
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EMBEDDED SYSTEMS 
 

MCA 
 

Lesson Writer 
 

A. HARI PRASAD REDDY 
Assistant Professor 

Vasireddy Venkatadri Institute of Technology 
Nambur (P.O.), GUNTUR – Dt. 

 
 

Editor & Advisor for the Course 
 

Prof. E.SREENIVASA REDDY, M.Tech., Ph.D. 
Principal 

Vasireddy Venkatadri Institute of Technology 
Nambur (P.O.), GUNTUR – Dt. 

 
 

Director 
Prof.V.CHANDRASEKHARA RAO, M.Com., Ph.D. 

 
CENTRE FOR DISTANCE EDUCATION 
ACHARAYA NAGARJUNA UNIVERSITY 

NAGARJUNA NAGAR – 522 510 
 

Ph: 0863-2293299,2293356,08645-211023,Cell:98482 85518 
08645-21102 4 (Study Material) 

Website: www.anucde.com, e-mail:anucde@yahoo.com 
 

 
 
 
 
 

http://www.anucde.com/


 

INDEX 

SINO NAME PAGES 

 UNIT- I 1 - 50 

01 
Basic terminology 
 

 

02 
Embedded systems – Introduction 
 

 

03 
Embedded system-technologies 
 

 

04 
Custom Single purpose processors: Hardware 
 

 

 UNIT - II 51 - 95 

05 
General purpose processor software 
 

 

06 
Standard single purpose processors: peripherals 
 

 

 UNIT - III 96 - 103 

07 
Memory 
 

 

 UNIT - IV 104 - 197 

08 Interfacing  

09 
Analog 
 

 

10 
Networks 
 

 

                                    UNIT - V 198 - 303 

11 The PIC Microcontrollers  

12 The AVR Microcontrollers  

13 68HC11  

14 MAXQ  

15 68000-Series Computers  

16 The DSP56800  



1 
Embedded Systems 

Notes 

 
 

UNIT – I 

 

1. BASIC TERMINOLOGY 

 

Objective 

 In today’s world electronic gadgets are becoming part of our life 
style. For example to say mobiles, music players, iPods, navigation 
systems etc are possible with the advancement in technology the field of 
intelligent computing popularly known as embedded technology. In this text 
book we mainly learn about the basics of the embedded systems to 
understand what a basic embedded device consists. 

 At the end of this lesson the reader will understand what is a 
computer, differences between hardware and software, different parts of 
computer, what is operating system and types of operating systems.  

Computer 

 Different types of definitions for what is computer are given below. 

 Any device capable of processing information to produce a desired 
result. Computers typically perform their work in three well-defined 
steps: (1) accepting input, (2) processing the input data according to 
predefined rules (programs), and (3) producing output. 

 A computer system comprises hardware and software used for 
executing different mathematical manipulations most perfectly 
within very less time. 

 A functional unit that can perform substantial computations, 
including numerous arithmetic operations and logic operations 
without human intervention during a run. A computer may consist of 
a stand-alone unit or may consist of several interconnected units.   

 An electronic machine that receives processes and presents data. 

Types of computers 

Computers are classified into different types depending on the resources 
available on them. 

Super Computers 

A supercomputer is a computer that has high speed and processing power. 
The most famous series of supercomputers were designed by the company 
founded and named after Seymour Cray. The Cray-1 was built in the 1976 
and installed at Los Alamos National Laboratory. Supercomputers are used 
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for extremely calculation-intensive tasks such simulating nuclear bomb 
detonations, aerodynamic flows, and global weather patterns. A 
supercomputer typically costs several million dollars. Figure1 represents 
the super computer CRAY-2 in around 1980’s. 

 

 

Figure -1 

Main Frame Computer 

A mainframe computer is a large, powerful computer that handles 
the processing for many users simultaneously (up to several hundred 
users). Users connect to the mainframe using terminals and submit their 
tasks for processing by the mainframe. A terminal is a device that has a 
screen and keyboard for input and output, but it does not do its own 
processing (they are also called dumb terminals since they can’t process 
data on their own). The processing power of the mainframe is time-shared 
between all of the users. 

Mainframes typically cost several hundred thousand dollars. They 
are used in situations where a company wants the processing power and 
information storage in a centralized location. Mainframes are also now 
being used as high-capacity server computers for networks with many 
client workstations. Figure2 shows the photo of IBM z-series computer 
which is about 6 feet tall. 
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Minicomputers    

A minicomputer is a multi-user computer that is less powerful than a 
mainframe. This class of computers became available in the 1960’s when 
large scale integrated circuits made it possible to build a computer much 
cheaper than the then existing mainframes. 

Work Stations/Servers 

A workstation is a powerful, high-end microcomputer. They contain 
one or more microprocessor CPUs. They may be used by a single-user for 
applications requiring more power than a typical PC (rendering complex 
graphics, or performing intensive scientific calculations).  

 Alternately, workstation-class microcomputers may be used as 
server computers that supply files to client computers over a network. This 
class of powerful microcomputers can also be used to handle the 
processing for many users simultaneously who are connected via terminals 
in this respect, high-end workstations have essentially supplanted the role 
of minicomputers. Figure3 represents a workstation computer. 

 

 

Figure-3 
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Desktop Computers 

Desktop computers are not meant for portable usage. They usually 
sit in one place on a desk or table and are plugged into a wall outlet for 
power. The case of the computer holds the motherboard, drives, power 
supply, and expansion cards. This case may lay flat on the desk, or it may 
be a tower that stands vertically (on the desk or under it). The computer 
usually has a separate monitor (either a CRT or LCD) although some 
designs have a display built into the case. A separate keyboard and mouse 
allow the user to input data and commands. Figure4 represents a desktop 
computer. 

 

 

                          Figure4 

Laptop Computers 

 Laptop or notebook computers are small and lightweight enough to 
be carried around with the user. They run on battery power, but can also be 
plugged into a wall outlet. They typically have a built-in LCD display that 
folds down to protect the display when the computer is carried around. 
They also feature a built-in keyboard and some kind of built-in pointing 
device (such as a touch pad).  

 While some laptops are less powerful than typical desktop 
machines, this is not true in all cases. Laptops, however, cost more than 
desktop units of equivalent processing power because the smaller 
components needed to build laptops are more expensive. Figure5 
represents a laptop computer photo. 
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Figure -5 

PDA’s 

 A Personal Digital Assistant (PDA) is a handheld microcomputer 
that trades off power for small size and greater portability. They typically 
use a touch-sensitive LCD screen for both output and input (the user draws 
characters and presses icons on the screen with a stylus). PDAs 
communicate with desktop computers and with each other either by cable 
connection, infrared (IR) beam, or radio waves. PDAs are normally used to 
keep track of appointment calendars, to-do lists, address books, and for 
taking notes. Figure6 represents the photo of personal Digital Assistance. 

 

 

Figure -6 

 

Palmtop/Handheld Computers 

A palmtop or handheld PC is a very small microcomputer that also 
sacrifices power for small size and portability. These devices typically look 
more like a tiny laptop than a PDA, with a flip-up screen and small 
keyboard. They may use Windows CE or similar operating system for 
handheld devices. Some PDAs and palmtops contain wireless networking 
or cell phone devices so that users can check e-mail or surf the web on the 
move. Figure7 represent a photo of PDA.      
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Figure -7 

Microprocessors Everywhere  

Microprocessor chips are found in many electronic devices (in your 
iPod, in your DVD player, in your microwave, in your car, in your phone). 
These are special-purpose processing units that run programs to control 
the equipment and optimize its performance. 

Parts of Computers 

Figure8 represents the parts of a desktop computer.  

 

    

Figure -8 

Let's take a look at the main components of a typical desktop computer: 

 Central processing unit (CPU) - The "brain" of the computer 

system is called the central processing unit. It is a chip that holds a 
complete computational engine. It uses assembly language as its 
native language. Everything that a computer does is overseen by 
the CPU. 



7 
Embedded Systems 

Notes 

 
 

 Memory - This is very fast storage used to hold data. It has to be 
fast because it connects directly to the microprocessor. There are 
several specific types of memory in a computer: 

 Random-access memory (RAM) - Used to temporarily store 
information with which the computer is currently working 

 Read-only memory (ROM) - A permanent type of memory storage 
used by the computer for important data that doesn't change 

 Basic input/output system (BIOS) - A type of ROM that is used by 

the computer to establish basic communication when the computer 
is first powered on 

 Caching - The storing of frequently used data in extremely fast 
RAM that connects directly to the CPU 

 Virtual memory - Space on a hard disk used to temporarily store 
data and swap it in and out of RAM as needed 

 Flash memory - a solid state storage device, Flash memory 

requires no moving parts and retains data even after the computer 
powers off 

 Motherboard - This is the main circuit board to which all of the 

other internal components connect. The CPU and memory are 
usually on the motherboard. Other systems may be found directly 
on the motherboard or connected to it through a secondary 
connection. For example, a sound card can be built into the 
motherboard or connected through an expansion slot. 

 Power supply - An electrical transformer regulates the electricity 
used by the computer. 

 Hard disk - This is large-capacity permanent storage used to hold 

information such as programs and documents. Traditional hard 
drives contain moving parts -- the drive has platters on which it 
stores data. The drive spins the platters to record and read data. 
But some newer hard drives are flash-based with no moving parts. 
These drives are called solid-state drives. 

 Operating system - This is the basic software that allows the user 
to interface with the computer. 

 Integrated Drive Electronics (IDE) Controller - This is the primary 
interface for the hard drive, CD-ROM and floppy disk drive. 

 Accelerated Graphics Port (AGP) - This is a very high-speed 

connection used by the graphics card to interface with the 
computer. 
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 Sound card - This is used by the computer to record and play 
audio by converting analog sound into digital information and back 
again. 

 Graphics card - This translates image data from the computer into 
a format that can be displayed by the monitor. Some graphics cards 
have their own powerful processing units (called a GPU -- graphics 
processing unit). The GPU can handle operations that normally 
would require the CPU. 

 Ports - In computer hardware terms, a port is an interface that 

allows a computer to communicate with peripheral equipment. 
Real-time clock - Every PC has a clock containing a vibrating 

crystal. By referring to this clock, all the components in a computer 
can synchronize properly. 

 Complementary Metal-oxide Semiconductor - The CMOS and 

CMOS battery allow a computer to store information even when the 
computer powers down. The battery provides uninterrupted power. 

 Fans, heat sinks and cooling systems - The components in a 

computer generate heat. As heat rises, performance can suffer. 
Cooling systems keep computers from overheating. 

SOFTWARE 

 Software is a general term for the various kinds of programs used to 
operate computers and related devices. 

Software can be the variable part of a computer and hardware is the 
invariable part. Software is often divided into application software 
(programs that do work users are directly interested in) and system 
software (which includes operating systems and any program that supports 
application software). The term middleware is sometimes used to describe 
programming that mediates between application and system software or 
between two different kinds of application software (for example, sending a 
remote work request from an application in a computer that has one kind of 
operating system to an application in a computer with a different operating 
system). 

An additional and difficult-to-classify category of software is the 
utility, which is a small useful program with limited capability. Some utilities 
come with operating systems. Like applications, utilities tend to be 
separately installable and capable of being used independently from the 
rest of the operating system. 

Applets are small applications that sometimes come with the 
operating system as "accessories." They can also be created 
independently using the Java or other programming languages. 

Software can be purchased or acquired as shareware (usually 
intended for sale after a trial period), liteware (shareware with some 
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capabilities disabled), freeware (free software but with copyright 
restrictions), public domain software (free with no restrictions), and open 
source (software where the source code is furnished and users agree not 
to limit the distribution of improvements). 

Software is often packaged on CD-ROMs and diskettes. Today, 
much purchased software, shareware, and freeware is downloaded over 
the Internet. A new trend is software that is made available for use at 
another site known as an application service provider.  

Some general kinds of application software include: 

 Productivity software, which includes word processors, 
spreadsheets, and tools for use by most computer users 

 Presentation software 

 Graphics software for graphic designers 

 CAD/CAM software 

 Specialized scientific applications 

Firmware or microcode is programming that is loaded into a special 
area on a microprocessor or read-only memory on a one-time or infrequent 
basis so that thereafter it seems to be part of the hardware.  

Operating systems 

 Operating system is defined as system software used as 
communication medium between user and hardware parts (electronic 
parts) of computer. It is the most important program that runs on a 
computer. Every general-purpose computer must have an operating 
system. Operating systems perform basic tasks, such as recognizing input 
from the keyboard, sending output to the display screen, keeping track of 
files and directories on the disk, and controlling peripheral devices such as 
disk drives and printers.  

For large systems, the operating system has even greater 
responsibilities and powers. It is like a traffic cop -- it makes sure those 
different programs and users running at the same time do not interfere with 
each other. The operating system is also responsible for security, ensuring 
that unauthorized users do not access the system. Operating systems can 
be classified as follows:  

 Multi-user: Allows two or more users to run programs at the same 

time.Some operating systems permit hundreds or even thousands 
of concurrent users.  

 Multiprocessing: Supports running a program on more than one 
CPU.  

 Multitasking: Allows more than one program to run concurrently.  

http://www.webopedia.com/TERM/O/operating_system.html
http://www.webopedia.com/TERM/O/input.htm
http://www.webopedia.com/TERM/O/output.htm
http://www.webopedia.com/TERM/O/display_screen.htm
http://www.webopedia.com/TERM/O/file.htm
http://www.webopedia.com/TERM/O/disk.htm
http://www.webopedia.com/TERM/O/user.htm
http://www.webopedia.com/TERM/O/access.htm
http://www.webopedia.com/TERM/O/support.htm
http://www.webopedia.com/TERM/O/CPU.htm
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 Multithreading: Allows different parts of a single program to run 
concurrently.  

 Real time: Responds to input instantly. General-purpose operating 
systems, such as DOS and UNIX, are not real-time.  

Operating systems provide a software platform on top of which 
other programs called application programs run. The application programs 
must be written to run on top of a particular operating system. For PCs, the 
most popular operating systems are DOS, OS/2, and Windows, but others 
are available, such as Linux.  

Summary 

1. Embedded technology mainly deals with embedding intelligence in 
electronic devices. 

2. Any device capable of processing information to produce a desired 
result. No matter how large or small they are, computers typically 
perform their work in three well-defined steps: (1) accepting input, 
(2) processing the input according to predefined rules (programs), 
and (3) producing output. 

3. The different types of computers are 

a. Super computers 

b. Main frame computers 

c. Workstations/servers 

d. Desktop computers 

e. Laptop computers 

f. PDA’s 

g. Palm top/handheld computers. 

4. The main parts of computer are  

a. Central processing Unit 

b. Random Access Memory 

c. Read Only Memory 

d. Hard Disk 

e. Mother Board 

f. Key Board. 

http://www.webopedia.com/TERM/O/DOS.htm
http://www.webopedia.com/TERM/O/UNIX.htm
http://www.webopedia.com/TERM/O/software.htm
http://www.webopedia.com/TERM/O/platform.htm
http://www.webopedia.com/TERM/O/application.htm
http://www.webopedia.com/TERM/O/PC.htm
http://www.webopedia.com/TERM/O/OS_2.htm
http://www.webopedia.com/TERM/O/Linux.htm
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5. Software is a general term for the various kinds of programs used to 
operate computers and related devices. It is of two types namely 
application software and system software. 

6. Operating system is defined as system software used as 
communication medium between user and hardware parts 
(electronic parts) of computer. 

Objective Questions 

1. What are the different types of computers? Explain. 

2. Briefly explain the different parts of a computer? 

3. What is software? Classify different types of software. 

4. What is operating system? Classify. 

 

References 

  www.howstuffworks.com 

 www.wikipedia.com 

 Embedded Software The Works – colin walls 

 Vahid F & GIvargis T; Embedded System Design, John willey(2002)  
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2. EMBEDDED SYSTEMS - INTRODUCTION 

OBJECTIVE 

In this chapter we will study about basics of embedded systems and 
its terminology. 

Introduction 

An embedded system is a special-purpose computer designed to 
perform one or a few dedicated functions, often with real-time computing 
constraints. An embedded system has historically been defined as a single 
function product where the intelligence is embedded in the system. It is a 
system made with combination of hardware and software designed for a 
specific individual application. Embedded systems are usually programmed 
in high level language that is compiled (and/or assembled) into an 
executable (“machine”) code. These are loaded into Read Only Memory 
(ROM) and called “firmware” or “microcode” or a “microkernel”. The 
microprocessor can be from 8-bit tot 64-bit. The bit size refers to the 
amount of memory accessed by the processor at a time. The most 
advanced systems actually have a tiny, streamlined OS running the show, 
executing on a 32-bit or 64-bit processor. This is called RTOS. Real-Time 
Systems can be classified as: 

 Hard Real-Time Systems - systems with severe constraints on the 
timeliness of the response.  

 Soft Real-Time Systems - systems which tolerate small variations in 
response times.  

 Hybrid Real-Time Systems - systems which exhibit both hard and 
soft constraints on its performance.  

Embedded Hardware 

All embedded systems contains a microprocessor or microcontroller 
for processing of information and execution of programs, memory in the 
form of ROM/RAM for storing embedded software programs and data, and 
I/O interfaces for external interface. Any additional requirement in an 
embedded system is dependent on the equipment it is controlling. Very 
often these systems have a standard serial port, a network interface, I/O 
interface, or hardware to interact with sensors and activators on the 
equipment.  

Embedded Software 

C has become the language of choice for embedded programmers, 
because it has the benefit of processor independence, which allows the 
programmer to concentrate on algorithms and applications, rather than on 
the details of processor architecture. However, many of its advantages 
apply equally to other high-level languages as well. Perhaps the greatest 
strength of C is that it gives embedded programmers an extraordinary 
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degree of direct hardware control without sacrificing the benefits of high-level 
languages. Compilers and cross compilers are also available for almost every 
processor with C. Any source code written in C or C++ or Assembly language 
must be converted into an executable image that can be loaded onto a ROM 
chip. The process of converting the source code representation of your 
embedded software into an executable image involves three distinct steps, and 
the system or computer on which these processes are executed is called a 
host computer. First, each of the source files that make an embedded 
application must be compiled or assembled into distinct object files. Second, 
the entire object files that result from the first step must be linked into a final 
object file called the re-locatable program. Finally, the physical memory 
address must be assigned to the re-locatable program. The result of the third 
step is a file that contains an executable image that is ported on the ROM chip. 
This ROM chip, along with the processor and other devices and interfaces, 
makes an embedded system run. There are some very basic differences 
between conventional programming and embedded programming. First, each 
target platform is unique. Second, there is a difference in the development and 
debugging of applications.  

Difference between computer and embedded device 

    An embedded system has a self-contained operating system on a 
"chip" thus embedded into the system and does not rely on having a hard 
disk with the operating system on it. An embedded system has historically 
been defined as a single function product where the intelligence is 
embedded in the system. It could be anything from a dishwasher to a 
hearing aid, if that product includes a microprocessor and software. A PC is 
designed to be a general purpose computing environment. Many of today's 
embedded systems are looking more like PCs with user interfaces, touch 
screens, displays, keypads and more. Still, these are not general function 
systems but are designed to perform very specific functions. 

 What a computer is used for, what tasks it must perform, and how it 
interacts with humans and other systems determine the functionality of the 
machine and, therefore, its architecture, memory, and I/O. It has a large 
main memory to hold the operating system, applications, and data, and an 
interface to mass storage devices (disks and DVD/CD-ROMs). It has a 
variety of I/O devices for user input (keyboard, mouse, and audio), user 
output (display interface and audio), and connectivity (networking and 
peripherals). The fast processor requires a system manager to monitor its 
core temperature and supply voltages, and to generate a system reset. 

 Large-scale embedded computers may also take the same form. 
For example, they may act as a network router or gateway, and so will 
require one or more network interfaces, large memory, and fast operation. 
They may also require some form of user interface as part of their 
embedded application and, in many ways, may simply be a conventional 
computer dedicated to a specific task. Thus, in terms of hardware, many 
high-performances embedded systems is not that much different from a 
conventional desktop machine? The diagram represents the basic 
components of general purpose computer. 
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Smaller embedded systems use microcontrollers as their processor, 
with the advantage that this processor will incorporate much of the 
computer's functionality on a single chip. The microcontroller has, at a 
minimum, a CPU, a small amount of internal memory (ROM and/or RAM), 
and some form of I/O, which is implemented within a microcontroller as 
subsystem blocks. These subsystems provide the additional functionality 
for the processor and are common across many processors. 

The most common I/O is digital I/O, commonly called general-
purpose I/O, or GPIO. These are ports that may be configured by software, 
on a pin-by-pin basis, as either a digital input or digital output. As digital 
inputs, they may be used to read the state of switches or push buttons, or 
to read the digital status of another device. As outputs, they may be used to 
turn external devices on or off, or to convey status to an external device. 
For example, a digital output may be used to activate the control circuitry 
for a motor, turn a light on or off, or perhaps activate some other device 
such as a water valve for a garden-watering system. Used in combination, 
the digital inputs and outputs may be used to synthesize an interface and 
protocol to another chip. Most microcontrollers have other subsystems 
besides digital I/O but provide the ability to convert the other subsystems to 
general-purpose digital I/O if the functionality of the other subsystems is not 
required. This gives you great versatility as a system designer in how you 
use your microcontroller within your application. 

Many microcontrollers also have analog inputs, allowing sensors to 
be sampled for monitoring or recording purposes. Thus, an embedded 
computer may measure light levels, temperature, vibration or acceleration, 
air or water pressure, humidity, or magnetic field, to name just some. 
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Alternatively, the analog inputs may be used to monitor simple voltages, 
perhaps to ensure the reliable operation of a larger system. 

Some microcontrollers have serial ports, which enable the 
embedded computer to be interfaced to a host computer, a modem, 
another embedded system, or perhaps a simple network. Specialized forms 
of serial interface, such as SPI and I2C, provide a simple way of expanding 
the microcontroller's functionality. They allow peripherals to be interfaced to 
the microcontroller, providing access to such devices as off-chip memories 
(for data or parameter storage), clock/calendar chips (for timekeeping), 
sensors with digital interfaces, external analog input or output, and even 
audio chips and other processors. Most microcontrollers have timers and 
counters. These may be used to generate internal interrupts at regular 
intervals for multitasking, to generate external triggers for off-chip systems, 
or to provide control pulses for motors. Alternatively, they may be used to 
count external triggers (pulses) from another system. A few 
microcontrollers also include network interfaces, such as USB, Ethernet, or 
CAN. In this book, we'll look at many of these peripheral subsystems in 
detail and see how to utilize them to increase an embedded computer's 
functionality. Diagram represents the block diagram of general embedded 
system. 

 

Some of the larger microcontrollers also provide a bus interface, bringing 
the internal address, data, and control buses to the outside world. This 
allows the processor to be interfaced to a huge variety of possible 
peripherals in very much the same way as a conventional processor. All of 
the possible devices and interfaces described previously may also be 
implemented through the bus interface and the appropriately chosen 
peripheral. A bus interface provides enormous possibility. 

The mix of I/O subsystems that microcontrollers may have varies 
considerably. Some microcontrollers are intended for simple digital control 
and may have only digital I/O. Others may be intended for industrial 
applications, and may have digital I/O, analog input, motor control, and 
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networking. The choice of microcontroller (and there are literally thousands 
of subspecies available from dozens of manufacturers) depends on your 
processing needs and your interfacing requirements. Choose the one that 
best suits your purposes. 

Downfalls of Embedded Computers 

Embedded computers may be economical, but they are designed to 
specific problems. A PC computer may ship with a glitch in the software, 
and once discovered, a software patch can often be shipped out to fix the 
problem. An embedded system, however, is frequently programmed once, 
and the software cannot be patched. Even if it is possible to patch faulty 
software on an embedded system, the process is frequently far too 
complicated for the user. Another problem with embedded computers is 
that they are often installed in systems for which unreliability is not an 
option. For instance, the computer controlling the brakes in your car cannot 
be allowed to fail under any condition. The targeting computer in a missile 
is not allowed to fail and accidentally target friendly units. As such, many of 
the programming techniques used when throwing together production 
software cannot be used in embedded systems. Reliability must be 
guaranteed before the chip leaves the factory. This means that every 
embedded system needs to be tested and analyzed extensively. An 
embedded system will have very few resources when compared to full 
blown computing systems like a desktop computer, the memory capacity 
and processing power in an embedded system is limited. It is more 
challenging to develop an embedded system when compared to developing 
an application for a desktop system as we are developing a program for a 
very constricted environment. Some embedded systems run a scaled down 
version of operating system called an RTOS (real time operating system). 

CHARACTERISTICS OF EMBEDDED SYSTEMS 

Frequently, embedded systems are connected to the physical 
environment through sensors collecting information about that environment 
and actuators controlling that environment. 

Embedded systems have to be dependable. Many embedded 
systems are safety-critical and therefore have to be dependable. Nuclear 
power plants are an example of extremely safety-critical systems that are at 
least partially controlled by software. Dependability encompasses the 
following aspects of a system: 

 Reliability: Reliability is the probability that a system will not fail. 

 Maintainability: Maintainability is the probability that a failing 
system can be repaired within a certain time-frame. 

 Availability: Availability is the probability that the system is 

available. Both the reliability and the maintainability must be high in 
order to achieve a high availability. 
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 Safety: This term describes the property that a failing system will 
not cause any harm. 

 Security: This term describes the property that confidential data 

remains confidential and that authentic communication is 
guaranteed. 

 Embedded systems have to be efficient. The following metrics can 
be used for evaluating the efficiency of embedded systems: 

 Energy: Many embedded systems are mobile systems obtaining 

their energy through batteries. Therefore, the available electrical 
energy must be used very efficiently. 

 Code-size: All the code to be run on an embedded system has to 

be typically, there are no hard discs on which code can be stored. 
Dynamically adding additional code is still an exception and limited 
to cases such as Java-phones and set-top boxes. Due to all the 
other constraints, this means that the code-size should be as small 
as possible for the intended application. This is especially true for 
Systems On a Chip (SoCs), systems for which all the information 
processing circuits are included on a single chip stored with the 
system. 

 Run-time efficiency: The minimum amount of resources should be 
used for implementing the required functionality. 

 Weight: All portable systems must be of low weight. Low weight is 
frequently an important argument for buying a certain system. 

 Cost: For high-volume embedded systems, especially in consumer 

electronics, competitiveness on the market is an extremely crucial 
issue, and efficient use of hardware components and the software 
development budget are required. 

These systems are dedicated towards a certain application. For example, 
processors running control software in a car or a train will always run that 
software, and there will be no attempt to run a computer game or 
spreadsheet program on the same processor. There are mainly two 
reasons for this: 

 Running additional programs would make those systems less 
dependable. 

 Running additional programs is only feasible if resources such as 
memory are unused. No unused resources should be present in an 
efficient system. 

 Most embedded systems do not use keyboards, mice and large 
computer monitors for their user-interface. Instead, there is a 
dedicated user-interface consisting of push-buttons, steering 
wheels, pedals etc. 
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 Many embedded systems must meet real-time constraints. Not 
completing computations within a given time-frame can result in a 
serious loss of the quality provided by the system. 

 Many embedded systems are hybrid systems in the sense that they 
include analog and digital parts. Analog parts use continuous signal 
values in continuous time, whereas digital parts use discrete signal 
values in discrete time. 

Typically, embedded systems are reactive systems. They can be defined 
as follows: A reactive system is one that is in continual interaction with its 
environment and executes at a pace determined by that environment.  

Embedded Development Environment 

 The embedded system may not have a keyboard, a screen, a disk 
drive and other peripheral devices required for programming and 
development tasks. Therefore most of the programming for embedded 
systems is done on a host, which is a computer system with all the 
programming tools. Only after the program has been written, compiled, 
assembled and linked then it is moved to the target or the system that is 
shipped to the customers. After writing source file compiling, linking, 
relocating and porting the executable image into the ROM, you need to test 
and debug the application. Once you have an executable image stored as 
a file on the host computer, you need a way to download that image into a 
memory device on the target board or development board and execute it 
from there. And if you have the right tools at your disposal, it will be 
possible to set breakpoints in the program or set break points in the 
program or observe its execution. These various tools could be a remote 
debugger, simulator, emulator or an in-circuit emulator. A remote debugger 
can be used to download, execute, and debug embedded software over the 
serial port or network connection between the host and the target. In case 
of embedded systems, the debugger executes on two different computer 
systems – a remote debugger consists of two pieces of software. The front-
end runs on the host computer and provides the human interface, and the 
hidden back-end runs on the target processor and communicates with the 
front-end over a communication link. The back-end provides low-level 
control of the target processor and is usually called debug monitor. The 
debug monitor resides in the ROM and is automatically started whenever 
the target processor is reset. It monitors the communication link to the host 
computer and responds to the request from the remote debugger running 
there. Remote debuggers are the most commonly used tools for 
downloading and testing tools during the development of embedded 
software – mainly because of their low cost. Remote debuggers are helpful 
in monitoring and controlling the state of embedded software, but only in in-
circuit emulators (ICEs) allow you to examine the state of the processor on 
which that program is running. In fact an ICE actually takes the place of the 
processor on your target board, or in other words, emulates the work of the 
processor and provides the human interface with what exactly is happening 
on the board in real-time. This also allows the ICE to support powerful 
debugging features such as hardware breakpoints and real-time tracing. 
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Many other debugging tools – such as simulators, logic analyzers and 
oscilloscopes – are also used in embedded systems. A simulator is a 
completely host-based program that simulates the functionality and 
instruction set of the target processor. Although simulators have many 
disadvantages, they are quite valuable in the early stages of the project 
when there isn’t as yet any actual hardware for the programmers to 
experiment with. The biggest disadvantage of a simulator is that it 
simulates only the processor. And embedded systems frequently contain 
one or more other peripherals. Interaction with these devices can only 
sometimes be imitated. You may not do much with the simulator once you 
have the actual embedded hardware available to you. Once the target 
hardware is available, you can use logic analyzers and oscilloscopes as 
debugging tools. These are very useful for debugging the interactions 
between the processor and other chips on the board. These tools only view 
signals that lie outside the processor, and cannot control the flow of 
execution of your software like debuggers or emulators can. A logic 
analyzer is equipment that is designed to find whether the electrical signal it 
is attached to is currently to logic level 1 or 0(zero). An oscilloscope so 
another piece of equipment for hardware debugging, and is used to 
examine any electrical signal, analogue signal, or digital signal on the 
hardware. 

Design Requirements 

Embedded systems typically have tight constraints on both 
functionality and implementation. In particular, they have must guarantee 
real time operation reactive to external events, conform to size and weight 
limits, budget, power and cooling consumption, satisfy safety and reliability 
requirements, and meet tight cost targets. Real time systems operation 
means that the correctness of a computation depends on the time at which 
it is delivered. In many cases the system design must take into account 
worst-case performance. The Signal Processing and Mission Critical 
example systems have a significant requirement for real time operation in 
order to meet external I/O and control stability requirements. Reactive 
computation means that the software executes in response to external 
events. These events may be periodic, in which case scheduling of events 
to guarantee performance may be possible. On the other hand, many 
events may be a periodic, in which case the maximum event arrival rate 
must be estimated in order to accommodate worst-case situations. Most 
embedded systems have a significant reactive component. 

 Small size, low weight: Many embedded computers are physically 

located within small areas. In transportation and portable systems, 
weight may be critical for fuel economy or human endurance. 
Among the examples, the Mission Critical system has much more 
stringent size and weight requirements than the others because of 
its use in a flight vehicle, although all examples have restrictions of 
this type. 

 Safe and reliable: Some systems have obvious risks associated 

with failure. In mission-critical applications such as aircraft flight 
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control, severe personal injury or equipment damage could result 
from a failure of the embedded computer. Traditionally, such 
systems have employed multiply-redundant computers or 
distributed consensus protocols in order to ensure continued 
operation after an equipment failure However, many embedded 
systems that could cause personal or property damage cannot 
tolerate the added cost of redundancy in hardware or processing 
capacity needed for traditional fault tolerance techniques. This 
vulnerability is often resolved at the system level as discussed later. 

 Harsh environment: Many embedded systems do not operate in a 
controlled environment. Excessive heat is often a problem, 
especially in applications involving combustion (e.g., many 
transportation applications). Additional problems can be caused for 
embedded computing by a need for protection from vibration, 
shock, lightning, power supply fluctuations, water, corrosion, fire, 
and general physical abuse. For example, in the Mission Critical 
example application the computer must function for a guaranteed, 
but brief, period of time even under non-survivable fire conditions. 

 Cost sensitivity: Even though embedded computers have stringent 

requirements, cost is almost always an issue (even increasingly for 
military systems). Although designers of systems large and small 
may talk about the importance of cost with equal urgency, their 
sensitivity to cost changes can vary dramatically. A reason for this 
may be that the effect of computer costs on profitability is more a 
function of the proportion of cost changes compared to the total 
system cost, rather than compared to the digital electronics cost 
alone. 

Application Areas 

Embedded software is present in almost every electronic device you 
use today. There is embedded software inside your watch, cellular phone, 
automobile, thermostats, industrial control equipment, and scientific and 
medical equipment. Defense services use it to guide missiles and detect 
enemy aircrafts. Thus embedded systems cover such a broad range of 
products that generalization is difficult. Here are some broad categories:- 

 Aerospace and defense electronics (ADE): Astronomical 

research, flight safety and flight management, fire control, robotics, 
vehicular control. 

 Automotive electronics: Modern cars can be sold only if they 

contain a significant amount of electronics. These include air bag 
control systems, engine control systems, anti-braking systems 
(ABS), air-conditioning, GPS systems, safety features, and many 
more. 

 Trains: For trains, the situation is similar to the one discussed for 

cars and airplanes. Again, safety features contribute significantly to 
the total value of trains, and dependability is extremely important. 
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 Broadcast and entertainment: analogue and digital sound 
products, audio control systems, DVD players, digital TV, set-top 
boxes. 

 Telecommunication: Mobile phones have been one of the fastest 
growing markets in the recent years. For mobile phones, radio 
frequency (RF) design, digital signal processing and low power 
design are key aspects. 

 Data communication: Analogue modems, ATM broad band 
switches, cable modems. 

 Digital imaging: Digital still camera, digital video cameras, fax 
machines, Printers, scanners. 

 Industrial measurement and control: Building environmental 
control systems, industrial sensors, test & measurement devices, 
traffic management systems. 

 Medical electronics: Cardiovascular devices, critical care systems, 
diagnostic devices, surgical devices. 

 Server I/O: Embedded servers, LAN devices, supercomputing, 
server Management. 

 Mobile data infrastructures: Mobile data terminals, satellites 
terminals, wireless LANs, pagers, wireless phones. 

 Military applications: Information processing has been used in 

military equipment for many years. In fact, some of the very first 
computers analyzed military radar signals. 

 Authentication systems: Embedded systems can be used for 
authentication purposes. For example, advanced payment systems 
can provide more security than classical systems. The SMART pen 
R_[IMEC, 1997] is an example of such an advanced payment 
system 

 

 The SMART pen is a pen-like instrument analyzing physical 
parameters while its user is signing. Physical parameters include 
the tilt, force and acceleration. These values are transmitted to a 
host PC and compared with information available about the user. As 
a result, it can be checked if both the image of the signature as well 
as the way it has been produced coincides with the stored 
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information. Other authentication systems include finger print 
sensors or face recognition systems. 

 Consumer electronics: Video and audio equipment is a very 

important sector of the electronics industry. The information 
processing integrated into such equipment is steadily growing. New 
services and better quality are implemented using advanced digital 
signal processing techniques. Many TV sets, multimedia phones, 
and game consoles comprise high performance processors and 
memory systems. They represent special cases of embedded 
systems. 

 Fabrication equipment: Fabrication equipment is a very traditional 

area in which embedded systems have been employed for 
decades. Safety is very important for such systems; the energy 
consumption is less a problem. Below figure shows a container 
connected to a pipe. The pipe includes a valve and a sensor. Using 
the readout from the sensor, a computer may have to control the 
amount of liquid leaving the pipe.  

 

 

 Smart buildings: Information processing can be used to increase 

the comfort level in buildings, can reduce the energy consumption 
within buildings, and can improve safety and security. Subsystems 
which traditionally were unrelated have to be connected for this 
purpose. There is a trend towards integrating air-conditioning, 
lighting, access control, accounting and distribution of information 
into a single system. 

 

 Robotics: Robotics is also a traditional area in which embedded 

systems have been used. Mechanical aspects are very important 
for robots. Most of the characteristics described above also apply to 
robotics. Recently, some new kinds of robots, modeled after 
animals or human beings, have been designed. Below Figure 
shows such a robot. 
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 Information Appliance: In the past, embedded systems allowed 

information appliances to carry out simple and specific functions 
only. But with the penetration of the Internet into the homes of many 
ordinary families, it was realized that electric appliances could make 
human life easier and more convenient if they could access Internet 
information. Electric appliances can now access the Internet, 
compute and do what they were not able to do earlier. In other 
words, electric appliances are being transformed into information 
appliances (IA) or what may also be called ‘embedded IA’. Like the 
traditional embedded systems, the embedded information appliance 
needs only the least amount of hardware to operate. It can operate 
even without a hard disk, or with low power and small footprint. A 
product can be classified into four mainstream products:- 

 Set-Top Boxes (STB) 

 Personal Access Device (PAD) 

 Thin Client (TC) 

 Residential Gateway (or Home Gateway) 

Most industrial appliances products may be derived, with little or some 
modifications, from these four types of products. 

 Set-Top Boxes: The set-top box is driving the digital revolution 

right into your living room. Your fingertips now command a wealth of 
high quality digital information and digital entertainment, right from 
your favorite armchair. The set-top box revolutionizes home 
entertainment by providing vibrant television images with crystal 
clear sound, along with e-mail, Web surfing, along with customized 
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information such as stock quotes, weather and traffic updates, on-
line shopping, and video-on-demand, right through a traditional 
television. 

 Personal Access Devices: Personal Access Devices (PADs) are 
web terminals that feature convenient Web browsing, email, and 
information access capabilities in a lightweight, mobile form.  

 Thin Client: A thin client is an information access drive that 

provides users with remote access to applications and data that are 
maintained and executed on a central server. The thin-client 
computing environment consists of an application server, a network, 
and thin-client devices. By centralizing deployment and updates of 
corporate applications, thin clients allow for simplified Information 
Systems (IS) management with dramatically increased security. 

 Residential Gateway: The RG mainly provides various kinds of 

interfaces that link all the electronic devices. The RG unlike the PC 
is a very small, slim and light piece of hardware and may soon be 
incorporated inside other popular electronic appliances. It will play 
the role of an information hub responsible for the exchange of 
information between all kinds of electronic devices in an ordinary 
home.  

Conclusion 

We are standing on the threshold of an exciting new age of information 
technology that will change our lives and the future forever. Soon we shall 
see more and more digitization of appliances, and these will be fuelled by 
human need. Embedded systems and Information Appliances have virtually 
entered every sphere of our life and they will truly change the way we live. 

 

Summary 

1. Embedded system is a combination of hardware and software 
designed for a specific application. 

2. Operating systems used in embedded applications is real time 
operating systems.  

3. RTOS are classified into 3 categories known as hard, soft and 
hybrid real time operating systems. 

4. The main difference between embedded processors and other 
processors is availability of resources on chip. 

5. The main disadvantage of an embedded system will have very few 
resources when compared to full blown computing systems like a 
desktop computer, the memory capacity and processing power in 
an embedded system is limited. 
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Questions: 

1. What is an embedded system? 

2. What is the difference between embedded device and a personal 
computer? 

3. What are the characteristics of embedded systems? 

4. What are the design requirements of embedded systems? 

5. Explain the different fields of embedded systems? 

 

References: 

1. www.embedded.com 

2. www.wikipedia.com 

3. Embedded Software The Works – colin walls 
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3. Embedded System Technologies 

Objective 

 In this chapter the reader will get an idea about different 
technologies that are used during the design of embedded systems. 

 

Types of Technologies 

Technology is a manner of accomplishing a task, especially using 
technical processes, methods, or knowledge. Three key technologies for 
embedded systems are  

 Processor technology 

 IC technology 

 Design technology 

With the help of above three technologies engineers are enabled to 
design different types of processors those can be used for general 
purpose, customized and application specific processors. 

Processor Technology 

 Generally processors are designed depend on their application 
areas. Processors can be divided into three categories depend on their 
type of usage. Those can be named as general purpose, single purpose, 
and customized application processors (For example DSP processors used 
generally in multimedia electronic gadgets, ARM processors used generally 
in SONY Ericson mobiles etc). Let us assume below diagram represents a 
block of required application. 

 

Then according to the processors selections below diagrams represents 
the general purpose, application specific and customized processors. 

           

     General purpose   Application Specific       Customized 
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From above diagrams reader can conclude that general purpose 
processors are suitable for all types of applications where resources 
wastage is high. When come to application specific processors the 
resource wastage is low when compared with general purpose and the 
same is almost zero in customized processor.  

 

General purpose Processors 

Below Figure1 represents the Block diagram of general purpose processor. 

  

 

Figure 2 

 

The main parts of any processor include control unit, arithmetic logic unit 
(ALU), registers, data memory, program memory etc. In the above type of 
processors software used is general purpose software. These processors 
are known micro processors which can be used for many different 
application fields depending on program stored in program memory. 

Features of these processors are 

 Program memory 

 General data path with large register file and general ALU 

The benefits of this type of processors are 
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 Low time-to-market and NRE costs 

 High flexibility 

The examples of these type of processors are Intel Pentium processors (P-
I, P-II, P-III, P-IV, CORE2), AMD processors (AMD ATHLON 64), 
MOTOROLA processors etc. 

Single purpose Processors 

Below Figure represents the Block diagram of general purpose processor.  

 

The main parts of this type processor include control unit, arithmetic logic 
unit (ALU), registers, data memory etc. This is chip which contains a simple 
digital circuit designed to serve only one single user specified application. 

Features of these processors are 

 Contains only the components needed to execute a single 
program 

 No program memory 

The benefits of this type of processors are 

 Fast 

 Low power 

 Small size 

MAX232 is an IC (Integrated Chip) used only for serial communication 
between different devices either in synchronous or asynchronously. This IC 
can’t be used for any other application. This type of chips / Processors 
designed to serve only one single purpose is known as single purpose 
processors. 

Application Specific Processors 
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Below Figure represents the Block diagram of general purpose processor.  

 

The main parts of this type processor include control unit, arithmetic logic 
unit (ALU), registers, data memory and program memory like general 
purpose. These processors are a part of general purpose processors. But 
this type processor is designed in such a way that these can be used only 
for some specific applications only. 

Features of these processors are 

 Program memory 

 Optimized data path  

 Special functional units 

The benefits of this type of processors are 

 Some flexibility 

 good performance 

 size and power 

Digital signal processors are used mainly in signal processing very fastly 
and effectively. These are mainly used in graphics cards, data processing 
units etc. This type of chips / Processors designed to serve only one 
specific type of application field. 

IC technology 

The technology that deals with the gate level implementation and 
mapping of the chips is IC Technology. The full form of IC is integrated 
circuit or integrated chip. There exist different IC technologies depending 
on IC customization. A single IC may consist of single layer on more than 
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one. The number of layers depends on the complexity, design process of 
the IC. IC technologies differ with respect to who builds each layer and 
when it was made, how many transistors are used for each layer etc. figure 
represents the very  basic IC design methodology. 

 

 

 

There exists mainly three type of IC technologies are present. Those are 

 Full-custom/VLSI 

 Semi-custom ASIC (gate array and standard cell) 

 PLD (Programmable Logic Device) 

Full-custom/VLSI 

 In this method each and every part of the IC is designed by the 
designer according to the application requirement. In this technology every 
feature of processor like number of transistors on the chip, number of 
layers etc are designed to serve the required task. In this design all layers 
are optimized for an embedded system’s particular digital implementation 
like 

 Placing transistors 

 Sizing transistors 

 Routing wires 

 

Benefits of this technology are 

 Excellent performance 

 small size 

 low power 

The main drawback of this system is its initial cost and long time to market.  

Semi-custom/VLSI 
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 In this method layers are pre designed and wiring has to be done 
according to the application requirement. In this technology lower layers of 
the IC are fully or partially build. Designers are left with routing of wires and 
maybe placing some blocks on the layers of IC. Advantage with this 
technology is 

 Good performance 

 Good size 

 Less initial cost than a full-custom implementation  

The main drawback of this technology is time requirement for its 
development. 

Programmable Logic Devices 

In this technology all layers are exists in the IC. Designer either creates or 
destroys the connections on IC to get desired functionality. In these 
programmable logic devices FPGA (Field-Programmable Gate Arrays) are 
most popular. 

• Benefits 

– Low NRE costs, almost instant IC availability 

• Drawbacks 

– Bigger, expensive (perhaps $30 per unit), power hungry, 
slower 

Moore’s Law 

In 1959, Calvin Moore’s, one of the pioneers of Information 
Retrieval, set forth what he called a "contradictory principle" of the fledgling 
science, and attached his own name to it: 

Moore’s Law: An information retrieval system will tend not to be used 
whenever it is more painful and troublesome for a customer to have 
information than for him not to have it.  

An interesting thing has happened to Moore’s’ Law, however, along 
the way to acceptance: the law that is becoming widely held as true by 
information professionals is not the same one that Mr. Moore’s proposed. 

The difference between the actual law and its mutation centers 
specifically upon a misinterpretation of the word "have", a misinterpretation 
which perhaps results primarily from reading the law excerpted from the 
original article in which it appeared, and applying it to a concern that is 
distinctly separate from the one Mr. Moore’s was attempting to address. 

Moore’s’ Law Expanded 
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It seems that Moore’s, in spite of the attention he focuses upon 
environments in which IR systems tend not to be used, was unaware of the 
rest of the scale; his observations about "the best of the chemical or 
pharmaceutical laboratories" acknowledge the opposite extreme, while the 
very study in which his law is first mentioned seems to exist primarily to 
address the needs of those environments that are in between. Indeed, 
early on in this Seven Model Systems study, he makes a statement that 
very closely resembles what his law has now become: "If the burden on the 
users of the information becomes too high, either in the retrieval process or 
in the labor of delineating new material, the users will give the system up 
and try to get along without it" (1959a, p.6). Clearly, though, this statement 
has no meaning within either of the environments which lie at the extreme 
ends of the scale; it makes sense only if applied to the middle. Thus, it 
would seem that an expansion of Mooers’ original law would be in order: 

Moore’s’ 1st Law: In an environment in which it is more painful and 
troublesome for a customer to have information in hand than for him not to 
have it, an IR system will tend not to be used. 

Moore’s’ 2nd Law: In an environment in which it is absolutely critical 
for a customer to have information, an IR system, no matter how poorly 
designed, will tend to be used. 

Moore’s’ 3rd Law: In an environment in which the trouble of having 
information versus that of not having it are fairly evenly balanced, system 
design and performance tend to be the deciding factors in whether or not 
an IR system will be used. 

 

Several measures of digital technology are improving at exponential 
rates related to Moore's law, including the size, cost, density and speed of 
components. Moore himself wrote only about the density of components (or 
transistors) at minimum cost. Moore's law has been the name given to 
everything that changes exponentially.  

Transistors per integrated circuit. The most popular formulation is of the 

doubling of the number of transistors on integrated circuits every two years. 
At the end of the 1970s, Moore's law became known as the limit for the 
number of transistors on the most complex chips. Recent trends show that 
this rate has been maintained into 2007. 

http://en.wikipedia.org/wiki/Transistor
http://en.wikipedia.org/wiki/Integrated_circuit
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Density at minimum cost per transistor. This is the formulation given in 
Moore's 1965 paper.  It is not about just the density of transistors that can 
be achieved, but about the density of transistors at which the cost per 
transistor is the lowest. As more transistors are put on a chip, the cost to 
make each transistor decreases, but the chance that the chip will not work 
due to a defect increases. In 1965, Moore examined the density of 
transistors at which cost is minimized, and observed that, as transistors 
were made smaller through advances in photolithography, this number 
would increase at "a rate of roughly a factor of two per year". 

Cost per transistor. As the size of transistors has decreased, the cost per 
transistor has decreased as well. However, the manufacturing cost per unit 
area has only increased over time, since materials and energy 

expenditures per unit area have only increased with each successive 
technology node. 

Computing performance per unit cost. Also, as the size of transistors 

shrinks, the speed at which they operate increases. It is also common to 
cite Moore's law to refer to the rapidly continuing advance in computing 
performance per unit cost, because increase in transistor count is also a 
rough measure of computer processing performance. On this basis, the 
performance of computers per unit cost—or more colloquially, "bang per 
buck"—doubles every 24 months.  

Power consumption. The power consumption of compute nodes doubles 
every 18 months.  

Hard disk storage cost per unit of information. A similar law (sometimes 
called Kryder's Law) has held for hard disk storage cost per unit of 
information. The rate of progression in disk storage over the past decades 
has actually sped up more than once, corresponding to the utilization of 
error correcting codes, the magneto resistive effect and the giant magneto 
resistive effect. The current rate of increase in hard drive capacity is 
roughly similar to the rate of increase in transistor count. Recent trends 
show that this rate has been maintained into 2007. 

RAM storage capacity. Another version states that RAM storage capacity 
increases at the same rate as processing power. 

Network capacity According to Gerry/Gerald Butters,[21][22] the former head 

of Lucent's Optical Networking Group at Bell Labs, there is another version, 
called Butter's Law of Photonics, a formulation which deliberately parallels 
Moore's law. Butter's law says that the amount of data coming out of an 
optical fiber is doubling every nine months. Thus, the cost of transmitting a 
bit over an optical network decreases by half every nine months. The 
availability of wavelength-division multiplexing (sometimes called "WDM") 
increased the capacity that could be placed on a single fiber by as much as 
a factor of 100. Optical networking and DWDM is rapidly bringing down the 
cost of networking, and further progress seems assured. As a result, the 
wholesale price of data traffic collapsed in the dot-com bubble. Nielsen's 
Law says that the bandwidth available to users increases by 50% annually.  

http://en.wikipedia.org/wiki/Photolithography
http://en.wikipedia.org/wiki/Unit_cost
http://en.wikipedia.org/wiki/Mark_Kryder
http://en.wikipedia.org/wiki/Hard_disk
http://en.wikipedia.org/wiki/Disk_storage
http://en.wikipedia.org/wiki/Error_correcting_code
http://en.wikipedia.org/wiki/Magnetoresistance
http://en.wikipedia.org/wiki/Giant_magnetoresistive_effect
http://en.wikipedia.org/wiki/Giant_magnetoresistive_effect
http://en.wikipedia.org/wiki/Hard_drive
http://www.intel.com/technology/mooreslaw/
http://en.wikipedia.org/wiki/Random_Access_Memory
http://en.wikipedia.org/wiki/Moore%27s_law#cite_note-20
http://en.wikipedia.org/wiki/Moore%27s_law#cite_note-20
http://en.wikipedia.org/wiki/Bell_Labs
http://en.wikipedia.org/wiki/Wavelength-division_multiplexing
http://en.wikipedia.org/wiki/DWDM
http://en.wikipedia.org/wiki/Dot-com_bubble
http://en.wikipedia.org/wiki/Nielsen%27s_Law
http://en.wikipedia.org/wiki/Nielsen%27s_Law
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Pixels per dollar. Similarly, Barry Hendy of Kodak Australia has plotted the 
"pixels per dollar" as a basic measure of value for a digital camera, 
demonstrating the historical linearity (on a log scale) of this market and the 
opportunity to predict the future trend of digital camera price and resolution. 

Design Technology 

 In this technology reader will understand how to convert user 
specified application into integrated chip. Below diagram represents the 
entire process of conversion. 

 

The co-design ladder 

• In the past: 

– Hardware and software design technologies were very 
different 

– Recent maturation of synthesis enables a unified view of 
hardware and software 

• Hardware/software “co design” 

Below diagram shows the comparison of IC design methodology.  
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Summary: 

• Embedded systems are everywhere 

• Key challenge: optimization of design metrics 

 Design metrics compete with one another 

• A unified view of hardware and software is necessary to improve 
productivity 

• Three key technologies 

 Processor: general-purpose, application-specific, single-
purpose 

 IC: Full-custom, semi-custom, PLD 

 Design: Compilation/synthesis, libraries/IP, test/verification 

  

Review Questions 

1. Explain key technologies used in embedded systems each in 
around 500 words. 

2. What is the difference between single prpose and multipurpose 
processors. 
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3. Write a brief notes on moore,s law? 

References: 

 1. Designing embedded hardware, john catsoulis. 

 2. Embedded_Controller_Hardware_Design,ken arnold. 

 3. www.embedded.com 

 4. First Steps with Embedded Systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 
Embedded Systems 

Notes 

 
 

4. Custom single-purpose processors: Hardware 

Introduction 

 As mentioned in the previous chapter, a single-purpose processor is 
a digital system intended to solve a specific computation task. While a 
manufacturer builds a standard single-purpose processor for use in a 
variety of applications, we build a custom single purpose processor to 
execute a specific task within our embedded system. An embedded system 
designer choosing to use a custom single-purpose, rather than a general-
purpose, processor to implement part of a system’s functionality may 
achieve several benefits, similar to some of those of the previous chapter. 

 First, performance may be fast, due to fewer clock cycles resulting 
from a customized data path, and due to shorter clock cycles resulting from 
simpler functional units, less multiplexors, or simpler control logic. Second, 
size may be small, due to a simpler data path and no program memory. In 
fact, the processor may be faster and smaller than a standard one 
implementing the same functionality, since we can optimize the 
implementation for our particular task. 

 However, because we probably won't manufacture as many of the 
custom processor as a standard processor, we may not be able to invest 
as much NRE, unless the embedded system we are building will be sold in 
large quantities or does not have tight cost constraints. This fact could 
actually penalize performance and size.  

 In this chapter, we describe basic techniques for designing custom 
processors. We start with a review of combinational and sequential design, 
and then describe a method for converting programs to custom single-
purpose processors. 

Combinational logic design 
 

A transistor is the basic electrical component of digital systems. 
Combinations of transistors form more abstract components called logic 
gates, which designers primarily use when building digital systems. Thus, 
we begin with a short description of transistors before discussing logic 
design. 

A transistor acts as a simple on/off switch. One type of transistor 
(CMOS -- Complementary Metal Oxide Semiconductor) is shown in Figure 
4.1(a). The gate (not to be confused with logic gate) controls whether or not 
current flows from the source to the drain. When a high voltage (typically +5 

Volts, which we'll refer to as logic 1) is applied to the gate, the transistor 
conducts so current flows. When low voltage (which we'll refer to as logic 0, 
typically ground, which is drawn as several horizontal lines of decreasing 
width) is applied to the gate, the transistor does not conduct. We can also 
build a transistor with the opposite functionality, illustrated in Figure 4.1(b). 
When logic 0 is applied to the gate, the transistor conducts, and when logic 
1 is applied, the transistor does not conduct. Given these two basic 
transistors, we can easily build a circuit whose output inverts its gate input, 
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as shown in in Figure 4.1(c). When the input x is logic 0, the top transistor 
conducts (and the bottom does not), so logic 1 appears at the output F. We 

can also easily build a circuit whose output is logic 1 when at least one of 
its inputs is logic 0, as shown in Figure 4.1(d). When at least one of the 
inputs x and y is logic 0, then at least one of the top transistors conducts 
(and the bottom transistors do not), so logic 1 appears at F. If both inputs 

are logic 1, then neither of the top transistors conducts, but both of the 
bottom ones do, so logic 0 appears at F. Likewise, we can easily build a 
circuit whose output is logic 1 when both of its inputs are logic 0, as 
illustrated in Figure 4.1(e). The three circuits shown implement three basic 
logic gates: an inverter, a NAND gate, and a NOR gate. 

 

 

Digital system designers usually work with logic gates, not transistors. 
Figure 4.2 describes 8 basic logic gates. Each gate is represented 
symbolically, with a Boolean equation, and with a truth table. The truth 
table has inputs on the left, and output on the right. The AND gate outputs 
1 if and only if both inputs are 1. The OR gate outputs 1 if and only if at 
least one of the inputs is 1. The XOR (exclusive-OR) gate outputs 1 if and 
only if exactly one of its two inputs is 1. The NAND, NOR, and XNOR gates 
output the complement of AND, OR, and XOR, respectively. As you might 
have noticed from our transistor implementations, the NAND and NOR 
gates are actually simpler to build than AND and OR gates.  

 A combinational circuit is a digital circuit whose output is purely a 

function of its current inputs; such a circuit has no memory of past inputs. 
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We can apply a simple technique to design a combinational circuit using 
our basic logic gates, as illustrated in Figure 4.3. We start with a problem 
description, which describes the outputs in terms of the inputs. We 
translate that description to a truth table, with all possible combinations of 
input values on the left, and desired output values on the right. For each 
output column, we can derive an output equation, with one term per row. 
However, we often want to minimize the logic gates in the circuit. We can 
minimize the output equations by algebraically manipulating the equations. 
Alternatively, we can use Karnaugh maps, as shown in the figure. Once 
we’ve obtained the desired output equations (minimized or not), we can 
draw the circuit diagram. 

 

 Although we can design all combinational circuits in the above 
manner, large circuits would be very complex to design. For example, a 
circuit with 16 inputs would have 216, or 64K, rows in its truth table. One 
way to reduce the complexity is to use components that are more abstract 
than logic gates. Figure 4.4 shows several such combinational 
components. We now describe each briefly. 

 A multiplexor, sometimes called a selector, allows only one of its 
data inputs Im to pass through to the output O. Thus, a multiplexor acts 
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much like a railroad switch, allowing only one of multiple input tracks to 
connect to a single output track. If there are m data inputs, then there are 
log2(m) select lines S, and we call this an m-by-1 multiplexor (m data 
inputs, one data output). The binary value of S determines which data input 
passes through; 00...00 means I0 may pass, 00...01 means I1 may pass, 
00...10 means I2 may pass, and so on. For example, an 8x1 multiplexor 

has 8 data inputs and thus 3 select lines. If those three select lines have 
values of 110, then I6 will pass through to the output. So if I6 is 1, then the 
output would be 1; if I6 is 0, then the output would be 0. We commonly use 
a more complex device called an n-bit multiplexor, in which each data 
input, as well as the output, consists of n lines. Suppose the previous 
example used a 4-bit 8x1 multiplexor. Thus, if I6 is 0110, then the output 
would be 0110. Note that n does not affect the number of select lines. 

 

 

 A decoder converts its binary input I into a one-hot output O. "One-
hot" means that exactly one of the output lines can be 1 at a given time. 
Thus, if there are n outputs, then there must be log2(n) inputs. We call this 
a log2(n) × n decoder. For example, a 3x8 decoder has 3 inputs and 8 
outputs. If the input is 000, then the output O0 will be 1. If the input is 001, 
then the output O1 would be 1, and so on. A common feature on a decoder 
is an extra input called enable. When enable is 0, all outputs are 0. When 
enable is 1, the decoder functions as before. 

 An adder adds two n-bit binary inputs A and B, generating an n-bit 
output sum along with an output carry. For example, a 4-bit adder would 
have a 4-bit A input, a 4-bit B input, a 4-bit sum output, and a 1-bit carry 
output. If A is 1010 and B is 1001, then sum would be 0011 and carry 
would be 1. 

 A comparator compares two n-bit binary inputs A and B, generating 
outputs that indicate whether A is less than, equal to, or greater than B. If A 
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is 1010 and B is 1001, then less would be 0, equal would be 0, and greater 
would be 1. 

 An ALU (arithmetic-logic unit) can perform a variety of arithmetic 
and logic functions on its n-bit inputs A and B. The select lines S choose 
the current function; if there are m possible functions, then there must be at 
least log2(m) select lines. Common functions include addition, subtraction, 
AND, and OR. 

 

Sequential logic design 

  

 A sequential circuit is a digital circuit whose outputs are a function 
of the current as well as previous input values. In other words, sequential 
logic possesses memory. One of the most basic sequential circuits is the 
flip-flop. A flip-flop stores a single bit. The simplest type of flip-flop is the D 
flip-flop. It has two inputs: D and clock. When clock is 1, the value of D is 
stored in the flip-flop, and that value appears at an output Q. When clock is 
0, the value of D is ignored; the output Q maintains its value. Another type 
of flip-flop is the SR flip-flop, which has three inputs: S, R and clock. When 
clock is 0, the previously stored bit is maintained and appears at output Q. 
When clock is 1, the inputs S and R are examined. If S is 1, a 1 is stored. If 
R is 1, a 0 is stored. If both are 0, there’s no change. If both are 1, behavior 
is undefined. Thus, S stands for set and R for reset. Another flip-flop type is 
a JK flip-flop, which is the same as an SR flip-flop except that when both J 
and K are 1, the stored bit toggles from 1 to 0 or 0 to 1. To prevent 
unexpected behavior from signal glitches, flip-flops are typically designed to 
be edge triggered, meaning they only pay attention to their non-clock inputs 
when the clock is rising from 0 to 1, or alternatively when the clock is falling 
from 1 to 0. 

 Just as we used more abstract combinational components to 
implement complex combinational systems, we also use more abstract 
sequential components for complex sequential systems. Figure 4.5 
illustrates several sequential components, which we now describe. 
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 A register stores n bits from its n-bit data input I, with those stored 
bits appearing at its output O. A register usually has at least two control 
inputs, clock and load. For a rising-edge-triggered register, the inputs I are 
only stored when load is 1 and clock is rising from 0 to 1. The clock input is 
usually drawn as a small triangle, as shown in the figure. Another common 
register control input is clear, which resets all bits to 0, regardless of the 
value of I. Because all n bits of the register can be stored in parallel, we 
often refer to this type of register as a parallel-load register, to distinguish it 
from a shift register, which we now describe. 

 A shift register stores n bits, but these bits cannot be stored in 
parallel. Instead, they must be shifted into the register serially, meaning 
one bit per clock edge. A shift register has a one-bit data input I, and at 
least two control inputs clock and shift. When clock is rising and shift is 1, 
the value of I is stored in the (n)’th bit, while the (n)’th bit is stored in the (n-
1)’th bit, and likewise, until the second bit is stored in the first bit. The first 
bit is typically shifted out, meaning it appears over an output Q. 

 A counter is a register that can also increment (add binary 1) to its 
stored binary value. In its simplest form, a counter has a clear input, which 
resets all stored bits to 0, and a count input, which enables incrementing on 
the clock edge. A counter often also has a parallel load data input and 
associated control signal. A common counter feature is both up and down 
counting (incrementing and decrementing), requiring an additional control 
input to indicate the count direction. 

 The control inputs discussed above can be either synchronous or 
asynchronous. A synchronous input’s value only has an effect during a 
clock edge. An asynchronous input’s value affects the circuit independent 
of the clock. Typically, clear control lines are asynchronous. 

 Sequential logic design can be achieved using a straightforward 
technique, whose steps are illustrated in Figure 4.1. We again start with a 
problem description. We translate this description to a state diagram. We 
describe state diagrams further in a later chapter. Briefly, each state 
represents the current "mode" of the circuit, serving as the circuit’s memory 
of past input values. The desired output values are listed next to each 
state. The input conditions that cause a transition from one state to another 
are shown next to each arc. Each arc condition is implicitly AND’ed with a 
rising (or falling) clock edge. In other words, all inputs are synchronous. 
State diagrams can also describe asynchronous systems, but we do not 
cover such systems in this book, since they are not common. 

 We will implement this state diagram using a register to store the 
current state, and combinational logic to generate the output values and the 
next state. We assign each state with a unique binary value, and we then 
create a truth table for the combinational logic. The inputs for the 
combinational logic are the state bits coming from the state register, and 
the external inputs, so we list all combinations of these inputs on the left 
side of the table. The outputs for the combinational logic are the state bits 
to be loaded into the register on the next clock edge (the next state), and 
the external output values, so we list desired values of these outputs for 
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each input combination on the right side of the table. Because we used a 
state diagram for which outputs were functions of the current state only, 
and not of the inputs, we list an external output value only for each possible 
state, ignoring the external input values. Now that we have a truth table, we 
proceed with combinational logic design as described earlier, by generating 
minimized output equations, and then drawing the combinational logic 
circuit. 

Custom single-purpose processor design 
 

 We can apply the above combinational and sequential logic design 
techniques to build data path components and controllers. Therefore, we 
have nearly all the knowledge we need to build a custom single-purpose 
processor for a given program, since a processor consists of a controller 
and a data path. We now describe a technique for building such a 
processor. 

 We begin with a sequential program we must implement. Figure 
provides a example based on computing a greatest common divisor (GCD). 
Figure 4.3(a) shows a black-box diagram of the desired system, having x_i 
and y_i data inputs and a data output d_i. The system’s functionality is 

straightforward: the output should represent the GCD of the inputs. Thus, if 
the inputs are 12 and 8, the output should be 4. If the inputs are 13 and 5, 
the output should be 1. Figure 4.3(b) provides a simple program with this 
functionality. The reader might trace this program’s execution on the above 
examples to verify that the program does indeed compute the GCD. 
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 To begin building our single-purpose processor implementing the 
GCD program, we first convert our program into a complex state diagram, 
in which states and arcs may include arithmetic’s expressions, and these 
expressions may use external inputs and outputs or variables. In contrast, 
our earlier state diagrams only included Boolean expressions, and these 
expressions could only use external inputs and outputs, not variables. 
Thus, these more complex state diagram looks like a sequential program in 
which statements have been scheduled into states. 
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 We can use templates to convert a program to a state diagram, as 
illustrated in Figure 4.2. First, we classify each statement as an assignment 
statement, loop statement, or branch (if-then-else or case) statement. For 
an assignment statement, we create a state with that statement as its 
action. We add an arc from this state to the state for the next statement, 
whatever type it may be. For a loop statement, we create a condition state 
C and a join state J, both with no actions. We add an arc with the loop’s 

condition from the condition state to the first statement in the loop body. We 
add a second arc with the complement of the loop’s condition from the 
condition state to the next statement after the loop body. We also add an 
arc from the join state back to the condition state. For a branch statement, 
we create a condition state C and a join state J, both with no actions. 

 We add an arc with the first branch’s condition from the condition 
state to the branch’s first statement. We add another arc with the 
complement of the first branch’s condition AND’ed with the second 
branches condition from the condition state to the branches first statement. 
We repeat this for each branch. Finally, we connect the arc leaving the last 
statement of each branch to the join state, and we add an arc from this 
state to the next statement’s state. 

 Using this template approach, we convert our GCD program to the 
complex state diagram of Figure 4.3(c). We are now well on our way to 
designing a custom single-purpose processor that executes the GCD 
program. Our next step is to divide the functionality into a data path part 
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and a controller part, as shown in Figure 4.4. The data path part should 
consist of an interconnection of combinational and sequential components. 
The controller part should consist of a basic state diagram, i.e., one 
containing only Boolean actions and conditions. 

 

We construct the data path through a four-step process: 

1. First, we create a register for any declared variable. In the example, 
these are x and y. We treat an output port as having an implicit variable, so 
we create a register d and connect it to the output port. We also draw the 
input and output ports. 

2. Second, we create a functional unit for each arithmetic operation in the 
state diagram. In the example, there are two subtractions, one comparison 
for less than, and one comparison for inequality, yielding two subtractors 
and two comparators, as shown in the figure. 
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3. Third, we connect the ports, registers and functional units. For each write 
to a variable in the state diagram, we draw a connection from the writer’s 
source (an input port, a functional unit, or another register) to the variable’s 
register. For each arithmetic and logical operation, we connect sources to 
an input of the operation’s corresponding functional unit. When more than 
one source is connected to a register, we add an appropriately-sized 
multiplexor.  

4. Finally, we create a unique identifier for each control input and output of 
the data path components. 
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Now that we have a complete data path, we can build a state diagram for 
our controller. The state diagram has the same structure as the complex 
state diagram.  

 However, we replace complex actions and conditions by Boolean 
ones, making use of our data path. We replace every variable write by 
actions that set the select signals of the multiplexor in front of the variable’s 
register’s such that the writer’s source passes through, and we assert the 
load signal of that register. We replace every logical operation in a 
condition by the corresponding functional unit control output.  

 We can then complete the controller design by implementing the 
state diagram using our sequential design technique described earlier. 
Figure 4.4 shows the controller implementation model, and Figure 4.5 
shows a state table. Note that there are 7 inputs to the controller, resulting 
in 128 rows for the table. We reduced rows in the state table by using don’t 
cares for some input combinations, but we can still see that optimizing the 
design can still see that optimizing the design using hand techniques could 
be quite tedious. For this reason, computer-aided design (CAD) tools that 
automate the combinational as well as sequential logic design can be very 
helpful; we’ll introduce such CAD tools. 

 

Also, note that we could perform significant amounts of optimization to both 
the data path and the controller. For example, we could merge functional 
units in the data path, resulting in fewer units at the expense of more 
multiplexors. We could also merge states in the data path.  
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Remember that we could alternatively implement the GCD program by 
programming a microcontroller, thus eliminating the need for this design 
process, but possibly yielding a slower and bigger design. 

 

Summary  

 Designing a custom single- purpose processor for a given program 
requires an understanding of various aspects of digital design.  

 Design of a circuit to implement Boolean functions requires 
combinational design, which consists of building a truth table with all 
possible inputs and desired outputs, optimizing, and drawing a 
circuit.  

 Design of a circuit to implement a state a circuit to implement a 
state diagram requires sequential design, which consists of drawing 
an implementation model with a state register and a combinational 
logic block, assigning a binary encoding to each state, drawing a 
state table with inputs and outputs, and repeating our combinational 
design process for this table.  

 Finally, design of a single purpose processor circuit to implement a 
program requires us to first schedule the program’s statements into 
a complex state diagram, construct a data path from the diagram, 
create a new state diagram that replaces complex actions and 
conditions by data path control operations, and then design a 
controller circuit for the new state diagram using sequential design. 
Because processors can be complex, CAD tools would be a great 
designer’s aid. 

Questions: 
 

1. Build a 3-input NAND gate using a minimum number of CMOS 
transistors. 

2. Design a 2-bit comparator (compares two 2-bit words) with a single 
output "less than," using the combinational design technique described in 
the chapter. Start from a truth table, use K-maps to minimize logic, and 
draw the final circuit. 

3. Design a 3-bit counter that counts the following sequence: 1, 2, 4, 5, 7, 
1, 2, This counter has an output "odd" that is one when the current count 
value is odd. Use the sequential design technique of the chapter. Start from 
a state diagram, draw the state table, minimize logic, and draw the final 
circuit. 

4. Compare the GCD custom-processor implementation to a software 
implementation. (a) Compare the performance. Assume a 100 ns clock for 
the microcontroller, and a 20 ns clock for the custom processor. Assume 
the microcontroller uses two operand instructions, and each instruction 
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requires 4 clock cycles. Estimates for the microcontroller are fine. (b) 
Estimate the number of gates for the custom design, and compare this to 
10,000 gates for a simple 8-bit microcontroller. (c) Compare the custom 
GCD with the GCD running on a 300 MHz processor with 2-operand 
instructions and 1 clock cycle per instruction (advanced processors use 
parallelism to meet or exceed 1 cycle per instruction). (d) Compare the 
estimated gates with 200,000 gates, a typical number of gates for a modern 
32-bit processor.  

5. Design a custom single-purpose processor implementing the following 
program, using the technique of the chapter. Start with a complex state 
diagram, construct a data path and a simplified state diagram, and draw the 
truth table for the controller, but do not complete the design for the 
controller beyond the truth table.  

input_port U; 

int V; 

for (int i=0; i<32; i++) 

V = V + U*V; 

References and further reading 
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UNIT – II 

 

5. General purpose processor software 

 

Objective: 

This chapter discusses history of the 80x 86 CPU families and the major 
improvements occurring along the line. The historical background will help 
you better understand the design compromises they made as well as 
under-stand the legacy issues surrounding the CPU s design. This chapter 
also discusses the major advances in computer architecture that Intel 

employed while improving the x861. 

Introduction to the Central Processing Unit   

In order to work, a computer needs some sort of "brain" or 

"calculator". At the core of every computer is a device roughly the 
size of a large postage stamp. This device is known as the central 

processing unit or CPU for short. This is the "brain" of the 

computer; it reads and executes program instructions, performs 
calculations, and makes decisions. The CPU is responsible for 

storing and retrieving information on disks and other media. It 

also handles information on from one part of the computer to 

another like a central switching station that directs the flow of 
traffic throughout the computer system. 
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History of the Central Processing Unit 

CPU history starts in 1971, when a small unknown company, Intel, 
for the first time combined multiple transistors to form a central processing 
unit - a chip called Intel 4044. However, it was 8 years before the first 
Personal Computer was constructed. 

PC's are designed around different CPU generations. Intel is not the 
only company manufacturing CPU's, but by far the leading one. The 
following table shows the different CPU generations. They are 
predominantly Intel chips, but in the 5th generation we see alternatives. 

 

There are CPU's of many brand names (IBM, Texas, Cyrix, AMD), and 
often they make models which overlap two generations. This can make it 
difficult to keep track of CPU's. Here is an attempt to identify the various 
CPU's according to generation – 
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Internal Architecture of 8085 Microprocessor 
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Control Unit 

Generates signals within Micro processor to carry out the 
instruction, which has been decoded. In reality causes certain connections 
between blocks of the Micro processor to be opened or closed, so that data 
goes where it is required, and so that ALU operations occur. 

Arithmetic Logic Unit 

The ALU performs the actual numerical and logic operation such as 
‘add’, ‘subtract’, ‘AND’, ‘OR’, etc. Uses data from memory and from 
Accumulator to perform arithmetic operations. Always stores result of 
operation in Accumulator. 

Registers 

The 8085/8080A-programming model includes six registers, one 
accumulator, and one flag register, as shown in Figure. In addition, it has 
two 16-bit registers: the stack pointer and the program counter. They are 
described briefly as follows. The 8085/8080A has six general-purpose 
registers to store 8-bit data; these are identified as B,C,D,E,H, and L as 
shown in the figure. They can be combined as register pairs - BC, DE, and 
HL - to perform some 16-bit operations. The programmer can use these 
registers to store or copy data into the registers by using data copy 
instructions. 

Accumulator 

The accumulator is an 8-bit register that is a part of arithmetic/logic 
unit (ALU). This register is used to store 8-bit data and to perform 
arithmetic and logical operations. The result of an operation is stored in the 
accumulator. The accumulator is also identified as register A. 

Flags 

The ALU includes five flip-flops, which are set or reset after an 
operation according to data conditions of the result in the accumulator and 
other registers. They are called Zero(Z), Carry (CY), Sign (S), Parity (P), 
and Auxiliary Carry (AC) flags; they are listed in the Table and their bit 
positions in the flag register are shown in the Figure below. The most 
commonly used flags are Zero, Carry, and Sign. The microprocessor uses 
these flags to test data conditions. For example, after an addition of two 
numbers, if the sum in the accumulator id larger than eight bits, the flip-flop 
uses to indicate a carry -- called the Carry flag (CY) – is set to one. When 
an arithmetic operation results in zero, the flip-flop called the Zero(Z) flag is 
set to one. The first Figure shows an 8-bit register, called the flag register, 
adjacent to the accumulator. However, it is not used as a register; five bit 
positions out of eight are used to store the outputs of the five flip-flops. The 
flags are stored in the 8-bit register so that the programmer can examine 
these flags (data conditions) by accessing the register through an 
instruction. These flags have critical importance in the decision-making 
process of the microprocessor. The conditions (set or reset) of the flags are 
tested through the software instructions. For example, the instruction JC 
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(Jump on Carry) is implemented to change the sequence of a program 
when CY flag is set. The thorough understanding of flag is essential in 
writing assembly language programs.  

Program Counter (PC) 

This 16-bit register deals with sequencing the execution of 
instructions. This register is a memory pointer. Memory locations have 16-
bit addresses, and that is why this is a 16-bit register. The microprocessor 
uses this register to sequence the execution of the instructions. The 
function of the program counter is to point to the memory address from 
which the next byte is to be fetched. When a byte (machine code) is being 
fetched, the program counter is incremented by one to point to the next 
memory location. 

Stack Pointer (SP) 

The stack pointer is also a 16-bit register used as a memory pointer. 
It points to a memory location in R/W memory, called the stack. The 
beginning of the stack is defined by loading 16-bit address in the stack 
pointer. The stack concept is explained in the chapter "Stack and 
Subroutines." 

Instruction Register/Decoder 

Temporary storage for the current instruction of a program. Latest 
instruction sent here from memory prior to execution. Decoder then takes 
instruction and ‘decodes’ or interprets the instruction. Decoded instruction 
then passed to next stage.  

Memory Address Register 

Holds address, received from PC, of next program instruction. 
Feeds the address bus with address of locations of the program under 
execution.  

Control Generator 

Generates signals within Micro processor to carry out the instruction 
which has been decoded. In reality causes certain connections between 
blocks of the Micro processor to be opened or closed, so that data goes 
where it is required, and so that ALU operations occur.  

Register Selector 

This block controls the use of the register stack in the example. Just 
a logic circuit which switches between different registers in the set will 
receive instructions from Control Unit. 

General Purpose Registers 

Micro processor requires extra registers for versatility and can be 
used to store additional data during a program. More complex processors 
may have a variety of differently named registers. Microprogramming how 
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does the Micro processor knows what an instruction means, especially 
when it is only a binary number? The micro program in a Micro processor/ 
micro controller is written by the chip designer and tells the Micro 
processor/ micro controller the meaning of each instruction Micro 
processor/micro controller can then carry out operation. 

8085 System Bus 

Typical system uses a number of busses, collection of wires, which 
transmit binary numbers, one bit per wire. A typical microprocessor 
communicates with memory and other devices (input and output) using 
three busses: Address Bus, Data Bus and Control Bus. 

Address Bus 

One wire for each bit, therefore 16 bits = 16 wires. Binary number 
carried alerts memory to ‘open’ the designated box. Data (binary) can then 
be put in or taken out. The Address Bus consists of 16 wires, therefore 16 
bits. Its "width" is 16 bits. A 16 bit binary number allows 216 different 
numbers, or 32000 different numbers, ie 0000000000000000 up to 
1111111111111111. Because memory consists of boxes, each with a 
unique address, the size of the address bus determines the size of 
memory, which can be used. To communicate with memory the 
microprocessor sends an address on the address bus, eg 
0000000000000011 (3 in decimal), to the memory. The memory the selects 
box number 3 for reading or writing data. Address bus is unidirectional, ie 
numbers only sent from microprocessor to memory, not other way.  

Question?: If you have a memory chip of size 256 kilobytes (256 x 1024 x 8 
bits), how many wires does the address bus need, in order to be able to 
specify an address in this memory? Note: the memory is organized in 
groups of 8 bits per location, therefore, how many locations must you be 
able to specify?  

 

Data Bus 

Data Bus: carries ‘data’, in binary form, between μP and other 
external units, such as memory. Typical size is 8 or 16 bits. Size 
determined by size of boxes in memory and μP size helps determine 
performance of μP. The Data Bus typically consists of 8 wires. Therefore, 
28 combinations of binary digits. Data bus used to transmit "data", ie 
information, results of arithmetic, etc, between memory and the 
microprocessor. Bus is bi-directional. Size of the data bus determines what 
arithmetic can be done. If only 8 bits wide then largest number is 11111111 
(255 in decimal). Therefore, larger number have to be broken down into 
chunks of 255. This slows microprocessor. Data Bus also carries 
instructions from memory to the microprocessor. Size of the bus therefore 
limits the number of possible instructions to 256, each specified by a 
separate number. 
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Control Bus 

Control Bus is various lines which have specific functions for 
coordinating and controlling uP operations. Eg: Read/Not write line, single 
binary digit. Control whether memory is being ‘written to’ (data stored in 
memory) or ‘read from’ (data taken out of memory) 1 = Read, 0 = Write. 
May also include clock line(s) for timing/synchronizing, ‘interrupts’, ‘reset’ 
etc. Typically μP has 10 control lines. Cannot function correctly without 
these vital control signals. The Control Bus carries control signals partly 
unidirectional, partly bi-directional. Control signals are things like "read or 
write". This tells memory that we are either reading from a location, 
specified on the address bus, or writing to a location specified, various 
other signals to control and coordinate the operation of the system. Modern 
day microprocessors, like 80386, 80486 have much larger busses. 
Typically 16 or 32 bit busses, which allow larger number of instructions, 
more memory location, and faster arithmetic. Microcontrollers organized 
along same lines, except: because microcontrollers have memory etc 
inside the chip, the busses may all be internal. In the microprocessor the 
three busses are external to the chip (except for the internal data bus). In 
case of external busses, the chip connects to the busses via buffers, which 
are simply an electronic connection between external bus and the internal 
data bus. 

8085 Pin description. 

Properties 

Single + 5V Supply 

4 Vectored Interrupts (One is Non Maskable) 

Serial In/Serial Out Port 

Decimal, Binary, and Double Precision Arithmetic 

Direct Addressing Capability to 64K bytes of memory 

The Intel 8085A is a new generation, complete 8 bit parallel central 
processing unit (CPU). The 8085A uses a multiplexed data bus. The 
address is split between the 8bit address bus and the 8bit data bus. 

Pin Description 

The following describes the function of each pin: 

A6 - A1s (Output 3 State) 

Address Bus; The most significant 8 bits of the memory address or the 8 
bits of the I/0 address,3 stated during Hold and Halt modes. 

AD0 - 7 (Input/Output 3state) 

Multiplexed Address/Data Bus; Lower 8 bits of the memory address (or I/0 
address) appear on the bus during the first clock cycle of a machine state. 
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It then becomes the data bus during the second and third clock cycles. 3 
stated during Hold and Halt modes. 

ALE (Output) 

Address Latch Enable: It occurs during the first clock cycle of a machine 
state and enables the address to get latched into the on chip latch of 
peripherals. The falling edge of ALE is set to guarantee setup and hold 
times for the address information. ALE can also be used to strobe the 
status information. ALE is never 3stated. 

SO, S1 (Output) 

Data Bus Status. Encoded status of the bus cycle:  

S1  S0 Description 

O  O  HALT 

0  1  WRITE 

1  0  READ 

1  1  FETCH 

S1 can be used as an advanced R/W status. 

RD (Output 3state) 

READ; indicates the selected memory or 1/0 device is to be read and that 
the Data Bus is available for the data transfer. 

WR (Output 3state) 

WRITE; indicates the data on the Data Bus is to be written into the selected 
memory or 1/0 location. Data is set up at the trailing edge of WR. 3stated 
during Hold and Halt modes. 

 

READY (Input)    

If Ready is high during a read or write cycle, it indicates that the 
memory or peripheral is ready to send or receive data. If Ready is low, the 
CPU will wait for Ready to go high before completing the read or write 
cycle. 

HOLD (Input) 

HOLD; indicates that another Master is requesting the use of the 
Address and Data Buses. The CPU, upon receiving the Hold request. will 
relinquish the use of buses as soon as the completion of the current 
machine cycle. Internal processing can continue. The processor can regain 
the buses only after the Hold is removed. When the Hold is acknowledged, 
the Address, Data, RD, WR, and IO/M lines are 3stated. 
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HLDA (Output) 

HOLD ACKNOWLEDGE; indicates that the CPU has received the 
Hold request and that it will relinquish the buses in the next clock cycle. 
HLDA goes low after the Hold request is removed. The CPU takes the 
buses one half clock cycle after HLDA goes low. 

INTR (Input) 

INTERRUPT REQUEST; is used as a general purpose interrupt. It 
is sampled only during the next to the last clock cycle of the instruction. If it 
is active, the Program Counter (PC) will be inhibited from incrementing and 
an INTA will be issued. During this cycle a RESTART or CALL instruction 
can be inserted to jump to the interrupt service routine. The INTR is 
enabled and disabled by software. It is disabled by Reset and immediately 
after an interrupt is accepted.  

INTA (Output) 

INTERRUPT ACKNOWLEDGE; is used instead of (and has the 
same timing as) RD during the Instruction cycle after an INTR is accepted. 
It can be used to activate the 8259 Interrupt chip or some other interrupt 
port. 

RST 5.5 

RST 6.5 - (Inputs) 

RST 7.5 

RESTART INTERRUPTS; These three inputs have the same timing as I 
NTR except they cause an internal RESTART to be automatically inserted. 

 RST 7.5 - Highest Priority  

RST 5.5 - Lowest Priority 

The priority of these interrupts is ordered as shown above. These interrupts 
have a higher priority than the INTR. 

 

TRAP (Input) 

Trap interrupt is a nonmaskable restart interrupt. It is recognized at 
the same time as INTR. It is unaffected by any mask or Interrupt Enable. It 
has the highest priority of any interrupt. 

RESET IN (Input) 

Reset sets the Program Counter to zero and resets the Interrupt 
Enable and HLDA flipflops. None of the other flags or registers (except the 
instruction register) are affected The CPU is held in the reset condition as 
long as Reset is applied.  
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RESET OUT (Output) 

Indicates CPlJ is being reset. Can be used as a system RESET. The signal 
is synchronized to the processor clock. 

X1, X2 (Input) 

Crystal or R/C network connections to set the internal clock generator X1 
can also be an external clock input instead of a crystal. The input frequency 
is divided by 2 to give the internal operating frequency. 

CLK (Output) 

Clock Output for use as a system clock when a crystal or R/ C network is 
used as an input to the CPU. The period of CLK is twice the X1, X2 input 
period. 

IO/M (Output) 

IO/M indicates whether the Read/Write is to memory or l/O Tristated during 
Hold and Halt modes. 

SID (Input) 

Serial input data line The data on this line is loaded into accumulator bit 7 
whenever a RIM instruction is executed. 

SOD (output) 

Serial output data line. The output SOD is set or reset as specified by the 
SIM instruction. 

Vcc 

+5 volt supply. 

Vss 

Ground Reference. 

 8085 Functional Description 

The 8085A is a complete 8 bit parallel central processor. It requires a single 
+5 volt supply. Its basic clock speed is 3 MHz thus improving on the 
present 8080's performance with higher system speed. Also it is designed 
to fit into a minimum system of three IC's: The CPU, a RAM/ IO, and a 
ROM or PROM/IO chip.  

The 8085A uses a multiplexed Data Bus. The address is split between the 
higher 8bit Address Bus and the lower 8bit Address/Data Bus. During the 
first cycle the address is sent out. The lower 8bits are latched into the 
peripherals by the Address Latch Enable (ALE). During the rest of the 
machine cycle the Data Bus is used for memory or l/O data. 



                                                 Embedded systems 
   Notes 

 
 

61 

The 8085A provides RD, WR, and lO/Memory signals for bus 
control. An Interrupt Acknowledge signal (INTA) is also provided. Hold, 
Ready, and all Interrupts are synchronized. The 8085A also provides serial 
input data (SID) and serial output data (SOD) lines for simple serial 
interface. 

In addition to these features, the 8085A has three maskable, restart 
interrupts and one non-maskable trap interrupt. The 8085A provides RD, 
WR and IO/M signals for Bus control. 

Status Information 

Status information is directly available from the 8085A. ALE serves as a 
status strobe. The status is partially encoded, and provides the user with 
advanced timing of the type of bus transfer being done. IO/M cycle status 
signal is provided directly also. Decoded So, S1 Carries the following status 
information. 

 

HALT, WRITE, READ, FETCH: 

S1 can be interpreted as R/W in all bus transfers. In the 8085A the 
8 LSB of address are multiplexed with the data instead of status. The ALE 
line is used as a strobe to enter the lower half of the address into the 
memory or peripheral address latch. This also frees extra pins for 
expanded interrupt capability. 

 

 Interrupt and Serial l/O : 

The8085A has5 interrupt inputs: INTR, RST5.5, RST6.5, RST 7.5, 
and TRAP. INTR is identical in function to the 8080 INT. Each of the three 
RESTART inputs, 5.5, 6.5. 7.5, has a programmable mask. TRAP is also a 
RESTART interrupt except it is non maskable.  

The three RESTART interrupts cause the internal execution of RST 
(saving the program counter in the stack and branching to the RESTART 
address) if the interrupts are enabled and if the interrupt mask is not set. 
The non-maskable TRAP causes the internal execution of a RST 
independent of the state of the interrupt enable or masks.  

The interrupts are arranged in a fixed priority that determines which 
interrupt is to be recognized if more than one is pending as follows: TRAP 
highest priority, RST 7.5, RST 6.5, RST 5.5, INTR lowest priority This 
priority scheme does not take into account the priority of a routine that was 
started by a higher priority interrupt. RST 5.5 can interrupt a RST 7.5 
routine if the interrupts were re-enabled before the end of the RST 7.5 
routine. The TRAP interrupt is useful for catastrophic errors such as power 
failure or bus error. The TRAP input is recognized just as any other 
interrupt but has the highest priority. It is not affected by any flag or mask. 
The TRAP input is both edge and level sensitive.  
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Basic System Timing 

The 8085A has a multiplexed Data Bus. ALE is used as a strobe to 
sample the lower 8bits of address on the Data Bus. Figure 2 shows an 
instruction fetch, memory read and l/ O write cycle (OUT). Note that during 
the l/O write and read cycle that the l/O port address is copied on both the 
upper and lower half of the address. As in the 8080, the READY line is 
used to extend the read and write pulse lengths so that the 8085A can be 
used with slow memory. Hold causes the CPU to stop the bus when it Is 
through with it by floating the Address and Data Buses.  

System Interface: 

8085A family includes memory components, which are directly compatible 
to the 8085A CPU. For example, a system consisting of the three chips, 
8085A, 8156, and 8355 will have the following features: 

2K Bytes ROM 

256 Bytes RAM 

1 Timer/Counter 

4 8bit l/O Ports 

1 6bit l/O Port 

4 Interrupt Levels 

Serial In/Serial Out Ports 

In addition to standard l/O, the memory mapped I/O offers an efficient l/O 
addressing technique. With this technique, an area of memory address 
space is assigned for l/O address, thereby, using the memory address for 
I/O manipulation. The 8085A CPU can also interface with the standard 
memory that does not have the multiplexed address/data bus. 
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The 8085 Programming Model 

In the previous tutorial we described the 8085 microprocessor 
registers in reference to the internal data operations. The same information 
is repeated here briefly to provide the continuity and the context to the 
instruction set and to enable the readers who prefer to focus initially on the 
programming aspect of the microprocessor. 

The 8085 programming model includes six registers, one 
accumulator, and one flag register, as shown in Figure. In addition, it has 
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two 16-bit registers: the stack pointer and the program counter. They are 
described briefly as follows. 

 

Registers 

The 8085 has six general-purpose registers to store 8-bit data; 
these are identified as B,C,D,E,H, and L as shown in the figure. They can 
be combined as register pairs - BC, DE, and HL - to perform some 16-bit 
operations. The programmer can use these registers to store or copy data 
into the registers by using data copy instructions. 

Accumulator 

The accumulator is an 8-bit register that is a part of arithmetic/logic 
unit (ALU). This register is used to store 8-bit data and to perform 
arithmetic and logical operations. The result of an operation is stored in the 
accumulator. The accumulator is also identified as register A. 

Flags 

The ALU includes five flip-flops, which are set or reset after an 
operation according to data conditions of the result in the accumulator and 
other registers. They are called Zero(Z), Carry (CY), Sign (S), Parity (P), 
and Auxiliary Carry (AC) flags; their bit positions in the flag register are 
shown in the Figure below. The most commonly used flags are Zero, Carry, 
and Sign. The microprocessor uses these flags to test data conditions. 
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For example, after an addition of two numbers, if the sum in the 
accumulator id larger than eight bits, the flip-flop uses to indicate a carry -- 
called the Carry flag (CY) – is set to one. When an arithmetic operation 
results in zero, the flip-flop called the Zero(Z) flag is set to one. The first 
Figure shows an 8-bit register, called the flag register, adjacent to the 
accumulator. However, it is not used as a register; five bit positions out of 
eight are used to store the outputs of the five flip-flops. The flags are stored 
in the 8-bit register so that the programmer can examine these flags (data 
conditions) by accessing the register through an instruction. These flags 
have critical importance in the decision-making process of the 
microprocessor. The conditions (set or reset) of the flags are tested through 
the software instructions. For example, the instruction JC (Jump on Carry) 
is implemented to change the sequence of a program when CY flag is set. 
The thorough understanding of flag is essential in writing assembly 
language programs.  

Program Counter (PC) 

This 16-bit register deals with sequencing the execution of 
instructions. This register is a memory pointer. Memory locations have 16-
bit addresses, and that is why this is a 16-bit register. The microprocessor 
uses this register to sequence the execution of the instructions. The 
function of the program counter is to point to the memory address from 
which the next byte is to be fetched. When a byte (machine code) is being 
fetched, the program counter is incremented by one to point to the next 
memory location  

Stack Pointer (SP) 

The stack pointer is also a 16-bit register used as a memory pointer. 
It points to a memory location in R/W memory, called the stack. The 
beginning of the stack is defined by loading 16-bit address in the stack 
pointer. This programming model will be used in subsequent tutorials to 
examine how these registers are affected after the execution of an 
instruction.  

 

The 8085 Addressing Modes 

The instructions MOV B, A or MVI A, 82H are to copy data from a 
source into a destination. In these instructions the source can be a register, 
an input port, or an 8-bit number (00H to FFH). Similarly, a destination can 
be a register or an output port. The sources and destination are operands. 
The various formats for specifying operands are called the ADDRESSING 
MODES. For 8085, they are: 
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1. Immediate addressing. 

2. Register addressing. 

3. Direct addressing. 

4. Indirect addressing. 

Immediate addressing 

Data is present in the instruction. Load the immediate data to the 
destination provided. Example: MVI R,data 

 

Register addressing 

Data is provided through the registers.  

Example: MOV Rd, Rs 

Direct addressing 

Used to accept data from outside devices to store in the 
accumulator or send the data stored in the accumulator to the outside 
device. Accept the data from the port 00H and store them into the 
accumulator or Send the data from the accumulator to the port 01H. 

Example: IN 00H or OUT 01H 

Indirect Addressing 

This means that the Effective Address is calculated by the 
processor. And the contents of the address (and the one following) is used 
to form a second address. The second address is where the data is stored. 
Note that this requires several memory accesses; two accesses to retrieve 
the 16-bit address and a further access (or accesses) to retrieve the data 
which is to be loaded into the register. 

Instruction Set Classification 

An instruction is a binary pattern designed inside a microprocessor 
to perform a specific function. The entire group of instructions, called the 
instruction set, determines what functions the microprocessor can perform. 
These instructions can be classified into the following five functional 
categories: data transfer (copy) operations, arithmetic operations, logical 
operations, branching operations, and machine-control operations. 

Data Transfer (Copy) Operations 

This group of instructions copy data from a location called a source 
to another location called a destination, without modifying the contents of 
the source. In technical manuals, the term data transfer is used for this 
copying function. However, the term transfer is misleading; it creates the 
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impression that the contents of the source are destroyed when, in fact, the 
contents are retained without any modification. The various types of data 
transfer (copy) are listed below together with examples of each type: 

 

Arithmetic Operations 

These instructions perform arithmetic operations such as addition, 
subtraction, increment, and decrement. 

Addition - Any 8-bit number, or the contents of a register or the contents of 
a memory location can be added to the contents of the accumulator and 
the sum is stored in the accumulator. No two other 8-bit registers can be 
added directly (e.g., the contents of register B cannot be added directly to 
the contents of the register C). The instruction DAD is an exception; it adds 
16-bit data directly in register pairs. 

Subtraction - Any 8-bit number, or the contents of a register, or the 
contents of a memory location can be subtracted from the contents of the 
accumulator and the results stored in the accumulator. The subtraction is 
performed in 2's compliment, and the results if negative, are expressed in 
2's complement. No two other registers can be subtracted directly. 

Increment/Decrement - The 8-bit contents of a register or a memory 
location can be incremented or decrement by 1. Similarly, the 16-bit 
contents of a register pair (such as BC) can be incremented or decrement 
by 1. These increment and decrement operations differ from addition and 
subtraction in an important way; i.e., they can be performed in any one of 
the registers or in a memory location. 

Logical Operations 

These instructions perform various logical operations with the contents of 
the accumulator. 

AND, OR, Exclusive-OR - Any 8-bit number, or the contents of a register, 

or of a memory location can be logically ANDed, Ored, or Exclusive-ORed 
with the contents of the accumulator. The results are stored in the 
accumulator. 
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Rotate- Each bit in the accumulator can be shifted either left or right to the 
next position. 

Compare- Any 8-bit number, or the contents of a register, or a memory 
location can be compared for equality, greater than, or less than, with the 
contents of the accumulator. 

Complement - The contents of the accumulator can be complemented. All 
0s are replaced by 1s and all 1s are replaced by 0s. 

Branching Operations 

This group of instructions alters the sequence of program execution either 
conditionally or unconditionally. 

Jump - Conditional jumps are an important aspect of the decision-making 

process in the programming. These instructions test for a certain conditions 
(e.g., Zero or Carry flag) and alter the program sequence when the 
condition is met. In addition, the instruction set includes an instruction 
called unconditional jump. 

Call, Return, and Restart - These instructions change the sequence of a 

program either by calling a subroutine or returning from a subroutine. The 
conditional Call and Return instructions also can test condition flags. 

Machine Control Operations 

These instructions control machine functions such as Halt, Interrupt, or do 
nothing. The microprocessor operations related to data manipulation can 
be summarized in four functions: 

1. copying data 

2. performing arithmetic operations 

3. performing logical operations 

4. testing for a given condition and alerting the program sequence 

Some important aspects of the instruction set are noted below: 

1. In data transfer, the contents of the source are not destroyed; only the 
contents of the destination are changed. The data copy instructions do not 
affect the flags. 

2. Arithmetic and Logical operations are performed with the contents of the 
accumulator, and the results are stored in the accumulator (with some 
expectations). The flags are affected according to the results. 

3. Any register including the memory can be used for increment and 
decrement.  

4. A program sequence can be changed either conditionally or by testing 
for a given data condition. 
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Instruction Format 

An instruction is a command to the microprocessor to perform a 
given task on a specified data. Each instruction has two parts: one is task 
to be performed, called the operation code (opcode), and the second is the 
data to be operated on, called the operand. The operand (or data) can be 
specified in various ways. It may include 8-bit (or 16-bit ) data, an internal 
register, a memory location, or 8-bit (or 16-bit) address. In some 
instructions, the operand is implicit. 

Instruction word size 

The 8085 instruction set is classified into the following three groups 
according to word size:  

1. One-word or 1-byte instructions 

2. Two-word or 2-byte instructions 

3. Three-word or 3-byte instructions 

In the 8085, "byte" and "word" are synonymous because it is an 8-bit 
microprocessor. However, instructions are commonly referred to in terms of 
bytes rather than words. 

One-Byte Instructions 

A 1-byte instruction includes the opcode and operand in the same byte. 
Operand(s) are internal register and are coded into the instruction. 

For example: 

 

These instructions are 1-byte instructions performing three different tasks. 
In the first instruction, both operand registers are specified. In the second 
instruction, the operand B is specified and the accumulator is assumed. 
Similarly, in the third instruction, the accumulator is assumed to be the 
implicit operand. These instructions are stored in 8- bit binary format in 
memory; each requires one memory location.  

MOV rd, rs 

rd <-- rs copies contents of rs into rd. 
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Coded as 01 ddd sss where ddd is a code for one of the 7 general registers 
which is the destination of the data, sss is the code of the source register.  

Example: MOV A,B 

Coded as 01111000 = 78H = 170 octal (octal was used extensively in 
instruction design of such processors). 

ADD r 

A <-- A + r 

Two-Byte Instructions 

In a two-byte instruction, the first byte specifies the operation code and the 
second byte specifies the operand. Source operand is a data byte 
immediately following the opcode. For example:  

 

Assume that the data byte is 32H. The assembly language instruction is 
written as 

 

The instruction would require two memory locations to store in memory. 

MVI r,data 

r <-- data 

Example: MVI A,30H coded as 3EH 30H as two contiguous bytes. This is 
an example of immediate addressing. 

ADI data 

A <-- A + data 

OUT port 

where port is an 8-bit device address. (Port) <-- A. Since the byte is not the 
data but points directly to where it is located this is called direct addressing. 
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Three-Byte Instructions 

In a three-byte instruction, the first byte specifies the opcode, and the 
following two bytes specify the 16-bit address. Note that the second byte is 
the low-order address and the third byte is the high-order address.  

opcode + data byte + data byte 

 

This instruction would require three memory locations to store in memory. 
Three byte instructions - opcode + data byte + data byte 

LXI rp, data16 

rp is one of the pairs of registers BC, DE, HL used as 16-bit registers. The 
two data bytes are 16-bit data in L H order of significance. 

rp <-- data16 

Example: 

LXI H,0520H coded as 21H 20H 50H in three bytes. This is also immediate 
addressing. 

LDA addr 

A <-- (addr) Addr is a 16-bit address in L H order. Example: LDA 2134H 
coded as 3AH 34H 21H. This is also an example of direct addressing. 

 

Sample Programs 

Write an assembly program to add two numbers 

Program 

MVI D, 8BH 

MVI C, 6FH 

MOV A, C 

ADD D 

OUT PORT1 
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HLT 

 

Write an assembly program to multiply a number by 8 Program 

MVI A, 30H 

RRC 

RRC 

RRC 

OUT PORT1 

HLT 

 

Write an assembly program to find greatest between two numbers 

Program 

MVI B, 30H 

MVI C, 40H 

MOV A, B 

CMP C 

JZ EQU 

JC GRT 

OUT PORT1 

HLT 

EQU: MVI A, 01H 

OUT PORT1 

HLT 

GRT: MOV A, C 

OUT PORT1 

HLT 
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Summary: 

 Micro processor contains ALU, Interrupt controller, Serial I/O 
controller etc. 

 The 8085/8080A-programming model includes six registers, one 
accumulator, and one flag register. 

 The accumulator is an 8-bit register that is a part of arithmetic/logic 
unit (ALU). 

 The flags in 8085 are Zero(Z), Carry (CY), Sign (S), Parity (P), and 
Auxiliary Carry (AC) flags. 

 This 16-bit register deals with sequencing the execution of 
instructions. 

 The stack pointer is also a 16-bit register used as a memory pointer. 

 Data Bus: carries ‘data’, in binary form, between μP and other 
external units, such as memory. 

QUESTIONS: 

 Explain the pin description of 8085? 

 Explain the architecture of 8085? 

 Explain functional description of 085 along with types of busses in 
8085? 

 What are the different addressing modes of 8085? 

 Explain about instructions in 8085? 

References: 

 C Programming for Embedded Systems – KIRK ZURELL 

 Design with 8051- FRONTLINE ELECTRONICS 

 Embedded Controller Hardware Design - Ken Arnold 

 Embedded Software The Works – colin walls 

 Embedded Systems Firmware Demystified - Ed Sutter 

 Embedded_Controller_Hardware_Design – KEN ARNOLD 
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6. Standard single purpose processors: peripherals 

 

Objective: 

In this chapter we will learn about the different timers and their 
technologies. Different technologies include timers, watchdog timers etc., 

 

Introduction: 

 Embedded device consists of a intelligent device namely processor/ 
controller and remaining different hardware devices which are 
communicating with that intelligent device. But here we get a problem? 
What is that is speed of communications of controlling devices and 
hardware interfaces. Generally control units are very much faster than the 
hardware devices which are used for interfacing. So inorder to provide 
proper communication between the control unit and hardware device the 
programmer has to make the control unit to wait unitill it gets response from 
that respective hardware device. In order to provide these waiting times for 
the cpu designers will use timer, counters, watchdog timers etc to achive 
the goal of communication. 

 Single purpose processors are the processors designed for 
Performs specific computation task. The examples of single purpose 
processors are 

• “Off-the-shelf” --  pre-designed for a common task 

• a.k.a., peripherals 

• serial transmission 

• analog/digital conversions 

Timers: 

 Timers are the electonic devices used for producing the required 
amounts of time intervels for proper communication between control unit 
and the hardware device. Generally these timers are present on the chip 
for micro controllers. The timers may be 8-bit, 16-bit depend on its size. 
The timers depend on the machine cycles for producing required amount of 
timeperiods. Machine cycle is the smallest time period that  a processor 
require to execute a single byte instruction. The machine cycle is defined 
as the time required by the processor for the execution of 1byte instructon. 
It is mainly depend on the frequency of operation of the processor. The 
formula used is 
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For example suppose a control unit is designed to operate at 12Mhz 
frequency. Then the machine cycle is calculated as 

   =1µsec. 

A 16-bit timer can count upto =65,535 pulses. Each pulse require 1 
machine cycle for its execution. The below diagram represents figure of the 
a 16-bit timer. 

 

Counter: 

Counter is also same as timer but it countes the number of external 
pulses rather than the generating/counting internal pulses. The below 
digram shows a counter which contain a mltiflexer and a counter. 

 

Watchdog timer: 

 This is also a special time of timer. The operation of watchdog timer 
is a token generated with required time. A countdown timer is started when 
this time reaches to zero, It enables to execute user specified task. The 
block diagram of the watchdog timer is as below 
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The subroutine for watch dog timer is as below. 

 

Sensors 

We start with a brief discussion of sensors. Sensors can be 
designed for virtually every physical quantity. There are sensors for weight, 
velocity, acceleration, electrical current, voltage, temperatures etc. A large 
amount of physical effects can be used for constructing sensors [Elsevier 
B.V., 2003a]. Examples include the law of induction (generation of voltages 
in an electric field), or light-electric effects. Also, there are sensors for 
chemical substances [Elsevier B.V., 2003b]. 

In recent years, a huge amount of sensors has been designed and 
much of the progress in designing smart systems can be attributed to 
modern sensor  technology. Hence, it is impossible to cover this subset of 
embedded hardware technology comprehensively and we can only give 
characteristic examples:  

Acceleration sensors: Fig.shows a small sensor manufactured using 
microsystem technology. The sensor contains a small mass in its center. 
When accelerated, the mass will be displaced from its standard position, 
thereby changing the resistance of the tiny wires connected to the mass. 
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Rain sensors: In order to remove distraction from drivers, some recent 
high end cars contain rain sensors. Using these, the speed of the wipers 
can be automatically adjusted to the amount of rain. 

Image sensors: There are essentially two kinds of image sensors: charge 

coupled devices (CCDs) and CMOS sensors. In both cases, arrays of light 
sensors are used. The architecture of CMOS sensor arrays is similar to that 
of standard memories: individual pixels can be randomly addressed and 
read out. CMOS sensors use standard CMOS technology for integrated 
circuits [Dierickx, 2000]. Due to this, sensors and logic circuits can be 
integrated on the same chip. This allows some preprocessing to be done 
already on the sensor chip, leading to so-called smart sensors. CMOS sen 
sors require only a single standard supply voltage and interfacing in 
general is easy. Therefore, CMOS-based sensors can be cheap. In 
contrast, CCD technology is optimized for optical applications. In CCD 
technology, charges have to be transfered from one pixel to the next until 
they can finally be read out at an array boundary. This sequential charge 
transfer also gave CCDs their name. Images generated with CCDs can be 
of higher quality than those generated using CMOS sensors, since they 
generate less noise. However, interfacing is more complex. As a result, 
CMOS sensors are appropriate for applications requiring low or medium 
costs and low or medium image quality. CCD sensors are more adequate 
for high quality, expensive image sensors. 

Bio-metrical sensors: Demands for higher security standards as well as 

the need to protect mobile and removable equipment have led to an 
increased interest in authentication. Due to the limitations of password 
based security (e.g. stolen and lost passwords), smartcards, bio-metrical 
sensors and bio-medical authentication receive significant attention. Bio-
medical authentication tries to identify whether or not a certain person is 
actually the person she or he claims to be. Methods for bio-medical 
authentication include iris scans, finger print sensors and face recognition. 
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Finger print sensors are typically fabricated using the same CMOS 
technology which is used for manufacturing integrated circuits. Possible 
applications include notebooks which grant access only if the user’s finger 
print is recognized. CCD and CMOS image sensors described above are 
used for face recognition. False accepts as well as false rejects are an 
inherent problem of bio-medical authentication. In contrast to password 
based authentication, exact matches are not possible. 

Artifical eyes: Artificial eye projects have received significant attention. 

While some projects attempt to actually affect the eye, others try to provide 
vision in an indirect way. The Dobelle Institute is experimenting with a 
setup in which a little camera is attached to glasses. This camera is 
connected to a computer translating these patterns into electrical pulses. 
These pulses are then sent directly to the brain, using a direct contact 
through an electrode. Currently (2003), the resolution is in the order of 128 
by 128 pixels, enabling blind persons to drive a car in controlled areas. 

Other sensors: Other common sensors include: pressure sensors, 
proximity sensors, engine control sensors, Hall effect sensors, and many 
more. 

Sample-and-hold circuits 

All known digital computers work in the discrete time domain. This 
means they can process discrete sequences of values. Hence, values in 
the continuous domain have to be converted to the discrete domain. This is 
the purpose of sample-and-hold circuits. Fig.(left) shows a simple sample-
and-hold-circuit. In essence, the circuit consists of a clocked transistor and 
a capacitor. The transistor operates like a switch. Each time the switch is 
closed by the clock signal, the capacitor is charged so that its voltage is 
practically the same as the incoming voltage Ve. After opening the switch 
again, this voltage remain essentially unchanged until the switch is closed 
again. Each of the values stored on the capacitor can be considered as an 
element of a discrete sequence of values Vx, generated from a continuous 
sequence Ve. 

Sample-and-hold-circuit 

 

An ideal sample-and-hold circuit would be able to change the voltage at the 
capacitor in an arbitrarily short amount of time. This way, the input voltage 
at a particular instance in time could be transfered to the capacitor and 
each element in the discrete sequence would correspond to the input 
voltage at a particular point in time. In practice, however, the transistor has 
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to be kept closed for a short time window in order to really charge or 
discharge the capacitor. The voltage stored on the capacitor will then 
correspond to a voltage averaged over that short time window. 

Processing Units 

For information processing, we will consider ASICs (application-
specific integrated circuits) using hardwired multiplexed designs, 
reconfigurable logic, and processors. These three technologies are quite 
different, for example, as far as their energy efficiency is concerned. 
Fig.shows the number of operations per Watt that can be achieved with a 
certain hardware technology. 

Hardware Efficiency 

 

Obviously, the number of operations per Watt is increasing as technology 
advances to smaller and smaller feature sizes of integrated circuits. 
However, for any given technology, the number of operations per Watt is 
largest for application specific hardwired circuits. For reconfigurable logic, 
this value is about one order of magnitude lower. For programmable 
processors, it is about two orders of magnitude lower. On the other hand, 
processors offer the largest amount of flexibility, resulting from the flexibility 
of software. There is also some flexibility for reconfigurable logic, but it is 
limited to the size of applications that can be mapped to such logic. For 
hardwired designs, there is no flexibility. This observation also applies for 
processors: For processors optimized for the application domain, such as 
processors optimized for digital signal processing (DSP processors), 
power-efficiency values approach those of reconfigurable logic. For general 
standard microprocessors, the values for this figure of merit are the worst. 
The energy E for a certain application is closely related to the power P 
required per operation, since 

 

Hence, reducing the power consumption also decreases the energy 
consumption, provided that the integral is taken over the same period of 
time. In some cases, however, a slightly increased power consumption 
might lead to a drastic reduction in the execution time and, hence, might 
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lead to a minimized energy consumption. So, in some cases a minimized 
power consumption also corresponds to a minimized energy consumption, 
but this is not necessarily always true. 

Minimization of power and energy consumption are both important. 
Power consumption has an effect on the size of the power supply, the 
design of the voltage regulators, the dimensioning of the interconnect, and 
short term cooling. Minimizing the energy consumption is required 
especially for mobile applications, since battery technology is only slowly 
improving , and since the cost of energy may be quite high. Also, a reduced 
energy consumption decreases cooling requirements and improves the 
reliability.  Fig. reflects the efficiency/flexibility conflict of currently available 
hardware technologies: if we want to aim at very power- and energy-
efficient designs, we should not use flexible designs based on processors 
or re-programmable logic and if we go for excellent flexibility, we cannot be 
power-efficient.We will consider ASICs first. 

Application-Specific Circuits (ASICs) 

For high-performance applications and for large markets, 
application-specific integrated circuits (ASICs) can be designed. However, 
the cost of designing and manufacturing such chips is quite high. For 
example, the cost of the mask which is used for transferring geometrical 
patterns onto the chip can cost about 105 Euros or dollars. Therefore, 
ASICs are appropriate only if either maximum energy efficiency is needed 
and if the market accepts the costs or if a large number of such systems 
can be sold. 

Processors 

The key advantage of processors is their flexibility. With processors, 
the overall behavior of embedded systems can be changed by just 
changing the software running on those processors. Changes of the 
behavior may be required in order to correct design errors, to update the 
system to a new or changed standard or in order to add features to the 
previous system. Because of this, processors have become very popular. 
This popularity has also been stressed in the public press: 

At the chip level, embedded chips include micro-controllers and 
microprocessors. Micro-controllers are the true workhorses of the 
embedded family. They are the original ’embedded chips’ and include 
those first employed as controllers in elevators and thermostats. Embedded 
processors have to be efficient and they do not need to be instruction set 
compatible with commonly used personal computers (PCs). Therefore, 
their architectures may be different from those processors found in PCs. 

Energy-efficiency:  

Architectures have to be optimized for their energy efficiency and 
we have to make sure that we are not loosing efficiency in the software 
generation process. For example, compilers generating 50% overhead in 
terms of the number of cycles will take us further away from the efficiency 
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of ASICs, possibly by even more than 50%, if the supply voltage and the 
clock frequency have to be increased in order to meet deadlines.  

There is a large amount of techniques available that can make 
processors energy efficient and energy efficiency should be considered at 
various levels of abstraction, from the design of the instruction set down to 
the design of the chip manufacturing process [Burd and Brodersen, 2003]. 
Gated clocking is an example of such a technique. With gated clocking, 
parts of the processor are decoupled from the clock during idle periods. For 
example, no clock is applied to the multiplier if no multiplications are 
executed. Also, there are attempts, to get rid of the clock for major parts of 
the processor altogether. There are two contrasting approaches: globally 
synchronous, locally asynchronous processors and globally asynchronous, 
locally synchronous processors (GALS) [Iyer and Marculescu, 2002]. Two 
techniques can be applied at a rather high level of abstraction: 

Dynamic power management (DPM): 

With this approach, processors have several power saving states in 
addition to the standard operating state. Each power saving state has a 
different power consumption and a different time for transitions into the 
operating state. Fig. shows the three states for the StrongArm SA 1100 
processor. 

 

The processor is fully operational in the run state. In the idle state, it is just 
monitoring the interrupt inputs. In the sleep state, all on-chip activity is 
shutdown. Note the large difference in the power consumption between the 
sleep state and the other states, and note also the large delay for 
transitions from the sleep to the run state. 

Dynamic voltage scaling (DVS):  

This approach exploits the fact that the energy consumption of 
CMOS processors increases with the supply voltage Vdd . The power 
consumption P of CMOS circuits is given by 

 

where α is the switching activity, CL is the load capacitance, Vdd is the 
supply voltage and f is the clock frequency. The delay of CMOS circuits can 
be approximated as 
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where k is a constant, and Vt is the threshold voltage. Vt has an impact on 
the transistor input voltage required to switch the transistor on. For 
example, for a maximum supply voltage of Vdd,max=3.3 volts, Vt may be in 
the order of 0.8 volts. Consequently, the maximum clock frequency is a 
function of the supply voltage. However, decreasing the supply voltage 
reduces the power quadratically, while the run-time of algorithms is only 
linearly increased (ignoring the effects of the memory system). This can be 
exploited in a technique called dynamic voltage scaling (DVS). For 
example, the CrusoeTM processor by Transmeta provides 32 voltage 
levels between 1.1 and 1.6 volts, and the clock can be varied between 200 
MHz and 700 MHz in increments of 33 MHz. Transitions from one 
voltage/frequency pair to the next takes about 20 ms. Design issues for 
DVS-capable processors are described in a paper by Burd and Brodersen. 
According to the same paper, potential power savings will exist even for 
future technologies with a decreased maximum Vdd , since the threshold 
voltages will also be decreased (unfortunately, this will lead to increased 
leakage currents, increasing the standby power consumption). Two 
different speed/voltage pairs are provided with the Intel SpeedStepTM 
technology for the Mobile Pentium III. 

Code-size efficiency:  

Minimizing the code size is very important for embedded systems, 
since hard disc drives are typically not available and since the capacity of 
memory is typically also very limited. This is even more pronounced for 
systems on a chip (SOCs). For SOCs, the memory and processors are 
implemented on the same chip. In this particular case, memory is called 
embedded memory. Embedded memory may be more expensive to 
fabricate than separate memory chips, since the fabrication processes for 
memories and processors have to be compatible. Nevertheless, a large 
percentage of the total chip area may be consumed by the memory. There 
are several techniques for improving the code-size efficiency: 

– CISC machines: Standard RISC processors have been designed for 
speed, not for code-size efficiency. Earlier Complex Instruction Set 
Processors (CISC machines) were actually designed for code-size 
efficiency, since they had to be connected to slow memories and caches 
were not frequently used. Therefore, “old-fashioned” CISC processors are 
finding applications in embedded systems. Motorola’s ColdFire processors, 
which are based on the Motorola 68000 family of CISC processors are an 
example of this. 

– Compression techniques: In order to reduce the amount of silicon needed 
for storing instructions as well as in order to reduce the energy needed for 
fetching these instructions, instructions are frequently stored in the memory 
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in compressed form. This reduces both the area as well as the energy 
necessary for fetching instructions. Due to the reduced bandwidth 
requirements, fetching can also be faster. A (hopefully small and fast) 
decoder is placed between the processor and the (instruction) memory in 
order to generate the original instructions on the fly (see fig. 3.11, right). 
Instead of using a potentially large memory of uncompressed instructions, 
we are storing the instructions in a compressed format. 

Decompression of compressed instructions 

 

The goals of compression can be summarized as follows: 

∗ We would like to save ROM and RAM areas, since these may be more 
expensive than the processors themselves. 

∗ We would like to use some encoding technique for instructions and 
possibly also for data with the following properties: 

· There should be little or no run-time penalty for these techniques. 

· Decoding should work from a limited context (it is, for example, impossible 
to read the entire program to find the destination of a branch instruction). 

· Word-sizes of the memory, of instructions and addresses have to be 
taken into account. 

· Branch instructions branching to arbitrary destination addresses have to 
be supported. 

· Fast encoding is only required if writable data is encoded. Otherwise, fast 
decoding is sufficient. 

There are several variations of this scheme: 

∗ For some processors, there is a second instruction set. This second 
instruction set has a narrower instruction format. An example of this is the 
ARM processor family. The ARM instruction set is a 32 bit instruction set. 
The ARM instruction set includes predicated execution. This means an 
instruction is executed if and only if a certain condition is met (see page 
113). This condition is encoded in the first four bits of the instruction format. 
Most ARM processors also provide a second instruction set, with 16 bit 
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wide instructions, called THUMB instructions. THUMB instructions are 
shorter, since they do not support predication, use shorter and less register 
fields and use shorter immediate fields. (see fig.). 

 

THUMB instructions are dynamically converted into ARMinstructions while 
programs are running. THUMB instructions can use only half the registers 
in arithmetic instructions. Therefore, register fields of THUMB instructions 
are concatenated with a ’0’-bit. In the THUMB instruction set, source and 
destination registers are identical and the length of constants that can be 
used, is reduced by 4 bits. During decoding, pipelining is used to keep the 
run-time penalty low. Similar techniques also exist for other processors. 
The disadvantage of this approach is that the tools (compilers, assemblers, 
debuggers etc.) have to be extended to support a second instruction set. 
Therefore, this approach can be quite expensive in terms of software 
development cost. 

∗ A second approach is the use of dictionaries. With this approach, each 
instruction pattern is stored only once. For each value of the program 
counter, a look-up table then provides a pointer to the corresponding 
instruction in the instruction table, the dictionary (see fig.). 

 

This approach relies on the idea that only very few different instruction 
patterns are used. Therefore, only few entries are required for the the 
instruction table. Correspondingly, the bit width of the pointers can be quite 
small. Many variations of this scheme exist. Some are called two-level 
control store. 

Run-time efficiency:  
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In order to meet time constraints without having to use high clock 
frequencies, architectures can be customized to certain application 
domains, such as digital signal processing (DSP). One can even go one 
step further and design application specific instruction set 
processors(ASIPs). As an example of domain-specific processors, we will 
consider processors for DSP. In digital signal processing, digital filtering is 
a very frequent operation. Equation 3.3 describes a digital filter generating 
an output sequence y =(y0,y1, ...) from an input sequence x =(x0,x1, ...). 

 

A certain output element yi corresponds to a weighted average over the 
last n sequence elements of x and can be computed iteratively using 
following equations. 

 

DSPs are designed such that each iteration can be encoded as a single 
instruction. Let us consider an example. Fig.shows the internal architecture 
of an ADSP 2100 DSP processor. 
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The processor has two memories, called D and P. A special 
address generating unit (AGU) can be used to provide the pointers for 
accessing these memories. There are separate units for additions and 
multiplications, each with their own argument registers AX, AY, AF, MX, 
MY and MF. The multiplier is connected to a second adder in order to 
compute series of multiplications and additions quickly. 

For this processor, the update of the partial sum is essentially 
performed in a single cycle. For this purpose, the two memories are 
allocated to hold the two arrays x and a and address registers are allocated 
such that relevant pointers can be easily updated in the AGU. Partial sums 
yi,j are stored in MR. The pipelined computation involves registers A1, A2, 
MX and MY,as can be seen from the following implementation of the filter. 

 

A single instruction encodes the loop body, comprising the following 
operations: 
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– reading of two arguments from argument registers MX and MY, 
multiplying them and adding the product to register MR storing values yi,j, - 
fetching the next elements of arrays a and x from memories P and D and 
storing them in argument registers MX and MY, 

– updating pointers to the next arguments, stored in address registers A1 

and A2, 

– testing for the end of the loop. 

This way, each iteration requires just a single instruction. In order to 
achieve this, several operations are performed in parallel. For given 
computational requirements, this (limited) form of parallelism leads to 
relatively low clock frequencies. Furthermore, the registers in this 
architecture perform different functions. They are said to be 
heterogeneous. Heterogeneous register files are a common characteristic 
for DSP processors. In order to avoid extra cycles for testing for the end of 
the loop, zero-overhead loop instructions are frequently provided in DSP 
processors. With such instructions, a single or a small number of 
instructions can be executed a fixed number of times. Processors not 
optimized for DSP would probably need several instructions per iteration 
and would therefore require a higher clock frequency, if available. 

DSP-Processors 

In addition to allowing single instruction realizations of loop bodies 
for filtering, DSP processors provide a number of other application-domain 
orientedfeatures: 

Specialized addressing modes:  

In the filter application described above, only the last n elements of 
x need to be available. Ring buffers can be used for that. These can be 
implemented easily with modulo addressing. In modulo addressing, 
addresses can be incremented and decremented until the first or last 
element of the buffer is reached. Additional increments or decrements will 
result in addresses pointing to the other end of the buffr.  

Separate address generation units:  

Address generation units (AGUs) are typically directly connected to 
the address input of the data memory (see fig.).  



                                                 Embedded systems 
   Notes 

 
 

88 

 

AGU using special address registers 

Addresses which are available in address registers can be used in register-
indirect addressing modes. This saves machine instructions, cycles and 
energy. In order to increase the usefulness of address registers, instruction 
sets typically contain auto-increment and -decrement options for 
mostinstructions using address registers. 

Saturating arithmetic: Saturating arithmetic changes the way 
overflows and underflows are handled. In standard binary arithmetic, wrap-
around is used for the values returned after an overflow or underflow. Fig. 
shows an example in which two unsigned four-bit numbers are added. A 
carry is generated which cannot be returned in any of the standard 
registers. The result register will contain a pattern of all zeros. No result 
could be further away from the true result than this one. 

 Wrap-around vs. saturating arithmetic for unsigned integers 

 

In saturating arithmetic, we try to return a result which is as close as 
possible to the true result. For saturating arithmetic, the largest value is 
returned in the case of an overflow and the smallest value is returned in the 
case of an underflow. This approach makes sense especially for video and 
audio applications: the user will hardly recognize the difference between 
the true result value and the largest value that can be represented. Also, it 
would be useless to raise exceptions if overflows occur, since it is difficult 
to handle exceptions in real-time. Note that we need to know whether we 
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are dealing with signed or unsigned add instructions in order to return the 
right value. 

Fixed-point arithmetic: Floating-point hardware increases the cost 
and power-consumption of processors. Consequently, it has been 
estimated that 80 % of the DSP processors do not include floating-point 
hardware. However, in addition to supporting integers, many such 
processors do support fixed-point numbers. Fixed-point data types can be 
specified by a 3-tuple (wl, iwl, sign),where wl is the total word-length, iwl is 
the integer word-length (the number of bits left of the binary point), and sign 

s ∈{s,u} denotes whether we are dealing with unsigned or signed numbers. 
See also fig. Furthermore, there may be different rounding modes (e.g. 
truncation) and overflow modes (e.g. saturating and wrap-around 
arithmetic). 

Parameters of a fixed-point number system 

 

For fixed-point numbers, the position of the binary point is maintained after 
multiplication (some low order bits are truncated or rounded). For fixedpoint 
processors, this operation is supported by hardware. 

Real-time capability: Some of the features of modern processors 
used in PCs are designed to improve the average execution time of 
programs. In many cases, it is difficult if not impossible to formally verify 
that they improve the worst case execution time. In such cases, it may be 
better not to implement these features. For example, it is difficult (though 
not impossible [Absint, 2002]) to guarantee a certain speedup resulting 
from the use of caches. Therefore, many embedded processors do not 
have caches. Also, virtual addressing and demand paging are normally not 
found in embedded systems.  

Multiple memory banks or memories: the usefulness of multiple 
memory banks was demonstrated in the ADSP 2100 example: the two 
memories D and P allow fetching both arguments at the same time. 
Several DSP processors come with two memory banks. 

Heterogenous register files: heterogenous register files were 
already mentioned for the filter application. 

Multiply/accumulate instructions: these instructions perform 
multiplications followed by additions. They were also already used in the 
filter application. 

Multimedia processors 
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Registers and arithmetic units of many modern architectures are 64 
bits wide. Therefore, two 32 bit data types (“double words”), four 16 bit data 
types (“words”) or eight 8 bit data types (“bytes”) can be packed into a 
single register (see fig.). 

 

Using 64 bit registers for packed words 

Arithmetic units can be designed such that they suppress carry bits 
at double word, word or byte boundaries. Multimedia instruction sets exploit 
this fact by supporting operations on packed data types. Such instructions 
are sometimes called single-instruction, multiple-data (SIMD) instructions, 
since a single instruction encodes operations on several data elements. 
With bytes packed into 64-bit registers, speed-ups of up to about eight over 
non-packed data types are possible. Data types are typically stored in 
packed form in memory. Unpacking and packing are avoided if arithmetic 
operations on packed data types are used. Furthermore, multimedia 
instructions can usually be combined with saturating arithmetic and 
therefore provide a more efficient form of overflow handling than standard 
instructions. Hence, the overall speed-up achieved with multimedia 
instructions can be significantly larger than the factor of eight enabledby 
operations on packed data types. 

Very long instruction word (VLIW) processors 

Computational demands for embedded systems are increasing, 
especially when multimedia applications, advanced coding techniques or 
cryptography are involved. Performance improvement techniques used in 
high-performance microprocessors are not appropriate for embedded 
systems: driven by the need for instruction set compatibility, processors 
found, for example, in PCs spend a huge amount of resources and energy 
on automatically finding parallelism in application programs. Still, their 
performance is frequently not sufficient. For embedded systems, we can 
exploit the fact that instruction set compatibility with PCs is not required. 
Therefore, we can use instructions which explicitely identify operations to 
be performed in parallel. This is possible with explicit parallelism instruction 
set computers (EPICs). With EPICs, detection of parallelism is moved from 
the processor to the compiler. This avoids spending silicon and energy on 
the detection of parallelism at runtime. As a special case, we consider very 
long instruction word (VLIW) processors. For VLIW processors, several 
operations or instructions are encoded in a long instruction word 
(sometimes called instruction packet) and are assumed to be executed in 
parallel. Each operation/instruction is encoded in a separate field of the in 
struction packet. Each field controls certain hardware units. Four such 
fields are used in fig., each one controlling one of the hardware units. 

VLIW architecture (example) 
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For VLIWarchitectures, the compiler has to generate instruction packets. 
This requires that the compiler is aware of the available hardware units and 
to schedule their use. EPICs are sometimes also used for PCs [Transmeta, 
2005, Intel, 2005]. However, legacy problems result in severe constraints 
for doing this.Instruction fields must be present, regardless of whether or 
not the corresponding functional unit is actually used in a certain instruction 
cycle. As a result, the code density of VLIW architectures may be low, if 
insufficient parallelism is detected to keep all functional units busy. The 
problem can be avoided if more flexibility is added. For example, the Texas 
Instruments TMS 320C6xx family of processors implements a variable 
instruction packet size of up to 256 bits. In each instruction field, one bit is 
reserved to indicate whether or not the operation encoded in the next field 
is still assumed to be executed in parallel (see fig.). No instruction bits are 
wasted for unused functional units.  

 

Instruction packets for TMS 320C6xx 

 

Due to its variable length instruction packets, TMS 320C6xx processors do 
not quite correspond to the classical model of VLIW processors. Due to 
their explicit description of parallelism, they are EPIC processors, though. 
Partitioned Register Files. Implementing register files for VLIW and EPIC 
processors is far from trivial. Due to the large number of operations that 
can be performed in parallel, a large number of register accesses has to be 
provided in parallel. Therefore, a large number of ports is required. 
However, the delay, size and energy consumption of register files 
increases with their number of ports. Hence, register files with very large 
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numbers of ports are inefficient. As a consequence, many VLIW/EPIC 
architectures use partitioned register files. Functional units are then only 
connected to a subset of the register files. As an example, fig. shows the 
internal structure of the TMS 320C6xx processors. These processors have 
two register files and each of them is connected to half of the functional 
units. During each clock cycle, only a single path from one register file to 
the functional units connected to the other register file is available. 

Many DSP processors are actually VLIW processors. As an example, we 
are considering the M3-DSP processor [Fettweis et al., 1998]. 

Partitioned register files for TMS 320C6xx 

 

cessor is a VLIW processors containing (up to) 16 parallel data paths. 
These data paths are connected to a group memory, providing the 
necessary arguments in parallel (see fig.). 

 

 

 

 

 

 

M3-DSP (simplified) 
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Predicated Execution. A potential problem of VLIW and EPIC architectures 
is their potentially large delay penalty: This delay penalty might originate 
from branch instructions found in some instruction packets. Instruction 
packets normally have to pass through pipelines. Each stage of these 
pipelines implements only part of the operations to be performed by the 
instructions executed. The fact that branch instructions exist cannot be 
detected in the first stage of the pipeline. When the execution of the branch 
instruction is finally completed, additional instructions have already entered 
the pipeline (see fig.). 

 

Branch instruction and delay slots 

There are essentially two ways to deal with these additional instructions: 

1 They are executed as if no branch had been present. This case is called 
delayed branch. Instruction packet slots that are still executed after a 
branch are called branch delay slots. These branch delay slots can be filled 
with instructions which would be executed before the branch if there were 
no delay slots. However, it is normally difficult to fill all delay slots with 
useful instructions and some have to be filled with no-operation instructions 
(NOPs). The term branch delay penalty denotes the loss of performance 
resulting from these NOPs. 
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2 The pipeline is stalled until instructions from the branch target address 
have been fetched. There are no branch delay slots in this case. In this 
organization the branch delay penalty is caused by the stall. Branch delay 
penalties can be significant. For example, the TMS 320C6xx family of 
processors has up to 40 delay slots. Therefore, efficiency can be improved 
by avoiding branches, if possible. In order to avoid branches originating 
from if-statements, predicated instructions have been introduced. For each 
predicated instruction, there is a predicate. This predicate is encoded in a 
few bits and evaluated at run-time. If the result is true, the instruction is 
executed. Otherwise, it is effectively turned into a NOP. Predication can 
also be found in RISC machines such as the ARM processor. Example: 
ARM instructions, as introduced on page 104, include a four-bit field. These 
four bits encode various expressions involving the condition code registers. 
Values stored in these registers are checked at run-time. They determine 
whether or not a certain instruction has an effect. Predication can be used 
to implement small if-statements efficiently: the condition is stored in one of 
the condition registers and if-statement-bodys are implemented as 
predicated instructions which depend on this condition. This way, if-
statement bodys can be evaluated in parallel with other operations and no 
delay penalty is incurred.  

Summary: 

 A processor is said to be single-purpose processor performs 
specific computation task, custom single-purpose processors 

 Timer measures time intervals to generate, timed output events & to 
measure input events 

 A Counter is like a timer, but counts pulses on a general input signal 
rather than clock 

 A watchdog timer can be treated as a count down timer which 
executes a special code upon its expire. 

 For high-performance applications and for large markets, 
application-specific integrated circuits (ASICs) can be designed.  

 At the chip level, embedded chips include micro-controllers and 
microprocessors. Micro-controllers are the true workhorses of the 
embedded family. They are the original ’embedded chips’ and 
include those first employed as controllers in elevators and 
thermostats. 

Reference Questions: 

1. Write a brief notes on Application specific processors? 

2. Write a brief notes on multimedia processors? 

3. Write a brief notes on VLIW processors? 

4. What is a sensor? Explain different types of sensors. 
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5. Explain the following 

a. Timers 

b. Counters 

c. Watchdog timers. 

References: 

 Catsoulis J.Designing embedded hardware.2005 

 Embedded_Controller_Hardware_Designby ken arnold 

 Embedded systems by raj kamal 

 www.embedded.com 
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UNIT – III 
 
 

7. MEMORY 
 

Objective: 

Memory chip connected in the embedded device may be 
external or internal. If micro processor is used as controlling device the 
memory connected is external and if micro controller is used memory is 
internal. Wherever we place memory it communicates with the CPU 
using data and address busses. Each controlling device has a specific 
addressing range. An addressing range is the number of addresses a 
controller can access. The addressing scheme used to access to these 
spaces varies from processor to processor, but the underlying hardware 
is similar. The different types of memories available are explained 
below.  

RAM 

Random access memory1 or RAM consists of memory 
addresses the CPU can both read from and write to. RAM is used for 
data memory and allows the CPU to create and modify data as it 
executes the application program. RAM is volatile; it holds its contents 
only as long as it has a constant power supply. If power to the chip is 
turned off, the contents of RAM are lost. This does not mean that RAM 
contents are lost during a chip reset. Vital state information or other 
data can be recorded in data memory and recovered after an interrupt 
or reset. Some chips provide an alternate RAM power supply so that 
memory contents can be maintained even when the rest of the chip is 
without power. This does not make RAM any less volatile, without a 
backup power source the contents would still be lost. This type of RAM 
is called battery backed-up static RAM. 

ROM 

ROM, read only memory, is typically used for program 
instructions. The ROM in a microcontroller usually holds the final 
application program. Maskable ROM is memory space that must be 
burned in by the manufacturer of the chip as it is constructed. To do 
this, you must provide the chip builder with the ROM contents you wish 
the chip to have. The manufacturer will then mask out appropriate ROM 
blocks and hardwire the information you have provided. Since recording 
chip ROM contents is part of the manufacturing process, it is a costly 
one-time expense. If you intend to use a small number of parts, you 
may be better off using chips with PROM. If you intend to use a large 
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number of parts for your application, then the one-time expense of 
placing your program in ROM is more feasible. 

PROM 

Programmable ROM, or PROM, started as an expensive means 
to prototype and test application code before burning ROM. In recent 
years PROM has gained popularity to the point where many developers 
consider it a superior alternative to burning ROM. As microcontroller 
applications become more specialized and complex, needs for 
maintenance and support rise. Many developers use PROM devices to 
provide software updates to customers without the cost of sending out 
new hardware. There are many programmable ROM technologies 
available which all provide a similar service. A special technique is used 
to erase the contents of programmable ROM then a special method is 
used to program new instructions into the ROM. Often, the developer 
uses separate hardware to perform each of these steps. 

EPROM 

EPROM (erasable programmable ROM) is not volatile and is 
read only. Chips with EPROM have a quartz window on the chip. Direct 
exposure to ultra-violet radiation will erase the EPROM contents. 
EPROM devices typically ship with a shutter to cover the quartz window 
and prevent ambient UV from affecting the memory. Often the shutter is 
a sticker placed on the window. Developers use an EPROM eraser to 
erase memory contents efficiently. The eraser bombards the memory 
with high-intensity UV light. To reprogram the chip, an EPROM 
programmer is used, a device which writes instructions into EPROM. 
The default, blank state for an EPROM device has each block of 
memory set. When you erase an EPROM you are really setting all 
memory blocks to 1. Reprogramming the device resets or clears the 
appropriate EPROM bits to 0. Because of the way EPROM storage is 
erased, you cannot selectively delete portions of EPROM when you 
erase the memory you must clear the entire storage space. 

EEPROM 

EEPROM (electrically erasable programmable ROM) devices 
have a significant advantage over EPROM devices as they allow 
selective erasing of memory sections. EEPROM devices use high 
voltage to erase and re-program each memory block. Some devices 
require an external power source to provide the voltage necessary for 
erasing and writing and some have an onboard pump which the chip 
can use to build up a charge of the required voltage. Developers can 
reprogram EEPROM devices while the chip is operating. However, 
EEPROM that can be rewritten is usually restricted to data memory 
storage. EEPROM storage used as program memory typically requires 
the use of an external power source and a programmer just like 
EPROM storage. The most common use for EEPROM is recording and 
maintaining configuration data vital to the application. For example, 
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many modems use EEPROM storage to record the current 
configuration settings. This makes the configuration available to the 
modem user after cycling the power on the modem. Often the default or 
factory configuration settings are stored in ROM and the user can issue 
a command to restore default settings by overwriting the current 
contents of EEPROM with the default information. Sometimes chip 
manufacturers build EEPROM blocks into the chip for last-minute 
configuration options. This saves manufacturers money as they can 
design and fabricate a single chip and then set the EEPROM blocks to 
provide special purpose versions with specific capabilities. This method 
is often used to produce microcontroller versions for use on an 
evaluation board where chip access to its own onboard ROM is turned 
off and replaced with external EPROM or EEPROM storage. This allows 
developers to test application code in cycles by downloading it to the 
board, programming the code into the EPROM or EEPROM, and 
debugging it as it executes in the target hardware. 

Flash Memory 

Flash memory is an economical compromise between EEPROM 
and EPROM technology. As with EEPROM high voltage is applied to 
erase and rewrite flash memory. However, unlike EEPROM, you cannot 
selectively erase portions of flash memory – you must erase the entire 
block as with EPROM devices. Many manufacturers are turning to flash 
memory. It has the advantages of not requiring special hardware and 
being inexpensive enough to use in quantity. Manufacturers often 
provide customers with microcontroller products whose ROM is loaded 
with a boot or configuration kernel where the application code is written 
into flash memory. When the manufacturer wants to provide the 
customer with added functionality or a maintenance update, the 
hardware can be reprogrammed on site without installing new physical 
parts. The hardware is placed into configuration mode which hands 
control to the kernel written in ROM. This kernel then handles the 
software steps needed to erase and re-write the contents of the flash 
memory. Another useful implementation of flash memory includes a 
device which can connect electronically to a computer owned by the 
manufacturer. The configuration kernel connects to the manufacturer’s 
computer, downloads the latest version of the control application and 
writes this application to flash memory. Such elaborate applications are 
typically beyond the resources of an 8 bit microcontroller; we mention 
the example to show the advantage of programmable ROM 
technologies.  

Registers 

The CPU maintains a set of registers which it uses to store 
information. Registers are used to control program execution and 
maintain intermediate values needed to perform required calculations. 
Some microcontrollers provide access to CPU registers for temporary 
storage purposes. This can be extremely Dangerous as the CPU can at 
any time overwrite a register being used for its designated purpose 8 bit 
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microcontrollers do not often provide resources for register memory 
outside the CPU. This means that the C register keyword is 
meaningless because the compiler cannot dedicate a CPU register for 
data storage. Some C implementations will set aside RAM for special 
purpose pseudo-registers to use when your application attempts certain 
operations. For example, if you attempt a 16 bit math operation, the 
compiler can dedicate a portion of base page RAM for 16 bit pseudo-
registers which store values during math operations. You can use these 
special registers for temporary purposes in places where your code will 
not require them for their intended purpose. You must be careful, if the 
compiler uses a pseudo-register it will overwrite current contents.  

Memory Management 

In order to understand what memory management is, it’s helpful 
to understand the motivation behind its use. There are two kinds of 
memory management: memory address relocation and memory 
performance enhancement. They are often used in conjunction, as is 
commonly done in personal computers. This section covers the 
performance enhancement aspects, while the address relocation issues 
will be covered in Chapter Six. The differences between different 
storage technologies, in terms of performance and cost, vary over many 
orders of magnitude. For example, semiconductor memory devices 
have access times that are many orders of magnitude faster 
(nanosecond vs. millisecond access time) than that of magnetic disks. 
Of course, magnetic disks also have a cost several orders of magnitude 
less than semiconductor memory on a cost per bit basis. This disparity 
in price and performance has lead to the idea of using small, fast 
memories to store the most frequently accessed subset of the complete 
collection of data present in a larger, slower memory. This technique of 
buffering, often referred to as caching memory contents in a fast 
memory, is essentially similar whether it is applied to the memory 
attached to a CPU or the magnetic or optical storage mechanisms. In 
fact, there may be several layers of caching in a given system, starting 
with the smallest, fastest memory closest to the CPU, followed by 
slower but larger memories. 

Cache Memory 

When a high speed memory is used to provide rapid access to 
the CPU for most frequently used portion provide rapid access to data 
stored on a disk, it is referred to as a disk cache. The objective of these 
approaches is to maximize the likelihood that most pieces of data will be 
found in the small and fast memory most of the time, thus reducing the 
average effective access time. The object is to succeed at finding most 
data in the small fast memory most of the time, minimizing the number 
of accesses to the big slow memory. Fast SRAM is used as a fast 
temporary buffer (memory cache) between main memory and the CPU. 
Main memory DRAM is used to buffer disk data (disk cache). Most hard 
disk drives also have some internal fast semiconductor RAM to cache 
data as it is being transferred to and from the disk.  
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Virtual Memory 

Disk storage can be used to emulate a larger primary memory 
than is actually available. Demand paged virtual memory provides an 
apparently large primary memory by swapping pages of data between 
real primary memory and disk. This is a combination of hardware for 
translating logical (virtual) addresses, moving pages as needed, and 
operating system software to determine where and when pages should 
be kept and detect access attempts to pages which are not in primary 
memory. When address relocation mechanisms are combined with disk 
caching and special system software, it is possible to make the main 
memory appear much larger than it actually is to a program running on 
this type of machine. When the program attempts to access a location 
that is not present in the main memory, the hardware and software 
redirect the memory reference to a real block of memory, after the 
required data is loaded from disk. Thus the application program is 
presented with a virtual memory that is significantly larger than the 
actual physical main memory. This has the effect of simplifying the 
code, since all data can be referenced by a single address, rather than 
selecting a file, track, or sector on a disk. 

CPU Control Lines for Memory Interfacing 

 Some CPUs generate signals for memory timing and 
synchronization with devices having various access times using a 
technique that generates delay cycles for slow memories, referred to as 
wait states. The 8051 processor used in this text does not use or 
generate wait states for simplicity. The Dallas 80C320 series of high 
speed microcontrollers incorporate a software-controlled mechanism for 
generating wait states. These extended memory cycles allow the 
processor to work with slower memory and peripheral chips. 

DIRECT MEMORY ACCESS: 

 Direct memory access (DMA) is a means of having a peripheral 
device control a processor's memory bus directly. DMA permits the 
peripheral, such as a UART, to transfer data directly to or from memory 
without having each byte (or word) handled by the processor. Thus 
DMA enables more efficient use of interrupts, increases data 
throughput, and potentially reduces hardware costs by eliminating the 
need for peripheral-specific FIFO buffers. In a typical DMA transfer, 
some event (such as an incoming data-available signal from a UART) 
notifies a separate device called the DMA controller that data needs to 
be transferred to memory. The DMA controller then asserts a DMA 
request signal to the CPU, asking its permission to use the bus. The 
CPU completes its current bus activity, stops driving the bus, and 
returns a DMA acknowledge signal to the DMA controller. The DMA 
controller then reads and writes one or more memory bytes, driving the 
address, data, and control signals as if it were itself the CPU. (The 
CPU's address, data, and control outputs are restated while the DMA 
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controller has control of the bus.) When the transfer is complete, the 
DMA controller stops driving the bus and desserts the DMA request 
signal. The CPU can then remove its DMA acknowledge signal and 
resume control of the bus.  Each DMA cycle will typically result in at 
least two bus cycles: either a peripheral read followed by a memory 
write or a memory read followed by a peripheral write, depending on the 
transfer base addresses. The DMA controller itself does no processing 
on this data. It just transfers the bytes as instructed in its configuration 
registers. It's possible to do a flyby transfer that performs the read and 
write in a single bus cycle. However, though supported on the ISA bus 
and its embedded cousin PC/104, flyby transfers are not typical. 
Processors that support DMA provide one or more input signals that the 
bus requester can assert to gain control of the bus and one or more 
output signals that the processor asserts to indicate it has relinquished 
the bus. A typical output signal might be named HLDA (short for HoLD 
Acknowledge). When designing with DMA, address buffers must be 
disabled during DMA so the bus requester can drive them without bus 
contention. To avoid bus contention, the bus buffer used by the DMA 
device must not drive the address bus until after HLDA goes active to 
indicate that the CPU has stopped driving the bus signals, and it must 
stop driving the bus before the CPU drives HLDA inactive. The system 
design may also need pull-up resistors or terminators on control signals 
(such as read and write strobes) so the control signals don't float to the 
active state during the brief period when neither the processor nor the 
DMA controller is driving them. DMA controllers require initialization by 
software. Typical setup parameters include the base address of the 
source area, the base address of the destination area, the length of the 
block, and whether the DMA controller should generate a processor 
interrupt once the block transfer is complete. It's typically possible to 
have the DMA controller automatically increment one or both addresses 
after each byte (word) transfer, so that the next transfer will be from the 
next memory location. Transfers between peripherals and memory often 
require that the peripheral address not be incremented after each 
transfer. When the address is not incremented, each data byte will be 
transferred to or from the same memory location. DMA operations can 
be performed in either burst or single-cycle mode. Some DMA 
controllers support both. In burst mode, the DMA controller keeps 
control of the bus until all the data buffered by the requesting device has 
been transferred to memory (or when the output device buffer is full, if 
writing to a peripheral). In single-cycle mode, the DMA controller gives 
up the bus after each transfer. This minimizes the amount of time that 
the DMA controller keeps the processor off of the memory bus, but it 
requires that the bus request/acknowledge sequence be performed for 
every transfer. This overhead can result in a drop in overall system 
throughput if a lot of data needs to be transferred. In most designs, you 
would use single cycle mode if your system cannot tolerate more than a 
few cycles of added interrupt latency. Likewise, if the peripheral devices 
can buffer very large amounts of data, causing the DMA controller to tie 
up the bus for an excessive amount of time, single-cycle mode is 
preferable. Note that some DMA controllers have larger address 
registers than length registers. For instance, a DMA controller with a 32-
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bit address register and a 16-bit length register can access a 4GB 
memory space, but can only transfer 64KB per block. If your application 
requires DMA transfers of larger amounts of data, software intervention 
is required after each block. The simplest way to use DMA is to select a 
processor with an internal DMA controller. This eliminates the need for 
external bus buffers and ensures that the timing is handled correctly. 
Also, an internal DMA controller can transfer data to on-chip memory 
and peripherals, which is something that an external DMA controller 
cannot do. Because the handshake is handled on-chip, the overhead of 
entering and exiting DMA mode is often much faster than when an 
external controller is used. If an external DMA controller or processor is 
used, be sure that the hardware handles the transition between 
transfers correctly. To avoid the problem of bus contention, ensure that 
bus requests are inhibited if the bus is not free. This prevents the DMA 
controller from requesting the bus before the processor has reacquired 
it after a transfer. So you see, DMA is not as mysterious as it 
sometimes seems. DMA transfers can provide real advantages when 
the system is properly designed.  

 

Summary: 

 Memory can be either permanent or temporary. 

 Ranges of write ability  

o High end:processor writes to memory simply and 
quickly.e.g., RAM. 

o Middle range:processor writes to memory, but 
slower.e.g., FLASH, EEPROM. 

o Lower range: special equipment, “programmer”, must be 
used to write to memory.e.g., EPROM, OTP ROM. 

o Low end:bits stored only during fabrication.e.g., Mask-
programmed ROM. 

 Only one time programmable rom can be programmable only 
one time. 

 Eprom can be erased and programmed number of times using 
ultra voilent radiation with reduced storage. 

 EEprom can be erased and programmed number of times using 
inc ircuit system programmable. 

 Ram is a random access memory used only for temporary 
storage purposes. 
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Questions: 

 Write a brief notes on different types of memories. 

 Explain differet types of Volatile memories. 

 Explain memory management techniques. 
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UNIT – IV 

 

8. INTERFACES 

 

Objective: 

In this chapter and the next, we'll look at two low-cost interfaces 
used to connect peripheral chips to microcontrollers, within a single 
embedded system. These interfaces allow you to connect devices such 
as real-time clocks, nonvolatile memories for parameter storage, sensor 
interfaces, and much more. The interfaces are easy to use and cheap to 
implement, making them ideal for small, embedded applications. Some 
microcontrollers incorporate both types of interface, whereas others may 
only have one or the other. The one to use really depends on what your 
processor has to offer and the requirements of the particular peripheral 
you're using. 

Serial Peripheral Interface 

The Serial Peripheral Interface (known as SPI) was developed by 
Motorola to provide a low-cost and simple interface between 
microcontrollers and peripheral chips. (SPI is sometimes also known as 
a four-wire interface.) It can be used to interface to memory (for data 
storage), analog-digital converters, digital-analog converters, real-time 
clock calendars, LCD drivers, sensors, audio chips, and even other 
processors. The range of components that support SPI is large and 
growing all the time. 

Unlike a standard serial port, SPI is a synchronous protocol in 
which all transmissions are referenced to a common clock, generated by 
the master (processor). The receiving peripheral (slave) uses the clock 
to synchronize its acquisition of the serial bit stream. Many chips may be 
connected to the same SPI interface of a master. A master selects a 
slave to receive by asserting the slave's chip select input. A peripheral 
that is not selected will not take part in a SPI transfer. 

SPI uses four main signals: Master out Slave in (MOSI), Master 
in Slave out (MISO), Serial CLocK (SCLK or SCK) and Chip Select (CS) 
for the peripheral. Some processors have a dedicated chip select for SPI 
interfacing called Slave Select (SS). 

MOSI is generated by the master and is received by the slave. 
On some chips, MOSI is labeled simply as Serial In (SI) or Serial Data In 
(SDI). MISO is produced by the slave, but its generation is controlled by 
the master. MISO is sometimes known as Serial Out (SO) or Serial Data 
Out (SDO) on some chips. The chip select to the peripheral is normally 
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generated by simply using a spare I/O pin of the master. Figure shows a 
microprocessor interfaced to a peripheral using SPI. 

 

Both masters and slaves contain a serial shift register. The 
master starts a transfer of a byte by writing it to its SPI shift register. As 
the register transmits the byte to the slave on the MOSI signal line, the 
slave transfers the contents of its shift register back to the master on the 
MISO signal line. In this way, the contents of the two shift registers are 
exchanged. Both a write and a read operation are performed with the 
slave simultaneously. SPI can therefore be a very efficient protocol. 

 

If only a write operation is desired, the master just ignores the 
byte it receives. Conversely, if the master just wishes to read a byte from 
the slave, it must transfer a dummy byte in order to initiate a slave 
transmission. 

Some peripherals can handle multiple byte transfers, where a 
continuous stream of data is shifted from the master. Many memory 
chips with SPI interfaces work this way. With this type of transfer, the 
chip select for the SPI slave must remain low for the entire duration of 
the transmission. For example, a memory chip might expect a "write" 
command to be followed by four address bytes (starting address), then 
the data bytes to be stored. A single transfer may involve the shifting of a 
kilobyte or more of information. 



Embedded systems 
  Note 

 

106 

 

Other slaves need only a single byte (for example, a command 
byte for an analog-digital converter), and some even support being 
daisy-chained together. 

In this example, the master processor transmits three bytes out of 
its SPI interface. The first byte is shifted into slave A. As the second byte 
is transferred to slave A, the first byte is shifted out of slave A and into 
slave B. Similarly, as the third byte is shifted into slave A, the second 
byte is shifted into slave B, and the first byte is shifted into slave C. If the 
master wishes to read a result from slave A, it must again transfer a 
three-byte (dummy) sequence. This will move the byte from slave A into 
slave B, then into slave C, and finally into the master. In the process, the 
master also receives bytes from slave C and slave B in turn. 

Note that daisy chaining won't necessarily work with all SPI 
devices, especially ones that require multi byte transfers (such as 
memory chips). Again, it's a case of checking the slave chips' datasheets 
carefully to determine what you can and can't do. If the datasheet 
doesn't explicitly mention daisy chaining, then it's a fair bet the device 
doesn't support it. 

SPI has four modes of operation, depending on clock polarity and 
clock phase. For low clock polarity, the clock (SCK) is low when idle and 
toggles high during a transfer. When configured for high clock polarity, 
the clock is high when idle and toggles low during a transfer. 

The two clock phases are known as clock phase zero and clock 
phase one. For clock phase zero, MOSI and MISO outputs are valid on 
the rising edge of the clock (SCK) if the clock polarity is low. If the clock 
polarity is high, these outputs are valid on the falling edge of SCK, for 
clock phase zero. The "X" bit output on MISO is an undefined extra bit 
and is a consequence of the SPI interface. You don't need to worry 
about it, as the SPI interfaces ignore it. 
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Conversely, for clock phase one, the opposite is true. MOSI and MISO 
are valid on the falling edge of the clock if clock polarity is low. They are 
valid on the rising edge of the clock if the clock polarity is high. 
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SPI-Based Clock/Calendar 

There is a wide variety of SPI devices available, and we'll be 
looking at several in the coming chapters. In the meantime, to see how a 
SPI interface is used to add a peripheral to a microcontroller, let's look at 
interfacing a processor to a clock/calendar chip. Such chips contain an 
oscillator module driven by a crystal, just like a processor. The oscillator 
module ticks over internal counters that track milliseconds, seconds, 
minutes, hours, days, months, and years. They are specifically designed 
to provide accurate timekeeping, and many have additional functions 
such as an "alarm" (whereby the processor is interrupted at a specific 
time) and a watchdog. Some also include voltage monitoring, such that 
the clock chip may act as a system monitor, alerting the processor 
should the power supply be wavering. There are a number of clock chips 
available (and not all are interfaced using SPI). For this example, we will 
use the Maxim DS1305. 

The way in which we interface the clock chip to a processor is 
virtually identical for all other SPI devices. Some chips with SPI 
interfaces have special requirements, but most are very simple and 
straightforward. This makes SPI a very useful interface that makes 
increasing system functionality trivial. 

The Maxim DS1305 Real-Time Clock (RTC) provides 
timekeeping services and tracks seconds, minutes, hours, day of the 
month, month, day of the week, and year. It knows which months have 
30 days and which have 31. It even automatically adjusts for leap years, 
up to the year 2100. It can generate two interrupts to the microcontroller 
for time-of-day alarms. These alarms can be used to trigger a regular 
system event, such as a backup or user notification. 

The DS1305 can run off two separate power sources and 
supports battery backup of its internal state. The chip can use a power 
supply in the range of 2 V to 5.5 V, allowing it to be powered from a 
variety of sources. It also has 96 bytes of static RAM, used for parameter 
storage. You could use the RAM for holding variables indicating system 
mode, secure password storage, or even authorization codes for your 
embedded software, just as desktop software does. 
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If you are producing commercial embedded systems and have 
problems with late-paying customers, you can use this RAM to hold a 
license number. When you ship the system, you design it to work for 
perhaps 45 days before shutting down. When your customer pays her 
bill, and you supply her with the right magic number, the system comes 
back to life again. The system stores the license number in the RAM of 
the RTC and from then on works as normal. 

The RAM, like the timekeeping function, is battery-backed, and 
so its contents will be retained for the life of the battery. This can be up 
to 10 years, depending on the battery chosen. Thus, the contents of the 
internal parameter RAM will probably last for the expected operational 
lifespan of an embedded system. 

The DS1305 is versatile in the way it can be powered. It has 
three power-supply inputs--VCC1, VCC2, and VBAT--from which it can 
choose to draw power. VCC1 is the primary supply input and is 
connected directly to the system's power supply. When the computer is 
up and running, the DS1305 draws its current from this source. VCC2 is 
the secondary power source, and this can be a rechargeable battery. 
VBAT is the third power source and is for non rechargeable batteries. 

There are three, and only three, possible configurations for 
powering the DS1305, and it is important for correct operation that the 
power inputs are appropriately driven. Figure shows the DS1305 
powered by a primary DC supply connected to VCC1 and a secondary, 
nonrechargeable battery connected to VBAT. (To keep the diagram 
simple, only the power pins are shown. We'll look at the data interface in 
a moment.) For this configuration, VCC2 is unused and must be 
connected to GND. When VCC1 falls below a given threshold voltage 
(the primary power source has failed), the internal memory and registers 
of the DS1305 become write-protected to prevent them from being 
corrupted by a failing microprocessor. 

 

If the secondary power source is a rechargeable battery, then the 
DS1305 may be wired as shown in Figure. When using a rechargeable 
battery on VCC2, VBAT must be connected to GND. When the device is 
used in this mode, there is no automatic write protection for the DS1305 
if VCC1 fails. 
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Finally, the DS1305 may be used with only a battery as its 
primary power source and no backup power supply. This is shown in 
Figure. For this configuration, both VCC1 and VBAT are connected to 
ground, while the battery is connected to VCC2. 

 

Using the DS1305 is very simple. The schematic showing a DS1305 
interfaced to a microcontroller is shown in Figure. 
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The serial interface of the DS1305 can operate as either a SPI 
port or a three-wire port. The input SERMODE selects which serial mode 
to use. Connecting SERMODE to the power supply selects SPI 
operation. Connecting SERMODE to GND selects three-wire operation. 
(For three-wire operation, SDO and SDI are tied together.) The 
connection to a microcontroller's SPI port is straightforward, with MOSI, 
MISO, SCLK, and a chip select, as we've seen previously. There is one 
important difference, though, for the DS1305. It has an active-high CE 
(Chip Enable), rather than the more common active-low chip selects of 
other SPI devices. Therefore, the processor's I/O line driving CE must be 
low when the device is not selected and high when the device is 
selected. 

[*] Developed by National Semiconductor, three-wire, also known 
as MicroWire, is very similar to SPI and is found is some microcontrollers 
and DSP processors. Unlike SPI, which has separate data lines for 
reading and writing, three-wire uses a common bidirectional data line. 

The DS1305 has a special Power Fail output that is asserted low 
when the primary power source VCC1 falls below the secondary power 
source (VCC2 or VBAT). This can be used to alert the processor of the 
power fail (by using it as an interrupt) or to stop the processor (by 
connecting it to the processor's). This is used to prevent a failing 
processor from corrupting devices as the power dies. If you don't require 
a power-fail notification, may be left unconnected. 

The input VCC if (VCC for the interface logic) selects the output 
voltage levels of SDO and . Since the DS1305 can be used in both 5 
V and 3.3 V systems, this input allows the output levels of these pins to 
be set to the appropriate high voltage. VCC if is just connected to the 
system's power supply. Thus, for a 5 V system, VCC if is 5 V, and the 
outputs of the DS1305 are also 5 V. Similarly, for a 3.3 V system, VCC if 
is 3.3 V and so are the outputs. 

Finally, the DS1305 has two interrupt outputs, These may be 
used to interrupt the processor when a DS1305 alarm function triggers. 
As the interrupt outputs are open-drain, they each require a 10k resistor 
to pull them high when they are inactive. If one or both of the interrupts 
are not required, just leave them unconnected. Only is used in our 
example, and so is safely ignored. 

Finally, the DS1305 has two crystal inputs, X1 and X2. A 32.768 
kHz watch crystal is connected across these pins, providing the timing 
source for the internal clock. 

So that is the DS1305, a versatile little chip that can provide 
timekeeping for your embedded system. It's easy to use, and the 
programming information for it is contained in the device's datasheet. 
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SPI-Based Digital Potentiometer 

Let's look at another simple SPI example. This time, we will 
interface a digital potentiometer to a microprocessor. Now, a standard 
pot is manually adjusted. It will either have a knob attached (as in a 
volume control or brightness adjustment), or it will have a small notch for 
screwdriver adjustment. Wouldn't it be great if your microprocessor could 
adjust the pots in your analog circuits, under software control? That way, 
your application software could adjust the brightness of the display or 
change the volume of the sound system. Well, by using a digital 
potentiometer, you can do just that. Televisions, computer monitors, and 
stereos with internal embedded controllers use digital pots to adjust 
settings such as volume. When you hit a volume button on a remote 
control, the TV or stereo adjusts the settings of digital pots, which are 
part of the amplifiers driving the speakers. 

Figure shows an Analog Devices AD5203 digital potentiometer 
with a SPI interface. This chip has four potentiometers, all of which may 
be adjusted under software control. Each pot has 64 possible positions, 

and versions of the chip are available with either 10 k or 100 k 
impedances. For higher resolution, the pin-compatible AD8403 has a 
possible 256 settings, also configurable through a SPI interface. 

 

 

The AD5203 has a Serial Data Input (SDI), which is connected to the 
processor's MOSI output. Similarly, the device's Serial Data Output 
(SDO) is connected to MISO. The AD5203's clock input (CLK) is 
positive-edge triggered midway through each SPI cycle, which means 
that any processor communicating with it must use high clock polarity 
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and clock phase one on SCLK. The Chip Select (CS) of the AD5203 may 
be driven by a processor digital I/O line. The AD5203 has two other 
inputs, Shutdown (SHDN) and Reset (RS). SHDN places the device in 
low-power mode, and resets the potentiometer wipers to their 
midpoint. Both of these inputs may also be driven by a processor I/O 
line, or, if their functionality is not needed, they may be simply tied high 

using 10 k pull-up resistors. 

The potentiometers within the AD5203 are used as any other 
pots would be. The A and B terminals connect to either end of the 
internal resistors, and the position of the wiper (W) is adjusted under 
software control. 

The AD5203 has several ground connections. DGND is the 
digital ground for the SPI interface and control logic of the chip. The 
AGNDs are the analog grounds of the internal potentiometers, and they 
should all be connected to DGND at a single point. 

The datasheet for the AD5203 provides the control codes needed 
to configure the chip, and its use is simple and straightforward. 

Adding Nonvolatile Data Memory with SPI 

The internal memory of microcontrollers is very small, and their 
data storage capabilities are severely limited. We're now going to look at 
how you can increase the storage capacity of your embedded system by 
adding an Atmel AT45DB161 2M serial Data Flash using SPI. These 
chips are commonly used in low-cost digital cameras and answering 
machines. You could also use this flash chip as a virtual disk drive in 
your embedded system. 

Most other flash chips have a bus interface, but the AT45DB161 
has a serial interface, making it well suited for use with small 
microcontrollers. The AT45DB161 is a 2M chip, but you can get similar 
chips in capacities ranging from 512K to 32M. They all use the same (or 
similar) SPI interface, so the same design works for all. (Note, however, 
that their pinouts and physical packages vary, so one chip will not mount 
onto a circuit board design for another.) 

The chip consists of an array of flash memory, organized as 
individual pages of 528 bytes each, and two RAM buffers, also 528 bytes 
each (Figure). To write data into the main flash array, the processor must 
first write data into one of the buffers and then issue a command to write 
that buffer into the array. A processor can read the contents of either of 
the buffers, transfer a flash page to the buffers, or read from the flash 
array directly. The operation of the buffers is independent, and one 
buffer may be accessed by the processor (via SPI) while the contents of 
the other buffer are being written into the flash array. 
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The flash supports numerous commands for writing to and 
reading from the buffers, writing the buffers to the main array, and 
transferring an array page back to a buffer. The Atmel datasheet has full 
details of the software protocols and command set. 

There are a few things to note about the internal architecture and 
the flash array. The first is that one 528-byte page of the flash array is 
not contiguous with the next. In other words, if you are using a pointer in 
your software to track the current location in the memory, you can't just 
increment it from the end of one page and expect it to be pointing to the 
next. Every 528 bytes (and it's a strange number), you have to leap 
forward to the next page. Think of it as pages of 528 bytes with big gaps 
in between. 

The second catch with this memory is that it has a lifetime of only 
1,000 write cycles per page. Most flash technologies (and there are 
several different types) support 100,000 write cycles or better, and you 
can normally exceed this limit and the device will keep working reliably 
for you. This isn't the case with the AT45DB161. Once the 1,000-write 
limit is exceeded, memory locations will start failing on you. The chip will 
read existing data back correctly, but new pages will not write 
successfully. Depending on the application, this limit may not be a 
problem. I've used this particular chip in my design for long-duration data 
loggers. These machines are deployed for yearlong deployments, 
collecting (and compressing) data and storing it away in the flash chip. 
The logger gradually builds a page image in one of the buffers before 
storing it to the array in a single write. Since during a deployment, a page 
will be written only once (and then the logger will move on to the next 
page), the 1,000-write limitation isn't a problem. It would take 1,000 
deployments before the chip would fail. However, if you're using the chip 
for variable storage and are modifying the flash pages on a byte-by-byte 
basis, you're in trouble. Individually changing 528 bytes within a page 
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counts as 528 writes. So do that twice to a page, and suddenly you're 
over the limit. Therefore, this flash is well suited to some applications 
and not others. 

The basic design for using an AT45DB161 is shown in Figure. 

 

 

On the left of the chip are the SPI interface connections, MOSI, 
MISO, SCK, and a chip select (FLASH). The chip will support SPI 
transfers at up to 20 MHz, so the SPI interface can be run very fast 
indeed. On the right of the chip is the power supply, VDD, which is 
decoupled to ground using a 100 nF capacitor. The AT45DB161 requires 
a power supply in the range 2.5 V to 3.6 V. However, its logic inputs are 
5 V tolerant, meaning this chip can be used in systems with mixed power 
supplies. In other words, while this chip requires a 3 V power supply, it 
can be directly interfaced to a processor with a 5 V supply (and 5 V logic 
levels). The AT45DB161 has a write-protect pin (WP), which, when 
driven low, prevents the contents of the flash from being modified. If you 
don't require write protection, simply tie this input high, as shown in the 
schematic. The flash also has a RESET input so that the chip can be 
manually reset under software control. The flash incorporates an inbuilt 
power-on reset that will put the device into a known state, and therefore 
a "manual" reset at power up should be unnecessary. However, I've 
found that the internal power-on reset generator is somewhat finicky and 
doesn't always kick in as it should. Under such circumstances, the flash 
fails to enter a known state and is unusable in the system. Therefore, I 
have found it good practice to give the processor control of the flash's 
reset. As part of the processor's initialization routines executed in its 
reset firmware, I get the processor to reset the flash, nudging it into 
reality. It's a simple thing, but it makes all the difference for a reliable 
system. Pin 1 is a status output (RDY/BUSY) indicating whether the 
device is ready or if it is still completing an internal operation. The 
connections for interfacing this memory chip to an Atmel 90S4434 AVR 
processor are shown in Figure. The AVR portion of the schematic is no 
different from the examples we have seen previously. That's the nice 
thing about simple interfaces such as SPI. They form little subsystem 
modules that "bolt together" like building blocks. Start with the basic core 
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design and just add peripherals as you need them. The schematic also 
shows decoupling capacitors for the power supplies, the crystal oscillator 
for the processor, and a pull-up resistor for PB1. Pin 41 (PB1) is used as 
a "manual" (processor-controlled) reset input to the flash. 

 

Adding a Parameter Memory Using SPI 

We saw in the previous section how to add a large-capacity serial 
flash for data storage. It is often useful to use nonvolatile memory to hold 
system parameters, a way of preserving important variables during 
periods of no power. But the AT45DB161 Data Flash is just not the 
device for that task. It is better suited to data recording, and its large 
capacity is overkill for parameter storage. So, now we're going to look at 
how you can use SPI to add a small parameter memory (in the form on 
an EEPROM) to your embedded system. The EEPROM I've chosen is 
the Atmel AT25640. This device will hold data for at least 100 years 
without power, and will endure more than one million write cycles 
(significantly more than an AT45DB161!). As such, your software can 
happily alter parameter variables without fear of limiting the lifespan of 
the chip. The AT25640 has only 8K of memory, which might not sound 
like much. But don't forget, that's 8192 char variables, which is more 

than enough storage space for most parameters. If 8K is too much, there 
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are also versions of the chip with 1K (AT25080), 2K (AT25160), and 4K 
(AT25320) bytes of memory. 

The architecture and use of the AT25640 is much simpler than 
that of the AT45DB161. Full details of the required software protocol are 
in the Atmel datasheet for this chip. 

The schematic for an AT25640 circuit is shown in Figure. 

 

The interface is standard SPI, and the chip also has a write-protect input 
and a hold input. Asserting HOLD allows the processor to temporarily 
stall a serial transfer (while it performs other tasks) without terminating 
the access to the AT25640. And as you might expect, write-protect, 
when asserted, turns the chip into a read-only device. These control 
inputs may be driven by programmable I/O lines of the processor. The 
only other requirement is power (which is decoupled to ground using a 
100 nF capacitor) and ground. The chip is available in two types. One 
will operate from a supply voltage of between 2.7 V and 5.5 V, while the 
other needs a supply voltage of between 1.8 V and 3.6 V. 

Adding Peripherals Using I2C 

In the last chapter, we looked at the low-cost SPI interface used 
to connect peripheral chips to microcontrollers. In this chapter, we'll 
examine the alternate serial interface for connecting peripherals, I2C. 

Overview of I2C 

I2C (Inter-Integrated Circuit) bus is a very cheap yet effective 
network used to interconnect peripheral devices within small-scale 
embedded systems. It is sometimes also known as IIC and has been in 
existence for more than 20 years. It is the equivalent of SPI, but its 
operation is somewhat different. 

I2C uses two wires to connect multiple devices in a multi-drop 
bus. The bus is bidirectional, low-speed, and synchronous to a common 
clock. Devices may be attached or detached from the I2C bus without 
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affecting other devices. Several manufacturers, such as Microchip, 
Philips, Intel, and others produce small microcontrollers with I2C built in. 
The data rate of I2C is somewhat slower than SPI, at 100 kbps in 
standard mode, and 400 kbps in fast mode. 

The two wires used to interconnect with I2C are SDA (serial data) 
and SCL (serial clock). Both lines are open-drain. They are connected to 
a positive supply via a pull-up resistor and therefore remain high when 
not in use. A device using the I2C bus to communicate drives the lines 
low or leaves them pulled high as appropriate. Each device connected to 
the I2C bus has a unique address and can operate as either a transmitter 
(a bus master), a receiver (a bus slave), or both (Figure). I2C is a multi-
master bus, meaning that more than one device may assume the role of 
bus master. 

 

I2C network 

An open-drain or open-collector pin has output drivers that can 
only pull the signal line to ground. They cannot drive it high. This has the 
advantage that more than one device connected to a signal line may pull 
it low. If this were not the case, one device attempting to pull the line low 
while another tried to pull it high would result in a short circuit, with 
disastrous results. Interrupt lines are typically open-collector. All open-
collector signals need a pull-up resistor and are active low. The idle state 
(when no device is asserting) is to be pulled high by the resistor. 

Both SDA and SCL are bidirectional. Unlike SPI, which has 
separate data lines for each direction of communication, I2C shares the 
same signal line for master transmission and slave response. Also unlike 
SPI, I2C does not have several modes of operation. The timing 
relationship between the clock, SCL, and the data line, SDA, is simple 
and straightforward. When idle, both SDA and SCL are high. An I2C 
transaction begins with SDA going low, followed by SCL (Figure). This 
indicates to all receivers on the bus that a packet transmission is 
commencing. While SCL is low, SDA transitions (high or low) for the first 
valid data bit. This is known as a "START condition." 

Figure: Start of packet 
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For each bit that is transmitted, the bit must become valid on SDA while 
SCL is low. The bit is sampled on the rising edge of SCL and must 
remain valid until SCL goes low once more. Then SDA transitions to the 
next bit before SCL goes high once more (Figure). 

Timing relationship between SDA and SCL 

 

Finally, the transaction completes by SCL returning high (inactive) 
followed by SDA (Figure). This is known as a "STOP condition." 

End of packet 

 

 

Any number of bytes may be transmitted in an I2C packet. As with SPI, 
the most significant bit of the packet is transmitted first. If the receiver is 
unable to accept any more bytes, it can abort the transmission by 
holding SCL low. This forces the transmitter to wait until SCL is released 
again. 

Each byte transmitted must be acknowledged by the receiver. 
Upon the transmission of the eighth data bit, the master releases the 
data line SDA. The master then generates an additional clock pulse on 
SCL. This triggers the receiver to acknowledge the byte by pulling SDA 
low (Figure). If the receiver fails to pull SDA low, the master aborts the 
transfer and takes appropriate error-handling measures. 

I2C packet with receiver acknowledge 
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Now, I2C is a multi-master bus. So, more than one master may 
attempt to start transmission at the same time. Since the bus's default 
state is high, a master transmitting a 0 bit will pull SDA low but will leave 
the bus in its default state if the bit is to be a 1. Thus, if two masters 
begin simultaneous transmission, a master leaving the bus in its default 
state for a 1 bit, but detecting the bus pulled low by another master (for a 
0 bit), will register an error condition and abort the transmission. 

SPI uses a separate chip select to enable a receiving slave. Each 
SPI slave has a separate chip select that is generated by the master. I2C 
does not have such a selection mechanism. Instead, each device on the 
bus has a unique address, and the packet transmission begins with 
address bits, followed by the data. An address byte consists of seven 
address bits, followed by a direction bit. If the direction bit is a 0, the 
transmission is a write cycle and the selected slave will accept the data 
as input. If the direction bit is a 1, then the request is for the slave to 
transfer data back to the master. A sample packet, transferring one byte 
of data, is shown in Figure. 

Figure: An I2C packet 

 

There is a special address, known as the general call address, which 

broadcasts to all I2C devices. This address is %0000000 with a direction 

bit of 0. The general call is the mechanism by which the master 

determines what slaves are available, and there are several types of 
general call. The second byte of a general call indicates the purpose of 
the general call to the slaves. Upon receiving the second byte, individual 
slaves will determine whether the command is applicable to them, and, if 
so, they will acknowledge. If the command is not applicable to a given 
slave, then the slave simply ignores the general call and does not 

acknowledge. If the second byte is 0x06 (%00000110), then this indicates 

that appropriate slaves should reset and respond with their addresses. If 
the second byte is 0x04 (%00000100), slaves respond with their 

addresses but do not reset. Any other second byte of a general call, 
where the least significant bit is a 0, should be ignored. 
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If the least significant bit of the second byte is a 1, then the general call 
is by a master device identifying itself to other masters in the system by 
transmitting its own address. The other bits of the second byte contain 
the master's address. 

There is another special address byte, known as the START 

byte. This byte is %00000001 (0x01). It is used to indicate to other 

masters that a long data transfer is beginning. This is particularly 
important for masters that do not have dedicated I2C hardware and must 
monitor the bus by software polling. When a master detects a START 
byte generated by another master, it can reduce its polling rate, allowing 
it more time for other software tasks. 

I2C also supports an extended 10-bit addressing mode, allowing 
up to 1,024 peripherals. Devices that use 7-bit addressing may be mixed 
with 10-bit addressing devices in a single system. In 10-bit addressing, 
two bytes are used to hold the address. If the (first) address byte begins 
with %11110XX, then a 10-bit address is being generated. The two least 

significant bits of the first byte, combined with the eight bits of the second 
byte, form the 10-bit address (Figure). 7-bit devices will ignore the 
transaction. 

Figure: An I2C packet with 10-bit addressing 

 

Adding a Real-Time Clock with I2C 

We saw in the previous chapter how to interface a Real-Time 
Clock (RTC) to a microprocessor using a SPI interface. Now let's look at 
how we'd do the same using the I2C interface. For this example, we'll use 
the tiny Philips PCF8583. It also has 240 bytes of RAM, which, like the 
DS1305, may be used for parameter storage. Unlike the DS1305, it does 
not have an integrated battery-backup system. So, you would need to 
provide an external battery-backup circuit. There are many other I2C 
RTCs available, and some do incorporate battery-fail protection. I've 
chosen to look at this one because it makes for a very simple example of 
an I2C interface. 

The PCF8583 has two pins (OSCI and OSCO) for connecting a 
32.768 kHz watch crystal. This crystal pulses an internal circuit that 
performs the timekeeping functions. The address pin, A0, determines the 
address of the device on the I2C bus. Most I2C chips provide several 
address pins, allowing a range of possible addresses to be wired. The 
PCF8583 has only one, to reduce the pin count of the chip. Six of its 
address bits are hardwired internally. Only the least significant, A0, is 
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available to the system designer. The address configuration of the 
PCF8583 is shown in Figure. (Note how the transfer direction [read or 
write] is incorporated into the address field.) 

Figure: PCF8583 addresses 

 

Connecting A0 directly to ground sets that address bit to 0 and therefore 

maps the PCF8583 to I2C address 0x50. Alternatively, if A0 is tied to 

VDD, then the address of the device is 0x51. 

The schematic for interfacing the PCF8583 to a microcontroller is shown 
in Figure. 

Figure: Interfacing a PCF8583 to a microcontroller 

 

SDA and SCL both require pull-up resistors to VDD. The PCF8583 also 
has an internal alarm function and asserts an output ( ) for interrupting 
the processor. Since this output is open-drain, a pull-up resistor is also 
required. 

 

Adding a Small Display with I2C 

You can use I2C to add simple LCDs (and other equivalent 
display technologies) to your embedded computer. These LCDs are 
usually just a few lines of text high, but are useful for simple message 
display functions. Matrix Orbital (http://www.matrixorbital.com) produces 
a number of display modules that are easy to interface, such as the 
VFD2041. This display module is 80 characters wide by 4 lines deep. 
The interface circuit is shown in Figure, and, as you can see, there's 
almost nothing to it. The types of LCDs found in laptops are considerably 
more complicated, and interfacing them to small processors is just not an 
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option. But for simple message displays (such as on the front panel of an 
appliance), a circuit like this is ideal. 

Interfacing a VFD2041 display using I2C 

 

Many Matrix Orbital displays also come with RS-232C interfaces, so if 
you’re embedded processor doesn't support I2C; it's still easy to add a 
small display. 

Serial Ports 

In this chapter, we'll look at connecting your embedded systems 
to the outside world through the ubiquitous serial port. We'll see how you 
implement the classic serial port, RS-232C, and even take a look at how 
you can power your embedded system through an RS-232C port. From 
there, we'll take a look at the more robust RS-422, designed for faster 
data rates over longer distances. Finally, we'll look at RS-485, an 
extension of RS-422 designed for low-cost networking of embedded 
computers. 

UARTs 

Serial I/O involves the transfer of data over a single wire for each 
direction. All serial interfaces convert parallel data to a serial bit stream, 
and vice versa. Serial communication is employed when it is not 
practical, either in physical or cost terms, to move data in parallel 
between systems. Such serial communication may be between a 
computer and a terminal or printer, the infrared beaming of a Palm 
computer or remote control, or, in more advanced forms, high-speed 
network communication such as Ethernet. For embedded computers, a 
simple serial interface is the easiest and cheapest way to connect to a 
host computer, either as part of the application or merely for debugging 
purposes. 

The simplest form of serial interface is that of the Universal 
Asynchronous Receiver Transmitter (UART). UARTs are also sometimes 
called Asynchronous Communication Interface Adapters (ACIAs). They 
are termed asynchronous because no clock is transmitted with the serial 
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data. The receiver must lock onto the data and detect individual bits 
without the luxury of a clock for synchronization. 

Figure shows a functional diagram of a UART. It consists of two 
sections: a receiver (Rx) that converts a serial bit stream to parallel data 
for the microprocessor and a transmitter (Tx) that converts parallel data 
from a microprocessor into serial form for transmission. The UART also 
provides status information, such as whether the receiver is full (data has 
arrived) or that the transmitter is empty (a pending transmission has 
completed). Many microcontrollers incorporate UARTs on-chip, but for 
larger systems, the UART is often a separate device. 

Figure: Functional diagram of a UART 

 

Serial devices send data one bit at a time, so normal "parallel" 
data must first be converted to serial form before transfer. Serial 
transmission consists of breaking down bytes of data into single bits and 
shifting them out of the device one at a time. A UART's transmitter is 
essentially just a parallel-to-serial converter with extra features. The 
essence of the UART transmitter is a shift register that is loaded in 
parallel, and then each bit is sequentially shifted out of the device on 
each pulse of the serial clock. Conversely, the receiver accepts a serial 
bit stream into a shift register, and then this is read out in parallel by the 
processor. 

          One of the problems associated with serial transmission is 
reconstructing the data at the receiving end. Difficulties arise in detecting 
boundaries between bits. For instance, if the serial line is low for a given 
length of time, the device receiving the data must be able to identify if the 
stream represented "00" or "000." It has to know where one bit stops and 
the next starts. The transmitting and receiving devices can accomplish 
this by sharing a common clock. Hence, in a synchronous serial system, 
the serial data stream is synchronized with a clock that is transmitted 
along with the data stream. This simplifies the recovery of data but 
requires an extra signal line to carry the serial clock. Asynchronous serial 
devices, such as UARTs, do not share a common clock; rather, each 
device has its own, local clock. The devices must operate at exactly the 
same frequency, and additional logic is required to detect the phase of 
the transmitted data and phase lock the receiver's clock to this. 
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Asynchronous transmission is used in systems where one 
character is sent at a time, and the interval of time between each byte 
transmission may vary. The transmission format uses one start bit at the 
beginning and one or two stop bits at the end of each character (Figure). 
The receiver synchronizes its clock upon receiving the start bit and then 
samples the data bits (either seven or eight, depending on the system 
configuration). Upon receiving the stop bit(s) in the correct sequence, the 
receiver assumes that the transfer was successful and that it has a valid 
character. If it did not receive an appropriate stop sequence, the receiver 
assumes that its clock drifted out of phase, and a framing error or bit-
misalignment error is declared. It's up to the application software to 
check for such errors and take appropriate action. 

Figure: Asynchronous serial data 

 

The conversion from parallel to serial format is usually 
accomplished by dedicated UART hardware, but in systems where only 
parallel I/O is available, the conversion may be performed by software, 
which toggles a single bit of a parallel I/O port acting as the serial line. 

Error Detection 

In any transfer of data over a potentially noisy medium (such as a 
serial cable), the possibility of errors exists. To detect such errors, many 
serial systems implement parity as a simple check for the validity of the 
data. The parity bit of a byte to be transmitted is calculated by the 
sending UART and included with the byte as part of the transmission. 
The receiving UART also calculates the parity bit for the byte and 
compares this against the parity bit received. If they match, the receiver 
assumes that everything is fine. If they do not, the receiver then knows 
that something went amiss and that an error exists. 

There are several types of parity, the main two being even parity 
and odd parity. In any byte of data, there is either an even number of "1" 
bits or an odd number of "1" bits. An extra bit (the parity bit) is added to 
the byte to make the number of "1" bits even (even parity) or odd (odd 
parity). For successful transmission, both the receiver and transmitter 
must be set for the same type of parity generation. There is no protocol 
for establishing common parity settings between UARTs; it must be done 
manually at either end. 

So for the binary sequence %01000000, the parity bit would be "1" 

for even parity and "0" for odd parity. Similarly, for %11111111, the parity 

bit would be "0" if we were using even parity and "1" if we had odd parity. 
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The generation and detection of parity is done automatically by 
dedicated hardware within the UART. It's not something you explicitly 
have to calculate. You do have to make sure your UART is set to the 
correct type of parity generation; otherwise, it will not know how to 
process the parity information accordingly. 

The parity bit is checked at the receiving end against the data to 
check whether any of the bits were corrupted during transmission. Say 
we sent %01000000. If our UART was set to even parity, the calculated 

parity bit from %01000000 would be 1. Now, let's say this transmission 

was corrupted along the way, such that what was actually received was 

%01000001. The receiver would calculate the even parity of the byte to 

be 0. In comparing this to the received parity bit of 1, a parity error would 
be detected, and the receiver would take appropriate action (such as 
requesting that the byte be sent again). Note that how parity errors are 
handled is the responsibility of the programmer. The UART itself takes 
no action beyond flagging the error. It is up to the software to implement 
appropriate error handling. 

Now, what if the medium was particularly noisy and two bits were 

corrupted? Again, if we sent %01000000 with even parity (computed 

parity bit = 1), and this was corrupted along the way to be %01001001, 

the receiver would calculate the even parity of the byte to be 1. The 
transmission was corrupted, but no parity error would be detected! As 
you can see, the usefulness of this form of error detection is extremely 
limited, and, for this reason, more complicated error detection (and 
correction) schemes are often implemented. A good example of this is 
the Cyclic Redundancy Check (CRC) algorithm. If you need to 
implement CRC, there's plenty of source code available on the Web—
just use your favorite search engine. 

That covers the basics of how bits are transmitted serially. Now, 
it's time to look at how you physically implement a serial interface. We'll 
start with the old standard for serially connecting two computers (or just 
about anything else digital) together. 

Old Faithful: RS-232C 

RS-232C is a serial communication interface standard that has 
been in use, in one form or another, since the 1960s. RS-232C is used 
for interfacing serial devices over cable lengths of up to 25 meters and at 
data rates of up to 38.4 kbps. You can use it to connect to other 
computers, modems, and even old terminals (useful tools for monitoring 
status messages during debugging). In days of old, printers, plotters, and 
a host of other devices came with RS-232C interfaces. With the need to 
transfer large amounts of data rapidly, RS-232C is being supplanted as a 
connection standard by high-speed networks, such as Ethernet. 
However, it can still be a useful and (importantly) simple connection tool 
for your embedded system. 

RS-232C is unbalanced, meaning that the voltage level of a data 
bit being transmitted is referenced to local ground. A logic high for RS-
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232C is a signal voltage in the range of -5 to -15 V (typically -12 V), and 
a logic low is between +5 and +15 V (typically +12 V). So, just to make 
that clear, an RS-232C high is a negative voltage, and a low is a positive 
voltage, unlike the rest of your computer's logic. 

The terminology used in RS-232C also dates back to the 1960s. 

In those days of mainframes, a high (1) was called a "space," and a low 

(0) was called a "mark." You'll still find these terms kicking around in RS-

232C, where you'll hear phrases like "mark parity" and "space parity." It's 
also not unheard of to see RS-232C systems still using 7-bit data frames 
(another leftover from the '60s), rather than the more common 8-bit. In 
fact, this is one of the reasons why you'll still see email being sent on the 
Internet limited to a 7-bit character set, just in case the packets happen 
to be routed via a serial connection that supports only 7-bit 
transmissions. It's nice how pieces of history still linger around to haunt 
us! More commonly, RS-232C data transmissions use 8-bit characters, 
and any serial port you implement should do so, too. 

An RS-232C link consists of a driver and a comparator, as shown in 
Figure. 

Figure . RS-232C 

 

 

RS-232C also defines connectors and pin assignments, although there is 
a lot a room for variation (and thus a lot of incompatibilities exist). RS-
232C was originally intended for connecting Data Terminal Equipment 
(DTE) to Data Communication Equipment (DCE) (Figure). The standard 
therefore assumes that at one end of an RS-232C link is a DTE device, 
and at the other end, there is a DCE. Before the advent of computers, a 
DTE was a terminal or teletype, and a DCE was a modem. The modem 
(Modulator/ Demodulator) provided an interface to the phone line, and 
thereby a connection to a remote modem and terminal. 

Figure: Original use of RS232: connecting teletypes to modems 
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This worked simply and clearly in the days before desktop 
computers. The "problem" arises when you wish to connect either a 
terminal or a modem to the serial interface of a computer. Do you treat 
the computer as a DTE or a DCE? The RS-232C standard implies that if 
a terminal is at one end of the link, then the other end should be a DCE. 
So, if you were connecting a terminal to a Unix workstation, the RS-232C 
standard would like the workstation to be a DCE (Figure1). Conversely, if 
you were connecting a modem to a computer, the computer should be a 
DTE (Figure2). It's all a bit schizophrenic. 

Figure 1. DTE device connected to a computer 

 

 

Figure 2. DCE device connected to a computer 

 

Manufacturers, when faced with this problem, arbitrarily chose one or the 
other. The IBM PC has a DTE-type connector, whereas the makers of 
Unix workstations (such as Sun Microsystems) often choose to make 
their machines with DCE connectors, since they are more likely to be 
connected to terminals. To connect a PC to a modem, you need a DTE-
DCE cable. To connect a PC to a terminal, you need a DTE-DTE cable. 
To connect a Sun workstation to a terminal, you need a DCE-DTE cable. 
To connect a Sun to a modem you need a DCE-DCE cable. To connect 
a Sun to another Sun, you need a DCE-DCE null modem cable (where 
Rx and Tx cross over), and to connect a Sun to a PC, you need a DCE-
DTE null modem cable. If, however, you need to connect two PCs 
together, you need a DTE-DTE null modem cable. So, for just two types 
of device (DTE and DCE), you need six types of cable to cope with the 
permutations! Variety, as they say, is the spice of life, but it's the bane of 
RS-232C! 

Table  shows the "standard" connections for RS-232C, for both 25-pin 
and 9-pin connectors. The signal names are DTE-relative. For example, 
Tx refers to data being transmitted from the DTE but received by a DCE. 
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Many of these signals are intended for modem control. To form a very 
simple link between a computer and a terminal, the only signals required 
are Tx, Rx, and SG. Many systems tie FG and SG together. 

 

Shake Hands 

When two remote systems are communicating serially, there 
needs to be some way to prevent the transmitter from sending new data 
before the receiver has had a chance to process the old data. This 
process is known as handshaking, or flow control. The way it works is 
simple. After transmitting a byte (or data packet), the transmitter will not 
send again until it has been given confirmation that the receiver is ready. 
There are three forms of handshaking: hardware, software, and none. 

The no-handshaking option is obviously the simplest and is used 
in situations where the transmitting system is much slower in preparing 
and sending data than the receiver is in processing. For example, if you 
had a small, embedded computer running at a pokey 1 MHz that was 
feeding data into a high-speed computer system running at 4 GHz, it 
would not be unreasonable to assume that the faster machine would be 
able to keep up. However, if the faster machine is running a certain 
popular operating system (renowned for poor responsiveness to real-
time events), it may very well be the case that it may not be able to keep 
up. In this case, handshaking would be required, and it's probably good 
practice to incorporate it anyway. If you're using the serial port to provide 
a human interface to your computer, then you can safely assume that no 
human will type faster than your computer can handle. So, for serial 
ports used solely for user access or debugging purposes, you can skip 
the handshaking. 

Hardware handshaking in RS-232C uses two signals, RTS 
(Request To Send) and CTS (Clear To Send). When the transmitter 
wishes to send, it asserts RTS, indicating to the receiver that there is 
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pending data. The receiver asserts CTS when it is ready, indicating to 
the transmitter that it may send. In this way, the flow of data is limited to 
the rate at which it may be processed. 

Software handshaking, also known as XON/XOFF, is used where 
it is not possible to have hardware handshaking between the transmitter 
and receiver, such as when the transmission occurs over a phone line. 
Software handshaking chooses two characters to represent a request to 
"suspend transmission," and a "clear to resume." These are normally the 

characters Ctrl-S (0x13) and Ctrl-Q (0x11). The caveat is that you then 

can't have these characters as part of the transmitted file, because they 
would be interpreted as flow control by the receiver and not as received 
data. If you're only sending ASCII text, this is not a problem, but it can be 
a real headache if you're sending binary data. The common solution is to 
preprocess the binary data prior to transmission and convert it to ASCII 

representation. For example, the byte 0x2F becomes the ASCII 

characters "2" (0x32) and "F" (0x46). Software on the receiving end 

converts the ASCII characters back into binary data again. Examples of 

software that will do this are uuencode under Unix and BinHex under 

Mac OS. 

Implementing an RS-232C Interface 

Adding an RS-232C interface to a system is easy. Most 
microcontrollers (except the very tiny) incorporate a UART within the 
chip, so all that is required is an external level shifter to convert the serial 
transmissions to and from RS-232C levels. Maxim makes a huge range 
of RS-232C interface chips (level shifters) that greatly simplify your 
design. No matter what your specific conversion requirements, doubtless 
there's a Maxim part to meet your need. A good generic choice is the 
MAX3222 transceiver. Since nearly all RS-232C transceivers are used in 
the same way, looking at a design with a MAX3222 provides a good 
example of what to do for any transceiver. Unlike many other level 
shifters, the Maxim parts can operate from a low supply voltage, in the 
range of 3.0 V to 5.5 V. Many other manufacturers' devices need 
supplies of +12 V and -12 V, and therefore require additional voltage 
regulators. The MAX3222 consumes minimal power (1 mA in normal 
operation and as low as 1 uA in shutdown mode), making it ideal for 
portable and battery-powered applications. If the ability to shut down the 
serial port into low-power operation is not required, the MAX3232 can be 
substituted. It is functionally the same, except that it lacks shutdown 
capability. 

Using the MAX3222 is trivial, as there is almost no design work 
involved at all. The only external support components required are 
capacitors for the chip's internal charge pumps. These pumps generate 
the +12 V and -12 V voltages required for RS-232C transmission, and 
they do so without requiring (additional) external voltage regulators. 
Figure shows the schematic. 

Figure :RS-232C interface using a MAX3222 
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The capacitor C1 must be a minimum of 0.1 uF. If you are operating the 
chip at less than 3.6 V, C2, C3, and C4 can also be 0.1 uF. If the supply 
voltage is to be as high as 5.5 V, then C2, C3, and C4 must be a 
minimum of 0.47 uF. Since these are minimum values, larger capacitors 
may be used. However, if C1 is increased, then the remaining capacitors 
must also be increased accordingly. C5, the decoupling capacitor for 
VCC, is nominally 0.1 uF. All capacitors should be as close to the 
appropriate pins of the chip as possible. 

The only remaining connections are the serial data lines from the 
UART and the signals to the RS-232C connector. If you are 
implementing a minimal serial interface, only Rx, Tx, and ground are 
required. RTS and CTS are optional. The RS-232C connector may be 
either a 25-pin or a 9-pin DB connector (its shape looks like the letter 
"D"). However, the connector could also be just a row of pins, a parallel 
header, or even just wires soldered directly onto the PCB. 

The MAX3222 has two control inputs, SHDN(shutdown) and 
EN(enable). SHDN places the RS-232C transmitters in high impedance, 
thereby disabling them. This reduces the chip's current consumption to 
less than 1 uA. When in shutdown mode, the receivers are still active. 
Thus, the UART is still able to receive data even if the MAX3222 is in 
low-power mode. If SHDN is not required, just connect it directly to VCC. 

         Similarly, EN is used to control the receiver outputs. Placing high 
puts the receiver outputs into high impedance, while the transmitter 
outputs are unaffected. To enable the receivers, EN is asserted (pulled 
low). If disabling the receivers is not required, then tie EN to ground to 
permanently activate them. 
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If needed, SHDN and EN may be controlled by a microcontroller's I/O 
lines, or by simple digital outputs using a latch. 

The MAX3222 is sufficient to implement a minimal RS-232C 
interface, using just Rx, Tx, and ground. It also has additional drivers to 
support RTS and CTS, allowing for basic flow control. Should you 
require a full RS-232C interface, the MAX3241 is a good choice. Its 
operation is similar to the MAX3222, but it has additional transceivers 
allowing the inclusion of DTR, DSR, DCD, and RI for modem control. 
The MAX3421 may also be used to interface to a serial mouse, since it is 
able to meet the appropriate voltage and current requirements. 

Using a Serial Port as a Power Supply 

If an embedded system is to be permanently connected to a host 
computer via an RS-232C serial interface, it is possible to parasitically 
power the embedded system from the serial interface. Many RS-232C 
signals go unused and can supply a moderate amount of current, 
nominally 50 mA. However it can vary (considerably) from device to 
device, and, as always, you should check the specific system to which 
you are interfacing. If your embedded system requires less than this for 
its total current draw, you can use an RS-232C control signal for power. 

For instance, the RTS (Ready To Send) or DTR (Data Terminal 
Ready) signals may not be used in many RS-232C applications. Either 
can be used as the power input to a voltage regulator, and thereby 
provide the system with power. The host computer therefore uses RTS 
of its serial port as the power control for the embedded system. Under 
software, the host sends RTS high, and the embedded system is 
powered up. If the host sends RTS low, the embedded system is 
powered down. The caveat to all this is to ensure that your embedded 
system's current draw is low enough so that it can be powered by RTS. 
The advantage of this technique is that you require no external power 
supply for your embedded system. It works, as if by magic, whenever it 
is plugged into a serial port. The catch is that you can't then use that RS-
232C control signal for its original purpose. It must turn on and stay on to 
provide your embedded computer with power. 

A sample schematic of this is shown in Figure, which also 
includes an RS-232C interface for a microcontroller, using a MAX3232. 
Note the diode, D1. Since RTS will be a negative voltage (as low as -15 
V) when low, some protection is required for the voltage regulator, since 
it is not designed to have its input taken below zero volts. The diode can 
be any garden-variety power diode, such as a 1N4004, and will conduct 
only when RTS is positive. The voltage regulator (MAX604) converts the 
voltage from RTS to a supply of 3.3 V for the embedded system. If we 
required a supply of 5 V, we'd simply use a MAX603 instead. The circuit 
would otherwise be the same. The output of the regulator is smoothed by 
the capacitor C5, and a power-on LED is provided to show us when we 
have power. The MAX3232 sits between the RS-232C port and the 
processor, level-shifting the serial transmissions from the processor's 
logic levels to RS-232C, and vice versa. 
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Figure: Using RTS as a power source in a low-powered embedded 
system 

There we have the basics of RS-232C. It's a very common interface that 
is easy to use, but it does have its limitations and quirks. It was originally 
intended for connecting dumb terminals and teletypes to modems, not 
for interconnecting computers and peripherals. A better choice is RS-
422, designed for more robust and versatile serial connections. 

RS-422 

Unlike RS-232C, which is referenced to local ground, RS-422 
uses the difference between two lines, known as a twisted pair or a 
differential pair, to represent the logic level. Thus, RS-422 is a balanced 
transmission, or, in other words, it is not referenced to local ground. Any 
noise or interference will affect both wires of the twisted pair, but the 
difference between them will be less affected. This is known as common-
mode rejection. RS-422 can therefore carry data over longer distances 
and at higher rates with greater noise immunity than RS-232C. RS-422 
can support data transmission over cable lengths of up to 1,200 meters 
(approximately 4,000 feet). 

Figure shows a basic RS-422 link, where a driver (D) of one 
embedded system is connected to a receiver (R) of another embedded 
system via a twisted pair. The resistor, Rt, at receiving end of the twisted 
pair is a termination resistor. It acts to remove signal reflections that may 
occur during transmission over long distances, and it is required. Rt is 

nominally 100-120 . 

Figure :RS-422 
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The voltage difference between an RS-422 twisted pair is 
between ±4 V and ±12 V between the transmission lines (Figure). RS-
422 is, to a degree, compatible with RS-232C. By connecting the 
negative side of the twisted pair to ground, RS-422 effectively becomes 
an unbalanced transmission. It may then be mated with RS-232C. Since 
the voltage levels of RS-422 fall within the acceptable ranges for RS-
232C, the two standards may be interconnected. RS-422 was the serial 
interface found on early Apple Macintosh computers, quietly dropped 
with the coming of the iMacs. 

Figure: RS-422 voltage levels 

 

There is a wide variety of RS-422 interface chips available. Figure shows 
a simple RS-422 bidirectional interface implemented using two Maxim 
MAX3488s. The Tx and Rx pairs of each MAX3488 are connected to 
UARTs within each embedded system, just as we did with RS-232C. 

 

 

Figure : Bidirectional RS-422 interface 
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It's important to note that RS-422 specifies only the voltages for the 
standard, not the physical implementation (pinouts or connectors). That 
is covered by RS-449. Now, no one seems to bother with RS-449, 
mainly because it is unnecessarily complex for most uses. People using 
RS-422 just seem to do their own thing, picking whatever cable and 
connectors (and pinouts!) they feel are appropriate for their application. 
Self-expression and RS-422 seem to go hand in hand. 

Some RS-422 interface chips have an optional enable input. 
When enabled, the chip outputs and drives a transmission onto the 
twisted pair. When disabled, the chip's output is high-impedance, and the 
chip appears "invisible." Because of the ability of the interface chip to 
"disappear" from the connection, it is possible to have multiple interface 
chips (and therefore more than two embedded systems) connected to 
the twisted pair. In this way, it is possible to extend RS-422 into a low-
cost, robust, simple network. When implemented in this fashion, it 
becomes RS-485. 

RS-485 

RS-485 is a variation on RS-422 that is commonly used for low-
cost networking and in many industrial applications. It is one of the 
simplest and easiest networks to implement. It allows multiple systems 
(nodes) to exchange data over a single twisted pair (Figure). 

RS-485 is based on a master-slave architecture. All transactions 
are initiated by the master, and a slave will transmit only when 
specifically instructed to do so. There are many different protocols that 
run over RS-485, and often people will do their own thing and create a 
protocol specific to the application at hand. 

 

Figure:RS-485 network 

 

The interface to the RS-485 network is provided by a transceiver, such 
as a Maxim MAX3483 (Figure). 

Figure: RS-485 transceiver 
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The MAX3483 is just an RS-422 transceiver with enable inputs, 
and using it in a design is straightforward. On the network side, the 
MAX3483 has two signal lines, A and B. This is the twisted pair (network 
cable) attachment point. The MAX3483 also has Data In (DI) and 
Receiver Out (RO). These are connected to the Tx and Rx signals of the 
UART (or microcontroller), respectively. 

Since it is connected to a common network on which it must both 
listen and transmit, it has two control inputs, Data Enable (DE) and 
Receiver Enable (DE). A high input to DE allows the DI input to be 
transmitted on the network. A low input to DE disables the output of the 
transmitter. Similarly, a low input to enables the receiver, and network 
traffic is passed through to RO. DE and are normally controlled by an 
I/O line of the processor. Now, you'll notice that DE is active high, and is 
active low. This is not by chance. A node on the network won't be 
receiving traffic if it's transmitting and, conversely, won't be transmitting if 
it is receiving. Therefore, only one of the two—the transmitter or the 
receiver—should be active at any one time. If the transmitter is on, the 
receiver should be off, and vice versa. The control for the transmitter is 
therefore the logical opposite of the control for the receiver. By having 
DE active high and active low, a single control line may be used for 
both. Figure shows a MAX3483 interfaced to a microcontroller in this 
way. The microcontroller normally has DE/  low so that it is listening to 
network traffic. When it wishes to transmit, it sends DE/  high. Upon 
completion of transmission, it returns DE/  low and resumes listening. 

Figure: Connecting a MAX3483 to a microcontroller 
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RS-485 may be implemented as half duplex, where a single twisted pair 
is used for both transmission and reception (Figure1), or full duplex, 
where separate twisted pairs are used for each direction (Figure2). Full-
duplex RS-485 is sometimes known as four-wire mode. Note that for full-
duplex operation, the MAX3483s are replaced with MAX3491s that have 
dual network interfaces.Figure1. Half-duplex RS-485 

 

Figure: Full-duplex RS-485 

 

These examples show four computers (nodes) connected to an RS-485 
network. Each RS-485 interface chip (MAX3483 or MAX3491) exists in a 
separate embedded computer. The UART transmitter output, Tx, in each 
embedded system is connected to the respective DI of each of the RS-
485 interface chips. Similarly, RO connects to the Rx input of each 
UART. The driver of each RS-485 interface chip is enabled by asserting 
DE, and, similarly, reception is enabled by asserting . 

Normally, all systems connected to the RS-485 network have 
their receivers enabled and listen to the traffic. Only when a system 
wishes to transmit does it enable its driver. There are a number of formal 
protocols that use RS-485 as a transmission medium, and twice as many 
homespun protocols as well. The main problem you need to avoid is the 
possibility of two nodes of the network transmitting at the same time. The 
simplest technique is to designate one node as a master node and the 
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others as slaves. Only the master may initiate a transmission on the 
network, and a slave may only respond directly to the master, once that 
master has finished. 

The number of nodes possible on the network is limited by the 
driving capability of the interface chips. Normally, this limit is 32 nodes 
per network, but some chips can support up to 512 nodes. 

 

USB 

          In previous chapter, we looked at RS-232C, that old standard of 
communication that's not so standard after all. RS-232C has lots of 
problems and lots of limitations. Getting any two RS-232C devices to talk 
is not as simple as it could or should be. You need the right cable with 
the right sort of connectors, and then you need to manually co-ordinate 
the communication parameters such as data rate, parity, and 
handshaking. At best it is a nuisance, at worst a headache. For hardware 
manufacturers, it presents a dilemma. Your goal in developing your 
product should be to make that product as easy to use as possible. You 
don't want users stumbling around with incorrect cables, manually 
configuring settings, and failing to seamlessly integrate your product with 
the rest of their system. This doesn't make for a happy user. 

Universal Serial Bus (USB) is the solution. It allows peripherals 
and computers to interconnect in a standard way with a standard 
protocol and opens up the possibility of "plug and play" for peripherals. 
USB is rapidly dominating the desktop computer market, making RS-
232C an endangered species. Apple Macintoshes no longer have RS-
232C/RS-422 ports, and soon all PCs will go the same way. Therefore, 
an understanding of USB (and how to build a USB port) is critical if you 
wish to interface your embedded computer to the desktop machines of 
the near future. USB supports the connection of printers, modems, mice, 
keyboards, joysticks, scanners, cameras, and much more. 

USB opens a wealth of possibilities, but developing with it is more 
complex than with RS-232C. USB has the advantage (for the user) that 
devices interact with the host computer's OS. No manual setup is 
required. However, it does add an extra layer of complexity to your 
software, since your embedded code must interact with the host in the 
appropriate way. USB can even provide power to peripherals through the 
same cable as data. No external power supply (or power cable) is 
required. So for the user, a USB peripheral is simplicity itself. 

In this chapter, you'll get an overview of USB and then go on to 
see how you can incorporate a USB interface into your embedded 
system. The protocols and specifications for USB are long and complex, 
and well beyond the scope of this book. Fortunately, to design USB-
based hardware, the task is much simpler. We'll simply take an overview 
and then look at a physical USB implementation. 



Embedded systems 
  Note 

 

139 

Introduction to USB 

There are two specifications for USB: USB 1.1 and USB 2.0. 
USB 2.0 is fully compatible with USB 1.1. USB supports data rates of 12 
Mbps and 1.5 Mbps (for slower peripherals) for USB 1.1, and data rates 
of 480 Mbps for USB 2.0. Data transfers can be either synchronous or 
asynchronous. USB is a high-speed bus that allows up to 127 devices to 
be connected (Figure). No longer are having only one or two ports on 
your computer a limitation. Further, one standard for cables and 
connectors eliminates the confusion that existed with RS-232C. Devices 
are able to self-identify to a host computer, and they can be hot-
swapped, meaning that the systems do not need to be powered down 
before connection or disconnection. 

Figure :USB allows a host to connect with a variety of peripherals 

 

The basic structure of a USB network is a tiered star. A USB 
system consists of one or more USB devices (peripherals), one or more 
hubs, and a host (controlling computer). The host computer is 
sometimes known as the host controller. Only one host may exist in a 
USB network. The host controller incorporates a root hub, which 
provides the initial attachment points to the host. The hubs form nodes to 
which devices or other hubs connect, and they are (largely) invisible to 
USB communication. In other words, traffic between a device and a host 
is not affected by the presence of hubs. 

Hubs are used to expand a USB network. For example, a given 
host computer may have five USB ports. By connecting hubs, each with 
additional ports, to the host, the physical connectivity of the system is 
increased (Figure). Many USB devices, such as keyboards, incorporate 
inbuilt hubs allowing them to provide additional expansion as well as 
their primary function. Figure: USB is expandable using hubs 
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The host will regularly poll hubs for their status. When a new 
device is plugged into a hub, the hub advises the host of its change in 
state. The host issues a command to enable and reset that port. The 
device attached to that port responds, and the host retrieves information 
about the device. Based on that information, the host operating system 
determines what software driver to use for that device. The device is 
then assigned a unique address, and its internal configuration is 
requested by the host. When a device is unplugged, the hub advises the 
host of the change in state when polled, and the host removes the 
device from its list of available resources. The detection and 
identification of USB devices by a host is known as bus enumeration. 

USB "knows" about and supports different classes of devices. 
Each class represents the functionality that the device can provide to the 
host. Some sample classes (and sample devices) are listed in Table. A 
single, physical USB peripheral can encompass several classes. 
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USB Packets 

There are four types of transfers that can take place over USB. A 
control transfer is used to configure the bus and devices on the bus, and 
to return status information. A bulk transfer moves data asynchronously 
over USB. An isochronous transfer is used for moving time-critical data, 
such as audio data destined for an output device. Unlike a bulk transfer, 
which can be bidirectional, an isochronous transfer is uni-directional and 
does not include a cyclic-redundancy-check (CRC) field. An interrupt 
transfer is used to retrieve data at regular intervals, ranging from 1 to 
255 milliseconds. 

Data is transferred between USB devices using packets, and a 
transfer can comprise one or more packets. A packet consists of a 
SYNC (synchronization) byte, a PID (Packet ID), content (data, address, 
etc.), and a CRC. 

The SYNC byte phase locks the receiver's clock. This is 
equivalent to the start bit of an RS-232C frame. The PID indicates the 
function of the packet, such as whether it is a data packet or a setup 
packet. The upper four bits of the packet ID are the inverse of the lower 
four bits, for additional error checking. For example, the packet ID for a 
data packet is 0x3C. In binary, this is %0011 1100. 

USB packets can be one of four types: token, data, handshaking, 
or preamble. 
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Tokens are 24-bit packets that determine the type of transfer that 
is to take place over the bus. There are four types of token packet 
(Figure). A token packet consists of a SYNC byte, a packet ID (indicating 
packet type), the address of the device being accessed by the host, the 
end-point address, and a 5-bit CRC field. The end-point address is the 
internal destination of the data within the device. 

Figure: USB token packets 

 

 

There are two types of data packet, known as DATA0 and DATA1 
(Figure). The transmission of data packets alternates between the two 
types. A single data packet can transfer between 0 and 1,023 bytes, and 
the data packet's CRC is 16 bits due to the larger packet size. Figure: 
USB data packets 

 

 

There are three types of handshaking packets (Figure). A successful 
data reception is acknowledged with an Ack packet. The receiver notifies 
the host of a failed transmission by sending a Nak (No Acknowledge) 
packet. A Stall is used to pause a transfer. 

Figure: USB handshaking packets 



Embedded systems 
  Note 

 

143 

 

A descriptor is a data packet used to inform the host of the capabilities of 
the device. It contains an identifier for the device's manufacturer, a 
product identifier, class type, and the device's internal configuration, 
such as its power needs and end points. Each manufacturer has a 
unique ID, and each product in turn will also have a unique ID. Software 
on the host computer uses information obtained from a descriptor to 
determine what services a device can perform and how the host can 
interact with that device. 

 Physical Interface 

USB uses a shielded, four-wire cable to interconnect devices on 
the network (Table 11-2). Data transmission is accomplished over a 
differential twisted pair (much like RS-422/485) labeled D+ and D-. The 
other two wires are VBUS, which carries power to USB devices, and GND. 
Devices that use USB power are known as bus-powered devices, while 
those with their own external power supply are known as self-powered 
devices. To avoid confusion, the wires within a USB cable are color-
coded. 

Connector pin Signal Purpose Wire color 

1 VBUS USB device power (+5V) Red 

3 D+ Differential data line Green 

2 D- Differential data line White 

4 GND Power and signal ground Black 

 

Some USB chips refer to D+ and D- as DP and DM, respectively. 

The connection from a device back to a host is known as an 
upstream connection. Similarly, connections from the host out to devices 
are known as downstream connections. Different connectors are used 
for upstream and downstream ports, with the specific intention of 
preventing loopback. The only way to connect a USB network is a tiered 
star. USB uses two types of plugs (jacks) and two types of receptacles 
(sockets) for cables and equipment. The first type is Series A, shown in 
Figure. Series A connectors are for upstream connections. In other 
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words, a series A receptacle is found on a host or hub, and a series A 
plug is at the end of the cable that attaches to the host or hub. 

Figure: Series A plug and receptacle 

 

Series B connectors are shown in Figure. A series B receptacle is found 
on a USB device, and a series B plug is at the end of the cable coming 
downstream from a host or hub. 

Figure: Series B plug and receptacle 

 

 

Figure shows how this works in practice. This ensures that USB devices, 
hosts/hubs, and USB cables are always connected in the right way. It 
should not be possible to have a cable plugged in the wrong way or to 
directly connect two USB peripherals. 

Figure: USB connectors and cable 

 

Since a hub will be connected to USB devices downstream and to a USB 
host or hub upstream, it will have both types of receptacle (Figure). 

Figure: Receptacles on a USB hub 
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Chips that implement a USB interface require very few external 
components for the USB port. The schematic for an upstream port is 
shown in Figure. 

 

Figure: Upstream USB port 

 

In this example, the embedded system is powered from the USB port. If 
the embedded computer has its own power source, then no connection 
is made between VCC and pin 1 (VBUS) of the USB connector. The pull-
up resistor connected to DP is required only on upstream ports. If you 
are implementing downstream ports on a hub, the pull-up is not required. 
However, downstream ports require pull-down resistors on both DP and 
DM (Figure). 

Figure. Downstream USB port 
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In both figures, DP and DM have series resistors (RT) that terminate the 
USB connection. The total resistance of the termination should be 45Ω. 
However, the pins of the USB controller will have inherent impedance 
that will need to be taken into account. If the pin impedance is 21Ω (say), 
then the series resistors should be 24Ω. The catch here is that not all 
chip manufacturers are thorough enough to specify the pin impedance in 
their technical data. In such cases, you can either hound the 
manufacturer for the data, or take a punt. Ballpark values for the series 
resistors should be between 20Ω and 30Ω. Many microcontrollers, such 
as the Microchip PIC16C745 and PIC16C765, include USB modules as 
part of their suite of I/O. Implementing USB with such processors is 
easy. You simply need to add the physical interface to the DP and DM 
pins of the processor. However, if the chip you have chosen to use as 
the primary embedded processor does not include USB, you have to 
provide USB functionality with an external device. 

Implementing a USB Interface 

One possible solution to implementing USB in your embedded 
system is to use a USB-to-SPI bridge, such as the Atmel AT76C711. 
This chip is an AVR processor with a USB subsystem, designed to act 
as a slave USB controller to a host processor. It has 2K of data RAM, 2K 
of dual-port RAM for packet processing, 16K of program RAM (organized 
as 8K x 16 words), an inbuilt DMA controller, an upstream USB port (with 
one control and five data end points), a separate IrDA-compatible UART, 
and SPI. The processor may be run at up to 24 MHz and operates off a 
3.3 V supply. At reset, the AT76C711 automatically loads its software 
from an external AT45DBxxx data flash to the program RAM. Since the 
AT76C711's program space is small, one of the smaller AT45DBxxx data 
flashes will be sufficient. Alternatively, a host processor may load the 
AT76C711's code directly into its program RAM while it is held in reset. 

The AT76C711 may act as a standalone processor, performing 
USB bridging functions to RS-232C, RS-422/RS-485, IrDA, or other 
protocols. Alternatively, it may be incorporated as a slave processor in a 
larger embedded system. The host processor may communicate with the 
AT76C711 either via SPI or by a standard serial interface through one of 
the AT76C711's UARTs. The AT76C711 also has general-purpose I/O 
lines and a UART module that supports RZ encoding for IrDA. 

If the processor you are using has a bus interface, then you can 
add USB using a chip such as the USS-820D by Agere Systems. It 
supports transfers of up to 12 Mbps and is specifically designed for use 
in USB devices, unlike a lot of USB chips that are intended for use in 
hubs. It can support up to eight endpoints, each with receive and 
transmit buffers of up 1,120 bytes. 

The schematic of an upstream USB interface, using the USS-
820D, is shown in Figure. This chip is available in two footprints; the 
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MQFP is shown in this circuit. For both footprints, the signals are the 
same. The only difference is the pin numbering. 

 

The USS-820D has several power-supply inputs (VDDA, VDDT, VDD0, VDD1), 
all of which operate from a 3.3 V supply (VDD in the schematic). Each 
power pin is decoupled to ground using a 100 nF capacitor. The 5 V 
power (VBUS) available from the USB connector cannot be used to drive 
the USS-820D directly. However, a MAX604 voltage regulator circuit will 
convert VBUS to the required 3.3 V supply. The USS-820D also has 
numerous ground pins (VSST, VSSX, VSS0, VSS1, VSS2), all of which are 
connected to ground. Even though this chip uses a 3.3 V supply, its 
digital (non-USB) inputs are compatible with 5 V logic, and so it may be 
interfaced directly to a processor operating on a 5 V supply. 

XTAL1 and XTAL2 are the connections for a 12 MHz crystal, providing 
timing for the USB controller. 

The connections to a microprocessor are straightforward. The 
USS-820D's data pins, D0 through D7, connect directly to the 
processor's data bus. Similarly, the low-order address pins, A0 through 
A4, connect to the corresponding signals from the processor. These 
address bits are used to select internal registers within the USS-820D. 
The processor's read (RD) and write (WR) signals connect directly to 
USS-820D's read (RDN) and write (WRN) pins. (Agere places an "N" 
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after pin names that are active low.) The USS-820D is selected when 
IOCSN is asserted low. Therefore, this pin is driven from an address 
decoder output (which I've labelled USB-SELECT in the schematic). 

The USS-820D is reset when its RESET pin is sent high (not low 
like most other devices). So, for normal operation this pin should be held 
low. To allow the USS-820D to be reset under software control, this pin 
could be driven by a processor digital output line. 

The USS-820D has a number of outputs that may be used to 
notify a host processor of the current USB status. DSA (Data Set 
Available), USBR (USB Reset detected), SUSPN (Suspend), and SOFN 
(Start Of Frame) may either be read as digital inputs by the host 
microcontroller, or, for processors that have several interrupt inputs, 
these signals may be used to generate an interrupt. If the host processor 
has only a limited interrupt capability, all of these events will trigger the 
USS-820D interrupt pin (IRQN). This pin can therefore serve as the sole 
interrupt input to the processor. A word of caution, however: this pin can 
be configured under software control to be either active high or active 
low. Getting this wrong can put your embedded system in a permanent 
state of interrupt. The default state for this pin is active low, which suits 
most processors. For processors that have active-high interrupts, such 
as Intel processors, the firmware should configure USS-820D for the 
correct interrupt polarity before enabling the processor's interrupt-
handling capability. 

The RWUPN pin is an input that signals a Remote Wake-Up 
condition. In other words, this embedded system has been asleep (in 
suspend mode) and has awoken. This pin notifies the USS-820D of the 
change in state so that it can alert other USB systems. RWUPN is simply 
driven by a processor digital output line. 

The USB differential data signals are pins DPLS (Data Plus, D+) 
and DMNS (Data Minus, D-). These are connected to the USB connector 
through series-termination resistors. Agere Systems suggests a nominal 
value of 24Ω. For an upstream connection, DPLS (D+) requires a pull-up 
resistor of 1.5 kΩ. Normally, this resistor is connected to +5 V. However, 
the USS-820D provides a special pin (DPPU) specifically for this 
purpose. Thus, under software control, the USS-820D can simulate a 
USB-device disconnect. It will appear to an upstream hub that the 
system containing the USS-820D has been physically disconnected, 
even though it is still attached. This can be useful during development 
and testing. It also allows the USB device to decide whether or not a 
host knows it is connected. DPPU may be decoupled to ground using a 
10 nF capacitor. Chips such as the USS-820D make adding USB 
functionality to your embedded hardware simple and easy. Through 
USB, you can develop peripherals based on embedded processors for 
desktop computer systems. Alternatively, you can use USB to connect 
existing peripherals to your embedded computer to further increase its 
functionality. 
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Summary: 

 The Serial Peripheral Interface (known as SPI) was developed by 

Motorola to provide a low-cost and simple interface between 
microcontrollers and peripheral chips. 

 SPI uses four main signals: Master out Slave in (MOSI), Master 
in Slave out (MISO), Serial CLOCK (SCLK or SCK) and Chip 
Select (CS) for the peripheral. 

 The Maxim DS1305 Real-Time Clock (RTC) provides 
timekeeping services and tracks seconds, minutes, hours, day of 
the month, month, day of the week, and year. 

 The AD5203 has a Serial Data Input (SDI), which is connected to 
the processor's MOSI output. 

 The internal memory of microcontrollers is very small, and their 
data storage capabilities are severely limited. 

 The EEPROM is the Atmel AT25640. This device will hold data 
for at least 100 years without power, and will endure more than 
one million write cycles. 

 I2C (Inter-Integrated Circuit) bus is a very cheap yet effective 
network used to interconnect peripheral devices within small-
scale embedded systems. 

 The simplest form of serial interface is that of the Universal 
Asynchronous Receiver Transmitter (UART). UARTs are also 
sometimes called Asynchronous Communication Interface 
Adapters (ACIAs). 

 RS-232C is used for interfacing serial devices over cable lengths 
of up to 25 meters and at data rates of up to 38.4 kbps. 

 When two remote systems are communicating serially, there 
needs to be some way to prevent the transmitter from sending 
new data before the receiver has had a chance to process the old 
data. This process is known as handshaking, or flow control. 

 Hardware handshaking in RS-232C uses two signals, RTS 
(Request To Send) and CTS (Clear To Send). 

 Figure shows a basic RS-422 link, where a driver (D) of one 
embedded system is connected to a receiver (R) of another 
embedded system via a twisted pair. 
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 There are two specifications for USB: USB 1.1 and USB 2.0. 
USB 2.0 is fully compatible with USB 1.1. USB supports data 
rates of 12 Mbps and 1.5 Mbps (for slower peripherals) for USB 
1.1, and data rates of 480 Mbps for USB 2.0. 

Question: 

 Write short notes on serial peripheral Interface? 

 How ADS1305 is interfaced with a micro controller? 

 How a digital potentiometer is interfaced through ISP? 

 Write a short notes on I2C communication? 

 What is UART? How error is detected in UART? 

 Write a short notes on USB? 

 Write notes on following interfaces 

a) RS232 b)RS432 c)RS485 

References: 

 An_Embedded_Software_Primer by David E simon 

 Mathai Joseph, Real-time Systems: Specification, Verification 
and Analysis, Prentice Hall International, London, 1996 
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Agrawal & P. Bhatt http://www.embedded.com 

 Michael Barr, Programming Embedded Systems in C and C++, 
O’Reilly Associates, August 1999. 
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9. ANALOG 

 

Objective: 

In this chapter, we'll look at how you sample external 
voltages and convert these into digital values for processing by 
your embedded system. Such voltages may be generated by 
sensors and may represent light levels, temperature, or vibration. 
Or perhaps the voltages are the output of a microphone or audio 
system and need to be converted into digital data. Later, we'll take 
a look at how you turn digital data into an analog output voltage. 
We'll conclude the chapter with hardware to control electric 
motors. 

First, though, let's take a quick look at amplifiers and 
sampling theory. Note that this is a very complex field. Since the 
background theory is well beyond the scope of this book, we'll just 
take an overview, giving enough background to allow you to 
interface your embedded system to simple analog circuitry. This 
discussion is by no means exhaustive, and it is deliberately 
simplified. 

Amplifiers 

Amplifiers are used to interface one analog circuit to another. An 
amplifier is a circuit that increases (or decreases) a given input voltage to 
produce an output voltage. For example, say you had a sensor that 
produced a maximum output that was 5 mVpp, and this was to be 
interfaced to a sampling system that required an input signal of 5 Vpp. 
You would use an amplifier between the sensor and the sampling 
system to increase the sensor's output accordingly (Figure). 

Figure . Amplifying a waveform 

 

The waveform of the amplifier's output signal should be identical 
to the input signal; only its amplitude will have changed. The amount of 
increase or decrease in the signal is known as the gain of the amplifier. 
Gain is calculated easily by dividing the output voltage by the input 
voltage: 
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Gain = VOUT / VIN 

Thus, an amplifier that doubles the input signal will have a gain of 
2. The ability of a circuit to respond to a changing signal is typically 
limited to a given range of frequencies. This is known as the frequency 
response of a circuit. For example, the amplifier in your home stereo 
may have a frequency response of 20-20 kHz. This means that it will 
amplify audio signals that have a frequency between 20 Hz (low bass) 
and 20 kHz (high treble). Try to pump a 100 MHz signal into the audio 
amp and it simply will not be able to amplify the signal. The signal is said 
to be outside its frequency range. 

Ideally, the frequency response of a circuit, such as the audio 
amplifier, should be flat over its frequency range. This means that its 
response to an input signal will be the same, no matter the frequency 
(within the appropriate range). So, in the case of the audio amp, the gain 
will be constant for any frequency of signal in the appropriate range. 
Thus, the volume will not vary with frequency (ignoring any differences 
due to the original music). At either end of the frequency range, the 
ability of the amplifier to perform ideally degrades. At these extremes of 
frequency, the amplifier's gain diminishes. This is known as roll off. 
Some small degree of roll off is considered acceptable (and 
unavoidable). The frequency response is normally defined as the 
frequency range where the gain is within a certain limit of the ideal. 

The limitation of an amplifier to replicate the input signal at its 
output is the distortion of the amplifier. For audio amplifiers, you'll 
sometimes see the term Total Harmonic Distortion(THD) listed in the 
specifications. The smaller this number is, the better the amplifier. 

In days of old, amplifiers were constructed using discrete 
transistors[*] or vacuum tubes (also known as valves). These days, 
amplifiers are available packaged in integrated circuits. These amplifiers 
are known as operational amplifiers, or op amps for short. They make 
the designer's life much easier. They are cheap, reliable, and so very 
easy to use. Throughout this chapter, whenever we need to amplify a 
circuit, we'll use an appropriate op amp for the job. The schematic 
symbol for an op amp is shown in Figure. 

Figure . Schematic symbol for an op amp 

 

The input marked with "+" is known as the noninverting input, and 
the input marked with "-" is the inverting input. If the voltage present at 
the noninverting input is greater than that present at the inverting input, 
the output of the op amp is positive. Conversely, if the noninverting input 
is less than the inverting input, the output is negative. Typically, an op 
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amp's output will not go as low as its negative power supply, nor as high 
as its positive power supply, due to the limitations of the internal circuitry. 
An op amp whose output voltage range does span the difference 
between its positive and negative power supplies is said to have rail-to-
rail operation. 

In order to function correctly, an op amp requires feedback. 
Feedback involves coupling the output of an amplifier back to its input. 
Negative feedback uses the output to reduce the gain of the amplifier 
and, in doing so, improves the amplifier's other characteristics, such as 
the flatness of the frequency response and immunity to distortion. 
Negative feedback is achieved simply by connecting a resistor between 
the output and the inverting input, as we will shortly see. (A circuit with 
no feedback is said to be open-loop.) Op amps are designed in such a 
way as to make the output change to cancel the difference between the 
inputs via a feedback resistor. Thus, the output waveform follows the 
difference between the input waveforms. The magnitude of the output is 
proportional to the feedback resistor. The larger the resistor, the more 
the feedback of the output is attenuated. Thus, the op amp makes the 
output larger to compensate. In this way, the output is an amplified 
version of the input. 

An op amp may either be used as an inverting amplifier (Figure) 
or a noninverting amplifier (Figure). An inverting amplifier "flips" the 
signal in addition to amplifying it. 

Figure. Inverting amplifier 

 

The gain of an inverting amplifier is given by: 

Gain = - R2 / R1 

Note the minus sign. That's because this amplifier inverts the signal. 

You are more likely to use a noninverting amplifier (Figure), which 
doesn't flip the signal. These are commonly used in audio and sensor 
applications. 

Figure. Noninverting amplifier 
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The gain of a noninverting amplifier is given by: 

Gain = 1 + R2 / R1 

The gain of the amplifier may be set under software control by using a 
digital potentiometer for R2. 

A differential amplifier (Figure) multiplies the difference between 
two input signals and is used to amplify small signals that may be subject 
to noise. By amplifying the difference between the signal of interest and 
a reference, any noise present is reduced (since the noise will affect both 
the signal and the reference equally). When both inputs to a differential 
amplifier change in the same way, this is known as a common-mode 
change. Ideally, a differential amplifier should be immune to common-
mode changes, since its purpose is to amplify the signal difference. Its 
immunity to common-mode changes is known as its Common-Mode 
Rejection Ratio (CMRR). The higher the CMRR, the better. To achieve a 
high CMRR, it is important to match the values (and tolerances) of the 
resistors as closely as possible. 

The output voltage of this differential amplifier is given by: 

    VOUT = (In2 - In1) * (R2 / R1) 13.2. Analog to Digital Conversion 

A device that converts an analog input voltage to a digital number is 
known as an Analog to Digital Converter, or simply and more commonly 
as an ADC. You may have also heard the term codec (COder DECoder) 
before. A codec is an ADC 

Figure. Differential amplifier 
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combined with a Digital to Analog Converter (DAC), providing both 
analog input and analog output in one chip. We'll look at DACs in more 
detail later in this chapter. 

ADCs are found in cell phones and digital phones, converting 
your voice to digital data for transmission. They are also used in your 
computer to digitize the input from a microphone for speech recognition. 
Professional recording studios use ADCs to convert audio to digital data 
in preparation for CD mastering. Similarly, video is sampled using ADCs 
prior to DVD mastering. Your scanner, web cam, and digital camcorder 
all have ADCs in them. At the other end of the application spectrum, 
ADCs are used to sample inputs from sensors. These applications can 
range from automated weather stations to the system monitoring the 
processor temperature in your PC. 

There are several different types of ADC. Integrating ADCs use 
an internal voltage-controlled oscillator to produce a clock signal whose 
frequency is proportional to the voltage being sampled. The clock signal 
is used to drive a counter, which provides the digital value for the 
sample. The higher the sampled voltage, the higher the clock frequency, 
and therefore the higher the number reached by the counter. The 
counter is reset prior to each conversion. Because of this conversion 
technique, integrating ADCs are not known for their speed of conversion. 

A successive approximation ADC uses a DAC to provide an 
analog reference voltage that is compared to the input voltage. By 
incrementing the digital code driving the DAC, the reference voltage is 
increased until a match is found. Once this happens, the code used to 
drive the DAC is used as the digital output of the ADC. 

Flash ADCs (also known as parallel ADCs) use a bank of 
comparators to compare the input voltage to a range of reference 
voltages. The conversion of the input analog voltage to a digital value is 
therefore very fast. The catch is that flash ADCs tend to be more 
expensive than other types of ADC and, due to their complexity, normally 
have a lower resolution than other forms of ADC. 

The process of converting an analog signal to digital is known as 
sampling or quantization. ADCs have two principle characteristics: 
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sample rate and resolution. Sample rate is expressed as samples per 
second (SPS) and refers to how frequently an analog input signal is 
converted into a digital code. The faster an ADC's sample rate, the more 
expensive that chip will be. Resolution determines the accuracy of each 
sample. For example, an "8-bit ADC" will return an 8-bit code 
representing the sampled input signal. This means that the input has 
been quantized into one of 256 discrete values. An "11-bit ADC" will 
quantize the signal into one of 4,096 values, yielding a more accurate 
result. However, the higher the resolution, the more expensive the ADC. 
Further, high resolution is not always required. If, for example, you're 
sampling a temperature sensor that has a range of 0ºC to 100ºC, with an 
accuracy of ± 0.5º C, then that sensor has only 200 meaningful voltage 
levels. For this sensor, an 8-bit ADC is fine. While you could use an 11-
bit ADC to sample this sensor, the additional resolution is overkill. 

An ADC will convert the analog signal into a number that 
represents the ratio of the input signal to a given reference voltage. For 
example, if the ADC's reference voltage is 5 V, and the input signal is 3 
V, then the ratio of input to reference is 60%. So for an 8-bit ADC, where 

255 represents full scale, the sampled input will be returned as 153 

(0x99). From your point of view, you receive the value 153 from the ADC, 

and must work back from this to calculate the original analog voltage: 

    Signal = (sample / max_value) * reference_voltage 

           = (153 / 255) * 5 

           = 3 Volts 

Sample Rates 

The rate at which a signal is sampled can have a dramatic effect 
on the quantized result and therefore can also affect the way in which 
software interprets that result. Figure shows a sinusoidal signal that is 
sampled at a rate equal to its period. In this example, the sample 
happens to coincide with a peak in the signal. The signal changes in 
between samples, but our choice of sample rate means that we get the 
same value each time. We get a completely false picture of what is really 
happening to that signal. To our sampling software, each value returned 
is the same, and so the signal appears to us as though it were a flat line! 

Figure . Poorly chosen sample rate gives inaccurate signal reading 
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If we choose a sample rate that is double (or more) than the signal's 
highest frequency component, we can see the signal in more detail 
(Figure). This sampling frequency is known as the Nyquist frequency and 
is the lower limit of what will produce usable results. If the sample rate is 
slower than the Nyquist frequency, false artifacts (such as our sine wave 
appearing as a straight line, as we saw previously) may appear in the 
sampled result. These phantoms are known as aliasing. 

Figure. Shorter sampling period 

 

 

The faster the sample rate, the more accurate your sampled results will 
be. Since your sampling is quantizing the signal both in terms of 
amplitude (ADC resolution) and time (sample rate), a quantization error 
will always result (Figure). 

 

Figure. Sampling period and corresponding quantization 

 

 

As you can see, the smooth sine wave of the original signal has become 
a jagged representation. Now, if you were monitoring temperature, this 
might be sufficient. You might not care how the temperature signal 
changed. Instead, you might be interested in the temperature only at 
specific intervals, and with only a limited accuracy. In such a case, this 
effect is not really a problem. 



Embedded systems 
  Note 

 

158 

However, if you were sampling audio, this quantization effect could be a 
real problem. By increasing the sample rate, a more accurate 
representation of the original signal is obtained (Figure). 

Figure . Fast sample period results in less quantization 

 

A voice-mail system may use a sample rate of only 8 kHz and a 
resolution of 12 bits, and the resultant sound quality is limited. However, 
CD audio uses a sample rate of 44.1 kHz with 16-bit data and achieves a 
significant improvement in quality as a result. DVD audio uses a sample 
rate of 48 kHz with 24-bit data for even greater audio fidelity. To further 
improve sound quality, both CD and DVD players have special output 
filters to smooth the transitions between each sample when the data is 
converted back into analog form. 

The take-home message is that you should choose your ADC resolution 
and sample rate carefully, keeping in mind exactly what you're sampling 
and what you intend to use it for 

Interfacing an External ADC 

There is a very wide range of ADCs available, for every 
considerable purpose. Choose from very low-cost, low-speed ADCs for 
simple voltage conversion to very high-speed, precise (and expensive) 
ADCs for sampling video streams. Many microcontrollers have inbuilt 
ADC subsystems, making analog interfacing simple. However, if the 
processor doesn't incorporate an ADC, or its ADC is not suited to your 
application, it becomes necessary to add an external device. 

A good general-purpose ADC for sensor applications is the 
Maxim MAX1245. It has eight channels of analog input and can sample 
at 100,000 samples per second, with a resolution of 12 bits. (There are 
similar devices with resolutions ranging from 8 bits to 16 bits, and with 
interfaces such as SPI, I2C, and processor bus.) The MAX1245 has an 
internal track and hold, preventing a changing signal from corrupting the 
result during a conversion. The MAX1245 is interfaced to a host 
processor via an interface that is compatible with SPI, Microwire, and the 
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serial interfaces found in Texas Instruments TMS320-series DSP 
processors (Figure). As you can see, the MAX1245 is very easy to use. 
In this schematic, the analog input comes in via an IDC header, the 16-
pin connector on the left of the figure. Note that every second pin on the 
connector is tied to ground. This means that every second wire in the 
connected cable will be grounded, providing a degree of noise immunity 
to our analog signals. 

Figure. MAX1245 interface 

 

 

The DOUT, DI, and SCLK signals correspond to a processor's SPI 
MISO, MOSI, and SCLK signals, respectively. is simply generated 
using a processor I/O line. 

A conversion commences by sending a start command to the 
ADC via the SPI interface. The start command is simply a byte that 
specifies the channel and other ADC settings for that particular 
conversion. (Refer to the MAX1245 datasheet for more information on 
the software interface.) The MAX1245 may use an internal clock source 
to drive the conversion process, or it may have an external clock. The 
SPI SCLK also doubles as the conversion clock, when the ADC is used 
in external-clock mode. When used in internal-clock mode, the output, 
SSTRB (Serial Strobe), goes low at the beginning of a conversion and 
returns high once the conversion is complete. When an external clock is 
used, SSTRB pulses high in the clock period prior to the most significant 
bit being processed. SSTRB may be used to flag the completion of a 
conversion to a host processor by acting as an interrupt input. 
Alternatively, when used in external clock mode, the conversion result is 
ready once the start command has been sent. 

The MAX1245 has the ability to enter low-power mode. This can 
be done either through hardware or software control. The MAX1245 has 
an input pin, SHDN, which, when asserted low, places the ADC into low-
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power operation. Now, interestingly, SHDN is also used to specify the 
clock frequency of the ADC's internal sampling. Sending this input high 
sets the clock to 1.5 MHz, whereas leaving the input to float (no 
connection) sets the clock to 225 kHz. If SHDN is driven by a 
microcontroller's I/O pin, changing that pin's configuration from an output 
to an input will effectively float SHDN. In this way, you can still use the 
"no connection" option even when the pin is connected. The MAX1245 
can also be placed into low-power mode by software. If the two least 
significant bits of the start command are both 0, then the MAX1245 is 
placed into shutdown. The advantage of software power-down is that 
you can request a conversion and place the device into shutdown with a 
single command. The ADC will complete the conversion before shutting 
down, and its interface will remain active so that the result may be 
clocked out to the microcontroller. 

Power for the MAX1245 (VDD) can be in the range of 2.7 V to 3.3 
V. The MAX1245 has three ground pins: COM, DGND, and AGND. COM 
is the ground reference for the analog inputs, DGND is the ground 
connection for the digital section of the ADC, and AGND is the ground 
connection for the analog section of the ADC. These three grounds need 
to be connected together, but only at a single point, close to AGND. This 
is known as a star ground point. The two power inputs (VDD) need two 

decoupling capacitors to remove noise from the supply voltage. A 0.1 F 

capacitor and a 4.7 F capacitor should be used to decouple VDD and 
should be placed as close to the star ground point as possible. For 
particularly noisy power supplies, a 10 resistor should be placed in series 
between the power source and VDD. The analog inputs should be 
shielded from all nearby digital signals to prevent interference, and a 
ground shield (a fill) should be placed under the MAX1245 to further 
isolate the device from noise.  

Now that we have seen how to add an ADC to a microcontroller, 
let's give it something to sample. We'll now take a look at some sensors 
and see how to interface them to an ADC. There are lots of different 
sensors available, from many manufacturers. Many are hard to use, 
awkward to interface, and require much more effort than seems 
necessary. But not all sensors are created equal. I have sought out and 
selected a range of sensors that are trivial to use and require little or no 
design effort. Electronics can be hard, but it doesn't always have to be 
so, as you will see. 

Temperature Sensor 

We'll start with something simple: a temperature sensor. This little 
sensor has a wide range of applications. The most obvious is as an 
environment monitor or weather station, but you could also use it to 
sense temperatures inside rooms and to control the appropriate heating 
or cooling systems. Combine it with a datalogger design, and you have a 
temperature recorder. Such devices are used in the shipment of fruits, 
vegetables, frozen foods, and flowers to ensure that they get to market in 
their best condition. It can also be used in the shipment of blood 
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products and pathology samples, making sure that these critical 
substances are not exposed to adverse temperatures. 

The AD22100 and AD22103 temperature sensors, by Analog 
Devices, are very easy to use. They are 3-pin devices, requiring only 
power (VS) and ground to give you a voltage output that is proportional to 
temperature (Figure). The AD22100 requires a 5 V supply, and the 
AD22103 requires a 3.3 V supply. 

Figure. AD22100/AD22103 

 

 

What could be easier than that? 

The output voltage corresponds to 22.5 mV/ºC over the temperature 
range -50ºC to +150ºC for the AD22100 and 28 mV/ºC over the 
temperature range 0ºC to 100ºC for the AD22103. The transfer functions 
(how the output relates to the input) for the two devices are given by: 

    VOUT = (VS / 5) x [1.375 + (0.0225 x TA)]            AD22100 

    VOUT = (VS / 3.3) x [0.25 + (0.028 x TA)]            AD22103 

where VOUT is the output voltage, VS is the power supply, and TA is the 
ambient temperature. 

So, turning the equations around, the relationship between temperature 
and output voltage is: 

    TA = (((VOUT x 5) / VS) - 1.375) / 0.0225           AD22100 

    TA = (((VOUT x 3.3) / VS) - 0.25) / 0.028           AD22103 

For example, if we were using an AD22100 temperature sensor with a 
supply voltage of 5 V (VS = 5 V), then our function becomes simply: 

    TA = (VOUT - 1.375) / 0.0225 

Thus, if we measured an output voltage of 1.94 V, the corresponding 
temperature would be 25.1ºC. 

Interfacing the temperature sensor to an ADC is simple. The output may 
be directly connected to an input of the ADC. Alternatively, since 
temperature changes relatively slowly, we can add an RC filter between 
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the sensor and the ADC to remove any noise that may be present in the 
output (Figure). 

 

Figure. ADD22100/AD22103 with an RC filter 

 

 

 

Light Sensor 

 

Now we'll take a look at a light sensor. The obvious use of a light 
sensor is to monitor natural light levels, and perhaps use the results to 
control artificial-lighting systems. But combine this sensor with a 
directional light source (such as a bright LED enclosed in a baffle), and 
you have a security detector. As long as the sensor can "see" the LED, 
everything's fine. But when the light is interrupted, you know that 
someone or something has passed between. 

There are lots of commercial light sensors available. We're going 
to take a look at the TAOS TSL250R sensor. The TSL250R (Figure) 
consists of a photodiode (a semiconductor that is responsive to light) and 
an integrated amplifier. Like the temperature sensor we've just seen, the 
TSL250R just needs power and ground, and it will give you an analog 
voltage output that is proportional to incident light. 
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Figure . TAOS TSL250R light sensor 

 

The spectral response for the TSL250R, shown in Figure, ranges from 
ultraviolet (left) to infrared (right) and peaks in the visible part of the 
spectrum. 

Figure. Spectral response of a TAOS TSL250R 

 

The TSL250R can operate from a supply voltage of between 2.7 V and 
5.5 V and typically consumes only 1.1 mA of current. The basic circuit for 
the TSL250R is very simple (Figure). 

Figure. Using the TAOS TSL250R 
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The maximum output voltage (under full irradiance) for this sensor is just 
under 4 V, when the part is powered from a 5 V supply. So, if we choose, 
we can interface this sensor directly to a (5 V referenced) ADC without 
any additional amplification. Now, because the output does not span the 
full scale of the ADC's range, we lose a small amount of resolution. For 
an 8-bit ADC, a 4 V input corresponds to 0xCC, and so our range of 

values for this sensor go from 0x00 to 0xCC. Depending on your 

application, this may not be a problem. For example, if you are interested 
only in detecting the difference between light and darkness, or when a 
given low-light threshold is crossed, this will work fine. 

Amplifying the Light Sensor 

If you do want to sample the full range of the sensor, you need to 
amplify the sensor's output. Since the sensor's maximum output is 4 V 
and the reference of the ADC is 5 V, the gain of the amplifier must be 
1.25. 

A good general-purpose op amp is the AD623 by Analog 
Devices. It has rail-to-rail operation, can run from a single supply voltage, 
requires very little current, and is exceptionally easy to use. Analog 
Devices has done a lot of the hard work already, and the AD623 requires 
only a single external resistor to set the gain. The value of the resistor is 
calculated using the relation: 

    RG = 100 kΩ / (Gain - 1) 

So, for our required gain of 1.25, we need a resistance of: 

    RG = 100 kΩ / (1.25 - 1) 

       = 100 kΩ / 0.25 

       = 4 kΩ 

The resistor should have a tolerance (accuracy) of 1% or better. 
Standard off-the-shelf resistors are normally 5% and just aren't accurate 
enough. 

The circuit with the TSL250R interfaced to the AD623 is shown in Figure. 

The output of the TSL250R sensor (pin 3) is connected to the 
noninverting input of the AD623 op amp (pin 3), while the inverting input 
is tied to ground. The gain resistor is connected between pins 1 and 8. 
The negative power supply, -VS, is connected to ground for single-
supply operation. The positive power supply, +VS, is 
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Figure. Amplifying the output of the TSL250R light sensor 

connected to VCC and is decoupled to ground using two capacitors. The 
op amp's reference input (REF) is also tied to ground. The output of the 

op amp at pin 6 is then connected directly to the analog input of an ADC. 

 

Accelerometer 

Now we're going to take a look at an interesting sensor. Analog 
Devices makes some really nice accelerometers, and we'll learn how to 
interface an ADXL150 to an embedded system. You can use an 
accelerometer for a number of applications, not just for measuring linear 
acceleration of vehicles. The ADXL150 is a single-axis (one- 
dimensional) accelerometer with a resolution of 10 m g and a full-scale 
range of ±50 g. For dual-axis (two-dimensional) sensing, choose the 
ADXL250. 

Such a fine resolution means you can use this sensor to measure 
gentle vibrations and shifts. You could use it in a seismometer for 
geophysical applications or to measure vibrations or ground shift in 
mines, tunnels, or at building sites. You could use it to monitor motion 
and, by placing three accelerometers orthogonally, get an accurate 3-D 
motion recorder. The same setup could also be used as a digital 
carpenter's spirit level by sensing the direction of the Earth's gravitational 
field. Perhaps you might use it to monitor violent physical shock, such as 
crash-test measurements. Ever moved to a new house only to discover 
that Granny's fine crystal glassware was smashed by the movers? Place 
one of these (along with an appropriate small datalogger) into the 
packing boxes, and you'll be able to prove just how rough the gorillas 
from the moving company were. As you can see, this chip has lots of 
applications. 

The axis of sensitivity for the ADXL150 runs along the chip's 
length from top to bottom (Figure). It is important when using this device 
that it be securely mounted to the circuit board. Rather than just relying 
on solder, also use strong glue under the chip to bind it to the circuit 
board. 
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Figure. Axis of sensitivity 

 

 

The ADXL150 requires no external components (save for power-
supply decoupling) and is a completely self-contained unit, incorporating 
not only the sensor, but also signal conditioning and amplification. Its 
output can be interfaced directly to an ADC. The schematic for using the 
ADXL150 is shown in Figure. Most of the pins are No Connection (NC) 
and can be ignored, as can the TESTPOINT and SELF-TEST pins. The 
TESTPOINT pin is used during manufacture only and should be left 
alone. 

The ADXL150 operates off a power supply in the range of 4 V to 
6 V. However, for ideal operation, the supply should be exactly 5.0 V. 
The closer to 5 V the supply is, the more accurate your measurements of 
acceleration will be. The output voltage is proportional to both 
acceleration and power supply (VS) and is given by the relation: 

    VOUT = VS/2 - (sensitivity * VS/5 * acceleration) 

 

Figure. Using the ADXL150 
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The sensitivity value varies from device to device and is in the 
range 33.0 to 43.0, with a nominal value of 38.0. The standard sensitivity 
value gives a range of ± 50 g; however, the sensitivity may be doubled 
(giving a range of ± 25 g) by connecting the output to the OFFSET-NULL 
pin. 

The SELF-TEST pin is used for verifying the correct operation of 
both the internal mechanics of the sensor, as well as its signal 
conditioning and amplification electronics. Applying logic 1 to this input 
pin artificially imposes a force on the sensor, and thus the sensor can be 
shown to be operating correctly. 

Pressure Sensors 

Now let's take a look at pressure sensors. The most obvious use 
of these sensors is in measuring air pressure for weather monitoring and 
prediction. But pressure sensors are also used in cars to measure 
manifold pressure, in washing machines to measure water levels, and in 
biomedical applications such as measuring blood pressure. Another 
application of pressure sensors is to measure altitude, since air pressure 
changes with height above sea level. Ocean depth can similarly be 
measured. 

When using pressure sensors, the substance you are measuring 
can adversely affect the device. Remember that these are sensitive 
electronic components, and fluids or corrosive gases can destroy them. 
So unless you're measuring clean, dry air, you'll need to provide some 
degree of environmental protection for your sensor. Just how you do that 
really depends on what the application is, what environmental conditions 
you must protect against, and how far your budget stretches. 

Pressure sensors work by measuring the deflection of a 
diaphragm separating two chambers. One chamber is exposed to the 
pressure that is being measured, while the other chamber holds a 
reference pressure. The pressure difference between the two chambers 
causes the diaphragm to deflect, and this deflection is converted into a 
voltage that is proportional to the pressure difference. Pressure sensors 
come in three types: absolute, differential, and gauge. 

In an absolute pressure sensor, the reference chamber is sealed. 
Pressure readings are referenced to an absolute pressure, hence the 
name. Absolute sensors normally have the reference chamber pressure 
at vacuum, or at 1 atmosphere. 

In a differential sensor, the reference chamber is not sealed, and 
an external pressure reference may be applied. Differential sensors are 
used to measure the relative pressures between two gases or two 
liquids. A differential sensor may be treated as an absolute sensor by 
providing it with a sealed and stable reference pressure. 

A gauge sensor is a variation of the differential pressure sensor, 
where the reference pressure chamber is open to the atmosphere. Thus, 
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the measured pressure is referenced to atmospheric pressure, and 
variations of atmospheric pressure (such as those caused by weather 
conditions or altitude) are taken into account. One interesting use of a 
gauge pressure sensor is to measure airspeed. If the measuring 
chamber is exposed to the oncoming airflow (caused by the aircraft's 
motion), and the reference chamber is exposed to the air but sheltered 
from the effects of the airflow, then the difference in pressure can be 
used to calculate the airspeed of the aircraft. 

So, with all that in mind, let's take a look at some pressure 
sensors. The first sensor is a Freescale (formerly Motorola) MPXA6115A 
absolute pressure sensor (Figure). It operates from a 5 V supply and will 
give an output voltage of between 0.2 V and 4.8 V, proportional to 
pressures of 15 kPa to 115 kPa. (Pa is short for Pascals, which is a unit 
of pressure.) Unlike most other pressure sensors, which require external 
signal conditioning, temperature compensation, and signal amplification, 
the MPXA6115A integrates it all in one neat little package. It comes in an 
8-pin chip package, with or without snorkel! 

The NC pins are no-connection and should be left unwired. The 
only additional components required are a decoupling capacitor on the 
power supply and a resistor and capacitor in parallel at the output. The 
output may be directly connected to an ADC's input. 

The second pressure sensor we will look at is also an absolute 
pressure sensor. But, unusually, rather than producing an analog output, 
it incorporates an inbuilt ADC. It is interfaced to a microcontroller using 
SPI and, being digital, it is much less susceptible to noise and 
interference. The sensor is the KP100, made by Infineon Technologies 
(http://www.infineon.com) in Munich, Germany. 

The schematic for a circuit based on the KP100 is shown in 
Figure. The sensor operates off a 5 V supply, and this is decoupled to 
ground using a 100 nF capacitor to reduce noise. The sensor has a 
standard SPI-style interface and is connected to a microcontroller, as 
with any SPI device. The sensor also provides a READY output, which 
may be used to interrupt the host processor, or may simply be connected 
to a spare I/O and read as a digital status flag. The KP100 also requires 
a separate clock (CLK) input. 
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Figure. Interfacing the Free scale MPXA6115A pressure sensor 

 

 

This clock can be either 4 MHz or 8 MHz. If the processor is running at 
one of these speeds, then the sensor can share the same clock input as 
the processor. However, if the processor is operating at a different clock 
frequency, 

Figure. KP100 pressure sensor circuit 

 

 

the KP100's clock may be easily generated using a clock module. These 
4-pin devices are available in a variety of standard frequencies and 
require only power and ground to generate a clock output. 

Magnetic-Field Sensor 

The final sensor we'll look at is the AD22151 magnetic-field 
sensor by Analog Devices. Its primary use is for position and proximity 
sensing. A magnetic source is used as a reference point, and the 
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sensor's distance from that source may be easily determined by the 
measured field strength. The sensor has inbuilt temperature 
compensation and amplification. The circuit for this sensor is shown in 
Figure. It's a little bit more complicated than the other sensors we've 
looked at so far. 

Figure. AD22151 magnetic-field sensor circuit 

 

The sensor operates off a 5 V supply, decoupled to ground using 
a 100 nF capacitor. There are four resistors required for correct 
operation. R1 is the temperature compensation resistor, which should be 
connected between pins 1 and 3, or pins 2 and 3, depending on the 
applied magnetic field. For large external fields, R1 connects pins 1 and 
3, as shown in Figure. For smaller fields, connect R1 between pins 2 and 
3. The AD22151 datasheet has plots of values for R1 versus required 
compensation levels. Check with the manufacturer of your magnetic 
source as to the required compensation value, and use this in 
conjunction with the datasheet to determine R1. R2 and R3 set the 
signal gain of the internal amplifier, and R4 provides a voltage offset. 
The datasheet for the sensor contains equations and technical data for 
computing values of these resistors, based on your specific needs. The 
output of the sensor circuit may be connected directly to an ADC input 
for sampling. 

Digital to Analog Conversion 

So far, we have looked at how you can sense real-world effects 
and convert these into digital data. Now let's see how to do the reverse: 
take digital data and convert it into an analog signal by using a chip 
known as a Digital-Analog Converter (DAC). We'll also look at how you 
can produce an analog output using nothing more than a single digital 
I/O line. 

All DACs have a digital input (a microprocessor bus, SPI, or I2C) 
and will provide you with one or more channels of analog output. 

The Maxim MAX525 is an 11-bit DAC that interfaces to a host 
processor using SPI. It has four channels of analog output and 
incorporates output amplifiers on-chip. The inverting input of each 
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amplifier is accessible so that you can alter their respective gains. A 
sample circuit for a MAX525 is shown in Figure. 

Figure. MAX525 circuit 

 

The four analog output channels are OUTA, OUTB, OUTC, and OUTD. 
These are tied directly to their respective feedback inputs (FBA, FBB, 
FBC, and FBD) for standard unipolar operation. There are two voltage 
reference inputs, REFAB (for channel A and channel B) and REFCD (for 
channels C and D). These two reference inputs must be at least 1.4 V or 
more below VCC at all times. The output voltage for each channel is 
given by the relation: 

    VOUT = (VREF * code / 4096) * gain 

where code is the digital value written to that channel. In our sample 

circuit, the gain is 1. If our reference voltage is set to 3.6 V, the digital 

value 4095 (0xFFF) generates an output voltage of: 

VOUT = (VREF * 4095 / 4096) * gain 

   =  3.6 * 0.9997 * 1 = 3.59 V 

Similarly, the digital value 2048 (0x800) generates an output voltage of: 

VOUT = (VREF * 2048 / 4096) * gain 

        = 3.6 * 0.5 * 1 

        = 1.8 V 

Note the separate analog and digital grounds in the schematic. These 
should be connected together, but only at a single point close to the 
DAC. 

The MAX525 has a standard SPI connection to a microprocessor. 
Multiple MAX525s may be daisy-chained together for efficiency (Figure). 
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Figure. Daisy-chained MAX525s 

 

The MAX525 also has a input, which, when driven low by an I/O line, 
sends all outputs to their lowest value. The MAX525 can be put into low-
power mode under software control. The input is Power-Down 
Lockout, and when driven low, it prevents the MAX525 from being shut 
down. This is important if the outputs are being used to drive a critical 
circuit or system. You don't want the controlling voltages disappearing by 
accident. Finally, the good people at Maxim have provided a signal 
called UPO (User Programmable Output). This is a general-purpose 
output that can be driven high or low under software control. Use it for 
whatever purpose you require. 

Now, if you wanted a gain other than 1 (non-unity gain), external 
resistors are required for the output amplifier. The schematic for this (for 
a single output channel) is shown in Figure. 

Figure. Feedback resistors for non-unity gain 

 

 

From before, we know that the gain of a noninverting amplifier is given 
by: 

    Gain = 1 + R2 / R1 

For bipolar output on a given channel, an external amplifier (with bipolar 
supplies) does the job (Figure). 

 

Figure. Bipolar output 
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PWM 

Using a DAC may seem the obvious way to generate an analog output 
voltage, but there is another way that uses nothing more than a digital 
I/O line configured as an output. This technique is known as Pulse Width 
Modulation (PWM). 

Consider the average, garden-variety, square wave shown in Figure. 

Figure. A ubiquitous square wave 

 

 

The width of the high is equal to the width of the low, so this wave is said 
to have a 50% duty cycle. In other words, it is high for exactly half the 
cycle. Now, if the amplitude of this square wave is 5 V, for example, the 
average voltage over the cycle is 2.5 V. It is as though we had a 
constant voltage of 2.5 V. 

Now consider the square wave in below Figure . 

Figure. 10% duty cycle 

 

This wave has a 10% duty cycle, which means that the average voltage 
over the cycle is 0.5 V. 

A low-pass (averaging) filter on the PWM output will convert the pulses 
to an analog voltage, proportional to the duty cycle of the PWM signal. 
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By varying the duty cycle, we can vary the analog voltage. Hey, presto! 
We have digital-to-analog conversion without a DAC. That's the basic 
idea behind PWM. 

Motor Control 

One of the fun things you can do with an embedded computer is 
get it to actually move something, whether it be an external system or 
the embedded computer itself. Motion implies motor, and this section will 
look at how you interface an embedded computer to an electric motor. 
The possible applications could range from controlling locomotives on 
your model railroad layout to experiments in robotics, and anything in 
between. A note of caution, though: if your hardware and software are 
responsible for moving a physical object, then a bug can easily cause 
physical damage too. So be careful. 

Let's say that we have an electric motor than operates from a 12 
V supply. Applying 12 V across the motor will cause it to turn at full 
speed. Similarly, by applying 6 V, we can get the motor spinning at half 
speed. By varying the applied voltage, we can vary the speed at which 
the motor turns. 

There are several ways to generate this voltage to drive the 
electric motor. The most obvious may seem to be to use a DAC to 
generate an analog output voltage and then use an amplifier to boost the 
signal to the voltage and current required to turn the motor. The speed of 
the motor is proportional to the output voltage. However, this technique 
has a major drawback. For very low-speed operation, the required output 
voltage may be too low to actually cause the motor to turn. 

A better way is to use PWM. Consider the PWM signal in Figure, with an 
amplitude of 12 V. 

Figure . PWM signal with a 10% duty cycle 

 

With a 10% duty cycle, the effective analog output voltage of this PWM 
signal is 1.2 V. Now, by itself, 1.2 V may not be enough to turn a motor. 
But we're not using 1.2 V; we're actually pulsing the motor with 12 V, its 
maximum drive voltage. The duration of the pulses gives the equivalent 
speed of a motor voltage of 1.2 V. However, by using a full 12 V 
amplitude, we're ensuring that the motor will turn. This is the advantage 
of PWM. To control speed, we vary the width of the pulse and not the 
amplitude. 

Using PWM, you can get very slow motor speeds and very fine 
control. The pulses can cause a jerkiness to the motor if the overall 
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frequency is low, but by choosing a high frequency, the jerkiness is 
averaged out. 

Many microcontrollers have internal, software-programmable 
PWM modules that make generating PWM signals easy. Even if a 
processor does not have a PWM module, you can still generate PWM 
under software control simply by using a digital output line. 

Let's now take a look at how you would interface a processor to 
an electric motor using PWM. Due to the voltages and currents required 
by motors, you cannot simply hang a motor off the pins of a processor 
and expect it to work. You need an interface circuit that will take your 
logic-level, PWM output and use this to switch much higher voltages and 
currents. 

Figure shows a conceptual model (in a crude and simplified form) 
of such an interface circuit for driving a small electric motor. This type of 
circuit is known as an H-bridge. 

It's not as confusing as it first looks. Don't be too worried about 
the transistors (Q1-Q4) in the circuit. They simply act as switches. Our 
motor operates from a supply voltage, V+. Apply V+ with one polarity, 
and the motor turns in the forward direction. Reverse the polarity, and 
the motor reverses too. To drive the circuit, we use four outputs from the 
processor: two PWMs (which I've called PWM-A and PWM-B) and two 
general I/O lines (which I've called A and B). Initially, all outputs are low, 
everything is turned off, and the motor is stationary. 

Figure . Motor drive circuit using an H-bridge 

 

If we send A high, the transistor Q4 turns on and connects the right 
"side" of the motor to ground. If we then send PWM-A high, the transistor 
Q1 turns on. Thus, the left "side" of the motor is connected to V+, and 
the motor spins. By generating a PWM signal on PWM-A, we can control 
the speed of the motor in that direction. 
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Conversely, by leaving A and PWM-A low and setting B and PWM-B 
high, transistors Q2 and Q3 turn on, and the motor spins in the reverse 
direction. By generating a PWM signal on PWM-B, we can control the 
speed in the reverse direction. 

Care must be taken in your software. If both Q1 and Q3 are 
turned on, or both Q2 and Q4 are turned on, then you effectively connect 
V+ to ground, with very little resistance in between! The results would be 
spectacular and short-lived! A proper H-bridge circuit normally contains 
protection to prevent such a state from occurring. 

The actual implementation of an H-bridge is a little more 
complicated and requires additional components such as protection 
diodes and so forth. Now, while you could design such an H-bridge 
circuit using discrete components, there is an easier way 

Let's look at a sample H-bridge, the Freescale MC33186. This 
chip is more sophisticated than the simple H-bridge used to explain the 
concept. It provides more functionality, yet is easier to control. This chip 
can operate from a supply voltage (V+) of between 5 V and 28 V and can 
switch continuous currents as high as 5 A, yet it has logic inputs that are 
compatible with TTL levels. It has inbuilt short-circuit and over-current 
protection. Figure shows an MC33186 circuit. 

 

Figure. MC33186 motor drive circuit 

 

The chip has three power-supply inputs, VBAT, all of which must be 
connected to the supply voltage, V+. The power-supply input needs to be 

decoupled using a 47 F capacitor. The internal charge pump also 
needs a decoupling capacitor. The pin, CP, provides access to the 
charge pump and is connected to a 33 nF capacitor. The chip also has 
five ground pins, which, similarly, must all be connected to ground. 
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OUT1 and OUT2 are the pins that directly drive the motor. There are two 
of each, so that the high output currents are not traveling through a 
single pin. 

IN1 and IN2 control both the motor's speed and direction. DI1 
and DI2 serve to disable the MC33186. These four control signals may 
be driven by a microcontroller's I/O lines. For normal operation, DI1 is 
low and DI2 is high. Sending either DI1 high or DI2 low will disable the 
MC33186 and stop the motor. Table shows how IN1, IN2, DI1, and DI2 
affect the motor's operation. 

MC33186 states of operation 

DI1 DI2 IN1 IN2 OUT1 OUT2 Motor 

Low High High Low V+ Ground Forward 

Low High Low High Ground V+ Reverse 

Low High Low Low Ground Ground Free-wheeling 

Low High High High V+ V+ Free-wheeling 

High 
Don't 

care 

Don't 

care 

Don't 

care 

High 

impedance 

High 

impedance 
Disabled 

Don't 

care 
Low 

Don't 

care 

Don't 

care 

High 

impedance 

High 

impedance 
Disabled 

  

If we want the motor to run forward, we generate a PWM signal 
on IN1 and leave IN2 low. If we want to run the motor backward, we 
leave IN1 low and place a PWM signal on IN2. The duty cycle of the 
PWM signal determines the motor's speed. 

If IN1 and IN2 are in the same state, then there's no voltage 
difference applied across the motor's terminals, and so the motor is not 
driven. 

Pin 2 of the MC33186, SF, is an output status flag. If the 
MC33186 is operating correctly, SF is high. If there is a fault, SF is 
driven low. SF may therefore be used as an interrupt to alert the host 
processor of a problem. 

The input COD determines how the chip functions during a fault. 
If COD is left unconnected or is connected to ground, a change on either 
input DI1 or DI2 will reset the fault condition. If COD is connected to VCC 
(that's +5 V, not necessarily V+), then DI1 and DI2 are disabled. The 
fault condition can be reset only by a change on IN1 or IN2. 

Using an integrated H-bridge circuit, such as the MC33186, 
greatly simplifies interfacing your embedded system to motors. 
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Sensing Motor Speed 

In a control application, it is very useful to be able to sense a 
motor's speed. The physical system (load) that the motor is driving will 
affect the motor's rotation. If the motor must move a heavy load, then its 
actual speed of rotation may be less than the intended speed. In such 
situations, it is useful to measure the actual speed so that the embedded 
control system can compensate. 

The easiest way to measure a motor's rotational speed is to use 
an optical encoder module, such as the Agilent HEDS-9000 or a similar 
device. The encoder consists of a light source (LED) and an array of 
photo-detectors, separated from each other by a slotted disc known as a 
code wheel(Figure). The disc is mounted on the rotating motor shaft. 
Each time a slot passes between the LED and a detector, the detector 
receives a flash of light and generates an electrical pulse. The rate at 
which the pulses are generated corresponds directly to the rotational 
speed of the motor. The resolution of the code wheel is known as its 
counts per revolution (CPR) value. The HEDS series of encoders are 
available with CPRs ranging from 96 all the way up to 2,048. 

Figure. Block diagram of a HEDS-9000 optical encoder and a code 
wheel 

 

 

The HEDS-9000 optical encoder operates from a 5 V supply and 
has two outputs, A and B. These outputs are derived from two adjacent 
optical sensors. If the code wheel is rotating in one direction, output A 
will trigger before output B (Figure). 

Figure . Output waveforms for the optical encoder 
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If the wheel is rotating in the opposite direction, then B will trigger before 
A (Figure). 

Figure. Output waveforms for the optical encoder, with rotation in the 
opposite direction 

 

The rate at which the pulses arrive gives the motor's speed, and the 
order in which they arrive shows the direction. This is known as 
quadrature encoding. 

Most microcontrollers have timer/counter inputs that can measure 
external trigger events such as these. Under software control, you can 
use the timers to monitor these quadrature signals. However, Agilent 
makes a series of devices known as quadrature counters: the 11-bit 
HCTL-2000, the 16-bit HCTL-2016, and the 16-bit, cascadable HCTL-
2020. These chips provide a bus-based interface to a processor and 
convert quadrature signals into a binary number representing motor 
position. A 16-bit position counter is capable of measuring 32,767 
increments in either direction, which corresponds to approximately 15 
turns of a 2,048 CPR encoder. To determine the present motor speed or 
position, the processor simply reads from the quadrature counter as 
though it were just another memory location. Quadrature counters also 
have noise filters on their inputs and so provide a more reliable and 
accurate way of determining motor position. 

The schematics showing an optical encoder and quadrature counter are 
shown in Figures. The optical encoder is placed on a separate, small 
PCB so that it may be easily mounted next to the motor's shaft. The 
quadrature counter is located on the embedded computer's PCB. IDC 
headers (J1 and J2) and a ribbon cable connect the two circuit boards. 

Figure. Optical encoder circuit 
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Figure. Quadrature counter circuit 

 

The quadrature counter requires a 14 MHz clock. This is easily 
provided by an oscillator module. CHA and CHB are the quadrature 
inputs from the encoder. The counter has a reset input, , which 
clears the counter. Asserting zeros the quadrature counter and 
indicates that the motor is in the "home" position. This input is driven by 
a digital output of the microcontroller so that the counter can be reset 
under software control. 

D0 to D7 are the data buses through which the processor reads 
the current position. Since the counters are either 12 bits or 16 bits, two 
reads are necessary to retrieve the value through the 8-bit bus. The 
counter therefore occupies two locations in memory, and the SEL input 
is used to select which byte is being read. If SEL is low, then the higher-
order bits are read. If SEL is high, then the lower-order bits are read. To 
make these two bytes appear in adjacent memory locations, the 
processor's address line, A0, is used to drive SEL. Thus, the least 
significant address of the two selects the upper eight bits, while the next 
address selects the lower eight bits. 

Now, the counter does not have a chip select as such. Since it is 
a read-only device, the counter's output enable, , functions as a 
combined chip select and output enable. Therefore, this input is driven 
by the output of the address decoder that corresponds to the region of 
the address space to which the counter is mapped. When the processor 
reads from that address range, is asserted and the counter responds 
with data. Note that if the processor attempted to write to the counter, the 
counter would be selected and would respond with data. Therefore, both 
the processor and the counter would be attempting to drive data onto the 
data bus. This could potentially damage both chips. Now, with careful 
coding this would not be a problem. However, a crashing program may 
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inadvertently cause this situation to arise. To prevent this, a better 
solution is to include the processor's read strobe as part of the address 
decode for this particular device. In other words, the counter is selected 
if (and only if) both the address is correct and the processor is 
performing a read. If the processor is performing a write to the counter's 
address, the counter is not selected and the access is ignored. 

Switching Big Loads 

We've already seen how to use an H-bridge chip to switch 
relatively large voltages (and the corresponding big currents) needed to 
drive electric motors. There are many other cases where you want to 
turn large voltages on or off, and, in this section, you'll learn an easy way 
of doing just that. 

The Freescale MC33298 is a chip that is controlled by a 
microprocessor using SPI that can switch eight power sources on or off. 
This chip can handle voltages between 5 V and 26.5 V, with currents as 
large as 6 Amps. If you need to turn electrical systems on or off, this chip 
is for you. Its primary use is for industrial and automotive applications, 
controlling power to subsystems such as heaters, small air-conditioning 
units, moderate-voltage light bulbs, small pumps, and so on. Obviously, 
it won't handle the high AC voltages that come out of your wall socket, so 
don't use it for switching power to your home appliances! 

The basic schematic for the circuit is shown in Figure. 

The MC33298 has two power-supply pins. VDD is a 5 V supply 
and powers the chip's internal digital logic. It's decoupled to ground using 
a 100 nF capacitor. VPWR is the supply voltage for the external 
subsystems (represented in the figure by each "LOAD" rectangle) and 
can range from 5 V to 26.5 V. There are eight switch outputs, labeled 
OUT0 through OUT7. When a given switch is activated, the 
corresponding output is connected to the VPWR supply, thereby turning on 
that subsystem. The MC33298 has short-circuit detection and shutdown 
(with automatic retry), over-voltage detection and shutdown, current 
limiting on the outputs, output clamping during inductive switching, and 
thermal shutdown if the device is dissipating too much power. Higher 
currents may be switched by tying two or more outputs together so that 
the current is shared by more than one pin. By tying all outputs together, 
currents as high as 48 A may be switched, limited only by the total power 
dissipation and corresponding thermal shutdown limit. 
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Figure. MC33298 circuit 

 

 

The chip has a standard SPI port, allowing it to be interfaced to, 
and therefore controlled by, most microprocessors. The SPI signals 
MOSI, MISO, and SCLK are connected directly to a processor's SPI 
pins. The chip's select input, CSB, is controlled by a digital output of the 
processor and is used to select the device during a SPI transfer. The 
device may be reset and all outputs turned off by asserting its RESET 
input. Again, this too can be driven by a digital output of the processor so 
that the chip may be turned off under software control. The MC33298 
supports SPI daisy chaining, so multiple devices may be coupled 
together. 

The SPFD pin is Short Fault Protect Disable. Sending this pin 
high allows the internal over-current detection circuitry to be disabled. 
When switching some loads, such as light bulbs, there is a very high 
current for a short period of time. This would normally cause the 
MC33298 to register an over-current fault and shut off that output. The 
SPFD pin allows this protection to be overridden so that such loads may 
be controlled. Even though the over-current protection is bypassed, the 
MC33298 is still protected. If the high current lasts long enough, the 
chip's thermal shutdown circuit will kick in, thereby preventing damage. 
SPFD may be driven by a processor digital output, and should be used 
with caution! For normal operation (with over-current protection on), this 
pin should be low. 

Now we've finished looking at I/O options for our embedded 
computers. In the next chapter, we'll look at some processors and see 
how to design complete embedded systems. 
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Summary 

 An amplifier is a circuit that increases (or decreases) a given 
input voltage to produce an output voltage. 

 A differential amplifier multiplies the difference between two input 
signals and is used to amplify small signals that may be subject 
to noise. 

 A device that converts an analog input voltage to a digital number 
is known as an Analog to Digital Converter, or simply and more 
commonly as an ADC. 

 Flash ADCs (also known as parallel ADCs) use a bank of 
comparators to compare the input voltage to a range of reference 
voltages. 

 The rate at which a signal is sampled can have a dramatic effect 
on the quantized result and therefore can also affect the way in 
which software interprets that result. 

 A good general-purpose ADC for sensor applications is the 
Maxim MAX1245. It has eight channels of analog input and can 
sample at 100,000 samples per second, with a resolution of 12 
bits. 

 The AD22100 and AD22103 temperature sensors, by Analog 
Devices, are very easy to use. They are 3-pin devices, requiring 
only power (VS) and ground to give you a voltage output that is 
proportional to temperature. 

 The Maxim MAX525 is an 11-bit DAC that interfaces to a host 
processor using SPI. 

Questions 

 What is amplifier? 

 Differences between amplifier and differential amplifier? 

 Write a brief notes on ADC? 

 How a stepper motor is controlled through PWM? 

 Write brief notes on following sensors 

a) Temparature Sensors. 

b) Pressure Sensors. 

c) Magnetic Field Sensors. 
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d) Accelerometer. 

e) Light sensors 
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10.  Networks 

 

Objective: 

 

In this chapter, we'll look at connecting your embedded computer 
to the real world by adding a Local Area Network (LAN) interface. There 
is a wide variety of networks employed—some very common, some not 
so common. We'll take a look at CAN and Ethernet, the two most 
common networks. CAN is a network for industrial applications, where a 
conventional network just won't do. CAN is suited to electrically noisy 
and harsh conditions and is the network of choice in electrically severe 
environments. Ethernet is the intranet network that connects the world's 
desktop computers, as well as a host of other devices such as routers, 
gateways, printers, and other peripherals. 

Controller Area Network (CAN) 

Through the late 70s and 80s, the complexity of automotive 
electronics grew considerably, with engine-management systems, ABS 
braking, active suspension, electronic transmissions, automated lighting, 
air-conditioning, security, and central locking. Each of these systems 
does not exist in isolation but is part of an integrated whole. A 
considerable amount of information exchange is required, and, therefore, 
some means of system interconnection must be provided. The 
conventional method was point-to-point wiring, which provided discrete 
interconnection between each subsystem. This methodology was a 
natural evolution from the simple electrics of earlier cars, but as 
automotive complexity grew, such a scheme proved vastly inadequate. 
Each car could have several kilometers worth of wiring and dozens of 
connectors. Such complex wiring systems added greatly to the cost of 
producing a car, added unnecessary weight, reduced reliability, and 
made servicing a nightmare. 

The obvious solution was to replace complexity with simplicity 
and implement intersystem communication using a low-cost digital 
network. The automotive electrical environment is very noisy. With 
electric motors, ignition systems, RF emissions, and so on, the 12 V 
supply to automotive electronics can have ± 400 V transients. The 
required communication network must therefore be able to cope with this 
noise and work reliably. The network must provide high-noise immunity 
and error detection and handling, with retransmission of failed packets. 
Thus was born the Controller Area Network, more commonly known as 
CAN, implementing real-time communication at up to 1 Mbps, over a 2-
wire serial network. CAN specifies only the physical and data-link layers 
of the ISO-OSI model, with higher layers left to the specific 
implementation. 
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Bosch developed CAN in Europe in the late 1980s, originally for 
use in cars. Because of its robustness, CAN has expanded beyond its 
automotive origins and can now be found in industrial automation, trains, 
ship navigation and control systems, medical systems, photocopiers, 
agricultural machinery, household appliances, office automation, and 
elevators. CAN is now an international standard under ISO11898 and 
ISO11519-2. 

CAN supports multiple masters on the network, with each master 
responsible for local sensing and control within the distributed system 
(Figure). 

Figure. CAN distributed system 

 

 

Each CAN packet contains address information and priority as part of the 
header, and the nodes may connect to the network, or disconnect from 
the network, without affecting network traffic between other nodes. 

The CAN network uses wired-AND logic, with a maximum bus 
length of 1,000 meters (3,300 feet), and a bus length of 40 meters (133 
feet) at maximum data rate over twisted-pair wiring. Each end of the bus 
requires termination resistors to prevent transmission reflections 
(Figure). 

Many processors intended for use in harsh or electrically noisy 
industrial applications include a CAN module. A number of Philips 
microcontrollers include CAN, as do a few PICs. For processors that do 
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not include CAN, CAN interface modules are available. The Microchip 
MCP2510 provides a CAN module and interfaces to a host processor via 
SPI. Adding CAN to any embedded system is therefore a simple task. 

Typically, a microprocessor that supports CAN will include a CAN 
interface module, which provides most of the functionality. The only 
additional support required is a CAN interface driver. Philips 
Semiconductor produces a CAN driver, the PCA82C250T, which makes 
interfacing to the CAN bus very easy. 

Figure. CAN bus 

 

 

Your embedded computer must also have some way of 
physically attaching to the bus. The simplest method is simply to bring 
the bus into the computer system on one connector, tap off it, and then 
route it out through another connector (Figure). 

Figure. Tapping into a CAN bus by using two connectors on a PCB 

 

 

To see how we can use CAN, let's look at the DSP56805 
processor. This processor has a CAN network module as part of its suite 
of onboard peripherals. The schematic for interfacing a processor's CAN 
module to a CAN bus is shown in Figure. 

The DSP56805 has two CAN interface signals, MSCAN-TX and 
MSCAN-RX, which are the CAN transmitter and receiver, respectively. 
These are connected to the PCA82C250T, which provides the interface 
to the CAN bus. Note that the DSP56805 requires a 3.3 V supply, while 
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the PCA82C250T requires a 5 V supply. A pull-up resistor brings the 
MSCAN-TX output of the processor to the required logic-high level for 
the PCA82C250T. While CAN requires only two signal lines and ground, 
the actual connectors have eight pins. Since the CAN bus requires a 
Termination resistor at each end, we provide a 120 resistor should our 
computer be placed at the bus end. A jumper allows it to be brought in-
circuit or disabled as needed. So, if our computer is at the end of the 
CAN bus, the jumper is closed and the bus is terminated. If our computer 
is not an endpoint machine, the jumper is left open and the resistor plays 
no part. Note that having a termination resistor active (jumper closed) 
when this computer is not at an endpoint is a good way to ensure an 
unreliable CAN bus! Resistors should be active at bus ends only. 

Figure. CAN interface for a DSP56805 processor 

 

Many implementations of CAN just use standard IDC-type headers for 
the connectors. However, the actual CAN standard specifies that the 
connector should be a 9-pin Sub-D connector. The pinouts for this 
connector are listed in Table. 

Pin Signal/use 

1 Reserved 

2 CAN_L 

3 Ground 

4 Reserved 

5 Reserved 

6 Ground 

7 CAN_H 
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Pin Signal/use 

8 Reserved 

9 

V+ 

(optional 

power 

source) 

 

Although this is the same type of connector used in some RS-232C 
implementations (such as the serial ports on PCs), do not connect a 
CAN bus and RS-232C together. They are not even remotely 
compatible! 

Ethernet 

Anyone even remotely involved with computers has heard of 
Ethernet. Developed at Xerox PARC in the early 1970s, this local-area 
networking standard has found its way into every possible application 
and has evolved over time to encompass a number of standards ranging 
from wireless networks (802.11) to gigabit Ethernet. 

In this section, we'll look at how you add a simple Ethernet 
interface to your embedded computer. We will develop a 10 Mbps 
interface only, as higher-speed interfaces require special attention to 
PCB design and EMC issues. So, for the sake of ease and reliability, 
we'll keep it simple and low-speed. 

By adding Ethernet to your embedded system, you gain access 
to a network and all the possibilities that it brings. You can send data to a 
host computer at high speed, as well as access printers, file servers, 
databases, and even the Internet. You can also monitor and control your 
embedded system from afar, or even have it send you email when it 
needs attention. Take an AT90S8515 AVR and add an Ethernet 
interface and some high-capacity flash memory, and you have yourself a 
simple web server. Add an ADC and some sensors, and your web server 
becomes a weather station showing current or past conditions to anyone 
on the Internet. Use a higher-speed processor, several Ethernet ports, 
and the appropriate software, and you have yourself a simple gateway or 
firewall. You could even build an Ethernet-to-Ethernet (or serial, parallel-
port, or USB) bridge. The possibilities are limited only by your 
imagination. 

There was a time when developing an Ethernet interface was a 
major exercise. These were complicated circuits, using lots of chips and 
hundreds of support components. An Ethernet interface could fill a 
moderate PCB all on its own. Not anymore. In these days of large-scale 
integration, adding Ethernet to your design is easy, as we will see. 
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Adding an Ethernet Interface 

Crystal Semiconductor, now part of Cirrus Logic 
(http://www.cirrus.com), produces a single-chip Ethernet controller 
known as the CS8900A. This chip allows you to add a simple (and low-
cost) 10 Mbps Ethernet interface to your embedded system. Full 
documentation on this chip is available from the Cirrus Logic web site. 
As the CS8900A is a commonly used Ethernet controller, there is plenty 
of source code available on the Internet. Just use your favorite search 
engine to hunt it down. When you design a system based on the 
CS8900A, you can actually email your design to the engineers at Cirrus 
Logic, and they will check it out for you, offering advice and pointing out 
mistakes. The email address for this service is 
ethernet@crystal.cirrus.com. 

The CS8900A supports 10BASE-2, 10BASE-T, and AUI 
(Attachment Unit Interface) Ethernet ports. 10BASE-T and 100BASE-T 
are by far the most common types of Ethernet interface, supporting data 
rates of 10 Mbps and 100 Mbps, respectively. Your desktop computer's 
Ethernet interface is most likely a 10/100BASE-T port with an 8-pin RJ-
45 connector. (RJ-45 connectors look like, but are not the same as, 
standard telephone jacks.) The cabling used is UTP (Unshielded Twisted 
Pair) Category 5 cable, more commonly known simply as CAT5. Just like 
RS-422, RS-485, USB, and CAN, 10/100BASE-T Ethernet transmits 
using balanced differential signals. Four wires are used: two for the 
transmitter pair and two for the receiver pair. One wire of the pair carries 
a signal voltage of 0 to +2.5 V, while the other wire carries a voltage of 0 
to -2.5 V, giving a signal difference of 5 Vpp. 

Table shows the pin connections for an RJ-45 connector. The wires 
within the CAT5 cable are color-coded for easy identification. 

Pin Signal name Purpose Wire color 

1 TD+ Transmitted data White/orange 

2 TD- Transmitted data Orange 

3 RD+ Received data White/green 

4 NC No connection Blue 

5 NC No connection White/blue 

6 RD- Received data Green 

7 NC No connection White/brown 

8 NC No connection Brown 

 

A block diagram of a CS8900A implementation is shown in Figure. 
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Figure. Block diagram showing a CS8900A implementation 

 

 

 

As the CS8900A has 100 pins and several different modes of 
operation, we won't cover an entire schematic in one hit. Instead, we'll 
work through each stage of a CS8900A's design, and learn its 
functionality and use as we go. This discussion will be targeted at small, 
embedded application. Some of the more complicated aspects of the 
CS8900A, which are applicable to desktop PCs, will be left alone. 

The CS8900A is connected to its 10BASE-T port through an 
isolation transformer. This transformer must have a winding ratio of 1:1 
for the receiver, and a winding ratio n of 1:1.41 for the transmitter, if the 
CS8900A is used with a 5 V supply. If used with a 3.3 V supply, the 
transformer's winding ratio for the transmitter must be 1:2.5. There are a 
number of manufacturers that make isolation transformers (packaged as 
chips) with these winding ratios, such as Valor, PCA, YCL, and Bel. The 
transmitter requires series-termination resistors of 24.9, ± 1%. The 
transmitter differential pair must be decoupled with each other using a 68 
pF capacitor. A 100 resistor (± 1%) is required in parallel between the 
receiver's differential pair. The CS8900A can also directly drive LEDs, 
indicating Ethernet link status and bus and network activity. The 
CS8900A has an additional pin (RES) that requires a 4.99 k (± 1%) pull-
down resistor. Figure shows the CS8900A connected to a 10BASE-T 
port. 
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Figure. 10BASE-T interface 

 

An external 20 MHz crystal provides timing for the CS8900A. The crystal 
is connected across the XTAL1 and XTAL2 pins, and each pin is 
bypassed to ground using 33 pF capacitors (Figure). 

Figure. Crystal connections for the CS8900A 

 

This Ethernet chip supports the 16-bit ISA bus architecture, the 
expansion bus found in older-model PCs. However, ISA can easily be 
adapted to work with a range of non-ISA processors. The CS8900A may 
therefore be implemented in a variety of computer systems without 
difficulty. The CS8900A also supports operation in 8-bit mode and thus 
can also be interfaced to microcontrollers with an 8-bit data bus, such as 
the AT90S8515 AVR. The CS8900A's input SBHE is used to place the 
chip in 16-bit mode operation after reset. Any activity on SBHE will place 
the CS8900A in 16-bit mode. The easiest way to ensure that there is 
activity on this input is simply to connect SBHE to the processor's 
address line, A0. As soon as the processor begins to use its bus, the 
activity will place the CS8900A in 16-bit mode. For 8-bit operation, SBHE 
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is tied to ground. When used in 8-bit mode, interrupts are disabled and 
the CS8900A's status must be polled by software. 

Before we look at the processor interface of the CS8900A, there 
are some important characteristics we need to note. On the CS8900A, 
RESET is active high. This can catch an unwary designer used to active-
low resets. The reason that RESET is active high derives from the fact 
that this chip was designed principally for use in PCs, as Intel processors 
also have an active-high reset. The CS8900A's reset may be driven by a 
digital output of a microcontroller so that it can be reset under software 
control. Alternatively, in systems where the CS8900A is to have a 
hardware-generated reset at the same time as the processor, the 
processor's active-low reset signal must be inverted for the CS8900A. 
The CS8900A's interrupt outputs (INTRQ0, INTRQ1, INTRQ2, INTRQ3) 
are also active high, and each must be inverted before connecting to an 
active-low interrupt input of a microprocessor. 

Another consequence of its design for use in Intel-based systems 
is that the CS8900A is little endian in operation. When used in 16-bit 
mode with big-endian processors such as the MC68000 or the 
DSP56805, this endian difference is important. There are two possible 
solutions. The first is to simply byte-swap in software. Your code then 
changes the 16-bit word to little-endian format before writing to the 
CS8900A. And when reading from the CS8900A, the processor must 
byte-swap the retrieved 16-bit word prior to processing. 

However, there is an old saying that you should never fix in 
software what you can correct in hardware. The second solution is 
simply to byte-swap the data bus between the processor and the 
CS8900A. D0:D7 of the processor is connected to D8:D15 of the 
CS8900A, and D8:D15 of the processor similarly go to D0:D7 of the 
CS8900A. In this way, the endian-ness is reversed by the actual circuit 
board, and the software never needs to know the difference (Figure). 

Figure. Endian swapping in hardware 

 



Embedded systems 
  Note 

 

194 

The CS8900A has 20 address inputs. This may seem like a lot of 
address inputs for a peripheral, and it is. However, there is a reason. The 
CS8900A is principally an ISA-bus device, and the ISA bus supports 
separate memory and I/O memory spaces. Hence, the CS8900 has two 
separate processor interfaces. In one, it appears as part of the memory 
space of a processor and is accessed as though it were a memory 
device. A chip-select input, CHIPSEL , enables the CS8900A when it is 
used as a memory-mapped device. When it is used as a device within an 
I/O space, there is no externally generated chip select. Instead, devices 
mapped into the I/O space of an ISA bus are expected to do their own 
address decoding, and that is why the CS8900A has 20 address lines. 
Inside the CS8900A is an address decoder specifically for this chip. 
When the CS8900A is reset, it defaults to I/O address 0x00300. This 
address can be remapped under software control by writing to the 
appropriate register of the CS8900A. When used as an I/O-mapped 
device, CHIPSEL is ignored and the CS8900A will respond to the 
appropriate address on its address inputs in conjunction with IOR (I/O 
read) and IOW (I/O write). You can use the CS8900A in I/O mode within 
a memory-mapped I/O system. The system address decoder includes 
the address allocation for the CS8900A but simply does not select it. 
What the system address decoder must do is ensure that no other 
device is selected when the address(es) corresponding to the CS8900A 
is being accessed. 

The default setting for the CS8900A is I/O mode operation. To 
use the CS8900A in memory-mapped mode, and therefore to have it 
recognize CHIPSEL and its memory read (MEMR) and memory write 
(MEMW) inputs, the CS8900A must first be accessed as an I/O-mapped 
device and reconfigured in software. Therefore, to use the memory-
mapped option, you still have to support the I/O-mapped addressing 
scheme to get to it! Therefore, it is much simpler to stick with the I/O-
mapped mode and map this within your memory space as just 
described. If you're using the CS8900A with a processor that has only a 
16-bit address bus, simply tie the additional address inputs of the 
CS8900A to ground. The CS8900A's default address of 0x00300 may be 
inconvenient for use with some processors that already have internal I/O 
systems mapped within that region. An access to that address will be 
intercepted by the internal I/O and never reach the CS8900A. In such 
cases, it will be impossible to remap the CS8900A's address through 
software. You will simply never reach the appropriate register. But there 
is a solution, and it lies within hardware. If you invert some of the 
address bits from the processor before they reach the CS8900A, you 
can perform the remapping automatically. The CS8900A still thinks it lies 
at address 0x00300, but to the processor it is accessed at a completely 
different address. Figure shows an example of this for a processor with a 
16-bit address bus. 
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Figure. Address remapping in hardware 

 

 

In this example, address bit A15 is inverted. So, when the 
processor accesses address 0x8300 (%1000 0011 0000 0000), this is 
converted to address 0x0300 (%0000 0011 0000 0000), which is 
recognized by the CS8900A. 

The CS8900A also has support for a serial EEPROM. This can 
be used to store CS8900A configuration information and the system's 
unique Ethernet address. Note that this EEPROM is optional, as the host 
processor can store this data elsewhere in the system. Figure shows the 
CS8900A interfaced to a configuration EEPROM. The interface is 
standard SPI, and the appropriate pins of the CS8900A are directly 
connected to the corresponding EEPROM pins. The only other 
component required is a decoupling capacitor for the EEPROM's power-
supply pin. The EEPROM interface is disabled in 8-bit mode, so the host 
processor must supply all configuration information. 
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Figure . CS8900A interfaced to a configuration EEPROM 

 

 

Finally, any used inputs, such as the DMA signals ( ,  

and ), , , , , AEN, and 

should be tied inactive. These signals are not used in a typical 
embedded system. 

 

Summary 

 

 CAN is a real-time communication at up to 1 Mbps, over a 2-wire 
serial network. CAN specifies only the physical and data-link 
layers of the ISO-OSI model, with higher layers left to the specific 
implementation. 

 Crystal Semiconductor, now part of Cirrus Logic 
(http://www.cirrus.com), produces a single-chip Ethernet 
controller known as the CS8900A. This chip allows you to add a 
simple (and low-cost) 10 Mbps Ethernet interface to your 
embedded system. 

 Four wires are used: two for the transmitter pair and two for the 
receiver pair. One wire of the pair carries a signal voltage of 0 to 
+2.5 V, while the other wire carries a voltage of 0 to -2.5 V, giving 
a signal difference of 5 Vpp. 

 

Questions 

 What is CAN? 

 Briefly explain Ethernet? 

 Explain address remapping in controllers? 

 What is Endian swapping in hardware? 

 What is 10base-T interface? 
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UNIT – V 

 

11. The PIC Microcontrollers 

 

Objective: 

This chapter introduces you to the Microchip PIC. To start our 
discussion of microprocessor hardware, we'll look at the basics of creating 
computer hardware by designing a small computer based on a simple 8-pin 
PIC processor. The same design principles apply to the AVR and many other 
microcontrollers. This PIC processor is so simple that building a computer 
based on one of them is trivial, as you will see. From there, we'll look at a 
mid-range PIC processor and see just what you need to do to design an 
embedded computer based on one. First, though, let's take a quick tour of the 
PIC architectures before getting into designing some computers. 

A Tale of Two Processors 

In the late 1970s, General Instruments had a 16-bit processor known 
as the CP1600. It has since passed into extinction and is all but forgotten, 
long ago losing out to the Intel 8086 and the Motorola 68000. One major 
failing of the CP1600 was that it had limited I/O capability, and so General 
Instruments designed a tiny companion processor to act as an I/O controller. 
The idea was that this controller could provide not only the I/O for the 
CP1600, but being a processor in its own right, it could provide some degree 
of intelligent control. This processor was called the Peripheral Interface 
Controller, or PIC. The CP1600 died a quiet death, passing gently into 
oblivion, but its little companion lives on. In the mid-80s, the microelectronics 
division of General Instruments was spun off into Microchip, and the PIC 
processor was its core product. Today, PICs are widely used. They live in the 
hand controllers of Sony PlayStations, children's toys, consumer appliances, 
and industrial systems. 

The original PIC architecture has only one accumulator (known as the 
working register, or w register) and 25 to 368 bytes of RAM in the original 
processors. The program counter's least significant byte, the status register, 
and various control registers are mapped into the lowest part of the RAM 
space and may be accessed by standard memory move operations. The 
upper part of the RAM space is for data. Microchip refers to the RAM space 
as "registers," although they have limited functionality as true registers. They 
are primarily for data storage. 

The processor has a stack that is fixed to a depth of between two and 
eight entries (depending on the particular processor) and is used solely for 
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holding return addresses for subroutine calls and interrupts. There is a single 
register, known as the FSR (File Select Register), which can act as an index 
register into the RAM space. Limited indexed addressing is available using 
the FSR, and it can be used to implement a pseudostack for user data. 

Apart from a few exceptions, the PIC has no external buses and is a 
self-contained computer within a single chip. Only limited expansion is 
possible using the processor's peripheral interfaces (SPI and I2C) or digital 
I/O ports. The PIC excels in applications for which size and power 
consumption are critical. Being able to drop a tiny computer system into a 
design is a great bonus, and it is ideal for battery-powered applications, since 
it can (almost) run off the field of a stray electron. 

The PIC is also very robust. It takes a lot to kill a PIC. I had one client 
that inadvertently switched power and ground on his PIC-based computer 
and left it that way for a week. At the end of it, the little processor was still 
operational (once powered the right way). Another time, one of my PIC-based 
data loggers was tested for its long endurance by attaching it to the Indian 
Pacific express. This is a long-haul passenger train that goes between 
Sydney and Perth, crossing the deserts of central Australia. Unfortunately, 
during the trial the Indian Pacific was involved in a serious rail accident. A 
signaling fault caused a commuter train to impact the rear of the express, 
completely demolishing the end carriages. The data logger had been 
attached (externally) to the rear of the train. It absorbed the full impact of the 
collision, and, when recovered from the wreckage, the data logger was still 
operating normally. PICs are tough little processors! 

The PIC is very RISC-like in many respects. The architecture is 
Harvard, with separate data and code spaces. The data space is 8 bits wide, 
while the code spaces are between 12 and 16 bits wide, depending on the 
particular PIC family. The data space is mapped into multiple banks, including 
most control registers. With only one accumulator, banked memory, and 
limited addressing modes, a reasonable percentage of a given program can 
be spent simply shuffling data around, much more so than many other 
processors. The PIC excels in small-scale, simple applications. However, the 
lure of its ultra-low power consumption sometimes means that it is pressed 
into service running some quite involved algorithms. Writing complicated 
software for the PIC sometimes feels as impossible as trying to solve a Tower 
of Hanoi puzzle that has only a single peg. It can be a challenge! Many a PIC 
programmer has wished for just a bit more memory, and just a few more 
accumulators. The new dsPIC architecture, which is a significant advance 
over the standard PIC, has been received with chortles of joy by PIC 
developers around the world, as is a much more advanced processor. 

A number of commercial C compilers are also available for the PIC, 
but there is no port of the gnu C compiler for it. (At the time of writing, there 
are rumors that the gnu compiler will be ported to the new dsPIC 
architecture.) 
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For many simple digital applications, a small microprocessor is a 
better choice than discrete logic, because it is able to execute software. It is 
therefore able to perform certain tasks with much less hardware complexity. 
So, let's see just how easy it is to produce a small, embedded computer. 

Starting Simple 

The PIC12C508 processor is a tiny 8-pin computer with just 512 
words of internal program memory and just 25 bytes of internal RAM. It is 
intended for the simplest of control functions. It can be used in any small 
application for which you need to monitor digital inputs or turn something on 
or off. Its I/O pins can be used to synthesize a SPI or I2C interface, or to 
control a motor using PWM. 

Figure shows the schematic for a small computer based on the 
PIC12C508. The digital I/O signals of the PIC are brought out through a 7-pin 
connector. If the design were implemented using surface-mount components 
wherever possible, the connector would be the largest component on the 
PCB! 

This particular PIC processor includes an internal RC oscillator that 
runs at 4 MHz, so we can use it without any external oscillator circuit. The 
design in Figure shows the same PIC-based design, but this time using an 
external 32 kHz watch crystal for its oscillator. By running off a (slower) 32 
kHz crystal, we have the advantage of greatly reducing the processor's power 
consumption. This is important for battery-powered applications. 

Two 15 pF capacitors remove unwanted higher-order harmonics from 
the crystal's oscillation. The values for the capacitors vary depending on what 
speed and type of crystal you are using. The processor datasheet has tables 
showing recommended capacitor values for various crystal frequencies. 

Minimal PIC12C805 computer 
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A basic PIC12C508 computer; just add power The alternative is to 
use an external RC circuit as the clock source (Figure). While not the most 
precise timing option, it is by far the cheapest. The actual frequency of 
oscillation depends on a combination of the values of the resistor, the 
capacitor, the supply voltage, the variation in tolerances for the components, 
and the current operating temperature. To be clear, only an approximate 
operating frequency can be determined for an RC oscillator.  

 

 

 

The alternative is to use an external RC circuit as the clock source 
(Figure). While not the most precise timing option, it is by far the cheapest. 
The actual frequency of oscillation depends on a combination of the values of 
the resistor, the capacitor, the supply voltage, the variation in tolerances for 
the components, and the current operating temperature. To be clear, only an 
approximate operating frequency can be determined for an RC oscillator. For 
stable operation, Microchip recommends that the resistor should be between 
3 k and 100 k, and the capacitor greater than 20 pF. If you wish to use an 
external RC oscillator, refer to the processor's datasheet, as Microchip has 
detailed information on RC component selection, taking into account voltage 

and temperature effects. External RC oscillator 
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Variable-Speed Oscillator 

One of the neat tricks you can do if using an external RC oscillator is 
have a variable-speed computer. This is accomplished by adding a pull-up 
resistor (R1) between the oscillator input and an I/O pin (Figure). For normal 
operation, the I/O pin is configured as an input. By configuring the I/O pin as 
an output and placing it high, the resistor R1 is effectively placed in parallel 
with the resistor R. The overall resistance is increased by the relationship 
RTOTAL = 1 / (1/R + 1/R1), and the oscillator slows accordingly. This is a 
useful technique to reduce power consumption under software control. 

When using an external RC circuit to drive the internal oscillator, an 
extra PIC I/O line (GP4) becomes available for use. 

Variable-speed RC oscillator 

 

Power-on Reset 

No external reset is needed for this PIC. Instead, the design relies on 
the internal power-up reset circuit of the processor. Further, not even an 
external resistor is required on the reset input, RESET, since the processor 
incorporates a weak pull-up resistor for this purpose. When not used as a 
reset input. The power supply (VDD) for the PIC12C805 can range from 2.5 V 
to 5.5 V. 
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That covers the basics of a PIC12C805 system, and it's not that much 
different from the corresponding AVR computer, which we'll look at in the 
next chapter. The real differences lie in their internal architectures (and 
instruction sets) and in the subtleties of their operating voltages and 
interfacing capabilities. As you can see, there's not a lot of hard work involved 
in putting one of these little machines into your embedded system. 

 

A Bigger PIC 

In this section, we'll look at the PIC16C73 processor. For a mid-range 
PIC, the design is not dissimilar to the simpler PIC we've already seen. The 
only real difference is that the processor has more pins, more I/O, and more 
functionality. Designing for PIC17 and PIC18 processors is not dissimilar to 
creating machines based on the PIC16 family. What you learn here is 
applicable to many other PICs. 

The schematic for this processor is shown in Figure. This processor 
has 4K words of program memory, 192 bytes of RAM, and a variety of I/O 
subsystems, such as three timer modules, SPI, I2C, a UART, five channels of 
analog input, and up to 22 digital I/O pins. 

PIC16C73 processor and support components 
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This processor has one power pin (VDD) and two ground pins (VSS). 
As always, power is decoupled to ground with a small capacitor (C3). The 
only other requirements are some form of clock generation—in this case 
provided by a crystal, X1--and two decoupling capacitors, C1 and C2. The 
clock could just as easily have been provided using an RC circuit, as we saw 
with the 12C508 PIC. The reset input, RESET, is tied directly to the power 
supply, such that it is permanently inactive. In this case, we are relying on the 
processor's internal power-on reset circuitry and don't need to provide an 
external reset. It is common practice to use a pull-up resistor to tie an unused 
input, such as RESET , inactive. However, in this case I have found that a 
pull-up resistor can affect the activation of the internal power-on reset to the 
point where it fails to kick in. (The internal capacitance of the pin combines 
with the resistor to form an RC circuit, which delays RESET from reaching the 
appropriate level.) Thus, the resistor can actually cause the processor to 
never start properly. So in this case, it's better to leave it out. 

Port A (RA0 . . . RA5) functions as an analog input port or a general-
purpose digital port. Port B (RB0 . . . RB7) is a general-purpose digital port 
with weak internal pull-up resistors. Port C (RC0 . . . RC7) can act as a digital 
port or provide timers, PWM, a serial port, a SPI port, or an I2C interface. 
Depending on your application, you may use some or all of these pins in your 
design, connecting to other subsystems as appropriate. 

This basic design, in combination with the appropriate datasheet, can 
be adapted to most other PIC processors that you will come across. 

 

PIC-Based Environmental Data logger 

Now let's look at a complete system based on a PIC processor. The 
design presented here is a simplified version of my DL4 data logger product. 
This data logger is designed for extended recording of data (for at least a 
year), using a minimum of power. It has 1M of nonvolatile memory, capable 
of retaining data without power for as much as 20 years. The sensors fitted 
are light and temperature, but you could easily adapt this design to record 
any analog sensor you like, from acceleration to magnetic field. It's also 
small. The entire data logger fits onto a circuit board smaller than your 
smallest finger. 

The processor is a PIC16LF873A, a variant of the PIC16C73. The "L" 
means that it is low-power, and the "F" means that it is a flash-based part 
(rather than EPROM or OTP) that can be reprogrammed in-circuit, making 
debugging (and life) so much easier. The "8" indicates that the processor 
includes EEPROM for nonvolatile parameter storage, useful for holding user 
preferences and machine state. Finally, the "A" tell us that it is a second 
revision (version) of the silicon. The basic circuit for the processor and its 
support components is shown in Figure. Note that the processor's power pin 
is connected to a net labeled PVDD rather than the system's VDD. Since the 
processor can be reprogrammed in-circuit, we must consider this in our 
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design. During programming, the burner provides its own supply voltage (+5 
V) for the processor. Now the flash chip used in the data logger requires a 
nominal supply voltage of 3.3 V, and the 5 V supplied by the burner could 
potentially damage the chip. Hence, we use a Scotty diode, D2, to isolate the 
system supply voltage from the processor when it is being reprogrammed. 
When not being programmed, D2 conducts and supplies the processor with 
power. During programming, D2 doesn't conduct, and the rest of the data 
logger remains unpowered. In the same way, we use a Scotty diode (D1) to 
isolate the processor's reset pin from the supply voltage. When not being 
programmed, D1 conducts and pulls RESET to VDD. However, during 
programming, D1 isolates RESET and allows the burner to pull this reset 
input to a higher voltage as required. 

The processor has two crystals, X1 and X2. X1 provides the timing for 
the processor that drives its internal operation. Depending on our application, 
X1 could be anything from 32 kHz to 20 MHz. The choice of crystal for X1 
affects the power consumption of the data logger. The faster the crystal, the 
more juice the machine uses. For ultra-low-power operation, a 32 kHz crystal 
is the best choice. However, this does have a drawback. Since the internal 
oscillator is used to drive the UART's transmitter and receiver clocks, a slow 
crystal limits the baud rate that we can achieve. Using a 32 kHz crystal gives 
a maximum baud rate of only 300 baud. Downloading a megabyte of data 
from the data logger at that speed takes a whopping 7 hours and 42 minutes! 
(And you thought your Internet connection was slow.) Hence, you need to 
choose a value of X1 that best suits your needs. If you can live with a 7-hour 
download and want the maximum possible operating life from your battery, 
use a 32 kHz crystal. If battery life is not critical, use a faster crystal. 

X2 is used to drive the processor's internal TIMER1 subsystem, which 
we use for timekeeping functions and for scheduling the sampling process. 
While it is possible to use the processor's main oscillator to drive the internal 
timers, this oscillator is shut down during the execution of the SLEEP 
instruction. (The internal watchdog circuit is used to reawaken the processor.) 
Hence, it is better to use a second crystal on TIMER1 for your timekeeping, 
as TIMER1 continues to operate even during sleep. 

The voltage regulator circuit is shown in Figure. It's a standard 
MAX604 circuit, providing a 3.3 V supply voltage on VDD. Since we are using 
a battery to supply power, we can live without a capacitor on the input. 
There's a huge choice of batteries available. I like the Energizer EL123 
battery. It's relatively small (two-thirds the length of a AA and slightly fatter) 
and can run the data logger for well over a year. 
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Datalogger processor and support components 

 

 

The regulator is important in the data logger for two reasons. First, it 
ensures that the supply voltage within the data logger is constant. This is 
critical, as the supply voltage 

Datalogger power supply 
 

 

 

is used as a reference for the analog-to-digital converter. While it is 
perfectly possible to run the processor directly off a battery, as the battery's 
voltage begins to drop with use, the readings from the sensors will become 
increasingly meaningless. We'd be recording data quite successfully, but its 
relevance would be nil. 
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The second reason for using the regulator is that it is able to operate 
off a lower voltage than other components in the system and still provide a 
stable 3.3 V. This means that even as our battery is draining, we can still get 
the maximum operating life possible. 

Figure 14-8 shows the nonvolatile flash (made by ST Electronics), 
which is used for holding data. The flash uses a simple SPI interface to 
connect to the host processor. It is selected by the FLASH chip select, which 
is controlled from a processor I/O line (RB2). The HOLD input to flash acts as 
a "pause" function during accesses. This allows the processor, until software 
control, to temporarily suspend its access to the flash and perform SPI 
transfers with other peripherals. This feature currently isn't used in the data 
logger but is included to allow for future functionality, such as the inclusion of 
digital, SPI-based sensors. Finally, the chip select (FLASH) is pulled high to 
ensure that the flash is not inadvertently selected as the data logger is 
powering up. 

Data logger nonvolatile memory 

 

 

Figure shows the data logger's interface to the outside world. The DL4 
data logger uses a small Harwin connector, also shown in Figure, but you 
could use whatever suits your application, even an IDC header. 

The connector is used to mate with two separate devices. The first is 
shown in Figure. This in-house adaptor allows the datalogger to be plugged 
into a Microchip PICSTART Plus programmer for burning new code. It simply 
maps the signals required during programming (PGD, PGC, power, and 
ground) to the equivalent pins for a DIP-based PIC. In essence, it converts 
the datalogger's connector into the pinout of a DIP-based PIC. The adaptor 
board has pins underneath that insert into the programmer 
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Datalogger connector 

 

 

Programming adaptor for the DL4 datalogger 

 

The second device into which the data logger plugs is an RS-232C 
adaptor module, shown in Figure. 

Serial adaptor 

This module allows the data logger to connect to a host computer for 
both configuration setup and data recovery. The adaptor has a Maxim RS-
232C level-shifter and a voltage regulator (both fitted to the top side of the 
circuit board), and a DB-9 connector. It draws its power from the RTS signal 
of the host computer's serial port and, as such, requires no external power 
supply. The schematic for this circuit is shown in Figure. Note that this is an 
independent circuit from that of the data logger. The diode D2 is needed 
since RTS can have negative voltages as well as positive voltages. D2 
prevents damage to the regulator when RTS is negative. During normal 
operation, RTS is set at +12 V by the host computer under software control, 
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turning on the serial adaptor. The regulator turns this +12 V into +3.3 V, 
which powers the MAX3232 and illuminates the LED. 

 

Note that pin 6 of the Harwin connector on the data logger is 
connected to a net called HOST. This pin corresponds to pin 3 of the 
adaptor's Harwin connector and is tied to ground. When the data logger is 
plugged into the adaptor module, HOST is pulled low, but at all other times it 
is high due to the internal pull-up resistors inside the PIC. In this simple way, 
software running on the data logger can tell whether a host computer is 
present. This is useful as the data logger's UART may be disabled to save 
power until it is required. Further, it can act as a simple switch for the 
firmware, toggling between "talk to host" mode and "data logging" mode. It's 
interesting to note that the Harwin connector is much bigger on the schematic 
than the DB-9 due to the number of pins. Yet, when placed next to a DB-9, 
the Harwin connector is physically tiny. 
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Serial adaptor schematic 

 

 

Finally, Figure shows the sensors of the data logger. You could just as 
easily use other sensors or provide a connector allowing for interfacing to 
interchangeable sensor modules or external analog subsystems. 
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Data logger sensors 

 

Motor Control with a PIC 

Now let's look at using a PIC in a completely different sort of 
application: motor control via user input. While the design presented in this 
section is targeted at a specific application, it is just as easily adapted to any 
task where small DC motors need to be controlled, from tools to robotics. 

My young nephews are into model trains, and the standard controller 
that came with the railroad was a fairly simple device. The speed of the 
locomotives is controlled by simply varying the voltage on the track. Turn up 
the voltage, and the trains go faster; turn down the voltage, and the trains 
stall on dirty rails. Fine control and realistic operation just wasn't possible. I 
decided to solve this problem by throwing a little high-tech at it and designed 
for them a microprocessor-based controller using a PIC. It's this design that I 
will share with you. 

The hardware design takes the basic concept one step further by 
adding momentum control and braking. The momentum control allows you to 
specify the mass of the train under control so that when you open up the 
throttle, the train gradually builds up speed, and rolls to a halt when the 
throttle is closed. Braking speeds up the stopping. All this sounds 
complicated, but the hardware to do it is trivially simple when you use a 
microcontroller. All the real "work" is done in the software, and you can keep 
it as simple or as fancy as you want. 
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The processor schematic is shown in Figure. It's not that different 
from the one used in the datalogger. 

Figure. Processor 

 

You'll notice that there's only one crystal, since there's no need for 
timekeeping. Two status LEDs are provided for user feedback by software. 
As there are several spare pins on Port B (RB2, RB5..7), you could add extra 
LEDs if you feel so inclined. BRAKE and FLAG are inputs to the processor. 
BRAKE comes from a push-button switch, and FLAG is an output from the H-
bridge chip that indicates an over-current fault. 

You'll also notice that there's no provision for in-circuit programming 
as was provided in the data logger design. For this particular project, I used a 
DIP-based PIC processor that I had lying around, and to reprogram the part it 
was a simple matter to remove it from its socket on the circuit board and drop 
it into the burner. If you want to be able to reprogram the chip in-circuit, 
simply use the same connections as in the data logger design. 

The choice of crystal frequency is up to you, but the choice you make 
does have an interesting consequence. The frequency of the crystal relates 
directly to the PWM frequency the processor is able to generate. The clock 
signal from the crystal circuit is divided by four before being fed into the 
processor's PWM modules. Registers within the PWM modules can then 
scale this back further to produce a slower PWM frequency. Commercial train 
controllers use a PWM frequency of 16,125 Hz. Any slower than this and you 
will hear noise from the motors; any faster and there is a loss of torque. So to 
achieve a PWM frequency of 16 kHz, you'll need a crystal with a frequency 
greater than 64 kHz. As you can't easily obtain crystals of that exact 
frequency, the best choice would be a 1 MHz crystal, using the PWM 
modules' registers to scale it back appropriately. 
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The voltage regulator circuit is shown in Figure. The regulator chosen 
is a standard (and cheap) LM7805 that provides a constant +5 V output from 
an input voltage of between +7 V and +35 V. Since the motors of model 
locomotives run on a nominal maximum of +12 V, this is the actual supply 
voltage for the system. Also included in the regulator schematic is a LED to 
indicate when power is on and extra decoupling capacitors to help eliminate 
digital noise in the system. 

Figure shows the controls used to drive the train. The throttle and 
momentum controls are simply 50 k potentiometers, which are used as 
voltage dividers. The wipers of these pots provide a voltage of between 0 V 
and +5 V to the analog inputs of the PIC. Thus, position of the control can 
easily be read by software. The direction and brake controls are simple push 
buttons. The direction control connects directly to an input on the H-bridge 
chip (discussed shortly), and the brake control is used as a digital input to the 
processor. The direction control has a 100 k pull-up resistor, and the brake 
control relies on the internal pull-ups of Port B of the processor. 

Figure. Voltage regulator 
 

 

 

Controls 
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Figure shows the H-bridge chip. This converts the PWM output of the 
processor to voltage levels appropriate for driving the small DC motors found 
in model locomotives or, for that matter, any sort of small DC motor. 

Figure. H-bridge 
 

 

 

The H-bridge uses VIN (+12 V) as its power source because it must 
supply that voltage to the motors. As mentioned, the DIR (direction) input 
comes from a simple push button and determines the polarity of the output. 
Alternatively, the direction switch could be connected to a spare digital input 
of the processor, and a digital output could drive DIR. Since it would be a 
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simple mapping of input to output by the software, it's easier just to connect it 
straight through and bypass the PIC. 

The output of the PIC's PWM1 module is connected directly to the 
PWM input of the H-bridge. The H-bridge converts the 5 V amplitude, PWM 
signal from the PIC to a 12 V amplitude, PWM output whose polarity is 
determined by DIR. 

The H-bridge has internal over-current sensing and will shut itself off if 
its temperature rises too high (as would happen if the outputs were shorted 
together). The FAULT output indicates when this occurs. This active-low 
output is used to control a LED and is also connected to an input on the 
processor so that the software can be made aware of the fault condition. 

Finally, we can add an optional serial port to the controller, shown in 
Figure. This is a standard RS-232C level-shifter circuit and is connected to 
the RX and TX pins of the processor's UART. The serial port can be used for 
software debugging to display status messages to a host computer or 
terminal. If you wanted to get very fancy, you could use the serial port to 
allow a host computer to send commands to the train controller. If you're 
adapting this design for robotics, a serial port would be a very useful addition. 
However, if you are providing control from an external host, don't forget to 
connect the DIR input of the H-bridge to the PIC and not directly to a push 
button. 

Figure. Serial port 
 

 

In the next chapter, we'll take a look at the AVR processor family. 
These processors are comparable to PICs in terms of I/O and functionality 
but have a higher throughput and a more versatile architecture. 
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Summary: 

 The original PIC architecture has only one accumulator (known as the 
working register, or w register) and 25 to 368 bytes of RAM in the 
original processors. 

 The processor has a stack that is fixed to a depth of between two and 
eight entries (depending on the particular processor) and is used 
solely for holding return addresses for subroutine calls and interrupts.  

 The architecture is Harvard, with separate data and code spaces. The 
data space is 8 bits wide, while the code spaces are between 12 and 
16 bits wide, depending on the particular PIC family. 

 The PIC12C508 processor is a tiny 8-pin computer with just 512 
words of internal program memory and just 25 bytes of internal RAM. 

 PIC processor includes an internal RC oscillator that runs at 4 MHz, 
so we can use it without any external oscillator circuit. 

 16F73 processor has 4K words of program memory, 192 bytes of 
RAM, and a variety of I/O subsystems, such as three timer modules, 
SPI, I2C, a UART, five channels of analog input, and up to 22 digital 
I/O pins. 

 RS-232C level-shifter circuit and is connected to the RX and TX pins 
of the processor's UART. 

Question: 

 Explain the features of PIC controller briefly? 

 What is power on RESET? Explain? 

 Explain pin diagram of PIC16C63. 

 How to design a data logger using PIC, Explain with diagrams? 

 Write notes on RS232 in PIC? 

References: 

 A Beginner's Guide to Using the PIC Microcontroller, by David 
Benson 

 PIC Microcontroller Applications Guide by David Benson 

 PIC Microcontroller Applications Guide by David Benson 

 PIC Microcontroller Serial Communications, by Roger Stevens 

 C What Happens, Using PIC® Microcontrollers and the CCS C 
Compiler, by David Benson 
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12. The AVR Microcontrollers 

Objective 

In this chapter, we'll look at the Atmel AVR processor. Like the PIC, 
this processor family is a range of completely self-contained computers on 
chips. They are ideally suited to any sort of small control or monitoring 
application. They include a range of inbuilt peripherals and also have the 
capability of being expanded off-chip for additional functionality. 

Like the PIC, the AVR is a RISC processor. Of the two architectures, 
the AVR is the faster in operation and arguably the easier for which to write 
code, in my personal experience. The PIC and AVR both approach single-
cycle instruction execution. However, I find that the AVR has a more versatile 
internal architecture, and therefore you actually get more throughputs with the 
AVR. 

In this chapter, we'll look at the basics of creating computer hardware 
by designing a small computer based on the AVR ATtiny15. We'll also see 
how you can download code into an AVR-based computer and how it can be 
reprogrammed in-circuit. From there, we'll go on to look at some larger AVR 
processors, with a range of capabilities. 

Later in the chapter, we're going to look at interfacing memory (and 
peripherals) to a processor using its address, data, and control buses. For 
most processors, this is the primary method of interfacing, and, therefore, the 
range of memory devices and peripherals available is enormous. You name 
it, it's available with a bus interface. So, knowing how to interface bus-based 
devices opens up a vast range of possibilities for your embedded computer. 
You can add RAM, ROM (or flash), serial controllers, parallel ports, disk 
controllers, audio chips, network interfaces, and a host of other devices. 

Most small microcontrollers are completely self-contained and do not 
"bring out" the bus to the external world. In this chapter, we'll take a look at 
the Atmel AT90S8515 processor. It is the only processor of the AVR family 
that allows you access to the CPU's buses. But first, let's take a look at the 
AVR architecture in general. 

The AVR Architecture 

The AVR was developed in Norway and is produced by the Atmel 
Corporation. It is a Harvard-architecture RISC processor designed for fast 
execution and low-power consumption. It has 32 general-purpose 8-bit 
registers (r0 to r31), 6 of which can also act as 3 16-bit index registers (X, Y, 
and Z) (Figure). With 118 instructions, it has a versatile programming 
environment. 
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AVR registers 

 

 

In most AVRs, the stack exists in the general memory space. It may 
therefore be manipulated by instructions and is not limited in size, as is the 
PIC's stack. 

The AVR has separate program and data spaces and supports an 
address space of up to 8M. As an example, the memory map for an 
AT90S8515 AVR processor is shown in Figure. 

Atmel AT90S8515 memory map 
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Atmel provides the following sample C code, which it compiled and 
ran on several different processors: 

int max(int *array) 
 
{ 
  char a; 
  int maximum = -32768; 
  for (a = 0; a < 16; a++) 
    if (array[a] > maximum) 
      maximum = array[a]; 
  return (maximum); 
} 

The results are interesting (Table). 

Atmel's comparison of processor speed and efficiency 
 

Proce
ssor 

Compiled code 
size 

Execution time 
(cycles) 

AVR 46 335 

8051 112 9,384 

PIC16
C74 

87 2,492 

68HC
11 

57 5,244 

 

This indicates that, when running at the same clock speed, an AVR is 
7 times faster than a PIC16, 15 times faster than a 68HC11, and a whopping 
28 times faster than an 8051. Alternatively, you'd have to have an 8051 
running at 224 MHz to match the speed of an 8 MHz AVR. Now, Atmel 
doesn't give specifics of which compiler(s) it used for the tests, and it is 
certainly possible to tweak results one way or the other with appropriately 
chosen source code. However, my personal experience is that with the AVR, 
you certainly do get significantly denser code and much faster execution. 

There are three basic families within the AVR architecture. The 
original family is the AT90xxxx. For complex applications, there is the 
ATmega family, and for small-scale use, there's the ATtiny family. Atmel also 
produces large FPGAs (Field-programmable Gate Arrays), which incorporate 
an AVR core along with many tens of thousands of gates of programmable 
logic. 
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For software development, a port of gcc is available for the AVR, and 
Atmel provides an assembler, simulator, and software to download programs 
into the processors. The Atmel software is freely available on its web site. 
The low-cost Atmel development system is a good way of getting started with 
the AVR. It provides you with the software and tools you need to begin AVR 
development. 

The AVR processors at which we'll be looking are the small ATtiny15, 
the AT90S8535/AT90S4434, and the AT90S8515. 

The ATtiny15 Processor 

For many simple digital applications, a small microprocessor is a 
better choice than discrete logic, because it is able to execute software. It is 
therefore able to perform certain tasks with much less hardware complexity. 
You'll see just how easy it is to produce a small, embedded computer for 
integration into a larger system using an Atmel ATtiny15 AVR processor. This 
processor has 512 words of flash for program storage and no RAM! (Think of 
that the next time you have to install some 100 MB application on your 
desktop computer!) This tiny processor, unlike its bigger AVR siblings, relies 
solely on its 32 registers for working variable storage. 

Since there is no RAM in which to allocate stack space, the ATtiny15 
instead uses a dedicated hardware stack that is a mere three entries deep, 
and this is shared by subroutine calls and interrupts. (That fourth nested 
function call is a killer!) The program counter is 9 bits wide (addressing 512 
words of program space), and therefore the stack is also 9 bits wide. Also, 
unlike the bigger AVRs, only two of the registers (R30 and R31) may be 
coupled as a 16-bit index register (called "Z"). 

The processor also has 64 bytes of EEPROM (for holding system 
parameters), up to five general-purpose I/O pins, eight internal and external 
interrupt sources, two 8-bit timer/counters, a four-channel 10-bit analog-to-
digital converter, an analog comparator, and the ability to be reprogrammed 
in-circuit. It comes in a tiny 8-pin package, out of which you can get up to 8 
MIPS performance. We're not going to worry about most of its features for the 
time being. That will all be covered in later chapters when we take a look at 
the I/O features of some larger AVRs. Instead, we're just going to concentrate 
on how you use one for simple digital control. 

Using a small microcontroller such as the ATtiny15 is very easy. The 
basic processor needs very little external support for its own operation. Figure 
shows just how simple it is. 
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A simple AVR computer 
 

 

Let's take a quick run-through of the design (what there is of it). VCC 
is the power supply. It can be as low as 2.7 V or as high as 5.5 V. VCC is 
decoupled to ground using a 0.1 uF capacitor. The five pins, PB0 through 
PB4, can act as digital inputs or outputs. They can be used to read the state 
of switches, turn external devices on or off, generate waveforms to control 
small motors, or even synthesize an interface to simple peripheral chips. The 
digital I/O lines, PB0 through PB4, get connected to whatever you're using 
the processor to monitor or control. We'll look at some examples of that later 
in the chapter. 

Finally, one input, RESET, is left unconnected. On just about any 
other processor, this would be fatal. Many processors require an external 
power-on reset (POR) circuit to bring them to a known state and to 
commence the execution of software. Some processors have an internal 
power-on reset circuit and require no external support. Such processors still 
have a reset input, allowing them to be manually reset by a user or external 
system. Normally, the reset input still requires a pull-up resistor to hold it 
inactive. But the ATtiny15 processor doesn't require this. It has an internal 
power-on reset and an internal pull-up resistor. So, unlike most (all) other 
processors, RESET on the ATtiny15 may be left unconnected. In fact, on this 
particular processor, the RESET pin may be utilized as a general-purpose 
input (PB5) when an external reset circuit is not required. One important 
point: the normal input protection against higher-than-normal voltage inputs is 
not present on RESET /PB5, since it may be raised to +12 V during software 
download by the program burner. Therefore, if you are using PB5, you must 
take great care to ensure that the input never exceeds VCC by more than 1 
V. Failing to do so may place the processor into software-download mode 
and thereby effectively crash your embedded computer. 

The AVR processors (and PICs too) include an internal circuit known 
as a brownout detector (BOD). This detects minor fluctuations on the 
processor's power supply that may corrupt its operation, and if such a 
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fluctuation is detected, it generates a reset and restarts the processor. There 
is also an additional reset generator, known as a watchdog, used to restart 
the computer in case of a software crash. It is a small timer whose purpose is 
to automatically reset the processor once it times out. Under normal 
operation, the software regularly restarts the watchdog. It's a case of "I'll reset 
you before you reset me." If the software crashes, the watchdog isn't cleared 
and thus times out, resetting the computer. Processors that incorporate 
watchdogs normally give software the ability to distinguish between a power-
on reset and a watchdog reset. With a watchdog reset, it may be possible to 
recover the system's state from memory and resume operation without 
complete re-initialization. 

Now the other curious aspect of the above design is that there is no 
clock circuit. The ATtiny15 can have an external crystal circuit. (On the 
ATtiny15, PB3 and PB4 function as the crystal inputs, XTAL1 and XTAL2). 
But our design doesn't have a crystal, or even need one. The reason is that 
this little processor includes a complete internal oscillator (in this case, an RC 
oscillator) running at a frequency of 1.6 MHz and so requires no external 
components for its clock. The catch is that RC oscillators are not that stable 
and have the tendency to vary their frequency as the temperature changes. 
(The ATtiny15's oscillator can vary between 800 kHz and 1.6 MHz.) 
Generally, an RC oscillator is not really suitable for timing-critical applications 
(in which case, you'd use an external crystal instead). But if your ATtiny15 is 
just doing simple control functions, timing may not be an issue. You can 
therefore get by with using the internal RC oscillator and save on complexity. 
Atmel provides an 8-bit calibration register (OSCCAL) in the ATtiny15 that 
enables you to tune the internal oscillator, thus making it more accurate. 

There we have the basic design for an ATtiny15 machine. In essence, 
it's a very cheap, very small, versatile computer that requires no work for the 
core design. The only design effort needed is to ensure that the computer will 
work correctly with the I/O devices to which it is interfaced. If you're going to 
power the system off a battery, then the capacitor is optional as well! The 
only component that must be there is the processor itself. (And you thought 
designing computer hardware was going to be hard!) 

So, that's the basic AVR computer hardware with minimal 
components. We'll look at how you download code to it shortly. 

That covers the basics of a ATtiny15 system, and it's not that much 
different from the corresponding PIC12C805 computer. The real differences 
lie in their internal architectures (and instruction sets) and in the subtleties of 
their operating voltages and interfacing capabilities. As you can see, there's 
not a lot of hard work involved in putting one of these little machines into your 
embedded system. 

So far, our computer isn't interfaced to anything. Let's start with 
something simple by adding a LED to the AVR. The basic technique applies 
to all microcontrollers with programmable I/O lines as well. 
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Adding a Status LED 

LEDs produce light when current flows through them. Being a diode, 
they conduct only if the current is flowing in the right direction, from anode 
(positive) to cathode (negative). The cathode end of a LED is denoted on a 
schematic by a horizontal bar. The anode is a triangle. 

The circuit for a status LED is shown in Figure. It uses an I/O line of 
the microcontroller to switch the LED on or off. Sending it low will turn on the 
LED. Sending it high will turn off the LED, as we'll soon see. The resistor (R) 
is used to limit the current sinking into the I/O line, as we shall also see 
shortly. 

Status LED 

 

When conducting (and thereby producing light), LEDs have a forward 
voltage drop, meaning that the voltage present at the cathode will be less 
than that at the anode. The magnitude of this voltage drop varies between 
different LED types, so check the datasheet for the particular device you are 
using. 

The output low voltage of an ATtiny15 I/O pin is 0.6 V when the 
processor is operating on a 5 V supply and 0.5 V when operating on a 3 V 
supply. Let's assume (for the sake of this example) that we are using a power 
supply (VCC) of 5 V, and the LED has a forward voltage drop of 1.6 V. Now, 
sending the output low places the LED's cathode at 0.6 V. This means the 
voltage difference between VCC (5 V) and the cathode is 4.4 V. If the LED 
has a voltage drop of 1.6 V, this means the voltage drop across the resistor is 
2.8 V (5 V - 1.6 V - 0.6 V = 2.8 V). 

Now, from the datasheet, the digital I/O pins of an AVR can sink up to 
20 mA if the processor is running on a 5 V supply. We therefore have to limit 
the current flow to this amount, and this is the purpose of the resistor. If the 
resistor has a voltage difference across it of 2.8 V (as we calculated) and a 
current flow of 20 mA, then from Ohm's Law we can calculate what value 
resistor we need to use: 

R = V / I 
  = 2.8 V / 20 mA 
  = 140  
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The closest available resistor value to this is 150 , so that's what 
we'll use. (This will give us an actual current of 18.6 mA, which is fine.) 

The next question is, how much power will the resistor have to 
dissipate? In other words, how much energy will it use in dropping the voltage 
by 2.9 V? This is important because if we try to pump too much current 
through the resistor, we'll burn it out. We thus need to choose a resistor with 
a power rating greater than that required. Power is calculated by multiplying 
voltage by current: 

P = V * I 
  = 2.8 V * 20 mA 
  = 0.056 Watts = 56 mW 

That's negligible, so the resistor value we need for R is 150  and 
0.0625 W. (0.0625 W is the lowest power rating commonly available in 
resistors.) 

So, what happens when the I/O line is driven high? The AVR I/O pins 
output a minimum of 4.3 V when high (and using a 5 V supply). With the 
output high, the voltage at the LED's cathode will be at least 4.3 V, so the 
voltage difference between the cathode and VCC will be only 0.7 V (or less). 
But the forward voltage drop of the LED is 1.6 V. Thus, there is not enough 
voltage across the LED to turn it on. 

In this way, we can turn the LED on or off using a simple digital output 
of the processor. We have also seen how to calculate voltages and currents. 
It is very important to do this with every aspect of a design. Ignoring it can 
result in a nonfunctioning machine or, worse, charred components and that 
wafting smell of burning silicon. 

We've just seen how to use the digital outputs of the AVR to control a 
LED. This will work with any device that uses less than 20 mA. In fact, for 
low-power components, such as some sensors, it is possible to use the 
AVR's output to provide direct power control, just as we provided direct power 
control for the LED. In battery-powered applications, this can be a useful 
technique for reducing the system's overall power consumption. 

Switching Analog Signals 

We can also use the digital I/O lines of the processor to control the 
flow of analog signals within our system. For example, perhaps our 
embedded computer is integrated into an audio system and is used to switch 
between several audio sources. To do this, we use an analog switch such as 
the MAX4626, one for each signal path. This tiny component (about the size 
of a grain of rice in the surface-mount version) operates from a single supply 
voltage (as low as 1.8 V and as high as 5.5 V). It also incorporates inbuilt 
overload protection to prevent device damage during short circuits. The 
schematic showing a MAX4626 interfaced to an ATtiny15 AVR is shown in 
Figure. Driving the AVR's output (PB2) high turns on the MAX4626 and 
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makes a connection between NO and COM. Sending PB2 low breaks the 
connection. In this way, the MAX4626 can be used to connect an output to an 
input, under software control. 

Switching an analog signal 

 

The question is: will it work with an AVR? When operating on a 5 V 
supply, the input to the MAX4626 (pin 4, IN) requires a logic-low input of less 
than 0.8 V and a logic-high input of at least 2.4 V. The AVR's logic-low output 
is 0.6 V or less, and its logic-high output is a minimum of 4.3 V. So, the AVR's 
digital output voltages match the requirements of the MAX4626. As for 
current, the MAX4626 needs to sink or source only a miniscule 1 A. For an 
AVR, this is not a problem. 

If the MAX4626 doesn't meet your needs, MAXIM and other 
manufacturers produce a range of similar devices with varying 
characteristics. There's bound to be something that meets your needs. 

The schematic in Figure includes a push-button connected to PB3, 
where PB3 is acting as a digital input. Now, there are a couple of interesting 
things to note about this simple input circuit. The first is that there is no 
external pull-up resistor attached to PB3. Normally, for such a circuit, an 
external pull-up resistor is required to place the input into a known state when 
the button is open (not being pressed). The pull-up resistor takes the input 
high, except when the button is closed and the input is connected directly to 
ground. The reason we can get away with not having an external pull-up 
resistor is that the AVR incorporates internal pull-up resistors, which may be 
enabled or disabled under software control. 

The second interesting thing to note is that there is no debounce 
circuitry between the button and the input. Any sort of mechanical switch (and 
that includes a keyboard key) acts as a little inductor when pressed. The 
result is a rapid ringing oscillation on the signal line that quickly decays away 
(Figure). 

So, instead of a single change of state, the resulting effect is as if the 
user had been rapidly hammering away on the button. Software written to 
respond to changes in this input will register the multiple pulses, rather than 
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the single press the user intended. Removing these transients from the signal 
is therefore important and is known as debouncing. Now, there are several 
different circuits you could include that will cleanly remove the ringing. But 
here's the thing: you don't always need to! 

Figure. Push-button input 

 

Figure . Signal bounce 

 

When a user presses a button, he will usually hold that button closed 
for at least half a second, maybe more, by which time the ringing has died 
away. The problem can therefore be solved in software. The software, when 
it first registers a low on the input, waits for a few hundred milliseconds and 
then samples the input again (perhaps more than once). If it is still low, then it 
is a valid button press, and the software responds. The software then "re-
arms" the input, awaiting the next press. Debouncing hardware does become 
important, however, if the button is connected to an interrupt line or reset. 

So far, we have seen how to use the AVR to control digital outputs 
and read simple digital inputs. The astute among you may ask, "When 
looking at the previous two circuits, why do we need the processor?" After all, 
it is certainly possible to connect the button directly to the input of the 
MAX4626. Of what use can the processor be? Well, we've already seen one 
use. The processor can replace debounce circuitry on the input. Since it has 
internal memory and the ability to execute software, the processor can also 
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keep track of system state (and mode), monitor various inputs in relation to 
each other, and provide complicated control sequencing on the outputs. In 
short, the inclusion of a microprocessor can reduce hardware complexity 
while increasing system functionality. They can be very useful tools. With 
more advanced processors, and with more diverse I/O, the functionality and 
usefulness of an embedded computer can be significant. 

Downloading Code 

The AVR processors use internal flash memory for program storage, 
and this may be programmed in-circuit or, in the case of socketed 
components, out of circuit as well. The AVR processors are reprogrammed 
via a SPI port on the chip. Even AVR processors such as the ATtiny15, which 
do not have a SPI interface for their own use, still incorporate a SPI port for 
reprogramming. The pins PB0, PB1, and PB2 take on SPI functions (MOSI, 
MISO, and SCK) during programming. 

VCC can be supplied by the external programmer downloading the 
code. For programming, VCC must be 5 V. If the embedded system's local 
supply will provide 5 V, then the connection to the programmer's VCC may be 
left unmade. However, if the embedded system's supply voltage is something 
other than 5 V, the programmer's VCC must be used, and any local power 
source within the embedded system should be disabled. RESET plays an 
important role in downloading code. Programming begins with RESET being 
asserted (driven low). This disables the CPU within the processor and thus 
allows access to the internal memory. It also changes the functionality of 
PB0, PB1, and PB2 to a SPI interface. The development software then 
sends, via the SPI interface, a sequence of codes to "unlock" the program 
memory and enable software to be downloaded. Once programming is 
enabled, sequences of write commands are performed, and the software 
(and other settings) are downloaded byte by byte. The Atmel software takes 
care of this, so normally you don't need to worry about the specifics. If you 
need to do it "manually," perhaps from some other type of host computer, the 
Atmel datasheets give full details of the protocol. 

The Atmel development system comes with a special adaptor cable 
that plugs into the company's development board and allows you to 
reprogram microprocessors via a PC's parallel port. By including the right 
connector (with the appropriate connections) in your circuit, it's possible to 
use the same programming cable on your own embedded system. 
Depending on the particular development board, there is one of two possible 
connectors for in-circuit programming. The pinouts for these are shown in 
Figure. (VTG is the voltage supply for the target system. If the target has its 
own power source, of the appropriate voltage level for programming (+5 V), 
then VTG may be left unconnected.) Pin 3 is labeled as a non connect on 
some Atmel application notes; however, some development systems use this 
to drive a LED indicating that a programming cycle is underway. 

The schematic showing how to make your computer support this is 
shown in Figure. Note that MOSI on the connector goes to MISO on the 
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processor, and, similarly, MISO goes to MOSI on the processor. This is 
because during programming, the processor is a slave and not a master. 

Figure. In-circuit programming connectors 
 

 

The connector type is an IDC header, and the cable provides all the 
signals necessary for programming, including one to drive a programming 
indicator LED. When not being used for programming, the connector may 
also double as a simple I/O connector for the embedded computer, allowing 
access to the digital signals. Thus, one piece of hardware can assume dual 
roles. 

There is something important to note, however. If you use PB0, PB1, 
or PB2 to interface to other components within your computer, care must be 
taken that the activity of programming does not adversely affect them. For 
example, our circuit with the MAX4626 used PB2 as the control input. During 
programming, PB2 acts as SCK, a clock signal. Therefore, the MAX4626 
would be rapidly turning on and off as code was downloaded to the 
processor. If the MAX4626 was controlling something, that device would also 
rapidly turn on and off, with potentially disastrous effects. Conversely, if there 
are other components in your system, these must not attempt to drive a 
signal onto PB0, PB1, or PB2 during the programming sequence. To do so 
would, at the very least, result in a failed download and, at worst, damage 
both the embedded system and the programmer. It's therefore vitally 
important to consider the implications of in-circuit programming on other 
components within the system. 
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In-circuit programming 

 

There is something important to note, however. If you use PB0, PB1, 
or PB2 to interface to other components within your computer, care must be 
taken that the activity of programming does not adversely affect them. For 
example, our circuit with the MAX4626 used PB2 as the control input. During 
programming, PB2 acts as SCK, a clock signal. Therefore, the MAX4626 
would be rapidly turning on and off as code was downloaded to the 
processor. If the MAX4626 was controlling something, that device would also 
rapidly turn on and off, with potentially disastrous effects. Conversely, if there 
are other components in your system, these must not attempt to drive a 
signal onto PB0, PB1, or PB2 during the programming sequence. To do so 
would, at the very least, result in a failed download and, at worst, damage 
both the embedded system and the programmer. It's therefore vitally 
important to consider the implications of in-circuit programming on other 
components within the system. 

So, what's the answer? Well, we could use PB3 to control the 
MAX4626 instead, since it doesn't take part in the programming process. 
Alternatively, if we needed to use PB2, we could provide a buffer between the 
processor and the MAX4626, perhaps controlled by . When is 
low (during programming), the buffer is disabled and the MAX4626 is 
isolated. Another solution may simply be to use a DIP version of the 
processor, mounted via a socket, and physically remove it for 
reprogramming. If you're using a surface-mount version of the processor, 
perhaps the processor could be mounted on a small PCB that plugs into the 
embedded computer (much like a memory SIMM on a desktop computer) and 
may be removed for programming. There are plenty of alternatives, and the 
best one really depends on your application. 

Some AVRs (not the ATtiny15) have the capability of modifying their 
own program memory with the SPM (Store Program Memory) instruction. 
With such processors, it is possible for your software to download new code 
via the processor's serial port and write this into the program memory. To do 
so, you need to have your processor preprogrammed with a boot loader 
program. Normally, you would load all your processors with the boot loader 
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(and Version 1.0 of your application software) during construction. The self-
programming can then be used to update the application software when the 
systems are out in the field. To facilitate this, the program memory is divided 
into two separate sections: a boot section and an application section. The 
memory space is divided into pages of either 128 or 256 bytes (depending on 
the particular processor). Memory must be erased and reprogrammed one 
page at a time. During programming, the Z register is used as a pointer for 
the page address, and the r1 and r0 registers together hold the data word to 
be programmed. The Atmel application note (AVR109: Self-programming), 
available on its web site, gives sample source code for the boot loader and 
explains the process in detail. 

No matter what processor you are using, the technical data from the 
chip manufacturer will tell you how to go about putting your code into the 
processor. 

A Bigger AVR 

So far, we have looked at a small AVR with very limited capabilities. In 
later chapters, we will look at various forms of input and output commonly 
found in embedded systems. For this, we will need processors with more 
functionality. We have exhausted the ATtiny15, so now we need to move on 
to processors with a bit more "grunt." Before getting into the details of I/O in 
the later chapters, you'll be introduced to these processors and learn what 
you need to do to include them in your design. 

The first processor is the Atmel AT90S8535. This is a mid-range AVR 
with lots of inbuilt I/O, such as a UART, SPI, timers, eight channels of analog 
input, an analog comparator, and internal EEPROM for parameter storage. 
The processor has 512 bytes of internal RAM and 8K of flash memory for 
program storage. Its smaller sibling, the AT90S4434, is identical in every 
other way except that it has smaller memory spaces of 4K for program 
storage and 256 bytes of RAM. But from a hardware point of view, the 
AT90S8535 and the AT90S4434 are the same. 

The basic schematic for an AT90S8535-based computer, without any 
extras, is shown in Figure. It is not that different from the ATtiny15, save that 
it has a lot more pins  as an external pull-up 10k resistor. The processor has 
an external crystal (X1), and this requires two small decoupling capacitors, 
C1 and C2. There are four power pins for this processor, and each is 
decoupled with a 100 nF ceramic capacitor. One of the power inputs (AVCC) 
is the power supply for the analog section of the chip, and this is isolated from 
the digital power supply by a 100  resistor, R2. This is to provide a small 
barrier between the analog section and any switching noise that may be 
present from the digital circuits. The remaining pins are general-purpose 
digital I/O, as with the ATtiny15. However, unlike the ATtiny15, these pins 
have dual functionality. They may be configured, under software control, for 
alternative I/O functions. The processor's datasheet gives full details for 
configuring the functionality of the processor under software control. 
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This basic AVR design is applicable to most AVRs that you will find. 
The pin outs may be different, but the basic support required is the same. As 
with everything, grab the appropriate datasheet, and it will tell you the 
specifics for the particular processor that you are using. 

AVR-Based Data logger 

In the previous chapter, we saw how to design a data logger based on 
a PIC16F873A. A data logger based on an AVR is not too dissimilar. Figure 
shows the basic schematic. 

The connections for interfacing a serial data flash memory chip to an 
Atmel 90S4434 AVR processor are simply SPI, as with the PIC processor. 
The AVR portion of the schematic is no different from the examples we have 
seen previously. That's the nice thing about simple interfaces such as SPI. 
They form little subsystem modules that "bolt together" like building blocks. 
Start with the basic core design and just add peripherals as you need them. 
The schematic also shows decoupling capacitors for the power supplies, the 
crystal oscillator for the processor, and a pull-up resistor for RESET. Pin 41 
(PB1) is used as a "manual" (processor-controlled) reset input to the flash. 

The analog inputs, ADC0:ADC7 can be connected to an IDC header 
allowing for external sampling, or they can be interfaced directly to sensors, 
as we saw with the PIC data logger. The serial port signals, RXD and TXD, 
connect to a MAX3233 in the same way as we saw in the PIC design. 

AT90S8535 processor and support components 

 

Bus Interfacing 

In this section, I'll show you how to expand the capabilities of your 
processor by interfacing it to bus-based memories and peripherals. Different 
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processor architectures have different signals and different timing, but once 
you understand one, the basic principles can be applied to all. Since most 
small microcontrollers don't have external buses, the choice is very limited. 
We'll look at the one, and only, AVR with an external bus—the AT90S8515. 
In the PIC world, the PIC17C44 is capable of bus-based interfacing. 

A 2M Data Flash interfaced to an AT90S4434 
 

 

AT90S8515 Memory Cycle 

A memory cycle (also known as a machine cycle or processor cycle) 
is defined as the period of time it takes for a processor to initiate an access to 
memory (or peripheral), perform the transfer, and terminate the access. The 
memory cycle generated by a processor is usually of a fixed period of time (or 
multiples of a given period) and may take several (processor) clock cycles to 
complete. 

Memory cycles usually fall into two categories: the read cycle and the 
write cycle. The memory or device that is being accessed requires that the 
data is held valid for a given period after it has been selected and after a read 
or write cycle has been identified. This places constraints on the system 
designer. There is a limited amount of time in which any glue logic (interface 
logic between the processor and other devices) must perform its function, 
such as selecting which external device is being accessed. The setup times 
must be met. If they are not, the computer will not function. The glue logic 
that monitors the address from the processor and uniquely selects a device is 
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known as an address decoder. We'll take a closer look at address decoders 
shortly. 

Timing is probably the most critical aspect of computer design. For 
example, if a given processor has a 150 ns cycle time and a memory device 
requires 120 ns from when it is selected until when it has completed the 
transfer, this leaves only 30 ns at the start of the cycle in which the glue logic 
can manipulate the processor signals. A 74LS series TTL gate has a typical 
propagation delay of 10 ns. So, in this example, an address decoder 
implemented using any more than two 74LS gates (in sequence) is cutting it 
very fine. 

A synchronous processor has memory cycles of a fixed duration, and 
all processor timing is directly related to the clock. It is assumed that all 
devices in the system are capable of being accessed and responding within 
the set time of the memory cycle. If a device in the system is slower than that 
allowed by the memory cycle time, logic is required to pause the processor's 
access, thus giving the slow device time to respond. Each clock cycle within 
this pause is known as a wait state. Once sufficient time has elapsed (and the 
device is ready), the processor is released by the logic and continues with the 
memory cycle. Pausing the processor for slower devices is known as 
inserting wait states. The circuitry that causes a processor to hold is known 
as a wait-state generator. A wait-state generator is easily achieved using a 
series of flip-flops acting as a simple counter. The generator is enabled by a 
processor output indicating that a memory cycle is beginning and is normally 
reset at the end of the memory cycle to return it to a known state. (Some 
processors come with internal, programmable wait-state generators.) 

An asynchronous processor (such as a 68000) does not terminate its 
memory cycle within a given number of clock cycles. Instead, it waits for a 
transfer acknowledge assertion from the device or support logic to indicate 
that the device being accessed has had sufficient time to complete its part in 
the memory cycle. In other words, the processor automatically inserts wait 
states in its memory cycle until the device being accessed is ready. If the 
processor does not receive an acknowledge, it will wait indefinitely. Many 
computer systems using asynchronous processors have additional logic to 
cause the processor to restart if it waits too long for a memory cycle to 
terminate. An asynchronous processor can be made into a synchronous 
processor by tying the acknowledge line to its active state. It then assumes 
that all devices are capable of keeping up with it. This is known as running 
with no wait states. 

Most microcontrollers are synchronous, whereas most larger 
processors are asynchronous. The AT90S8515 is a synchronous processor, 
and it has an internal wait-state generator capable of inserting a single wait 
state. 
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Bus Signals 

Figure shows an AT90S8515 processor with minimal support 
components. The AT90S8515 has an address bus, a data bus, and a control 
bus that it brings to the outside world for interfacing. Since this processor has 
a limited number of pins, these buses share pins with the digital I/O ports 
("port A" and "port C") of the processor. A bit in a control register determines 
whether these pins are I/O or bus pins. Now, a 16-bit address bus and an 8-
bit data bus add up to 24 bits, but ports A and B have only 16 bits between 
them. So how does the processor fit 24 bits into 16? It multiplexes the lower 
half of the address bus with the data bus. At the start of a memory access, 
port A outputs address bits A0:A7. The processor provides a control line, ALE 
(Address Latch Enable), which is used to control a latch, such as a 
74HCT573 (shown on the right in Figure). As ALE falls, the latch grabs and 
holds the lower address bits. At the same time, port B outputs the upper 
address bits, A8:A15. These are valid for the entire duration of the memory 
access. Once the latch has acquired the lower address bits, port A then 
becomes the data bus for information transfer between the processor and an 
external device. Also shown in Figure are the crystal circuit, the In-System 
Programming port, decoupling capacitors for the processor's power supply, 
and net labels for other important signals. 

The timing diagrams for an AT90S8515 are shown in Figure. The 
cycle "T3" exists only when the processor's wait-state generator is enabled. 

Now, let's look at these signals in more detail. (We'll see later how you 
actually work with this information. For the moment, we're just going to "take 
a tour" of the timing diagrams.) The numbers for the timing information can 
be found in the datasheet, available from Atmel's web site. Figure shows the 
timing information as presented in the Atmel datasheet, complete with timing 
references. 
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Address bus demultiplexing 

A 

 

T90S8515 memory cycles 
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AT90S8515 memory cycles with timing parameters 

 

 

The references are looked up in the appropriate table in the 
processor's datasheet (Table) 

8 

MHz oscillator 
Variable oscillator 

Ref. 

# 
Symbol Parameter Min Max Min Max Unit 

0 1/tCLCL Oscillator Frequency     0.0 8.0 MHz 

1 tLHLL ALE Pulse Width 32.5   
0.5 tCLCL- 

30.0 
  ns 

2 tAVLL Address Valid A to ALE Low 22.5   
0.5 tCLCL- 

40.0 
  ns 

3a tLLAX...ST 
Address Hold after ALE Low, 

ST/STD/STS Instructions 
67.5   

0.5 

tCLCL+5.0 
  ns 

3b tLLAX...LD 
Address Hold after ALE Low, 

LD/LDD/LDS Instructions 
15.0   15.0   ns 

4 tAVLLC Address Valid C to ALE Low 22.5   
0.5 tCLCL- 
40.0 

  ns 

5 tAVRL Address Valid to RD Low 95.0   
1.0 tCLCL- 

30.0 
  ns 

6 tAVWL Address Valid to WR Low 157.5   
1.5 tCLCL- 

30.0 
  ns 

7 tLLWL ALE Low to WR Low 105.0 145.0 
1.0 tCLCL- 

20.0 

1.0 tCLCL+ 

20.0 
ns 
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8 

MHz oscillator 
Variable oscillator 

Ref. 

# 
Symbol Parameter Min Max Min Max Unit 

8 tLLRL ALE Low to RD Low 42.5 82.5 
0.5 tCLCL- 

20.0 

0.5 tCLCL+ 

20.0 
ns 

9 tDVRH Data Setup to RD High 60.0   60.0   ns 

10 tRLDV Read Low to Data Valid   70.0   
1.0 tCLCL- 

55.0 
ns 

11 tRHDX Data Hold after RD High 0.0   0.0   ns 

12 tRLRH RD Pulse Width 105.0   
1.0 tCLCL- 

20.0 
  ns 

13 tDVWL Data Setup to WR Low 27.5   
0.5 tCLCL- 

35.0 
  ns 

14 tWHDX Data Hold after WR High 0.0   0.0   ns 

15 tDVWH Data Valid to WR High 95.0   
1.0 tCLCL- 

30.0 
  ns 

16 tWLWH WR Pulse Width 42.5   
0.5 tCLCL- 

20.0 
  ns 

The system clock is shown at the top of both diagrams for reference, 
since all processor activity relates to this clock. The period of the clock is 
designated in the Atmel datasheet as "tCLCL" and is equal to 1/frequency. For 
an 8 MHz clock, this is 125 ns. The width of T1, T2, and T3 are each tCLCL. 
Datasheet nomenclature can often be very cryptic. The "CL" comes from 
"clock." Since Atmel is using four-character subscripts for its timing 
references, it pads by putting "CL" twice. You don't really need to know what 
the subscripts actually mean; you just need to know the signals they refer to 
and the actual numbers involved. 

No processor cycle exists in isolation. There is always a preceding 
cycle and following cycle. We can see this in the timing diagrams. At the start 
of the cycles, the address from the previous access is still present on the 
address bus. On the falling edge of the clock, in cycle T1, the address bus 
changes to become the valid address required for this cycle. Port A presents 
address bits A0:A7, and port B presents A8:A15. At the same time, ALE goes 
high, releasing the external address latch in preparation for acquiring the new 
address from port A. ALE stays high for 0.5 x tCLCL - 30 ns. So, for example, 
with an AT90S8515 running at 8 MHz, ALE stays high for 32.5 ns. ALE falls, 
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causing the external latch to acquire and hold the lower address bits. Prior to 
ALE falling, the address bits will have been valid for 0.5 x tCLCL - 40 ns or, in 
other words, 40 ns before the system clock rises at the end of the T1 period. 
After ALE falls, the lower address bits will be held on port A for 0.5 x tCLCL + 
5 ns for a write cycle before changing to data bits. For a read cycle, they are 
held for a minimum of 15 ns only. The reason this is so much shorter for a 
read cycle is that the processor wishes to free those signal pins as soon as 
possible. Since this is a read cycle, an external device is about to respond, 
which means the processor needs to "get out of the way" as soon as it can. 
For a write cycle, tCLCL - 20 ns after ALE goes low, the write strobe,goes 
low. This indicates to external devices that the processor has output valid 
data on the data bus. This time allows the external device to prepare to read 
in (latch) the data.  

So, that is how an AT90S8515 expects to access any external device 
attached to its buses, whether those devices are memory chips or 
peripherals. But how does it work in practice? Let's look at designing a 
computer based on an AT90S8515 with some external devices. For this 
example, we will interface the processor to a static RAM and some simple 
latches that we could use to drive banks of LEDs. Since we've covered 
oscillators and in-circuit programming previously, I'll ignore those in this 
discussion. That doesn't mean you should leave them out of your design! 

 

Memory Maps and Address Decoding 

To the processor, its address space is one big, linear region. Although 
there may be numerous devices within that space, both internal to the 
processor and external, it makes no distinction between devices. The 
processor simply performs memory accesses in the address space. It is up to 
the system designer (that's you) to allocate regions of memory to each device 
and then provide address-decode logic. The address decoder takes the 
address provided by the processor during an external access and uniquely 
selects the appropriate device (Figure). For example, if we have a RAM 
occupying a region of memory, any address from the processor 
corresponding to within that region should select the RAM and not select any 
other device. Similarly, any address outside that region should leave the RAM 
unselected. 

 

 

 

An address decoder uses the address to select one of several devices 
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The allocation of devices within an address space is known as a 
memory map or address map. The address spaces for an AT90S8515 
processor are shown in Figure. Any device we interface to the processor 
must be within the data memory space. Thus, we can ignore the processor's 
internal program memory. As the processor has Harvard architecture, the 
program space is a completely separate address space. Within the 64K data 
space lie the processor's internal resources: the working registers, the I/O 
registers, and the internal 512 bytes of SRAM. These occupy the lowest 
addresses within the space. Any address above 0x0260 is ours to play with. 
(Not all processors have resources that are memory-mapped, and, in those 
cases, the entire memory space is usable by external devices.) 

Now, our first task is to allocate the remaining space to the external 
devices. Since the RAM is 32K in size, it makes sense to place it within the 
upper half of the address space (0x8000-0xFFFF). Address decoding 
becomes much easier if devices are placed on neat boundaries. Placing the 
RAM between addresses 0x8000 and 0xFFFF leaves the lower half of the 
address space to be allocated to the latches and the processor's internal 
resources. Now a latch need only occupy a single byte of memory within the 
address space. So, if we have three latches, we need only three bytes of the 
address space to be allocated. This is known as explicit address decoding. 
However, there's a good reason not to be so efficient with our address 
allocation. Decoding the address down to three bytes would require an 
address decoder to use 14 bits of the address. That's a lot of (unnecessary) 
logic to select just three devices. A better way is simply to divide the 
remaining address space into four, allocating three regions for the latches 
and leaving the fourth unused (for the processor's internal resources). This is 
known as partial address decoding and is much more efficient. The trick is to 
use the minimal amount of address information to decode for your devices. 
Our address map allocated to our static RAM and three latches is shown in 
Figure. Note that the lowest region leaves the addresses in the range 0x0260 
to 0x1FFF unused. 
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   Atmel AT90S8515 memory map  
 

 

 

Allocated memory map 
 

 

Any address within the region 0x2000 to 0x3FFF will select Latch0, 
even though that latch needs only one byte of space. Thus, the device is said 
to be mirrored within that space. For simplicity in programming, you normally 
just choose an address (0x2000 say) and use that within your code. But you 
could just as easily use address 0x290F, and that would work too. 

We now have our memory map, and we need to design an address 
decoder. We start by tabling the devices along with their addresses (Table 
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15-3). We need to look for which address bits are different between the 
devices, and which address bits are common within a given device's region. 

Device Address range A15 .. A0 

Unused 0x0000-0x1FFF 

0000 0000 0000 0000 0000 

0001 1111 1111 1111 1111 

Latch0 0x2000-0x3FFF 

0010 0000 0000 0000 0000 

0011 1111 1111 1111 1111 

Latch1 0x4000-0x5FFF 

0100 0000 0000 0000 0000 

0101 1111 1111 1111 1111 

Latch2 0x6000-0x7FFF 

0110 0000 0000 0000 0000 

0111 1111 1111 1111 1111 

RAM 0x8000-0xFFFF 

1000 0000 0000 0000 0000 

1111 1111 1111 1111 1111 

So, what constitutes a unique address combination for each device? 
Looking at the table, we can see that for the RAM, address bit (and address 
signal) A15 is high, while for every other device it is low. We can therefore 
use A15 as the trigger to select the RAM. For the latches, address bits A15, 
A14, and A13 are critical. So we can redraw our table to make it clearer. This 
is the more common way of doing an address table, as shown in Table. An 
"x" means a "don't care" bit. 

Device Address range A15 .. A0 

Unused 0x0000-0x1FFF 000x xxxx xxxx xxxx xxxx 

Latch0 0x2000-0x3FFF 001x xxxx xxxx xxxx xxxx 

Latch1 0x4000-0x5FFF 010x xxxx xxxx xxxx xxxx 

Latch2 0x6000-0x7FFF 011x xxxx xxxx xxxx xxxx 

RAM 0x8000-0xFFFF 1xxx xxxx xxxx xxxx xxxx 

 

Therefore, to decode the address for the RAM, we simply need to use 
A15. If A15 is high, the RAM is selected. If A15 is low, then one of the other 
devices is selected and the RAM is not. Now, the RAM has a chip select (CS) 
that is active low. So when A15 is high, CS should go low. So, our address 
decoder for the RAM is simply to invert A15 using an inverter chip such as a 
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74HCT04 (Figure). It is common practice to label the chip-select signal after 
the device it is selecting. Hence, our chip select to the RAM is labeled CS. 

Address decode for the RAM 

 

 

Note that for the RAM to respond, it needs both a chip select and 
either a read or write strobe from the processor. All other address lines from 
the processor are connected directly to the corresponding address inputs of 
the RAM (Figure). 

Connections to the SRAM 

 

 

Now for the other four regions, A15 must be low, and A14 and A13 
are sufficient to distinguish between the devices. Having our address decoder 
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use discrete logic would require several gates and would be "messy." There's 
a simpler way. We can use a 74HCT139 decoder, which takes two address 
inputs (A and B) and gives us four unique, active-low, chip-select outputs 
(labeled Y0:Y3). Since the latches require active-high enables, we use 
inverters on the outputs of the 7HCT139. So our complete address decoder 
for the computer is shown in Figure. 

Complete address decoder 
 

 

The 74HCT139 uses A15 (low) as an enable (input ), and, in this 
way, A15 is included as part of the address decode. If we needed to decode 
for eight regions instead of four, we could have used a 74HCT138 decoder, 
which takes three address inputs and gives us eight chip selects. The 
interface between the processor and an output latch is simple. We can use 
the same type of latch (a 74HCT573) that we used to demultiplex the 
address. Such an output latch could be used in any situation in which we 
need some extra digital outputs. In the sample circuit shown in Figure, I'm 
using the latch to control a bank of eight LEDs. 

The output from our 74HCT139 address decoder is used to drive the 
LE (Latch Enable) input of the 74HCT573. Whenever the processor accesses 
the region of memory space allocated to this device, the address decoder 
triggers the latch to acquire whatever is on the database. And so, the 
processor simply writes a byte to any address in this latch's address region, 
and that byte is acquired and output to the LEDs. (Writing a "0" to a given bit 
location will turn on a LED; writing a "1" will turn it off.) 

Note that the latch's output enable (OE) is permanently tied to ground. 
This means that the latch is always displaying the byte that was last written to 
it. This is important, as we always want the LEDs to display, and not just 
transitorily blink on, while the processor is accessing them. 

Using the 74HCT139 in preference to discrete logic gates makes our 
design much simpler, but there's an even better way to implement system 
glue. 
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Using a 74HCT573 latch to control a bank of LEDs 

 

 

PALs 

It is now rare to see support logic implemented using individual gates. 
It is more common to use programmable logic (PALs, LCAs, or PLDs)[*] to 
implement the miscellaneous "glue" functions that a computer system 
requires. Such devices are fast, take up relatively little space, have low power 
consumption, and, as they are reprogrammable, make system design much 
easier and more versatile. 

There is a wide range of devices available, from simple chips that can 
be used to implement glue logic (just as we are about to do) to massive 
devices with hundreds of thousands of gates. These big chips are 
sophisticated enough to contain entire computer systems. Soft cores are 
processor designs implemented in gates, suitable for incorporating into these 
logic devices. You can also get serial interfaces, disk controllers, network 
interfaces, and a range of other peripherals, all for integration into one of 
these massive devices. Of course, it's also fun to experiment and design your 
own processor from the ground up. 

Each chip family requires its own suite of development tools. These 
allow you to create your design (either using schematics or some 
programming language such as VHDL), simulate the system, and finally 
download your creation into the chip. You can even get C compilers for these 
chips that will take an algorithm and convert it, not into machine code, but into 
gates. What was software now runs not on hardware, but as hardware. 
Sounds cool, but the tools required to play with this stuff can be expensive. If 
you just want to throw together a small, embedded system, they are probably 
out of your price range. For what we need to do for our glue logic, such chips 
are overkill. Since our required logic is simple, we will use a simple (and 
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cheap) PAL that can be programmed using freely available, public-domain 
software. 

PALs are configured using equations to represent the internal logic. 
"+" represents OR, "*" represents AND, and "/" represents NOT. (These 
symbols are the original operator symbols that were used in Boolean logic. If 
you come from a programming background, these symbols may seem 
strange to you. You will be used to seeing "|", "&", and "!".) The equations are 
compiled using software such as PALASM, ABEL, or CUPL to produce a JED 
file. This is used by a device known as a PAL burner to configure the PAL. In 
many cases, standard EPROM burners will also program PALs. 

PALs have pins for input, pins for output, and pins that can be 
configured as either input or output. Most of the PAL's pins are available for 
your use. In your PAL source code file (PDS file), you declare which pins you 
are using and label them. This is not unlike declaring variables in program 
source code, except that instead of allocating bytes of RAM, you're allocating 
physical pins of a chip. You then use those pin labels within equations to 
specify the internal logic. Our address decoder, implemented in a PAL, would 
have the following equations to specify the decode logic: 

RAM = /A15 
LATCH0 = (/A15 * /A14 * A13) 
LATCH1 = (/A15 * A14 * /A13) 
LATCH2 = (/A15 * A14 * A13) 

I have (deliberately) written the above equations in a form that makes 
it easier to compare them with the address tables listed previously. You could 
simplify these equations, but there is no need. Just as an optimizing C 
compiler will simplify (and speed up) your program code, so too will PALASM 
rework your equations to optimize them for a PAL. 

A PDS file to program a 22V10 PAL for the above address decode 
might look something like: 

TITLE decoder.pds          ; name of this file 

PATTERN 

REVISION 1.0 
 
AUTHOR John Catsoulis 
DATE January 2005 
CHIP decoder PAL22V10      ; specify which PAL device you 
                   ; are using and give it a name ("decoder") 
PIN   2   A15              ; pin declarations and allocations 
PIN   3   A14        
PIN   12  LATCH0 
PIN   13  LATCH1 
PIN   14  LATCH2 
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PIN   15  RAM 
EQUATIONS                  ; equations start here 
RAM = /A15 
LATCH0 = (/A15 * /A14 * A13) 
LATCH1 = (/A15 * A14 * /A13) 
LATCH2 = (/A15 * A14 * A13) 

The advantages of using a PAL for system logic are twofold. The PAL 
equations may be changed to correct for bugs or design changes. The 
propagation delays through the PAL are of a fixed and small duration (no 
matter what the equations), which makes analyzing the overall system's 
timing far simpler. For very simple designs, it probably doesn't make a lot of 
difference whether you use PALs or individual chips. However, for more 
complicated designs, programmable logic is the only option. If you can use 
programmable logic devices instead of discrete logic chips, please do so. 
They make life much easier. 

Timing Analysis 

Now that we have finished our logic design, the question is: will it 
actually work? It's time (pardon the pun) to work through the numbers and 
analyze the timing. This is the least fun, and most important, part of designing 
a computer. 

We start with the signals (and timing) of the processor, add in the 
effects of our glue logic, and finally see if this falls within the requirements of 
the device to which we are interfacing. We'll work through the example for the 
SRAM. For the other devices, the analysis follows the same method. The 
timing diagram for a read cycle for the SRAM is shown in Figure.The RAM I 
have chosen is a CY62256-70 (32K) SRAM made by Cypress 
Semiconductor. Most 32K SRAMs follow the JEDEC standard, which means 
their pinouts and signals are all compatible. So, what works for one 32K 
SRAM should work for them all. But the emphasis is on should, and, as 
always, check the datasheet for the individual device you are using. 

Timing for a read cycle to the RAM 

 

During a read cycle, the processor will output a read strobe and an 
address, which in turn will trigger the address decoder. Some time later in the 
cycle, the processor will expect data from the RAM to be present on the data 
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bus. It is critical that the signals that cause the RAM to output data will do so 
such that there will be valid data when the processor expects it. Meet this 
requirement, and you have a processor that can read from external memory. 
Fail this requirement, and you'll have an intriguing paperweight and a talking 
piece at parties. 

We start with the processor. I'm assuming that the processor's wait-
state generator is disabled. For an AT90S8515 processor, everything is 
referenced to the falling edge of ALE. The high-order address bits, which feed 
our address decoder, become valid 22.5 ns prior to ALE going low on an 8 
MHz AT90S8515. If we're using a 74HCT139 as an address decoder, this 
takes 40 ns to respond to a change in inputs. So, our chip select for the RAM 
will become valid 17.5 ns after ALE has fallen (Figure). 

Timing for RAM chip select 

Now, RD will go low between 42.5 ns and 82.5 ns after ALE falls. Since the 
RAM will not output data until RD (OE) is low, we take the worst case of 82.5 
ns (Figure). 

Read strobe and chip select for RAM 

 

The RAM will respond 70 ns after RAM and 35 ns after RD, whichever 
comes last. So, 70 ns from ALE low is 87.5 ns after ALE, and 35 ns after RD 
is 117.5 ns after ALE. Therefore, ALE is the determining control signal in this 
case. This means that the SRAM will output valid data 117.5 ns after ALE 
falls (Figure). 
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Valid data from the SRAM 

 

Now, an 8 MHz processor expects to latch valid data during a read 
cycle at 147.5 ns after ALE. So our SRAM will have valid data ready with 30 
ns to spare. So far, so good. But what about at the end of the cycle? Now, the 
processor expects the data bus to be released and available for the next 
access at 200 ns after ALE falls. The RAM takes 25 ns from when it is 
released by until it stops outputting data onto the data bus. This means 
that the data bus will be released by the RAM at 142.5 ns. So that will work 
too. 

The analysis for a write cycle is done in a similar manner. It is 
important to do this type of analysis for every device interfaced to your 
processor, for every type of memory cycle. It can be difficult, because 
datasheets are notorious for leaving out information or presenting necessary 
data in a roundabout way. Working through it all can be time-consuming and 
frustrating, and it's far too easy to make a mistake. However, it is very 
necessary. Without it, you're relying on blind luck to make your computers 
run, and that's not good engineering. 

Memory Management 

In most small-scale embedded applications, the connections between 
a processor and an external memory chip are straightforward. Sometimes, 
though, it's advantageous to play with the natural order of things. This is the 
realm of memory management. 

Memory management deals with the translation of logical addresses 
to physical addresses and vice versa. A logical address is the address output 
by the processor. A physical address is the actual address being accessed in 
memory. In small computer systems, these are often the same. In other 
words, no address translation takes place, as illustrated in Figure. 
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No address translation 

 

 

For small computer systems, this absence of memory management is 
satisfactory. However, in systems that are more complex, some form of 
memory management may become necessary. There are four cases where 
this might be so: 

Physical memory > logical memory 

When the logical address space of the processor (determined 
by the number of address lines) is smaller than the actual physical 
memory attached to the system, it becomes necessary to map the 
logical space of the processor into the physical memory space of the 
system. This is sometimes known as banked memory. This is not as 
strange or uncommon as it may sound. Often, it is necessary to 
choose a particular processor for a given attribute, yet that processor 
may have a limited address space—too small for the application. By 
implementing banked memory, the address space of the processor is 
expanded beyond the limitation of the logical address range. 

Logical memory > physical memory 

When the logical address space of the processor is very large, 
it is not always practical to fill this address space with physical 
memory. It is possible to use some space on disk as virtual memory, 
thus making it appear that the processor has more physical memory 
than exists within the chips. Memory management is used to identify 
whether a memory access is to physical memory or virtual memory 
and must be capable of swapping the virtual memory on disk with real 
memory and performing the appropriate address translation. 

Memory protection 

It is often desirable to prevent some programs from accessing 
certain sections of memory. Protection can prevent a crashing 
program from corrupting the operating system and bringing down the 
computer. It is also a way of channeling all I/O access via the 
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operating system, since protection can be used to prevent all software 
(save the OS) from accessing the I/O space. 

Task isolation 

In a multitasking system, tasks should not be able to corrupt 
each other (by stomping on each other's memory space, for example). 
In addition, two separate tasks should be able to use the same logical 
address in memory, with memory management performing the 
translation to separate, physical addresses. 

The basic idea behind memory management is quite simple, but the 
implementation can be complicated, and there are nearly as many memory-
management techniques as there are computer systems that employ memory 
management. Memory management is performed by a Memory Management 
Unit (MMU). The basic form of this is shown in Figure. An MMU may be a 
commercial chip, a custom-designed chip (or logic), or an integrated module 
within the processor. Most modern, fast processors incorporate MMUs on the 
same chip as the CPU. 

Address translation using an MMU 

 

 

Page mapping 

In all practical memory-management systems, words of memory are 
grouped together to form pages, and an address can be considered to 
consist of a page number and the number of a word within that page. The 
MMU translates the logical page to a physical page, while the word number is 
left unchanged (Figure). In practice, the overall address is just a 
concatenation of the page number and the word number. 
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Address translation 

 

 

The logical address from the processor is divided into a page number 
and a word number. The page number is translated by the MMU and 
recombined with the word number to form the physical address presented to 
memory (Figure). 

System using page address translation 

 

Banked memory 

The simplest form of memory management is when the logical 
address space is smaller than the physical address space. If the system is 
designed such that the size of a page is equal to the logical address space, 
then the MMU provides the page number, thus mapping the logical address 
into the physical address (Figure). 

MMU generation of page number 
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The effective address space from this implementation is shown in 
Figure. The logical address space can be mapped (and remapped) to 

anywhere in the physical address space. Mapping a smaller logical 

address space into a larger physical address 

 

 

The system configuration for this is shown in Figure. This technique is 
often used in processors with 16-bit addresses (64K logical space) to give 
them access to larger memory spaces. 

Generating a larger physical address 

 

For many small systems, banked memory may be implemented 
simply by latching (acquiring and holding) the data bus and using this as the 
additional address bits for the physical memory (Figure). The latch appears in 
the processor's logical space as just another I/O device. To select the 
appropriate bank of memory, the processor stores the bank bits to the latch, 
where they are held. All subsequent memory accesses in the logical address 
space take place within the selected bank. In this example, the processor's 
address space acts as a 64K window into the larger RAM chip. As you can 
see, while memory management may seem complex, its actual 
implementation can be quite simple. 
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Simple banked-memory implementation 

 

 

Figure shows the actual wiring required for a banked-memory 
implementation for our AT90S8515 AVR system, replacing the 32K RAMS 
with a 512K RAM. 

The RAM used is an HM628511H made by Hitachi. In this 
implementation, we still have the RAM allocated into the upper 32K of the 
processor's address space as before. In other words, the upper 32K of the 
processor's address space is a window into the 512K RAM. The lower 32K of 
the processor's address space is used for I/O devices, as before. Address 
bits A0 to A14 connect to the RAM as before, and the data bus (D0 to D7) 
connects to the data pins (IO1 to IO8) of the SRAM. Memory chip 
manufacturers often label data pins as "IO" pins, since they perform data 
input and output for the device. 

Now, we also have a 74HCT573 latch, which is mapped into the 
processor's address space, just as we did with the LEDs latch. The processor 
can write to this latch, and it will hold the written data on its outputs. The 
lower nibble of this latch is used to provide the high-order address bits for the 
RAM. 

Let's say the processor wants to access address 0x1C000. In binary, 
this is %001 1100 0000 0000 0000. The lower 15 address bits (A0 to A14) 
are provided directly by the processor. The remaining address bits must be 
latched. So, the processor first stores the byte 0x03 to the latch, and the 
RAM's address pins A18, A17, A16, and A15 see 
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Banked memory for an AVR computer 

 

 

%0011 (0x03), respectively. That region of the RAM is now banked to 
the processor's 32K window. When the processor accesses address 0xC000, 
the high-order address bit (A15) from the processor is used by the address 
decoder to select the RAM by sending its input low. The remaining 15 
address bits (A0 to A14) combine with the outputs of the latch to select 
address 0x1C000. 

The NC pins are "No Connection" and are left unwired. 

Address translation 

For processors with larger address spaces, the MMU can provide 
translation of the upper part of the address bus (Figure). 

The MMU contains a translation table, which remaps the input 
addresses to different output addresses. To change the translation table, the 
processor must be able to access the MMU. (There is little point in having an 
MMU if the translation table is unalterable.) Some processors are specifically 
designed to work with an MMU, while 
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Logical page-number translation 

 

other processors have MMUs incorporated. However, if the processor 
being used was not designed for use with an MMU, it will have no special 
support. The processor must therefore communicate with the MMU as though 
it were any other peripheral device using standard read/write cycles. This 
means the MMU must appear in the processor's address. It may seem that 
the simplest solution is to map the MMU into the physical address space of 
the system. In real terms, this is not practical. If the MMU is ever (intentionally 
or accidentally) mapped out of the current logical address space (such that 
the physical page on which the MMU is located is not part of the current 
logical address space), it becomes impossible to access the MMU ever 
again. This may also happen when the system powers up, because the 
contents of the MMU's translation table may be unknown. 

The solution is to decode the chip select for the MMU directly from the 
logical address bus of the processor. Hence, the MMU will lie at a constant 
address in the logical space. This removes the possibility of "losing" the 
MMU, but it introduces another problem. Since the MMU now lies directly in 
the logical address space, it is no longer protected from accidental tampering 
(by a crashing program) or illegal and deliberate tampering in a multitasking 
system. To solve this problem, many larger processors have two states of 
operation--supervisor state and user state--with separate stack pointers for 
each mode. This provides a barrier between the operating system (and its 
privileges) and the other tasks running on the system. The state the 
processor is in is made available to the MMU through special status pins on 
the processor. The MMU may be modified only when the processor is in 
supervisor state, thereby preventing modification by user programs. The 
MMU uses a different logical-to-physical translation table for each state. The 
supervisor translation table is usually configured on system initialization, then 
remains unchanged. User tasks (user programs) normally run in user state, 
whereas the operating system (which performs task swapping and handles 
I/O) runs in supervisor state. Interrupts also place the processor in supervisor 
state, so that the vector table and service routines do not have to be part of 
the user's logical address space. While in user state, tasks may be denied 
access to particular pages of physical memory by the operating system. 
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Summary: 

 Like the PIC, the AVR is a RISC processor. Of the two architectures, 
the AVR is the faster in operation and arguably the easier for which to 
write code, in my personal experience. 

 The AVR was developed in Norway and is produced by the Atmel 
Corporation. It is a Harvard-architecture RISC processor designed for 
fast execution and low-power consumption. 

 The AVR has separate program and data spaces and supports an 
address space of up to 8M. 

 ATtiy15 processor has 512 words of flash for program storage and no 
RAM! .This tiny processor, unlike its bigger AVR siblings, relies solely 
on its 32 registers for working variable storage. 

 ATtiny15 processor also has 64 bytes of EEPROM (for holding 
system parameters), up to five general-purpose I/O pins, eight internal 
and external interrupt sources, two 8-bit timer/counters, a four-
channel 10-bit analog-to-digital converter, an analog comparator, and 
the ability to be reprogrammed in-circuit. 

 The first processor is the Atmel AT90S8535. This is a mid-range AVR 
with lots of inbuilt I/O, such as a UART, SPI, timers, eight channels of 
analog input, an analog comparator, and internal EEPROM for 
parameter storage. The processor has 512 bytes of internal RAM and 
8K of flash memory for program storage. 

 Memory management deals with the translation of logical addresses 
to physical addresses and vice versa. 

 Memory management is performed by a Memory Management Unit 
(MMU). 

 If the system is designed such that the size of a page is equal to the 
logical address space, then the MMU provides the page number, thus 
mapping the logical address into the physical address 

 For many small systems, banked memory may be implemented 
simply by latching (acquiring and holding) the data bus and using this 
as the additional address bits for the physical memory. 

 The MMU contains a translation table, which remaps the input 
addresses to different output addresses. To change the translation 
table, the processor must be able to access the MMU. 

 Protection can prevent a crashing program from corrupting the 
operating system and bringing down the computer. 
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Questions: 

 Write a brief notes on architecture of AVR controller? 
 Explain features of ATtiny 15 processor? 
 What is in system programming? Explain it in ATtiny15? 
 Explain features of AT90s8535? 
 How to design a data logger using AVR? 
 Explain BUS interfacing? 
 What is AT90S8515 Memory Cycle? 
 Explain memory management in AVR? 

References: 

 Dhananjay Gadre - Programming and Customizing the AVR 
Microcontroller, McGraw-Hill, 2000. 

 Richard H. Barnett, Sarah A. Cox, Larry D. O'Cull - Embedded C 
Programming and the Atmel AVR, Thomson Delmar Learning, 2002. 

 John Morton - AVR: An Introductory Course, Newnes, 2002. 

 Claus Kuhnel - AVR RISC Microcontroller Handbook, Newnes, 1998. 

 Joe Pardue - C Programming for Microcontrollers, featuring ATMEL's 
AVR Butterfly and the free WinAVR Compiler, Smiley Micros, 2005. 
Smiley Micros 

 Chuck Baird - Programming Microcontrollers using Assembly 
Language, Lulu.com, 2006. cbaird.net 
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13. 68HC11 

 

Objective: 

In this chapter, we'll look at the Free scale Semiconductor (formerly 
Motorola) 68HC11, a processor architecture that goes back to the very early 
days of microprocessors. I have a soft spot for this architecture. I first learned 
to write assembly language on a machine based on a 6802 processor, and I 
can still remember many of the opcodes by heart and can "read" raw 6800 
machine code as though it were source. 

The architecture is far from cutting-edge. But it's easy to program, 
easy to build, and has been stable for a very long time. It's a good platform to 
start out on, and it's quick and easy to throw together a simple 8-bit computer 
using these chips. Let's start by taking a quick overview of the processor 
architecture. 

Architecture of the 68HC11 

The MC68HC11 is a member of the 8-bit, 6800 microprocessor family. 
The 68HC11 is a high-density, HCMOS microcontroller unit (MCU) featuring 
a fully static design. It is essentially a standard 6800 processor (with some 
enhancements) combined with inbuilt peripherals, such as an enhanced 16-
bit timer with four-stage programmable pre-scaler, a serial peripheral 
interface (SPI), a serial communications interface (SCI), an 8-bit pulse 
accumulator, real-time interrupts, onboard static RAM, an eight-channel ADC, 
and onboard EEROM. 

The main registers of the MC68HC11 are shown in Figure. (Note that 
this does not include the control registers associated with the various 
peripherals inside the chip.) 

MC68HC11 registers 
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The MC68HC11 has two accumulators, A and B. The accumulators 
are both eight bits wide, but they may also be treated as a single, 16-bit 
accumulator, D (Figure). 

        MC68HC11 accumulators 

 

The index registers (X and Y) are 16-bit registers that are used to hold 
addresses. As such, they can be used to point to locations in memory. They 
may also be used as 16-bit counters or temporary storage registers. The 
program counter (PC) is a 16-bit counter that points to the next location in 
memory from which an instruction is to be fetched. (In other words, it holds 
the address of the next instruction.) The condition code register (CCR) is a 
special 8-bit register that shows the status of the processor. 

The stack pointer (SP) is a 16-bit register that points to the next free 
location on the stack. The stack is an area of memory defined for storage of 
data or addresses (treated as data). When a value is pushed onto the stack, 
the value is stored at the location pointed to by the stack pointer. The stack 
pointer then decrements automatically and points to the next available 
location. When something is pulled from the stack, the stack pointer is 
incremented automatically, and the data value is retrieved from that location. 
As a 68HC11's stack fills, it grows down through memory. When a 16-bit 
value is pushed onto the stack, the stack pointer is decremented twice (two 8-
bit locations). 

So that's the basic programmer's model for a 68HC11. While not 
overly powerful, it's nice and simple, and easy to master. Now let's see how 
to build a machine based on a 68HC11. 

A Simple 68HC11-Based Computer 

The computer will have 32K of static RAM, 16K of EPROM, a serial 
interface (internal to the 68HC11), and a latch controlling a bank of LEDs. 
While EPROM is old technology, I have chosen it for this system for two 
reasons. The first is that it is still common for 68HC11 machines to use 
EPROM, often for historical and legacy reasons. The second reason is that it 
allows me to show you how to use an EPROM in a design. Following the 
theme of "showing you how it's done," we'll also do the glue logic for the 
computer using discrete gates rather than a PAL. 

The 68HC11 was designed to be used in a wide range of small 
applications, many relating to the monitoring or control of external devices. As 
such, it can run in several modes: single-chip mode, expanded multiplexed 
mode, bootstrap mode, and test mode. This last mode is used by Freescale 
during manufacturing and is not intended for user applications. In single-chip 
mode, the processor relies entirely on its internal features (small RAM, small 
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ROM, I/O, and timers) and has no external address or data bus. The majority 
of pins (known as ports A, B, C, and D in this particular processor) are 
therefore dedicated to digital I/O functions. In expanded multiplexed mode, 
the processor behaves like an ordinary, 8-bit processor, with ports B and C 
assuming the roles of the address and data buses. In bootstrap mode, the 
processor loads its vectors from the internal 192-byte ROM and initializes the 
internal serial interface. The processor can change from bootstrap mode to 
any of the other modes under software control. Two special pins on the 
processor (MODA and MODB) determine in which mode the processor will 
"come up." Table shows the settings for MODA and MODB and how these 
affect the 68HC11. 

Since we wish to add external memory and a latch, the processor 
must be in expanded multiplexed mode. Hence, MODA and MODB must be 
tied high in our design. 

Boot modes for the 68HC11 
 

 

 

 

 

 

 

To reduce the number of external pins of the 68HC11, Freescale has 
multiplexed the address and data buses onto the same physical pins. This 
means the chip is smaller (and therefore cheaper), but it requires the system 
designer to add external logic to recover (separate) the address and data 
buses from the multiplexed bus. The data bus and the lower half of the 
address bus share port C, while the upper half of the address bus is on port B 
and requires no recovery. A special output, AS (address strobe), is provided 
to indicate whether address information or data is present on the bus. 

The timing for a memory cycle is shown in Figure. The address 
becomes valid after AS goes high and remains valid as AS falls. AS can be 
used as the control input to a latch to recover the lower half of the address 
bus. Once latched, the address continues to be output by the latch and hence 
continues to be valid throughout the cycle. The data appears on the 
multiplexed bus later in the cycle. 

 

 

 

 

MODB MODA Mode 

1 0 Single chip 

1 1 
Expanded 

multiplexed 

0 0 
Special 

bootstrap 

0 1 Special test 
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Timing of the multiplexed bus on a 68HC11 

 

 

The upper address bits (A8:15) appear on port B 94 ns before E goes 
high (in the middle of the cycle) and remain valid for the whole cycle. No 
recovery is required for these address lines. 

The basic circuit for a 68HC11 processor in expanded multiplexed 
mode, including the recovery of the lower address bits, is shown in Figure. 
Interrupt inputs, IRQ and XIRQ, require pull-up resistors as well. Motorola 
recommends the use of a special chip, MC34064, for generating a power-on 
reset. This simple three-pin device requires only power and ground, and will 
output a reset pulse on power up. This reset pulse is of an appropriate 
duration for a 68HC11. To provide a clock for our processor, we add an 8 
MHz crystal to the processor's internal oscillator (pins XTAL and EXTAL). 
The crystal needs two bypass capacitors, C1 and C2, and also requires a 
resistor, R1, parallel. 
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MC68HC11 and support components 

 

Port D is used for the internal serial interface, with bit 0 as the receive 
data input (Rx) and bit 1 as the transmit data output (Tx). Port D also contains 
the processor's SPI interface, allowing it to be interfaced easily to a variety of 
peripherals. 

That completes the processor's basic requirements. The next task is 
to design the rest of the computer, which for our system with its one RAM, 
one ROM, and a latch is very simple. We start by allocating the memory 
space and then design the address decoder. 

Address Decoding 

The MC6800 and MC68HC11 address spaces are shown in Figure. 
They are both 64K spaces (16-bit address), but note the additional, internal 
features of the 68HC11 located in its memory map. The register block is not 
the accumulators or index registers that were mentioned previously. These 
do not appear in the memory map. The register block is an array of special 
registers that control the many internal peripherals this processor has, such 
as counter/timers, analog-to-digital converters, etc. Note that a 68HC11 has 
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the ability, through software, to relocate the internal I/O registers and the 256-
byte RAM to any 4K boundary. This means the designer can place these 
wherever is most appropriate for the design. The "external" designator in 
Figure means that addresses in this range are available externally for use by 
memory or other devices. 

Comparison of 6800 and 68HC11 memory maps 

 

 

The vectors are a table of addresses stored externally that point to 
routines in memory. The most important of these is the 16-bit RESET vector 
starting at address 0xFFFE. This location contains a 16-bit pointer to the 
location in memory where the initialization code lies. The processor will load 
this pointer into its program counter after power-on or reset and thereby begin 
execution of the software. Therefore, since this vector needs to be valid at 
power-on, it must be nonvolatile (able to survive without power). For this 
reason, a ROM is usually located in the uppermost region of the address 
space. 

Now, the 68HC11 has a 64K address space, so a 32K RAM is going 
to occupy half of this space. But which half? As mentioned earlier, for the 
vector table to be preserved during periods of no power, a ROM must be 
located in the uppermost part of the address space. Thus, our 32K RAM must 
be put in the lower half of the address space. However, the internal RAM and 
registers of the internal peripherals are mapped into the lower half of the 
address space. If we map our 32K RAM into this space, will it cause conflict? 
(In other words, will we need special logic to accommodate this?) The answer 
is no. The internal RAM and I/O registers take precedence, and accesses to 
their locations will not cause activity on the external buses of the processor. 
In effect, they are overlaid on top of the external RAM. From our point of 
view, this makes the design simple, as we don't need special logic to exclude 
those addresses from our memory space. And since the internal peripheral 
registers can be remapped under software control, these can be shifted 
elsewhere to an unused part of the address space. 
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In the case of the 32K RAM, its address size ranges from 0x0000 to 

0x7FFF. In binary, this is 0000 0000 0000 0000 to 0111 1111 1111 1111. 
Any combination of bits between these two addresses lies within the space 
allocated to the RAM. So address bits A0 to A14 relate to memory locations 
internal to the RAM, and hence they are not used by the address decoder. In 
other words, the address decoder "doesn't care" what they are since they go 
directly into the RAM. The address table for the RAM is shown in Table. The 
"X" means "don't care." 

Address bit usage for the RAM 
 

  A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 

RAM 0 X X X X X X X X X X X X X X X 

 

Look at the address range for the RAM: 0000 0000 0000 0000 to 

0111 1111 1111 1111. The only bit in common for all those address bits is 
the "0" at A15. As the RAM is 32K in size and this is half of the 64K address 
space of the processor, the only bit that needs to be taken into account when 
decoding for the RAM is A15. Since the RAM is in the lower half of the 
address space, the RAM will need to be selected when the most significant 
address bit is low. When it is high, the RAM will not be selected. The address 
decode for the RAM is therefore simply a direct connection between A15 and 
the RAM's CS. What could be easier than that? The circuit for the RAM, in 
this case a 62256 SRAM, is shown in Figure. This same generic circuit will 
work for any standard 32K x 8 SRAM. 

RAM 

 

 

When A15 is low, the chip enable (CE) is pulled low and is therefore 
asserted (since it is active low). Thus, the RAM is enabled when A15 is low, 
and not enabled when A15 is high. 
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Note the additional logic (the three NAND gates) in the circuit. The 
68HC11 generates a R/W strobe indicating whether the cycle is a read cycle 
(R/W high) or a write cycle (R/W low). Now, the RAM has separate inputs to 
signify whether the access is a read or a write, and, in both cases, these are 
active low. The logic is used to convert the single R/  strobe into separate 
WE (write enable) and OE (output enable) inputs to the RAM. The R/W 
strobe is combined with the processor's E clock to ensure that the enables 
are active only during the valid part of the cycle (when E is high). Otherwise, 
OE would be active whenever it wasn't a write cycle. The NAND gate U2A is 
simply acting as an inverter. 

The ROM is a 16K device, which is one half of the remaining address 
space. The only other external device is a latch (which need occupy only one 
byte). There are two ways of allocating the remaining 32K of memory to these 
two devices. The first is to use explicit address decoding in which every 
address line is accounted for. In this scheme, the latch would occupy exactly 
one byte of memory and no more. So if we decide to locate the latch at 
address 0x8000, we have the address bits as shown in Table. 

Address bits to select the latch at 0x8000 
 

 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 

Latch 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

If we are using explicit decoding, we must use all of these bits in our 
address decoder. Such logic would be both complex and slow. 

A better way is to use partial address decoding. With this method, we 
divide our memory space among the devices, using just enough address bits 
to distinguish each device. It doesn't matter if the memory space allocated is 
much greater than that required by the device. Even if we allocate 16K of 
space to the latch, the latch will still work when we select it. It's true this is 
somewhat wasteful of address space, but it is a far more efficient method (in 
terms of logic) than explicit decoding. The logic required is much less, and if 
you are using discrete logic, the propagation delays are reduced. Timing is 
the most important consideration when designing any logic for a 
microprocessor system. If the timing isn't right, it simply won't work. 

So our remaining 32K of address space needs to be divided between 
two devices. The address table for all three devices (RAM, latch, and ROM) 
is shown in Table. 

 

Address bit allocation for all devices 
 

 
A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 

RAM 0 X X X X X X X X X X X X X X X 
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Latch 1 0 X X X X X X X X X X X X X X 

ROM 1 1 X X X X X X X X X X X X X X 

 

 

In this table, I have allocated the latch and the ROM 16K of space 
each. In other words, I have divided the remaining 32K of space equally 
between the two devices. This will make the address decoding much simpler. 
The resulting memory map for the computer (ignoring the internal I/O 
registers and memory for the moment) is shown in Figure. 

Memory map using partial address decoding 

 

Note that because we have used partial decoding, the latch will 
appear multiple times in its allocated space. The latch represents one byte at 
address 0x8000, but because we are looking at only A15 and A14 for its 
address decode, it is selected for all addresses in which A14 is low and A15 
is high. Therefore, the latch appears throughout the address range 0x8000 to 

0xBFFF. For instance, if we access location 0x9401, since A14 is low and A15 
is high for that address, we will select the latch. A0 to A13 are not used by the 
decoder, so their state is irrelevant to the address decode. 

The schematic for the LED latch circuit is shown in Figure (power and 
ground connections for U3 are present but are not shown for clarity). The 
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latch has two control lines, LE and OE . LE going from high to low causes the 
latch to capture and hold the current input data, in this case from the 
processor's data bus. OE controls whether the latch outputs the data. Since 
we want the LEDs to always show their current state, we want the latch to 
permanently output the currently latched data. Hence, OE must always be 
asserted (tied low). The address decode for the latch is relatively simple. 
When the processor is writing data to the latch, A14 is low and A15 is high. 
A14 is inverted by U5A and ANDed with A15. The output of the AND gate 
(U4A) will be high; therefore, the latch will capture the data that is being 
written to it. In effect, the latch is acting as a single byte of write-only memory. 

LEDs and latch 

 

The address decode for the ROM is shown in Figure. When both A14 
and A15 are high, the output from the NAND (U2D) gate will be low; 
therefore, the ROM will be selected. If either A14 or A15 are low, the ROM 
will not be selected. The ROM shown in the schematic is a 27256 (a 32K 
part), since these are easier to acquire than 16K devices. Because it is a 32K 
device, and we're using only half of its internal space, its address input A14 is 
tied high. In this way, we permanently select the upper half of the device's 
space. Note that this A14 input is not the same as the A14 address bit from 
the processor. The OE (output enable) input is connected to the same OE we 
generated for the RAM. Finally, the power pin VPP is used during 
programming (out of circuit) to load the chip with data. During normal 
operation, this pin is tied to VCC. 

So that completes the basic design for the 68HC11 computer. Using 
the processor's SPI port, we could add a variety of additional peripherals or 
data-storage memories. Alternatively, we could add additional peripherals 
using the processor's buses by breaking up the address space allocated to 
the latch and providing support for more devices. We could also apply the 
memory-management techniques covered in the AVR chapter to increase the 
amount of RAM in the computer. 
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Address decode for ROM 

 

 

 

 

 

 

 

Summary: 

 The MC68HC11 is a member of the 8-bit, 6800 
microprocessor family. 

 It is essentially a standard 6800 processor inbuilt peripherals, 
such as an enhanced 16-bit timer with four-stage 
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programmable pre-scalar, a serial peripheral interface (SPI), a 
serial communications interface (SCI), an 8-bit pulse 
accumulator, real-time interrupts, onboard static RAM, an 
eight-channel ADC, and onboard EEROM. 

 The MC68HC11 has two accumulators, A and B. The 
accumulators are both eight bits wide. 

 The stack pointer (SP) is a 16-bit register that points to the 
next free location on the stack. 

 The stack is an area of memory defined for storage of data or 
addresses (treated as data). 

Questions: 

 Explain the architecture of MC68HC11? 

 Design a simple computer using MC68HC11? 

 Explain Memory mapping in MC68HC11 controller? 

 What are the different booting modes of 68HC11? 

 How to decode address in 68HC11? 

 Explain the interfacing of RAM in 68HC11? 

 Is it possible to interface with LEDs using 68HC11?Explain. 

References: 

 Data Acquisition and Process Control with the MC68HC11 
Micro Controller by Frederick F. Driscoll, Robert F. Coughlin, 
Robert S. Villanucci.  

 Introduction to Microprocessors and Microcontrollers by John 
Crisp. 

 Microprocessors and Microcomputers: Hardware and Software 
(6th Edition) by Ronald J. Tocci and Frank J. Ambrosio. 

 

 

 

14. MAXQ 

Objective: 

In this chapter, we'll look at an innovative new processor architecture 
introduced to the world in 2004. Dallas Semiconductor, a subsidiary of Maxim 
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(http://www.maxim-ic.com), developed the 16-bit MAXQ microcontrollers to 
target the low-cost, low-power embedded applications market. The 
architecture is aimed directly against Microchip's PIC, Atmel's AVR, Texas 
Instruments' MSP430, and the 8051 architecture offered by many 
manufacturers (including Dallas Semiconductor itself). The MAXQ is an 
interesting contender for top RISC microcontroller. It's fast, has a lot of 
functionality, and is very low-powered. At the time of writing, the User's Guide 
for the MAXQ is 230 pages long. Obviously, this processor has a lot of 
features, too many to be thoroughly covered here. Therefore, I'm going to 
simply concentrate on the basic design for a MAXQ-based system. Let's start 
by seeing what makes the MAXQ so different and so interesting. 

Architectural Overview 

The stated design goal for the MAXQ was to achieve a high 
performance-to-power ratio. In other words, the aim was to maximize the 
processor's throughput of instructions while minimizing the current draw. 
Many RISC processors achieve single-cycle execution but do so through the 
use of an instruction pipeline. In a pipelined architecture, the execution unit is 
comprised of many stages. At any one time, several instructions will be in the 
process of being decoded and executed. Thus, with a pipeline, although a 
given instruction may take several cycles to execute, the processor is able to 
have an instruction terminate on each cycle (Figure). 

Each cycle moves each instruction further along the pipeline, from 
fetch to termination (and result). The disadvantage of a pipeline is that a call 
or jump instruction means that all instructions following in the pipeline are not 
needed and the pipeline must be reloaded from a new location (where the 
jump/call was directed). So, while 

Four-stage instruction pipelining 

 

Pipelining can achieve single-cycle execution; it falls down in a big 
way unless the code is linear. 

The MAXQ does not have an instruction pipeline, yet it still achieves 
single-cycle execution, with the exception of long jumps and calls and some 
extended register accesses. Now, you may say, "So what's the difference?" 
since pipelined processors have problems with jumps and calls too. The 
difference is that a pipelined processor executing a jump means that not only 
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is the jump not single-cycle, but it will cause a disruption to the pipeline 
affecting the following instructions. With the MAXQ, this is not the case. Only 
the jump or call is not single-cycle, and all subsequent instructions execute 
without incurring the delay of a pipeline reload. 

The MAXQ achieves this by having instruction-decode and execution 
units that are much simpler than those found on many other processors. How 

simple? Well, the MAXQ has only one instruction (move), but that one 
instruction has multiple functions, depending on the source and destination 
operands. By having only one instruction, a classical decode unit is not 
required. (You already know what the instruction is going to be, so what's 
there to decode about it?) Hence, the execution of instructions is reduced to 
determining source and destination, and whether additional hardware 
operations are triggered as part of the move. The source and destination bits 
of an instruction merely activate internal data paths, and this happens as the 
instruction is fetched. 

The basic format for a MAXQ instruction is fdd dddd ssss ssss, 

where f is the format bit, d represents the destination-field bits, and s 

represents the source-field bits. When the format bit is a 1, the instruction 

moves data from one index module to another. When the format bit is a 0, an 
immediate 8-bit value is loaded into an index module (Table). 

 

For

mat bit 

7-bit 

destination 
8-bit source 

1 
Index 

module 
Index module 

0 
Index 

module 

Immediate byte 

data 

 

In the MAXQ architecture, the index modules are not necessarily 
specific registers, and herein lies the flexibility of the architecture. A given 
working accumulator may actually be represented by more than one index 
module. One index module will target the accumulator and perform an 
addition operation, while another index module will target the same 
accumulator yet perform a subtraction. In this way, two different operations 
are specified by two index modules, even though they both target the same 
register. 

Like the PIC and AVR, the MAXQ is a Harvard-architecture processor, 
with separate code and data spaces. Overall, the MAXQ is a very nice 
processor, and one that I'm sure will gain market share as time passes. 

Schematics 
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A major problem common in utilizing a microcontroller in a mixed-
signal environment (one that combines both digital and analog components) 
is the noise the digital subsystem introduces. Higher processor performance 
normally results in greater noise in the analog section, unless great pains are 
undertaken to minimize these effects. Thus, achieving high throughput is 
often contrary to the goal of keeping the analog circuits as noise-free as 
possible. The MAXQ implements intelligent clock management that reduces 
noise by enabling clocks only to those subsystems that require them, and 
only when they require them. In this way, the overall digital noise is reduced 
considerably. The MAXQ processor requires two crystals, a 16 MHz crystal 
(X1) for the main CPU clock and a 32.768 kHz watch crystal (X2) for the 
timers. Figure shows the MAXQ2000F processor with its support 
components. 

MAXQ processor and support components 

 

The MAXQ processor requires two power supplies, VDDCPU (2.5 V) 
and VDDIO (3.6 V), each decoupled to ground with 100 nF ceramic 
capacitors. The 2.5 V supply may be generated using a MAX1658 (Figure). 
This is a general-purpose regulator, the output of which is adjustable via bias 
resistors. These resistors, R1 and R2, set the output to +2.5 V. It is important 
that these resistors are precise, so choose resistors with 1% tolerance. The 
input and output of the regulator are each decoupled with 10 uF capacitors. 
The MAX1658 can operate on an input voltage (VIN) of between 2.7 V and 
16.5 V, supplying up to 350 mA to the embedded computer system. 

A similar circuit is used to generate the 3.6 V supply required by the 
MAXQ's I/O subsystems (Figure). Note the different resistor values required 
to generate 3.6 V rather than 2.5 V. 
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The MAXQ has an internal power-on reset generator, kicking the 
processor to life at power-up. No external reset circuit is required. If a manual 
reset is required, a push- button switch may be used to pull the RESET line 
low. However, it is important to note that RESET is a bidirectional line. The 
MAXQ also uses this signal as an output to indicate that a reset condition 
(possibly generated internally) is being serviced. 

 

Generating 2.5 V for VDDCPU 

 

 

Generating 3.6 V for VDDIO 

 

This can be used by the system designer to reset external peripherals 
as well (if required). 

The various ports, labeled Px, provide access to the MAXQ's I/O. As 
well as providing digital I/O, they also serve dual purposes. Port 5 provides a 
SPI interface as well as a serial port. The SPI interface may be connected to 
any SPI-based peripheral. The serial port requires a level shifter such as a 



    Embedded System 
   Notes 

 
 

274 

MAX3232, as shown in Figure. The transmitter (TXD1) and receiver (RXD1) 
of the MAXQ connect to the receiver and transmitter pins on the MAX3232. 

Serial port 

 

Port 5 of the MAXQ provides access to JTAG signals for in-system 
programming and debugging. Figure shows the pinout for a JTAG header. 
This is the same pinout used on the Maxim MAXQ development system, 
allowing you to use the same environment for your embedded computer. 

JTAG interface 

 

 

The MAXQ is a versatile and fast 16-bit processor, and the family is 
due to be expanded by Maxim. If you're looking for a low-powered, yet very 
capable processor for an embedded application, take a close look at the 
MAXQ. You'll find it's an impressive little processor. 
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Summary: 

 

 Dallas Semiconductor, a subsidiary of Maxim (http://www.maxim-
ic.com), developed the 16-bit MAXQ microcontrollers to target the 
low-cost, low-power embedded applications market. 

 The MAXQ design is goaled to achieve a high performance-to-power 
ratio. 

 The disadvantage of a pipeline is that a call or jump instruction means 
that all instructions following in the pipeline are not needed and the 
pipeline must be reloaded from a new location. 

 The basic format for a MAXQ instruction is fdd dddd ssss ssss, 

where f is the format bit, d represents the destination-field bits, and s 
represents the source-field bits. 

 Like the PIC and AVR, the MAXQ is a Harvard-architecture processor, 
with separate code and data spaces. 

 The MAXQ processor requires two power supplies, VDDCPU (2.5 V) 
and VDDIO (3.6 V), each decoupled to ground with 100 nF ceramic 
capacitors. 

 

Questions: 

 

 Explain the architecture of MAXQ IC?How it differs from pic,AVR & 
8051’s architectures? 

 Define the format of MAXQ controller instruction? 

 Explain MAXQ with its schematics? 

 Explain how a Numerical LCD is connected with its pin diagram? 
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15.  68000-Series Computers 

 

Objective: 
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In this chapter, we'll take a look at a 32-bit processor that has been 
around for quite some time and has evolved into a plethora of controllers and 
embedded processors. The 68000 (also known as the "68k") is produced by 
Free scale Semiconductor and is licensed by several other manufacturers. 
The range of 68000-based processors is large (check out the manufacturers' 
web sites for a list of processors and their features). The number of 
applications that the 68000 has found its way into is enormous. You can even 
get 68000s as soft cores for FPGAs, which means you place a 68000 CPU in 
the midst of your programmable logic, all on the one chip. 

The Motorola MC68000 was introduced in 1979 as the successor to 
its 8-bit 6800 family. It featured a large address space, 32-bit registers, a 
large number of addressing modes, and an enlarged instruction set with over 
1,000 opcodes. It was designed with the intention of running multitasking 
operating systems, specifically Unix. Its use in Unix machines has now long 
since passed, having been usurped by more advanced RISC processors. The 
68000 processor was also used in the original Macintosh computers, as well 
as in the Atari ST, the Commodore Amiga, and Jef Raskin's CAT computer, 
all long extinct. Motorola Semiconductor is now known as Free scale 
Semiconductor. 

The processor's wide range of software and reasonable computing 
power are now encouraging its extensive use in embedded systems. It now 
forms the basis of a family of microcontrollers designed for embedded 
systems, industrial control, networking, and PDAs. The 683xx series is the 
primary family of microcontrollers specifically tailored to embedded 
applications. These processors combine a CPU32 core (68020-based) with 
various integrated functions (such as UARTs, SPI, ADCs, etc.). Additional 
68000 processors have been developed for specialized applications. The 
original Palm PDA has a 68EZ328 Dragon Ball processor, also based on a 
CPU32 core, which incorporates an LCD controller along with many of the 
common functions found in PDAs. The Dragon Ball is essentially a PDA on a 
chip—just adds memory. The ucLinux fraternity uses a Dragon Ball processor 
in its small embedded controller board. 

The 68000 architecture was upgraded to RISC with the Cold Fire 
series of processors. These see extensive use in industrial control and 
network interfaces. 

The 68000 series of processors are good general-purpose 
processors. They have a nice instruction set, are easy (and fun) to write code 
for, and are relatively easy to build computers around. They have large 
address spaces and asynchronous operation, allowing them to be interfaced 
to a wide variety of memory and peripherals of varying operating speeds. 
They are used in industrial control and monitoring, and also in consumer 
electronics. 

In this chapter, we'll look at the standard 68000 processor. More than 
likely, this is not the processor you will use in a design. Rather, you will 
choose a 68000-based integrated controller that better suits your needs. So, 
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why look at a standard 68000 and not one of the derivatives? First, there are 
far too many diverse 68000-based processors to cover. Second, since these 
processors are all based on the 68000, understanding the basic 68000 is a 
great starting point. Finally, all the derivatives are generally easier to use than 
the original, so if you can design around a standard 68000, then you can 
design for a derivative processor as well. 

Understanding the 68000 gives you access to a wide range of 
available processors. There are dozens of commercial C compilers and 
assemblers available for the 68000 family, as well as a number of public-
domain compilers as well. The 68000 is fully supported by the gnu 
development suite. Both Linux and BSD are also available for the 68000, as 
well as for numerous commercial operating systems. 

The 68000 Architecture 

The 68000 has eight 32-bit data registers (D0-D7), eight 32-bit 
address registers (A0-A7), a 32-bit program counter, two 32-bit stack 
pointers, and a 16-bit status register (Figure). The processor is capable of 
handling data as 32-bit long words, 16-bit words, bytes, or bits. 

The processor has two modes of operation: supervisor mode 
(operating system) and user mode (applications). The mode of operation is 
made available to external hardware, thereby giving the address decoder the 
ability to have separate supervisor and user spaces. 

68000 programmer's model 

 

The standard 68000 is just a conventional, bus-based processor. A 
block diagram of a generic 68000-series processor is shown in below Figure. 
The figure also shows the pins for a sample 68000-series processor. The 
pins and signals of 68000s can vary from one device to another, but they all 
have the same core functionality. The embedded controllers add to this basic 
functionality with additional I/O capability. We'll look at the pins for the 
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MC68EC000 shortly. The original 68000 has a 23-bit address bus (A1 to 
A23), giving it access to a memory space of 16M, and a 16-bit data bus. Most 
other processors based on the 68000 architecture have address and data 
buses of 32 bits and can therefore access up to 4G of memory. 

The processors have an input clock that drives all processor 
operation. Memory accesses typically take eight input clock cycles, provided 
that wait states are not introduced. Many processors based on the 68000 
incorporate in-built address coding and software-configurable wait-state 
generation, making interfacing much simpler. 

MC68000 block diagram and pinout 

 

 

The processors have an address strobe (AS) indicating when a valid 
address is present on the bus, data strobes (LDS, UDS) indicating valid data, 
and a R/W line that shows the direction of the transfer. In addition, a Data 
Transfer Acknowledge input, DTACK, is used by external devices to indicate 
to the processor that it may terminate its current memory cycle. (Some 68000 
processors call their Data Transfer Acknowledge DTACKB.) The function 
code outputs (FC0, FC1, and FC2) indicate the current operating mode 
(supervisor or user) of the processor. Bus Error (BERR) is used by an 
external address decoder to indicate an error condition. This allows the 
system to trap out accesses to unused regions of memory space, or in 
combination with the status lines, to detect user access to memory space 
allocated for supervisor use only. For example, if a program crashes and, in 
the process of crashing, attempts to access a region of memory to which no 
device is allocated, the address decoder is able to signal that fault back to the 
processor. An assertion of BERR causes the processor to execute an 
interrupt and take appropriate action. HALT is used to suspend processor 
operation without generating a reset. Three interrupt inputs (IPL0, IPL1, and 



    Embedded System 
   Notes 

 
 

280 

IPL2) are used to generate seven levels of external interrupt handling. Bus 
Grant (BG) and Bus Request (BR) are DMA control signals by which another 
processor can arbitrate to acquire the computer's buses. The MODE pin, 
present on only some 68000 processors, determines whether the 68000 uses 
its data bus as 16 bits or 8 bits. MODE is sampled as the processor comes 
out of reset. AVEC, also found in only some 68000 processors, determines 
whether the processor uses auto-vectoring for its interrupts. If auto-vectoring 
is enabled, the processor will expect the interrupting peripheral to supply the 
appropriate vector. This allows a peripheral to specify what type of action the 
processor needs to take when a given interrupt is generated. Other 68000 
processors may have other signals as well, but these are the main ones. The 
basic timing diagram for a 68000 memory access is shown in Figure. 

MC68000 timing diagram 

 

The memory cycle of a 68000 is divided into a number of clock states, 
S0 through S7. The cycle begins with state S0. The processor validates R/  
for the coming cycle, sending it low for a write access, driving it high for a 
read access. The processor also tristates its address bus from the previous 
memory access. By S2, the processor has output a valid address and drives 
the address strobe (AS) low, indicating that a valid address is present. The 
lower and upper data strobes (LDS and UDS) go low as appropriate and 
indicate the width of the memory access taking place. For a 16-bit transfer, 
both LDS and UDS assert. For an 8-bit transfer, only one of LDS or UDS 
asserts, depending on whether the upper byte or lower byte is being 
transferred. If the current memory access is a write cycle, the processor 
outputs valid data in state S3. At this point, all outputs from the processor are 
valid, and the processor waits for the device being accessed to respond. 
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At the falling edge of the clock in S4, the processor begins checking 
the state of the DTACK input. If DTACK is high, the processor inserts wait 
states and continues to do so until DTACK is found to be low on the falling 
edge of the clock. (You'll learn how to generate wait states in "Wait States," 
later in the chapter.) When DTACK is low, the processor recognizes this as 
an indication that the device being accessed has had sufficient time to 
respond and prepares to terminate the cycle. If the cycle is a read cycle, the 
processor will latch data on the falling edge of the clock in state S6. If it is a 
write cycle, the device being accessed will latch data as the data strobes go 
high in S7. 

Support for synchronous operation is also provided for, using control 
signals found in the old 6800 series of processors. Since 6800s have long 
since passed into history, and 6800-based peripherals are now exceptionally 
rare, just ignore the 6800 control signals. Most 68000-based derivative 
processors no longer include support for 6800 peripherals. 

A Simple 68000-Based Computer 

Objective: 

Let's look now at a small 68000-based computer. For simplicity, we'll 
give it just a small amount of memory and a single peripheral, an MK68901 
MFP (Multi-Function Peripheral) produced by ST Electronics. The MFP gives 
us a UART, parallel I/O, and interrupt control. A block diagram of the system 
is shown in Figure. 

68000-based computer 

 

 

This system is designed with only a small amount of memory, to keep 
the design uncomplicated. While this is not much compared to many desktop 
machines, it is sufficient for many small, control applications. This design 
could be used for a number of simple applications. The counters of the 
MK68901 may be used to monitor external event pulses or to generate PWM 
for motor control. This computer could also be used to accept commands 
through its serial port and activate (or deactivate) external subsystems using 
the parallel I/O pins of the MK68901. This basic design could also be adapted 
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to provide a bridge between an RS-232C interface and a parallel port. You 
could use this to interface a parallel-port printer to a serial-port-only 
computer. Alternatively, you could use it to put a serial modem on your PC's 
parallel port. Using the bus-interfacing techniques we learned in the AVR 
chapter, you could add additional peripherals such as ADCs and DACs, 
Ethernet, or a whole range of other devices. The list of possible applications 
is endless. And it all starts with this core design. 

So, let's start our tour of a 68000-based computer system. We'll look 
at the reset circuit, address decoder, I/O, and memory. 

Reset Circuit 

To reset an MC68000, both RESET and HALT must be driven low 
simultaneously. In addition, both of these signal lines may also act as outputs 
from the processor. Therefore, both must be independently driven by the 
reset circuit through open-collector gates. The conventional way of doing a 
68000 reset circuit is shown in Figure. 

Reset circuit 

 

The MC1455 will respond to a disruption on VCC by sending its 
output low. This output is used to drive RESET and HALT low 
simultaneously. In normal operation, RESET is held high by the pull-up 
resistor, unless pulled low through the reset switch being pressed. The diode 
is present to remove any glitches that might send RESET above VCC. 

A better reset circuit is shown in Figure, using a MAX825 integrated 
reset controller. Again, both RESET and HALT need to be driven low. 

Address Decoder 



    Embedded System 
   Notes 

 
 

283 

Logic to perform address decoding and the generation of separate 
read and write strobes is implemented in a PAL. In each case, (Address 
Strobe) of the processor is used as an indication of a valid address present 
on the bus. The address-decode equations are as follows: 

   ROM = /(/AS * /A23 * /A22) 

   RAM0 = /(/AS * /A23 * A22 * /LDS) 

   RAM1 = /(/AS * /A23 * A22 * /UDS) 

   MFP = /(/AS * A23 * /A22) 

 

MAX825 reset circuit for a 68000 

 

With the exception of the MFP, which generates its own DTACK, 
DTACK for all other devices is generated as part of the address decoding. 
Since DTACK from the PAL must be OR-tied with DTACK from the MFP, it 
must be driven from an open-collector gate. Therefore, we generate an 
active-high acknowledge (which we'll designate TACK) from the PAL and 
invert this through a 74LS05 open-collector inverter. 

The PAL equation to generate TACK is simply: 

   TACK = (/AS * MFP) 

Therefore, TACK is active (high) whenever the processor accesses its 
address space, so long as it is not accessing the MFP. If the address strobe 
is high, or if there is an access to the MFP, then TACK is low. The TACK 
output from the PAL is inverted through an open-collector 74LS05 and "OR-
tied" (directly connected together) with DTACK from the MFP. DTACK 

requires a pull-up 1 k resistor, since this input must have a sharp rise time. 
A block diagram is shown in Figure. 

No provision for generating a BERR is made because our simple 
address decoding allocates all of the address space. If we had any unused 
regions of the memory space, we would use our address decoder to generate 
a BERR when accesses to the unused regions were made. 
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The PAL equations to generate separate read and write strobes for 
the memory chips are: 

   UWE = /(/UDS * RW) 

   LWE = /(/LDS * RW) 

   UOE = /(/UDS * /RW) 

   LOE = /(/LDS * /RW) 

 

Address decode and DTACK generation 

 

 

The connections for the PAL are shown in Figure. Additional 
addresses are brought into the PAL to allow for future changes to the 
memory map. The processor's clock (CLK) is used by the PAL to generate 
the clock for the MFP (MFPCLK). 

 

 

Address decode and system-logic PAL 
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The function code outputs (FC0-FC2) can be decoded using a 
74LS138 demultiplexer to drive three LEDs (Figure). These provide a visible 
indication of processor status. The function codes could also be used by the 
address decoder if you wanted to have separate user and supervisor address 
spaces. Many of the more sophisticated peripheral chips (such as the MFP) 
require the processor to acknowledge when they have generated an interrupt. 
The 74LS138 also uses the function codes to generate an interrupt 
acknowledge (IACK) for peripherals, since the function codes also indicate an 
IACK condition. 

 

Status LEDs indicating processor mode 

 

I/O 
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The MK68901 Multifunction Peripheral (MFP) provides a serial port, 
as well as basic parallel I/O functions, a 16-source interrupt controller, and 
four 8-bit timers. The MK68901 has an internal oscillator that drives the 
internal timers. A timer output (TD0) is fed back into the MFP as the clock for 
the serial interface. The internal oscillator must therefore run at a frequency 
appropriate for RS-232C. An external 3.6864 MHz crystal drives the 
oscillator. This input clock can be divided up by the MFP, providing the 
appropriate baud rates for the serial port. The serial lines from the MFP are 
converted to RS-232C voltage levels by a MAX3232 level shifter. A 9-pin, D-
type connector provides access to the RS-232C signals. The parallel I/O lines 
and timer inputs and outputs are also made available through a 26-pin IDC 
connector. The schematic for the MFP is shown in Figure. 

Multifunction Peripheral 

 

Memory 

The system is designed with 256K of EPROM and 512K of static 
RAM. The connections to the SRAM are shown in Figure. Note that since the 
data bus of a 68000 is 16 bits wide, two SRAMs are required. For 68000-
based derivatives with 32-bit external data buses, four memory chips would 
be required in parallel. Note how half the data bus goes to one chip and the 
other half goes to the other chip. 

Now, note the address lines going to the SRAMs. The lowest address 
bit from the processor is A1, and this is connected to the A0 inputs of the 
SRAMs, and so on. Since the processor accesses external memory in 16-bit 
words, A1 represents the least significant address bit. In other words, as you 
move from word to subsequent word in memory, it is A1 that increments. 
However, A0 is the least significant address bit of the SRAMs, but since the 
two SRAMs together form a 16-bit word of memory, the A0 of the SRAMs 
must connect to A1 of the processor. The other address bits follow on from 
that starting point. 
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Interfacing to SRAM 

 

Similarly, the connections for the ROMs are shown in Figure. 

 

Wait States 

Depending on the speed of your processor and the access times of 
your memory and peripheral chips, it may be necessary to introduce wait 
states into the 68000's memory cycle. Wait-state generation follows basically 
the same principle for processors that support asynchronous memory cycles. 
The processor will have an input (sometimes more than one) that will cause it 
to delay the memory cycle, giving slower 

 

 

Interfacing to EPROMs 
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devices time to respond. In the case of the 68000, that input is 
DTACK . To insert a wait state for a given device, we need to detect an 
access to that device and hold DTACK inactive for the required additional 
clock cycles. In other words, we need to use the chip select for a given device 
to delay DTACK going low. The circuit to do this is simple and is best done 
inside a PAL or other programmable logic device. This facilitates changing 
the wait-state generator if faster parts are used in the design at a later stage. 
The wait-state generator consists of a series of D-type flip-flops(Figure). Each 
flip-flop represents an additional clock cycle that the transfer acknowledges is 
delayed. 

A flip-flop is a logic element that feeds the D input through to the Q 
output on the changing edge of a clock pulse. 

Between memory cycles, the address strobe, AS, goes high. It is first 
inverted and then connected to the active-low SET input of each of the flip-
flops. Thus, the output of each of the flip-flops is driven high between each 
memory cycle. This resets them from any previous cycle. The address 
decoder generates a chip select for the particular device, and this is 
connected to the D input of the first flip-flop. So, on each successive clock 
pulse, the 0 provided by the chip select is clocked through from one flip-flop 

to the next. After four clock pulses, the 0 has arrived at the Q output of the 

last flip-flop. The inverted output of this flip-flop, , becomes a 1. This is then 
output by the PAL to be inverted by the 74LS05 open-collector inverter to 
provide DTACK for the processor. For additional wait states, add more flip-
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flops. For several devices requiring different numbers of wait states, use their 
combined chip selects to feed the D input of the first flip-flop; then "tap" into 
the wait-state generator at different stages for the required delay. Each of 
these taps is gated with the respective chip select to enable/disable that 
output before they are all recombined to generate a unified acknowledge for 
the processor. 

Wait-state generator 

 

 

Most processors that support wait states now include inbuilt, software-
configurable wait-state generators. This makes the task of designing the 
system logic much simpler. 

Summary: 

 The Motorola MC68000 was introduced in 1979 as the successor to 
its 8-bit 6800 family. 

 The 68000 has eight 32-bit data registers (D0-D7), eight 32-bit 
address registers (A0-A7), a 32-bit program counter, two 32-bit stack 
pointers, and a 16-bit status register. 

 The original 68000 has a 23-bit address bus (A1 to A23), giving it 
access to a memory space of 16M, and a 16-bit data bus. 

 The MODE pin, present on only some 68000 processors, determines 
whether the 68000 uses its data bus as 16 bits or 8 bits. 

 Depending on the speed of your processor and the access times of 
your memory and peripheral chips, it may be necessary to introduce 
wait states into the 68000's memory cycle. 

 A 9-pin, D-type connector provides access to the RS-232C signals. 
The parallel I/O lines and timer inputs and outputs are also made 
available through a 26-pin IDC connector. 

 The MK68901 Multifunction Peripheral (MFP) provides a serial port, 
as well as basic parallel I/O functions, a 16-source interrupt controller, 
and four 8-bit timers. 
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 The 74LS138 also uses the function codes to generate an interrupt 
acknowledge (IACK) for peripherals, since the function codes also 
indicate an IACK condition. 

Questions: 

 What is programmer’s model of 68000? 

 Explain the timing diagram of MC68000 for memory access? 

 How to design a basic computer using MC68000? 

 How MK68901 is interfaced with MC68000? 

 How to interface SRAM with MC68000? 

References: 

 Analog Interfacing To Embedded Microprocessors – STUART R. 
BALL 

 C Programming for Embedded Systems – KIRK ZURELL 

 Design with 8051- FRONTLINE ELECTRONICS 

 Embedded Controller Hardware Design - Ken Arnold 

 Embedded Software The Works – colin walls 

 Embedded Systems Firmware Demystified - Ed Sutter 

 Embedded_Controller_Hardware_Design – KEN ARNOLD 

 Programming Embedded Systems in C and C++ - Michael Barr 

 The Art of Designing Embedded Systems - Jack G. Ganssle 

 

 

 

 

 

 

 

 

 

 



    Embedded System 
   Notes 

 
 

291 

16. The DSP56800 

Objective: 

Unlike the conventional DSP56000 with its 24-bit architecture, the 
DSP56800 series has a 16-bit architecture better suited to small-scale control 
applications. It is fixed-point (integer) only, which is fine for most control 
applications. If necessary, floating- point arithmetic can be synthesized in 
software. 

The architecture is based on four functional units, each with their own 
registers, operating independently and in parallel with the other units. These 
functional units are the program controller, which is responsible for software 
execution; the Address Generation Unit (AGU), which handles bus accesses; 
the Data ALU, which performs the arithmetic operations; and the bit-
manipulation unit for efficient and rapid bit-based operations. 

The independent operation of these units allows for very efficient and 
fast software execution. While the Data ALU or bit-manipulation unit are 
performing an operation specified by an instruction, the AGU can be 
generating addresses for the execution of another instruction, while the 
program controller can be fetching yet another instruction for execution. The 
instruction set directly supports this parallelism. To accomplish this high 
internal throughput, the processor has not one but three internal address 
buses and four internal data buses (three data buses for the core and one for 
peripherals). Two operands may be sourced from the internal memory and 
operated on in a single instruction. The result is that the architecture achieves 
a throughput of 40 MIPS on an 80 MHz clock. That's RISC-like performance 
with a CISC-like instruction set. In other words, that's a lot of punch. 

It has hardware looping using the DO and REP instructions. DO 
allows you to specify a block of code (of any size) and have the processor 
execute it as a loop in hardware. You don't need a counter test and 
conditional branch instruction at each iteration, saving processor execution 
overhead. REP allows the repetition of a single instruction, and REPs can be 
nested inside DO loops. As such, you have very versatile looping capability 
with no overhead. Loops on a DSP are fast. 

The programmer's model for the DSP56800 core is shown in Figure. 

The processor has two 36-bit accumulators, a 16 x 16-bit multiply and 
Accumulate (MAC) unit, and a 16-bit barrel shifter. The MAC allows you to 
multiply two numbers and then add the result to a growing total, all with a 
single instruction. MACs allow for efficient execution of many signal-
processing algorithms, as well as neuro-fuzzy code. 

The barrel shifter allows you to shift up to 16 bits in either direction in 
a single cycle. So, if you want to shift an operand 15 bits to the left, a 
conventional processor would require 15 separate shift-left instructions (or 
one shift-left, a loop, a counter variable, and a conditional test for the loop). 
The DSP56800, like many DSPs, can perform this operation in just one cycle. 
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In short, the DSP56800 has very tight and efficient code with high 
functionality that it executes exceptionally quickly. It is a fast processor 
around which it is easy to design a powerful embedded computer system. 

We'll look at how you design a system based on the DSP56805 
processor, a member of the DSP56800 family specifically designed for 
industrial control. The DSP56805 has an internal 1K program RAM, 4K of 
bootstrap ROM (for loading boot software from an external memory or 
peripheral, 63K of program flash, 8K of data flash, and 4K of data RAM. The 
processors also have external data and address buses, so the processor's 
memory can be expanded well beyond its internal resources. It has a 64K x 
16-bit address space, giving access to 128K (bytes) of external memory. 

 

The DSP56800 processors also provide the ability to separate data 
and program spaces, thereby doubling the external address space. The 
processor also has a programmable wait-state generator, simplifying 
interfacing to external devices. The generator may be programmed to provide 
0, 4, 8, or 12 wait states for accesses to a given device. 

DSP56800s in general come with a range of inbuilt peripherals, 
including SPI ports (sometimes two), several 16-bit general-purpose timers, a 
watchdog timer (called a Computer Operating Properly, or COP, timer by 
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Free scale Semiconductor), a timer for real-time operation, a Synchronous 
Serial Interface (SSI) for accessing audio codec’s (combined ADCs and 
DACs) and other DSPs, and general-purpose I/O lines. The DSP56805 adds 
two 6-channel Pulse Width Modulation (PWM) units for motor control and 
other uses, two 4-channel ADCs at a resolution of 12 bits per channel, and 
two quadrature decoders for measuring motor positions. It also has a CAN 
networking module, two serial ports (called Serial Communication Interfaces, 
or SCIs, by Free scale Semiconductor), and 14 dedicated and 18 shared I/O 
lines. 

The processors operate from a supply voltage of between 3.0 V and 
3.6 V but have 5 V-tolerant inputs, making interfacing to a wide variety of 
devices easy. (Other DSP56800s may operate on a supply voltage of 
between 4.57 V and 5.5 V, depending on the particular chip.) The processor 
has several low-power and sleep modes, making it ideal for battery-powered 
systems. 

All DSP56800 processors incorporate a JTAG (Joint Test Action 
Group) port for interfacing to specialized debugging instruments. The JTAG 
port also allows direct access to the processor's onboard flash program 
memory, making the job of downloading new code simple and fast. All in all, 
quite a nice processor. So, let's look at how you build a system based on 
one. For simplicity, I'll look at each subsystem in turn. 

A DSP56805-Based Computer 

The DSP56805 has nine power pins. Each of these must be 
decoupled to ground using 100 nF ceramic capacitors. Each capacitor should 
be placed as close as possible to its respective power pin. Since this 
processor can operate at a relatively high speed, and can therefore generate 
a lot of noise, a four-layer circuit board is the preferred option for 
construction. As with any design, any unused inputs must be tied inactive. A 
block diagram of the DSP56805 is shown in Figure in next page. 

Oscillator 

Like all processors, the DSP56805 requires a clock signal. The 
processor can operate from an oscillator frequency of up to 80 MHz (giving 
40 MIPS) or as slow as a few MHz to save power. The processor may even 
have its clock completely stopped (so-called "DC operation," meaning the 
clock is no longer an AC signal) to further save power. (This processor's 
sibling, the DSP56801, has a complete internal oscillator and so requires no 
external clock-generation circuit). 

The processor has an inbuilt oscillator circuit, requiring only an 
external crystal in the range of 4 MHz to 8 MHz and support components. 
From this low crystal frequency, the processor internally synthesizes a clock 
speed of between 40 MHz and 110 MHz under software control. Note that 
while the clock-generation circuit is able to produce 110 MHz, the processor 
isn't able to operate at that speed. So keep the speed below 80 MHz, and the 
processor, your software, and you will all be happy. 
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In a typical application, the crystal frequency is 8 MHz, with a resistor 
value of 10 M . Decoupling capacitors are approximately 15 pF or so. 
However, the values of the resistor and capacitors required can vary, so 
make sure you check the technical data from the crystal manufacturer. It will 
tell you specifically what values to use for a particular crystal. 
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Alternatively, you could use an external oscillator module to generate 
the processor's clock (Figure). The module's output is connected to the XTAL 
input of the processor. When operating in this configuration, EXTAL must be 
connected to ground. 

Reset and Interrupts 

The DSP56805 has an internal power-on circuit to correctly start up 
the processor. It also has a watchdog reset circuit, driven by an internal timer, 
to recover the processor from a software crash. So, all we need to do is to 
provide our system with an 

 

external reset so we can manually restart the machine by pressing a 
button. Normally, such a reset circuit would need to debounce the button 
press and also ensure that the reset state was held for a minimum period of 
time. On the DSP56805, life is much simpler. The processor incorporates 
internal debounce circuitry on its input. Further, it has circuitry that ensures 
that a reset is held for the appropriate duration. So, our external reset circuit 
is simply a push-button and a pull-up resistor (Figure). 



    Embedded System 
   Notes 

 
 

296 

 

The DSP56805 can boot from external memory or from its internal 
ROM for single-chip operation. An input pin, EXTBOOT, is sampled as the 
processor comes out of reset. If EXTBOOT is pulled low, the processor 
executes code from the internal ROM. This is known as Mode 0 operation. 
There are two forms of Mode 0. Mode 0A maps all memory as internal, 
whereas Mode 0B maps the lower 32K words (64K bytes) of the address 
space as internal and the upper 32K words as external. Mode 0A is the 
default mode, and Mode 0B may be entered only under software control. 

If the EXTBOOT pin is high upon exiting reset, then the processor 
boots from external memory. This is known as Mode 3 operation. (There is no 
Mode 1 or Mode 2, as these are reserved for ROM-based DSP56800 
processors.) Once operational, the processor can toggle from one mode to 
the other under software control. 

Other DSP56800 processors have variations of the operating modes 
and memory maps, so, as always, check the datasheet for the particular 
processor you are using. 

Aside from numerous internal sources of interrupts (from the onboard 
peripherals), the DSP56805 has two external interrupt sources, IRQA and 
IRQB. These may be used by external-interface peripherals (or even external 
systems) to gain the processor's attention. Whether they are connected to an 
external interrupt source or not, they require an external pull-up resistor. In 
the example given (Figure), IRQA has an interrupt source from a peripheral, 
while IRQB is unused. 
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External Memory 
 

The processor has an external 16-bit data bus that serves for 
accesses to both external program memory and external data memory. Data 
and program memory can exist within the same memory chips, or separate 
data and program address spaces may be implemented. The processor has 
two outputs, (Program Strobe) and (Data Strobe), which indicate the 
type of memory access. 

The timing for a DSP56805 write cycle followed by a read cycle is 
shown in Figure. Since the processor has a programmable wait-state 
generator, external memory devices or peripherals of varying response times 
may be accommodated. 

 

The DSP56805 may be connected to memory using a "glueless" 
interface. This means no external logic is required. The connections for 
interfacing a DSP56805 to two 64K program SRAMs are shown in Figure. 
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Interfacing the DSP56805 to program SRAM 

When accessing the program address space, PS is low, and so this 
may be used as a chip select to the SRAMs. Similarly, the same configuration 
may be used for data memory, except that in this case, DS becomes the chip 
select (Figure). Note that when I say "program memory" or "data memory," 
I'm simply referring to the intended use of these chips, not distinguishing 
between different types of memory chip. The same type of SRAM chips will 
suffice for both regions. 
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Interfacing the DSP56805 to data SRAM 

 

So, our DSP56805 computer has four SRAM chips in total, evenly 
divided between program memory and data memory. Each region has 64K x 
16 bytes (two 19-bit memory chips), giving a total of 128K bytes of program 
space and 128K bytes of data memory. The total memory for our system is 
therefore 256K bytes. If more data memory is required, memory banking may 
be used to increase the available space. Note that you do not necessarily 
have to have separate program and data spaces. You can just as easily have 
two SRAMs total, with the program and data spaces coexisting in the same 
chips (Figure). 
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Shared program and data memory 

In this case, both PS and DS are ignored, since we are no longer 
distinguishing between data and program spaces. The chip enable (CE) 
inputs of the SRAMs are simply tied to ground, so that these devices are 
permanently enabled. This will work because an SRAM will respond only if 
CE is low and either the output enable (OE ) or the write enable (WE ) go low 
as well. So in this example, it is the output enable or write enable that will 
activate the SRAMs. Note that permanently enabling an SRAM will increase 
its power consumption. Of course, we could just as easily combine DS and 
PS such that either going low will enable the SRAMs, but this requires extra 
logic, and it really isn't necessary. 

If you have different types of devices within your memory space, such 
as a smaller data SRAM and some peripherals, then you must include DS as 
part of the chip enable for the SRAMs and peripherals. The most logical way 
to do this is to use DS as the enable to your address decoder, which in turn 
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selects the appropriate device. Note that it must be DS for accessing 
peripherals, since you can't execute code directly out of a peripheral. 

A sample address decoder is shown in Figure. This will select either 
two 32K SRAMs or one of eight peripherals within the data space. 

 

Address decoder for two 32K SRAMs and eight peripherals 

 

 

When A15 is low, the SRAMs are selected. When A15 is high and 
is low, the address decoder is enabled and one of the eight peripherals is 

selected, depending on the state of A12, A13, and A14. 

Using this address-decode scheme, you can add up to eight bus-
based peripherals. The processor also has a SPI interface, so that opens up 
another avenue for expansion. Using SPI, you can add extra ADCs, DACs, 
real-time clock calendars, nonvolatile data memories, as well as a host of 
other devices. Of course, the DSP56805 has a range of inbuilt peripherals 
already. Its SPI, parallel I/O, and serial port interfaces are used just as we 
saw with the smaller microcontrollers. The DSP56805 has a wide variety of 
onboard peripherals, making this an exceptionally capable processor. 

JTAG 

The DSP56805 has a JTAG port to aid system debugging. A JTAG 
port consists of four dedicated signals (Table 19-1). 
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Signa
l name 

Functi
on 

TDI 
Test 

data input 

TDO 
Test 

data output 

TMS 
Test 

mode select 

TCK 
Test 

clock 

 

Free scale Semiconductor adds additional signals to the standard 
JTAG set. Specifically, it adds RESET (Test Reset) to reset the JTAG state 
machine and DE(Debug Event), which is equivalent to an interrupt output, 
indicating that an event (such as a breakpoint) has happened in the OnCE 
(On-Chip Emulation) module. 

JTAG is principally intended for debugging purposes, but since it 
gives you complete control of the processor's internals, it can also be used 
for reprogramming the internal program flash. The Free scale Semiconductor 
application note (AN1935/D) Programming On-Chip Flash Memories of 
DSP56F80x DSPs Using the JTAG/OnCE Interface, available from the Free 
scale Semiconductor web site, contains full details on the process involved, 
as well as sample source code and examples. 

The Free scale Semiconductor Software Development Kit, based on 
the CodeWarrior C compiler, for the DSP56800 series provides both software 
and hardware tools for programming these processors. 

Summary: 

 Unlike the conventional DSP56000 with its 24-bit architecture, the 
DSP56800 series has a 16-bit architecture better suited to small-scale 
control applications. 

 The architecture is based on four functional units, each with their own 
registers, operating independently and in parallel with the other units. 
These functional units are the program controller, which is responsible 
for software execution. 

 The processor has two 36-bit accumulators, a 16 x 16-bit multiply and 
Accumulate (MAC) unit, and a 16-bit barrel shifter. 

 The DSP56805 adds two 6-channel Pulse Width Modulation (PWM) 
units for motor control and other uses, two 4-channel ADCs at a 
resolution of 12 bits per channel, and two quadrature decoders for 
measuring motor positions. 
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 The DSP56800 has very tight and efficient code with high functionality 
that it executes exceptionally quickly. 

 The DSP56805 has an internal 1K program RAM, 4K of bootstrap 
ROM (for loading boot software from an external memory or 
peripheral, 63K of program flash, 8K of data flash, and 4K of data 
RAM. 

 The DSP56805 has an internal power-on circuit to correctly start up 
the processor. It also has a watchdog reset circuit, driven by an 
internal timer, to recover the processor from a software crash.  

 The processor has an external 16-bit data bus that serves for 
accesses to both external program memory and external data 
memory. 

Questions: 

 Explain the architecture of DSP56800? 

 What is programmer’s model of DSP56800? 

 What are the features of DSP56800? 

 Explain the pin diagram of DSP56805? 

 What is purpose of external 16bit data bus? 

 How SRAM is interfaced with DSP56805? 

 What is JTAG? 

References: 

 Analog Interfacing To Embedded Microprocessors – STUART R. 
BALL 

 C Programming for Embedded Systems – KIRK ZURELL 

 Design with 8051- FRONTLINE ELECTRONICS 

 Embedded Controller Hardware Design - Ken Arnold 

 Embedded Software The Works – colin walls 

 Embedded Systems Firmware Demystified - Ed Sutter 

 Embedded_Controller_Hardware_Design – KEN ARNOLD 

 Programming Embedded Systems in C and C++ - Michael Barr 

 The Art of Designing Embedded Systems - Jack G. Ganssle 


	Minicomputers
	Microprocessors Everywhere
	UNIT – V
	11. The PIC Microcontrollers
	Objective:
	A Tale of Two Processors
	Starting Simple
	Minimal PIC12C805 computer
	A basic PIC12C508 computer; just add power The alternative is to use an external RC circuit as the clock source (Figure). While not the most precise timing option, it is by far the cheapest. The actual frequency of oscillation depends on a combination...
	Variable-Speed Oscillator
	Variable-speed RC oscillator

	Power-on Reset

	A Bigger PIC
	PIC16C73 processor and support components

	PIC-Based Environmental Data logger
	Datalogger power supply
	Data logger nonvolatile memory
	Datalogger connector
	Programming adaptor for the DL4 datalogger
	Serial adaptor
	Serial adaptor schematic

	Motor Control with a PIC
	Figure. Processor
	Figure. Voltage regulator
	Figure. H-bridge
	Figure. Serial port


	12. The AVR Microcontrollers
	Objective
	The AVR Architecture
	AVR registers
	Atmel AT90S8515 memory map
	Atmel's comparison of processor speed and efficiency

	The ATtiny15 Processor
	A simple AVR computer
	Adding a Status LED
	Status LED

	Switching Analog Signals
	Switching an analog signal
	Figure. Push-button input
	Figure . Signal bounce


	Downloading Code
	Figure. In-circuit programming connectors
	In-circuit programming

	A Bigger AVR
	AVR-Based Data logger
	AT90S8535 processor and support components

	Bus Interfacing
	A 2M Data Flash interfaced to an AT90S4434
	AT90S8515 Memory Cycle
	Bus Signals
	Address bus demultiplexing
	AT90S8515 memory cycles with timing parameters

	Memory Maps and Address Decoding
	An address decoder uses the address to select one of several devices
	Atmel AT90S8515 memory map
	Allocated memory map
	Address decode for the RAM
	Connections to the SRAM
	Complete address decoder
	Using a 74HCT573 latch to control a bank of LEDs

	PALs
	Timing Analysis
	Timing for a read cycle to the RAM
	Timing for RAM chip select
	Read strobe and chip select for RAM
	Valid data from the SRAM

	Memory Management
	No address translation
	Address translation using an MMU
	Page mapping
	Address translation
	System using page address translation
	Banked memory
	MMU generation of page number
	Generating a larger physical address
	Simple banked-memory implementation
	Banked memory for an AVR computer
	Address translation (1)
	Logical page-number translation
	Boot modes for the 68HC11
	Address bit usage for the RAM
	Address bits to select the latch at 0x8000
	Address bit allocation for all devices



	14. MAXQ
	Objective: (1)
	Architectural Overview
	Schematics
	The 68000 Architecture
	A Simple 68000-Based Computer
	16. The DSP56800
	Objective:
	A DSP56805-Based Computer
	External Memory

	JTAG


