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INTRODUgrION

You know that an algorithm as a general term is defined as the finite set of
computational st~ps that helps in accomplishing the desired result. The steps
included in the algorithm are used to transform the inputs of the algorithm to the
required output. Euclid's algorithm is one such famous algorithm that was used to
compute the common divisor of two given integer values. However, computer
algorithms deal with the analysis and design of those problems that are related
with computer science. 'Algorithmic' are computer algorithms that are handled
by computer science.

Analysis and design are the two major features of computer algorithms. The term
algorithm analysis, also known as complexity analysis or efficiency analysis, is
used to evaluate the performance of algorithms. The complexity analysis is used
to determine the amount of resources needed by the algorithm for its successful
execution. The performance of the algorithms can be measured in terms of their
time and space complexity. The time complexity of an algorithm is generally
denoted by a function of time, and that depends upon the input parameters given
to the algorithm. Time complexity also depends upon the number of steps in the
algorithm. It is denoted by different notations such as Big Oh (0), Big Theta (9)
and Big Omega (0). Therefore, efficient time complexity of an algorithm helps in
executing the algorithm in a small period of time. On the other hand, space
complexity of an algorithm deals with the amount of memory space needed by
the algorithm for its execution. However, the time complexity of the algorithm
can vary with the size of the problem that has to be solved.

The term algorithm design deals with the development of algorithms in terms of
the pseudo language. The different paradigms that can be used in designing
algorithms are divkle and conquer, dynamic programming, greedy method, and
backtracking.

This book, Computer Algorithms, covers the fundamentals of algorithm analysis
and designing as well as some advanced concepts, such as the lower bound
theory, that help in' identifying the most efficient algorithm. This book has been
written in a simple, concise and self-learning style. It is hoped that you will gain
sufficient knowledge on the subject.

This book is divided into six units. The first unit discusses the basics of ADA
which are the space and time complexity, and the remaining five units deal with
the development of algorithms for different problems using different design
paradigms . .In each unit, we begin with the introduction of the topic; then, we
outline the learning objectives; and then we present the details of the contents. At
the end of each unit, we have provided a summary for quick recollection. Finally,
you will find the 'Question and Exercises' and 'Check Your Progress' sections
which will help yowto understand the topics better.

NOTES

Introduction

Self-Instructional Material 1



UNITt ,ALGORITHM COMPLEXITY
AND RECURRENCES

Structure
1.0 Introduction
1.1 Unit Objectives

!

1.2 Introduction to Algorithms
1.3 Complexity qf Algorithms

1.3.1 Space Complexity; 1.3.2 Time Complexity
I

1.4 Asymptotic Notations
104.1 E>-Notatiop.; 1.4.20-Notation; 1.4.30-notation
10404 o-notatiors 104.5 e-notation

1.5 Recurrence Relations
1.5.1Recursion-TreeMethod; 1.5.2Master Method; 1.5.3 Iteration Method

1.6 Summary
1.7 Key Terms
1.8 Answers to 'Check Your Progress'
1.9 Questions an<f1Exercises
1.10Further Reading

1.0 INTR$>nUCTION

In this unit, you ~ll learn about the basic concepts of algorithms which act as
tools for constructing logic for a given computation problem. There are various
design paradigms that help a programmer to develop efficient algorithms. These

I

design paradigms ate as follows:
• Divide and conquer
• Dynamic prpgramming
• Greedy method
• Backtracki~

The efficiency and iperformance of an algorithm can be measured by analysing
the amount of memery and computing time required for its execution. In this unit,
you will also learn labout various asymptotic notations that are used to describe
the running time of ~n algorithm. These asymptotic notations are as follows:

• E)-notation
• O-notation
• O-notation
• o-notation
• ro-notation

You will also learn about recurrence relations which are generalized equations for
describing the running time of an algorithm. A programmer can use either of
three methods to s~ve these equations: recursion tree method, master method,
and iteration method,

Algorithm Complexity and
Recurrences

NOTES

Self-Instructional Material 3
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1.1 UNIT OBJECTIVES

After going through this unit, you will be able to:
• Explain the basic concepts and properties of algorithms
• Analyse time and space complexities of an algorithm
• Describe the various asymptotic notations for describing the running time

of an algorithm
• Solve the various recurrence relations by using one of the following

methods:
o Recursion tree method
o Master method
o Iteration

1.2 INTRODUCTION TO ALGORITHMS

An algorithm is a sequence of steps used to perform a particular task successfully.
When this sequence of steps is performed on sample data, the result thus obtained
is known as output of the algorithm. An algorithm can also be defined as a tool
that provides a step by step procedure for solving the given problem. The
algorithms are generally expressed in natural language and pseudocode form. They
can also be implemented as computer programs in the form of neural network, as an
electrical circuit or in a mechanical device. The sequence of steps in an algorithm can
also be represented in a graphical form, which is known as a flowchart.

An algorithm must have the following properties:
• Input: The algorithm must be able to accept a set of values as an input.

The input provides the basic data for computation.
• Output: The algorithm must be able to generate a set of values as an

output. The algorithm generates the output by performing the specific
operations on the input.

• Finiteness: The algorithm must terminate after a finite number of steps.
The algorithm must contain a certain steps that result to the termination of
the algorithm execution.

• Definiteness: The steps in the algorithm must be properly defined and
easily understandable. Execution of each step must provide a pre-defined
result.

An algorithm is considered to be correct, if it generates the correct output for
every input. On the other hand, an algorithm is considered to be incorrect if it
terminates by generating an incorrect output for any input or does not terminate at
all.
Algorithms help a programmer to determine whether a given solution will
provide correct result or not. It is possible that two or more algorithms are written
for solving a given problem. These algorithms will provide the same output, but
may involve different number and sequence of steps. An algorithm, which
includes few simple steps, will be executed more efficiently than an algorithm



that involves large number of complex steps. Efficient algorithms save both
computer memory and computing time.

Consider the problem to find the largest number among all the given numbers.
The problem can be defined as follows:

i
Algorithm: Largest Number

Input: A non-empty list of L numbers, No, Nlt N2, •.. NL

Output: The largest number, NUffi, where NUffi> Ni for
O<i<L

The following code shows the algorithm to find the largest number:

1. Start Algorithm

2. Accept a list of L numbers, No, Nu N2, ... NL

3. Set NLAR ~ No, i ~ 1

4. While i < L

5. do if ». > NLA.'"then

6. NUffii~ Ni

7. Set i ~ i + 1

8. return NLAA

9. End Algor:iJ,thrn

The above algorithm accepts L numbers and initializes NLAR with the first number
from the list. The steps from 4 to 7 process the list and store the largest number in
NLAR• The algorithm terminates at step 8 and the returns the result stored in NLAR•

Therefore, the output of the algorithm is the value stored in NLAR•

An algorithm can be classified on the basis of some design paradigms, which are
general approaches for constructing efficient algorithms. The commonly used
design paradigms for algorithms are as follows:

• Divide a~ conquer: It splits an instance of the given problem into
various sub-instances of the same problem. Each sub-instance is solved
individually and the solutions of all the sub-instances are combined to
generate the solution for the problem. The examples of divide and
conquer algorithms includes algorithms for merge sort, quick sort and
binary search.

• Dynamic programming: It breaks the given problem into various sub
problems and the solution of a sub-problem is used to find the solution of
the entire problem. Also, a single sub-problem can be used to solve many
different problems. The dynamic programming approach avoids the
computation of the solution that has already been computed. Unlike
divide and conquer approach, the sub-problems in dynamic programming
may overlap each other. The examples of dynamic programming
algorithms include algorithms for Fibonacci series, the shortest path
problem and checkerboard problem.,

• Greedy method: It is similar to dynamic programming and divides the
given problem into a number of sub-problems. At each step, the best
available solution is selected, assuming that it will provide the best
solution for the entire problem. The greedy method is not suitable for all

Algorithm Complexity and
Recurrences
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types of problems, but it provides the quickest solutions for the problems,
such as minimal spanning tree, travelling salesman and graph colouring
problem.

• Backtracking: It provides solution to the problems having a tree
structure. It examines all the available options to find the solution to the
given problem. For each option, the tree is traversed in the depth-first
pattern. If at any stage of the traversal the alternative does not provide a
convincing result, then the algorithm backtracks to the point from where a
suitable different alternative can be selected. The examples of
backtracking algorithms include algorithms for game playing problem,
the shortest path problem and theorem proving systems.

1.3 COMPLEXITYOFALGORITHMS

The efficiency of the algorithms depends on two essential elements, time and
space. The complexity of an algorithm is the function that provides the running
time and space for data, depending on the size provided by you. Sometimes you
may need a time-space trade-off that increases the amount of space to store the
data.

Time-space trade-off is a situation in which you can reduce the computation time
of a process by increasing the memory. Time-space trade-off is mostly used in
algorithms to run the algorithms in a fast manner. Time-space trade-off is
generally applied on the data storage in the system. For example, the data stored
in uncompressed form takes more space as compared to the compressed data.
However, the uncompressed data takes less time to be accessed as compared to
the compressed data. Using time-space trade-off, you may be able to reduce the
time required for processing the data or increase the time required for processing
the data.

For example, P is an algorithm and n is the size of the input data. Then, the time
and space that P uses will be the two main measures on which the efficiency of P
depends. You can measure the time by counting the number of key operations in
searching and sorting algorithms using which you can search and sort the
elements of the data.

Thus, the two most important criteria for judging the performance of an algorithm
are as follows:

• Space complexity
• Time complexity

1.3.1Space Complexity
Space complexity of an algorithm can be defined as the amount of memory
needed by an algorithm for its execution and generating the final output. For any
algorithm, the space needed can be calculated as the sum of the following two
components:

• Fixed part: It is independent of the number and size of the input and the
output accepted and generated by the algorithm respectively. It mainly
includes space for the code, simple variables and constants. It also
includes the space required for component variables, which are of fixed
SIze.
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• Variable p rt: It includes the space needed by the component variables
whose size ay vary depending upon the problem instance to be solved.
It also inc udes the space required by the referenced variables and
recursion ack. The space requirement for reference variables and
recursion s ck depends on instance characteristics. It is the number and
size of the i puts and outputs of the algorithm.

Thus, the space req irements of an algorithm, A, can be defined as follows:

SeA) = SFIXED + S~Al1
Where, SFIXED is a constant and SVARis a variable quantity that represents the
space requiremen of the algorithm, which is dependent on instance
characteristics. ,

I

Consider the follow ing algorithm to calculate the sum of three numbers:

1. Start Algo~ithm SUM (A, B, C)

2. Set A ~ lOB ~ 4, C ~ 6

3. S ~ A + B C
4. Return S I
5. End Algorit hm

In the above algo ithm, the problem instance is characterized by pre-defined
values of A, Band C. Assuming that the space needed by each of the variables is
one word, the tota space required by A, B, C and S is four words. Since, the
algorithm, SUM, is independent of instance characteristics; therefore the value of
SVARis zero. Hence, the space complexity of SUM is calculated as:

S(SUM) = SFlXED-+ SVAR= 4 + 0 = 4

Consider another a gorithm, which takes N numbers as input and generates their
sum as output. The algorithm to calculate the sum of N numbers is as follows:

Start Alga ithm SuM_N(A, N)
Accept a 1 st of

Set S ~ 0 j
.1

4. For I ~ 1 ito N
i

5. Do S ~ jS + A:
6. Return S l

7. Stop Algor thm

In the above alg rithm, the problem instance is characterized by N, which
represents the nurr ber of elements to be summed. The value of N will decide the
size of the array, \, which stores all the numbers to be summed. Therefore, the
space needed by ~ will be at least N words. It means SVAR::::N. Also, the
variables S, I an ~ N will require one word each. The space complexity of
SUM N is calcula ed as:

S(SUM_N):::: 3 +t
1.3.2 Time Complexity
Time complexity ~f an algorithm can be defined as the amount of computer time
needed an algOrit~' for its execution. The total time required by an algorithm for
its execution inc des both compile time and run time. The compile time is
independent of in tance characteristics; therefore the main task is to estimate the

I,

Algorithm Complexity and
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run time of an algorithm. The run time of an algorithm is denoted by TA(n),
where A is the name of the algorithm and n represents input characteristic.

In order to estimate the run time of an algorithm, it is essential to determine the
number of various operations such as addition, subtraction, division,
multiplication, load and store that would be executed by the algorithm. The
following is a generalized expression for calculating TA(n):

TA(n) = cAADD(n) + csSUB(n) + cDDIV(n) + cMMUL(n) + csrSTORE(n) + ...

Where, CA,Cs, CD,CM,CSTrepresent the time required for addition, subtraction,
division, multiplication and store operations. The number of addition, subtraction,
division, multiplication and store operations performed by the algorithm are
represented by ADD, SUB, DIV, MUL and STORE.

Consider the following algorithm for insertion sort:

1. Start Algorithm INSERTION_SORT(A, N)

2. For I ~ 2 to N

3. Do ITEM ~ AI
4. J ~ I - 1
5. While J > 0 and AJ > ITEM

6. Do AJ+1 ~ AJ

7. J ~ J - 1

8. A[J + 1) ~ ITEM

9. End Algorithm

The run time of the algorithm is the total time taken by all the statements in the
algorithm for execution. Table 1.1 lists the cost and run time associated with each
step in the INSERTION_ SORT algorithm.

Table 1.1Cost and Run TimesEstimates o/INSERTION_SORT Algorithm

Step Number Cost Estimated Run Time

Step 2 CI N

Step 3 C2 N-I

Step 4 C3 N-I

Step 5 C4 NLT!
r 1=2

Step 6 C5 N

L(T1 - 1)
1= 2

Step 7 C6 N

L(T1 - 1)
1=2

Step 8 C7 N-I



In Table 1.1, TI reW'esents the number oftime the condition in the while loop in
step 5 will execute for a particular value of I.

The estimated time.required for the execution of INSERTION_SORT algorithm
is as follows: .

N N
T(N) = CI(N) +,C2(N - 1) + C3(N - 1) + C4(L ~)+ Cs(I cr, - 1»

1~2 1~2
N

+ C6(I (~- 1»+ C7(N - 1)
I ~2

For a particular input size, the running time of an algorithm may vary depending
upon the type oflinput instance. For example, if an input instance to the
INSERTION_SORT algorithm consists of numbers in already sorted order then,
the best case running time will be achieved. In the above algorithm, the step
number 5 will execute only N - 1 times and step number 6 and 7 will never
execute. Therefore, the best case run time of INSERTION_SORT algorithm is
given as:

T(N) = CI(N) +i C2(N - 1) + C3(N - 1) + C4(N - 1)+ C7(N - 1)

=> T(N) = (CI + C2 + C3 + C4 + C7)N - (C2 + C3 + C4 + C7)

i
=> T(N) =AN +B1
Where, A = (CI + C2 + C, + C4 + C7) and B = (C2 + C, + C4 + C7). Since, both A
and B are constanta therefore, T(N) can be considered as a linear function ofN.

The worst case occurs when the numbers in the input instance is sorted in the
reverse order. In this case, each element AI is compared with all the elements in
the sorted sub-array AI, A2, ••• AI _I. Therefore, TI= I for I = 2, 3, ... , N. Also,

N N(N + 1)II = - 1
I ~2 2

N N(N - 1)II - 1 =
I ~2 2
Therefore, the worst case running time of the INSERTION_SORT algorithm is as
follows:

T(N) = CI(N) + C2(N - 1) + C3(N - 1) + C4(N(N2 + 1) - 1) + Cs(N(N2 - l)

+ C6(N(N - 1» + C7(N - 1)
2

=>T(N) = (~4 +'; + ~6)N2 + (Cl +C2 +C3 + ~4 - ~s - ~6 +C7)N

- (C2 + C3 + C4 + C7)

For a particular input size N, the worst case running time, gives an upper bound
on run time. This means that the algorithm will not take more than the worst case
run time for its execution.

Algorithm Complexity and
Recurrences

NOTES

CHECK YOUR PROGRESS
1. What is an algorithm?
2. What is meant by finiteness of

an algorithm?
3. What is space complexity of

an algorithm?
4. Give the generalized

expression for the calculation
of the time complexity of an
algorithm.
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1.4 ASYMPTOTIC NOTATIONS

Asymptotic notations are used to represent asymptotic running time of
algorithms. These notations are defined in terms of function T(n) related to a set
of natural numbers, 1,2,3, 4 ....... n. The asymptotic notations are mainly used in
representing the worst-case running time required for the execution of an
algorithm. The basic asymptotic notations used for defining the complexity of
algorithms are as follows:

• E)-notation

• O-notation

• O-notation

• o-notation

• co-notation

1.4.10-Notation
The E)-notation is used to represent the worst case running time of an algorithm.
To represent a E)-notation for a given function g(n), 8(g(n)) is used. This
expression is used to represent a set of functions. Therefore, 8-notation for a
particular g(n) is defined as follows:

E)(g(n)) = {fen): there exits non-negative constants aJ, a2 and no such that fen) lies
between alg(n) and a2g(n), i.e. 0::: ajg(n) :::fen):::a2g(n) for all n ~ no}

Since, 8(g(n)) is a set, therefore you can write fen) E 8(g(n)), which specifies
that fen) is a member of 8(g(n)). Figure 1.1 shows the graphical representation of
E)-notation.

Cl:!g(n)

fen) = (-) (gfn)
(a)

Figure 1.1Graphical Representation of 8-Notation

In Figure 1.1, function fen), whose 8-notation is given as 8(g(n)), lies between
alg(n) and a2g(n). The values of n are represented at the right of no and the value



of fin) lies at or above alg(n) and at or below a2g(n). This means for all values of
n, which is greater than no, the function fen) is equal to g(n) within a constant
factor. Thus, you can say that g(n) is asymptotically tight bound for the function
fen).

An essential condition for the definition of 0(g(n» is that both the function fen)
and g(n) must be asymptotically positive, which means that the functions must be
positive for all n that'are sufficiently large.

Example 1: Determine 0(g(n» for the function fen) = 5n + 3.

Solution: According.to the definition of0-notation:

fen) = 0(g(n» if 0 .::;8Ig(n).::; f(n).::;a2g(n) for all n 2: no
Here, 5n + 3 2: 5n, for n 2: 3
And, 5n + 3 .::;6n, for n 2: 3
=> 5n .::;5n + 3 .::;6n, for n 2: 3
And, al = 5, a2= 6, no = 3 and g(n) = n

Therefore, fen) = 0(8(n»

=0(n)

Example 2: Determine the 0 notation for the following functions:

1. fen)= IOn +4

2. fen) = 16n2+ 7n + 3

3. fen)= 5 * 3n + n2

4. fen)= 2 log n + 10

5. fen) = n3 + log n + 10

Solution:

1. Consider the function f(n) = IOn+ 4

Here, g(n) = n

Therefore, fen) = 0(8(n» = 0(n)

2. Consider the function fen) = 16n2+ 7n + 3

Here, g(n) = n2

Therefore, fen) = 0(n2)

3. Consider the function fen) = 5 * 3n + n2

Here, g(n) = 3n

Therefore, fen) = 0(3)

4. Consider the function fen) = 2 log n + 10

Here, g(n) = log n

Therefore, fen) = 0(log n)

5. Consider the function fen) = n3 + log n + 10

Algorithm Complexity and
Recurrences

NOTES
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Here, g(n) = n3

Therefore, fen) = 0(n3)

1.4.2 O-Notation
O-notation provides upper boundary constraints over a function. For a function
hen), the O-notation, which is denoted by O(h(n», is defined as:

O(h(n» = fen)

Where fen) is a function, which is defined as:

o ~ fen) ~ c hen), for all.n ~ no

and c and no are positive integers.

Figure 1.2 shows the O-notation of a function.

o (f(n)) c* b(n)

f(n)

n' n
Figure 1.2Graphical Representation of 0 Notation of a Function

Figure 1.2 shows the 0 notation of the hen) function, which ensures that the fen)
function never exceeds beyond c hen), for all the values of n, which are greater
than or equal to no.
Example 3: Determine the 0 notation for the function fen) = 4n + 3.

Solution: According to the definition ofO(h(n»,

fen) = O(g(n» iff(n) ~ c hen) for all n ~ no
Here, 4n + 3 ~ 5n, for n ~ 3

=> a = 5, no = 3 and hen) = n

Therefore, f(n) = O(h(n»

=0(n)

Example 4: Determine the 0 notation for the following functions:

1. fen) = lIOn + 20



2. f(n) = 21n2 +9n

3. f(n) = 6 * 3n + n2

4. f(n) = 3n + n

Solution:

1. Consider the function f(n) = lIOn + 20

Here, lIOn + 2 s Illn, for n ::::2

=> a = 111, no = 3 and h(n) = n

Therefore, f(n) = O(Q(n» = O(n)

2. Consider the function f(n) = 21n2+ 9n

Here, 21n2+ 5n::::22n2, for n > 5

=> a = 22, no= 5 and h(n) = n2

Therefore, f(n) = O(n2)

3. Consider the function f(n) = 6 * 3n + n2

Here,6 * 3n + n2 ::::7 * 3n, for n:::: 1
=> a = 7, no = 1 and b(n) = 3n
Therefore, f(n) = O(~j
4. Consider the function f(n) = 3n + 3

Here, 3n + 3 ::::4n, for n ::::3

=> a = 4, no = 3 and b(n) = n

Therefore, f(n) = Om)

Example 5: Derive the 0 notation for the following function:

f(n) = ao + aln + a2n2 + ... + am_Inm-1+ amnm

Solution: You can write the given function in the summation form as follows:
m

f(n) 5:L Ia, I nl
j = 0

m
s nm L I a, I nj -m

i = 0

m
5: nm L I« I, for all n ::::1

i = 0

m
Here, a =L Ia, I, no= 1, and h(n) = n",

i = 0

Therefore, f(n) = O(h(n» = Om").

1.4.3 !l-notation
The O-notation is used to provide an asymptotic lower bound on a function. The
O-notation of a function g(n) is defined as follows:

Algorithm Complexity and
Recurrences

NOTES

&/f-I1I3tructiOffQI Material 13



Computer Algorithms

NOTES

14 Self-InstructionalMaterial

a(g(n)) = {fen): there exist non-negative constants, a and no, such that fen) lies
above a * g(n), i.e. O.:sa * g(n).:s fen), for all n ~ no}.
In the above expression, a is a constant value and a(g(n)) is pronounced as big
omega of g of n.

Figure 1.3 shows the graphical representation of a-notation of a function fen).

f(n)

~ ~ n

f(n) =~) (gfn)
(b)

Figure 1.3Graphical Representation of aNotation off(n)

Example 6: Determine the a-notation for the function fen) = 9n +11

Solution: According to the definition of the a-notation:

fen) = a(g(n)) iff(n) ~ a * g(n) for all n ~ no
Here, 9n + 11 ~ 9n, for n ~ 1

=> a = 9, no = 1 and hen) = n

Therefore, fen) = a(h(n))

=O(n)

9n + 11 ~ any constant for any positive value of n, therefore 9n + 11 = a(l) is
also correct.

Example 7: Determine the a notation for the following functions:

5. fen) = 7n2 + 6

6. fen) = 21n2 + 9n
7. f(n)=10n3+5n2+17

8. fen) = 2 * 3n + n2

Solution:

1. Consider the function fen) = 7n2+ 6



Here, 7n2+ 6 ~ 7n2, for n ~ I

=> a = 7, no = I andh(n) = n2

Therefore, fen) = n(h(n» = n(n2).

2. Consider the function fen) = 2In2 + 9n

Here, 2In2 + 9n ~ n2, for n ~ I

=> a = I, no = I and hen) = n2

Therefore, fen) = n(n2).

3. Consider the function fen) = IOn3+ 5n2 + 17

Here, IOn3+ 5n2 + 17 ~ IOn3, for n ~ I

=> a = 10, no = I and hen) = n3

Therefore, fen) = n( rr').
4. Consider the function fen) = 2 * 3n + n2

Here, 2 * 3n + n2 ~ 2 * 3n, for n ~ I

=> a = 2, no= I andh(n) = 3n

Therefore, fen) = n(3n).

1.4.4 o-notation
The o-notation is used to denote asymptotic loose upper bound. This notation is
known as little-oh notation. Consider the following function:

f(n)=o(g(n»

This means fen) is little-oh of g(n) for n>O, if and only if fen) is O(g(n» but fen) is
not 0(g(n». In the function f(n)=o(g(n», o-notation represents asymptotic loose
upper bound because g(n) is an asymptotic upper bound not an asymptotic lower
bound due to f(n)=O(g(n»,also fen)#:0(g(n», which means f(n)#:n(g(n».

You can also define o(g(nj), which is known as little-oh of g of n as the set, in the
following manner:

o(g(n»={f(n): for any constant a>O, there exists a constant no>O such that 0:::: fen)
::::a * g(n) for all n>=no}.
The O-notation and o-notation are the same except for one difference. The
difference is that in f(n)=O(g(n», the bound O<=f(n)<=ag(n) is true for some
constant a>O. Whereas in f(n)=o(g(n», the bound O<=f(n)<ag(n) is true for all
constants a>O. When n approaches infinity, then the function fen) becomes
insignificant relative to g(n) in the o-notation, which can be represented as:

lim fen) =0
n-eco g(n)

Example 8:Determine the o-notation for the function fen) = 4n + 3.
Solution: According to the definition of the o-notation:

fen) = o(g(n» if lim fen) = o.
n.....OO g(n)
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Let g(n) = n2, then,

4n + 3 ~ rr', for n::::5
. 4n+3

Also, hm 2 =0
n....'" n

Therefore, fen) = 4n + 3 = o(g(n)) = 0(n2).

Example 9: Determine the o-notation for the following functions:

1. fen) = log n

2. fen) = 2n3 + 9n2+ 3

Solution:

1. Consider the function fen) = log n

Let g(n) = n

Then, lim log n = 0
n....'" n

Therefore, fen) = log n = o(n).

2. Consider the function fen) = 2n3 + 9n2+ 3

Let g(n) = n4

Th 1· 2n3 + 9n2 + 3 - 0en, 1m ·4 -
n .... oo n

Therefore, fen) = 2n3 + 9n2+ 3 = 0(n4).

1.4.5 ro-notation
The rc-notation is used to denote asymptotic loose lower bound. This notation is
known as little-omega notation. Consider the following function:

f(n)=ro(g(n))

In this function, for any positive constant a>O, there exists a constant no such that
o ~ a g(n) < fen) for all n ::::no. Also, the value of no should not depend on n, but
can depend on a. '

As o-notation is similar to O-notation, ro-notation is similar to n-notation. You
can also define ro(g(n)), which is known as little-omega of g of n as the following
set:
ro(g(n))={f(n): for any positive constant a>O, then there exists a constant no such
that 0 ~ ag(n)<f(n) for all n ~ no}.
When n approaches infinity, then the function fen) becomes arbitrarily large
relative to g(n) in the ro-notation, which can be represented as:

1· fen) if h 1" .1m_- = 00,1 t e imit exists.
n .... eo g(n)

Example 10: Determine the ro-notation for the function fen) = 3n2+ 1

Solution: According to the definition of ro-notation



fen) = ro(g(n)) if 0 ~ a g(n) < fen) and lim fen) = 00
HOC g(n)

Let g(n) = n, then,
3n2 + 1> 3n ::::0, for n:::: 1

=> a = 3 and no = 1

I 1· fen) u 3n2 + IA so, lm-- = 1111 = 00
n-><xo g(n) n-+oo n

Therefore, fen) = 3~ + 1= ro(n).

1.5 RECURRENCE RELATIONS

Recurrence relations can be defined as the equation that expresses the running
time of an algorithm on a particular problem of size N. This equation is expressed
in terms of the running time of the algorithm on smaller inputs. For example, the
following recurrence relation gives the worst case running time of a sorting
algorithm:

{
B(l) if N = I

T(N) = 2T(N 12) + B(N) if N > I

There are three methods to solve a recurrence relation, which are as follows:
• Recursion tree method
• Master method
• Iteration method

1.5.1 Recursion Tree Method
In a recursive method, a recursive tree is to be drawn for solving the recurrence
relation of a particular algorithm. Each node in the recursion tree represents the
cost of the sub-problem, which may have been invoked recursively during the
execution of the algorithm. The costs associated with each node at a single level
of the recursion tree are summed to obtain the per-level cost. Sum of all the per
level cost is used to determine the total cost associated with the recursion. The
recursion tree method is useful to describe the running time of those algorithms
that follow the divide and conquer approach.

Consider the following recurrence relation:

T(N) = 3T(~)+CN2,wherec>0

Here, you can assume that N is a multiple of 4. Figure 1.4 shows the expansion of
T(N).
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N
T(-)

4

N
T(-)

4
N

T(-)
4

Figure 1.4 Expansion ofT(N)

The recurrence T(N/4) is further expanded to form the next level of the recursion
tree. Figure 1.5 shows the expansion of recurrence T(N/4).

CN2

Figure 1.5Expansion ofT(NI4)

The recurrence T(N/16) is further expanded to form the next level of the
recursion tree. Similarly, all the recurrences are expanded progressively till T(1)
is achieved. Figure 1.6 shows the recursive tree, which represents the expansion
ofT(N).



CN2

'\C(~r C(~r ~~r
/\ /\ /\~~rC(~rC(~)~~rC(~r~~w~rC(~rC(~r
11\ 11\ 11\ 11\ 11\ 11\ 11\ 11\ 11\, .. ." .,.,., . , ,. ., ., , ..· , , , ,. ... ., .. .. . ..

• • , , • "., • , , II • ,,, ,..· ., ,. II... ,,,... ,.,, " ,. .." ,.. ,. ..,

T(l) T(l) T(l) T(l) T(l) T(l)T(l) T(l)
Figure 1.6Recursive Treefor T(N)

It is clear that the size of sub-problem decreases as you progress down the tree
and the size of each sub-problem at depth his N14h. Since, value ofN is power of
4, therefore the size of sub-problem becomes one when the value ofN/4h is one.

That is, ~ = 1
4

=> h = log, N

It means that the recursive tree has logzN+1 levels, which are 0, 1,2, ... .Jog.N.
In the recursion tree constructed above, the number of nodes at each level is three
times more than the previous level. Therefore, the number of nodes at depth h is
3h• The cost associated with each node is C(N/4hl Therefore, the total cost of all
nodes at depth h = 0, 1, 2, ... , log4N - 1, is 3\C(N/4hi), which is equal to
(3/16)\CN2).

At the last level, the number of nodes is 310g4N,each of which has cost equivalent
to T(l).
Since, 3log4N= N10g/

Therefore, the total cost of all nodes at the last level = N10g / T( 1)= E>(Nlog /)

The cost of the entire recursive tree, which is represented by T(N), is calculated
by adding the total cost of each level.
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log N -1( 3 )i
=> T(N) = ! - CN2 + 0(Nlog.3)

i=O 16

= 16CN2 + 0(Nlog43)
13

= O(N2)

1.5.2Master Method
Master method is another commonly used method to solve the recurrence
relations. The method is mostly used to find the solution for recurrence relations
of those algorithms that follow the divide and conquer approach. In general, the
master method can solve all the recurrence relations of the following form:

T(N) = aT( ~) + f(N) , a ~ 1, b > 1

Where, both a and b are constants and f(N) represents an asymptotically positive
function. In the above recurrence relation, N represents the size of a particular
problem. The constant a represents the number of sub-problems and the ration
Nib represents the size of each sub-problem. f(N) represents the cost involved in
breaking the problem into several sub-problems and combing the solutions of all
the sub-problems. Each of the sub-problems is solved recursively and requires
T(NIb) running time.

The master method is based on the Master theorem, which is stated as follows:

Let T(N) be defined on the positive integers by the following recurrence relation:

T(N) = aT( ~) + f(N)

Where, a and b are positive constants, such that a 2::: 1 and b > 1, and f(N) is a
asymptotically positive function on N. Also, Nib can be interpreted either as
LNlbJ or as rNib1.Then, T(N) can be asymptotically bounded as follows:

• Case 1: If feN) = o(N 10gb a-e) for some constant E > 0, then

T(N) = e(N 10gb a ).

• Case 2: If feN) = e(N log, a), then



•

T(N) = e(N log, a IgN).

Case 3: If feN) = n(N IOgba+e) for some constant E > 0, and if

af ( ~) s cf (N) for some constant c < 1 and for all N having

sufficiently large value, then

T(N) = 8(f(N».

Example 11: Solve the following recurrence relation:

T(N) = 8T(~)+N2

Solution: Comparing the given recurrence relation with the following relation:

T(N) = a T( ~) + f(N) , you will get:

a = 8, b = 2 and feN) = N2•

=> N10gba =N1og18= O(N3)

Hence, N log, a is greater than feN), therefore according to case 1 of master
theorem feN) is represented as follows:

feN) = o(N IQG28-e), with E = 1

Now, by applying the case 1 of Master theorem, the solution of given recurrence
relation is T(N) = @(N3).

Example 12: Solve the given recurrence relation:

T(N) = T(3;)+1

Solution: Here,

a=1
b = 5/3

feN) = 1

Therefore,
N10gb a =NiogS/3 1

=N° =1
=0(1)

Here, N 10gb a is equal to feN), therefore according to case 2 of Master theorem
feN) can be represented as follows:
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feN) = 0(N IOgS!3l)

= 0(1)
Therefore, the solution to the given recurrence relation is:

T(N) = 0(N log, a 19 N)
= 0(lg N)

Example 13: Sole the recurrence relation:

T(N) = 3T( ~) +N3

Solution: Here,

a=3
b=4
feN)=N3

Therefore,
N10gba = N1og43

=O(NO.793)

Here, N log, a is less than feN), therefore according to case 3 of master theorem
f(N) can be represented as follows:

feN) = n(N log, 3+E), with E ~ 0.2

Also, af(~) s cf(N) should be true.

=> 1116 < 1
Therefore, the solution to the given recurrence relation is:

T(N)=0 (f(N) )

=0(N3)

1.5.3 Iteration Method
Iteration method is also used to solve recurrence relations. In this method, the
right hand side of the recurrence relation is expanded repeatedly. A common
formula is then constructed using the given recurrence relation. For example,
consider the following recurrence relation:



if N=O
if N>O

The solution to the above problem by using iterative method is as follows:

T(N)=2+ T(N-I)

= 2 + 2 + T(N - 2)

= 2(2) + T(N - 2)

= (N-I)2 +T(l)

= 2N+T(O)

=2N+2 [because, T(O)= 2]

Therefore, T(N) = 2N + 2 = O(N).

1.6 SUMMARY

In this unit, you have learnt about the basics of algorithms and the different
. design paradigms such as divide and conquer, dynamic programming and greedy
method for the construction of algorithms. The efficiency of an algorithm can be
determined by analysing the space and time complexity of the algorithm. Space
complexity is the measure of computer memory required by an algorithm and
time complexity is the measure of running time required for the execution of the
algorithm.

The running time of algorithms are expressed in terms of various asymptotic
notations such as e"notation, O-notation, O-notation, o-notation and co-notation.
You have also studied about the running time of the algorithms which is
expressed using generalized equations that are known as recurrence relations.
These recurrence relations are solved using recursion tree method, master method
and iteration method.

1.7 KEY TERMS

• Algorithm: It is a sequence of steps used to perform a particular task
successfully. The result of this sequence of steps performed on sample
data is known as output of the algorithm.

• Space complexity: The amount of memory needed by an algorithm for
its execution and generating the final output is called spacefomplexity.

• Time complexity: Time complexity of an algorithm is the amount of
time needed by an algorithm for its execution.

• Asymptotic notations: These notations are used to represent asymptotic
running time of algorithms.
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• Recurrence relations: Recurrence relations can be defined as the
equation that expresses the running time of an algorithm on a particular
problem of size N.

1.8 ANSWERS TO 'CHECK YOUR PROGRESS'

I. An algorithm can be defined as a tool that provides a step-by-step
procedure for solving a given problem.

2. Finiteness of an algorithm means that the algorithm must terminate after a
finite number of steps.

3. Space complexity of an algorithm can be defined as the amount of
memory needed by the algorithm for its execution and generating the
final output.

4. The following is a generalized expression for calculating TA(n):

TA(n) = cAADD(n) + csSUB(n) + cDDIV(n) + cMMUL(n)

+ csTSTORE(n) + ...
Where, CA, cs, CD, CM, CST represents the time required for the addition,
subtraction, division, multiplication and store operations. The number of
addition, subtraction, division, multiplication and store operations
performed by the algorithm are represented by ADD, SUB, DIV, MUL
and STORE.

5. 0-notation for a particular g(n) is defined as follows:
0(g(n» = {fen): there exits non-negative constants a., a2 and no such that
fen) lies between alg(n) and a2g(n) i.e. 0 ~ ajg(n) ~ f(n)~ a2g(n) for all n
~no}.

6. Recurrence relations can be defined as an equation that expresses the
running time of an algorithm on a particular problem of size N.

7. The methods that are used to solve the recurrence relations are stated
below:

A. Recursion tree method
B. Master method
C. Iteration method

8. Iteration method is used to solve the recurrence relation. In this method,
the right hand side of the recurrence relation is expanded repeatedly using
the given recurrence relation and then a common formula is constructed.

1.9 QUESTIONS AND EXERCISES

Short-Answer Questions
1. Write a brief note on algorithms.

2. What do you mean by asymptotic notations? Name them.

3. Distinguish between E)-notation and O-notation.



4. Write a short note on space complexity·of an algorithm.

s. Explain the recurrence relation.

Long-Answer Questions
I. Describe the different design paradigms for algorithm designing.

2. Discuss all the asymptotic notations.

3. Analyse space and time complexity of the divide and conquer algorithm.

4. Describe the recursion tree method with the help of an example.

5. Solve the following recurrence relations:

A. T(N)=4T( ~)+N

B. T(N}= 4T( ~) +N2

C. T(N)=8T(~)+1

1.10 FURTHER READING

Cormen, Thomas H. 2005. Introduction to Algorithms. New Delhi: Prentice-Hall
ofIndia.
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UNIT 2 DIVIDE AND CONQUER
STRATEGY

Structure
2.0 Introduction
2.1 Unit Objectives
2.2 Overview of Divide and Conquer Strategy
2.3 Searching Techniques

2.3.1 Binary Search
2.4 Sorting Techniques

2.4.1 Selection Sort; 2.4.2 Merge Sort; 2.4.3 Quick Sort
2.5 Algorithm Complexity

2.5.1 The Worst,Case Complexity; 2.5.2 The Average Case Complexity
2.5.3 Complexity and Efficiency of Sorting Techniques
2.5.4 Efficiency Parameters of Sorting

2.6 Strassen's Matrix Multiplication
2.7 Summary
2.8 Key Terms
2.9 Answers to 'Check Your Progress'
2.10 Questions and Exercises
2.11 Further Reading

2.0 INTRODUCTION

You are already familiar with basic algorithm complexities and recurrences. In
this unit, you will learn about searching and sorting techniques. Searching and
sorting are the basic operations that help to search and sort data elements in a
program. Searching is the process of locating data from a set of given data items.
The different searching techniques are linear search and binary search.

Sorting allows. you to arrange data in a specific order, such as ascending or
descending order. It can arrange both numeric and alphabetical data in ascending
or descending order. Sorting techniques are applied on data so that it can be
analysed and accurate decisions can be taken. This becomes possible because it
arranges the data in a predetermined order. For example, proper sequence of
allotting house numbers in a sector makes it easy to locate the house. The
different sorting techniques are:

• Selection sort
• Merge sort
• Quick sort

In this unit, you will also learn the complexity of various sorting algorithms. You
can also measure the complexity of an algorithm by using the complexity theory,
which depends on the worst case and the average case.
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2.1 UNIT OBJECTIVES

After going through this unit, you will be able to:
• Explain the concept of searching
• Use the binary search technique
• Describe the preliminaries of sorting
• Use different sorting techniques, which are as follows:

o Bubble
o Insertion
o Selection

• Compare the complexity of various sorting techniques
• Use Strassen's Matrix Multiplication method

2.2 OVERVIEW OF DIVIDE AND CONQUER
STRATEGY

Divide and conquer strategy follows top-down approach to design algorithms for
solving large problems. This strategy consists of dividing the problem into small
size problems that are called sub problems. The composition of solution of all sub
problems provides the solution of the original problem. In other words, the
following steps are involved in the divide and conquer design strategy:

• Divide: Break the problem into many small size sub-problems that are the
same as original problem.

• Conquer: Solve all the sub problems independently and recursively.
• Combine: Compose the solutions of all the sub problems to build a

solution for the original problem.

The general form of divide and conquer algorithm is as follows:

1. Algorithm D-and-C (p : input size)

2.

3. begin

4. if P < = pO then

5. Solve problem without further sub division of the

6. problem;

7. else

8. Split into x sub problem

9. each of size p/k;

10. for each of the x sub problem do

11. D-and-C (p/k);

12. Combine the x resulting sub solutions to produce the
13. solution to the original problem;

14. end if;

15. end D-and-Ci



The computing time to solve the problem P can be calculated using the following
function:

{
g( n) if n is small else

T(n) =
T(nJ + T(n2) + T(n3)'" + T(nk) + fen)

(2.1)

Where, T(n) is the .time required for computing the problem P with n inputs, g(n)
is the time required for computing the small size problem and ./{n) is the time
required for dividing the problem P in sub problems.

The complexity of the divide and conquer algorithm can be represented in the
following form:

T(n) = {T(I) n =I
aT(nl b)+ fen) n >I

(2.2)

Where, a and b arelthe known constants.

2.3 SEA~HING TECHNIQUES

Searching techniques are used to retrieve a particular record from a list of records
in an efficient manner so that the least possible time is consumed. The list of
records can have a! key field, which can be used to identify a record. Therefore,
the given value must be matched with the key value in order to find a particular
record. If it identities a particular record, then the search operation is said to be
successful, otherwise, it is said to be unsuccessful. Generally, there are two types
of searching techniques, which can be used under divide and conquer strategy to
locate a particular record in the given list of records. These techniques are linear
search and binary search.

2.3.1 Binary Search
Binary search is a method, which involves the comparison of the search data with
the data at the centre of the list. It also involves the comparison of elements in the
first half or second half of the list. The comparison with the first or second half of
the list depends on whether the search data is less than or greater than the data
item at the middle. If the search data is greater than the data item at the middle,
then the comparison is done with the elements in the second half of the array.

The algorithm, which helps to perform binary search, uses an index, top, to
indicate the top of the list and an index, bottom, to indicate the bottom of the list.
Each time the loop is executed, the size of the list enclosed by the top and the
bottom indices is reduced to half. The loop is executed until there are data items
in the list or till a successful search occurs.

The recursive binary search algorithm is as follows:
1. Algorithm BinSrch(a,i ,I,x)

2.

3. if (I=i) then //if problem P is small

4.
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5. if (x=a[i}) then return i;

6. else return 0;

7.

8.

9.

else

10. //divide problem P into smaller sub problem

11. mid:=[(i+l)/2};

12. if (x<a [mid))

13. then return mid;

14. else if (x<a [mid})

15. then

16. return BinSrch(a,i,mid-l,x);

17. else return BinSrch(a,mid+l,l,x);

18.

19.

In the above algorithm, a[i:l] represents an array of elements in non-decreasing
order. I:$;i :$;I determines whether x is present in the range of i or not. If x is
present, then, return i returns the value of a[i]; else it returns o.
The Iterative binary search algorithm is as follows:

1. Algorithm BinSrch(a,n,x)

2.

3. low:=l; high:=n;

4.

5. while (low ~ high) do

6.

7. mid:= [(low+high)/2];

8. if(x<a[mid}) then high:=mid-1;

9. else if(x>a[mid}) then low:=mid+1;

10. else return mid;

11.

12. else return mid;

13.

14. return 0;

In the above algorithm, a[l:n] represents an array of elements in non-decreasing
order. n2?0 determines whether x is present or not. If present, return mid returns
olil: else it returns o.



2.4 SORTING TECHNIQUES

Another technique of divide and conquer strategy is sorting. Sorting techniques
can be applied on a list of data, so that the list can be analysed easily for making
accurate decisions. This becomes possible because sorting arranges the data in a
predetermined order. For example, proper sequence of allotting the house
numbers in a sector makes you easily identify the house because the house
numbers are arranged in an increasing order. You can arrange the data using
various sorting techniques, which are as follows:

• Selection
• Merge
• Quick

2.4.1 Selection Sort
Selection sort is a technique in which the smallest element of an array is searched
and swapped with the first element of an array. Then, the second element is
swapped with the next smallest element and this process continues till the array is
sorted. The first pass compares n - 1 comparisons, the second pass compares n -
2 comparisons and the third pass compares n -3 comparisons. The total number
of comparisons of the selection sort technique is calculated using the following
formula:

I (n-1) + (n-2) + (n--S) +......1=n*n (n-1) /2

The complexity of tile selection sort is O(r?),where n is the number of data items
stored in an array.

The algorithm of selection sort for finding the smallest element is as follows:

1. Algorithm Selection(a,n,x}

2.

3. low:=1; high:=n+l;

4. a[n+l}:=oo //a[n+l] is a set to infinity

5. repeat

6.

7. //Each time the loop is entered, 1~ low ~ x ~ high ~
n+1

8. j: = Partition,(a,low, high};

9. //j is such that a[J] is the jth-smallest value in all

10. if (x=j) then return;

11. else if(x<j} then high:=j// j is the new upper limit.

12. else low :=j+1;//j+1 is the new lower limit.

13.

14. until (false);

15.
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In the above algorithm, a[i:l} represents an array of elements in which you need
to select the xth smallest element at xth position of array a[]. The remaining
elements are represented such that a[m] :Sa[x] for 1:Sm < x and a[m] ~ a[x] for
k-c m s n.
Example 1: An array, num, has five data items and you have to sort these data
items by using the selection sort technique. The data items stored in an array,
num are stated below:
I num = {55, 67, 21, 89,16}

Solution: In the num array, the smallest data item 16 replaces the first data item
55, then the second smallest data item 21 replaces the second data item 67 and
this continues until all the data items are sorted. The steps involved in sorting the
num array are as follows:

1. (55),67,21,89, (16)
2. 16, (67), (21), 89, 55
3. 16,21, (67),89,(55)
4. 16,21,55, (89), (67)

Finally, the sorted array is 16,21,55,67,89.
The algorithm to select xth smallest element uses the median of medians rule to
determine a partition element. For selecting the element, you can use the
recursive application of the selection algorithm. The high-level version of the
selection algorithm is Select2.
The algorithm of selection sort using median of medians rule is as follows:
1. Algorithm Selec2(a,x,low,high)

2.

3. n:=high-low+li

4. if(n ~r) then sort a{low:high] and return the x-th
elementi

5. Divide a[low:highJ into n/r be the set of medians of
the above n/r subsets of size r eachi

6. Ignore excess elementsi

7. Let m{iJ, 1 ~ i ~ (n/r) be the set of medians of the
above n/r subsets.

8. v:=Select2(m,{n/r]/2)il,n/r)i

9. Partition a[low:high] using v as the partition
elementi

10. Assume that v is at position ji

11. if(x=(j-low+l)) then return Vi

12. elseif(k«j-low+l)) then

13. return Select2(a,x,low,j-l)i

14. else return Select2(a,k-(j-low+l),j+l,high)i



2.4.2 Merge Scrt
The merge sort teehnique combines two sorted arrays into one larger sorted array.
For example, the: sorted array, A, contains p elements and the sorted array, B,
contains q elements. The merge sort technique combines the elements of A and B
into a single sorted array, C, with p + q elements.

The total numberiof comparisons in the merge sort technique to sort n data-items
of an array is log n. The merge sort technique requires almost log n passes, so the
complexity of the;merge sort is O(n log n).

Algorithm for merge sort is as follows:
1. Algorithm MergeSort(low,high)

2.

3. if (low < high) then

4.

5. //Divide P into sub problems

6. //find where to split the set

7. mid:=[(low+high)/2];

8. //solve the sub problems

9. MergeSort(low,high);

10. MergeSort(mid+1,high);

11. //Combine the solutions.

12. Merge (low,mid,high)

Example 2: Merge the content of two arrays A and B. The data items stored in the
array, A, are as follows:

I A= {56, 78}

The data items stored in the array, B, are as follows:

I B={25,67,89}

Solution:

The data items of array, C, after merging the two sorted arrays, A and B, are as
follows:
IC={25, 56,·67, 78, 89}

The first data item of the A array is compared with the first data item of the B
array. If the first data item of A is smaller than the first data item of B, then that
data item from A is moved to the new array, C. If the data item of B is smaller
than the data item of A, then B, is moved to the array, C. This comparing of data
items continues, until one of the arrays ends.

Merge sort is of the following types:
• Simple merge sort
• Recursive merge sort
• Iterative merge sort
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2.4.2.1 Simple merge sort
Consider the sorted array, A, which contains p elements and the sorted array, B,
containing q elements. The simple merge sort technique combines the elements of
A and B into a single sorted array, C, with p + q elements.

The total number of comparisons in the merge sort technique to sort n data-items
of an array is log n. It requires at the most log n passes, so that the complexity of
the merge sort is O(n log n).

Algorithm to merge two sorted sub arrays using auxiliary storage is as follows:

1. Algorithm MergeSort(low,mid,high)

2.

3. h:=low; I:=low; j:=mid+l;

4. while ((h~mid) and (j~high))do

5 .

6. if (a[h) ~ a[j)) then

7 •

8. b[i):= a[h); h:=h+l;

9. }

10. else

1I.

12. b[i):= a[j); j:=j+1;

13.

14. i:=i+1;

15.

16. if (h>mid)then

17. for k:=j to high do

18.

19. b[i) :=a[k); i:=i+1;

20.

21. for k:=low to high do ark] :=b[k];

Example 3: Merge two sorted arrays into a single sorted array by using the merge
sort technique. The data items stored in an array, A, are as follows:

I A={ 56,78}
The data items stored in an array, B, are as follows:

I B={45,67,89}
Solution:

The data items of the C array after merging the two sorted arrays, A and B, are as
follows:

I C={45, 56, 67, 78, 89}



The first data item of the A array is compared with the first data item of the B
array. If the first data item of A is smaller than the first data item of B, then that
data item from A is moved to the new array, C. If the data item of B is smaller
than the data item of A, then B, is moved to the array, C. This comparing of data
items continues until one of the arrays ends.

2.4.2.2Recursive merge sort
Recursive merge sort divides the given list in two halves, sorts each half
independently and. merges the sorted parts. Consider an array A, which is
composed of the following elements:

(25,3,44, 15, 14,34)
To sort the above array in ascending order using the recursive merge sort. The
steps are as follows:

1. Step 1: Divide the array into two equal halves by calculating mid
using the following formula:

I Mid = (lower + upper) /2

2. Step 2: The first array is A(low:mid) and the second array becomes
A(mid+ 1:high) as shown below:

I (25, 3, 44) (15, 14, 34)

3. Step J: Again divide the array (24, 3, 44) into two lists: (24, 3) and
(44). Consider the first list and sort it. It becomes (3, 24), which is
merged with (44) so that the list becomes (3, 24, 44).

4. Step 4: Similarly the list (15, 14, 34) is sorted and becomes (14, 15,
34).

5. Step 5: The list obtained in the last two steps is merged to obtain a
final list as (3, 14, 15,25,34,44).

2.4.2.3 Iterative merge sort
In this sort, the elements are sorted in a non-recursive manner. In the beginning of
the iterative merge sort, an array of n elements is divided into n groups with each
of its length as 1. In the first iteration, two groups are merged into a group of
length 2. Similarly, in the second iteration, two groups each of length 2 are
merged to form a group of length 4. At each iteration, the elements are arranged
in sorted order.

2.4.3 Quick Sort
The quick sort technique sorts the elements of an array faster than any other
sorting technique. The various steps to perform quick sort technique on an array
are listed below:

1. Return the array, if the array contains one element.

2. Select an element in the array, termed as pivot.

3. Split the array into two arrays, one with data element values larger than
the pivot and the other with data element values smaller than the pivot.
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4. Repeat quick sorting recursively on these two parts of the linear array,
until the linear array is sorted.

The algorithm, which is used for quick sort is as follows:

1.

2.

Algorithm QuickSort (p,q)

3. if (p<q) then

4.

5. IIOivide p into sub problems

6. j:=Partition (a,p,q+1);

7. II j is the position of the partitioning element.

S. IISolve the sub problems

9. QuickSort(p,j-l);

10. QuickSort(j+1,q);

11. IIThere is no need to combine the solutions.

12.

13.

Example 4: To sort an array, A, in the increasing orders, using the quick sort
technique. The various elements of the A array are as follows:

I {21, 75, 48, 12, 45}

Solution: To sort the A array using the quick sort technique:

1. Select 48 as the pivot for the A array and split the A array into two arrays,
Band C.

I

Pivot for A array
B = {21, 12, 45}
C = {75}

= 48

2. Select 21 as the pivot for the B array and split the B array into two
arrays, D and E.

I

Pivot for B array = 21
D = {12}
E = {45}

3. Return C, D and E, as the sorted arrays because these arrays contain
single data element.

I

e = Sorted C
D = Sorted D
E = Sorted E

4. Determine the sorted Bas:
Sorted D, Pivot of B, Sorted E
Sorted B = {12, 21, 45}

5. Arrange the sorted elements of array A as:
Sorted B, Pivot of A, Sorted C
Sorted A = {12, 21, 45, 48, 75}



Example 5: Consider an array that includes the following items:

Pivot item

1
15 22 27 1012 20 2513

Solution:

Partition the array so that all the items smaller than pivot item are to the left side
of it and all the items larger than it are on the right side. Figure 2.1 shows the
partitioned form of the array.

Pivot item

1
10 13 12 15 22 27 20 25, ,

V
All smaller

V
All larger

Figure 2.1 Partitioning the Array around the Pivot Item

Repeat the same process to sort the array. Figure 2.2 shows that all the sub arrays
are enclosed and in rectangles, whereas the pivot points are free.

Pivot item

1
lO 12 13 15 20 22 25 27

Sorted Sorted

27 12

15

15

15

Figure 2.2 Shorted Form of the Array

- . - - - - --- ------------------
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4. What do you mean by sorting?
5. Enlist different sorting

techniques.
6. What do you understand by

selection sort?
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2.5 ALGORITHM COMPLEXITY

The efficiency of the algorithms depends on two essential elements, time and
space. The complexity of an algorithm is a function that provides the running
time and space for data depending on the size provided by you. Sometimes, you
may need a time-space tradeoff that increases the amount of space to store the
data. Using time-space tradeoff, you may be able to reduce the time required for
processing the data or you may increase the time required for processing the data.

For example, P is an algorithm and n is the size of the input data. Then, the time
and space that P uses will be the two main measures on which the efficiency of P
depends. You can measure the time by counting the number of key operations in
the searching and sorting algorithms.

The complexity of the algorithm, P is a function, g(n), that provides you the
running time and space of operations performed by an algorithm when the input
size is n. The storage space for an algorithm is a multiple of its data size, n. You
need to use the following two cases to investigate the complexity theory:

• The worst case complexity
• The average case complexity

2.5.1 The Worst Case Complexity
The worst case occurs when the items in the last element in the array, data, is not
available. In this situation, you have:

ern) = n

2.5.2 The Average Case Complexity
In this case, the item is present in the array, data, and can occur at any position in
the array. Then,

C(n)= 1.1\n+ 2.l\n + + n.l\n
= (1 +2 + +n).l \ n
=n(n+ 1)\2.1\n=n+ 1\2

2.5.3 Complexity and Efficiency of Sorting Techniques
Complexity is the efficiency measure of an algorithm or a technique. For
example, you can add first 20 natural numbers using two methods. In the first
method, you need to add the 20 numbers using general addition as:

Sum = 1+ 2 + + 20

Sum = 210

Using the second method, you need to add the 20 numbers using the following
formula:

Sum = (n * (n+ 1»/2

Here, n = 20, therefore the sum of first 20 natural numbers is calculated as:

Sum = (20 * (20 + 1)/2)

Sum = 210



You can see that the second method to calculate the sum of first 20 natural
numbers is less complex and requires less time to calculate in comparison to the
first method.

The complexity function is a notation of different data comparisons done while
sorting the data items of an array. The complexity of sorting is represented using
Big 0 notation. The Big 0 notation is defined as O«(j{n», where ./{n) is the
function of the number of data items stored in an array. The complexity enables
you to compare the memory space occupied and the run time required for each
sorting technique.

Search operations are faster if the data array is sorted. It's because sorting
eliminates the unnecessary comparisons. The complexities of various sorting
techniques are as follows:

• Selection sort: Quadratic time complexity or O(n2).

• Merge sort: Optimal complexity or O(nlog(n».
• Quick sort: Quadratic time complexity or O(n2).

2.5.4 Efficiency Parameters of Sorting
The various efficiency parameters of the sorting techniques are as follows:

• Number of comparisons: It specifies the number of times, the search
data is compared with the data elements of the data structure.

• Number of swaps: It specifies the number of moves of the data elements
during the sorting process.

You can use the 0 notation to measure the complexity of the sorting technique.
The lesser the complexity of the sorting technique the greater will be the
efficiency. Consider that N is the number of data elements, which are to be sorted.
Then, 0 notation represents the number of operations performed on the N data
elements. These operations include the comparing and swapping of data
elements. The complexity measures of the sorting techniques using the efficiency
parameters are as follows:

• O(log2N) = O(log2 8) = 3+
• O(N) = 0(8) = 8
• O(Nlog2N)= O(810g28)= 24
• O(N2) = 0(82) = 64

2.6 STRASSEN'S MATRIX MULTIPLICATION

In linear algebra, the Strassen's algorithm, which is named after the German
mathematician Volker Strassen, is used for matrix multiplication. Volker Strassen
published this algorithm in 1969. It is faster than the standard matrix
multiplication algorithms and is useful for solving large matrices.

Let X and Y be two square matrices over a ring R. The matrix product of these
two matrices is:

Z=XY

Where,
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x Y Z ER2n*2n, ,

Note: If the matrices X and Yare not of type 2n *2n, you can fill the missing
elementsof row and columnwith zero.

Consider the following matrices:

Y = (Y11
Y21

With,

Then,

Zl1 = X111';1 +X121;1

Z12 =X111';2 +X121;2

Z21= X211';1 +X221;1

Zi2 = X211';2 +X221;2
Now, define new matrices using the above products

~ = (Xli +1;2)(X11 +1;2)

~ = (X21 +1;2)1';1

~ = Xli (1';2 - 1;2)

~ = X22(1;1 - 1';1)

r; = (XII +X12)1;2

~ =(X21-X11)(1';1 +1';2)

P, = (X12 +X22)(1;1 + 1";2)

Therefore,

Zl1 = ~+~-Ps+p'

Z12 = ~+Ps



You can iterate this division process n-time until the sub matrices degenerate into
numbers.

2.7 SUMMARY

In this unit, you have learnt about searching and sorting techniques under the
divide and conquer-strategy, Searching techniques are used to search a particular
record from a list 0{records based on the key value. A key value denotes a field
which can be used to retrieve a particular record from the list. The searching
technique that needs to be applied depends on whether the given list is in sorted
or unsorted order. If the given data is in unsorted order, then you can apply the
linear search technique. If the given data is in sorted order, then it is efficient to
apply the binary search technique.

In this unit, you have also learnt about the different sorting techniques. These
techniques are used to arrange the given data in a sorted order. The different
sorting techniques that you can apply on the given unsorted data are as follows:

• Selection
• Merge
• Quick

You can also measure the complexity of an algorithm by using the complexity
theory, which depends on the worst case and the average case.

2.8 KEY ifERMS

• Divide and conquer strategy: This strategy follows top-down approach
to design algorithms for solving large problems. It consists of dividing the
problem into small size problems that are called sub problems.

• Searching techniques: These techniques are used to retrieve a particular
record from a list of records in an efficient manner so that the least
possible time is consumed.

• Sorting techniques: Another technique of divide and conquer strategy is
sorting. It can be applied on a list of data, so that the list can be analysed
easily for making accurate decisions.

• Algorithm complexity: The complexity of an algorithm is a function that
provides the running time and space for data depending on the size
provided by you .

•. -Strassen's matrix multiplication: In linear algebra, the Strassen's
algorithm is used for matrix multiplication. It is faster than the standard
matrix multiplication algorithms and is useful for solving large matrices.

2.9 ANSWERS TO 'CHECK YOUR PROGRESS'

1. Searching techniques are used to retrieve a particular record from a list of
records in an efficient manner so that it consumes the least possible time.

2. The different searching techniques are as follows:
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A. Linear search
B. Binary search

3. Binary search is a method, which involves the comparison of the search
data with the data at the centre of the list. It also involves a comparison of
elements in the first half or second half of the list.

4. Sorting techniques can be applied on a list of data. The list can be
analyzed easily for making accurate decisions.

5. The different sorting techniques are as follows:
a. Selection
b. Merge
c. Quick

6. Selection sort is a technique in which the smallest element of an array is
searched and swapped with the first element of an array.

2.10 QUESTIONS AND EXERCISES

Short-Answer Questions
1. Define sorting,

2. Write the algorithm for a binary search.

3. How can you implement merge sort? Explain with an example.

4. Define the searching technique.

Long-Answer Questions
1. Explain the different sorting methods.

2. What is quick sort? Explain with the help of an example.

3. Explain selection sorting along with an example.

4. Compare the timing complexities of various sorting algorithms.

2.11 FURTHER READING

Horowitz, Ellis, Sartaj Sahni and Sanguthevar Rajasekaran. 2006. Fundamentals
of Computer Algorithm. New Delhi: Galgotia Publication Pvt. Ltd.
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3.0 INTRQDUCTION

You are already familiar with searching and sorting techniques. In this unit, you
will learn about the greedy method. It is an important design technique that can
be applied to calculate the optimal solution for a number of problems. The input
that seems best at the current moment is selected iteratively by following the
greedy choice property at each step until an optimum solution is obtained. The
knapsack and job sequencing problems can be easily resolved by following the
corresponding greedy method algorithms.

You will also learn about Prim's algorithm which is based on the greedy method
approach. A minimum-cost spanning tree can be determined by following Prim's
algorithm. At each step a suitable edge is added to the tree so that the sum of all
the selected edges remains the lowest. Kruskal's algorithm can also be used for·
determining the minimum-cost spanning tree. While following Kruskal's
algorithm, the edge with the lowest cost is selected.

3.1 UNIT OBJECTIVES

After going through this unit, you will be able to:
• Understand the greedy method design technique
• Determine the optimal solution for a knapsack problem by following the

greedy method approach
• Determine 1Jteoptimal solution for job sequencing with deadlines
• Explain Prim' sand Kruskal' s algorithms
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3.2 OVERVIEW OF THE GREEDY METHOD

The greedy methods are simple and straightforward algorithms that are used to
find optimal solutions for a wide variety of problems. These algorithms follow an
approach where the most optimum option is selected at each and every step. This
selection procedure is based on the information available at the current step. The •
problems generally consist of n inputs, which can be solved by finding a subset
that satisfies some constraints. This subset of inputs that leads to an optimal
solution is known as the feasible solution. Initially, the solution set is empty. At
each step the selection function is used to choose the best option and the selected
item is added to the solution set. The item under consideration is rejected if the
solution set is no longer accessible and is never considered again. Otherwise if it
is feasible, then the item is merged to obtain an updated solution set.

At each step, the greedy choice property is followed and the input that seems best
at that moment is selected iteratively, until the optimum solution is met. With
each greedy choice the given problem is reduced into smaller sub problems, each
of which can be further solved. Thus, in order to find the optimal solution for a
problem, the greedy technique will generate sub-optimal solutions. This version
of greedy method algorithm is known as subset paradigm. The following
algorithm helps use the subset paradigm in the greedy method:

1. Algorithm Greedy(a,b)

2. Ila[l:b] contains the n inputs

3.

4. solution = ~; II solution initialized

5. for n = 1 to b

6. do

7.

8. s = Select(a);

9. if Feasible(solution,s)then

10. solution = Merge(solution,s)

11.

12. return solution;

13.

In the above algorithm, three functions are defined namely, Select, Feasible and
Merge. The set a[] refers to the inputs available for the given problem. The Chose
function selects an input from set a[] and assigns its value to s. Meanwhile, the
selected input value is removed from a[]. The feasible function represents a
Boolean function that helps to decide whether value of s will provide a feasible
solution or not. If s can be included into the solution vector, then Merge function
is further used to combine the value of s with the solution. Thus, for a given
problem, the Greedy function explains the greedy algorithm by using Select,
Feasible and Merge functions.

Sometimes, the greedy algorithm is unable to find the optimal solution for the
problems. This happens because of certain choices made during the early phase of
the algorithm, which prevent from reaching the optimal solution. However,



greedy approach is still a preferred method for solving problems because it is
simple to implement and time efficient. Some of the commonly used algorithms
such as Prim' s algorithm and Kruskal' s algorithm are based on greedy method
design technique. :

3.3 FRACnONAL KNAPSACK

The knapsack problem involves in selecting the best available objects in a
knapsack having fixed capacity. Let us consider a given set ofm objects and the
knapsack with the capacity c. Each objectj has a weight of Wj and a profit value

of Pj. The aim is 'to fill the knapsack with the selected objects so that it
maximizes the total profit. Along with this, the total weight of all. the selected
objects should be less than or equal to the capacity of the knapsack. By using the
greedy method, the objects can be broken down into pieces and can be used to fill
the knapsack. This version of the solution is termed as fractional knapsack.
Consider a fraction ~ of object j such that 0::::;~ s1. By adding this fraction to

knapsack, the profit earned will be ~. P, and the weight will be ~ wj•

Mathematically, the knapsack problem can be formulated as,

maximize L P j~
!SjSm

subject to L Wj~ sc
!SjSm

where, 0::::;~ ::::;1 and 1::::;j sm

The optimal solution will be any set of objects 1;, h ,... , 1m' which maximizes
the first equation (knapsack profit) and satisfies the second equation (knapsack
capacity).

Since the knapsack, involves in finding the subset of the given objects, it can be
solved by following subset paradigm. By choosing the object, knapsack also
involves in selecting fj fraction of each object. The following algorithm is
termed as Greedy Knapsack algorithm. It helps to find the optimal solution for
the knapsack problem:

1. for j = 1 to m do

2. f[j] = 0

3. weight = c

3. for j = 1 to m do

4.

6. if (w[j]>weight)then break;

7. x[j] = 1
8. weight = weight-w[j]

9.

10. if(j<=m)then f[j]= weight/w[j]
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In the above algorithm, w[1:m] and p[ 1:m] represent the weight and profit of n

objects, such that pO] ~ Pu+ 1] . Also, fr 1:m] represents the solution vector.
J wlil WU+1] .LL

While following the above algorithm, the object having maximum profit per unit
capacity is selected at each step. Thus, you just need to arrange the objects in
order of the ratio v.!«, .The theorem 3.1 shows that the above algorithm always
leads to an optimal solution.

Theorem 3.1: If PI/WI ~P2/W2 ~ ... ~ »J«; ,then GreedyKnapsack algorithm
will generate an optimal solution to the given instance of the knapsack problem.

Proof: Consider f=( fl, f2, ... , fm) be the solution generated by the following
GreedyKnapsack algorithm. The solution is referred as the optimal solution for
all fj that are equal to one. Also, consider k as the smallest index such that fk -:¢:. 1.

Let g=t g., g2' ... , gj) be the optimal solution. While following the algorithm, it
can be determined that,

fj =1 for 1s j < k

fj =0 for k <j sm and 0s fk<1
Since an optimal solution will fill the knapsack exactly, we can assume that
L,wjgj = c. Now consider a as the least index where, fa -:¢:. ga' It follows

that fa<ga' It implies that either a>k, a=k, or a<k. Let us analyze these three
options.

• Ifa>k, then L,wjgj >c, which is not possible.

• If a=k, then either fa<g, or I wjgj >c. This happens because for 1~ j <1

either I wjgj = c or gj = fj.

• If a<k, then fa=1. And since, fa -:¢:. g, ' therefore, ga<fa'

If ga is increased to fa and (ga"'" ..., gm) is decreased such that the total capacity
used remains c, then a new solution, s=( s., S2'..., sm) will be generated where,

Sj= Xj and L, w/gj - Sj)=Wa(sa - ga)' Therefore, it can be determined that

for s, we have,

~ I Pjgj + [(Sa-ga)Wa - L, (gj- S)Wj]_&_
ISjSm a<jSm Wa

= I Pjgj
ISjSm



Since LPjSj =:LPjgj' it implies that either s=for s:;cf. In case, s and fare

equal, then f is the optimal solution. However, if s:;cf, then following the above
steps repeatedly will show that either g is not an optimal solution, or f will be
transformed into ig showing that f is also an optimal solution. Hence, the theorem
is proved.

3.4 JOB SEQUENCING WITH DEADLINES

Greedy method is also used to find the optimal solution for a problem that which
involves in sequencing the jobs, so that each of them is completed by its deadline.
Consider a set of m jobs, where only one job is available for processing the jobs.
If} is a job, then dj ~ 0 and P, ~ 0 represent the deadline and profit associated

with the job. If the job j is completed by its deadline, then profit P, is obtained.
The feasible solution S is a subset of jobs, so that the jobs in this subset are
finished on time. The sum of the profits of jobs in subset S is given as Lj E SPj .
The optimal solution will maximize this profit value. The following algorithm
presents the high...level description of job sequencing:
1. S = {l}

2. for j=2 to m do

4.

5.

6.

if (all jobs in SU {j} can be completed by their

deadline)

7.
8.

then S=SU{j},

In the above algorithm 3.3, S refers to the subset of jobs that can be completed by
the given deadline. At each step, a new job is selected and added to S if that job
can be accomplished on time. Thus, set S is a feasible solution for the given
problem. Theorem 3.2 helps to determine the order in which selected jobs can be
processed.

Theorem 3.2: Consider S as the set of m jobs and (J' = jl' j2' ... , jmas a
permutation of jobs in S so that djJ ~ dj2 ~ ...dj k' If by following the sequence
order (J', the jobs in S can be completed by their deadline, then S is a feasible
solution.

Proof: To prove the solution, it is required to show that if S is feasible, then (J'

refers to a possible order in which jobs need to be processed. There also exist
(J" = k., k2, ... , km such that dkp ~ p and 1~ p ~ m . If we assume that (J" :;C (J' ,

then x is the smallest index so that k, :;C ja' Also, let k, = J, then b>a. Further
k, and k, can be interchanged in (J". Now, since d, a ~ dk b' the new
permutation (J''' = 11' 12, 13, ••• , 1m depicts the order in which jobs can be
completed with by given deadlines. Thus, repeating the above steps (J" can be
transformed into (J' •Hence, the theorem is proved.
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Let us consider another Greedy algorithm for sequencing the given jobs on the
basis of deadline and profit value. The sorting of jobs as described in Theorem
3.2 can be avoided by keeping the jobs in order of their deadlines. The following
algorithm describes this version of Greedy method:
1. d[OJ= S[OJ=O

2. S[lJ=l

3. m=l

4. for j=2 to x

5. do

6.
7.

8.
k=m;

while ((d[S[kJJ>d[j])and (d[S[k]J:;t:k))do k=k-1

9. if((d[S[k]]~d[j]) and (d[j]>k)) then

10. {

11. for t=m to (k+l)

12. step-1 do S[t+1]=S[qJ

13. S[k+l]=j

14. M=m+l

15.

16.

return m

In the above algorithm, the dO] refers to the deadline of a job j. These jobs are
ordered such that the profit value is p[ 1];::: p[2] ;:::p[3] ;:::.... ;:::p[x]. An array
d[l :m] can be used to store the deadlines of the jobs in accordance with their
profit values. The solution set S can be depicted as one-dimensional array S[l:k]
such that S[k], 1~k~m are the jobs in set S and d[S[l]]~ d[S[2]]~ d[S[3]]~ ...
~ d[S[m]]. By inserting j into S and then verifying that d[S[k]] ~ k, you can easily
identify whether Su{j} is feasible or not. As the algorithm shows, the positions
of jobs S[t], S[t+l] , S[t+2], ... , S[m] are changed, when job j is inserted at
position t.

3.5 PRIM'S ALGORITHM

Prim's algorithm is based on greedy method approach which is used to find a
minimum-cost spanning tree. A spanning tree of a graph is represented as a sub
graph containing all the vertices and forming a tree structure. The graph may
have some numerical costs attached with the vertices. A minimum-cost spanning
tree refers to a tree containing all the edges of which the sum of the costs
associated with the edges is minimum. In the greedy method, at each step an edge
is selected in such as way that the sum of costs of edges remains minimum.
Consider the following Prim's algorithm for finding a minimum-cost spanning
tree where G as the set of edges:

1. Let (a, b) as an edge of minimum cost in G

2. mncost=cost[c, b]

3. r[1,1) =a



4.

5.

r[1,2l=b

for c=l to m II initialize min[l

6. do

7.

8.

if (cost[c, bl<cost[c, althen min[cl=b

9.

else min[cl=a

min[al=min[bl=O

10. for c=2 to m-1 do

11. II find -2 additional edges for r

12. Let d be an index so that min [dl::l=0 and

13. cost[d, min[dll us minimum

14. s[c,ll=d

15. s[c,2l=min[dl

16. mncost=mncost + cost[d, min[dll

17. min[dl=O

18. for a=l to m do II update min[l

19. if((min[al::l=O)and (cost[d, min[all>cost[a, dl))

20. then min[al=d

21.

22. return mncost

In the above algorithm, cost[ 1:m, l:m] is a matrix of m vertices in a graph. The
process starts with a tree having only one minimum-cost edge of G. The
remaining edges are added one by one. The edge (c, d) is the next edge to be
added in the tree. Here, the vertex c is already included into the tree and d is yet
to be added. Also, cost(c, d) represents the weight attached with the edge (c, d),
which is minimum among all the available edges. In order to determine such a
minimum-cost edge, a value min[dl is attached with each vertex that is not yet
added to the tree. Among all the choices, the value min[d] is a vertex in the tree
such that cost[d, minldl] is minimum. To calculate the minimum-spanning tree
Prim's algorithm will require O(m2) time, where m is the number of vertices in
graph G.

Example 1:Consider the graph shown in Figure 3.1.

Figure 3.1Displaying a Graph
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In order to generate the minimum-cost spanning tree, we follow Prim's algorithm.
Since Prim's algorithm is based on greedy method, the process starts with
selection of an edge having the minimum cost. Figure 3.2(a) to (e) shows the
various steps involved in finding the minimum-cost tree for the given graph.

(b)

(d)

(e)

Figure 3.2 Steps of Prim's algorithm

Since the edge (1,3) has the lowest cost, therefore, it is selected as the first edge
of the minimum-cost spanning tree. The resulting tree is shown in Figure 3.2(a).
In the next step, the edge (3,5) is selected and included into the tree as depicted in
Figure 3.2(b). At vertex 5 there can be two edges which include (5,6) and (5,4).
The cost of edge (5,4) is lower than that of (5,6). Therefore, in Figure 3.2(c) edge
(5,6) is discarded and edge (5,4) is selected as the next edge of the tree. Again, at
vertex 6 there can be two edges. Here, cost of edge (4,6) is less than cost of edge
(4, 2). Therefore, edge (4,6) is included in the tree, as shown in Figure 3.2(d).
Finally, the edge (6,2) is added to form the minimum-cost spanning tree. Figure
3.2(e) shows the final minimum-cost of the spanning tree with cost of sixty-five.

3.5.1 Modified Prim's Algorithm
Prim's algorithm can be further modified, so that we can determine a minimum
spanning tree faster. Let r is the minimum-cost spanning tree of graph P=(V,E),



where a is a vertex in r. Suppose (a, b) is the edge having the minimum cost
among all the edges touching the vertex a. For all the edges (a, c)eE(r), assume
that (a, b)~E(r)land cost[a, b] < cost[a, c]. A cycle is created with inclusion of (a,
c) in the tree n An edge (a, b) is also included in this cycle such that a:;t:b.
Without disconnecting the graph (V,E(r)u {(a,b)}), this cycle can be broken by
removing the edge (a,c) from E(r) u {(a,b)}. As a result, (V,E(r)u {(a,b)} -
{(a,c)} is also a spanning tree. The new spanning tree has lower cost than r
because cost[a~b]<cost[a,c].Thus, by following the above observation, the
algorithm can ~e modified. The process starts with a tree having an arbitrary
vertex and no edge, in which the other edges are included one by one. The
updatedPrim's algorithm is given as follows:
1. Let (at b) as an edge of minimum cost in G

2. mncost;=O
3. For c=2 to m do
4. ~in[c]=l II vertex 1 is initially in r
5. min[l]*=O
6. for c=l to m-1 do
7. II ~ind m-1 edges for r

8. Let d be an index so that min [d]:;t: 0 and
9. l:ost[d, minEd]] us minimum
10. s[c,l]=d
11. ~[c,2]=min[d]
12. mncost=mncost + cost[d, minEd]]
13. ~in[d]=O
14. for a=l to m do
15. if((min[a]:;t:O) and (cost[d, min[a]]>cost[a, d]))
16. .then min [a] =d
17.

18. return mncost

3.6 KRJUSKAL'S ALGORITHM

A minimum-costspanningtree can also be determinedusingKruskal's algorithm
where edges a~ arranged in non-decreasingorder of cost. Kruskal's algorithm is
also based on 'another greedy method approach. Here, r represents the set of
edges selected.so far to make the spanning tree. The set r may not be a tree at
every stage in ithe algorithm. Unlike Prim's algorithm (where a tree should be
formed at each step) in Kruskal's algorithm, it is not necessary to form a tree
structureat eadi step. Twodistinct edges can be selectedin consecutivesteps.An
edge is discarded if its inclusion leads to formation of a cycle. Consider the
followingalgorithmthat gives a high-leveldescriptionofKruskal's algorithm:
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10. }

1. r=0
2. while ((r has less than m-1 edges) and (E:;t0)) do
3. .{

4. Choose edge (a, b) from E of lowest cost
5. Delete (a, b) from E;
6. if (a, b)does not create a cycle in r
7. then add (a, b) to r
8. else
9. discard (a, b)

In the above algorithm, initiallythe set r is empty.At each step, an edge (a, b) is
selected from the set of availableedgesE. In case, the inclusionof edge (a, b) in r
does not create any cycle, then the selected edge is added into the tree r.
Otherwise, edge (a, b) is not added in the tree r. In order to determine the
minimum-costedge at each step efficiently,the edges are sorted and arrangedin a
heap. As a result of heap structure, the next edge can be obtained in O(logIE!)
time. The following updated Kruskal's algorithm gives the detailed steps for
calculatingthe minimum-coatspanningtree:
1. Construct a heap out of the edge costs
2. for j=l to m do
3. parent[j]= -1
4. j=O
5. mncost=O
6. while((j<m-1) and (heap not empty)) do
7 • {
8 .
9.
10.

Delete a minimum cost edge (a, b) from the heap
k=Find(a)
l=Find(b)

11. if (k:;t1) then
12. {
13. j=j+1
14 . r [j, 1] =a
15. r[j, 2]=b
16. mncost=mncost+cost[a,b]
17. Union(k,l)
18.
19.
20. if (j :;tm-1) then write ("No spanning tree")
21. else
22. return mncost

In the above algorithm,we consider a graph H havingm vertices. The cost[a, b]
is associatedwith each edge (a, b). Also, let r be the set of edges that forms the
minimum-costspanningtree, havingj number of edges. Initially all the edges are
stored in a heap and each vertex is assignedto a distinct set.With the assignments
r[j, l]=a and r[j,2]=b, the edge (a, b) is included into the tree set, r. Meanwhile,
the edges are removed from the heap in non-decreasingorder of cost. The sets
containing a and b vertices are also determined. If k:;tI then both the vertices a



and b are in different sets. The sets containing a and b are combined and the edge
(a, b) is added to the tree r. The edge (a, b) is discarded, if a = b because its
inclusion will create a cycle. Following the above algorithm for computing the
time will be O(IEllog lEI),where E represents the set of edges in the given graph.

Example 2: Consider the following graph shown in Figure 3.3.

Figure 3.3 Graph

In order to determine the minimum-cost of a spanning tree, we follow Kruskal's
algorithm. Figure 3.4 (a) to (f) shows the various steps involved in finding the
minimum-cost tree for the given graph.

CD CD
<D <D

@

<D (1)
(a)

\
(b)

CD CD

(c) (d)

(a) (f)

Figure 3.4 Steps of Kruskal 's algorithm
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Initially, no edges are selected as shown in Figure 3.4(a). Since the edge (3,5) has
the lowest cost, therefore (3,5) is selected as the first edge of the minimum-cost
spanning tree. Figure 3.4(b) shows the resulting graph. In the next step, the edge
(2,4) is selected and included into the tree as shown in Figure 3.4(c). Since the
inclusion of edges (4,6) and (1,3) does not create any cycle, they are also included
into the tree, as shown in Figure 3.4(d) and Figure 3.4(e) respectively. Now in the
remaining edges, the edge (2,6) has the least cost. If edge (2,6) is included in the
tree, then a C) cle is formed. Therefore, edge (2,6) is discarded. The next edge
with lowest ,»st is (l,2). Since the inclusion of edge (l,2) does not create any
cycle, therefore it is added to the tree. Figure 3.4(t) shows the final minimum-cost
tree having cost of fifty-two.

Theorem 3.3: Kruskal's algorithm will generate a minimum-cost spanning tree
for every connected undirected graph H.

Proof: Assume H as the undirected connected graph and r is the spanning tree for
H determined by using Kruskal's algorithm. Also, let s be the minimum-cost
spanning tree for graph H. To prove the theorem, we need to show that rand s
have the same cost.

Consider E(r) and E(s) be the edges in tree rand s, such that either E(r)=E(s) or
E(r):;t E(s). In the first case, the s will have minimum cost. For the latter case, let
k as a minimum-cost edge so that ksE(r) and k~ E(s). A unique cycle will be
created when k is included into s. Let k, d), d2, d., ... , d, be this unique cycle.
Let d, be an edge in this cycle so that d, ~E(r). If cost( dy) ~ cost(k), i.e. d, has
lower cost than k, then dy will be added to the tree r. Now consider the graph

having edge set E(s)u {k}. If an edge is removed from the cycle k, d., d2, d3,
... , dx' then a new tree t will be formed. Specifically, the tree formed by

removing the edge dy will have less cost than the cost of tree s. Since cost( dy )

~cost(d), the new tree t is also a minimum-cost spanning tree. With repeated
transformations, the tree s can be converted to a spanning tree without any
increase in the cost. Therefore, tree r is a minimum-cost spanning tree.

3.7 SUMMARY

In this unit, you have learnt about the computation of an optimal solution for
several problems. The optimal solution can be obtained with the help of the
greedy method. This method follows a straightforward design in which the best
option at the current stage is selected and the problem is divided into smaller sub
problems. The sub-optimal solutions are found following a subset paradigm of
the greedy method. The optimal solution for knapsack and job sequencing
problems can be determined by following the subset paradigm.

You have also learnt about minimum-cost spanning tree in which the sum of all
costs associated with each edge is minimum. Either Prim's algorithm or
Kruskal's algorithm can be used to generate a minimum-cost spanning tree.
While following Prim's algorithm, at each step, a tree is formed and the sum of
the cost of the edges of the tree remains minimum. However, in Kruskal' s
algorithm, it is not necessary to form a tree structure at each step. The edge with
the lowest cost is selected at each step so that a minimum-cost tree is generated
finally.



3.8 KEY TERMS

• Greedy method: The greedy methods are simple and straightforward
algorithms that are used to find optimal solutions for a wide variety of
problems. These algorithms follow an approach where the most optimal
option is selected at each and every step.

• Fractional knapsack: The knapsack problem involves in selecting the
best available objects in a knapsack having fixed capacity.

• Prim's algnrithm: Prim's algorithm is based on greedy method approach
that is used to find a minimum-cost spanning tree. A spanning tree of a
graph is represented as a sub-graph containing all the vertices and
forming a tree structure.

• Kruskal's algorithm: Kruskal's algorithm is also based on another
greedy method approach. In this not necessary to form a tree structure at
each step it this method.

3.9 ANSWERS TO 'CHECK YOUR PROGRESS'

1. In the greedy method design technique, the optimum option is selected at
each step. This selection procedure is based on the information available
at the current step.

2. The main advantage is that it is simple to implement and requires less
time for finding the optimal solution.

3. Fractional knapsack is based on the greedy method in which the objects
are broken.down into smaller pieces and then suitable pieces are put into
the knapsack to attain the maximum profit.

4. The feasible solution for job sequencing problem is' a subset S of jobs,
where jobs are arranged in such a way that all the jobs in this subset are
finished on time.

5. A spanning tree of a graph is represented as a sub-graph containing all the
vertices and forming a tree structure. A spanning tree may have some
numerical costs attached with the vertices.

6. In Prim's algorithm, a tree structure should be formed at each step.
However, in case ofKruskal's algorithm, it is not necessary to form a tree
structure at each step.

3.10 QUESTIONS AND EXERCISES

Short-Answer Questions
1. What are the roles of the select, feasible and merge functions involved in

the greedy method algorithm?
2. What is the disadvantage of the greedy method?
3. Explain the knapsack problem.
4. Write the greedy method algorithm giving a high-level description of job

sequencing.
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5. Describe the basic concept of Prim's algorithm.
6. Explain the modified Prim's algorithm.
7. Explain Kruskal's algorithm.

Long-Answer Questions
1. Write the algorithm for a subset paradigm.
2. Explain the Greedy Knapsack algorithm.
3. Give a detailed description of job sequencing with deadlines.
4. How will you determine a minimum-cost spanning tree by following

Prim's algorithm? Also write Prim's algorithm.
5. Explain Kruskal's algorithm.

3.11 FURTHER READING

Horowitz, Ellis, Sartaj Sahni and Sanguthevar Rajasekaran. 2006. Fundamentals
of ComputerAlgorithms.New Delhi: Galgotia Publication Pvt. Ltd.
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4.0 INTRODUCTION

You are already familiar with the greedy method and job sequencing problems. In
this unit, you will learn about the concept of dynamic programming. In dynamic
programming, the problem is divided into sub-problems and the solution of a sub
problem can be used to find the solution for the entire problem. The main
characteristic of dynamic programming is that it reduces the re-computation
effort by storing th~ solution of various sub-problems. Dynamic programming is
mainly useful in solving the following types of problems:

• Multistage graph problem
• Shortest path problem
• 011Knapsack problem
• Travelling salesperson problem
• Longest common subsequence
• Matrix multjplication problem

4.1 UNIT ~BJECTIVES

After going through this unit, you will be able to:
• Explain the concept of dynamic programming
• Explain the eharacteristics of dynamic programming

Dynamic Programming
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• Define the steps involved in dynamic programming
• Explain how the multistage graph problem is solved
• Describe how dynamic programming can be implemented in the shortest

path problem
• Implement dynamic programming to solve 0/1 knapsack problem
• Understand the travelling salesperson problem
• Explain the use of dynamic programming to provide solutions for the

longest common subsequence problem
• Explain matrix chain multiplication problem

4.2 OVERVIEW OF DYNAMIC PROGRAMMING

In the analysis and design of algorithms, there are various designing strategies
such as recursion, divide-and-conquer, dynamic programming, greedy method,
backtracking and branch-and-bound. These techniques help to develop an
algorithm and solve the given problem. Dynamic programming is a design
methodology that helps in building up the solution of a problem by combining the
solutions of several sub problems. In general, it is applicable in a situation where
the given problem is to be optimized to an objective function and where the
combination of all the optimal solutions to the subproblems provides the optimal
solution to the given problem. You can use dynamic programming to design the
strategy for solving different sorts of problems. Some of them include:

• Multistage graph problem
• Shortest path problem
• 0/1 Knapsack problem
• Travelling salesperson problem
• Longest common subsequence
• Matrix multiplication problem

4.2.1 Characteristics of Dynamic Programming
Dynamic programming is an algorithm design technique, which has the following
characteristics:

• It solves the problems by combining the solutions of all sub problems.
• In dynamic programming, all the sub problems are dependent but the

solutions of sub problems may not affect the solutions to other sub
problems of the same problem.

• It reduces the computation by:
o Solving the sub problems in bottom-up fashion.
o Storing the solution of a sub problem for the first time it is solved.
o Looking up the solution when a sub problem is encountered again.

• It depends on the principle of optimality, which states that in an optimal
sequence of solutions, each subsequence must also be optimal.



4.2.2 Steps in,Dynamic Programming
The dynamic programming process involves the following steps to find the
solution of given problem.

1. Characterize the structure of an optimal solution.

2. Define the value of optimal solution recursively.

3. Compute the optimal solution values either by top-down or with
caching the bottom-up in a table.

4. Construct an optimal solution from the computed values.

4.3 MULTISTAGE GRAPHS

A multistage graph is a directed graph G that has a pair (V, E)where V represents
set of vertices. It is a finite set and E represents set of edges that has a binary
relation on V. Pairs of vertices represent the edges such that the pair (VI, V2)
represents the edge from the vertex VI to vertex V2• In other words, a multistage
graph is a graph in which:

• G = (V, E), where, vertices Vare partitioned into k ~ 2 disjoint subsets
such that if (a, b) are the elements of the set of edges E, then a is in Vi and
b is in ~+I for some subsets in the partition. Where, i is less than k and
greater than equal to I, i.e. 1 :::;i < k.

• In graph G = (V, E), the sets VI and Vkare such that I VI I = I VK I = 1.

Let us consider that sand t are vertices in VI and Vir.where sand t are the source
and sink respectively. Now, suppose cU,}) is the cost of the edge <i.]>, The cost
of the path from s to t is the sum of the costs of all the edges on the path. In the
multistage graph problem, we need to find a minimum-cost graph from s to t.
In the graph G, each set ~ defines a stage and every path from s to t starts from
stage 1. The path then goes to stage 2, then stage 3 and finally terminates in some
stage k. Figure 4.1 shows a five-stage graph where minimum-cost path from s to t
is indicated by the darkened lines.

FilJUre 4.1 Five-stage Graph to Determine Minimum-cost Path
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From Figure 4.1, it is easy to observe that traversing through the path that which
includes nodes 1,5, 7, 10 and 12, costs minimum.

You can use dynamic programming to formulate a k-stage graph problem, where
every path from s to t is a result of a sequence of k - 2 decisions. Here, the lh
decision helps in determining the vertex in Vi+J, 1 ~ i ~ k, on the path. Suppose,
p(i,j) is the minimum-cost path from a vertexj in Vi to vertex t. If cost(i,j) is the
cost of this path, then using the forward approach, we can obtain

min {c(j, I) + cost(i + 1, l)}
cost(i,j) = 1E V;+1

(1,/) E E

(4.1)

Now, cost(k - 1, j) = c(j, t) if <j, t> E E and cost(k - 1, j) = 00 if <j, t> li!: E.
Therefore, equation 4.1 can be solved for cost(l, s) by computing cost(k - 2,j)
first for all j E Vk-2, then cost(k - 3, J) for all j E Vk-3, and so on, and finally
cost(l, s).

To write an algorithm to solve the equation 4.1 for a general k-stage graph, let us
impose an ordering on the vertices in V, which makes the algorithm writing
easier. It is needed that n vertices in Vare indexed through 1 to n and these
indices are assigned in order of the stages. The first index 1 is assigned to s, then
vertices in V2 are assigned followed by vertices on V3 and so on. Finally, n is
assigned to vertex t. From this, it is cleared that indices assigned to vertices in
Vi+1 are greater than those assigned to the vertices in Vi. This indexing scheme
results in computation of cost and d in the order of n - 1, n - 2, ... , 1, where dis
the value of a node 1that minimizes c(j, I) + cost(i + 1, I).This approach is known
as forward approach and the resulting algorithm, in pseudocode is called FGraph.
Since, the first subscript in cost, p and d only identifies the stage number;
therefore, it is omitted in FGraph algorithm.

The algorithm for multistage graph pseudocode corresponding to the forward
approach is as follows:
//Algorithm FGraph(G, k, n, p)

/* The input is a k-stage graph G = (V,E) with n vertices
indexed in order to stages. E is a set of edges and
c(i,j)is the cost of <i,j>. p[l:k]is a minimum-cost path.*/

1.

2. cost[n] :=0.0;

3. for j:=n-1 to 1 step -1 do

4. ii/Compute cost[j].

5. Let r be a vertex such that <j, r> is an edge of G and

6. c[j,r]+cost[r] is minimum;

7. cost[j]:= c[j,r]+ cost[r];

8. d [j] :=r;

9. }
10. //Find a minimum-cost path.

11. p [1]:=1;P [k] :=n;

12. for j:=2 to k-1 do prj] :=d[p[j-1]];



You can also solve the multistage graph problem with the help of backward
approach. Let us consider that bp(i, j) is a minimum cost path from the vertex s to
the vertex t.Let 4cost(i, j) to be the cost of bp(i, j). Using backward approach you
can find that:

bcost(i, j) = min {bcost (i-I, l)+ ccl, j) }
lEvi~I

(l,j)E1

(4.2)

Since bcost(2, j) = c(l, j) if (1,j) E E and bcost(2, j) = 00 if (1,j) ~E , bcost(i, J)
can be calculated using equation 4.2 for i=3 and so on. BGraph is a backward
approach algorithm in pseudo code to obtain the minimum-cost path from s to t.
In this algorithm, like Fgraph, the first subscript on bcost, p and d are omitted.

Algorithm for multistage graph in pseudo code corresponding to the backward
approach is as follows:

//Algorithm BGraph(G, k, n, p)

/* Same function as FGraph*/

1.

2. bcost [1]:=0.0;

3. for j:=2 to n do

4. ii/Compute bcost[j].

5. Let r be a vertex such that <r,j> is an edge of G and

6. bcost[r]+c[r,j] is minimum;

7. bcost[j]:= bcost [r]+c[r,j];

8. d [j] :=r;

9.

10. //Find a minimum-cost path.

11. p[l]:=l;p[k]:=n;

12. for j:=k-1 to 2 do p[j):=d[p[j+1]];

4.4 SHORTEST PATH

Shortest path technique helps in finding a path between two vertices such that the
sum of the cost (weight) of its ingredient edges is minimized. For example, if you
want to travel from one location to another location within the city, you will
prefer the path that must be the quickest way to get from one location to another
on a road map.. In such a situation; the vertices V represent the origin and
destination locations. The edges E represent segments of road that are weighted
by the time needed to travel that road segment. The following are the two types of
shortest path approaches:

• Single-source shortest path
• All-pairs shortest path
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4.4.1 Single-Source Shortest Path
The single-source shortest path is an approach to solve the shortest path problem
in which you find paths from a source vertex v to all other vertices in a directed
graph. Let d [s] to be the length of a shortest path from the source vertex s to
vertex t under the constraints that the shortest path includes E edges. Then, d[s]
cost [s, t] in which u is less than or equal to n and greater than or equal to 1, i.e.

1s u s n.
Here we calculate cr-l [s] for all s and this can be done with the help of dynamic
programming by using the following observation.

1. The distance will be eI-l[sJ= eI[sJ, if the shortest path from t to s with at
the most k, k>I and edges no more than k-I edges.

2. The distance will be eI-lIi] + cost[i,sJ, if the shortest path from s to t with
at the most k, k>I, edges exactly k edges, than it shows the shortest path
from s to some vertex j followed by the edge (j,s). The path from t to j
has k-J edges that has length of eI-l[j).

Final result of observations is:

eI[sJ = min { rI-l [sJ, min {eI-l [sJ + cost[i,s]}}
1

Bellman and Ford algorithm is based on dynamic programming that helps to
compute the single-source shortest paths problem in which directed graph
contains some edges with negative weight. Following is the algorithm:

//Algorithm BellmanFord(s,cost,d,n)

/* Single-source shortest paths with negative edge costs*/

1.

2. for i:= 1 to n do

3. d[i] :=cost [t,i] i

4. for k:=2 to n-l do

5. for each s such that s * t and s has at least one

6. incoming edge do

7. for each (t,s) in the graph do

8. if each[t]>d[i] + cost[i,S]i

9.

Note: Dijkstra's algorithm helps to compute the same problem with non-negative
edge weights. Thus, Bellman-Ford is used only when there are negative edge
weights in a directed graph.

To understand the single-source shortest path problem, consider the following
example.



Example 1: Consider the graph with seven-vertex that has array of distance eI, k
= 1, 2, .... ,6. Therefore, d' [1] = 0 for all k and 1 is the source node. Figure 4.2
shows all the nodes and distances between nodes.

Figure 4.2 TheDirected Graph

Solution: To find out the solution of single-source shortest path problem,
consider the following equation.

eI[s} = min { eI-1lsi, min {eI-1[s} + cost[i,s]}}
1

Where,

~ cf [2}= min { eI-1f~}, min {cf-l [i] + cost[i,2]} }
1

=> cf [2j = min { eI-1Nj, min { dl [i] + cost[i,2]} }
1

=> cf[2} =min { 6,0 + 6,5-2,5 + 00, 00 + 00,00 + 00, 00 + co] = 3

Resultant matrix is:

k " [1. ... 7]

1 2 3 4 5 6 7

1 0 6 5 5 00 00 00

2 0 3 3 5 5 4 00

3 0 1 3 5 2 4 7

4 0 1 3 5 0 4 5

5 0 1 3 5 0 4 3

6 0 1 3 5 0 4 3
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CHECK YOUR PROGRESS
1. What type of technique is

dynamic programming?
2. Name four problems that can

be solved using dynamic
programming.

3. How does dynamic
programming help in reducing
computation?

4. What is a multistage graph?
5. What are the two approaches

to solving a multistage graph
problem?
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4.4.2 All-Pairs Shortest Path
The all-pairs shortest path is an approach to solve the shortest path problem in
which you find the shortest path between all pairs of vertices. Let G = (V, E) be a
directed graph with edge weights. If (s, t) E, is an edge of directed graph G, then
the weight of this edge is denoted by w(s, t). In this graph, the cost of a path from
one node to another node is the sum of the weights of the edges along the path. In
this process the graph G can have negative cost edges. But graph G cannot have
any negative cost cycle.

This problem needs to determine a matrix A where AU, j) represents the shortest
path from ito j. This matrix can be obtained by solving n single-source problems
using the shortest path algorithm 4.3. This procedure requires O(n2) times of each
of the application, thereby the matrix A can be obtained in O(n3) times. You can
also use the principle of optimality to get an alternate O(n3) solution to this
problem. Here, it is required that G has no cycles with negative length, rather than
requiring a cost(i, j) ;:::0 for every edge <t.]>, If you allow G to contain a cycle
having negative value, then the shortest path between any two vertices on this
cycle will have the length equal to -00.

Consider the shortest path from ito j in G, i '* j, which originates at i and moves
through some intermediate vertices to terminate atj. Let us assume that this path
does not contain any cycle and let one intermediate vertex be k. Now, the sub
paths from i to k and k to j must also be the shortest paths from i to k and k to j
respectively. This holds the theory of optimality and also provides us the prospect
to implement dynamic programming in all-pairs shortest paths.

If k is the intermediate vertex having highest index, then the path from ito k will
be the shortest path in G. This goes through no vertex having index greater than k
- 1. Similarly, the path from k to j will also be the shortest path in G having no
intermediate vertex greater than k - 1. So, to construct the shortest path from i to
j, the first requirement is the decision that determines the highest indexed
intermediate vertex between i and j. After making the decision, the next
requirement is to find the two shortest paths, from i to k and from k to j. It is
known that neither of these two paths can go through a vertex having index
greater than k - 1. Now, if we use AkU, j) to represent the shortest path length
from i to j that do not go through a vertex having index greater than k, then

AU,j) = min {min {Ak-l(i,k) +Ak-1(k,j),cost(i, j)}}
l"k"n

(4.3)

From the above equation, it is clear that AOU,j) = costU,j), I ~ i ~ n.; 1 ~j ~ n.
Now, using similar arguments, as used before, we can derive a recurrence for
Ak(i, j). It is evident that a path from i to i. which has no intermediate vertex
higher than k, either goes through k or not. If k is the intermediate vertex, then
Ak(i,j) = Ak-1U,k) +Ak-1(k,j). Otherwise, Ak(i,j) = Ak-1U,j). Combining these two
equations, we get the following resulting equation

(4.4)

The above equation can be solved for An by computing Al first, then followed by
computations A2, A3 and so on. There is no vertex in G that is greater than n,
therefore, AU, j) = An(i, j). We need to use the algorithm All Paths to compute
An(i,j).



Algorithm to compute the length of shortest path is as follows:

Algorithm ~ll Paths (cost, A, n)

/*cost[l:n, l:nJ is the cost adjacency matrix of a graph
with n vertices; A[i, jJ is the cost of a shortest path
from vertex i to j. cost[i, jJ = 0.0, for 1 ~ i ~ n*/

1.

2. for i := 1 to n do

3. for j := 1 to n do

4. A[i, jJ .- cost[i, jJ; //Copy cost into A

5. for k := 1 to n do

6. for i .= 1 to d do. ,
7. for j :=- 1 to n do

8. A[i, jJ := min(A[i, jJ, A[i, kJ + A[k, jJ;

9.

4.5 0/1 KNAPSACK PROBLEM

The 011 knapsack problem is related to the change of counting in the problem,
where from a given set of n items we have to select some number of items to be
carried in a knapsack. Here, each item has a weight and a profit. The main
objective is to select the set of items for the knapsack, which can be maximized to
the profit. The 011 knapsack problem is the classic integer linear programming
problem having-a single constraint. The problem can be formulated as follows:

max e.x, +C2X2 +...cnxn
where,

a,x, + a2x2 + ...anxn ~ b
and Xi = 0,1 for-i = 1,2,...,n

Here c, represents the value of an item i, which is selected to include in the
knapsack. a, is the weight of the item i, while b represents the maximum weight
that the knapsack can hold.

To solve the problem, we need to look for a solution that can be represented in
terms of sub problems, which can be implemented by expressing the solution
recursively. Therefore, the classic approach to solve the Oil knapsack problem is
to solve the problem for one item at a time. Let us consider that the problem is
solved for every weight from 0 to b for each of the item. When there is no item,
the maximum value becomes 0 and it does not depend on any of the available
weight. This case is considered as the base case for the recursive formulation of
Oil knapsack problem. We cannot place the first item in the knapsack until it
reaches a weight aj and where the optimal value is c,. Now, at each weighty for
the item k, it must be determined between the values of the solution, when the
item is used and when it is not used. When the item is not used the value becomes
Knap(k -1, y), where as when the item is used, it becomes Knap(k - 1,Y - at) +
Ct. It is clear that y - at ;:::0 for k items to fit into the knapsack. In case of selecting
k items for the knapsack, the value of Knap(k - 1,Y - at) is examined by choosing
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k - 1 as the index of the sub problem. This in tum guarantees that the item k is
selected at most once for getting the solution.

The complete recursive solution of the 011knapsack problem can be as follows:

Knap(k,y) = Knap(k-l,y) ify <ak

Knap(k,y) = max {Knap(k -l,y),Knap(k -l,y-ak)+ ck}

Knap(k,y) =max{Knap(k-l,y),+ck}
Knap(O,y) = 0

4.6 THE TRAVELLING SALESPERSON PROBLEM

You can apply the dynamic programming to solve the travelling salesperson
problem, which is a permutation problem. The travelling salesperson problem is
the best possible means of finding the lowest possible cost for visiting the various
cities and returning to the starting point. This method logically occurs as a sub
problem in many transportation and logistic applications. In other words it is the
cheapest round trip route from one city to the other. This problem explains that if
a salesman has to visit number of cities, then how should he travel so as to ensure
that the distance is minimized .

.Usually, permutation problems are much harder to solve in comparison to the
subset problems. It is because there are n! different permutations of n objects,
which is greater than 2n different subsets of n objects. Suppose, G = (v, E) is a
directed graph having edge cost cij. Here, cij> 0 for all i and} and cij = 00 when <i,
j> ~ E. Let IVI = n and assume that n is greater than 1. A tour of G is a directed
simple cycle, which traverses every vertex in V.You can calculate the cost of the
tour by summing up all the costs of the edges on the tour. Now the travelling
salesperson problem is to find out the tour having the minimum cost.

You can find the travelling salesperson problem in a variety of applications.
Suppose there are two routes for a postal van to pick up mails from the
mailboxes, which are located in n different sites. This situation can be represented
using an n + 1 vertex graph, where one vertex represents the post office from
where the postal van starts for collecting the mails. Edge <i, j> represents the
distance covered by the van from a site i to another site}. Here, the complete
route taken by the postal van can be considered as the tour and the travelling
salesperson problem will arise in finding the tour of the van that has minimum
length.

Another example of travelling salesperson is a robot arm, which can tighten the
nuts on some machinery on an assembly line. The robot arm starts over the first
nut to be tightened, which is its initial position and then moves successively to
tighten the other nuts on the machinery, and ultimately returns to its initial path.
The path covered by the arm starting from its initial position till it returns back to
the same position can be regarded as a tour of the graph. Here, the nuts on the
machinery represent the vertices on the graph. Therefore, a minimum-cost tour
can minimize the time needed by the arm to complete its task of nut tightening.
The travelling salesperson problem can be experienced here in finding the
minimum-cost tour for the robot arm.



Now let us consider a simple tour, where the path starts and ends at the vertex 1,
and every tour consists of an edge <1, k> for some k E V - {I} along with a path
from vertex k to vertex 1. The path from k to 1 traverses each of the vertices in V
- {1, k} exactly once. Now, for optimal tour, the path from k to 1 must be the
shortest path, which goes through all the vertices in V - { 1, k}. Hence, it
signifies the principle of optimality. Now, consider g(i, S) to be the length of the
shortest path, which starts at the vertex i and goes through all the vertices in S to
terminate at vertex 1. Therefore, the length of an optimal salesperson tour will be
g(1, V- {I, k}). Thus, from the optimality principle,

g(1, V- {1})= min{cJk+g(k,V-{I,K})}
IskSn

(4.5)

This equation can be generalized for i E S

G(i, S) = min{cij +g(j, S - {j})}
jES

(4.6)

Now, you can solve the equation 4.5 for g(1, V - {I, k}), if g(k, V - {I, k}) is
known for all the choices of k. It is clearly seen that g(i, t/i) = CiJ for 1 :5 i :5 n.
Therefore, we can use equation 4.6 for obtaining g(i, S) for all S having size 1.
Subsequently, we can obtain g(i, S) for all S of size 2, and so on. For lSI< n - 1,
the i and S are such that i,* 1, 1 tt Sand itt S.

Let N be the number of g(i, S)' s, which are to be computed to use equation 4.5 for
computing g(1, V- {I}). Here, for every value of Is!, there are n - 1 choices for i
and the number of distinct sets S having size k, which do not include 1 and i is

(n,/). Therefore,
n-2 (n-2)N= t;(n-l) k = (n-l)2n-2

4.7 LONGEST COMMON SUBSEQUENCE

The Longest Common Subsequence (LCS) problem helps in determining the
longest subsequence which is common to all the sequences in a set of sequences
of two or more. A subsequence is a new sequence that is formed from the original
sequence by deleting some of its elements in such a way that the deletion of the
elements does not disturb the relative positions of the remaining elements in the
sequence. The LCS problem is a good example of dynamic programming
implementation, which can be solved using the following steps:

1. Computing the length of the LCS

2. Reading out an LCS

3. Reading out.all LCS

4. Printing the difference

4.7.1 Computing the Length of the LCS
Consider two sequences X[l. ..i] and Y[l..J] for i, j ~ 1. Now the following
function, length_LCS, takes two input sequences X[l. ..m] and Y[l. ..n] to
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calculate the LCS between the first two sequences. Here 1 s i sm and 1 sj s n.
The function stores the input sequences in the C[i,j] table.

1. function length_LCS(X[l ..m], Y[l ..n])

2. C = array(O ..m, 0..n)

3. for i := 0 ..m

4. C[i,O] = °
5. for j := 0..n

6. C[O,j] = °
7. for i := 1 ..m

8. for j := 1. .n

9. if Xli] = Y [j]

10. C[i,j]:= C[i-1,j-1] + 1

11. else:

12. C[i,j]:= max(C[i,j-1], C[i-1,j])

13. return C[m,n]

4.7.2 Reading out an LCS
You can use the following function, backTrack to retrace the choices, which are
considered while computing the C table. If the last characters in the prefixes of
the choices are equal, then LCS must exist. Otherwise, you need to check the
choice, which gives the largest LCS for keep Xi and YJ and select that choice.
However, if there are choices of equal lengths, then you need to select anyone
from them and call the function with i = m andj = n.
1. function backTrack(C[O ..m,O ..n], X[l ..m], Y[l ..n], i, j)

2. if i = ° or j = °
3. return ""

4. else if Xli] = Y[j]

5. return backTrack(C, X, Y, i-1, j-1) + Xli]

6. else

7. if C[i,j-1] > C[i-1,j]

8. return backTrack(C, X, Y, i, j-1)

9. else

10. return backTrack(C, X, Y, i-1, j)

4.7.3 Reading out all LCS
If the selection of Xi and YJ produces an equally long result, then you need to read
out both the resulting subsequences. This is returned as a set by the following
backTrack All function.
1. function backTrack_All(C[O ..m,O ..nj, X[l ..mj, Y[l ..n],

i, j)

2. if i = ° or j = °
3. return {}



4. else if X[i] = Y[j]

5. return {Z + Xli] for all Z in backTrackAll(C, X, Y, i-l,
j -1) }

6. else

7.R:={}

8. if C[i,j-l] ;?: C[i-l,j]

9. R := backT'rack_All(C, X, Y, i, j-1)

10. if C[i-l,j] ;?: C[i,j-1]

11. R:= R t backTrack_All(C, X, Y, i-1, j)

12. return j:I.

4.7.4 Printing the Difference
You can use the following function, print_Diff to retrace the C matrix and print
the difference between the two input sequences.

1. function print Diff(C[O ..m,O ..n], X[l ..m], Y[l ..n], i,
j)

2. if i > 0 and j > 0 and Xli] = Y[j]

3. print Diff(C, X, Y, i-1, j-1)

4. print" "+ Xli]

5. else

6. if j > 0 and (i = 0 or C[i,j-1] ;?: C[i-1,j])

7. print_ Diff (C, X, Y, i, j-1)

8. print "+ " + Y [j]

9. else if i > 0 and (j = 0 or C[i,j-1] < C[i-1,j])

10. print Diff (C, X, Y, i-1, j)

11. print"~" + Xli]

4.8 MATRIX CHAIN MULTIPLICATION

The matrix chain multiplication is a classic example of dynamic programming.
Here, in a given sequence of matrices, you need to determine the most efficient
way to multiply those matrices together. In other words, the problem is not
actually to multiply the matrices, rather identifying the order, in which the
matrices should be multiplied efficiently.

To solve the matrix chain multiplication, let us assume that the only requirement
for this is to know the minimum cost or minimum number of operations involved
in multiplying the matrices. Now, if there are two matrices, then to multiply the
matrices, there is only one way, which is nothing but the minimum cost to do so.
Considering this scenario, we can follow recursively to find the minimum cost as
follows:

1. Take the total sequence of matrices and divide them into two separate
subsequences.
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2. Calculate the minimum cost to multiply the matrices within each of the
subsequence.

3. Add the above costs together and add it with the cost of multiplying the
two resultant matrices.

4. Follow this approach for each of the possible position at which you can
split the sequence of matrices, and take the minimum over all of them.

For example, if there are four matrices W, X; Yand Z, then we make recursive
calls to compute the cost required to find each of (W)(XYZ), (WX)(YZ) and
(WXY)(Z).This helps in finding the minimum cost for computing WXY, WX, YZ
and XYZ. This approach not only gives the minimum cost but also describes the
best way in which the matrix multiplication can be done.

The following algorithm shows the algorithm for matrix chain multiplication:

1. Matrix-Chain-Order(int prj)

2.

3. n = p.length - 1;·

4. for (i 1; i <= n; i++)

5. m[i,i] 0;

6. for (1=2; l<=n; 1++) { II 1 is chain length

7. for (i=l; i<=n-l+1; i++) {

8. j = i+l-1;

9. m[i, j] = MAXINT;

10. for (k=i; k<=j-1; k++) {

11. q = m[i,k] + m[k+1,j] + p[i-1]*p[k]*p[j];

12. IIMatrix Ai has the dimension p[i-1] x p[i].

13. if (q < m[i,j])

m[i,j]

s [i, j]

14.

15.

16.

17.

18.

19.

20.

q;

k;

CHECK YOUR PROGRESS 4.9 SUMMARY
6. What are the types of shortest -------------------------------

path approaches?
7. When is the Bellman-Ford

algorithm used in a shortest
path problem?

8. What is a subsequence?
9. What is the aim of matrix

chain multiplication problem?
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In this unit, you have learnt about the basic concepts and characteristics of
dynamic programming. It is a technique that helps in designing efficient
algorithms for problems that can be easily divided into sub-problems. The
solution of a given problem is obtained by combining the solutions of all the sub
problems. Dynamic programming is helpful in constructing algorithms in
situations where the problem focuses on optimization of the objective function. In



this unit, you have learnt the solution provided by dynamic programming for the
following problems:

• Multistage graph problem

Dynamic Programming

• Shortest path problem
NOTES• Oil Knapsack problem

• Travelling salesperson problem

• Longest Common Subsequence
• Matrix multiplication problem

4.10 KEY TERMS

• Dynamic programming: Dynamic programming is an algorithm design
methodology that helps in building up the solution of a problem by
combining the solutions of several sub problems.

• Shortest path: The shortest path technique helps in finding a path
between two vertices such that the sum of the cost (weight) of its
ingredient edges is minimized.

• The tmvelling salesperson problem: The travelling salesperson is the
best possible means of finding the lowest possible cost for visiting the
various cities and returning to the starting point.

• The longest common subsequence (LCS) problem: This problem helps
in determining the longest subsequence that is common to all the
sequences in a set of sequences of two or more.

• Matrix chain multiplication: The matrix chain multiplication is a classic
example of dynamic programming. In a given sequence of matrices, you
need to determine the most efficient way to multiply those matrices
together.

4.11 ANSWERSTO 'CHECK YOURPROGRESS'

1. Dynamic programming is an algorithm design technique.

2. The four problems that can be solved using dynamic programming are:
A. Shortest path problem
B. Oil knapsack problem
C. Travelling salesperson problem
D. Matrix chain multiplication problem

3. Dynamic programming helps in reducing computation by:
o Solving sub-problems in a bottom-up fashion
o Storing the solutions of sub-problems so that they can be solved

in the first attempt
o Looking up the solution when a sub-problem is encountered again

4. A multistage graph is a directed graph G that has a pair (v, E) where V
represents set of vertices, which is a finite set and E represents set of
edges that has a binary relation on V.
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5. The two approaches to solving a multistage graph problem are:
o Forward approach
o Backward approach

6. The two types of shortest path approaches are:
a. Single-source shortest path
b. All-pairs shortest path

7. The Bellman-Ford algorithm is used only when there are negative edge
weights in a directed graph.

8. A subsequence is a new sequence that is formed from the original
sequence by deleting some of its elements in such a way that the deletion
of the elements does not disturb the relative positions of the remaining
elements in the sequence.

9. The aim of the matrix chain multiplication problem is to determine the
most efficient way to multiply a sequence of matrices together.

4.12 QUESTIONS AND EXERCISES

Short-Answer Questions
1. Write a short note on dynamic programming.

2. Briefly describe the characteristics of dynamic programming.

3. Discuss the multistage graph problem.

4. Briefly explain the two types of shortest path approaches.

5. Define the 0/1 knapsack problem.

Long-Answer Questions
1. How will you solve the multistage graph problem? Explain with an

example.

2. Explain the Bellman-Ford algorithm for the shortest path problem.

3. Explain the dynamic programming solution for the shortest path problem.

4. Explain the travelling salesman problem with an example.

5. Describe all the steps used for solving the LCS problem.

6. Explain the algorithm for matrix chain multiplication.

4.13 FURTHER READING

Horowitz, Ellis, Sartaj Sahni and Sanguthevar Rajasekaran. 2006. Fundamentals
ojComputer Algorithms. New Delhi: Galgotia Publication Pvt. Ltd.
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5.0 INTRODUCTION

You are already familiar with the concept of dynamic programming. In this unit,
you will learn about the backtracking technique. It is one of the design paradigms
of an algorithm. This technique helps in determining the most efficient solution
for a given problem without examining all the possible solutions. The different
problems that are solved by using the backtracking technique in this unit are as
follows:

• 8-Queen problem

• Sum of subsets

• Graph colouring

• Knapsack problem

In this unit, you will also learn about the branch-and-bound method. It is a state
space search method that is used to find the optimal solution of discrete and
combinatorial problems. The different problems solved by the branch-and-bound
method are as follows:

• 011knapsack problem
• Travelling salesman problem
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5.1 UNIT OBJECTIVES

After going through this unit, you will be able to:
• Explain the backtracking paradigm in designing algorithms
• Solve problems using the backtracking technique, which are:

o The 8-Queen problem
o Sum of subsets
o Graph colouring
o Knapsack problem

• Discuss the branch-and-bound state space method
• Solve problems using the branch-and-bound method, which are:

o Oil knapsack problem
o Travelling salesman problem

5.2 BACKTRACKING-THE GENERAL METHOD

Backtracking represents the general technique of an algorithm design. Many
problems that deal with searching a solution or that look for an optimal solution
depending on some constraints can be solved by using backtracking formulation.
Several applications of backtracking requires a solution, which is expressible as
an n-tuple (x., X2,... xn), where Xi is taken from some finite set S, Usually, the
problem to be solved look out to find one vector that maximizes or minimizes a
particular function F (xj, X2,... xn). For example, sorting an array of integer k[l :
n] is expressible by an n-tuple, where Xi is the index in k of the ith smallest
element. The criterion function F is the inequality k[Xi] ~ k[Xi+1] for 1 ~ i < n. S,
is the finite set, which includes integer 1 to n.

Suppose Pi is the size of set Si, then m = m, m2... m; n-tuples are the possible
candidates for satisfying the function F. Then brute force approach evaluates each
one of these n-tuples with the function F and saves those tuples, which provide
optimal solution. The back tracking algorithm is capable of providing the same
with less number of trials. It is based on the idea of building the solution vector of
one component at a time and to use modified criterion functions F (xj, X2,··.xn).
This is referred to as bounding functions, which test the chance of success formed
from one vector. One of the most important advantage of this method is that if it
is found that the partial vector (x., X2,... xn) does not give any desired result, then
mi+l...m, possible test vectors are skipped.

Problems being solved using backtracking satisfy a complex constraint. These
constraints are divided into the following two parts:

• Explicit constraints: It depends on the particular instance I of the
problem being solved. A possible solution space for I is being defined by
all the tuples that satisfy the explicit constraints. Rules that restrict each Xi
to take the value from a given set only are-known as explicit constraints.
Examples of the explicit constraints are as follows:

o Xi~ 0 or S,= {all non-negative real numbers}
o Xi= 0 or 1 or S, = {I, O}
o k, ~ Xi~Ui or S, = {a: k, ~a ~Ui}



• Implicit eonstraints: Rules that determine which of the tuple in the
solution space I satisfy the criterion functions are known as implicit
constraints. Therefore, the way in which the Xi relates to each other is
described by the implicit constraint.

As backtracking is based on post-order traversal of a tree, so it can be represented
as a recursive prpcess. A recursive formulation of backtracking technique IS
described in the following algorithm:

1. Algorithm RecurBacktrack(p)

2.

3. for (each a [p]E S (a[1], ..., a [p-1])

4. do

5.

6. if(Dp(a[l], a[2],..., a[p]) of:. 0)

7.

8.

9.

then

if(a[l], a[2],..., alp] is a path to an answer

node)

then10.

ll.

12.

13.

14.

15.

16.

write(a[l:p])

if (p<m)

then RecurBacktrack(p+1)

In the above algorithm the backtracking process is described using recursion. The
solution vector (at,a2, ••• ,am ) is represented as a global array a[l:m]Initially the
first p-l values, i.e., a] l ], a[2], ... , a[p], of the solution vector a[l:m] are
assigned. The suitable elements for pth position, which satisfy Dp are calculated.
These elements are determined one by one and added to the current
vector( a) ,a2, ••• , ap_) ). A check is performed whenever ap is added. This check
helps to determine whether a solution is found or not.

Apart from the recursive approach this backtracking process can also be
described as an i¢rative process. The following algorithm shows the iterative
backtracking method:

1. Algorith$ ItrvBacktrack(m)

2.

3. p=l

while (pf: 0)
I

4.

5.

6.

do
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7. if (there remains an untried alp] ES(a[l], a[2],

...,a[p-I]) and Dp(a[l]' ..., a lp l ) is true)

then

if(a[1],a[2], ..., a[p]is a path to answer node)

then

write (a[l:p])

p=p+1

else

p=p-I

In the above algorithm, the solutions are generated in the solution vector a[l :m]
and printed side by side. The function SO generates a set of values that can be
used as the first component of a, inside the solution vector. The value of p is
incremented repeatedly resulting in the growth of solution vector. This process
continues until the solution is determined or no value of ap remains untried.

5.3 THE 8-QUEENS PROBLEM

The 8-queens problem is considered as an n*n chessboard in which no two
queens attack each other, i.e., no two of them are in the same row, column or
diagonal. Let (xj, X2, ..• xn) represent a solution in which Xi is the ith row having
the fh queen. Different values of x, depicts that no two queens are in the same
column. To check whether the two queens are in the same diagonal or not,
assume that the squares of chessboard being numbered as indices of the two
dimensional array a[l : m, 1:m]. Now, examine that every element on the same
diagonal that runs from the upper left to the lower right has the same row-column
value. For example consider Figure 5.1.

Column III

2345678

Row

1
1
2
3

4
5
6

7

8

Q
Q

Q
Q

Q
Q

Q
Q

Figure 5.1 Solution to 8-Queens Problem



In Figure 5.1, consider the queue at a[5, 2], the squares diagonal from the upper
right to the lower left of the position a[5, 2] are a[3, 1], a[5, 3], a[6, 5], a[7, 5] and
a[8, 6]. The row-column value of all these squares is 2. All the elements on the
same diagonal that runs from upper right to lower left has the same row + column
value. Assume thet the two queens are placed at positions (m, r) and (p, q), then
they are on the same diagonal if and only if

I m - r = p - q or m + r = p + q

The above equations imply the following results:
II r - q = m - p or r - q = p - m

The above equations show that the two queens lie on the same diagonal if and
only if Ir- ql = [m - pI.

The algorithm to find whether a queen can be placed at a position (p, m) is as
follows:

1. Algorithm Place (p, m)

2. IIReturn true if a queen can be placed in the pth row
and Ilmth column. Otherwise return false.

3. Ilx[] is.a global array whose first (p - 1) value have
Ilbeen set.

4. IIAbs (z) returns the absolute value of z.

5.

6. for r = 1 to P - 1 do

7. II two queens are in the same column or diagonal

8. if ((x[r] = m) or (Abs (x[r] - m) = Abs (r - p) ))

9. then ret~rn false;

10. else return true;

11.

In the above algorithm, Place (p,m) returns a Boolean value true if the pth queen
can be placed in the column m. It tests whether m is different from all the
previous values of xj l], x[2], ... ,x[k - 1] as well as whether there is no other
queen on the same-diagonal, The computing time of this algorithm is O(p - 1).

The following alg~rithm is used to find the solution of the N-Queens problems:
1. Algorithm N-Queens (p, n)

2. IIUsing ~acktracking, this procedure depicts all
• I

poss1ble Ilplacements of n queens on an n*n chessboard
in such a way Iithat not a single queen attack the
other qu~en.

::!:or m ~ 1 tc

5. {

n do

6. if Place (p, m) then

7.

8. x[p] m;
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9. if (p = n) then write (x[l n] ) ;

10. else N-Queens (p + 1, n);

1I.

12.

13.

The N-Queens algorithm is efficient over brute force approach. By brute force
approach, in an 8*8 chessboard there are 65CS possible ways to place eight
queens, that is, almost 5.5 billion eight-tuples to examine. On the other hand, by
allowing placement of queens on different rows and columns, only the
examination of 8! or only 50,320 eight-tuples is required.

5.4 SUM OF SUBSETS

Suppose that you have n different positive numbers and you are required to find
all the possible combinations of these numbers whose sum is m. This is known as
sum of subset problem. The sum of subset problem can be formulated either by
fixed-sized tuple or variable-sized tuple. The element ei of the solution vector is
either one or zero depending on whether the weight Wi is included or not.

The children of any node of a tree are easily generated. If a node is at level i, then
the left child corresponds to ei = 1 and left right child corresponds to e, = O.
A simple choce for bounding the functions is Bk(x1,X2,... , Xk) = true if

±wiei+twi~m
i=I i=k+)

In the above equation, x], X2,.'" Xkcannot produce any node if the above
condition is not satisfied. The bounding function can be strengthened by
assuming that the w;'s are in non-decreasing order. In such case X1,X2,,,., x,
cannot produce child node if
k

Lwiei+wk+! >m
i=l

Therefore, the bounding function will be as shown below:

Bk(x1'X2,·'" Xk) = true iff ± wiei + t Wi ~ m and ± wiei + Wk+1 sm
i=! i=k+! i=i

By assuming x, = 1, the above equation can be simplified as follows:
k n

Lwjei+Lwi>s
i=! i=k+l

Algorithm of sum of sub is as follows:

1. Algorithm SumOfSub (s, k, r)

2. IIFind all subset of w[l p] that sum to s. The value
k-!

of IIx [j 1 is determined. s =Lw[j] * x[j] and r =
j=!



n

~vvO]. The Ilw[j]'s are in non-decreasing order. It
j=k

n
is assumed that Ilw[l]:5 m and ~vv[i]~m.

i=i

3.
4. IIGenerat~ left child. S + w [k] because Bk-1 is true.
5. x[k]= 1

6. if (s + w~k] = m) then write (x[l : k]);

7. elseif (s'+ w[k] + w[k+1]:5m)

8. Then SumO£Sub(s+w[k], k+1, r-w[k]);

9. IIGenerat~ right child and evaluate Bk•

10. if (s+r-w[k] ~m) and (s + w[k+l] :5m) then
11. {
12. x[k] = 0;
13. SumOfSub (s, k+1, r-w[k]);

14.
15.

5.5 GRAPH COLOURING

Graph colouring is the method of allocating the colours to the vertices of the
given graph in a manner such that no two adjacent vertices have the same colour.
A graph is said to be m-colourable if it uses m different colours in painting its
vertices. The minimum number of colours required to paint a graph is called the
chromatic number bf G. The chromatic number of the given graph is denoted by
X (G).

I

The Welch and Powell provided an algorithm for colouring the graph G. The
different steps of tHis algorithm are as follows:

1. Arrange all the vertices of the graph in decreasing order of their
degrees and make sure that no vertex of the graph is initially
coloured.

2. Traverse the vertices and assign the colour 1 to the first vertex that is
uncoloured. Make sure that its adjacent vertex has not assigned colour
1.

3. Repeatrstep 2 with colours 2, 3 and so on until no vertex of the graph
remains uncoloured.

Note: This algorithm does not necessarilyfind the chromatic numberfor the
graph. ,
Consider the following algorithm for determining n-colourings of a graph:
1. Repeat

2. { IIAll legal assignments for p[a]are generated

3. NextValue(a) IIA legal colour is assigned to p[a]

4. if(p[a]=O) II New colour is not possible
5. then return

6. if (a=m)

Backtrackingand
Branch-and-BoundTechniques

NOTES

Self-InstructionalMaterial 79



Computer Algorithms

NOTES

80 Self-Instructional Material

I 7. then write (p[1:m] )

lB. else nco louring (a+1)

.:10. until (false)

In the above algorithm the graph is represented as a Boolean adjacency matrix
H[l:m,l:m]. The colours are represented by integers 1,2,3.... n. The assignments
are made such that adjacent vertices having distinct integers are printed. The
function NextValue(a) is used to generate the other possible colours. An
algorithm describing the function NextValue(a) is described as follows:
1. Repeat

2.
3. p[a]= (p[a]+l) mod(n+1) II Next highest colour

4. if(p[k]=O) II All the colours are used
5. then return
6. for 1=1 to m do

7.

B. if(H[a,i]:;t:O)and (p[a]=p[i]))
9. then break
10.

11. if (i=m+1) II A new colour found
12. then return

13.

14. until (false) II Find another colour

In the above algorithm p[l], p[2], ... , p[a-l] are assigned to the integer values
such that adjacent vertices have different integers. The value for p[a] is
determined in the range (0, n) and p[a] is assigned to the next highest numbered
colour. This colour needs to be distinctive from the adjacent vertices. In case no
such colour exists then p[a] is assigned zero.

Example 1:Colour the below graph by using the Wetch-Powell algorithm.

A7 A8



Solution:

Degree of vertex Al is 5.

Degree of vertex A2 is 5.
Degree of vertex A3 is 5.

Degree of vertex As is 5.

Degree of vertex As is 5.

Degree of vertex A6 is 3.
Degree of vertex A7 is 5.

Degree of vertex As is 3.
Now arrange the vertices in the decreasing order of their degree, you get the
following order:

As, A3, A7, AI' A2, A4, A6, As

Now first colour is assigned to the vertex As. The same colour can not be
assigned to the vertex A3 and A7 because these are adjacent vertices of the vertex
As. This same colour is assigned to the non-adjacent vertex AI. Therefore,
vertices As and Al have been assigned the same colour.

The second colour is now assigned to the vertex A3 and the non-adjacent vertices
A3 and As.
In the end, the third colour is enough to paint the remaining vertices of the graph,
which are A7, A.0and As.

Thus the total of 3 colours has been used in colouring the given graph. Therefore,
the given graph is said to be three-colour graph.

5.5.1 Matching
Matching, also known as edge independent set can be referred as a set of edges,
which do not have any common vertices. It can also be defined as an entire graph
consisting of number of edges without common vertex. For a graph G = (V, E),
matching M is a set of non-adjacent edges. Non-adjacent edges are those edges,
which do not have a common vertex. On the other hand, a vertex is said to be
matched, if it is incident on the edge, which is present in the matching set M. In
graph theory, matching can be classified into following categories:

• Maximal matching: Maximal matching can be referred as matching M of
a graph G such that if any edge, which is not present in matching set M is
added to the set M, then the edges present in the set becomes adjacent. In
other words, a matching M of a graph is maximal if it is not a proper
subset of any other matching in the graph.

• Maximum matching: Maximum matching can be referred as a matching
that contains the largest possible number of edges. A graph can have
number of maximum matching sets. The size of maximum matching set
can be determined by using the matching number of the graph.

• Perfect matching: Perfect matching set is a matching set, whose edges
cover each and every vertex of the graph.
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5.6 KNAPSACK PROBLEM

Knapsack problem is a type of maximization problem, in which elements having
maximum economic value are to be selected and that can fit in a bag or container.
The problem is to determine the number of items that should be included in a
collection, from a set of items each having a specific cost and value. The items
should be selected in such a way that the total value of the selected items is
maximum and the net cost involved is less than some specified cost.

Here, you have n positive weights w; n, positive profits, Pi and a positive number
m, which denotes the knapsack capacity. This problem chooses a subset of
weights such that

l~i ~n l~i sn

The x;'s corresponds to a zero-one-valued vector.

You can get a good bounding function for this by using an upper bound on the
value of the best feasible solution that can be obtained by expanding the given
node and any of its descendants. The node is deleted it the upper bound is not
higher than the best solution determined so far..

If you have determined the value of Xi, 1$ i$k, at node Z, then you can easily get
the upper bound of Z by relaxing the requirement Xi = 0 or 1 to 1$ i$k for k +
1$ i$n, with the help of greedy algorithm. The function Bound (cp, cw, k) can be
used to determine the upper bound on the best solution obtained by expending
any node Z at level k + 1 of a state space tree. The object weight is represented by
Wi and profit is represented by Pi. The algorithm, Bound (cp, cw, k) is shown in
the following code:
1. Algorithm Bound (cp, cw, k)

2. Ilcp is the total current profit, cw is the total
current Ilweight, k is the index of the last removed
item and m is lithe knapsack size.

3.

4. b CPi c = CWi

5. for i = k + 1 to n do

6.

7. c = c + W[iJi

8. if (c < m) then b = b + P[iJi

9. else return b + (1 - (c - m) I w[iJ) * p Ii ] i

10.

11. return bi

12.

From the above algorithm, you can make out that the bound for a feasible left
child of a node Z is the same as that of Z. Therefore, there is no need of using
bound function when the backtracking algorithm moves towards the left child of
a node. In this case, you should use Backtracking Knapsack (BKnap) algorithm,



which is obtained by using recursive backtracking schema. The following code
shows the BKnap ajgorithm:

1. Algorithm BKnap (cp, cw, k)

2. 11m is t~e knapsack size; n represents the number of
Ilweight~ and profits. p[] and w[] are the profits and
Ilweights. Final weight of knapsack problem is fwand
fp is II~he final maximum profit. x[k] = 0 if w[k] is
not in the Ilknapsack; else x[k] = 1.

3.

4. IIGenerate left child,
5. if (cw + w[k]~m) then

6.

7. y[k] = 1;

8. if (k<n) ,then BKnap (k + 1, cp + p[k], cw + w[k]);
1

9. if ((cp + p[k] > fp) and (k = n)) then

10.

11. fp

12. fw

cp -+- p[k];

cw -+- w [k];

13. for j = ~ to k do x[j]

14.

15.

y [j];

16. IIGener~~ing right child,
17. if (Bound (cp, cw, k) ~ fp) then

18.

19. y[k] = 0; if (k < n) then Bknap (k + 1, cp, cw);

20. if ((cp > fp) and (k = n)) then

21.

22. fp cpj

23. fw cw~

24. for j =:1 to k do

25. x[j]

26.

27.

28. :

Initially set tp =h in the BKnap algorithm, it will be invoked as BKnap (1, 0, 0);
n

When tp:;e -1, xm, 1~i~n, is such that LP[i] x[i] = fp.
i=i
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5.7 BRANCH-AND-BOUND- THE GENERAL
METHOD

The term, branch and bound refers to all the state space search methods that
generate all children of the E-node before any other node becomes E-node. There
are two graph search strategies Breadth First Search (BFS) and Depth First
Search(DFS) in which the exploration of new node is not started unless the
current node is fully explored. In reference to branch and bound terminology, the
BFS-like state space search is known as First In First Out (FIFO) search because
the list of live nodes are in queue. The DFS-like state search is known as Last In
First Out (LIFO) search because the list of live nodes are in stack.

5.7.1 FIFO Search
FIFO involves in choosing a node from the point from where the traversal begins
and accesses all the neighbouring nodes of the start vertex. A field called
STATUS is used in association with each vertex, as used with depth-first
traversal, to indicate the status of a vertex as ready, waiting or processed. You
need to use a queue to store the vertices that are being processed. The algorithm
for breadth-first traversal is as follows:

1. All vertices are initialized to ready state.

2. Place the start vertex in the queue and change the status of the start vertex
to waiting.

3. Repeat the steps 4 and 5 till the queue has no more elements.

4. Remove the vertex V at the front. Print the vertex and change the
status of the vertex V to processed state.

5. Add the neighbouring vertices of V that are in ready state and change
their status to waiting.

6. End.

Figure 5.2 shows a graph that you can use for the FIFO search.

Figure 5.2 Graph used/or FIFO Search



The various steps that will lead to the breadth first traversal of the graph
assuming A, as the starting vertex in the figure are:

• Initially, add A to Queue.
Front: 1, Rear: 1, Queue: A

• Remove the front element A from the Queue and add the neighbours of A
to rear.

•
Front 2, Rear 4, Queue A C D B
Remove the front element C from
vertices ofC to rear.
Front 3, Rear 5, Queue A C DB E

Queue and add the neighbouring

•
r-.

Remove the front element D from Queue and add the neighbours of n to
rear.
Front 4, Rear 6, Queue A C D B E F

• Remove the front element B from Queue and add the neighbours of B to
rear.
Front 5, Rear 6, Queue A C D B E F

• Remove the front element E from Queue and add the neighbours of E to
rear.
Front 6, Rear 6, Queue A C D B E F

• Remove the front element F from Queue and add the neighbours of F to
rear.
Front 7, Rear 6, Queue A C D B E F

The completion of traversal is indicated by the empty queue. The order in which
the vertices that have been traversed is:

ACDBEF

5.7.2 LIFO Search
LIFO search involves in choosing a node from where the traversal in a tree needs
to start, and then you need to access the neighbour node of the start node. After
this you again need to access the neighbour node of the selected node. This
process continues, until you encounter a NULL node by the pointer, backtracking
is done to reach the other neighbour of the start node. The value of the nodes is
stored in a stack. A field called STATUS is used in association with each node to
indicate the status of the node as ready, waiting or processed. The ready state is
the initial state of'the node. The waiting state is when the node is in the stack and
is waiting to be processed. The processed state is, when the node has been
processed. The algorithm for LIFO search is as follows:

1. All nodes are initialized to ready state.

2. Push the start node in the stack.

3. Repeat the steps 4 and 5 till the stack has no more
nodes,
4. Pop the top node, V from the stack and change the status
o£ the node to processed state.

5. Push all neighbours of the node, V that are in ready
state into the stack and change their status to waiting.

6. End.
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Consider Figure 5.3 that shows a graph, which you can use for the purpose of
LIFO search.

Figure 5.3 Graph usedfor LIFO Search

Following are the steps that will lead to the depth first traversal of the above
graph. Assuming, A as the starting node in the above graph the steps are:

• Initially push node A into the stack.
Stack: A

• Pop and print the top element A and then push the neighbours of A into
the stack.
Stack: CD B

• Pop and print the top element B and then push the neighbours of B into
the stack.
Stack: CD F

• Pop and print the top element F and then push the neighbours of F into
the stack.
Stack: CD E

• Pop and print the top element E and then push the neighbours of E into
the stack.
Stack: CD

• Pop and print the top element D and then push the neighbours of D into
the stack.
Stack: C

• Pop and print the top element C and then push the neighbours of C into
the stack.
Stack: NULL

The stack contains NULL node, which indicates that the traversal of graph is
complete now. The vertices that have been processed as a result are:

ABFEDC



5.7.3 Least Count (LC) search
In both the branch and bound strategies, FIFO and LIFO, the rule is to select the
next node is bit complex because it does not give any preference to the node
which takes you to the answer node quickly.

Consider the following example to see how a FIFO branch and bound algorithm
searches for a state space tree for the five-queens problem. Figure 5.4 shows the
five-queens state space tree generated by FIFO branch and bound algorithm.

6

18

Figure 5.4 Five-Queens State Space generated FIFO by Branch and Bound Algorithm

In Figure 5.4, when the node 30 is generated, it should lead to the answer node in
one move. But, the rigid FIFO rules state that all the live nodes generated must be
expanded before expanding the node 30. An intelligent ranking function, c (.) for
live nodes speeds up the search process to obtain an answer node. This intelligent
ranking function selects the next E-node. If this ranking function assigns a higher
rank to the node 30 as compared to all other live nodes, the node 30 becomes the
E-node for the following the node 29. Now, the expansion of node 30 generates
the answer node.

The ranks to nodes can be assigned on the basis of cost required to reach the
answer for the node from the live node. For any node x, this cost would be
determined by ,

(1) The number of nodes present in the subtree x that are required to be
generated prior to the generation of the answer node.

(2) The number of levels and the nearest answer node is from x.

Using this cost measure, you can conclude that the cost of the root of the tree in
Figure 5.4 is 5 because the answer node 31 is at the distance of 5 levels from the
root node 1. The cost of node 18 and 35, 29 and 35, 30 and 38 are 3, 2 and 1
respectively. The cost of other nodes at level 2, 3 and 5 are respectively greater
than 3, 2 and 1. On the basis of these costs, the E-nodes being selected are 1, 18,
29 and 30. If the cost measure one is used, then the search would always generate
a minimum number of nodes and if cost measure 2 is used then only the nodes
between the path from root node to the answer node becomes the E-node. The

Backtracking and
Branch-and-Bound Techniques

NOTES

Self-Instructional Material 87



Computer Algorithms

NOTES

88 Self-Instructional Material

demerits of using any of these cost function is that the estimation of the cost of a
node includes search of the subtree x for an answer node. Therefore, by the time
the cost is being determined the subtree has been searched and there is no need to
explore x again. So, search algorithms generally ranks nodes on the bases of an
estimate g(.)of their cost.
Suppose, an estimate of additional effort to reach an answer node for x is given
by g (x). The rank to node x is assigned using a function c (.) such that c = f (h
(x)) +g (x), where h (x) is the cost of reaching x from the root and f (.) is a non
decreasing function. Using f (.)=0 generally biases the search algorithms to
deeply search the tree. Generally, g(y)::;; g(x) fer y, which is child ofx. Therefore,
following x, y will become the E-node, then one of the y's children will become
the E-node and so on. Nodes other than that of the subtree x are not generated
until the subtree x is searched properly.

The search strategy that uses a cost function c (x) = f (h (x)) +g (x) to select the
next node is always close to the next E-node having least c (.). Therefore, this
search strategy is known as Least Count (LC) search.

5.8 0/1 KNAPSACK PROBLEM

To solve the problem with the help of the branch and bound technique, the state
space tree is the necessary requirement. Since knapsack problem is a
maximization problem therefore, replace the objective function LPi Xi by the

function -LPi Xi • The LPi Xi is maximized if -L Pi Xi is minimized. This
modified knapsack problem is as follows:

n
Minimize -LPi Xi

i=1

n
Subject to LWiXi ::;;m

i=1

Xi = 0 or 1, 1::;;i::;;n

This problem assumes a fixed tuple size formulation for the solution space but
easily extendable to the variable tuple size formulation. Every leaf node in the
state space tree represents an assignment for which L l:5iSnWi Xi ::;;m is an answer
node. A minimum-cost answer node corresponds to an optimal solution if you
defme c (x) = - L l:5iSnPixi ::;;m for every answer node. For infeasible leaf nodes,
the cost c (x) = 00. For non leaf nodes, c (x) is recursively defined as min {c
(Ichild (x)), c (rchild (x))}.

You need two functions c(x) and u (x) such that c(x) ::;;c(x)::;;u (x) for every
node x. The cost c (.) and u (x) satisfying the above requirement can be obtained
by considering the X as a node at level j, 1 ::;;i ::;;n + 1. At node x, assignment
have already made to Xi, 1 ::;;i < j. These assignments have the costL l:5i<)Pi Xi •

The following code shows the upper bound algorithm:



1. Algorithm UBound (cp, cw, k, rn)

2.

3. b cp;

4. c = cw;

for i = k + 1 to n do

7. if (c +w[ ] :Sm ) then

8.

5.

6.

9. c = C +w [ ];

10. b b - pi);

11.

12.

13. return b;

14.

5.9 LLING SALESMAN PROBLEM

programming algorithm for travelling salesman problem is already
the previous unit. Here, the travelling salesman problem is
of branch and bound algorithm. These algorithms have the

"'VI.UIJJ''''4JLLJ of 0 (n22n)but, the branch and bound algorithm can solve
time as compared to the dynamic programming algorithm.
to solve the travelling salesman problem consider the

example given

Example 2: L"'L;:I,""",- that a salesman wants to travel all his company branch-
offices that are in different cities around the country. The distance between
each city is In this problem, you need to determine the order of cites
which is to be fol by salesman to minimize the total cost. Consider the cost
matrix shown in 5.5.

j 1

00

2 4

3

4

5

6

7
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2 3 4 5 6 7

3 93 13 33 9 57

00 77 42 21 16 34

17 00 36 16 28 25

90 80 00 56 7 91

46 88 33 00 25 57

88 18 46 92 00 7

26 33 27 84 39 00

Figure 5.5 Cost Matrix
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Solution: Following steps are employed to find the optimal solution:

1. The cost of the matrix can be updated to obtain a new reduced cost
matrix, as shown in Figure 5.6. As shown, the total cost of the matrix is
reduced by eighty-four.

j 4 5 6 71 2 3

1 00 0 90 10 30 6 54 (-3)

2 0 00 73 38 17 12 30 (-4)

3 29 00 20 0 12 9 (-16)

4 32 83 73 00 49 0 84 (-7)

5 3 21 63 8 00 0 32 (-25)

6 0 85 15 43 89 00 4 (-3)

7 18 0 7 1 58 13 00 (-26)

Figure 5.6 Reduced CostMatrix

2. The new cost matrix is again reduced. As shown in Figure 5.7 the total
reduced cost is 84+7+ 1+4= 96. Thus, ninety-six becomes the lower bound
of the matrix.

j 2 3 4 5 6 7

00 0 83 9 30 6 50

2 0 00 66 37 17 12 26

3 29 00 19 0 12 5

4 32 83 66 00 49 0 80

5 3 21 56 7 00 0 28

6 0 85 8 42 59 00 0

7 18 0 0 0 58 13 00

(-7) (-1) (-4)

Figure 5.7 Second Reduced Matrix

3. Figure 5.8 shows the highest level of decision tree, when ninety-six is the
lower bound.

ComputerAlgorithms

NOTES

6. Thus the total reduced cost is 96+3=99. Now ninety-nine becomes the
new lower bound.

7. Figure 5.11 shows the complete branch and bound solution of a traveling
salesperson problem.

Without4-6 L.B.=128

Node to be terminated



optimal solution depending on some constraints can be solved by using
backtracking formulation.

• The 8-QueQnsproblems: The 8-queens problem is considered as an n*n
chessboard inwhich no two queens attack each other, i.e., no two of them
are in the same row, column or diagonal.

• Graph colourmg: It is the method of allocating the colours to the
vertices of~e given graph in a manner such that no two adjacent vertices
have the sante colour.

• Matching: Matching, also known as edge independent set can be referred
as a set of edges, which do not have any common vertices. It can also be
defined as aJi entire graph consisting of number of edges without common
vertex.

• FIFO search: It involves in choosing a node from the point from where
the traversal! begins and accesses all the neighbouring nodes of the start
vertex.

• LIFO search; LIFO search involves in choosing a node from where the
traversal in tee needs to start, and then you need to access the neighbour
node of the selected node.

5.12 ANSWERSTO 'CHECK YOURPROGRESS'

1. The backtracking technique helps in determining the efficient solution by
eliminating multiple solutions of the algorithm without examining them
based on the.different characteristics of the problem.

2. The 8-quee~ problem is considered as an n*n chessboard in such a way
that no two queens attack each other, that is, no two of them are in the
same row, column or diagonal.

3. Graph colouring is the method of allocating colours to the vertices of the
given graph [in the manner such that no two adjacent vertices have the
same colour.

4. The Knapsack problem is a type of maximization problem, in which the
elements having maximum economic value is to be selected and that can
fit in a bag or container.

5. The term branch and bound refers to all the state space search methods
that generate!all children of the E-node before any other node becomes E- .
node.

5.13 QUEStIONS ANDEXERCISES

Short-Answer Questlons
1. What is the backtracking technique?

2. What do you understand by explicit and implicit constraints in the
backtracking; technique?

Backtracking and
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3. What are the different steps in the Welch and Powel algorithm for
colouring a graph?

4. What is the travelling salesman problem?

Long-Answer Questions
1. Explain the 8-queen problem and its solution using the backtracking

method.

2. What is the knapsack problem? Explain.

3. What is the branch-and-bound method?

4. How can the 0/1 knapsack problem be solved using the branch-and-bound
method?

5.14 FURTHER READING

Horowitz, Ellis, Sartaj Sahni, Sanguthevar Rajasekaran. 2006. Fundamentals of
Computer Algorithms. New Delhi: Galgotia Publication Pvt. Ltd.



UNIT 6 LOWER BOUND THEORY
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6.0 Introduction
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6.3.1 Ordered Searching; 6.3.2 Sorting; 6.3.3 Selection
6.4 Oracles and Adversary Arguments

6.4.1 MergingjProblem
6.4.2 Largest and Second Largest Problem
6.4.3 State Sp~ceMethod
6.4.4 Selection

6.5 Lower Boundthrough Reduction
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6.5.2 Disjoint IjIull Problem
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6.5.5 Inverting aiLower Triangular Matrix
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6.7 Key Terms
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6.9 Questions and Exercises
6.10 Further Reading

6.0 INTRODUCTION

You are already familiar with the backtracking and branch-and-bound techniques.
In this unit, you wilt learn about the lower bound theory that helps in determining
the most efficient algorithm for solving a given problem. Since there may exist a
number of different algorithms for solving the problem, this can be done by
identifying a function that will be the lower bound on the time complexity of any
algorithm and can be used to solve the given problem. The lower bound for any
problem can be determined by using the following techniques:

• Comparison lrees
• Oracle
• Reduction technique

A comparison tree i, the computational model that is used to find out the lower
bound of specific kinds of algorithms such as searching, sorting and selection.

The oracle technique can also be used for determining the lower bound. The
concept of oracle is used to determine the comparison output of any value.
Generally, merging the largest and second largest problems can be solved by
using this technique. 'The other methods that make the use of oracle in finding the
lower bound is the state space method.
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The lower bound through the reduction is another easy and efficient technique for
finding the lower bound of a given problem. In this technique, the given problem
is reduced into some other problem whose lower bound is known to us. The
various kinds of problems that can be solved by this technique are the convex hull
problem, disjoint sets problem, online median problem and multiplication of
triangular matrices.

6.1 UNIT OBJECTIVES

After going through this unit, you will be able to:
• Explain the concept of lower bound theory in designing algorithms
• Discuss the concept of comparison tree for finding the lower bound
• Illustrate the use of oracles in solving the different problems such as

merging, largest and the second largest
• Use the reduction technique in finding the lower bound for various

problems, which are:
o Convex hull problem
o Disjoint sets problem
o Online median problem
o Multiplication of triangular matrices
o Inverting the lower triangular matrix
o Computing the transitive closure

6.2 INTRODUCTION TO LOWER BOUND
THEORY

As you know, the different number of algorithms can exist for solving the given
problem. However, it is always difficult to find out which algorithm can be more
efficient for the given problem. The lower bound theory provides some
techniques that can be used in identifying the most efficient algorithm from the
given algorithms. This can be done by identifying the function g(n), which will be
the lower bound on the running time of all the algorithms. It can be used to solve
the given problem.
Therefore, if ./{n) denotes the running time of some algorithm then the
mathematical notation for defining lower bound can be written as follows:

fen) = Q (g(n)) (6.1)

where, g(n) denotes the lower bound for./{n).
The equation (6.1) will only be satisfied if there exists two positive constants a
and no such that fen) ~ cg(n) and n > no·

You not only nave to develop the lower bounds on the running time of the
algorithms in some given problem but also have to find the most correct lower
bound. However, it is always difficult to identify the most efficient lower bound
for the given problem.



The identification of lower bound for some problems is always easy to find out
that can be eithef equal to the number of inputs or outputs of the given problem.
For example, consider the problem of multiplying the two m x m matrices. The
lower bound for ~y of the algorithm that satisfies this problem is n (m2) because
there are 2m2 inputs and m2 outputs for this problem. The lower bounds that is
easy to find for s~e problem is generally referred as trivial lower bounds.

In this chapter, iYou are going to learn about the different techniques for
determining the lqwer bounds, which are as follows:

• Comparison trees
• Oracle
• Reductionitechnique

6.3 COMf>ARISON TREES

A comparison tree is the computational model that can be used to obtain the
lower bounds fo* sorting and searching the algorithms. Comparison-based
algorithms do not involve in the arithmetic computations but make the
compression between the elements to identify the lower bounds for the given
problem. The different problems that can be solved by using the comparison tree
model are as follows:

• Ordered se~rching
• Sorting
• Selection I

6.3.1 Ordered ~earching
Suppose there is a [set S that contains distinct elements and follows the less than
denoted by < comparison relation. Let A be the set that contains n elements
denoted by A[I: n] such that A[I] < A[2] ... <A[n]. The ordered searching problem
determines whether any element XES is present within the elements in A[I: n],
Therefore, the comparison between the two elements of S is actually the
comparison between x and A[i]. This comparison between the elements ofA and x
can produce the thrte outcomes, which are as follows:

• x <A[i] .
• x = A[i]
• x>A[i]

if x <A[i] then the (eft branch of the tree will be taken into account and if x >A[i]
then the right brandh of the tree will be considered. However, the algorithm will
terminate if x = A[i].

Figure 6.1 shows t~ comparison tree for the linear search algorithm.

Lower Bound Theory

NOTES

Self-Instructional Material 97



Computer Algorithms

NOTES

98 Self-Instructional Material

Figure 6.1 Comparison Treefor the Linear Search Algorithm

The running time for the linear search algorithm is O(n),where n is the number of
elements in the list. Therefore, this search algorithm proves to be very expensive.

Figure 6.2 shows the comparison tree for a binary search algorithm.

Figure 6.2 Comparison Treefor the Binary Search Algorithm

The running time for the binary search algorithm is O(log n).

Therefore, both the linear search algorithm and binary search algorithm contains
at least n internal nodes and consequent with the n different values of i against
which x is matched and at least one of the external node will be generated when
the search becomes unsuccessful.

Now you have to find the best optimal algorithm between the linear search and
binary search algorithm. Consider any comparison tree that has to search the
element between the set A[l: n]. Therefore, there are n internal nodes that can



• Online median problem
• Multiplication of triangular matrices
• Inverting a lower triangular matrix
• Computing the transitive closure

6.5.1 ConvexHull Problem
The convex hull of a set S in n dimensions refers to the intersection of all the
convex sets that contain S. Therefore, the convex hull problem refers to the
method for finding the vertices of hull either in clockwise or anticlockwise
direction.

Consider the convex hull problem as B and the sorting problem as A. The lower
bound for the problem A can be obtained by reducing it in problem B in O(n)
time. You now know that the running time for any algorithm that is used to sort
the n elements is nlogn.

Let S (s, S2, ..• ,sn), be the set that contains n elements that are to be arranged in
sorting order. The problem A considers these values of set as numbers. However,
the problem B when takes these values as inputs consider them as points in the
plane. Therefore, convert these numbers of the set S into n points
as (s, ,s~) ,(S2 ' s;) ,..., (sn ,.s:). The running time for any algorithm that
arranges these numbers into points is n.

The convex hull created with these points would have n vertices corresponding to
these n points and they will be arranged in sorting order according to the x
coordinate values. If the convex hull generates the output T =
(tl , t~) ,(t2 , t;) ,..., «, ' t~) and (t , e) is the point with minimum x-coordinate
value then the sorting order of S can be determined by starting from the t and
moving in anticlockwise direction ofT.

For example, consider the set S having numbers 4, 2, 3 and 6. These numbers
have to be arranged in ascending order. The four points can be created from these
numbers, which are (4, 16), (2,4), (3, 9) and (6,36). Figure 6.6 shows the convex
hull created by these points.
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Figure 6.6 Convex Hull Reduction
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The anticlockwise direction of all the points on the hull will give you the sorted
order of the points. Therefore, the convex hull of n given points can be
determined inn(n log n) time.

6.5.2Disjoint Sets Problem
As you know that, the two given sets are said to be disjoint ifboth of them do not
have any common element. For example, {4, 7, 9} and {2, 5, 8} are the two
disjoint sets since both of them do not have any common element. Suppose S1 =
{a., a2, a3, ... , an}and S2 =Ibi, b2, b3, ••• , bn} are the two given sets each having n
elements. Therefore, the problem A is to find out whether the sets S1 and S2 are
disjoint or not. Let B be another sorting problem in which the problem A has to be
reduced. Now you have to show that A ocB in O(n) time.

Let the instance of B is m = 2n and the set S3 contains the keys that have to be
sorted, which are (ar, 1), (a2, 1),... , (an. 1), (bj, 2), (b2, 2), ... , (bn, 2). Therefore,
the creation of the set S3 takes O(n) time because, 2n tuples have to be created.

Now you have to show that the problem A can be solved by using the solution of
the problem B in O(n) time. Prepare a set S3' that contains the elements of S3 in
sorted order. Then scan the elements of S3' from left to right and analyze if there
are any elements (x, 1) and (y, 2) having x = y. If any such element is present in
S3' then the two given sets are disjoint otherwise they are not.

6.5.3 Online Median Problem
Online median problem deals with the computation of the median value at
different steps, where at each step you are given a new key value. Therefore, if n
key values are given to you then you have to calculate n medians.

Foe example, if the first key value given to you is six then the computed median
value would be six because there is only a single key value. Suppose after this,
you are given fourteen, then the median value of both the key values is either of
them.

Table 6.2 shows the calculation of online median value when you are given
different key values.

Table 6.2 Calculation of Median Values at Different Steps

Step Key value Median

1 6 6

2 14 6 or 14

3 4 6

4 I 18 6 or 14

5 9 9

6 12 9 or 12

7 7 9



In the above table, at the first step, you are given a key value six. The median
value of this kej value should be six itself. After this you are given the value
fourteen. Then tlie median value of six and fourteen will be either of them. The
median value of six, fourteen and four will be six because it is in the middle of
the three key values.

j

Now you have tcpfind the lower bound for the algorithm that solves the on-line
median problem.lsuppose the problem of online median finding is declared as the
problem B and ~e problem of sorting is declared as the problem A. The problem
A has the n number of inputs say S = s/, S2, S3•••• .s, that have to be arranged in a
specific order. The instance of the problem B should be selected in such a way
that each key value of problem B denotes online median value. This instance of
problem B can ~ created by extending the inputs of the problem A from -00 to 00.

The running tim~ for generating such an instance of the problem B is n. When the
first 00 becomes the input then the median value will be the minimum key value
of S and when die third 00 is given as the input then the second largest value of K
would be the median value. This shows that the solution of problem B helps in
solving the problem A and hence the problem A reduces to problem B in O(n)
time. .

6.5.4 Multiplication of Triangular Matrices
!

The triangular matrix is the square matrix which contains the zero value below or
above the main ktiagonal. However, triangular matrices can be either the upper
triangular or lower triangular. A matrix A with elements {aij}, 1 $ i, j $ n is said
to be upper triangular if aij= 0 with the condition i > j. Similarly, the matrix A is
said to be the lower triangular if aij= 0 with the condition j > i.

The computation of the lower bound for both the upper and lower triangular
matrices are gererally the same. Therefore, if you derive the lower bound for one
kind of triangular matrix then it also holds for the other kind of triangular matrix
too. Suppose wd are computing the lower bound for the lower triangular matrices.
Suppose A is thq problem that is related with the multiplication of two full square
matrices and tM time needed to calculate such multiplication is A(n), where n is
the order of the matrlces. Suppose B denotes the problem of multiplying the two
lower triangular matrices that takes B(n) time. However, the computation of the
multiplication of two lower triangular square matrices is not an easy task and it
can be shown tftat B(n) = 0 (A(n)), which means the time complexity for any
algorithm that s~lves the problem A is generally the same as the time complexity
of any algorithm that is used to solve problem B.

To show B(n) =.0 (A(n)), you have to prove that the problem A can be reduced in
problem B in O(n2) time. The lower bound for the problem A will be n2 because
the input contains 2n2 elements and the output contains n2 elements. The instance
for the problem ~ will be two 3n x 3n matrices denoted by A' and B' as shown:

A'~ [~ ~ ~Jand B'~ [~ ~ ~J
where 0 denoted the zero matrix.

Multiplication of A' and B' will give you the following matrix:
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~ ~J
o 0

Therefore, it is very easy to obtain the product AB from the multiplication of A'
and B'. This means that the problem A has been reduced to problem B in 0(n2)
time.

Therefore, A(n) s B(3n) + 0(n2)

=> B(n) ~ A(n/3) - 0(n2)

But the running time for the problem A is n2, therefore, A (n/3) = O(A(n)).

Hence, B(n) = 0 (A(n)).

6.5.5 Inverting a Lower Triangular Matrix
Inverse of a matrix can be defined in the following way:

Let A(n) be a square matrix of size n, with elements Ay, where 1 ::s i ::s nand 1 ::s j
::s n.
And, let I(n) be an identity matrix of size n, with elements Iy, 1 ::s i ::s nand 1 ::s j ::s
n, such that Iij= 1 for i = j and Iy= 0 for i :;a!: j.

If there exits another matrix B(n) of size n, with elements By, where 1 ::s i ::s nand
1 ::sj ::s n, such that the following relation holds:
AB=I

Then, the matrix B(n) is said to be the inverse of the matrix A(n) and is denoted
by A-l• Also, you can say that the matrix A(n) is invertible.

Now, consider the problem of inverting a lower triangular matrix, which is
represented by Pl. A triangular matrix is invertible only if all the diagonal
elements are non-zero. Let us consider another problem, P2, to multiple two
matrixes. To determine the lower bound for the problem Pl, you can reduce the
problem P2 to the problem Pl. If the time complexities of the problems P, and P2
be T/(n) and T2(n), then it can be shown that T2(n)= O(TI(n)).

It has been observed that the problem P, can be reduced to problem P2 in O(n2)
time. The following the lower triangular matrix, L, can be constructed by using
two full matrix A(n) and B(n) each of size n:

[
I 0 OJ

L= B I 0
o A I

Where, L represents a 3n x 3n matrix, 0 represents zero matrix of size n and I
represents identity matrix of size n. The inverse of the matrix L can be
represented as follows:



From the above, it is clear that the product ofA and B can be easily obtained from
the inverse of L. Therefore,

T2(n) ;5; ~ (3n) + ben 2)

(6.4)

Similarly, it can be shown that TI(n) = O(T2(n)). Let us consider LA(n)to be the
lower triangular matrix of size n. Group the elements in LAinto four square sub
matrices, each of size nl2. The entire matrix LAcan be written in terms of these
four sub-matrices as follows:

[
LAII 0]L =

A LA21 LA22

Here, LAII and LA22 represent the lower triangular matrices and LA2I may be a full
matrix. The inverse of LAcan be expressed as follows:

[
L -IL -I = All

A -I -I
- LA22LA2ILAll L ~]A22

For the above equation, it is clear that to invert a lower triangular matrix, LA, of
size n, it is sufficient to invert two lower triangular matrices LAII and LA2, each of
size nl2. Then, perform two consecutive multiplications RI = LA2I * LAII'] and
then R2 = LA22-I *RI• Then, negate the result R2• The approximate time to negate
the matrix R2 is n2 / 4. The inverse of each of the lower triangular matrix can be
obtained by repeating the above procedure. Therefore, the above equations
provides a divide and conquer approach for the computation of the matrix LA. The
running time for this type of divide and conquer approach is given by the
following recurrence relation:

t;(n) s2Tj (~ ) +2T2(~) + :2

= O(T2(n) + n")

=> TI(n)= O(T2(n)) (6.5)

By combining the result of (6.4) and (6.5), you can derive the following result:

TI(n) = 8(T2 (n))

6.6 SUMMARY

In this unit, you have learnt about the lower bound theory that is used to find the
most efficient algorithm in terms of running time for a given problem. The lower
bounds for some problems can be easily found and for some problems, it is
difficult. However, there are some techniques that help to find lower bounds.
Some of these techniques are comparison tree, oracle and reduction.

The comparison tree technique for finding the lower bound a the problem makes
use of the comparison between different elements rather than any arithmetic
calculation. This technique is generally used in searching and sorting problems.
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In a searching problem, the comparison tree for both the searching techniques is
given. On the basis of both the trees, you can see that the binary search algorithm
is more efficient than the linear search algorithm. The comparison tree also helps
in determining the lower bound for a sorting algorithm.
You also learnt about oracle, which is another technique to identify the lower
bound for the given problem. The different problems that can be solved using this
technique are as follows:

• Merging problem
• Largest and second largest problem

Apart from these problems, the lower bound for selection problem can also be
identified with the concept of oracles.
However, the lower bound through reduction is the best technique for finding the
lower bound. In this technique, a problem whose lower bound is known to us, is
taken into account as a solution for the given problem. The different problems
that can be solved by this technique are as follows:

o Convex hull problem
o Disjoint sets problem
o Online median problem
o Multiplication of triangular matrices
o Inverting a lower triangular matrix

6.7 ANSWERSTO 'CHECK YOUR PROGRESS'

• Lower bound theory: The lower bound theory provides some techniques
that can be used in identifying the most efficient algorithm from the given
algorithms.

• Comparison tree: A comparison tree is the computational model that can
be used to obtain the lower bounds for sorting and searching the
algorithms.

• Oracle: Oracle is another technique that can be used to get the lower
bound. When you use the comparison model to identify the lower bound,
the oracle can tell the outcome of the each comparison.

• Convex hull problem: The convex hull of a set S in n dimensions refers
to the intersection of all the convex sets that contain S. Therefore, this
problem refers to the method for finding the vertices of hull either in
clockwise or anticlockwise direction.

• Online median problem: Online median problem deals with the
computation of the median value at different steps, where at each step you
are given a new key value. Therefore, if n key values are given to you
then you have to calculate n median.

• Multiplication of triangular matrices: The triangular matrix is the
square matrix that contains the zero value below or above the main
diagonal. However, triangular matrices can be either the upper triangular
matrices or lower triangular.



6.8 ANS]YERS TO 'CHECK YOUR PROGRESS'

1. The different techniques that are used to determine the lower bound are as
follows:

A. Cqmparison trees
B. O~cle
C. Reduction technique

2. A comparison tree is a computational model that can be used to obtain the
lower bound for the sorting and searching algorithms. Comparison-based
algorithms do not involve in the arithmetic computations but they make
the compression between the elements to identify the lower bounds for
the given problem.

3. The different problems that can be solved using the comparison technique
are as follows:

A. O~dered searching
B. Sorting
C. Selection

4. Oracle is at technique that can he used to get the lower bound. When you
use the comparison model to i. .ntify the lower bound, the oracle can tell
the outcome of each comparison.

S. The state space method is another technique that can be used to find the
lower bo~d for the algorithms of a problem with the use of oracles.

6. The lowellbound through the reduction refers to the method of finding the
lower bound for a given problem by reducing it into some other problem
whose lower bound is already known.

7. The closest pair problem deals with the computation of the smallest
mutual distance between the different points contained in a set.

8. The convex hull of a set S in n dimensions refers to the intersection of all
the convex sets that contain S. Therefore, the convex hull problem refers
to the method of finding the vertices of hull either in clockwise or
anticlockwise direction.

9. Online median problem deals with the computation of the median value at
the different steps, where, at each step you are given a new key value.

6.9 QUE~TIONS AND EXERCISES

Short-Answer Questions
1. How does the lower bound help in finding the most efficient algorithm for

a given ptoblem?

2. What are the different techniques for finding the lower bound of a given
problem?

3. What is a comparison tree?

4. What is the state space method?
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Long-Answer Questions
1. How can an ordered searching problem be solved by usmg the

comparison tree method?

2. How is oracle used for finding the lower bound? Explain in detail.

3. How can a merging problem be solved by using oracles?

4. Explain the technique of reduction in detail.
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