

EMBEDDED SYSTEMS

MCA

Lesson Writer

A. HARI PRASAD REDDY
Assistant Professor

Vasireddy Venkatadri Institute of Technology
Nambur (P.O.), GUNTUR – Dt.

Editor & Advisor for the Course

Prof. E.SREENIVASA REDDY, M.Tech., Ph.D.
Principal

Vasireddy Venkatadri Institute of Technology
Nambur (P.O.), GUNTUR – Dt.

Director
Prof.V.CHANDRASEKHARA RAO, M.Com., Ph.D.

CENTRE FOR DISTANCE EDUCATION
ACHARAYA NAGARJUNA UNIVERSITY

NAGARJUNA NAGAR – 522 510

Ph: 0863-2293299,2293356,08645-211023,Cell:98482 85518
08645-21102 4 (Study Material)

Website: www.anucde.com, e-mail:anucde@yahoo.com

http://www.anucde.com/

INDEX

SINO NAME PAGES

 UNIT- I 1 - 50

01
Basic terminology

02
Embedded systems – Introduction

03
Embedded system-technologies

04
Custom Single purpose processors: Hardware

 UNIT - II 51 - 95

05
General purpose processor software

06
Standard single purpose processors: peripherals

 UNIT - III 96 - 103

07
Memory

 UNIT - IV 104 - 197

08 Interfacing

09
Analog

10
Networks

 UNIT - V 198 - 303

11 The PIC Microcontrollers

12 The AVR Microcontrollers

13 68HC11

14 MAXQ

15 68000-Series Computers

16 The DSP56800

1
Embedded Systems

Notes

UNIT – I

1. BASIC TERMINOLOGY

Objective

 In today’s world electronic gadgets are becoming part of our life
style. For example to say mobiles, music players, iPods, navigation
systems etc are possible with the advancement in technology the field of
intelligent computing popularly known as embedded technology. In this text
book we mainly learn about the basics of the embedded systems to
understand what a basic embedded device consists.

 At the end of this lesson the reader will understand what is a
computer, differences between hardware and software, different parts of
computer, what is operating system and types of operating systems.

Computer

 Different types of definitions for what is computer are given below.

 Any device capable of processing information to produce a desired
result. Computers typically perform their work in three well-defined
steps: (1) accepting input, (2) processing the input data according to
predefined rules (programs), and (3) producing output.

 A computer system comprises hardware and software used for
executing different mathematical manipulations most perfectly
within very less time.

 A functional unit that can perform substantial computations,
including numerous arithmetic operations and logic operations
without human intervention during a run. A computer may consist of
a stand-alone unit or may consist of several interconnected units.

 An electronic machine that receives processes and presents data.

Types of computers

Computers are classified into different types depending on the resources
available on them.

Super Computers

A supercomputer is a computer that has high speed and processing power.
The most famous series of supercomputers were designed by the company
founded and named after Seymour Cray. The Cray-1 was built in the 1976
and installed at Los Alamos National Laboratory. Supercomputers are used

2
Embedded Systems

Notes

for extremely calculation-intensive tasks such simulating nuclear bomb
detonations, aerodynamic flows, and global weather patterns. A
supercomputer typically costs several million dollars. Figure1 represents
the super computer CRAY-2 in around 1980’s.

Figure -1

Main Frame Computer

A mainframe computer is a large, powerful computer that handles
the processing for many users simultaneously (up to several hundred
users). Users connect to the mainframe using terminals and submit their
tasks for processing by the mainframe. A terminal is a device that has a
screen and keyboard for input and output, but it does not do its own
processing (they are also called dumb terminals since they can’t process
data on their own). The processing power of the mainframe is time-shared
between all of the users.

Mainframes typically cost several hundred thousand dollars. They
are used in situations where a company wants the processing power and
information storage in a centralized location. Mainframes are also now
being used as high-capacity server computers for networks with many
client workstations. Figure2 shows the photo of IBM z-series computer
which is about 6 feet tall.

3
Embedded Systems

Notes

Minicomputers

A minicomputer is a multi-user computer that is less powerful than a
mainframe. This class of computers became available in the 1960’s when
large scale integrated circuits made it possible to build a computer much
cheaper than the then existing mainframes.

Work Stations/Servers

A workstation is a powerful, high-end microcomputer. They contain
one or more microprocessor CPUs. They may be used by a single-user for
applications requiring more power than a typical PC (rendering complex
graphics, or performing intensive scientific calculations).

 Alternately, workstation-class microcomputers may be used as
server computers that supply files to client computers over a network. This
class of powerful microcomputers can also be used to handle the
processing for many users simultaneously who are connected via terminals
in this respect, high-end workstations have essentially supplanted the role
of minicomputers. Figure3 represents a workstation computer.

Figure-3

4
Embedded Systems

Notes

Desktop Computers

Desktop computers are not meant for portable usage. They usually
sit in one place on a desk or table and are plugged into a wall outlet for
power. The case of the computer holds the motherboard, drives, power
supply, and expansion cards. This case may lay flat on the desk, or it may
be a tower that stands vertically (on the desk or under it). The computer
usually has a separate monitor (either a CRT or LCD) although some
designs have a display built into the case. A separate keyboard and mouse
allow the user to input data and commands. Figure4 represents a desktop
computer.

 Figure4

Laptop Computers

 Laptop or notebook computers are small and lightweight enough to
be carried around with the user. They run on battery power, but can also be
plugged into a wall outlet. They typically have a built-in LCD display that
folds down to protect the display when the computer is carried around.
They also feature a built-in keyboard and some kind of built-in pointing
device (such as a touch pad).

 While some laptops are less powerful than typical desktop
machines, this is not true in all cases. Laptops, however, cost more than
desktop units of equivalent processing power because the smaller
components needed to build laptops are more expensive. Figure5
represents a laptop computer photo.

5
Embedded Systems

Notes

Figure -5

PDA’s

 A Personal Digital Assistant (PDA) is a handheld microcomputer
that trades off power for small size and greater portability. They typically
use a touch-sensitive LCD screen for both output and input (the user draws
characters and presses icons on the screen with a stylus). PDAs
communicate with desktop computers and with each other either by cable
connection, infrared (IR) beam, or radio waves. PDAs are normally used to
keep track of appointment calendars, to-do lists, address books, and for
taking notes. Figure6 represents the photo of personal Digital Assistance.

Figure -6

Palmtop/Handheld Computers

A palmtop or handheld PC is a very small microcomputer that also
sacrifices power for small size and portability. These devices typically look
more like a tiny laptop than a PDA, with a flip-up screen and small
keyboard. They may use Windows CE or similar operating system for
handheld devices. Some PDAs and palmtops contain wireless networking
or cell phone devices so that users can check e-mail or surf the web on the
move. Figure7 represent a photo of PDA.

6
Embedded Systems

Notes

Figure -7

Microprocessors Everywhere

Microprocessor chips are found in many electronic devices (in your
iPod, in your DVD player, in your microwave, in your car, in your phone).
These are special-purpose processing units that run programs to control
the equipment and optimize its performance.

Parts of Computers

Figure8 represents the parts of a desktop computer.

Figure -8

Let's take a look at the main components of a typical desktop computer:

 Central processing unit (CPU) - The "brain" of the computer

system is called the central processing unit. It is a chip that holds a
complete computational engine. It uses assembly language as its
native language. Everything that a computer does is overseen by
the CPU.

7
Embedded Systems

Notes

 Memory - This is very fast storage used to hold data. It has to be
fast because it connects directly to the microprocessor. There are
several specific types of memory in a computer:

 Random-access memory (RAM) - Used to temporarily store
information with which the computer is currently working

 Read-only memory (ROM) - A permanent type of memory storage
used by the computer for important data that doesn't change

 Basic input/output system (BIOS) - A type of ROM that is used by

the computer to establish basic communication when the computer
is first powered on

 Caching - The storing of frequently used data in extremely fast
RAM that connects directly to the CPU

 Virtual memory - Space on a hard disk used to temporarily store
data and swap it in and out of RAM as needed

 Flash memory - a solid state storage device, Flash memory

requires no moving parts and retains data even after the computer
powers off

 Motherboard - This is the main circuit board to which all of the

other internal components connect. The CPU and memory are
usually on the motherboard. Other systems may be found directly
on the motherboard or connected to it through a secondary
connection. For example, a sound card can be built into the
motherboard or connected through an expansion slot.

 Power supply - An electrical transformer regulates the electricity
used by the computer.

 Hard disk - This is large-capacity permanent storage used to hold

information such as programs and documents. Traditional hard
drives contain moving parts -- the drive has platters on which it
stores data. The drive spins the platters to record and read data.
But some newer hard drives are flash-based with no moving parts.
These drives are called solid-state drives.

 Operating system - This is the basic software that allows the user
to interface with the computer.

 Integrated Drive Electronics (IDE) Controller - This is the primary
interface for the hard drive, CD-ROM and floppy disk drive.

 Accelerated Graphics Port (AGP) - This is a very high-speed

connection used by the graphics card to interface with the
computer.

8
Embedded Systems

Notes

 Sound card - This is used by the computer to record and play
audio by converting analog sound into digital information and back
again.

 Graphics card - This translates image data from the computer into
a format that can be displayed by the monitor. Some graphics cards
have their own powerful processing units (called a GPU -- graphics
processing unit). The GPU can handle operations that normally
would require the CPU.

 Ports - In computer hardware terms, a port is an interface that

allows a computer to communicate with peripheral equipment.
Real-time clock - Every PC has a clock containing a vibrating

crystal. By referring to this clock, all the components in a computer
can synchronize properly.

 Complementary Metal-oxide Semiconductor - The CMOS and

CMOS battery allow a computer to store information even when the
computer powers down. The battery provides uninterrupted power.

 Fans, heat sinks and cooling systems - The components in a

computer generate heat. As heat rises, performance can suffer.
Cooling systems keep computers from overheating.

SOFTWARE

 Software is a general term for the various kinds of programs used to
operate computers and related devices.

Software can be the variable part of a computer and hardware is the
invariable part. Software is often divided into application software
(programs that do work users are directly interested in) and system
software (which includes operating systems and any program that supports
application software). The term middleware is sometimes used to describe
programming that mediates between application and system software or
between two different kinds of application software (for example, sending a
remote work request from an application in a computer that has one kind of
operating system to an application in a computer with a different operating
system).

An additional and difficult-to-classify category of software is the
utility, which is a small useful program with limited capability. Some utilities
come with operating systems. Like applications, utilities tend to be
separately installable and capable of being used independently from the
rest of the operating system.

Applets are small applications that sometimes come with the
operating system as "accessories." They can also be created
independently using the Java or other programming languages.

Software can be purchased or acquired as shareware (usually
intended for sale after a trial period), liteware (shareware with some

9
Embedded Systems

Notes

capabilities disabled), freeware (free software but with copyright
restrictions), public domain software (free with no restrictions), and open
source (software where the source code is furnished and users agree not
to limit the distribution of improvements).

Software is often packaged on CD-ROMs and diskettes. Today,
much purchased software, shareware, and freeware is downloaded over
the Internet. A new trend is software that is made available for use at
another site known as an application service provider.

Some general kinds of application software include:

 Productivity software, which includes word processors,
spreadsheets, and tools for use by most computer users

 Presentation software

 Graphics software for graphic designers

 CAD/CAM software

 Specialized scientific applications

Firmware or microcode is programming that is loaded into a special
area on a microprocessor or read-only memory on a one-time or infrequent
basis so that thereafter it seems to be part of the hardware.

Operating systems

 Operating system is defined as system software used as
communication medium between user and hardware parts (electronic
parts) of computer. It is the most important program that runs on a
computer. Every general-purpose computer must have an operating
system. Operating systems perform basic tasks, such as recognizing input
from the keyboard, sending output to the display screen, keeping track of
files and directories on the disk, and controlling peripheral devices such as
disk drives and printers.

For large systems, the operating system has even greater
responsibilities and powers. It is like a traffic cop -- it makes sure those
different programs and users running at the same time do not interfere with
each other. The operating system is also responsible for security, ensuring
that unauthorized users do not access the system. Operating systems can
be classified as follows:

 Multi-user: Allows two or more users to run programs at the same

time.Some operating systems permit hundreds or even thousands
of concurrent users.

 Multiprocessing: Supports running a program on more than one
CPU.

 Multitasking: Allows more than one program to run concurrently.

http://www.webopedia.com/TERM/O/operating_system.html
http://www.webopedia.com/TERM/O/input.htm
http://www.webopedia.com/TERM/O/output.htm
http://www.webopedia.com/TERM/O/display_screen.htm
http://www.webopedia.com/TERM/O/file.htm
http://www.webopedia.com/TERM/O/disk.htm
http://www.webopedia.com/TERM/O/user.htm
http://www.webopedia.com/TERM/O/access.htm
http://www.webopedia.com/TERM/O/support.htm
http://www.webopedia.com/TERM/O/CPU.htm

10
Embedded Systems

Notes

 Multithreading: Allows different parts of a single program to run
concurrently.

 Real time: Responds to input instantly. General-purpose operating
systems, such as DOS and UNIX, are not real-time.

Operating systems provide a software platform on top of which
other programs called application programs run. The application programs
must be written to run on top of a particular operating system. For PCs, the
most popular operating systems are DOS, OS/2, and Windows, but others
are available, such as Linux.

Summary

1. Embedded technology mainly deals with embedding intelligence in
electronic devices.

2. Any device capable of processing information to produce a desired
result. No matter how large or small they are, computers typically
perform their work in three well-defined steps: (1) accepting input,
(2) processing the input according to predefined rules (programs),
and (3) producing output.

3. The different types of computers are

a. Super computers

b. Main frame computers

c. Workstations/servers

d. Desktop computers

e. Laptop computers

f. PDA’s

g. Palm top/handheld computers.

4. The main parts of computer are

a. Central processing Unit

b. Random Access Memory

c. Read Only Memory

d. Hard Disk

e. Mother Board

f. Key Board.

http://www.webopedia.com/TERM/O/DOS.htm
http://www.webopedia.com/TERM/O/UNIX.htm
http://www.webopedia.com/TERM/O/software.htm
http://www.webopedia.com/TERM/O/platform.htm
http://www.webopedia.com/TERM/O/application.htm
http://www.webopedia.com/TERM/O/PC.htm
http://www.webopedia.com/TERM/O/OS_2.htm
http://www.webopedia.com/TERM/O/Linux.htm

11
Embedded Systems

Notes

5. Software is a general term for the various kinds of programs used to
operate computers and related devices. It is of two types namely
application software and system software.

6. Operating system is defined as system software used as
communication medium between user and hardware parts
(electronic parts) of computer.

Objective Questions

1. What are the different types of computers? Explain.

2. Briefly explain the different parts of a computer?

3. What is software? Classify different types of software.

4. What is operating system? Classify.

References

 www.howstuffworks.com

 www.wikipedia.com

 Embedded Software The Works – colin walls

 Vahid F & GIvargis T; Embedded System Design, John willey(2002)

12
Embedded Systems

Notes

2. EMBEDDED SYSTEMS - INTRODUCTION

OBJECTIVE

In this chapter we will study about basics of embedded systems and
its terminology.

Introduction

An embedded system is a special-purpose computer designed to
perform one or a few dedicated functions, often with real-time computing
constraints. An embedded system has historically been defined as a single
function product where the intelligence is embedded in the system. It is a
system made with combination of hardware and software designed for a
specific individual application. Embedded systems are usually programmed
in high level language that is compiled (and/or assembled) into an
executable (“machine”) code. These are loaded into Read Only Memory
(ROM) and called “firmware” or “microcode” or a “microkernel”. The
microprocessor can be from 8-bit tot 64-bit. The bit size refers to the
amount of memory accessed by the processor at a time. The most
advanced systems actually have a tiny, streamlined OS running the show,
executing on a 32-bit or 64-bit processor. This is called RTOS. Real-Time
Systems can be classified as:

 Hard Real-Time Systems - systems with severe constraints on the
timeliness of the response.

 Soft Real-Time Systems - systems which tolerate small variations in
response times.

 Hybrid Real-Time Systems - systems which exhibit both hard and
soft constraints on its performance.

Embedded Hardware

All embedded systems contains a microprocessor or microcontroller
for processing of information and execution of programs, memory in the
form of ROM/RAM for storing embedded software programs and data, and
I/O interfaces for external interface. Any additional requirement in an
embedded system is dependent on the equipment it is controlling. Very
often these systems have a standard serial port, a network interface, I/O
interface, or hardware to interact with sensors and activators on the
equipment.

Embedded Software

C has become the language of choice for embedded programmers,
because it has the benefit of processor independence, which allows the
programmer to concentrate on algorithms and applications, rather than on
the details of processor architecture. However, many of its advantages
apply equally to other high-level languages as well. Perhaps the greatest
strength of C is that it gives embedded programmers an extraordinary

13
Embedded Systems

Notes

degree of direct hardware control without sacrificing the benefits of high-level
languages. Compilers and cross compilers are also available for almost every
processor with C. Any source code written in C or C++ or Assembly language
must be converted into an executable image that can be loaded onto a ROM
chip. The process of converting the source code representation of your
embedded software into an executable image involves three distinct steps, and
the system or computer on which these processes are executed is called a
host computer. First, each of the source files that make an embedded
application must be compiled or assembled into distinct object files. Second,
the entire object files that result from the first step must be linked into a final
object file called the re-locatable program. Finally, the physical memory
address must be assigned to the re-locatable program. The result of the third
step is a file that contains an executable image that is ported on the ROM chip.
This ROM chip, along with the processor and other devices and interfaces,
makes an embedded system run. There are some very basic differences
between conventional programming and embedded programming. First, each
target platform is unique. Second, there is a difference in the development and
debugging of applications.

Difference between computer and embedded device

 An embedded system has a self-contained operating system on a
"chip" thus embedded into the system and does not rely on having a hard
disk with the operating system on it. An embedded system has historically
been defined as a single function product where the intelligence is
embedded in the system. It could be anything from a dishwasher to a
hearing aid, if that product includes a microprocessor and software. A PC is
designed to be a general purpose computing environment. Many of today's
embedded systems are looking more like PCs with user interfaces, touch
screens, displays, keypads and more. Still, these are not general function
systems but are designed to perform very specific functions.

 What a computer is used for, what tasks it must perform, and how it
interacts with humans and other systems determine the functionality of the
machine and, therefore, its architecture, memory, and I/O. It has a large
main memory to hold the operating system, applications, and data, and an
interface to mass storage devices (disks and DVD/CD-ROMs). It has a
variety of I/O devices for user input (keyboard, mouse, and audio), user
output (display interface and audio), and connectivity (networking and
peripherals). The fast processor requires a system manager to monitor its
core temperature and supply voltages, and to generate a system reset.

 Large-scale embedded computers may also take the same form.
For example, they may act as a network router or gateway, and so will
require one or more network interfaces, large memory, and fast operation.
They may also require some form of user interface as part of their
embedded application and, in many ways, may simply be a conventional
computer dedicated to a specific task. Thus, in terms of hardware, many
high-performances embedded systems is not that much different from a
conventional desktop machine? The diagram represents the basic
components of general purpose computer.

14
Embedded Systems

Notes

Smaller embedded systems use microcontrollers as their processor,
with the advantage that this processor will incorporate much of the
computer's functionality on a single chip. The microcontroller has, at a
minimum, a CPU, a small amount of internal memory (ROM and/or RAM),
and some form of I/O, which is implemented within a microcontroller as
subsystem blocks. These subsystems provide the additional functionality
for the processor and are common across many processors.

The most common I/O is digital I/O, commonly called general-
purpose I/O, or GPIO. These are ports that may be configured by software,
on a pin-by-pin basis, as either a digital input or digital output. As digital
inputs, they may be used to read the state of switches or push buttons, or
to read the digital status of another device. As outputs, they may be used to
turn external devices on or off, or to convey status to an external device.
For example, a digital output may be used to activate the control circuitry
for a motor, turn a light on or off, or perhaps activate some other device
such as a water valve for a garden-watering system. Used in combination,
the digital inputs and outputs may be used to synthesize an interface and
protocol to another chip. Most microcontrollers have other subsystems
besides digital I/O but provide the ability to convert the other subsystems to
general-purpose digital I/O if the functionality of the other subsystems is not
required. This gives you great versatility as a system designer in how you
use your microcontroller within your application.

Many microcontrollers also have analog inputs, allowing sensors to
be sampled for monitoring or recording purposes. Thus, an embedded
computer may measure light levels, temperature, vibration or acceleration,
air or water pressure, humidity, or magnetic field, to name just some.

15
Embedded Systems

Notes

Alternatively, the analog inputs may be used to monitor simple voltages,
perhaps to ensure the reliable operation of a larger system.

Some microcontrollers have serial ports, which enable the
embedded computer to be interfaced to a host computer, a modem,
another embedded system, or perhaps a simple network. Specialized forms
of serial interface, such as SPI and I2C, provide a simple way of expanding
the microcontroller's functionality. They allow peripherals to be interfaced to
the microcontroller, providing access to such devices as off-chip memories
(for data or parameter storage), clock/calendar chips (for timekeeping),
sensors with digital interfaces, external analog input or output, and even
audio chips and other processors. Most microcontrollers have timers and
counters. These may be used to generate internal interrupts at regular
intervals for multitasking, to generate external triggers for off-chip systems,
or to provide control pulses for motors. Alternatively, they may be used to
count external triggers (pulses) from another system. A few
microcontrollers also include network interfaces, such as USB, Ethernet, or
CAN. In this book, we'll look at many of these peripheral subsystems in
detail and see how to utilize them to increase an embedded computer's
functionality. Diagram represents the block diagram of general embedded
system.

Some of the larger microcontrollers also provide a bus interface, bringing
the internal address, data, and control buses to the outside world. This
allows the processor to be interfaced to a huge variety of possible
peripherals in very much the same way as a conventional processor. All of
the possible devices and interfaces described previously may also be
implemented through the bus interface and the appropriately chosen
peripheral. A bus interface provides enormous possibility.

The mix of I/O subsystems that microcontrollers may have varies
considerably. Some microcontrollers are intended for simple digital control
and may have only digital I/O. Others may be intended for industrial
applications, and may have digital I/O, analog input, motor control, and

16
Embedded Systems

Notes

networking. The choice of microcontroller (and there are literally thousands
of subspecies available from dozens of manufacturers) depends on your
processing needs and your interfacing requirements. Choose the one that
best suits your purposes.

Downfalls of Embedded Computers

Embedded computers may be economical, but they are designed to
specific problems. A PC computer may ship with a glitch in the software,
and once discovered, a software patch can often be shipped out to fix the
problem. An embedded system, however, is frequently programmed once,
and the software cannot be patched. Even if it is possible to patch faulty
software on an embedded system, the process is frequently far too
complicated for the user. Another problem with embedded computers is
that they are often installed in systems for which unreliability is not an
option. For instance, the computer controlling the brakes in your car cannot
be allowed to fail under any condition. The targeting computer in a missile
is not allowed to fail and accidentally target friendly units. As such, many of
the programming techniques used when throwing together production
software cannot be used in embedded systems. Reliability must be
guaranteed before the chip leaves the factory. This means that every
embedded system needs to be tested and analyzed extensively. An
embedded system will have very few resources when compared to full
blown computing systems like a desktop computer, the memory capacity
and processing power in an embedded system is limited. It is more
challenging to develop an embedded system when compared to developing
an application for a desktop system as we are developing a program for a
very constricted environment. Some embedded systems run a scaled down
version of operating system called an RTOS (real time operating system).

CHARACTERISTICS OF EMBEDDED SYSTEMS

Frequently, embedded systems are connected to the physical
environment through sensors collecting information about that environment
and actuators controlling that environment.

Embedded systems have to be dependable. Many embedded
systems are safety-critical and therefore have to be dependable. Nuclear
power plants are an example of extremely safety-critical systems that are at
least partially controlled by software. Dependability encompasses the
following aspects of a system:

 Reliability: Reliability is the probability that a system will not fail.

 Maintainability: Maintainability is the probability that a failing
system can be repaired within a certain time-frame.

 Availability: Availability is the probability that the system is

available. Both the reliability and the maintainability must be high in
order to achieve a high availability.

17
Embedded Systems

Notes

 Safety: This term describes the property that a failing system will
not cause any harm.

 Security: This term describes the property that confidential data

remains confidential and that authentic communication is
guaranteed.

 Embedded systems have to be efficient. The following metrics can
be used for evaluating the efficiency of embedded systems:

 Energy: Many embedded systems are mobile systems obtaining

their energy through batteries. Therefore, the available electrical
energy must be used very efficiently.

 Code-size: All the code to be run on an embedded system has to

be typically, there are no hard discs on which code can be stored.
Dynamically adding additional code is still an exception and limited
to cases such as Java-phones and set-top boxes. Due to all the
other constraints, this means that the code-size should be as small
as possible for the intended application. This is especially true for
Systems On a Chip (SoCs), systems for which all the information
processing circuits are included on a single chip stored with the
system.

 Run-time efficiency: The minimum amount of resources should be
used for implementing the required functionality.

 Weight: All portable systems must be of low weight. Low weight is
frequently an important argument for buying a certain system.

 Cost: For high-volume embedded systems, especially in consumer

electronics, competitiveness on the market is an extremely crucial
issue, and efficient use of hardware components and the software
development budget are required.

These systems are dedicated towards a certain application. For example,
processors running control software in a car or a train will always run that
software, and there will be no attempt to run a computer game or
spreadsheet program on the same processor. There are mainly two
reasons for this:

 Running additional programs would make those systems less
dependable.

 Running additional programs is only feasible if resources such as
memory are unused. No unused resources should be present in an
efficient system.

 Most embedded systems do not use keyboards, mice and large
computer monitors for their user-interface. Instead, there is a
dedicated user-interface consisting of push-buttons, steering
wheels, pedals etc.

18
Embedded Systems

Notes

 Many embedded systems must meet real-time constraints. Not
completing computations within a given time-frame can result in a
serious loss of the quality provided by the system.

 Many embedded systems are hybrid systems in the sense that they
include analog and digital parts. Analog parts use continuous signal
values in continuous time, whereas digital parts use discrete signal
values in discrete time.

Typically, embedded systems are reactive systems. They can be defined
as follows: A reactive system is one that is in continual interaction with its
environment and executes at a pace determined by that environment.

Embedded Development Environment

 The embedded system may not have a keyboard, a screen, a disk
drive and other peripheral devices required for programming and
development tasks. Therefore most of the programming for embedded
systems is done on a host, which is a computer system with all the
programming tools. Only after the program has been written, compiled,
assembled and linked then it is moved to the target or the system that is
shipped to the customers. After writing source file compiling, linking,
relocating and porting the executable image into the ROM, you need to test
and debug the application. Once you have an executable image stored as
a file on the host computer, you need a way to download that image into a
memory device on the target board or development board and execute it
from there. And if you have the right tools at your disposal, it will be
possible to set breakpoints in the program or set break points in the
program or observe its execution. These various tools could be a remote
debugger, simulator, emulator or an in-circuit emulator. A remote debugger
can be used to download, execute, and debug embedded software over the
serial port or network connection between the host and the target. In case
of embedded systems, the debugger executes on two different computer
systems – a remote debugger consists of two pieces of software. The front-
end runs on the host computer and provides the human interface, and the
hidden back-end runs on the target processor and communicates with the
front-end over a communication link. The back-end provides low-level
control of the target processor and is usually called debug monitor. The
debug monitor resides in the ROM and is automatically started whenever
the target processor is reset. It monitors the communication link to the host
computer and responds to the request from the remote debugger running
there. Remote debuggers are the most commonly used tools for
downloading and testing tools during the development of embedded
software – mainly because of their low cost. Remote debuggers are helpful
in monitoring and controlling the state of embedded software, but only in in-
circuit emulators (ICEs) allow you to examine the state of the processor on
which that program is running. In fact an ICE actually takes the place of the
processor on your target board, or in other words, emulates the work of the
processor and provides the human interface with what exactly is happening
on the board in real-time. This also allows the ICE to support powerful
debugging features such as hardware breakpoints and real-time tracing.

19
Embedded Systems

Notes

Many other debugging tools – such as simulators, logic analyzers and
oscilloscopes – are also used in embedded systems. A simulator is a
completely host-based program that simulates the functionality and
instruction set of the target processor. Although simulators have many
disadvantages, they are quite valuable in the early stages of the project
when there isn’t as yet any actual hardware for the programmers to
experiment with. The biggest disadvantage of a simulator is that it
simulates only the processor. And embedded systems frequently contain
one or more other peripherals. Interaction with these devices can only
sometimes be imitated. You may not do much with the simulator once you
have the actual embedded hardware available to you. Once the target
hardware is available, you can use logic analyzers and oscilloscopes as
debugging tools. These are very useful for debugging the interactions
between the processor and other chips on the board. These tools only view
signals that lie outside the processor, and cannot control the flow of
execution of your software like debuggers or emulators can. A logic
analyzer is equipment that is designed to find whether the electrical signal it
is attached to is currently to logic level 1 or 0(zero). An oscilloscope so
another piece of equipment for hardware debugging, and is used to
examine any electrical signal, analogue signal, or digital signal on the
hardware.

Design Requirements

Embedded systems typically have tight constraints on both
functionality and implementation. In particular, they have must guarantee
real time operation reactive to external events, conform to size and weight
limits, budget, power and cooling consumption, satisfy safety and reliability
requirements, and meet tight cost targets. Real time systems operation
means that the correctness of a computation depends on the time at which
it is delivered. In many cases the system design must take into account
worst-case performance. The Signal Processing and Mission Critical
example systems have a significant requirement for real time operation in
order to meet external I/O and control stability requirements. Reactive
computation means that the software executes in response to external
events. These events may be periodic, in which case scheduling of events
to guarantee performance may be possible. On the other hand, many
events may be a periodic, in which case the maximum event arrival rate
must be estimated in order to accommodate worst-case situations. Most
embedded systems have a significant reactive component.

 Small size, low weight: Many embedded computers are physically

located within small areas. In transportation and portable systems,
weight may be critical for fuel economy or human endurance.
Among the examples, the Mission Critical system has much more
stringent size and weight requirements than the others because of
its use in a flight vehicle, although all examples have restrictions of
this type.

 Safe and reliable: Some systems have obvious risks associated

with failure. In mission-critical applications such as aircraft flight

20
Embedded Systems

Notes

control, severe personal injury or equipment damage could result
from a failure of the embedded computer. Traditionally, such
systems have employed multiply-redundant computers or
distributed consensus protocols in order to ensure continued
operation after an equipment failure However, many embedded
systems that could cause personal or property damage cannot
tolerate the added cost of redundancy in hardware or processing
capacity needed for traditional fault tolerance techniques. This
vulnerability is often resolved at the system level as discussed later.

 Harsh environment: Many embedded systems do not operate in a
controlled environment. Excessive heat is often a problem,
especially in applications involving combustion (e.g., many
transportation applications). Additional problems can be caused for
embedded computing by a need for protection from vibration,
shock, lightning, power supply fluctuations, water, corrosion, fire,
and general physical abuse. For example, in the Mission Critical
example application the computer must function for a guaranteed,
but brief, period of time even under non-survivable fire conditions.

 Cost sensitivity: Even though embedded computers have stringent

requirements, cost is almost always an issue (even increasingly for
military systems). Although designers of systems large and small
may talk about the importance of cost with equal urgency, their
sensitivity to cost changes can vary dramatically. A reason for this
may be that the effect of computer costs on profitability is more a
function of the proportion of cost changes compared to the total
system cost, rather than compared to the digital electronics cost
alone.

Application Areas

Embedded software is present in almost every electronic device you
use today. There is embedded software inside your watch, cellular phone,
automobile, thermostats, industrial control equipment, and scientific and
medical equipment. Defense services use it to guide missiles and detect
enemy aircrafts. Thus embedded systems cover such a broad range of
products that generalization is difficult. Here are some broad categories:-

 Aerospace and defense electronics (ADE): Astronomical

research, flight safety and flight management, fire control, robotics,
vehicular control.

 Automotive electronics: Modern cars can be sold only if they

contain a significant amount of electronics. These include air bag
control systems, engine control systems, anti-braking systems
(ABS), air-conditioning, GPS systems, safety features, and many
more.

 Trains: For trains, the situation is similar to the one discussed for

cars and airplanes. Again, safety features contribute significantly to
the total value of trains, and dependability is extremely important.

21
Embedded Systems

Notes

 Broadcast and entertainment: analogue and digital sound
products, audio control systems, DVD players, digital TV, set-top
boxes.

 Telecommunication: Mobile phones have been one of the fastest
growing markets in the recent years. For mobile phones, radio
frequency (RF) design, digital signal processing and low power
design are key aspects.

 Data communication: Analogue modems, ATM broad band
switches, cable modems.

 Digital imaging: Digital still camera, digital video cameras, fax
machines, Printers, scanners.

 Industrial measurement and control: Building environmental
control systems, industrial sensors, test & measurement devices,
traffic management systems.

 Medical electronics: Cardiovascular devices, critical care systems,
diagnostic devices, surgical devices.

 Server I/O: Embedded servers, LAN devices, supercomputing,
server Management.

 Mobile data infrastructures: Mobile data terminals, satellites
terminals, wireless LANs, pagers, wireless phones.

 Military applications: Information processing has been used in

military equipment for many years. In fact, some of the very first
computers analyzed military radar signals.

 Authentication systems: Embedded systems can be used for
authentication purposes. For example, advanced payment systems
can provide more security than classical systems. The SMART pen
R_[IMEC, 1997] is an example of such an advanced payment
system

 The SMART pen is a pen-like instrument analyzing physical
parameters while its user is signing. Physical parameters include
the tilt, force and acceleration. These values are transmitted to a
host PC and compared with information available about the user. As
a result, it can be checked if both the image of the signature as well
as the way it has been produced coincides with the stored

22
Embedded Systems

Notes

information. Other authentication systems include finger print
sensors or face recognition systems.

 Consumer electronics: Video and audio equipment is a very

important sector of the electronics industry. The information
processing integrated into such equipment is steadily growing. New
services and better quality are implemented using advanced digital
signal processing techniques. Many TV sets, multimedia phones,
and game consoles comprise high performance processors and
memory systems. They represent special cases of embedded
systems.

 Fabrication equipment: Fabrication equipment is a very traditional

area in which embedded systems have been employed for
decades. Safety is very important for such systems; the energy
consumption is less a problem. Below figure shows a container
connected to a pipe. The pipe includes a valve and a sensor. Using
the readout from the sensor, a computer may have to control the
amount of liquid leaving the pipe.

 Smart buildings: Information processing can be used to increase

the comfort level in buildings, can reduce the energy consumption
within buildings, and can improve safety and security. Subsystems
which traditionally were unrelated have to be connected for this
purpose. There is a trend towards integrating air-conditioning,
lighting, access control, accounting and distribution of information
into a single system.

 Robotics: Robotics is also a traditional area in which embedded

systems have been used. Mechanical aspects are very important
for robots. Most of the characteristics described above also apply to
robotics. Recently, some new kinds of robots, modeled after
animals or human beings, have been designed. Below Figure
shows such a robot.

23
Embedded Systems

Notes

 Information Appliance: In the past, embedded systems allowed

information appliances to carry out simple and specific functions
only. But with the penetration of the Internet into the homes of many
ordinary families, it was realized that electric appliances could make
human life easier and more convenient if they could access Internet
information. Electric appliances can now access the Internet,
compute and do what they were not able to do earlier. In other
words, electric appliances are being transformed into information
appliances (IA) or what may also be called ‘embedded IA’. Like the
traditional embedded systems, the embedded information appliance
needs only the least amount of hardware to operate. It can operate
even without a hard disk, or with low power and small footprint. A
product can be classified into four mainstream products:-

 Set-Top Boxes (STB)

 Personal Access Device (PAD)

 Thin Client (TC)

 Residential Gateway (or Home Gateway)

Most industrial appliances products may be derived, with little or some
modifications, from these four types of products.

 Set-Top Boxes: The set-top box is driving the digital revolution

right into your living room. Your fingertips now command a wealth of
high quality digital information and digital entertainment, right from
your favorite armchair. The set-top box revolutionizes home
entertainment by providing vibrant television images with crystal
clear sound, along with e-mail, Web surfing, along with customized

24
Embedded Systems

Notes

information such as stock quotes, weather and traffic updates, on-
line shopping, and video-on-demand, right through a traditional
television.

 Personal Access Devices: Personal Access Devices (PADs) are
web terminals that feature convenient Web browsing, email, and
information access capabilities in a lightweight, mobile form.

 Thin Client: A thin client is an information access drive that

provides users with remote access to applications and data that are
maintained and executed on a central server. The thin-client
computing environment consists of an application server, a network,
and thin-client devices. By centralizing deployment and updates of
corporate applications, thin clients allow for simplified Information
Systems (IS) management with dramatically increased security.

 Residential Gateway: The RG mainly provides various kinds of

interfaces that link all the electronic devices. The RG unlike the PC
is a very small, slim and light piece of hardware and may soon be
incorporated inside other popular electronic appliances. It will play
the role of an information hub responsible for the exchange of
information between all kinds of electronic devices in an ordinary
home.

Conclusion

We are standing on the threshold of an exciting new age of information
technology that will change our lives and the future forever. Soon we shall
see more and more digitization of appliances, and these will be fuelled by
human need. Embedded systems and Information Appliances have virtually
entered every sphere of our life and they will truly change the way we live.

Summary

1. Embedded system is a combination of hardware and software
designed for a specific application.

2. Operating systems used in embedded applications is real time
operating systems.

3. RTOS are classified into 3 categories known as hard, soft and
hybrid real time operating systems.

4. The main difference between embedded processors and other
processors is availability of resources on chip.

5. The main disadvantage of an embedded system will have very few
resources when compared to full blown computing systems like a
desktop computer, the memory capacity and processing power in
an embedded system is limited.

25
Embedded Systems

Notes

Questions:

1. What is an embedded system?

2. What is the difference between embedded device and a personal
computer?

3. What are the characteristics of embedded systems?

4. What are the design requirements of embedded systems?

5. Explain the different fields of embedded systems?

References:

1. www.embedded.com

2. www.wikipedia.com

3. Embedded Software The Works – colin walls

26
Embedded Systems

Notes

3. Embedded System Technologies

Objective

 In this chapter the reader will get an idea about different
technologies that are used during the design of embedded systems.

Types of Technologies

Technology is a manner of accomplishing a task, especially using
technical processes, methods, or knowledge. Three key technologies for
embedded systems are

 Processor technology

 IC technology

 Design technology

With the help of above three technologies engineers are enabled to
design different types of processors those can be used for general
purpose, customized and application specific processors.

Processor Technology

 Generally processors are designed depend on their application
areas. Processors can be divided into three categories depend on their
type of usage. Those can be named as general purpose, single purpose,
and customized application processors (For example DSP processors used
generally in multimedia electronic gadgets, ARM processors used generally
in SONY Ericson mobiles etc). Let us assume below diagram represents a
block of required application.

Then according to the processors selections below diagrams represents
the general purpose, application specific and customized processors.

 General purpose Application Specific Customized

27
Embedded Systems

Notes

From above diagrams reader can conclude that general purpose
processors are suitable for all types of applications where resources
wastage is high. When come to application specific processors the
resource wastage is low when compared with general purpose and the
same is almost zero in customized processor.

General purpose Processors

Below Figure1 represents the Block diagram of general purpose processor.

Figure 2

The main parts of any processor include control unit, arithmetic logic unit
(ALU), registers, data memory, program memory etc. In the above type of
processors software used is general purpose software. These processors
are known micro processors which can be used for many different
application fields depending on program stored in program memory.

Features of these processors are

 Program memory

 General data path with large register file and general ALU

The benefits of this type of processors are

28
Embedded Systems

Notes

 Low time-to-market and NRE costs

 High flexibility

The examples of these type of processors are Intel Pentium processors (P-
I, P-II, P-III, P-IV, CORE2), AMD processors (AMD ATHLON 64),
MOTOROLA processors etc.

Single purpose Processors

Below Figure represents the Block diagram of general purpose processor.

The main parts of this type processor include control unit, arithmetic logic
unit (ALU), registers, data memory etc. This is chip which contains a simple
digital circuit designed to serve only one single user specified application.

Features of these processors are

 Contains only the components needed to execute a single
program

 No program memory

The benefits of this type of processors are

 Fast

 Low power

 Small size

MAX232 is an IC (Integrated Chip) used only for serial communication
between different devices either in synchronous or asynchronously. This IC
can’t be used for any other application. This type of chips / Processors
designed to serve only one single purpose is known as single purpose
processors.

Application Specific Processors

29
Embedded Systems

Notes

Below Figure represents the Block diagram of general purpose processor.

The main parts of this type processor include control unit, arithmetic logic
unit (ALU), registers, data memory and program memory like general
purpose. These processors are a part of general purpose processors. But
this type processor is designed in such a way that these can be used only
for some specific applications only.

Features of these processors are

 Program memory

 Optimized data path

 Special functional units

The benefits of this type of processors are

 Some flexibility

 good performance

 size and power

Digital signal processors are used mainly in signal processing very fastly
and effectively. These are mainly used in graphics cards, data processing
units etc. This type of chips / Processors designed to serve only one
specific type of application field.

IC technology

The technology that deals with the gate level implementation and
mapping of the chips is IC Technology. The full form of IC is integrated
circuit or integrated chip. There exist different IC technologies depending
on IC customization. A single IC may consist of single layer on more than

30
Embedded Systems

Notes

one. The number of layers depends on the complexity, design process of
the IC. IC technologies differ with respect to who builds each layer and
when it was made, how many transistors are used for each layer etc. figure
represents the very basic IC design methodology.

There exists mainly three type of IC technologies are present. Those are

 Full-custom/VLSI

 Semi-custom ASIC (gate array and standard cell)

 PLD (Programmable Logic Device)

Full-custom/VLSI

 In this method each and every part of the IC is designed by the
designer according to the application requirement. In this technology every
feature of processor like number of transistors on the chip, number of
layers etc are designed to serve the required task. In this design all layers
are optimized for an embedded system’s particular digital implementation
like

 Placing transistors

 Sizing transistors

 Routing wires

Benefits of this technology are

 Excellent performance

 small size

 low power

The main drawback of this system is its initial cost and long time to market.

Semi-custom/VLSI

31
Embedded Systems

Notes

 In this method layers are pre designed and wiring has to be done
according to the application requirement. In this technology lower layers of
the IC are fully or partially build. Designers are left with routing of wires and
maybe placing some blocks on the layers of IC. Advantage with this
technology is

 Good performance

 Good size

 Less initial cost than a full-custom implementation

The main drawback of this technology is time requirement for its
development.

Programmable Logic Devices

In this technology all layers are exists in the IC. Designer either creates or
destroys the connections on IC to get desired functionality. In these
programmable logic devices FPGA (Field-Programmable Gate Arrays) are
most popular.

• Benefits

– Low NRE costs, almost instant IC availability

• Drawbacks

– Bigger, expensive (perhaps $30 per unit), power hungry,
slower

Moore’s Law

In 1959, Calvin Moore’s, one of the pioneers of Information
Retrieval, set forth what he called a "contradictory principle" of the fledgling
science, and attached his own name to it:

Moore’s Law: An information retrieval system will tend not to be used
whenever it is more painful and troublesome for a customer to have
information than for him not to have it.

An interesting thing has happened to Moore’s’ Law, however, along
the way to acceptance: the law that is becoming widely held as true by
information professionals is not the same one that Mr. Moore’s proposed.

The difference between the actual law and its mutation centers
specifically upon a misinterpretation of the word "have", a misinterpretation
which perhaps results primarily from reading the law excerpted from the
original article in which it appeared, and applying it to a concern that is
distinctly separate from the one Mr. Moore’s was attempting to address.

Moore’s’ Law Expanded

32
Embedded Systems

Notes

It seems that Moore’s, in spite of the attention he focuses upon
environments in which IR systems tend not to be used, was unaware of the
rest of the scale; his observations about "the best of the chemical or
pharmaceutical laboratories" acknowledge the opposite extreme, while the
very study in which his law is first mentioned seems to exist primarily to
address the needs of those environments that are in between. Indeed,
early on in this Seven Model Systems study, he makes a statement that
very closely resembles what his law has now become: "If the burden on the
users of the information becomes too high, either in the retrieval process or
in the labor of delineating new material, the users will give the system up
and try to get along without it" (1959a, p.6). Clearly, though, this statement
has no meaning within either of the environments which lie at the extreme
ends of the scale; it makes sense only if applied to the middle. Thus, it
would seem that an expansion of Mooers’ original law would be in order:

Moore’s’ 1st Law: In an environment in which it is more painful and
troublesome for a customer to have information in hand than for him not to
have it, an IR system will tend not to be used.

Moore’s’ 2nd Law: In an environment in which it is absolutely critical
for a customer to have information, an IR system, no matter how poorly
designed, will tend to be used.

Moore’s’ 3rd Law: In an environment in which the trouble of having
information versus that of not having it are fairly evenly balanced, system
design and performance tend to be the deciding factors in whether or not
an IR system will be used.

Several measures of digital technology are improving at exponential
rates related to Moore's law, including the size, cost, density and speed of
components. Moore himself wrote only about the density of components (or
transistors) at minimum cost. Moore's law has been the name given to
everything that changes exponentially.

Transistors per integrated circuit. The most popular formulation is of the

doubling of the number of transistors on integrated circuits every two years.
At the end of the 1970s, Moore's law became known as the limit for the
number of transistors on the most complex chips. Recent trends show that
this rate has been maintained into 2007.

http://en.wikipedia.org/wiki/Transistor
http://en.wikipedia.org/wiki/Integrated_circuit

33
Embedded Systems

Notes

Density at minimum cost per transistor. This is the formulation given in
Moore's 1965 paper. It is not about just the density of transistors that can
be achieved, but about the density of transistors at which the cost per
transistor is the lowest. As more transistors are put on a chip, the cost to
make each transistor decreases, but the chance that the chip will not work
due to a defect increases. In 1965, Moore examined the density of
transistors at which cost is minimized, and observed that, as transistors
were made smaller through advances in photolithography, this number
would increase at "a rate of roughly a factor of two per year".

Cost per transistor. As the size of transistors has decreased, the cost per
transistor has decreased as well. However, the manufacturing cost per unit
area has only increased over time, since materials and energy

expenditures per unit area have only increased with each successive
technology node.

Computing performance per unit cost. Also, as the size of transistors

shrinks, the speed at which they operate increases. It is also common to
cite Moore's law to refer to the rapidly continuing advance in computing
performance per unit cost, because increase in transistor count is also a
rough measure of computer processing performance. On this basis, the
performance of computers per unit cost—or more colloquially, "bang per
buck"—doubles every 24 months.

Power consumption. The power consumption of compute nodes doubles
every 18 months.

Hard disk storage cost per unit of information. A similar law (sometimes
called Kryder's Law) has held for hard disk storage cost per unit of
information. The rate of progression in disk storage over the past decades
has actually sped up more than once, corresponding to the utilization of
error correcting codes, the magneto resistive effect and the giant magneto
resistive effect. The current rate of increase in hard drive capacity is
roughly similar to the rate of increase in transistor count. Recent trends
show that this rate has been maintained into 2007.

RAM storage capacity. Another version states that RAM storage capacity
increases at the same rate as processing power.

Network capacity According to Gerry/Gerald Butters,[21][22] the former head

of Lucent's Optical Networking Group at Bell Labs, there is another version,
called Butter's Law of Photonics, a formulation which deliberately parallels
Moore's law. Butter's law says that the amount of data coming out of an
optical fiber is doubling every nine months. Thus, the cost of transmitting a
bit over an optical network decreases by half every nine months. The
availability of wavelength-division multiplexing (sometimes called "WDM")
increased the capacity that could be placed on a single fiber by as much as
a factor of 100. Optical networking and DWDM is rapidly bringing down the
cost of networking, and further progress seems assured. As a result, the
wholesale price of data traffic collapsed in the dot-com bubble. Nielsen's
Law says that the bandwidth available to users increases by 50% annually.

http://en.wikipedia.org/wiki/Photolithography
http://en.wikipedia.org/wiki/Unit_cost
http://en.wikipedia.org/wiki/Mark_Kryder
http://en.wikipedia.org/wiki/Hard_disk
http://en.wikipedia.org/wiki/Disk_storage
http://en.wikipedia.org/wiki/Error_correcting_code
http://en.wikipedia.org/wiki/Magnetoresistance
http://en.wikipedia.org/wiki/Giant_magnetoresistive_effect
http://en.wikipedia.org/wiki/Giant_magnetoresistive_effect
http://en.wikipedia.org/wiki/Hard_drive
http://www.intel.com/technology/mooreslaw/
http://en.wikipedia.org/wiki/Random_Access_Memory
http://en.wikipedia.org/wiki/Moore%27s_law#cite_note-20
http://en.wikipedia.org/wiki/Moore%27s_law#cite_note-20
http://en.wikipedia.org/wiki/Bell_Labs
http://en.wikipedia.org/wiki/Wavelength-division_multiplexing
http://en.wikipedia.org/wiki/DWDM
http://en.wikipedia.org/wiki/Dot-com_bubble
http://en.wikipedia.org/wiki/Nielsen%27s_Law
http://en.wikipedia.org/wiki/Nielsen%27s_Law

34
Embedded Systems

Notes

Pixels per dollar. Similarly, Barry Hendy of Kodak Australia has plotted the
"pixels per dollar" as a basic measure of value for a digital camera,
demonstrating the historical linearity (on a log scale) of this market and the
opportunity to predict the future trend of digital camera price and resolution.

Design Technology

 In this technology reader will understand how to convert user
specified application into integrated chip. Below diagram represents the
entire process of conversion.

The co-design ladder

• In the past:

– Hardware and software design technologies were very
different

– Recent maturation of synthesis enables a unified view of
hardware and software

• Hardware/software “co design”

Below diagram shows the comparison of IC design methodology.

35
Embedded Systems

Notes

Summary:

• Embedded systems are everywhere

• Key challenge: optimization of design metrics

 Design metrics compete with one another

• A unified view of hardware and software is necessary to improve
productivity

• Three key technologies

 Processor: general-purpose, application-specific, single-
purpose

 IC: Full-custom, semi-custom, PLD

 Design: Compilation/synthesis, libraries/IP, test/verification

Review Questions

1. Explain key technologies used in embedded systems each in
around 500 words.

2. What is the difference between single prpose and multipurpose
processors.

36
Embedded Systems

Notes

3. Write a brief notes on moore,s law?

References:

 1. Designing embedded hardware, john catsoulis.

 2. Embedded_Controller_Hardware_Design,ken arnold.

 3. www.embedded.com

 4. First Steps with Embedded Systems.

37
Embedded Systems

Notes

4. Custom single-purpose processors: Hardware

Introduction

 As mentioned in the previous chapter, a single-purpose processor is
a digital system intended to solve a specific computation task. While a
manufacturer builds a standard single-purpose processor for use in a
variety of applications, we build a custom single purpose processor to
execute a specific task within our embedded system. An embedded system
designer choosing to use a custom single-purpose, rather than a general-
purpose, processor to implement part of a system’s functionality may
achieve several benefits, similar to some of those of the previous chapter.

 First, performance may be fast, due to fewer clock cycles resulting
from a customized data path, and due to shorter clock cycles resulting from
simpler functional units, less multiplexors, or simpler control logic. Second,
size may be small, due to a simpler data path and no program memory. In
fact, the processor may be faster and smaller than a standard one
implementing the same functionality, since we can optimize the
implementation for our particular task.

 However, because we probably won't manufacture as many of the
custom processor as a standard processor, we may not be able to invest
as much NRE, unless the embedded system we are building will be sold in
large quantities or does not have tight cost constraints. This fact could
actually penalize performance and size.

 In this chapter, we describe basic techniques for designing custom
processors. We start with a review of combinational and sequential design,
and then describe a method for converting programs to custom single-
purpose processors.

Combinational logic design

A transistor is the basic electrical component of digital systems.
Combinations of transistors form more abstract components called logic
gates, which designers primarily use when building digital systems. Thus,
we begin with a short description of transistors before discussing logic
design.

A transistor acts as a simple on/off switch. One type of transistor
(CMOS -- Complementary Metal Oxide Semiconductor) is shown in Figure
4.1(a). The gate (not to be confused with logic gate) controls whether or not
current flows from the source to the drain. When a high voltage (typically +5

Volts, which we'll refer to as logic 1) is applied to the gate, the transistor
conducts so current flows. When low voltage (which we'll refer to as logic 0,
typically ground, which is drawn as several horizontal lines of decreasing
width) is applied to the gate, the transistor does not conduct. We can also
build a transistor with the opposite functionality, illustrated in Figure 4.1(b).
When logic 0 is applied to the gate, the transistor conducts, and when logic
1 is applied, the transistor does not conduct. Given these two basic
transistors, we can easily build a circuit whose output inverts its gate input,

38
Embedded Systems

Notes

as shown in in Figure 4.1(c). When the input x is logic 0, the top transistor
conducts (and the bottom does not), so logic 1 appears at the output F. We

can also easily build a circuit whose output is logic 1 when at least one of
its inputs is logic 0, as shown in Figure 4.1(d). When at least one of the
inputs x and y is logic 0, then at least one of the top transistors conducts
(and the bottom transistors do not), so logic 1 appears at F. If both inputs

are logic 1, then neither of the top transistors conducts, but both of the
bottom ones do, so logic 0 appears at F. Likewise, we can easily build a
circuit whose output is logic 1 when both of its inputs are logic 0, as
illustrated in Figure 4.1(e). The three circuits shown implement three basic
logic gates: an inverter, a NAND gate, and a NOR gate.

Digital system designers usually work with logic gates, not transistors.
Figure 4.2 describes 8 basic logic gates. Each gate is represented
symbolically, with a Boolean equation, and with a truth table. The truth
table has inputs on the left, and output on the right. The AND gate outputs
1 if and only if both inputs are 1. The OR gate outputs 1 if and only if at
least one of the inputs is 1. The XOR (exclusive-OR) gate outputs 1 if and
only if exactly one of its two inputs is 1. The NAND, NOR, and XNOR gates
output the complement of AND, OR, and XOR, respectively. As you might
have noticed from our transistor implementations, the NAND and NOR
gates are actually simpler to build than AND and OR gates.

 A combinational circuit is a digital circuit whose output is purely a

function of its current inputs; such a circuit has no memory of past inputs.

39
Embedded Systems

Notes

We can apply a simple technique to design a combinational circuit using
our basic logic gates, as illustrated in Figure 4.3. We start with a problem
description, which describes the outputs in terms of the inputs. We
translate that description to a truth table, with all possible combinations of
input values on the left, and desired output values on the right. For each
output column, we can derive an output equation, with one term per row.
However, we often want to minimize the logic gates in the circuit. We can
minimize the output equations by algebraically manipulating the equations.
Alternatively, we can use Karnaugh maps, as shown in the figure. Once
we’ve obtained the desired output equations (minimized or not), we can
draw the circuit diagram.

 Although we can design all combinational circuits in the above
manner, large circuits would be very complex to design. For example, a
circuit with 16 inputs would have 216, or 64K, rows in its truth table. One
way to reduce the complexity is to use components that are more abstract
than logic gates. Figure 4.4 shows several such combinational
components. We now describe each briefly.

 A multiplexor, sometimes called a selector, allows only one of its
data inputs Im to pass through to the output O. Thus, a multiplexor acts

40
Embedded Systems

Notes

much like a railroad switch, allowing only one of multiple input tracks to
connect to a single output track. If there are m data inputs, then there are
log2(m) select lines S, and we call this an m-by-1 multiplexor (m data
inputs, one data output). The binary value of S determines which data input
passes through; 00...00 means I0 may pass, 00...01 means I1 may pass,
00...10 means I2 may pass, and so on. For example, an 8x1 multiplexor

has 8 data inputs and thus 3 select lines. If those three select lines have
values of 110, then I6 will pass through to the output. So if I6 is 1, then the
output would be 1; if I6 is 0, then the output would be 0. We commonly use
a more complex device called an n-bit multiplexor, in which each data
input, as well as the output, consists of n lines. Suppose the previous
example used a 4-bit 8x1 multiplexor. Thus, if I6 is 0110, then the output
would be 0110. Note that n does not affect the number of select lines.

 A decoder converts its binary input I into a one-hot output O. "One-
hot" means that exactly one of the output lines can be 1 at a given time.
Thus, if there are n outputs, then there must be log2(n) inputs. We call this
a log2(n) × n decoder. For example, a 3x8 decoder has 3 inputs and 8
outputs. If the input is 000, then the output O0 will be 1. If the input is 001,
then the output O1 would be 1, and so on. A common feature on a decoder
is an extra input called enable. When enable is 0, all outputs are 0. When
enable is 1, the decoder functions as before.

 An adder adds two n-bit binary inputs A and B, generating an n-bit
output sum along with an output carry. For example, a 4-bit adder would
have a 4-bit A input, a 4-bit B input, a 4-bit sum output, and a 1-bit carry
output. If A is 1010 and B is 1001, then sum would be 0011 and carry
would be 1.

 A comparator compares two n-bit binary inputs A and B, generating
outputs that indicate whether A is less than, equal to, or greater than B. If A

41
Embedded Systems

Notes

is 1010 and B is 1001, then less would be 0, equal would be 0, and greater
would be 1.

 An ALU (arithmetic-logic unit) can perform a variety of arithmetic
and logic functions on its n-bit inputs A and B. The select lines S choose
the current function; if there are m possible functions, then there must be at
least log2(m) select lines. Common functions include addition, subtraction,
AND, and OR.

Sequential logic design

 A sequential circuit is a digital circuit whose outputs are a function
of the current as well as previous input values. In other words, sequential
logic possesses memory. One of the most basic sequential circuits is the
flip-flop. A flip-flop stores a single bit. The simplest type of flip-flop is the D
flip-flop. It has two inputs: D and clock. When clock is 1, the value of D is
stored in the flip-flop, and that value appears at an output Q. When clock is
0, the value of D is ignored; the output Q maintains its value. Another type
of flip-flop is the SR flip-flop, which has three inputs: S, R and clock. When
clock is 0, the previously stored bit is maintained and appears at output Q.
When clock is 1, the inputs S and R are examined. If S is 1, a 1 is stored. If
R is 1, a 0 is stored. If both are 0, there’s no change. If both are 1, behavior
is undefined. Thus, S stands for set and R for reset. Another flip-flop type is
a JK flip-flop, which is the same as an SR flip-flop except that when both J
and K are 1, the stored bit toggles from 1 to 0 or 0 to 1. To prevent
unexpected behavior from signal glitches, flip-flops are typically designed to
be edge triggered, meaning they only pay attention to their non-clock inputs
when the clock is rising from 0 to 1, or alternatively when the clock is falling
from 1 to 0.

 Just as we used more abstract combinational components to
implement complex combinational systems, we also use more abstract
sequential components for complex sequential systems. Figure 4.5
illustrates several sequential components, which we now describe.

42
Embedded Systems

Notes

 A register stores n bits from its n-bit data input I, with those stored
bits appearing at its output O. A register usually has at least two control
inputs, clock and load. For a rising-edge-triggered register, the inputs I are
only stored when load is 1 and clock is rising from 0 to 1. The clock input is
usually drawn as a small triangle, as shown in the figure. Another common
register control input is clear, which resets all bits to 0, regardless of the
value of I. Because all n bits of the register can be stored in parallel, we
often refer to this type of register as a parallel-load register, to distinguish it
from a shift register, which we now describe.

 A shift register stores n bits, but these bits cannot be stored in
parallel. Instead, they must be shifted into the register serially, meaning
one bit per clock edge. A shift register has a one-bit data input I, and at
least two control inputs clock and shift. When clock is rising and shift is 1,
the value of I is stored in the (n)’th bit, while the (n)’th bit is stored in the (n-
1)’th bit, and likewise, until the second bit is stored in the first bit. The first
bit is typically shifted out, meaning it appears over an output Q.

 A counter is a register that can also increment (add binary 1) to its
stored binary value. In its simplest form, a counter has a clear input, which
resets all stored bits to 0, and a count input, which enables incrementing on
the clock edge. A counter often also has a parallel load data input and
associated control signal. A common counter feature is both up and down
counting (incrementing and decrementing), requiring an additional control
input to indicate the count direction.

 The control inputs discussed above can be either synchronous or
asynchronous. A synchronous input’s value only has an effect during a
clock edge. An asynchronous input’s value affects the circuit independent
of the clock. Typically, clear control lines are asynchronous.

 Sequential logic design can be achieved using a straightforward
technique, whose steps are illustrated in Figure 4.1. We again start with a
problem description. We translate this description to a state diagram. We
describe state diagrams further in a later chapter. Briefly, each state
represents the current "mode" of the circuit, serving as the circuit’s memory
of past input values. The desired output values are listed next to each
state. The input conditions that cause a transition from one state to another
are shown next to each arc. Each arc condition is implicitly AND’ed with a
rising (or falling) clock edge. In other words, all inputs are synchronous.
State diagrams can also describe asynchronous systems, but we do not
cover such systems in this book, since they are not common.

 We will implement this state diagram using a register to store the
current state, and combinational logic to generate the output values and the
next state. We assign each state with a unique binary value, and we then
create a truth table for the combinational logic. The inputs for the
combinational logic are the state bits coming from the state register, and
the external inputs, so we list all combinations of these inputs on the left
side of the table. The outputs for the combinational logic are the state bits
to be loaded into the register on the next clock edge (the next state), and
the external output values, so we list desired values of these outputs for

43
Embedded Systems

Notes

each input combination on the right side of the table. Because we used a
state diagram for which outputs were functions of the current state only,
and not of the inputs, we list an external output value only for each possible
state, ignoring the external input values. Now that we have a truth table, we
proceed with combinational logic design as described earlier, by generating
minimized output equations, and then drawing the combinational logic
circuit.

Custom single-purpose processor design

 We can apply the above combinational and sequential logic design
techniques to build data path components and controllers. Therefore, we
have nearly all the knowledge we need to build a custom single-purpose
processor for a given program, since a processor consists of a controller
and a data path. We now describe a technique for building such a
processor.

 We begin with a sequential program we must implement. Figure
provides a example based on computing a greatest common divisor (GCD).
Figure 4.3(a) shows a black-box diagram of the desired system, having x_i
and y_i data inputs and a data output d_i. The system’s functionality is

straightforward: the output should represent the GCD of the inputs. Thus, if
the inputs are 12 and 8, the output should be 4. If the inputs are 13 and 5,
the output should be 1. Figure 4.3(b) provides a simple program with this
functionality. The reader might trace this program’s execution on the above
examples to verify that the program does indeed compute the GCD.

44
Embedded Systems

Notes

 To begin building our single-purpose processor implementing the
GCD program, we first convert our program into a complex state diagram,
in which states and arcs may include arithmetic’s expressions, and these
expressions may use external inputs and outputs or variables. In contrast,
our earlier state diagrams only included Boolean expressions, and these
expressions could only use external inputs and outputs, not variables.
Thus, these more complex state diagram looks like a sequential program in
which statements have been scheduled into states.

45
Embedded Systems

Notes

 We can use templates to convert a program to a state diagram, as
illustrated in Figure 4.2. First, we classify each statement as an assignment
statement, loop statement, or branch (if-then-else or case) statement. For
an assignment statement, we create a state with that statement as its
action. We add an arc from this state to the state for the next statement,
whatever type it may be. For a loop statement, we create a condition state
C and a join state J, both with no actions. We add an arc with the loop’s

condition from the condition state to the first statement in the loop body. We
add a second arc with the complement of the loop’s condition from the
condition state to the next statement after the loop body. We also add an
arc from the join state back to the condition state. For a branch statement,
we create a condition state C and a join state J, both with no actions.

 We add an arc with the first branch’s condition from the condition
state to the branch’s first statement. We add another arc with the
complement of the first branch’s condition AND’ed with the second
branches condition from the condition state to the branches first statement.
We repeat this for each branch. Finally, we connect the arc leaving the last
statement of each branch to the join state, and we add an arc from this
state to the next statement’s state.

 Using this template approach, we convert our GCD program to the
complex state diagram of Figure 4.3(c). We are now well on our way to
designing a custom single-purpose processor that executes the GCD
program. Our next step is to divide the functionality into a data path part

46
Embedded Systems

Notes

and a controller part, as shown in Figure 4.4. The data path part should
consist of an interconnection of combinational and sequential components.
The controller part should consist of a basic state diagram, i.e., one
containing only Boolean actions and conditions.

We construct the data path through a four-step process:

1. First, we create a register for any declared variable. In the example,
these are x and y. We treat an output port as having an implicit variable, so
we create a register d and connect it to the output port. We also draw the
input and output ports.

2. Second, we create a functional unit for each arithmetic operation in the
state diagram. In the example, there are two subtractions, one comparison
for less than, and one comparison for inequality, yielding two subtractors
and two comparators, as shown in the figure.

47
Embedded Systems

Notes

3. Third, we connect the ports, registers and functional units. For each write
to a variable in the state diagram, we draw a connection from the writer’s
source (an input port, a functional unit, or another register) to the variable’s
register. For each arithmetic and logical operation, we connect sources to
an input of the operation’s corresponding functional unit. When more than
one source is connected to a register, we add an appropriately-sized
multiplexor.

4. Finally, we create a unique identifier for each control input and output of
the data path components.

48
Embedded Systems

Notes

Now that we have a complete data path, we can build a state diagram for
our controller. The state diagram has the same structure as the complex
state diagram.

 However, we replace complex actions and conditions by Boolean
ones, making use of our data path. We replace every variable write by
actions that set the select signals of the multiplexor in front of the variable’s
register’s such that the writer’s source passes through, and we assert the
load signal of that register. We replace every logical operation in a
condition by the corresponding functional unit control output.

 We can then complete the controller design by implementing the
state diagram using our sequential design technique described earlier.
Figure 4.4 shows the controller implementation model, and Figure 4.5
shows a state table. Note that there are 7 inputs to the controller, resulting
in 128 rows for the table. We reduced rows in the state table by using don’t
cares for some input combinations, but we can still see that optimizing the
design can still see that optimizing the design using hand techniques could
be quite tedious. For this reason, computer-aided design (CAD) tools that
automate the combinational as well as sequential logic design can be very
helpful; we’ll introduce such CAD tools.

Also, note that we could perform significant amounts of optimization to both
the data path and the controller. For example, we could merge functional
units in the data path, resulting in fewer units at the expense of more
multiplexors. We could also merge states in the data path.

49
Embedded Systems

Notes

Remember that we could alternatively implement the GCD program by
programming a microcontroller, thus eliminating the need for this design
process, but possibly yielding a slower and bigger design.

Summary

 Designing a custom single- purpose processor for a given program
requires an understanding of various aspects of digital design.

 Design of a circuit to implement Boolean functions requires
combinational design, which consists of building a truth table with all
possible inputs and desired outputs, optimizing, and drawing a
circuit.

 Design of a circuit to implement a state a circuit to implement a
state diagram requires sequential design, which consists of drawing
an implementation model with a state register and a combinational
logic block, assigning a binary encoding to each state, drawing a
state table with inputs and outputs, and repeating our combinational
design process for this table.

 Finally, design of a single purpose processor circuit to implement a
program requires us to first schedule the program’s statements into
a complex state diagram, construct a data path from the diagram,
create a new state diagram that replaces complex actions and
conditions by data path control operations, and then design a
controller circuit for the new state diagram using sequential design.
Because processors can be complex, CAD tools would be a great
designer’s aid.

Questions:

1. Build a 3-input NAND gate using a minimum number of CMOS
transistors.

2. Design a 2-bit comparator (compares two 2-bit words) with a single
output "less than," using the combinational design technique described in
the chapter. Start from a truth table, use K-maps to minimize logic, and
draw the final circuit.

3. Design a 3-bit counter that counts the following sequence: 1, 2, 4, 5, 7,
1, 2, This counter has an output "odd" that is one when the current count
value is odd. Use the sequential design technique of the chapter. Start from
a state diagram, draw the state table, minimize logic, and draw the final
circuit.

4. Compare the GCD custom-processor implementation to a software
implementation. (a) Compare the performance. Assume a 100 ns clock for
the microcontroller, and a 20 ns clock for the custom processor. Assume
the microcontroller uses two operand instructions, and each instruction

50
Embedded Systems

Notes

requires 4 clock cycles. Estimates for the microcontroller are fine. (b)
Estimate the number of gates for the custom design, and compare this to
10,000 gates for a simple 8-bit microcontroller. (c) Compare the custom
GCD with the GCD running on a 300 MHz processor with 2-operand
instructions and 1 clock cycle per instruction (advanced processors use
parallelism to meet or exceed 1 cycle per instruction). (d) Compare the
estimated gates with 200,000 gates, a typical number of gates for a modern
32-bit processor.

5. Design a custom single-purpose processor implementing the following
program, using the technique of the chapter. Start with a complex state
diagram, construct a data path and a simplified state diagram, and draw the
truth table for the controller, but do not complete the design for the
controller beyond the truth table.

input_port U;

int V;

for (int i=0; i<32; i++)

V = V + U*V;

References and further reading

 Gajski, Daniel D. Principles of Digital Design. New Jersey: Prentice-
Hall, 1997. ISBN 0-13-301144-5. Describes combinational and
sequential logic design, with a focus on optimization techniques,
CAD, and higher-levels of design.

 Katz, Randy. Contemporary Logic Design. Redwood City,
California: Benjamin/Cummings, 1994. ISBN 0-8053-2703-7.
Describes combinational and sequential logic design, with a focus
on logic and sequential optimization and CAD.

 Embedded systems
 Notes

51

UNIT – II

5. General purpose processor software

Objective:

This chapter discusses history of the 80x 86 CPU families and the major
improvements occurring along the line. The historical background will help
you better understand the design compromises they made as well as
under-stand the legacy issues surrounding the CPU s design. This chapter
also discusses the major advances in computer architecture that Intel

employed while improving the x861.

Introduction to the Central Processing Unit

In order to work, a computer needs some sort of "brain" or

"calculator". At the core of every computer is a device roughly the
size of a large postage stamp. This device is known as the central

processing unit or CPU for short. This is the "brain" of the

computer; it reads and executes program instructions, performs
calculations, and makes decisions. The CPU is responsible for

storing and retrieving information on disks and other media. It

also handles information on from one part of the computer to

another like a central switching station that directs the flow of
traffic throughout the computer system.

 Embedded systems
 Notes

52

History of the Central Processing Unit

CPU history starts in 1971, when a small unknown company, Intel,
for the first time combined multiple transistors to form a central processing
unit - a chip called Intel 4044. However, it was 8 years before the first
Personal Computer was constructed.

PC's are designed around different CPU generations. Intel is not the
only company manufacturing CPU's, but by far the leading one. The
following table shows the different CPU generations. They are
predominantly Intel chips, but in the 5th generation we see alternatives.

There are CPU's of many brand names (IBM, Texas, Cyrix, AMD), and
often they make models which overlap two generations. This can make it
difficult to keep track of CPU's. Here is an attempt to identify the various
CPU's according to generation –

 Embedded systems
 Notes

53

Internal Architecture of 8085 Microprocessor

 Embedded systems
 Notes

54

Control Unit

Generates signals within Micro processor to carry out the
instruction, which has been decoded. In reality causes certain connections
between blocks of the Micro processor to be opened or closed, so that data
goes where it is required, and so that ALU operations occur.

Arithmetic Logic Unit

The ALU performs the actual numerical and logic operation such as
‘add’, ‘subtract’, ‘AND’, ‘OR’, etc. Uses data from memory and from
Accumulator to perform arithmetic operations. Always stores result of
operation in Accumulator.

Registers

The 8085/8080A-programming model includes six registers, one
accumulator, and one flag register, as shown in Figure. In addition, it has
two 16-bit registers: the stack pointer and the program counter. They are
described briefly as follows. The 8085/8080A has six general-purpose
registers to store 8-bit data; these are identified as B,C,D,E,H, and L as
shown in the figure. They can be combined as register pairs - BC, DE, and
HL - to perform some 16-bit operations. The programmer can use these
registers to store or copy data into the registers by using data copy
instructions.

Accumulator

The accumulator is an 8-bit register that is a part of arithmetic/logic
unit (ALU). This register is used to store 8-bit data and to perform
arithmetic and logical operations. The result of an operation is stored in the
accumulator. The accumulator is also identified as register A.

Flags

The ALU includes five flip-flops, which are set or reset after an
operation according to data conditions of the result in the accumulator and
other registers. They are called Zero(Z), Carry (CY), Sign (S), Parity (P),
and Auxiliary Carry (AC) flags; they are listed in the Table and their bit
positions in the flag register are shown in the Figure below. The most
commonly used flags are Zero, Carry, and Sign. The microprocessor uses
these flags to test data conditions. For example, after an addition of two
numbers, if the sum in the accumulator id larger than eight bits, the flip-flop
uses to indicate a carry -- called the Carry flag (CY) – is set to one. When
an arithmetic operation results in zero, the flip-flop called the Zero(Z) flag is
set to one. The first Figure shows an 8-bit register, called the flag register,
adjacent to the accumulator. However, it is not used as a register; five bit
positions out of eight are used to store the outputs of the five flip-flops. The
flags are stored in the 8-bit register so that the programmer can examine
these flags (data conditions) by accessing the register through an
instruction. These flags have critical importance in the decision-making
process of the microprocessor. The conditions (set or reset) of the flags are
tested through the software instructions. For example, the instruction JC

 Embedded systems
 Notes

55

(Jump on Carry) is implemented to change the sequence of a program
when CY flag is set. The thorough understanding of flag is essential in
writing assembly language programs.

Program Counter (PC)

This 16-bit register deals with sequencing the execution of
instructions. This register is a memory pointer. Memory locations have 16-
bit addresses, and that is why this is a 16-bit register. The microprocessor
uses this register to sequence the execution of the instructions. The
function of the program counter is to point to the memory address from
which the next byte is to be fetched. When a byte (machine code) is being
fetched, the program counter is incremented by one to point to the next
memory location.

Stack Pointer (SP)

The stack pointer is also a 16-bit register used as a memory pointer.
It points to a memory location in R/W memory, called the stack. The
beginning of the stack is defined by loading 16-bit address in the stack
pointer. The stack concept is explained in the chapter "Stack and
Subroutines."

Instruction Register/Decoder

Temporary storage for the current instruction of a program. Latest
instruction sent here from memory prior to execution. Decoder then takes
instruction and ‘decodes’ or interprets the instruction. Decoded instruction
then passed to next stage.

Memory Address Register

Holds address, received from PC, of next program instruction.
Feeds the address bus with address of locations of the program under
execution.

Control Generator

Generates signals within Micro processor to carry out the instruction
which has been decoded. In reality causes certain connections between
blocks of the Micro processor to be opened or closed, so that data goes
where it is required, and so that ALU operations occur.

Register Selector

This block controls the use of the register stack in the example. Just
a logic circuit which switches between different registers in the set will
receive instructions from Control Unit.

General Purpose Registers

Micro processor requires extra registers for versatility and can be
used to store additional data during a program. More complex processors
may have a variety of differently named registers. Microprogramming how

 Embedded systems
 Notes

56

does the Micro processor knows what an instruction means, especially
when it is only a binary number? The micro program in a Micro processor/
micro controller is written by the chip designer and tells the Micro
processor/ micro controller the meaning of each instruction Micro
processor/micro controller can then carry out operation.

8085 System Bus

Typical system uses a number of busses, collection of wires, which
transmit binary numbers, one bit per wire. A typical microprocessor
communicates with memory and other devices (input and output) using
three busses: Address Bus, Data Bus and Control Bus.

Address Bus

One wire for each bit, therefore 16 bits = 16 wires. Binary number
carried alerts memory to ‘open’ the designated box. Data (binary) can then
be put in or taken out. The Address Bus consists of 16 wires, therefore 16
bits. Its "width" is 16 bits. A 16 bit binary number allows 216 different
numbers, or 32000 different numbers, ie 0000000000000000 up to
1111111111111111. Because memory consists of boxes, each with a
unique address, the size of the address bus determines the size of
memory, which can be used. To communicate with memory the
microprocessor sends an address on the address bus, eg
0000000000000011 (3 in decimal), to the memory. The memory the selects
box number 3 for reading or writing data. Address bus is unidirectional, ie
numbers only sent from microprocessor to memory, not other way.

Question?: If you have a memory chip of size 256 kilobytes (256 x 1024 x 8
bits), how many wires does the address bus need, in order to be able to
specify an address in this memory? Note: the memory is organized in
groups of 8 bits per location, therefore, how many locations must you be
able to specify?

Data Bus

Data Bus: carries ‘data’, in binary form, between μP and other
external units, such as memory. Typical size is 8 or 16 bits. Size
determined by size of boxes in memory and μP size helps determine
performance of μP. The Data Bus typically consists of 8 wires. Therefore,
28 combinations of binary digits. Data bus used to transmit "data", ie
information, results of arithmetic, etc, between memory and the
microprocessor. Bus is bi-directional. Size of the data bus determines what
arithmetic can be done. If only 8 bits wide then largest number is 11111111
(255 in decimal). Therefore, larger number have to be broken down into
chunks of 255. This slows microprocessor. Data Bus also carries
instructions from memory to the microprocessor. Size of the bus therefore
limits the number of possible instructions to 256, each specified by a
separate number.

 Embedded systems
 Notes

57

Control Bus

Control Bus is various lines which have specific functions for
coordinating and controlling uP operations. Eg: Read/Not write line, single
binary digit. Control whether memory is being ‘written to’ (data stored in
memory) or ‘read from’ (data taken out of memory) 1 = Read, 0 = Write.
May also include clock line(s) for timing/synchronizing, ‘interrupts’, ‘reset’
etc. Typically μP has 10 control lines. Cannot function correctly without
these vital control signals. The Control Bus carries control signals partly
unidirectional, partly bi-directional. Control signals are things like "read or
write". This tells memory that we are either reading from a location,
specified on the address bus, or writing to a location specified, various
other signals to control and coordinate the operation of the system. Modern
day microprocessors, like 80386, 80486 have much larger busses.
Typically 16 or 32 bit busses, which allow larger number of instructions,
more memory location, and faster arithmetic. Microcontrollers organized
along same lines, except: because microcontrollers have memory etc
inside the chip, the busses may all be internal. In the microprocessor the
three busses are external to the chip (except for the internal data bus). In
case of external busses, the chip connects to the busses via buffers, which
are simply an electronic connection between external bus and the internal
data bus.

8085 Pin description.

Properties

Single + 5V Supply

4 Vectored Interrupts (One is Non Maskable)

Serial In/Serial Out Port

Decimal, Binary, and Double Precision Arithmetic

Direct Addressing Capability to 64K bytes of memory

The Intel 8085A is a new generation, complete 8 bit parallel central
processing unit (CPU). The 8085A uses a multiplexed data bus. The
address is split between the 8bit address bus and the 8bit data bus.

Pin Description

The following describes the function of each pin:

A6 - A1s (Output 3 State)

Address Bus; The most significant 8 bits of the memory address or the 8
bits of the I/0 address,3 stated during Hold and Halt modes.

AD0 - 7 (Input/Output 3state)

Multiplexed Address/Data Bus; Lower 8 bits of the memory address (or I/0
address) appear on the bus during the first clock cycle of a machine state.

 Embedded systems
 Notes

58

It then becomes the data bus during the second and third clock cycles. 3
stated during Hold and Halt modes.

ALE (Output)

Address Latch Enable: It occurs during the first clock cycle of a machine
state and enables the address to get latched into the on chip latch of
peripherals. The falling edge of ALE is set to guarantee setup and hold
times for the address information. ALE can also be used to strobe the
status information. ALE is never 3stated.

SO, S1 (Output)

Data Bus Status. Encoded status of the bus cycle:

S1 S0 Description

O O HALT

0 1 WRITE

1 0 READ

1 1 FETCH

S1 can be used as an advanced R/W status.

RD (Output 3state)

READ; indicates the selected memory or 1/0 device is to be read and that
the Data Bus is available for the data transfer.

WR (Output 3state)

WRITE; indicates the data on the Data Bus is to be written into the selected
memory or 1/0 location. Data is set up at the trailing edge of WR. 3stated
during Hold and Halt modes.

READY (Input)

If Ready is high during a read or write cycle, it indicates that the
memory or peripheral is ready to send or receive data. If Ready is low, the
CPU will wait for Ready to go high before completing the read or write
cycle.

HOLD (Input)

HOLD; indicates that another Master is requesting the use of the
Address and Data Buses. The CPU, upon receiving the Hold request. will
relinquish the use of buses as soon as the completion of the current
machine cycle. Internal processing can continue. The processor can regain
the buses only after the Hold is removed. When the Hold is acknowledged,
the Address, Data, RD, WR, and IO/M lines are 3stated.

 Embedded systems
 Notes

59

HLDA (Output)

HOLD ACKNOWLEDGE; indicates that the CPU has received the
Hold request and that it will relinquish the buses in the next clock cycle.
HLDA goes low after the Hold request is removed. The CPU takes the
buses one half clock cycle after HLDA goes low.

INTR (Input)

INTERRUPT REQUEST; is used as a general purpose interrupt. It
is sampled only during the next to the last clock cycle of the instruction. If it
is active, the Program Counter (PC) will be inhibited from incrementing and
an INTA will be issued. During this cycle a RESTART or CALL instruction
can be inserted to jump to the interrupt service routine. The INTR is
enabled and disabled by software. It is disabled by Reset and immediately
after an interrupt is accepted.

INTA (Output)

INTERRUPT ACKNOWLEDGE; is used instead of (and has the
same timing as) RD during the Instruction cycle after an INTR is accepted.
It can be used to activate the 8259 Interrupt chip or some other interrupt
port.

RST 5.5

RST 6.5 - (Inputs)

RST 7.5

RESTART INTERRUPTS; These three inputs have the same timing as I
NTR except they cause an internal RESTART to be automatically inserted.

 RST 7.5 - Highest Priority

RST 5.5 - Lowest Priority

The priority of these interrupts is ordered as shown above. These interrupts
have a higher priority than the INTR.

TRAP (Input)

Trap interrupt is a nonmaskable restart interrupt. It is recognized at
the same time as INTR. It is unaffected by any mask or Interrupt Enable. It
has the highest priority of any interrupt.

RESET IN (Input)

Reset sets the Program Counter to zero and resets the Interrupt
Enable and HLDA flipflops. None of the other flags or registers (except the
instruction register) are affected The CPU is held in the reset condition as
long as Reset is applied.

 Embedded systems
 Notes

60

RESET OUT (Output)

Indicates CPlJ is being reset. Can be used as a system RESET. The signal
is synchronized to the processor clock.

X1, X2 (Input)

Crystal or R/C network connections to set the internal clock generator X1
can also be an external clock input instead of a crystal. The input frequency
is divided by 2 to give the internal operating frequency.

CLK (Output)

Clock Output for use as a system clock when a crystal or R/ C network is
used as an input to the CPU. The period of CLK is twice the X1, X2 input
period.

IO/M (Output)

IO/M indicates whether the Read/Write is to memory or l/O Tristated during
Hold and Halt modes.

SID (Input)

Serial input data line The data on this line is loaded into accumulator bit 7
whenever a RIM instruction is executed.

SOD (output)

Serial output data line. The output SOD is set or reset as specified by the
SIM instruction.

Vcc

+5 volt supply.

Vss

Ground Reference.

 8085 Functional Description

The 8085A is a complete 8 bit parallel central processor. It requires a single
+5 volt supply. Its basic clock speed is 3 MHz thus improving on the
present 8080's performance with higher system speed. Also it is designed
to fit into a minimum system of three IC's: The CPU, a RAM/ IO, and a
ROM or PROM/IO chip.

The 8085A uses a multiplexed Data Bus. The address is split between the
higher 8bit Address Bus and the lower 8bit Address/Data Bus. During the
first cycle the address is sent out. The lower 8bits are latched into the
peripherals by the Address Latch Enable (ALE). During the rest of the
machine cycle the Data Bus is used for memory or l/O data.

 Embedded systems
 Notes

61

The 8085A provides RD, WR, and lO/Memory signals for bus
control. An Interrupt Acknowledge signal (INTA) is also provided. Hold,
Ready, and all Interrupts are synchronized. The 8085A also provides serial
input data (SID) and serial output data (SOD) lines for simple serial
interface.

In addition to these features, the 8085A has three maskable, restart
interrupts and one non-maskable trap interrupt. The 8085A provides RD,
WR and IO/M signals for Bus control.

Status Information

Status information is directly available from the 8085A. ALE serves as a
status strobe. The status is partially encoded, and provides the user with
advanced timing of the type of bus transfer being done. IO/M cycle status
signal is provided directly also. Decoded So, S1 Carries the following status
information.

HALT, WRITE, READ, FETCH:

S1 can be interpreted as R/W in all bus transfers. In the 8085A the
8 LSB of address are multiplexed with the data instead of status. The ALE
line is used as a strobe to enter the lower half of the address into the
memory or peripheral address latch. This also frees extra pins for
expanded interrupt capability.

 Interrupt and Serial l/O :

The8085A has5 interrupt inputs: INTR, RST5.5, RST6.5, RST 7.5,
and TRAP. INTR is identical in function to the 8080 INT. Each of the three
RESTART inputs, 5.5, 6.5. 7.5, has a programmable mask. TRAP is also a
RESTART interrupt except it is non maskable.

The three RESTART interrupts cause the internal execution of RST
(saving the program counter in the stack and branching to the RESTART
address) if the interrupts are enabled and if the interrupt mask is not set.
The non-maskable TRAP causes the internal execution of a RST
independent of the state of the interrupt enable or masks.

The interrupts are arranged in a fixed priority that determines which
interrupt is to be recognized if more than one is pending as follows: TRAP
highest priority, RST 7.5, RST 6.5, RST 5.5, INTR lowest priority This
priority scheme does not take into account the priority of a routine that was
started by a higher priority interrupt. RST 5.5 can interrupt a RST 7.5
routine if the interrupts were re-enabled before the end of the RST 7.5
routine. The TRAP interrupt is useful for catastrophic errors such as power
failure or bus error. The TRAP input is recognized just as any other
interrupt but has the highest priority. It is not affected by any flag or mask.
The TRAP input is both edge and level sensitive.

 Embedded systems
 Notes

62

Basic System Timing

The 8085A has a multiplexed Data Bus. ALE is used as a strobe to
sample the lower 8bits of address on the Data Bus. Figure 2 shows an
instruction fetch, memory read and l/ O write cycle (OUT). Note that during
the l/O write and read cycle that the l/O port address is copied on both the
upper and lower half of the address. As in the 8080, the READY line is
used to extend the read and write pulse lengths so that the 8085A can be
used with slow memory. Hold causes the CPU to stop the bus when it Is
through with it by floating the Address and Data Buses.

System Interface:

8085A family includes memory components, which are directly compatible
to the 8085A CPU. For example, a system consisting of the three chips,
8085A, 8156, and 8355 will have the following features:

2K Bytes ROM

256 Bytes RAM

1 Timer/Counter

4 8bit l/O Ports

1 6bit l/O Port

4 Interrupt Levels

Serial In/Serial Out Ports

In addition to standard l/O, the memory mapped I/O offers an efficient l/O
addressing technique. With this technique, an area of memory address
space is assigned for l/O address, thereby, using the memory address for
I/O manipulation. The 8085A CPU can also interface with the standard
memory that does not have the multiplexed address/data bus.

 Embedded systems
 Notes

63

The 8085 Programming Model

In the previous tutorial we described the 8085 microprocessor
registers in reference to the internal data operations. The same information
is repeated here briefly to provide the continuity and the context to the
instruction set and to enable the readers who prefer to focus initially on the
programming aspect of the microprocessor.

The 8085 programming model includes six registers, one
accumulator, and one flag register, as shown in Figure. In addition, it has

 Embedded systems
 Notes

64

two 16-bit registers: the stack pointer and the program counter. They are
described briefly as follows.

Registers

The 8085 has six general-purpose registers to store 8-bit data;
these are identified as B,C,D,E,H, and L as shown in the figure. They can
be combined as register pairs - BC, DE, and HL - to perform some 16-bit
operations. The programmer can use these registers to store or copy data
into the registers by using data copy instructions.

Accumulator

The accumulator is an 8-bit register that is a part of arithmetic/logic
unit (ALU). This register is used to store 8-bit data and to perform
arithmetic and logical operations. The result of an operation is stored in the
accumulator. The accumulator is also identified as register A.

Flags

The ALU includes five flip-flops, which are set or reset after an
operation according to data conditions of the result in the accumulator and
other registers. They are called Zero(Z), Carry (CY), Sign (S), Parity (P),
and Auxiliary Carry (AC) flags; their bit positions in the flag register are
shown in the Figure below. The most commonly used flags are Zero, Carry,
and Sign. The microprocessor uses these flags to test data conditions.

 Embedded systems
 Notes

65

For example, after an addition of two numbers, if the sum in the
accumulator id larger than eight bits, the flip-flop uses to indicate a carry --
called the Carry flag (CY) – is set to one. When an arithmetic operation
results in zero, the flip-flop called the Zero(Z) flag is set to one. The first
Figure shows an 8-bit register, called the flag register, adjacent to the
accumulator. However, it is not used as a register; five bit positions out of
eight are used to store the outputs of the five flip-flops. The flags are stored
in the 8-bit register so that the programmer can examine these flags (data
conditions) by accessing the register through an instruction. These flags
have critical importance in the decision-making process of the
microprocessor. The conditions (set or reset) of the flags are tested through
the software instructions. For example, the instruction JC (Jump on Carry)
is implemented to change the sequence of a program when CY flag is set.
The thorough understanding of flag is essential in writing assembly
language programs.

Program Counter (PC)

This 16-bit register deals with sequencing the execution of
instructions. This register is a memory pointer. Memory locations have 16-
bit addresses, and that is why this is a 16-bit register. The microprocessor
uses this register to sequence the execution of the instructions. The
function of the program counter is to point to the memory address from
which the next byte is to be fetched. When a byte (machine code) is being
fetched, the program counter is incremented by one to point to the next
memory location

Stack Pointer (SP)

The stack pointer is also a 16-bit register used as a memory pointer.
It points to a memory location in R/W memory, called the stack. The
beginning of the stack is defined by loading 16-bit address in the stack
pointer. This programming model will be used in subsequent tutorials to
examine how these registers are affected after the execution of an
instruction.

The 8085 Addressing Modes

The instructions MOV B, A or MVI A, 82H are to copy data from a
source into a destination. In these instructions the source can be a register,
an input port, or an 8-bit number (00H to FFH). Similarly, a destination can
be a register or an output port. The sources and destination are operands.
The various formats for specifying operands are called the ADDRESSING
MODES. For 8085, they are:

 Embedded systems
 Notes

66

1. Immediate addressing.

2. Register addressing.

3. Direct addressing.

4. Indirect addressing.

Immediate addressing

Data is present in the instruction. Load the immediate data to the
destination provided. Example: MVI R,data

Register addressing

Data is provided through the registers.

Example: MOV Rd, Rs

Direct addressing

Used to accept data from outside devices to store in the
accumulator or send the data stored in the accumulator to the outside
device. Accept the data from the port 00H and store them into the
accumulator or Send the data from the accumulator to the port 01H.

Example: IN 00H or OUT 01H

Indirect Addressing

This means that the Effective Address is calculated by the
processor. And the contents of the address (and the one following) is used
to form a second address. The second address is where the data is stored.
Note that this requires several memory accesses; two accesses to retrieve
the 16-bit address and a further access (or accesses) to retrieve the data
which is to be loaded into the register.

Instruction Set Classification

An instruction is a binary pattern designed inside a microprocessor
to perform a specific function. The entire group of instructions, called the
instruction set, determines what functions the microprocessor can perform.
These instructions can be classified into the following five functional
categories: data transfer (copy) operations, arithmetic operations, logical
operations, branching operations, and machine-control operations.

Data Transfer (Copy) Operations

This group of instructions copy data from a location called a source
to another location called a destination, without modifying the contents of
the source. In technical manuals, the term data transfer is used for this
copying function. However, the term transfer is misleading; it creates the

 Embedded systems
 Notes

67

impression that the contents of the source are destroyed when, in fact, the
contents are retained without any modification. The various types of data
transfer (copy) are listed below together with examples of each type:

Arithmetic Operations

These instructions perform arithmetic operations such as addition,
subtraction, increment, and decrement.

Addition - Any 8-bit number, or the contents of a register or the contents of
a memory location can be added to the contents of the accumulator and
the sum is stored in the accumulator. No two other 8-bit registers can be
added directly (e.g., the contents of register B cannot be added directly to
the contents of the register C). The instruction DAD is an exception; it adds
16-bit data directly in register pairs.

Subtraction - Any 8-bit number, or the contents of a register, or the
contents of a memory location can be subtracted from the contents of the
accumulator and the results stored in the accumulator. The subtraction is
performed in 2's compliment, and the results if negative, are expressed in
2's complement. No two other registers can be subtracted directly.

Increment/Decrement - The 8-bit contents of a register or a memory
location can be incremented or decrement by 1. Similarly, the 16-bit
contents of a register pair (such as BC) can be incremented or decrement
by 1. These increment and decrement operations differ from addition and
subtraction in an important way; i.e., they can be performed in any one of
the registers or in a memory location.

Logical Operations

These instructions perform various logical operations with the contents of
the accumulator.

AND, OR, Exclusive-OR - Any 8-bit number, or the contents of a register,

or of a memory location can be logically ANDed, Ored, or Exclusive-ORed
with the contents of the accumulator. The results are stored in the
accumulator.

 Embedded systems
 Notes

68

Rotate- Each bit in the accumulator can be shifted either left or right to the
next position.

Compare- Any 8-bit number, or the contents of a register, or a memory
location can be compared for equality, greater than, or less than, with the
contents of the accumulator.

Complement - The contents of the accumulator can be complemented. All
0s are replaced by 1s and all 1s are replaced by 0s.

Branching Operations

This group of instructions alters the sequence of program execution either
conditionally or unconditionally.

Jump - Conditional jumps are an important aspect of the decision-making

process in the programming. These instructions test for a certain conditions
(e.g., Zero or Carry flag) and alter the program sequence when the
condition is met. In addition, the instruction set includes an instruction
called unconditional jump.

Call, Return, and Restart - These instructions change the sequence of a

program either by calling a subroutine or returning from a subroutine. The
conditional Call and Return instructions also can test condition flags.

Machine Control Operations

These instructions control machine functions such as Halt, Interrupt, or do
nothing. The microprocessor operations related to data manipulation can
be summarized in four functions:

1. copying data

2. performing arithmetic operations

3. performing logical operations

4. testing for a given condition and alerting the program sequence

Some important aspects of the instruction set are noted below:

1. In data transfer, the contents of the source are not destroyed; only the
contents of the destination are changed. The data copy instructions do not
affect the flags.

2. Arithmetic and Logical operations are performed with the contents of the
accumulator, and the results are stored in the accumulator (with some
expectations). The flags are affected according to the results.

3. Any register including the memory can be used for increment and
decrement.

4. A program sequence can be changed either conditionally or by testing
for a given data condition.

 Embedded systems
 Notes

69

Instruction Format

An instruction is a command to the microprocessor to perform a
given task on a specified data. Each instruction has two parts: one is task
to be performed, called the operation code (opcode), and the second is the
data to be operated on, called the operand. The operand (or data) can be
specified in various ways. It may include 8-bit (or 16-bit) data, an internal
register, a memory location, or 8-bit (or 16-bit) address. In some
instructions, the operand is implicit.

Instruction word size

The 8085 instruction set is classified into the following three groups
according to word size:

1. One-word or 1-byte instructions

2. Two-word or 2-byte instructions

3. Three-word or 3-byte instructions

In the 8085, "byte" and "word" are synonymous because it is an 8-bit
microprocessor. However, instructions are commonly referred to in terms of
bytes rather than words.

One-Byte Instructions

A 1-byte instruction includes the opcode and operand in the same byte.
Operand(s) are internal register and are coded into the instruction.

For example:

These instructions are 1-byte instructions performing three different tasks.
In the first instruction, both operand registers are specified. In the second
instruction, the operand B is specified and the accumulator is assumed.
Similarly, in the third instruction, the accumulator is assumed to be the
implicit operand. These instructions are stored in 8- bit binary format in
memory; each requires one memory location.

MOV rd, rs

rd <-- rs copies contents of rs into rd.

 Embedded systems
 Notes

70

Coded as 01 ddd sss where ddd is a code for one of the 7 general registers
which is the destination of the data, sss is the code of the source register.

Example: MOV A,B

Coded as 01111000 = 78H = 170 octal (octal was used extensively in
instruction design of such processors).

ADD r

A <-- A + r

Two-Byte Instructions

In a two-byte instruction, the first byte specifies the operation code and the
second byte specifies the operand. Source operand is a data byte
immediately following the opcode. For example:

Assume that the data byte is 32H. The assembly language instruction is
written as

The instruction would require two memory locations to store in memory.

MVI r,data

r <-- data

Example: MVI A,30H coded as 3EH 30H as two contiguous bytes. This is
an example of immediate addressing.

ADI data

A <-- A + data

OUT port

where port is an 8-bit device address. (Port) <-- A. Since the byte is not the
data but points directly to where it is located this is called direct addressing.

 Embedded systems
 Notes

71

Three-Byte Instructions

In a three-byte instruction, the first byte specifies the opcode, and the
following two bytes specify the 16-bit address. Note that the second byte is
the low-order address and the third byte is the high-order address.

opcode + data byte + data byte

This instruction would require three memory locations to store in memory.
Three byte instructions - opcode + data byte + data byte

LXI rp, data16

rp is one of the pairs of registers BC, DE, HL used as 16-bit registers. The
two data bytes are 16-bit data in L H order of significance.

rp <-- data16

Example:

LXI H,0520H coded as 21H 20H 50H in three bytes. This is also immediate
addressing.

LDA addr

A <-- (addr) Addr is a 16-bit address in L H order. Example: LDA 2134H
coded as 3AH 34H 21H. This is also an example of direct addressing.

Sample Programs

Write an assembly program to add two numbers

Program

MVI D, 8BH

MVI C, 6FH

MOV A, C

ADD D

OUT PORT1

 Embedded systems
 Notes

72

HLT

Write an assembly program to multiply a number by 8 Program

MVI A, 30H

RRC

RRC

RRC

OUT PORT1

HLT

Write an assembly program to find greatest between two numbers

Program

MVI B, 30H

MVI C, 40H

MOV A, B

CMP C

JZ EQU

JC GRT

OUT PORT1

HLT

EQU: MVI A, 01H

OUT PORT1

HLT

GRT: MOV A, C

OUT PORT1

HLT

 Embedded systems
 Notes

73

Summary:

 Micro processor contains ALU, Interrupt controller, Serial I/O
controller etc.

 The 8085/8080A-programming model includes six registers, one
accumulator, and one flag register.

 The accumulator is an 8-bit register that is a part of arithmetic/logic
unit (ALU).

 The flags in 8085 are Zero(Z), Carry (CY), Sign (S), Parity (P), and
Auxiliary Carry (AC) flags.

 This 16-bit register deals with sequencing the execution of
instructions.

 The stack pointer is also a 16-bit register used as a memory pointer.

 Data Bus: carries ‘data’, in binary form, between μP and other
external units, such as memory.

QUESTIONS:

 Explain the pin description of 8085?

 Explain the architecture of 8085?

 Explain functional description of 085 along with types of busses in
8085?

 What are the different addressing modes of 8085?

 Explain about instructions in 8085?

References:

 C Programming for Embedded Systems – KIRK ZURELL

 Design with 8051- FRONTLINE ELECTRONICS

 Embedded Controller Hardware Design - Ken Arnold

 Embedded Software The Works – colin walls

 Embedded Systems Firmware Demystified - Ed Sutter

 Embedded_Controller_Hardware_Design – KEN ARNOLD

 Embedded systems
 Notes

74

6. Standard single purpose processors: peripherals

Objective:

In this chapter we will learn about the different timers and their
technologies. Different technologies include timers, watchdog timers etc.,

Introduction:

 Embedded device consists of a intelligent device namely processor/
controller and remaining different hardware devices which are
communicating with that intelligent device. But here we get a problem?
What is that is speed of communications of controlling devices and
hardware interfaces. Generally control units are very much faster than the
hardware devices which are used for interfacing. So inorder to provide
proper communication between the control unit and hardware device the
programmer has to make the control unit to wait unitill it gets response from
that respective hardware device. In order to provide these waiting times for
the cpu designers will use timer, counters, watchdog timers etc to achive
the goal of communication.

 Single purpose processors are the processors designed for
Performs specific computation task. The examples of single purpose
processors are

• “Off-the-shelf” -- pre-designed for a common task

• a.k.a., peripherals

• serial transmission

• analog/digital conversions

Timers:

 Timers are the electonic devices used for producing the required
amounts of time intervels for proper communication between control unit
and the hardware device. Generally these timers are present on the chip
for micro controllers. The timers may be 8-bit, 16-bit depend on its size.
The timers depend on the machine cycles for producing required amount of
timeperiods. Machine cycle is the smallest time period that a processor
require to execute a single byte instruction. The machine cycle is defined
as the time required by the processor for the execution of 1byte instructon.
It is mainly depend on the frequency of operation of the processor. The
formula used is

 Embedded systems
 Notes

75

For example suppose a control unit is designed to operate at 12Mhz
frequency. Then the machine cycle is calculated as

 =1µsec.

A 16-bit timer can count upto =65,535 pulses. Each pulse require 1
machine cycle for its execution. The below diagram represents figure of the
a 16-bit timer.

Counter:

Counter is also same as timer but it countes the number of external
pulses rather than the generating/counting internal pulses. The below
digram shows a counter which contain a mltiflexer and a counter.

Watchdog timer:

 This is also a special time of timer. The operation of watchdog timer
is a token generated with required time. A countdown timer is started when
this time reaches to zero, It enables to execute user specified task. The
block diagram of the watchdog timer is as below

 Embedded systems
 Notes

76

The subroutine for watch dog timer is as below.

Sensors

We start with a brief discussion of sensors. Sensors can be
designed for virtually every physical quantity. There are sensors for weight,
velocity, acceleration, electrical current, voltage, temperatures etc. A large
amount of physical effects can be used for constructing sensors [Elsevier
B.V., 2003a]. Examples include the law of induction (generation of voltages
in an electric field), or light-electric effects. Also, there are sensors for
chemical substances [Elsevier B.V., 2003b].

In recent years, a huge amount of sensors has been designed and
much of the progress in designing smart systems can be attributed to
modern sensor technology. Hence, it is impossible to cover this subset of
embedded hardware technology comprehensively and we can only give
characteristic examples:

Acceleration sensors: Fig.shows a small sensor manufactured using
microsystem technology. The sensor contains a small mass in its center.
When accelerated, the mass will be displaced from its standard position,
thereby changing the resistance of the tiny wires connected to the mass.

 Embedded systems
 Notes

77

Rain sensors: In order to remove distraction from drivers, some recent
high end cars contain rain sensors. Using these, the speed of the wipers
can be automatically adjusted to the amount of rain.

Image sensors: There are essentially two kinds of image sensors: charge

coupled devices (CCDs) and CMOS sensors. In both cases, arrays of light
sensors are used. The architecture of CMOS sensor arrays is similar to that
of standard memories: individual pixels can be randomly addressed and
read out. CMOS sensors use standard CMOS technology for integrated
circuits [Dierickx, 2000]. Due to this, sensors and logic circuits can be
integrated on the same chip. This allows some preprocessing to be done
already on the sensor chip, leading to so-called smart sensors. CMOS sen
sors require only a single standard supply voltage and interfacing in
general is easy. Therefore, CMOS-based sensors can be cheap. In
contrast, CCD technology is optimized for optical applications. In CCD
technology, charges have to be transfered from one pixel to the next until
they can finally be read out at an array boundary. This sequential charge
transfer also gave CCDs their name. Images generated with CCDs can be
of higher quality than those generated using CMOS sensors, since they
generate less noise. However, interfacing is more complex. As a result,
CMOS sensors are appropriate for applications requiring low or medium
costs and low or medium image quality. CCD sensors are more adequate
for high quality, expensive image sensors.

Bio-metrical sensors: Demands for higher security standards as well as

the need to protect mobile and removable equipment have led to an
increased interest in authentication. Due to the limitations of password
based security (e.g. stolen and lost passwords), smartcards, bio-metrical
sensors and bio-medical authentication receive significant attention. Bio-
medical authentication tries to identify whether or not a certain person is
actually the person she or he claims to be. Methods for bio-medical
authentication include iris scans, finger print sensors and face recognition.

 Embedded systems
 Notes

78

Finger print sensors are typically fabricated using the same CMOS
technology which is used for manufacturing integrated circuits. Possible
applications include notebooks which grant access only if the user’s finger
print is recognized. CCD and CMOS image sensors described above are
used for face recognition. False accepts as well as false rejects are an
inherent problem of bio-medical authentication. In contrast to password
based authentication, exact matches are not possible.

Artifical eyes: Artificial eye projects have received significant attention.

While some projects attempt to actually affect the eye, others try to provide
vision in an indirect way. The Dobelle Institute is experimenting with a
setup in which a little camera is attached to glasses. This camera is
connected to a computer translating these patterns into electrical pulses.
These pulses are then sent directly to the brain, using a direct contact
through an electrode. Currently (2003), the resolution is in the order of 128
by 128 pixels, enabling blind persons to drive a car in controlled areas.

Other sensors: Other common sensors include: pressure sensors,
proximity sensors, engine control sensors, Hall effect sensors, and many
more.

Sample-and-hold circuits

All known digital computers work in the discrete time domain. This
means they can process discrete sequences of values. Hence, values in
the continuous domain have to be converted to the discrete domain. This is
the purpose of sample-and-hold circuits. Fig.(left) shows a simple sample-
and-hold-circuit. In essence, the circuit consists of a clocked transistor and
a capacitor. The transistor operates like a switch. Each time the switch is
closed by the clock signal, the capacitor is charged so that its voltage is
practically the same as the incoming voltage Ve. After opening the switch
again, this voltage remain essentially unchanged until the switch is closed
again. Each of the values stored on the capacitor can be considered as an
element of a discrete sequence of values Vx, generated from a continuous
sequence Ve.

Sample-and-hold-circuit

An ideal sample-and-hold circuit would be able to change the voltage at the
capacitor in an arbitrarily short amount of time. This way, the input voltage
at a particular instance in time could be transfered to the capacitor and
each element in the discrete sequence would correspond to the input
voltage at a particular point in time. In practice, however, the transistor has

 Embedded systems
 Notes

79

to be kept closed for a short time window in order to really charge or
discharge the capacitor. The voltage stored on the capacitor will then
correspond to a voltage averaged over that short time window.

Processing Units

For information processing, we will consider ASICs (application-
specific integrated circuits) using hardwired multiplexed designs,
reconfigurable logic, and processors. These three technologies are quite
different, for example, as far as their energy efficiency is concerned.
Fig.shows the number of operations per Watt that can be achieved with a
certain hardware technology.

Hardware Efficiency

Obviously, the number of operations per Watt is increasing as technology
advances to smaller and smaller feature sizes of integrated circuits.
However, for any given technology, the number of operations per Watt is
largest for application specific hardwired circuits. For reconfigurable logic,
this value is about one order of magnitude lower. For programmable
processors, it is about two orders of magnitude lower. On the other hand,
processors offer the largest amount of flexibility, resulting from the flexibility
of software. There is also some flexibility for reconfigurable logic, but it is
limited to the size of applications that can be mapped to such logic. For
hardwired designs, there is no flexibility. This observation also applies for
processors: For processors optimized for the application domain, such as
processors optimized for digital signal processing (DSP processors),
power-efficiency values approach those of reconfigurable logic. For general
standard microprocessors, the values for this figure of merit are the worst.
The energy E for a certain application is closely related to the power P
required per operation, since

Hence, reducing the power consumption also decreases the energy
consumption, provided that the integral is taken over the same period of
time. In some cases, however, a slightly increased power consumption
might lead to a drastic reduction in the execution time and, hence, might

 Embedded systems
 Notes

80

lead to a minimized energy consumption. So, in some cases a minimized
power consumption also corresponds to a minimized energy consumption,
but this is not necessarily always true.

Minimization of power and energy consumption are both important.
Power consumption has an effect on the size of the power supply, the
design of the voltage regulators, the dimensioning of the interconnect, and
short term cooling. Minimizing the energy consumption is required
especially for mobile applications, since battery technology is only slowly
improving , and since the cost of energy may be quite high. Also, a reduced
energy consumption decreases cooling requirements and improves the
reliability. Fig. reflects the efficiency/flexibility conflict of currently available
hardware technologies: if we want to aim at very power- and energy-
efficient designs, we should not use flexible designs based on processors
or re-programmable logic and if we go for excellent flexibility, we cannot be
power-efficient.We will consider ASICs first.

Application-Specific Circuits (ASICs)

For high-performance applications and for large markets,
application-specific integrated circuits (ASICs) can be designed. However,
the cost of designing and manufacturing such chips is quite high. For
example, the cost of the mask which is used for transferring geometrical
patterns onto the chip can cost about 105 Euros or dollars. Therefore,
ASICs are appropriate only if either maximum energy efficiency is needed
and if the market accepts the costs or if a large number of such systems
can be sold.

Processors

The key advantage of processors is their flexibility. With processors,
the overall behavior of embedded systems can be changed by just
changing the software running on those processors. Changes of the
behavior may be required in order to correct design errors, to update the
system to a new or changed standard or in order to add features to the
previous system. Because of this, processors have become very popular.
This popularity has also been stressed in the public press:

At the chip level, embedded chips include micro-controllers and
microprocessors. Micro-controllers are the true workhorses of the
embedded family. They are the original ’embedded chips’ and include
those first employed as controllers in elevators and thermostats. Embedded
processors have to be efficient and they do not need to be instruction set
compatible with commonly used personal computers (PCs). Therefore,
their architectures may be different from those processors found in PCs.

Energy-efficiency:

Architectures have to be optimized for their energy efficiency and
we have to make sure that we are not loosing efficiency in the software
generation process. For example, compilers generating 50% overhead in
terms of the number of cycles will take us further away from the efficiency

 Embedded systems
 Notes

81

of ASICs, possibly by even more than 50%, if the supply voltage and the
clock frequency have to be increased in order to meet deadlines.

There is a large amount of techniques available that can make
processors energy efficient and energy efficiency should be considered at
various levels of abstraction, from the design of the instruction set down to
the design of the chip manufacturing process [Burd and Brodersen, 2003].
Gated clocking is an example of such a technique. With gated clocking,
parts of the processor are decoupled from the clock during idle periods. For
example, no clock is applied to the multiplier if no multiplications are
executed. Also, there are attempts, to get rid of the clock for major parts of
the processor altogether. There are two contrasting approaches: globally
synchronous, locally asynchronous processors and globally asynchronous,
locally synchronous processors (GALS) [Iyer and Marculescu, 2002]. Two
techniques can be applied at a rather high level of abstraction:

Dynamic power management (DPM):

With this approach, processors have several power saving states in
addition to the standard operating state. Each power saving state has a
different power consumption and a different time for transitions into the
operating state. Fig. shows the three states for the StrongArm SA 1100
processor.

The processor is fully operational in the run state. In the idle state, it is just
monitoring the interrupt inputs. In the sleep state, all on-chip activity is
shutdown. Note the large difference in the power consumption between the
sleep state and the other states, and note also the large delay for
transitions from the sleep to the run state.

Dynamic voltage scaling (DVS):

This approach exploits the fact that the energy consumption of
CMOS processors increases with the supply voltage Vdd . The power
consumption P of CMOS circuits is given by

where α is the switching activity, CL is the load capacitance, Vdd is the
supply voltage and f is the clock frequency. The delay of CMOS circuits can
be approximated as

 Embedded systems
 Notes

82

where k is a constant, and Vt is the threshold voltage. Vt has an impact on
the transistor input voltage required to switch the transistor on. For
example, for a maximum supply voltage of Vdd,max=3.3 volts, Vt may be in
the order of 0.8 volts. Consequently, the maximum clock frequency is a
function of the supply voltage. However, decreasing the supply voltage
reduces the power quadratically, while the run-time of algorithms is only
linearly increased (ignoring the effects of the memory system). This can be
exploited in a technique called dynamic voltage scaling (DVS). For
example, the CrusoeTM processor by Transmeta provides 32 voltage
levels between 1.1 and 1.6 volts, and the clock can be varied between 200
MHz and 700 MHz in increments of 33 MHz. Transitions from one
voltage/frequency pair to the next takes about 20 ms. Design issues for
DVS-capable processors are described in a paper by Burd and Brodersen.
According to the same paper, potential power savings will exist even for
future technologies with a decreased maximum Vdd , since the threshold
voltages will also be decreased (unfortunately, this will lead to increased
leakage currents, increasing the standby power consumption). Two
different speed/voltage pairs are provided with the Intel SpeedStepTM
technology for the Mobile Pentium III.

Code-size efficiency:

Minimizing the code size is very important for embedded systems,
since hard disc drives are typically not available and since the capacity of
memory is typically also very limited. This is even more pronounced for
systems on a chip (SOCs). For SOCs, the memory and processors are
implemented on the same chip. In this particular case, memory is called
embedded memory. Embedded memory may be more expensive to
fabricate than separate memory chips, since the fabrication processes for
memories and processors have to be compatible. Nevertheless, a large
percentage of the total chip area may be consumed by the memory. There
are several techniques for improving the code-size efficiency:

– CISC machines: Standard RISC processors have been designed for
speed, not for code-size efficiency. Earlier Complex Instruction Set
Processors (CISC machines) were actually designed for code-size
efficiency, since they had to be connected to slow memories and caches
were not frequently used. Therefore, “old-fashioned” CISC processors are
finding applications in embedded systems. Motorola’s ColdFire processors,
which are based on the Motorola 68000 family of CISC processors are an
example of this.

– Compression techniques: In order to reduce the amount of silicon needed
for storing instructions as well as in order to reduce the energy needed for
fetching these instructions, instructions are frequently stored in the memory

 Embedded systems
 Notes

83

in compressed form. This reduces both the area as well as the energy
necessary for fetching instructions. Due to the reduced bandwidth
requirements, fetching can also be faster. A (hopefully small and fast)
decoder is placed between the processor and the (instruction) memory in
order to generate the original instructions on the fly (see fig. 3.11, right).
Instead of using a potentially large memory of uncompressed instructions,
we are storing the instructions in a compressed format.

Decompression of compressed instructions

The goals of compression can be summarized as follows:

∗ We would like to save ROM and RAM areas, since these may be more
expensive than the processors themselves.

∗ We would like to use some encoding technique for instructions and
possibly also for data with the following properties:

· There should be little or no run-time penalty for these techniques.

· Decoding should work from a limited context (it is, for example, impossible
to read the entire program to find the destination of a branch instruction).

· Word-sizes of the memory, of instructions and addresses have to be
taken into account.

· Branch instructions branching to arbitrary destination addresses have to
be supported.

· Fast encoding is only required if writable data is encoded. Otherwise, fast
decoding is sufficient.

There are several variations of this scheme:

∗ For some processors, there is a second instruction set. This second
instruction set has a narrower instruction format. An example of this is the
ARM processor family. The ARM instruction set is a 32 bit instruction set.
The ARM instruction set includes predicated execution. This means an
instruction is executed if and only if a certain condition is met (see page
113). This condition is encoded in the first four bits of the instruction format.
Most ARM processors also provide a second instruction set, with 16 bit

 Embedded systems
 Notes

84

wide instructions, called THUMB instructions. THUMB instructions are
shorter, since they do not support predication, use shorter and less register
fields and use shorter immediate fields. (see fig.).

THUMB instructions are dynamically converted into ARMinstructions while
programs are running. THUMB instructions can use only half the registers
in arithmetic instructions. Therefore, register fields of THUMB instructions
are concatenated with a ’0’-bit. In the THUMB instruction set, source and
destination registers are identical and the length of constants that can be
used, is reduced by 4 bits. During decoding, pipelining is used to keep the
run-time penalty low. Similar techniques also exist for other processors.
The disadvantage of this approach is that the tools (compilers, assemblers,
debuggers etc.) have to be extended to support a second instruction set.
Therefore, this approach can be quite expensive in terms of software
development cost.

∗ A second approach is the use of dictionaries. With this approach, each
instruction pattern is stored only once. For each value of the program
counter, a look-up table then provides a pointer to the corresponding
instruction in the instruction table, the dictionary (see fig.).

This approach relies on the idea that only very few different instruction
patterns are used. Therefore, only few entries are required for the the
instruction table. Correspondingly, the bit width of the pointers can be quite
small. Many variations of this scheme exist. Some are called two-level
control store.

Run-time efficiency:

 Embedded systems
 Notes

85

In order to meet time constraints without having to use high clock
frequencies, architectures can be customized to certain application
domains, such as digital signal processing (DSP). One can even go one
step further and design application specific instruction set
processors(ASIPs). As an example of domain-specific processors, we will
consider processors for DSP. In digital signal processing, digital filtering is
a very frequent operation. Equation 3.3 describes a digital filter generating
an output sequence y =(y0,y1, ...) from an input sequence x =(x0,x1, ...).

A certain output element yi corresponds to a weighted average over the
last n sequence elements of x and can be computed iteratively using
following equations.

DSPs are designed such that each iteration can be encoded as a single
instruction. Let us consider an example. Fig.shows the internal architecture
of an ADSP 2100 DSP processor.

 Embedded systems
 Notes

86

The processor has two memories, called D and P. A special
address generating unit (AGU) can be used to provide the pointers for
accessing these memories. There are separate units for additions and
multiplications, each with their own argument registers AX, AY, AF, MX,
MY and MF. The multiplier is connected to a second adder in order to
compute series of multiplications and additions quickly.

For this processor, the update of the partial sum is essentially
performed in a single cycle. For this purpose, the two memories are
allocated to hold the two arrays x and a and address registers are allocated
such that relevant pointers can be easily updated in the AGU. Partial sums
yi,j are stored in MR. The pipelined computation involves registers A1, A2,
MX and MY,as can be seen from the following implementation of the filter.

A single instruction encodes the loop body, comprising the following
operations:

 Embedded systems
 Notes

87

– reading of two arguments from argument registers MX and MY,
multiplying them and adding the product to register MR storing values yi,j, -
fetching the next elements of arrays a and x from memories P and D and
storing them in argument registers MX and MY,

– updating pointers to the next arguments, stored in address registers A1

and A2,

– testing for the end of the loop.

This way, each iteration requires just a single instruction. In order to
achieve this, several operations are performed in parallel. For given
computational requirements, this (limited) form of parallelism leads to
relatively low clock frequencies. Furthermore, the registers in this
architecture perform different functions. They are said to be
heterogeneous. Heterogeneous register files are a common characteristic
for DSP processors. In order to avoid extra cycles for testing for the end of
the loop, zero-overhead loop instructions are frequently provided in DSP
processors. With such instructions, a single or a small number of
instructions can be executed a fixed number of times. Processors not
optimized for DSP would probably need several instructions per iteration
and would therefore require a higher clock frequency, if available.

DSP-Processors

In addition to allowing single instruction realizations of loop bodies
for filtering, DSP processors provide a number of other application-domain
orientedfeatures:

Specialized addressing modes:

In the filter application described above, only the last n elements of
x need to be available. Ring buffers can be used for that. These can be
implemented easily with modulo addressing. In modulo addressing,
addresses can be incremented and decremented until the first or last
element of the buffer is reached. Additional increments or decrements will
result in addresses pointing to the other end of the buffr.

Separate address generation units:

Address generation units (AGUs) are typically directly connected to
the address input of the data memory (see fig.).

 Embedded systems
 Notes

88

AGU using special address registers

Addresses which are available in address registers can be used in register-
indirect addressing modes. This saves machine instructions, cycles and
energy. In order to increase the usefulness of address registers, instruction
sets typically contain auto-increment and -decrement options for
mostinstructions using address registers.

Saturating arithmetic: Saturating arithmetic changes the way
overflows and underflows are handled. In standard binary arithmetic, wrap-
around is used for the values returned after an overflow or underflow. Fig.
shows an example in which two unsigned four-bit numbers are added. A
carry is generated which cannot be returned in any of the standard
registers. The result register will contain a pattern of all zeros. No result
could be further away from the true result than this one.

 Wrap-around vs. saturating arithmetic for unsigned integers

In saturating arithmetic, we try to return a result which is as close as
possible to the true result. For saturating arithmetic, the largest value is
returned in the case of an overflow and the smallest value is returned in the
case of an underflow. This approach makes sense especially for video and
audio applications: the user will hardly recognize the difference between
the true result value and the largest value that can be represented. Also, it
would be useless to raise exceptions if overflows occur, since it is difficult
to handle exceptions in real-time. Note that we need to know whether we

 Embedded systems
 Notes

89

are dealing with signed or unsigned add instructions in order to return the
right value.

Fixed-point arithmetic: Floating-point hardware increases the cost
and power-consumption of processors. Consequently, it has been
estimated that 80 % of the DSP processors do not include floating-point
hardware. However, in addition to supporting integers, many such
processors do support fixed-point numbers. Fixed-point data types can be
specified by a 3-tuple (wl, iwl, sign),where wl is the total word-length, iwl is
the integer word-length (the number of bits left of the binary point), and sign

s ∈{s,u} denotes whether we are dealing with unsigned or signed numbers.
See also fig. Furthermore, there may be different rounding modes (e.g.
truncation) and overflow modes (e.g. saturating and wrap-around
arithmetic).

Parameters of a fixed-point number system

For fixed-point numbers, the position of the binary point is maintained after
multiplication (some low order bits are truncated or rounded). For fixedpoint
processors, this operation is supported by hardware.

Real-time capability: Some of the features of modern processors
used in PCs are designed to improve the average execution time of
programs. In many cases, it is difficult if not impossible to formally verify
that they improve the worst case execution time. In such cases, it may be
better not to implement these features. For example, it is difficult (though
not impossible [Absint, 2002]) to guarantee a certain speedup resulting
from the use of caches. Therefore, many embedded processors do not
have caches. Also, virtual addressing and demand paging are normally not
found in embedded systems.

Multiple memory banks or memories: the usefulness of multiple
memory banks was demonstrated in the ADSP 2100 example: the two
memories D and P allow fetching both arguments at the same time.
Several DSP processors come with two memory banks.

Heterogenous register files: heterogenous register files were
already mentioned for the filter application.

Multiply/accumulate instructions: these instructions perform
multiplications followed by additions. They were also already used in the
filter application.

Multimedia processors

 Embedded systems
 Notes

90

Registers and arithmetic units of many modern architectures are 64
bits wide. Therefore, two 32 bit data types (“double words”), four 16 bit data
types (“words”) or eight 8 bit data types (“bytes”) can be packed into a
single register (see fig.).

Using 64 bit registers for packed words

Arithmetic units can be designed such that they suppress carry bits
at double word, word or byte boundaries. Multimedia instruction sets exploit
this fact by supporting operations on packed data types. Such instructions
are sometimes called single-instruction, multiple-data (SIMD) instructions,
since a single instruction encodes operations on several data elements.
With bytes packed into 64-bit registers, speed-ups of up to about eight over
non-packed data types are possible. Data types are typically stored in
packed form in memory. Unpacking and packing are avoided if arithmetic
operations on packed data types are used. Furthermore, multimedia
instructions can usually be combined with saturating arithmetic and
therefore provide a more efficient form of overflow handling than standard
instructions. Hence, the overall speed-up achieved with multimedia
instructions can be significantly larger than the factor of eight enabledby
operations on packed data types.

Very long instruction word (VLIW) processors

Computational demands for embedded systems are increasing,
especially when multimedia applications, advanced coding techniques or
cryptography are involved. Performance improvement techniques used in
high-performance microprocessors are not appropriate for embedded
systems: driven by the need for instruction set compatibility, processors
found, for example, in PCs spend a huge amount of resources and energy
on automatically finding parallelism in application programs. Still, their
performance is frequently not sufficient. For embedded systems, we can
exploit the fact that instruction set compatibility with PCs is not required.
Therefore, we can use instructions which explicitely identify operations to
be performed in parallel. This is possible with explicit parallelism instruction
set computers (EPICs). With EPICs, detection of parallelism is moved from
the processor to the compiler. This avoids spending silicon and energy on
the detection of parallelism at runtime. As a special case, we consider very
long instruction word (VLIW) processors. For VLIW processors, several
operations or instructions are encoded in a long instruction word
(sometimes called instruction packet) and are assumed to be executed in
parallel. Each operation/instruction is encoded in a separate field of the in
struction packet. Each field controls certain hardware units. Four such
fields are used in fig., each one controlling one of the hardware units.

VLIW architecture (example)

 Embedded systems
 Notes

91

For VLIWarchitectures, the compiler has to generate instruction packets.
This requires that the compiler is aware of the available hardware units and
to schedule their use. EPICs are sometimes also used for PCs [Transmeta,
2005, Intel, 2005]. However, legacy problems result in severe constraints
for doing this.Instruction fields must be present, regardless of whether or
not the corresponding functional unit is actually used in a certain instruction
cycle. As a result, the code density of VLIW architectures may be low, if
insufficient parallelism is detected to keep all functional units busy. The
problem can be avoided if more flexibility is added. For example, the Texas
Instruments TMS 320C6xx family of processors implements a variable
instruction packet size of up to 256 bits. In each instruction field, one bit is
reserved to indicate whether or not the operation encoded in the next field
is still assumed to be executed in parallel (see fig.). No instruction bits are
wasted for unused functional units.

Instruction packets for TMS 320C6xx

Due to its variable length instruction packets, TMS 320C6xx processors do
not quite correspond to the classical model of VLIW processors. Due to
their explicit description of parallelism, they are EPIC processors, though.
Partitioned Register Files. Implementing register files for VLIW and EPIC
processors is far from trivial. Due to the large number of operations that
can be performed in parallel, a large number of register accesses has to be
provided in parallel. Therefore, a large number of ports is required.
However, the delay, size and energy consumption of register files
increases with their number of ports. Hence, register files with very large

 Embedded systems
 Notes

92

numbers of ports are inefficient. As a consequence, many VLIW/EPIC
architectures use partitioned register files. Functional units are then only
connected to a subset of the register files. As an example, fig. shows the
internal structure of the TMS 320C6xx processors. These processors have
two register files and each of them is connected to half of the functional
units. During each clock cycle, only a single path from one register file to
the functional units connected to the other register file is available.

Many DSP processors are actually VLIW processors. As an example, we
are considering the M3-DSP processor [Fettweis et al., 1998].

Partitioned register files for TMS 320C6xx

cessor is a VLIW processors containing (up to) 16 parallel data paths.
These data paths are connected to a group memory, providing the
necessary arguments in parallel (see fig.).

M3-DSP (simplified)

 Embedded systems
 Notes

93

Predicated Execution. A potential problem of VLIW and EPIC architectures
is their potentially large delay penalty: This delay penalty might originate
from branch instructions found in some instruction packets. Instruction
packets normally have to pass through pipelines. Each stage of these
pipelines implements only part of the operations to be performed by the
instructions executed. The fact that branch instructions exist cannot be
detected in the first stage of the pipeline. When the execution of the branch
instruction is finally completed, additional instructions have already entered
the pipeline (see fig.).

Branch instruction and delay slots

There are essentially two ways to deal with these additional instructions:

1 They are executed as if no branch had been present. This case is called
delayed branch. Instruction packet slots that are still executed after a
branch are called branch delay slots. These branch delay slots can be filled
with instructions which would be executed before the branch if there were
no delay slots. However, it is normally difficult to fill all delay slots with
useful instructions and some have to be filled with no-operation instructions
(NOPs). The term branch delay penalty denotes the loss of performance
resulting from these NOPs.

 Embedded systems
 Notes

94

2 The pipeline is stalled until instructions from the branch target address
have been fetched. There are no branch delay slots in this case. In this
organization the branch delay penalty is caused by the stall. Branch delay
penalties can be significant. For example, the TMS 320C6xx family of
processors has up to 40 delay slots. Therefore, efficiency can be improved
by avoiding branches, if possible. In order to avoid branches originating
from if-statements, predicated instructions have been introduced. For each
predicated instruction, there is a predicate. This predicate is encoded in a
few bits and evaluated at run-time. If the result is true, the instruction is
executed. Otherwise, it is effectively turned into a NOP. Predication can
also be found in RISC machines such as the ARM processor. Example:
ARM instructions, as introduced on page 104, include a four-bit field. These
four bits encode various expressions involving the condition code registers.
Values stored in these registers are checked at run-time. They determine
whether or not a certain instruction has an effect. Predication can be used
to implement small if-statements efficiently: the condition is stored in one of
the condition registers and if-statement-bodys are implemented as
predicated instructions which depend on this condition. This way, if-
statement bodys can be evaluated in parallel with other operations and no
delay penalty is incurred.

Summary:

 A processor is said to be single-purpose processor performs
specific computation task, custom single-purpose processors

 Timer measures time intervals to generate, timed output events & to
measure input events

 A Counter is like a timer, but counts pulses on a general input signal
rather than clock

 A watchdog timer can be treated as a count down timer which
executes a special code upon its expire.

 For high-performance applications and for large markets,
application-specific integrated circuits (ASICs) can be designed.

 At the chip level, embedded chips include micro-controllers and
microprocessors. Micro-controllers are the true workhorses of the
embedded family. They are the original ’embedded chips’ and
include those first employed as controllers in elevators and
thermostats.

Reference Questions:

1. Write a brief notes on Application specific processors?

2. Write a brief notes on multimedia processors?

3. Write a brief notes on VLIW processors?

4. What is a sensor? Explain different types of sensors.

 Embedded systems
 Notes

95

5. Explain the following

a. Timers

b. Counters

c. Watchdog timers.

References:

 Catsoulis J.Designing embedded hardware.2005

 Embedded_Controller_Hardware_Designby ken arnold

 Embedded systems by raj kamal

 www.embedded.com

Embedded systems
 Notes

96

UNIT – III

7. MEMORY

Objective:

Memory chip connected in the embedded device may be
external or internal. If micro processor is used as controlling device the
memory connected is external and if micro controller is used memory is
internal. Wherever we place memory it communicates with the CPU
using data and address busses. Each controlling device has a specific
addressing range. An addressing range is the number of addresses a
controller can access. The addressing scheme used to access to these
spaces varies from processor to processor, but the underlying hardware
is similar. The different types of memories available are explained
below.

RAM

Random access memory1 or RAM consists of memory
addresses the CPU can both read from and write to. RAM is used for
data memory and allows the CPU to create and modify data as it
executes the application program. RAM is volatile; it holds its contents
only as long as it has a constant power supply. If power to the chip is
turned off, the contents of RAM are lost. This does not mean that RAM
contents are lost during a chip reset. Vital state information or other
data can be recorded in data memory and recovered after an interrupt
or reset. Some chips provide an alternate RAM power supply so that
memory contents can be maintained even when the rest of the chip is
without power. This does not make RAM any less volatile, without a
backup power source the contents would still be lost. This type of RAM
is called battery backed-up static RAM.

ROM

ROM, read only memory, is typically used for program
instructions. The ROM in a microcontroller usually holds the final
application program. Maskable ROM is memory space that must be
burned in by the manufacturer of the chip as it is constructed. To do
this, you must provide the chip builder with the ROM contents you wish
the chip to have. The manufacturer will then mask out appropriate ROM
blocks and hardwire the information you have provided. Since recording
chip ROM contents is part of the manufacturing process, it is a costly
one-time expense. If you intend to use a small number of parts, you
may be better off using chips with PROM. If you intend to use a large

Embedded systems
 Notes

97

number of parts for your application, then the one-time expense of
placing your program in ROM is more feasible.

PROM

Programmable ROM, or PROM, started as an expensive means
to prototype and test application code before burning ROM. In recent
years PROM has gained popularity to the point where many developers
consider it a superior alternative to burning ROM. As microcontroller
applications become more specialized and complex, needs for
maintenance and support rise. Many developers use PROM devices to
provide software updates to customers without the cost of sending out
new hardware. There are many programmable ROM technologies
available which all provide a similar service. A special technique is used
to erase the contents of programmable ROM then a special method is
used to program new instructions into the ROM. Often, the developer
uses separate hardware to perform each of these steps.

EPROM

EPROM (erasable programmable ROM) is not volatile and is
read only. Chips with EPROM have a quartz window on the chip. Direct
exposure to ultra-violet radiation will erase the EPROM contents.
EPROM devices typically ship with a shutter to cover the quartz window
and prevent ambient UV from affecting the memory. Often the shutter is
a sticker placed on the window. Developers use an EPROM eraser to
erase memory contents efficiently. The eraser bombards the memory
with high-intensity UV light. To reprogram the chip, an EPROM
programmer is used, a device which writes instructions into EPROM.
The default, blank state for an EPROM device has each block of
memory set. When you erase an EPROM you are really setting all
memory blocks to 1. Reprogramming the device resets or clears the
appropriate EPROM bits to 0. Because of the way EPROM storage is
erased, you cannot selectively delete portions of EPROM when you
erase the memory you must clear the entire storage space.

EEPROM

EEPROM (electrically erasable programmable ROM) devices
have a significant advantage over EPROM devices as they allow
selective erasing of memory sections. EEPROM devices use high
voltage to erase and re-program each memory block. Some devices
require an external power source to provide the voltage necessary for
erasing and writing and some have an onboard pump which the chip
can use to build up a charge of the required voltage. Developers can
reprogram EEPROM devices while the chip is operating. However,
EEPROM that can be rewritten is usually restricted to data memory
storage. EEPROM storage used as program memory typically requires
the use of an external power source and a programmer just like
EPROM storage. The most common use for EEPROM is recording and
maintaining configuration data vital to the application. For example,

Embedded systems
 Notes

98

many modems use EEPROM storage to record the current
configuration settings. This makes the configuration available to the
modem user after cycling the power on the modem. Often the default or
factory configuration settings are stored in ROM and the user can issue
a command to restore default settings by overwriting the current
contents of EEPROM with the default information. Sometimes chip
manufacturers build EEPROM blocks into the chip for last-minute
configuration options. This saves manufacturers money as they can
design and fabricate a single chip and then set the EEPROM blocks to
provide special purpose versions with specific capabilities. This method
is often used to produce microcontroller versions for use on an
evaluation board where chip access to its own onboard ROM is turned
off and replaced with external EPROM or EEPROM storage. This allows
developers to test application code in cycles by downloading it to the
board, programming the code into the EPROM or EEPROM, and
debugging it as it executes in the target hardware.

Flash Memory

Flash memory is an economical compromise between EEPROM
and EPROM technology. As with EEPROM high voltage is applied to
erase and rewrite flash memory. However, unlike EEPROM, you cannot
selectively erase portions of flash memory – you must erase the entire
block as with EPROM devices. Many manufacturers are turning to flash
memory. It has the advantages of not requiring special hardware and
being inexpensive enough to use in quantity. Manufacturers often
provide customers with microcontroller products whose ROM is loaded
with a boot or configuration kernel where the application code is written
into flash memory. When the manufacturer wants to provide the
customer with added functionality or a maintenance update, the
hardware can be reprogrammed on site without installing new physical
parts. The hardware is placed into configuration mode which hands
control to the kernel written in ROM. This kernel then handles the
software steps needed to erase and re-write the contents of the flash
memory. Another useful implementation of flash memory includes a
device which can connect electronically to a computer owned by the
manufacturer. The configuration kernel connects to the manufacturer’s
computer, downloads the latest version of the control application and
writes this application to flash memory. Such elaborate applications are
typically beyond the resources of an 8 bit microcontroller; we mention
the example to show the advantage of programmable ROM
technologies.

Registers

The CPU maintains a set of registers which it uses to store
information. Registers are used to control program execution and
maintain intermediate values needed to perform required calculations.
Some microcontrollers provide access to CPU registers for temporary
storage purposes. This can be extremely Dangerous as the CPU can at
any time overwrite a register being used for its designated purpose 8 bit

Embedded systems
 Notes

99

microcontrollers do not often provide resources for register memory
outside the CPU. This means that the C register keyword is
meaningless because the compiler cannot dedicate a CPU register for
data storage. Some C implementations will set aside RAM for special
purpose pseudo-registers to use when your application attempts certain
operations. For example, if you attempt a 16 bit math operation, the
compiler can dedicate a portion of base page RAM for 16 bit pseudo-
registers which store values during math operations. You can use these
special registers for temporary purposes in places where your code will
not require them for their intended purpose. You must be careful, if the
compiler uses a pseudo-register it will overwrite current contents.

Memory Management

In order to understand what memory management is, it’s helpful
to understand the motivation behind its use. There are two kinds of
memory management: memory address relocation and memory
performance enhancement. They are often used in conjunction, as is
commonly done in personal computers. This section covers the
performance enhancement aspects, while the address relocation issues
will be covered in Chapter Six. The differences between different
storage technologies, in terms of performance and cost, vary over many
orders of magnitude. For example, semiconductor memory devices
have access times that are many orders of magnitude faster
(nanosecond vs. millisecond access time) than that of magnetic disks.
Of course, magnetic disks also have a cost several orders of magnitude
less than semiconductor memory on a cost per bit basis. This disparity
in price and performance has lead to the idea of using small, fast
memories to store the most frequently accessed subset of the complete
collection of data present in a larger, slower memory. This technique of
buffering, often referred to as caching memory contents in a fast
memory, is essentially similar whether it is applied to the memory
attached to a CPU or the magnetic or optical storage mechanisms. In
fact, there may be several layers of caching in a given system, starting
with the smallest, fastest memory closest to the CPU, followed by
slower but larger memories.

Cache Memory

When a high speed memory is used to provide rapid access to
the CPU for most frequently used portion provide rapid access to data
stored on a disk, it is referred to as a disk cache. The objective of these
approaches is to maximize the likelihood that most pieces of data will be
found in the small and fast memory most of the time, thus reducing the
average effective access time. The object is to succeed at finding most
data in the small fast memory most of the time, minimizing the number
of accesses to the big slow memory. Fast SRAM is used as a fast
temporary buffer (memory cache) between main memory and the CPU.
Main memory DRAM is used to buffer disk data (disk cache). Most hard
disk drives also have some internal fast semiconductor RAM to cache
data as it is being transferred to and from the disk.

Embedded systems
 Notes

100

Virtual Memory

Disk storage can be used to emulate a larger primary memory
than is actually available. Demand paged virtual memory provides an
apparently large primary memory by swapping pages of data between
real primary memory and disk. This is a combination of hardware for
translating logical (virtual) addresses, moving pages as needed, and
operating system software to determine where and when pages should
be kept and detect access attempts to pages which are not in primary
memory. When address relocation mechanisms are combined with disk
caching and special system software, it is possible to make the main
memory appear much larger than it actually is to a program running on
this type of machine. When the program attempts to access a location
that is not present in the main memory, the hardware and software
redirect the memory reference to a real block of memory, after the
required data is loaded from disk. Thus the application program is
presented with a virtual memory that is significantly larger than the
actual physical main memory. This has the effect of simplifying the
code, since all data can be referenced by a single address, rather than
selecting a file, track, or sector on a disk.

CPU Control Lines for Memory Interfacing

 Some CPUs generate signals for memory timing and
synchronization with devices having various access times using a
technique that generates delay cycles for slow memories, referred to as
wait states. The 8051 processor used in this text does not use or
generate wait states for simplicity. The Dallas 80C320 series of high
speed microcontrollers incorporate a software-controlled mechanism for
generating wait states. These extended memory cycles allow the
processor to work with slower memory and peripheral chips.

DIRECT MEMORY ACCESS:

 Direct memory access (DMA) is a means of having a peripheral
device control a processor's memory bus directly. DMA permits the
peripheral, such as a UART, to transfer data directly to or from memory
without having each byte (or word) handled by the processor. Thus
DMA enables more efficient use of interrupts, increases data
throughput, and potentially reduces hardware costs by eliminating the
need for peripheral-specific FIFO buffers. In a typical DMA transfer,
some event (such as an incoming data-available signal from a UART)
notifies a separate device called the DMA controller that data needs to
be transferred to memory. The DMA controller then asserts a DMA
request signal to the CPU, asking its permission to use the bus. The
CPU completes its current bus activity, stops driving the bus, and
returns a DMA acknowledge signal to the DMA controller. The DMA
controller then reads and writes one or more memory bytes, driving the
address, data, and control signals as if it were itself the CPU. (The
CPU's address, data, and control outputs are restated while the DMA

Embedded systems
 Notes

101

controller has control of the bus.) When the transfer is complete, the
DMA controller stops driving the bus and desserts the DMA request
signal. The CPU can then remove its DMA acknowledge signal and
resume control of the bus. Each DMA cycle will typically result in at
least two bus cycles: either a peripheral read followed by a memory
write or a memory read followed by a peripheral write, depending on the
transfer base addresses. The DMA controller itself does no processing
on this data. It just transfers the bytes as instructed in its configuration
registers. It's possible to do a flyby transfer that performs the read and
write in a single bus cycle. However, though supported on the ISA bus
and its embedded cousin PC/104, flyby transfers are not typical.
Processors that support DMA provide one or more input signals that the
bus requester can assert to gain control of the bus and one or more
output signals that the processor asserts to indicate it has relinquished
the bus. A typical output signal might be named HLDA (short for HoLD
Acknowledge). When designing with DMA, address buffers must be
disabled during DMA so the bus requester can drive them without bus
contention. To avoid bus contention, the bus buffer used by the DMA
device must not drive the address bus until after HLDA goes active to
indicate that the CPU has stopped driving the bus signals, and it must
stop driving the bus before the CPU drives HLDA inactive. The system
design may also need pull-up resistors or terminators on control signals
(such as read and write strobes) so the control signals don't float to the
active state during the brief period when neither the processor nor the
DMA controller is driving them. DMA controllers require initialization by
software. Typical setup parameters include the base address of the
source area, the base address of the destination area, the length of the
block, and whether the DMA controller should generate a processor
interrupt once the block transfer is complete. It's typically possible to
have the DMA controller automatically increment one or both addresses
after each byte (word) transfer, so that the next transfer will be from the
next memory location. Transfers between peripherals and memory often
require that the peripheral address not be incremented after each
transfer. When the address is not incremented, each data byte will be
transferred to or from the same memory location. DMA operations can
be performed in either burst or single-cycle mode. Some DMA
controllers support both. In burst mode, the DMA controller keeps
control of the bus until all the data buffered by the requesting device has
been transferred to memory (or when the output device buffer is full, if
writing to a peripheral). In single-cycle mode, the DMA controller gives
up the bus after each transfer. This minimizes the amount of time that
the DMA controller keeps the processor off of the memory bus, but it
requires that the bus request/acknowledge sequence be performed for
every transfer. This overhead can result in a drop in overall system
throughput if a lot of data needs to be transferred. In most designs, you
would use single cycle mode if your system cannot tolerate more than a
few cycles of added interrupt latency. Likewise, if the peripheral devices
can buffer very large amounts of data, causing the DMA controller to tie
up the bus for an excessive amount of time, single-cycle mode is
preferable. Note that some DMA controllers have larger address
registers than length registers. For instance, a DMA controller with a 32-

Embedded systems
 Notes

102

bit address register and a 16-bit length register can access a 4GB
memory space, but can only transfer 64KB per block. If your application
requires DMA transfers of larger amounts of data, software intervention
is required after each block. The simplest way to use DMA is to select a
processor with an internal DMA controller. This eliminates the need for
external bus buffers and ensures that the timing is handled correctly.
Also, an internal DMA controller can transfer data to on-chip memory
and peripherals, which is something that an external DMA controller
cannot do. Because the handshake is handled on-chip, the overhead of
entering and exiting DMA mode is often much faster than when an
external controller is used. If an external DMA controller or processor is
used, be sure that the hardware handles the transition between
transfers correctly. To avoid the problem of bus contention, ensure that
bus requests are inhibited if the bus is not free. This prevents the DMA
controller from requesting the bus before the processor has reacquired
it after a transfer. So you see, DMA is not as mysterious as it
sometimes seems. DMA transfers can provide real advantages when
the system is properly designed.

Summary:

 Memory can be either permanent or temporary.

 Ranges of write ability

o High end:processor writes to memory simply and
quickly.e.g., RAM.

o Middle range:processor writes to memory, but
slower.e.g., FLASH, EEPROM.

o Lower range: special equipment, “programmer”, must be
used to write to memory.e.g., EPROM, OTP ROM.

o Low end:bits stored only during fabrication.e.g., Mask-
programmed ROM.

 Only one time programmable rom can be programmable only
one time.

 Eprom can be erased and programmed number of times using
ultra voilent radiation with reduced storage.

 EEprom can be erased and programmed number of times using
inc ircuit system programmable.

 Ram is a random access memory used only for temporary
storage purposes.

Embedded systems
 Notes

103

Questions:

 Write a brief notes on different types of memories.

 Explain differet types of Volatile memories.

 Explain memory management techniques.

References:

 Real-time Embedded Software Systems: An Introduction S.
Agrawal & P. Bhatt http://www.embedded.com

 Michael Barr, Programming Embedded Systems in C and C++,
O’Reilly Associates, August 1999.

 Analog Interfacing To Embedded Microprocessors – STUART R.
BALL

 Design with 8051- FRONTLINE ELECTRONICS

 Embedded Systems Firmware Demystified - Ed Sutter.

Embedded systems
 Note

104

UNIT – IV

8. INTERFACES

Objective:

In this chapter and the next, we'll look at two low-cost interfaces
used to connect peripheral chips to microcontrollers, within a single
embedded system. These interfaces allow you to connect devices such
as real-time clocks, nonvolatile memories for parameter storage, sensor
interfaces, and much more. The interfaces are easy to use and cheap to
implement, making them ideal for small, embedded applications. Some
microcontrollers incorporate both types of interface, whereas others may
only have one or the other. The one to use really depends on what your
processor has to offer and the requirements of the particular peripheral
you're using.

Serial Peripheral Interface

The Serial Peripheral Interface (known as SPI) was developed by
Motorola to provide a low-cost and simple interface between
microcontrollers and peripheral chips. (SPI is sometimes also known as
a four-wire interface.) It can be used to interface to memory (for data
storage), analog-digital converters, digital-analog converters, real-time
clock calendars, LCD drivers, sensors, audio chips, and even other
processors. The range of components that support SPI is large and
growing all the time.

Unlike a standard serial port, SPI is a synchronous protocol in
which all transmissions are referenced to a common clock, generated by
the master (processor). The receiving peripheral (slave) uses the clock
to synchronize its acquisition of the serial bit stream. Many chips may be
connected to the same SPI interface of a master. A master selects a
slave to receive by asserting the slave's chip select input. A peripheral
that is not selected will not take part in a SPI transfer.

SPI uses four main signals: Master out Slave in (MOSI), Master
in Slave out (MISO), Serial CLocK (SCLK or SCK) and Chip Select (CS)
for the peripheral. Some processors have a dedicated chip select for SPI
interfacing called Slave Select (SS).

MOSI is generated by the master and is received by the slave.
On some chips, MOSI is labeled simply as Serial In (SI) or Serial Data In
(SDI). MISO is produced by the slave, but its generation is controlled by
the master. MISO is sometimes known as Serial Out (SO) or Serial Data
Out (SDO) on some chips. The chip select to the peripheral is normally

Embedded systems
 Note

105

generated by simply using a spare I/O pin of the master. Figure shows a
microprocessor interfaced to a peripheral using SPI.

Both masters and slaves contain a serial shift register. The
master starts a transfer of a byte by writing it to its SPI shift register. As
the register transmits the byte to the slave on the MOSI signal line, the
slave transfers the contents of its shift register back to the master on the
MISO signal line. In this way, the contents of the two shift registers are
exchanged. Both a write and a read operation are performed with the
slave simultaneously. SPI can therefore be a very efficient protocol.

If only a write operation is desired, the master just ignores the
byte it receives. Conversely, if the master just wishes to read a byte from
the slave, it must transfer a dummy byte in order to initiate a slave
transmission.

Some peripherals can handle multiple byte transfers, where a
continuous stream of data is shifted from the master. Many memory
chips with SPI interfaces work this way. With this type of transfer, the
chip select for the SPI slave must remain low for the entire duration of
the transmission. For example, a memory chip might expect a "write"
command to be followed by four address bytes (starting address), then
the data bytes to be stored. A single transfer may involve the shifting of a
kilobyte or more of information.

Embedded systems
 Note

106

Other slaves need only a single byte (for example, a command
byte for an analog-digital converter), and some even support being
daisy-chained together.

In this example, the master processor transmits three bytes out of
its SPI interface. The first byte is shifted into slave A. As the second byte
is transferred to slave A, the first byte is shifted out of slave A and into
slave B. Similarly, as the third byte is shifted into slave A, the second
byte is shifted into slave B, and the first byte is shifted into slave C. If the
master wishes to read a result from slave A, it must again transfer a
three-byte (dummy) sequence. This will move the byte from slave A into
slave B, then into slave C, and finally into the master. In the process, the
master also receives bytes from slave C and slave B in turn.

Note that daisy chaining won't necessarily work with all SPI
devices, especially ones that require multi byte transfers (such as
memory chips). Again, it's a case of checking the slave chips' datasheets
carefully to determine what you can and can't do. If the datasheet
doesn't explicitly mention daisy chaining, then it's a fair bet the device
doesn't support it.

SPI has four modes of operation, depending on clock polarity and
clock phase. For low clock polarity, the clock (SCK) is low when idle and
toggles high during a transfer. When configured for high clock polarity,
the clock is high when idle and toggles low during a transfer.

The two clock phases are known as clock phase zero and clock
phase one. For clock phase zero, MOSI and MISO outputs are valid on
the rising edge of the clock (SCK) if the clock polarity is low. If the clock
polarity is high, these outputs are valid on the falling edge of SCK, for
clock phase zero. The "X" bit output on MISO is an undefined extra bit
and is a consequence of the SPI interface. You don't need to worry
about it, as the SPI interfaces ignore it.

Embedded systems
 Note

107

Conversely, for clock phase one, the opposite is true. MOSI and MISO
are valid on the falling edge of the clock if clock polarity is low. They are
valid on the rising edge of the clock if the clock polarity is high.

Embedded systems
 Note

108

SPI-Based Clock/Calendar

There is a wide variety of SPI devices available, and we'll be
looking at several in the coming chapters. In the meantime, to see how a
SPI interface is used to add a peripheral to a microcontroller, let's look at
interfacing a processor to a clock/calendar chip. Such chips contain an
oscillator module driven by a crystal, just like a processor. The oscillator
module ticks over internal counters that track milliseconds, seconds,
minutes, hours, days, months, and years. They are specifically designed
to provide accurate timekeeping, and many have additional functions
such as an "alarm" (whereby the processor is interrupted at a specific
time) and a watchdog. Some also include voltage monitoring, such that
the clock chip may act as a system monitor, alerting the processor
should the power supply be wavering. There are a number of clock chips
available (and not all are interfaced using SPI). For this example, we will
use the Maxim DS1305.

The way in which we interface the clock chip to a processor is
virtually identical for all other SPI devices. Some chips with SPI
interfaces have special requirements, but most are very simple and
straightforward. This makes SPI a very useful interface that makes
increasing system functionality trivial.

The Maxim DS1305 Real-Time Clock (RTC) provides
timekeeping services and tracks seconds, minutes, hours, day of the
month, month, day of the week, and year. It knows which months have
30 days and which have 31. It even automatically adjusts for leap years,
up to the year 2100. It can generate two interrupts to the microcontroller
for time-of-day alarms. These alarms can be used to trigger a regular
system event, such as a backup or user notification.

The DS1305 can run off two separate power sources and
supports battery backup of its internal state. The chip can use a power
supply in the range of 2 V to 5.5 V, allowing it to be powered from a
variety of sources. It also has 96 bytes of static RAM, used for parameter
storage. You could use the RAM for holding variables indicating system
mode, secure password storage, or even authorization codes for your
embedded software, just as desktop software does.

Embedded systems
 Note

109

If you are producing commercial embedded systems and have
problems with late-paying customers, you can use this RAM to hold a
license number. When you ship the system, you design it to work for
perhaps 45 days before shutting down. When your customer pays her
bill, and you supply her with the right magic number, the system comes
back to life again. The system stores the license number in the RAM of
the RTC and from then on works as normal.

The RAM, like the timekeeping function, is battery-backed, and
so its contents will be retained for the life of the battery. This can be up
to 10 years, depending on the battery chosen. Thus, the contents of the
internal parameter RAM will probably last for the expected operational
lifespan of an embedded system.

The DS1305 is versatile in the way it can be powered. It has
three power-supply inputs--VCC1, VCC2, and VBAT--from which it can
choose to draw power. VCC1 is the primary supply input and is
connected directly to the system's power supply. When the computer is
up and running, the DS1305 draws its current from this source. VCC2 is
the secondary power source, and this can be a rechargeable battery.
VBAT is the third power source and is for non rechargeable batteries.

There are three, and only three, possible configurations for
powering the DS1305, and it is important for correct operation that the
power inputs are appropriately driven. Figure shows the DS1305
powered by a primary DC supply connected to VCC1 and a secondary,
nonrechargeable battery connected to VBAT. (To keep the diagram
simple, only the power pins are shown. We'll look at the data interface in
a moment.) For this configuration, VCC2 is unused and must be
connected to GND. When VCC1 falls below a given threshold voltage
(the primary power source has failed), the internal memory and registers
of the DS1305 become write-protected to prevent them from being
corrupted by a failing microprocessor.

If the secondary power source is a rechargeable battery, then the
DS1305 may be wired as shown in Figure. When using a rechargeable
battery on VCC2, VBAT must be connected to GND. When the device is
used in this mode, there is no automatic write protection for the DS1305
if VCC1 fails.

Embedded systems
 Note

110

Finally, the DS1305 may be used with only a battery as its
primary power source and no backup power supply. This is shown in
Figure. For this configuration, both VCC1 and VBAT are connected to
ground, while the battery is connected to VCC2.

Using the DS1305 is very simple. The schematic showing a DS1305
interfaced to a microcontroller is shown in Figure.

Embedded systems
 Note

111

The serial interface of the DS1305 can operate as either a SPI
port or a three-wire port. The input SERMODE selects which serial mode
to use. Connecting SERMODE to the power supply selects SPI
operation. Connecting SERMODE to GND selects three-wire operation.
(For three-wire operation, SDO and SDI are tied together.) The
connection to a microcontroller's SPI port is straightforward, with MOSI,
MISO, SCLK, and a chip select, as we've seen previously. There is one
important difference, though, for the DS1305. It has an active-high CE
(Chip Enable), rather than the more common active-low chip selects of
other SPI devices. Therefore, the processor's I/O line driving CE must be
low when the device is not selected and high when the device is
selected.

[*] Developed by National Semiconductor, three-wire, also known
as MicroWire, is very similar to SPI and is found is some microcontrollers
and DSP processors. Unlike SPI, which has separate data lines for
reading and writing, three-wire uses a common bidirectional data line.

The DS1305 has a special Power Fail output that is asserted low
when the primary power source VCC1 falls below the secondary power
source (VCC2 or VBAT). This can be used to alert the processor of the
power fail (by using it as an interrupt) or to stop the processor (by
connecting it to the processor's). This is used to prevent a failing
processor from corrupting devices as the power dies. If you don't require
a power-fail notification, may be left unconnected.

The input VCC if (VCC for the interface logic) selects the output
voltage levels of SDO and . Since the DS1305 can be used in both 5
V and 3.3 V systems, this input allows the output levels of these pins to
be set to the appropriate high voltage. VCC if is just connected to the
system's power supply. Thus, for a 5 V system, VCC if is 5 V, and the
outputs of the DS1305 are also 5 V. Similarly, for a 3.3 V system, VCC if
is 3.3 V and so are the outputs.

Finally, the DS1305 has two interrupt outputs, These may be
used to interrupt the processor when a DS1305 alarm function triggers.
As the interrupt outputs are open-drain, they each require a 10k resistor
to pull them high when they are inactive. If one or both of the interrupts
are not required, just leave them unconnected. Only is used in our
example, and so is safely ignored.

Finally, the DS1305 has two crystal inputs, X1 and X2. A 32.768
kHz watch crystal is connected across these pins, providing the timing
source for the internal clock.

So that is the DS1305, a versatile little chip that can provide
timekeeping for your embedded system. It's easy to use, and the
programming information for it is contained in the device's datasheet.

Embedded systems
 Note

112

SPI-Based Digital Potentiometer

Let's look at another simple SPI example. This time, we will
interface a digital potentiometer to a microprocessor. Now, a standard
pot is manually adjusted. It will either have a knob attached (as in a
volume control or brightness adjustment), or it will have a small notch for
screwdriver adjustment. Wouldn't it be great if your microprocessor could
adjust the pots in your analog circuits, under software control? That way,
your application software could adjust the brightness of the display or
change the volume of the sound system. Well, by using a digital
potentiometer, you can do just that. Televisions, computer monitors, and
stereos with internal embedded controllers use digital pots to adjust
settings such as volume. When you hit a volume button on a remote
control, the TV or stereo adjusts the settings of digital pots, which are
part of the amplifiers driving the speakers.

Figure shows an Analog Devices AD5203 digital potentiometer
with a SPI interface. This chip has four potentiometers, all of which may
be adjusted under software control. Each pot has 64 possible positions,

and versions of the chip are available with either 10 k or 100 k
impedances. For higher resolution, the pin-compatible AD8403 has a
possible 256 settings, also configurable through a SPI interface.

The AD5203 has a Serial Data Input (SDI), which is connected to the
processor's MOSI output. Similarly, the device's Serial Data Output
(SDO) is connected to MISO. The AD5203's clock input (CLK) is
positive-edge triggered midway through each SPI cycle, which means
that any processor communicating with it must use high clock polarity

Embedded systems
 Note

113

and clock phase one on SCLK. The Chip Select (CS) of the AD5203 may
be driven by a processor digital I/O line. The AD5203 has two other
inputs, Shutdown (SHDN) and Reset (RS). SHDN places the device in
low-power mode, and resets the potentiometer wipers to their
midpoint. Both of these inputs may also be driven by a processor I/O
line, or, if their functionality is not needed, they may be simply tied high

using 10 k pull-up resistors.

The potentiometers within the AD5203 are used as any other
pots would be. The A and B terminals connect to either end of the
internal resistors, and the position of the wiper (W) is adjusted under
software control.

The AD5203 has several ground connections. DGND is the
digital ground for the SPI interface and control logic of the chip. The
AGNDs are the analog grounds of the internal potentiometers, and they
should all be connected to DGND at a single point.

The datasheet for the AD5203 provides the control codes needed
to configure the chip, and its use is simple and straightforward.

Adding Nonvolatile Data Memory with SPI

The internal memory of microcontrollers is very small, and their
data storage capabilities are severely limited. We're now going to look at
how you can increase the storage capacity of your embedded system by
adding an Atmel AT45DB161 2M serial Data Flash using SPI. These
chips are commonly used in low-cost digital cameras and answering
machines. You could also use this flash chip as a virtual disk drive in
your embedded system.

Most other flash chips have a bus interface, but the AT45DB161
has a serial interface, making it well suited for use with small
microcontrollers. The AT45DB161 is a 2M chip, but you can get similar
chips in capacities ranging from 512K to 32M. They all use the same (or
similar) SPI interface, so the same design works for all. (Note, however,
that their pinouts and physical packages vary, so one chip will not mount
onto a circuit board design for another.)

The chip consists of an array of flash memory, organized as
individual pages of 528 bytes each, and two RAM buffers, also 528 bytes
each (Figure). To write data into the main flash array, the processor must
first write data into one of the buffers and then issue a command to write
that buffer into the array. A processor can read the contents of either of
the buffers, transfer a flash page to the buffers, or read from the flash
array directly. The operation of the buffers is independent, and one
buffer may be accessed by the processor (via SPI) while the contents of
the other buffer are being written into the flash array.

Embedded systems
 Note

114

The flash supports numerous commands for writing to and
reading from the buffers, writing the buffers to the main array, and
transferring an array page back to a buffer. The Atmel datasheet has full
details of the software protocols and command set.

There are a few things to note about the internal architecture and
the flash array. The first is that one 528-byte page of the flash array is
not contiguous with the next. In other words, if you are using a pointer in
your software to track the current location in the memory, you can't just
increment it from the end of one page and expect it to be pointing to the
next. Every 528 bytes (and it's a strange number), you have to leap
forward to the next page. Think of it as pages of 528 bytes with big gaps
in between.

The second catch with this memory is that it has a lifetime of only
1,000 write cycles per page. Most flash technologies (and there are
several different types) support 100,000 write cycles or better, and you
can normally exceed this limit and the device will keep working reliably
for you. This isn't the case with the AT45DB161. Once the 1,000-write
limit is exceeded, memory locations will start failing on you. The chip will
read existing data back correctly, but new pages will not write
successfully. Depending on the application, this limit may not be a
problem. I've used this particular chip in my design for long-duration data
loggers. These machines are deployed for yearlong deployments,
collecting (and compressing) data and storing it away in the flash chip.
The logger gradually builds a page image in one of the buffers before
storing it to the array in a single write. Since during a deployment, a page
will be written only once (and then the logger will move on to the next
page), the 1,000-write limitation isn't a problem. It would take 1,000
deployments before the chip would fail. However, if you're using the chip
for variable storage and are modifying the flash pages on a byte-by-byte
basis, you're in trouble. Individually changing 528 bytes within a page

Embedded systems
 Note

115

counts as 528 writes. So do that twice to a page, and suddenly you're
over the limit. Therefore, this flash is well suited to some applications
and not others.

The basic design for using an AT45DB161 is shown in Figure.

On the left of the chip are the SPI interface connections, MOSI,
MISO, SCK, and a chip select (FLASH). The chip will support SPI
transfers at up to 20 MHz, so the SPI interface can be run very fast
indeed. On the right of the chip is the power supply, VDD, which is
decoupled to ground using a 100 nF capacitor. The AT45DB161 requires
a power supply in the range 2.5 V to 3.6 V. However, its logic inputs are
5 V tolerant, meaning this chip can be used in systems with mixed power
supplies. In other words, while this chip requires a 3 V power supply, it
can be directly interfaced to a processor with a 5 V supply (and 5 V logic
levels). The AT45DB161 has a write-protect pin (WP), which, when
driven low, prevents the contents of the flash from being modified. If you
don't require write protection, simply tie this input high, as shown in the
schematic. The flash also has a RESET input so that the chip can be
manually reset under software control. The flash incorporates an inbuilt
power-on reset that will put the device into a known state, and therefore
a "manual" reset at power up should be unnecessary. However, I've
found that the internal power-on reset generator is somewhat finicky and
doesn't always kick in as it should. Under such circumstances, the flash
fails to enter a known state and is unusable in the system. Therefore, I
have found it good practice to give the processor control of the flash's
reset. As part of the processor's initialization routines executed in its
reset firmware, I get the processor to reset the flash, nudging it into
reality. It's a simple thing, but it makes all the difference for a reliable
system. Pin 1 is a status output (RDY/BUSY) indicating whether the
device is ready or if it is still completing an internal operation. The
connections for interfacing this memory chip to an Atmel 90S4434 AVR
processor are shown in Figure. The AVR portion of the schematic is no
different from the examples we have seen previously. That's the nice
thing about simple interfaces such as SPI. They form little subsystem
modules that "bolt together" like building blocks. Start with the basic core

Embedded systems
 Note

116

design and just add peripherals as you need them. The schematic also
shows decoupling capacitors for the power supplies, the crystal oscillator
for the processor, and a pull-up resistor for PB1. Pin 41 (PB1) is used as
a "manual" (processor-controlled) reset input to the flash.

Adding a Parameter Memory Using SPI

We saw in the previous section how to add a large-capacity serial
flash for data storage. It is often useful to use nonvolatile memory to hold
system parameters, a way of preserving important variables during
periods of no power. But the AT45DB161 Data Flash is just not the
device for that task. It is better suited to data recording, and its large
capacity is overkill for parameter storage. So, now we're going to look at
how you can use SPI to add a small parameter memory (in the form on
an EEPROM) to your embedded system. The EEPROM I've chosen is
the Atmel AT25640. This device will hold data for at least 100 years
without power, and will endure more than one million write cycles
(significantly more than an AT45DB161!). As such, your software can
happily alter parameter variables without fear of limiting the lifespan of
the chip. The AT25640 has only 8K of memory, which might not sound
like much. But don't forget, that's 8192 char variables, which is more

than enough storage space for most parameters. If 8K is too much, there

Embedded systems
 Note

117

are also versions of the chip with 1K (AT25080), 2K (AT25160), and 4K
(AT25320) bytes of memory.

The architecture and use of the AT25640 is much simpler than
that of the AT45DB161. Full details of the required software protocol are
in the Atmel datasheet for this chip.

The schematic for an AT25640 circuit is shown in Figure.

The interface is standard SPI, and the chip also has a write-protect input
and a hold input. Asserting HOLD allows the processor to temporarily
stall a serial transfer (while it performs other tasks) without terminating
the access to the AT25640. And as you might expect, write-protect,
when asserted, turns the chip into a read-only device. These control
inputs may be driven by programmable I/O lines of the processor. The
only other requirement is power (which is decoupled to ground using a
100 nF capacitor) and ground. The chip is available in two types. One
will operate from a supply voltage of between 2.7 V and 5.5 V, while the
other needs a supply voltage of between 1.8 V and 3.6 V.

Adding Peripherals Using I2C

In the last chapter, we looked at the low-cost SPI interface used
to connect peripheral chips to microcontrollers. In this chapter, we'll
examine the alternate serial interface for connecting peripherals, I2C.

Overview of I2C

I2C (Inter-Integrated Circuit) bus is a very cheap yet effective
network used to interconnect peripheral devices within small-scale
embedded systems. It is sometimes also known as IIC and has been in
existence for more than 20 years. It is the equivalent of SPI, but its
operation is somewhat different.

I2C uses two wires to connect multiple devices in a multi-drop
bus. The bus is bidirectional, low-speed, and synchronous to a common
clock. Devices may be attached or detached from the I2C bus without

Embedded systems
 Note

118

affecting other devices. Several manufacturers, such as Microchip,
Philips, Intel, and others produce small microcontrollers with I2C built in.
The data rate of I2C is somewhat slower than SPI, at 100 kbps in
standard mode, and 400 kbps in fast mode.

The two wires used to interconnect with I2C are SDA (serial data)
and SCL (serial clock). Both lines are open-drain. They are connected to
a positive supply via a pull-up resistor and therefore remain high when
not in use. A device using the I2C bus to communicate drives the lines
low or leaves them pulled high as appropriate. Each device connected to
the I2C bus has a unique address and can operate as either a transmitter
(a bus master), a receiver (a bus slave), or both (Figure). I2C is a multi-
master bus, meaning that more than one device may assume the role of
bus master.

I2C network

An open-drain or open-collector pin has output drivers that can
only pull the signal line to ground. They cannot drive it high. This has the
advantage that more than one device connected to a signal line may pull
it low. If this were not the case, one device attempting to pull the line low
while another tried to pull it high would result in a short circuit, with
disastrous results. Interrupt lines are typically open-collector. All open-
collector signals need a pull-up resistor and are active low. The idle state
(when no device is asserting) is to be pulled high by the resistor.

Both SDA and SCL are bidirectional. Unlike SPI, which has
separate data lines for each direction of communication, I2C shares the
same signal line for master transmission and slave response. Also unlike
SPI, I2C does not have several modes of operation. The timing
relationship between the clock, SCL, and the data line, SDA, is simple
and straightforward. When idle, both SDA and SCL are high. An I2C
transaction begins with SDA going low, followed by SCL (Figure). This
indicates to all receivers on the bus that a packet transmission is
commencing. While SCL is low, SDA transitions (high or low) for the first
valid data bit. This is known as a "START condition."

Figure: Start of packet

Embedded systems
 Note

119

For each bit that is transmitted, the bit must become valid on SDA while
SCL is low. The bit is sampled on the rising edge of SCL and must
remain valid until SCL goes low once more. Then SDA transitions to the
next bit before SCL goes high once more (Figure).

Timing relationship between SDA and SCL

Finally, the transaction completes by SCL returning high (inactive)
followed by SDA (Figure). This is known as a "STOP condition."

End of packet

Any number of bytes may be transmitted in an I2C packet. As with SPI,
the most significant bit of the packet is transmitted first. If the receiver is
unable to accept any more bytes, it can abort the transmission by
holding SCL low. This forces the transmitter to wait until SCL is released
again.

Each byte transmitted must be acknowledged by the receiver.
Upon the transmission of the eighth data bit, the master releases the
data line SDA. The master then generates an additional clock pulse on
SCL. This triggers the receiver to acknowledge the byte by pulling SDA
low (Figure). If the receiver fails to pull SDA low, the master aborts the
transfer and takes appropriate error-handling measures.

I2C packet with receiver acknowledge

Embedded systems
 Note

120

Now, I2C is a multi-master bus. So, more than one master may
attempt to start transmission at the same time. Since the bus's default
state is high, a master transmitting a 0 bit will pull SDA low but will leave
the bus in its default state if the bit is to be a 1. Thus, if two masters
begin simultaneous transmission, a master leaving the bus in its default
state for a 1 bit, but detecting the bus pulled low by another master (for a
0 bit), will register an error condition and abort the transmission.

SPI uses a separate chip select to enable a receiving slave. Each
SPI slave has a separate chip select that is generated by the master. I2C
does not have such a selection mechanism. Instead, each device on the
bus has a unique address, and the packet transmission begins with
address bits, followed by the data. An address byte consists of seven
address bits, followed by a direction bit. If the direction bit is a 0, the
transmission is a write cycle and the selected slave will accept the data
as input. If the direction bit is a 1, then the request is for the slave to
transfer data back to the master. A sample packet, transferring one byte
of data, is shown in Figure.

Figure: An I2C packet

There is a special address, known as the general call address, which

broadcasts to all I2C devices. This address is %0000000 with a direction

bit of 0. The general call is the mechanism by which the master

determines what slaves are available, and there are several types of
general call. The second byte of a general call indicates the purpose of
the general call to the slaves. Upon receiving the second byte, individual
slaves will determine whether the command is applicable to them, and, if
so, they will acknowledge. If the command is not applicable to a given
slave, then the slave simply ignores the general call and does not

acknowledge. If the second byte is 0x06 (%00000110), then this indicates

that appropriate slaves should reset and respond with their addresses. If
the second byte is 0x04 (%00000100), slaves respond with their

addresses but do not reset. Any other second byte of a general call,
where the least significant bit is a 0, should be ignored.

Embedded systems
 Note

121

If the least significant bit of the second byte is a 1, then the general call
is by a master device identifying itself to other masters in the system by
transmitting its own address. The other bits of the second byte contain
the master's address.

There is another special address byte, known as the START

byte. This byte is %00000001 (0x01). It is used to indicate to other

masters that a long data transfer is beginning. This is particularly
important for masters that do not have dedicated I2C hardware and must
monitor the bus by software polling. When a master detects a START
byte generated by another master, it can reduce its polling rate, allowing
it more time for other software tasks.

I2C also supports an extended 10-bit addressing mode, allowing
up to 1,024 peripherals. Devices that use 7-bit addressing may be mixed
with 10-bit addressing devices in a single system. In 10-bit addressing,
two bytes are used to hold the address. If the (first) address byte begins
with %11110XX, then a 10-bit address is being generated. The two least

significant bits of the first byte, combined with the eight bits of the second
byte, form the 10-bit address (Figure). 7-bit devices will ignore the
transaction.

Figure: An I2C packet with 10-bit addressing

Adding a Real-Time Clock with I2C

We saw in the previous chapter how to interface a Real-Time
Clock (RTC) to a microprocessor using a SPI interface. Now let's look at
how we'd do the same using the I2C interface. For this example, we'll use
the tiny Philips PCF8583. It also has 240 bytes of RAM, which, like the
DS1305, may be used for parameter storage. Unlike the DS1305, it does
not have an integrated battery-backup system. So, you would need to
provide an external battery-backup circuit. There are many other I2C
RTCs available, and some do incorporate battery-fail protection. I've
chosen to look at this one because it makes for a very simple example of
an I2C interface.

The PCF8583 has two pins (OSCI and OSCO) for connecting a
32.768 kHz watch crystal. This crystal pulses an internal circuit that
performs the timekeeping functions. The address pin, A0, determines the
address of the device on the I2C bus. Most I2C chips provide several
address pins, allowing a range of possible addresses to be wired. The
PCF8583 has only one, to reduce the pin count of the chip. Six of its
address bits are hardwired internally. Only the least significant, A0, is

Embedded systems
 Note

122

available to the system designer. The address configuration of the
PCF8583 is shown in Figure. (Note how the transfer direction [read or
write] is incorporated into the address field.)

Figure: PCF8583 addresses

Connecting A0 directly to ground sets that address bit to 0 and therefore

maps the PCF8583 to I2C address 0x50. Alternatively, if A0 is tied to

VDD, then the address of the device is 0x51.

The schematic for interfacing the PCF8583 to a microcontroller is shown
in Figure.

Figure: Interfacing a PCF8583 to a microcontroller

SDA and SCL both require pull-up resistors to VDD. The PCF8583 also
has an internal alarm function and asserts an output () for interrupting
the processor. Since this output is open-drain, a pull-up resistor is also
required.

Adding a Small Display with I2C

You can use I2C to add simple LCDs (and other equivalent
display technologies) to your embedded computer. These LCDs are
usually just a few lines of text high, but are useful for simple message
display functions. Matrix Orbital (http://www.matrixorbital.com) produces
a number of display modules that are easy to interface, such as the
VFD2041. This display module is 80 characters wide by 4 lines deep.
The interface circuit is shown in Figure, and, as you can see, there's
almost nothing to it. The types of LCDs found in laptops are considerably
more complicated, and interfacing them to small processors is just not an

Embedded systems
 Note

123

option. But for simple message displays (such as on the front panel of an
appliance), a circuit like this is ideal.

Interfacing a VFD2041 display using I2C

Many Matrix Orbital displays also come with RS-232C interfaces, so if
you’re embedded processor doesn't support I2C; it's still easy to add a
small display.

Serial Ports

In this chapter, we'll look at connecting your embedded systems
to the outside world through the ubiquitous serial port. We'll see how you
implement the classic serial port, RS-232C, and even take a look at how
you can power your embedded system through an RS-232C port. From
there, we'll take a look at the more robust RS-422, designed for faster
data rates over longer distances. Finally, we'll look at RS-485, an
extension of RS-422 designed for low-cost networking of embedded
computers.

UARTs

Serial I/O involves the transfer of data over a single wire for each
direction. All serial interfaces convert parallel data to a serial bit stream,
and vice versa. Serial communication is employed when it is not
practical, either in physical or cost terms, to move data in parallel
between systems. Such serial communication may be between a
computer and a terminal or printer, the infrared beaming of a Palm
computer or remote control, or, in more advanced forms, high-speed
network communication such as Ethernet. For embedded computers, a
simple serial interface is the easiest and cheapest way to connect to a
host computer, either as part of the application or merely for debugging
purposes.

The simplest form of serial interface is that of the Universal
Asynchronous Receiver Transmitter (UART). UARTs are also sometimes
called Asynchronous Communication Interface Adapters (ACIAs). They
are termed asynchronous because no clock is transmitted with the serial

Embedded systems
 Note

124

data. The receiver must lock onto the data and detect individual bits
without the luxury of a clock for synchronization.

Figure shows a functional diagram of a UART. It consists of two
sections: a receiver (Rx) that converts a serial bit stream to parallel data
for the microprocessor and a transmitter (Tx) that converts parallel data
from a microprocessor into serial form for transmission. The UART also
provides status information, such as whether the receiver is full (data has
arrived) or that the transmitter is empty (a pending transmission has
completed). Many microcontrollers incorporate UARTs on-chip, but for
larger systems, the UART is often a separate device.

Figure: Functional diagram of a UART

Serial devices send data one bit at a time, so normal "parallel"
data must first be converted to serial form before transfer. Serial
transmission consists of breaking down bytes of data into single bits and
shifting them out of the device one at a time. A UART's transmitter is
essentially just a parallel-to-serial converter with extra features. The
essence of the UART transmitter is a shift register that is loaded in
parallel, and then each bit is sequentially shifted out of the device on
each pulse of the serial clock. Conversely, the receiver accepts a serial
bit stream into a shift register, and then this is read out in parallel by the
processor.

 One of the problems associated with serial transmission is
reconstructing the data at the receiving end. Difficulties arise in detecting
boundaries between bits. For instance, if the serial line is low for a given
length of time, the device receiving the data must be able to identify if the
stream represented "00" or "000." It has to know where one bit stops and
the next starts. The transmitting and receiving devices can accomplish
this by sharing a common clock. Hence, in a synchronous serial system,
the serial data stream is synchronized with a clock that is transmitted
along with the data stream. This simplifies the recovery of data but
requires an extra signal line to carry the serial clock. Asynchronous serial
devices, such as UARTs, do not share a common clock; rather, each
device has its own, local clock. The devices must operate at exactly the
same frequency, and additional logic is required to detect the phase of
the transmitted data and phase lock the receiver's clock to this.

Embedded systems
 Note

125

Asynchronous transmission is used in systems where one
character is sent at a time, and the interval of time between each byte
transmission may vary. The transmission format uses one start bit at the
beginning and one or two stop bits at the end of each character (Figure).
The receiver synchronizes its clock upon receiving the start bit and then
samples the data bits (either seven or eight, depending on the system
configuration). Upon receiving the stop bit(s) in the correct sequence, the
receiver assumes that the transfer was successful and that it has a valid
character. If it did not receive an appropriate stop sequence, the receiver
assumes that its clock drifted out of phase, and a framing error or bit-
misalignment error is declared. It's up to the application software to
check for such errors and take appropriate action.

Figure: Asynchronous serial data

The conversion from parallel to serial format is usually
accomplished by dedicated UART hardware, but in systems where only
parallel I/O is available, the conversion may be performed by software,
which toggles a single bit of a parallel I/O port acting as the serial line.

Error Detection

In any transfer of data over a potentially noisy medium (such as a
serial cable), the possibility of errors exists. To detect such errors, many
serial systems implement parity as a simple check for the validity of the
data. The parity bit of a byte to be transmitted is calculated by the
sending UART and included with the byte as part of the transmission.
The receiving UART also calculates the parity bit for the byte and
compares this against the parity bit received. If they match, the receiver
assumes that everything is fine. If they do not, the receiver then knows
that something went amiss and that an error exists.

There are several types of parity, the main two being even parity
and odd parity. In any byte of data, there is either an even number of "1"
bits or an odd number of "1" bits. An extra bit (the parity bit) is added to
the byte to make the number of "1" bits even (even parity) or odd (odd
parity). For successful transmission, both the receiver and transmitter
must be set for the same type of parity generation. There is no protocol
for establishing common parity settings between UARTs; it must be done
manually at either end.

So for the binary sequence %01000000, the parity bit would be "1"

for even parity and "0" for odd parity. Similarly, for %11111111, the parity

bit would be "0" if we were using even parity and "1" if we had odd parity.

Embedded systems
 Note

126

The generation and detection of parity is done automatically by
dedicated hardware within the UART. It's not something you explicitly
have to calculate. You do have to make sure your UART is set to the
correct type of parity generation; otherwise, it will not know how to
process the parity information accordingly.

The parity bit is checked at the receiving end against the data to
check whether any of the bits were corrupted during transmission. Say
we sent %01000000. If our UART was set to even parity, the calculated

parity bit from %01000000 would be 1. Now, let's say this transmission

was corrupted along the way, such that what was actually received was

%01000001. The receiver would calculate the even parity of the byte to

be 0. In comparing this to the received parity bit of 1, a parity error would
be detected, and the receiver would take appropriate action (such as
requesting that the byte be sent again). Note that how parity errors are
handled is the responsibility of the programmer. The UART itself takes
no action beyond flagging the error. It is up to the software to implement
appropriate error handling.

Now, what if the medium was particularly noisy and two bits were

corrupted? Again, if we sent %01000000 with even parity (computed

parity bit = 1), and this was corrupted along the way to be %01001001,

the receiver would calculate the even parity of the byte to be 1. The
transmission was corrupted, but no parity error would be detected! As
you can see, the usefulness of this form of error detection is extremely
limited, and, for this reason, more complicated error detection (and
correction) schemes are often implemented. A good example of this is
the Cyclic Redundancy Check (CRC) algorithm. If you need to
implement CRC, there's plenty of source code available on the Web—
just use your favorite search engine.

That covers the basics of how bits are transmitted serially. Now,
it's time to look at how you physically implement a serial interface. We'll
start with the old standard for serially connecting two computers (or just
about anything else digital) together.

Old Faithful: RS-232C

RS-232C is a serial communication interface standard that has
been in use, in one form or another, since the 1960s. RS-232C is used
for interfacing serial devices over cable lengths of up to 25 meters and at
data rates of up to 38.4 kbps. You can use it to connect to other
computers, modems, and even old terminals (useful tools for monitoring
status messages during debugging). In days of old, printers, plotters, and
a host of other devices came with RS-232C interfaces. With the need to
transfer large amounts of data rapidly, RS-232C is being supplanted as a
connection standard by high-speed networks, such as Ethernet.
However, it can still be a useful and (importantly) simple connection tool
for your embedded system.

RS-232C is unbalanced, meaning that the voltage level of a data
bit being transmitted is referenced to local ground. A logic high for RS-

Embedded systems
 Note

127

232C is a signal voltage in the range of -5 to -15 V (typically -12 V), and
a logic low is between +5 and +15 V (typically +12 V). So, just to make
that clear, an RS-232C high is a negative voltage, and a low is a positive
voltage, unlike the rest of your computer's logic.

The terminology used in RS-232C also dates back to the 1960s.

In those days of mainframes, a high (1) was called a "space," and a low

(0) was called a "mark." You'll still find these terms kicking around in RS-

232C, where you'll hear phrases like "mark parity" and "space parity." It's
also not unheard of to see RS-232C systems still using 7-bit data frames
(another leftover from the '60s), rather than the more common 8-bit. In
fact, this is one of the reasons why you'll still see email being sent on the
Internet limited to a 7-bit character set, just in case the packets happen
to be routed via a serial connection that supports only 7-bit
transmissions. It's nice how pieces of history still linger around to haunt
us! More commonly, RS-232C data transmissions use 8-bit characters,
and any serial port you implement should do so, too.

An RS-232C link consists of a driver and a comparator, as shown in
Figure.

Figure . RS-232C

RS-232C also defines connectors and pin assignments, although there is
a lot a room for variation (and thus a lot of incompatibilities exist). RS-
232C was originally intended for connecting Data Terminal Equipment
(DTE) to Data Communication Equipment (DCE) (Figure). The standard
therefore assumes that at one end of an RS-232C link is a DTE device,
and at the other end, there is a DCE. Before the advent of computers, a
DTE was a terminal or teletype, and a DCE was a modem. The modem
(Modulator/ Demodulator) provided an interface to the phone line, and
thereby a connection to a remote modem and terminal.

Figure: Original use of RS232: connecting teletypes to modems

Embedded systems
 Note

128

This worked simply and clearly in the days before desktop
computers. The "problem" arises when you wish to connect either a
terminal or a modem to the serial interface of a computer. Do you treat
the computer as a DTE or a DCE? The RS-232C standard implies that if
a terminal is at one end of the link, then the other end should be a DCE.
So, if you were connecting a terminal to a Unix workstation, the RS-232C
standard would like the workstation to be a DCE (Figure1). Conversely, if
you were connecting a modem to a computer, the computer should be a
DTE (Figure2). It's all a bit schizophrenic.

Figure 1. DTE device connected to a computer

Figure 2. DCE device connected to a computer

Manufacturers, when faced with this problem, arbitrarily chose one or the
other. The IBM PC has a DTE-type connector, whereas the makers of
Unix workstations (such as Sun Microsystems) often choose to make
their machines with DCE connectors, since they are more likely to be
connected to terminals. To connect a PC to a modem, you need a DTE-
DCE cable. To connect a PC to a terminal, you need a DTE-DTE cable.
To connect a Sun workstation to a terminal, you need a DCE-DTE cable.
To connect a Sun to a modem you need a DCE-DCE cable. To connect
a Sun to another Sun, you need a DCE-DCE null modem cable (where
Rx and Tx cross over), and to connect a Sun to a PC, you need a DCE-
DTE null modem cable. If, however, you need to connect two PCs
together, you need a DTE-DTE null modem cable. So, for just two types
of device (DTE and DCE), you need six types of cable to cope with the
permutations! Variety, as they say, is the spice of life, but it's the bane of
RS-232C!

Table shows the "standard" connections for RS-232C, for both 25-pin
and 9-pin connectors. The signal names are DTE-relative. For example,
Tx refers to data being transmitted from the DTE but received by a DCE.

Embedded systems
 Note

129

Many of these signals are intended for modem control. To form a very
simple link between a computer and a terminal, the only signals required
are Tx, Rx, and SG. Many systems tie FG and SG together.

Shake Hands

When two remote systems are communicating serially, there
needs to be some way to prevent the transmitter from sending new data
before the receiver has had a chance to process the old data. This
process is known as handshaking, or flow control. The way it works is
simple. After transmitting a byte (or data packet), the transmitter will not
send again until it has been given confirmation that the receiver is ready.
There are three forms of handshaking: hardware, software, and none.

The no-handshaking option is obviously the simplest and is used
in situations where the transmitting system is much slower in preparing
and sending data than the receiver is in processing. For example, if you
had a small, embedded computer running at a pokey 1 MHz that was
feeding data into a high-speed computer system running at 4 GHz, it
would not be unreasonable to assume that the faster machine would be
able to keep up. However, if the faster machine is running a certain
popular operating system (renowned for poor responsiveness to real-
time events), it may very well be the case that it may not be able to keep
up. In this case, handshaking would be required, and it's probably good
practice to incorporate it anyway. If you're using the serial port to provide
a human interface to your computer, then you can safely assume that no
human will type faster than your computer can handle. So, for serial
ports used solely for user access or debugging purposes, you can skip
the handshaking.

Hardware handshaking in RS-232C uses two signals, RTS
(Request To Send) and CTS (Clear To Send). When the transmitter
wishes to send, it asserts RTS, indicating to the receiver that there is

Embedded systems
 Note

130

pending data. The receiver asserts CTS when it is ready, indicating to
the transmitter that it may send. In this way, the flow of data is limited to
the rate at which it may be processed.

Software handshaking, also known as XON/XOFF, is used where
it is not possible to have hardware handshaking between the transmitter
and receiver, such as when the transmission occurs over a phone line.
Software handshaking chooses two characters to represent a request to
"suspend transmission," and a "clear to resume." These are normally the

characters Ctrl-S (0x13) and Ctrl-Q (0x11). The caveat is that you then

can't have these characters as part of the transmitted file, because they
would be interpreted as flow control by the receiver and not as received
data. If you're only sending ASCII text, this is not a problem, but it can be
a real headache if you're sending binary data. The common solution is to
preprocess the binary data prior to transmission and convert it to ASCII

representation. For example, the byte 0x2F becomes the ASCII

characters "2" (0x32) and "F" (0x46). Software on the receiving end

converts the ASCII characters back into binary data again. Examples of

software that will do this are uuencode under Unix and BinHex under

Mac OS.

Implementing an RS-232C Interface

Adding an RS-232C interface to a system is easy. Most
microcontrollers (except the very tiny) incorporate a UART within the
chip, so all that is required is an external level shifter to convert the serial
transmissions to and from RS-232C levels. Maxim makes a huge range
of RS-232C interface chips (level shifters) that greatly simplify your
design. No matter what your specific conversion requirements, doubtless
there's a Maxim part to meet your need. A good generic choice is the
MAX3222 transceiver. Since nearly all RS-232C transceivers are used in
the same way, looking at a design with a MAX3222 provides a good
example of what to do for any transceiver. Unlike many other level
shifters, the Maxim parts can operate from a low supply voltage, in the
range of 3.0 V to 5.5 V. Many other manufacturers' devices need
supplies of +12 V and -12 V, and therefore require additional voltage
regulators. The MAX3222 consumes minimal power (1 mA in normal
operation and as low as 1 uA in shutdown mode), making it ideal for
portable and battery-powered applications. If the ability to shut down the
serial port into low-power operation is not required, the MAX3232 can be
substituted. It is functionally the same, except that it lacks shutdown
capability.

Using the MAX3222 is trivial, as there is almost no design work
involved at all. The only external support components required are
capacitors for the chip's internal charge pumps. These pumps generate
the +12 V and -12 V voltages required for RS-232C transmission, and
they do so without requiring (additional) external voltage regulators.
Figure shows the schematic.

Figure :RS-232C interface using a MAX3222

Embedded systems
 Note

131

The capacitor C1 must be a minimum of 0.1 uF. If you are operating the
chip at less than 3.6 V, C2, C3, and C4 can also be 0.1 uF. If the supply
voltage is to be as high as 5.5 V, then C2, C3, and C4 must be a
minimum of 0.47 uF. Since these are minimum values, larger capacitors
may be used. However, if C1 is increased, then the remaining capacitors
must also be increased accordingly. C5, the decoupling capacitor for
VCC, is nominally 0.1 uF. All capacitors should be as close to the
appropriate pins of the chip as possible.

The only remaining connections are the serial data lines from the
UART and the signals to the RS-232C connector. If you are
implementing a minimal serial interface, only Rx, Tx, and ground are
required. RTS and CTS are optional. The RS-232C connector may be
either a 25-pin or a 9-pin DB connector (its shape looks like the letter
"D"). However, the connector could also be just a row of pins, a parallel
header, or even just wires soldered directly onto the PCB.

The MAX3222 has two control inputs, SHDN(shutdown) and
EN(enable). SHDN places the RS-232C transmitters in high impedance,
thereby disabling them. This reduces the chip's current consumption to
less than 1 uA. When in shutdown mode, the receivers are still active.
Thus, the UART is still able to receive data even if the MAX3222 is in
low-power mode. If SHDN is not required, just connect it directly to VCC.

 Similarly, EN is used to control the receiver outputs. Placing high
puts the receiver outputs into high impedance, while the transmitter
outputs are unaffected. To enable the receivers, EN is asserted (pulled
low). If disabling the receivers is not required, then tie EN to ground to
permanently activate them.

Embedded systems
 Note

132

If needed, SHDN and EN may be controlled by a microcontroller's I/O
lines, or by simple digital outputs using a latch.

The MAX3222 is sufficient to implement a minimal RS-232C
interface, using just Rx, Tx, and ground. It also has additional drivers to
support RTS and CTS, allowing for basic flow control. Should you
require a full RS-232C interface, the MAX3241 is a good choice. Its
operation is similar to the MAX3222, but it has additional transceivers
allowing the inclusion of DTR, DSR, DCD, and RI for modem control.
The MAX3421 may also be used to interface to a serial mouse, since it is
able to meet the appropriate voltage and current requirements.

Using a Serial Port as a Power Supply

If an embedded system is to be permanently connected to a host
computer via an RS-232C serial interface, it is possible to parasitically
power the embedded system from the serial interface. Many RS-232C
signals go unused and can supply a moderate amount of current,
nominally 50 mA. However it can vary (considerably) from device to
device, and, as always, you should check the specific system to which
you are interfacing. If your embedded system requires less than this for
its total current draw, you can use an RS-232C control signal for power.

For instance, the RTS (Ready To Send) or DTR (Data Terminal
Ready) signals may not be used in many RS-232C applications. Either
can be used as the power input to a voltage regulator, and thereby
provide the system with power. The host computer therefore uses RTS
of its serial port as the power control for the embedded system. Under
software, the host sends RTS high, and the embedded system is
powered up. If the host sends RTS low, the embedded system is
powered down. The caveat to all this is to ensure that your embedded
system's current draw is low enough so that it can be powered by RTS.
The advantage of this technique is that you require no external power
supply for your embedded system. It works, as if by magic, whenever it
is plugged into a serial port. The catch is that you can't then use that RS-
232C control signal for its original purpose. It must turn on and stay on to
provide your embedded computer with power.

A sample schematic of this is shown in Figure, which also
includes an RS-232C interface for a microcontroller, using a MAX3232.
Note the diode, D1. Since RTS will be a negative voltage (as low as -15
V) when low, some protection is required for the voltage regulator, since
it is not designed to have its input taken below zero volts. The diode can
be any garden-variety power diode, such as a 1N4004, and will conduct
only when RTS is positive. The voltage regulator (MAX604) converts the
voltage from RTS to a supply of 3.3 V for the embedded system. If we
required a supply of 5 V, we'd simply use a MAX603 instead. The circuit
would otherwise be the same. The output of the regulator is smoothed by
the capacitor C5, and a power-on LED is provided to show us when we
have power. The MAX3232 sits between the RS-232C port and the
processor, level-shifting the serial transmissions from the processor's
logic levels to RS-232C, and vice versa.

Embedded systems
 Note

133

Figure: Using RTS as a power source in a low-powered embedded
system

There we have the basics of RS-232C. It's a very common interface that
is easy to use, but it does have its limitations and quirks. It was originally
intended for connecting dumb terminals and teletypes to modems, not
for interconnecting computers and peripherals. A better choice is RS-
422, designed for more robust and versatile serial connections.

RS-422

Unlike RS-232C, which is referenced to local ground, RS-422
uses the difference between two lines, known as a twisted pair or a
differential pair, to represent the logic level. Thus, RS-422 is a balanced
transmission, or, in other words, it is not referenced to local ground. Any
noise or interference will affect both wires of the twisted pair, but the
difference between them will be less affected. This is known as common-
mode rejection. RS-422 can therefore carry data over longer distances
and at higher rates with greater noise immunity than RS-232C. RS-422
can support data transmission over cable lengths of up to 1,200 meters
(approximately 4,000 feet).

Figure shows a basic RS-422 link, where a driver (D) of one
embedded system is connected to a receiver (R) of another embedded
system via a twisted pair. The resistor, Rt, at receiving end of the twisted
pair is a termination resistor. It acts to remove signal reflections that may
occur during transmission over long distances, and it is required. Rt is

nominally 100-120 .

Figure :RS-422

Embedded systems
 Note

134

The voltage difference between an RS-422 twisted pair is
between ±4 V and ±12 V between the transmission lines (Figure). RS-
422 is, to a degree, compatible with RS-232C. By connecting the
negative side of the twisted pair to ground, RS-422 effectively becomes
an unbalanced transmission. It may then be mated with RS-232C. Since
the voltage levels of RS-422 fall within the acceptable ranges for RS-
232C, the two standards may be interconnected. RS-422 was the serial
interface found on early Apple Macintosh computers, quietly dropped
with the coming of the iMacs.

Figure: RS-422 voltage levels

There is a wide variety of RS-422 interface chips available. Figure shows
a simple RS-422 bidirectional interface implemented using two Maxim
MAX3488s. The Tx and Rx pairs of each MAX3488 are connected to
UARTs within each embedded system, just as we did with RS-232C.

Figure : Bidirectional RS-422 interface

Embedded systems
 Note

135

It's important to note that RS-422 specifies only the voltages for the
standard, not the physical implementation (pinouts or connectors). That
is covered by RS-449. Now, no one seems to bother with RS-449,
mainly because it is unnecessarily complex for most uses. People using
RS-422 just seem to do their own thing, picking whatever cable and
connectors (and pinouts!) they feel are appropriate for their application.
Self-expression and RS-422 seem to go hand in hand.

Some RS-422 interface chips have an optional enable input.
When enabled, the chip outputs and drives a transmission onto the
twisted pair. When disabled, the chip's output is high-impedance, and the
chip appears "invisible." Because of the ability of the interface chip to
"disappear" from the connection, it is possible to have multiple interface
chips (and therefore more than two embedded systems) connected to
the twisted pair. In this way, it is possible to extend RS-422 into a low-
cost, robust, simple network. When implemented in this fashion, it
becomes RS-485.

RS-485

RS-485 is a variation on RS-422 that is commonly used for low-
cost networking and in many industrial applications. It is one of the
simplest and easiest networks to implement. It allows multiple systems
(nodes) to exchange data over a single twisted pair (Figure).

RS-485 is based on a master-slave architecture. All transactions
are initiated by the master, and a slave will transmit only when
specifically instructed to do so. There are many different protocols that
run over RS-485, and often people will do their own thing and create a
protocol specific to the application at hand.

Figure:RS-485 network

The interface to the RS-485 network is provided by a transceiver, such
as a Maxim MAX3483 (Figure).

Figure: RS-485 transceiver

Embedded systems
 Note

136

The MAX3483 is just an RS-422 transceiver with enable inputs,
and using it in a design is straightforward. On the network side, the
MAX3483 has two signal lines, A and B. This is the twisted pair (network
cable) attachment point. The MAX3483 also has Data In (DI) and
Receiver Out (RO). These are connected to the Tx and Rx signals of the
UART (or microcontroller), respectively.

Since it is connected to a common network on which it must both
listen and transmit, it has two control inputs, Data Enable (DE) and
Receiver Enable (DE). A high input to DE allows the DI input to be
transmitted on the network. A low input to DE disables the output of the
transmitter. Similarly, a low input to enables the receiver, and network
traffic is passed through to RO. DE and are normally controlled by an
I/O line of the processor. Now, you'll notice that DE is active high, and is
active low. This is not by chance. A node on the network won't be
receiving traffic if it's transmitting and, conversely, won't be transmitting if
it is receiving. Therefore, only one of the two—the transmitter or the
receiver—should be active at any one time. If the transmitter is on, the
receiver should be off, and vice versa. The control for the transmitter is
therefore the logical opposite of the control for the receiver. By having
DE active high and active low, a single control line may be used for
both. Figure shows a MAX3483 interfaced to a microcontroller in this
way. The microcontroller normally has DE/ low so that it is listening to
network traffic. When it wishes to transmit, it sends DE/ high. Upon
completion of transmission, it returns DE/ low and resumes listening.

Figure: Connecting a MAX3483 to a microcontroller

Embedded systems
 Note

137

RS-485 may be implemented as half duplex, where a single twisted pair
is used for both transmission and reception (Figure1), or full duplex,
where separate twisted pairs are used for each direction (Figure2). Full-
duplex RS-485 is sometimes known as four-wire mode. Note that for full-
duplex operation, the MAX3483s are replaced with MAX3491s that have
dual network interfaces.Figure1. Half-duplex RS-485

Figure: Full-duplex RS-485

These examples show four computers (nodes) connected to an RS-485
network. Each RS-485 interface chip (MAX3483 or MAX3491) exists in a
separate embedded computer. The UART transmitter output, Tx, in each
embedded system is connected to the respective DI of each of the RS-
485 interface chips. Similarly, RO connects to the Rx input of each
UART. The driver of each RS-485 interface chip is enabled by asserting
DE, and, similarly, reception is enabled by asserting .

Normally, all systems connected to the RS-485 network have
their receivers enabled and listen to the traffic. Only when a system
wishes to transmit does it enable its driver. There are a number of formal
protocols that use RS-485 as a transmission medium, and twice as many
homespun protocols as well. The main problem you need to avoid is the
possibility of two nodes of the network transmitting at the same time. The
simplest technique is to designate one node as a master node and the

Embedded systems
 Note

138

others as slaves. Only the master may initiate a transmission on the
network, and a slave may only respond directly to the master, once that
master has finished.

The number of nodes possible on the network is limited by the
driving capability of the interface chips. Normally, this limit is 32 nodes
per network, but some chips can support up to 512 nodes.

USB

 In previous chapter, we looked at RS-232C, that old standard of
communication that's not so standard after all. RS-232C has lots of
problems and lots of limitations. Getting any two RS-232C devices to talk
is not as simple as it could or should be. You need the right cable with
the right sort of connectors, and then you need to manually co-ordinate
the communication parameters such as data rate, parity, and
handshaking. At best it is a nuisance, at worst a headache. For hardware
manufacturers, it presents a dilemma. Your goal in developing your
product should be to make that product as easy to use as possible. You
don't want users stumbling around with incorrect cables, manually
configuring settings, and failing to seamlessly integrate your product with
the rest of their system. This doesn't make for a happy user.

Universal Serial Bus (USB) is the solution. It allows peripherals
and computers to interconnect in a standard way with a standard
protocol and opens up the possibility of "plug and play" for peripherals.
USB is rapidly dominating the desktop computer market, making RS-
232C an endangered species. Apple Macintoshes no longer have RS-
232C/RS-422 ports, and soon all PCs will go the same way. Therefore,
an understanding of USB (and how to build a USB port) is critical if you
wish to interface your embedded computer to the desktop machines of
the near future. USB supports the connection of printers, modems, mice,
keyboards, joysticks, scanners, cameras, and much more.

USB opens a wealth of possibilities, but developing with it is more
complex than with RS-232C. USB has the advantage (for the user) that
devices interact with the host computer's OS. No manual setup is
required. However, it does add an extra layer of complexity to your
software, since your embedded code must interact with the host in the
appropriate way. USB can even provide power to peripherals through the
same cable as data. No external power supply (or power cable) is
required. So for the user, a USB peripheral is simplicity itself.

In this chapter, you'll get an overview of USB and then go on to
see how you can incorporate a USB interface into your embedded
system. The protocols and specifications for USB are long and complex,
and well beyond the scope of this book. Fortunately, to design USB-
based hardware, the task is much simpler. We'll simply take an overview
and then look at a physical USB implementation.

Embedded systems
 Note

139

Introduction to USB

There are two specifications for USB: USB 1.1 and USB 2.0.
USB 2.0 is fully compatible with USB 1.1. USB supports data rates of 12
Mbps and 1.5 Mbps (for slower peripherals) for USB 1.1, and data rates
of 480 Mbps for USB 2.0. Data transfers can be either synchronous or
asynchronous. USB is a high-speed bus that allows up to 127 devices to
be connected (Figure). No longer are having only one or two ports on
your computer a limitation. Further, one standard for cables and
connectors eliminates the confusion that existed with RS-232C. Devices
are able to self-identify to a host computer, and they can be hot-
swapped, meaning that the systems do not need to be powered down
before connection or disconnection.

Figure :USB allows a host to connect with a variety of peripherals

The basic structure of a USB network is a tiered star. A USB
system consists of one or more USB devices (peripherals), one or more
hubs, and a host (controlling computer). The host computer is
sometimes known as the host controller. Only one host may exist in a
USB network. The host controller incorporates a root hub, which
provides the initial attachment points to the host. The hubs form nodes to
which devices or other hubs connect, and they are (largely) invisible to
USB communication. In other words, traffic between a device and a host
is not affected by the presence of hubs.

Hubs are used to expand a USB network. For example, a given
host computer may have five USB ports. By connecting hubs, each with
additional ports, to the host, the physical connectivity of the system is
increased (Figure). Many USB devices, such as keyboards, incorporate
inbuilt hubs allowing them to provide additional expansion as well as
their primary function. Figure: USB is expandable using hubs

Embedded systems
 Note

140

The host will regularly poll hubs for their status. When a new
device is plugged into a hub, the hub advises the host of its change in
state. The host issues a command to enable and reset that port. The
device attached to that port responds, and the host retrieves information
about the device. Based on that information, the host operating system
determines what software driver to use for that device. The device is
then assigned a unique address, and its internal configuration is
requested by the host. When a device is unplugged, the hub advises the
host of the change in state when polled, and the host removes the
device from its list of available resources. The detection and
identification of USB devices by a host is known as bus enumeration.

USB "knows" about and supports different classes of devices.
Each class represents the functionality that the device can provide to the
host. Some sample classes (and sample devices) are listed in Table. A
single, physical USB peripheral can encompass several classes.

Embedded systems
 Note

141

USB Packets

There are four types of transfers that can take place over USB. A
control transfer is used to configure the bus and devices on the bus, and
to return status information. A bulk transfer moves data asynchronously
over USB. An isochronous transfer is used for moving time-critical data,
such as audio data destined for an output device. Unlike a bulk transfer,
which can be bidirectional, an isochronous transfer is uni-directional and
does not include a cyclic-redundancy-check (CRC) field. An interrupt
transfer is used to retrieve data at regular intervals, ranging from 1 to
255 milliseconds.

Data is transferred between USB devices using packets, and a
transfer can comprise one or more packets. A packet consists of a
SYNC (synchronization) byte, a PID (Packet ID), content (data, address,
etc.), and a CRC.

The SYNC byte phase locks the receiver's clock. This is
equivalent to the start bit of an RS-232C frame. The PID indicates the
function of the packet, such as whether it is a data packet or a setup
packet. The upper four bits of the packet ID are the inverse of the lower
four bits, for additional error checking. For example, the packet ID for a
data packet is 0x3C. In binary, this is %0011 1100.

USB packets can be one of four types: token, data, handshaking,
or preamble.

Embedded systems
 Note

142

Tokens are 24-bit packets that determine the type of transfer that
is to take place over the bus. There are four types of token packet
(Figure). A token packet consists of a SYNC byte, a packet ID (indicating
packet type), the address of the device being accessed by the host, the
end-point address, and a 5-bit CRC field. The end-point address is the
internal destination of the data within the device.

Figure: USB token packets

There are two types of data packet, known as DATA0 and DATA1
(Figure). The transmission of data packets alternates between the two
types. A single data packet can transfer between 0 and 1,023 bytes, and
the data packet's CRC is 16 bits due to the larger packet size. Figure:
USB data packets

There are three types of handshaking packets (Figure). A successful
data reception is acknowledged with an Ack packet. The receiver notifies
the host of a failed transmission by sending a Nak (No Acknowledge)
packet. A Stall is used to pause a transfer.

Figure: USB handshaking packets

Embedded systems
 Note

143

A descriptor is a data packet used to inform the host of the capabilities of
the device. It contains an identifier for the device's manufacturer, a
product identifier, class type, and the device's internal configuration,
such as its power needs and end points. Each manufacturer has a
unique ID, and each product in turn will also have a unique ID. Software
on the host computer uses information obtained from a descriptor to
determine what services a device can perform and how the host can
interact with that device.

 Physical Interface

USB uses a shielded, four-wire cable to interconnect devices on
the network (Table 11-2). Data transmission is accomplished over a
differential twisted pair (much like RS-422/485) labeled D+ and D-. The
other two wires are VBUS, which carries power to USB devices, and GND.
Devices that use USB power are known as bus-powered devices, while
those with their own external power supply are known as self-powered
devices. To avoid confusion, the wires within a USB cable are color-
coded.

Connector pin Signal Purpose Wire color

1 VBUS USB device power (+5V) Red

3 D+ Differential data line Green

2 D- Differential data line White

4 GND Power and signal ground Black

Some USB chips refer to D+ and D- as DP and DM, respectively.

The connection from a device back to a host is known as an
upstream connection. Similarly, connections from the host out to devices
are known as downstream connections. Different connectors are used
for upstream and downstream ports, with the specific intention of
preventing loopback. The only way to connect a USB network is a tiered
star. USB uses two types of plugs (jacks) and two types of receptacles
(sockets) for cables and equipment. The first type is Series A, shown in
Figure. Series A connectors are for upstream connections. In other

Embedded systems
 Note

144

words, a series A receptacle is found on a host or hub, and a series A
plug is at the end of the cable that attaches to the host or hub.

Figure: Series A plug and receptacle

Series B connectors are shown in Figure. A series B receptacle is found
on a USB device, and a series B plug is at the end of the cable coming
downstream from a host or hub.

Figure: Series B plug and receptacle

Figure shows how this works in practice. This ensures that USB devices,
hosts/hubs, and USB cables are always connected in the right way. It
should not be possible to have a cable plugged in the wrong way or to
directly connect two USB peripherals.

Figure: USB connectors and cable

Since a hub will be connected to USB devices downstream and to a USB
host or hub upstream, it will have both types of receptacle (Figure).

Figure: Receptacles on a USB hub

Embedded systems
 Note

145

Chips that implement a USB interface require very few external
components for the USB port. The schematic for an upstream port is
shown in Figure.

Figure: Upstream USB port

In this example, the embedded system is powered from the USB port. If
the embedded computer has its own power source, then no connection
is made between VCC and pin 1 (VBUS) of the USB connector. The pull-
up resistor connected to DP is required only on upstream ports. If you
are implementing downstream ports on a hub, the pull-up is not required.
However, downstream ports require pull-down resistors on both DP and
DM (Figure).

Figure. Downstream USB port

Embedded systems
 Note

146

In both figures, DP and DM have series resistors (RT) that terminate the
USB connection. The total resistance of the termination should be 45Ω.
However, the pins of the USB controller will have inherent impedance
that will need to be taken into account. If the pin impedance is 21Ω (say),
then the series resistors should be 24Ω. The catch here is that not all
chip manufacturers are thorough enough to specify the pin impedance in
their technical data. In such cases, you can either hound the
manufacturer for the data, or take a punt. Ballpark values for the series
resistors should be between 20Ω and 30Ω. Many microcontrollers, such
as the Microchip PIC16C745 and PIC16C765, include USB modules as
part of their suite of I/O. Implementing USB with such processors is
easy. You simply need to add the physical interface to the DP and DM
pins of the processor. However, if the chip you have chosen to use as
the primary embedded processor does not include USB, you have to
provide USB functionality with an external device.

Implementing a USB Interface

One possible solution to implementing USB in your embedded
system is to use a USB-to-SPI bridge, such as the Atmel AT76C711.
This chip is an AVR processor with a USB subsystem, designed to act
as a slave USB controller to a host processor. It has 2K of data RAM, 2K
of dual-port RAM for packet processing, 16K of program RAM (organized
as 8K x 16 words), an inbuilt DMA controller, an upstream USB port (with
one control and five data end points), a separate IrDA-compatible UART,
and SPI. The processor may be run at up to 24 MHz and operates off a
3.3 V supply. At reset, the AT76C711 automatically loads its software
from an external AT45DBxxx data flash to the program RAM. Since the
AT76C711's program space is small, one of the smaller AT45DBxxx data
flashes will be sufficient. Alternatively, a host processor may load the
AT76C711's code directly into its program RAM while it is held in reset.

The AT76C711 may act as a standalone processor, performing
USB bridging functions to RS-232C, RS-422/RS-485, IrDA, or other
protocols. Alternatively, it may be incorporated as a slave processor in a
larger embedded system. The host processor may communicate with the
AT76C711 either via SPI or by a standard serial interface through one of
the AT76C711's UARTs. The AT76C711 also has general-purpose I/O
lines and a UART module that supports RZ encoding for IrDA.

If the processor you are using has a bus interface, then you can
add USB using a chip such as the USS-820D by Agere Systems. It
supports transfers of up to 12 Mbps and is specifically designed for use
in USB devices, unlike a lot of USB chips that are intended for use in
hubs. It can support up to eight endpoints, each with receive and
transmit buffers of up 1,120 bytes.

The schematic of an upstream USB interface, using the USS-
820D, is shown in Figure. This chip is available in two footprints; the

Embedded systems
 Note

147

MQFP is shown in this circuit. For both footprints, the signals are the
same. The only difference is the pin numbering.

The USS-820D has several power-supply inputs (VDDA, VDDT, VDD0, VDD1),
all of which operate from a 3.3 V supply (VDD in the schematic). Each
power pin is decoupled to ground using a 100 nF capacitor. The 5 V
power (VBUS) available from the USB connector cannot be used to drive
the USS-820D directly. However, a MAX604 voltage regulator circuit will
convert VBUS to the required 3.3 V supply. The USS-820D also has
numerous ground pins (VSST, VSSX, VSS0, VSS1, VSS2), all of which are
connected to ground. Even though this chip uses a 3.3 V supply, its
digital (non-USB) inputs are compatible with 5 V logic, and so it may be
interfaced directly to a processor operating on a 5 V supply.

XTAL1 and XTAL2 are the connections for a 12 MHz crystal, providing
timing for the USB controller.

The connections to a microprocessor are straightforward. The
USS-820D's data pins, D0 through D7, connect directly to the
processor's data bus. Similarly, the low-order address pins, A0 through
A4, connect to the corresponding signals from the processor. These
address bits are used to select internal registers within the USS-820D.
The processor's read (RD) and write (WR) signals connect directly to
USS-820D's read (RDN) and write (WRN) pins. (Agere places an "N"

Embedded systems
 Note

148

after pin names that are active low.) The USS-820D is selected when
IOCSN is asserted low. Therefore, this pin is driven from an address
decoder output (which I've labelled USB-SELECT in the schematic).

The USS-820D is reset when its RESET pin is sent high (not low
like most other devices). So, for normal operation this pin should be held
low. To allow the USS-820D to be reset under software control, this pin
could be driven by a processor digital output line.

The USS-820D has a number of outputs that may be used to
notify a host processor of the current USB status. DSA (Data Set
Available), USBR (USB Reset detected), SUSPN (Suspend), and SOFN
(Start Of Frame) may either be read as digital inputs by the host
microcontroller, or, for processors that have several interrupt inputs,
these signals may be used to generate an interrupt. If the host processor
has only a limited interrupt capability, all of these events will trigger the
USS-820D interrupt pin (IRQN). This pin can therefore serve as the sole
interrupt input to the processor. A word of caution, however: this pin can
be configured under software control to be either active high or active
low. Getting this wrong can put your embedded system in a permanent
state of interrupt. The default state for this pin is active low, which suits
most processors. For processors that have active-high interrupts, such
as Intel processors, the firmware should configure USS-820D for the
correct interrupt polarity before enabling the processor's interrupt-
handling capability.

The RWUPN pin is an input that signals a Remote Wake-Up
condition. In other words, this embedded system has been asleep (in
suspend mode) and has awoken. This pin notifies the USS-820D of the
change in state so that it can alert other USB systems. RWUPN is simply
driven by a processor digital output line.

The USB differential data signals are pins DPLS (Data Plus, D+)
and DMNS (Data Minus, D-). These are connected to the USB connector
through series-termination resistors. Agere Systems suggests a nominal
value of 24Ω. For an upstream connection, DPLS (D+) requires a pull-up
resistor of 1.5 kΩ. Normally, this resistor is connected to +5 V. However,
the USS-820D provides a special pin (DPPU) specifically for this
purpose. Thus, under software control, the USS-820D can simulate a
USB-device disconnect. It will appear to an upstream hub that the
system containing the USS-820D has been physically disconnected,
even though it is still attached. This can be useful during development
and testing. It also allows the USB device to decide whether or not a
host knows it is connected. DPPU may be decoupled to ground using a
10 nF capacitor. Chips such as the USS-820D make adding USB
functionality to your embedded hardware simple and easy. Through
USB, you can develop peripherals based on embedded processors for
desktop computer systems. Alternatively, you can use USB to connect
existing peripherals to your embedded computer to further increase its
functionality.

Embedded systems
 Note

149

Summary:

 The Serial Peripheral Interface (known as SPI) was developed by

Motorola to provide a low-cost and simple interface between
microcontrollers and peripheral chips.

 SPI uses four main signals: Master out Slave in (MOSI), Master
in Slave out (MISO), Serial CLOCK (SCLK or SCK) and Chip
Select (CS) for the peripheral.

 The Maxim DS1305 Real-Time Clock (RTC) provides
timekeeping services and tracks seconds, minutes, hours, day of
the month, month, day of the week, and year.

 The AD5203 has a Serial Data Input (SDI), which is connected to
the processor's MOSI output.

 The internal memory of microcontrollers is very small, and their
data storage capabilities are severely limited.

 The EEPROM is the Atmel AT25640. This device will hold data
for at least 100 years without power, and will endure more than
one million write cycles.

 I2C (Inter-Integrated Circuit) bus is a very cheap yet effective
network used to interconnect peripheral devices within small-
scale embedded systems.

 The simplest form of serial interface is that of the Universal
Asynchronous Receiver Transmitter (UART). UARTs are also
sometimes called Asynchronous Communication Interface
Adapters (ACIAs).

 RS-232C is used for interfacing serial devices over cable lengths
of up to 25 meters and at data rates of up to 38.4 kbps.

 When two remote systems are communicating serially, there
needs to be some way to prevent the transmitter from sending
new data before the receiver has had a chance to process the old
data. This process is known as handshaking, or flow control.

 Hardware handshaking in RS-232C uses two signals, RTS
(Request To Send) and CTS (Clear To Send).

 Figure shows a basic RS-422 link, where a driver (D) of one
embedded system is connected to a receiver (R) of another
embedded system via a twisted pair.

Embedded systems
 Note

150

 There are two specifications for USB: USB 1.1 and USB 2.0.
USB 2.0 is fully compatible with USB 1.1. USB supports data
rates of 12 Mbps and 1.5 Mbps (for slower peripherals) for USB
1.1, and data rates of 480 Mbps for USB 2.0.

Question:

 Write short notes on serial peripheral Interface?

 How ADS1305 is interfaced with a micro controller?

 How a digital potentiometer is interfaced through ISP?

 Write a short notes on I2C communication?

 What is UART? How error is detected in UART?

 Write a short notes on USB?

 Write notes on following interfaces

a) RS232 b)RS432 c)RS485

References:

 An_Embedded_Software_Primer by David E simon

 Mathai Joseph, Real-time Systems: Specification, Verification
and Analysis, Prentice Hall International, London, 1996

 Comp.realtime FAQ, newsgroup comp.realtime

 Real-time Embedded Software Systems: An Introduction S.
Agrawal & P. Bhatt http://www.embedded.com

 Michael Barr, Programming Embedded Systems in C and C++,
O’Reilly Associates, August 1999.

Embedded systems
 Note

151

9. ANALOG

Objective:

In this chapter, we'll look at how you sample external
voltages and convert these into digital values for processing by
your embedded system. Such voltages may be generated by
sensors and may represent light levels, temperature, or vibration.
Or perhaps the voltages are the output of a microphone or audio
system and need to be converted into digital data. Later, we'll take
a look at how you turn digital data into an analog output voltage.
We'll conclude the chapter with hardware to control electric
motors.

First, though, let's take a quick look at amplifiers and
sampling theory. Note that this is a very complex field. Since the
background theory is well beyond the scope of this book, we'll just
take an overview, giving enough background to allow you to
interface your embedded system to simple analog circuitry. This
discussion is by no means exhaustive, and it is deliberately
simplified.

Amplifiers

Amplifiers are used to interface one analog circuit to another. An
amplifier is a circuit that increases (or decreases) a given input voltage to
produce an output voltage. For example, say you had a sensor that
produced a maximum output that was 5 mVpp, and this was to be
interfaced to a sampling system that required an input signal of 5 Vpp.
You would use an amplifier between the sensor and the sampling
system to increase the sensor's output accordingly (Figure).

Figure . Amplifying a waveform

The waveform of the amplifier's output signal should be identical
to the input signal; only its amplitude will have changed. The amount of
increase or decrease in the signal is known as the gain of the amplifier.
Gain is calculated easily by dividing the output voltage by the input
voltage:

Embedded systems
 Note

152

Gain = VOUT / VIN

Thus, an amplifier that doubles the input signal will have a gain of
2. The ability of a circuit to respond to a changing signal is typically
limited to a given range of frequencies. This is known as the frequency
response of a circuit. For example, the amplifier in your home stereo
may have a frequency response of 20-20 kHz. This means that it will
amplify audio signals that have a frequency between 20 Hz (low bass)
and 20 kHz (high treble). Try to pump a 100 MHz signal into the audio
amp and it simply will not be able to amplify the signal. The signal is said
to be outside its frequency range.

Ideally, the frequency response of a circuit, such as the audio
amplifier, should be flat over its frequency range. This means that its
response to an input signal will be the same, no matter the frequency
(within the appropriate range). So, in the case of the audio amp, the gain
will be constant for any frequency of signal in the appropriate range.
Thus, the volume will not vary with frequency (ignoring any differences
due to the original music). At either end of the frequency range, the
ability of the amplifier to perform ideally degrades. At these extremes of
frequency, the amplifier's gain diminishes. This is known as roll off.
Some small degree of roll off is considered acceptable (and
unavoidable). The frequency response is normally defined as the
frequency range where the gain is within a certain limit of the ideal.

The limitation of an amplifier to replicate the input signal at its
output is the distortion of the amplifier. For audio amplifiers, you'll
sometimes see the term Total Harmonic Distortion(THD) listed in the
specifications. The smaller this number is, the better the amplifier.

In days of old, amplifiers were constructed using discrete
transistors[*] or vacuum tubes (also known as valves). These days,
amplifiers are available packaged in integrated circuits. These amplifiers
are known as operational amplifiers, or op amps for short. They make
the designer's life much easier. They are cheap, reliable, and so very
easy to use. Throughout this chapter, whenever we need to amplify a
circuit, we'll use an appropriate op amp for the job. The schematic
symbol for an op amp is shown in Figure.

Figure . Schematic symbol for an op amp

The input marked with "+" is known as the noninverting input, and
the input marked with "-" is the inverting input. If the voltage present at
the noninverting input is greater than that present at the inverting input,
the output of the op amp is positive. Conversely, if the noninverting input
is less than the inverting input, the output is negative. Typically, an op

Embedded systems
 Note

153

amp's output will not go as low as its negative power supply, nor as high
as its positive power supply, due to the limitations of the internal circuitry.
An op amp whose output voltage range does span the difference
between its positive and negative power supplies is said to have rail-to-
rail operation.

In order to function correctly, an op amp requires feedback.
Feedback involves coupling the output of an amplifier back to its input.
Negative feedback uses the output to reduce the gain of the amplifier
and, in doing so, improves the amplifier's other characteristics, such as
the flatness of the frequency response and immunity to distortion.
Negative feedback is achieved simply by connecting a resistor between
the output and the inverting input, as we will shortly see. (A circuit with
no feedback is said to be open-loop.) Op amps are designed in such a
way as to make the output change to cancel the difference between the
inputs via a feedback resistor. Thus, the output waveform follows the
difference between the input waveforms. The magnitude of the output is
proportional to the feedback resistor. The larger the resistor, the more
the feedback of the output is attenuated. Thus, the op amp makes the
output larger to compensate. In this way, the output is an amplified
version of the input.

An op amp may either be used as an inverting amplifier (Figure)
or a noninverting amplifier (Figure). An inverting amplifier "flips" the
signal in addition to amplifying it.

Figure. Inverting amplifier

The gain of an inverting amplifier is given by:

Gain = - R2 / R1

Note the minus sign. That's because this amplifier inverts the signal.

You are more likely to use a noninverting amplifier (Figure), which
doesn't flip the signal. These are commonly used in audio and sensor
applications.

Figure. Noninverting amplifier

Embedded systems
 Note

154

The gain of a noninverting amplifier is given by:

Gain = 1 + R2 / R1

The gain of the amplifier may be set under software control by using a
digital potentiometer for R2.

A differential amplifier (Figure) multiplies the difference between
two input signals and is used to amplify small signals that may be subject
to noise. By amplifying the difference between the signal of interest and
a reference, any noise present is reduced (since the noise will affect both
the signal and the reference equally). When both inputs to a differential
amplifier change in the same way, this is known as a common-mode
change. Ideally, a differential amplifier should be immune to common-
mode changes, since its purpose is to amplify the signal difference. Its
immunity to common-mode changes is known as its Common-Mode
Rejection Ratio (CMRR). The higher the CMRR, the better. To achieve a
high CMRR, it is important to match the values (and tolerances) of the
resistors as closely as possible.

The output voltage of this differential amplifier is given by:

 VOUT = (In2 - In1) * (R2 / R1) 13.2. Analog to Digital Conversion

A device that converts an analog input voltage to a digital number is
known as an Analog to Digital Converter, or simply and more commonly
as an ADC. You may have also heard the term codec (COder DECoder)
before. A codec is an ADC

Figure. Differential amplifier

Embedded systems
 Note

155

combined with a Digital to Analog Converter (DAC), providing both
analog input and analog output in one chip. We'll look at DACs in more
detail later in this chapter.

ADCs are found in cell phones and digital phones, converting
your voice to digital data for transmission. They are also used in your
computer to digitize the input from a microphone for speech recognition.
Professional recording studios use ADCs to convert audio to digital data
in preparation for CD mastering. Similarly, video is sampled using ADCs
prior to DVD mastering. Your scanner, web cam, and digital camcorder
all have ADCs in them. At the other end of the application spectrum,
ADCs are used to sample inputs from sensors. These applications can
range from automated weather stations to the system monitoring the
processor temperature in your PC.

There are several different types of ADC. Integrating ADCs use
an internal voltage-controlled oscillator to produce a clock signal whose
frequency is proportional to the voltage being sampled. The clock signal
is used to drive a counter, which provides the digital value for the
sample. The higher the sampled voltage, the higher the clock frequency,
and therefore the higher the number reached by the counter. The
counter is reset prior to each conversion. Because of this conversion
technique, integrating ADCs are not known for their speed of conversion.

A successive approximation ADC uses a DAC to provide an
analog reference voltage that is compared to the input voltage. By
incrementing the digital code driving the DAC, the reference voltage is
increased until a match is found. Once this happens, the code used to
drive the DAC is used as the digital output of the ADC.

Flash ADCs (also known as parallel ADCs) use a bank of
comparators to compare the input voltage to a range of reference
voltages. The conversion of the input analog voltage to a digital value is
therefore very fast. The catch is that flash ADCs tend to be more
expensive than other types of ADC and, due to their complexity, normally
have a lower resolution than other forms of ADC.

The process of converting an analog signal to digital is known as
sampling or quantization. ADCs have two principle characteristics:

Embedded systems
 Note

156

sample rate and resolution. Sample rate is expressed as samples per
second (SPS) and refers to how frequently an analog input signal is
converted into a digital code. The faster an ADC's sample rate, the more
expensive that chip will be. Resolution determines the accuracy of each
sample. For example, an "8-bit ADC" will return an 8-bit code
representing the sampled input signal. This means that the input has
been quantized into one of 256 discrete values. An "11-bit ADC" will
quantize the signal into one of 4,096 values, yielding a more accurate
result. However, the higher the resolution, the more expensive the ADC.
Further, high resolution is not always required. If, for example, you're
sampling a temperature sensor that has a range of 0ºC to 100ºC, with an
accuracy of ± 0.5º C, then that sensor has only 200 meaningful voltage
levels. For this sensor, an 8-bit ADC is fine. While you could use an 11-
bit ADC to sample this sensor, the additional resolution is overkill.

An ADC will convert the analog signal into a number that
represents the ratio of the input signal to a given reference voltage. For
example, if the ADC's reference voltage is 5 V, and the input signal is 3
V, then the ratio of input to reference is 60%. So for an 8-bit ADC, where

255 represents full scale, the sampled input will be returned as 153

(0x99). From your point of view, you receive the value 153 from the ADC,

and must work back from this to calculate the original analog voltage:

 Signal = (sample / max_value) * reference_voltage

 = (153 / 255) * 5

 = 3 Volts

Sample Rates

The rate at which a signal is sampled can have a dramatic effect
on the quantized result and therefore can also affect the way in which
software interprets that result. Figure shows a sinusoidal signal that is
sampled at a rate equal to its period. In this example, the sample
happens to coincide with a peak in the signal. The signal changes in
between samples, but our choice of sample rate means that we get the
same value each time. We get a completely false picture of what is really
happening to that signal. To our sampling software, each value returned
is the same, and so the signal appears to us as though it were a flat line!

Figure . Poorly chosen sample rate gives inaccurate signal reading

Embedded systems
 Note

157

If we choose a sample rate that is double (or more) than the signal's
highest frequency component, we can see the signal in more detail
(Figure). This sampling frequency is known as the Nyquist frequency and
is the lower limit of what will produce usable results. If the sample rate is
slower than the Nyquist frequency, false artifacts (such as our sine wave
appearing as a straight line, as we saw previously) may appear in the
sampled result. These phantoms are known as aliasing.

Figure. Shorter sampling period

The faster the sample rate, the more accurate your sampled results will
be. Since your sampling is quantizing the signal both in terms of
amplitude (ADC resolution) and time (sample rate), a quantization error
will always result (Figure).

Figure. Sampling period and corresponding quantization

As you can see, the smooth sine wave of the original signal has become
a jagged representation. Now, if you were monitoring temperature, this
might be sufficient. You might not care how the temperature signal
changed. Instead, you might be interested in the temperature only at
specific intervals, and with only a limited accuracy. In such a case, this
effect is not really a problem.

Embedded systems
 Note

158

However, if you were sampling audio, this quantization effect could be a
real problem. By increasing the sample rate, a more accurate
representation of the original signal is obtained (Figure).

Figure . Fast sample period results in less quantization

A voice-mail system may use a sample rate of only 8 kHz and a
resolution of 12 bits, and the resultant sound quality is limited. However,
CD audio uses a sample rate of 44.1 kHz with 16-bit data and achieves a
significant improvement in quality as a result. DVD audio uses a sample
rate of 48 kHz with 24-bit data for even greater audio fidelity. To further
improve sound quality, both CD and DVD players have special output
filters to smooth the transitions between each sample when the data is
converted back into analog form.

The take-home message is that you should choose your ADC resolution
and sample rate carefully, keeping in mind exactly what you're sampling
and what you intend to use it for

Interfacing an External ADC

There is a very wide range of ADCs available, for every
considerable purpose. Choose from very low-cost, low-speed ADCs for
simple voltage conversion to very high-speed, precise (and expensive)
ADCs for sampling video streams. Many microcontrollers have inbuilt
ADC subsystems, making analog interfacing simple. However, if the
processor doesn't incorporate an ADC, or its ADC is not suited to your
application, it becomes necessary to add an external device.

A good general-purpose ADC for sensor applications is the
Maxim MAX1245. It has eight channels of analog input and can sample
at 100,000 samples per second, with a resolution of 12 bits. (There are
similar devices with resolutions ranging from 8 bits to 16 bits, and with
interfaces such as SPI, I2C, and processor bus.) The MAX1245 has an
internal track and hold, preventing a changing signal from corrupting the
result during a conversion. The MAX1245 is interfaced to a host
processor via an interface that is compatible with SPI, Microwire, and the

Embedded systems
 Note

159

serial interfaces found in Texas Instruments TMS320-series DSP
processors (Figure). As you can see, the MAX1245 is very easy to use.
In this schematic, the analog input comes in via an IDC header, the 16-
pin connector on the left of the figure. Note that every second pin on the
connector is tied to ground. This means that every second wire in the
connected cable will be grounded, providing a degree of noise immunity
to our analog signals.

Figure. MAX1245 interface

The DOUT, DI, and SCLK signals correspond to a processor's SPI
MISO, MOSI, and SCLK signals, respectively. is simply generated
using a processor I/O line.

A conversion commences by sending a start command to the
ADC via the SPI interface. The start command is simply a byte that
specifies the channel and other ADC settings for that particular
conversion. (Refer to the MAX1245 datasheet for more information on
the software interface.) The MAX1245 may use an internal clock source
to drive the conversion process, or it may have an external clock. The
SPI SCLK also doubles as the conversion clock, when the ADC is used
in external-clock mode. When used in internal-clock mode, the output,
SSTRB (Serial Strobe), goes low at the beginning of a conversion and
returns high once the conversion is complete. When an external clock is
used, SSTRB pulses high in the clock period prior to the most significant
bit being processed. SSTRB may be used to flag the completion of a
conversion to a host processor by acting as an interrupt input.
Alternatively, when used in external clock mode, the conversion result is
ready once the start command has been sent.

The MAX1245 has the ability to enter low-power mode. This can
be done either through hardware or software control. The MAX1245 has
an input pin, SHDN, which, when asserted low, places the ADC into low-

Embedded systems
 Note

160

power operation. Now, interestingly, SHDN is also used to specify the
clock frequency of the ADC's internal sampling. Sending this input high
sets the clock to 1.5 MHz, whereas leaving the input to float (no
connection) sets the clock to 225 kHz. If SHDN is driven by a
microcontroller's I/O pin, changing that pin's configuration from an output
to an input will effectively float SHDN. In this way, you can still use the
"no connection" option even when the pin is connected. The MAX1245
can also be placed into low-power mode by software. If the two least
significant bits of the start command are both 0, then the MAX1245 is
placed into shutdown. The advantage of software power-down is that
you can request a conversion and place the device into shutdown with a
single command. The ADC will complete the conversion before shutting
down, and its interface will remain active so that the result may be
clocked out to the microcontroller.

Power for the MAX1245 (VDD) can be in the range of 2.7 V to 3.3
V. The MAX1245 has three ground pins: COM, DGND, and AGND. COM
is the ground reference for the analog inputs, DGND is the ground
connection for the digital section of the ADC, and AGND is the ground
connection for the analog section of the ADC. These three grounds need
to be connected together, but only at a single point, close to AGND. This
is known as a star ground point. The two power inputs (VDD) need two

decoupling capacitors to remove noise from the supply voltage. A 0.1 F

capacitor and a 4.7 F capacitor should be used to decouple VDD and
should be placed as close to the star ground point as possible. For
particularly noisy power supplies, a 10 resistor should be placed in series
between the power source and VDD. The analog inputs should be
shielded from all nearby digital signals to prevent interference, and a
ground shield (a fill) should be placed under the MAX1245 to further
isolate the device from noise.

Now that we have seen how to add an ADC to a microcontroller,
let's give it something to sample. We'll now take a look at some sensors
and see how to interface them to an ADC. There are lots of different
sensors available, from many manufacturers. Many are hard to use,
awkward to interface, and require much more effort than seems
necessary. But not all sensors are created equal. I have sought out and
selected a range of sensors that are trivial to use and require little or no
design effort. Electronics can be hard, but it doesn't always have to be
so, as you will see.

Temperature Sensor

We'll start with something simple: a temperature sensor. This little
sensor has a wide range of applications. The most obvious is as an
environment monitor or weather station, but you could also use it to
sense temperatures inside rooms and to control the appropriate heating
or cooling systems. Combine it with a datalogger design, and you have a
temperature recorder. Such devices are used in the shipment of fruits,
vegetables, frozen foods, and flowers to ensure that they get to market in
their best condition. It can also be used in the shipment of blood

Embedded systems
 Note

161

products and pathology samples, making sure that these critical
substances are not exposed to adverse temperatures.

The AD22100 and AD22103 temperature sensors, by Analog
Devices, are very easy to use. They are 3-pin devices, requiring only
power (VS) and ground to give you a voltage output that is proportional to
temperature (Figure). The AD22100 requires a 5 V supply, and the
AD22103 requires a 3.3 V supply.

Figure. AD22100/AD22103

What could be easier than that?

The output voltage corresponds to 22.5 mV/ºC over the temperature
range -50ºC to +150ºC for the AD22100 and 28 mV/ºC over the
temperature range 0ºC to 100ºC for the AD22103. The transfer functions
(how the output relates to the input) for the two devices are given by:

 VOUT = (VS / 5) x [1.375 + (0.0225 x TA)] AD22100

 VOUT = (VS / 3.3) x [0.25 + (0.028 x TA)] AD22103

where VOUT is the output voltage, VS is the power supply, and TA is the
ambient temperature.

So, turning the equations around, the relationship between temperature
and output voltage is:

 TA = (((VOUT x 5) / VS) - 1.375) / 0.0225 AD22100

 TA = (((VOUT x 3.3) / VS) - 0.25) / 0.028 AD22103

For example, if we were using an AD22100 temperature sensor with a
supply voltage of 5 V (VS = 5 V), then our function becomes simply:

 TA = (VOUT - 1.375) / 0.0225

Thus, if we measured an output voltage of 1.94 V, the corresponding
temperature would be 25.1ºC.

Interfacing the temperature sensor to an ADC is simple. The output may
be directly connected to an input of the ADC. Alternatively, since
temperature changes relatively slowly, we can add an RC filter between

Embedded systems
 Note

162

the sensor and the ADC to remove any noise that may be present in the
output (Figure).

Figure. ADD22100/AD22103 with an RC filter

Light Sensor

Now we'll take a look at a light sensor. The obvious use of a light
sensor is to monitor natural light levels, and perhaps use the results to
control artificial-lighting systems. But combine this sensor with a
directional light source (such as a bright LED enclosed in a baffle), and
you have a security detector. As long as the sensor can "see" the LED,
everything's fine. But when the light is interrupted, you know that
someone or something has passed between.

There are lots of commercial light sensors available. We're going
to take a look at the TAOS TSL250R sensor. The TSL250R (Figure)
consists of a photodiode (a semiconductor that is responsive to light) and
an integrated amplifier. Like the temperature sensor we've just seen, the
TSL250R just needs power and ground, and it will give you an analog
voltage output that is proportional to incident light.

Embedded systems
 Note

163

Figure . TAOS TSL250R light sensor

The spectral response for the TSL250R, shown in Figure, ranges from
ultraviolet (left) to infrared (right) and peaks in the visible part of the
spectrum.

Figure. Spectral response of a TAOS TSL250R

The TSL250R can operate from a supply voltage of between 2.7 V and
5.5 V and typically consumes only 1.1 mA of current. The basic circuit for
the TSL250R is very simple (Figure).

Figure. Using the TAOS TSL250R

Embedded systems
 Note

164

The maximum output voltage (under full irradiance) for this sensor is just
under 4 V, when the part is powered from a 5 V supply. So, if we choose,
we can interface this sensor directly to a (5 V referenced) ADC without
any additional amplification. Now, because the output does not span the
full scale of the ADC's range, we lose a small amount of resolution. For
an 8-bit ADC, a 4 V input corresponds to 0xCC, and so our range of

values for this sensor go from 0x00 to 0xCC. Depending on your

application, this may not be a problem. For example, if you are interested
only in detecting the difference between light and darkness, or when a
given low-light threshold is crossed, this will work fine.

Amplifying the Light Sensor

If you do want to sample the full range of the sensor, you need to
amplify the sensor's output. Since the sensor's maximum output is 4 V
and the reference of the ADC is 5 V, the gain of the amplifier must be
1.25.

A good general-purpose op amp is the AD623 by Analog
Devices. It has rail-to-rail operation, can run from a single supply voltage,
requires very little current, and is exceptionally easy to use. Analog
Devices has done a lot of the hard work already, and the AD623 requires
only a single external resistor to set the gain. The value of the resistor is
calculated using the relation:

 RG = 100 kΩ / (Gain - 1)

So, for our required gain of 1.25, we need a resistance of:

 RG = 100 kΩ / (1.25 - 1)

 = 100 kΩ / 0.25

 = 4 kΩ

The resistor should have a tolerance (accuracy) of 1% or better.
Standard off-the-shelf resistors are normally 5% and just aren't accurate
enough.

The circuit with the TSL250R interfaced to the AD623 is shown in Figure.

The output of the TSL250R sensor (pin 3) is connected to the
noninverting input of the AD623 op amp (pin 3), while the inverting input
is tied to ground. The gain resistor is connected between pins 1 and 8.
The negative power supply, -VS, is connected to ground for single-
supply operation. The positive power supply, +VS, is

Embedded systems
 Note

165

Figure. Amplifying the output of the TSL250R light sensor

connected to VCC and is decoupled to ground using two capacitors. The
op amp's reference input (REF) is also tied to ground. The output of the

op amp at pin 6 is then connected directly to the analog input of an ADC.

Accelerometer

Now we're going to take a look at an interesting sensor. Analog
Devices makes some really nice accelerometers, and we'll learn how to
interface an ADXL150 to an embedded system. You can use an
accelerometer for a number of applications, not just for measuring linear
acceleration of vehicles. The ADXL150 is a single-axis (one-
dimensional) accelerometer with a resolution of 10 m g and a full-scale
range of ±50 g. For dual-axis (two-dimensional) sensing, choose the
ADXL250.

Such a fine resolution means you can use this sensor to measure
gentle vibrations and shifts. You could use it in a seismometer for
geophysical applications or to measure vibrations or ground shift in
mines, tunnels, or at building sites. You could use it to monitor motion
and, by placing three accelerometers orthogonally, get an accurate 3-D
motion recorder. The same setup could also be used as a digital
carpenter's spirit level by sensing the direction of the Earth's gravitational
field. Perhaps you might use it to monitor violent physical shock, such as
crash-test measurements. Ever moved to a new house only to discover
that Granny's fine crystal glassware was smashed by the movers? Place
one of these (along with an appropriate small datalogger) into the
packing boxes, and you'll be able to prove just how rough the gorillas
from the moving company were. As you can see, this chip has lots of
applications.

The axis of sensitivity for the ADXL150 runs along the chip's
length from top to bottom (Figure). It is important when using this device
that it be securely mounted to the circuit board. Rather than just relying
on solder, also use strong glue under the chip to bind it to the circuit
board.

Embedded systems
 Note

166

Figure. Axis of sensitivity

The ADXL150 requires no external components (save for power-
supply decoupling) and is a completely self-contained unit, incorporating
not only the sensor, but also signal conditioning and amplification. Its
output can be interfaced directly to an ADC. The schematic for using the
ADXL150 is shown in Figure. Most of the pins are No Connection (NC)
and can be ignored, as can the TESTPOINT and SELF-TEST pins. The
TESTPOINT pin is used during manufacture only and should be left
alone.

The ADXL150 operates off a power supply in the range of 4 V to
6 V. However, for ideal operation, the supply should be exactly 5.0 V.
The closer to 5 V the supply is, the more accurate your measurements of
acceleration will be. The output voltage is proportional to both
acceleration and power supply (VS) and is given by the relation:

 VOUT = VS/2 - (sensitivity * VS/5 * acceleration)

Figure. Using the ADXL150

Embedded systems
 Note

167

The sensitivity value varies from device to device and is in the
range 33.0 to 43.0, with a nominal value of 38.0. The standard sensitivity
value gives a range of ± 50 g; however, the sensitivity may be doubled
(giving a range of ± 25 g) by connecting the output to the OFFSET-NULL
pin.

The SELF-TEST pin is used for verifying the correct operation of
both the internal mechanics of the sensor, as well as its signal
conditioning and amplification electronics. Applying logic 1 to this input
pin artificially imposes a force on the sensor, and thus the sensor can be
shown to be operating correctly.

Pressure Sensors

Now let's take a look at pressure sensors. The most obvious use
of these sensors is in measuring air pressure for weather monitoring and
prediction. But pressure sensors are also used in cars to measure
manifold pressure, in washing machines to measure water levels, and in
biomedical applications such as measuring blood pressure. Another
application of pressure sensors is to measure altitude, since air pressure
changes with height above sea level. Ocean depth can similarly be
measured.

When using pressure sensors, the substance you are measuring
can adversely affect the device. Remember that these are sensitive
electronic components, and fluids or corrosive gases can destroy them.
So unless you're measuring clean, dry air, you'll need to provide some
degree of environmental protection for your sensor. Just how you do that
really depends on what the application is, what environmental conditions
you must protect against, and how far your budget stretches.

Pressure sensors work by measuring the deflection of a
diaphragm separating two chambers. One chamber is exposed to the
pressure that is being measured, while the other chamber holds a
reference pressure. The pressure difference between the two chambers
causes the diaphragm to deflect, and this deflection is converted into a
voltage that is proportional to the pressure difference. Pressure sensors
come in three types: absolute, differential, and gauge.

In an absolute pressure sensor, the reference chamber is sealed.
Pressure readings are referenced to an absolute pressure, hence the
name. Absolute sensors normally have the reference chamber pressure
at vacuum, or at 1 atmosphere.

In a differential sensor, the reference chamber is not sealed, and
an external pressure reference may be applied. Differential sensors are
used to measure the relative pressures between two gases or two
liquids. A differential sensor may be treated as an absolute sensor by
providing it with a sealed and stable reference pressure.

A gauge sensor is a variation of the differential pressure sensor,
where the reference pressure chamber is open to the atmosphere. Thus,

Embedded systems
 Note

168

the measured pressure is referenced to atmospheric pressure, and
variations of atmospheric pressure (such as those caused by weather
conditions or altitude) are taken into account. One interesting use of a
gauge pressure sensor is to measure airspeed. If the measuring
chamber is exposed to the oncoming airflow (caused by the aircraft's
motion), and the reference chamber is exposed to the air but sheltered
from the effects of the airflow, then the difference in pressure can be
used to calculate the airspeed of the aircraft.

So, with all that in mind, let's take a look at some pressure
sensors. The first sensor is a Freescale (formerly Motorola) MPXA6115A
absolute pressure sensor (Figure). It operates from a 5 V supply and will
give an output voltage of between 0.2 V and 4.8 V, proportional to
pressures of 15 kPa to 115 kPa. (Pa is short for Pascals, which is a unit
of pressure.) Unlike most other pressure sensors, which require external
signal conditioning, temperature compensation, and signal amplification,
the MPXA6115A integrates it all in one neat little package. It comes in an
8-pin chip package, with or without snorkel!

The NC pins are no-connection and should be left unwired. The
only additional components required are a decoupling capacitor on the
power supply and a resistor and capacitor in parallel at the output. The
output may be directly connected to an ADC's input.

The second pressure sensor we will look at is also an absolute
pressure sensor. But, unusually, rather than producing an analog output,
it incorporates an inbuilt ADC. It is interfaced to a microcontroller using
SPI and, being digital, it is much less susceptible to noise and
interference. The sensor is the KP100, made by Infineon Technologies
(http://www.infineon.com) in Munich, Germany.

The schematic for a circuit based on the KP100 is shown in
Figure. The sensor operates off a 5 V supply, and this is decoupled to
ground using a 100 nF capacitor to reduce noise. The sensor has a
standard SPI-style interface and is connected to a microcontroller, as
with any SPI device. The sensor also provides a READY output, which
may be used to interrupt the host processor, or may simply be connected
to a spare I/O and read as a digital status flag. The KP100 also requires
a separate clock (CLK) input.

Embedded systems
 Note

169

Figure. Interfacing the Free scale MPXA6115A pressure sensor

This clock can be either 4 MHz or 8 MHz. If the processor is running at
one of these speeds, then the sensor can share the same clock input as
the processor. However, if the processor is operating at a different clock
frequency,

Figure. KP100 pressure sensor circuit

the KP100's clock may be easily generated using a clock module. These
4-pin devices are available in a variety of standard frequencies and
require only power and ground to generate a clock output.

Magnetic-Field Sensor

The final sensor we'll look at is the AD22151 magnetic-field
sensor by Analog Devices. Its primary use is for position and proximity
sensing. A magnetic source is used as a reference point, and the

Embedded systems
 Note

170

sensor's distance from that source may be easily determined by the
measured field strength. The sensor has inbuilt temperature
compensation and amplification. The circuit for this sensor is shown in
Figure. It's a little bit more complicated than the other sensors we've
looked at so far.

Figure. AD22151 magnetic-field sensor circuit

The sensor operates off a 5 V supply, decoupled to ground using
a 100 nF capacitor. There are four resistors required for correct
operation. R1 is the temperature compensation resistor, which should be
connected between pins 1 and 3, or pins 2 and 3, depending on the
applied magnetic field. For large external fields, R1 connects pins 1 and
3, as shown in Figure. For smaller fields, connect R1 between pins 2 and
3. The AD22151 datasheet has plots of values for R1 versus required
compensation levels. Check with the manufacturer of your magnetic
source as to the required compensation value, and use this in
conjunction with the datasheet to determine R1. R2 and R3 set the
signal gain of the internal amplifier, and R4 provides a voltage offset.
The datasheet for the sensor contains equations and technical data for
computing values of these resistors, based on your specific needs. The
output of the sensor circuit may be connected directly to an ADC input
for sampling.

Digital to Analog Conversion

So far, we have looked at how you can sense real-world effects
and convert these into digital data. Now let's see how to do the reverse:
take digital data and convert it into an analog signal by using a chip
known as a Digital-Analog Converter (DAC). We'll also look at how you
can produce an analog output using nothing more than a single digital
I/O line.

All DACs have a digital input (a microprocessor bus, SPI, or I2C)
and will provide you with one or more channels of analog output.

The Maxim MAX525 is an 11-bit DAC that interfaces to a host
processor using SPI. It has four channels of analog output and
incorporates output amplifiers on-chip. The inverting input of each

Embedded systems
 Note

171

amplifier is accessible so that you can alter their respective gains. A
sample circuit for a MAX525 is shown in Figure.

Figure. MAX525 circuit

The four analog output channels are OUTA, OUTB, OUTC, and OUTD.
These are tied directly to their respective feedback inputs (FBA, FBB,
FBC, and FBD) for standard unipolar operation. There are two voltage
reference inputs, REFAB (for channel A and channel B) and REFCD (for
channels C and D). These two reference inputs must be at least 1.4 V or
more below VCC at all times. The output voltage for each channel is
given by the relation:

 VOUT = (VREF * code / 4096) * gain

where code is the digital value written to that channel. In our sample

circuit, the gain is 1. If our reference voltage is set to 3.6 V, the digital

value 4095 (0xFFF) generates an output voltage of:

VOUT = (VREF * 4095 / 4096) * gain

 = 3.6 * 0.9997 * 1 = 3.59 V

Similarly, the digital value 2048 (0x800) generates an output voltage of:

VOUT = (VREF * 2048 / 4096) * gain

 = 3.6 * 0.5 * 1

 = 1.8 V

Note the separate analog and digital grounds in the schematic. These
should be connected together, but only at a single point close to the
DAC.

The MAX525 has a standard SPI connection to a microprocessor.
Multiple MAX525s may be daisy-chained together for efficiency (Figure).

Embedded systems
 Note

172

Figure. Daisy-chained MAX525s

The MAX525 also has a input, which, when driven low by an I/O line,
sends all outputs to their lowest value. The MAX525 can be put into low-
power mode under software control. The input is Power-Down
Lockout, and when driven low, it prevents the MAX525 from being shut
down. This is important if the outputs are being used to drive a critical
circuit or system. You don't want the controlling voltages disappearing by
accident. Finally, the good people at Maxim have provided a signal
called UPO (User Programmable Output). This is a general-purpose
output that can be driven high or low under software control. Use it for
whatever purpose you require.

Now, if you wanted a gain other than 1 (non-unity gain), external
resistors are required for the output amplifier. The schematic for this (for
a single output channel) is shown in Figure.

Figure. Feedback resistors for non-unity gain

From before, we know that the gain of a noninverting amplifier is given
by:

 Gain = 1 + R2 / R1

For bipolar output on a given channel, an external amplifier (with bipolar
supplies) does the job (Figure).

Figure. Bipolar output

Embedded systems
 Note

173

PWM

Using a DAC may seem the obvious way to generate an analog output
voltage, but there is another way that uses nothing more than a digital
I/O line configured as an output. This technique is known as Pulse Width
Modulation (PWM).

Consider the average, garden-variety, square wave shown in Figure.

Figure. A ubiquitous square wave

The width of the high is equal to the width of the low, so this wave is said
to have a 50% duty cycle. In other words, it is high for exactly half the
cycle. Now, if the amplitude of this square wave is 5 V, for example, the
average voltage over the cycle is 2.5 V. It is as though we had a
constant voltage of 2.5 V.

Now consider the square wave in below Figure .

Figure. 10% duty cycle

This wave has a 10% duty cycle, which means that the average voltage
over the cycle is 0.5 V.

A low-pass (averaging) filter on the PWM output will convert the pulses
to an analog voltage, proportional to the duty cycle of the PWM signal.

Embedded systems
 Note

174

By varying the duty cycle, we can vary the analog voltage. Hey, presto!
We have digital-to-analog conversion without a DAC. That's the basic
idea behind PWM.

Motor Control

One of the fun things you can do with an embedded computer is
get it to actually move something, whether it be an external system or
the embedded computer itself. Motion implies motor, and this section will
look at how you interface an embedded computer to an electric motor.
The possible applications could range from controlling locomotives on
your model railroad layout to experiments in robotics, and anything in
between. A note of caution, though: if your hardware and software are
responsible for moving a physical object, then a bug can easily cause
physical damage too. So be careful.

Let's say that we have an electric motor than operates from a 12
V supply. Applying 12 V across the motor will cause it to turn at full
speed. Similarly, by applying 6 V, we can get the motor spinning at half
speed. By varying the applied voltage, we can vary the speed at which
the motor turns.

There are several ways to generate this voltage to drive the
electric motor. The most obvious may seem to be to use a DAC to
generate an analog output voltage and then use an amplifier to boost the
signal to the voltage and current required to turn the motor. The speed of
the motor is proportional to the output voltage. However, this technique
has a major drawback. For very low-speed operation, the required output
voltage may be too low to actually cause the motor to turn.

A better way is to use PWM. Consider the PWM signal in Figure, with an
amplitude of 12 V.

Figure . PWM signal with a 10% duty cycle

With a 10% duty cycle, the effective analog output voltage of this PWM
signal is 1.2 V. Now, by itself, 1.2 V may not be enough to turn a motor.
But we're not using 1.2 V; we're actually pulsing the motor with 12 V, its
maximum drive voltage. The duration of the pulses gives the equivalent
speed of a motor voltage of 1.2 V. However, by using a full 12 V
amplitude, we're ensuring that the motor will turn. This is the advantage
of PWM. To control speed, we vary the width of the pulse and not the
amplitude.

Using PWM, you can get very slow motor speeds and very fine
control. The pulses can cause a jerkiness to the motor if the overall

Embedded systems
 Note

175

frequency is low, but by choosing a high frequency, the jerkiness is
averaged out.

Many microcontrollers have internal, software-programmable
PWM modules that make generating PWM signals easy. Even if a
processor does not have a PWM module, you can still generate PWM
under software control simply by using a digital output line.

Let's now take a look at how you would interface a processor to
an electric motor using PWM. Due to the voltages and currents required
by motors, you cannot simply hang a motor off the pins of a processor
and expect it to work. You need an interface circuit that will take your
logic-level, PWM output and use this to switch much higher voltages and
currents.

Figure shows a conceptual model (in a crude and simplified form)
of such an interface circuit for driving a small electric motor. This type of
circuit is known as an H-bridge.

It's not as confusing as it first looks. Don't be too worried about
the transistors (Q1-Q4) in the circuit. They simply act as switches. Our
motor operates from a supply voltage, V+. Apply V+ with one polarity,
and the motor turns in the forward direction. Reverse the polarity, and
the motor reverses too. To drive the circuit, we use four outputs from the
processor: two PWMs (which I've called PWM-A and PWM-B) and two
general I/O lines (which I've called A and B). Initially, all outputs are low,
everything is turned off, and the motor is stationary.

Figure . Motor drive circuit using an H-bridge

If we send A high, the transistor Q4 turns on and connects the right
"side" of the motor to ground. If we then send PWM-A high, the transistor
Q1 turns on. Thus, the left "side" of the motor is connected to V+, and
the motor spins. By generating a PWM signal on PWM-A, we can control
the speed of the motor in that direction.

Embedded systems
 Note

176

Conversely, by leaving A and PWM-A low and setting B and PWM-B
high, transistors Q2 and Q3 turn on, and the motor spins in the reverse
direction. By generating a PWM signal on PWM-B, we can control the
speed in the reverse direction.

Care must be taken in your software. If both Q1 and Q3 are
turned on, or both Q2 and Q4 are turned on, then you effectively connect
V+ to ground, with very little resistance in between! The results would be
spectacular and short-lived! A proper H-bridge circuit normally contains
protection to prevent such a state from occurring.

The actual implementation of an H-bridge is a little more
complicated and requires additional components such as protection
diodes and so forth. Now, while you could design such an H-bridge
circuit using discrete components, there is an easier way

Let's look at a sample H-bridge, the Freescale MC33186. This
chip is more sophisticated than the simple H-bridge used to explain the
concept. It provides more functionality, yet is easier to control. This chip
can operate from a supply voltage (V+) of between 5 V and 28 V and can
switch continuous currents as high as 5 A, yet it has logic inputs that are
compatible with TTL levels. It has inbuilt short-circuit and over-current
protection. Figure shows an MC33186 circuit.

Figure. MC33186 motor drive circuit

The chip has three power-supply inputs, VBAT, all of which must be
connected to the supply voltage, V+. The power-supply input needs to be

decoupled using a 47 F capacitor. The internal charge pump also
needs a decoupling capacitor. The pin, CP, provides access to the
charge pump and is connected to a 33 nF capacitor. The chip also has
five ground pins, which, similarly, must all be connected to ground.

Embedded systems
 Note

177

OUT1 and OUT2 are the pins that directly drive the motor. There are two
of each, so that the high output currents are not traveling through a
single pin.

IN1 and IN2 control both the motor's speed and direction. DI1
and DI2 serve to disable the MC33186. These four control signals may
be driven by a microcontroller's I/O lines. For normal operation, DI1 is
low and DI2 is high. Sending either DI1 high or DI2 low will disable the
MC33186 and stop the motor. Table shows how IN1, IN2, DI1, and DI2
affect the motor's operation.

MC33186 states of operation

DI1 DI2 IN1 IN2 OUT1 OUT2 Motor

Low High High Low V+ Ground Forward

Low High Low High Ground V+ Reverse

Low High Low Low Ground Ground Free-wheeling

Low High High High V+ V+ Free-wheeling

High
Don't

care

Don't

care

Don't

care

High

impedance

High

impedance
Disabled

Don't

care
Low

Don't

care

Don't

care

High

impedance

High

impedance
Disabled

If we want the motor to run forward, we generate a PWM signal
on IN1 and leave IN2 low. If we want to run the motor backward, we
leave IN1 low and place a PWM signal on IN2. The duty cycle of the
PWM signal determines the motor's speed.

If IN1 and IN2 are in the same state, then there's no voltage
difference applied across the motor's terminals, and so the motor is not
driven.

Pin 2 of the MC33186, SF, is an output status flag. If the
MC33186 is operating correctly, SF is high. If there is a fault, SF is
driven low. SF may therefore be used as an interrupt to alert the host
processor of a problem.

The input COD determines how the chip functions during a fault.
If COD is left unconnected or is connected to ground, a change on either
input DI1 or DI2 will reset the fault condition. If COD is connected to VCC
(that's +5 V, not necessarily V+), then DI1 and DI2 are disabled. The
fault condition can be reset only by a change on IN1 or IN2.

Using an integrated H-bridge circuit, such as the MC33186,
greatly simplifies interfacing your embedded system to motors.

Embedded systems
 Note

178

Sensing Motor Speed

In a control application, it is very useful to be able to sense a
motor's speed. The physical system (load) that the motor is driving will
affect the motor's rotation. If the motor must move a heavy load, then its
actual speed of rotation may be less than the intended speed. In such
situations, it is useful to measure the actual speed so that the embedded
control system can compensate.

The easiest way to measure a motor's rotational speed is to use
an optical encoder module, such as the Agilent HEDS-9000 or a similar
device. The encoder consists of a light source (LED) and an array of
photo-detectors, separated from each other by a slotted disc known as a
code wheel(Figure). The disc is mounted on the rotating motor shaft.
Each time a slot passes between the LED and a detector, the detector
receives a flash of light and generates an electrical pulse. The rate at
which the pulses are generated corresponds directly to the rotational
speed of the motor. The resolution of the code wheel is known as its
counts per revolution (CPR) value. The HEDS series of encoders are
available with CPRs ranging from 96 all the way up to 2,048.

Figure. Block diagram of a HEDS-9000 optical encoder and a code
wheel

The HEDS-9000 optical encoder operates from a 5 V supply and
has two outputs, A and B. These outputs are derived from two adjacent
optical sensors. If the code wheel is rotating in one direction, output A
will trigger before output B (Figure).

Figure . Output waveforms for the optical encoder

Embedded systems
 Note

179

If the wheel is rotating in the opposite direction, then B will trigger before
A (Figure).

Figure. Output waveforms for the optical encoder, with rotation in the
opposite direction

The rate at which the pulses arrive gives the motor's speed, and the
order in which they arrive shows the direction. This is known as
quadrature encoding.

Most microcontrollers have timer/counter inputs that can measure
external trigger events such as these. Under software control, you can
use the timers to monitor these quadrature signals. However, Agilent
makes a series of devices known as quadrature counters: the 11-bit
HCTL-2000, the 16-bit HCTL-2016, and the 16-bit, cascadable HCTL-
2020. These chips provide a bus-based interface to a processor and
convert quadrature signals into a binary number representing motor
position. A 16-bit position counter is capable of measuring 32,767
increments in either direction, which corresponds to approximately 15
turns of a 2,048 CPR encoder. To determine the present motor speed or
position, the processor simply reads from the quadrature counter as
though it were just another memory location. Quadrature counters also
have noise filters on their inputs and so provide a more reliable and
accurate way of determining motor position.

The schematics showing an optical encoder and quadrature counter are
shown in Figures. The optical encoder is placed on a separate, small
PCB so that it may be easily mounted next to the motor's shaft. The
quadrature counter is located on the embedded computer's PCB. IDC
headers (J1 and J2) and a ribbon cable connect the two circuit boards.

Figure. Optical encoder circuit

Embedded systems
 Note

180

Figure. Quadrature counter circuit

The quadrature counter requires a 14 MHz clock. This is easily
provided by an oscillator module. CHA and CHB are the quadrature
inputs from the encoder. The counter has a reset input, , which
clears the counter. Asserting zeros the quadrature counter and
indicates that the motor is in the "home" position. This input is driven by
a digital output of the microcontroller so that the counter can be reset
under software control.

D0 to D7 are the data buses through which the processor reads
the current position. Since the counters are either 12 bits or 16 bits, two
reads are necessary to retrieve the value through the 8-bit bus. The
counter therefore occupies two locations in memory, and the SEL input
is used to select which byte is being read. If SEL is low, then the higher-
order bits are read. If SEL is high, then the lower-order bits are read. To
make these two bytes appear in adjacent memory locations, the
processor's address line, A0, is used to drive SEL. Thus, the least
significant address of the two selects the upper eight bits, while the next
address selects the lower eight bits.

Now, the counter does not have a chip select as such. Since it is
a read-only device, the counter's output enable, , functions as a
combined chip select and output enable. Therefore, this input is driven
by the output of the address decoder that corresponds to the region of
the address space to which the counter is mapped. When the processor
reads from that address range, is asserted and the counter responds
with data. Note that if the processor attempted to write to the counter, the
counter would be selected and would respond with data. Therefore, both
the processor and the counter would be attempting to drive data onto the
data bus. This could potentially damage both chips. Now, with careful
coding this would not be a problem. However, a crashing program may

Embedded systems
 Note

181

inadvertently cause this situation to arise. To prevent this, a better
solution is to include the processor's read strobe as part of the address
decode for this particular device. In other words, the counter is selected
if (and only if) both the address is correct and the processor is
performing a read. If the processor is performing a write to the counter's
address, the counter is not selected and the access is ignored.

Switching Big Loads

We've already seen how to use an H-bridge chip to switch
relatively large voltages (and the corresponding big currents) needed to
drive electric motors. There are many other cases where you want to
turn large voltages on or off, and, in this section, you'll learn an easy way
of doing just that.

The Freescale MC33298 is a chip that is controlled by a
microprocessor using SPI that can switch eight power sources on or off.
This chip can handle voltages between 5 V and 26.5 V, with currents as
large as 6 Amps. If you need to turn electrical systems on or off, this chip
is for you. Its primary use is for industrial and automotive applications,
controlling power to subsystems such as heaters, small air-conditioning
units, moderate-voltage light bulbs, small pumps, and so on. Obviously,
it won't handle the high AC voltages that come out of your wall socket, so
don't use it for switching power to your home appliances!

The basic schematic for the circuit is shown in Figure.

The MC33298 has two power-supply pins. VDD is a 5 V supply
and powers the chip's internal digital logic. It's decoupled to ground using
a 100 nF capacitor. VPWR is the supply voltage for the external
subsystems (represented in the figure by each "LOAD" rectangle) and
can range from 5 V to 26.5 V. There are eight switch outputs, labeled
OUT0 through OUT7. When a given switch is activated, the
corresponding output is connected to the VPWR supply, thereby turning on
that subsystem. The MC33298 has short-circuit detection and shutdown
(with automatic retry), over-voltage detection and shutdown, current
limiting on the outputs, output clamping during inductive switching, and
thermal shutdown if the device is dissipating too much power. Higher
currents may be switched by tying two or more outputs together so that
the current is shared by more than one pin. By tying all outputs together,
currents as high as 48 A may be switched, limited only by the total power
dissipation and corresponding thermal shutdown limit.

Embedded systems
 Note

182

Figure. MC33298 circuit

The chip has a standard SPI port, allowing it to be interfaced to,
and therefore controlled by, most microprocessors. The SPI signals
MOSI, MISO, and SCLK are connected directly to a processor's SPI
pins. The chip's select input, CSB, is controlled by a digital output of the
processor and is used to select the device during a SPI transfer. The
device may be reset and all outputs turned off by asserting its RESET
input. Again, this too can be driven by a digital output of the processor so
that the chip may be turned off under software control. The MC33298
supports SPI daisy chaining, so multiple devices may be coupled
together.

The SPFD pin is Short Fault Protect Disable. Sending this pin
high allows the internal over-current detection circuitry to be disabled.
When switching some loads, such as light bulbs, there is a very high
current for a short period of time. This would normally cause the
MC33298 to register an over-current fault and shut off that output. The
SPFD pin allows this protection to be overridden so that such loads may
be controlled. Even though the over-current protection is bypassed, the
MC33298 is still protected. If the high current lasts long enough, the
chip's thermal shutdown circuit will kick in, thereby preventing damage.
SPFD may be driven by a processor digital output, and should be used
with caution! For normal operation (with over-current protection on), this
pin should be low.

Now we've finished looking at I/O options for our embedded
computers. In the next chapter, we'll look at some processors and see
how to design complete embedded systems.

Embedded systems
 Note

183

Summary

 An amplifier is a circuit that increases (or decreases) a given
input voltage to produce an output voltage.

 A differential amplifier multiplies the difference between two input
signals and is used to amplify small signals that may be subject
to noise.

 A device that converts an analog input voltage to a digital number
is known as an Analog to Digital Converter, or simply and more
commonly as an ADC.

 Flash ADCs (also known as parallel ADCs) use a bank of
comparators to compare the input voltage to a range of reference
voltages.

 The rate at which a signal is sampled can have a dramatic effect
on the quantized result and therefore can also affect the way in
which software interprets that result.

 A good general-purpose ADC for sensor applications is the
Maxim MAX1245. It has eight channels of analog input and can
sample at 100,000 samples per second, with a resolution of 12
bits.

 The AD22100 and AD22103 temperature sensors, by Analog
Devices, are very easy to use. They are 3-pin devices, requiring
only power (VS) and ground to give you a voltage output that is
proportional to temperature.

 The Maxim MAX525 is an 11-bit DAC that interfaces to a host
processor using SPI.

Questions

 What is amplifier?

 Differences between amplifier and differential amplifier?

 Write a brief notes on ADC?

 How a stepper motor is controlled through PWM?

 Write brief notes on following sensors

a) Temparature Sensors.

b) Pressure Sensors.

c) Magnetic Field Sensors.

Embedded systems
 Note

184

d) Accelerometer.

e) Light sensors

References

 C Programming for Embedded Systems – KIRK ZURELL

 Design with 8051- FRONTLINE ELECTRONICS

 Embedded Controller Hardware Design - Ken Arnold

 Embedded Software The Works – colin walls

 Embedded Systems Firmware Demystified - Ed Sutter

 Embedded_Controller_Hardware_Design – KEN ARNOLD

 Programming Embedded Systems in C and C++ - Michael Barr

 The Art of Designing Embedded Systems - Jack G. Ganssle

Embedded systems
 Note

185

10. Networks

Objective:

In this chapter, we'll look at connecting your embedded computer
to the real world by adding a Local Area Network (LAN) interface. There
is a wide variety of networks employed—some very common, some not
so common. We'll take a look at CAN and Ethernet, the two most
common networks. CAN is a network for industrial applications, where a
conventional network just won't do. CAN is suited to electrically noisy
and harsh conditions and is the network of choice in electrically severe
environments. Ethernet is the intranet network that connects the world's
desktop computers, as well as a host of other devices such as routers,
gateways, printers, and other peripherals.

Controller Area Network (CAN)

Through the late 70s and 80s, the complexity of automotive
electronics grew considerably, with engine-management systems, ABS
braking, active suspension, electronic transmissions, automated lighting,
air-conditioning, security, and central locking. Each of these systems
does not exist in isolation but is part of an integrated whole. A
considerable amount of information exchange is required, and, therefore,
some means of system interconnection must be provided. The
conventional method was point-to-point wiring, which provided discrete
interconnection between each subsystem. This methodology was a
natural evolution from the simple electrics of earlier cars, but as
automotive complexity grew, such a scheme proved vastly inadequate.
Each car could have several kilometers worth of wiring and dozens of
connectors. Such complex wiring systems added greatly to the cost of
producing a car, added unnecessary weight, reduced reliability, and
made servicing a nightmare.

The obvious solution was to replace complexity with simplicity
and implement intersystem communication using a low-cost digital
network. The automotive electrical environment is very noisy. With
electric motors, ignition systems, RF emissions, and so on, the 12 V
supply to automotive electronics can have ± 400 V transients. The
required communication network must therefore be able to cope with this
noise and work reliably. The network must provide high-noise immunity
and error detection and handling, with retransmission of failed packets.
Thus was born the Controller Area Network, more commonly known as
CAN, implementing real-time communication at up to 1 Mbps, over a 2-
wire serial network. CAN specifies only the physical and data-link layers
of the ISO-OSI model, with higher layers left to the specific
implementation.

Embedded systems
 Note

186

Bosch developed CAN in Europe in the late 1980s, originally for
use in cars. Because of its robustness, CAN has expanded beyond its
automotive origins and can now be found in industrial automation, trains,
ship navigation and control systems, medical systems, photocopiers,
agricultural machinery, household appliances, office automation, and
elevators. CAN is now an international standard under ISO11898 and
ISO11519-2.

CAN supports multiple masters on the network, with each master
responsible for local sensing and control within the distributed system
(Figure).

Figure. CAN distributed system

Each CAN packet contains address information and priority as part of the
header, and the nodes may connect to the network, or disconnect from
the network, without affecting network traffic between other nodes.

The CAN network uses wired-AND logic, with a maximum bus
length of 1,000 meters (3,300 feet), and a bus length of 40 meters (133
feet) at maximum data rate over twisted-pair wiring. Each end of the bus
requires termination resistors to prevent transmission reflections
(Figure).

Many processors intended for use in harsh or electrically noisy
industrial applications include a CAN module. A number of Philips
microcontrollers include CAN, as do a few PICs. For processors that do

Embedded systems
 Note

187

not include CAN, CAN interface modules are available. The Microchip
MCP2510 provides a CAN module and interfaces to a host processor via
SPI. Adding CAN to any embedded system is therefore a simple task.

Typically, a microprocessor that supports CAN will include a CAN
interface module, which provides most of the functionality. The only
additional support required is a CAN interface driver. Philips
Semiconductor produces a CAN driver, the PCA82C250T, which makes
interfacing to the CAN bus very easy.

Figure. CAN bus

Your embedded computer must also have some way of
physically attaching to the bus. The simplest method is simply to bring
the bus into the computer system on one connector, tap off it, and then
route it out through another connector (Figure).

Figure. Tapping into a CAN bus by using two connectors on a PCB

To see how we can use CAN, let's look at the DSP56805
processor. This processor has a CAN network module as part of its suite
of onboard peripherals. The schematic for interfacing a processor's CAN
module to a CAN bus is shown in Figure.

The DSP56805 has two CAN interface signals, MSCAN-TX and
MSCAN-RX, which are the CAN transmitter and receiver, respectively.
These are connected to the PCA82C250T, which provides the interface
to the CAN bus. Note that the DSP56805 requires a 3.3 V supply, while

Embedded systems
 Note

188

the PCA82C250T requires a 5 V supply. A pull-up resistor brings the
MSCAN-TX output of the processor to the required logic-high level for
the PCA82C250T. While CAN requires only two signal lines and ground,
the actual connectors have eight pins. Since the CAN bus requires a
Termination resistor at each end, we provide a 120 resistor should our
computer be placed at the bus end. A jumper allows it to be brought in-
circuit or disabled as needed. So, if our computer is at the end of the
CAN bus, the jumper is closed and the bus is terminated. If our computer
is not an endpoint machine, the jumper is left open and the resistor plays
no part. Note that having a termination resistor active (jumper closed)
when this computer is not at an endpoint is a good way to ensure an
unreliable CAN bus! Resistors should be active at bus ends only.

Figure. CAN interface for a DSP56805 processor

Many implementations of CAN just use standard IDC-type headers for
the connectors. However, the actual CAN standard specifies that the
connector should be a 9-pin Sub-D connector. The pinouts for this
connector are listed in Table.

Pin Signal/use

1 Reserved

2 CAN_L

3 Ground

4 Reserved

5 Reserved

6 Ground

7 CAN_H

Embedded systems
 Note

189

Pin Signal/use

8 Reserved

9

V+

(optional

power

source)

Although this is the same type of connector used in some RS-232C
implementations (such as the serial ports on PCs), do not connect a
CAN bus and RS-232C together. They are not even remotely
compatible!

Ethernet

Anyone even remotely involved with computers has heard of
Ethernet. Developed at Xerox PARC in the early 1970s, this local-area
networking standard has found its way into every possible application
and has evolved over time to encompass a number of standards ranging
from wireless networks (802.11) to gigabit Ethernet.

In this section, we'll look at how you add a simple Ethernet
interface to your embedded computer. We will develop a 10 Mbps
interface only, as higher-speed interfaces require special attention to
PCB design and EMC issues. So, for the sake of ease and reliability,
we'll keep it simple and low-speed.

By adding Ethernet to your embedded system, you gain access
to a network and all the possibilities that it brings. You can send data to a
host computer at high speed, as well as access printers, file servers,
databases, and even the Internet. You can also monitor and control your
embedded system from afar, or even have it send you email when it
needs attention. Take an AT90S8515 AVR and add an Ethernet
interface and some high-capacity flash memory, and you have yourself a
simple web server. Add an ADC and some sensors, and your web server
becomes a weather station showing current or past conditions to anyone
on the Internet. Use a higher-speed processor, several Ethernet ports,
and the appropriate software, and you have yourself a simple gateway or
firewall. You could even build an Ethernet-to-Ethernet (or serial, parallel-
port, or USB) bridge. The possibilities are limited only by your
imagination.

There was a time when developing an Ethernet interface was a
major exercise. These were complicated circuits, using lots of chips and
hundreds of support components. An Ethernet interface could fill a
moderate PCB all on its own. Not anymore. In these days of large-scale
integration, adding Ethernet to your design is easy, as we will see.

Embedded systems
 Note

190

Adding an Ethernet Interface

Crystal Semiconductor, now part of Cirrus Logic
(http://www.cirrus.com), produces a single-chip Ethernet controller
known as the CS8900A. This chip allows you to add a simple (and low-
cost) 10 Mbps Ethernet interface to your embedded system. Full
documentation on this chip is available from the Cirrus Logic web site.
As the CS8900A is a commonly used Ethernet controller, there is plenty
of source code available on the Internet. Just use your favorite search
engine to hunt it down. When you design a system based on the
CS8900A, you can actually email your design to the engineers at Cirrus
Logic, and they will check it out for you, offering advice and pointing out
mistakes. The email address for this service is
ethernet@crystal.cirrus.com.

The CS8900A supports 10BASE-2, 10BASE-T, and AUI
(Attachment Unit Interface) Ethernet ports. 10BASE-T and 100BASE-T
are by far the most common types of Ethernet interface, supporting data
rates of 10 Mbps and 100 Mbps, respectively. Your desktop computer's
Ethernet interface is most likely a 10/100BASE-T port with an 8-pin RJ-
45 connector. (RJ-45 connectors look like, but are not the same as,
standard telephone jacks.) The cabling used is UTP (Unshielded Twisted
Pair) Category 5 cable, more commonly known simply as CAT5. Just like
RS-422, RS-485, USB, and CAN, 10/100BASE-T Ethernet transmits
using balanced differential signals. Four wires are used: two for the
transmitter pair and two for the receiver pair. One wire of the pair carries
a signal voltage of 0 to +2.5 V, while the other wire carries a voltage of 0
to -2.5 V, giving a signal difference of 5 Vpp.

Table shows the pin connections for an RJ-45 connector. The wires
within the CAT5 cable are color-coded for easy identification.

Pin Signal name Purpose Wire color

1 TD+ Transmitted data White/orange

2 TD- Transmitted data Orange

3 RD+ Received data White/green

4 NC No connection Blue

5 NC No connection White/blue

6 RD- Received data Green

7 NC No connection White/brown

8 NC No connection Brown

A block diagram of a CS8900A implementation is shown in Figure.

Embedded systems
 Note

191

Figure. Block diagram showing a CS8900A implementation

As the CS8900A has 100 pins and several different modes of
operation, we won't cover an entire schematic in one hit. Instead, we'll
work through each stage of a CS8900A's design, and learn its
functionality and use as we go. This discussion will be targeted at small,
embedded application. Some of the more complicated aspects of the
CS8900A, which are applicable to desktop PCs, will be left alone.

The CS8900A is connected to its 10BASE-T port through an
isolation transformer. This transformer must have a winding ratio of 1:1
for the receiver, and a winding ratio n of 1:1.41 for the transmitter, if the
CS8900A is used with a 5 V supply. If used with a 3.3 V supply, the
transformer's winding ratio for the transmitter must be 1:2.5. There are a
number of manufacturers that make isolation transformers (packaged as
chips) with these winding ratios, such as Valor, PCA, YCL, and Bel. The
transmitter requires series-termination resistors of 24.9, ± 1%. The
transmitter differential pair must be decoupled with each other using a 68
pF capacitor. A 100 resistor (± 1%) is required in parallel between the
receiver's differential pair. The CS8900A can also directly drive LEDs,
indicating Ethernet link status and bus and network activity. The
CS8900A has an additional pin (RES) that requires a 4.99 k (± 1%) pull-
down resistor. Figure shows the CS8900A connected to a 10BASE-T
port.

Embedded systems
 Note

192

Figure. 10BASE-T interface

An external 20 MHz crystal provides timing for the CS8900A. The crystal
is connected across the XTAL1 and XTAL2 pins, and each pin is
bypassed to ground using 33 pF capacitors (Figure).

Figure. Crystal connections for the CS8900A

This Ethernet chip supports the 16-bit ISA bus architecture, the
expansion bus found in older-model PCs. However, ISA can easily be
adapted to work with a range of non-ISA processors. The CS8900A may
therefore be implemented in a variety of computer systems without
difficulty. The CS8900A also supports operation in 8-bit mode and thus
can also be interfaced to microcontrollers with an 8-bit data bus, such as
the AT90S8515 AVR. The CS8900A's input SBHE is used to place the
chip in 16-bit mode operation after reset. Any activity on SBHE will place
the CS8900A in 16-bit mode. The easiest way to ensure that there is
activity on this input is simply to connect SBHE to the processor's
address line, A0. As soon as the processor begins to use its bus, the
activity will place the CS8900A in 16-bit mode. For 8-bit operation, SBHE

Embedded systems
 Note

193

is tied to ground. When used in 8-bit mode, interrupts are disabled and
the CS8900A's status must be polled by software.

Before we look at the processor interface of the CS8900A, there
are some important characteristics we need to note. On the CS8900A,
RESET is active high. This can catch an unwary designer used to active-
low resets. The reason that RESET is active high derives from the fact
that this chip was designed principally for use in PCs, as Intel processors
also have an active-high reset. The CS8900A's reset may be driven by a
digital output of a microcontroller so that it can be reset under software
control. Alternatively, in systems where the CS8900A is to have a
hardware-generated reset at the same time as the processor, the
processor's active-low reset signal must be inverted for the CS8900A.
The CS8900A's interrupt outputs (INTRQ0, INTRQ1, INTRQ2, INTRQ3)
are also active high, and each must be inverted before connecting to an
active-low interrupt input of a microprocessor.

Another consequence of its design for use in Intel-based systems
is that the CS8900A is little endian in operation. When used in 16-bit
mode with big-endian processors such as the MC68000 or the
DSP56805, this endian difference is important. There are two possible
solutions. The first is to simply byte-swap in software. Your code then
changes the 16-bit word to little-endian format before writing to the
CS8900A. And when reading from the CS8900A, the processor must
byte-swap the retrieved 16-bit word prior to processing.

However, there is an old saying that you should never fix in
software what you can correct in hardware. The second solution is
simply to byte-swap the data bus between the processor and the
CS8900A. D0:D7 of the processor is connected to D8:D15 of the
CS8900A, and D8:D15 of the processor similarly go to D0:D7 of the
CS8900A. In this way, the endian-ness is reversed by the actual circuit
board, and the software never needs to know the difference (Figure).

Figure. Endian swapping in hardware

Embedded systems
 Note

194

The CS8900A has 20 address inputs. This may seem like a lot of
address inputs for a peripheral, and it is. However, there is a reason. The
CS8900A is principally an ISA-bus device, and the ISA bus supports
separate memory and I/O memory spaces. Hence, the CS8900 has two
separate processor interfaces. In one, it appears as part of the memory
space of a processor and is accessed as though it were a memory
device. A chip-select input, CHIPSEL , enables the CS8900A when it is
used as a memory-mapped device. When it is used as a device within an
I/O space, there is no externally generated chip select. Instead, devices
mapped into the I/O space of an ISA bus are expected to do their own
address decoding, and that is why the CS8900A has 20 address lines.
Inside the CS8900A is an address decoder specifically for this chip.
When the CS8900A is reset, it defaults to I/O address 0x00300. This
address can be remapped under software control by writing to the
appropriate register of the CS8900A. When used as an I/O-mapped
device, CHIPSEL is ignored and the CS8900A will respond to the
appropriate address on its address inputs in conjunction with IOR (I/O
read) and IOW (I/O write). You can use the CS8900A in I/O mode within
a memory-mapped I/O system. The system address decoder includes
the address allocation for the CS8900A but simply does not select it.
What the system address decoder must do is ensure that no other
device is selected when the address(es) corresponding to the CS8900A
is being accessed.

The default setting for the CS8900A is I/O mode operation. To
use the CS8900A in memory-mapped mode, and therefore to have it
recognize CHIPSEL and its memory read (MEMR) and memory write
(MEMW) inputs, the CS8900A must first be accessed as an I/O-mapped
device and reconfigured in software. Therefore, to use the memory-
mapped option, you still have to support the I/O-mapped addressing
scheme to get to it! Therefore, it is much simpler to stick with the I/O-
mapped mode and map this within your memory space as just
described. If you're using the CS8900A with a processor that has only a
16-bit address bus, simply tie the additional address inputs of the
CS8900A to ground. The CS8900A's default address of 0x00300 may be
inconvenient for use with some processors that already have internal I/O
systems mapped within that region. An access to that address will be
intercepted by the internal I/O and never reach the CS8900A. In such
cases, it will be impossible to remap the CS8900A's address through
software. You will simply never reach the appropriate register. But there
is a solution, and it lies within hardware. If you invert some of the
address bits from the processor before they reach the CS8900A, you
can perform the remapping automatically. The CS8900A still thinks it lies
at address 0x00300, but to the processor it is accessed at a completely
different address. Figure shows an example of this for a processor with a
16-bit address bus.

Embedded systems
 Note

195

Figure. Address remapping in hardware

In this example, address bit A15 is inverted. So, when the
processor accesses address 0x8300 (%1000 0011 0000 0000), this is
converted to address 0x0300 (%0000 0011 0000 0000), which is
recognized by the CS8900A.

The CS8900A also has support for a serial EEPROM. This can
be used to store CS8900A configuration information and the system's
unique Ethernet address. Note that this EEPROM is optional, as the host
processor can store this data elsewhere in the system. Figure shows the
CS8900A interfaced to a configuration EEPROM. The interface is
standard SPI, and the appropriate pins of the CS8900A are directly
connected to the corresponding EEPROM pins. The only other
component required is a decoupling capacitor for the EEPROM's power-
supply pin. The EEPROM interface is disabled in 8-bit mode, so the host
processor must supply all configuration information.

Embedded systems
 Note

196

Figure . CS8900A interfaced to a configuration EEPROM

Finally, any used inputs, such as the DMA signals (,

and), , , , , AEN, and

should be tied inactive. These signals are not used in a typical
embedded system.

Summary

 CAN is a real-time communication at up to 1 Mbps, over a 2-wire
serial network. CAN specifies only the physical and data-link
layers of the ISO-OSI model, with higher layers left to the specific
implementation.

 Crystal Semiconductor, now part of Cirrus Logic
(http://www.cirrus.com), produces a single-chip Ethernet
controller known as the CS8900A. This chip allows you to add a
simple (and low-cost) 10 Mbps Ethernet interface to your
embedded system.

 Four wires are used: two for the transmitter pair and two for the
receiver pair. One wire of the pair carries a signal voltage of 0 to
+2.5 V, while the other wire carries a voltage of 0 to -2.5 V, giving
a signal difference of 5 Vpp.

Questions

 What is CAN?

 Briefly explain Ethernet?

 Explain address remapping in controllers?

 What is Endian swapping in hardware?

 What is 10base-T interface?

Embedded systems
 Note

197

References

 C Programming for Embedded Systems – KIRK ZURELL

 Design with 8051- FRONTLINE ELECTRONICS

 Embedded Controller Hardware Design - Ken Arnold

 Embedded Software The Works – colin walls

 Embedded Systems Firmware Demystified - Ed Sutter

 Embedded_Controller_Hardware_Design – KEN ARNOLD

 Programming Embedded Systems in C and C++ - Michael Barr

 The Art of Designing Embedded Systems - Jack G. Ganssle.

 Embedded System
 Notes

198

UNIT – V

11. The PIC Microcontrollers

Objective:

This chapter introduces you to the Microchip PIC. To start our
discussion of microprocessor hardware, we'll look at the basics of creating
computer hardware by designing a small computer based on a simple 8-pin
PIC processor. The same design principles apply to the AVR and many other
microcontrollers. This PIC processor is so simple that building a computer
based on one of them is trivial, as you will see. From there, we'll look at a
mid-range PIC processor and see just what you need to do to design an
embedded computer based on one. First, though, let's take a quick tour of the
PIC architectures before getting into designing some computers.

A Tale of Two Processors

In the late 1970s, General Instruments had a 16-bit processor known
as the CP1600. It has since passed into extinction and is all but forgotten,
long ago losing out to the Intel 8086 and the Motorola 68000. One major
failing of the CP1600 was that it had limited I/O capability, and so General
Instruments designed a tiny companion processor to act as an I/O controller.
The idea was that this controller could provide not only the I/O for the
CP1600, but being a processor in its own right, it could provide some degree
of intelligent control. This processor was called the Peripheral Interface
Controller, or PIC. The CP1600 died a quiet death, passing gently into
oblivion, but its little companion lives on. In the mid-80s, the microelectronics
division of General Instruments was spun off into Microchip, and the PIC
processor was its core product. Today, PICs are widely used. They live in the
hand controllers of Sony PlayStations, children's toys, consumer appliances,
and industrial systems.

The original PIC architecture has only one accumulator (known as the
working register, or w register) and 25 to 368 bytes of RAM in the original
processors. The program counter's least significant byte, the status register,
and various control registers are mapped into the lowest part of the RAM
space and may be accessed by standard memory move operations. The
upper part of the RAM space is for data. Microchip refers to the RAM space
as "registers," although they have limited functionality as true registers. They
are primarily for data storage.

The processor has a stack that is fixed to a depth of between two and
eight entries (depending on the particular processor) and is used solely for

 Embedded System
 Notes

199

holding return addresses for subroutine calls and interrupts. There is a single
register, known as the FSR (File Select Register), which can act as an index
register into the RAM space. Limited indexed addressing is available using
the FSR, and it can be used to implement a pseudostack for user data.

Apart from a few exceptions, the PIC has no external buses and is a
self-contained computer within a single chip. Only limited expansion is
possible using the processor's peripheral interfaces (SPI and I2C) or digital
I/O ports. The PIC excels in applications for which size and power
consumption are critical. Being able to drop a tiny computer system into a
design is a great bonus, and it is ideal for battery-powered applications, since
it can (almost) run off the field of a stray electron.

The PIC is also very robust. It takes a lot to kill a PIC. I had one client
that inadvertently switched power and ground on his PIC-based computer
and left it that way for a week. At the end of it, the little processor was still
operational (once powered the right way). Another time, one of my PIC-based
data loggers was tested for its long endurance by attaching it to the Indian
Pacific express. This is a long-haul passenger train that goes between
Sydney and Perth, crossing the deserts of central Australia. Unfortunately,
during the trial the Indian Pacific was involved in a serious rail accident. A
signaling fault caused a commuter train to impact the rear of the express,
completely demolishing the end carriages. The data logger had been
attached (externally) to the rear of the train. It absorbed the full impact of the
collision, and, when recovered from the wreckage, the data logger was still
operating normally. PICs are tough little processors!

The PIC is very RISC-like in many respects. The architecture is
Harvard, with separate data and code spaces. The data space is 8 bits wide,
while the code spaces are between 12 and 16 bits wide, depending on the
particular PIC family. The data space is mapped into multiple banks, including
most control registers. With only one accumulator, banked memory, and
limited addressing modes, a reasonable percentage of a given program can
be spent simply shuffling data around, much more so than many other
processors. The PIC excels in small-scale, simple applications. However, the
lure of its ultra-low power consumption sometimes means that it is pressed
into service running some quite involved algorithms. Writing complicated
software for the PIC sometimes feels as impossible as trying to solve a Tower
of Hanoi puzzle that has only a single peg. It can be a challenge! Many a PIC
programmer has wished for just a bit more memory, and just a few more
accumulators. The new dsPIC architecture, which is a significant advance
over the standard PIC, has been received with chortles of joy by PIC
developers around the world, as is a much more advanced processor.

A number of commercial C compilers are also available for the PIC,
but there is no port of the gnu C compiler for it. (At the time of writing, there
are rumors that the gnu compiler will be ported to the new dsPIC
architecture.)

 Embedded System
 Notes

200

For many simple digital applications, a small microprocessor is a
better choice than discrete logic, because it is able to execute software. It is
therefore able to perform certain tasks with much less hardware complexity.
So, let's see just how easy it is to produce a small, embedded computer.

Starting Simple

The PIC12C508 processor is a tiny 8-pin computer with just 512
words of internal program memory and just 25 bytes of internal RAM. It is
intended for the simplest of control functions. It can be used in any small
application for which you need to monitor digital inputs or turn something on
or off. Its I/O pins can be used to synthesize a SPI or I2C interface, or to
control a motor using PWM.

Figure shows the schematic for a small computer based on the
PIC12C508. The digital I/O signals of the PIC are brought out through a 7-pin
connector. If the design were implemented using surface-mount components
wherever possible, the connector would be the largest component on the
PCB!

This particular PIC processor includes an internal RC oscillator that
runs at 4 MHz, so we can use it without any external oscillator circuit. The
design in Figure shows the same PIC-based design, but this time using an
external 32 kHz watch crystal for its oscillator. By running off a (slower) 32
kHz crystal, we have the advantage of greatly reducing the processor's power
consumption. This is important for battery-powered applications.

Two 15 pF capacitors remove unwanted higher-order harmonics from
the crystal's oscillation. The values for the capacitors vary depending on what
speed and type of crystal you are using. The processor datasheet has tables
showing recommended capacitor values for various crystal frequencies.

Minimal PIC12C805 computer

 Embedded System
 Notes

201

A basic PIC12C508 computer; just add power The alternative is to
use an external RC circuit as the clock source (Figure). While not the most
precise timing option, it is by far the cheapest. The actual frequency of
oscillation depends on a combination of the values of the resistor, the
capacitor, the supply voltage, the variation in tolerances for the components,
and the current operating temperature. To be clear, only an approximate
operating frequency can be determined for an RC oscillator.

The alternative is to use an external RC circuit as the clock source
(Figure). While not the most precise timing option, it is by far the cheapest.
The actual frequency of oscillation depends on a combination of the values of
the resistor, the capacitor, the supply voltage, the variation in tolerances for
the components, and the current operating temperature. To be clear, only an
approximate operating frequency can be determined for an RC oscillator. For
stable operation, Microchip recommends that the resistor should be between
3 k and 100 k, and the capacitor greater than 20 pF. If you wish to use an
external RC oscillator, refer to the processor's datasheet, as Microchip has
detailed information on RC component selection, taking into account voltage

and temperature effects. External RC oscillator

 Embedded System
 Notes

202

Variable-Speed Oscillator

One of the neat tricks you can do if using an external RC oscillator is
have a variable-speed computer. This is accomplished by adding a pull-up
resistor (R1) between the oscillator input and an I/O pin (Figure). For normal
operation, the I/O pin is configured as an input. By configuring the I/O pin as
an output and placing it high, the resistor R1 is effectively placed in parallel
with the resistor R. The overall resistance is increased by the relationship
RTOTAL = 1 / (1/R + 1/R1), and the oscillator slows accordingly. This is a
useful technique to reduce power consumption under software control.

When using an external RC circuit to drive the internal oscillator, an
extra PIC I/O line (GP4) becomes available for use.

Variable-speed RC oscillator

Power-on Reset

No external reset is needed for this PIC. Instead, the design relies on
the internal power-up reset circuit of the processor. Further, not even an
external resistor is required on the reset input, RESET, since the processor
incorporates a weak pull-up resistor for this purpose. When not used as a
reset input. The power supply (VDD) for the PIC12C805 can range from 2.5 V
to 5.5 V.

 Embedded System
 Notes

203

That covers the basics of a PIC12C805 system, and it's not that much
different from the corresponding AVR computer, which we'll look at in the
next chapter. The real differences lie in their internal architectures (and
instruction sets) and in the subtleties of their operating voltages and
interfacing capabilities. As you can see, there's not a lot of hard work involved
in putting one of these little machines into your embedded system.

A Bigger PIC

In this section, we'll look at the PIC16C73 processor. For a mid-range
PIC, the design is not dissimilar to the simpler PIC we've already seen. The
only real difference is that the processor has more pins, more I/O, and more
functionality. Designing for PIC17 and PIC18 processors is not dissimilar to
creating machines based on the PIC16 family. What you learn here is
applicable to many other PICs.

The schematic for this processor is shown in Figure. This processor
has 4K words of program memory, 192 bytes of RAM, and a variety of I/O
subsystems, such as three timer modules, SPI, I2C, a UART, five channels of
analog input, and up to 22 digital I/O pins.

PIC16C73 processor and support components

 Embedded System
 Notes

204

This processor has one power pin (VDD) and two ground pins (VSS).
As always, power is decoupled to ground with a small capacitor (C3). The
only other requirements are some form of clock generation—in this case
provided by a crystal, X1--and two decoupling capacitors, C1 and C2. The
clock could just as easily have been provided using an RC circuit, as we saw
with the 12C508 PIC. The reset input, RESET, is tied directly to the power
supply, such that it is permanently inactive. In this case, we are relying on the
processor's internal power-on reset circuitry and don't need to provide an
external reset. It is common practice to use a pull-up resistor to tie an unused
input, such as RESET , inactive. However, in this case I have found that a
pull-up resistor can affect the activation of the internal power-on reset to the
point where it fails to kick in. (The internal capacitance of the pin combines
with the resistor to form an RC circuit, which delays RESET from reaching the
appropriate level.) Thus, the resistor can actually cause the processor to
never start properly. So in this case, it's better to leave it out.

Port A (RA0 . . . RA5) functions as an analog input port or a general-
purpose digital port. Port B (RB0 . . . RB7) is a general-purpose digital port
with weak internal pull-up resistors. Port C (RC0 . . . RC7) can act as a digital
port or provide timers, PWM, a serial port, a SPI port, or an I2C interface.
Depending on your application, you may use some or all of these pins in your
design, connecting to other subsystems as appropriate.

This basic design, in combination with the appropriate datasheet, can
be adapted to most other PIC processors that you will come across.

PIC-Based Environmental Data logger

Now let's look at a complete system based on a PIC processor. The
design presented here is a simplified version of my DL4 data logger product.
This data logger is designed for extended recording of data (for at least a
year), using a minimum of power. It has 1M of nonvolatile memory, capable
of retaining data without power for as much as 20 years. The sensors fitted
are light and temperature, but you could easily adapt this design to record
any analog sensor you like, from acceleration to magnetic field. It's also
small. The entire data logger fits onto a circuit board smaller than your
smallest finger.

The processor is a PIC16LF873A, a variant of the PIC16C73. The "L"
means that it is low-power, and the "F" means that it is a flash-based part
(rather than EPROM or OTP) that can be reprogrammed in-circuit, making
debugging (and life) so much easier. The "8" indicates that the processor
includes EEPROM for nonvolatile parameter storage, useful for holding user
preferences and machine state. Finally, the "A" tell us that it is a second
revision (version) of the silicon. The basic circuit for the processor and its
support components is shown in Figure. Note that the processor's power pin
is connected to a net labeled PVDD rather than the system's VDD. Since the
processor can be reprogrammed in-circuit, we must consider this in our

 Embedded System
 Notes

205

design. During programming, the burner provides its own supply voltage (+5
V) for the processor. Now the flash chip used in the data logger requires a
nominal supply voltage of 3.3 V, and the 5 V supplied by the burner could
potentially damage the chip. Hence, we use a Scotty diode, D2, to isolate the
system supply voltage from the processor when it is being reprogrammed.
When not being programmed, D2 conducts and supplies the processor with
power. During programming, D2 doesn't conduct, and the rest of the data
logger remains unpowered. In the same way, we use a Scotty diode (D1) to
isolate the processor's reset pin from the supply voltage. When not being
programmed, D1 conducts and pulls RESET to VDD. However, during
programming, D1 isolates RESET and allows the burner to pull this reset
input to a higher voltage as required.

The processor has two crystals, X1 and X2. X1 provides the timing for
the processor that drives its internal operation. Depending on our application,
X1 could be anything from 32 kHz to 20 MHz. The choice of crystal for X1
affects the power consumption of the data logger. The faster the crystal, the
more juice the machine uses. For ultra-low-power operation, a 32 kHz crystal
is the best choice. However, this does have a drawback. Since the internal
oscillator is used to drive the UART's transmitter and receiver clocks, a slow
crystal limits the baud rate that we can achieve. Using a 32 kHz crystal gives
a maximum baud rate of only 300 baud. Downloading a megabyte of data
from the data logger at that speed takes a whopping 7 hours and 42 minutes!
(And you thought your Internet connection was slow.) Hence, you need to
choose a value of X1 that best suits your needs. If you can live with a 7-hour
download and want the maximum possible operating life from your battery,
use a 32 kHz crystal. If battery life is not critical, use a faster crystal.

X2 is used to drive the processor's internal TIMER1 subsystem, which
we use for timekeeping functions and for scheduling the sampling process.
While it is possible to use the processor's main oscillator to drive the internal
timers, this oscillator is shut down during the execution of the SLEEP
instruction. (The internal watchdog circuit is used to reawaken the processor.)
Hence, it is better to use a second crystal on TIMER1 for your timekeeping,
as TIMER1 continues to operate even during sleep.

The voltage regulator circuit is shown in Figure. It's a standard
MAX604 circuit, providing a 3.3 V supply voltage on VDD. Since we are using
a battery to supply power, we can live without a capacitor on the input.
There's a huge choice of batteries available. I like the Energizer EL123
battery. It's relatively small (two-thirds the length of a AA and slightly fatter)
and can run the data logger for well over a year.

 Embedded System
 Notes

206

Datalogger processor and support components

The regulator is important in the data logger for two reasons. First, it
ensures that the supply voltage within the data logger is constant. This is
critical, as the supply voltage

Datalogger power supply

is used as a reference for the analog-to-digital converter. While it is
perfectly possible to run the processor directly off a battery, as the battery's
voltage begins to drop with use, the readings from the sensors will become
increasingly meaningless. We'd be recording data quite successfully, but its
relevance would be nil.

 Embedded System
 Notes

207

The second reason for using the regulator is that it is able to operate
off a lower voltage than other components in the system and still provide a
stable 3.3 V. This means that even as our battery is draining, we can still get
the maximum operating life possible.

Figure 14-8 shows the nonvolatile flash (made by ST Electronics),
which is used for holding data. The flash uses a simple SPI interface to
connect to the host processor. It is selected by the FLASH chip select, which
is controlled from a processor I/O line (RB2). The HOLD input to flash acts as
a "pause" function during accesses. This allows the processor, until software
control, to temporarily suspend its access to the flash and perform SPI
transfers with other peripherals. This feature currently isn't used in the data
logger but is included to allow for future functionality, such as the inclusion of
digital, SPI-based sensors. Finally, the chip select (FLASH) is pulled high to
ensure that the flash is not inadvertently selected as the data logger is
powering up.

Data logger nonvolatile memory

Figure shows the data logger's interface to the outside world. The DL4
data logger uses a small Harwin connector, also shown in Figure, but you
could use whatever suits your application, even an IDC header.

The connector is used to mate with two separate devices. The first is
shown in Figure. This in-house adaptor allows the datalogger to be plugged
into a Microchip PICSTART Plus programmer for burning new code. It simply
maps the signals required during programming (PGD, PGC, power, and
ground) to the equivalent pins for a DIP-based PIC. In essence, it converts
the datalogger's connector into the pinout of a DIP-based PIC. The adaptor
board has pins underneath that insert into the programmer

 Embedded System
 Notes

208

Datalogger connector

Programming adaptor for the DL4 datalogger

The second device into which the data logger plugs is an RS-232C
adaptor module, shown in Figure.

Serial adaptor

This module allows the data logger to connect to a host computer for
both configuration setup and data recovery. The adaptor has a Maxim RS-
232C level-shifter and a voltage regulator (both fitted to the top side of the
circuit board), and a DB-9 connector. It draws its power from the RTS signal
of the host computer's serial port and, as such, requires no external power
supply. The schematic for this circuit is shown in Figure. Note that this is an
independent circuit from that of the data logger. The diode D2 is needed
since RTS can have negative voltages as well as positive voltages. D2
prevents damage to the regulator when RTS is negative. During normal
operation, RTS is set at +12 V by the host computer under software control,

 Embedded System
 Notes

209

turning on the serial adaptor. The regulator turns this +12 V into +3.3 V,
which powers the MAX3232 and illuminates the LED.

Note that pin 6 of the Harwin connector on the data logger is
connected to a net called HOST. This pin corresponds to pin 3 of the
adaptor's Harwin connector and is tied to ground. When the data logger is
plugged into the adaptor module, HOST is pulled low, but at all other times it
is high due to the internal pull-up resistors inside the PIC. In this simple way,
software running on the data logger can tell whether a host computer is
present. This is useful as the data logger's UART may be disabled to save
power until it is required. Further, it can act as a simple switch for the
firmware, toggling between "talk to host" mode and "data logging" mode. It's
interesting to note that the Harwin connector is much bigger on the schematic
than the DB-9 due to the number of pins. Yet, when placed next to a DB-9,
the Harwin connector is physically tiny.

 Embedded System
 Notes

210

Serial adaptor schematic

Finally, Figure shows the sensors of the data logger. You could just as
easily use other sensors or provide a connector allowing for interfacing to
interchangeable sensor modules or external analog subsystems.

 Embedded System
 Notes

211

Data logger sensors

Motor Control with a PIC

Now let's look at using a PIC in a completely different sort of
application: motor control via user input. While the design presented in this
section is targeted at a specific application, it is just as easily adapted to any
task where small DC motors need to be controlled, from tools to robotics.

My young nephews are into model trains, and the standard controller
that came with the railroad was a fairly simple device. The speed of the
locomotives is controlled by simply varying the voltage on the track. Turn up
the voltage, and the trains go faster; turn down the voltage, and the trains
stall on dirty rails. Fine control and realistic operation just wasn't possible. I
decided to solve this problem by throwing a little high-tech at it and designed
for them a microprocessor-based controller using a PIC. It's this design that I
will share with you.

The hardware design takes the basic concept one step further by
adding momentum control and braking. The momentum control allows you to
specify the mass of the train under control so that when you open up the
throttle, the train gradually builds up speed, and rolls to a halt when the
throttle is closed. Braking speeds up the stopping. All this sounds
complicated, but the hardware to do it is trivially simple when you use a
microcontroller. All the real "work" is done in the software, and you can keep
it as simple or as fancy as you want.

 Embedded System
 Notes

212

The processor schematic is shown in Figure. It's not that different
from the one used in the datalogger.

Figure. Processor

You'll notice that there's only one crystal, since there's no need for
timekeeping. Two status LEDs are provided for user feedback by software.
As there are several spare pins on Port B (RB2, RB5..7), you could add extra
LEDs if you feel so inclined. BRAKE and FLAG are inputs to the processor.
BRAKE comes from a push-button switch, and FLAG is an output from the H-
bridge chip that indicates an over-current fault.

You'll also notice that there's no provision for in-circuit programming
as was provided in the data logger design. For this particular project, I used a
DIP-based PIC processor that I had lying around, and to reprogram the part it
was a simple matter to remove it from its socket on the circuit board and drop
it into the burner. If you want to be able to reprogram the chip in-circuit,
simply use the same connections as in the data logger design.

The choice of crystal frequency is up to you, but the choice you make
does have an interesting consequence. The frequency of the crystal relates
directly to the PWM frequency the processor is able to generate. The clock
signal from the crystal circuit is divided by four before being fed into the
processor's PWM modules. Registers within the PWM modules can then
scale this back further to produce a slower PWM frequency. Commercial train
controllers use a PWM frequency of 16,125 Hz. Any slower than this and you
will hear noise from the motors; any faster and there is a loss of torque. So to
achieve a PWM frequency of 16 kHz, you'll need a crystal with a frequency
greater than 64 kHz. As you can't easily obtain crystals of that exact
frequency, the best choice would be a 1 MHz crystal, using the PWM
modules' registers to scale it back appropriately.

 Embedded System
 Notes

213

The voltage regulator circuit is shown in Figure. The regulator chosen
is a standard (and cheap) LM7805 that provides a constant +5 V output from
an input voltage of between +7 V and +35 V. Since the motors of model
locomotives run on a nominal maximum of +12 V, this is the actual supply
voltage for the system. Also included in the regulator schematic is a LED to
indicate when power is on and extra decoupling capacitors to help eliminate
digital noise in the system.

Figure shows the controls used to drive the train. The throttle and
momentum controls are simply 50 k potentiometers, which are used as
voltage dividers. The wipers of these pots provide a voltage of between 0 V
and +5 V to the analog inputs of the PIC. Thus, position of the control can
easily be read by software. The direction and brake controls are simple push
buttons. The direction control connects directly to an input on the H-bridge
chip (discussed shortly), and the brake control is used as a digital input to the
processor. The direction control has a 100 k pull-up resistor, and the brake
control relies on the internal pull-ups of Port B of the processor.

Figure. Voltage regulator

Controls

 Embedded System
 Notes

214

Figure shows the H-bridge chip. This converts the PWM output of the
processor to voltage levels appropriate for driving the small DC motors found
in model locomotives or, for that matter, any sort of small DC motor.

Figure. H-bridge

The H-bridge uses VIN (+12 V) as its power source because it must
supply that voltage to the motors. As mentioned, the DIR (direction) input
comes from a simple push button and determines the polarity of the output.
Alternatively, the direction switch could be connected to a spare digital input
of the processor, and a digital output could drive DIR. Since it would be a

 Embedded System
 Notes

215

simple mapping of input to output by the software, it's easier just to connect it
straight through and bypass the PIC.

The output of the PIC's PWM1 module is connected directly to the
PWM input of the H-bridge. The H-bridge converts the 5 V amplitude, PWM
signal from the PIC to a 12 V amplitude, PWM output whose polarity is
determined by DIR.

The H-bridge has internal over-current sensing and will shut itself off if
its temperature rises too high (as would happen if the outputs were shorted
together). The FAULT output indicates when this occurs. This active-low
output is used to control a LED and is also connected to an input on the
processor so that the software can be made aware of the fault condition.

Finally, we can add an optional serial port to the controller, shown in
Figure. This is a standard RS-232C level-shifter circuit and is connected to
the RX and TX pins of the processor's UART. The serial port can be used for
software debugging to display status messages to a host computer or
terminal. If you wanted to get very fancy, you could use the serial port to
allow a host computer to send commands to the train controller. If you're
adapting this design for robotics, a serial port would be a very useful addition.
However, if you are providing control from an external host, don't forget to
connect the DIR input of the H-bridge to the PIC and not directly to a push
button.

Figure. Serial port

In the next chapter, we'll take a look at the AVR processor family.
These processors are comparable to PICs in terms of I/O and functionality
but have a higher throughput and a more versatile architecture.

 Embedded System
 Notes

216

Summary:

 The original PIC architecture has only one accumulator (known as the
working register, or w register) and 25 to 368 bytes of RAM in the
original processors.

 The processor has a stack that is fixed to a depth of between two and
eight entries (depending on the particular processor) and is used
solely for holding return addresses for subroutine calls and interrupts.

 The architecture is Harvard, with separate data and code spaces. The
data space is 8 bits wide, while the code spaces are between 12 and
16 bits wide, depending on the particular PIC family.

 The PIC12C508 processor is a tiny 8-pin computer with just 512
words of internal program memory and just 25 bytes of internal RAM.

 PIC processor includes an internal RC oscillator that runs at 4 MHz,
so we can use it without any external oscillator circuit.

 16F73 processor has 4K words of program memory, 192 bytes of
RAM, and a variety of I/O subsystems, such as three timer modules,
SPI, I2C, a UART, five channels of analog input, and up to 22 digital
I/O pins.

 RS-232C level-shifter circuit and is connected to the RX and TX pins
of the processor's UART.

Question:

 Explain the features of PIC controller briefly?

 What is power on RESET? Explain?

 Explain pin diagram of PIC16C63.

 How to design a data logger using PIC, Explain with diagrams?

 Write notes on RS232 in PIC?

References:

 A Beginner's Guide to Using the PIC Microcontroller, by David
Benson

 PIC Microcontroller Applications Guide by David Benson

 PIC Microcontroller Applications Guide by David Benson

 PIC Microcontroller Serial Communications, by Roger Stevens

 C What Happens, Using PIC® Microcontrollers and the CCS C
Compiler, by David Benson

 Embedded System
 Notes

217

12. The AVR Microcontrollers

Objective

In this chapter, we'll look at the Atmel AVR processor. Like the PIC,
this processor family is a range of completely self-contained computers on
chips. They are ideally suited to any sort of small control or monitoring
application. They include a range of inbuilt peripherals and also have the
capability of being expanded off-chip for additional functionality.

Like the PIC, the AVR is a RISC processor. Of the two architectures,
the AVR is the faster in operation and arguably the easier for which to write
code, in my personal experience. The PIC and AVR both approach single-
cycle instruction execution. However, I find that the AVR has a more versatile
internal architecture, and therefore you actually get more throughputs with the
AVR.

In this chapter, we'll look at the basics of creating computer hardware
by designing a small computer based on the AVR ATtiny15. We'll also see
how you can download code into an AVR-based computer and how it can be
reprogrammed in-circuit. From there, we'll go on to look at some larger AVR
processors, with a range of capabilities.

Later in the chapter, we're going to look at interfacing memory (and
peripherals) to a processor using its address, data, and control buses. For
most processors, this is the primary method of interfacing, and, therefore, the
range of memory devices and peripherals available is enormous. You name
it, it's available with a bus interface. So, knowing how to interface bus-based
devices opens up a vast range of possibilities for your embedded computer.
You can add RAM, ROM (or flash), serial controllers, parallel ports, disk
controllers, audio chips, network interfaces, and a host of other devices.

Most small microcontrollers are completely self-contained and do not
"bring out" the bus to the external world. In this chapter, we'll take a look at
the Atmel AT90S8515 processor. It is the only processor of the AVR family
that allows you access to the CPU's buses. But first, let's take a look at the
AVR architecture in general.

The AVR Architecture

The AVR was developed in Norway and is produced by the Atmel
Corporation. It is a Harvard-architecture RISC processor designed for fast
execution and low-power consumption. It has 32 general-purpose 8-bit
registers (r0 to r31), 6 of which can also act as 3 16-bit index registers (X, Y,
and Z) (Figure). With 118 instructions, it has a versatile programming
environment.

 Embedded System
 Notes

218

AVR registers

In most AVRs, the stack exists in the general memory space. It may
therefore be manipulated by instructions and is not limited in size, as is the
PIC's stack.

The AVR has separate program and data spaces and supports an
address space of up to 8M. As an example, the memory map for an
AT90S8515 AVR processor is shown in Figure.

Atmel AT90S8515 memory map

 Embedded System
 Notes

219

Atmel provides the following sample C code, which it compiled and
ran on several different processors:

int max(int *array)

{
 char a;
 int maximum = -32768;
 for (a = 0; a < 16; a++)
 if (array[a] > maximum)
 maximum = array[a];
 return (maximum);
}

The results are interesting (Table).

Atmel's comparison of processor speed and efficiency

Proce
ssor

Compiled code
size

Execution time
(cycles)

AVR 46 335

8051 112 9,384

PIC16
C74

87 2,492

68HC
11

57 5,244

This indicates that, when running at the same clock speed, an AVR is
7 times faster than a PIC16, 15 times faster than a 68HC11, and a whopping
28 times faster than an 8051. Alternatively, you'd have to have an 8051
running at 224 MHz to match the speed of an 8 MHz AVR. Now, Atmel
doesn't give specifics of which compiler(s) it used for the tests, and it is
certainly possible to tweak results one way or the other with appropriately
chosen source code. However, my personal experience is that with the AVR,
you certainly do get significantly denser code and much faster execution.

There are three basic families within the AVR architecture. The
original family is the AT90xxxx. For complex applications, there is the
ATmega family, and for small-scale use, there's the ATtiny family. Atmel also
produces large FPGAs (Field-programmable Gate Arrays), which incorporate
an AVR core along with many tens of thousands of gates of programmable
logic.

 Embedded System
 Notes

220

For software development, a port of gcc is available for the AVR, and
Atmel provides an assembler, simulator, and software to download programs
into the processors. The Atmel software is freely available on its web site.
The low-cost Atmel development system is a good way of getting started with
the AVR. It provides you with the software and tools you need to begin AVR
development.

The AVR processors at which we'll be looking are the small ATtiny15,
the AT90S8535/AT90S4434, and the AT90S8515.

The ATtiny15 Processor

For many simple digital applications, a small microprocessor is a
better choice than discrete logic, because it is able to execute software. It is
therefore able to perform certain tasks with much less hardware complexity.
You'll see just how easy it is to produce a small, embedded computer for
integration into a larger system using an Atmel ATtiny15 AVR processor. This
processor has 512 words of flash for program storage and no RAM! (Think of
that the next time you have to install some 100 MB application on your
desktop computer!) This tiny processor, unlike its bigger AVR siblings, relies
solely on its 32 registers for working variable storage.

Since there is no RAM in which to allocate stack space, the ATtiny15
instead uses a dedicated hardware stack that is a mere three entries deep,
and this is shared by subroutine calls and interrupts. (That fourth nested
function call is a killer!) The program counter is 9 bits wide (addressing 512
words of program space), and therefore the stack is also 9 bits wide. Also,
unlike the bigger AVRs, only two of the registers (R30 and R31) may be
coupled as a 16-bit index register (called "Z").

The processor also has 64 bytes of EEPROM (for holding system
parameters), up to five general-purpose I/O pins, eight internal and external
interrupt sources, two 8-bit timer/counters, a four-channel 10-bit analog-to-
digital converter, an analog comparator, and the ability to be reprogrammed
in-circuit. It comes in a tiny 8-pin package, out of which you can get up to 8
MIPS performance. We're not going to worry about most of its features for the
time being. That will all be covered in later chapters when we take a look at
the I/O features of some larger AVRs. Instead, we're just going to concentrate
on how you use one for simple digital control.

Using a small microcontroller such as the ATtiny15 is very easy. The
basic processor needs very little external support for its own operation. Figure
shows just how simple it is.

 Embedded System
 Notes

221

A simple AVR computer

Let's take a quick run-through of the design (what there is of it). VCC
is the power supply. It can be as low as 2.7 V or as high as 5.5 V. VCC is
decoupled to ground using a 0.1 uF capacitor. The five pins, PB0 through
PB4, can act as digital inputs or outputs. They can be used to read the state
of switches, turn external devices on or off, generate waveforms to control
small motors, or even synthesize an interface to simple peripheral chips. The
digital I/O lines, PB0 through PB4, get connected to whatever you're using
the processor to monitor or control. We'll look at some examples of that later
in the chapter.

Finally, one input, RESET, is left unconnected. On just about any
other processor, this would be fatal. Many processors require an external
power-on reset (POR) circuit to bring them to a known state and to
commence the execution of software. Some processors have an internal
power-on reset circuit and require no external support. Such processors still
have a reset input, allowing them to be manually reset by a user or external
system. Normally, the reset input still requires a pull-up resistor to hold it
inactive. But the ATtiny15 processor doesn't require this. It has an internal
power-on reset and an internal pull-up resistor. So, unlike most (all) other
processors, RESET on the ATtiny15 may be left unconnected. In fact, on this
particular processor, the RESET pin may be utilized as a general-purpose
input (PB5) when an external reset circuit is not required. One important
point: the normal input protection against higher-than-normal voltage inputs is
not present on RESET /PB5, since it may be raised to +12 V during software
download by the program burner. Therefore, if you are using PB5, you must
take great care to ensure that the input never exceeds VCC by more than 1
V. Failing to do so may place the processor into software-download mode
and thereby effectively crash your embedded computer.

The AVR processors (and PICs too) include an internal circuit known
as a brownout detector (BOD). This detects minor fluctuations on the
processor's power supply that may corrupt its operation, and if such a

 Embedded System
 Notes

222

fluctuation is detected, it generates a reset and restarts the processor. There
is also an additional reset generator, known as a watchdog, used to restart
the computer in case of a software crash. It is a small timer whose purpose is
to automatically reset the processor once it times out. Under normal
operation, the software regularly restarts the watchdog. It's a case of "I'll reset
you before you reset me." If the software crashes, the watchdog isn't cleared
and thus times out, resetting the computer. Processors that incorporate
watchdogs normally give software the ability to distinguish between a power-
on reset and a watchdog reset. With a watchdog reset, it may be possible to
recover the system's state from memory and resume operation without
complete re-initialization.

Now the other curious aspect of the above design is that there is no
clock circuit. The ATtiny15 can have an external crystal circuit. (On the
ATtiny15, PB3 and PB4 function as the crystal inputs, XTAL1 and XTAL2).
But our design doesn't have a crystal, or even need one. The reason is that
this little processor includes a complete internal oscillator (in this case, an RC
oscillator) running at a frequency of 1.6 MHz and so requires no external
components for its clock. The catch is that RC oscillators are not that stable
and have the tendency to vary their frequency as the temperature changes.
(The ATtiny15's oscillator can vary between 800 kHz and 1.6 MHz.)
Generally, an RC oscillator is not really suitable for timing-critical applications
(in which case, you'd use an external crystal instead). But if your ATtiny15 is
just doing simple control functions, timing may not be an issue. You can
therefore get by with using the internal RC oscillator and save on complexity.
Atmel provides an 8-bit calibration register (OSCCAL) in the ATtiny15 that
enables you to tune the internal oscillator, thus making it more accurate.

There we have the basic design for an ATtiny15 machine. In essence,
it's a very cheap, very small, versatile computer that requires no work for the
core design. The only design effort needed is to ensure that the computer will
work correctly with the I/O devices to which it is interfaced. If you're going to
power the system off a battery, then the capacitor is optional as well! The
only component that must be there is the processor itself. (And you thought
designing computer hardware was going to be hard!)

So, that's the basic AVR computer hardware with minimal
components. We'll look at how you download code to it shortly.

That covers the basics of a ATtiny15 system, and it's not that much
different from the corresponding PIC12C805 computer. The real differences
lie in their internal architectures (and instruction sets) and in the subtleties of
their operating voltages and interfacing capabilities. As you can see, there's
not a lot of hard work involved in putting one of these little machines into your
embedded system.

So far, our computer isn't interfaced to anything. Let's start with
something simple by adding a LED to the AVR. The basic technique applies
to all microcontrollers with programmable I/O lines as well.

 Embedded System
 Notes

223

Adding a Status LED

LEDs produce light when current flows through them. Being a diode,
they conduct only if the current is flowing in the right direction, from anode
(positive) to cathode (negative). The cathode end of a LED is denoted on a
schematic by a horizontal bar. The anode is a triangle.

The circuit for a status LED is shown in Figure. It uses an I/O line of
the microcontroller to switch the LED on or off. Sending it low will turn on the
LED. Sending it high will turn off the LED, as we'll soon see. The resistor (R)
is used to limit the current sinking into the I/O line, as we shall also see
shortly.

Status LED

When conducting (and thereby producing light), LEDs have a forward
voltage drop, meaning that the voltage present at the cathode will be less
than that at the anode. The magnitude of this voltage drop varies between
different LED types, so check the datasheet for the particular device you are
using.

The output low voltage of an ATtiny15 I/O pin is 0.6 V when the
processor is operating on a 5 V supply and 0.5 V when operating on a 3 V
supply. Let's assume (for the sake of this example) that we are using a power
supply (VCC) of 5 V, and the LED has a forward voltage drop of 1.6 V. Now,
sending the output low places the LED's cathode at 0.6 V. This means the
voltage difference between VCC (5 V) and the cathode is 4.4 V. If the LED
has a voltage drop of 1.6 V, this means the voltage drop across the resistor is
2.8 V (5 V - 1.6 V - 0.6 V = 2.8 V).

Now, from the datasheet, the digital I/O pins of an AVR can sink up to
20 mA if the processor is running on a 5 V supply. We therefore have to limit
the current flow to this amount, and this is the purpose of the resistor. If the
resistor has a voltage difference across it of 2.8 V (as we calculated) and a
current flow of 20 mA, then from Ohm's Law we can calculate what value
resistor we need to use:

R = V / I
 = 2.8 V / 20 mA
 = 140

 Embedded System
 Notes

224

The closest available resistor value to this is 150 , so that's what
we'll use. (This will give us an actual current of 18.6 mA, which is fine.)

The next question is, how much power will the resistor have to
dissipate? In other words, how much energy will it use in dropping the voltage
by 2.9 V? This is important because if we try to pump too much current
through the resistor, we'll burn it out. We thus need to choose a resistor with
a power rating greater than that required. Power is calculated by multiplying
voltage by current:

P = V * I
 = 2.8 V * 20 mA
 = 0.056 Watts = 56 mW

That's negligible, so the resistor value we need for R is 150 and
0.0625 W. (0.0625 W is the lowest power rating commonly available in
resistors.)

So, what happens when the I/O line is driven high? The AVR I/O pins
output a minimum of 4.3 V when high (and using a 5 V supply). With the
output high, the voltage at the LED's cathode will be at least 4.3 V, so the
voltage difference between the cathode and VCC will be only 0.7 V (or less).
But the forward voltage drop of the LED is 1.6 V. Thus, there is not enough
voltage across the LED to turn it on.

In this way, we can turn the LED on or off using a simple digital output
of the processor. We have also seen how to calculate voltages and currents.
It is very important to do this with every aspect of a design. Ignoring it can
result in a nonfunctioning machine or, worse, charred components and that
wafting smell of burning silicon.

We've just seen how to use the digital outputs of the AVR to control a
LED. This will work with any device that uses less than 20 mA. In fact, for
low-power components, such as some sensors, it is possible to use the
AVR's output to provide direct power control, just as we provided direct power
control for the LED. In battery-powered applications, this can be a useful
technique for reducing the system's overall power consumption.

Switching Analog Signals

We can also use the digital I/O lines of the processor to control the
flow of analog signals within our system. For example, perhaps our
embedded computer is integrated into an audio system and is used to switch
between several audio sources. To do this, we use an analog switch such as
the MAX4626, one for each signal path. This tiny component (about the size
of a grain of rice in the surface-mount version) operates from a single supply
voltage (as low as 1.8 V and as high as 5.5 V). It also incorporates inbuilt
overload protection to prevent device damage during short circuits. The
schematic showing a MAX4626 interfaced to an ATtiny15 AVR is shown in
Figure. Driving the AVR's output (PB2) high turns on the MAX4626 and

 Embedded System
 Notes

225

makes a connection between NO and COM. Sending PB2 low breaks the
connection. In this way, the MAX4626 can be used to connect an output to an
input, under software control.

Switching an analog signal

The question is: will it work with an AVR? When operating on a 5 V
supply, the input to the MAX4626 (pin 4, IN) requires a logic-low input of less
than 0.8 V and a logic-high input of at least 2.4 V. The AVR's logic-low output
is 0.6 V or less, and its logic-high output is a minimum of 4.3 V. So, the AVR's
digital output voltages match the requirements of the MAX4626. As for
current, the MAX4626 needs to sink or source only a miniscule 1 A. For an
AVR, this is not a problem.

If the MAX4626 doesn't meet your needs, MAXIM and other
manufacturers produce a range of similar devices with varying
characteristics. There's bound to be something that meets your needs.

The schematic in Figure includes a push-button connected to PB3,
where PB3 is acting as a digital input. Now, there are a couple of interesting
things to note about this simple input circuit. The first is that there is no
external pull-up resistor attached to PB3. Normally, for such a circuit, an
external pull-up resistor is required to place the input into a known state when
the button is open (not being pressed). The pull-up resistor takes the input
high, except when the button is closed and the input is connected directly to
ground. The reason we can get away with not having an external pull-up
resistor is that the AVR incorporates internal pull-up resistors, which may be
enabled or disabled under software control.

The second interesting thing to note is that there is no debounce
circuitry between the button and the input. Any sort of mechanical switch (and
that includes a keyboard key) acts as a little inductor when pressed. The
result is a rapid ringing oscillation on the signal line that quickly decays away
(Figure).

So, instead of a single change of state, the resulting effect is as if the
user had been rapidly hammering away on the button. Software written to
respond to changes in this input will register the multiple pulses, rather than

 Embedded System
 Notes

226

the single press the user intended. Removing these transients from the signal
is therefore important and is known as debouncing. Now, there are several
different circuits you could include that will cleanly remove the ringing. But
here's the thing: you don't always need to!

Figure. Push-button input

Figure . Signal bounce

When a user presses a button, he will usually hold that button closed
for at least half a second, maybe more, by which time the ringing has died
away. The problem can therefore be solved in software. The software, when
it first registers a low on the input, waits for a few hundred milliseconds and
then samples the input again (perhaps more than once). If it is still low, then it
is a valid button press, and the software responds. The software then "re-
arms" the input, awaiting the next press. Debouncing hardware does become
important, however, if the button is connected to an interrupt line or reset.

So far, we have seen how to use the AVR to control digital outputs
and read simple digital inputs. The astute among you may ask, "When
looking at the previous two circuits, why do we need the processor?" After all,
it is certainly possible to connect the button directly to the input of the
MAX4626. Of what use can the processor be? Well, we've already seen one
use. The processor can replace debounce circuitry on the input. Since it has
internal memory and the ability to execute software, the processor can also

 Embedded System
 Notes

227

keep track of system state (and mode), monitor various inputs in relation to
each other, and provide complicated control sequencing on the outputs. In
short, the inclusion of a microprocessor can reduce hardware complexity
while increasing system functionality. They can be very useful tools. With
more advanced processors, and with more diverse I/O, the functionality and
usefulness of an embedded computer can be significant.

Downloading Code

The AVR processors use internal flash memory for program storage,
and this may be programmed in-circuit or, in the case of socketed
components, out of circuit as well. The AVR processors are reprogrammed
via a SPI port on the chip. Even AVR processors such as the ATtiny15, which
do not have a SPI interface for their own use, still incorporate a SPI port for
reprogramming. The pins PB0, PB1, and PB2 take on SPI functions (MOSI,
MISO, and SCK) during programming.

VCC can be supplied by the external programmer downloading the
code. For programming, VCC must be 5 V. If the embedded system's local
supply will provide 5 V, then the connection to the programmer's VCC may be
left unmade. However, if the embedded system's supply voltage is something
other than 5 V, the programmer's VCC must be used, and any local power
source within the embedded system should be disabled. RESET plays an
important role in downloading code. Programming begins with RESET being
asserted (driven low). This disables the CPU within the processor and thus
allows access to the internal memory. It also changes the functionality of
PB0, PB1, and PB2 to a SPI interface. The development software then
sends, via the SPI interface, a sequence of codes to "unlock" the program
memory and enable software to be downloaded. Once programming is
enabled, sequences of write commands are performed, and the software
(and other settings) are downloaded byte by byte. The Atmel software takes
care of this, so normally you don't need to worry about the specifics. If you
need to do it "manually," perhaps from some other type of host computer, the
Atmel datasheets give full details of the protocol.

The Atmel development system comes with a special adaptor cable
that plugs into the company's development board and allows you to
reprogram microprocessors via a PC's parallel port. By including the right
connector (with the appropriate connections) in your circuit, it's possible to
use the same programming cable on your own embedded system.
Depending on the particular development board, there is one of two possible
connectors for in-circuit programming. The pinouts for these are shown in
Figure. (VTG is the voltage supply for the target system. If the target has its
own power source, of the appropriate voltage level for programming (+5 V),
then VTG may be left unconnected.) Pin 3 is labeled as a non connect on
some Atmel application notes; however, some development systems use this
to drive a LED indicating that a programming cycle is underway.

The schematic showing how to make your computer support this is
shown in Figure. Note that MOSI on the connector goes to MISO on the

 Embedded System
 Notes

228

processor, and, similarly, MISO goes to MOSI on the processor. This is
because during programming, the processor is a slave and not a master.

Figure. In-circuit programming connectors

The connector type is an IDC header, and the cable provides all the
signals necessary for programming, including one to drive a programming
indicator LED. When not being used for programming, the connector may
also double as a simple I/O connector for the embedded computer, allowing
access to the digital signals. Thus, one piece of hardware can assume dual
roles.

There is something important to note, however. If you use PB0, PB1,
or PB2 to interface to other components within your computer, care must be
taken that the activity of programming does not adversely affect them. For
example, our circuit with the MAX4626 used PB2 as the control input. During
programming, PB2 acts as SCK, a clock signal. Therefore, the MAX4626
would be rapidly turning on and off as code was downloaded to the
processor. If the MAX4626 was controlling something, that device would also
rapidly turn on and off, with potentially disastrous effects. Conversely, if there
are other components in your system, these must not attempt to drive a
signal onto PB0, PB1, or PB2 during the programming sequence. To do so
would, at the very least, result in a failed download and, at worst, damage
both the embedded system and the programmer. It's therefore vitally
important to consider the implications of in-circuit programming on other
components within the system.

 Embedded System
 Notes

229

In-circuit programming

There is something important to note, however. If you use PB0, PB1,
or PB2 to interface to other components within your computer, care must be
taken that the activity of programming does not adversely affect them. For
example, our circuit with the MAX4626 used PB2 as the control input. During
programming, PB2 acts as SCK, a clock signal. Therefore, the MAX4626
would be rapidly turning on and off as code was downloaded to the
processor. If the MAX4626 was controlling something, that device would also
rapidly turn on and off, with potentially disastrous effects. Conversely, if there
are other components in your system, these must not attempt to drive a
signal onto PB0, PB1, or PB2 during the programming sequence. To do so
would, at the very least, result in a failed download and, at worst, damage
both the embedded system and the programmer. It's therefore vitally
important to consider the implications of in-circuit programming on other
components within the system.

So, what's the answer? Well, we could use PB3 to control the
MAX4626 instead, since it doesn't take part in the programming process.
Alternatively, if we needed to use PB2, we could provide a buffer between the
processor and the MAX4626, perhaps controlled by . When is
low (during programming), the buffer is disabled and the MAX4626 is
isolated. Another solution may simply be to use a DIP version of the
processor, mounted via a socket, and physically remove it for
reprogramming. If you're using a surface-mount version of the processor,
perhaps the processor could be mounted on a small PCB that plugs into the
embedded computer (much like a memory SIMM on a desktop computer) and
may be removed for programming. There are plenty of alternatives, and the
best one really depends on your application.

Some AVRs (not the ATtiny15) have the capability of modifying their
own program memory with the SPM (Store Program Memory) instruction.
With such processors, it is possible for your software to download new code
via the processor's serial port and write this into the program memory. To do
so, you need to have your processor preprogrammed with a boot loader
program. Normally, you would load all your processors with the boot loader

 Embedded System
 Notes

230

(and Version 1.0 of your application software) during construction. The self-
programming can then be used to update the application software when the
systems are out in the field. To facilitate this, the program memory is divided
into two separate sections: a boot section and an application section. The
memory space is divided into pages of either 128 or 256 bytes (depending on
the particular processor). Memory must be erased and reprogrammed one
page at a time. During programming, the Z register is used as a pointer for
the page address, and the r1 and r0 registers together hold the data word to
be programmed. The Atmel application note (AVR109: Self-programming),
available on its web site, gives sample source code for the boot loader and
explains the process in detail.

No matter what processor you are using, the technical data from the
chip manufacturer will tell you how to go about putting your code into the
processor.

A Bigger AVR

So far, we have looked at a small AVR with very limited capabilities. In
later chapters, we will look at various forms of input and output commonly
found in embedded systems. For this, we will need processors with more
functionality. We have exhausted the ATtiny15, so now we need to move on
to processors with a bit more "grunt." Before getting into the details of I/O in
the later chapters, you'll be introduced to these processors and learn what
you need to do to include them in your design.

The first processor is the Atmel AT90S8535. This is a mid-range AVR
with lots of inbuilt I/O, such as a UART, SPI, timers, eight channels of analog
input, an analog comparator, and internal EEPROM for parameter storage.
The processor has 512 bytes of internal RAM and 8K of flash memory for
program storage. Its smaller sibling, the AT90S4434, is identical in every
other way except that it has smaller memory spaces of 4K for program
storage and 256 bytes of RAM. But from a hardware point of view, the
AT90S8535 and the AT90S4434 are the same.

The basic schematic for an AT90S8535-based computer, without any
extras, is shown in Figure. It is not that different from the ATtiny15, save that
it has a lot more pins as an external pull-up 10k resistor. The processor has
an external crystal (X1), and this requires two small decoupling capacitors,
C1 and C2. There are four power pins for this processor, and each is
decoupled with a 100 nF ceramic capacitor. One of the power inputs (AVCC)
is the power supply for the analog section of the chip, and this is isolated from
the digital power supply by a 100 resistor, R2. This is to provide a small
barrier between the analog section and any switching noise that may be
present from the digital circuits. The remaining pins are general-purpose
digital I/O, as with the ATtiny15. However, unlike the ATtiny15, these pins
have dual functionality. They may be configured, under software control, for
alternative I/O functions. The processor's datasheet gives full details for
configuring the functionality of the processor under software control.

 Embedded System
 Notes

231

This basic AVR design is applicable to most AVRs that you will find.
The pin outs may be different, but the basic support required is the same. As
with everything, grab the appropriate datasheet, and it will tell you the
specifics for the particular processor that you are using.

AVR-Based Data logger

In the previous chapter, we saw how to design a data logger based on
a PIC16F873A. A data logger based on an AVR is not too dissimilar. Figure
shows the basic schematic.

The connections for interfacing a serial data flash memory chip to an
Atmel 90S4434 AVR processor are simply SPI, as with the PIC processor.
The AVR portion of the schematic is no different from the examples we have
seen previously. That's the nice thing about simple interfaces such as SPI.
They form little subsystem modules that "bolt together" like building blocks.
Start with the basic core design and just add peripherals as you need them.
The schematic also shows decoupling capacitors for the power supplies, the
crystal oscillator for the processor, and a pull-up resistor for RESET. Pin 41
(PB1) is used as a "manual" (processor-controlled) reset input to the flash.

The analog inputs, ADC0:ADC7 can be connected to an IDC header
allowing for external sampling, or they can be interfaced directly to sensors,
as we saw with the PIC data logger. The serial port signals, RXD and TXD,
connect to a MAX3233 in the same way as we saw in the PIC design.

AT90S8535 processor and support components

Bus Interfacing

In this section, I'll show you how to expand the capabilities of your
processor by interfacing it to bus-based memories and peripherals. Different

 Embedded System
 Notes

232

processor architectures have different signals and different timing, but once
you understand one, the basic principles can be applied to all. Since most
small microcontrollers don't have external buses, the choice is very limited.
We'll look at the one, and only, AVR with an external bus—the AT90S8515.
In the PIC world, the PIC17C44 is capable of bus-based interfacing.

A 2M Data Flash interfaced to an AT90S4434

AT90S8515 Memory Cycle

A memory cycle (also known as a machine cycle or processor cycle)
is defined as the period of time it takes for a processor to initiate an access to
memory (or peripheral), perform the transfer, and terminate the access. The
memory cycle generated by a processor is usually of a fixed period of time (or
multiples of a given period) and may take several (processor) clock cycles to
complete.

Memory cycles usually fall into two categories: the read cycle and the
write cycle. The memory or device that is being accessed requires that the
data is held valid for a given period after it has been selected and after a read
or write cycle has been identified. This places constraints on the system
designer. There is a limited amount of time in which any glue logic (interface
logic between the processor and other devices) must perform its function,
such as selecting which external device is being accessed. The setup times
must be met. If they are not, the computer will not function. The glue logic
that monitors the address from the processor and uniquely selects a device is

 Embedded System
 Notes

233

known as an address decoder. We'll take a closer look at address decoders
shortly.

Timing is probably the most critical aspect of computer design. For
example, if a given processor has a 150 ns cycle time and a memory device
requires 120 ns from when it is selected until when it has completed the
transfer, this leaves only 30 ns at the start of the cycle in which the glue logic
can manipulate the processor signals. A 74LS series TTL gate has a typical
propagation delay of 10 ns. So, in this example, an address decoder
implemented using any more than two 74LS gates (in sequence) is cutting it
very fine.

A synchronous processor has memory cycles of a fixed duration, and
all processor timing is directly related to the clock. It is assumed that all
devices in the system are capable of being accessed and responding within
the set time of the memory cycle. If a device in the system is slower than that
allowed by the memory cycle time, logic is required to pause the processor's
access, thus giving the slow device time to respond. Each clock cycle within
this pause is known as a wait state. Once sufficient time has elapsed (and the
device is ready), the processor is released by the logic and continues with the
memory cycle. Pausing the processor for slower devices is known as
inserting wait states. The circuitry that causes a processor to hold is known
as a wait-state generator. A wait-state generator is easily achieved using a
series of flip-flops acting as a simple counter. The generator is enabled by a
processor output indicating that a memory cycle is beginning and is normally
reset at the end of the memory cycle to return it to a known state. (Some
processors come with internal, programmable wait-state generators.)

An asynchronous processor (such as a 68000) does not terminate its
memory cycle within a given number of clock cycles. Instead, it waits for a
transfer acknowledge assertion from the device or support logic to indicate
that the device being accessed has had sufficient time to complete its part in
the memory cycle. In other words, the processor automatically inserts wait
states in its memory cycle until the device being accessed is ready. If the
processor does not receive an acknowledge, it will wait indefinitely. Many
computer systems using asynchronous processors have additional logic to
cause the processor to restart if it waits too long for a memory cycle to
terminate. An asynchronous processor can be made into a synchronous
processor by tying the acknowledge line to its active state. It then assumes
that all devices are capable of keeping up with it. This is known as running
with no wait states.

Most microcontrollers are synchronous, whereas most larger
processors are asynchronous. The AT90S8515 is a synchronous processor,
and it has an internal wait-state generator capable of inserting a single wait
state.

 Embedded System
 Notes

234

Bus Signals

Figure shows an AT90S8515 processor with minimal support
components. The AT90S8515 has an address bus, a data bus, and a control
bus that it brings to the outside world for interfacing. Since this processor has
a limited number of pins, these buses share pins with the digital I/O ports
("port A" and "port C") of the processor. A bit in a control register determines
whether these pins are I/O or bus pins. Now, a 16-bit address bus and an 8-
bit data bus add up to 24 bits, but ports A and B have only 16 bits between
them. So how does the processor fit 24 bits into 16? It multiplexes the lower
half of the address bus with the data bus. At the start of a memory access,
port A outputs address bits A0:A7. The processor provides a control line, ALE
(Address Latch Enable), which is used to control a latch, such as a
74HCT573 (shown on the right in Figure). As ALE falls, the latch grabs and
holds the lower address bits. At the same time, port B outputs the upper
address bits, A8:A15. These are valid for the entire duration of the memory
access. Once the latch has acquired the lower address bits, port A then
becomes the data bus for information transfer between the processor and an
external device. Also shown in Figure are the crystal circuit, the In-System
Programming port, decoupling capacitors for the processor's power supply,
and net labels for other important signals.

The timing diagrams for an AT90S8515 are shown in Figure. The
cycle "T3" exists only when the processor's wait-state generator is enabled.

Now, let's look at these signals in more detail. (We'll see later how you
actually work with this information. For the moment, we're just going to "take
a tour" of the timing diagrams.) The numbers for the timing information can
be found in the datasheet, available from Atmel's web site. Figure shows the
timing information as presented in the Atmel datasheet, complete with timing
references.

 Embedded System
 Notes

235

Address bus demultiplexing

A

T90S8515 memory cycles

 Embedded System
 Notes

236

AT90S8515 memory cycles with timing parameters

The references are looked up in the appropriate table in the
processor's datasheet (Table)

8

MHz oscillator
Variable oscillator

Ref.

Symbol Parameter Min Max Min Max Unit

0 1/tCLCL Oscillator Frequency 0.0 8.0 MHz

1 tLHLL ALE Pulse Width 32.5
0.5 tCLCL-

30.0
 ns

2 tAVLL Address Valid A to ALE Low 22.5
0.5 tCLCL-

40.0
 ns

3a tLLAX...ST
Address Hold after ALE Low,

ST/STD/STS Instructions
67.5

0.5

tCLCL+5.0
 ns

3b tLLAX...LD
Address Hold after ALE Low,

LD/LDD/LDS Instructions
15.0 15.0 ns

4 tAVLLC Address Valid C to ALE Low 22.5
0.5 tCLCL-
40.0

 ns

5 tAVRL Address Valid to RD Low 95.0
1.0 tCLCL-

30.0
 ns

6 tAVWL Address Valid to WR Low 157.5
1.5 tCLCL-

30.0
 ns

7 tLLWL ALE Low to WR Low 105.0 145.0
1.0 tCLCL-

20.0

1.0 tCLCL+

20.0
ns

 Embedded System
 Notes

237

8

MHz oscillator
Variable oscillator

Ref.

Symbol Parameter Min Max Min Max Unit

8 tLLRL ALE Low to RD Low 42.5 82.5
0.5 tCLCL-

20.0

0.5 tCLCL+

20.0
ns

9 tDVRH Data Setup to RD High 60.0 60.0 ns

10 tRLDV Read Low to Data Valid 70.0
1.0 tCLCL-

55.0
ns

11 tRHDX Data Hold after RD High 0.0 0.0 ns

12 tRLRH RD Pulse Width 105.0
1.0 tCLCL-

20.0
 ns

13 tDVWL Data Setup to WR Low 27.5
0.5 tCLCL-

35.0
 ns

14 tWHDX Data Hold after WR High 0.0 0.0 ns

15 tDVWH Data Valid to WR High 95.0
1.0 tCLCL-

30.0
 ns

16 tWLWH WR Pulse Width 42.5
0.5 tCLCL-

20.0
 ns

The system clock is shown at the top of both diagrams for reference,
since all processor activity relates to this clock. The period of the clock is
designated in the Atmel datasheet as "tCLCL" and is equal to 1/frequency. For
an 8 MHz clock, this is 125 ns. The width of T1, T2, and T3 are each tCLCL.
Datasheet nomenclature can often be very cryptic. The "CL" comes from
"clock." Since Atmel is using four-character subscripts for its timing
references, it pads by putting "CL" twice. You don't really need to know what
the subscripts actually mean; you just need to know the signals they refer to
and the actual numbers involved.

No processor cycle exists in isolation. There is always a preceding
cycle and following cycle. We can see this in the timing diagrams. At the start
of the cycles, the address from the previous access is still present on the
address bus. On the falling edge of the clock, in cycle T1, the address bus
changes to become the valid address required for this cycle. Port A presents
address bits A0:A7, and port B presents A8:A15. At the same time, ALE goes
high, releasing the external address latch in preparation for acquiring the new
address from port A. ALE stays high for 0.5 x tCLCL - 30 ns. So, for example,
with an AT90S8515 running at 8 MHz, ALE stays high for 32.5 ns. ALE falls,

 Embedded System
 Notes

238

causing the external latch to acquire and hold the lower address bits. Prior to
ALE falling, the address bits will have been valid for 0.5 x tCLCL - 40 ns or, in
other words, 40 ns before the system clock rises at the end of the T1 period.
After ALE falls, the lower address bits will be held on port A for 0.5 x tCLCL +
5 ns for a write cycle before changing to data bits. For a read cycle, they are
held for a minimum of 15 ns only. The reason this is so much shorter for a
read cycle is that the processor wishes to free those signal pins as soon as
possible. Since this is a read cycle, an external device is about to respond,
which means the processor needs to "get out of the way" as soon as it can.
For a write cycle, tCLCL - 20 ns after ALE goes low, the write strobe,goes
low. This indicates to external devices that the processor has output valid
data on the data bus. This time allows the external device to prepare to read
in (latch) the data.

So, that is how an AT90S8515 expects to access any external device
attached to its buses, whether those devices are memory chips or
peripherals. But how does it work in practice? Let's look at designing a
computer based on an AT90S8515 with some external devices. For this
example, we will interface the processor to a static RAM and some simple
latches that we could use to drive banks of LEDs. Since we've covered
oscillators and in-circuit programming previously, I'll ignore those in this
discussion. That doesn't mean you should leave them out of your design!

Memory Maps and Address Decoding

To the processor, its address space is one big, linear region. Although
there may be numerous devices within that space, both internal to the
processor and external, it makes no distinction between devices. The
processor simply performs memory accesses in the address space. It is up to
the system designer (that's you) to allocate regions of memory to each device
and then provide address-decode logic. The address decoder takes the
address provided by the processor during an external access and uniquely
selects the appropriate device (Figure). For example, if we have a RAM
occupying a region of memory, any address from the processor
corresponding to within that region should select the RAM and not select any
other device. Similarly, any address outside that region should leave the RAM
unselected.

An address decoder uses the address to select one of several devices

 Embedded System
 Notes

239

The allocation of devices within an address space is known as a
memory map or address map. The address spaces for an AT90S8515
processor are shown in Figure. Any device we interface to the processor
must be within the data memory space. Thus, we can ignore the processor's
internal program memory. As the processor has Harvard architecture, the
program space is a completely separate address space. Within the 64K data
space lie the processor's internal resources: the working registers, the I/O
registers, and the internal 512 bytes of SRAM. These occupy the lowest
addresses within the space. Any address above 0x0260 is ours to play with.
(Not all processors have resources that are memory-mapped, and, in those
cases, the entire memory space is usable by external devices.)

Now, our first task is to allocate the remaining space to the external
devices. Since the RAM is 32K in size, it makes sense to place it within the
upper half of the address space (0x8000-0xFFFF). Address decoding
becomes much easier if devices are placed on neat boundaries. Placing the
RAM between addresses 0x8000 and 0xFFFF leaves the lower half of the
address space to be allocated to the latches and the processor's internal
resources. Now a latch need only occupy a single byte of memory within the
address space. So, if we have three latches, we need only three bytes of the
address space to be allocated. This is known as explicit address decoding.
However, there's a good reason not to be so efficient with our address
allocation. Decoding the address down to three bytes would require an
address decoder to use 14 bits of the address. That's a lot of (unnecessary)
logic to select just three devices. A better way is simply to divide the
remaining address space into four, allocating three regions for the latches
and leaving the fourth unused (for the processor's internal resources). This is
known as partial address decoding and is much more efficient. The trick is to
use the minimal amount of address information to decode for your devices.
Our address map allocated to our static RAM and three latches is shown in
Figure. Note that the lowest region leaves the addresses in the range 0x0260
to 0x1FFF unused.

 Embedded System
 Notes

240

 Atmel AT90S8515 memory map

Allocated memory map

Any address within the region 0x2000 to 0x3FFF will select Latch0,
even though that latch needs only one byte of space. Thus, the device is said
to be mirrored within that space. For simplicity in programming, you normally
just choose an address (0x2000 say) and use that within your code. But you
could just as easily use address 0x290F, and that would work too.

We now have our memory map, and we need to design an address
decoder. We start by tabling the devices along with their addresses (Table

 Embedded System
 Notes

241

15-3). We need to look for which address bits are different between the
devices, and which address bits are common within a given device's region.

Device Address range A15 .. A0

Unused 0x0000-0x1FFF

0000 0000 0000 0000 0000

0001 1111 1111 1111 1111

Latch0 0x2000-0x3FFF

0010 0000 0000 0000 0000

0011 1111 1111 1111 1111

Latch1 0x4000-0x5FFF

0100 0000 0000 0000 0000

0101 1111 1111 1111 1111

Latch2 0x6000-0x7FFF

0110 0000 0000 0000 0000

0111 1111 1111 1111 1111

RAM 0x8000-0xFFFF

1000 0000 0000 0000 0000

1111 1111 1111 1111 1111

So, what constitutes a unique address combination for each device?
Looking at the table, we can see that for the RAM, address bit (and address
signal) A15 is high, while for every other device it is low. We can therefore
use A15 as the trigger to select the RAM. For the latches, address bits A15,
A14, and A13 are critical. So we can redraw our table to make it clearer. This
is the more common way of doing an address table, as shown in Table. An
"x" means a "don't care" bit.

Device Address range A15 .. A0

Unused 0x0000-0x1FFF 000x xxxx xxxx xxxx xxxx

Latch0 0x2000-0x3FFF 001x xxxx xxxx xxxx xxxx

Latch1 0x4000-0x5FFF 010x xxxx xxxx xxxx xxxx

Latch2 0x6000-0x7FFF 011x xxxx xxxx xxxx xxxx

RAM 0x8000-0xFFFF 1xxx xxxx xxxx xxxx xxxx

Therefore, to decode the address for the RAM, we simply need to use
A15. If A15 is high, the RAM is selected. If A15 is low, then one of the other
devices is selected and the RAM is not. Now, the RAM has a chip select (CS)
that is active low. So when A15 is high, CS should go low. So, our address
decoder for the RAM is simply to invert A15 using an inverter chip such as a

 Embedded System
 Notes

242

74HCT04 (Figure). It is common practice to label the chip-select signal after
the device it is selecting. Hence, our chip select to the RAM is labeled CS.

Address decode for the RAM

Note that for the RAM to respond, it needs both a chip select and
either a read or write strobe from the processor. All other address lines from
the processor are connected directly to the corresponding address inputs of
the RAM (Figure).

Connections to the SRAM

Now for the other four regions, A15 must be low, and A14 and A13
are sufficient to distinguish between the devices. Having our address decoder

 Embedded System
 Notes

243

use discrete logic would require several gates and would be "messy." There's
a simpler way. We can use a 74HCT139 decoder, which takes two address
inputs (A and B) and gives us four unique, active-low, chip-select outputs
(labeled Y0:Y3). Since the latches require active-high enables, we use
inverters on the outputs of the 7HCT139. So our complete address decoder
for the computer is shown in Figure.

Complete address decoder

The 74HCT139 uses A15 (low) as an enable (input), and, in this
way, A15 is included as part of the address decode. If we needed to decode
for eight regions instead of four, we could have used a 74HCT138 decoder,
which takes three address inputs and gives us eight chip selects. The
interface between the processor and an output latch is simple. We can use
the same type of latch (a 74HCT573) that we used to demultiplex the
address. Such an output latch could be used in any situation in which we
need some extra digital outputs. In the sample circuit shown in Figure, I'm
using the latch to control a bank of eight LEDs.

The output from our 74HCT139 address decoder is used to drive the
LE (Latch Enable) input of the 74HCT573. Whenever the processor accesses
the region of memory space allocated to this device, the address decoder
triggers the latch to acquire whatever is on the database. And so, the
processor simply writes a byte to any address in this latch's address region,
and that byte is acquired and output to the LEDs. (Writing a "0" to a given bit
location will turn on a LED; writing a "1" will turn it off.)

Note that the latch's output enable (OE) is permanently tied to ground.
This means that the latch is always displaying the byte that was last written to
it. This is important, as we always want the LEDs to display, and not just
transitorily blink on, while the processor is accessing them.

Using the 74HCT139 in preference to discrete logic gates makes our
design much simpler, but there's an even better way to implement system
glue.

 Embedded System
 Notes

244

Using a 74HCT573 latch to control a bank of LEDs

PALs

It is now rare to see support logic implemented using individual gates.
It is more common to use programmable logic (PALs, LCAs, or PLDs)[*] to
implement the miscellaneous "glue" functions that a computer system
requires. Such devices are fast, take up relatively little space, have low power
consumption, and, as they are reprogrammable, make system design much
easier and more versatile.

There is a wide range of devices available, from simple chips that can
be used to implement glue logic (just as we are about to do) to massive
devices with hundreds of thousands of gates. These big chips are
sophisticated enough to contain entire computer systems. Soft cores are
processor designs implemented in gates, suitable for incorporating into these
logic devices. You can also get serial interfaces, disk controllers, network
interfaces, and a range of other peripherals, all for integration into one of
these massive devices. Of course, it's also fun to experiment and design your
own processor from the ground up.

Each chip family requires its own suite of development tools. These
allow you to create your design (either using schematics or some
programming language such as VHDL), simulate the system, and finally
download your creation into the chip. You can even get C compilers for these
chips that will take an algorithm and convert it, not into machine code, but into
gates. What was software now runs not on hardware, but as hardware.
Sounds cool, but the tools required to play with this stuff can be expensive. If
you just want to throw together a small, embedded system, they are probably
out of your price range. For what we need to do for our glue logic, such chips
are overkill. Since our required logic is simple, we will use a simple (and

 Embedded System
 Notes

245

cheap) PAL that can be programmed using freely available, public-domain
software.

PALs are configured using equations to represent the internal logic.
"+" represents OR, "*" represents AND, and "/" represents NOT. (These
symbols are the original operator symbols that were used in Boolean logic. If
you come from a programming background, these symbols may seem
strange to you. You will be used to seeing "|", "&", and "!".) The equations are
compiled using software such as PALASM, ABEL, or CUPL to produce a JED
file. This is used by a device known as a PAL burner to configure the PAL. In
many cases, standard EPROM burners will also program PALs.

PALs have pins for input, pins for output, and pins that can be
configured as either input or output. Most of the PAL's pins are available for
your use. In your PAL source code file (PDS file), you declare which pins you
are using and label them. This is not unlike declaring variables in program
source code, except that instead of allocating bytes of RAM, you're allocating
physical pins of a chip. You then use those pin labels within equations to
specify the internal logic. Our address decoder, implemented in a PAL, would
have the following equations to specify the decode logic:

RAM = /A15
LATCH0 = (/A15 * /A14 * A13)
LATCH1 = (/A15 * A14 * /A13)
LATCH2 = (/A15 * A14 * A13)

I have (deliberately) written the above equations in a form that makes
it easier to compare them with the address tables listed previously. You could
simplify these equations, but there is no need. Just as an optimizing C
compiler will simplify (and speed up) your program code, so too will PALASM
rework your equations to optimize them for a PAL.

A PDS file to program a 22V10 PAL for the above address decode
might look something like:

TITLE decoder.pds ; name of this file

PATTERN

REVISION 1.0

AUTHOR John Catsoulis
DATE January 2005
CHIP decoder PAL22V10 ; specify which PAL device you
 ; are using and give it a name ("decoder")
PIN 2 A15 ; pin declarations and allocations
PIN 3 A14
PIN 12 LATCH0
PIN 13 LATCH1
PIN 14 LATCH2

 Embedded System
 Notes

246

PIN 15 RAM
EQUATIONS ; equations start here
RAM = /A15
LATCH0 = (/A15 * /A14 * A13)
LATCH1 = (/A15 * A14 * /A13)
LATCH2 = (/A15 * A14 * A13)

The advantages of using a PAL for system logic are twofold. The PAL
equations may be changed to correct for bugs or design changes. The
propagation delays through the PAL are of a fixed and small duration (no
matter what the equations), which makes analyzing the overall system's
timing far simpler. For very simple designs, it probably doesn't make a lot of
difference whether you use PALs or individual chips. However, for more
complicated designs, programmable logic is the only option. If you can use
programmable logic devices instead of discrete logic chips, please do so.
They make life much easier.

Timing Analysis

Now that we have finished our logic design, the question is: will it
actually work? It's time (pardon the pun) to work through the numbers and
analyze the timing. This is the least fun, and most important, part of designing
a computer.

We start with the signals (and timing) of the processor, add in the
effects of our glue logic, and finally see if this falls within the requirements of
the device to which we are interfacing. We'll work through the example for the
SRAM. For the other devices, the analysis follows the same method. The
timing diagram for a read cycle for the SRAM is shown in Figure.The RAM I
have chosen is a CY62256-70 (32K) SRAM made by Cypress
Semiconductor. Most 32K SRAMs follow the JEDEC standard, which means
their pinouts and signals are all compatible. So, what works for one 32K
SRAM should work for them all. But the emphasis is on should, and, as
always, check the datasheet for the individual device you are using.

Timing for a read cycle to the RAM

During a read cycle, the processor will output a read strobe and an
address, which in turn will trigger the address decoder. Some time later in the
cycle, the processor will expect data from the RAM to be present on the data

 Embedded System
 Notes

247

bus. It is critical that the signals that cause the RAM to output data will do so
such that there will be valid data when the processor expects it. Meet this
requirement, and you have a processor that can read from external memory.
Fail this requirement, and you'll have an intriguing paperweight and a talking
piece at parties.

We start with the processor. I'm assuming that the processor's wait-
state generator is disabled. For an AT90S8515 processor, everything is
referenced to the falling edge of ALE. The high-order address bits, which feed
our address decoder, become valid 22.5 ns prior to ALE going low on an 8
MHz AT90S8515. If we're using a 74HCT139 as an address decoder, this
takes 40 ns to respond to a change in inputs. So, our chip select for the RAM
will become valid 17.5 ns after ALE has fallen (Figure).

Timing for RAM chip select

Now, RD will go low between 42.5 ns and 82.5 ns after ALE falls. Since the
RAM will not output data until RD (OE) is low, we take the worst case of 82.5
ns (Figure).

Read strobe and chip select for RAM

The RAM will respond 70 ns after RAM and 35 ns after RD, whichever
comes last. So, 70 ns from ALE low is 87.5 ns after ALE, and 35 ns after RD
is 117.5 ns after ALE. Therefore, ALE is the determining control signal in this
case. This means that the SRAM will output valid data 117.5 ns after ALE
falls (Figure).

 Embedded System
 Notes

248

Valid data from the SRAM

Now, an 8 MHz processor expects to latch valid data during a read
cycle at 147.5 ns after ALE. So our SRAM will have valid data ready with 30
ns to spare. So far, so good. But what about at the end of the cycle? Now, the
processor expects the data bus to be released and available for the next
access at 200 ns after ALE falls. The RAM takes 25 ns from when it is
released by until it stops outputting data onto the data bus. This means
that the data bus will be released by the RAM at 142.5 ns. So that will work
too.

The analysis for a write cycle is done in a similar manner. It is
important to do this type of analysis for every device interfaced to your
processor, for every type of memory cycle. It can be difficult, because
datasheets are notorious for leaving out information or presenting necessary
data in a roundabout way. Working through it all can be time-consuming and
frustrating, and it's far too easy to make a mistake. However, it is very
necessary. Without it, you're relying on blind luck to make your computers
run, and that's not good engineering.

Memory Management

In most small-scale embedded applications, the connections between
a processor and an external memory chip are straightforward. Sometimes,
though, it's advantageous to play with the natural order of things. This is the
realm of memory management.

Memory management deals with the translation of logical addresses
to physical addresses and vice versa. A logical address is the address output
by the processor. A physical address is the actual address being accessed in
memory. In small computer systems, these are often the same. In other
words, no address translation takes place, as illustrated in Figure.

 Embedded System
 Notes

249

No address translation

For small computer systems, this absence of memory management is
satisfactory. However, in systems that are more complex, some form of
memory management may become necessary. There are four cases where
this might be so:

Physical memory > logical memory

When the logical address space of the processor (determined
by the number of address lines) is smaller than the actual physical
memory attached to the system, it becomes necessary to map the
logical space of the processor into the physical memory space of the
system. This is sometimes known as banked memory. This is not as
strange or uncommon as it may sound. Often, it is necessary to
choose a particular processor for a given attribute, yet that processor
may have a limited address space—too small for the application. By
implementing banked memory, the address space of the processor is
expanded beyond the limitation of the logical address range.

Logical memory > physical memory

When the logical address space of the processor is very large,
it is not always practical to fill this address space with physical
memory. It is possible to use some space on disk as virtual memory,
thus making it appear that the processor has more physical memory
than exists within the chips. Memory management is used to identify
whether a memory access is to physical memory or virtual memory
and must be capable of swapping the virtual memory on disk with real
memory and performing the appropriate address translation.

Memory protection

It is often desirable to prevent some programs from accessing
certain sections of memory. Protection can prevent a crashing
program from corrupting the operating system and bringing down the
computer. It is also a way of channeling all I/O access via the

 Embedded System
 Notes

250

operating system, since protection can be used to prevent all software
(save the OS) from accessing the I/O space.

Task isolation

In a multitasking system, tasks should not be able to corrupt
each other (by stomping on each other's memory space, for example).
In addition, two separate tasks should be able to use the same logical
address in memory, with memory management performing the
translation to separate, physical addresses.

The basic idea behind memory management is quite simple, but the
implementation can be complicated, and there are nearly as many memory-
management techniques as there are computer systems that employ memory
management. Memory management is performed by a Memory Management
Unit (MMU). The basic form of this is shown in Figure. An MMU may be a
commercial chip, a custom-designed chip (or logic), or an integrated module
within the processor. Most modern, fast processors incorporate MMUs on the
same chip as the CPU.

Address translation using an MMU

Page mapping

In all practical memory-management systems, words of memory are
grouped together to form pages, and an address can be considered to
consist of a page number and the number of a word within that page. The
MMU translates the logical page to a physical page, while the word number is
left unchanged (Figure). In practice, the overall address is just a
concatenation of the page number and the word number.

 Embedded System
 Notes

251

Address translation

The logical address from the processor is divided into a page number
and a word number. The page number is translated by the MMU and
recombined with the word number to form the physical address presented to
memory (Figure).

System using page address translation

Banked memory

The simplest form of memory management is when the logical
address space is smaller than the physical address space. If the system is
designed such that the size of a page is equal to the logical address space,
then the MMU provides the page number, thus mapping the logical address
into the physical address (Figure).

MMU generation of page number

 Embedded System
 Notes

252

The effective address space from this implementation is shown in
Figure. The logical address space can be mapped (and remapped) to

anywhere in the physical address space. Mapping a smaller logical

address space into a larger physical address

The system configuration for this is shown in Figure. This technique is
often used in processors with 16-bit addresses (64K logical space) to give
them access to larger memory spaces.

Generating a larger physical address

For many small systems, banked memory may be implemented
simply by latching (acquiring and holding) the data bus and using this as the
additional address bits for the physical memory (Figure). The latch appears in
the processor's logical space as just another I/O device. To select the
appropriate bank of memory, the processor stores the bank bits to the latch,
where they are held. All subsequent memory accesses in the logical address
space take place within the selected bank. In this example, the processor's
address space acts as a 64K window into the larger RAM chip. As you can
see, while memory management may seem complex, its actual
implementation can be quite simple.

 Embedded System
 Notes

253

Simple banked-memory implementation

Figure shows the actual wiring required for a banked-memory
implementation for our AT90S8515 AVR system, replacing the 32K RAMS
with a 512K RAM.

The RAM used is an HM628511H made by Hitachi. In this
implementation, we still have the RAM allocated into the upper 32K of the
processor's address space as before. In other words, the upper 32K of the
processor's address space is a window into the 512K RAM. The lower 32K of
the processor's address space is used for I/O devices, as before. Address
bits A0 to A14 connect to the RAM as before, and the data bus (D0 to D7)
connects to the data pins (IO1 to IO8) of the SRAM. Memory chip
manufacturers often label data pins as "IO" pins, since they perform data
input and output for the device.

Now, we also have a 74HCT573 latch, which is mapped into the
processor's address space, just as we did with the LEDs latch. The processor
can write to this latch, and it will hold the written data on its outputs. The
lower nibble of this latch is used to provide the high-order address bits for the
RAM.

Let's say the processor wants to access address 0x1C000. In binary,
this is %001 1100 0000 0000 0000. The lower 15 address bits (A0 to A14)
are provided directly by the processor. The remaining address bits must be
latched. So, the processor first stores the byte 0x03 to the latch, and the
RAM's address pins A18, A17, A16, and A15 see

 Embedded System
 Notes

254

Banked memory for an AVR computer

%0011 (0x03), respectively. That region of the RAM is now banked to
the processor's 32K window. When the processor accesses address 0xC000,
the high-order address bit (A15) from the processor is used by the address
decoder to select the RAM by sending its input low. The remaining 15
address bits (A0 to A14) combine with the outputs of the latch to select
address 0x1C000.

The NC pins are "No Connection" and are left unwired.

Address translation

For processors with larger address spaces, the MMU can provide
translation of the upper part of the address bus (Figure).

The MMU contains a translation table, which remaps the input
addresses to different output addresses. To change the translation table, the
processor must be able to access the MMU. (There is little point in having an
MMU if the translation table is unalterable.) Some processors are specifically
designed to work with an MMU, while

 Embedded System
 Notes

255

Logical page-number translation

other processors have MMUs incorporated. However, if the processor
being used was not designed for use with an MMU, it will have no special
support. The processor must therefore communicate with the MMU as though
it were any other peripheral device using standard read/write cycles. This
means the MMU must appear in the processor's address. It may seem that
the simplest solution is to map the MMU into the physical address space of
the system. In real terms, this is not practical. If the MMU is ever (intentionally
or accidentally) mapped out of the current logical address space (such that
the physical page on which the MMU is located is not part of the current
logical address space), it becomes impossible to access the MMU ever
again. This may also happen when the system powers up, because the
contents of the MMU's translation table may be unknown.

The solution is to decode the chip select for the MMU directly from the
logical address bus of the processor. Hence, the MMU will lie at a constant
address in the logical space. This removes the possibility of "losing" the
MMU, but it introduces another problem. Since the MMU now lies directly in
the logical address space, it is no longer protected from accidental tampering
(by a crashing program) or illegal and deliberate tampering in a multitasking
system. To solve this problem, many larger processors have two states of
operation--supervisor state and user state--with separate stack pointers for
each mode. This provides a barrier between the operating system (and its
privileges) and the other tasks running on the system. The state the
processor is in is made available to the MMU through special status pins on
the processor. The MMU may be modified only when the processor is in
supervisor state, thereby preventing modification by user programs. The
MMU uses a different logical-to-physical translation table for each state. The
supervisor translation table is usually configured on system initialization, then
remains unchanged. User tasks (user programs) normally run in user state,
whereas the operating system (which performs task swapping and handles
I/O) runs in supervisor state. Interrupts also place the processor in supervisor
state, so that the vector table and service routines do not have to be part of
the user's logical address space. While in user state, tasks may be denied
access to particular pages of physical memory by the operating system.

 Embedded System
 Notes

256

Summary:

 Like the PIC, the AVR is a RISC processor. Of the two architectures,
the AVR is the faster in operation and arguably the easier for which to
write code, in my personal experience.

 The AVR was developed in Norway and is produced by the Atmel
Corporation. It is a Harvard-architecture RISC processor designed for
fast execution and low-power consumption.

 The AVR has separate program and data spaces and supports an
address space of up to 8M.

 ATtiy15 processor has 512 words of flash for program storage and no
RAM! .This tiny processor, unlike its bigger AVR siblings, relies solely
on its 32 registers for working variable storage.

 ATtiny15 processor also has 64 bytes of EEPROM (for holding
system parameters), up to five general-purpose I/O pins, eight internal
and external interrupt sources, two 8-bit timer/counters, a four-
channel 10-bit analog-to-digital converter, an analog comparator, and
the ability to be reprogrammed in-circuit.

 The first processor is the Atmel AT90S8535. This is a mid-range AVR
with lots of inbuilt I/O, such as a UART, SPI, timers, eight channels of
analog input, an analog comparator, and internal EEPROM for
parameter storage. The processor has 512 bytes of internal RAM and
8K of flash memory for program storage.

 Memory management deals with the translation of logical addresses
to physical addresses and vice versa.

 Memory management is performed by a Memory Management Unit
(MMU).

 If the system is designed such that the size of a page is equal to the
logical address space, then the MMU provides the page number, thus
mapping the logical address into the physical address

 For many small systems, banked memory may be implemented
simply by latching (acquiring and holding) the data bus and using this
as the additional address bits for the physical memory.

 The MMU contains a translation table, which remaps the input
addresses to different output addresses. To change the translation
table, the processor must be able to access the MMU.

 Protection can prevent a crashing program from corrupting the
operating system and bringing down the computer.

 Embedded System
 Notes

257

Questions:

 Write a brief notes on architecture of AVR controller?
 Explain features of ATtiny 15 processor?
 What is in system programming? Explain it in ATtiny15?
 Explain features of AT90s8535?
 How to design a data logger using AVR?
 Explain BUS interfacing?
 What is AT90S8515 Memory Cycle?
 Explain memory management in AVR?

References:

 Dhananjay Gadre - Programming and Customizing the AVR
Microcontroller, McGraw-Hill, 2000.

 Richard H. Barnett, Sarah A. Cox, Larry D. O'Cull - Embedded C
Programming and the Atmel AVR, Thomson Delmar Learning, 2002.

 John Morton - AVR: An Introductory Course, Newnes, 2002.

 Claus Kuhnel - AVR RISC Microcontroller Handbook, Newnes, 1998.

 Joe Pardue - C Programming for Microcontrollers, featuring ATMEL's
AVR Butterfly and the free WinAVR Compiler, Smiley Micros, 2005.
Smiley Micros

 Chuck Baird - Programming Microcontrollers using Assembly
Language, Lulu.com, 2006. cbaird.net

 Embedded System
 Notes

258

13. 68HC11

Objective:

In this chapter, we'll look at the Free scale Semiconductor (formerly
Motorola) 68HC11, a processor architecture that goes back to the very early
days of microprocessors. I have a soft spot for this architecture. I first learned
to write assembly language on a machine based on a 6802 processor, and I
can still remember many of the opcodes by heart and can "read" raw 6800
machine code as though it were source.

The architecture is far from cutting-edge. But it's easy to program,
easy to build, and has been stable for a very long time. It's a good platform to
start out on, and it's quick and easy to throw together a simple 8-bit computer
using these chips. Let's start by taking a quick overview of the processor
architecture.

Architecture of the 68HC11

The MC68HC11 is a member of the 8-bit, 6800 microprocessor family.
The 68HC11 is a high-density, HCMOS microcontroller unit (MCU) featuring
a fully static design. It is essentially a standard 6800 processor (with some
enhancements) combined with inbuilt peripherals, such as an enhanced 16-
bit timer with four-stage programmable pre-scaler, a serial peripheral
interface (SPI), a serial communications interface (SCI), an 8-bit pulse
accumulator, real-time interrupts, onboard static RAM, an eight-channel ADC,
and onboard EEROM.

The main registers of the MC68HC11 are shown in Figure. (Note that
this does not include the control registers associated with the various
peripherals inside the chip.)

MC68HC11 registers

 Embedded System
 Notes

259

The MC68HC11 has two accumulators, A and B. The accumulators
are both eight bits wide, but they may also be treated as a single, 16-bit
accumulator, D (Figure).

 MC68HC11 accumulators

The index registers (X and Y) are 16-bit registers that are used to hold
addresses. As such, they can be used to point to locations in memory. They
may also be used as 16-bit counters or temporary storage registers. The
program counter (PC) is a 16-bit counter that points to the next location in
memory from which an instruction is to be fetched. (In other words, it holds
the address of the next instruction.) The condition code register (CCR) is a
special 8-bit register that shows the status of the processor.

The stack pointer (SP) is a 16-bit register that points to the next free
location on the stack. The stack is an area of memory defined for storage of
data or addresses (treated as data). When a value is pushed onto the stack,
the value is stored at the location pointed to by the stack pointer. The stack
pointer then decrements automatically and points to the next available
location. When something is pulled from the stack, the stack pointer is
incremented automatically, and the data value is retrieved from that location.
As a 68HC11's stack fills, it grows down through memory. When a 16-bit
value is pushed onto the stack, the stack pointer is decremented twice (two 8-
bit locations).

So that's the basic programmer's model for a 68HC11. While not
overly powerful, it's nice and simple, and easy to master. Now let's see how
to build a machine based on a 68HC11.

A Simple 68HC11-Based Computer

The computer will have 32K of static RAM, 16K of EPROM, a serial
interface (internal to the 68HC11), and a latch controlling a bank of LEDs.
While EPROM is old technology, I have chosen it for this system for two
reasons. The first is that it is still common for 68HC11 machines to use
EPROM, often for historical and legacy reasons. The second reason is that it
allows me to show you how to use an EPROM in a design. Following the
theme of "showing you how it's done," we'll also do the glue logic for the
computer using discrete gates rather than a PAL.

The 68HC11 was designed to be used in a wide range of small
applications, many relating to the monitoring or control of external devices. As
such, it can run in several modes: single-chip mode, expanded multiplexed
mode, bootstrap mode, and test mode. This last mode is used by Freescale
during manufacturing and is not intended for user applications. In single-chip
mode, the processor relies entirely on its internal features (small RAM, small

 Embedded System
 Notes

260

ROM, I/O, and timers) and has no external address or data bus. The majority
of pins (known as ports A, B, C, and D in this particular processor) are
therefore dedicated to digital I/O functions. In expanded multiplexed mode,
the processor behaves like an ordinary, 8-bit processor, with ports B and C
assuming the roles of the address and data buses. In bootstrap mode, the
processor loads its vectors from the internal 192-byte ROM and initializes the
internal serial interface. The processor can change from bootstrap mode to
any of the other modes under software control. Two special pins on the
processor (MODA and MODB) determine in which mode the processor will
"come up." Table shows the settings for MODA and MODB and how these
affect the 68HC11.

Since we wish to add external memory and a latch, the processor
must be in expanded multiplexed mode. Hence, MODA and MODB must be
tied high in our design.

Boot modes for the 68HC11

To reduce the number of external pins of the 68HC11, Freescale has
multiplexed the address and data buses onto the same physical pins. This
means the chip is smaller (and therefore cheaper), but it requires the system
designer to add external logic to recover (separate) the address and data
buses from the multiplexed bus. The data bus and the lower half of the
address bus share port C, while the upper half of the address bus is on port B
and requires no recovery. A special output, AS (address strobe), is provided
to indicate whether address information or data is present on the bus.

The timing for a memory cycle is shown in Figure. The address
becomes valid after AS goes high and remains valid as AS falls. AS can be
used as the control input to a latch to recover the lower half of the address
bus. Once latched, the address continues to be output by the latch and hence
continues to be valid throughout the cycle. The data appears on the
multiplexed bus later in the cycle.

MODB MODA Mode

1 0 Single chip

1 1
Expanded

multiplexed

0 0
Special

bootstrap

0 1 Special test

 Embedded System
 Notes

261

Timing of the multiplexed bus on a 68HC11

The upper address bits (A8:15) appear on port B 94 ns before E goes
high (in the middle of the cycle) and remain valid for the whole cycle. No
recovery is required for these address lines.

The basic circuit for a 68HC11 processor in expanded multiplexed
mode, including the recovery of the lower address bits, is shown in Figure.
Interrupt inputs, IRQ and XIRQ, require pull-up resistors as well. Motorola
recommends the use of a special chip, MC34064, for generating a power-on
reset. This simple three-pin device requires only power and ground, and will
output a reset pulse on power up. This reset pulse is of an appropriate
duration for a 68HC11. To provide a clock for our processor, we add an 8
MHz crystal to the processor's internal oscillator (pins XTAL and EXTAL).
The crystal needs two bypass capacitors, C1 and C2, and also requires a
resistor, R1, parallel.

 Embedded System
 Notes

262

MC68HC11 and support components

Port D is used for the internal serial interface, with bit 0 as the receive
data input (Rx) and bit 1 as the transmit data output (Tx). Port D also contains
the processor's SPI interface, allowing it to be interfaced easily to a variety of
peripherals.

That completes the processor's basic requirements. The next task is
to design the rest of the computer, which for our system with its one RAM,
one ROM, and a latch is very simple. We start by allocating the memory
space and then design the address decoder.

Address Decoding

The MC6800 and MC68HC11 address spaces are shown in Figure.
They are both 64K spaces (16-bit address), but note the additional, internal
features of the 68HC11 located in its memory map. The register block is not
the accumulators or index registers that were mentioned previously. These
do not appear in the memory map. The register block is an array of special
registers that control the many internal peripherals this processor has, such
as counter/timers, analog-to-digital converters, etc. Note that a 68HC11 has

 Embedded System
 Notes

263

the ability, through software, to relocate the internal I/O registers and the 256-
byte RAM to any 4K boundary. This means the designer can place these
wherever is most appropriate for the design. The "external" designator in
Figure means that addresses in this range are available externally for use by
memory or other devices.

Comparison of 6800 and 68HC11 memory maps

The vectors are a table of addresses stored externally that point to
routines in memory. The most important of these is the 16-bit RESET vector
starting at address 0xFFFE. This location contains a 16-bit pointer to the
location in memory where the initialization code lies. The processor will load
this pointer into its program counter after power-on or reset and thereby begin
execution of the software. Therefore, since this vector needs to be valid at
power-on, it must be nonvolatile (able to survive without power). For this
reason, a ROM is usually located in the uppermost region of the address
space.

Now, the 68HC11 has a 64K address space, so a 32K RAM is going
to occupy half of this space. But which half? As mentioned earlier, for the
vector table to be preserved during periods of no power, a ROM must be
located in the uppermost part of the address space. Thus, our 32K RAM must
be put in the lower half of the address space. However, the internal RAM and
registers of the internal peripherals are mapped into the lower half of the
address space. If we map our 32K RAM into this space, will it cause conflict?
(In other words, will we need special logic to accommodate this?) The answer
is no. The internal RAM and I/O registers take precedence, and accesses to
their locations will not cause activity on the external buses of the processor.
In effect, they are overlaid on top of the external RAM. From our point of
view, this makes the design simple, as we don't need special logic to exclude
those addresses from our memory space. And since the internal peripheral
registers can be remapped under software control, these can be shifted
elsewhere to an unused part of the address space.

 Embedded System
 Notes

264

In the case of the 32K RAM, its address size ranges from 0x0000 to

0x7FFF. In binary, this is 0000 0000 0000 0000 to 0111 1111 1111 1111.
Any combination of bits between these two addresses lies within the space
allocated to the RAM. So address bits A0 to A14 relate to memory locations
internal to the RAM, and hence they are not used by the address decoder. In
other words, the address decoder "doesn't care" what they are since they go
directly into the RAM. The address table for the RAM is shown in Table. The
"X" means "don't care."

Address bit usage for the RAM

 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

RAM 0 X X X X X X X X X X X X X X X

Look at the address range for the RAM: 0000 0000 0000 0000 to

0111 1111 1111 1111. The only bit in common for all those address bits is
the "0" at A15. As the RAM is 32K in size and this is half of the 64K address
space of the processor, the only bit that needs to be taken into account when
decoding for the RAM is A15. Since the RAM is in the lower half of the
address space, the RAM will need to be selected when the most significant
address bit is low. When it is high, the RAM will not be selected. The address
decode for the RAM is therefore simply a direct connection between A15 and
the RAM's CS. What could be easier than that? The circuit for the RAM, in
this case a 62256 SRAM, is shown in Figure. This same generic circuit will
work for any standard 32K x 8 SRAM.

RAM

When A15 is low, the chip enable (CE) is pulled low and is therefore
asserted (since it is active low). Thus, the RAM is enabled when A15 is low,
and not enabled when A15 is high.

 Embedded System
 Notes

265

Note the additional logic (the three NAND gates) in the circuit. The
68HC11 generates a R/W strobe indicating whether the cycle is a read cycle
(R/W high) or a write cycle (R/W low). Now, the RAM has separate inputs to
signify whether the access is a read or a write, and, in both cases, these are
active low. The logic is used to convert the single R/ strobe into separate
WE (write enable) and OE (output enable) inputs to the RAM. The R/W
strobe is combined with the processor's E clock to ensure that the enables
are active only during the valid part of the cycle (when E is high). Otherwise,
OE would be active whenever it wasn't a write cycle. The NAND gate U2A is
simply acting as an inverter.

The ROM is a 16K device, which is one half of the remaining address
space. The only other external device is a latch (which need occupy only one
byte). There are two ways of allocating the remaining 32K of memory to these
two devices. The first is to use explicit address decoding in which every
address line is accounted for. In this scheme, the latch would occupy exactly
one byte of memory and no more. So if we decide to locate the latch at
address 0x8000, we have the address bits as shown in Table.

Address bits to select the latch at 0x8000

 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

Latch 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

If we are using explicit decoding, we must use all of these bits in our
address decoder. Such logic would be both complex and slow.

A better way is to use partial address decoding. With this method, we
divide our memory space among the devices, using just enough address bits
to distinguish each device. It doesn't matter if the memory space allocated is
much greater than that required by the device. Even if we allocate 16K of
space to the latch, the latch will still work when we select it. It's true this is
somewhat wasteful of address space, but it is a far more efficient method (in
terms of logic) than explicit decoding. The logic required is much less, and if
you are using discrete logic, the propagation delays are reduced. Timing is
the most important consideration when designing any logic for a
microprocessor system. If the timing isn't right, it simply won't work.

So our remaining 32K of address space needs to be divided between
two devices. The address table for all three devices (RAM, latch, and ROM)
is shown in Table.

Address bit allocation for all devices

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

RAM 0 X X X X X X X X X X X X X X X

 Embedded System
 Notes

266

Latch 1 0 X X X X X X X X X X X X X X

ROM 1 1 X X X X X X X X X X X X X X

In this table, I have allocated the latch and the ROM 16K of space
each. In other words, I have divided the remaining 32K of space equally
between the two devices. This will make the address decoding much simpler.
The resulting memory map for the computer (ignoring the internal I/O
registers and memory for the moment) is shown in Figure.

Memory map using partial address decoding

Note that because we have used partial decoding, the latch will
appear multiple times in its allocated space. The latch represents one byte at
address 0x8000, but because we are looking at only A15 and A14 for its
address decode, it is selected for all addresses in which A14 is low and A15
is high. Therefore, the latch appears throughout the address range 0x8000 to

0xBFFF. For instance, if we access location 0x9401, since A14 is low and A15
is high for that address, we will select the latch. A0 to A13 are not used by the
decoder, so their state is irrelevant to the address decode.

The schematic for the LED latch circuit is shown in Figure (power and
ground connections for U3 are present but are not shown for clarity). The

 Embedded System
 Notes

267

latch has two control lines, LE and OE . LE going from high to low causes the
latch to capture and hold the current input data, in this case from the
processor's data bus. OE controls whether the latch outputs the data. Since
we want the LEDs to always show their current state, we want the latch to
permanently output the currently latched data. Hence, OE must always be
asserted (tied low). The address decode for the latch is relatively simple.
When the processor is writing data to the latch, A14 is low and A15 is high.
A14 is inverted by U5A and ANDed with A15. The output of the AND gate
(U4A) will be high; therefore, the latch will capture the data that is being
written to it. In effect, the latch is acting as a single byte of write-only memory.

LEDs and latch

The address decode for the ROM is shown in Figure. When both A14
and A15 are high, the output from the NAND (U2D) gate will be low;
therefore, the ROM will be selected. If either A14 or A15 are low, the ROM
will not be selected. The ROM shown in the schematic is a 27256 (a 32K
part), since these are easier to acquire than 16K devices. Because it is a 32K
device, and we're using only half of its internal space, its address input A14 is
tied high. In this way, we permanently select the upper half of the device's
space. Note that this A14 input is not the same as the A14 address bit from
the processor. The OE (output enable) input is connected to the same OE we
generated for the RAM. Finally, the power pin VPP is used during
programming (out of circuit) to load the chip with data. During normal
operation, this pin is tied to VCC.

So that completes the basic design for the 68HC11 computer. Using
the processor's SPI port, we could add a variety of additional peripherals or
data-storage memories. Alternatively, we could add additional peripherals
using the processor's buses by breaking up the address space allocated to
the latch and providing support for more devices. We could also apply the
memory-management techniques covered in the AVR chapter to increase the
amount of RAM in the computer.

 Embedded System
 Notes

268

Address decode for ROM

Summary:

 The MC68HC11 is a member of the 8-bit, 6800
microprocessor family.

 It is essentially a standard 6800 processor inbuilt peripherals,
such as an enhanced 16-bit timer with four-stage

 Embedded System
 Notes

269

programmable pre-scalar, a serial peripheral interface (SPI), a
serial communications interface (SCI), an 8-bit pulse
accumulator, real-time interrupts, onboard static RAM, an
eight-channel ADC, and onboard EEROM.

 The MC68HC11 has two accumulators, A and B. The
accumulators are both eight bits wide.

 The stack pointer (SP) is a 16-bit register that points to the
next free location on the stack.

 The stack is an area of memory defined for storage of data or
addresses (treated as data).

Questions:

 Explain the architecture of MC68HC11?

 Design a simple computer using MC68HC11?

 Explain Memory mapping in MC68HC11 controller?

 What are the different booting modes of 68HC11?

 How to decode address in 68HC11?

 Explain the interfacing of RAM in 68HC11?

 Is it possible to interface with LEDs using 68HC11?Explain.

References:

 Data Acquisition and Process Control with the MC68HC11
Micro Controller by Frederick F. Driscoll, Robert F. Coughlin,
Robert S. Villanucci.

 Introduction to Microprocessors and Microcontrollers by John
Crisp.

 Microprocessors and Microcomputers: Hardware and Software
(6th Edition) by Ronald J. Tocci and Frank J. Ambrosio.

14. MAXQ

Objective:

In this chapter, we'll look at an innovative new processor architecture
introduced to the world in 2004. Dallas Semiconductor, a subsidiary of Maxim

 Embedded System
 Notes

270

(http://www.maxim-ic.com), developed the 16-bit MAXQ microcontrollers to
target the low-cost, low-power embedded applications market. The
architecture is aimed directly against Microchip's PIC, Atmel's AVR, Texas
Instruments' MSP430, and the 8051 architecture offered by many
manufacturers (including Dallas Semiconductor itself). The MAXQ is an
interesting contender for top RISC microcontroller. It's fast, has a lot of
functionality, and is very low-powered. At the time of writing, the User's Guide
for the MAXQ is 230 pages long. Obviously, this processor has a lot of
features, too many to be thoroughly covered here. Therefore, I'm going to
simply concentrate on the basic design for a MAXQ-based system. Let's start
by seeing what makes the MAXQ so different and so interesting.

Architectural Overview

The stated design goal for the MAXQ was to achieve a high
performance-to-power ratio. In other words, the aim was to maximize the
processor's throughput of instructions while minimizing the current draw.
Many RISC processors achieve single-cycle execution but do so through the
use of an instruction pipeline. In a pipelined architecture, the execution unit is
comprised of many stages. At any one time, several instructions will be in the
process of being decoded and executed. Thus, with a pipeline, although a
given instruction may take several cycles to execute, the processor is able to
have an instruction terminate on each cycle (Figure).

Each cycle moves each instruction further along the pipeline, from
fetch to termination (and result). The disadvantage of a pipeline is that a call
or jump instruction means that all instructions following in the pipeline are not
needed and the pipeline must be reloaded from a new location (where the
jump/call was directed). So, while

Four-stage instruction pipelining

Pipelining can achieve single-cycle execution; it falls down in a big
way unless the code is linear.

The MAXQ does not have an instruction pipeline, yet it still achieves
single-cycle execution, with the exception of long jumps and calls and some
extended register accesses. Now, you may say, "So what's the difference?"
since pipelined processors have problems with jumps and calls too. The
difference is that a pipelined processor executing a jump means that not only

 Embedded System
 Notes

271

is the jump not single-cycle, but it will cause a disruption to the pipeline
affecting the following instructions. With the MAXQ, this is not the case. Only
the jump or call is not single-cycle, and all subsequent instructions execute
without incurring the delay of a pipeline reload.

The MAXQ achieves this by having instruction-decode and execution
units that are much simpler than those found on many other processors. How

simple? Well, the MAXQ has only one instruction (move), but that one
instruction has multiple functions, depending on the source and destination
operands. By having only one instruction, a classical decode unit is not
required. (You already know what the instruction is going to be, so what's
there to decode about it?) Hence, the execution of instructions is reduced to
determining source and destination, and whether additional hardware
operations are triggered as part of the move. The source and destination bits
of an instruction merely activate internal data paths, and this happens as the
instruction is fetched.

The basic format for a MAXQ instruction is fdd dddd ssss ssss,

where f is the format bit, d represents the destination-field bits, and s

represents the source-field bits. When the format bit is a 1, the instruction

moves data from one index module to another. When the format bit is a 0, an
immediate 8-bit value is loaded into an index module (Table).

For

mat bit

7-bit

destination
8-bit source

1
Index

module
Index module

0
Index

module

Immediate byte

data

In the MAXQ architecture, the index modules are not necessarily
specific registers, and herein lies the flexibility of the architecture. A given
working accumulator may actually be represented by more than one index
module. One index module will target the accumulator and perform an
addition operation, while another index module will target the same
accumulator yet perform a subtraction. In this way, two different operations
are specified by two index modules, even though they both target the same
register.

Like the PIC and AVR, the MAXQ is a Harvard-architecture processor,
with separate code and data spaces. Overall, the MAXQ is a very nice
processor, and one that I'm sure will gain market share as time passes.

Schematics

 Embedded System
 Notes

272

A major problem common in utilizing a microcontroller in a mixed-
signal environment (one that combines both digital and analog components)
is the noise the digital subsystem introduces. Higher processor performance
normally results in greater noise in the analog section, unless great pains are
undertaken to minimize these effects. Thus, achieving high throughput is
often contrary to the goal of keeping the analog circuits as noise-free as
possible. The MAXQ implements intelligent clock management that reduces
noise by enabling clocks only to those subsystems that require them, and
only when they require them. In this way, the overall digital noise is reduced
considerably. The MAXQ processor requires two crystals, a 16 MHz crystal
(X1) for the main CPU clock and a 32.768 kHz watch crystal (X2) for the
timers. Figure shows the MAXQ2000F processor with its support
components.

MAXQ processor and support components

The MAXQ processor requires two power supplies, VDDCPU (2.5 V)
and VDDIO (3.6 V), each decoupled to ground with 100 nF ceramic
capacitors. The 2.5 V supply may be generated using a MAX1658 (Figure).
This is a general-purpose regulator, the output of which is adjustable via bias
resistors. These resistors, R1 and R2, set the output to +2.5 V. It is important
that these resistors are precise, so choose resistors with 1% tolerance. The
input and output of the regulator are each decoupled with 10 uF capacitors.
The MAX1658 can operate on an input voltage (VIN) of between 2.7 V and
16.5 V, supplying up to 350 mA to the embedded computer system.

A similar circuit is used to generate the 3.6 V supply required by the
MAXQ's I/O subsystems (Figure). Note the different resistor values required
to generate 3.6 V rather than 2.5 V.

 Embedded System
 Notes

273

The MAXQ has an internal power-on reset generator, kicking the
processor to life at power-up. No external reset circuit is required. If a manual
reset is required, a push- button switch may be used to pull the RESET line
low. However, it is important to note that RESET is a bidirectional line. The
MAXQ also uses this signal as an output to indicate that a reset condition
(possibly generated internally) is being serviced.

Generating 2.5 V for VDDCPU

Generating 3.6 V for VDDIO

This can be used by the system designer to reset external peripherals
as well (if required).

The various ports, labeled Px, provide access to the MAXQ's I/O. As
well as providing digital I/O, they also serve dual purposes. Port 5 provides a
SPI interface as well as a serial port. The SPI interface may be connected to
any SPI-based peripheral. The serial port requires a level shifter such as a

 Embedded System
 Notes

274

MAX3232, as shown in Figure. The transmitter (TXD1) and receiver (RXD1)
of the MAXQ connect to the receiver and transmitter pins on the MAX3232.

Serial port

Port 5 of the MAXQ provides access to JTAG signals for in-system
programming and debugging. Figure shows the pinout for a JTAG header.
This is the same pinout used on the Maxim MAXQ development system,
allowing you to use the same environment for your embedded computer.

JTAG interface

The MAXQ is a versatile and fast 16-bit processor, and the family is
due to be expanded by Maxim. If you're looking for a low-powered, yet very
capable processor for an embedded application, take a close look at the
MAXQ. You'll find it's an impressive little processor.

 Embedded System
 Notes

275

Summary:

 Dallas Semiconductor, a subsidiary of Maxim (http://www.maxim-
ic.com), developed the 16-bit MAXQ microcontrollers to target the
low-cost, low-power embedded applications market.

 The MAXQ design is goaled to achieve a high performance-to-power
ratio.

 The disadvantage of a pipeline is that a call or jump instruction means
that all instructions following in the pipeline are not needed and the
pipeline must be reloaded from a new location.

 The basic format for a MAXQ instruction is fdd dddd ssss ssss,

where f is the format bit, d represents the destination-field bits, and s
represents the source-field bits.

 Like the PIC and AVR, the MAXQ is a Harvard-architecture processor,
with separate code and data spaces.

 The MAXQ processor requires two power supplies, VDDCPU (2.5 V)
and VDDIO (3.6 V), each decoupled to ground with 100 nF ceramic
capacitors.

Questions:

 Explain the architecture of MAXQ IC?How it differs from pic,AVR &
8051’s architectures?

 Define the format of MAXQ controller instruction?

 Explain MAXQ with its schematics?

 Explain how a Numerical LCD is connected with its pin diagram?

References:

 Analog Interfacing To Embedded Microprocessors – STUART R.
BALL

 Embedded System
 Notes

276

 C Programming for Embedded Systems – KIRK ZURELL

 Design with 8051- FRONTLINE ELECTRONICS

 Embedded Controller Hardware Design - Ken Arnold

 Embedded Software The Works – colin walls

 Embedded Systems Firmware Demystified - Ed Sutter

 Embedded_Controller_Hardware_Design – KEN ARNOLD

 Programming Embedded Systems in C and C++ - Michael Barr

 The Art of Designing Embedded Systems - Jack G. Ganssle

15. 68000-Series Computers

Objective:

 Embedded System
 Notes

277

In this chapter, we'll take a look at a 32-bit processor that has been
around for quite some time and has evolved into a plethora of controllers and
embedded processors. The 68000 (also known as the "68k") is produced by
Free scale Semiconductor and is licensed by several other manufacturers.
The range of 68000-based processors is large (check out the manufacturers'
web sites for a list of processors and their features). The number of
applications that the 68000 has found its way into is enormous. You can even
get 68000s as soft cores for FPGAs, which means you place a 68000 CPU in
the midst of your programmable logic, all on the one chip.

The Motorola MC68000 was introduced in 1979 as the successor to
its 8-bit 6800 family. It featured a large address space, 32-bit registers, a
large number of addressing modes, and an enlarged instruction set with over
1,000 opcodes. It was designed with the intention of running multitasking
operating systems, specifically Unix. Its use in Unix machines has now long
since passed, having been usurped by more advanced RISC processors. The
68000 processor was also used in the original Macintosh computers, as well
as in the Atari ST, the Commodore Amiga, and Jef Raskin's CAT computer,
all long extinct. Motorola Semiconductor is now known as Free scale
Semiconductor.

The processor's wide range of software and reasonable computing
power are now encouraging its extensive use in embedded systems. It now
forms the basis of a family of microcontrollers designed for embedded
systems, industrial control, networking, and PDAs. The 683xx series is the
primary family of microcontrollers specifically tailored to embedded
applications. These processors combine a CPU32 core (68020-based) with
various integrated functions (such as UARTs, SPI, ADCs, etc.). Additional
68000 processors have been developed for specialized applications. The
original Palm PDA has a 68EZ328 Dragon Ball processor, also based on a
CPU32 core, which incorporates an LCD controller along with many of the
common functions found in PDAs. The Dragon Ball is essentially a PDA on a
chip—just adds memory. The ucLinux fraternity uses a Dragon Ball processor
in its small embedded controller board.

The 68000 architecture was upgraded to RISC with the Cold Fire
series of processors. These see extensive use in industrial control and
network interfaces.

The 68000 series of processors are good general-purpose
processors. They have a nice instruction set, are easy (and fun) to write code
for, and are relatively easy to build computers around. They have large
address spaces and asynchronous operation, allowing them to be interfaced
to a wide variety of memory and peripherals of varying operating speeds.
They are used in industrial control and monitoring, and also in consumer
electronics.

In this chapter, we'll look at the standard 68000 processor. More than
likely, this is not the processor you will use in a design. Rather, you will
choose a 68000-based integrated controller that better suits your needs. So,

 Embedded System
 Notes

278

why look at a standard 68000 and not one of the derivatives? First, there are
far too many diverse 68000-based processors to cover. Second, since these
processors are all based on the 68000, understanding the basic 68000 is a
great starting point. Finally, all the derivatives are generally easier to use than
the original, so if you can design around a standard 68000, then you can
design for a derivative processor as well.

Understanding the 68000 gives you access to a wide range of
available processors. There are dozens of commercial C compilers and
assemblers available for the 68000 family, as well as a number of public-
domain compilers as well. The 68000 is fully supported by the gnu
development suite. Both Linux and BSD are also available for the 68000, as
well as for numerous commercial operating systems.

The 68000 Architecture

The 68000 has eight 32-bit data registers (D0-D7), eight 32-bit
address registers (A0-A7), a 32-bit program counter, two 32-bit stack
pointers, and a 16-bit status register (Figure). The processor is capable of
handling data as 32-bit long words, 16-bit words, bytes, or bits.

The processor has two modes of operation: supervisor mode
(operating system) and user mode (applications). The mode of operation is
made available to external hardware, thereby giving the address decoder the
ability to have separate supervisor and user spaces.

68000 programmer's model

The standard 68000 is just a conventional, bus-based processor. A
block diagram of a generic 68000-series processor is shown in below Figure.
The figure also shows the pins for a sample 68000-series processor. The
pins and signals of 68000s can vary from one device to another, but they all
have the same core functionality. The embedded controllers add to this basic
functionality with additional I/O capability. We'll look at the pins for the

 Embedded System
 Notes

279

MC68EC000 shortly. The original 68000 has a 23-bit address bus (A1 to
A23), giving it access to a memory space of 16M, and a 16-bit data bus. Most
other processors based on the 68000 architecture have address and data
buses of 32 bits and can therefore access up to 4G of memory.

The processors have an input clock that drives all processor
operation. Memory accesses typically take eight input clock cycles, provided
that wait states are not introduced. Many processors based on the 68000
incorporate in-built address coding and software-configurable wait-state
generation, making interfacing much simpler.

MC68000 block diagram and pinout

The processors have an address strobe (AS) indicating when a valid
address is present on the bus, data strobes (LDS, UDS) indicating valid data,
and a R/W line that shows the direction of the transfer. In addition, a Data
Transfer Acknowledge input, DTACK, is used by external devices to indicate
to the processor that it may terminate its current memory cycle. (Some 68000
processors call their Data Transfer Acknowledge DTACKB.) The function
code outputs (FC0, FC1, and FC2) indicate the current operating mode
(supervisor or user) of the processor. Bus Error (BERR) is used by an
external address decoder to indicate an error condition. This allows the
system to trap out accesses to unused regions of memory space, or in
combination with the status lines, to detect user access to memory space
allocated for supervisor use only. For example, if a program crashes and, in
the process of crashing, attempts to access a region of memory to which no
device is allocated, the address decoder is able to signal that fault back to the
processor. An assertion of BERR causes the processor to execute an
interrupt and take appropriate action. HALT is used to suspend processor
operation without generating a reset. Three interrupt inputs (IPL0, IPL1, and

 Embedded System
 Notes

280

IPL2) are used to generate seven levels of external interrupt handling. Bus
Grant (BG) and Bus Request (BR) are DMA control signals by which another
processor can arbitrate to acquire the computer's buses. The MODE pin,
present on only some 68000 processors, determines whether the 68000 uses
its data bus as 16 bits or 8 bits. MODE is sampled as the processor comes
out of reset. AVEC, also found in only some 68000 processors, determines
whether the processor uses auto-vectoring for its interrupts. If auto-vectoring
is enabled, the processor will expect the interrupting peripheral to supply the
appropriate vector. This allows a peripheral to specify what type of action the
processor needs to take when a given interrupt is generated. Other 68000
processors may have other signals as well, but these are the main ones. The
basic timing diagram for a 68000 memory access is shown in Figure.

MC68000 timing diagram

The memory cycle of a 68000 is divided into a number of clock states,
S0 through S7. The cycle begins with state S0. The processor validates R/
for the coming cycle, sending it low for a write access, driving it high for a
read access. The processor also tristates its address bus from the previous
memory access. By S2, the processor has output a valid address and drives
the address strobe (AS) low, indicating that a valid address is present. The
lower and upper data strobes (LDS and UDS) go low as appropriate and
indicate the width of the memory access taking place. For a 16-bit transfer,
both LDS and UDS assert. For an 8-bit transfer, only one of LDS or UDS
asserts, depending on whether the upper byte or lower byte is being
transferred. If the current memory access is a write cycle, the processor
outputs valid data in state S3. At this point, all outputs from the processor are
valid, and the processor waits for the device being accessed to respond.

 Embedded System
 Notes

281

At the falling edge of the clock in S4, the processor begins checking
the state of the DTACK input. If DTACK is high, the processor inserts wait
states and continues to do so until DTACK is found to be low on the falling
edge of the clock. (You'll learn how to generate wait states in "Wait States,"
later in the chapter.) When DTACK is low, the processor recognizes this as
an indication that the device being accessed has had sufficient time to
respond and prepares to terminate the cycle. If the cycle is a read cycle, the
processor will latch data on the falling edge of the clock in state S6. If it is a
write cycle, the device being accessed will latch data as the data strobes go
high in S7.

Support for synchronous operation is also provided for, using control
signals found in the old 6800 series of processors. Since 6800s have long
since passed into history, and 6800-based peripherals are now exceptionally
rare, just ignore the 6800 control signals. Most 68000-based derivative
processors no longer include support for 6800 peripherals.

A Simple 68000-Based Computer

Objective:

Let's look now at a small 68000-based computer. For simplicity, we'll
give it just a small amount of memory and a single peripheral, an MK68901
MFP (Multi-Function Peripheral) produced by ST Electronics. The MFP gives
us a UART, parallel I/O, and interrupt control. A block diagram of the system
is shown in Figure.

68000-based computer

This system is designed with only a small amount of memory, to keep
the design uncomplicated. While this is not much compared to many desktop
machines, it is sufficient for many small, control applications. This design
could be used for a number of simple applications. The counters of the
MK68901 may be used to monitor external event pulses or to generate PWM
for motor control. This computer could also be used to accept commands
through its serial port and activate (or deactivate) external subsystems using
the parallel I/O pins of the MK68901. This basic design could also be adapted

 Embedded System
 Notes

282

to provide a bridge between an RS-232C interface and a parallel port. You
could use this to interface a parallel-port printer to a serial-port-only
computer. Alternatively, you could use it to put a serial modem on your PC's
parallel port. Using the bus-interfacing techniques we learned in the AVR
chapter, you could add additional peripherals such as ADCs and DACs,
Ethernet, or a whole range of other devices. The list of possible applications
is endless. And it all starts with this core design.

So, let's start our tour of a 68000-based computer system. We'll look
at the reset circuit, address decoder, I/O, and memory.

Reset Circuit

To reset an MC68000, both RESET and HALT must be driven low
simultaneously. In addition, both of these signal lines may also act as outputs
from the processor. Therefore, both must be independently driven by the
reset circuit through open-collector gates. The conventional way of doing a
68000 reset circuit is shown in Figure.

Reset circuit

The MC1455 will respond to a disruption on VCC by sending its
output low. This output is used to drive RESET and HALT low
simultaneously. In normal operation, RESET is held high by the pull-up
resistor, unless pulled low through the reset switch being pressed. The diode
is present to remove any glitches that might send RESET above VCC.

A better reset circuit is shown in Figure, using a MAX825 integrated
reset controller. Again, both RESET and HALT need to be driven low.

Address Decoder

 Embedded System
 Notes

283

Logic to perform address decoding and the generation of separate
read and write strobes is implemented in a PAL. In each case, (Address
Strobe) of the processor is used as an indication of a valid address present
on the bus. The address-decode equations are as follows:

 ROM = /(/AS * /A23 * /A22)

 RAM0 = /(/AS * /A23 * A22 * /LDS)

 RAM1 = /(/AS * /A23 * A22 * /UDS)

 MFP = /(/AS * A23 * /A22)

MAX825 reset circuit for a 68000

With the exception of the MFP, which generates its own DTACK,
DTACK for all other devices is generated as part of the address decoding.
Since DTACK from the PAL must be OR-tied with DTACK from the MFP, it
must be driven from an open-collector gate. Therefore, we generate an
active-high acknowledge (which we'll designate TACK) from the PAL and
invert this through a 74LS05 open-collector inverter.

The PAL equation to generate TACK is simply:

 TACK = (/AS * MFP)

Therefore, TACK is active (high) whenever the processor accesses its
address space, so long as it is not accessing the MFP. If the address strobe
is high, or if there is an access to the MFP, then TACK is low. The TACK
output from the PAL is inverted through an open-collector 74LS05 and "OR-
tied" (directly connected together) with DTACK from the MFP. DTACK

requires a pull-up 1 k resistor, since this input must have a sharp rise time.
A block diagram is shown in Figure.

No provision for generating a BERR is made because our simple
address decoding allocates all of the address space. If we had any unused
regions of the memory space, we would use our address decoder to generate
a BERR when accesses to the unused regions were made.

 Embedded System
 Notes

284

The PAL equations to generate separate read and write strobes for
the memory chips are:

 UWE = /(/UDS * RW)

 LWE = /(/LDS * RW)

 UOE = /(/UDS * /RW)

 LOE = /(/LDS * /RW)

Address decode and DTACK generation

The connections for the PAL are shown in Figure. Additional
addresses are brought into the PAL to allow for future changes to the
memory map. The processor's clock (CLK) is used by the PAL to generate
the clock for the MFP (MFPCLK).

Address decode and system-logic PAL

 Embedded System
 Notes

285

The function code outputs (FC0-FC2) can be decoded using a
74LS138 demultiplexer to drive three LEDs (Figure). These provide a visible
indication of processor status. The function codes could also be used by the
address decoder if you wanted to have separate user and supervisor address
spaces. Many of the more sophisticated peripheral chips (such as the MFP)
require the processor to acknowledge when they have generated an interrupt.
The 74LS138 also uses the function codes to generate an interrupt
acknowledge (IACK) for peripherals, since the function codes also indicate an
IACK condition.

Status LEDs indicating processor mode

I/O

 Embedded System
 Notes

286

The MK68901 Multifunction Peripheral (MFP) provides a serial port,
as well as basic parallel I/O functions, a 16-source interrupt controller, and
four 8-bit timers. The MK68901 has an internal oscillator that drives the
internal timers. A timer output (TD0) is fed back into the MFP as the clock for
the serial interface. The internal oscillator must therefore run at a frequency
appropriate for RS-232C. An external 3.6864 MHz crystal drives the
oscillator. This input clock can be divided up by the MFP, providing the
appropriate baud rates for the serial port. The serial lines from the MFP are
converted to RS-232C voltage levels by a MAX3232 level shifter. A 9-pin, D-
type connector provides access to the RS-232C signals. The parallel I/O lines
and timer inputs and outputs are also made available through a 26-pin IDC
connector. The schematic for the MFP is shown in Figure.

Multifunction Peripheral

Memory

The system is designed with 256K of EPROM and 512K of static
RAM. The connections to the SRAM are shown in Figure. Note that since the
data bus of a 68000 is 16 bits wide, two SRAMs are required. For 68000-
based derivatives with 32-bit external data buses, four memory chips would
be required in parallel. Note how half the data bus goes to one chip and the
other half goes to the other chip.

Now, note the address lines going to the SRAMs. The lowest address
bit from the processor is A1, and this is connected to the A0 inputs of the
SRAMs, and so on. Since the processor accesses external memory in 16-bit
words, A1 represents the least significant address bit. In other words, as you
move from word to subsequent word in memory, it is A1 that increments.
However, A0 is the least significant address bit of the SRAMs, but since the
two SRAMs together form a 16-bit word of memory, the A0 of the SRAMs
must connect to A1 of the processor. The other address bits follow on from
that starting point.

 Embedded System
 Notes

287

Interfacing to SRAM

Similarly, the connections for the ROMs are shown in Figure.

Wait States

Depending on the speed of your processor and the access times of
your memory and peripheral chips, it may be necessary to introduce wait
states into the 68000's memory cycle. Wait-state generation follows basically
the same principle for processors that support asynchronous memory cycles.
The processor will have an input (sometimes more than one) that will cause it
to delay the memory cycle, giving slower

Interfacing to EPROMs

 Embedded System
 Notes

288

devices time to respond. In the case of the 68000, that input is
DTACK . To insert a wait state for a given device, we need to detect an
access to that device and hold DTACK inactive for the required additional
clock cycles. In other words, we need to use the chip select for a given device
to delay DTACK going low. The circuit to do this is simple and is best done
inside a PAL or other programmable logic device. This facilitates changing
the wait-state generator if faster parts are used in the design at a later stage.
The wait-state generator consists of a series of D-type flip-flops(Figure). Each
flip-flop represents an additional clock cycle that the transfer acknowledges is
delayed.

A flip-flop is a logic element that feeds the D input through to the Q
output on the changing edge of a clock pulse.

Between memory cycles, the address strobe, AS, goes high. It is first
inverted and then connected to the active-low SET input of each of the flip-
flops. Thus, the output of each of the flip-flops is driven high between each
memory cycle. This resets them from any previous cycle. The address
decoder generates a chip select for the particular device, and this is
connected to the D input of the first flip-flop. So, on each successive clock
pulse, the 0 provided by the chip select is clocked through from one flip-flop

to the next. After four clock pulses, the 0 has arrived at the Q output of the

last flip-flop. The inverted output of this flip-flop, , becomes a 1. This is then
output by the PAL to be inverted by the 74LS05 open-collector inverter to
provide DTACK for the processor. For additional wait states, add more flip-

 Embedded System
 Notes

289

flops. For several devices requiring different numbers of wait states, use their
combined chip selects to feed the D input of the first flip-flop; then "tap" into
the wait-state generator at different stages for the required delay. Each of
these taps is gated with the respective chip select to enable/disable that
output before they are all recombined to generate a unified acknowledge for
the processor.

Wait-state generator

Most processors that support wait states now include inbuilt, software-
configurable wait-state generators. This makes the task of designing the
system logic much simpler.

Summary:

 The Motorola MC68000 was introduced in 1979 as the successor to
its 8-bit 6800 family.

 The 68000 has eight 32-bit data registers (D0-D7), eight 32-bit
address registers (A0-A7), a 32-bit program counter, two 32-bit stack
pointers, and a 16-bit status register.

 The original 68000 has a 23-bit address bus (A1 to A23), giving it
access to a memory space of 16M, and a 16-bit data bus.

 The MODE pin, present on only some 68000 processors, determines
whether the 68000 uses its data bus as 16 bits or 8 bits.

 Depending on the speed of your processor and the access times of
your memory and peripheral chips, it may be necessary to introduce
wait states into the 68000's memory cycle.

 A 9-pin, D-type connector provides access to the RS-232C signals.
The parallel I/O lines and timer inputs and outputs are also made
available through a 26-pin IDC connector.

 The MK68901 Multifunction Peripheral (MFP) provides a serial port,
as well as basic parallel I/O functions, a 16-source interrupt controller,
and four 8-bit timers.

 Embedded System
 Notes

290

 The 74LS138 also uses the function codes to generate an interrupt
acknowledge (IACK) for peripherals, since the function codes also
indicate an IACK condition.

Questions:

 What is programmer’s model of 68000?

 Explain the timing diagram of MC68000 for memory access?

 How to design a basic computer using MC68000?

 How MK68901 is interfaced with MC68000?

 How to interface SRAM with MC68000?

References:

 Analog Interfacing To Embedded Microprocessors – STUART R.
BALL

 C Programming for Embedded Systems – KIRK ZURELL

 Design with 8051- FRONTLINE ELECTRONICS

 Embedded Controller Hardware Design - Ken Arnold

 Embedded Software The Works – colin walls

 Embedded Systems Firmware Demystified - Ed Sutter

 Embedded_Controller_Hardware_Design – KEN ARNOLD

 Programming Embedded Systems in C and C++ - Michael Barr

 The Art of Designing Embedded Systems - Jack G. Ganssle

 Embedded System
 Notes

291

16. The DSP56800

Objective:

Unlike the conventional DSP56000 with its 24-bit architecture, the
DSP56800 series has a 16-bit architecture better suited to small-scale control
applications. It is fixed-point (integer) only, which is fine for most control
applications. If necessary, floating- point arithmetic can be synthesized in
software.

The architecture is based on four functional units, each with their own
registers, operating independently and in parallel with the other units. These
functional units are the program controller, which is responsible for software
execution; the Address Generation Unit (AGU), which handles bus accesses;
the Data ALU, which performs the arithmetic operations; and the bit-
manipulation unit for efficient and rapid bit-based operations.

The independent operation of these units allows for very efficient and
fast software execution. While the Data ALU or bit-manipulation unit are
performing an operation specified by an instruction, the AGU can be
generating addresses for the execution of another instruction, while the
program controller can be fetching yet another instruction for execution. The
instruction set directly supports this parallelism. To accomplish this high
internal throughput, the processor has not one but three internal address
buses and four internal data buses (three data buses for the core and one for
peripherals). Two operands may be sourced from the internal memory and
operated on in a single instruction. The result is that the architecture achieves
a throughput of 40 MIPS on an 80 MHz clock. That's RISC-like performance
with a CISC-like instruction set. In other words, that's a lot of punch.

It has hardware looping using the DO and REP instructions. DO
allows you to specify a block of code (of any size) and have the processor
execute it as a loop in hardware. You don't need a counter test and
conditional branch instruction at each iteration, saving processor execution
overhead. REP allows the repetition of a single instruction, and REPs can be
nested inside DO loops. As such, you have very versatile looping capability
with no overhead. Loops on a DSP are fast.

The programmer's model for the DSP56800 core is shown in Figure.

The processor has two 36-bit accumulators, a 16 x 16-bit multiply and
Accumulate (MAC) unit, and a 16-bit barrel shifter. The MAC allows you to
multiply two numbers and then add the result to a growing total, all with a
single instruction. MACs allow for efficient execution of many signal-
processing algorithms, as well as neuro-fuzzy code.

The barrel shifter allows you to shift up to 16 bits in either direction in
a single cycle. So, if you want to shift an operand 15 bits to the left, a
conventional processor would require 15 separate shift-left instructions (or
one shift-left, a loop, a counter variable, and a conditional test for the loop).
The DSP56800, like many DSPs, can perform this operation in just one cycle.

 Embedded System
 Notes

292

In short, the DSP56800 has very tight and efficient code with high
functionality that it executes exceptionally quickly. It is a fast processor
around which it is easy to design a powerful embedded computer system.

We'll look at how you design a system based on the DSP56805
processor, a member of the DSP56800 family specifically designed for
industrial control. The DSP56805 has an internal 1K program RAM, 4K of
bootstrap ROM (for loading boot software from an external memory or
peripheral, 63K of program flash, 8K of data flash, and 4K of data RAM. The
processors also have external data and address buses, so the processor's
memory can be expanded well beyond its internal resources. It has a 64K x
16-bit address space, giving access to 128K (bytes) of external memory.

The DSP56800 processors also provide the ability to separate data
and program spaces, thereby doubling the external address space. The
processor also has a programmable wait-state generator, simplifying
interfacing to external devices. The generator may be programmed to provide
0, 4, 8, or 12 wait states for accesses to a given device.

DSP56800s in general come with a range of inbuilt peripherals,
including SPI ports (sometimes two), several 16-bit general-purpose timers, a
watchdog timer (called a Computer Operating Properly, or COP, timer by

 Embedded System
 Notes

293

Free scale Semiconductor), a timer for real-time operation, a Synchronous
Serial Interface (SSI) for accessing audio codec’s (combined ADCs and
DACs) and other DSPs, and general-purpose I/O lines. The DSP56805 adds
two 6-channel Pulse Width Modulation (PWM) units for motor control and
other uses, two 4-channel ADCs at a resolution of 12 bits per channel, and
two quadrature decoders for measuring motor positions. It also has a CAN
networking module, two serial ports (called Serial Communication Interfaces,
or SCIs, by Free scale Semiconductor), and 14 dedicated and 18 shared I/O
lines.

The processors operate from a supply voltage of between 3.0 V and
3.6 V but have 5 V-tolerant inputs, making interfacing to a wide variety of
devices easy. (Other DSP56800s may operate on a supply voltage of
between 4.57 V and 5.5 V, depending on the particular chip.) The processor
has several low-power and sleep modes, making it ideal for battery-powered
systems.

All DSP56800 processors incorporate a JTAG (Joint Test Action
Group) port for interfacing to specialized debugging instruments. The JTAG
port also allows direct access to the processor's onboard flash program
memory, making the job of downloading new code simple and fast. All in all,
quite a nice processor. So, let's look at how you build a system based on
one. For simplicity, I'll look at each subsystem in turn.

A DSP56805-Based Computer

The DSP56805 has nine power pins. Each of these must be
decoupled to ground using 100 nF ceramic capacitors. Each capacitor should
be placed as close as possible to its respective power pin. Since this
processor can operate at a relatively high speed, and can therefore generate
a lot of noise, a four-layer circuit board is the preferred option for
construction. As with any design, any unused inputs must be tied inactive. A
block diagram of the DSP56805 is shown in Figure in next page.

Oscillator

Like all processors, the DSP56805 requires a clock signal. The
processor can operate from an oscillator frequency of up to 80 MHz (giving
40 MIPS) or as slow as a few MHz to save power. The processor may even
have its clock completely stopped (so-called "DC operation," meaning the
clock is no longer an AC signal) to further save power. (This processor's
sibling, the DSP56801, has a complete internal oscillator and so requires no
external clock-generation circuit).

The processor has an inbuilt oscillator circuit, requiring only an
external crystal in the range of 4 MHz to 8 MHz and support components.
From this low crystal frequency, the processor internally synthesizes a clock
speed of between 40 MHz and 110 MHz under software control. Note that
while the clock-generation circuit is able to produce 110 MHz, the processor
isn't able to operate at that speed. So keep the speed below 80 MHz, and the
processor, your software, and you will all be happy.

 Embedded System
 Notes

294

In a typical application, the crystal frequency is 8 MHz, with a resistor
value of 10 M . Decoupling capacitors are approximately 15 pF or so.
However, the values of the resistor and capacitors required can vary, so
make sure you check the technical data from the crystal manufacturer. It will
tell you specifically what values to use for a particular crystal.

 Embedded System
 Notes

295

Alternatively, you could use an external oscillator module to generate
the processor's clock (Figure). The module's output is connected to the XTAL
input of the processor. When operating in this configuration, EXTAL must be
connected to ground.

Reset and Interrupts

The DSP56805 has an internal power-on circuit to correctly start up
the processor. It also has a watchdog reset circuit, driven by an internal timer,
to recover the processor from a software crash. So, all we need to do is to
provide our system with an

external reset so we can manually restart the machine by pressing a
button. Normally, such a reset circuit would need to debounce the button
press and also ensure that the reset state was held for a minimum period of
time. On the DSP56805, life is much simpler. The processor incorporates
internal debounce circuitry on its input. Further, it has circuitry that ensures
that a reset is held for the appropriate duration. So, our external reset circuit
is simply a push-button and a pull-up resistor (Figure).

 Embedded System
 Notes

296

The DSP56805 can boot from external memory or from its internal
ROM for single-chip operation. An input pin, EXTBOOT, is sampled as the
processor comes out of reset. If EXTBOOT is pulled low, the processor
executes code from the internal ROM. This is known as Mode 0 operation.
There are two forms of Mode 0. Mode 0A maps all memory as internal,
whereas Mode 0B maps the lower 32K words (64K bytes) of the address
space as internal and the upper 32K words as external. Mode 0A is the
default mode, and Mode 0B may be entered only under software control.

If the EXTBOOT pin is high upon exiting reset, then the processor
boots from external memory. This is known as Mode 3 operation. (There is no
Mode 1 or Mode 2, as these are reserved for ROM-based DSP56800
processors.) Once operational, the processor can toggle from one mode to
the other under software control.

Other DSP56800 processors have variations of the operating modes
and memory maps, so, as always, check the datasheet for the particular
processor you are using.

Aside from numerous internal sources of interrupts (from the onboard
peripherals), the DSP56805 has two external interrupt sources, IRQA and
IRQB. These may be used by external-interface peripherals (or even external
systems) to gain the processor's attention. Whether they are connected to an
external interrupt source or not, they require an external pull-up resistor. In
the example given (Figure), IRQA has an interrupt source from a peripheral,
while IRQB is unused.

 Embedded System
 Notes

297

External Memory

The processor has an external 16-bit data bus that serves for
accesses to both external program memory and external data memory. Data
and program memory can exist within the same memory chips, or separate
data and program address spaces may be implemented. The processor has
two outputs, (Program Strobe) and (Data Strobe), which indicate the
type of memory access.

The timing for a DSP56805 write cycle followed by a read cycle is
shown in Figure. Since the processor has a programmable wait-state
generator, external memory devices or peripherals of varying response times
may be accommodated.

The DSP56805 may be connected to memory using a "glueless"
interface. This means no external logic is required. The connections for
interfacing a DSP56805 to two 64K program SRAMs are shown in Figure.

 Embedded System
 Notes

298

Interfacing the DSP56805 to program SRAM

When accessing the program address space, PS is low, and so this
may be used as a chip select to the SRAMs. Similarly, the same configuration
may be used for data memory, except that in this case, DS becomes the chip
select (Figure). Note that when I say "program memory" or "data memory,"
I'm simply referring to the intended use of these chips, not distinguishing
between different types of memory chip. The same type of SRAM chips will
suffice for both regions.

 Embedded System
 Notes

299

Interfacing the DSP56805 to data SRAM

So, our DSP56805 computer has four SRAM chips in total, evenly
divided between program memory and data memory. Each region has 64K x
16 bytes (two 19-bit memory chips), giving a total of 128K bytes of program
space and 128K bytes of data memory. The total memory for our system is
therefore 256K bytes. If more data memory is required, memory banking may
be used to increase the available space. Note that you do not necessarily
have to have separate program and data spaces. You can just as easily have
two SRAMs total, with the program and data spaces coexisting in the same
chips (Figure).

 Embedded System
 Notes

300

Shared program and data memory

In this case, both PS and DS are ignored, since we are no longer
distinguishing between data and program spaces. The chip enable (CE)
inputs of the SRAMs are simply tied to ground, so that these devices are
permanently enabled. This will work because an SRAM will respond only if
CE is low and either the output enable (OE) or the write enable (WE) go low
as well. So in this example, it is the output enable or write enable that will
activate the SRAMs. Note that permanently enabling an SRAM will increase
its power consumption. Of course, we could just as easily combine DS and
PS such that either going low will enable the SRAMs, but this requires extra
logic, and it really isn't necessary.

If you have different types of devices within your memory space, such
as a smaller data SRAM and some peripherals, then you must include DS as
part of the chip enable for the SRAMs and peripherals. The most logical way
to do this is to use DS as the enable to your address decoder, which in turn

 Embedded System
 Notes

301

selects the appropriate device. Note that it must be DS for accessing
peripherals, since you can't execute code directly out of a peripheral.

A sample address decoder is shown in Figure. This will select either
two 32K SRAMs or one of eight peripherals within the data space.

Address decoder for two 32K SRAMs and eight peripherals

When A15 is low, the SRAMs are selected. When A15 is high and
is low, the address decoder is enabled and one of the eight peripherals is

selected, depending on the state of A12, A13, and A14.

Using this address-decode scheme, you can add up to eight bus-
based peripherals. The processor also has a SPI interface, so that opens up
another avenue for expansion. Using SPI, you can add extra ADCs, DACs,
real-time clock calendars, nonvolatile data memories, as well as a host of
other devices. Of course, the DSP56805 has a range of inbuilt peripherals
already. Its SPI, parallel I/O, and serial port interfaces are used just as we
saw with the smaller microcontrollers. The DSP56805 has a wide variety of
onboard peripherals, making this an exceptionally capable processor.

JTAG

The DSP56805 has a JTAG port to aid system debugging. A JTAG
port consists of four dedicated signals (Table 19-1).

 Embedded System
 Notes

302

Signa
l name

Functi
on

TDI
Test

data input

TDO
Test

data output

TMS
Test

mode select

TCK
Test

clock

Free scale Semiconductor adds additional signals to the standard
JTAG set. Specifically, it adds RESET (Test Reset) to reset the JTAG state
machine and DE(Debug Event), which is equivalent to an interrupt output,
indicating that an event (such as a breakpoint) has happened in the OnCE
(On-Chip Emulation) module.

JTAG is principally intended for debugging purposes, but since it
gives you complete control of the processor's internals, it can also be used
for reprogramming the internal program flash. The Free scale Semiconductor
application note (AN1935/D) Programming On-Chip Flash Memories of
DSP56F80x DSPs Using the JTAG/OnCE Interface, available from the Free
scale Semiconductor web site, contains full details on the process involved,
as well as sample source code and examples.

The Free scale Semiconductor Software Development Kit, based on
the CodeWarrior C compiler, for the DSP56800 series provides both software
and hardware tools for programming these processors.

Summary:

 Unlike the conventional DSP56000 with its 24-bit architecture, the
DSP56800 series has a 16-bit architecture better suited to small-scale
control applications.

 The architecture is based on four functional units, each with their own
registers, operating independently and in parallel with the other units.
These functional units are the program controller, which is responsible
for software execution.

 The processor has two 36-bit accumulators, a 16 x 16-bit multiply and
Accumulate (MAC) unit, and a 16-bit barrel shifter.

 The DSP56805 adds two 6-channel Pulse Width Modulation (PWM)
units for motor control and other uses, two 4-channel ADCs at a
resolution of 12 bits per channel, and two quadrature decoders for
measuring motor positions.

 Embedded System
 Notes

303

 The DSP56800 has very tight and efficient code with high functionality
that it executes exceptionally quickly.

 The DSP56805 has an internal 1K program RAM, 4K of bootstrap
ROM (for loading boot software from an external memory or
peripheral, 63K of program flash, 8K of data flash, and 4K of data
RAM.

 The DSP56805 has an internal power-on circuit to correctly start up
the processor. It also has a watchdog reset circuit, driven by an
internal timer, to recover the processor from a software crash.

 The processor has an external 16-bit data bus that serves for
accesses to both external program memory and external data
memory.

Questions:

 Explain the architecture of DSP56800?

 What is programmer’s model of DSP56800?

 What are the features of DSP56800?

 Explain the pin diagram of DSP56805?

 What is purpose of external 16bit data bus?

 How SRAM is interfaced with DSP56805?

 What is JTAG?

References:

 Analog Interfacing To Embedded Microprocessors – STUART R.
BALL

 C Programming for Embedded Systems – KIRK ZURELL

 Design with 8051- FRONTLINE ELECTRONICS

 Embedded Controller Hardware Design - Ken Arnold

 Embedded Software The Works – colin walls

 Embedded Systems Firmware Demystified - Ed Sutter

 Embedded_Controller_Hardware_Design – KEN ARNOLD

 Programming Embedded Systems in C and C++ - Michael Barr

 The Art of Designing Embedded Systems - Jack G. Ganssle

	Minicomputers
	Microprocessors Everywhere
	UNIT – V
	11. The PIC Microcontrollers
	Objective:
	A Tale of Two Processors
	Starting Simple
	Minimal PIC12C805 computer
	A basic PIC12C508 computer; just add power The alternative is to use an external RC circuit as the clock source (Figure). While not the most precise timing option, it is by far the cheapest. The actual frequency of oscillation depends on a combination...
	Variable-Speed Oscillator
	Variable-speed RC oscillator

	Power-on Reset

	A Bigger PIC
	PIC16C73 processor and support components

	PIC-Based Environmental Data logger
	Datalogger power supply
	Data logger nonvolatile memory
	Datalogger connector
	Programming adaptor for the DL4 datalogger
	Serial adaptor
	Serial adaptor schematic

	Motor Control with a PIC
	Figure. Processor
	Figure. Voltage regulator
	Figure. H-bridge
	Figure. Serial port

	12. The AVR Microcontrollers
	Objective
	The AVR Architecture
	AVR registers
	Atmel AT90S8515 memory map
	Atmel's comparison of processor speed and efficiency

	The ATtiny15 Processor
	A simple AVR computer
	Adding a Status LED
	Status LED

	Switching Analog Signals
	Switching an analog signal
	Figure. Push-button input
	Figure . Signal bounce

	Downloading Code
	Figure. In-circuit programming connectors
	In-circuit programming

	A Bigger AVR
	AVR-Based Data logger
	AT90S8535 processor and support components

	Bus Interfacing
	A 2M Data Flash interfaced to an AT90S4434
	AT90S8515 Memory Cycle
	Bus Signals
	Address bus demultiplexing
	AT90S8515 memory cycles with timing parameters

	Memory Maps and Address Decoding
	An address decoder uses the address to select one of several devices
	Atmel AT90S8515 memory map
	Allocated memory map
	Address decode for the RAM
	Connections to the SRAM
	Complete address decoder
	Using a 74HCT573 latch to control a bank of LEDs

	PALs
	Timing Analysis
	Timing for a read cycle to the RAM
	Timing for RAM chip select
	Read strobe and chip select for RAM
	Valid data from the SRAM

	Memory Management
	No address translation
	Address translation using an MMU
	Page mapping
	Address translation
	System using page address translation
	Banked memory
	MMU generation of page number
	Generating a larger physical address
	Simple banked-memory implementation
	Banked memory for an AVR computer
	Address translation (1)
	Logical page-number translation
	Boot modes for the 68HC11
	Address bit usage for the RAM
	Address bits to select the latch at 0x8000
	Address bit allocation for all devices

	14. MAXQ
	Objective: (1)
	Architectural Overview
	Schematics
	The 68000 Architecture
	A Simple 68000-Based Computer
	16. The DSP56800
	Objective:
	A DSP56805-Based Computer
	External Memory

	JTAG

