, entries can be deleted 

and additions can be made. At this stage, critique and debate are strictly 

prohibited.  

After individual lists are presented in one topic area, a combined list is 

created by the group. The combined list eliminates redundant entries, adds 

any new ideas that come up during the discussion, but does not delete 

anything. After combined lists for all topic areas have been created, 

discussion coordinated by the facilitator ensues. The combined list is 

shortened, lengthened, or reworded to properly reflect the product/system to 

be developed. The objective is to develop a consensus list in each topic area 

(objects, services, constraints, and performance). The lists are then set aside 

for later action. 
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Once the consensus lists have been completed, the team is divided into 

smaller subteams; each works to develop mini-specifications for one or more 

entries on each of the lists. Each mini-specification is an elaboration of the 

word or phrase contained on a list. For example, the mini-specification for the 

Safe Home object control panel might be 

• mounted on wall 

• size approximately 9 X 5 inches 

• contains standard 12-key pad and special keys 

• contains LCD display of the form shown in sketch [not presented here] 

• all customer interaction occurs through keys 

• used to enable and disable the system 

• software provides interaction guidance, echoes, and the like 

• connected to all sensors 

Each subteam then presents each of its mini-specs to all FAST attendees for 

discussion. Additions, deletions, and further elaboration are made. In some 

cases, the development of mini-specs will uncover new objects, services, 

constraints, or performance requirements that will be added to the original 

lists. During all discussions, the team may raise an issue that cannot be 

resolved during the meeting. An issues list is maintained so that these ideas 

will be acted on later.   

After the mini-specs are completed, each FAST attendee makes a list of 

validation criteria for the product/system and presents his or her list to the 

team. A consensus list of validation criteria is then created. Finally, one or 

more participants (or outsiders) are assigned the task of writing the complete 

draft specification using all inputs from the FAST meeting. 

FAST is not a panacea for the problems encountered in early requirements 

elicitation. But the team approach provides the benefits of many points of 

view, instantaneous discussion and refinement, and is a concrete step 

toward the development of a specification. 

3.4.3 Quality Function Deployment 

Quality function deployment (QFD) is a quality management technique that 

translates the needs of the customer into technical requirements for software. 

Originally developed in Japan and first used at the Kobe Shipyard of 

Mitsubishi Heavy Industries, Ltd., in the early 1970s, QFD “concentrates on 

maximizing customer satisfaction from the software engineering process” To 

accomplish this, QFD emphasizes an understanding of what is valuable to 

the customer and then deploys these values throughout the engineering 

process. QFD identifies three types of requirements: 

Normal requirements: The objectives and goals that are stated for a product 

or system during meetings with the customer. If these requirements are 

present, the customer is satisfied. Examples of normal requirements might be 
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requested types of graphical displays, specific system functions, and defined 

levels of performance. 

Expected requirements: These requirements are implicit to the product or 

system and may be so fundamental that the customer does not explicitly 

state them. Their absence will be a cause for significant dissatisfaction. 

Examples of expected requirements are: ease of human/machine interaction, 

overall operational correctness and reliability, and ease of software 

installation. 

Exciting requirements: These features go beyond the customer’s 

expectations and prove to be very satisfying when present. For example, 

word processing software is requested with standard features. The delivered 

product contains a number of page layout capabilities that are quite pleasing 

and unexpected. 

In actuality, QFD spans the entire engineering process [AKA90]. However, 

many QFD concepts are applicable to the requirements elicitation activity. 

We present an overview of only these concepts (adapted for computer 

software) in the paragraphs that follow. 

In meetings with the customer, function deployment is used to determine the 

value of each function that is required for the system. Information deployment 

identifies both the data objects and events that the system must consume 

and produce. These are tied to the functions. Finally, task deployment 

examines the behavior of the system or product within the context of its 

environment. Value analysis is conducted to determine the relative priority of 

requirements determined during each of the three deployments. 

QFD uses customer interviews and observation, surveys, and examination of 

historical data (e.g., problem reports) as raw data for the requirements 

gathering activity. These data are then translated into a table of requirements 

called the customer voice table that is reviewed with the customer. A variety 

of diagrams, matrices, and evaluation methods are then used to extract 

expected requirements and to attempt to derive exciting requirements. 

3.4.4 Use-Cases 

As requirements are gathered as part of informal meetings, FAST, or QFD, 

the software engineer (analyst) can create a set of scenarios that identify a 

thread of usage for the system to be constructed. The scenarios, often called 

use-cases, provide a description of how the system will be used. 

To create a use-case, the analyst must first identify the different types of 

people (or devices) that use the system or product. These actors actually 

represent roles that people (or devices) play as the system operates. Defined 

somewhat more formally, an actor is anything that communicates with the 

system or product and that is external to the system itself.  
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It is important to note that an actor and a user are not the same thing. A 

typical user may play a number of different roles when using a system, 

whereas an actor represents a class of external entities (often, but not 

always, people) that play just one role. As an example, consider a machine 

operator (a user) who interacts with the control computer for a manufacturing 

cell that contains a number of robots and numerically controlled machines. 

After careful review of requirements, the software for the control computer 

requires four different modes (roles) for interaction: programming mode, test 

mode, monitoring mode, and troubleshooting mode. There fore, four actors 

can be defined: programmer, tester, monitor, and troubleshooter. In some 

cases, the machine operator can play all of these roles. In others, different 

people may play the role of each actor. 

Because requirements elicitation is an evolutionary activity, not all actors are 

identified during the first iteration. It is possible to identify primary actors 

during the first iteration and secondary actors as more is learned about the 

system. Primary actors interact to achieve required system function and 

derive the intended benefit from the system. They work directly and 

frequently with the software. Secondary actors support the system so that 

primary actors can do their work. Once actors have been identified, use-

cases can be developed. The use-case describes the manner in which an 

actor interacts with the system. Jacobson suggests a number of questions 

that should be answered by the use-case: 

• What main tasks or functions are performed by the actor? 

• What system information will the actor acquire, produce, or change? 

• Will the actor have to inform the system about changes in the external 

environment? 

• What information does the actor desire from the system? 

• Does the actor wish to be informed about unexpected changes? 

In general, a use-case is simply a written narrative that describes the role of 

an actor as interaction with the system occurs. 

Each use-case provides an unambiguous scenario of interaction between an 

actor and the software. It can also be used to specify timing requirements or 

other constraints for the scenario. For example, in the use-case just noted, 

requirements indicate that activation occurs 30 seconds after the stay or 

away key is hit. This information can be appended to the use-case.  

Use-cases describe scenarios that will be perceived differently by different 

actors. Wyder suggests that quality function deployment can be used to 

develop a weighted priority value for each use-case. To accomplish this, use-

cases are evaluated from the point of view of all actors defined for the 

system. A priority value is assigned to each use-case (e.g., a value from 1 to 

10) by each of the actors.  An average priority is then computed, indicating 

the perceived importance of each of the use-cases. When an iterative 
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process model is used for software engineering, the priorities can influence 

which system functionality is delivered first. 

3.5 Building Analysis Model 

Before the actual system design commences, the system architecture is 

modeled. In this section, we discuss various modeling techniques.  

 3.5.1 Elementary Modeling Techniques  

 A model showing bare minimum requirements is called Essential Model. It 

has two components.  

1.  Environmental model: It indicates environment in which system exists. 

Any big or small system is a sub-system of a larger system. For example, if 

software is developed for a college, then college will be part of University. If it 

is developed for University, the University will be part of national educational 

system. Thus, when the model of the system is made these external 

interfaces are defined. These interfaces reflect system’s relationship with 

external universe (called environment). The environment of a college system 

is shown in Figure 3.2. 

In environmental model, the interfaces should clearly indicate the inflow and 

outflow of information from the system.   

The tools of environment model are:  

(i)  Statement of purpose: It indicates the basic objectives of system.  

(ii)  Event list: It describes the different events of system and indicates 

functionality of the system.   

(iii)  Context diagram: It indicates the environment of various sub-systems. 
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FIGURE 3.2 Environmental model of educational system 

2.  Behavioral Model:  It describes operational behavior of the system.  In 

this model, various operations of the system are represented in pictorial form. 

The tools used to make this model are: Data Flow Diagrams (DFD), E-R 

diagrams, Data Dictionary & Process Specification.  These are discussed in 

later sections.  Hence, behavioral model defines:  

Data of proposed system: 

(i)  The internal functioning of proposed system,   

(ii)  Inter-relationship between various data.   

 In traditional approach of modeling, the analysts collects great deal of 

relatively unstructured data through data gathering tools and organize the 

data through system flow charts which support future development of system 

and simplify communication with the user. But, flow chart technique develops 

physical rather than logical system.  

  In structured approach of modeling the standard techniques of DFD, E-R 

diagrams etc. are used to develop system specification in a formal format. It 

develops a system logical model.  

 3.5.2 Data Flow Diagrams (DFD)  

 It is a graphical representation of flow of data through a system. It pictures a 

system as a network of functional processes. The basis of DFD is a data flow 

graph, which pictorially represents transformation on data as shown in Figure 

3.3.  
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FIGURE 3.3 Data flow diagram 

In this diagram, the external entities provide input data for the processing. 

During the processing, some intermediate data is generated. After final 

processing, the final output data is generated. The data store is the 

repository of data.   

The structured approach of system design requires extensive modeling of the 

system. Thus, instead of making a complete model exhibiting the functionality 

of system, the DFD’s are created in a layered manner. At the first layer, the 

DFD is made at block level and in lower layers, the details are shown. Thus, 

level “0” DFD makes a fundamental system (Figure 3.4). 

 

FIGURE 3.4 Layer 1 depiction of process A 

DFD’s can represent the system at any level of abstraction. DFD of “0” level 

views entire software element as a single bubble with indication of only input 
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and output data. Thus, “0” level DFD is also called as Context diagram. Its 

symbols are shown in Figure 3.5. 

 

FIGURE 3.5 Symbols of a data flow diagram 

3.5.3 Rules for making DFD    

 The following factors should be considered while making DFDs:  

 1.   Keep a note of all the processes and external entities. Give unique 

names to them. Identify the manner in which they interact with each other.  

 2.   Do numbering of processes.  

 3.   Avoid complex DFDs (if possible).  

 4.   The DFD should be internally consistent.  

 5.   Every process should have minimum of one input and one output.   

The data store should contain all the data elements that flow as input and 

output.   

To understand the system functionality, a system model is developed.  The 

developed model is used to analyze the system.  The following four factors 

are of prime concern for system modeling:  

 1.  The system modeling is undertaken with some simplifying assumptions 

about the system.  Though these assumptions limit the quality of system 

model, it reduces the system complexity and makes understanding easier.   

Still, the model considers all important, critical and material factors.  These 

assumptions are made regarding all aspects like processes, behaviors, 

values of inputs etc.  

 2.  The minute details of various components are ignored and a simplified 

model is developed.  For example, there may be various types of data 

present in the system.  The type of data having minute differences is clubbed 

into single category, thus reducing overall number of data types.    
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 3.   The constraints of the system are identified.  Some of them may be 

critical.  They are considered in modeling whereas others may be ignored.  

The constraints may be because of external factors, like processing speed, 

storage capacity, network features or operating system used.    

 4.   The customers mentioned preferences about technology, tools, 

interfaces, design, architecture etc. are taken care of.    

 Example: The 0th and 1st levels of DFD of Production Management System 

are shown in Figure 3.6 (a) and (b)   

Let us discuss the data flow diagram of Production Management System.  

F

IGURE 3.6 (a) : Level 0 DFD of 

PMS

 

Figure 3.6 (b): Level 1 DFD of PMS 
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3.5.4 Data Dictionary   

 This is another tool of requirement analysis which reduces complexity of 

DFD. A data dictionary is a catalog of all elements of a system. DFD depicts 

flow of data whereas data dictionary gives details of that information like 

attribute, type of attribute, size, names of related data items, range of values, 

data structure definitions etc. The name specifies the name of attribute 

whose value is collected. For example, fee deposit may be named as FD and 

course opted may be named as CO.   

Related data items captures details of related attributes. Range of values 

store total possible values of that data. Data structure definition captures the 

physical structure of data items.   

   Some of the symbols used in data dictionary are given below:  

  X =  [a/b]   x consists of either data element a or b  

  X = a     x consists of an optional data element a  

  X = a+b     x consists of data element a & b. 

  X = y{a}z   x consists of some occurrences of data elements a 

which are between y and z.  

 |    Separator  

  **    Comments  

 @    Identifier  

 ( )    Options  

 Example:  The data dictionary of payroll may include the following fields:  

 PAYROLL   = [Payroll Detai 

                     = @ employee name + employee + id number + employee 

address + Basic Salary + additional allowances  

 Employee name    = * name of employee *  

 Employee id number = * Unique identification no. given to every employee*  

 Basic Salary     = * Basic pay of employee *  

 Additional allowances= * the other perks on Basic pay *  

 Employee name     = First name + Last name  

 Employee address    = Address 1 + Address 2 + Address 3  

 3.5.5 E-R Diagram  

Entity-relationship (E-R) diagram is detailed logical representation of data for 

an organisation. It is data oriented model of a system whereas DFD is a 

process oriented model. The ER diagram represents data at rest while DFD 

tracks the motion of data. ERD does not provide any information regarding 

functionality of data. It has three main components data entities, their 

relationships and their associated attributes.  
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Entity: It is most elementary thing of an organisation about which data is to 

be maintained. Every entity has unique identity. It is represented by 

rectangular box with the name of entity written inside (generally in capital 

letters).  

Relationship: Entities are connected to each other by relationships. It 

indicates how two entities are associated. A diamond notation with name of 

relationship represents as written inside. Entity types that participate in 

relationship are called degree of relationship. It can be one to one (or unary), 

one to many or many to many.   

Cardinality & Optionally: The cardinality represents the relationship 

between two entities. Consider the one too many relationships between two 

entities class and student. Here, cardinality of a relationship is the number of 

instances of entity student that can be associated with each instance of entity 

class. This is shown in Figure 3.7.  

 

FIGURE 3.7 One to Many cardinality relationship 

The minimum cardinality of a relationship is the minimum number of 

instances of second entity (student, in this case) with each instance of first 

entity (class, in this case).  

In a situation where there can be no instance of second entity, then, it is 

called as optional relationship. For example’ if a college does not offer a 

particular course then it will be termed as optional with respect to relationship 

‘offers’. This relationship is shown in Figure 3.8.  

 

FIGURE 3.8 Minimum cardinality relationship 

When minimum cardinality of a relationship is one, then second entity is 

called as mandatory participant in the relationship. The maximum cardinality 

is the maximum number of instances of second entity. Thus, the modified ER 

diagram is shown in Figure 3.9.  
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FIGURE 3.9 Modified ER diagram representing cardinalities 

The relationship cardinalities are shown in Figure 3.10. 

 

FIGURE 3.10 Relationship cardinalities 

Attributes:  Attribute is a property or characteristic of an entity that is of 

interest to the organisation. It is represented by oval shaped box with name 

of attribute written inside it. For example, the student entity has attributes as 

shown in Figure 3.11 

. 

FIGURE 3.13 attributes of entity student 

3.5.6 Structured Requirements Definition 

Structured Requirements definition is an approach to perform the study about 

the complete system and its various sub-systems, the external inputs and 

outputs, functionality of complete system and its various sub-systems. The 

following are various steps of it:  
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Step 1: Make a user level data flow diagram. This step is meant for gathering 

requirements with the interaction of employee. In this process, the 

requirements engineer interviews each individual of organisation in order to 

learn what each individual gets as input and produces as output. With this 

gathered data, create separate data flow diagram for every user.  

Step 2: Create combined user level data flow diagram.  Create an integrated 

data flow diagram by merging old data flow diagrams. Remove the 

inconsistencies if encountered, in this merging process. Finally, an integrated 

consistent data flow diagram is generated.  

Step 3: Generate application level data flow diagram. Perform data analysis 

at system’s level to define external inputs and outputs.  

Step 4: Define various functionalities. In this step, the functionalities of 

various sub-systems and the complete system are defined. 

3.6 Software Prototyping and Specification 

Prototyping is a process that enables developer to create a small model of 

software. The IEEE standard defines prototype as a preliminary form or 

instance of a system that serves as a model for later stages for the final 

complete version of the system.  

 A prototype may be categorized as follows:  

 1.  A paper prototype, which is a model depicting human machine interaction 

in a form that makes the user understand how such interaction, will occur.  

2.  A working prototype implementing a subset of complete features.  

3.  An existing program that performs all of the desired functions but 

additional features are added for improvement.  

Prototype is developed so that customers, users and developers can learn 

more about the problem. Thus, prototype serves as a mechanism for 

identifying software requirements. It allows the user to explore or criticize the 

proposed system before developing a full scale system.   

 3.6.1 Types of Prototype   

Broadly, the prototypes are developed using the following two techniques:  

Throw away prototype: In this technique, the prototype is discarded once its 

purpose is fulfilled and the final system is built from scratch. The prototype is 

built quickly to enable the user to rapidly interact with a working system. As 

the prototype has to be ultimately discarded, the attention on its speed, 

implementation aspects, maintainability and fault tolerance is not paid. In 

requirements defining phase, a less refined set of requirements are hurriedly 
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defined and throw away prototype is constructed to determine the feasibility 

of requirement, validate the utility of function, uncover missing requirements, 

and establish utility of user interface. The duration of prototype building 

should be as less as possible because its advantage exists only if results 

from its use are available in timely fashion.  

Evolutionary Prototype: In this, the prototype is constructed to learn about 

the software problems and their solutions in successive steps. The prototype 

is initially developed to satisfy few requirements. Then, gradually, the 

requirements are added in the same prototype leading to the better 

understanding of software system. The prototype once developed is used 

again and again. This process is repeated till all requirements are embedded 

in this and the complete system is evolved.   

According to SOMM the benefits of developing prototype are listed below:  

 1.  Communication gap between software developer and clients may be 

identified.  

 2.  Missing user requirements may be unearthed.  

 3.  Ambiguous user requirements may be depicted.  

 4.  A small working system is quickly built to demonstrate the feasibility and 

usefulness of the application to management. 

The sequence of prototyping is shown in following Figure 3.14 

F

IGURE 3.14: Sequence of prototyping. 

3.6.2 Problems of Prototyping   

In some organizations, the prototyping is not as successful as anticipated. A 

common problem with this approach is that people expect much from 

insufficient effort. As the requirements are loosely defined, the prototype 

sometimes gives misleading results about the working of software. 

Prototyping can have execution inefficiencies and this may be questioned as 

negative aspect of prototyping. The approach of providing early feedback to 

user may create the impression on user and user may carry some negative 

biasing for the completely developed software also. 

3.6.3 Advantages of Prototyping  

The advantages of prototyping outperform the problems of prototyping. Thus, 

overall, it is a beneficial approach to develop the prototype. The end user 
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cannot demand fulfilling of incomplete and ambiguous software needs from 

the developer.  

One additional difficulty in adopting this approach is the large investment that 

exists in software system maintenance. It requires additional planning about 

the re-engineering of software. Because, it may be possible that by the time 

the prototype is build and tested, the technology of software development is 

changed, hence requiring a complete re-engineering of the product. 

3.7 Validation requirements 

Measurement is fundamental to any engineering discipline and software 

engineering is no exception. Software metric is a quantitative measure 

derived from the attribute of software development life cycle. It behaves as 

software measures.   

A software measure is a mapping from a set of objects in the software 

engineering world into a set of mathematical constructs such as numbers or 

vectors of numbers.  

Using the software metrics, software engineer measures software processes, 

and the requirements for that process. The software measures are done 

according to the following parameters:  

• The objective of software and problems associated with current activities,  

• The cost of software required for relevant planning relative to future 

projects,  

• Testability and maintainability of various processes and products,  

• Quality of software attributes like reliability, portability and maintainability, 

• Utility of software product,  

• User friendliness of a product.  

Various characteristics of software measures identified by Basili are given 

below:  

 • Objects of measurement: They indicate the products and processes to be 

measured.  

• Source of measurement: It indicates who will measure the software. For 

example, software designer, software tester and software managers.  

• Property of measurement: It indicates the attribute to be measured like cost 

of software, reliability, maintainability, size and portability.  

• Context of measurement: It indicates the environments in which context the 

software measurements are applied.  

Common software measures   

There are significant numbers of software measures. The following are a few 

common software measures:       
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Size:  It indicates the magnitude of software system. It is most commonly 

used software measure. It is indicative measure of memory requirement, 

maintenance effort, and development time.  

 LOC: It represents the number of lines of code (LOC).  It is indicative 

measure of size oriented software measure. There is some standardization 

on the methodology of counting of lines. In this, the blank lines and 

comments are excluded. The multiple statements present in a single line are 

considered as a single LOC. The lines containing program header and 

declarations are counted.  

Summary 

Software engineering practice encompasses concepts, principles, methods, 

and tools that software engineers apply throughout the software process. 

Every software engineering project is different, yet a set of generic principles 

and tasks apply to each process framework activity regardless of the project 

or the product. 

System engineering demands intense communication between the customer 

and the system engineer. This is achieved through a set of activities that are 

called requirements engineering melicitation, analysis and negotiation, 

specification, modeling, validation, and management.  

After requirements have been isolated, a system model is produced and 

representations of each major subsystem can be developed. The system 

engineering task culminates with the creation of a System Specification a 

document that forms the foundation for all engineering work that follows. 

Due to the complexity involved in software development, the engineering 

approach is being used in software design. Use of engineering approach in 

the area of requirements analysis evolved the field of Requirements 

Engineering.  Before the actual system design commences, the system 

architecture is modeled. Entity-relationship (E-R) diagram is detailed logical 

representation of data for an organisation. It is data-oriented model of a 

system whereas DFD is a process oriented model. The ER diagram 

represents data at rest while DFD tracks the motion of data. ERD does not 

provide any information regarding functionality of data. It has three main 

components data entities, their relationships and their associated attributes. 

Structured Requirements definition is an approach to perform the study about 

the complete system and its various subsystems, the external inputs and 

outputs, functionality of complete system and its various subsystems. 

Prototyping is a process that enables developer to create a small model of 

software. The IEEE standard defines prototype as a preliminary form or 

instance of a system that serves as a model for later stages for the final 

complete version of the system. Measurement is fundamental to any 

engineering discipline and software engineering is no exception. Software 
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metric is a quantitative measure derived from the attribute of software 

development life cycle. 

Questions 

1. What three “domains” are considered during analysis modeling? 

2. Why is feedback important to the software team? 

3. What is the advantage of DFD over ER diagram? 

4. What are the significance specifying functional requirements in SRS 

document? 

5. What is the purpose of using software metrics? 

6. What does “feasibility analysis” imply when it is discussed within the 

context of the inception function? 

7. Why do we say that the analysis model represents a snapshot of a system 

in time? 
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UNIT – III 

Structure 

1. BUILDING ANALYSIS MODEL 

1.1 Introduction 

1.2 The Elements of the Analysis Model 

1.3 Data Modeling 

1.4 Flow Oriented Modeling 

1.5 Creating Behavioral model 

2. DESIGN ENGINEERING 

2.1 Introduction 

2.2 The Process 

2.3 Software Design and Software Engineering 

2.4 The Design Process 

2.5 Design Principles 

2.6 Design Concepts 

2.7 Effective Modular Design 

2.8 Design Heuristics for Effective Modularity 

2.9 The Design Model 

2.10 Design Documentation 

Objectives 

After going through this unit, you should be able to:  

• discuss about elements of the analysis model ;  

• understand the data modeling;  

• understand the flow oriented modeling.  

• define process;  

• discuss distinguish between software design and software engineering;  

• discuss design principles and design concepts;  

• discuss design model 
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1. Building Analysis Model 

1.1 Introduction 

At a technical level, software engineering begins with a series of modeling 

tasks that lead to a complete specification of requirements and a 

comprehensive design representation for the software to be built. The 

analysis model, actually a set of models, is the first technical representation 

of a system. Over the years many methods have been proposed for 

analysis modeling. However, two now dominate. The first, structured 

analysis, is a classical modeling method and is described in this lesson.  

1.2 The Elements of the Analysis Model 

The analysis model must achieve three primary objectives:  

(1) to describe what the customer requires,  

(2) to establish a basis for the creation of a software design, and 

(3) to define a set of requirements that can be validated once the software 

is built.  

To accomplish these objectives, the analysis model derived during 

structured analysis takes the form illustrated in Figure 1.1. At the core of 

the model lies the data dictionary a repository that contains descriptions of 

all data objects consumed or produced by the software. Three different 

diagrams surround the core. The entity relation diagram (ERD) depicts 

relationships between data objects. The ERD is the notation that is used to 

conduct the data modeling activity. The attributes of each data object noted 

in the ERD can be described using a data object description. 
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FIGURE 1.1The structure of the analysis model 

The data flow diagram (DFD) serves two purposes: (1) to provide an 

indication of how data are transformed as they move through the system 

and (2) to depict the functions (and sub-functions) that transform the data 

flow. The DFD provides additional information that is used during the 

analysis of the information domain and serves as a basis for the modeling 

of function. A description of each function presented in the DFD is 

contained in a process specification (PSPEC). The state transition diagram 

(STD) indicates how the system behaves as a consequence of external 

events. To accomplish this, the STD represents the various modes of 

behavior (called states) of the system and the manner in which transitions 

are made from state to state. The STD serves as the basis for behavioral 

modeling. Additional information about the control aspects of the software 

is contained in the control specification (CSPEC). 

The analysis model encompasses each of the diagrams, specification, 

descriptions, and the dictionary noted in Figure 1.1. A more detailed 

discussion of these elements of the analysis model is presented in the 

sections that follow.   
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1.3 Data Modeling 

Data modeling answers a set of specific questions that are relevant to any 

data processing application. What are the primary data objects to be 

processed by the system? What is the composition of each data object and 

what attributes describe the object? Where do the objects currently reside? 

What are the relationships between each object and other objects? What 

are the relationships between the objects and the processes that transform 

them? To answer these questions, data modeling methods make use of the 

entity relationship diagram. The ERD, described in detail later in this 

section, enables a software engineer to identify data objects and their 

relationships using a graphical notation. 

In the context of structured analysis, the ERD defines all data that are 

entered, stored, transformed, and produced within an application. The 

entity relationship diagram focuses solely on data (and therefore satisfied 

the first operational analysis principles), representing a "data network" that 

exists for a given system. The ERD is especially useful for applications in 

which data and the relationships that govern data are complex. Unlike the 

data flow diagram, data modeling considers data independent of the 

processing that transforms the data.  

1.3.1 Data Objects, Attributes, and Relationships 

The data model consists of three interrelated pieces of information: the 

data object, the attributes that describe the data object, and the 

relationships that connect data objects to one another.  

Data objects: A data object is a representation of almost any composite 

information that must be understood by software. By composite 

information, we mean something that has a number of different properties 

or attributes. Therefore, width (a single value) would not be a valid data 

object, but dimensions (incorporating height, width, and depth) could be 

defined as an object.  

A data object can be an external entity (e.g., anything that produces or 

consumes information), a thing (e.g., a report or a display), an occurrence 

(e.g., a telephone call) or event (e.g., an alarm), a role (e.g., salesperson), 

an organizational unit (e.g., accounting department), a place (e.g., a 

warehouse), or a structure (e.g., a file). For example, a person or a car 

(Figure 1.2) can be viewed as a data object in the sense that either can be 

defined in terms of a set of attributes. The data object description 

incorporates the data object and all of its attributes. 

Data objects (represented in bold) are related to one another. For example, 

person can own car, where the relationship own connotes a specific 
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"connection” between person and car. The relationships are always defined 

by the context of the problem that is being analyzed. 

 

FIGURE 1.2 Data objects, attributes and relationships 

A data object encapsulates data only there is no reference within a data 

object to operations that act on the data.1 Therefore, the data object can be 

represented as a table as shown in Figure 1.3. The headings in the table 

reflect attributes of the object. In this case, a car is defined in terms of 

make, model, ID number, body type, color and owner. The body of the 

table represents specific instances of the data object. For example, a 

Chevy Corvette is an instance of the data object car.  

 

FIGURE 1.3 Tabular representations of data objects 

Attributes: Attributes define the properties of a data object and take on 

one of three different characteristics. They can be used to (1) name an 

instance of the data object, (2) describe the instance, or (3) make reference 
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to another instance in another table. In addition, one or more of the 

attributes must be defined as an identifier that is; the identifier attribute 

becomes a "key" when we want to find an instance of the data object. In 

some cases, values for the identifier(s) are unique, although this is not a 

requirement. Referring to the data object car, a reasonable identifier might 

be the ID number.  

The set of attributes that is appropriate for a given data objects is 

determined through an understanding of the problem context. The 

attributes for car might serve well for an application that would be used by a 

Department of Motor Vehicles, but these attributes would be useless for an 

automobile company that needs manufacturing control software. In the 

latter case, the attributes for car might also include ID number, body type 

and color, but many additional attributes (e.g., interior code, drive train 

type, trim package designator, transmission type) would have to be added 

to make car a meaningful object in the manufacturing control context. 

Relationships: Data objects are connected to one another in different 

ways. Consider two data objects, book and bookstore.  These objects can 

be represented using the simple notation illustrated in Figure 1.4a. A 

connection is established between book and bookstore because the two 

objects are related. But what are the relationships? To determine the 

answer, we must understand the role of books and book stores within the 

context of the software to be built. We can define a set of 

object/relationship pairs that defined the relevant relationships. For 

example,  

• A bookstore orders books. 

• A bookstore displays books. 

• A bookstore stocks books. 

• A bookstore sells books. 

• A bookstore returns books. 
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FIGURE 1.4 Relationships 

The relationships orders, displays, stocks, sells, and returns define the 

relevant connections between book and bookstore. Figure 1.4b illustrates 

these object/relationship pairs graphically. 

It is important to note that object/relationship pairs are bidirectional. That is, 

they can be read in either direction. A bookstore orders books or books are 

ordered by a bookstore. 

1.3.2 Cardinality and Modality 

The elements of data modeling data objects, attributes, and relationships 

provide the basis for understanding the information domain of a problem. 

However, additional information related to these basic elements must also 

be understood.  We have defined a set of objects and represented the 

object/relationship pairs that bind them. But a simple pair that states: object 

X relates to object Y does not provide enough information for software 

engineering purposes. We must understand how many occurrences of 

object X are related to how many occurrences of object Y. This leads to a 

data modeling concept called cardinality.  

Cardinality: The data model must be capable of representing the number 

of occurrences objects in a given relationship. Tillman defines the 

cardinality of an object/relationship pair in the following manner: 
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Cardinality is the specification of the number of occurrences of one [object] 

that can be related to the number of occurrences of another [object]. 

Cardinality is usually expressed as simply 'one' or 'many.' For example, a 

husband can have only one wife (in most cultures), while a parent can have 

many children. Taking into consideration all combinations of 'one' and 

'many,' two [objects] can be related as 

• One-to-one (l:l) An occurrence of 'A' can relate to one and only one 

occurrence of 'B,' and an occurrence of 'B' can relate to only one 

occurrence of 'A.'  

• One-to-many (l:N) One occurrence of [object] 'A' can relate to one or 

many occurrences of 'B,' but an occurrence of 'B' can relate to only one 

occurrence of 'A.' For example, a mother can have many children, but a 

child can have only one mother. 

• Many-to-many (M:N) An occurrence of 'A' can relate to one or more 

occurrences of 'B,' while an occurrence of 'B' can relate to one or more 

occurrences of 'A.' 

For example, an uncle can have many nephews, while a nephew can have 

many uncles. Cardinality defines “the maximum number of objects that can 

be participate in a relationship”. It does not, however, provide an indication 

of whether or not a particular data object must participate in the 

relationship. To specify this information, the data model adds modality to 

the object/relationship pair.  

Modality: The modality of a relationship is 0 if there is no explicit need for 

the relationship to occur or the relationship is optional. The modality is 1 if 

an occurrence of the relationship is mandatory. To illustrate, consider 

software that is used by a local telephone company to process requests for 

field service. A customer indicates that there is a problem. If the problem is 

diagnosed as relatively simple, a single repair action occurs. However, if 

the problem is complex, multiple repair actions may be required. Figure 1.5 

illustrates the relationship, cardinality, and modality between the data 

objects customer and repair action. 

Referring to the figure 1.5, a one to many cardinality relationships is 

established. That is, a single customer can be provided with zero or many 

repair actions. The symbols on the relationship connection closest to the 

data object rectangles indicate cardinality. The vertical bar indicates one 

and the three-pronged fork indicates many. Modality is indicated by the 

symbols that are further away from the data object rectangles. The second 

vertical bar on the left indicates that there must be a customer for a repair 

action to occur. The circle on the right indicates that there may be no repair 

action required for the type of problem reported by the customer. 
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FIGURE 1.5 Cardinality and modality 

1.3.3 Entity/Relationship Diagrams 

The object/relationship pair is the cornerstone of the data model. These 

pairs can be represented graphically using the entity/relationship diagram. 

The ERD was originally proposed by Peter Chen for the design of relational 

database systems and has been extended by others. A set of primary 

components are identified for the ERD: data objects, attributes, 

relationships, and various type indicators. The primary purpose of the ERD 

is to represent data objects and their relationships. 

Data objects are represented by a labeled rectangle. Relationships are 

indicated with a labeled line connecting objects. In some variations of the 

ERD, the connecting line contains a diamond that is labeled with the 

relationship. Connections between data objects and relationships are 

established using a variety of special symbols that indicate cardinality and 

modality.  

The relationship between the data objects car and manufacturer would be 

represented as shown in Figure 1.6. One manufacturer builds one or many 

cars. Given the context implied by the ERD, the specification of the data 

object car (data object table in Figure 1.6) would be radically different from 

the earlier specification (Figure 1.3). By examining the symbols at the end 

of the connection line between objects, it can be seen that the modality of 

both occurrences is mandatory (the vertical lines).  

Expanding the model, we represent a grossly over simplified ERD (Figure 

1.7) of the distribution element of the automobile business. New data 

objects, shipper and dealership, are introduced. In addition, new 

relationships transports, contracts, licenses, and stocks indicate how the 

data objects shown in the figure associate with one another. Tables for 
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each of the data objects contained in the ERD would have to be developed 

according to the rules introduced. In addition to the basic ERD notation 

introduced in Figures 1.6 and 1.7, the analyst can represent data object 

type hierarchies.  

 

FIGURE 1.6 A simple ERD and data object table 
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FIGURE 1.7 an expanded ERD 

In many instances, a data object may actually represent a class or category 

of information. For example, the data object car can be categorized as 

domestic, European, or Asian. The ERD notation shown in Figure 1.8 

represents this categorization in the form of a hierarchy. 

 

FIGURE 1.8 Data object type hierarchies 

ERD notation also provides a mechanism that represents the associatively 

between objects. An associative data object is represented as shown in 

Figure 1.9. In the figure, each of the data objects that model the individual 

subsystems is associated with the data object car. 



                               Software Engineering 

     NOTES 

 12 

 

FIGURE 1.9 Associative data objects 

Data modeling and the entity relationship diagram provide the analyst with 

a concise notation for examining data within the context of a software 

application. In most cases, the data modeling approach is used to create 

one piece of the analysis model, but it can also be used for database 

design and to support any other requirements analysis methods. 

1.4 Flow Oriented Modeling 

Information is transformed as it flows through a computer-based system. 

The system accepts input in a variety of forms; applies hardware, software, 

and human elements to transform it; and produces output in a variety of 

forms. Input may be a control signal transmitted by a transducer, a series of 

numbers typed by a human operator, a packet of information transmitted on 

a network link, or a voluminous data file retrieved from secondary storage. 

The transform(s) may comprise a single logical comparison, a complex 

numerical algorithm, or a rule-inference approach of an expert system. 

Output may light a single LED or produce a 200-page report. In effect, we 

can create a flow model for any computer-based system, regardless of size 

and complexity. Structured analysis began as an information flow modeling 

technique. A computer-based system is represented as information 

transform as shown in Figure 1.10. A rectangle is used to represent an 

external entity; that is, a system element (e.g., hardware, a person, and 

another program) or another system that produces information for 

transformation by the software or receives information produced by the 
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software. A circle (sometimes called a bubble) represents a process or 

transform that is applied to data (or control) and changes it in some way. 

An arrow represents one or more data items (data objects). All arrows on a 

data flow diagram should be labeled. 

 

FIGURE 1.10 Information flow model 

The double line represents data store stored information that is used by the 

software. The simplicity of DFD notation is one reason why structured 

analysis techniques are widely used. 

It is important to note that no explicit indication of the sequence of 

processing or conditional logic is supplied by the diagram. Procedure or 

sequence may be implicit in the diagram, but explicit logical details are 

generally delayed until software design. It is important not to confuse a 

DFD with the flow chart.   

1.4.1 Data Flow Diagrams 

As information moves through software, it is modified by a series of 

transformations. A data flow diagram is a graphical representation that 

depicts information flow and the transforms that are applied as data move 

from input to output.  The basic form of a data flow diagram, also known as 

a data flow graph or a bubble chart, is illustrated in Figure 1.10. 
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FIGURE 1.11 Information flow refinement 

The data flow diagram may be used to represent a system or software at 

any level of abstraction. In fact, DFDs may be partitioned into levels that 

represent increasing information flow and functional detail. Therefore, the 

DFD provides a mechanism for functional modeling as well as information 

flow modeling. In so doing, satisfied the second operational analysis 

principle (i.e., creating a functional model). 

A level 0 DFD, also called a fundamental system model or a context model, 

represents the entire software element as a single bubble with input and 

output data indicated by incoming and outgoing arrows, respectively.  

Additional processes (bubbles) and information flow paths are represented 

as the level 0 DFD is partitioned to reveal more detail. For example, a level 

1 DFD might contain five or six bubbles with inter connecting arrows. Each 

of the processes represented at level 1 is a sub function of the overall 

system depicted in the context model. As we noted earlier, each of the 

bubbles may be refined or layered to depict more detail.  Figure 1.11 

illustrates this concept.  A fundamental model for system F indicates the 

primary input is A and ultimate output is B.  We refine the F model into 

transforms f1 to f7.  Note that information flow continuity must be 

maintained; that is, input and output to each refinement must remain the 

same. This concept, sometimes called balancing, is essential for the 

development of consistent models. Further refinement of f4 depicts detail in 
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the form of transforms f41 to f45. Again, the input (X, Y) and output (Z) 

remain unchanged. 

The basic notation used to develop a DFD is not in itself sufficient to 

describe requirements for software. For example, an arrow shown in a DFD 

represents a data object that is input to or output from a process. A data 

store represents some organized collection of data. But what is the content 

of the data implied by the arrow or depicted by the store? If the arrow (or 

the store) represents a collection of objects, what are they? These 

questions are answered by applying another component of the basic 

notation for structured analysis the data dictionary.  

DFD graphical notation must be augmented with descriptive text. A process 

specification (PSPEC) can be used to specify the processing details 

implied by a bubble within a DFD. The process specification describes the 

input to a function, the algorithm that is applied to transform the input, and 

the output that is produced. In addition, the PSPEC indicates restrictions 

and limitations imposed on the process (function), performance 

characteristics that are relevant to the process, and design constraints that 

may influence the way in which the process will be implemented.  

1.4.2 Extensions for Real-Time Systems 

Many software applications are time dependent and process as much or 

more control-oriented information as data. A real-time system must interact 

with the real world in a time frame dictated by the real world. Aircraft 

avionics, manufacturing process control, consumer products, and industrial 

instrumentation are but a few of hundreds of real-time software 

applications. To accommodate the analysis of real-time software, a number 

of extensions to the basic notation for structured analysis have been 

defined. These extensions developed by Ward and Mellor and Hatley and 

Pirbhai and illustrated in the sections that follow, enable the analyst to 

represent control flow and control processing as well as data flow and 

processing. 

1.4.3 Ward and Mellor Extensions 

Ward and Mellor extend basic structured analysis notation to accommodate 

the following demands imposed by a real-time system:  

• Information flow is gathered or produced on a time-continuous basis. 

• Control information is passed throughout the system and associated 

control processing. 

• Multiple instances of the same transformation are sometimes encountered 

in multitasking situations. 

• Systems have states and a mechanism causes transition between states.  
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In a significant percentage of real-time applications, the system must 

monitor time continuous information generated by some real-world process.  

For example, a real time test monitoring system for gas turbine engines 

might be required to monitor turbine speed, combustor temperature, and a 

variety of pressure probes on a continuous basis. Conventional data flow 

notation does not make a distinction between discrete data and time-

continuous data. One extension to basic structured analysis notation, 

shown in Figure 1.12, provides a mechanism for representing time-

continuous data flow. The double headed arrow is used to represent time-

continuous flow while a single headed arrow is used to indicate discrete 

data flow. In the figure 1.12, monitored temperature is measured 

continuously while a single value for temperature set point is also provided. 

The process shown in the figure produces a time-continuous output, 

corrected value. 

 

FIGURE 1.12 Time continuous data flow 

The distinction between discrete and time continuous data flow has 

important implications for both the system engineer and the software 

designer. During the creation of the system model, a system engineer will 

be better able to isolate those processes that may be performance critical 

(it is often likely that the input and output of time-continuous data will be 

performance sensitive). As the physical or implementation model is 

created, the designer must establish a mechanism for collection of time-

continuous data. Obviously, the digital system collects data in a quasi-

continuous fashion using techniques such as high-speed polling. The 

notation indicates where analog-to-digital hardware will be required and 

which transforms are likely to demand high-performance software. 

In conventional data flow diagrams, control or event flows are not 

represented explicitly. In fact, the software engineer is cautioned to 
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specifically exclude the representation of control flow from the data flow 

diagram. This exclusion is overly restrictive when real-time applications are 

considered, and for this reason, a specialized notation for representing 

event flows and control processing has been developed.  Continuing the 

convention established for data flow diagrams, data flow is represented 

using a solid arrow. Control flow, however, is represented using a dashed 

or shaded arrow. A process that handles only control flows, called a control 

process, is similarly represented using a dashed bubble. 

Control flow can be input directly to a conventional process or into a control 

process. Figure 1.13 illustrates control flow and processing as it would be 

represented using Ward and Mellor notation. The figure illustrates a top-

level view of a data and control flow for a manufacturing cell. As 

components to be assembled by a robot are placed on fixtures, a status bit 

is set within a parts status buffer (a control store) that indicates the 

presence or absence of each component.  Event information contained 

within the parts status buffer is passed as a bit string to a process, monitor 

fixture and operator interface. The process will read operator commands 

only when the control information, bit string, indicates that all fixtures 

contain components. An event flag, start/stop flag, is sent to robot initiation 

control, a control process that enables further command processing. Other 

data flows occur as a consequence of the process activate event that is 

sent to process robot commands.  
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FIGURE 1.13 Data and control flows using Ward and Mellor notation 

In some situations multiple instances of the same control or data 

transformation process may occur in a real-time system. This can occur in 

a multitasking environment when tasks are spawned as a result of internal 

processing or external events. For example, a number of part status buffers 

may be monitored so that different robots can be signaled at the 

appropriate time.  In addition, each robot may have its own robot control 

system. The Ward and Mellor notation used to represent multiple 

equivalent instances simply overlays process (or control process) bubbles 

to indicate multiplicity. 

1.4.4 Hatley and Pirbhai Extensions 

The Hatley and Pirbhai extensions to basic structured analysis notation 

focus less on the creation of additional graphical symbols and more on the 

representation and specification of the control-oriented aspects of the 

software. The dashed arrow is once again used to represent control or 

event flow. Unlike Ward and Mellor, Hatley and Pirbhai suggest that 

dashed and solid notation be represented separately. 

Therefore, a control flow diagram is defined. The CFD contains the same 

processes as the DFD, but shows control flow, rather than data flow. 

Instead of representing control processes directly within the flow model, a 

notational reference (a solid bar) to a control specification (CSPEC) is 

used. In essence, the solid bar can be viewed as a "window" into an 

"executive" (the CSPEC) that controls the processes (functions) 

represented in the DFD based on the event that is passed through the 

window. The CSPEC is used to indicate (1) how the software behaves 

when an event or control signal is sensed and (2) which processes are 

invoked as a consequence of the occurrence of the event. A process 

specification is used to describe the inner workings of a process 

represented in a flow diagram. Using the notation described in Figures 1.12 

and 1.13, along with additional information contained in PSPECs and 

CSPECs, Hatley and Pirbhai create a model of a real-time system. Data 

flow diagrams are used to represent data and the processes that 

manipulate it. Control flow diagrams show how events flow among 

processes and illustrate those external events that cause various 

processes to be activated. The interrelationship between the process and 

control models is shown schematically in Figure 1.14. The process model is 

"connected" to the control model through data conditions. The control 

model is "connected" to the process model through process activation 

information contained in the CSPEC.  
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FIGURE 1.14 The relationship between data and control models 

A data condition occurs whenever data input to a process result in control 

output. This situation is illustrated in Figure 1.15, part of a flow model for an 

automated monitoring and control system for pressure vessels in an oil 

refinery. The process check and convert pressure implements the algorithm 

described in the PSPEC pseudo code shown. When the absolute tank 

pressure is greater than an allowable maximum, an above pressure event 

is generated. Note that when Hatley and Pirbhai notation is used, the data 

flow is shown as part of a DFD, while the control flow is noted separately as 

part of a control flow diagram. As we noted earlier, the vertical solid bar into 

which the above pressure event flows is a pointer to the CSPEC. 
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Therefore, to determine what happens when this event occurs, we must 

check the CSPEC. The control specification (CSPEC) contains a number of 

important modeling tools. A process activation table is used to indicate 

which processes are activated by a given event. For example, a process 

activation table (PAT) for Figure 1.15 might indicate that the  above 

pressure event would cause a process reduce tank pressure (not shown) to 

be invoked. In addition to the PAT, the CSPEC may contain a state 

transition diagram.  

 

1.5 Creating Behavioral model 

Behavioral modeling is an operational principle for all requirements analysis 

methods. Yet, only extended versions of structured analysis provide a 

notation for this type of modeling. The state transition diagram represents 

the behavior of a system by depicting its states and the events that cause 

the system to change state. In addition, the STD indicates what actions 

(e.g., process activation) are taken as a consequence of a particular event. 
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A state is any observable mode of behavior. For example, states for a 

monitoring and control system for pressure vessels might be monitoring 

state, alarm state, pressure release state, and so on. Each of these states 

represents a mode of behavior of the system. A state transition diagram 

indicates how the system moves from state to state. 

To illustrate the use of the Hatley and Pirbhai control and behavioral 

extensions, consider software embedded within an office photocopying 

machine. A simplified representation of the control flow for the photocopier 

software is shown in Figure 1.16. Data flow arrows have been lightly 

shaded for illustrative purposes, but in reality they are not shown as part of 

a control flow diagram. 

 

FIGURE 1.16 Level 1 CFD for photocopier software 

Control flows are shown entering and exiting individual processes and the 

vertical bar representing the CSPEC "window." For example, the paper 

feed status and start/stop events flow into the CSPEC bar. This implies that 

each of these events will cause some process represented in the CFD to 

be activated. If we were to examine the CSPEC internals, the start/stop 

event would be shown to activate/deactivate the manage copying process. 

Similarly, the jammed event (part of paper feed status) would activate 
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perform problem diagnosis. It should be noted that all vertical bars within 

the CFD refer to the same CSPEC. An event flow can be input directly into 

a process as shown with repro fault. However, this flow does not activate 

the process but rather provides control information for the process 

algorithm.   

A simplified state transition diagram for the photocopier software is shown 

in Figure 1.17. The rectangles represent system states and the arrows 

represent transitions between states. Each arrow is labeled with a ruled 

expression. The top value indicates the event(s) that cause the transition to 

occur. The bottom value indicates the action that occurs as a consequence 

of the event. Therefore, when the paper tray is full and the start button is 

pressed, the system moves from the reading commands state to the 

making copies state. Note that states do not necessarily correspond to 

processes on a one-to-one basis. For example, the state making copies 

would encompass both the manage copying and produce user displays 

processes shown in Figure 1.16. 

 

FIGURE 1.17 State transition diagrams for photocopier software 
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2. Design Engineering 

 

2.1 Introduction 

The designer's goal is to produce a model or representation of an entity 

that will later be built. Diversification and convergence combine intuition 

and judgment based on experience in building similar entities, a set of 

principles and/or heuristics that guide the way in which the model evolves, 

a set of criteria that enables quality to be judged, and a process of iteration 

that ultimately leads to a final design representation. Software design, like 

engineering design approaches in other disciplines, changes continually as 

new methods, better analysis, and broader understanding evolve. Software 

design methodologies lack the depth, flexibility, and quantitative nature that 

are normally associated with more classical engineering design disciplines. 

However, methods for software design do exist, criteria for design quality 

are available, and design notation can be applied. In this chapter, we 

explore the fundamental concepts and principles that are applicable to all 

software design. 

2.2 The Process 

By the time the systems designer comes to the design phase of the system 

life cycle, he or she has a pretty clear understanding of what the new 

system should do and why. This information is recorded in several 

documents: 

• The feasibility study discusses the pros, cons, and costs of building the 

system. 

• The project plan provides preliminary information about the project, its 

mission and goals, its schedule, and its cost estimate. 

• The system requirements specification SRS) contains detailed information 

about the requirements of the system. 

In spite of this detailed documentation, there may still be some uncertainty 

regarding future capabilities of the new system due to the different and 

changing perspectives of the end users and other stakeholders. Different 

people will see different possibilities for the new system, which is why a 

push to propose alternative solutions may take place. The designer must 

then consider the different views, covering all structured requirements, and 

transform them into several competing design strategies. Only one design 

will eventually be pursued. 

 



                               Software Engineering 

     NOTES 

 24 

2.3 Software Design and Software Engineering 

Software design sits at the technical kernel of software engineering and is 

applied regardless of the software process model that is used. Beginning 

once software requirements have been analyzed and specified, software 

design is the first of three technical activities design, code generation, and 

test that are required to build and verify the software. Each activity 

transforms information in a manner that ultimately results in validated 

computer software. Each of the elements of the analysis model provides 

information that is necessary to create the four design models required for 

a complete specification of design. The flow of information during software 

design is illustrated in Figure 2.1. Software requirements, manifested by the 

data, functional, and behavioral models, feed the design task. Using one of 

a number of design methods (discussed in later chapters), the design task 

produces a data design, an architectural design, an interface design, and a 

component design. 

 

FIGURE 2.1 Translating the analysis model into a software design 

The data design transforms the information domain model created during 

analysis into the data structures that will be required to implement the 

software. The data objects and relationships defined in the entity 

relationship diagram and the detailed data content depicted in the data 

dictionary provide the basis for the data design activity. Part of data design 

may occur in conjunction with the design of software architecture. More 

detailed data design occurs as each software component is designed. 

The architectural design defines the relationship between major structural 

elements of the software, the “design patterns” that can be used to achieve 
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the requirements that have been defined for the system, and the 

constraints that affect the way in which architectural design patterns can be 

applied. The architectural design representation the framework of a 

computer-based system can be derived from the system specification, the 

analysis model, and the interaction of subsystems defined within the 

analysis model. The interface design describes how the software 

communicates within itself, with systems that interoperate with it, and with 

humans who use it. An interface implies a flow of information (e.g., data 

and/or control) and a specific type of behavior. Therefore, data and control 

flow diagrams provide much of the information required for interface 

design. 

The component-level design transforms structural elements of the software 

architecture into a procedural description of software components. 

Information obtained from the PSPEC, CSPEC, and STD serve as the 

basis for component design. During design we make decisions that will 

ultimately affect the success of software construction and, as important, the 

ease with which software can be maintained. But why is design so 

important?  

The importance of software design can be stated with a single word quality. 

Design is the place where quality is fostered in software engineering. 

Design provides us with representations of software that can be assessed 

for quality. Design is the only way that we can accurately translate a 

customer's requirements into a finished software product or system. 

Software design serves as the foundation for all the software engineering 

and software support steps that follow. Without design, we risk building an 

unstable system one that will fail when small changes are made; one that 

may be difficult to test; one whose quality cannot be assessed until late in 

the software process, when time is short and many dollars have already 

been spent. 

2.4 The Design Process 

Software design is an iterative process through which requirements are 

translated into a “blueprint” for constructing the software. Initially, the 

blueprint depicts a holistic view of software. That is, the design is 

represented at a high level of abstraction a level that can be directly traced 

to the specific system objective and more detailed data, functional, and 

behavioral requirements. As design iterations occur, subsequent 

refinement leads to design representations at much lower levels of 

abstraction. These can still be traced to requirements, but the connection is 

more subtle. 
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2.4.1 Design and Software Quality 

Throughout the design process, the quality of the evolving design is 

assessed with a series of formal technical reviews or design walk through. 

Three characteristics that serve as a guide for the evaluation of a good 

design: 

• The design must implement all of the explicit requirements contained in 

the analysis model, and it must accommodate all of the implicit 

requirements desired by the customer. 

• The design must be a readable, understandable guide for those who 

generate code and for those who test and subsequently support the 

software. 

• The design should provide a complete picture of the software, addressing 

the data, functional, and behavioral domains from an implementation 

perspective. 

Each of these characteristics is actually a goal of the design process. But 

how is each of these goals achieved? In order to evaluate the quality of a 

design representation, we must establish technical criteria for good design. 

Later in this chapter, we discuss design quality criteria in some detail. For 

the time being, we present the following guidelines: 

A design should exhibit an architectural structure that (1) has been created 

using recognizable design patterns, (2) is composed of components that 

exhibit good design characteristics (these are discussed later in this 

chapter), and (3) can be implemented in an evolutionary fashion, thereby 

facilitating implementation and testing. 

2. A design should be modular; that is, the software should be logically 

partitioned into elements that perform specific functions and sub-functions. 

3. A design should contain distinct representations of data, architecture, 

interfaces, and components (modules). 

4. A design should lead to data structures that are appropriate for the 

objects tobe implemented and are drawn from recognizable data patterns. 

5. A design should lead to components that exhibit independent functional 

characteristics. 

6. A design should lead to interfaces that reduce the complexity of 

connections between modules and with the external environment. 

7. A design should be derived using a repeatable method that is driven by 

information obtained during software requirements analysis.  



                               Software Engineering 

     NOTES 

 27 

These criteria are not achieved by chance. The software design process 

encourages good design through the application of fundamental design 

principles, systematic methodology, and thorough review.  

2.4.2 The Evolution of Software Design 

The evolution of software design is a continuing process that has spanned 

the past four decades. Early design work concentrated on criteria for the 

development of modular programs and methods for refining software 

structures in a top-down manner. Procedural aspects of design definition 

evolved into a philosophy called structured programming. Later work 

proposed methods for the translation of data flow or data structure, into a 

design definition. Newer design approaches proposed an object-oriented 

approach to design derivation. Today, the emphasis in software design has 

been on software architecture and the design patterns that can be used to 

implement software architectures.  

Many design methods, growing out of the work just noted, are being 

applied throughout the industry. Each software design method introduces 

unique heuristics and notation, as well as a some- what parochial view of 

what characterizes design quality. Yet, all of these methods have a number 

of common characteristics: (1) a mechanism for the translation of analysis 

model into a design representation, (2) a notation for representing 

functional components and their interfaces, (3) heuristics for refinement 

and partitioning, and (4) guidelines for quality assessment.  

Regardless of the design method that is used, a software engineer should 

apply a set of fundamental principles and basic concepts to data, 

architectural, interface, and component-level design. These principles and 

concepts are considered in the sections that follow. 

2.5 Design Principles 

Software design is both a process and a model. The design process is a 

sequence of steps that enable the designer to describe all aspects of the 

software to be built. It is important to note, however, that the design 

process is not simply a cookbook. Creative skill, past experience, a sense 

of what makes “good” software and an overall commitment to quality are 

critical success factors for a competent design.  

The design model is the equivalent of an architect’s plans for a house. It 

begins by representing the totality of the thing to be built (e.g., a three-

dimensional rendering of the house) and slowly refines the thing to provide 

guidance for constructing each detail (e.g., the plumbing layout). Similarly, 

the design model that is created for software provides a variety of different 

views of the computer software. 
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Basic design principles enable the software engineer to navigate the design 

process. Davis suggests a set1 of principles for software design, which 

have been adapted and extended in the following list: 

• The design process should not suffer from “tunnel vision.” A good 

designer should consider alternative approaches, judging each based on 

the requirements of the problem, the resources available to do the job, and 

the design concepts. 

• The design should be traceable to the analysis model. Because a 

single element of the design model often traces to multiple requirements, it 

is necessary to have a means for tracking how requirements have been 

satisfied by the design model. 

• The design should not reinvent the wheel. Systems are constructed 

using a set of design patterns, many of which have likely been encountered 

before. These patterns should always be chosen as an alternative to 

reinvention. Time is short and resources are limited! Design time should be 

invested in representing truly new ideas and integrating those patterns that 

already exist. 

• The design should “minimize the intellectual distance” between the 

software and the problem as it exists in the real world. That is, the 

structure of the software design should (whenever possible) mimic the 

structure of the problem domain.  

• The design should exhibit uniformity and integration. A design is 

uniform if it appears that one person developed the entire thing. Rules of 

style and format should be defined for a design team before design work 

begins. A design is integrated if care is taken in defining interfaces between 

design components  

• The design should be structured to accommodate change. The 

design concepts discussed in the next section enable a design to achieve 

this principle. 

• The design should be structured to degrade gently, even when 

aberrant data, events, or operating conditions are encountered. Well-

designed software should never “bomb.” It should be designed to 

accommodate unusual circumstances, and if it must terminate processing, 

do so in a graceful manner. 

• Design is not coding, coding is not design. Even when detailed 

procedural designs are created for program components, the level of 

abstraction of the design model is higher than source code. The only 

design decisions made at the coding level address the small 

implementation details that enable the procedural design to be coded. 
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• The design should be assessed for quality as it is being created, not 

after the fact. A variety of design concepts (Section 13.4) and design 

measures are available to assist the designer in assessing quality.  

• The design should be reviewed to minimize conceptual (semantic) 

errors. There is sometimes a tendency to focus on minutiae when the 

design is reviewed, missing the forest for the trees. A design team should 

ensure that major conceptual elements of the design (omissions, ambiguity, 

and inconsistency) have been addressed before worrying about the syntax 

of the design model. 

When these design principles are properly applied, the software engineer 

creates a design that exhibits both external and internal quality factors. 

External quality factors are those properties of the software that can be 

readily observed by users (e.g., speed, reliability, correctness, usability). 

Internal quality factors are of importance to software engineers. They lead 

to a high-quality design from the technical perspective. To achieve internal 

quality factors, the designer must understand basic design concepts. 

2.6 Design Concepts 

A set of fundamental software design concepts has evolved over the past 

four decades. Although the degree of interest in each concept has varied 

over the years, each has stood the test of time. Each provides the software 

designer with a foundation from which more sophisticated design methods 

can be applied. Each helps the software engineer to answer the following 

questions: 

• What criteria can be used to partition software into individual 

components? 

• How is function or data structure detail separated from a conceptual 

representation of the software? 

• What uniform criteria define the technical quality of a software design? 

2.6.1 Abstraction 

When we consider a modular solution to any problem, many levels of 

abstraction can be posed. At the highest level of abstraction, a solution is 

stated in broad terms using the language of the problem environment. At 

lower levels of abstraction, a more procedural orientation is taken. 

Problem-oriented terminology is coupled with implementation-oriented 

terminology in an effort to state a solution. Finally, at the lowest level of 

abstraction, the solution is stated in a manner that can be directly 

implemented. Wasserman provides a useful definition: 
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Each step in the software process is a refinement in the level of abstraction 

of the software solution. During system engineering, software is allocated 

as an element of a computer-based system. During software requirements 

analysis, the software solution is stated in terms "that are familiar in the 

problem environment." As we move through the design process, the level 

of abstraction is reduced. Finally, the lowest level of abstraction is reached 

when source code is generated. 

As we move through different levels of abstraction, we work to create 

procedural and data abstractions. A procedural abstraction is a named 

sequence of instructions that has a specific and limited function. An 

example of a procedural abstraction would be the word open for a door. 

Open implies a long sequence of procedural steps (e.g., walk to the door, 

reach out and grasp knob, turn knob and pull door, step away from moving 

door, etc.).  

A data abstraction is a named collection of data that describes a data 

object. In the context of the procedural abstraction open, we can define a 

data abstraction called door. Like any data object, the data abstraction for 

door would encompass a set of attributes that describe the door (e.g., door 

type, swing direction, opening mechanism, weight, dimensions). It follows 

that the procedural abstraction open would make use of information 

contained in the attributes of the data abstraction door.  

Many modern programming languages provide mechanisms for creating 

abstract data types. For example, the Ada package is a programming 

language mechanism that provides support for both data and procedural 

abstraction. The original abstract data type is used as a template or generic 

data structure from which other data structures can be instantiated. 

Control abstraction is the third form of abstraction used in software design. 

Like procedural and data abstraction, control abstraction implies a program 

control mechanism without specifying internal details. An example of a 

control abstraction is the synchronization semaphore [KAI83] used to 

coordinate activities in an operating system.  

2.6.2 Refinement 

Stepwise refinement is a top-down design strategy originally proposed by 

Niklaus Wirth. A program is developed by successively refining levels of 

procedural detail. A hierarchy is developed by decomposing a macroscopic 

statement of function (a procedural abstraction) in a stepwise fashion until 

programming language statements are reached.  

The process of program refinement proposed by Wirth is analogous to the 

process of refinement and partitioning that is used during requirements 
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analysis. The difference is in the level of implementation detail that is 

considered, not the approach.  Refinement is actually a process of 

elaboration.We begin with a statement of function (or description of 

information) that is defined at a high level of abstraction. That is, the 

statement describes function or information conceptually but provides no 

information about the internal workings of the function or the internal 

structure of the information. Refinement causes the designer to elaborate 

on the original statement, providing more and more detail as each 

successive refinement (elaboration) occurs.  

Abstraction and refinement are complementary concepts. Abstraction 

enables a designer to specify procedure and data and yet suppress low-

level details. Refinement helps the designer to reveal low-level details as 

design progresses. Both concepts aid the designer in creating a complete 

design model as the design evolves. 

2.6.3 Modularity 

The concept of modularity in computer software has been espoused for 

almost five decades. Software architecture embodies modularity; that is, 

software is divided into separately named and addressable components, 

often called modules that are integrated to satisfy problem requirements.  

It has been stated that "modularity is the single attribute of software that 

allows a program to be intellectually manageable". Monolithic software (i.e., 

a large program composed of a single module) cannot be easily grasped by 

a reader. The number of control paths, span of reference, number of 

variables, and over all complexity would make understanding close to 

impossible. To illustrate this point, consider the following argument based 

on observations of human problem solving. 

Let C(x) be a function that defines the perceived complexity of a problem x, 

and E(x) be a function that defines the effort (in time) required to solve a 

problem x. For two problems, p1 and p2, if  

C(p1) > C(p2)      ---------(1-1a) 

it follows that 

E(p1) > E(p2) (1-1b) 

As a general case, this result is intuitively obvious.  It does take more time 

to solve a difficult problem. 

Another interesting characteristic has been uncovered through 

experimentation in human problem solving. That is,  

C(p1 + p2) > C(p1) + C(p2)  --------- (1-2) 
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Expression (13-2) implies that the perceived complexity of a problem that 

combines p1 and p2 is greater than the perceived complexity when each 

problem is considered separately. Considering Expression (1-2) and the 

condition implied by Expressions (1-1), it follows that  

E(p1 + p2) > E(p1) + E(p2) --------- (1-3) 

This leads to a "divide and conquer" conclusion it's easier to solve a 

complex problem when you break it into manageable pieces. The result 

expressed in Expression (1-3) has important implications with regard to 

modularity and software. It is, in fact, an argument for modularity. 

It is possible to conclude from Expression (1-3) that, if we subdivide 

software indefinitely, the effort required to develop it will become negligibly 

small! Unfortunately, other forces come into play, causing this conclusion to 

be (sadly) invalid. Referring to Figure 2.2, the effort (cost) to develop an 

individual software module does decrease as the total number of modules 

increases. Given the same set of requirements, more modules means 

smaller individual size. However, as the number of modules grows, the 

effort (cost) associated with integrating the modules also grow. These 

characteristics lead to a total cost or effort curve shown in the figure. There 

is a number, M, of modules that would result in minimum development cost, 

but we do not have the necessary sophistication to predict M with 

assurance.  

The curves shown in Figure 2.2 do provide useful guidance when 

modularity is considered. We should modularize, but care should be taken 

to stay in the vicinity of M. Under modularity or over modularity should be 

avoided.  

 

FIGURE 2.2 Modularity and software cost 
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Another important question arises when modularity is considered. How do 

we define an appropriate module of a given size? The answer lies in the 

method(s) used to define modules within a system. Meyer defines five 

criteria that enable us to evaluate a design method with respect to its ability 

to define an effective modular system: 

Modular decomposability: If a design method provides a systematic 

mechanism for decomposing the problem into subproblems, it will reduce 

the complexity of the overall problem, thereby achieving an effective 

modular solution. 

Modular composability: If a design method enables existing (reusable) 

design components to be assembled into a new system, it will yield a 

modular solution that does not reinvent the wheel. 

Modular understandability: If a module can be understood as a stand 

alone unit (without reference to other modules), it will be easier to build and 

easier to change. 

Modular continuity: If small changes to the system requirements result in 

changes to individual modules, rather than systemwide changes, the 

impact of change-induced side effects will be minimized.   

Modular protection: If an aberrant condition occurs within a module and 

its effects are constrained within that module, the impact of error-induced 

side effects will be minimized. 

Finally, it is important to note that a system may be designed modularly, 

even if its implementation must be "monolithic." There are situations (e.g., 

real-time software, embedded software) in which relatively minimal speed 

and memory overhead introduced by subprograms (i.e., subroutines, 

procedures) is unacceptable. In such situations, software can and should 

be designed with modularity as an overriding philosophy. Code may be 

developed "in-line." Although the program source code may not look 

modular at first glance, the philosophy has been maintained and the 

program will provide the benefits of a modular system. 

2.6.4 Software Architecture 

Software architecture alludes to “the overall structure of the software and 

the ways in which that structure provides conceptual integrity for a system”. 

In its simplest form, architecture is the hierarchical structure of program 

components (modules), the manner in which these components interact 

and the structure of data that are used by the components. In a broader 

sense, however, components can be generalized to represent major 

system elements and their interactions. One goal of software design is to 

derive an architectural rendering of a system. 
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This rendering serves as a framework from which more detailed design 

activities are conducted. A set of architectural patterns enable a software 

engineer to reuse designlevel concepts. 

Shaw and Garlan describe a set of properties that should be specified as 

part of an architectural design: 

Structural properties: This aspect of the architectural design 

representation defines the components of a system (e.g., modules, objects, 

filters) and the manner in which those components are packaged and 

interact with one another. For example, objects are packaged to 

encapsulate both data and the processing that manipulates the data and 

interact via the invocation of methods. 

Extra-functional properties: The architectural design description should 

address how the design architecture achieves requirements for 

performance, capacity, reliability, security, adaptability, and other system 

characteristics. 

Families of related systems: The architectural design should draw upon 

repeatable patterns that are commonly encountered in the design of 

families of similar systems. In essence, the design should have the ability 

to reuse architectural building blocks.   

Given the specification of these properties, the architectural design can be 

represented using one or more of a number of different models [GAR95]. 

Structural models represent architecture as an organized collection of 

program components. Framework models increase the level of design 

abstraction by attempting to identify repeatable architectural design 

frameworks (patterns) that are encountered in similar types of applications. 

Dynamic models address the behavioral aspects of the program 

architecture, indicating how the structure or system configuration may 

change as a function of external events. Process models focus on the 

design of the business or technical process that the system must 

accommodate. Finally, functional models can be used to represent the 

functional hierarchy of a system. 

A number of different architectural description languages (ADLs) have been 

developed to represent these models. Although many different ADLs have 

been proposed, the majority provide mechanisms for describing system 

components and the manner in which they are connected to one another.\ 

2.6.5 Control Hierarchy 

Control hierarchy, also called program structure, represents the 

organization of program components (modules) and implies a hierarchy of 

control. It does not represent procedural aspects of software such as 
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sequence of processes, occurrence or order of decisions, or repetition of 

operations; nor is it necessarily applicable to all architectural styles. 

Different notations are used to represent control hierarchy for those 

architectural styles that are amenable to this representation. The most 

common is the treelike diagram (Figure 2.3) that represents hierarchical 

control for call and return architectures. However, other notations, such as 

Warnier-Orr and Jackson diagrams may also be used with equal 

effectiveness. In order to facilitate later discussions of structure, we define 

a few simple measures and terms. Referring to Figure 2.3, depth and width 

provide an indication of the number of levels of control and overall span of 

control, respectively. Fan-out is a measure of the number of modules that 

are directly controlled by another module. Fan-in indicates how many 

modules directly control a given module. 

 

FIGURE 2.3 Structure terminologies for a call and return architectural style 

The control relationship among modules is expressed in the following way: 

A module that controls another module is said to be superordinate to it, and 

conversely, a module controlled by another is said to be subordinate to the 

controller. For example, referring to Figure 2.3, module M is superordinate 

to modules a, b, and c. Module h is subordinate to module e and is 

ultimately subordinate to module M. Width-oriented relationships (e.g., 

between modules d and e) although possible to express in practice, need 

not be defined with explicit terminology. 

The control hierarchy also represents two subtly different characteristics of 

the software architecture: visibility and connectivity. Visibility indicates the 
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set of program components that may be invoked or used as data by a given 

component, even when this is accomplished indirectly. For example, a 

module in an object-oriented system may have access to a wide array of 

data objects that it has inherited, but makes use of only a small number of 

these data objects. All of the objects are visible to the module. Connectivity 

indicates the set of components that are directly invoked or used as data by 

a given component. For example, a module that directly causes another 

module to begin execution is connected to it.  

2.6.6 Structural Partitioning 

If the architectural style of a system is hierarchical, the program structure 

can be partitioned both horizontally and vertically. Referring to Figure 2.4a, 

horizontal partitioning defines separate branches of the modular hierarchy 

for each major program function. Control modules, represented in a darker 

shade are used to coordinate communication between and execution of the 

functions. The simplest approach to horizontal partitioning defines three 

partitions input, data transformation (often called processing) and output. 

Partitioning the architecture horizontally provides a number of distinct 

benefits: 

• software that is easier to test 

• software that is easier to maintain 

• propagation of fewer side effects 

• software that is easier to extend 

 

(a) Horizontal partitioning 
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(b) Vertical partitioning 

FIGURE 2.4 Structural partitioning 

Because major functions are decoupled from one another, change tends to 

be less complex and extensions to the system (a common occurrence) 

tend to be easier to accomplish without side effects. On the negative side, 

horizontal partitioning often causes more data to be passed across module 

interfaces and can complicate the overall control of program flow (if 

processing requires rapid movement from one function to another). 

Vertical partitioning (Figure 2.4b), often called factoring, suggests that 

control (decision making) and work should be distributed top-down in the 

program structure. Top-level modules should perform control functions and 

do little actual processing work. 

Modules that reside low in the structure should be the workers, performing 

all input, computation, and output tasks. The nature of change in program 

structures justifies the need for vertical partitioning. Referring to Figure 

2.4b, it can be seen that a change in a control module (high in the 

structure) will have a higher probability of propagating side effects to 

modules that are subordinate to it. A change to a worker module, given its 

low level in the structure, is less likely to cause the propagation of side 

effects. In general, changes to computer programs revolve around changes 

to input, computation or transformation, and output. The overall control 

structure of the program (i.e., its basic behavior is far less likely to change). 

For this reason vertically partitioned structures are less likely to be 

susceptible to side effects when changes are made and will there- fore be 

more maintainable a key quality factor. 

2.6.7 Data Structure 

Data structure is a representation of the logical relationship among 

individual elements of data. Because the structure of information will 

invariably affect the final procedural design, data structure is as important 

as program structure to the representation of software architecture. 
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Data structure dictates the organization, methods of access, degree of 

associativity, and processing alternatives for information. Entire texts have 

been dedicated to these topics, and a complete discussion is beyond the 

scope of this book. However, it is important to understand the classic 

methods available for organizing information and the concepts that underlie 

information hierarchies. 

The organization and complexity of a data structure are limited only by the 

ingenuity of the designer. There are, however, a limited number of classic 

data structures that form the building blocks for more sophisticated 

structures. A scalar item is the simplest of all data structures. As its name 

implies, a scalar item represents a single element of information that may 

be addressed by an identifier; that is, access may be achieved by 

specifying a single address in memory. The size and format of a scalar item 

may vary within bounds that are dictated by a programming language. For 

example, a scalar item may be a logical entity one bit long, an integer or 

floating point number that is 8 to 64 bits long, or a character string that is 

hundreds or thousands of bytes long. 

When scalar items are organized as a list or contiguous group, a sequential 

vector is formed. Vectors are the most common of all data structures and 

open the door to variable indexing of information. When the sequential 

vector is extended to two, three, and ultimately, an arbitrary number of 

dimensions, an n-dimensional space is created. The most common n-

dimensional space is the two-dimensional matrix. In many programming 

languages, an n dimensional space is called an array. 

Items, vectors, and spaces may be organized in a variety of formats. A 

linked list is a data structure that organizes noncontiguous scalar items, 

vectors, or spaces in a manner (called nodes) that enables them to be 

processed as a list. Each node contains the appropriate data organization 

(e.g., a vector) and one or more pointers that indicate the address in 

storage of the next node in the list. Nodes may be added at any point in the 

list by redefining pointers to accommodate the new list entry. 

Other data structures incorporate or are constructed using the fundamental 

data structures just described. For example, a hierarchical data structure is 

implemented using multilinked lists that contain scalar items, vectors, and 

possibly, n-dimensional spaces. A hierarchical structure is commonly 

encountered in applications that require information categorization and 

associativity. 

It is important to note that data structures, like program structure, can be 

represented at different levels of abstraction. For example, a stack is a 

conceptual model of a data structure that can be implemented as a vector 
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or a linked list. Depending on the level of design detail, the internal 

workings of a stack may or may not be specified. 

2.6.8 Software Procedure 

Program structure defines control hierarchy without regard to the sequence 

of processing and decisions. Software procedure focuses on the 

processing details of each module individually. Procedure must provide a 

precise specification of processing, including sequence of events, exact 

decision points, repetitive operations, and even data organization and 

structure.  

There is, of course, a relationship between structure and procedure. The 

processing indicated for each module must include a reference to all 

modules subordinate to the module being described. That is, a procedural 

representation of software is layered as illustrated in Figure 2.5. 

 

FIGURE 2.5 Procedure is layered 

2.6.9 Software Procedure 

Program structure defines control hierarchy without regard to the sequence 

of processing and decisions. Software procedure focuses on the 

processing details of each module individually. Procedure must provide a 

precise specification of processing, including sequence of events, exact 
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decision points, repetitive operations, and even data organization and 

structure. There is, of course, a relationship between structure and 

procedure. The processing indicated for each module must include a 

reference to all modules subordinate to the module being described. That 

is, a procedural representation of software is layered as illustrated in Figure 

2.5 

2.6.10 Information Hiding 

The concept of modularity leads every software designer to a fundamental 

question: "How do we decompose a software solution to obtain the best set 

of modules?" The principle of information hiding suggests that modules be 

"characterized by design decisions that (each) hides from all others." In 

other words, modules should be specified and designed so that information 

(procedure and data) contained within a module is inaccessible to other 

modules that have no need for such information.  

Hiding implies that effective modularity can be achieved by defining a set of 

independent modules that communicate with one another only that 

information necessary to achieve software function. Abstraction helps to 

define the procedural (or informational) entities that make up the software. 

Hiding defines and enforces access constraints to both procedural detail 

within a module and any local data structure used by the module. 

The use of information hiding as a design criterion for modular systems 

provides the greatest benefits when modifications are required during 

testing and later, during software maintenance. Because most data and 

procedure are hidden from other parts of the software, inadvertent errors 

introduced during modification are less likely to propagate to other locations 

within the software. 

2.7 Effective Modular Design 

All the fundamental design concepts described in the preceding section 

serve to precipitate modular designs. In fact, modularity has become an 

accepted approach in all engineering disciplines. A modular design reduces 

complexity, facilitates change (a critical aspect of software maintainability), 

and results in easier implementation by encouraging parallel development 

of different parts of a system. 

1.7.1 Functional Independence 

The concept of functional independence is a direct outgrowth of modularity 

and the concepts of abstraction and information hiding. In landmark papers 

on software design Parnas and Wirth allude to refinement techniques that 
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enhance module independence. Later work by Stevens, Myers, and 

Constantine solidified the concept. 

Functional independence is achieved by developing modules with "single-

minded" function and an "aversion" to excessive interaction with other 

modules. Stated another way, we want to design software so that each 

module addresses a specific sub-function of requirements and has a simple 

interface when viewed from other parts of the program structure. It is fair to 

ask why independence is important. Software with effective modularity, that 

is, independent modules, is easier to develop because function may be 

compartmentalized and interfaces are simplified (consider the ramifications 

when development is conducted by a team). Independent modules are 

easier to maintain (and test) because secondary effects caused by design 

or code modification are limited, error propagation is reduced, and reusable 

modules are possible. To summarize, functional independence is a key to 

good design, and design is the key to software quality. 

Independence is measured using two qualitative criteria: cohesion and 

coupling. Cohesion is a measure of the relative functional strength of a 

module.  Coupling is a measure of the relative interdependence among 

modules. 

1.7.2 Cohesion 

A cohesive module performs a single task within a software procedure, 

requiring little interaction with procedures being performed in other parts of 

a program. Stated simply, a cohesive module should (ideally) do just one 

thing. 

Cohesion may be represented as a "spectrum." We always strive for high 

cohesion, although the mid-range of the spectrum is often acceptable. The 

scale for cohesion is nonlinear. That is, low-end cohesiveness is much 

"worse" than middle range, which is nearly as "good" as high-end cohesion. 

In practice, a designer need not be concerned with categorizing cohesion in 

a specific module. Rather, the overall concept should be understood and 

low levels of cohesion should be avoided when modules are designed. 

At the low (undesirable) end of the spectrum, we encounter a module that 

per-forms a set of tasks that relate to each other loosely, if at all. Such 

modules are termed coincidentally cohesive. A module that performs tasks 

that are related logically (e.g.,a module that produces all output regardless 

of type) is logically cohesive. When a module contains tasks that are 

related by the fact that all must be executed with the same span of time, 

the module exhibits temporal cohesion. 
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As an example of low cohesion, consider a module that performs error 

processing for an engineering analysis package. The module is called 

when computed data exceed prespecified bounds. It performs the following 

tasks: (1) computes sup-plementary data based on original computed data, 

(2) produces an error report 

(with graphical content) on the user's workstation, (3) performs follow-up 

calculations requested by the user, (4) updates a database, and (5) 

enables menu selection for subsequent processing. Although the preceding 

tasks are loosely related, each is an independent functional entity that 

might best be performed as a separate module. Combining the functions 

into a single module can serve only to increase the likelihood of error 

propagation when a modification is made to one of its processing tasks. 

Moderate levels of cohesion are relatively close to one another in the 

degree of module independence. When processing elements of a module 

are related and must be executed in a specific order, procedural cohesion 

exists. When all processing elements concentrate on one area of a data 

structure, communicational cohesion is present. High cohesion is 

characterized by a module that performs one distinct procedural task. 

As we have already noted, it is unnecessary to determine the precise level 

of cohesion. Rather it is important to strive for high cohesion and recognize 

low cohesion so that software design can be modified to achieve greater 

functional independence. 

1.7.3 Coupling 

Coupling is a measure of interconnection among modules in a software 

structure. Coupling depends on the interface complexity between modules, 

the point at which entry or reference is made to a module, and what data 

pass across the interface. 

In software design, we strive for lowest possible coupling. Simple 

connectivity among modules results in software that is easier to understand 

and less prone to a "ripple effect", caused when errors occur at one 

location and propagates through a system.  

Figure 2.6 provides examples of different types of module coupling. 

Modules a and d are subordinate to different modules. Each is unrelated 

and therefore no direct coupling occurs. Module c is subordinate to module 

and is accessed via a conventional argument list, through which data are 

passed. As long as a simple argument list is present (i.e., simple data are 

passed; a one-to-one correspondence of items exists), low coupling (called 

data coupling) is exhibited in this portion of structure. A variation of data 

coupling, called stamp coupling is found when a portion of a data structure 
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(rather than simple arguments) is passed via a module interface. This 

occurs between modules b and a. 

 

FIGURE 2.6 Types of coupling 

At moderate levels, coupling is characterized by passage of control 

between modules. Control coupling is very common in most software 

designs and is shown in Figure 2.6 where a “control flag” (a variable that 

controls decisions in a subordinate or super ordinate module) is passed 

between modules d and e.  

Relatively high levels of coupling occur when modules are tied to an 

environment external to software. For example, I/O couples a module to 

specific devices, formats, and communication protocols. External coupling 

is essential, but should be limited to a small number of modules with a 

structure. High coupling also occurs when a number of modules reference 

a global data area. Common coupling, as this mode is called, is shown in 

Figure 2.6. Modules c, g, and k each access a data item in a global data 

area (e.g., a disk file or a globally accessible memory area). Module c 

initializes the item. Later module g recomputed and updates the item. Let's 

assume that an error occurs and g updates the item incorrectly. Much later 

in processing module, k reads the item, attempts to process it, and fails, 

causing the software to abort. The apparent cause of abort is module k; the 

actual cause, module g. Diagnosing problems in structures with 

considerable common coupling is time consuming and difficult. How-ever, 

this does not mean that the use of global data is necessarily "bad." It does 

mean that a software designer must be aware of potential consequences of 

common coupling and take special care to guard against them. The highest 

degree of coupling, content coupling, occurs when one module makes use 

of data or control information maintained within the boundary of another 
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module. Secondarily, content coupling occurs when branches are made 

into the middle of a module. This mode of coupling can and should be 

avoided. 

The coupling modes just discussed occur because of design decisions 

made when structure was developed. Variants of external coupling, 

however, may be introduced during coding. For example, compiler coupling 

ties source code to specific (and often non-standard) attributes of a 

compiler;  operating system  (OS)coupling ties design and resultant code to 

operating system "hooks" that can create havoc when OS changes occur. 

2.8 Design Heuristics for Effective Modularity 

Once program structure has been developed, effective modularity can be 

achieved by applying the design concepts introduced earlier in this chapter. 

The program structure can be manipulated according to the following set of 

heuristics: 

1. Evaluate the "first iteration" of the program structure to reduce coupling 

and improve cohesion. Once the program structure has been developed, 

modules may be exploded or imploded with an eye toward improving 

module independence. An exploded module becomes two or more 

modules in the final program structure. An imploded module is the result of 

combining the processing implied by two or more modules.  

An exploded module often results when common processing exists in two 

or more modules and can be redefined as a separate cohesive module. 

When high coupling is expected, modules can sometimes be imploded to 

reduce passage of control, reference to global data, and interface 

complexity.  

2. Attempt to minimize structures with high fan-out; strive for fan-in as 

depth increases. The structure shown inside the cloud in Figure 2.7 does 

not make effective use of factoring. All modules are “pancaked” below a 

single control module. In general, a more reasonable distribution of control 

is shown in the upper structure. The structure takes an oval shape, 

indicating a number of layers of control and highly utilitarian modules at 

lower levels. 
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FIGURE 2.7 Program structures 

3. Keep the scope of effect of a module within the scope of control of that 

module. The scope of effect of module e is defined as all other modules 

that are affected by a decision made in module e. The scope of control of 

module e is all modules that are subordinate and ultimately subordinate to 

module e.  

Referring to Figure 2.7, if module e makes a decision that affects modular, 

we have a violation of this heuristic, because module r lies outside the 

scope of control of module e. 

4. Evaluate module interfaces to reduce complexity and redundancy and 

improve consistency. Module interface complexity is a prime cause of 

software errors. Interfaces should be designed to pass information simply 

and should be consistent with the function of a module. Interface 

inconsistency (i.e., seemingly unrelated data passed via an argument list or 

other technique) is an indication of low cohesion. The module in question 

should be reevaluated.  
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5. Define modules whose function is predictable, but avoid modules that 

are overly restrictive. A module is predictable when it can be treated as a 

black box; that is, the same external data will be produced regardless of 

internal processing details. Modules that have internal "memory" can be 

unpredictable unless care is taken in their use. A module that restricts 

processing to a single sub function exhibits high cohesion and is viewed 

with favor by a designer. However, a module that arbitrarily restricts the 

size of a local data structure, options within control flow, or modes of 

external interface will invariably require maintenance to remove such 

restrictions. 

6. Strive for “controlled entry” modules by a voiding "pathological 

connections."This design heuristic warns against content coupling. 

Software is easier to under-stand and therefore easier to maintain when 

module interfaces are con-strained and controlled.  Pathological connection 

refers to branches or references into the middle of a module. 

2.9 The Design Model 

The design principles and concepts discussed in this chapter establish a 

foundation for the creation of the design model that encompasses 

representations of data, architecture, interfaces, and components. Like the 

analysis model before it, each of these design representations is tied to the 

others, and all can be traced back to software requirements. 

In Figure 2.1, the design model was represented as a pyramid. The 

symbolism of this shape is important. A pyramid is an extremely stable 

object with a wide base and a low center of gravity. Like the pyramid, we 

want to create a software design that is stable. By establishing a broad 

foundation using data design, a stable mid-region with architectural and 

interface design, and a sharp point by applying component-level design, we 

create a design model that is not easily “tipped over” by the winds of 

change. 

It is interesting to note that some programmers continue to design implicitly, 

conducting component-level design as they code. This is akin to taking the 

design pyramid and standing it on its point an extremely unstable design 

results. The smallest change may cause the pyramid (and the program) to 

topple. 

2.10 Design Documentation 

The Design Specification addresses different aspects of the design model 

and is completed as the designer refines his representation of the software. 

First, the overall scope of the design effort is described. Much of the 



                               Software Engineering 

     NOTES 

 47 

information presented here is derived from the System Specification and 

the analysis model (Software Requirements Specification). 

Next, the data design is specified. Database structure, any external file 

structures, internal data structures, and a cross reference that connects 

data objects to specific files are all defined.  

The architectural design indicates how the program architecture has been 

derived from the analysis model. In addition, structure charts are used to 

represent the module hierarchy (if applicable). 

The design of external and internal program interfaces is represented and a 

detailed design of the human/machine interface is described. In some 

cases, a detailed prototype of a GUI may be represented. 

Components separately addressable elements of software such as 

subroutines, functions, or procedures are initially described with an English-

language processing narrative. The processing narrative explains the 

procedural function of a component (module). Later, a procedural design 

tool is used to translate the narrative into a structured description. 

The Design Specification contains a requirements cross reference. The 

purpose of this cross reference (usually represented as a simple matrix) is 

(1) to establish that all requirements are satisfied by the software design 

and (2) to indicate which components are critical to the implementation of 

specific requirements. The first stage in the development of test 

documentation is also contained in the design document. Once program 

structure and interfaces have been established, we can develop guidelines 

for testing of individual modules and integration of the entire package. In 

some cases, a detailed specification of test procedures occurs in parallel 

with design. In such cases, this section may be deleted from the Design 

Specification. 

Design constraints, such as physical memory limitations or the necessity 

for a specialized external interface, may dictate special requirements for 

assembling or packaging of software. Special considerations caused by the 

necessity for program overlay, virtual memory management, high-speed 

processing, or other factors may cause modification in design derived from 

information flow or structure. In addition, this section describes the 

approach that will be used to transfer software to a customer site. 

The final section of the Design Specification contains supplementary data. 

Algorithm descriptions, alternative procedures, tabular data, excerpts from 

other documents, and other relevant information are presented as a special 

note or as a separate appendix. It may be advisable to develop a 
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Preliminary Operations/Installation Manual and include it as an appendix to 

the design document. 

Summary 

Structured analysis, a widely used method of requirements modeling, relies 

on data modeling and flow modeling to create the basis for a 

comprehensive analysis model. Using entity-relationship diagrams, the 

software engineer creates a representation of all data objects that are 

important for the system. Data and control flow diagrams are used as a 

basis for representing the transformation of data and control. At the same 

time, these models are used to create a functional model of the software 

and to provide a mechanism for partitioning function. A behavioral model is 

created using the state transition diagram.  

Design is the technical kernel of software engineering. During design, 

progressive refinement of data structure, architecture, interfaces, and 

procedural detail of software components are developed, reviewed, and 

documented. Design results in representations of software that can be 

assessed for quality. A number of fundamental software design principles 

and concepts have been proposed over the past four decades. Design 

principles guide the software engineer as the design process proceeds. 

Design concepts provide basic criteria for design quality. 

Design is a process of translating analysis model to design models that are 

further refined to produce detailed design models. The process of 

refinement is the process of elaboration to provides necessary details to 

the programmer. Data design deals with data structure selection and 

design. Modularity of program increases maintainability and encourages 

parallel development. The aim of good modular design is to produce highly 

cohesive and loosely coupled modules. Independence among modules is 

central to modularity. Good user interface design helps software to interact 

effectively to external environment. Tips for good interface design helps 

designer to achieve effective user interface.  Quality is built into software 

during the design of software. The final word is: Design process should be 

given due weight age before rushing for coding. 

Questions 

1.  If a software design is not a program, then what is it? 

2.  Describe software architecture. 

3.  How do we asses the quality of a software design? 
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4. A number of high-level programming languages support the internal 

procedure as a modular construct. How does this construct affect 

coupling? information hiding? 

5. What is the purpose of developing a program structure that is factored? 

6. Why is it a good idea to keep the scope of effect of a module within its 

scope of control? 
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UNIT – IV 
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1. TESTING TACTICS 

1.1 Introduction  
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2.5 Integration Testing 
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2.7 System Testing 

Objectives 

After going through this unit, you should be able to:  

• know the basic terms using in testing terminology;  

• black box and White box testing techniques;  

• other testing techniques; and   

• some testing tools. 
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1. Testing Tactics 

1.1 Introduction  

Testing means executing a program in order to understand its 
behavior, that is, whether or not the program exhibits a failure, its response 
time or throughput for certain data sets, its mean time to failure, or the 
speed and accuracy with which users complete their designated tasks. In 
other words, it is a process of operating a system or component under 
specified conditions, observing or recording the results, and making an 
evaluation of some aspect of the system or component. Testing can also 
be described as part of the process of Validation and Verification.  

Validation is the process of evaluating a system or component 
during or at the end of the development process to determine if it satisfies 
the requirements of the system, or, in other words, are we building the 
correct system? Verification is the process of evaluating a system or 
component at the end of a phase to determine if it satisfies the conditions 
imposed at the start of that phase, or, in other words, are we building the 
system correctly? Software testing gives an important set of methods that 
can be used to evaluate and assure that a program or system meets its 
non-functional requirements. To be more specific, software testing means 
that executing a program or its components in order to assure:  

• The correctness of software with respect to requirements or intent;  

• The performance of software under various conditions;  

• The robustness of software, that is, its ability to handle erroneous inputs 

and unanticipated conditions;  

• The usability of software under various conditions;  

• The reliability, availability, survivability or other dependability measures of 
software; or  

• Installability and other facets of a software release.  

The purpose of testing is to show that the program has errors. The 
aim of most testing methods is to systematically and actively locate faults in 
the program and repair them. Debugging is the next stage of testing. 

Debugging is the activity of:  

• Determining the exact nature and location of the suspected error within           
the program and  

• Fixing the error. Usually, debugging begins with some indication of the 

existence of an error.   
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1.2 Software Testing Fundamentals 

Testing presents an interesting anomaly for the software engineer. 
During earlier software engineering activities, the engineer attempts to build 
software from an abstract concept to a tangible product. Now comes 
testing. The engineer creates a series of test cases that are intended to 
"demolish" the software that has been built.  In fact, testing is the one step 
in the software process that could be viewed (psychologically, at least) as 

destructive rather than constructive. 

Software engineers are by their nature constructive people. Testing 
requires that the developer discard preconceived notions of the 
"correctness" of software just developed and overcome a conflict of interest 

that occurs when errors are uncovered. 

There's a myth that if we were really good at programming, there 
would be no bugs to catch. If only we could really concentrate, if only 
everyone used structured programming, top down design, decision tables, 
if programs were written in SQUISH, if we had the right silver bullets,  then 
there would be no bugs. So goes the myth. There are bugs, the myth says, 
because we are bad at what we do; and if we are bad at it, we should feel 
guilty about it. Therefore, testing and test case design is an admission of 
failure, which instills a goodly dose of guilt. And the tedium of testing is just 
punishment for our errors. Punishment for what? For being human? Guilt 
for what? For failing to achieve in human perfection? For not distinguishing 
between what another programmer thinks and what he says? For failing to 
be telepathic? For not solving human communications problems that have 
been kicked around for forty centuries? Should testing instill guilt? Is testing 
really destructive? The answer to these questions is "No!" However, the 

objectives of testing are somewhat different than we might expect. 

1.2.1 Testing Objectives 

In an excellent book on software testing a number of rules that can serve 
well as testing objectives: 

1. Testing is a process of executing a program with the intent of finding an 
error. 

2. A good test case is one that has a high probability of finding an as-yet-

undiscovered error. 

3. A successful test is one that uncovers an as-yet-undiscovered error.  

These objectives imply a dramatic change in viewpoint. They move 
counter to the commonly held view that a successful test is one in which no 
errors are found.  Our objective is to design tests that systematically 
uncover different classes of errors and to do so with a minimum amount of 
time and effort.  If testing is conducted successfully (according to the 
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objectives stated previously), it will uncover errors in the software. As a 
secondary benefit, testing demonstrates that software functions appear to 
be working according to specification, that behavioral and performance 
requirements appear to have been met. In addition, data collected as 
testing is conducted provide a good indication of software reliability and 
some indication of software quality as a whole. But testing cannot show the 
absence of errors and defects, it can show only that software errors and 
defects are present. It is important to keep this (rather gloomy) statement in 

mind as testing is being conducted. 

1.2.2 Testing Principles 

Before applying methods to design effective test cases, a software 
engineer must understand the basic principles that guide software testing.: 

• All tests should be traceable to customer requirements. As we have seen, 
the objective of software testing is to uncover errors. It follows that the most 
severe defects (from the customer’s point of view) are those that cause the 
program to fail to meet its requirements. 

• Tests should be planned long before testing begins. Test planning   can 
begin as soon as the requirements model is complete. Detailed definition of 
test cases can begin as soon as the design model has been solidified. 
Therefore, all tests can be planned and designed before any code has 
been generated. 

• The Pareto principle applies to software testing. Stated simply, the Pareto 
principle implies that 80 percent of all errors uncovered during testing will 
likely be traceable to 20 percent of all program components. The problem, 
of course, is to isolate these suspect components and to thoroughly test 
them. 

• Testing should begin “in the small” and progress toward testing “in the 
large.” The first tests planned and executed generally focus on individual 
components. As testing progresses, focus shifts in an attempt to find errors 
in integrated clusters of components and ultimately in the entire system.  

• Exhaustive testing is not possible. The number of path permutations for 
even a moderately sized program is exceptionally large. For this reason, it 
is impossible to execute every combination of paths during testing. It is 
possible, however, to adequately cover program logic and to ensure that all 
conditions in the component-level design have been exercised. 

• To be most effective, testing should be conducted by an independent third 
party. By most effective, we mean testing that has the highest probability of 
finding errors (the primary objective of testing). The software engineer who 
created the system is not the best person to conduct all tests for the 

software. 
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1.2.3 Testability 

In ideal circumstances, a software engineer designs a computer 
program, a system, or a product with “testability” in mind. This enables the 
individuals charged with testing to design effective test cases more easily. 
But what is testability? Software testability is simply how easily [a computer 
program] can be tested.  Since testing is so profoundly difficult, it pays to 
know what can be done to streamline it.  Sometimes programmers are 
willing to do things that will help the testing process and a checklist of 
possible design points, features, etc., can be useful in negotiating with 
them. 

There are certainly metrics that could be used to measure testability 
in most of its aspects. Sometimes, testability is used to mean how 
adequately a particular set of tests will cover the product. It's also used by 
the military to mean how easily a tool can be checked and repaired in the 
field. Those two meanings are not the same as software testability. The 
checklist that follows provides a set of characteristics that lead to testable 

software. 

Operability: "The better it works, the more efficiently it can be tested." 

• The system has few bugs (bugs add analysis and reporting overhead to 

the test process). 

• No bugs block the execution of tests. 

•The product evolves in functional stages (allows simultaneous 
development and testing). 

Observability: "What you see is what you test." 

• Distinct output is generated for each input. 

• System states and variables are visible or queriable during execution. 

• Past system states and variables are visible or queriable (e.g., transaction 
logs). 

• All factors affecting the output are visible. 

• Incorrect output is easily identified. 

•Internal errors are automatically detected through self-testing 

mechanisms. 

• Internal errors are automatically reported. 

• Source code is accessible. 
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Controllability: "The better we can control the software, the more the 

testing can be automated and optimized." 

• All possible outputs can be generated through some combination of input. 

• All code is executable through some combination of input. 

• Software and hardware states and variables can be controlled directly by 

the test engineer. 

• Input and output formats are consistent and structured. 

• Tests can be conveniently specified, automated, and reproduced. 

Decomposability: "By controlling the scope of testing, we can more 
quickly isolate problems and perform smarter retesting." 

• The software system is built from independent modules. 

• Software modules can be tested independently. 

Simplicity: "The less there is to test, the more quickly we can test it." 

• Functional simplicity (e.g., the feature set is the minimum necessary to 

meet requirements). 

• Structural simplicity (e.g., architecture is modularized to limit the 

propagation of faults). 

• Code simplicity (e.g., a coding standard is adopted for ease of inspection 
and maintenance). 

Stability: "The fewer the changes, the fewer the disruptions to testing." 

• Changes to the software are infrequent. 

• Changes to the software are controlled. 

• Changes to the software do not invalidate existing tests. 

• The software recovers well from failures. 

Understandability. "The more information we have, the smarter we will 

test." 

• The design is well understood. 

• Dependencies between internal, external, and shared components are 
well understood. 
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• Changes to the design are communicated. 

• Technical documentation is instantly accessible. 

• Technical documentation is well organized. 

• Technical documentation is specific and detailed. 

• Technical documentation is accurate. 

The attributes suggested by Bach can be used by a software engineer to 
develop a software configuration (i.e., programs, data, and documents) that 

is amenable to testing. And what about the tests themselves?  

The following attributes of a “good” test: 

1. A good test has a high probability of finding an error. To achieve this 
goal, the tester must understand the software and attempt to develop a 
mental picture of how the software might fail. Ideally, the classes of failure 
are probed. For example, one class of potential failure in a GUI (graphical 
user interface) is a failure to recognize proper mouse position. A set of 
tests would be designed to exercise the mouse in an attempt to 
demonstrate an error in mouse position recognition. 

2. A good test is not redundant. Testing time and resources are limited. 
There is no point in conducting a test that has the same purpose as 
another test. Every test should have a different purpose (even if it is subtly 
different). For example, a module of the SafeHome software (discussed in 
earlier chapters) is designed to recognize a user password to activate and 
deactivate the system. In an effort to uncover an error in password input, 
the tester designs a series of tests that input a sequence of passwords. 
Valid and invalid passwords (four numeral sequences) are input as 
separate tests. However, each valid/invalid password should probe a 
different mode of failure. For example, the invalid password 1234 should 
not be accepted by a system programmed to recognize 8080 as the valid 
password. If it is accepted, an error is present. Another test input, say 
1235, would have the same purpose as 1234 and is therefore redundant. 
However, the invalid input 8081 or 8180 has a subtle difference, attempting 
to demonstrate that an error exists for passwords “close to” but not identical 
with the valid password. 

3. A good test should be “best of breed”. In a group of tests that have a 
similar intent, time and resource limitations may mitigate toward the 
execution of only a subset of these tests. In such cases, the test that has 

the highest likelihood of uncovering a whole class of errors should be used. 

4. A good test should be neither too simple nor too complex. Although it is 
sometimes possible to combine a series of tests into one test case, the 
possible side effects associated with this approach may mask errors. In 

general, each test should be executed separately. 
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1.3 Test Case Design 

The design of tests for software and other engineered products can 
be as challenging as the initial design of the product itself. Yet, for reasons 
that we have already discussed, software engineers often treat testing as 
an afterthought, developing test cases that may ‘feel right’ but have little 
assurance of being complete. Recalling the objectives of testing, we must 
design tests that have the highest likelihood of finding the most errors with 

a minimum amount of time and effort. 

A rich variety of test case design methods have evolved for 
software. These methods provide the developer with a systematic 
approach to testing. More important, methods provide a mechanism that 
can help to ensure the completeness of tests and provide the highest 
likelihood for uncovering errors in software. 

Any engineered product (and most other things) can be tested in 
one of two ways: 

(1) Knowing the specified function that a product has been designed to 
perform, tests can be conducted that demonstrate each function is fully 
operational while at the same time searching for errors in each function; (2) 
knowing the internal workings of a product, tests can be conducted to 
ensure that “all gears mesh,” that is, internal operations are performed 
according to specifications and all internal components have been 
adequately exercised. The first test approach is called black-box testing 

and the second, white-box testing. 

When computer software is considered, black-box testing alludes to 
tests that are conducted at the software interface. Although they are 
designed to uncover errors, black-box tests are used to demonstrate that 
software functions are operational, that input is properly accepted and 
output is correctly produced, and that the integrity of external information 
(e.g., a database) is maintained. A black-box test examines some 
fundamental aspect of a system with little regard for the internal logical 

structure of the software. 

White-box testing of software is predicated on close examination of 
procedural detail. Logical paths through the software are tested by 
providing test cases that exercise specific sets of conditions and/or loops. 
The “status of the program” may be examined at various points to 
determine if the expected or asserted status corresponds to the actual 

status. 

At first glance it would seem that very thorough white-box testing 
would lead to “100 percent correct programs.” All we need do is define all 
logical paths, develop test cases to exercise them, and evaluate results, 
that is, generate test cases to exercise program logic exhaustively. 
Unfortunately, exhaustive testing presents certain logistical problems. For 
even small programs, the number of possible logical paths can be very 
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large. For example, consider the 100 line program in the language C. After 
some basic data declaration, the program contains two nested loops that 
execute from 1 to 20 times each, depending on conditions specified at 
input. Inside the interior loop, four if-then-else constructs are required. 
There are approximately 1014 possible paths that may be executed in this 
program! 

To put this number in perspective, we assume that a magic test 
processor (“magic” because no such processor exists) has been developed 
for exhaustive testing. The processor can develop a test case, execute it, 
and evaluate the results in one millisecond. Working 24 hours a day, 365 
days a year, the processor would work for 3170 years to test the program. 
This would, undeniably, cause havoc in most development schedules. 

Exhaustive testing is impossible for large software systems. 

White-box testing should not, however, be dismissed as impractical. 
A limited number of important logical paths can be selected and exercised. 
Important data structures can be probed for validity. The attributes of both 
black- and white-box testing can be combined to provide an approach that 
validates the software interface and selectively ensures that the internal 
workings of the software are correct. 

1.4 White-Box Testing 

White-box testing, sometimes called glass-box testing is a test case 
design method that uses the control structure of the procedural design to 
derive test cases. Using white-box testing methods, the software engineer 
can derive test cases that (1) guarantee that all independent paths within a 
module have been exercised at least once, (2) exercise all logical decisions 
on their true and false sides, (3) execute all loops at their boundaries and 
within their operational bounds, and (4) exercise internal data structures to 

ensure their validity. 

A reasonable question might be posed at this juncture: “Why spend 
time and energy worrying about (and testing) logical minutiae when we 
might better expend effort ensuring that program requirements have been 
met?” Stated another way, why don’t we spend all of our energy on black-

box tests? The answer lies in the nature of software defects: 

• Logic errors and incorrect assumptions are inversely proportional to the 
probability that a program path will be executed, Errors tend to creep into 
our work when we design and implement function, conditions, or control 
that are out of the mainstream. Everyday processing tends to be well 
understood (and well scrutinized), while “special case” processing tends to 
fall into the cracks. 

• We often believe that a logical path is not likely to be executed when, in 
fact, it may be executed on a regular basis. The logical flow of a program is 
sometimes counterintuitive, meaning that our unconscious assumptions 
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about flow of control and data may lead us to make design errors that are 

uncovered only once path testing commences. 

• Typographical errors are random. When a program is translated into 
programming language source code, it is likely that some typing errors will 
occur. Many will be uncovered by syntax and type checking mechanisms, 
but others may go undetected until testing begins. It is as likely that a typo 

will exist on an obscure logical path as on a mainstream path. 

Each of these reasons provides an argument for conducting white-
box tests. Black-box testing, no matter how thorough, may miss the kinds 

of errors noted here. White-box testing is far more likely to uncover them. 

1.5 Basis Path Testing 

Basis path testing is a white-box testing technique first proposed by 

Tom McCabe 

IMCC76I. The basis path method enables the test case designer to 
derive a logical complexity measure of a procedural design and use this 
measure as a guide for defining a basis set of execution paths. Test cases 
derived to exercise the basis set are guaranteed to execute every 

statement in the program at least one time during testing. 

1.5.1 Flow Graph Notation 

Before the basis path method can be introduced, a simple notation 
for the representation of control flow, called a flow graph (or program 
graph) must be introduced. The flow graph depicts logical control flow using 
the notation illustrated in Figure 1.1. Each structured construct has a 
corresponding flow graph symbol. To illustrate the use of a flow graph, we 
consider the procedural design representation in Figure 1.2 Here, a 
flowchart is used to depict program control structure. 

 

FIGURE 1.1Flow graph notation 

Figure 1.2B maps the flowchart into a corresponding flow graph (assuming 
that no compound conditions are contained in the decision diamonds of the 
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flowchart). Referring to Figure 1.2B, each circle, called a flow graph node, 
represents one or more procedural statements. A sequence of process 
boxes and a decision diamond can map into a single node. The arrows on 
the flow graph, called edges or links, represent flow of control and are 
analogous to flowchart arrows. An edge must terminate at a node, even if 
the node does not represent any procedural statements (e.g., see the 
symbol for the if-then-else construct). Areas bounded by edges and nodes 
are called regions. When counting regions, we include the area outside the 

graph as a region. 
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FIGURE 1.2 Flowchart, (A and flow graph (B) 

When compound conditions are encountered in a procedural 
design, the generation of a flow graph becomes slightly more complicated. 
A compound condition occurs when one or more Boolean operators (logical 
OR, AND, NAND, NOR) is present in a conditional statement. Referring to 
Figure 1.3, the PDL segment translates into the flow graph shown. Note 
that a separate node is created for each of the conditions a and b in the 
statement IF a OR b. Each node that contains a condition is called a 
predicate node and is characterized by two or more edges emanating from 

it. 
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Figure 1.3 

1.5.2 Cyclomatic Complexity 

Cyclomatic conip1cxiy is software metric that provides a quantitative 
measure of the logical complexity of a program. When used in the context 
of the basis path testing method, the value computed for cyclomatic 
complexity defines the number of independent paths in the basis set of a 
program and provides us with an upper bound for the number of tests that 
must be conducted to ensure that all statements have been executed at 

least once. 

An in dependent path is any path through the program that 
introduces at least one new set of processing statements or a new 
condition. When stated in terms of a flow graph, an independent path must 
move along at least one edge that has not been traversed before the path 
is defined. For example, a set of independent paths for the flow graph 

illustrated in Figure 1 .2B is 

pathl: 1-11 

path 2: 1-2-3-4-5-10-1-11 

path 3: 1-2-3-6-8-9-10-1-11 

path 4: 1-2-3-6-7-9-10-1-11 

Note that each new path introduces a new edge. The path 

1-2-3-4-5-10-1-2-3-6-8-9-10-1-11 
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is not considered to be an independent path because it is simply a 
combination of already specified paths and does not traverse any new 
edges. 

Paths 1, 2, 3, and 4 constitute a basis set for the flow graph in 
Figure 1.2B. That is, if tests can be designed to force execution of these 
paths (a basis set), every statement in the program will have been 
guaranteed to be executed at least one time and every condition will have 
been executed on its true and false sides. It should be noted that the basis 
set is not unique. In fact, a number of different basis sets can be derived for 
a given procedural design. 

How do we know how many paths to look for? The computation of 
cyclomatic complexity provides the answer. 

Cyclomatic complexity has a foundation in graph theory and provides us 
with extremely useful software metric. Complexity is computed in one of 

three ways: 

1. The number of regions of the flow graph corresponds to the cyclomatic 

complexity. 

2. Cyclomatic complexity, V (G), for a flow graph, G, is defined as 

V (G) = E- N+2 

where E is the number of flow graph edges, N is the number of flow graph 
nodes. 

3. Cyclomatic complexity, V(G), for a flow graph, 0, is also defined as 

V(G) = P÷ 1 

where P is the number of predicate nodes contained in the flow graph G. 

Referring once more to the flow graph in Figure 1.2 B, the cyclomatic 
complexity can be computed using each of the algorithms just noted: 

1. The flow graph has four regions. 

2. V(G) = 11 edges — 9 nodes + 2 = 4. 

3. V(G) 3 predicate nodes ÷ 1 = 4. 

Therefore, the cyclomatic complexity of the flow graph in Figure 1 7.2B is 4. 

More important, the value for V(G) provides us with an upper bound 
for the number of independent paths that form the basis set and, by 
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implication, an upper bound on the number of tests that must be designed 

and executed to guarantee coverage of all program statements. 

1.6 Control Structure Testing 

The basis path testing technique is one of a number of techniques 
for control structure testing. Although basis path testing is simple and highly 
effective, it is not sufficient in itself. In this section, other variations on 
control structure testing are discussed. These broaden testing coverage 
and improve quality of white-box testing. 

1.6.1 Condition Testing 

Condition testing is a test case design method that exercises the 
logical conditions contained in a program module. A simple condition is a 
Boolean variable or a relational expression, possibly preceded with one 

NOT ( ) operator. A relational expression takes the form 

E1 <relational-operator> E2 

where E1 and E2 are arithmetic expressions and <relational-
operator> is one of the following: <,≤, =, ≠ (non equality),>, or ≥. A 
compound condition is composed of two or more simple conditions, 
Boolean operators, and parentheses. We assume that Boolean operators 
allowed in a compound condition include OR (I) AND (&) and NOT ( ). A 
condition without relational expressions is referred to as a Boolean 
expression. Therefore, the possible types of elements in a condition include 
a Boolean operator, a Boolean variable, a pair of Boolean parentheses 
(surrounding a simple or compound condition), a relational operator, or an 

arithmetic expression. 

If a condition is incorrect, then at least one component of the condition is 
incorrect. Therefore, types of errors in a condition include the following: 

• Boolean operator error (incorrect/missing/extra Boolean operators). 

• Boolean variable error. 

• Boolean parenthesis error. 

• Relational operator error. 

• Arithmetic expression error. 

The condition testing method focuses on testing each condition in 
the program. Condition testing strategies (discussed later in this section) 
generally have two advantages. First, measurement of test coverage of a 
condition is simple. Second, the test coverage of conditions in a program 
provides guidance for the generation of additional tests for the program. 
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The purpose of condition testing is to detect not only errors in the 
conditions of a program but also other errors in the program. If a test set for 
a program P is effective. 

for detecting errors in the conditions contained in F it is likely that this test 
set is also effective for detecting other errors in P In addition, if a testing 
strategy is effective for detecting errors in a condition, then it is likely that 

this strategy will also be effective for detecting errors in a program. 

A number of condition testing strategies have been proposed. 
Branch testing is probably the simplest condition testing strategy. For a 
compound condition C, the true and false branches of C and every simple 

condition in C need to be executed at least once. 

Domain testing requires three or four tests to be derived for a 
relational expression. For a relational expression of the form 

E1 <relational-operator> E2 

three tests are required to make the value of E1 greater than, equal to, or 
less than that of E2. If <relational-operator> is incorrect and E1 and E2 are 
correct, then these three tests guarantee the detection of the relational 
operator error. To detect errors in E1 and E2, a test that makes the value of 
E1 greater or less than that of E2 should make the difference between 

these two values as small as possible. 

For a Boolean expression with ii variables, all of 2n possible tests 
are required (n > 0). This strategy can detect Boolean operator, variable, 
and parenthesis errors, but it is practical only if n is small. 

Error-sensitive tests for Boolean expressions can also be derived. 
For a singular Boolean expression (a Boolean expression in which each 
Boolean variable occurs only once) with n Boolean variables (n > 0), we 
can easily generate a test set with less than 2n tests such that this test set 
guarantees the detection of multiple Boolean operator errors and is also 
effective for detecting other errors. 

Tai suggests a condition testing strategy that builds on the 
techniques just outlined. Called BRO (branch and relational operator) 
testing, the technique guarantees the detection of branch and relational 
operator errors in a condition provided that all Boolean variables and 
relational operators in the condition occur only once and have no common 

variables. 

1.6.2 Data Flow Testing 

The data flow testing method selects test paths of a program 
according to the locations of definitions and uses of variables in the 
program. A number of data flow testing strategies have been studied and 

compared. 
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To illustrate the data flow testing approach, assume that each 
statement in a program is assigned a unique statement number and that 
each function does not modify its parameters or global variables. For a 

statement with S as its statement number, 

DEF(S) = {X I statement S contains a definition of X}  

USE(S) = {X I statement S contains a use of X} 

If statement S is a for loop statement, its DEF set is empty and its 
USE set is based on the condition of statement S. The definition of variable 
X at statement S is said to be live at statement S’ if there exists a path from 
statement S to statement S’ that contains no other definition of X. 

A definition use (DU) chain of variable X is of the form [X, S, S’], 
where S and S’ are statement numbers, X is in DEF(S) and USE(S), and 
the definition of X in statement S is live at statement S’. 

One simple data flow testing strategy is to require that every DU 
chain be covered at least once. We refer to this strategy as the DU testing 
strategy. It has been shown that DU testing does not guarantee the 
coverage of all branches of a program. However, a branch is not 
guaranteed to be covered by DU testing only in rare situations such as if-
then-else constructs in which the then part has no definition of any van- 
able and the else part does not exist. In this situation, the else branch of 

the f statement is not necessarily covered by DU testing. 

Data flow testing strategies are useful for selecting test paths of a 
program containing nested f and loop statements. To illustrate this, 
consider the application of DU testing to select test paths for the PDL that 
follows: 
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To apply the DU testing strategy to select test paths of the control 
flow diagram, we need to know the definitions and uses of variables in each 
condition or block in the PDL. Assume that variable X is defined in the last 
statement of blocks Bi, B2, B3, B4, and B5 and is used in the first 
statement of blocks B2, B3, B4, B5, and B6. The DU testing strategy 
requires an execution of the shortest path from each of Bi 0 < I ≤ 5, to each 
of Bj 1 < j ≤ 6. (Such testing also covers any use of variable X in conditions 
Cl, C2, C3, and C4.) Although there are 25 DU chains of variable X, we 
need only five paths to cover these DU chains. The reason is that five 
paths are needed to cover the DU chain of X from B 0 <1 ≤ 5, to B6 and 
other DU chains can be covered by making these five paths contain 

iterations of the loop. 

If we apply the branch testing strategy to select test paths of the 
PDL just noted, we do not need any additional information. To select paths 
of the diagram for BRO testing, we need to know the structure of each 
condition or block. (After the selection of a path of a program, we need to 
determine whether the path is feasible for the program, that is, whether at 
least one input exists that exercises the path.) 

Since the statements in a program are related to each other 
according to the definitions and uses of variables, the data flow testing 
approach is effective for error detection. However, the problems of 
measuring test coverage and selecting test paths for data flow testing are 
more difficult than the corresponding problems for condition testing. 
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1.6.3 Loop Testing 

Loops are the cornerstone for the vast majority of all algorithms 
implemented in software. And yet, we often pay them little heed while 
conducting software tests. 

Loop testing is a white-box testing technique that focuses 
exclusively on the validity of loop constructs. Four different classes of loops 
can be defined: simple loops, concatenated loops, nested loops, and 

unstructured loops (Figure 1.4). 

 

FIGURE 1.4 Classes of loops 

Simple loops: The following set of tests can be applied to simple loops, 
where n is the maximum number of allowable passes through the loop. 

1. Skip the loop entirely. 

2. Only one passes through the loop. 

3. Two passes through the loop. 

4. In passes through the loop where in <n. 

5. n —1, n, n + 1 passes through the loop. 
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Nested loops: If we were to extend the test approach for simple loops to 
nested loops, the number of possible tests would grow geometrically as the 
level of nesting increases. This would result in an impractical number of 
tests. Beizer suggests an approach that will help to reduce the number of 

tests: 

1. Start at the innermost loop. Set all other loops to minimum values. 

 2. Conduct simple loop tests for the innermost loop while holding the outer 
loops at their minimum iteration parameter (e.g., loop counter) values. Add 
other tests for out-of-range or excluded values. 

3. Work outward, conducting tests for the next loop, but keeping all other 

outer loops at minimum values and other nested loops to “typical” values. 

4. Continue until all loops have been tested. 

Concatenated loops: Concatenated loops can be tested using the 
approach defined for simple loops, if each of the loops is independent of 
the other. However, if two loops are concatenated and the loop counter for 
loop 1 is used as the initial value for loop 2, then the loops are not 
independent. When the loops are not independent, the approach applied to 

nested loops is recommended. 

Unstructured loops. Whenever possible, this class of loops should be 
redesigned to reflect the use of the structured programming constructs. 

1.7 Black-Box Testing 

Black-box testing, also called behavioral testing, focuses on the 
functional requirements of the software. That is, black-box testing enables 
the software engineer to derive sets of input conditions that will fully 
exercise all functional requirements for a program. Black-box testing is not 
an alternative to white-box techniques. Rather, it is a complementary 
approach that is likely to uncover a different class of errors than white-box 

methods. 

Black-box testing attempts to find errors in the following categories: 
(1) incorrect or missing functions, (2) interface errors, (3) errors in data 
structures or external data base access, (4) behavior or performance 

errors, and (5) initialization and termination errors. 

Unlike white-box testing, which is performed early in the testing 
process, black- box testing tends to be applied during later stages of testing 
(see Chapter 18). Because black-box testing purposely disregards control 
structure, attention is focused on the information domain. Tests are 

designed to answer the following questions: 
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• How is functional validity tested? 

• How is system behavior and performance tested? 

• What classes of input will make good test cases? 

• Is the system particularly sensitive to certain input values? 

• How are the boundaries of a data class isolated? 

• What data rates and data volume can the system tolerate? 

• What effect will specific combinations of data have on system operation? 

By applying black-box techniques, we derive a set of test cases that 
satisfy the following criteria: (1) test cases that reduce, by a count that is 
greater than one, the number of additional test cases that must be 
designed to achieve reasonable testing and (2) test cases that tell us 
something about the presence or absence of classes of errors, rather than 

an error associated only with the specific test at hand. 

1.7.1 Graph-Based Testing Methods 

The first step in black-box testing is to understand the objects6 that 
are modeled in software and the relationships that connect these objects. 
Once this has been accomplished, the next step is to define a series of 
tests that verify “all objects have the expected relationship to one another.” 
Stated in another way, software testing begins by creating a graph of 
important objects and their relationships and then devising a series of tests 
that will cover the graph so that each object and relationship is exercised 
and errors are uncovered. 

To accomplish these steps, the software engineer begins by 
creating a graph a collection of nodes that represent objects; links that 
represent the relationships between objects; node weights that describe the 
properties of a node (e.g., a specific data value or state behavior); and Iink 

weights that describe some characteristic of a link. 

The symbolic representation of a graph is shown in Figure 1.5A. 
Nodes are represented as circles connected by links that take a number of 
different forms. A directed link (represented by an arrow) indicates that a 
relationship moves in only one direction. A bidirectional link, also called a 
symmetric link, implies that the relationship applies in both directions. 
Parallel links are used when a number of different relationships are 
established between graph nodes. 

As a simple example, consider a portion of a graph for a word-

processing application (Figure 1.5B) where 
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Object #1 = new file menu select 

Object #2 document window 

Object #3 document text 

Referring to the figure, a menu select on new file generates a 
document window. The node weight of document window provides a list of 
the window attributes that are to be expected when the window is 
generated. The link weight indicates that the window must be generated in 
less than 1.0 second. An undirected link establishes a symmetric 
relationship between the new file menu select and document text, and 
parallel links indicate relationships between document window and 
document text. In reality, a far more detailed graph would have to be 
generated as a precursor to test case design. The software engineer then 
derives test cases by traversing the graph and covering each of the 
relationships shown. These test cases are designed in an attempt to find 

errors in any of the relationships. 

Beizer describes a number of behavioral testing methods that can 

make use of graphs: 

Transaction flow modeling. The nodes represent steps in some 
transaction (e.g., the steps required to make an airline reservation using an 
on-line service), and the links represent the logical connection between 
steps (e.g., flight.information.input is followed by validation 
/availabiIiy.proccssing). 

The data flow diagram can be used to assist in creating graphs of this type. 

Finite state modeling. The nodes represent different user observable 
states of the software (e.g., each of the “screens” that appear as an order 
entry clerk takes a phone order), and the links represent the transitions that 
occur to move from state to state (e.g., order-information is verified during 
inventory-available y look-up and is followed by customer-billing-
information input). The state transition diagram can be used to assist in 

creating graphs of this type. 

Data flow modeling. The nodes are data objects and the links are the 
transformations that occur to translate one data object into another. For 

example, the node FICA.tax.withheld (FTW) is computed from 

gross.wages (GW) using the relationship, FTW = 0.62 x GW. 

Timing modeling. The nodes are program objects and the links are the 
sequential connections between those objects. Link weights are used to 
specify the required execution times as the program executes. 
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A detailed discussion of each of these graph-based testing methods 
is beyond the scope of this book. The interested reader should see for a 
comprehensive discussion. It is worthwhile, however, to provide a generic 

outline of the graph-based testing approach. 

Graph-based testing begins with the definition of all nodes and node 
weights. That is, objects and attributes are identified. The data model can 
be used as a starting point, but it is important to note that many nodes may 
be program objects (not explicitly represented in the data model). To 
provide an indication of the start and stop points for the graph, it is useful to 
define entry and exit nodes. 

Once nodes have been identified, links and link weights should be 
established. In general, links should be named, although links that 
represent control flow between program objects need not be named. 

 

FIGURE 1.5 (A) Graph notation (B) Simple example 

1.7.2 Equivalence Partitioning 
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Equivalence partitioning is a black-box testing method that divides 
the input domain of a program into classes of data from which test cases 
can be derived, An ideal test case single-handedly uncovers a class of 
errors (e.g., incorrect processing of all character data) that might otherwise 
require many cases to be executed before the general error is observed. 
Equivalence partitioning strives to define a test case that uncovers classes 
of errors, thereby reducing the total number of test cases that must be 

developed. 

Test case design for equivalence partitioning is based on an 
evaluation of equivalence classes for an input condition. Using concepts 
introduced in the preceding section, if a set of objects can be linked by 
relationships that are symmetric, transitive, and reflexive, an equivalence 
class is present [BE1951. An equivalence class represents a set of valid or 
invalid states for input conditions. Typically, an input condition is either a 
specific numeric value, a range of values, a set of related values, or a 
Boolean condition. Equivalence classes may be defined according to the 

following guidelines: 

1. If an input condition specifies a range, one valid and two invalid 
equivalence classes are defined. 

2. If an input condition requires a specific value, one valid and two invalid 

equivalence classes are defined. 

3. If an input condition specifies a member of a set, one valid and one 

invalid equivalence class are defined. 

4. If an input condition is Boolean, one valid and one invalid class are 

defined. 

As an example, consider data maintained as part of an automated 
banking application. The user can access the bank using a personal 
computer, provide a six-digit password, and follow with a series of typed 
commands that trigger various banking functions. During the log-on 
sequence, the software supplied for the banking application accepts data in 
the form area code blank or three-digit number prefix three-digit number not 
beginning with 0 or 1 suffix four-digit number password six digit 

alphanumeric string commands check, deposit, bill pay, and the like 

The input conditions associated with each data element for the banking 
application can be specified as  

area code: Input condition, Boolcan—the area code may or may not be 
present. 

Input condition, range—values defined between 200 and 999,   

with specific exceptions. 

prefix:         Input condition, range—specified value >200  
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                   Input condition, value—four-digit length 

password: Input condition, Boolean—a password may or may not be  
present.  

        Input condition, value—six-character string. 

command: Input condition, set—containing commands noted previously. 

Applying the guidelines for the derivation of equivalence classes, 
test cases for each input domain data item can be developed and 
executed. Test cases are selected so that the largest number of attributes 

of an equivalence class is exercised at once. 

1.7.3 Boundary Value Analysis 

For reasons that are not completely clear, a greater number of 
errors tends to occur at the boundaries of the input domain rather than in 
the “center.” It is for this reason that boundary value analysis (BVA) has 
been developed as a testing technique. Boundary value analysis leads to a 

selection of test cases that exercise bounding values. 

Boundary value analysis is a test case design technique that 
complements equivalence partitioning. Rather than selecting any element 
of an equivalence class, BVA leads to the selection of test cases at the 
“edges” of the class. Rather than focusing solely on input conditions, BVA 

derives test cases from the output domain as well. 

Guidelines for BVA are similar in many respects to those provided 
for equivalence partitioning: 

1. If an input condition specifies a range bounded by values a and b, test 
cases should be designed with values a and b and just above and just 

below a and b. 

2. If an input condition specifies a number of values, test cases should be 
developed that exercise the minimum and maximum numbers. Values just 
above and below minimum and maximum are also tested. 

3. Apply guidelines 1 and 2 to output conditions. For example, assume that 
a temperature vs. pressure table is required as output from an engineering 
analysis program. Test cases should be designed to create an output 
report that produces the maximum (and minimum) allowable number of 

table entries. 

4. If internal program data structures have prescribed boundaries (e.g., an 
array has a defined limit of 100 entries), be certain to design a test case to 

exercise the data structure at its boundary. 
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Most software engineers intuitively perform BVA to some degree. By 
applying these guidelines, boundary testing will be more complete, thereby 
having a higher likelihood for error detection. 

1.7.4 Comparison Testing 

There are some situations (e.g., aircraft avionics, automobile 
braking systems) in which the reliability of software is absolutely critical. In 
such applications redundant hardware and software are often used to 
minimize the possibility of error. When redundant software is developed, 
separate software engineering teams develop independent versions of an 
application using the same specification. In such situations, each version 
can be tested with the same test data to ensure that all provide identical 
output. Then all versions are executed in parallel with real-time comparison 
of results to ensure consistency. 

Using lessons learned from redundant systems, researchers have 
suggested that independent versions of software be developed for critical 
applications, even when only a single version will be used in the delivered 
computer-based system. These independent versions form the basis of a 
black-box testing technique called comparison testing or back-to-back 

testing. 

When multiple implementations of the same specification have been 
produced, test cases designed using other black-box techniques (e.g., 
equivalence partitioning) are provided as input to each version of the 
software. If the output from each version is the same, it is assumed that all 
implementations are correct. If the output is different, each of the 
applications is investigated to determine if a defect in one or more versions 
is responsible for the difference. In most cases, the comparison of outputs 

can be performed by an automated tool. 

Comparison testing is not foolproof. If the specification from which 
all versions have been developed is in error, all versions will likely reflect 
the error. In addition, if each of the independent versions produces identical 

but incorrect results, condition testing will fail to detect the error. 

1.7.5 Orthogonal Array Testing 

There are many applications in which the input domain is relatively 
limited. That is, the number of input parameters is small and the values that 
each of the parameters may take are clearly bounded. When these 
numbers are very small (e.g., three input parameters taking on three 
discrete values each), it is possible to consider every input permutation and 
exhaustively test processing of the input domain. However, as the number 
of input values grows and the number of discrete values for each data item 
increases, exhaustive testing becomes impractical or impossible. 

Orthogonal array testing can be applied to problems in which the 
input domain is relatively small but too large to accommodate exhaustive 
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testing. The orthogonal array testing method is particularly useful in finding 
errors associated with region faults an error category associated with faulty 
logic within a software component. 

1.8 Basic Terms Used in Testing 

Failure: A failure occurs when there is a deviation of the observed behavior 
of a program, or system, from its specification. A failure can also occur if 
the observed behavior of a system, or program, deviates from its intended 
behavior.  

Fault: A fault is an incorrect step, process, or data definition in a computer 
program. Faults are the source of failures. In normal language, software 
faults are usually referred to as “bugs”.  

Error: The difference between a computed, observed, or measured value 
or condition and the true, specified, or theoretically correct value or 
condition.  

Test Cases: Ultimately, testing comes down to selecting and executing test 
cases. A test case for a specific component consists of three essential 
pieces of information:  

• A set of test inputs;  
• The expected results when the inputs are executed; and  
• The execution conditions or environments in which the inputs are to be 

executed.  

Some Testing Laws  

• Testing can only be used to show the presence of errors, but never the 
absence or errors.  

• A combination of different verification & validation (V&V) methods 
outperform any single method alone.  

• Developers are unsuited to test their own code.  
• Approximately 80% of the errors are found in 20% of the code.  
• Partition testing, that is, methods that partition the input domain or the 

program and test according to those partitions. This is better than 
random testing.  

• The adequacy of a test suite for coverage criterion can only be defined 

intuitively.  

1.8.1 Input Domain  

To conduct an analysis of the input, the sets of values making up 
the input domain are required. There are essentially two sources for the 

input domain. They are:  
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 1. The software requirements specification in the case of black box testing  

method; and  

2. The design and externally accessible program variables in the case of   
white box testing.  

In the case of white box testing, input domain can be constructed from the 

following sources.  

• Inputs passed in as parameters; Variables that are inputs to function 

under test can be:  

(i) Structured data such as linked lists, files or trees, as well as atomic data 

such as integers and floating point numbers; 

(ii) A reference or a value parameter as in the C function declaration   int 
P(int *power, int base) {     

  ...}  

• Inputs entered by the user via the program interface;  
• Inputs that are read in from files;  
• Inputs that are constants and precomputed values; Constants declared 

in an enclosing scope of function under test, for example,  

#define PI 3.14159  

double circumference(double radius)  

{  

return 2*PI*radius;  

}  

In general, the inputs to a program or a function are stored in program 

variables. A program variable may be:  

• A variable declared in a program as in the C declarations  

For example: int base; char s[ ];  

• Resulting from a read statement or similar interaction with the 
environment, For example: scanf(‘‘%d\n’’, &x); 

1.8.2    Black Box and White Box Test Case Selection Strategies  

• Black box Testing: In this method, where test cases are derived from the 
functional specification of the system; and  
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• White box Testing: In this method, where test cases are derived from the 
internal design specifications or actual code (Sometimes referred to as 
Glass box).  

Black box test case selection can be done without any reference to the 
program design or the program code. Test case selection is only concerned 
with the functionality and features of the system but not with its internal 

operations.  

• The real advantage of black box test case selection is that it can be done 
before the design or coding of a program. Black box test cases can also 
help to get the design and coding correct with respect to the specification. 
Black box testing methods are good at testing for missing functions or 
program behavior that deviates from the specification. Black box testing is 
ideal for evaluating products that you intend to use in your systems.  

• The main disadvantage of black box testing is that black box test cases 
cannot detect additional functions or features that have been added to the 
code. This is especially important for systems that need to be safe 
(additional code may interfere with the safety of the system) or secure 

(additional code may be used to break security).  

White box test cases are selected using the specification, design and code 
of the program or functions under test. This means that the testing team 
needs access to the internal designs or code for the program.  

• The chief advantage of white box testing is that it tests the internal details 
of the code and tries to check all the paths that a program can execute to 
determine if a problem occurs. White box testing can check additional 

functions or code that has been implemented, but not specified.  

• The main disadvantage of white box testing is that you must wait until 
after design and coding of the programs of functions under test have been 

completed in order to select test cases.  

Methods for Black box testing strategies  

A number of test case selection methods exist within the broad 
classification of black box and white box testing.   

For Black box testing strategies, the following are the methods:  

• Boundary-value Analysis;   

• Equivalence Partitioning.  

We will also study State Based Testing, which can be classified as opaque 
box selection strategies that is somewhere between black box and white 
box selection strategies.  



                               Software Engineering 

     NOTES 

 31 

 

Boundary-value-analysis  

The basic concept used in Boundary-value-analysis is that if the specific 
test cases are designed to check the boundaries of the input domain then 
the probability of detecting an error will increase. If we want to test a 
program written as a function F with two input variables x and y., then these 
input variables are defined with some boundaries like a1 ≤ x ≤ a2 and b1 ≤ 
y ≤ b2. It means that inputs x and y are bounded by two intervals [a1, a2] 
and [b1, b2].   

Test Case Selection Guidelines for Boundary Value Analysis  

 The following set of guidelines is for the selection of test cases according 
to the principles of boundary value analysis. The guidelines do not 
constitute a firm set of rules for every case. You will need to develop some 
judgment in applying these guidelines.  

 1.   If an input condition specifies a range of values, then construct valid 
test cases   for the ends of the range, and invalid input test cases for input 

points just   beyond the ends of the range.  

2.   If an input condition specifies a number of values, construct test cases 
for the minimum and maximum values; and one beneath and beyond these 
values.  

3. If an output condition specifies a range of values, then construct valid 
test cases for the ends of the output range, and invalid input test cases for 

situations just beyond the ends of the output range.  

4. If an output condition specifies a number of values, construct test cases 
for the minimum and maximum values; and one beneath and beyond these 
values.  

5. If the input or output of a program is an ordered set (e.g., a sequential 
file, linear list, table), focus attention on the first and last elements of the 

set.  

 Example:  Boundary Value Analysis for the Triangle Program  

Consider a simple program to classify a triangle. Its input consists of 
three positive integers (say x, y, z) and the data types for input parameters 
ensures that these will be integers greater than zero and less than or equal 
to 100. The three values are interpreted as representing the lengths of the 
sides of a triangle.  The program then prints a message to the standard 
output that states whether the triangle, if it can be formed, is scalene, 

isosceles, equilateral, or right-angled.   
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Solution: Following possible boundary conditions are formed:  

1. Given sides (A; B; C) for a scalene triangle, the sum of any two sides is 
greater   than the third and so, we have boundary conditions A + B > C, B + 
C > A and A   + C > B.   

2. Given sides (A; B; C) for an isosceles  triangle two sides must be equal 
and so we have boundary conditions A = B, B = C or A = C.   

3. Continuing in the same way for an equilateral triangle the sides must all 

be of equal length and we have only one boundary where A = B = C.   

4. For right-angled triangles, we must have A2+B2 = C2. 

On the basis of the above boundary conditions, test cases are designed as 

follows (Table):  

Table: Test cases for Example 

 

Equivalence Partitioning  

Equivalence Partitioning is a method for selecting test cases based 
on a partitioning of the input domain. The aim of equivalence partitioning is 
to divide the input domain of the program or module into classes (sets) of 
test cases that have a similar effect on the program. The classes are called 
Equivalence classes.  

Equivalence Classes  

An Equivalence Class is a set of inputs that the program treats 
identically when the program is tested. In other words, a test input taken 
from an equivalence class is representative of all of the test inputs taken 
from that class. Equivalence classes are determined from the specification 
of a program or module. Each equivalence class is used to represent 
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certain conditions (or predicates) on the input domain. For equivalence 
partitioning it is usual to also consider valid and invalid inputs. The terms 
input conditions, valid and invalid inputs, are not used consistently. But, the 
following definition spells out how we will use them in this subject. An input 
condition on the input domain is a predicate over the values of the input 
domain. A Valid input to a program or module is an element of the input 
domain that is expected to return a non-error value. An Invalid input is an 
input that is expected to return an error value. Equivalence partitioning is 
then a systematic method for identifying interesting input conditions to be 
tested. An input condition can be applied to a set of values of a specific 

input variable, or a set of input variables as well.  

A Method for Choosing Equivalence Classes  

The aim is to minimize the number of test cases required to cover 
all of the identified equivalence classes. The following are two distinct steps 

in achieving this goal:  

Step 1: Identify the equivalence classes  

 If an input condition specifies a range of values, then identify one valid 
equivalence class and two invalid equivalence classes.  

For example, if an input condition specifies a range of values from 1 to 99, 

then, three equivalence classes can be identified:  

• One valid equivalence class:  1< X < 99  

• Two invalid equivalence classes X < 1 and X > 99  

Step 2: Choose test cases  

The next step is to generate test cases using the equivalence 
classes identified in the previous step. The guideline is to choose test 
cases on the boundaries of partitions and test cases close to the midpoint 
of the partition. In general, the idea is to select at least one element from 
each equivalence class.   

Example:  Selecting Test Cases for the Triangle Program  

In this example, we will select a set of test cases for the following 
triangle program based on its specification. Consider the following informal 
specification for the Triangle Classification Program. The program reads 
three integer values from the standard input. The three values are 
interpreted as representing the lengths of the sides of a triangle. The 
program then prints a message to the standard output that states whether 
the triangle, if it can be formed, is scalene, isosceles, equilateral, or right 
angled. The specification of the triangle classification program lists a 
number of inputs for the program as well as the form of output. Further, we 
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require that each of the inputs “must be” a positive integer. Now, we can 
determine valid and invalid equivalence classes for the input conditions. 
Here, we have a range of values. If the three integers we have called x, y 
and z are all greater than zero, then, they are valid and we have the 
equivalence class.  

ECvalid = f(x,y, z)  x > 0 and y > 0 and z > 0.  

For the invalid classes, we need to consider the case where each of the 
three variables in turn can be negative and so we have the following 
equivalence classes:  

ECInvalid1 = f(x, y, z)  x < 0 and y > 0 and z > 0  

ECInvalid2 = f(x, y, z)  x > 0 and y <0 and z > 0  

ECInvalid3 = f(x, y, z)  x > 0 and y > 0 and z < 0  

Note that we can combine the valid equivalence classes. But, we 
are not allowed to combine the invalid equivalence classes. The output 
domain consists of the text ‘strings’ ‘isosceles’, ‘scalene’, ‘equilateral’ and 
‘right-angled’. Now, different values in the input domain map to different 
elements of the output domain to get the equivalence classes in Table. 
According to the equivalence partitioning method we only need to choose 
one element from each of the classes above in order to test the triangle 
program.  

Table: The equivalence classes for the triangle program 

 

Methods for White box testing strategies  

In this approach, complete knowledge about the internal structure of 
the source code is required. For White-box testing strategies, the methods 
are:  

1.  Coverage Based Testing  

2.  Cyclomatic Complexity  
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3.  Mutation Testing  

Coverage based testing  

The aim of coverage based testing methods is to ’cover’ the 
program with test cases that satisfy some fixed coverage criteria. Put 
another way, we choose test cases to exercise as much of the program as 

possible according to some criteria.   

Coverage Based Testing Criteria  

Coverage based testing works by choosing test cases according to 
well-defined ‘coverage’ criteria. The more common coverage criteria are 

the following.  

• Statement Coverage or Node Coverage: Every statement of the program 
should be exercised at least once.  

• Branch Coverage or Decision Coverage: Every possible alternative in a 
branch or decision of the program should be exercised at least once. For if 
statements, this means that the branch must be made to take on the values 

true or false.  

• Decision/Condition Coverage: Each condition in a branch is made to 
evaluate to both true and false and each branch is made to evaluate to 

both true and false.  

• Multiple condition coverage: All possible combinations of condition 

outcomes within each branch should be exercised at least once.  

• Path coverage: Every execution path of the program should be exercised 
at least once.  

In this section, we will use the control flow graph to choose white box test 
cases according to the criteria above. To motivate the selection of test 

cases, consider the simple program given in Program.  

Example:  

void main(void)  

{  

int x1, x2, x3;  

scanf("%d %d %d", &x1, &x2, &x3);  

if ((x1 > 1) && (x2 == 0))  
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x3 = x3 / x1;  

if ((x1 == 2) || (x3 > 1))  

x3 = x3 + 1;  

while (x1 >= 2)  

x1 = x1 - 2;  

printf("%d %d %d", x1, x2, x3);  

}  

Program: A simple program for white box testing  

The first step in the analysis is to generate the flow chart, which is 
given in Figure 1.6. Now what is needed for statement coverage? If all of 
the branches are true, at least once, we will have executed every statement 
in the flow chart. Put another way to execute every statement at least once, 
we must execute the path ABCDEFGF. Now, looking at the conditions 
inside each of the three branches, we derive a set of constraints on the 
values of x1, x2 and x3 such that all the three branches are extended. A 
test case of the form (x1; x2; x3) = (2; 0; 3) will execute all of the 

statements in the program.  
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Figure 1.6: The flow chart for the program  

Note that we need not make every branch evaluate to true and 
false, nor have we make every condition evaluate to true and false, nor we 
traverse every path in the program.  

 To make the first branch true, we have test input (2; 0; 3) that will 
make all of the branches true. We need a test input that will now make 
each one false. Again looking at all of the conditions, the test input (1; 1; 1) 
will make all of the branches false.   

For any of the criteria involving condition coverage, we need to look at each 
of the five conditions in the program: C1 = (x1>1), C2 = (x2 == 0), C3 = (x1 
== 2), C4 = (x3>1) and C5 = (x1 >= 2). The test input (1; 0; 3) will make C 1 

false, C2 true, C3 false, C4 true and C5 false.   

Examples of sets of test inputs and the criteria that they meet are given in 
Table. The set of test cases meeting the multiple condition criteria is given 
in Table. In the table, we let the branches B1 = C1&&C2, B2 = C3||C4 and 

B3 = C5. 

Table: Test cases for the various coverage criteria for the program 
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 Table: Multiple condition coverage for the program in Figure  

 

1.8.3 Cyclomatic Complexity Control flow graph (CFG)  

A control flow graph describes the sequence in which different 
instructions of a program get executed. It also describes how the flow of 
control passes through the program. In order to draw the control flow graph 
of a program, we need to first number all the statements of a program. The 
different numbered statements serve as nodes of the control flow graph. An 
edge from one node to another node exists if the execution of the 
statement representing the first node can result in the transfer of control to 
the other node. Following structured programming constructs are 

represented as CFG: 
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FIGURE 1.7: sequence   FIGURE 1.8: if – else 

      

 Figure 1.9 : while-loop  FIGURE 1.10: case 

Example: Draw CFG for the program given below.  

int sample (a,b)  

int a,b;  

{  

1 while (a!= b) {  

2 if (a > b)   

3 a = a-b;  

4 else b = b-a;}  

5 return a;  

} 

Program: A program in the above, two control constructs are used, 
namely, while-loop and if-then-else. A complete CFG for the program of 
Program is given below: Figure 1.11).   
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Figure 1.11: CFG for program  

Cyclomatic Complexity: This technique is used to find the number of 
independent paths through a program. If CFG of a program is given, the 
Cyclomatic complexity V(G) can be computed as: V(G) = E – N + 2, where 
N is the number of nodes of the CFG and E is the number of edges in the 
CFG. For the example 4, the Cyclomatic Complexity = 6 – 5 + 2 = 3.   

The following are the properties of Cyclomatic complexity:  

• V(G) is the maximum number of independent paths in graph G  

• Inserting and deleting functional statements to G does not affect V(G)  

• G has only one path if and only if V(G) = 1.  

Mutation Testing  

Mutation Testing is a powerful method for finding errors in software 
programs. In this technique, multiple copies of programs are made, and 
each copy is altered; this altered copy is called a mutant. Mutants are 
executed with test data to determine whether the test data are capable of 
detecting the change between the original program and the mutated 
program. The mutant that is detected by a test case is termed “killed” and 
the goal of the mutation procedure is to find a set of test cases that are able 
to kill groups of mutant programs. Mutants are produced by applying 
mutant operators. An operator is essentially a grammatical rule that 
changes a single expression to another expression. It is essential that all 
mutants must be killed by the test cases or shown to be equivalent to the 
original expression. If we run a mutated program, there are two 
possibilities:  

1. The results of the program were affected by the code change and the 
test suite   detects it. We assumed that the test suite is perfect, which 
means that it must   detect the change. If this happens, the mutant is called 
a killed mutant.     
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2. The results of the program are not changed and the test suite does not 

detect the   mutation. The mutant is called an equivalent mutant.    

 If we take the ratio of killed mutants to all the mutants that were 
created, we get a number that is smaller than 1. This number gives an 
indication of the sensitivity of program to the changes in code. In real life, 
we may not have a perfect program and we may not have a perfect test 

suite. Hence, we can have one more scenario:   

3. The results of the program are different, but the test suite does not 
detect it   because it does not have the right test case.   

Consider the following program:   

main(argc, argv)             /* line 1 */   

int argc;               /* line 2 */   

char *argv[];                         /* line 3 */   

{               /* line 4 */   

  int c=0;                /* line 5 */   

/* line 6 */   

    if(atoi(argv[1]) < 3){         /* line 7 */   

      printf("Got less than 3\n");     /* line 8 */   

      if(atoi(argv[2]) > 5)         /* line 9 */   

        c = 2;              /* line 10 */   

    }                   /* line 11 */   

    else                  /* line 12 */   

      printf("Got more than 3\n");    /* line 13 */   

   exit(0);                /* line 14 */   

}               /* line 15 */  

  Program: The program reads its arguments and prints messages 
accordingly.  Now let us assume that we have the following test suite that 
tests the program:  

Test case 1:   
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Input: 2 4   

Output: Got less than 3   

Test case 2:   

Input: 4 4   

Output: Got more than 3   

Test case 3:   

Input: 4 6   

Output: Got more than 3   

Test case 4:   

Input: 2 6   

Output: Got less than 3   

Test case 5:   

Input: 4   

Output: Got more than 3  

 Now, let’s mutate the program. We can start with the following simple 
changes:   

 Mutant 1: change line 9 to the form   

if(atoi(argv[2]) <= 5)   

 Mutant 2: change line 7 to the form   

if(atoi(argv[1]) >= 3)   

 Mutant 3: change line 5 to the form   

int c=3;  

If we take the ratio of all the killed mutants to all the mutants 
generated, we get a number smaller than 1 that also contains information 
about accuracy of the test suite. In practice, there is no way to separate the 
effect that is related to test suite inaccuracy and that which is related to 
equivalent mutants.  In the absence of other possibilities, one can accept 
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the ratio of killed mutants to all the mutants as the measure of the test suite 
accuracy.  The manner by which a test suite is evaluated via mutation 
testing is as follows: For a specific test suite and a specific set of mutants, 
there will be three types of mutants in the code (i) killed or dead (ii) live (iii) 
equivalent. The score (evaluation of test suite) associated with a test suite 
T and mutants M is simply computed as follows:  

# killed Mutants  

# total mutants - # equivalent mutants  

1.9 Testing Activities          

Although testing varies between organisations, there is a cycle to testing:  

Requirements Analysis: Testing should begin in the requirements phase 

of the software devlopment life cycle (SDLC).   

Design Analysis: During the design phase, testers work with developers in 
determining what aspects of a design are testable and under what 
parameters should the testers work.   

Test Planning: Test Strategy, Test Plan(s).   

Test Development: Test Procedures, Test Scenarios, Test Cases, Test 

Scripts to use in testing software.   

Test Execution: Testers execute the software based on the plans and 

tests and report any errors found to the development team.   

Test Reporting: Once testing is completed, testers generate metrics and 
make final reports on their test effort and whether or not the software tested 

is ready for release.   

Retesting the Defects:  Defects are once again tested to find whether they 

got eliminated or not.  

Levels of Testing:  

Mainly, Software goes through three levels of testing:  

• Unit testing  

• Integration testing  

• System testing.  
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Unit Testing  

Unit testing is a procedure used to verify that a particular segment 
of source code is working properly. The idea about unit tests is to write test 
cases for all functions or methods. Ideally, each test case is separate from 
the others. This type of testing is mostly done by developers and not by 
end users. The goal of unit testing is to isolate each part of the program 
and show that the individual parts are correct. Unit testing provides a strict, 
written contract that the piece of code must satisfy. Unit testing will not 
catch every error in the program. By definition, it only tests the functionality 
of the units themselves. Therefore, it will not catch integration errors, 
performance problems and any other system-wide issues. A unit test can 

only show the presence of errors; it cannot show the absence of errors.  

Integration Testing  

Integration testing is the phase of software testing in which 
individual software modules are combined and tested as a group. It follows 
unit testing and precedes system testing. Integration testing takes as its 
input, modules that have been checked out by unit testing, groups them in 
larger aggregates, applies tests defined in an integration test plan to those 
aggregates, and delivers as its output, the integrated system ready for 
system testing. The purpose of Integration testing is to verify functional, 

performance and reliability requirements placed on major design items.    

System Testing   

System testing is conducted on a complete, integrated system to 
evaluate the system's compliance with its specified requirements. As a rule, 
system testing takes, as its input, all of the “integrated” software 
components that have successfully passed integration testing and also the 
software system itself integrated with any applicable hardware system(s). 
In system testing, the entire system can be tested as a whole against the 
software requirements specification (SRS). There are rules that describe 
the functionality that the vendor (developer) and a customer have agreed 
upon. System testing tends to be more of an investigatory testing phase, 
where the focus is to have a destructive attitude and test not only the 
design, but also the behavior and even the believed expectations of the 
customer. System testing is intended to test up to and beyond the bounds 
defined in the software requirements specifications.  

Acceptance tests are conducted in case the software developed 
was a custom software and not product based. These tests are conducted 
by customer to check whether the software meets all requirements or not. 

These tests may range from a few weeks to several months.     

1.10 Debugging 

Debugging occurs as a consequence of successful testing. 
Debugging refers to the process of identifying the cause for defective 
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behavior of a system and addressing that problem. In less complex terms 
fixing a bug. When a test case uncovers an error, debugging is the process 
that results in the removal of the error. The debugging process begins with 
the execution of a test case. The debugging process attempts to match 
symptoms with cause, thereby leading to error correction. The following are 
two alternative outcomes of the debugging:   

1. The cause will be found and necessary action such as correction or 
removal will be taken.   

2. The cause will not be found.  

Characteristics of bugs   

1. The symptom and the cause may be geographically remote. That is, the   
symptom may appear in one part of a program, while the cause may   
actually be located at a site that is far removed. Highly coupled program   
structures exacerbate this situation.   

2. The symptom may disappear (temporarily) when another error is   
corrected.   

3. The symptom may actually be caused by non errors (e.g., round-off 

inaccuracies).   

4.  The symptom may be caused by human error that is not easily traced.   

5. The symptom may be a result of timing problems, rather than processing 

problems.   

6. It may be difficult to accurately reproduce input conditions (e.g., a real-
time   application in which input ordering is indeterminate).   

7. The symptom may be intermittent. This is particularly common in 
embedded systems that couple hardware and software inextricably.   

8. The symptom may be due to causes that are distributed across a 

number of tasks running on different processors.   

Life Cycle of a Debugging Task   

The following are various steps involved in debugging:   

a)   Defect Identification/Confirmation   

• A problem is identified in a system and a defect report created   

• Defect assigned to a software engineer   
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• The engineer analyzes the defect report, performing the following actions:   

• What is the expected/desired behaviour of the system?   

• What is the actual behaviour?   

• Is this really a defect in the system?   

• Can the defect be reproduced? (While many times, confirming a defect is 

straight forward. There will be defects that often exhibit quantum 

behaviour.)   

b)   Defect Analysis   

Assuming that the software engineer concludes that the defect is genuine, 
the focus shifts to understanding the root cause of the problem. This is 
often the most challenging step in any debugging task, particularly when 
the software engineer is debugging complex software.   

Many engineers debug by starting a debugging tool, generally a debugger 
and try to understand the root cause of the problem by following the 
execution of the program step-by-step. This approach may eventually yield 
success. However, in many situations, it takes too much time, and in some 
cases is not feasible, due to the complex nature of the program(s).   

c)   Defect Resolution   

Once the root cause of a problem is identified, the defect can then be 
resolved by making an appropriate change to the system, which fixes the 

root cause.   

Debugging Approaches   

Three categories for debugging approaches are:  

• Brute force   

• Backtracking   

• Cause elimination.  

Brute force is probably the most popular despite being the least 
successful.  We apply brute force debugging methods when all else fails.  
Using a “let the computer find the error” technique, memory dumps are 
taken, run-time traces are invoked, and the program is loaded with WRITE 
statements.  Backtracking is a common debugging method that can be 
used successfully in small programs.  Beginning at the site where a 
symptom has been uncovered, the source code is traced backwards till the 
error is found.  In Cause elimination, lists of possible causes of an error are 
identified and tests are conducted until each one is eliminated. 
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1.11 Testing Tools 

The following are different categories of tools that can be used for testing:  

• Data Acquisition: Tools that acquire data to be used during testing.  

• Static Measurement: Tools that analyse source code without executing 
test cases.  

• Dynamic Measurement: Tools that analyse source code during 
execution.  

• Simulation: Tools that simulate functions of hardware or other externals.  

• Test Management: Tools that assist in planning, development and 

control of testing.  

• Cross-Functional tools: Tools that cross the bounds of preceding 
categories.  

The following are some of the examples of commercial software testing 
tools:   

Rational Test Real Time Unit Testing  

• Kind of Tool   

Rational Test RealTime's Unit Testing feature automates C, C++ software 

component testing.   

• Organisation   

IBM Rational Software  

• Software Description   

Rational Test RealTime Unit Testing performs black-box/functional 
testing, i.e., verifies that all units behave according to their specifications 
without regard to how that functionality is implemented. The Unit Testing 
feature has the flexibility to naturally fit any development process by 
matching and automating developers' and testers' work patterns, allowing 
them to focus on value-added tasks. Rational Test RealTime is integrated 
with native development environments (Unix and Windows) as well as with 
a large variety of cross-development environments.   

•  Platforms   

Rational Test RealTime is available for most development and target 

systems including Windows and Unix.  
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AQtest  

• Kind of Tool   

Automated support for functional, unit, and regression testing   

• Organisation   

AutomatedQA Corp.  

• Software Description   

AQtest automates and manages functional tests, unit tests and 
regression tests, for applications written with VC++, VB, Delphi, 
C++Builder, Java or VS.NET. It also supports white-box testing, down to 
private properties or methods. External tests can be recorded or written in 
three scripting languages (VBScript, JScript, DelphiScript). Using AQtest as 
an OLE server, unit-test drivers can also run it directly from application 
code. AQtest automatically integrates AQtime when it is on the machine. 
Entirely COM-based, AQtest is easily extended through plug-ins using the 
complete IDL libraries supplied. Plug-ins currently support Win32 API calls, 

direct ADO access, direct BDE access, etc.   

• Platforms   

Windows 95, 98, NT, or 2000. 

csUnit  

• Kind of Tool   

  “Complete Solution Unit Testing” for Microsoft .NET (freeware)   

• Organisation   

  csUnit.org  

• Software Description  

  csUnit is a unit testing framework for the Microsoft .NET Framework. It   
targets test driven development using .NET languages such as C#, Visual   
Basic .NET, and managed C++.   

• Platforms   

Microsoft Windows   

Software Description  
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Sahi is automation and testing tool for web applications, with the facility to 
record and playback scripts. Developed in Java and JavaScript, it uses 
simple JavaScript to execute events on the browser. Features include in-
browser controls, text based scripts, Ant support for playback of suites of 
tests, and multi-threaded playback. It supports HTTP and HTTPS. Sahi 
runs as a proxy server and the browser needs to use the Sahi server as its 
proxy. Sahi then injects JavaScript so that it can access elements in the 

webpage. This makes the tool independant of the website/ web application.   

• Platforms   

OS independent. Needs at least JDK1.4  
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2. Testing Strategies 

2.1 Introduction 

Astrategy for software testing integrates software test case design 
methods into a well-planned series of steps that result in the successful 
construction of software. The strategy provides a road map that describes 
the steps to be conducted as part of testing, when these steps are planned 
and then undertaken, and how much effort, time, and resources will be 
required. Therefore, any testing strategy must incorporate test planning, 
test case design, test execution, and resultant data collection and 
evaluation.  

A software testing strategy should be flexible enough to promote a 
customized testing approach. At the same time, it must be rigid enough to 
promote reasonable planning and management tracking as the project 

progresses. 

2.2 A Strategic Approach to Software Testing 

Testing is a set of activities that can be planned in advance and 
conducted systematically. For this reason a template for software testing a 
set of steps into which we can place specific test case design techniques 
and testing methods should be defined for the software process. A number 
of software testing strategies have been proposed in the literature. All 
provide the software developer with a template for testing and all have the 
following generic characteristics: 

• Testing begins at the component level2 and works "outward" toward the 
integration of the entire computer-based system.       

• Different testing techniques are appropriate at different points in time. 

• Testing is conducted by the developer of the software and (for large 

projects) an independent test group. 

• Testing and debugging are different activities, but debugging must be 

accommodated in any testing strategy.  

A strategy for software testing must accommodate low-level tests 
that are necessary to verify that a small source code segment has been 
correctly implemented as well as high-level tests that validate major system 
functions against customer requirements. A strategy must provide guidance 
for the practitioner and a set of milestones for the manager. Because the 
steps of the test strategy occur at a time when deadline pressure begins to 
rise, progress must be measurable and problems must surface as early as 

possible. 
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2.2.1 Verification and Validation 

Software testing is one element of a broader topic that is often 
referred to as verification and validation (V&V). Verification refers to the set 
of activities that ensure that software correctly implements a specific 
function. Validation refers to a different set of activities that ensure that the 
software that has been built is traceable to customer requirements. Boehm 

[BOE81] states this way:   

Verification: "Are we building the product right?" 

Validation: "Are we building the right product?" 

The definition of V&V encompasses many of the activities that we 
have referred to as software quality assurance (SQA). Verification and 
validation encompasses a wide array of SQA activities that include formal 
technical reviews, quality and configuration audits, performance monitoring, 
simulation, feasibility study, documentation review, database review, 
algorithm analysis, development testing, qualification testing, and 
installation testing. Although testing plays an extremely important role in 

V&V, many other activities are also necessary. 

Testing does provide the last bastion from which quality can be 
assessed and, more pragmatically, errors can be uncovered. But testing 
should not be viewed as a safety net. As they say, "You can't test in quality. 
If it's not there before you begin testing, it won't be there when you're 
finished testing." Quality is incorporated into software throughout the 
process of software engineering. Proper application of methods and tools, 
effective formal technical reviews, and solid management and 
measurement all lead software testing to quality assurance by stating that 
"the underlying motivation of program testing is to affirm software quality 
with methods that can be economically and effectively applied to both 
large-scale and small-scale systems." 

2.2.2 Organizing for Software Testing 

For every software project, there is an inherent conflict of interest 
that occurs as testing begins. The people who have built the software are 
now asked to test the software. This seems harmless in itself; after all, who 
knows the program better than its developers? Unfortunately, these same 
developers have a vested interest in demonstrating that the program is 
error free, that it works according to customer requirements, and that it will 
be completed on schedule and within budget. Each of these interests 

militates against thorough testing. 

From a psychological point of view, software analysis and design 
(along with coding) are constructive tasks. The software engineer creates a 
computer program, its documentation, and related data structures. Like any 
builder, the software engineer is proud of the edifice that has been built and 
looks askance at anyone who attempts to tear it down. When testing 



                               Software Engineering 

     NOTES 

 52 

commences, there is a subtle, yet definite, attempt to "break" the thing that 
the software engineer has built. From the point of view of the builder, 
testing can be considered to be (psychologically) destructive. So the builder 
treads lightly, designing and executing tests that will demonstrate that the 
program works, rather than uncovering errors. Unfortunately, errors will be 
present. And, if the software engineer doesn't find them, the customer will! 

There are often a number of misconceptions that can be 
erroneously inferred from the preceeding discussion: (1) that the developer 
of software should do no testing at all, (2) that the software should be 
"tossed over the wall" to strangers who will test it mercilessly, (3) that 
testers get involved with the project only when the testing steps are about 

to begin. Each of these statements is incorrect. 

The software developer is always responsible for testing the 
individual units (components) of the program, ensuring that each performs 
the function for which it was designed. In many cases, the developer also 
conducts integration testing a testing step that leads to the construction 
(and test) of the complete program structure. Only after the software 

architecture is complete does an independent test group become involved. 

The role of an independent test group (ITG) is to remove the 
inherent problems associated with letting the builder test the thing that has 
been built. Independent testing removes the conflict of interest that may 
otherwise be present. After all, personnel in the independent group team 
are paid to find errors. However, the software engineer doesn't turn the 
program over to ITG and walk away. The developer and the ITG work 
closely throughout a software project to ensure that thorough tests will be 
conducted. While testing is conducted, the developer must be available to 
correct errors that are uncovered. The ITG is part of the software 
development project team in the sense that it becomes involved during the 
specification activity and stays involved (planning and specifying test 
procedures) throughout a large project. However, in many cases the ITG 
reports to the software quality assurance organization, thereby achieving a 
degree of independence that might not be possible if it were a part of the 

software engineering organization. 

2.2.3 A Software Testing Strategy 

The software engineering process may be viewed as the spiral 
illustrated in Figure 2.1. Initially, system engineering defines the role of 
software and leads to software requirements analysis, where the 
information domain, function, behavior, performance, constraints, and 
validation criteria for software are established. Moving inward along the 
spiral, we come to design and finally to coding. To develop computer 
software, we spiral inward along streamlines that decrease the level of 

abstraction on each turn. 

A strategy for software testing may also be viewed in the context of 
the spiral (Figure 2.1). Unit testing begins at the vortex of the spiral and 
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concentrates on each unit (i.e., component) of the software as implemented 
in source code. Testing progresses by moving outward along the spiral to 
integration testing, where the focus is on design and the construction of the 
software architecture. Taking another turn outward on the spiral, we 
encounter validation testing, where requirements established as part of 
software requirements analysis are validated against the software that has 
been constructed. Finally, we arrive at system testing, where the software 
and other system elements are tested as a whole. To test computer 
software, we spiral out along streamlines that broaden the scope of testing 
with each turn. 

 

FIGURE 2.1Testing strategy 

Considering the process from a procedural point of view, testing 
within the context of software engineering is actually a series of four steps 
that are implemented sequentially. The steps are shown in Figure 2.2.  
Initially, tests focus on each component individually, ensuring that it 
functions properly as a unit. Hence the name unit testing. Unit testing 
makes heavy use of white-box testing techniques, exercising specific paths 
in a module's control structure to ensure complete coverage and maximum 
error detection. Next, components must be assembled or integrated to form 
the complete software package.  Integration testing addresses the issues 
associated with the dual problems of verification and program construction.  
Black-box test case design techniques are the most prevalent during 
integration, although a limited amount of white-box testing may be used to 
ensure coverage of major control paths. After the software has been 
integrated (constructed), a set of high-order tests are conducted. Validation 
criteria (established during requirements analysis) must be tested.  
Validation testing provides final assurance that software meets all 
functional, behavioral, and performance requirements. Black-box testing 
techniques are used exclusively during validation. 
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FIGURE 2.2 Software testing steps 

The last high-order testing step falls outside the boundary of 
software engineering and into the broader context of computer system 
engineering. Software, once validated, must be combined with other 
system elements (e.g., hardware, people, and databases). System testing 
verifies that all elements mesh properly and that overall system 

function/performance is achieved. 

2.2.4 Criteria for Completion of Testing 

A classic question arises every time software testing is discussed: 
"When are we done testing how do we know that we've tested enough?" 
Sadly, there is no definitive answer to this question, but there are a few 

pragmatic responses and early attempts at empirical guidance. 

One response to the question is: "You're never done testing, the 
burden simply shifts from you (the software engineer) to your customer." 
Every time the customer/user executes a computer program, the program 
is being tested. This sobering fact underlines the importance of other 

software quality assurance activities. 

Another response (somewhat cynical but nonetheless accurate) is: 

"You're done testing when you run out of time or you run out of money."  

Although few practitioners would argue with these responses, a 
software engineer needs more rigorous criteria for determining when 
sufficient testing has been conducted. Musa and Ackerman suggest a 
response that is based on statistical criteria: "No, we cannot be absolutely 
certain that the software will never fail, but relative to a theoretically sound 
and experimentally validated statistical model, we have done sufficient 
testing to say with 95 percent confidence that the probability of 1000 CPU 
hours of failure free operation in a probabilistically defined environment is 
at least 0.995." 
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Using statistical modeling and software reliability theory, models of 
software failures (uncovered during testing) as a function of execution time 
can be developed. A version of the failure model, called a logarithmic 
Poisson execution-time model, takes the form 

f(t) = (1/p) ln [l0 pt + 1]  

where  f(t) = cumulative number of failures that are expected to occur once 

the software has been tested for a certain amount of execution time, t, 

l0 = the initial software failure intensity (failures per time unit) at the 

beginning of testing,  

p = the exponential reduction in failure intensity as errors are uncovered 
and repairs are made. The instantaneous failure intensity,  

l(t) can be derived by taking the derivative of f(t) 

l(t) = l0 / (l0 pt + 1)  

Using the relationship noted in Equation, testers can predict the 
drop-off of errors as testing progresses. The actual error intensity can be 
plotted against the predicted curve (Figure 2.3). If the actual data gathered 
during testing and the logarithmic Poisson execution time model are 
reasonably close to one another over a number of data points, the model 
can be used to predict total testing time required to achieve acceptably low 

failure intensity. 

 

FIGURE 2.3 Failure intensity as a function of execution time 

By collecting metrics during software testing and making use of 
existing software reliability models, it is possible to develop meaningful 
guidelines for answering the question: "When are we done testing?" There 
is little debate that further work remains to be done before quantitative rules 
for testing can be established, but the empirical approaches that currently 

exist are considerably better than raw intuition.  
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2.3 Strategic Issues 

The following issues must be addressed if a successful software testing 

strategy is to be implemented: 

Specify product requirements in a quantifiable manner long before 
testing commences: Although the overriding objective of testing is to find 
errors, a good testing strategy also assesses other quality characteristics 
such as portability, maintainability, and usability (Chapter 19). These 
should be specified in a way that is measurable so that testing results are 

unambiguous. 

State testing objectives explicitly: The specific objectives of testing 
should be stated in measurable terms. For example, test effectiveness, test 
coverage, mean time to failure, the cost to find and fix defects, remaining 
defect density or frequency of occurrence, and test work-hours per 

regression test all should be stated within the test plan.  

Understand the users of the software and develop a profile for each 
user category: Use-cases that describe the interaction scenario for each 
class of user can reduce overall testing effort by focusing testing on actual 

use of the product. 

Develop a testing plan that emphasizes “rapid cycle testing.” A 
software engineering team “learn to test in rapid cycles (2 percent of project 
effort) of customer-useful, at least field ‘trialable,’ increments of functionality 
and/or quality improvement.” The feedback generated from these rapid 
cycle tests can be used to control quality levels and the corresponding test 
strategies.  

Build “robust” software that is designed to test itself: Software should 
be designed in a manner that uses antibugging techniques. That is, 
software should be capable of diagnosing certain classes of errors. In 
addition, the design should accommodate automated testing and 

regression testing.  

Use effective formal technical reviews as a filter prior to testing: 
Formal technical reviews can be as effective as testing in uncovering 
errors. For this reason, reviews can reduce the amount of testing effort that 
is required to produce high-quality software. 

Conduct formal technical reviews to assess the test strategy and test 
cases themselves: Formal technical reviews can uncover inconsistencies, 
omissions, and outright errors in the testing approach. This saves time and 
also improves product quality. 

Develop a continuous improvement approach for the testing process: 
The test strategy should be measured. The metrics collected during testing 



                               Software Engineering 

     NOTES 

 57 

should be used as part of a statistical process control approach for 

software testing. 

2.4 Unit Testing 

Unit testing focuses verification effort on the smallest unit of 
software design the software component or module. Using the component-
level design description as a guide, important control paths are tested to 
uncover errors within the boundary of the module. The relative complexity 
of tests and uncovered errors is limited by the constrained scope 
established for unit testing. The unit test is white-box oriented, and the step 
can be conducted in parallel for multiple components. 

2.4.1 Unit Test Considerations 

The tests that occur as part of unit tests are illustrated schematically 
in Figure 2.4. The module interface is tested to ensure that information 
properly flows into and out of the program unit under test. The local data 
structure is examined to ensure that data stored temporarily maintains its 
integrity during all steps in an algorithm's execution. Boundary conditions 
are tested to ensure that the module operates properly at boundaries 
established to limit or restrict processing. All independent paths (basis 
paths) through the control structure are exercised to ensure that all 
statements in a module have been executed at least once. And finally, all 

error handling paths are tested. 

 

FIGURE 2.4 Unit test 

Tests of data flow across a module interface are required before 
any other test is initiated. If data do not enter and exit properly, all other 
tests are moot. In addition, local data structures should be exercised and 
the local impact on global data should be ascertained (if possible) during 
unit testing. Selective testing of execution paths is an essential task during 
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the unit test. Test cases should be designed to uncover errors due to 
erroneous computations, incorrect comparisons, or improper control flow.  
Basis path and loop testing are effective techniques for uncovering a broad 

array of path errors. 

Among the more common errors in computation are (1)  
misunderstood or incorrect arithmetic precedence, (2) mixed mode 
operations, (3) incorrect initialization, (4) precision inaccuracy, (5) incorrect 
symbolic representation of an expression.  

Comparison and control flow are closely coupled to one another 
(i.e., change of flow frequently occurs after a comparison).  Test cases 
should uncover errors such as (1) comparison of different data types, (2) 
incorrect logical operators or precedence, (3) expectation of equality when 
precision error makes equality unlikely, (4) incorrect comparison of 
variables, (5) improper or nonexistent loop termination, (6) failure to exit 
when divergent iteration is encountered, and (7) improperly modified loop 
variables. 

Good design dictates that error conditions be anticipated and error-
handling paths set up to reroute or cleanly terminate processing when an 
error does occur. Unfortunately, there is a tendency to incorporate error 
handling into software and then never test it. A true story may serve to 

illustrate: 

A major interactive design system was developed under contract. In 
one transaction processing module, a practical joker placed the following 
error handling message after a series of conditional tests that invoked 
various control flow branches:  ERROR! THERE IS NO WAY YOU CAN 
GET HERE. This "error message" was uncovered by a customer during 

user training!  

Among the potential errors that should be tested when error 
handling is evaluated are  

1. Error description is unintelligible.  

2. Error noted does not correspond to error encountered. 

3. Error condition causes system intervention prior to error handling.  

4. Exception-condition processing is incorrect. 

5. Error description does not provide enough information to assist in the 
location of the cause of the error. 

Boundary testing is the last (and probably most important) task of 
the unit test step.  Software often fails at its boundaries.  That is, errors 
often occur when the nth element of an n-dimensional array is processed, 
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when the ith repetition of a loop with i passes is invoked, when the 
maximum or minimum allowable value is encountered. Test cases that 
exercise data structure, control flow, and data values just below, at, and 

just above maxima and minima are very likely to uncover errors. 

2.2.2 Unit Test Procedures 

Unit testing is normally considered as an adjunct to the coding step. 
After source level code has been developed, reviewed, and verified for 
correspondence to component level design, unit test case design begins. A 
review of design information provides guidance for establishing test cases 
that are likely to uncover errors in each of the categories discussed earlier.  

Each test case should be coupled with a set of expected results. 

Because a component is not a stand-alone program, driver and/or 
stub software must be developed for each unit test. The unit test 
environment is illustrated in Figure 2.5.  In most applications a driver is 
nothing more than a "main program" that accepts test case data, passes 
such data to the component (to be tested), and prints relevant results.  
Stubs serve to replace modules that are subordinate (called by) the 
component to be tested. A stub or "dummy subprogram" uses the 
subordinate module's interface, may do minimal data manipulation, prints 
verification of entry, and returns control to the module undergoing testing. 

Drivers and stubs represent overhead. That is, both are software 
that must be written (formal design is not commonly applied) but that is not 
delivered with the final software product. If drivers and stubs are kept 
simple, actual overhead is relatively low. Unfortunately, many components 
cannot be adequately unit tested with "simple" overhead software. In such 
cases, complete testing can be postponed until the integration test step 
(where drivers or stubs are also used). Unit testing is simplified when a 
component with high cohesion is designed.  When only one function is 
addressed by a component, the number of test cases is reduced and errors 

can be more easily predicted and uncovered. 

2.5 Integration Testing 

A neophyte in the software world might ask a seemingly legitimate 
question once all modules have been unit tested: "If they all work 
individually, why do you doubt that they'll work when we put them 
together?" The problem, of course, is "putting them together" interfacing. 
Data can be lost across an interface; one module can have an inadvertent, 
adverse affect on another; subfunctions, when combined, may not produce 
the desired major function; individually acceptable imprecision may be 
magnified to unacceptable levels; global data structures can present 

problems.  Sadly, the list goes on and on. 

Integration testing is a systematic technique for constructing the 
program structure while at the same time conducting tests to uncover 
errors associated with interfacing. The objective is to take unit tested 
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components and build a program structure that has been dictated by 

design. 

There is often a tendency to attempt nonincremental integration; 
that is, to construct the program using a "big bang" approach. All 
components are combined in advance. The entire program is tested as a 
whole. And chaos usually results! A set of errors is encountered. Correction 
is difficult because isolation of causes is complicated by the vast expanse 
of the entire program. Once these errors are corrected, new ones appear 

and the process continues in a seemingly endless loop. 

Incremental integration is the antithesis of the big bang approach. 
The program is constructed and tested in small increments, where errors 
are easier to isolate and correct; interfaces are more likely to be tested 
completely; and a systematic test approach may be applied. In the sections 
that follow, a number of different incremental integration strategies are 

discussed. 

2.5.1 Top-down Integration 

Top-down integration testing is an incremental approach to 
construction of program structure. Modules are integrated by moving 
downward through the control hierarchy, beginning with the main control 
module (main program). Modules subordinate (and ultimately subordinate) 
to the main control module are incorporated into the structure in either a 

depth-first or breadth-first manner. 

Referring to Figure 2.6, depth-first integration would integrate all 
components on a major control path of the structure. Selection of a major 
path is somewhat arbitrary and depends on application-specific 
characteristics. For example, selecting the lefthand path, components M1, 
M2 , M5 would be integrated first. Next, M8 or (if necessary for proper 
functioning of M2) M6 would be integrated. Then, the central and righthand 
control paths are built. Breadth-first integration incorporates all components 
directly subordinate at each level, moving across the structure horizontally. 
From the figure, components  M2, M3, and M4 (a replacement for stub S4) 
would be integrated first. The next control level, M5, M6, and so on, follows. 
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FIGURE 2.6 Top-down integration 

The integration process is performed in a series of five steps: 

1. The main control module is used as a test driver and stubs are 
substituted for all components directly subordinate to the main control 

module. 

2. Depending on the integration approach selected (i.e., depth or breadth 

first), subordinate stubs are replaced one at a time with actual components.  

3. Tests are conducted as each component is integrated. 

4. On completion of each set of tests, another stub is replaced with the real 
component. 

5. Regression testing may be conducted to ensure that new errors have not 

been introduced. 

The process continues from step 2 until the entire program structure 
is built. The top-down integration strategy verifies major control or decision 
points early in the test process. In a well-factored program structure, 
decision making occurs at upper levels in the hierarchy and is therefore 
encountered first. If major control problems do exist, early recognition is 
essential. If depth-first integration is selected, a complete function of the 
software may be implemented and demonstrated.  For example, consider a 
classic transaction structure in which a complex series of interactive inputs 
is requested, acquired, and validated via an incoming path. The incoming 
path may be integrated in a top-down manner. All input processing (for 
subsequent transaction dispatching) may be demonstrated before other 
elements of the structure have been integrated.  Early demonstration of 
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functional capability is a confidence builder for both the developer and the 

customer. 

Top-down strategy sounds relatively uncomplicated, but in practice, 
logistical problems can arise. The most common of these problems occurs 
when processing at low levels in the hierarchy is required to adequately 
test upper levels.  Stubs replace low level modules at the beginning of top-
down testing; therefore, no significant data can flow upward in the program 
structure. The tester is left with three choices: (1) delay many tests until 
stubs are replaced with actual modules, (2) develop stubs that perform 
limited functions that simulate the actual module, or (3) integrate the 
software from the bottom of the hierarchy upward. 

The first approach (delay tests until stubs are replaced by actual 
modules) causes us to loose some control over correspondence between 
specific tests and incorporation of specific modules. This can lead to 
difficulty in determining the cause of errors and tends to violate the highly 
constrained nature of the top-down approach. The second approach is 
workable but can lead to significant overhead, as stubs become more and 
more complex. The third approach, called bottom-up testing, is discussed 
in the next section. 

2.5.2 Bottom-up Integration 

Bottom-up integration testing, as its name implies, begins 
construction and testing with atomic modules (i.e., components at the 
lowest levels in the program structure). Because components are 
integrated from the bottom up, processing required for components 
subordinate to a given level is always available and the need for stubs is 

eliminated. 

A bottom-up integration strategy may be implemented with the following 
steps: 

1. Low-level components are combined into clusters (sometimes called 
builds) that perform a specific software subfunction. 

2. A driver (a control program for testing) is written to coordinate test case 

input and output.  

3. The cluster is tested.  

4. Drivers are removed and clusters are combined moving upward in the 
program structure. 

Integration follows the pattern illustrated in Figure 2.7. Components 
are combined to form clusters 1, 2, and 3. Each of the clusters is tested 
using a driver (shown as a dashed block). Components in clusters 1 and 2 
are subordinate to Ma. Drivers D1 and D2 are removed and the clusters are 
interfaced directly to Ma. Similarly,  driver D3 for cluster 3 is removed prior 
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to integration with module Mb. Both  Ma and Mb will ultimately be integrated 

with component Mc, and so forth.  

 

FIGURE 2.7Bottom-up integration 

As integration moves upward, the need for separate test drivers 
lessens. In fact, if the top two levels of program structure are integrated top 
down, the number of drivers can be reduced substantially and integration of 
clusters is greatly simplified. 

2.5.3 Regression Testing 

Each time a new module is added as part of integration testing, the 
software changes. New data flow paths are established, new I/O may 
occur, and new control logic is invoked. These changes may cause 
problems with functions that previously worked flawlessly. In the context of 
an integration test strategy, regression testing is the reexecution of some 
subset of tests that have already been conducted to ensure that changes 

have not propagated unintended side effects.  

In a broader context, successful tests (of any kind) result in the 
discovery of errors, and errors must be corrected. Whenever software is 
corrected, some aspect of the software configuration (the program, its 
documentation, or the data that support it) is changed. Regression testing 
is the activity that helps to ensure that changes (due to testing or for other 
reasons) do not introduce unintended behavior or additional errors. 

Regression testing may be conducted manually, by re-executing a 
subset of all test cases or using automated capture/playback tools. 
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Capture/playback tools enable the software engineer to capture test cases 

and results for subsequent playback and comparison. 

The regression test suite (the subset of tests to be executed) 
contains three different classes of test cases: 

• A representative sample of tests that will exercise all software functions. 

• Additional tests that focus on software functions that are likely to be 
affected by the change. 

• Tests that focus on the software components that have been changed.  

As integration testing proceeds, the number of regression tests can 
grow quite large. Therefore, the regression test suite should be designed to 
include only those tests that address one or more classes of errors in each 
of the major program functions. It is impractical and inefficient to re-execute 

every test for every program function once a change has occurred. 

2.5.4 Smoke Testing 

Smoke testing is an integration testing approach that is commonly 
used when “shrink-wrapped” software products are being developed. It is 
designed as a pacing mechanism for time-critical projects, allowing the 
software team to assess its project on a frequent basis. In essence, the 

smoke testing approach encompasses the following activities: 

1. Software components that have been translated into code are integrated 
into a “build.” A build includes all data files, libraries, reusable modules, and 
engineered components that are required to implement one or more 

product functions. 

2. A series of tests is designed to expose errors that will keep the build 
from properly performing its function. The intent should be to uncover 
“show stopper” errors that have the highest likelihood of throwing the 
software project behind schedule. 

3. The build is integrated with other builds and the entire product (in its 
current form) is smoke tested daily. The integration approach may be top 

down or bottom up. 

The daily frequency of testing the entire product may surprise some 
readers. However, frequent tests give both managers and practitioners a 
realistic assessment of integration testing progress. McConnell [MCO96] 
describes the smoke test in the following manner: 

The smoke test should exercise the entire system from end to end. 
It does not have to be exhaustive, but it should be capable of exposing 
major problems. The smoke test should be thorough enough that if the 
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build passes, you can assume that it is stable enough to be tested more 

thoroughly. 

Smoke testing provides a number of benefits when it is applied on complex, 
timecritical software engineering projects: 

Integration risk is minimized: Because smoke tests are conducted daily, 
incompatibilities and other show-stopper errors are uncovered early, 
thereby reducing the likelihood of serious schedule impact when errors are 

uncovered. 

The quality of the end-product is improved: Because the approach is 
construction (integration) oriented, smoke testing is likely to uncover both 
functional errors and architectural and component-level design defects. If 

these defects are corrected early, better product quality will result. 

Error diagnosis and correction are simplified: Like all integration testing 
approaches, errors uncovered during smoke testing are likely to be 
associated with “new software increments” that is, the software that has 
just been added to the build(s) is a probable cause of a newly discovered 

error. 

Progress is easier to assess: With each passing day, more of the 
software has been integrated and more has been demonstrated to work. 
This improves team morale and gives managers a good indication that 

progress is being made. 

2.6 Validation Testing 

At the culmination of integration testing, software is completely 
assembled as a package, interfacing errors have been uncovered and 
corrected, and a final series of software tests validation testing may begin. 
Validation can be defined in many ways, but a simple (albeit harsh) 
definition is that validation succeeds when software functions in a manner 
that can be reasonably expected by the customer. At this point a battle-
hardened software developer might protest: "Who or what is the arbiter of 

reasonable expectations?" 

Reasonable expectations are defined in the Software Requirements 
Specificationa document that describes all user-visible attributes of the 
software. The specification contains a section called Validation Criteria. 
Information contained in that section forms the basis for a validation testing 

approach. 

2.6.1 Validation Test Criteria 

Software validation is achieved through a series of black-box tests 
that demonstrate conformity with requirements. A test plan outlines the 
classes of tests to be conducted and a test procedure defines specific test 
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cases that will be used to demonstrate conformity with requirements. Both 
the plan and procedure are designed to ensure that all functional 
requirements are satisfied, all behavioral characteristics are achieved, all 
performance requirements are attained, documentation is correct, and 
human engineered and other requirements are met (e.g., transportability, 
compatibility, error recovery, maintainability). 

After each validation test case has been conducted, one of two 
possible conditions exist: (1) The function or performance characteristics 
conform to specification and are accepted or (2) a deviation from 
specification is uncovered and a deficiency list is created.  Deviation or 
error discovered at this stage in a project can rarely be corrected prior to 
scheduled delivery. It is often necessary to negotiate with the customer to 

establish a method for resolving deficiencies. 

2.6.2 Configuration Review 

An important element of the validation process is a configuration 
review. The intent of the review is to ensure that all elements of the 
software configuration have been properly developed, are cataloged, and 
have the necessary detail to bolster the support phase of the software life 

cycle. The configuration review, sometimes called an audit. 

2.6.3 Alpha and Beta Testing 

It is virtually impossible for a software developer to foresee how the 
customer will really use a program. Instructions for use may be 
misinterpreted; strange combinations of data may be regularly used; output 

that seemed clear to the tester may be unintelligible to a user in the field. 

When custom software is built for one customer, a series of 
acceptance tests are conducted to enable the customer to validate all 
requirements. Conducted by the end user rather than software engineers, 
an acceptance test can range from an informal "test drive" to a planned and 
systematically executed series of tests. In fact, acceptance testing can be 
conducted over a period of weeks or months, thereby uncovering 
cumulative errors that might degrade the system over time. 

If software is developed as a product to be used by many 
customers, it is impractical to perform formal acceptance tests with each 
one. Most software product builders use a process called alpha and beta 
testing to uncover errors that only the end-user seems able to find. 

The alpha test is conducted at the developer's site by a customer. 
The software is used in a natural setting with the developer "looking over 
the shoulder" of the user and recording errors and usage problems. Alpha 
tests are conducted in a controlled environment. 

The beta test is conducted at one or more customer sites by the 
end-user of the software. Unlike alpha testing, the developer is generally 
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not present. Therefore, the beta test is a "live" application of the software in 
an environment that cannot be controlled by the developer. The customer 
records all problems (real or imagined) that are encountered during beta 
testing and reports these to the developer at regular intervals. As a result of 
problems reported during beta tests, software engineers make 
modifications and then prepare for release of the software product to the 
entire customer base. 

2.7 System Testing 

At the beginning of this book, we stressed the fact that software is 
only one element of a larger computer-based system.  Ultimately, software 
is incorporated with other system elements (e.g., hardware, people, 
information), and a series of system integration and validation tests are 
conducted.  These tests fall outside the scope of the software process and 
are not conducted solely by software engineers.  However, steps taken 
during software design and testing can greatly improve the probability of 

successful software integration in the larger system. 

A classic system testing problem is "finger-pointing."  This occurs 
when an error is uncovered, and each system element developer blames 

the other for the problem. 

Rather than indulging in such nonsense, the software engineer 
should anticipate potential interfacing problems and (1)  design error-
handling paths that test all information coming from other elements of the 
system, (2) conduct a series of tests that simulate bad data or other 
potential errors at the software interface, (3) record the results of tests to 
use as "evidence" if finger-pointing does occur, and (4) participate in 
planning and design of system tests to ensure that software is adequately 

tested.    

System testing is actually a series of different tests whose primary 
purpose is to fully exercise the computer-based system. Although each test 
has a different purpose, all work to verify that system elements have been 
properly integrated and perform allocated functions. In the sections that 
follow, we discuss the types of system tests that are worthwhile for 

software-based systems.  

2.7.1 Recovery Testing 

Many computer based systems must recover from faults and 
resume processing within a prespecified time. In some cases, a system 
must be fault tolerant; that is, processing faults must not cause overall 
system function to cease. In other cases, a system failure must be 
corrected within a specified period of time or severe economic damage will 

occur. 

Recovery testing is a system test that forces the software to fail in a 
variety of ways and verifies that recovery is properly performed. If recovery 
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is automatic (performed by the system itself), reinitialization, checkpointing 
mechanisms, data recovery, and restart are evaluated for correctness. If 
recovery requires human intervention, the mean-time-to-repair (MTTR)  is 

evaluated to determine whether it is within acceptable limits. 

2.7.2 Security Testing 

Any computer-based system that manages sensitive information or 
causes actions that can improperly harm (or benefit) individuals is a target 
for improper or illegal penetration. Penetration spans a broad range of 
activities: hackers who attempt to penetrate systems for sport; disgruntled 
employees who attempt to penetrate for revenge; dishonest individuals who 

attempt to penetrate for illicit personal gain. 

Security testing attempts to verify that protection mechanisms built 
into a system will, in fact, protect it from improper penetration. To quote 
Beizer "The system's security must, of course, be tested for invulnerability 
from frontal attack but must also be tested for invulnerability from flank or 
rear attack." During security testing, the tester plays the role(s) of the 
individual who desires to penetrate the system. Anything goes! The tester 
may attempt to acquire passwords through external clerical means; may 
attack the system with custom software designed to breakdown any 
defenses that have been constructed; may overwhelm the system, thereby 
denying service to others; may purposely cause system errors, hoping to 
penetrate during recovery; may browse through insecure data, hoping to 
find the key to system entry. 

Given enough time and resources, good security testing will 
ultimately penetrate a system. The role of the system designer is to make 
penetration cost more than the value of the information that will be 

obtained. 

2.7.3 Stress Testing 

During earlier software testing steps, white-box and black-box 
techniques resulted in thorough evaluation of normal program functions 
and performance. Stress tests are designed to confront programs with 
abnormal situations. In essence, the tester who performs stress testing 

asks: "How high can we crank this up before it fails?"       

Stress testing executes a system in a manner that demands 
resources in abnormal quantity, frequency, or volume. For example, (1) 
special tests may be designed that generate ten interrupts per second, 
when one or two is the average rate, (2) input data rates may be increased 
by an order of magnitude to determine how input functions will respond, (3) 
test cases that require maximum memory or other resources are executed, 
(4) test cases that may cause thrashing in a virtual operating system are 
designed, (5) test cases that may cause excessive hunting for disk-resident 

data are created. Essentially, the tester attempts to break the program. 
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A variation of stress testing is a technique called sensitivity testing. 
In some situations (the most common occur in mathematical algorithms), a 
very small range of data contained within the bounds of valid data for a 
program may cause extreme and even erroneous processing or profound 
performance degradation. Sensitivity testing attempts to uncover data 
combinations within valid input classes that may cause instability or 
improper processing. 

2.7.4 Performance Testing 

For real-time and embedded systems, software that provides 
required function but does not conform to performance requirements is 
unacceptable. Performance testing is designed to test the run-time 
performance of software within the context of an integrated system. 
Performance testing occurs throughout all steps in the testing process. 
Even at the unit level, the performance of an individual module may be 
assessed as white-box tests are conducted. However, it is not until all 
system elements are fully integrated that the true performance of a system 

can be ascertained. 

Performance tests are often coupled with stress testing and usually 
require both hardware and software instrumentation. That is, it is often 
necessary to measure resource utilization (e.g., processor cycles) in an 
exacting fashion. External instrumentation can monitor execution intervals, 
log events (e.g., interrupts) as they occur, and sample machine states on a 
regular basis. By instrumenting a system, the tester can uncover situations 

that lead to degradation and possible system failure 

Summary 

The importance of software testing and its impact on software is 
explained in this unit. Software testing is a fundamental component of 
software development life cycle and represents a review of specification, 
design and coding.  The objective of testing is to have the highest likelihood 
of finding most of the errors within a minimum amount of time and minimal 
effort.  A large number of test case design methods have been developed 

that offer a systematic approach to testing to the developer.   

 Knowing the specified functions that the product has been 
designed to perform, tests can be performed that show that each function is 
fully operational. A strategy for software testing may be to move upwards 
along the spiral.  Unit testing happens at the vortex of the spiral and 
concentrates on each unit of the software as implemented by the source 
code.  Testing happens upwards along the spiral to integration testing, 
where the focus is on design and production of the software architecture.  
Finally, we perform system testing, where software and other system 

elements are tested together.    

Debugging is not testing, but always happens as a response of 
testing.  The debugging process will have one of two outcomes:   
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1)   The cause will be found, then corrected or removed, or   

2)   The cause will not be found. Regardless of the approach that is used, 
debugging has one main aim: to determine and correct errors. In general, 
three kinds of debugging approaches have been put forward: Brute force, 

Backtracking and Cause elimination. 

Software testing accounts for the largest percentage of technical 
effort in the software process. Yet we are only beginning to understand the 
subtleties of systematic test planning, execution, and control. The objective 
of software testing is to uncover errors. To fulfill this objective, a series of 
test steps unit, integration, validation, and system tests are planned and 
executed. Unit and integration tests concentrate on functional verification of 
a component and incorporation of components into a program structure. 
Validation testing demonstrates traceability to software requirements, and 
system testing validates software once it has been incorporated into a 

larger system. 

Each test step is accomplished through a series of systematic test 
techniques that assist in the design of test cases. With each testing step, 
the level of abstraction with which software is considered is broadened. 
Unlike testing (a systematic, planned activity), debugging must be viewed 
as an art. Beginning with a symptomatic indication of a problem, the 
debugging activity must track down the cause of an error. Of the many 
resources available during debugging, the most valuable is the counsel of 
other members of the software engineering staff. 

Questions 

1. Why is a highly coupled module difficult to unit test? 

2. How can project scheduling affect integration testing? 

3. List some problems that might be associated with the creation of an 

independent test group. 

4. Specify, design, and implement a software tool that will compute the 
cyclomatic complexity for the programming language. 

5. Test a user manual for an application that you use frequently. 
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UNIT – V 

1. Product Metrics 

Structure 

1. PRODUCT METRICS 

1.1 Introduction 

1.2 Software Quality 

1.3 A Framework for Technical Software Metrics 

1.4 Metrics for the Analysis Model 

1.5 Metrics for the Design model 

1.6 Metrics for Source Code 

1.7 Metrics for Testing 

1.8 Metrics for Maintenance  

1.1 Introduction 

A key element of any engineering process is measurement. We use 
measures to better understand the attributes of the models that we create 
and to assess the quality of the engineered products or systems that we 
build. But unlike other engineering disciplines, software engineering is not 
grounded in the basic quantitative laws of physics. Absolute measures, 
such as voltage, mass, velocity, or temperature, is uncommon in the 
software world. Instead, we attempt to derive a set of indirect measures 
that lead to metrics that provide an indication of the quality of some 
representation of software. Because software measures and metrics are 
not absolute, they are open to debate. 

Although technical metrics for computer software are not absolute, they 
provide us with a systematic way to assess quality based on a set of clearly 
defined rules. They also provide the software engineer with on-the-spot, 
rather than after-the-fact insight. This enables the engineer to discover and 
correct potential problems before they become catastrophic defects.  

1.2 Software Quality 

Quality is defined as conformance to the stated and implied needs of 
customer. Quality also refers to the measurable characteristics of a 
software product and these can be compared based on a given set of 
standards. In the same way, software quality can be defined as 
conformance to explicitly state and implicitly stated functional requirements. 
Here, the explicitly stated functional requirement can be derived from the 
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requirements stated by the customer which are generally documented in 
some form. Implicit requirements are requirements which are not stated 
explicitly but are intended. Implicit functional requirements are standards 
which a software development company adheres to during the 
development process. Implicit functional requirements also include the 
requirements of good maintainability.  

 Quality software is reasonably bug-free, delivered on time and within 
budget, meets requirements and is maintainable. However, as discussed 
above, quality is a subjective term. It will depend on who the ‘customer’ is 
and their overall influence in the scheme of things. Each type of ‘customer’ 
will have their own slant on ‘quality’. The end-user might define quality as 
something which is user-friendly and bug-free.  

Good quality software satisfies both explicit and implicit requirements. 
Software quality is a complex mix of characteristics and varies from 
application to application and the customer who requests for it.   

1.2.1 Attributes of Quality  

 The following are some of the attributes of quality:  

 Auditability: The ability of software being tested against conformance to 
standard.  

 Compatibility : The ability of two or more systems or components to 
perform their required functions while sharing the same hardware or 
software environment.   

 Completeness: The degree to which all of the software’s required 
funcions and design constraints are present and fully developed in the 
requirements specification, design document and code.  

 Consistency: The degree of uniformity, standardization, and freedom 
from contradiction among the documents or parts of a system or 
component.   

 Correctness: The degree to which a system or component is free from 
faults in its specification, design, and implementation. The degree to which 
software, documentation, or other items meet specified requirements.   

 Feasibility: The degree to which the requirements, design, or plans for a 
system or component can be implemented under existing constraints.   

 Modularity : The degree to which a system or computer program is 
composed of discrete components such that a change to one component 
has minimal impact on other components.   

 Predictability: The degree to which the functionality and performance of 
the software are determinable for a specified set of inputs.  
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 Robustness: The degree to which a system or component can function 
correctly in the presence of invalid inputs or stressful environmental 
conditions.   

 Structuredness: The degree to which the SDD (System Design 
Document) and code possess a definite pattern in their interdependent 
parts. This implies that the design has proceeded in an orderly and 
systematic manner (e.g., top-down, bottom-up). The modules are cohesive 
and the software has minimized coupling between modules.   

 Testability: The degree to which a system or component facilitates the 
establishment of test criteria and the performance of tests to determine 
whether those criteria have been met.   

 Traceability: The degree to which a relationship can be established 
between two or more products of the development process. The degree to 
which each element in a software development product establishes its 
reason for existing (e.g., the degree to which each element in a bubble 
chart references the requirement that it satisfies). For example, the 
system’s functionality must be traceable to user requirements.  

 Understandability: The degree to which the meaning of the SRS, SDD, 
and code are clear and understandable to the reader.   

 Verifiability : The degree to which the SRS, SDD, and code have been 
written to facilitate verification and testing.   

 1.2.2 Causes of error in Software  

•  Misinterpretation of customers’ requirements/communication  

•  Incomplete/erroneous system specification  

•  Error in logic  

•  Not following programming/software standards  

•  Incomplete testing  

•  Inaccurate documentation/no documentation   

•  Deviation from specification  

•  Error in data modeling and representation.  

1.2.3 Measurement of Software Quality (Quality metrics)  

 Software quality is a set of characteristics that can be measured in all 
phases of software development.  

 Defect metrics   

 •  Number of design changes required  

•  Number of errors in the code  
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•  Number of bugs during different stages of testing   

•  Reliability metrics  

•  It measures the mean time to failure (MTTF), that may be defined as 
probability of failure during a particular interval of time. This will be 
discussed in software reliability.  

 Maintainability metrics  

• Complexity metrics are used to determine the maintainability of 
software. The complexity of software can be measured from its 
control flow.    

 Consider the graph of Figure 1.1. Each node represents one program 
segment and edges represent the control flow. The complexity of the 
software module represented by the graph  can be given by simple 
formulae of graph theory as follows:  

 V(G) = e – n + 2 where  

 V(G) : is called Cyclomatic complexity of the program  

e = number of edges  

n = number of nodes  

 

FIGURE 1.1  A software module 

Applying the above equation the complexity V(G) of the graph is found to 
be 1.  The cyclomatic complexity has been related to programming effort, 
maintenance effort and debugging effort. Although cyclomatic complexity 
measures program complexity, it fails to measure the complexity of a  
program without multiple conditions. 

The information flow within a program can provide a measure for program 
complexity.  
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Important parameters for measurement of Software Quality  

 •  To the extent it satisfies user requirements; they form the foundation to 
measure software quality.  

•  Use of specific standards for building the software product. Standards 
could be organisation’s own standards or  standards referred in a 
contractual agreement.  

•  Implicit requirements which are not stated by the user but are essential 
for quality software.  

 Software Quality Assurance   

 The aim of the Software Quality Assurance process is to develop high-
quality software product.  

 The purpose of Software Quality Assurance is to provide management 
with appropriate visibility into the process of the software project and of the 
products being built. Software Quality Assurance involves reviewing and 
auditing the software products throughout the development lifecycle to 
verify that they conform to explicit requirements and implicit requirements 
such as applicable procedures and standards.  

Compliance with agreed-upon standards and procedures is evaluated 
through process monitoring, product evaluation, and audits.  

 Software Quality Assurance (SQA) is a planned, coordinated and 
systematic actions necessary to provide adequate confidence that a 
software product conforms to established technical requirements.   

 Software Quality Assurance is a set of activities designed to evaluate the 
process by which software  is developed and/or maintained.  

The process of Software Quality Assurance   

1.  Defines the requirements for software controlled system fault/failure 
detection, isolation, and recovery;  

   2.  Reviews the software development processes and products for 
software error prevention and/ or controlled change to reduced functionality 
states; and   

3.  Defines the process for measuring and analysing defects as well as 
reliability and maintainability factors.  

 Software engineers, project managers, customers and Software Quality 
Assurance groups are involved in software quality assurance activity. The 
role of various groups in software quality assurance are as follows:  

 •  Software engineers:  They ensure that appropriate methods are applied 
to develop the software, perform testing of the software product and 
participate in formal technical reviews.   
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 •  SQA group: They assist the software engineer in developing high 
quality  product. They plan quality assurance activities and report the 
results of review. 

1.3 A Framework for Technical Software Metrics 

A measurement assigns numbers or symbols to attributes of entities in the 
real word. To accomplish this, a measurementmodel encompassing a 
consistent set of rules is required. Although the theory of measurement 
(e.g., [KYB84]) and its application to computer software are topics that are 
beyond the scope of this book, it is worthwhile to establish a fundamental 
framework and a set of basic principles for the measurement of technical 
metrics for software. 

1.3.1 The Challenge of Technical Metrics 

Over the past three decades, many researchers have attempted to develop 
a single metric that provides a comprehensive measure of software 
complexity. Fenton characterizes this research as a search for “the 
impossible holy grail.” By analogy, consider a metric for evaluating an 
attractive car. Some observers might emphasize body design, others might 
consider mechanical characteristics, still others might tout cost, or 
performance, or fuel economy, or the ability to recycle when the car is 
junked. Since any one of these characteristics may be at odds with others, 
it is difficult to derive a single value for “attractiveness.” The same problem 
occurs with computer software. 

1.3.2 Measurement Principles 

Before we introduce a series of technical metrics that (1) assist in the 
evaluation of the analysis and design models, (2) provide an indication of 
the complexity of procedural designs and source code, and (3) facilitate the 
design of more effective testing, it is important to understand basic 
measurement principles. A measurement process that can be 
characterized by five activities: 

Formulation: The derivation of software measures and metrics that are 
appropriate for the representation of the software that is being considered. 

Collection: The mechanism used to accumulate data required to derive 
the formulated metrics. 

Analysis: The computation of metrics and the application of mathematical 
tools.  

Interpretation: The evaluation of metrics results in an effort to gain insight 
into the quality of the representation. 

Feedback:Recommendations derived from the interpretation of technical 
metrics transmitted to the software team. 

The principles that can be associated with the formulation of technical 
metrics are  
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• The objectives of measurement should be established before data 
collection begins. 

• Each technical metric should be defined in an unambiguous manner. 

• Metrics should be derived based on a theory that is valid for the domain of 
application (e.g., metrics for design should draw upon basic design 
concepts and principles and attempt to provide an indication of the 
presence of an attribute that is deemed desirable). 

• Metrics should be tailored to best accommodate specific products and 
processes. 

Although formulation is a critical starting point, collection and analysis are 
the activities that drive the measurement process. Roche suggests the 
following principles for these activities: 

• Whenever possible, data collection and analysis should be automated. 

• Valid statistical techniques should be applied to establish relationships 

between internal product attributes and external quality characteristics 
(e.g., is the level of architectural complexity correlated with the number of 
defects reported in production use?). 

• Interpretative guidelines and recommendations should be established for 
each metric.  

In addition to these principles, the success of a metrics activity is tied to 
management support. Funding, training, and promotion must all be 
considered if a technical measurement program is to be established and 
sustained. 

1.3.3 The Attributes of Effective Software Metrics 

Hundreds of metrics have been proposed for computer software, but not all 
provide practical support to the software engineer. Some demand 
measurement that is too complex, others are so esoteric that few real world 
professionals have any hope of understanding them, and others violate the 
basic intuitive notions of what high quality software really is. 

The derived metric and the measures that lead to it should be 

Simple and computable: It should be relatively easy to learn how to 
derive the metric, and its computation should not demand inordinate effort 
or time. 

Empirically and intuitively persuasive: The metric should satisfy the 
engineer’s intuitive notions about the product attribute under consideration 
(e.g., a metric that measures module cohesion should increase in value as 
the level of cohesion increases). 
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Consistent and objective: The metric should always yield results that are 
unambiguous. An independent third party should be able to derive the 
same metric value using the same information about the software.  

Consistent in its use of units and dimensions: The mathematical 
computation of the metric should use measures that do not lead to bizarre 
combinations of units. For example, multiplying people on the project teams 
by programming language variables in the program results in a suspicious 
mix of units that are not intuitively persuasive. 

Programming language independent: Metrics should be based on the 
analysis model, the design model, or the structure of the program itself. 
They should not be dependent on the vagaries of programming language 
syntax or semantics. 

An effective mechanism for high-quality feedback: That is, the metric 
should provide a software engineer with information that can lead to a 
higher quality end product.  

1.4 Metrics for the Analysis Model 

Technical work in software engineering begins with the creation of the 
analysis model. It is at this stage that requirements are derived and that a 
foundation for design is established. Therefore, technical metrics that 
provide insight into the quality of the analysis model are desirable. 

1.4.1 Function-Based Metrics 

The function point metric can be used effectively as a means for predicting 
the size of a system that will be derived from the analysis model. The data 
flow diagram is evaluated to determine the key measures required for 
computation of the function point metric: 

• number of user inputs 

• number of user outputs 

• number of user inquiries 

• number of files 

• number of external interfaces 

1.4.2 The Bang Metric 

Like the function point metric, the bang metric can be used to develop an 
indication of the size of the software to be implemented as a consequence 
of the analysis model. Primitives are determined by evaluating the analysis 
model and developing counts for the following forms: 

Functional primitives (FuP): The number of transformations (bubbles) 
that appear at the lowest level of a data flow diagram. 
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Data elements (DE):The number of attributes of a data object, data 
elements are not composite data and appear within the data dictionary. 

Objects (OB): The number of data objects. 

Relationships (RE): The number of connections between data objects. 

States (ST): The number of user observable states in the state transition 
diagram. 

Transitions (TR): The number of state transitions in the state transition 
diagram.  

In addition to these six primitives, additional counts are determined for  

Modified manual function primitives (FuPM): Functions that lie outside 
the system boundary but must be modified to accommodate the new 
system.  

Input data elements (DEI): Those data elements that are input to the 
system. 

Output data elements (DEO):Those data elements that are output from 
the system. 

Retained data elements (DER): Those data elements that are retained 
(stored) by the system. 

Data tokens (TCi). The data tokens (data items that are not subdivided 
within a functional primitive) that exist at the boundary of the ith functional 
primitive (evaluated for each primitive). 

Relationship connections (REi): The relationships that connect the ith 
object in the data model to other objects. 

1.5 Metrics for the Design model 

It is inconceivable that the design of a new aircraft, a new computer chip, or 
a new office building would be conducted without defining design 
measures, determining metrics for various aspects of design quality, and 
using them to guide the manner in which the design evolves. And yet, the 
design of complex software-based systems often proceeds with virtually no 
measurement. The irony of this is that design metrics for software are 
available, but the vast majority of software engineers continue to be 
unaware of their existence. 

Design metrics for computer software, like all other software metrics, are 
not perfect. Debate continues over their efficacy and the manner in which 
they should be applied. Many experts argue that further experimentation is 
required before design measures can be used. And yet, design without 
measurement is an unacceptable alternative. 

In the sections that follow, we examine some of the more common design 
metrics for computer software. Each can provide the designer with 
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improved insight and all can help the design to evolve to a higher level of 
quality.   

1.5.1 Architectural Design Metrics 

Architectural design metrics focus on characteristics of the program 
architecture with an emphasis on the architectural structure and the 
effectiveness of modules. These metrics are black box in the sense that 
they do not require any knowledge of the inner workings of a particular 
software component. 

1.5.2 Component-Level Design Metrics 

Component-level design metrics focus on internal characteristics of a 
software component and include measures of the “three Cs” module 
cohesion, coupling, and complexity. These measures can help a software 
engineer to judge the quality of a component-level design.  

The metrics presented in this section are glass box in the sense that they 
require knowledge of the inner working of the module under consideration. 
Component-level design metrics may be applied once a procedural design 
has been developed. Alternatively, they may be delayed until source code 
is available. 

1.6 Metrics for Source Code 

Halstead's theory of software science is one of "the best known and most 
thoroughly studied composite measures of (software) complexity". Software 
science proposed the first analytical "laws" for computer software.  

Software science assigns quantitative laws to the development of computer 
software, using a set of primitive measures that may be derived after code 
is generated or estimated once design is complete. These follow: 

n1 = the number of distinct operators that appear in a program. 

n2 = the number of distinct operands that appear in a program. 

N1 = the total number of operator occurrences. 

N2 = the total number of operand occurrences. 

Halstead uses these primitive measures to develop expressions for the 
overall program length, potential minimum volume for an algorithm, the 
actual volume (number of bits required to specify a program), the program 
level (a measure of software complexity), the language level (a constant for 
a given language), and other features such as development effort, 
development time, and even the projected number of faults in the software. 
Halstead shows that length N can be estimated 

N = n1 log 2 n1 + n2 log 2 n2 (19-10) 
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and program volume may be defined 

V = N log 2 (n1 + n2) (19-11) 

It should be noted that V will vary with programming language and 
represents the volume of information (in bits) required to specify a program. 
Theoretically, a minimum volume must exist for a particular algorithm. 
Halstead defines a volume ratio L as the ratio of volume of the most 
compact form of a program to the volume of the actual program. In 
actuality, L must always be less than 1. In terms of primitive measures, the 
volume ratio may be expressed as 

L = 2/n1 X n2/N2 

1.7 Metrics for Testing 

Although much has been written on software metrics for testing, the 
majority of metrics proposed focus on the process of testing, not the 
technical characteristics of the tests themselves. In general, testers must 
rely on analysis, design, and code metrics to guide them in the design and 
execution of test cases. Function-based metrics can be used as a predictor 
for overall testing effort. Various project-level characteristics (e.g., testing 
effort and time, errors uncovered, number of test cases produced) for past 
projects can be collected and correlated with the number of FP produced 
by a project team. The team can then project “expected values” of these 
characteristics for the current project. 

The number of  functional primitives (FuP), data elements (DE), objects 
(OB), relationships (RE), states (ST), and transitions (TR) can be used to 
project the number and types of black-box and white-box tests for the 
software. For example, the number of tests associated with the 
human/computer interface can be estimated by (1) examining the number 
of transitions (TR) contained in the state transition representation of the 
HCI and evaluating the tests required to exercise each transition; (2) 
examining the number of data objects (OB) that move across the interface, 
and (3) the number of data elements that are input or output.  

Architectural design metrics provide information on the ease or difficulty 
associated with integration testing and the need for specialized testing 
software (e.g., stubs and drivers). Cyclomatic complexity (a component-
level design metric) lies at the core of basis path testing. In addition, 
cyclomatic complexity can be used to target modules as candidates for 
extensive unit testing. Modules with high cyclomatic complexity are more 
likely to be error prone than modules whose cyclomatic complexity is lower. 
For this reason, the tester should expend above average effort to uncover 
errors in such modules before they are integrated in a system. Testing 
effort can also be estimated using metrics derived from Halstead measures 
(Section 19.5). Using the definitions for program volume, V, and program 
level, PL, software science effort, e, can be computed as  
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PL = 1/[(n1/2)•(N2/n2)]  

e = V/PL  

The percentage of overall testing effort to be allocated to a module k can 
be estimated using the following relationship: percentage of testing effort 
(k) = e(k)/ ∑e(i)  where e(k) is computed for module k using Equations and 
the summation in the denominator of Equation is the sum of software 
science effort across all modules of the system. 

As tests are conducted, three different measures provide an indication of 
testing completeness. A measure of the breath of testing provides an 
indication of how many requirements (of the total number of requirements) 
have been tested. This provides an indication of the completeness of the 
test plan. Depth of testing is a measure of the percentage of independent 
basis paths covered by testing versus the total number of basis paths in the 
program. A reasonably accurate estimate of the number of basis paths can 
be computed by adding the cyclomatic complexity of all program modules. 
Finally, as tests are conducted and error data are collected, fault profiles 
may be used to rank and categorize errors uncovered. Priority indicates the 
severity of the problem. Fault categories provide a description of an error 
so that statistical error analysis can be conducted. 

1.8 Metrics for Maintenance  

All of the software metrics introduced in this chapter can be used for the 
development of new software and the maintenance of existing software. 
However, metrics designed explicitly for maintenance activities have been 
proposed. 

IEEE Std. 982.1-1988 suggests a software maturity index (SMI) that 
provides an indication of the stability of a software product (based on 
changes that occur for each release of the product). The following 
information is determined:  

MT = the number of modules in the current release 

Fc = the number of modules in the current release that have been changed 

Fa = the number of modules in the current release that have been added 

Fd = the number of modules from the preceding release that were deleted 
in the current release 

The software maturity index is computed in the following manner: 

SMI = [MT - (Fa + Fc + Fd)]/MT 

As SMI approaches 1.0, the product begins to stabilize. SMI may also be 
used as metric for planning software maintenance activities. The mean time 
to produce a release of a software product can be correlated with SMI and 
empirical models for maintenance effort can be developed. 
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Summary 

Knowing the specified functions that the product has been designed to 
perform, tests can be performed that show that each function is fully 
operational. A strategy for software testing may be to move upwards along 
the spiral.  Unit testing happens at the vortex of the spiral and concentrates 
on each unit of the software as implemented by the source code.  Testing 
happens upwards along the spiral to integration testing, where the focus is 
on design and production of the software architecture.  Finally, we perform 
system testing, where software and other system elements are tested 
together.    

Software metrics provide a quantitative way to assess the quality of internal 
product attributes, thereby enabling the software engineer to assess quality 
before the product is built. Metrics provide the insight necessary to create 
effective analysis and design models, solid code, and thorough tests. 

 



GLOSSARY 

Abstract Data Types (ADT):A type whose internal form is hidden behind a set of access 
functions. Objects of the type are created and inspected only by calls to the access functions. 
This allows the implementation of the type to be changed without requiring any changes outside 
the module in which it is defined. Abstract data types are central to object-oriented programming 
where every class is an ADT. A classic example of an ADT is a stack data type for which 
functions might be provided to create an empty stack, to push values onto a stack and to pop 

values from a stack.  

Abstract System: An abstract system is the system defined by a functional design. It is not a 
physical system to be found in the real world, but a conceptual system behaving as specified in 
the functional design. It is our understandings of the abstract systems that enables us to reason 
about the specified behaviour and verify that it will satisfy the functional requirements.  

Abstraction: Generalization, ignoring or hiding details. Examples are abstract data types (the 
representation details are hidden), abstract syntax (the details of the concrete syntax are 
ignored}, abstract interpretation (details are ignored to analyse specific properties).  

Algorithm Animation: Algorithm animation is the process of abstracting the data, operations 
and semantics of computer programs and then creating animated graphical views of those 
abstractions. 

American National Standards Institute (ANSI): The United States government body 
responsible for approving US standards in many areas, including computers and 

communications. ANSI is a member of ISO. ANSI sells ANSI and ISO (international) standards. 

Application family: An application family is a generic representation of application systems. 
One purpose is to allow several abstract systems, possibly defined using different design 
languages, to be composed in one application. A second purpose is to factor out the support 
systems which are generic and evolve independently from applications. The concept support 
heterogeneous applications, not easily covered by a single system description expressed in one 

of the design languages.  

Application Generator: An application generator takes as input a specification of the required 
product. This specification can be a 4GL program. The product of the generator is usually only 
modified by rerunning the generator with a changed specification. Building an application 

generator for some problem domains is difficult and requires much foresight. 

Application System: The application part of a system instance implementation. An application 
system defines the application (the behaviour) a customer wants to buy in terms of 
implementation code. It is normally a partial implementation lacking the necessary support to 
execute. An application system is used to produce the concrete systems that actually execute 

and is expressed using some high-level programming language.  

Applications Programmer Interface (API): The interface (calling conventions) by which an 
application program accesses operating system and other services. An API is defined at source 
code level and provides a level of abstraction between the application and the kernel (or other 
privileged utilities) to ensure the portability of the code. An API can also provide an interface 



between a high level language and lower level utilities and services which were written without 
consideration for the calling conventions supported by compiled languages. In this case, the 
API's main task may be the translation of parameter lists from one format to another and the 

interpretation of call-by-value and call-by-reference arguments in one or both directions.  

Architectural Design: Large systems are divided into smaller subsystems and modules which 
import from each other. The subsystems and modules and their use relationship is called the 

architectural design. 

Attachment: An encapsulated data object inside a document.[sun] 

Automated Reverse Architectural Design: The architectural design of a system and its 
components can be recovered automatically using certain tools. Some approaches are able to 

subsume modules into an automatically derived subsystem structure.  

CASE Based Reasoning: A technique for problem solving which looks for previous examples 
which are similar to the current problem. This is useful where heuristic knowledge is not 
available.  Some key research areas are efficient indexing, how to define "similarity" between 

cases and how to use temporal information.  

Class: A class defines a software object’s interface and implementation. It specifies the object’s 

internal representation and defines the operations that the object can be instructed to perform.  

Client: A computer system or process that requests a service of another computer system or 
process (a server). For example, a workstation requesting the contents of a file from a file server 
is a client of the file server.  

Client-Server: A common form of distributed system in which software is split between server 
tasks and client tasks. A client sends requests to a server, according to some protocol, asking 
for information or action, and the server responds. There may be either one centralized server 
or several distributed ones. This model allows clients and servers to be placed independently on 
nodes in a network, possibly on different hardware and operating systems appropriate to their 

function, e.g. fast server/cheap client.  

Client-Server, Three-Tier: Application partitioning, or three-tier architectures are expected to 
be the next generation of client-server systems. A three-tier system adds a third component (the 
application server) in between the current client and server. The application server maintains 
some data and behaviour which reflects business rules. With a two-tier system if business rules 
change, then all client workstations have to be upgraded. In contrast a three-tier’s application 
server provides a central location and transparent updating of the rules with respect to the 

clients.  

Cohesion: A measure of the level of functional integration within a module. High cohesion 
implies well defined modules serving one dedicated purpose, low cohesion implies ambiguity. 

See also coupling.  

Common Object Request Broker Architecture (CORBA): An Object Management Group 
specification which provides the standard interface definition between OMG-compliant objects.  



Complexity: A code measure, which is a combination of code, data, data flow, structure and 

control flow metrics.  

Component Integration Laboratories (CIL): An effort to create a common framework for 
interoperability between application programs on desktop platforms, formed by Apple Computer 

Inc., IBM, Novell, Oracle, Taligent, WordPerfect and Xerox.  

Component Software (Component Object Model, COM): Compound documents and 
component software define object-based models that facilitate interactions between 
independent programs. These approaches aim to simplify the design and implementation of 
applications, and simplify human-computer interaction. Component software addresses the 
general problem of designing systems from application elements that were constructed 
independently by different vendors using different languages, tools, and computing platforms. 
The goal is to have end-users and developers enjoying the same level of plug-and-play 
application interoperability that are available to hardware manufacturers. Compound documents 

are one example of component interoperability.  

Compound Document (Compound Object Model, COM): Compound documents and 
component software define object-based models that facilitate interactions between 
independent programs. These approaches aim to simplify the design and implementation of 
applications, and simplify human-computer interaction. A compound document is a container for 
sharing heterogeneous data, which includes mechanisms which manage containment, 
association with an application, presentation of data/applications, user interaction with 
data/applications, provision of interfaces for data exchange, and more notably linking and 
embedding. Data can be incorporated into a document by a pointer (link) to the data contained 
elsewhere in the document, or in another document. Linking reduces storage requirements, and 
facilitates automatic transparent updates. Embedding is where the data is physically located 

within a compound document.  

Computer Aided Software Engineering (CASE): A technique for using computers to help with 
one or more phases of the software life-cycle, including the systematic analysis, design, 
implementation and maintenance of software. Adopting the CASE approach to building and 

maintaining systems involves software tools and training for the developers who will use them.  

Computer Supported Cooperative/Collaborative Work (CSCW): Software tools and 

technology to support groups of people working together on a project, often at different sites.  

Conceptual Abstraction: Semi-formal, human-oriented and domain-specific abstractions play 
a critical role both in reverse and forward engineering, and therefore also in reengineering. Such 
conceptual abstractions are fundamental to the reengineering process whether it is a totally 

manual or partially automated process.  

Concrete System: A concrete system implements the behaviour of one or more abstract 
systems. A typical concrete system will consist of hardware and executable code, and is what 
users actually use. Each concrete system will be distinct and will operate in a particular 
application context. 

Configuration Item: Hardware or software, or an aggregate of both, which is designated by the 

project configuration manager (or contracting agency) for configuration management.  



Configuration Management: A discipline applying technical and administrative controls to: 

• Identification and documentation of physical and functional characteristics of configuration 
items. 

• Any changes to characteristics of those configuration items. 

• Recording and reporting of change processing and implementation of the system.  

Configuration Programming: An approach that advocates the use of a separate configuration 
language to specify the coarse grain structure of programs. Configuration programming is 
particularly attractive for concurrent, parallel and distributed systems that have inherently 

complex program structures. 

Coupling: The degree to which components depend on one another. There are two types of 
coupling, "tight" and "loose". Loose coupling is desirable for good software engineering but tight 
coupling may be necessary for maximum performance. Coupling is increased when the data 

exchanged between components becomes larger or more complex.  

Database: One or more large structured sets of persistent data, usually associated with 
software to update and query the data. A simple database might be a single file containing 
many records, each of which contains the same set of fields where each field is a certain fixed 
width.  

Database Management System: A suite of programs which typically manage large structured 
sets of persistent data, offering adhoc query facilities to many users. A database management 
system is a complex set of software programs that controls the organisation, storage and 
retrieval of data (fields, records and files) in a database. It also controls the security and integrity 
of the database. The DBMS accepts requests for data from the application program and 
instructs the operating system to transfer the appropriate data. When a DBMS is used, 
information systems can be changed much more easily as the organization’s information 
requirements change. New categories of data can be added to the database without disruption 

to the existing system.  

Database Object Oriented: A system offering DBMS facilities in an object-oriented 
programming environment. Data is stored as objects and can be interpreted only using the 
methods specified by its class. The relationship between similar objects is preserved 
(inheritance) as are references between objects. Queries can be faster because joins are often 
not needed (as in a relational database). This is because an object can be retrieved directly 
without a search, by following its object id. The same programming language can be used for 
both data definition and data manipulation. The full power of the database programming 
language's type system can be used to model data structures and the relationship between the 

different data items 

Database Relational: A database based on the relational model developed by E.F. Codd. A 
relational database allows the definition of data structures, storage and retrieval operations, and 
integrity constraints. In such a database, the data and relations between them are organised in 
tables. A table is a collection of records and each record in a table contains the same fields. 
Certain fields may be designated as keys, which means that searches for specific values of that 
field will use indexing to speed them up. Records in different tables may be linked if they have 



the same value in one particular field in each table. INGRES, Oracle and Microsoft Access are 

well-known examples.  

Data Centered Program Understanding: Instead of focusing on the control structure of a 
program (such as call graphs, control-flow graphs and paths) data centered program 

understanding focuses on data and data-relationships.  

Data Flow Analysis: A process to discover the dependencies between different data items 
manipulated by a program. The order of execution in a data driven language is determined 

solely by the data dependencies.  

Data Flow Diagram (DFD):A graphical notation used to describe how data flows between 
processes in a system. An important tool of most structured analysis techniques.  

Data Name Rationalization (DNR): A special case of data re-engineering. DNR tools enforce 
uniform naming conventions across all software systems.  

Design: The phase of software development following analysis, and concerned with how the 
problem is to be solved.  

Design Pattern: A design pattern systematically names, motivates and explains a general 
design that addresses a recurring design problem in object-oriented systems. It describes the 
problem, the solution, when to apply the solution and it’s consequences. It also gives 
implementation hints and examples. The solution is a general arrangement of objects and 
classes that solve the problem. The solution is customized and implemented to solve the 
problem in a particular context. 

Design Recovery: A subset of reverse engineering in which domain knowledge, external 
information and deduction or fuzzy reasoning are added to the observations of the subject 
system to identify meaningful higher level abstractions beyond those obtained directly by 
examining the system itself. Design recovery recreated design abstractions from a combination 
of code, existing design documentation (if available), personal experience, and general 
knowledge about problem and application domains. The design recovery process consists of 
three steps: 

(a)   Supporting program understanding for maintenance (what are the modules? What are the 
key data items? What are the software engineering artifacts? What are the other informal design 
abstractions?); 

(b)   Supporting population of reuse and recovery libraries (The design abstractions of the 
former step are generalized and integrated into the reuse library and the recovery knowledge 
base); 

(c)   Applying the results of design recovery (The abstract design components stored in the 
domain model now become the starting point for discovering candidate concrete realizations of 
themselves in a new system’s code).  

Distributed Computing Environment (DCE): An architecture consisting of standard 
programming interfaces, conventions and server functionalities (e.g. naming, distributed file 



system, remote procedure call) for distributing applications transparently across networks of 

heterogeneous computers. DCE is promoted and controlled by the Open Software Foundation.  

Domain: A functional area covered by a family of systems.  

Domain Analysis: The set of activities aiming at identifying, collecting, organizing, analyzing 
and representing the relevant information in a domain, based on the study of existing systems 
and their development history, knowledge captured from domain experts, underlying theory, and 
emerging technologies within the domain. Domain analysis aims at producing domain models 

and analyzing commonalities and variants among a family of products.  

Domain Architecture / Domain Architectural Model / Family Design: architecture applicable 
to a family of applications belonging to the domain. Some times called “generic architecture”.  

Domain Engineering: An encompassing process which includes domain analysis and the 
subsequent methods and tools that address the problem of development through the application 

of domain analysis products (e.g., domain implementation).  

Domain Model: Domain models are the result of domain analysis. A domain model is a 
definition of domain abstractions (objects, relationships, functions, events, etc.) It consists off a 
concise and classified representation of the commonalities and variability of the problems in the 
domain and of their solutions. It is a representation of a family. Domain models include domain 

requirements models (the problem) and domain architecture (the solution).  

Encapsulation: The result of hiding a representation and implementation in an object. The 
representation is not visible and cannot be accessed directly from outside the object. Operations 

are the only way to access and modify an object’s state.  

Entity :( 1)   International Organization for Standardization's open systems interconnection 
(OSI) terminology for a layer protocol machine. An entity within a layer performs the functions of 
the layer within a single computer system, accessing the layer entity below and providing 
services to the layer entity above at local service access points.  

(2)   In object-oriented programming, an entity is part of the definition of a class (group) of 
objects. In this instance, an entity might be an attribute of the class (as feathers are an attribute 

of birds), or it might be a variable or an argument in a routine associated with the class. 

(3)   In database design, an entity is an object of interest about which data can be collected. In a 
retail database application, customers, products, and suppliers might be entities. An entry can 
subsume a number of attributes: Product attributes might be color, size, and price; customer 

attributes might include name, address, and credit rating.  

Family: A set of systems sharing some commonalities (equivalent to product line).  

Forward Engineering: The set of engineering activities, using the output of software 
reengineering, that consume the products and artifacts derived from legacy software and new 
requirements to produce a new target system.  



Framework: In object-oriented systems, a set of classes that embodies an abstract design for 

solutions to a number of related problems.  

Groupware: See Computer-support collaborative work. 

Heterogeneous Network: A network composed of systems of more than one architecture. 
Contrast with homogeneous network.  

Homogeneous Network: A network composed of systems of only one architecture. Contrast 
with heterogeneous network.  

Hypermedia: An extension of hypertext to include graphics, sound, video and other kinds of 

data.  

Hypertext: A term coined by Ted Nelson around 1965 for a collection of documents (or nodes) 
containing cross-references or links which, with the aid of an interactive browser program, allow 
the reader to move easily from one document to another.  

Implementation Design Description: An implementation design description is a complete 
description of all the information needed to produce a concrete system from one or more 
functional designs. It describes which components of a generic system family must be used, 
and which tools must be invoked with which parameters. The implementation design description 
acts as meta-description referring to other descriptions.  

Implementation Model: The implementation model consists of the code files and the used 
work structure. It includes the application software description as well as the support software 
description. While the design model is a more abstract view, the implementation model contains 
the full information necessary to build the system.  

Informal Reasoning: An approach to knowledge-based concept assignment. Informal 
reasoning is based on human oriented concepts, but takes knowledge like natural language 
comments, or grouping in account too. The needed base of knowledge about the problem for 
the informal reasoning is called the domain model. It is assumed that the domain model 
(problem, program and application) knowledge can be usefully represented as patterns of 

informal and semi-formal information, which are called conceptual abstractions.  

Information Base: The main repository of information about the software. It can be created by 

decomposing any number of views of a system.  

Interaction Diagram: A diagram that shows the flow of interaction between objects.  

Interface: A boundary across which two systems communicate. An interface might be a 
hardware connector used to link to other devices, or it might be a convention used to allow 
communication between two software systems. Often there is some intermediate component 

between the two systems which connects their interfaces together.  

 (1)   The point at which independent systems or diverse groups interact. The devices, rules, or 
conventions by which one component of a system communicates with another. Also, the point of 
communication between a person and a computer. 



(2)   The part of a program that defines constants, variables, and data structures, rather than 

procedures.  

(3)   The equipment that accepts electrical signals from one part of a computer system and 
renders them into a form that can be used by another part. 

(4)  Hardware or software that links the computer to a device. 

(5)   To convert signals from one form to another and pass them between two pieces of 
equipment.  

International Organization for Standardization (ISO): A voluntary, non-treaty organisation 
founded in 1946, responsible for creating international standards in many areas, including 
computers and communications. ISO produced the seven layer model for network architecture 
(Open Systems Interconnection). Its members are the national standards organisations of 89 
countries, including the American National Standards Institute.  

Internationalization: The process of altering a program so that it is portable across several 
native languages. This portability may support both different character sets, such as the 8-bit 
ISO 8859/1 (ISO Latin 1) character set and the 7-bit ASCII character set, and different 
languages for documentation, help screens, and so on.  

Language 3rd Generation (3GL): A language designed to be easier for a human to 
understand, including things like named variables. A fragment might be let c = c + 2 * d. 
FORTRAN, ALGOL and COBOL are early examples of this sort of language. Most "modern" 
languages (BASIC, C, C++) are third generation. Most 3GLs support structured programming.  

Language 4th Generation (4GL): An application specific language. The term was invented to 
refer to non-procedural high level languages built around database systems. The first three 
generations were developed fairly quickly, but it was still frustrating, slow, and error prone to 
program computers, leading to the first "programming crisis", in which the amount of work that 
might be assigned to programmers greatly exceeded the amount of programmer time available 
to do it. Meanwhile, a lot of experience was gathered in certain areas, and it became clear that 
certain applications could be generalised by adding limited programming languages to them. 
Thus were born report-generator languages, which were fed a description of the data format 
and the report to generate and turned that into a COBOL (or other language) program which 
actually contained the commands to read and process the data and place the results on the 
page. Some other successful 4th-generation languages are: database query languages, e.g. 
SQL; Focus, Metafont, PostScript, RPG-II, S, IDL-PV/WAVE, Gauss, Mathematica and data-
stream languages such as AVS, APE, Iris Explorer.  

Language Interface Definition (IDL): To accomplish interoperability across languages and 
tools, an object model specifies standards for defining application interfaces in terms of a 
language independent - an interface definition language. Interface definitions are typically stored 
in a repository which clients can query at run-time.  

Language Markup: Languages for annotation of source code to simply improve the source 
code’s appearance with the means of bold-faced key words, slanted comments, etc. See also 
reformatting.  



Language Module Interconnection (MIL): A module interconnection language is a language 
that is separate from and complementary to a program implementation language. MILs are 
concerned with the overall architecture of software systems. They deal with the composition of 
large systems out of modules, the interfaces between these modules & their specification, and 
the versioning of the resulting architecture over time. The purpose of MILs is to describe a 
system so that it can be constructed, unequivocally identified, and identically reproduced. A MIL 
is both a notation for design, documentation & communication, and a means of enforcing 

system architecture. 

Language Object Oriented: A language for object oriented programming. The basic concept in 
this approach is that of an object which is a data structure (abstract data type) encapsulated 
with a set of routines, called methods which operate on the data. Operations on the data can 
only be performed via these methods, which are common to all objects which are instances of a 
particular class (see inheritance). Thus the interface to objects is well defined, and allows the 
code implementing the methods to be changed so long as the interface remains the same. Each 
class is a separate module and has a position in a class hierarchy. Methods or code in one 
class can be passed down the hierarchy to a subclass or inherited from a superclass. Procedure 
calls are described in term of message passing. A message names a method and may 
optionally include other arguments. When a message is sent to an object, the method is looked 
up in the object's class to find out how to perform that operation on the given object. If the 
method is not defined for the object's class, it is looked for in its superclass and so on up the 
class hierarchy until it is found or there is no higher superclass. Procedure calls always return a 
result object, which may be an error, as in the case where no superclass defines the requested 

method.  

Language Program Description/Design (PDL): Any of a large class of formal and profoundly 
useless pseudo-languages in which management forces one to design programs. Too often, 
management expects PDL descriptions to be maintained in parallel with the code, imposing 

massive overhead of little or no benefit.  

Language Structured: A programming language where the program may be broken down into 
blocks or procedures which can be written without detailed knowledge of the inner workings of 
other blocks, thus allowing a top-down design approach.  

Language Specification and Description (SDL): A language standardised by the ITU-T well 
suited to functional design of reactive systems comprising concurrent processes with state-

transition behaviour.  

Language Structured Query (SQL): A language which provides a user interface to relational 
database management systems, developed by IBM in the 1970s. SQL is the de facto standard, 
as well as being an ISO and ANSI standard. It is often embedded in other programming 
languages. SQL provides provided basic language constructs for defining and manipulating 
tables of data, language extensions for referential integrity and generalised integrity constraints, 
facilities for schema manipulation and data administration, and capabilities for data definition 
and data manipulation. Development is currently underway to enhance SQL into a 
computationally complete language for the definition and management of persistent, complex 
objects. This includes: generalization and specialisation hierarchies, multiple inheritance, user 
defined data types, triggers and assertions, support for knowledge based systems, recursive 
query expressions, and additional data administration tools. It also includes the specification of 



abstract data types (ADTs), object identifiers, methods, inheritance, polymorphism, 

encapsulation, and all of the other facilities normally associated with object data management.   

Language Visual Programming (VPL): Any programming language that allows the user to 
specify a program in a two-(or more)-dimensionsional way. Conventional textual languages are 
not considered two-dimensional since the compiler or interpreter processes them as one-
dimensional streams of characters. A VPL allows programming with visual expressions - spatial 
arrangements of textual and graphical symbols. VPLs may be further classified, according to the 
type and extent of visual expression used, into icon-based languages, form-based languages 
and diagram languages. Visual programming environments provide graphical or iconic elements 
which can be manipulated by the user in an interactive way according to some specific spatial 
grammar for program construction. A visually transformed language is a non-visual language 
with a superimposed visual representation. Naturally visual languages have an inherent visual 

expression for which there is no obvious textual equivalent.  

Legacy System: A typical computer legacy system may be 10-25 years old, have been 
developed using archaic methods, have experienced several personnel changes, one for which 
current maintenance is very expensive, and one for which integration with current or modern 
technology or software systems is difficult or impossible. Legacy systems require reengineering 
to put them in a form where they may better suit modern requirements and may evolve more 
efficiently.  

Maintenance / Maintainability: An important part of the software life-cycle. Maintenance is 
expensive in manpower and resources, and software engineering aims to reduce its cost. 

Maintenance activities include: 

• Perfective maintenance - Changes which improve the system in some way without changing 
its functionality; 

• Adaptive maintenance - Maintenance which is required because of changes in the 
environment of a program; 

• Corrective maintenance - The correction of previously undiscovered system errors. 

Metric: A measure of software quality which indicate the complexity, understandability, 

testability, description and intricacy of code.  

Metric Maintenance: Metrics that try to give a quantifying answer on how good a certain 

program is to maintain. 

Middleware: Software that mediates between an application program and a network. It 
manages the interaction between disparate applications across the heterogeneous computing 
platforms. The Object Request Broker (ORB), software that manages communication between 
objects, is an example of a middleware program. A middleware service is a general purpose 
service that sits between platforms and applications. It is defined by the APIs and protocols it 
supports. Middleware is generally not application specific, not platform specific, distributed, and 

supports standard interfaces and protocols. 

Object: A run-time entity that packages both data and the procedures that operates on that 

data. 



Object Linking and Embedding (OLE):  A distributed object system and protocol from 
Microsoft also used on the Acorn Archimedes. OLE allows an editor to “farm out” part of a 
document to another editor and them re-import it. For example, a desk-top publishing system 

might send some text to a word processor or a picture to a bitmap editor using OLE.  

Object Management Group (OMG):  consortium aimed at setting standards in object-oriented 
programming. The Common Object Request Broker Architecture (CORBA) specifies what it 

takes to be OMG-compliant.  

Object Modelling Technique (OMT): An object-oriented analysis and design method used for 
domain modelling.  

Object Oriented Design/Analysis (OOD/OOA): A design method in which a system is 
modeled as a collection of cooperating objects and individual objects are treated as instances of 
a class within a class hierarchy. Four stages can be identified: identify the classes and objects, 
identify their semantics, identify their relationships and specify class and object interfaces and 

implementation. Object-Oriented design is one of the stages of object-oriented programming.  

Object Oriented Programming (OOP): The basic concept in this approach is that of an object 
which is a data structure (abstract data type) encapsulated with a set of routines, called 
methods which operate on the data. Operations on the data can only be performed via these 
methods, which are common to all objects which are instances of a particular class (see 
inheritance). Thus the interface to objects is well defined, and allows the code implementing the 
methods to be changed so long as the interface remains the same. Each class is a separate 
module and has a position in a class hierarchy. Methods or code in one class can be passed 
down the hierarchy to a subclass or inherited from a superclass. Procedure calls are described 
in term of message passing. A message names a method and may optionally include other 
arguments. When a message is sent to an object, the method is looked up in the object's class 
to find out how to perform that operation on the given object. If the method is not defined for the 
object's class, it is looked for in its superclass and so on up the class hierarchy until it is found 
or there is no higher superclass. Procedure calls always return a result object, which may be an 
error, as in the case where no superclass defines the requested method.  

Object Request Broker (ORB): ORBs are fundamental to CORBA. In a distributed 
environment they provide a common platform for client objects to request data and services 
from server objects, and for server objects to pass their responses back to clients. ORBs hide 
interoperability details from objects (i.e., programming language and operating system used, 
local or remote, etc.)  

OLE Custom Controls (OCX): An Object Linking and Embedding (OLE) custom control 
allowing infinite extension of the Microsoft Access control set. OCX is similar in purpose to VBX 
used in Visual Basic.  

OMT Model: A model built with the Object Modelling Technique. An OMT model may have 
three views (object, dynamic and functional). It consists of a set of diagrams and associated 
information necessary for characterizing the domain (e.g., data dictionary, modelling rationale, 
costs, etc.)  

Open Doc: compound document architecture from CIL based on CORBA. It aims to enable 
embedding of features from different application programs into a single working document.  



Open Scripting Architecture (OSA): An automation technology that works with OpenDoc and 
lets parts of a component document be manipulated programmatically and coordinated to work 
together.  

Open Software Foundation (OSF): A foundation created by nine computer vendors, (Apollo, 
DEC, Hewlett-Packard, IBM, Bull, Nixdorf, Philips, Siemens and Hitachi) to promote open 
computing. It is planned that common operating systems and interfaces, based on 
developments of Unix and the X Window System will be forthcoming for a wide range of 
different hardware architectures. OSF announced the release of the industry's first open 
operating system - OSF/1 on 23 October 1990.  

Plug-and-Play: Hardware or software that, after being installed (plugged in), can immediately 
be used (played with), as opposed to hardware or software which first requires configuration.  

Portable Common Tool Environment (PCTE): A European Computer Manufacturers 
Association standard framework for software tools developed in the Esprit programme. It is 
based on an entity-relationship Object Management System and defines the way in which tools 
access this 

Potpourri Module: A potpourri module is a module that provides more than one service to a 
program. This form of module violates the idea of a module being considered a responsibility 
assignment. The existence of this form of module increases considerably the effort that a 
programmer has to expend on a maintenance operation, and increases the likelihood of an error 

being introduced to a program as a result of maintenance work.  

Process Model: A model for a set of partially ordered steps required to reach a goal.  

Product A product is a broader than a system. It incorporates all components that the producer 
uses, and all the items delivered to customers. Documentation and confidential source code, for 
instance, is part of the product but not part of the system.  

Product Family: A product family is a collection of all the components used to produce 
concrete systems and any other items delivered to customers. It is generic in the sense that 
many distinct product instances can be produced from one generic product.  

Product Instance: A product instance is what a customer buys. A product instance consists of 
a copy of executable implementation code and any other items sold with it, typically 
documentation. 

Program Analysis: Program analysis tools are designed to aid the task of understanding 
existing source code by providing a large amount of detailed information about the program. 
Analysis tools help focus on the structure and attributes of the system. The relevant information 
can be extracted from a program by either analyzing the program text (static analysis), or by 

observing it’s behavior (dynamic analysis).  

Program Heuristics: A general rule of programming concept which captures the conventions in 

programming and governs the composition of the program plans into programs.  



Program Plan Recognition: The use of program plans to identify similar code fragments. 
Existing source code is often reused within a system via “cut and paste” text operations. 
Detection of cloned code fragments must be done using program heuristics since the decision 

whether two arbitrary programs perform the same function is undecidable.  

Program Plans/Concepts: An approach to knowledge-based concept assignment. They are 
schemes in which certain programming problems are usually solved. They are specified in 
terms of control and data flow and other structural information. A parsing approach (or 
sometime only pattern matching) will match plans stored in a plan base with the source code to 
assign concepts.  

Program Slicing: A program slice is fragments of a program in which some statements are 
omitted that are not necessary to understand a certain property of the program. For example if 
someone is interested in how the value for a certain returned value of a function is arrived at 

then only code that has a bearing, direct or indirect, on that value is relevant.  

Program Understanding: A related term to reverse engineering. Program understanding 
implies always that understanding begins with the source code while reverse engineering can 
start at a binary and executable form of the system or at high level descriptions of the design. 
The science of program understanding includes the cognitive science of human mental 
processes in program understanding. Program understanding can be achieved in an ad hoc 
manner and no external representation has to arise. While reverse engineering is the systematic 
approach to develop an external representation of the subject system, program understanding is 
comparable with design recovery because both of them start at source code level.  

Program Visualization: Program visualization is defined as a mapping from programs to 

graphical representations.  

Protocol: A set of formal rules describing how to transmit data, especially across a network. 
Low level protocols define the electrical and physical standards to be observed, bit- and byte-
ordering and the transmission and error detection and correction of the bit stream. High level 
protocols deal with the data formatting, including the syntax of messages, the terminal to 

computer dialogue, character sets, sequencing of messages etc.  

Prototyping: The creation of a model and the simulation of all aspects of a product. CASE tools 
support different degrees of prototyping. Some offer the end-user the ability to review all 
aspects of the user interface and the structure of documentation and reports before code is 

generated.  

Quality: The totality of features and characteristics of a product or service that bear on its ability 
to satisfy stated or implied needs. Not to be mistaken for "degree of excellence" or "fitness for 
use" which meet only part of the definition?  

Quality Low: Low quality is defined as delivered software which does not work at all, or 
repeatedly fails in operation. A project where users report more than 0.5 bugs or defects per 

function point per calendar year are of low quality.  

Rapid Application Development (RAD): A loose term for any software life-cycle designed to 
give faster development and better results and to take maximum advantage of recent advances 
in development software. RAD is associated with a wide range of approaches to software 



development: from hacking away in a GUI builder with little in the way of analysis and design to 
complete methodologies expanding on an information engineering framework. Some of the 
current RAD techniques are: CASE tools, iterative life-cycles, prototyping, workshops, SWAT 

teams, time box development, and reuse of applications, templates and code.  

Recode: Changes to implementation characteristics. Language translation and control-flow 
restructuring are source code level changes. Other possible changes include conforming to 

coding standards, improving source code readability, renaming programming items, etc. 

Redesign: Changes to design characteristics. Possible changes include restructuring design 
architecture, altering a system’s data model as incorporated in data structures or in a database, 

improvements to an algorithm, etc.  

Reengineering: The examination and modification of a system to reconstitute it in a new form 

and the subsequent re-implementation of the new form.  

Reengineering, Business Process (BPR): The fundamental rethinking and radical redesign of 
business procedures to achieve dramatic improvements in critical, contemporary measures of 
performance, such as cost, quality, service and speed. An example BPR tool would be process 

modeling, to facilitate the experimentation with “what if?” scenarios on business processes.  

Reformatting: The functional equivalent transformation of source code which changes only the 
structure to improve readability. Examples are pretty-printers and tools that replace GOTO loops 
with equivalent loops.  

Remodularisation: Changing a module’s structure in light of coupling analysis, in order to 

redefine the boundaries between modules and function of modules.  

Remote Procedure Call (RPC): A protocol which allows a program running on one host to 
cause code to be executed on another host without the programmer needing to explicitly code 
for this. RPC is an easy and popular paradigm for implementing the client-server model of 
distributed computing. An RPC is implemented by sending request message to a remote system 
(the server) to execute a designated procedure, using arguments supplied, and a result 
message returned to the caller (the client). There are many variations and subtleties in various 
implementations, resulting in a variety of different (incompatible) RPC protocols.  

Representation Problem: Building models to understand software systems is an important part 
of reverse engineering. Formal and explicit model building is important because it focuses 
attention on modeling as an aid to understanding and results in artifacts that may be useful to 
others. The representation used to build models has great influence over the success and value 
of the result. Choosing the proper representation during reverse engineering is the 

representation problem. 

Requirements Model: The requirements model describes the functionality and behaviour of a 

system. The requirements model is a functional design description of the system to be built.  

Respecify: Changes to requirements characteristics. This type of change can refer to changing 
only the form of existing requirements. For example, taking informal requirements expressed in 
English and generating a formal specification expressed in a formal language such as Z. This 



type of change can also refer to changing system requirements. Requirements changes include 

the addition of new requirements of the deletion or alteration of existing requirements. 

Restructuring: The engineering process of transforming the system from one representational 
form to another at the same relative level of abstraction, whilst preserving the subject system’s 

external functional behaviour.  

Retargeting: The engineering process of transforming and hosting or porting the existing 
system in a new configuration. This could be a new hardware platform, new operating system or 

a new CASE platform.  

Reuse; Using code developed for one application program in another application. Traditionally 
achieved using program libraries. Object-oriented programming offers reusability of code via its 
techniques of inheritance and genericity. Class libraries with intelligent browsers and application 
generators are under development to help in this process. Polymorphic functional languages 
also support reusability while retaining the benefits of strong typing.  

Reuse Black Box: A style of reuse based on object composition. Composed objects reveal no 

internal details to each other and are thus analogous to ‘black-boxes’.  

Reuse Engineering: The modification of software to make it more reusable, usually rebuilding 

parts to be put into a library.  

Reuse White Box: A style of reuse based on class inheritance. A subclass reuses the interface 

and implementation of its parent class, but it may have access.  

Reverse Engineering: The process of analyzing an existing system to identify its components 
and their interrelationships and create representations of the system in another form or at a 
higher level of abstraction. Reverse engineering is usually undertaken in order to redesign the 
system for better maintainability or to produce a copy of a system without access to the design 

from which it was originally produced.   

Reverse Specification: A kind of reverse engineering where a specification is abstracted from 
the source code or design description. Specification in this context means an abstract 
description of what the software does. In forward engineering the specification tells us what the 
software has to do, but this information is not included in the source code. Only in rare cases 
can it be recovered from comments in the source code and from the people involved in the 
original forward engineering process.  

Risk: Risk is defined as the possibility of loss or injury. Risk exposure is defined by the 
relationship RE = P(UO) * L(UO) Where RE is the risk exposure, P(UO) is the probability of an 
unsatisfactory outcome, and P(LO) is the loss to the parties affected by if the outcome is 
unsatisfactory. Examples of unsatisfactory outcome include schedule slips, budget overruns, 
wrong functionality, compromised non-functional requirements, user-interface shortfalls and 

poor quality. 

Risk Analysis (and Prioritization): The assessment of the loss probability and loss magnitude 
for each identified risk item. Prioritization involves producing a ranked and relative ordering of 

the risk items identified and analysed.  



Risk Identification: The production of a list of project specific risk items that are likely to 
compromise a project’s success. An example risk identification is the generation of checklists of 
likely risk factors. 

Risk Management: Risk management is divided into the following tasks: 

• Risk assessment 

• Risk identification 

• Risk analysis and prioritization 

• Risk control 

• Risk management planning 

• Risk resolution and monitoring [boehm91] 

Risk Management Planning: Plans which lay out the activities necessary to bring the risk 
items under control. Activities include prototyping, simulation, modelling, tuning, etc. All 
management plans should be integrated to reuse parts of each where possible, and to be 

factored into the overall schedule. 

Risk Resolution (and Monitoring): Production of a situation in which the risk items are 
eliminated or resolved. Risk monitoring involves tracking the project’s progress towards 
resolving its risk items and taking corrective action where appropriate.  

Semantics: The meaning of a string in some language, as opposed to syntax which describes 
how symbols may be combined independent of their meaning. The semantics of a programming 
language is a function from programs to answers. A program is a closed term and, in practical 
languages, an answer is a member of the syntactic category of values. The two main kinds are 

denotational semantics and operational semantics.  

Server: A program which provides some service to other (client) programs. The connection 
between client and server is normally by means of message passing, often over a network, and 
uses some protocol to encode the client's requests and the server's responses. The server may 
run continuously (as a daemon), waiting for requests to arrive or it may be invoked by some 
higher level daemon which controls a number of specific servers.  

Software Engineering: A systematic approach to the analysis, design, implementation and 
maintenance of software. It often involves the use of CASE tools. There are various models of 
the software life-cycle and many methodologies for the different phases.  

Software Evolution: The accommodation of perfective, corrective and adaptive maintenance, 

which may involve some reengineering activity.   

Software Life-Cycle: The software life-cycle consists of: requirements analysis, design, 
construction, testing (validation) and maintenance. The development process tends to run 
iteratively through these phases rather than linearly; several models (spiral, waterfall etc.) have 



been proposed to describe this process. Other processes associated with a software product 

are: quality assurance, marketing, sales and support.  

Software Methodology: The study of how to navigate through each phase of the software 
process model (determining data, control, or uses hierarchies, partitioning functions, and 
allocating requirements) and how to represent phase products (structure charts, stimulus-

response threads, and state transition diagrams).  

Software Psychology: Software psychology attempts to discover and describe human 
limitations in interacting with computers. These limitations can place restrictions on and form 
requirements for computing systems intended for human interaction. 

Structured System Analysis and Design Method (SSADM): A software engineering method 

and toolset required by some UK government agencies.  

Subsystem: An independent group of classes that collaborate to fulfill a set of responsibilities.  

Subsystem Composition: The process of constructing composite software components out of 
building blocks such as variables, procedures, modules and subsystems. [mueller90] 

Support Families: This is the collection of families used to compose support systems. The 
generic support is likely to be layer structured. Therefore several general support families are 
likely, e.g. operating system, I/O system, communication system, user interface, database 
management system. It is part of the implementation design to determine which support families 

to use, their composition and how instances are to be configured.  

Support System: The support system contains the support needed to actually execute an 
application system, e.g., the operating system, the user-interface library. It will normally consist 

of several layers of support where the lower layers provide services to the higher.  

Synchronised Refinement: Synchronised refinement is a systematic approach to detecting 
design decisions in source code and relating the detected decisions to the functionality of the 

system.  

System Building: System building is the process of transforming descriptions using tools to 
create some less abstract description. This may involve converting designs to source programs 
to object code. However, the building process may include other transformations such as the 

construction of system documentation from document fragments.  

System Modelling: System modelling is a technique to express, visualize, analyse and 
transform the architecture of a system. Here a system may consist of software components, 
hardware components, or both and the connections between these components. A system 
model is then a skeletal model of the system. It is intended to assist in developing and 

maintaining large systems with emphasis on the construction phase.  

System Object Model (SOM): SOM is IBM’s CORBA-compliant object request broker for a 
single address space architecture. A similar distributed system object model framework exists to 

allow objects to communicate across address spaces and networks.  



Task Interaction Graph: Task interaction graphs divide a program into maximal sequential 
regions connected by edges representing task interactions. Task interaction graphs can be used 
to generate concurrency graph representations, and both facilitate analysis of concurrent 

programs.  

Time-To-Market: The time between project start-up and delivery of the final concrete system. 

This duration is affected by organisation factors and non-software elements of the system,  

Transaction: A unit of interaction with a DBMS or similar system. It must be treated in a 

coherent and reliable way independent of other transactions.  

Transaction Processing (TP): The exchange of transactions in a client-server system to 
achieve the same ends as would be performed by the equivalent single complex application.  

Transaction Processing Monitor (TPM): For mission-critical applications it is vital to manage 
the programs which operate on the data. TP monitors achieve this by breaking complex 
applications down into transactions. TPMs were invented for applications which serve 
thousands of clients. A TP monitor can manage transaction resources on a single server or 

across multiple servers.  

 

Transformation/Translation Program/Software: Transformation of source code from one 
language to another or from one version of a language to another version of the same 

language. For example, converting from COBOL-74 to COBOL- 85.  

Uniform Resource Locator (URL): A draft standard for specifying an object on the Internet, 
such as a file or newsgroup. URLs are used extensively on the World-Wide Web. They are used 

in HTML documents to specify the target of a hyperlink.  

User Interface (UI): The aspects of a computer system or program which can be seen (or 
heard or otherwise perceived) by the human user, and the commands and mechanisms the 
user uses to control its operation and input data. A graphical user interface emphasizes the use 
of pictures for output and a pointing device such as a mouse for input and control whereas a 
command line interface requires the user to type textual commands and input at a keyboard and 

produces a single stream of text as output.  

User Interface Graphical (GUI): The use of pictures rather than just words to represent the 
input and output of a program. A program with a GUI runs under some windowing system (e.g. 
The X Window System, Microsoft Windows, Acorn RISC OS, and NEXTSTEP). The program 
displays certain icons, buttons, dialogue boxes etc. in its windows on the screen and the user 
controls it mainly by moving a pointer on the screen (typically controlled by a mouse) and 
selecting certain objects by pressing buttons on the mouse while the pointer is pointing at them.  

Version: (1) A version is a concrete instance of an object. There could exist multiple versions of 
one object. 

(2)  A concrete configuration with concrete versions of the different objects belonging to this 

configuration. Also known as release.  



View: A view is a software representation or a document about software. Example views are 
requirements and specification documents, hierarchy charts, flowcharts, petri nets, test data, 
etc. Each view is classified according to a particular view type:  

• Non-procedural - e.g. requirements documents 

• Pseudo-procedural- e.g. software architecture documents 

• Procedural - e.g. source code, data definition 

• Analysis views which may accompany any other view. 

Views Code: Representations of the source code which cover the same information as the 
code (or parts of it) but in a manner that accelerates the comprehension process. Examples are 

program slices, call graphs, data-flow, definition-use graphs, or control dependencies.  

Visual Basic: An event-driven visual programming system for Microsoft Windows, in which 
fragments of BASIC code are invoked when the user performs certain operations on graphical 
objects on screen. Widely used for in-house applications development by users and for 

prototyping. 

Visual Programming Environment: Software which allows the use of visual expressions (such 
as graphics, drawings, animation or icons) in the process of programming. These visual 
expressions may be used as graphical interfaces for textual programming languages. They may 
be used to form the syntax of new visual programming languages leading to new paradigms 
such as programming by demonstration or they may be used in graphical presentations of the 

behavior or structure of a program.  

Visual Modelling: A class of RAD tool which allow for the construction and execution of models 
during design.  

Workflow: A workflow is composed of multiple tasks / steps / activities, of which there are two 

types:  

(1)   Simple, representing indivisible activities, and 

(2)   Compound, representing those which can be decomposed into sub-activities. An entire 
workflow can be regarded as a large compound task. 

Workflow Management (WFM): Workflow management is a technology that supports the 

reengineering and automation of business and information processes. It involves: 

(a)  Defining workflows, i.e., those aspects of process that are relevant to control and coordinate 
the execution of its tasks, and 

(b) Providing for fast (re)design and (re)implementation of the processes as 

business/information needs change. 



Workflow Management Coalition (WFMC): A standards body formed in 1993 by a group of 

companies, intended to address the lack of standards in WFMSs. 

Workflow Management System (WFMS): A workflow management system provides 
procedural automation of a business process by management of the sequence of work activities 
and the invocation of appropriate human/IT resources associated with the various activity steps. 
Workflow products are typically client-server software products in which the work is performed 

within defined time-scales. 

World Wide Web (WWW, W3, and Web): An Internet client-server hypertext distributed 
information retrieval system which originated from the CERN High-Energy Physics laboratories 
in Geneva, Switzerland. On the WWW everything (documents, menus, and indices) is 
represented to the user as a hypertext object in HTML format. Hypertext links refer to other 
documents by their URLs. These can refer to local or remote resources accessible via FTP, 
Gopher, Telnet or news, as well as those available via the HTTP protocol used to transfer 
hypertext documents. The client program (known as a browser), e.g. Mosaic, Netscape, runs on 
the user's computer and provides two basic navigation operations: to follow a link or to send a 
query to a server. A variety of client and server software is freely available.  

X/Open: An international consortium of vendors whose purpose is to define the X/Open 
Common Applications Environment to provide applications portability. They also produced the 

X/open Portability Guide (XPG).  
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