
ARTIFICIAL
INTELLIGENCE

 (

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

NAGARJUNA NAGAR,

ARTIFICIAL
INTELLIGENCE

(DMCA301)

(MCA)

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

NAGARJUNA NAGAR,

GUNTUR

ANDHRA PRADESH

ARTIFICIAL
INTELLIGENCE

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

 Artificial
 Intelligence

 NOTES

1

UNIT – I

Problems, Problem Spaces, and Search

Objectives of this lesson are

 To define the Problem as a State Space Search

 To know about the Production Systems

 To analyze the Problem Characteristics

 To explore the Production System

Characteristics

 To know the issues in the Design of Search

Programs & to solve a few problems

Introduction

Artificial Intelligence is typically concerned with different kinds
of problems as well as the techniques it offers to solve those
problems. To build a system to solve a particular problem, we

need to do four things:

1.Define the problem precisely. This definition must include

precise specifications of what the initial situation(s) will be as

 Artificial
 Intelligence

 NOTES

2

well as what final situations constitute acceptable solutions to
the problem.

2. Analyze the problem. A few very important features can have
an immense impact on the appropriateness of various possible

techniques for solving the problem.

3. Isolate and represent the task knowledge that is necessary
to solve the problem.

4. Choose the best problem-solving technique(s) and apply it
(them) to the particular problem.

In this chapter and the next, we discuss the first two and the last of these issues.
Then, in the chapters in Part II, we focus on the issue of knowledge representation.

1.1 Defining the Problem as a State Space Search

Suppose we start with the problem statement "Play chess."

Although there are a lot of people to whom we could say that
and reasonably expect that they will do as we intended, as our

request now stands it is a very incomplete statement of the
problem we want solved. To build a program that could "Play
chess," we would first have to specify the starting position of

the chess board, the rules that define the legal moves, and the
board positions that represent a win for one side or the other.

In addition, we must make explicit the previously implicit goal
of not only playing a legal game of chess but also winning the
game, if possible.

 Artificial
 Intelligence

 NOTES

3

Figure 1.1: One Legal Chess Move

For the problem "Play chess," it is fairly easy to provide a

formal and complete problem description. The starting position
can be described as an 8-by-8 array where each position
contains a symbol standing for the appropriate piece in the

official chess opening position. We can define as our goal any
board position in which the opponent does not have a legal

move and his or her king is under attack. The legal moves
provide the way of getting from the initial state to a goal state.
They can be described easily as a set of rules consisting of two

parts: a left side that serves as a pattern to be matched against
the current board position and a right side that describes the

change to be made to the board position to reflect the move.
There are several ways in which these rules can be written. For
example, we could write a rule such as that shown in Figure

1.1.

However, if we write rules like the one above, we have to write

a very large number of them since there has to be a separate

 Artificial
 Intelligence

 NOTES

4

rule for each of the roughly 10120 possible board positions.
Using so many rules poses two serious practical difficulties:

• No person could ever supply a complete set of such rules. It
would take too long and could certainly not be done without

mistakes.

• No program could easily handle all those rules. Although a
hashing scheme could be used to find the relevant rules for

each move fairly quickly, just storing that many rules poses
serious difficulties.

In order to minimize such problems, we should look for a way
to write the rules describing the legal moves in as general a
way as possible. TO do this, it is useful to' introduce some

convenient notation for describing patterns and substitutions.
For example, the rule described in Figure 1.1, as well as many

like it, could be written as shown in Figure 1..2, In general, the
more succinctly we can describe the rules we need, the less
work we will have to do to provide them and the more efficient

the program that uses them can be.

We ‗have just defined the problem of playing chess as a

problem of moving around in a state space, where each state
corresponds to a legal position of the board. We can

'To be completely accurate, this rule should include a check for

pinned pieces, which have been ignored here.

Figure 1.2: Another Way to Describe Chess Moves

 Artificial
 Intelligence

 NOTES

5

play chess by starting at an initial state, using a set of rules to
move from one state to another, and attempting to end up in

one of a set of final states. This state space representation
seems natural for chess because the set of states, which

corresponds to the set of board positions, is artificial and well-
organized. This same kind of representation is also useful for
naturally occurring, less well-structured problems, although it

may be necessary to use more complex structures than a
matrix to describe an individual state. The state space

representation forms the basis of most of the AI methods we
discuss here. Its structure corresponds to the structure of
problem solving in two important ways:

• It allows for a formal definition of a problem as the need to
convert some given situation into some desired situation

using a set of permissible operations.

• It permits us to define the process of solving a particular
problem as a combination of known techniques (each

represented as a rule defining a single step in the space)
and search, the general technique of exploring the space to

try to find some path from the current state to a goal state.
Search is a very important process in the solution of hard
problems for which no more direct techniques are available.

In order to show the generality of the state space
representation, we use it to describe a problem very different

from that of chess.

A Water Jug Problem:

You are given two jugs, a 4-gallon one and a 3-gallon one.

Neither have any measuring markers on it. There is a pump
that can be used to fill the jugs with water. How can you get

exactly 2 gallons of water into the 4-gallon jug?

The state space for this problem can be described as the set of
ordered pairs of integers (x, y), such that x = 0,1,2,3, or 4 and

y = 0,1,2, or 3; x represents the number of gallons of water in
the 4-gallon jug, and y represents the quantity of water in the

3-gallon jug. The start state is (0, 0). The goal state is (2, n) for

 Artificial
 Intelligence

 NOTES

6

any value of n (since the problem does not specify how many
gallons need to be in the 3-gallon jug).

The operators to be used to solve the problem can be described
as shown in Figure 1.3. As in the chess problem, they are

represented as rules whose left sides are matched against the
current state and whose right sides describe the new state that
results from applying the rule. Notice that in order to describe

the operators completely, it was necessary to make explicit
some assumptions not mentioned in the problem statement.

We have assumed that we can fill a jug from the pump, that we
can pour water out of a jug onto the ground, that we can pour
water from one jug to another, and that there are no other

measuring devices available. Additional assumptions such as
these are almost always required when converting from a

typical problem statement given in English to a formal
representation of the problem suitable for use by a program.

To solve the water jug problem, all we need, in addition to the

problem description given above, is a control structure that
loops through a simple cycle in which some rule whose left

side matches the current state is chosen, the appropriate
change to the state is made as described in the corresponding
right side, and the resulting state is checked to see if it

corresponds to a goal state. As long as it does not, the cycle
continues. Clearly the speed with which the problem gets

solved depends on the mechanism that is used to select the
next operation to be performed. In Chapter 3, we discuss
several ways of making that selection.

For the water jug problem, as with many others, there are
several sequences of operators that solve the problem. One

such sequence is shown in Figure 1.4. Often, a problem
contains the explicit or implied statement that the shortest (or
cheapest) such sequence be found. If present, this requirement

will have a significant effect on the choice of an appropriate
mechanism to guide the search for a solution.

Several issues that often arise in converting an informal
problem statement into a formal problem description are
illustrated by this sample water jug problem. The first of these

 Artificial
 Intelligence

 NOTES

7

issues concerns the role of the conditions that occur in the left
sides of the rules. All but one of the rules shown in Figure 1.3

contains conditions that must be satisfied before the operator
described by the rule can be applied. For example, the first

rule says, "If the 4-gallonjug is not already full, fill it." This rule
could, however, have been written as, "Fill the 4-gallon jug,"
since it is physically possible to fill the jug even if it is already

full. It is stupid to do so since no change in the problem state
results, but it is possible. By encoding in the left sides of the

rules constraints that are not strictly necessary but that
restrict the application of the rules to states in which the rules
are most likely to lead to a solution, we can generally increase

the efficiency of the problem-solving program that uses the
rules.

Each entry in the move vector corresponds to a rule that
describes an operation. The left side of each rule describes a
board configuration and is represented implicitly by the index

position. The right side of each rule describes the operation to
be performed and is represented by a nine-element vector that

corresponds to the resulting board configuration. Each of these
rules is maximally specific; it applies only to a single board
configuration, and, as a result, no search is required when

such rules are used. However, the drawback to this extreme
approach is that the problem solver can take no action at all in

a novel situation. In fact, essentially no problem solving ever
really occurs. For a tic-tac-toe playing program, this is not a
serious problem, since it is possible to enumerate all the

situations (i.e., board configurations) that may occur. Bull for
most problems, this is not the case. In order to solve new

problems, more general rules must be available.

 Artificial
 Intelligence

 NOTES

8

Figure 1.3: Production Rules for the Water Jug Problem

 Artificial
 Intelligence

 NOTES

9

Figure 1.4: One Solution to the Water Jug Problem

A second issue is exemplified by rules 3 and 4 in Figure1.3.
Should they or should they not be included in the list of

available operators? Emptying an unmeasured amount of
water onto the ground is certainly allowed by the problem
statement. But a superficial preliminary analysis of the

problem makes it clear that doing so will never get us any
closer to a solution. Again, we see the tradeoff between writing

a set of rules that describe just the problem itself, as opposed
to a set of rules that describe both the problem and some
knowledge about its solution.

Rules 11 and 12 illustrate a third issue. To see the problem-
solving knowledge that these rules represent, look at the last

two steps of the solution shown in Figure 1.4. Once the state
(4, 2) is reached, it is obvious what to do next. The desired 2
gallons have been produced, but they are in the wrong jug. So

the thing to do is to move them (rule 11). But before that can
be done, the water that is already in the 4-gallon jug must be

emptied out (rule 12). The idea behind these special-purpose
rules is to capture the special-case knowledge that can be used
at this stage in solving the problem. These rules do not

actually add power to the system since the operations they
describe are already provided by rule 9 (in the case of rule 11)

and by rule 5 (in the case of rule 12). In fact depending on the
control strategy that is used for selecting rules to use during

 Artificial
 Intelligence

 NOTES

10

problem solving, the use of these rules may degrade
performance. But the use of these roles may also improve

performance if preference is given to special-case rules as we
discuss in further chapters.

We have now discussed two quite different problems, chess
and the water jug problem. From these discussions, it should
be clear that the first step toward the design of a program to

solve a problem must be the creation of a formal and
manipulatable description of the problem itself. Ultimately, we

would like to be able to write programs that can themselves
produce such formal descriptions from informal ones. This
process is called operationalization. It is not at all well-

understood how to construct such programs. Until it becomes
possible to automate this process, it must be done by hand,

however. For simple problems, such as chess or the water Jug,
this is not very difficult. The problems are artificial and highly
structured. For other problems,, particularly naturally

occurring ones, this step is much more difficult. Consider, for
example, the task of specifying precisely what it means to

understand an English sentence. Although such a specification
must somehow be provided before we can design a program to
solve ten problem, producing such a specification is itself a

very hard problem. Although our ultimate goal is to be able to
solve difficult, unstructured problems, such as natural

language understanding, it is useful to explore simpler
problems, such as the water jug problem, in order to gain
insight into the details of methods that can form the basis for

solutions to the harder problems.

Summarizing what we have just said, in order to provide a

formal description of a problem, we must do the following:

1. Define a state space that contains all the possible
configurations of the relevant objects (and perhaps some

impossible ones). It is, of course, possible to define this
space without explicitly enumerating all of the states it

contains.

 Artificial
 Intelligence

 NOTES

11

2. Specify one or more states within that space that describe
possible situations from which the problem-solving process

may start. These states are called the initial states.

3. Specify one or more states that would be acceptable as

solutions to the problem. These states are called goal states.

4. Specify a set of rules that describe the actions (operators)
available. Doing this will require giving thought to the

following issues:

• What unstated assumptions are present in the informal

problem description?

• How general should the rules be?

• How much of the work required to solve the problem should

be precompiled and represented in the rules?

The problem can then be solved by using the rules, in

combination with an appropriate control strategy, to move
through the problem space until a path from an initial state to
a goal state is found. Thus the process of search is

fundamental to the problem-solving process. The fact that
search provides the basis for the process of problem solving

does not, however, mean that other, more direct approaches
cannot also be exploited. Whenever possible, they can be
included as steps in the search by encoding them into the

rules. For example, in the water jug problem, we use the
standard arithmetic operations as single steps in the rules. We

do not use search to find a number with the property that it is
equal to y — (4 — x). Of course, for complex problems, more
sophisticated computations will be needed. Search is a general

mechanism that can be used when no more direct method is
known. At the same time, it provides the framework into which

more direct methods for solving subparts of a problem can be
embedded.

 Artificial
 Intelligence

 NOTES

12

1.2 Production Systems

Since search forms the core of many intelligent processes, it is

useful to structure AI programs in a way that facilitates
describing and performing the search process. Production

systems provide such structures. A definition of a production
system is given below. Do not be confused by other uses of the
word production, such as to describe what is done in factories.

A production system consists of:

• A set of rules, each consisting of a left side (a pattern) that

determines the applicability of the rule and a right side that
describes the operation to be performed if the rule is applied.3

• One or more knowledge/databases that contain whatever

information is appropriate for the particular task. Some parts
of the database may be permanent, while other parts of it may

pertain only to the solution of the current problem. The
information in these databases may be structured in any
appropriate way.

• A control strategy that specifies the order in which the rules
will be compared to the database and a way of resolving the

conflicts that arise when several rules match at once.

• A rule applier.

So far, our definition of a production system has been very

general. It encompasses a great many systems, including our
descriptions of both a chess player and a water jug problem

solver. It also encompasses a family of general production
system interpreters, including:

• Basic production system languages, such as OPS5 and ACT*.

• More complex, often hybrid systems called expert system
shells, which provide complete (relatively speaking)

environments for the construction of knowledge-based expert
systems.

 Artificial
 Intelligence

 NOTES

13

• General problem-solving architectures like SOAR, a system
based on a specific set of cognitively motivated hypotheses

about the nature of problem solving.

All of these systems provide the overall architecture of a

production system and allow the programmer to write rules
that define particular problems to be solved.

We have now seen that in order to solve a problem, we must

first reduce it to one for which a precise statement can be
given. This can be done by defining the problem's state space

(including the start and goal states) and a set of operators for
moving in that space. The problem can then be solved by
searching for a path through the space from an initial state to

a goal state. The process of solving the problem can usefully be
modeled as a production system. In the rest of this section, we

look at the problem of choosing the appropriate control
structure for the production system so that the search can be
as efficient as possible.

1.2.1 Control Strategies

So far, we have completely ignored the question of how to

decide which rule to apply next during the process of searching
for a solution to a problem. This question arises since often
more than one rule (and sometimes fewer than one rule) will

have its left side match the current state. Even without a great
deal of thought, it is clear that how such decisions are made

will have a crucial impact on how quickly, and even whether, a
problem is finally solved.

• The first requirement of a good control strategy is that it

cause motion. Consider again the water jug problem of the last
section. Suppose we implemented the simple control strategy

of starting each time at the top of the list of rules and choosing
the first applicable one. If we did that, we would never solve
the problem. We would continue indefinitely filling the 4-gallon

jug with water Control strategies that do not cause motion will
never lead to a solution.

 Artificial
 Intelligence

 NOTES

14

• The second requirement of a good control strategy is that it
he systematic. Here is another simple control strategy for the

water jug problem: On each cycle, choose at random from
among the applicable rules. This strategy is better than the

first. It causes motion. It will lead to a solution eventually. But
we are likely to arrive at the same state several times during
the process and to use many more steps than are necessary.

Because the control strategy is not systematic, we may explore
a particular useless sequence of operators several times before

we finally find a solution. The requirement that a control
strategy be systematic corresponds to the need for global
motion (over the course of several steps) as well as for local

motion (over the course of a single step). One systematic
control strategy for the water jug problem is the following.

Construct a tree with the initial state as its root. Generate all
the offspring of the root by applying each of the applicable
rules to the initial state. Figure 1.5 shows how the tree looks at

this point. Now for each leaf node, generate all its successors
by applying all the rules that are appropriate. The tree at this

point is shown in Figure 1.6.4 Continue this process until some
rule produces a goal state. This process, called breadth-first
search, can be described precisely as follows.

Algorithm: Breadth-First Search

1. Create a variable called NODE-LIST and set it to the initial

state.

2. Until a goal state is found or NODE-LIST is empty do:

(a) Remove the first element from NODE-LIST and call it £. If

NODE-LIST was empty, quit.

Figure 1.5: One Level of a Breadth-First Search Tree

 Artificial
 Intelligence

 NOTES

15

Figure 1.6: Two Levels of a Breadth-First Search Tree

(b) For each way that each rule can match the state described

in E do:

i. Apply the rule to generate a new state. ii. If the new
state is a goal state, quit and return this state. iii.

Otherwise, add the new state to the end of NODE-LIST.

Other systematic control strategies are also available. For

example, we could purse a single branch of the tree until it
yields a solution or until a decision to terminate the(path is
made. It makes sense to terminate a path if it reaches a dead-

end, produces i previous state, or becomes longer than some
pre-specified "futility" limit. In such a case backtracking

occurs. The most recently created state from which alternative
moves an available will be revisited and a new state will be
created. This form of backtracking i; called chronological

backtracking because the order in which steps are undone
depend; only on the temporal sequence in which the steps were

originally made. Specifically the most recent step is always the
first to be undone. This form of backtracking is what is usually
meant by the simple term backtracking. But there are other

ways of retracting steps of a computation. We discuss one
important such way, dependency-directs backtracking, in

Chapter 7. Until then, though, when we use the term
backtracking, i means chronological backtracking.

The search procedure we have just described is also called

depth-first search. The< following algorithm describes this
precisely.

 Artificial
 Intelligence

 NOTES

16

Figure 1.7: A Depth-First Search Tree

Algorithm: Depth-First Search

1. If the initial state is a goal state, quit and return success.

2. Otherwise, do the following until success or failure is
signaled:

(a) Generate a successor, E, of the initial state. If there are no
more successors, signal failure.

(b) Call Depth-First Search with E as the initial state.

(c) If success is returned, signal success. Otherwise continue in
this loop.

Figure 1.7 shows a snapshot of a depth-first search for the
water jug problem. A comparison of these two simple methods
produces the following observations.

Advantages of Depth-First Search

• Depth-first search requires less memory since only the nodes

on the current path are stored. This contrasts with breadth-

 Artificial
 Intelligence

 NOTES

17

first search, where all of the tree that has so far been generated
must be stored.

• By chance (or if care is taken in ordering the alternative
successor states), depth-first search may find a solution

without examining much of the search space at all. This
contrasts with breadth-first search in which all parts of the
tree must be examined to level n before any nodes on level n +

1 can be examined. This is particularly significant if many
acceptable solutions exist. Depth-first search can stop when

one of them is found.

Advantages of Breadth-First Search

• Breadth-first search will not get trapped exploring a blind

alley. This contrast with depth-first searching, which may
follow a single, unfruitful path for a very long time, perhaps

forever, before the path actually terminates in a state that has
no successors. This is a particular problem in depth-first
search if there are loops (i.e., a state has a successor that is

also one of its ancestors) unless special care is expended to
test for such a situation. The example in Figure 1.7, if it

continues always choosing the first (in numerical sequence)
rule that applies, will have exactly this problem.

If there is a solution, then breadth-first search is guaranteed to

find it. Furthermore, if there are multiple solutions, then a
minimal solution (i.e., one that requires the minimum number

of steps) will be found. This is guaranteed by the fact that
longer paths are never explored until all shorter ones have
already been examined. This contrasts with depth-first search,

which may find a long path to a solution in one part of the
tree, when a shorter path exists in some other, unexplored part

of the tree.

Clearly what we would like is a way to combine the advantages
of both of these methods. In other section we will talk about

one way of doing this when we have some additional
information. Later, in later section, we will describe an

uninformed way of doing so.

 Artificial
 Intelligence

 NOTES

18

For the water jug problem, most control strategies that cause
motion and are systematic will lead to an answer. The problem

is simple. But this is not always the case. In order to solve
some problems during our lifetime, we must also demand a

control structure that is efficient.

Consider the following problem.

The Traveling Salesman Problem:

A salesman has a list of cities, each of which he must visit
exactly once. There are direct roads between each pair of

cities on the list. Find the route the salesman should follow
for the shortest possible round trip that both starts and
finishes at any one of the cities.

A simple, motion-causing and systematic control structure
could, in principle, solve this problem. It would simply explore

all possible paths in the tree and return the one with the
shortest length. This approach will even work in practice for
very short lists of cities. But it breaks down quickly as the

number of cities grows. If there are N cities, then the number
of different paths among them is 1 •2-- -(N- l),or(N- 1)!. The

time to examine a single path is proportional to N. So the total
time required to perform this search is proportional to Nl.
assuming there are only 10 cities, 10! is 3,628,800, which is a

very large number. The salesman could easily have 25 cities to
visit. To solve this problem would take more time than he

would be willing to spend. This phenomenon is called
combinatorial explosion. To combat it, we need a new control
strategy.

We can beat the simple strategy outlined above using a
technique called branch-and-bound. Begin generating

complete paths, keeping track of the shortest path found so
far. Give up exploring any path as soon as its partial length
becomes greater than the shortest path found so far. Using

this technique, we are still guaranteed to find the shortest
path. Unfortunately, although this algorithm is more efficient

than the first one, it still requires exponential time. The exact
amount of time it saves for a particular problem depends on

 Artificial
 Intelligence

 NOTES

19

the order in which the paths are explored. But it is still
inadequate for solving large problems.

1.2.2 Heuristic Search

In order to solve many hard problems efficiently, it is often

necessary to compromise the requirements of mobility and
systematicity and to construct a control structure that is no
longer guaranteed to find the best answer but that will almost

always find a very good answer. Thus we introduce the idea of
a heuristic.5 IA heuristic is a technique that improves the

efficiency of a search process, possibly by sacrificing claims of
completeness/ Heuristics are like tour guides. They are good to
the extent that they point in generally interesting directions;

they are bad to the extent that they may miss points of interest
to particular individuals. Some heuristics help to guide a

search process without sacrificing any claims to completeness
that the process might previously have had. Others (in fact,
many of the best ones) may occasionally cause an excellent

path to be overlooked. But, on the average, they improve the
quality of the paths that are explored. Using good heuristics,

we can hope to get good (though possibly non optimal)
solutions to hard problems, such as the traveling salesman, in
less than exponential time. There are some good general-

purpose heuristics that are useful in a wide variety of problem
domains. In addition, it is possible to construct special-

purpose heuristics that exploit domain-specific knowledge to
solve particular problems.

One example of a good general-purpose heuristic that is useful

for a variety of combinatorial problems is the nearest neighbor
heuristic, which works by selecting the locally superior

alternative at each step. Applying it to the traveling salesman
problem, we produce the following procedure:

1. Arbitrarily select a starting city.

2. To select the next city, look at all cities not yet visited, and
select the one-closest to the current city. Go to it next.

3. Repeat step 2 until all cities have been visited.

 Artificial
 Intelligence

 NOTES

20

This procedure executes in time proportional to N2, a
significant improvement over N, and it is possible to prove an

upper bound on the error it incurs. For general-purpose
heuristics, such as nearest neighbor, it is often possible to

prove such error bounds, which provides reassurance that one
is not paying too high a price in accuracy for speed.

In many AI problems, however, it is not possible to produce

such reassuring bounds. This is true for two reasons:

• For real world problems, it is often hard to measure precisely

the value of a particular solution. Although the length of a
trip to several cities is a precise notion, the appropriateness
of a particular response to such questions as "Why has

inflation increased?" is much less so.

• For real world problems, it is often useful to introduce

heuristics based on relatively unstructured knowledge. It is
often impossible to define this knowledge in such a way that
a mathematical analysis of its effect on the search process

can be performed.

The word heuristic comes from the Greek word heuriskein,

meaning "to discover," which is also the origin of eureka,
derived from Archimedes' reputed exclamation, heurika (for "I
have found"), uttered when he had discovered a method for

determining the purity of gold.

There are many heuristics that, although they are not as

general as the nearest neighbor heuristic, are nevertheless
useful in a wide variety of domains. For example, consider the
task of discovering interesting ideas in some specified area.

The following heuristic [Lenat, 1983b] is often useful:

If there is an interesting function of two arguments/(A-, y),

look at what happens if the two arguments are identical.

In the domain of mathematics, this heuristic leads to the
discovery of squaring if/ is the multiplication function, and it

leads to the discovery of an identity function if is the function

 Artificial
 Intelligence

 NOTES

21

of set union. In less formal domains, this same heuristic leads
to the discovery of introspection if/ is the function contemplate

or it leads to the notion of suicide iff is the function kill.

Without heuristics, we would become hopelessly ensnarled in a

combinatorial explosion. This alone might be a sufficient
argument in favor of their use. But there are other arguments
as well:

• Rarely do we actually need the optimum solution; a good
approximation will usually serve very well. In fact, there is

some evidence that people, when they solve problems, are
not optimizers but rather are satisfiers -[Simon, 1981]. In
other words, they seek any solution that satisfies some set

of requirements, and as soon as they find one they quit. A
good example of this is the search for a parking space. Most

people stop as soon as they find a fairly good space, even if
there might be a slightly better space up ahead.

• Although the approximations produced by heuristics may not

be very good in the worst case, worst cases rarely arise in
the real world. For example, although many graphs are not

separable (or even nearly so) and thus cannot be considered
as a set of small problems rather than one large one, a lot of
graphs describing the real world are.6

• Trying to understand why a heuristic works, or why it doesn't
work, often leads to a deeper understanding of the problem.

One of the best descriptions of the importance of heuristics in
solving interesting problems is How to Solve It. Although the
focus of the book is the solution of mathematical problems,

many of the techniques it describes are more generally
applicable. For example, given a problem to solve, look for a

similar problem you have solved before. Ask whether you can
use either the solution of that problem or the method that was
used to obtain the solution to help solve the new problem.

Polya's work serves as an excellent guide for people who want
to become better problem solvers. Unfortunately, it is not a

panacea for AI for a couple of reasons. One is that it relies on
human abilities that we must first understand well enough to

 Artificial
 Intelligence

 NOTES

22

build into a program. For example, many of the problems Polya
discusses are geometric ones in which once an appropriate

picture is drawn, the answer can be seen immediately. But to
exploit such techniques in programs, we must develop a good

way of representing and manipulating descriptions of those
figures. Another is that the rules are very general.

They have extremely underspecified left sides, so it is hard to

use them to guide a search too many of them are applicable at
once. Many of the rules are really only useful for looking back

and rationalizing a solution after it has been found. In essence,
the problem is that Polya's rules have not been operationalized.

Nevertheless, Polya was several steps ahead of AI. A comment

he made in the preface to the first printing of the book is
interesting in this respect:

The following pages are written somewhat concisely, but as
simply as possible, and are based on a long and serious
study of methods of solution. This sort of study, called

heuristic by some writers, is not in fashion nowadays but
has a long past and, perhaps, some future.

There are two major ways in which domain-specific, heuristic
knowledge can be incorporated into a rule-based search
procedure:

• In the rules themselves. For example, the rules for a chess-
playing system might describe not simply the set of legal

moves but rather a set of "sensible" moves, as determined
by the rule writer.

• As a heuristic function that evaluates individual problem

states and determines how desirable' they are.

(A heuristic function is a function that maps from problem

state descriptions to measures of desirability, usually
represented as numbers} Which aspects of the problem state
are considered, how those aspects are evaluated, and the

weights given to individual aspects are chosen in such a way

 Artificial
 Intelligence

 NOTES

23

that the value of the heuristic function at a given node in the
search process gives as good an estimate as possible of

whether that node is on the desired path to a solution.

Well-designed heuristic functions can play an important part

in efficiently guiding a search process toward a solution.
Sometime is very simple heuristic functions can provide a
fairly good estimate of whether a path is any good or not. In

other situations, more complex heuristic functions should be
employed. Figure 1.8 shows some simple heuristic functions

for a few problems. Notice that sometimes a high value of the
heuristic function indicates a relatively good position (as
shown for chess and tic-tac-toe), while at other times a low

value indicates an advantageous situation (as shown for the
traveling salesman). It does not matter, in general, which way

the function is stated. The program that uses the values of the
function can attempt to minimize it or to maximize it as
appropriate.

The purpose of a heuristic function is to guide the search
process in the most profitable direction by suggesting which

path to follow first when more than one is available. The more
accurately the heuristic function estimates the true merits of
each node in the search tree (or graph), the more direct the

solution process. In the extreme, the heuristic function would
be so good that essentially no search would be required. The

system would move directly to a solution. But for many
problems, the cost of computing the value of such a function
would outweigh the effort saved in the search process, After all,

it would be possible to compute a perfect heuristic function by
doing a complete search from the node in question and

determining whether it leads to a good solution,. In general,
there is a trade-off between the cost of evaluating a heuristic
function and the savings in search time that the function

provides.

 Artificial
 Intelligence

 NOTES

24

Figure 1.8: Some Simple Heuristic Functions

In the previous section, the solutions to AI problems were
described as centering on a search process. From the

discussion in this section, it should be clear that it can more
precisely be described as a process of heuristic search. Some

heuristics will be used to define the control structure that
guides the application of rules in the search process. Others,
as we shall see, will be encoded in the rules themselves. In

both cases, they will represent either general or specific world
knowledge that makes the solution of hard problems feasible.

This leads to another way that one could define artificial
intelligence: the study of techniques for solving exponentially
hard problems in polynomial time by exploiting knowledge

about the problem domain,

1.3 Problem Characteristics

Heuristic search is a very general method applicable to a large
class of problems. It encompasses a variety of specific
techniques, each of which is particularly effective for a small

class of problems. In order to choose the most appropriate
method (or combination of methods) for a; particular problem,

it is necessary to analyze the problem along several key
dimensions

• Is the problem decomposable into a set of (nearly)

independent smaller or easier sub problems?

 Artificial
 Intelligence

 NOTES

25

• Can solution steps be/ignored or at least undone if they
prove unwise?

• Is the problem's universe predictable?

• Is a good solution to the problem obvious without comparison

to all other possible solutions?

• Is the desired/Solution a state of the world or a path to a
state?

• Is a large amount of knowledge absolutely required to solve
the problem, or is knowledge important only to constrain

the search?

• Can a computer that is simply given the problem return the
solution, or will the solution of the problem require

interaction between the computer and a person?

Figure 1.9: A Decomposable Problem

 Artificial
 Intelligence

 NOTES

26

In the rest of this section, we examine each of these questions
in greater detail. Notice that some of these questions involve

not just the statement of the problem itself but also
characteristics of the solution that is desired and the

circumstances under which the solution must take place.

1.3.1 Is the Problem Decomposable?

Suppose we want to solve the problem of computing the

expression

We can solve this problem by breaking it down into three
smaller problems, each of which we can then solve by using a

small collection of specific rules. Figure 1.9 shows the problem
tree that will be generated by the process of problem

decomposition as it can be exploited by a simple recursive
integration program that works as follows: At each step, it
checks to see whether the problem it is working on is

immediately solvable. If so, then the answer is returned
directly. If the problem is not easily solvable, the integrator

checks to see whether it can decompose the problem into
smaller problems. If it can, it creates those problems and calls
itself recursively on them. Using this technique of problem

decomposition, we can often solve very large problems easily.

Now consider the problem illustrated in Figure 1.10. This

problem is drawn from the domain often referred to in AI
literature as the blocks world. Assume that the following
operators are available:

Figure 1.10: A Simple Blocks World Problem

 Artificial
 Intelligence

 NOTES

27

Figure 1.11: A Proposed Solution for the Blocks Problem

1. CLEARS) [block x has nothing on it] -<• ON(-c, Table) [pick
up x and put it on the table]

2. CLEAR (JC) and CLEARS) -^ ON(x, y) [put .corny]

Applying the technique of problem decomposition to this
simple blocks world example would lead to a solution tree such

as that shown in Figure 1.11. In the figure, goals are
underlined. States that have been achieved are not underlined.
The idea of this solution is to reduce the problem of getting B

on C and A on B to two separate problems, The first of these
new problems, getting B on C, is simple, given the start state.

Simply put B on C. The second sub goal is not quite so simple.
Since the only operators we have allow us to pick up single
blocks at a time, we have to clear off A by removing (^ before

we can pick up A and put it on B. This can easily be done.
However, if we now try to combine the two sub solutions into

one solution, we will fail. Regardless of which one we do first,
we will not be able to do the second as we had planned. In this
problem) the two sub problems are not independent. They

interact and those interactions must be considered in order to
arrive at a solution for the entire problem.

 Artificial
 Intelligence

 NOTES

28

These two examples, symbolic integration and the blocks
world, illustrate the difference between decomposable and no

decomposable problems.

Figure 1.12: An Example of the 8-Puzzle

1.3.2 Can Solution Steps Be Ignored or Undone?

Suppose we are trying to prove a mathematical theorem. We
proceed by first proving a lemma that we think will be useful.

Eventually, we realize that the lemma is no help at all. Are we
in trouble?

No. Everything we need to know to prove the theorem is still
true and in memory, if it ever was. Any rules that could have
been applied at the outset? can still be applied. We can just

proceed as we should have in the first place. All we have lost is
the effort that was spent exploring the blind alley.

Now consider a different problem.

The 8-Puzzle:

The 8-puzzle is a square tray in which are placed eight

square tiles. The remaining ninth square is uncovered.
Each tile has a number on it. A tile that is adjacent to the

blank space can be slid into that space. A game consists of
a starting position and a specified goal position. The goal is
to transform the starting position into the goal position by

sliding the tiles around.

 Artificial
 Intelligence

 NOTES

29

A sample game using the 8-puzzle is shown in Figure 1.12. In
attempting to solve the 8-puzzle, we might make a stupid

move. For example, in the game shown above, we might start
by sliding tile 5 into the empty space. Having done that, we

cannot change our mind and immediately slide tile 6 into the
empty space since the empty space will essentially have
moved. But we can backtrack and undo the first move, sliding

tile 5 back to where it was, then we can move tile 6. Mistakes
can still be recovered from but not quite as easily as in the

theorem-proving problem. An additional step must be
performed to undo each incorrect step, whereas no action was
required to "undo" a useless lemma. In addition, the control

mechanism for an 8 puzzle solver must keep track of the order
in which operations are performed so that the operations can

be undone one at a time if necessary. The control structure for
a theorem proven does not need to record all that information.

Now consider again the problem of playing chess. Suppose a

chess-playing program makes a stupid move and realizes it a
couple of moves later. It cannot simply play as though it had

never made the stupid move. Nor can it simply back up and
start the game over from that point. All it can do is to try to
make the best of the current situation and go on from there.

These three problems theorem proving, the 8-puzzle, and chess
illustrate the differences between three important classes of

problems:

• Ignorable (e.g., theorem proving), in which solution steps can
be ignored

• Recoverable (e.g., 8-puzzle), in which solution steps can be
undone

• Irrecoverable (e.g., chess), in which solution steps cannot be
undone

These three definitions make reference to the steps of the

solution to a problem and thus may appear to characterize
particular production systems for solving a problem rather

than the problem itself. Perhaps a different formulation of the

 Artificial
 Intelligence

 NOTES

30

same problem would lead to the problem being characterized
differently. Strictly speaking, this is true. But for a great many

problems, there is only one (or a small number of essentially
equivalent) formulations that naturally describe the problem.

This was true for each of the problems used as examples
above. When this is the case, it makes sense to view the
recoverability of a problem as equivalent to the recoverability of

a natural formulation of it.

The recoverability of a problem plays an important role in

determining the complexity of the control structure necessary
for the problem's solution. Ignorable problem can be solved
using a simple control structure that never backtracks. Such a

control structure is easy to implement. Recoverable problems
can be solved by a slightly more complicated control strategy

that does sometimes make mistakes. Backtracking will be
necessary to recover from such mistakes, so the control
structure must be implemented using a push-down stack, in

which decisions are recorded in case they need to be undone
later. Irrecoverable problems, on the other hand, will need to

be solved by a system that expends a great deal of effort
making each decision since the decision must be final. Some
irrecoverable problems can be solved by recoverable style

methods used in a planning process, in which an entire
sequence of steps is analyzed in advance to discover where it

will lead before the first step is actually taken. We discuss next
the kinds of problems in which this is possible.

1.3.3 Is the Universe Predictable?

Again suppose that we are playing with the 8-puzzle. Every
time we make a move, know exactly what will happen. This

means that it is possible to plan an entire sequence of moves
and be confident that we know what the resulting state will be.
We can use planning to avoid having to undo actual moves,

although it will still be necessary to backtrack past those
moves one at a time during the planning process. Thus a

CONTROL structure that allows backtracking will be necessary.

However, in games other than the 8-puzzle, this planning
process may not be possible suppose we want to play bridge.

 Artificial
 Intelligence

 NOTES

31

One of the decisions we will have to make is which card to play
on the first trick. What we would like to do is to plan the entire

hand before making that first play. But now it is not possible
to do such planning with certainty since we cannot know

exactly where all the cards are or what the other players will do
on their turns. The best we can do is to investigate several
plans and use probabilities of the various outcomes to choose

a plan that has the highest estimated probability of leading to
a good score on the hand.

These two games illustrate the difference between certain-
outcome (e.g., 8-puzzle) in uncertain-outcome (e.g., bridge)
problems. One way of describing planning is that it problem

solving without feedback from the environment. For .solving
certain-outcome problems, this open-loop approach will work

fine since the result of an action can be predicted perfectly.
Thus, planning can be used to generate a sequence of
operators that is guaranteed to lead to a solution. For

uncertain outcome problems, however, planning an at best
generate a sequence of operators that has a good probability of

leading to a Bullion. To solve such problems, we need to allow
for a process of plan revision to take lace as the plan is carried
out and the necessary feedback is provided. In addition to

providing no guarantee of an actual solution, planning f0r
uncertain-outcome problems as the drawback that it is often

very expensive since the number of solution paths that need to
be explored increases exponentially with the; number of points
at which the outcome cannot be predicted.

The last two problem characteristics we have discussed,
ignorable versus recoverable rises irrecoverable and certain-

outcome versus uncertain-outcome, interact in an in-resting
way. As has already been mentioned, one way to solve
irrecoverable problems into plan an entire solution before

embarking on an implementation of the plan. But his planning
process can only be done effectively for certain-outcome

problems. Thus ne of the hardest types of problems to solve is
the irrecoverable, uncertain-outcome. I few examples of such
problems are:

 Artificial
 Intelligence

 NOTES

32

» Playing bridge. But we can do fairly well since we have
available accurate estimates of the probabilities of each of the

possible outcomes.

• Controlling a robot arm. The outcome is uncertain for a

variety of reasons. Someone might move something into the
path of the arm. The gears of the am might stick. A slight
error could cause the arm to knock over a whole stack of

things.

• Helping a lawyer decide how to defend his client against a

murder charge. Here we probably cannot even list all the
possible outcomes, much less assess their probabilities.

1.3.4 Is a Good Solution Absolute or Relative?

Consider the problem of answering questions based on a
database of simple facts, such f the following:

1. Marcus was a man.

2. Marcus was a Pompeian.

3. Marcus was born in 40 A.D. j 4. Ail men are mortal. ». 5.

All Pompeian‘s died when the volcano erupted in 79 A.D.

6. No-mortal lives longer than 150 years.

7. It is now 1991 A.D.

Suppose we ask the question "Is Marcus alive?'' By
representing each of these facts in a formal language, such as

predicate logic, and then using formal inference methods,

 Artificial
 Intelligence

 NOTES

33

Figure 1.13: Two Ways of Deciding That Marcus Is Dead

Figure 1 14: An Instance of the Traveling Salesman Problem

We can fairly easily derive an answer to the question. In fact,
either of two reasoning paths will lead to the answer, as shown
in Figure 1.13. Since all we are interested in is the answer to

the question, it does not matter which path we follow. If we do
follow one path successfully to the answer, there is no reason

to go back and see if some other path might also lead to a
solution.

But now consider again the traveling salesman problem. Our

goal is to find the shortest route that visits each city exactly
once. Suppose the cities to be visited and the distances

between them are as shown in Figure 1.14.

 Artificial
 Intelligence

 NOTES

34

One place the salesman could start is Boston. In that case, one
path that might be followed is the one shown in Figure 1.15,

which is 8850 miles long. But is this the solution to the
problem? The answer is that we cannot be sure unless we also

try all other paths to make sure that none of them is shorter.
In this case, as can be seen from Figure 1.16, the first path is
definitely not the solution to the salesman's problem.

These two examples illustrate the difference between any-path
problems and best-path problems. Best-path problems are, in

general, computationally harder than any-path problems. Any-
path problems can often be solved in a reasonable amount of
time by using heuristics that suggest good paths to explore.

(See the discussion of best-first search in Chapter 3 for one
way of doing this.) If the heuristics are not perfect, the search

for a solution may not be as direct as possible, but that does
not matter. For true best-path problems, however, no heuristic
that could possibly miss the best solution can be used. So a

much more exhaustive search will be performed.

Figure 1.15: One Path among the Cities

 Artificial
 Intelligence

 NOTES

35

1.3.5 Is the Solution a State or a Path?

Consider the problem of finding a consistent interpretation for

the sentence. The bank president ate a dish of pasta salad with
the fork.

There are several components of this sentence, each of which,
in isolation, may have more than one interpretation. But the
components must form a coherent whole, and so they

constrain each other's interpretations. Some of the sources of
ambiguity in this sentence are the following:

The word "bank" may refer either to a financial institution or to
a side of a river. But only one of these may have a president.

 Total: (8850) Total: (7750)

Figure 1.16: Two Paths Among the Cities

• The word "dish" is the object of the verb "eat." It is possible

that a dish was eaten. But it is more likely that the pasta
salad in the dish was eaten.

 Artificial
 Intelligence

 NOTES

36

• Pasta salad is a salad containing pasta. But there are other
ways meanings can be formed from pairs of nouns. For

example, dog food does not normally contain dogs.

• The phrase "with the fork" could modify several parts of the

sentence. In this case, it modifies the verb "eat." But, if the
phrase had been "with vegetables," then the modification
structure would be different. And if the phrase had been

"with her friends," the structure would be different still.

Because of the interaction among the interpretations of the

constituents of this sentence, some search may be required to
find a complete interpretation for the sentence. But to solve the
problem of finding the interpretation we need to produce only

the interpretation itself. No record of the processing by which
the interpretation was found is necessary.

Contrast this with the water jug problem. Here it is not
sufficient to report that we have solved the problem and that
the final state is (2,0). For this kind of problem, what we really

must report is hot the final state but the path that we found to
that state. Thus a statement of a solution to this problem must

be a sequence of operations (sometimes called apian) that
produces the final state.

These two examples, natural language understanding and the

water jug problem, illustrate the difference between problems
whose solution is a state of the world and problems whose

solution is a path to a state. At one level, this difference can be
ignored and all problems can be formulated as ones in which
only a state is required to be reported. If we do this for

problems such as the water jug, then we must re describe our
states so that each state represents a partial path to a solution

rather than just a single state of the world. So this question is
not a formally significant one. But, just as for the question of
ignitability versus recoverability, there is often a natural (and

economical) formulation of a problem in which problem states
correspond to situations in the world, not sequences of

operations. In this case, the answer to this question tells us
whether it is necessary to record the path of the problem-
solving process as it proceeds.

 Artificial
 Intelligence

 NOTES

37

1.3.6 What Is the Role of Knowledge?

Consider again the problem of playing chess. Suppose you had

unlimited computing power available. How much knowledge
would be required by a perfect program? The answer to this

question is very little just the rules for determining legal moves
and some simple control mechanism that implements an
appropriate search procedure. Additional knowledge about

such things as good strategy and tactics could of course help
considerably to constrain the search and speed up the

execution of the program.

But now consider the problem of scanning daily newspapers to
decide which are supporting the Democrats and which are

supporting the Republicans in some upcoming election. Again
assuming unlimited computing power, how much knowledge

would be required by a computer trying ‗to solve this problem?
This time the answer is a great deal. It would have to know
such things as:

• The names of the candidates in each party.

• The fact that if the major thing you want to see done is have

taxes lowered, you are probably supporting the
Republicans.

• The fact that if the major thing you want to see done is

improved education for minority students, you are probably
supporting the Democrats.

• The fact that if you are opposed to big government, you are
probably supporting the Republicans.

• And so on ...

These two problems, chess and newspaper story
understanding, illustrate the difference between problems for

which a lot of knowledge is important only to constrain the
search for a solution and those for which a lot of knowledge is
required even to be able to recognize a solution.

 Artificial
 Intelligence

 NOTES

38

1.3.7 Does the Task Require Interaction with a Person?

Sometimes it is useful to program computers to solve problems

in ways that the majority of people would not be able to
understand. This is fine if the level of the interaction between

the computer and its human users is problem-in solution-out.
But increasingly we are building programs that require
intermediate interaction with people, both to provide additional

input to the program and to provide additional reassurance to
the user.

Consider, for example, the problem of proving mathematical
theorems.

1. All we want is to know that there is a proof

2. The program is capable of finding a proof by itself

then it does not matter what strategy the program takes to find

the proof. It can use, for example, the resolution procedure,
which can be very efficient but which does not appear natural
to people. But if either of those conditions is violated, it may

matter very much how a proof is found. Suppose that we are
trying to prove some new, very difficult theorem. We might

demand a proof that follows traditional patterns so that a
mathematician can read the proof and check to make sure it is
correct. Alternatively, finding a proof of the theorem might be

sufficiently difficult that the program does not know where to
start. At the moment, people are still better at doing the high-

level strategy required for a proof. So the computer might like
to be able to ask for advice. For example, it is often much
easier to do a proof in geometry if someone suggests the right

line to draw into the figure. To exploit such advice, the
computer's reasoning must be analogous to that of its human

advisor, at least on a few levels. As computers move into areas
of great significance to human lives, such as medical
diagnosis, people will be very unwilling to accept the verdict of

a program whose reasoning they cannot follow. Thus we must
distinguish between two types of problems:

 Artificial
 Intelligence

 NOTES

39

• Solitary, in which the computer is given a problem
description and produces an answer with no intermediate

communication and with no demand for an explanation of
the reasoning process

• Conversational, in which there is intermediate
communication between a person and the computer, either
to provide additional assistance to the computer or to

provide additional information to the user, or both

Of course, this distinction is not a strict one describing

particular problem domains. As we just showed, mathematical
theorem proving could be regarded as either. But for a
particular application, one or the other of these types of

systems will usually be desired and that decision will be
important in the choice of a problem-solving method.

1.3.8 Problem Classification

When actual problems are examined from the point of view of
all of these questions, it becomes apparent that there are

several broad classes into which the problems fall. These
classes can each be associated with a generic control strategy

that is appropriate for solving the problem. For example,
consider the generic problem of classification. The task here is
to examine an input and then decide which of a set of known

classes the input is an instance of. Most diagnostic tasks,
including medical diagnosis as well as diagnosis of faults in

mechanical devices, are examples of classification. Another
example of a generic strategy is propose and refine. Many
design and planning problems can be attacked with this

strategy.

Depending on the granularity at which we attempt to classify

problems and control strategies, we may come up with
different lists of generic tasks and procedures. The important
thing to remember here, though, since we are about to embark

on a discussion of a variety of problem-solving methods, is that
there is no one single way of solving all problems. But neither

must each new problem be considered totally ab initio.
Instead, if we analyze our problems carefully and sort our

 Artificial
 Intelligence

 NOTES

40

problem-solving methods by the kinds of problems for which
they are suitable, we will be able to bring to each new problem

much of what we have learned from solving other, similar
problems.

1.4 Production System Characteristics

 We have just examined a set of characteristics that distinguish
various classes of problems. We have also argued that

production systems are a good way to describe the operations
that can be performed in a search for a solution to a problem.

Two questions we might reasonably ask at this point are:

1. Can production systems, like problems, be described by a
set of characteristics that shed some light on how they can

easily be implemented?

2. If so, what relationships are there between problem types

and the types of production systems best suited to solving
the problems?

The answer to the first question is yes. Consider the following

definitions of classes of production systems. A monotonic
production system is a production system in which the

application of a rule never prevents the later application of
another rule that could also have been applied at the time the
first rule was selected. A nonmonotonic production system is

one in which this is not true. A partially commutative
production system is a production system with the property

that if the application of a particular sequence of rules
transforms state x into state y, then any permutation of those
rules that is allowable (i.e., each rule's preconditions are

satisfied when it is applied) also transforms state x into state.
A commutative production system is a production system that

is both monotonic and partially commutative.

The significance of these categories of production systems lies
in the relationship between the categories and appropriate

implementation strategies. But before discussing that
relationship, it may be helpful to make the meanings of the

 Artificial
 Intelligence

 NOTES

41

definitions clearer by showing how they relate to specific
problems.

Thus we arrive at the second question above, which asked
whether there is an interesting relationship between classes of

production systems and classes of problems. For any solvable
problem, there exist an infinite number of production systems
that describe ways to find solutions. Some will be more natural

or efficient than others. Any problem that can be solved by any
production system can be solved by a commutative one (our

most restricted class), but the commutative one may be so
unwieldy as to be practically useless* It may use individual
states to represent entire sequences of applications of rules of

a simpler, noncommutative system. So in a formal sense, there
is no relationship between kinds of problems and kinds of

production systems since all problems can be solved by all
kinds of systems. But in a practical sense, there definitely is
such a relationship between kinds of problems and the kinds

of systems that lend themselves naturally to describing those
problems. To see this, let us look at a few examples. Figure

1.17 shows the four categories of production systems produced
by the two dichotomies, monotonic versus nonmonotonic and
partially commutative versus nonpartially commutative, along

with some problems that can naturally be solved by each type
of system. The upper left comer represents commutative

systems.

Monotonic Non-monotonic

Partially commutative Theorem

proving
Robot navigation

Not partially commutative Chemical
synthesis

Bridge

Figure 1.17: The Four Categories of Production Systems

 Artificial
 Intelligence

 NOTES

42

Partially commutative, monotonic production systems are
useful for solving ignorable problems. This is not surprising

since the definitions of the two are essentially the same. But
recall that ignorable problems are those for which a natural

formulation leads to solution steps that can be ignored. Such a
natural formulation will then be a partially commutative,
monotonic system. Problems that involve creating new things

rather than changing old ones are generally ignorable.
Theorem proving, as we have described it, is one example of

such a creative process. Making deductions from some known
facts is a similar creative process. Both of those processes can
easily be implemented with a partially commutative, monotonic

system.

Partially commutative, monotonic production systems are

important from an implementation standpoint because they
can be implemented without the ability to backtrack to
previous states when it is discovered that an incorrect path

has been followed. Although it is often useful to implement
such systems with backtracking in order to guarantee a

systematic search, the actual database representing the
problem state need not be restored. This often results in a
considerable increase in efficiency, particularly because, since

the database will never have to be restored, it is not necessary
to keep track of wherein the Search process every change was

made.

We have now discussed partially commutative production
systems that are also monotonic. They are good for problems

where things do not change; new things get created.
Nonmonotonic, partially commutative systems, on the other

hand, are useful for problems in which changes occur but can
be reversed and in which order of operations is not critical.
This is usually the case in physical manipulation problems,

such as robot navigation on a flat plane. Suppose that a robot
has the following operators: go north (N), go east (E), go south

(S), and go west (W). To reach its goal, it does not matter
whether the robot executes N-N-E or N-E-N. Depending on how
the operators are chosen, the 8-Puzzle and the blocks world

problem can also be considered partially commutative.

 Artificial
 Intelligence

 NOTES

43

Both types of partially commutative production systems are
significant from an implementation point of view because they

tend to. lead to many duplications of individual states during
the search process. This is discussed further in Section 1.5.

Production systems that are not partially commutative are
useful for many problems in which irreversible changes occur.
For example, consider the problem of determining a process to

produce a desired chemical compound. The operators available
include such things as "Add chemical x to the pot" or "Change

the temperature to l degrees." These operators may cause
irreversible changes to the potion being brewed. The order

Figure 1.18: A Search Tree for the Water Jug Problem

in which they are performed can be very important in
determining the final output. It is possible that if y is added to

y, a stable compound will be formed, so later addition of 2 will
have no effect; if : is added to y, however, a different stable
compound may be formed, so later addition of will have no

effect. No partially commutative production systems are less
likely to produce the same node many times in the search

process. When dealing with ones that describe irreversible
processes, it is particularly important to make correct
decisions the first time, although rather universe is

predictable, planning can be used to make that less important.

1.5 Issues in the Design of Search Programs

Every search process can be viewed as a traversal of a tree
structure in which each node represents a problem state and

 Artificial
 Intelligence

 NOTES

44

each arc represents a relationship between the states
represented by the nodes it connects. For example. Figure 1.18

shows part of a search tree for a water jug problem. The arcs
have not been labeled in the figure, but they correspond to

particular water-pouring operations. The search process must
find a path or paths through the tree that connect an initial
state with one or more final states. The tree that must be

searched could, in principle, be constructed in its entirety from
the rules that define allowable moves in the problem space.

But, in practice, most of it never is. It is too large and most of
it need never be explored. Instead of first building the tree
explicitly and then searching it, most search programs

represent the tree implicitly in the rules and generate explicitly
only those parts that they decide to explore. Throughout our

discussion of search methods, it is important to keep in mind
this distinction between implicit search, trees and the explicit
partial search trees that are actually constructed by the search

program.

In the next chapter, we present a family of general-purpose

search techniques. But before doing so we need to mention
some important issues that arise in all of them:

• The direction in which to conduct the search (forward versus

backward reasoning).

We can search forward through the state space from the start

state to a goal state or we can search backward from the goal.

• How to select applicable rules (matching). Production
systems typically spend most of their time looking for rules to

apply, so it is critical to have efficient procedures for matching
rules against states.

• How to represent each node of the search process (the
knowledge representation problem and the frame problem). For
problems like chess, a node can be fully represented by a

simple array. In more complex problem solving, however, it is
inefficient and/or impossible to represent all of the facts in the

world and to determine all of the side effects an action may
have.

 Artificial
 Intelligence

 NOTES

45

We discuss the knowledge representation and frame problems
further. We investigate matching and forward versus backward

reasoning when we return to production systems.

One other issue we should consider at this point is that of

search trees versus search graphs. As mentioned above, we
can think of production rules as generating nodes in a search
tree. Each node can be expanded in turn, generating a set of

successors. This process continues until a node representing a
solution is found. Implementing such a procedure requires

little bookkeeping. However, this process often results in the
same node being generated as pan of several paths and so
being processed more than once. This happens because the

search space may really be an arbitrary directed graph rather
than a tree.

For example, in the tree shown in Figure 1.18, the node (4,3),
representing 4 gallons of water in one jug and 3 gallons in the
other, can be generated either by first filling the 4-gallon jug

and then the 3-gallon one or by filling them in the opposite
order. Since the order does not matter, continuing to process

both these nodes would be redundant. This example also
illustrates another problem that often arises when the search
process operates as a tree walk. On the third level, the node (0,

0) appears. (In fact, it appears twice.) But this is the same as
the top node of the tree, which has already been expanded.

Those two paths have not gotten us anywhere. So we would
like to eliminate them and continue only along the other
branches.

The waste of effort that arises when the same node is
generated more than once can be avoided at the price of

additional bookkeeping. Instead of traversing a search tree, we
traverse a directed graph. This graph differs from a tree in that
several paths may come together at a node. The graph

corresponding to the tree of Figure 1.18 is shown in Figure
1.19.

Any tree search procedure that keeps track of all the nodes
that have been generated so far can be convened to a graph
search procedure by modifying the action performed each time

 Artificial
 Intelligence

 NOTES

46

a node is generated. Notice that of the two systematic search
procedures we have discussed so far, this requirement that

nodes be kept track of is met by breadth-first search but not
by depth-first search. But, of course, depth-first search could

be modified, at the expense of additional storage, to retain in
memory nodes that have been expanded and then backed-up
over. Since all nodes are saved in the search graph, we must

use the following algorithm instead of simply adding a new
node to the graph.

Algorithm: Check Duplicate Nodes

1. Examine the set of nodes that have been created so far to
see if the new node already exists.

Figure 1.19: A Search Graph for the Water Jug Problem

2. If it does not/simply add it to the graph just as for a tree.

3. If it does already exist, then do the following:

(a) Set the node that is being expanded to point to the already
existing node corresponding to its successor rather than to the

new one. The new one can simply be thrown away.

(b) If you are keeping track of the best (shortest or otherwise
least-cost) path to each node, then check to see if the new path

is better or worse than the old one. If worse, do nothing. If
better, record the new path as the correct path to use to get to

 Artificial
 Intelligence

 NOTES

47

the node and propagate the corresponding change in cost
down through successor nodes as necessary.

One problem that may arise here is that cycles may be
introduced into the search graph. A cycle is a path through the

graph in which a given node appears more than once.

Treating the search process as a graph search rather than as a
tree Search reduces the amount of effort that is spent

exploring essentially the same path several times. But it
requires additional effort each time a node is generated to see if

it has been generated before. Whether this effort is justified
depends on the particular problem. If it is very likely that the
same node will be generated in several different ways, then it is

more worthwhile to use a graph procedure than if such
duplication will happen only rarely.

Graph search procedures are especially useful for dealing with
partially commutative production systems in which a given set
of operations will produce the same result regardless of the

order in which the operations are applied. A systematic search
procedure will try many of the permutations of these operators

and so will generate the same node many times. This is exactly
what happened in the water jug example shown above.

1.6 Additional Problems

Several specific problems have been discussed throughout this
chapter. Other problems have not yet been mentioned, but are

common throughout the AI literature. Some have become such
classics that no AI book could be complete without them, so we
present them in this section. A useful exercise, at this point,

would be to evaluate each of them in light of the seven problem
characteristics we have just discussed.

A brief justification is perhaps required before this parade of
toy problems is presented. Artificial intelligence is not merely a
science of toy problems and micro worlds (such as the blocks

world). Many of the techniques that have been developed for
these problems have become the core of systems that solve

very monotony problems. So think about these problems not

 Artificial
 Intelligence

 NOTES

48

as defining the scope of Al but rather as providing a core from
which much more has developed.

The Missionaries and Cannibals Problem

Three missionaries and three cannibals find themselves on one

side to a river. They have agreed that they would all like to get
to the other side. But the/missionaries are not sure what else
the cannibals have agreed to. So the missionaries want to

manage the trip across the river in such a way that the
number of missionaries on either side of the river is never less

than the number of cannibals who are on the same side. The
only boat available holds only two people at a time. How can
everyone get across the rivet without the missionaries risking

being eaten?

The Tower of Hanoi

Somewhere near Hanoi there is a monastery whose monks
devote their lives to a very important task. In their courtyard
are three tall posts. On these posts is a set of sixty-four disks,

each with a hole in the center and each of a different radius.
When the monastery was established, all of the disks were on

one of the posts, each disk resting on the one just larger than
it. The monks' task is to move all of the disks to one of the
other pegs. Only one disk may be moved at a time, and all the

other disks must be on one of the pegs. In addition, at no time
during the process may a disk be placed on top of a smaller

disk. The third peg can, of course, be used as a temporary
resting place for the disks. What is the quickest way for the
monks to accomplish their mission?

Even the best solution to this problem will take the monks a
very long time. This is fortunate, since legend has it that the

world will end when they have finished.

The Monkey and Bananas Problem

A hungry monkey finds himself in a room in which a bunch of

bananas is hanging from the ceiling. The monkey,

 Artificial
 Intelligence

 NOTES

49

unfortunately, cannot reach the bananas. However, in the
room there are 'also a chair and a stick. The ceiling is just the

right height so that a monkey standing on a chair could knock
the bananas down with the stick. The monkey knows how to

move around, carry other things around, reach for the
bananas, and wave a stick in the air. What is the best
sequence of actions for the monkey to take to acquire lunch?

Figure 1.20: Some Cryptarithmetic Problems

Cryptarithmetic

Consider an arithmetic problem represented in letters, as
shown in the examples in Figure 1.20. Assign a decimal digit to

each of the letters in such a way that the answer to the
problem is correct. If the same letter occurs more than once, it

must be assigned the same digit each time. No two different
letters may be assigned the same digit.

People's strategies for solving Cryptarithmetic problems have

been, studied intensively by Newell and Simon.

1.7 Summary

In this chapter we have discussed the first two steps that must
be taken toward the design of a program to solve a particular
problem:

1. Define the problem precisely. Specify the problem space, the
operators for moving within the space, and the starting and

goal state(s).

2. Analyze the problem to determine where it falls with respect
to seven important issues.

 Artificial
 Intelligence

 NOTES

50

The last two steps for developing a program to solve that
problem are. of course:

3. Identify and represent the knowledge required by the task.

4. Choose one or more techniques for problem solving, and

apply those techniques to the problem.

Several general-purpose, problem-solving techniques are
presented in the next chapter, and several of them have

already been alluded to in the discussion of the problem
characteristics in this chapter. The relationships between

problem characteristics and specific techniques should become
even clearer as we go on. Then, in later art II, we discuss the
issue of how domain knowledge ‗is to be represented.

1.9. Model Questions

1. In this chapter the following problem were mentioned

a. chess

 b. water jug

 c. 8-puzzel

 d. travelling salesman

 e. missionaries and cannibals

 f. tower of hanio

 g. monkey and bananas

 h. cryptarithmetic

 i. bridge

Before we can solve a problem using state space search, we
must define an appropriate state space. For each of the

problems mentioned above for which it was not done in the
text. Find a good state space representation.

 Artificial
 Intelligence

 NOTES

51

2. Describe how the branch-and-bound technique be used to
find the shortest solution to a water jug problem.

3 For each of the following types of problems, try to describe a
good heuristic function.

 a. blocks of word

 b. Theorem proving

 c. missionaries and cannibals

4. Give an example of a problem for which breadth –first
search would work better than depth-first search. Give an

example of a problem for which depth-first search would work
better than breadth-first search.

5. Write an algorithm to perform breadth-first search of a

problem graph. Make sure your algorithm works properly when
a single node is generated at more than one level in the graph.

 Artificial
 Intelligence

 NOTES

52

UNIT – II

HEURISTIC SEARCH TECHNIQUES

Objectives

In this chapter we will discuss about various heuristic
search techniques.

 Generate - and – Test

 Hill Climbing

 Best first Search

 Problem Reduction

 Constrained Satisfaction

 Means – ends Analysis

Introduction

In the last chapter, we saw that many of the problems that fall

within the purview of artificial intelligence are too complex to
be solved by direct techniques; rather they must be attacked
by appropriate search methods armed with whatever direct

techniques are available to guide the search. In this chapter, a
framework for describing search methods is provided and

several general-purpose search techniques are discussed.
These methods are all varieties of heuristic search. They can be
described independently of any particular task or problem

domain. But when applied to particular problems, their
efficacy is highly dependent on the way they exploit domain-

specific knowledge since in and of themselves they are unable
to overcome the combinatorial explosion to which search

 Artificial
 Intelligence

 NOTES

53

processes are so vulnerable. For this reason, these techniques
are often called weak methods. Although a realization of the

limited effectiveness of these weak methods to solve hard
problems by themselves has been an important result that

emerged from the last three decades of AI research, these
techniques continue to provide the framework into which
domain-specific knowledge can be placed, either by hand or as

a result of automatic learning. Thus they continue to form the
core of most AI systems. We have already discussed two very

basic search strategies:

• Depth-first search

• Breadth-first search In the rest of this chapter, we present

some others:

• Generate-and-test

• Hill climbing

• Best-first search

• Problem reduction

• Constraint satisfaction

• Means-ends analysis

2.1 Generate-and-Test

 The generate-and-test strategy is the simplest of all the
approaches we discuss. It consists of the following steps:

 Artificial
 Intelligence

 NOTES

54

Algorithm: Generate-and-Test

1. Generate a possible solution. For some problems, this

means generating a particular point in the problem space. For
others, it means generating a path from a start state.

2. Test to see if this is actually a solution by comparing the
chosen point or the endpoint of the chosen path to the set of
acceptable goal states.

3. If a solution has been found, quit. Otherwise, return to step
1.

If the generation of possible solutions is done systematically,
then this procedure will find a solution eventually, if one
exists. Unfortunately, if the problem space is very large,

"eventually" may be a very long time.

The generate-and-test algorithm is a depth-first search

procedure since complete solutions must be generated before
they can be tested. In its most systematic form, it is simply an
exhaustive search of the problem space. Generate-and-test

can, of course, also operate by generating solutions randomly,
but then there is no guarantee that a solution will ever be

found. In this form, it is also known as the British Museum
algorithm, a reference to a method for finding an object in the
British Museum by wandering randomly.' Between these two

extremes lies a practical middle ground in which the search
process proceeds systematically, but some paths are not

considered because they seem unlikely to lead to a solution.

The most straightforward way to implement systematic
generate-and-test is as a depth-first search tree with

backtracking. If some intermediate states are likely to appear
often in the tree, however, it may be better to modify that

procedure, as described above, to traverse a graph rather than
a tree.

For simple problems, exhaustive generate-and-test is often a

reasonable technique. For example, consider the puzzle that

 Artificial
 Intelligence

 NOTES

55

consists of four six-sided cubes, with each side of each cube
painted one of four colors. A solution to the puzzle consists of

an arrangement of the cubes in a row such that on all four
sides of the row one block face of each color is showing. This

problem can be solved by a person (who is a much slower
processor for this son of thing than even a very cheap
computer) in several minutes by systematically and

exhaustively trying all possibilities. It can be solved even .more
quickly using a heuristic generate-and-test procedure. A quick

glance at the four blocks reveals that there are more, say, red
faces than there are of other colors. Thus when placing a block
with several red faces, it would be a good idea to use as few of

them as possible as outside faces. As many of them as possible
should be placed to abut the next block. Using this heuristic,

many configurations need never be explored and a solution can
be found quite quickly.

Or, as another story goes, if a sufficient number of monkeys

were placed in front of a set of typewriters and left alone long
enough, then they would eventually produce all of the works of

Shakespeare.

Unfortunately, for problems much harder than this, even
heuristic generate-and-test, all by itself, is not a very effective

technique. But when combined with other techniques to
restrict the space in which to search even further, the

technique can be very effective.

For example, one early example of a successful AI program is
DENDRAL which infers the structure of organic compounds

using mass spectrogram and nuclear magnetic resonance
(NMR) data. It uses a strategy called plan-generate-test, in

which a planning process that uses constraint-satisfaction
techniques creates lists of recommended and contraindicated
substructures. The generate-and-test procedure then uses

those lists so that it can explore only a fairly limited set of
structures. Constrained in this way, the generate-and-test

procedure has proved highly effective.

This combination of planning, using one problem-solving
method (in this case, constraint satisfaction) with the use of

 Artificial
 Intelligence

 NOTES

56

the plan by another problem-solving method, generate-and-
test, is an excellent example of the way techniques can be

combined to overcome the limitations that each possesses
individually. A major weakness of planning is that it often

produces somewhat inaccurate solutions since there is no
feedback from the world. But by using it only to produce pieces
of solutions that will then be exploited in the generate-and-test

process, the lack of detailed accuracy becomes unimportant.
And, at the same time, the combinatorial problems that arise

in simple generate-and-test are avoided by judicious reference
to the plans.)

2.2 Hill Climbing

Hill climbing is a variant of generate-and-test in which
feedback from the test procedure is used to help the generator

decide which direction to move in the search space. In a pure
generate-and-test procedure, the test function responds with
only a yes or no. But if the test function is augmented with a

heuristic function2 that provides an estimate of how close a
given state is to a goal state, the generate procedure can

exploit it as shown in the procedure below. This is particularly
nice because often the computation of the heuristic function
can be done at almost no cost at the same time that the test

for a solution is being performed. Hill climbing is often used
when a good heuristic function is available for evaluating

states but when no other useful knowledge is available. For
example, suppose you are in an unfamiliar city without a map
and you want to get downtown. You simply aim for the tall

buildings. The heuristic function is just distance between the
current location and the location of the tall buildings and the

desirable states are those in which this distance is minimized.

2.2.1 Simple Hill Climbing

The simplest way to implement hill climbing is as follows.

 Artificial
 Intelligence

 NOTES

57

Algorithm: Simple Hill Climbing

1. Evaluate the initial state. If it is also a goal state, then

return it and quit. Otherwise, continue with the initial state as
the current state.

2. Loop until a solution is found or until there are no new
operators left to be applied in the current state:

(a) Select an operator that has riot yet been applied to the

current state and apply it to produce a new state.

(b) Evaluate the new state.

If it is a goal state, then return it and quit. ii. If it is not a goal
state but it is better than the current state, then make it the
current state. iii. If it is not better than the current state, then

continue in the loop.

The key difference between this algorithm and the one we gave

for generate-and-test is the use of an evaluation function as a
way to inject task-specific knowledge into the control process.
It is the use of such knowledge that makes this and the other

methods discussed in the rest of this chapter heuristic search
methods, and it is that same knowledge that gives these

methods their power to solve some otherwise intractable
problems.

Notice that in this algorithm, we have asked the relatively

vague question, "Is one state better than another?" For the
algorithm to work, a precise definition of better must be

provided. In some cases, it means a higher value of the
heuristic function. In others, it means a lower value. It does
not matter which, as long as a particular hill-climbing program

is consistent in its interpretation.

To see how hill climbing works, let's return to the puzzle of the

four colored blocks. To solve the problem, we first need to
define a heuristic function that describes how close a
particular configuration is to being a solution. On such

 Artificial
 Intelligence

 NOTES

58

function it^ simply the sum of the number of different colors
on each of the four sides. A solution to the puzzle will have a

value of 16. Next we need to define a set of rules that describe
ways of transforming one configuration into another. Actually,

one rule will suffice. It says simply pick a block and rotate it 90
degrees in any direction. Having provided these definitions, the
next step is to generate a starting configuration. This can

either be done at random or with the aid of the heuristic
function described in the last section. Now hill climbing can

begin. We generate a new state by selecting a block and
rotating it. If the resulting state is better, then we keep it. If
not, we return to the previous state and try a different

perturbation.

2.2.2 Steepest-Ascent Hill Climbing

A useful variation on simple hill climbing considers all the
moves from the current state and selects the best one as the
next state. This method is called steepest-accent hill climbing

or gradient search. Notice that this contrasts with the basic
method in which the first state that is better than the current

state is selected. The algorithm works as follows.

Algorithm: Steepest-Ascent Hill Climbing

1. Evaluate the initial state. If it is also a goal state, then

return it and quit. Otherwise, continue with the initial state as
the current state.

2. Loop until a solution is found or until a complete iteration
produces no change to current state:

(a) Let SUCC be a state such that any possible successor of the

current state will be better than SUCC.

(b) For each operator that applies to the current state do:

i. Apply the operator and generate a new state.

 Artificial
 Intelligence

 NOTES

59

ii. Evaluate the new state. If it is a goal state, then return it
and quit. If not, compare it to SUCC. If it is better, then set

SUCC to this state. If it is not better, leave SUCC alone.

(c) If the SUCC is better than current state, then set current

state to SUCC.

To apply steepest-ascent hill climbing to the colored blocks
problem, we must consider all perturbations of the initial state

and choose the best. For this problem, this is difficult since
there are so many possible moves. There is a trade-off between

the time required to select a move (usually longer for steepest-
ascent hill climbing) and the number of moves required to get
to a solution (usually longer for basic hill climbing) that must

be considered when deciding which method will work better for
a particular problem.

Both basic and steepest-ascent hill climbing may fail to find a
solution. Either algorithm may terminate not by finding a goal
state but by getting to a state from which no better states can

be generated. This will happen if the program has reached a
local maximum, a plateau, or a ridge.

A local maximum is a state that is better than all its neighbors
but is not better than some other states farther away. At a
local maximum, all moves appear to make things worse. Local

maxima are particularly frustrating because they often occur
almost within sight of a solution. In this case, they are called

foothills.

A plateau is a flat area of the search space in which a whole
set of neighboring states has the same value. On a plateau, it

is not possible to determine the best direction in which to move
by making local comparisons.

A ridge is a special kind of local maximum. It is an area of the
search space that is higher than surrounding areas and that
itself has a slope (which one would like to climb). But the

orientation of the High region, compared to the set of available
moves and the directions in which they move, makes it

impossible to traverse a ridge by single moves.

 Artificial
 Intelligence

 NOTES

60

There are some ways of dealing with these problems, although
these methods are by no means guaranteed:

• Backtrack to some earlier node and try going in a different
direction. This is particularly reasonable if at that node there

was another direction that looked as promising or almost as
promising as the one that was chosen earlier. To implement
this strategy, maintain a list of paths almost taken and go

back to one of them if the path that was taken leads to a dead
end. This is a fairly good way of dealing with local maxima.

• Make a big jump in some direction to try to get to a new
section of the search space. This is a particularly good way of
dealing with plateaus. If the only rules available describe single

small steps, apply them several times in the same direction.

• Apply two or more rules before doing the test. This

corresponds to moving in several directions at once. This is a
particularly good strategy for dealing with ridges.

Even with these first-aid measures, hill climbing is not always

very effective. It is particularly unsuited to problems where the
value of the heuristic function drops off suddenly as you move

away from a solution. This is often the case whenever any sort
of threshold effect is present. Hill climbing is a local method,
by which we mean that it decides what to do next by looking

only at the "immediate" consequences of its choice rather than-
by exhaustively exploring all the consequences. It shares with

other local methods, such as the nearest neighbor heuristic
described in Section 1.2.2, the advantage of being less
combinatorial explosive than comparable global methods. But

it also shares with other local methods a lack of a guarantee
that it will be effective. Although it is true that the hill-climbing

procedure itself looks only one move ahead and not any
farther, that examination may in fact exploit an arbitrary
amount of global information if that information is encoded in

the heuristic function. Consider the blocks world problem
shown in Figure 3.1. Assume the same operators (i.e., pick up

one block and put it on the table; pick up one block and put it
on another one) that were used in Section 2.3.1. Suppose we
use the following heuristic function:

 Artificial
 Intelligence

 NOTES

61

Local: Add one point for every block that is resting on the thing
it is supposed to be resting on. Subtract one point for every

block that is sitting on the wrong thing.

Using this function, the goal state has a score of 8. The initial

state has a score of 4 (since it gets one point added for blocks
C, D, E, F, G, and H and one point subtracted for blocks A and
B). There is only one move from the initial state, namely to

move block A to the table. That produces a state with a score of
6 (since now A's position causes a point to be added rather

than subtracted). The hill-climbing procedure will accept that
move. From the new state, there are three possible moves,
leading to the three states shown in Figure 2.2. These states

have the scores: (o) 4, (h) 4, and (c) 4. Hill climbing will halt
because all these states have lower scores than the current

state. The process has reached a local maximum that is not
the global maximum. The problem is that by purely local
examination of support structures, the current state appears

to be better than any of its successors because more blocks
rest on the correct objects. To solve this problem, it is

necessary to disassemble a good local structure (the stack B
through H) because it is in the wrong global context.

Figure 2.1: A Hill-Climbing problem

 Artificial
 Intelligence

 NOTES

62

Figure 2.2: Three Possible Moves

We could blame hill climbing itself for this failure to look far
enough ahead to find a solution. But we could also blame the
heuristic function and try to modify it. Suppose we try the

following heuristic function in place of the first one:

Global: For each block that has the correct support structure

(i.e., the complete structure underneath it is exactly as it
should be), add one point for every block in the support
structure. For each block that has an incorrect support

structure, subtract one point for every block in the existing
support structure.

Using this function, the goal state has the score 28 (1 for B, 2
for C, etc.). The initial state has the score -28. Moving A to
table yields a state with a score of -21 since A no longer has

seven wrong blocks under it. The three Mates that can be
produced next now have the following scores: (a) —28, (b) —16,

and (c) —15. This time, steepest-ascent hill climbing will
choose move (c), which is the correct one. This new heuristic
function captures the two key aspects of this problem:

incorrect structures are bad and should be taken apart; and
correct structures are good and should be built up. As a result,

the same hill climbing procedure that failed with the earlier
heuristic function now works perfectly.

Unfortunately, it is not always possible to construct such a

perfect heuristic function. For example, consider again the

 Artificial
 Intelligence

 NOTES

63

problem of driving downtown. The perfect heuristic function
would need to have knowledge about one-way and dead-end

streets, which, in the case of a strange city, is not always
available. And even if perfect knowledge is, in principle,

available, it may not be computationally tractable to use. As an
extreme example, imagine a heuristic function that computes a
value for a state by invoking its own problem-solving procedure

to look ahead from ‗the state it is given to find a solution. It
then knows the exact cost of finding that solution and can

return that cost as its value. A heuristic function that does this
converts the local hill-climbing procedure into a global method
by embedding a global method within it. But now the

computational advantages of a local method have been lost.
Thus it is still true that hill climbing can be very inefficient in a

large, rough problem space. But it is often useful when
combined with other methods that get it started in the right
general neighborhood.

2.2.3 Simulated Annealing

Simulated annealing is a variation of hill climbing in which, at

the beginning of the process, some downhill moves may be
made. The idea is to do enough exploration of the whole space
early on so that the final solution is relatively insensitive to the

starting state. This should lower the chances of getting caught
at a local maximum, a plateau, or a ridge.

In order to be compatible with standard usage in discussions
of simulated annealing, we make two notational changes for
the duration of this section. We use the term objective function

in place of the term heuristic/unction.

And we attempt to minimize rather than maximize the value of

the objective function. Thus we actually describe a process of
valley descending rather than hill climbing.

Simulated annealing as a computational process is patterned

after the physical process of annealing, in which physical
substances such as metals are melted (i.e., raised to high

energy levels) and then gradually cooled until some solid state
is reached. The goal of this process is to produce a minimal-

 Artificial
 Intelligence

 NOTES

64

energy final state. Thus this process is one of valley descending
in which the objective function is the energy level. Physical

substances usually move from higher energy configurations to
lower ones. so the valley descending occurs naturally. But

there is some probability that a transition to a higher energy
state will occur. This probability is given by the function

P = e – ΔE/kt

where A £ is the positive change in the energy levels T is the
temperature, and k is Boltzmann's constant. Thus, in the

physical valley descending that occurs during annealing, the
probability of a large uphill move is lower than the probability
of a small one. Also, the probability that an uphill move will be

made decreases as the temperature decreases. Thus such
moves are more likely during the beginning of the process

when the temperature is high, and they become less likely at
the end as the temperature becomes lower. One way to
characterize this process is that downhill moves are allowed

anytime. Large upward moves may occur early on, but as the
process progresses, only relatively small upward moves are

allowed until finally the process converges to a local minimum
configuration.

The rate at which the system is cooled is called the annealing

schedule. Physical annealing processes are very sensitive to
the annealing schedule. If cooling occurs too rapidly, stable

regions of high energy will form. In other words, a local but not
global minimum is reached. If, however, a slower schedule is
used, a uniform crystalline structure, which corresponds to a

global minimum, is more likely to develop. But, if the schedule
is too slow, time is wasted. At high temperatures, where

essentially random motion is allowed, nothing useful happens.
At low temperatures a lot of time may be wasted after the final
structure has already been formed. The optimal annealing

schedule for each particular annealing problem must usually
be discovered empirically.

These properties of physical annealing can be used to define an
analogous process of simulated annealing, which can be used
(although not always effectively) whenever simple hill climbing

 Artificial
 Intelligence

 NOTES

65

can be used. In this analogous process, A£ is generalized so
that it represents not specifically the change in energy but

more generally, the change in the value of the objective
function, whatever it is. The analogy for kT is slightly less

straightforward. In the physical process, temperature is a well-
defined notion, measured in standard units. The variable k
describes the correspondence between the units of

temperature and the units of energy. Since, in the analogous
process, the units for both E and T are artificial, it makes

sense to incorporate k into T, selecting values for T that
produce desirable behavior on the part of the algorithm. Thus
we use the revised probability formula

P’ = e – ΔE/t

But we still need to choose a schedule of values for T (which we

still call temperature). We discuss this briefly below after we
present the simulated annealing algorithm.

The algorithm for simulated annealing is only slightly different

from the simple hill-climbing procedure. The three differences
are:

• The annealing schedule must be maintained.

• Moves to worse states may be accepted.

• It is a good idea to maintain, in addition to the current state,

the best state found so far. Then, if the final state is worse
than that earlier state (because of bad luck in accepting moves

to worse states), the earlier state is still available.

Algorithm: Simulated Annealing

1. Evaluate the initial state. If it is also a goal state, then

return it and quit. Otherwise, continue with the initial state as
the current state.

2. Initialize BEST-SO-FAR to the current state.

 Artificial
 Intelligence

 NOTES

66

3. Initialize T according to the annealing schedule.

4. Loop until a solution is found or until there are no new

operators left to be applied in the current state.

(a) Select an operator that has not yet been applied to the

current state and apply it to produce a new state.

(b) Evaluate the new state. Compute

A£ = (value of current) — <value of new state)

• If the new state is a goal state, then return it and quit.

• If it is not a goal state but is better than the current state,

then make it the current state. Also set BEST-SO-FAR to this
new state.

• If it is not better than the current state, then make it the

current state with probability// as defined above. This step is
usually implemented by invoking a random number generator

to produce a number in the range [0,1]. If that number is less
than p', then the move is accepted. Otherwise, do nothing.

(c) Revise T as necessary according to the annealing schedule.

5. Return BEST-SO-FAR, as the answer.

To implement this revised algorithm, it is necessary to select

a;", annealing schedule, which has three components. The first
is the initial value to be used for temperature. The second is
the criteria that will be used to decide when the temperature of

the system should be reduced. The third is the amount by
which the temperature will be reduced each time it is changed.

There may also be a fourth component of the schedule,
namely, when to quit. Simulated annealing is often used to
solve problems in which the number of moves from a given

state is very large (such as the number of permutations that
can be made to a proposed traveling salesman route). For such

problems, it may not make sense to try all possible moves.

 Artificial
 Intelligence

 NOTES

67

Instead, it may be useful to exploit some criterion involving the
number of moves that have been tried since an improvement

was found.

Experiments that have been done with simulated annealing on

a variety of problems suggest that the best way to select an
annealing schedule is by trying several and observing the effect
on both the quality of the solution that is found and the rate at

which the process converges. To begin to get a feel for how to
come up with a schedule, the first thing to notice is that as T

approaches zero, the probability of accepting a move to a worse
state goes to zero and simulated annealing becomes identical
to simple hill climbing. The second thing to notice is that what

really matters in computing the probability of accepting a move
is the ratio A E/T. Thus it is important that values of T be

scaled so that this ratio is meaningful. For example, T could be
initialized to a value such that, for an average A E, p' would be
0.5.

2.3 Best-First Search

Until now, we have really only discussed two systematic

control strategies, breadth-first search and depth-first search
(of several varieties). In this section, we discuss a new method,
best-first search, which is a way of combining the advantages

of both depth-first and breadth-first search into a single
method.

2.3.1 OR Graphs

Depth-first search is good because it allows a solution to be
found without all competing branches having to be expanded.

Breadth-first search is good because it does not get trapped on
dead-end paths. One way of combining the two is to follow a
single path at a time, but switch paths whenever some

competing path looks more promising than the current one
does.

 Artificial
 Intelligence

 NOTES

68

At each step of the best-first search process, we select the most
promising of the nodes we have generated so far. This is done

by applying an appropriate heuristic function to each of them.
We then expand the chosen node by using the rules to

generate its successors. If one of them is a solution, we can
quit. If not, all those new nodes are added to the set of nodes
generated so far. Again the most promising node is selected

and the process continues. Usually what happens is that a bit
of depth-first searching occurs as the most promising branch

is explored. But eventually, if a solution is not found, that
branch will start to look less promising than one of the top-
level branches that had been ignored. At that point, the now

more promising, previously ignored branch will be explored.
But the old branch is not forgotten.. Its last node remains in

the set of generated but unexpanded nodes. The search can
return to it whenever all the others get bad enough that it is
again the most promising path.

Figure 2.3 shows the beginning of a best-first search
procedure. Initially, there is only one node, so it will be

expanded. Doing so generates three new nodes. The heuristic
function, which, in this example, is an estimate of the cost of
getting to a solution from a given node, is applied to each of

these new nodes. Since node D is the most promising, it is
expanded next, producing two successor nodes, E and F. But

then the heuristic function is applied to them. Now another
path, that going through node B, looks more promising, so it is
pursued, generating nodes G and H. But again when these new

nodes are evaluated they look less promising than another
path, so attention is returned to the path through D to E. E is

then expanded, yielding nodes I and J. At the next step, J will
be expanded, since it is the most promising. This process can
continue until a solution is found.

Notice that this procedure is very similar to the procedure for
steepest-ascent hill climbing, with two exceptions. In hill

climbing, one move is selected and all the others are rejected,
never to be reconsidered. This produces the straight-line
behavior that is characteristic of hill climbing. In best-first

search, one move is selected, but the others are kept around so
that they can be revisited later if the selected path becomes

less promising. Further, the best available state is selected in

 Artificial
 Intelligence

 NOTES

69

best-first search, even if that state has a value that is lower
than the value of the state that was just explored. This

contrasts with hill climbing, which will stop if there are no
successor states with better values than the current state.

Although the example shown above illustrates a best-first
search of a tree, it is sometimes important to search a graph
instead so that duplicate paths will not be pursued. An

algorithm to do this will operate by searching a directed graph
in which each node represents a point in the problem space.

Each node will contain, in addition to a description of the
problem state it represents, an indication of how promising it
is, a parent link that points back to the best node from which

it came, and a list of the nodes that were generated from it.
The parent link will make it possible to recover the path to the

goal once the goal is found. The list of successors will make it
possible, if a better path is found to an already existing node,
to propagate the improvement down to its successors. We will

call a graph of this sort an OR graph, since each of its
branches represents an alternative problem-solving path.

Figure 2.3: A Best-First Search

 Artificial
 Intelligence

 NOTES

70

To implement such a graph-search procedure, we will need to
use two lists of nodes:

• OPEN—nodes that have been generated and have had the
heuristic function applied to thena but which have not yet

been examined (i.e., had their successors generated). OPEN is
actually a priority queue in which the elements with the
highest priority are those with the most promising value of the

heuristic function. Standard techniques for manipulating
priority queues can be used to manipulate the list.

• CLOSED—nodes that have already been examined. We need
to keep these nodes in memory if we want to search a graph
rather than a tree, since whenever a new node is generated; we

need to check whether it has been generated before.

We will also need a heuristic function that estimates the merits

of each node we generate. This will enable the algorithm to
search more promising paths first. Call this function (to
indicate that it is an approximation to a function/that gives

the true evaluation of the node). For many applications, it is
convenient to define this function as the sum of two

components that we calling and h'. The function g is a measure
of the cost of getting from the initial state to the current node.
Note that g is not an estimate of anything; it is known to be the

exact sum of the costs of applying each of the rules that were
applied along the best path to the node. The function h' is an

estimate of the additional cost of getting from the current node
to a goal state. This is the place where knowledge about the
problem domain is exploited. The combined function/', then,

represents an estimate of the cost of getting from the initial
state to a goal state along the path that generated the current

node. If more than one path generated the node, then the
algorithm will record the best one. Note that because g and h'
must be added, it is important that h' be a measure of the cost

of getting from the node to a solution (i.e., good nodes get low
values; bad nodes get high values) rather than a measure of

the goodness of a node (i.e., good nodes get high values). But
that is easy to arrange with judicious placement of minus
signs. It is also important that g be nonnegative. If this is not

true, then paths that traverse cycles in the graph will appear to
get better as they get longer.

 Artificial
 Intelligence

 NOTES

71

The actual operation of the algorithm is very simple. It
proceeds in steps, expanding one node at each step, until it

generates a node that corresponds to a goal state. At each step,
it picks the most promising of the nodes that have so far been

generated but not expanded. It generates the successors of the
chosen node, applies the heuristic function to them, and adds
them to the list of open nodes, after checking to see if any of

them have been generated before. By doing this check, we can
guarantee that each node only appears once in the graph,

although many nodes may point to it as a successor. Then the
next step begins.

This process can be summarized as follows.

Algorithm: Best-First Search

1. Start with OPEN containing just the initial state.

2. Until a goal is found or there are no nodes left on OPEN do:

(a) Pick the best node on OPEN.

(b) Generate its successors.

(c) For each successor do:

i. If it has not been generated before, evaluate it, add it to

OPEN, and record its parent.

ii. If it has been generated before, change the parent if this new
path is better than the previous one. In that case, update the

cost of getting to this node and to any successors that this
node may already have.

The basic idea of this algorithm is simple. Unfortunately, it is
rarely the case that graph traversal algorithms are simple to
write correctly. And it is even rarer that it is simple to

guarantee the correctness‘ of such algorithms. In the section
that follows, we describe this algorithm in more detail as an

example of the design and analysis of a graph-search program.

 Artificial
 Intelligence

 NOTES

72

2.3.2 The A* Algorithm

The best-first search algorithm that was just presented is a

simplification of an algorithm called A*, which was first
presented by Hart et al. [1968; 1972]. This algorithm uses the

same/', g, and h' functions, as well as the lists OPEN and
CLOSED, that we have already described.

Algorithm: A*

1. Start with OPEN containing only the initial node. -Set that-
node's g value to 0, its h' value to whatever it is, and its/' value

to h' + 0, or h'. Set CLOSED to the empty list.

2. Until a goal node is found, repeat the following procedure: If
there are no nodes on OPEN, report failure. Otherwise, pick

the node on OPEN with the lowest/' value. Call it BESTNODE.
Remove it from OPEN. Place it on CLOSED. See if BESTNODE

is a goal node. If so, exit and report a solution (either
BESTNODE if all we-want is the node or the path that has
been created between the initial state and BESTNODE if we are

interested in the path). Otherwise, generate the successors of
BESTNODE but do not set BESTNODE to point to them yet.

(First we need to see if any of them have already been
generated.) For each such SUCCESSOR, do the following:

(a) Set SUCCESSOR to point back to BESTNODE. These

backwards links will make it possible to recover the path once
a solution is found.

(b) Compute g(SUCCESSOR) = g(BESTNODE) + the cost of
getting from BESTNODE to SUCCESSOR.

(c) See if SUCCESSOR is the same as any node on OPEN (i.e.,

it has already been generated but not processed). If so, call
that node OLD. Since this node already exists in the graph, we

can throw SUCCESSOR away and add OLD to the list of
BESTNODE's successors. Now we must decide whether OLDS

parent link should be reset to point to BESTNODE. It should

be if the path we have just found to SUCCESSOR is cheaper

 Artificial
 Intelligence

 NOTES

73

than the current best path to OLD (since SUCCESSOR and
OLD are really the same node). So see whether it is cheaper to

get to OLD via its current parent or to SUCCESSOR via
BESTNODE by comparing their g values. If OLD is cheaper (or

just as cheap), then we need do nothing, if SUCCESSOR is
cheaper, then reset OLD'S parent link to point to BESTNODE,
record the new cheaper path in g(OLD), and update /'(OLD).

(d) If SUCCESSOR was not on OPEN, see if it is on CLOSED. If
so, call the node on CLOSED OLD and add OLD to the list of

BESTNODE's successors. Check to see if the new path or the
old path is better just as in step 2(t), and set the parent link
and g and/' values appropriately. If we have just found a better

path to OLD, we must propagate the improvement to OLD'S

successors. This is a bit tricky. OLD points to its successors.

Each successor in turn points to its successors, and so forth,
until each branch terminates with a node that either is still on
OPEN or has no successors. So to propagate the new cost

downward, do a depth-first traversal of the tree starting at
OLD, changing each node's g value (and thus also its/' value),

terminating each branch when you reach either a node with no
successors or a node to which an equivalent or better path has
already been found. This condition is easy to check for. Each

node's parent link points back to its best known parent. As we
propagate down to a node, see if its parent points to the node

we are coming from. If so, continue the propagation. If not,
then its g value already reflects the better path of which it is
part. So the propagation may stop here. But it is possible that

with the new value of g being propagated downward, the path
we are following may become better than the path through the

current parent. So compare the two. If the path through the
current parent is still better, stop the propagation. If the path
we are propagating through is now better, reset the parent and

continue propagation.

(e) If SUCCESSOR was not already on either OPEN or

CLOSED, then put it on OPEN, and add it to the list of
BESTNODE's successors. Compute /'(SUCCESSOR) =
g(SUCCESSOR) + ^(SUCCESSOR).

 Artificial
 Intelligence

 NOTES

74

Several interesting observations can be made about this
algorithm. The first concerns the role of the g function. It lets

us choose which node to expand next on the basis not only of
how good the node itself looks (as measured by h'), but also pn

the basis of how good the path to the node was. By
incorporating^ into/', we will not always choose as our next
node to expand the node that appears to be closest to the goal.

This is useful if we care about the path we find. If, on the other
hand, we only care about getting to a solution somehow, we

can define g always to be 0, thus always choosing the node
that seems closest to a goal. If we want to find a path involving
the fewest number of steps, then we set the cost of going from

a node to its successor as a constant, usually 1. If, on the
other hand, we want to find the cheapest path and some

operators cost more than others, then we set the cost of going
from one node to another to reflect those costs. Thus the A*
algorithm can be used whether we are interested in finding a

minimal-cost overall path or simply any path as quickly as
possible.

The second observation involves h', the estimator of h, the
distance of a node to the goal. If h' is a perfect estimator of h,
then A* will converge immediately to the goal with no search.

The better h' is, the closer we will get to that direct approach.
It, on the other hand, the value of h' is always 0, the search

will be controlled by g. If the value of g is also 0, the search
strategy will be random. If the value of g is always 1, the
search will be breadth first. All nodes on one level will have

lower g values, and thus lower/' values than will all nodes on
the next level. What if, on the other hand, h' is neither perfect

nor O? Can we say anything interesting about the behavior of
the search? The answer is yes if we care guarantee that h'
never overestimates h. In that case, the A* algorithm is

guaranteed to find an optimal (as determined by g) path to a
goal, if one exists. This can easily be seen from a few examples.

 Artificial
 Intelligence

 NOTES

75

Figure 2.4: h' Underestimates h

Consider the situation shown in Figure 2.4. Assume that the

cost of all arcs is I. Initially, all nodes except A are on OPEN
(although the figure shows the situation two steps later, after B
and E have been expanded). For each node,/' is indicated as

the sum of h' and g. In this example, node B has the lowest/',
4, so it is expanded first. Suppose it has only one successor E,

which also appears to be three moves away from a goal. Now
/'(E) is 5, the same as /'(C). Suppose we resolve this in favor of
the path we are currently following. Then we will expand E

next. Suppose it too has a single successor F, also judged to be
three moves from a goal. We are clearly using up moves and

making no progress. But (F) = 6, which is greater than (C). So
we will expand C next. Thus we see that by underestimating (B)
we have wasted some effort. But eventually we discover that B

was farther away than we thought and we go back and try
another path.

Now consider the situation shown in Figure 2.5. Again we
expand B on the first step. On the second step we again
expand E. At the next step we expand F, and finally we

generate G, for a solution path of length 4. But suppose there
is a direct path from D to a solution, giving a path of length 2.

We will never find it. By overestimating h'(D) we make D look
so bad that we may find' some other, worse solution without
ever expanding D.

 Artificial
 Intelligence

 NOTES

76

Consider, for example, the task faced by the mathematics
discovery program AM, written by Leant .AM was given a small

set of starting facts about number theory and a set of
operators it could use to develop new ideas. These operators

included such things as "Find examples of a concept you
already know." AM's goal was to generate new "interesting"
mathematical concepts. It succeeded in discovering such

things as prime numbers and Holdback‘s conjecture.

Armed solely with its basic operators, AM would have been

able to create a great many new concepts, most of which would
have been worthless. It needed a way to decide intelligently
which rules to apply. For this it was provided with a set of

heuristic rules that said such things as "The extreme cases of
any concept are likely to be interesting." "Interest" was then

used as the measure of merit of individual tasks that the
system could perform. The system operated by selecting at
each cycle the most interesting task, doing it, and possibly

generating new tasks in the process. This corresponds to the
selection of the most promising node in the best-first search

procedure. But in AM's situation the fact that several paths
recommend the same task does matter. Each contributes a
reason why the task would lead to an interesting result. The

more such reasons there are, the more likely it is that the task
really would lead to ‗something good. So we need a way to

record proposed tasks along with the reasons they have been
proposed. AM used a task agenda. An agenda is a list of tasks
a system could perform. Associated with each task there are

usually two things: a list of reasons why the task is being
proposed (often called justifications) and a rating representing

the overall weight of evidence suggesting that the task would
be useful.

An agenda-driven system uses the following procedure.

Algorithm: Agenda-Driven Search

1. Do until a goal state is reached or the agenda is empty:

(a) Choose the most promising task from the agenda. Notice
that this task can be represented in any desired form. It can be

 Artificial
 Intelligence

 NOTES

77

thought of as an explicit statement of what to do next or simply
as an indication of the next node to be expanded.

(b) Execute the task by devoting to it the number of resources
determined .by its importance. The important resources to

consider are time and space. Executing the task will probably
generate additional tasks (successor nodes). For each of them,
do the following:

i. See if it is already on the agenda. If so, then see if this same
reason for doing it is already on its list of justifications. If so,

ignore this current evidence. If this justification was not
already present, add it to the list. If the task was not on the
agenda, insert it.

ii. Compute the new task's rating, combining the evidence from
all its justifications. Not all justifications need have equal

weight. It is often useful to associate with each justification a
measure of how strong areason it is. These measures are then
combined at this step to produce an overall rating for the task.

One important question that arises in agenda-driven systems
is how to find the most promising task on each cycle. One way

to do this is simple. Maintain the agenda sorted by rating.
When a new task is created, insert it into the agenda in- its
proper place. When a task has its justifications changed,

recompute its rating and move it to the correct place in the list.
But this method causes a great deal of time to be spent

keeping the agenda in perfect order. Much of this time is
wasted since we do not need perfect order. We only need to
know the proper first element. The following modified strategy

may occasionally cause a task other than the best to be
executed, but it is significantly cheaper than the perfect

method. When a task is proposed, or a new justification is
added to an existing task, compute the new rating and
compare it against the top few (e.g., five or ten) elements on the

agenda. If it is better, insert the node into its proper position at
the top of the list. Otherwise, leave it where it is or simply

insert it at the end of the agenda. At the beginning of each
cycle, choose the first task on the agenda. In addition, once in
a while, go through the agenda and reorder it properly.

 Artificial
 Intelligence

 NOTES

78

An agenda-driven control structure is also useful if some tasks
(or nodes) provide negative evidence about the merits of other

tasks (or nodes). This can be represented by justifications with
negative weightings. If these negative weightings are used, it

may be important to check not only for the possibility of
moving a task to the head of the agenda but also of moving a
top task to the bottom if new, negative justifications appear.

But this is easy to do.

As you can see, the agenda mechanism provides a good way of

focusing the attention of a complex system in the areas
suggested by the greatest number of positive indicators. But
the overhead for each task executed may be fairly high. This

raises the question of the proper grain size for the division of
the entire problem-solving process into individual tasks.

Suppose each task is very small. Then we will never do even a
very small thing unless it really is the best thing to do. But we
will spend a large percentage of our total effort on figuring out

what to do next. If, on the other hand, the size of an individual
task is very large, then some effort may be spent finishing one

task when there are more promising ones that could be done.
But a smaller percentage of the total time will be Spent on the
overhead of figuring out what to do. The exact choice of task

size for a particular system depends on the extent to which
doing one small thing really means that a set of other small

things is likely to be very good to do too. It often requires some
experimentation to get right.

There are some problem domains for which an agenda

mechanism is inappropriate. The agenda mechanism assumes
that if there is good reason to do something now, then there

will also be the same good reason to do something later unless
something better comes along in the interim. But this is not
always the case, particularly for systems that are interacting

with people. The following dialogue would not be acceptable to
most people:

Person: I don't want to read any more about China. Give
me something else.

Computer: OK. What else are you interested in?

 Artificial
 Intelligence

 NOTES

79

Person: How about Italy? I think I'd find Italy
fascinating.

Computer: What things about Italy are you interested in
reading about?

Person: I think I'd like to start with its history.

 Computer: Why don't you want to read any more
about China?

It would have been fine to have tried to find out why the person
was no longer interested in China right after he or she

mentioned it. The computer chose instead to try to find a new
area of positive interest, also a very reasonable thing to do. But
in conversations, the fact that something is reasonable now

does not mean that it will continue to be so after the
conversation has proceeded for a while. So it is not a good idea

simply to put possible statements on an agenda, wait until a
later lull, and then pop out with them. More precisely, agendas
are a good way to implement monotonic production systems (in

the sense of Section 1.4) and a poor way to implement
nonmonotonic ones.

Despite these difficulties, agenda-driven control structures are
very useful. They provide an excellent way of integrating
information from a variety of sources into one program since

each source simply adds tasks and justifications to the
agenda. As Al programs become more complex and their

knowledge bases grow, this becomes a particularly significant
advantage.

2.4 Problem Reduction

So far, we have considered search strategies for OR graphs
through which we want to find a single path to a goal. Such

structures represent the fact that we will know how to get from
a node to a goal state if we can discover how to get from that
node to a goal state along any one of the branches leaving it.

 Artificial
 Intelligence

 NOTES

80

2.4.1 AND-OR Graphs

Another kind of structure, the AND-OR graph (or tree), is

useful for representing the solution of problems that can be
solved by decomposing them into a set of smaller problems, all

of which must then be solved. This decomposition, or
reduction, generates arcs that we call AND arcs. One AND arc
may point to any number of successor nodes, all of which

must be solved in order for the arc to point to a solution. Just
as in an OR graph, several arcs may emerge from a single

node, indicating a variety of ways in which the original problem
might be solved. This is why the structure is called not simply
an AND graph but rather an AND-OR graph. An example of an

AND-OR graph (which also happens to be an AND-OR tree) is
given in Figure 2.6. AND arcs are indicated with a line

connecting all the components,

In order to find solutions in an AND-OR graph, we need an
algorithm similar to best-first search but with the ability to

handle the AND arcs appropriately. This algorithm should find
a path from the starting node of the graph to a set of nodes

representing solution states. Notice that it may be necessary to
get to more than one solution state since each arm of an AND
arc must lead to its own solution node.

To see why our best-first search algorithm is not adequate for
searching AND-OR graphs, consider Figure 2.7(a). The top

node. A, has been expanded, producing two arcs, one leading
to B and one leading to C and D. The numbers at each node
represent the value of/' at that node. We assume, for

simplicity, that every operation has a uniform cost, so each arc
with a single successor has a cost of 1 and each AND arc with

 Artificial
 Intelligence

 NOTES

81

Figure 2.6: A Simple AND-OR Graph

Figure 2.7: AND-OR Graphs

multiple successors has a cost of 1 for each of its components.
If we look just at the nodes and choose for expansion the one
with the lowest/' value, we must select C. But using the

information now available, it would be better to explore the
path going through B since to use C we must also use D, for a

total cost of 9 (C+D+2) compared to the cost of 6 that we get by
going through B. The problem is that the choice of which node
to expand next must depend not only on the/' value of that

node but also on whether that node is part of the current best
path from the initial node. The tree shown in Figure 2.7(b)

 Artificial
 Intelligence

 NOTES

82

makes this even clearer. The most promising single node is G
with an /' value of 3. It is even part of the most promising arc

G-H, with a total cost of 9. But that arc is not part of the
current best path since to use it we must also use the arc I-J,

with a cost of 27. The path from A, through B, to E and F is
better, with a total cost of 18. So we should not expand G next;
rather we should examine either E or F.

In order to describe an algorithm for searching an AND-OR
graph, we need to exploit a value that we call. FUTILITY. If the

estimated cost of a solution becomes greater than the value of
FUTILITY, then we abandon the search. FUTILITY should be
chosen to correspond to a threshold such that any solution

with a cost above it is too expensive to be practical, even if it
could ever be found. Now we can state the algorithm.

Algorithm: Problem Reduction

1. Initialize the graph to the starting node.

2. Loop until the starting node is labeled SOLVED or until its

cost goes above FUTILITY:

(a) Traverse the graph, starting at the initial node and following

the current best path, and accumulate the set of nodes that
are on that path and have not yet been expanded or labeled as
solved.

(b) Pick one of these unexpanded nodes and expand it. If there
are no successors, assign FUTILITY as the value of this node.

Otherwise, add its successors to the graph and for each of
them compute /' (use only h' and ignore g, for reasons we
discuss below). If/' of any node is 0, mark that node as

SOLVED.

(c) Change the estimate of the newly expanded node to reflect

the new information provided by its successors. Propagate this
change backward through the graph. If any node contains a
successor arc whose descendants are all solved, label the node

itself as SOLVED. At each node that is visited while going up

 Artificial
 Intelligence

 NOTES

83

the graph, decide which of its successor arcs is the most
promising and mark it as part of the current best path. This

may cause the current best path to change. This propagation
of revised cost estimates back up the tree was not necessary in

the best-first search algorithm because only unexpanded
nodes were examined. But now expanded nodes must be
reexamined so that the best current path can be selected. Thus

it is important that their/' values be the best estimates
available.

This process is illustrated in Figure 2.8. At step 1, A is the only
node, so it is at the end of the current best path. It is
expanded, yielding nodes B, C, and D. The arc to D is labeled

as the most promising one emerging from A, since it costs 6
compared to B and C, which costs 9. (Marked arcs are

indicated in the figures by arrows.) In step 2, node D is chosen
for expansion. This process produces one new arc, the AND arc
to E and F, with a combined cost estimate of 10. So we update

the/' value of D to 10. Going back one more level, we see that
this makes the AND arc B-C better than the arc to D, so it is

labeled as the current best path. At step 3, we traverse that arc
from A and discover the unexpanded nodes B and C. If we are
going to find a solution along this path, we will have to expand

both B and C eventually, so let's choose to explore B first. This
generates two new arcs, the ones to G and to H. Propagating

their/' values backward, we update/' of B to 6 (since that is
the best we think we can do, which we can achieve by going
through G). This requires updating the cost of the AND arc B-C

to 12 (6+4+2). After doing that, the arc to D is again the better
path from A, so we record that as the current best path and

either node E or node F will be chosen for expansion at step 4.
This process continues until either a solution is found or all
paths have led to dead ends, indicating that there is no

solution.

In addition to the difference discussed above, there is a second

important way in which an algorithm for searching an AND-OR
graph must differ from one for searching an OR graph. This
difference, too, arises from the fact that individual paths from

node to node cannot be considered independently of the paths
through other nodes connected

 Artificial
 Intelligence

 NOTES

84

Figure 2.8: The Operation of Problem Reduction

to the original ones by AND arcs. In the best-first search
algorithm, the desired path from one node to another was
always the one with the lowest cost. But this is not always the

case when searching an AND-OR graph.

Consider the example shown in Figure 2.9(a). The nodes were

generated in alphabetical order. Now suppose that node J is
expanded at the next step and that one of its successors is
node E, producing the graph shown in Figure 2.9(b). This new

path to E is longer than the previous path to E going through
C. But since the path through C will only lead to a solution if

there is also a solution to D, which we know there is not, the
path through J is better.

There is one important limitation of the algorithm we have just

described. It fails to take into account any interaction between
sub goals. A simple example of this failure is shown in Figure

 Artificial
 Intelligence

 NOTES

85

2.10. Assuming that both node C and node E ultimately lead to
a solution, our algorithm will report a complete solution that

includes both of them. The AND-OR graph states that for A to
be solved, both C and D must he solved. But then the

algorithm considers the solution of D as a completely separate
process from the solution of C. Looking just at the alternatives
from D, E is the best path. But it turns out that C is necessary

anyway, so it would be better also to use it to satisfy D. But
since our algorithm does not consider such interactions, it will

find a nonoptimal path. problem-solving methods that can
consider interactions among subgoals art presented.

Figure 2.10: Interacting Subgoals

 Artificial
 Intelligence

 NOTES

86

2.4.2 The AO* Algorithm

The problem reduction algorithm we just described is a

simplification of an algorithm described in Martelli and
Montanari [1973],MartelliandMontanari [1978],and Nilsson

[)980]. Nilsson calls it the AO* algorithm, the name we assume.

Rather than the two lists, OPEN and CLOSED, that were used
in the A* algorithm, the AO* algorithm will use a single

structure GRAPH, representing the pan of the search graph
that has been explicitly generated so far. Each node in the

graph will point both down to its immediate successors and up
to its immediate predecessors. Each node in the graph will also
have associated with it an h' value, an estimate of the cost of a

path from itself to a set of solution nodes. We will not store g
(the cost of getting from the start node to the current node) as

we did in the A* algorithm. It is not possible to compute a
single such value since there may be many paths to the same
state. And such a value is not necessary because of the top-

down traversing of the best-known path, which guarantees
that only nodes that are in the best path will ever be

considered for expansion. So h' will serve as the estimate of
goodness of a node.

Algorithm: AO*

1. Let GRAPH consist only <>the node representing the initial
state. (Call this node INIT.) Compute h'(/NIT),

2. Until INIT is labeled SOLVED or until INlT's h' value
becomes greater than FUTILITY, repeat the following
procedure:

(a) Trace the labeled arcs from INIT and select for expansion
one of the as yet unexpanded nodes that occurs on this path.

Call the selected node NODE.

(b) Generate the successors of NODE. If there are none, then
assign FUTILITY as the h' value of NODE. This is equivalent to

saying that NODE is not solvable. If there are successors, then

 Artificial
 Intelligence

 NOTES

87

for each one (called SUCCESSOR) that is not also an ancestor
of NODE do the following:

i. Add SUCCESSOR to GRAPH. ii. If SUCCESSOR is a terminal

ii. node, label it SOLVED and assign it an h' value of 0.

iii. If SUCCESSOR is not a terminal node, compute its h'
value.

(c) Propagate the newly discovered information up the graph by

doing the

following: Let S be a set of nodes that have been labeled

SOLVED or whose h' values have been changed and so need to
have values propagated back to their parents. Initialize 5 to
NODE. Until S is empty, repeat the following procedure:

i. If possible, select from S a node none of whose descendants
in GRAPH occurs in S. If there is no such node, select any

node from S. Call thisnode CURRENT, and remove it from S.

ii. Compute the cost of each of the arcs emerging from
CURRENT. The cost of each arc is equal to the sum of the h'

values of each of the nodes at the end of the arc plus whatever
the cost of the arc itself is. Assign as CURRENT'S new h' value

the minimum of the costs just computed for the arcs emerging
from it.

iii. Mark the best path out of CURRENT by marking the arc

that had the minimum cost as computed in the previous step.

iv. Mark CURRENT SOLVED if all of the nodes connected to it

through the new, labeled arc have been labeled SOLVED.

v. If CURRENT has been labeled SOLVED or if the cost of
CURRENT was just changed, then its new status must be

propagated back up the graph. So add all of the ancestors of
CURRENT to S.

 Artificial
 Intelligence

 NOTES

88

It is worth noticing a couple of points about the operation of
this algorithm. In step 2(c)v, the ancestors of a node whose

cost was altered are added to the set of nodes whose costs
must also be revised. As stated, the algorithm will insert all the

node's ancestors' into the set, which may result in the
propagation of the cost change back up through a large
number of paths that are already known not to be very good.

For example. in Figure 2.11, it is clear that the path through C
will always be better than the path through B, so work

expended on the path through B is wasted. But if the cost of E
is

Figure 2.11: An Unnecessary Backward Propagation

revised and that change is not propagated up through B as

well as through C, B may appear to be better. For example, if,
as a result of expanding node E, we update its cost to 10, then

the cost of C will be updated to 11. If this is all that is done,
then when A is examined, the path through B will have a cost
of only 11 compared to 12 for the path through C, and it will

be labeled erroneously as the most promising path. In this
example, the mistake might be detected at the next step,

during which D will be expanded. If its cost changes and is
propagated back to B, B's cost will be recomputed and the new
cost of E will be used. Then the new cost of B will propagate

back to A. At that point, the path through C will again be
better. All that happened was that some time was wasted in

expanding D. But if the node whose cost has changed is
farther down in the search graph, the error may never be
detected. An example of this is shown in Figure 2.12(a). If the

cost of G is revised as shown in Figure 2.12(b) and if it is not
immediately propagated back to E, then the change will never

be recorded and a nonoptimal solution through B may be
discovered.

 Artificial
 Intelligence

 NOTES

89

A second point concerns the termination of the backward cost
propagation of step 2(c). Because GRAPH may contain cycles,

there is no guarantee that this process will terminate simply
because it reaches the "top" of the graph. It turns out that the

process can be guaranteed to terminate for a different reason,
though.

2.5 Constraint Satisfaction

Many problems in AI can be viewed as problems of constraint
satisfaction in which the goal is to discover some problem state

that satisfies a given set of constraints. Examples of this sort of
problem include crypt arithmetic puzzles (as described in
Section 1.6) and many real-world perceptual labeling

problems. Design tasks can also be viewed as constraint-
satisfaction problems in which a design must be created within

fixed limits on time, cost, and materials.

By viewing a problem as one of constraint satisfaction, it is
often possible to reduce substantially the amount of search

that is required as compared with a method that attempts to
form partial solutions directly by choosing specific values for

components of the eventual solution. For example, a
straightforward search procedure to solve a crypt arithmetic
problem might operate in a state space of partial solutions in

which letters are assigned particular numbers as their values.
A depth-first control scheme could then follow a path of

assignments until either a solution or an inconsistency is
discovered. In contrast to this, a constraint satisfaction
approach to solving this problem avoids making guesses on

particular assignments of numbers to letters until it has to.
Instead, the initial set of constraints, which says that each

number may correspond to only one letter and that the sums
of the digits must be as they are given in the problem, is first
augmented to include restrictions that can be inferred from the

rules of arithmetic. Then, although guessing may still be
required, the number of allowable guesses is reduced and so

the degree of search is curtailed.

 Artificial
 Intelligence

 NOTES

90

Figure 2.12: A Necessary Backward Propagation

Constraint satisfaction is a search procedure that operates in a

space of constraint sets. The initial state contains the
constraints that are originally given in the problem description.

A goal state is any state that has been constrained "enough,"
where "enough" must be defined for each problem. For
example, for crypt arithmetic, enough means that each letter

has been assigned a unique numeric value.

Constraint satisfaction is a two-step process. First, constraints

are discovered and propagated as far as possible throughout
the system. Then, if there is still not a solution, search begins.
A guess about something is made and added as a new

constraint. Propagation can then occur with this new
constraint, and so forth.

The first step, propagation, arises from the fact that there are
usually dependencies among the constraints. These
dependencies occur because many constraints involve more

than one object and many objects participate in more than one
constraint. So, for example, assume we start with one

constraint, N = E + I. Then. if we added the constraint N = 3,

 Artificial
 Intelligence

 NOTES

91

we could propagate that to get a stronger constraint on E,
namely E = 2. Constraint propagation also arises from the

presence of inference rules that allow additional constraints to
be inferred from the ones that are given. Constraint

propagation terminates for one of two reasons. First, a
contradiction may be detected. If this happens, then there is
no solution consistent with all the known constraints. If the

contradiction involves only those constraints that were given
as part of the problem specification (as opposed to ones that

were guessed during problem solving), then no solution exists.
The second possible reason for termination is that the
propagation has run out of steam and there are no further

changes that can be made on the basis of current knowledge. If
this happens and a solution has not yet been adequately

specified, then search is necessary to get the process moving
again.

At this point, the second step begins. Some hypothesis about a

way to strengthen the constraints must be made. In the case of
the crypt arithmetic problem, for example, this usually means

guessing a particular value for some letter. Once this has been
done, constraint propagation can begin again from this new
state. If a solution is found, it can be reported. If still more

guesses are required, they can be made. If a contradiction is
detected, then backtracking can be used to try a different

guess and proceed with it. We can state this procedure more
precisely as follows:

Algorithm: Constraint Satisfaction

1. Propagate available constraints. To do this, first set OPEN to
the set of all objects that must have values assigned to them in

a complete solution. Then do until an inconsistency is detected
or until OPEN is empty:

(a) Select an object OB from OPEN. Strengthen as much as

possible the set of constraints that apply to OB.

(b) If this set is different from the set that was assigned the last

time OB was examined or if this is the first time OB has been

 Artificial
 Intelligence

 NOTES

92

examined, then add to OPEN all objects that share any
constraints with OB.

(c) Remove OB from OPEN.

2. If the union of the constraints discovered above defines a

solution, then quit and report the solution.

3. If the union of the constraints discovered above defines a
contradiction, then return failure.

4. If neither of the above occurs, then it is necessary to make a
guess at something in order to proceed. To do this, loop until a

solution is found or all possible solutions have been
eliminated:

(a) Select an object whose value is not yet determined and

select a way of strengthening the constraints on that object.

(b) Recursively invoke constraint satisfaction with the current

set of constraints augmented by the strengthening constraint
just selected.

This algorithm has been stated as generally as possible. To

apply it in a particular problem domain requires the use of two
kinds of rules: rules that define the way constraints may

validly be propagated and rules that suggest guesses when
guesses are necessary. It is worth noting, though, that in some
problem domains guessing may not be required. For example,

the Waltz algorithm for propagating line labels in a picture is a
version of this constraint satisfaction algorithm with the

guessing step eliminated. In general, the more powerful the
rules for propagating constraints, the less need there is for
guessing.

 Artificial
 Intelligence

 NOTES

93

Figure 2.13: A Crypt arithmetic Problem

To see how this algorithm works, consider the crypt

arithmetic problem shown in Figure 2.13. The goal state is a
problem state in which all letters have been assigned a digit in

such a way that all the initial constraints are satisfied.

The solution process proceeds in cycles. At each cycle, two
significant things are done (corresponding to steps 1 and 4 of

this algorithm):

1. Constraints are propagated by using rules that correspond

to the properties of arithmetic.

2. A value is guessed for some letter whose value is not yet
determined.

In the first step, it does not usually matter a great deal what
order the propagation is done in, since all available

propagations will be performed before the step ends. In the
second step, though, the order in which guesses are tried may
have a substantial impact on the degree of search that is

necessary. A few useful heuristics can help to select the best
guess to try first. For example, if there is a letter that has only

two possible values and another with six possible values, there

 Artificial
 Intelligence

 NOTES

94

is a better chance of guessing right on the first than on the
second. Another useful heuristic is that if there is a letter that

participates in many constraints then it is a good idea to prefer
it to a letter that participates in a few. A guess on such a

highly constrained letter will usually lead quickly either to a
contradiction (if it is wrong) or to the generation of many
additional constraints (if it is right), A guess on a less

constrained letter, on the other hand, provides less
information.

The result of the first few cycles of processing this example is
shown in Figure 2.14. Since constraints never disappear at
lower levels, only the ones being added are shown for each

level. It will not be much harder for the problem solver to
access the constraints as a set of lists than as one long list,

and this approach is efficient both in terms of storage space
and the ease of backtracking. Another reasonable approach for
this problem would be to store all the constraints in one

central database and also to record at each node the changes
that must be undone during backtracking. Cl, C2, C3, and C4

indicate the carry bits out of the columns, numbering from the
right. Initially, rules for propagating constraints generate the
following additional constraints:

• M = 1, since two single-digit numbers plus a carry cannot
total more than 19.

• S = 8 or 9, since S + M + C3 > 9 (to generate the carry) and
M = 1, S + 1 + C3 > 9, so S + C3 > 8 and C3 is at most 1.

•; 0=0, since S +M(1) + C3 (<= 1) must be .at least 10 to

generate a carry and it can be at most 11. But M is already
1, so 0 must be 0.

• N = E or E + 1, depending on the value of C2. But N
cannot have the same value as E. So N = E + 1 and C2 is
1.

• In order for C2 to be 1, the sum of N + R + Cl must be
greater than 9, so N + R must be greater than 8.

 Artificial
 Intelligence

 NOTES

95

• N + R cannot be greater than 18, even with a carry in, so E
cannot be 9.

At this point, let us assume that no more constraints can be
generated. Then, to make progress from here, we must guess.

Suppose E is assigned the value 2. (We chose to guess a value
for E because it occurs three times and thus interacts highly
with the other letters.) Now the next cycle begins.

The constraint propagator now deserves that:

• N = 3, since N = E + 1.

• R= 8 or 9, since R+N (3)+C1 (1 or O) = 2 or 12. But since N
is already 3, the sum of these nonnegative numbers cannot
be less than 3. Thus R + 3 + (0 or 1) = 12 and R =8 or 9.

• 2 + D = Y or 2 + D = 10 + Y, from the sum in the rightmost
column.

Again, assuming no further constraints can be generated, a
guess is required. Suppose Cl is chosen to guess a value for. If
we try the value 1, then we eventually reach dead ends, as

shown in the figure. When this happens, the process will
backtrack and Cl =0.

A couple of observations are worth making on this process.
Notice that all that is required of the constraint propagation
rules is that they not infer spurious constraints. They do not

nave to infer all legal ones. For example, we could have
reasoned through to the result that Cl equals 0. We could have

done so by observing that for Cl to be 1, the following must
hold: 2 + D = 10 + Y. For this to be the case, D would have to
be 8 or 9. But both S and R must be either 8 or 9 and three

letters cannot share two values. So Cl cannot be 1. If we-had
realized this initially, some search could have been avoided.

But since the constraint propagation rules we used were not
that sophisticated,

 Artificial
 Intelligence

 NOTES

96

Figure 2.14: Solving a Cryptarithmetic problem

it took some search. Whether the search route takes more or
less actual time than does the constraint propagation route
depends on how long it takes to perform the reasoning

required for constraint propagation.

A second thing to notice is that there are often two kinds of

constraints. The first kind is simple; they just list possible
values for a single object. The second kind is more complex;
they describe relationships between or among objects. Both

kinds of constraints play the same role in the constraint
satisfaction process, and in the cryptarithmetic example they

were treated identically. For some problems, however, it may

 Artificial
 Intelligence

 NOTES

97

be useful to represent the two kinds of constraints differently.
The simple, value-listing constraints are always dynamic, and

so must always be represented explicitly in each problem state.
The more complicated, relationship-expressing constraints are

dynamic in the cryptarithmetic domain since they are different
for each cryptarithmetic problem. But in many other domains
they are static. For example, in the Waltz line labeling

algorithm, the only binary constraints arise from the nature of
the physical world, in which surfaces can meet in only a fixed

number of possible ways. These ways are the same for all
pictures that that algorithm may see. Whenever the binary
constraints are static, it may be computationally efficient not

to represent them explicitly in the state description but rather
to encode them in the algorithm directly. When this is done,

the only things that get propagated are possible values. But
the essential algorithm is the same in both cases.

So far, we have described a fairly simple algorithm for

constraint satisfaction in which chronological backtracking is
used when guessing leads to an inconsistent set of constraints.

An alternative is to use a more sophisticated scheme in which
the specific cause of the inconsistency is identified and only
constraints that depend on that culprit are undone. Others,

even though they may have been generated after the culprit,
are left alone if they are independent of the problem and its

cause. This approach is called dependency-directed
backtracking (DDB).

2.6 Means-Ends Analysis

So far, we have presented a collection of search strategies that
can reason either forward or backward, but for a given

problem, one direction or the other must be chosen. Often,
however, a mixture of the two directions is appropriate. Such a
mixed strategy would make it possible to solve the major parts

of a problem first and then go back and solve the small
problems that arise in "gluing" the big pieces together. A

technique known as means-ends analysis allows us to do that.

The means-ends analysis process centers around the detection
of differences between the current state and the goal state.

 Artificial
 Intelligence

 NOTES

98

Once such a difference is isolated, an operator that can reduce
the difference must be found. But perhaps that operator

cannot be applied to the current state. So we set up a
subproblem of getting to a state in which it can be applied. The

kind of backward chaining in which operators are selected and
then subgoals are set up to establish the preconditions of the
operators is called operator subgoaling. But maybe the

operator does not produce exactly the goal state we want. Then
we have a second subproblem of getting from the state it does

produce to the goal. But if the difference was chosen correctly
and if the operator is really effective at reducing the difference^
then the two subproblems should be easier to solve than the

Figure 2.15: The Robot's Operators

original problem. The means-ends analysis process can then
be applied recursively. In order to focus the system's attention

on the big problems first, the differences can be assigned
priority levels. Differences of higher priority can then be

considered before lower priority ones.

The first AI program to exploit means-ends analysis was the
General Problem Solver (GPS) [Newell and Simon, 1963;-Ernst

and Newell, 1969]. Its design was motivated by the observation

 Artificial
 Intelligence

 NOTES

99

that people often use this technique when they solve problems.
But GPS provides a good example of the fuzziness of the

boundary between building programs that simulate what
people do and building programs that simply solve a problem

any way they can.

Just like the other problem-solving techniques we have
discussed, means-ends analysis relies on a set of rules that

can transform one problem state into another. These rules are
usually not represented with complete state descriptions on

each side. Instead, they are represented as a left side that
describes the conditions that must be met for the rule to be
applicable (these conditions are called the rule's preconditions)'

and a right side that describes those aspects of the problem
state that will be changed by the application of the rule. A

separate data structure called a difference table indexes the
rules by the differences that they can be used to reduce.

Consider a simple household robot domain. The available

operators are shown in Figure 2.15, along with their
preconditions and results. Figure 2.16 shows the difference

table that describes when each of the operators is appropriate.
Notice that sometimes there may be more than one operator
that can reduce a given difference and that a given operator

may be able to reduce more than one difference.

Suppose that the robot in this domain were given the problem

of moving a desk with two things on it from one room to
another. The objects on top must also be moved. The

Figure 2.16: A Difference Table

 Artificial
 Intelligence

 NOTES

100

Figure 2.17: The Progress of the Means-Ends
Analysis Method

main difference between the start state and the goal state
would be the location of the desk. To reduce this difference,
either PUSH or CARRY could be chosen. If CARRY is chosen

first, its preconditions must be met. This results in two more
differences that must be reduced: the location of the robot and

the size of the desk. The location of the robot can be handled
by applying WALK, but there are no operators than can change
the size of an object (since we did not include SAW-APART). So

this path leads to a dead-end. Following the other branch, we
attempt to apply PUSH. Figure 2.17 shows the problem solver's

progress at this point. It has found a way of doing something
useful. But it is not yet in a position to do that thing. And the
thing does not get it quite to the goal state. So now the

differences between A and B and between C and D must be
reduced.

PUSH has four preconditions, two of which produce differences
between the start and the goal states: the robot must be at the
desk, and the desk must be clear. Since the desk is already

large, and the robot's arm is empty, those two preconditions
can be ignored. The robot can be brought to the correct

location by using WALK. And the surface of the desk can be
cleared by two uses of PICKUP. But after one PICKUP, an
attempt to do the second results in another difference—the

arm must be empty. PUTDOWN can be used to reduce that
difference.

Once PUSH is performed, the problem state is close to the goal
state, but not quite. The objects must be placed back on the
desk. PLACE will put them there. But it cannot be applied

immediately. Another difference must be eliminated, since the
robot must be holding the objects. The progress of the problem

solver at this point is shown in Figure 2.18.

 Artificial
 Intelligence

 NOTES

101

The final difference between C and E can be reduced by using
WALK to get the robot back to the objects, followed by PICKUP

and CARRY.

The process we have just illustrated (which we call MEA for

short) can be summarized as follows:

Figure 2.18: More Progress of the Means-Ends Method

Algorithm: Means-Ends Analysis (CURRENT, GOAL)

1. Compare CURRENT to GOAL. If there are no differences

between them then return.

2. Otherwise, select the most important difference and reduce
it by doing the following until success or failure is signaled:

(a) Select an as yet untried operator 0 that is applicable to the
current difference. If there are no such operators, then signal

failure.

(b) Attempt to apply 0 to CURRENT. Generate descriptions of
two states:

0-START, a state in which 0's preconditions are satisfied
and 0-RESULT, the state that would result if 0 were

applied in 0-START.

(c) If (FIRST-PART <- MEA(.CURRENT, 0-START)) and

(LAST-PART <- MEA(0-RESULT, GOAL))

 Artificial
 Intelligence

 NOTES

102

are successful, then signal success and return the result of
concatenating

FIRST-PART, 0, and LAST-PART.

Many of the details of this process have been omitted in this

discussion. In particular, the order in which differences are
considered can be critical. It is important that significant
differences be reduced before less critical ones. If this is not

done. a great deal of effort may be wasted on situations that
take care of themselves once the main parts of the problem are

solved.

The simple process we have described is usually not adequate
for solving complex problems. The number of permutations of

differences may get too large. Working on one difference may
interfere with the plan for reducing another. And in complex

worlds, the required difference tables would be immense. In
Chapter 13 we look at some ways in which the basic means-
ends analysis approach can be extended to tackle some of

these problems.

2.7 Summary

We listed four steps that must be taken to design a program to
solve an AI problem. The first two steps were:

1. Define the problem precisely. Specify the problem space,

the operators for moving within the space, and the starting
and goal state(s).

2. Analyze the problem to determine where it falls with
respect to seven important issues.

The other two steps were to isolate and represent the task

knowledge required, and to choose problem solving techniques
and apply them to the problem. In this chapter, we began our

discussion of the last step of this process by presenting some
general-purpose, problem-solving methods. There are several
important ways in which these algorithms differ, including:

 Artificial
 Intelligence

 NOTES

103

• What the states in the search space(s) represent.
Sometimes the states represent complete potential

solutions (as in hill climbing). Sometimes they represent
solutions that are partially specified (as in constraint

satisfaction).

• How, at each stage of the search process, a state is
selected for expansion.

• How operators to be applied to that node are selected.

• Whether an optimal solution can be guaranteed.

• Whether a given state may end up being considered more
than once.

• How many state descriptions must be maintained

throughout the search process.

• Under what circumstances should a particular search path

be abandoned.

In the chapters that follow, we talk about ways that knowledge
about task domains can be encoded in problem-solving

programs and we discuss techniques for combining problem-
solving techniques with knowledge to solve several important

classes of problems.

2.8. Model Questions

1. Discuss about Means – ends Analysis

2. when would best-first search be worse than sinple
breadth-first search.

3. suppose we have a problem that we intend to solve using

a heuristic best-first search procedure. We need to
decide whether to implement it as a tree search or as a
graph search. Suppose that we know that on the

 Artificial
 Intelligence

 NOTES

104

average, each distinct node will be generated N times
during the search process. We also know that if we use a

graph, it will take, on the average, the same amount of
time to check a node to see if it has already been

generated as it takes to process M nodes if no checking
is done. How can we describe whether to use a tree or a
graph? In addition to the parameters N and M. what

other assumptions must be made?

4. describe the behavior of a revised of the steepest ascent
hill climbing algorithm in which step 2© is replaced by

―set current state to best successor‖.

5. formalize the graceful decay of admissibility corollary
and prove that it is true of the A* algorithm

6. consider again the AO* algorithm. Under what

circumstances will it happen that there are nodes in S
but there are no nodes in S that have no descendants
also in S?

7. the constraint satisfaction procedure we have described

performs depth-first search whenever some kind of
search is necessary. But depth-first is not the only way

to conduct such a search

a. rewrite the constraint satisfaction procedure to
use breadth-first search

b. rewrite the constraint satisfaction procedure to

use best-first search

7. show how means-ends analysis could be used to solve the
problem of getting from one place to another, assume that the
available operates are walk drive, take the bus, take a cab and

fly.

 Artificial
 Intelligence

 NOTES

105

UNIT – III

USING PREDICATE LOGIC

I In this chapter, we begin exploring one particular way of
representing facts—the language of logic. Other
representational formalisms are discussed in later chapters.

The logical formalism is appealing because it immediately
suggests a'powerful way of deriving new knowledge from old—
mathematical deduction. In this formalism, we can conclude

that a new statement is true by proving that it follows from the
statements that are already known. Thus the idea of a proof,

as developed in mathematics as a rigorous way of
demonstrating the truth of an already believed proposition, can
be extended to include deduction as a way of deriving answers

to questions and solutions to problems.

One of the early domains in which AI techniques were explored

was mechanical theorem proving, by which was meant proving
statements in various areas of mathematics. For example, the
Logic Theorist proved theorems from the tirst chapter of

Whitehead and Russell's Principia Mathematica [1950]. Another
iheorem prover proved theorems in geometry. Mathematical

theorem proving is still an active area of AI research. But, as
we sh6w in this chapter, the usefulness of some mathematical

techniques extends well beyond the traditional scope of
mathematics. It turns out that mathematics is no different
from any other complex intellectual endeavor in requiring both

reliable deductive mechanisms and a mass of heuristic
knowledge to control what would otherwise be a completely

intractable search problem.

At this point, readers who are unfamiliar with prepositional
and predicate logic may want to consult a good introductory

logic text before reading the rest of this chapter. Readers who
want a more complete and formal presentation of the material

 Artificial
 Intelligence

 NOTES

106

in this chapter should consult Chang and Lee [1973].
Throughout the chapter, we use the following standard logic

symbols: "—»" (material implication}, "-i" (not), "V" (or), "A" (and),
"V" (for all), and "3" (there exists).

3.1 Representing Simple Facts in Logic

Let's first explore the use of prepositional logic as a way of

representing the sort of world knowledge that an AI system
might need. Prepositional logic is appealing because it is
simple to deal with and a decision procedure for it exists. We

can easily

It is raining.

RAINING

It is sunny.

SUNNY

It is windy.
WINDY

If it is raining, then it is not
sunny. RAINING -> -. SUNNY

Figure 3.1: Some Simple Facts in Prepositional Logic

represent real-world facts as logical propositions written as
well-formed formulas (wffs) in prepositional logic, as shown in

Figure 3.1. Using these propositions, we could, for example,
conclude from the fact that it is raining the fact that it is not

sunny. But very quickly we run up against the limitations of
prepositional logic. Suppose we want to represent the obvious
fact stated by the classical sentence

Socrates is a man. We
could write:

SOCRATESMAN But if we also
wanted to represent

PIatu is a man. we would have to write something such as:

 Artificial
 Intelligence

 NOTES

107

PLATOMAN

which would be a totally separate assertion, and we would not

be able to draw any conclusions about similarities between
Socrates and Plato. It would be much better to represent these

facts as:

MAN(SOCRATES) MAN(PLATO)

since now the structure of the representation reflects the

structure of the knowledge itself. But to do that, we need to be
able to use predicates applied to arguments. We are in even

more difficulty if we try to represent the equally classic
sentence

All men are mortal. We
could represent this as:

MORTALMAN

But that fails to capture the relationship between any
individual being a man and that individual being a mortal. To

do that, we really need variables and quantification unless we
are willing to write separate statements about the mortality of
every known man.

So we appear to be forced to move to first-order predicate logic
(or just predicate logic, since we do not discuss higher order

theories in this chapter) as a way of representing knowledge
because it permits representations of things that cannot
reasonably be represented in prepositional logic. In predicate

logic, we can represent real-world facts as statements written
as wff's.

But a major motivation for choosing to use logic at all is that if
we use logical statements as a way of representing knowledge,

then we have available a good way of reasoning with that
knowledge. Determining the validity of a proposition in
prepositional logic is straightforward, although it may be

computationally hard. So before we adopt predicate logic as a
good medium for representing knowledge, we need to ask

 Artificial
 Intelligence

 NOTES

108

whether it also provides a good way of reasoning with the
knowledge. At first glance, the answer is yes. It provides a way

of deducing new statements from old ones. Unfortunately,
however, unlike prepositional logic, it does not possess a

decision procedure, even an exponential one. There do exist
procedures that will find a proof of a proposed theorem if
indeed it is a theorem. But these procedures are not

guaranteed to halt if the proposed statement is not a theorem.
In other words, although first-order predicate logic is not

decidable, it is semidecidable. A simple such procedure is to
use the rules of inference to generate theorems from the
axioms in some orderly fashion, testing each to see if it is the

one for which a proof is sought. This method is not particularly
efficient, however, and we will want to try to find a better one.

Although negative results, such as the fact that there can exist
no decision procedure for predicate logic, generally have little
direct effect on a science such as AI, which seeks positive

methods for doing things, this particular negative result is
helpful since it tells us that in our search for an efficient proof

procedure, we should be content if we find one that will prove
theorems, even if it is not guaranteed to halt if given a
nontheorem. And the fact that there cannot exist a decision

procedure that halts on all possible inputs does not mean that
there cannot exist one that will halt on almost all the inputs it

would see in the process of trying to solve real problems. So
despite the theoretical undecidability of predicate logic, it can
still serve as a useful way of representing and manipulating

some of the kinds of knowledge that an AI system might need.

Let's now explore the use of predicate logic as a way of

representing knowledge by looking at a specific example.
Consider the following set of sentences

1. Marcus was a man.

2. Marcus was a Pompeian.

3. All Pompeians were Romans.

4. Caesar was a ruler.

3. All Romans were either loyal to Caesar or hated him.

 Artificial
 Intelligence

 NOTES

109

6. Everyone is loyal to someone.

7. People only try to assassinate rulers they are not loyal to.

8. Marcus triedio assassinate Caesar.

The facts described by these sentences can be represented as a
set of wff's in predicate logic as follows:

 1. Marcus was a man.

man(Marcus

This representation captures the critical fact of Marcus being a

man. It fails to, capture some of the information in the English
sentence, namely the notion of past i tense. Whether
this omission is acceptable or not depends on the use to which

we | intend to put the knowledge. For this simple example, it
will be all right.

2. Marcus was a Pompeian.
Pompeian (Marcus)

3. All Pompeians were Romans.

 VJT : Pompeian(x) —> Roman(x)

4. Caesar was a ruler.

ruler(Caesar)

Here we ignore the fact that proper names are often not
references to unique individuals, since many people share the

same name. Sometimes deciding which of several people of the
same name is being referred to in a particular statement may

require a fair amount of knowledge and reasoning.

3. All Romans were either loyal to Caesar or hated
him.

 Roman(x) —» loyalto(x. Caesar) V hate(x, Caesar)

In English, the word "or" sometimes means the logical

inclusive-or and sometimes means the logical exclusive-or

 Artificial
 Intelligence

 NOTES

110

(XOR). Here we have used the inclusive interpretation. Some
people will argue, however, that this English sentence is really

stating an.exclusive-or. To express that, we would have to
write:

VJ: : Roman(x) -> [(loyallo(x, Caesar) V
hate(x, Caesar)) A -i(loyallo(x, Caesar)
A hate(x. Caesar))]

6. Everyone is loyal to someone.

V.r : 3y : loyalto(x, y)

A.major problem that arises when trying to convert English

sentences into logical statements is the scope of quantifiers.
Does this sentence say, as we have assumed in writing the

logical formula above, that for each person there exists
someone to

whom he or she is loyal, possibly a different someone for

everyone? Or does it say that there exists someone to
whom everyone is loyal (which would be written as 3y : VJT

: loyalto(x,y)Y! Often only one of the two interpretations
seems likely, so people tend to favor it.

7. People only try to assassinate rulers they are not loyal
to.

V.< : Vy : person(x) A rulerty) A tryassassinate(x, y) —»

~iloyalto{x,y)

This sentence, too, is ambiguous. Does it mean that the

only rulers that people try to assassinate are those to
whom they are not loyal (the interpretation used here), or
does it mean that the only thing people try to do is to

assassinate rulers to whom they are not loyal?

In representing this sentence the way we did, we have

chosen to write "try to assassinate" as a single predicate.
This gives a fairly simple representation with which we can
reason about trying to assassinate. But using this

representation, the connections between trying to

 Artificial
 Intelligence

 NOTES

111

assassinate and trying to do other things and between
trying to assassinate and actually assassinating could not

be made easily. If such connections were necessary, we
would need to choose a different representation.

8. Marcus tried to assassinate
Caesar.
tryassassinate(Marcus,
Caesar}

From this brief attempt to convert English sentences into

logical statements, it should be clear how difficult the task is.
For a good description of many issues involved in this process.

Now suppose that we want to use these statements to answer

the question

Was Marcus loyal to Caesar?

It seems that using 7 and 8, we should be able to prove that
Marcus was not loyal to Caesar (again ignoring the distinction
between past and present tense). Now let's try to produce a

formal proof, reasoning backward from the desired goal:

-iloyalto(Marcus, Caesar)

In order to prove" the goal, we need to use the rules of
inference to transform it into another goal (or possibly a set of
goals) that can in turn be transformed, and so on, until there

are no unsatisfied goals remaining. This process may require
the search of an AND-OR graph (as described in Section 3.4)

when there are alternative ways of satisfying individual goals.
Here, for simplicity, we show only a single path. Figure 3.2
shows an attempt to produce a proof of the goal by reducing

the set of necessary but as yet unattained goals to the empty
set. The attempt fails, however, since there is no way to satisfy

the goal person(Marcus) with the statements we have available.

The problem is that, although we know that Marcus was a
man, we do not have any way to conclude from that that

Marcus was a person. We need to-add the representation of
another fact to our system, namely:

 Artificial
 Intelligence

 NOTES

112

Figure 3.2: An Attempt to Prove -iloyalto(Marcus, Caesar)

9. All men are people.

VJC : man(x) —» person(x)

Now we can satisfy the last goal and produce a proof that
Marcus was not loyal to Caesar.

From this simple example, we see that three important issues
must be addressed in the process of converting English

sentences into logical statements and then using those
statements to deduce new ones:

• Many English sentences are ambiguous (for example, 5,6,

and 7 above). Choosing the correct interpretation may be
difficult.

• There is often a choice of how to represent the knowledge (as
discussed in connection with 1, and 7 above). Simple
representations are desirable, but they may preclude certain

kinds of reasoning. The expedient" representation for a
particular set of sentences depends on the use to which the

knowledge contained in the sentences will be put.

• Even in very simple situations, a set of sentences is unlikely
to contain all the information necessary to reason about the

topic at hand. In order to be able to use a set of statements
effectively, it is usually necessary to have access to another set

 Artificial
 Intelligence

 NOTES

113

of statements that represent facts that people consider too
obvious to mention.

An additional problem arises in situations where we do not
know in advance which statements to deduce. In the example

just presented, the object was to answer the question "Was
Marcus loyal to Caesar?" How would a program decide whether
it should try to prove

loyalto(Marcus, Caesar) or

-iloyalto{Marcus, Caesar)

There are several -things it could do. It could abandon the
strategy we have outlined of reasoning backward from a
proposed truth to the axioms and instead try to reason

forward and see which answer it gets to. The problem with
this approach is that, in general, the branching factor going

forward from the axioms is so great that it would probably not
get to either answer in any reasonable amount of time. A
second thing it could do is use some sort of heuristic rules for

deciding which answer is more likely and then try to prove
that one first. If it fails to find a proof after some reasonable

amount of effort, it can try the other answer. This notion of
limited effort is important, since any proof procedure we use
may not halt if given a nontheorem. Another thing it could do

is simply try to prove both answers simultaneously and stop
when one effort is successful. Even here, however, if there is

not enough information available to answer the question with
certainty, the program may never halt. Yet a fourth strategy is
to try both to prove one answer and to disprove it, and to use

information gained in one of the processes to guide the other.

3.2 Representing Instance and Isa Relationships

We discussed the specific attributes instance and isa and
described the important role they play in a particularly useful

form of reasoning, property inheritance. But if we look back at
the way we just represented our knowledge about Marcus and
Caesar, we do not appear to have used these attributes at all.

We certainly have not used predicates with those names. Why
not? The answer is that although we have not used the
predicates instance and isa explicitly, we have captured the

 Artificial
 Intelligence

 NOTES

114

relationships they are used to express, namely class
membership and class inclusion.

Figure 3.3 shows the first five sentences of the last section

represented in logic in three different ways. The first pan of the
figure contains the representations we have already discussed.
In these representations, class membership is represented with

unary predicates (such as Roman), each of which corresponds
to a class. Asserting that P(x) is true is equivalent to asserting

that x is an instance (or element) of P. The second pan of the
figure contains representations that use the instance predicate

explicitly. The predicate instance is a binary one, whose first
argument is an object and whose second argument is a class to

which the object belongs. But these representations do not use
an explicit isa predicate. Instead, subclass relationships, such

as that between Pompeians and Romans, are described as
shown in sentence 3. The implication rule there states that if
an object is an instance of the subclass Pompeian then it is an

instance of the superclass Roman. Note that this rule is
equivalent to the standard set-theoretic definition of the

subclass-superclass relationship. The third pan contains
representations that use both the instance and isa predicates

explicitly. The use of the isa predicate simplifies the
representation of sentence 3, but it requires that one

additional axiom (shown here as number 6) be provided. This
additional axiom describes how an instance relation and an isa
relation can be combined to derive a new instance relation.

This one additional axiom is general, though, and does not
need to be provided separately for additional isa relations.

1. man(Marcus)

2. Pompeian(Marcus)

3. VJt: Pompeian(x) —> Roman(x)

4. ruler(Caesar)

3. V.r : Roman(x) —> loyalto(x, Caesar) V hate(x, Caesar)

 Artificial
 Intelligence

 NOTES

115

1. instance(Marcus, man)

2. instance(Marcus, ompeian)

3. V.r : instance(x. Pompeian) —» instancef.x, Roman)

4. instance(Caesar, ruler)

3. VJC : mstance(x. Roman) —> loyalto(x, Caesar) V hale(x,
Caesar)

1. instance(Marcus, man)

2. instance(Marcus, Pompeian)

3. isa(Pompeian, Roman)

4. instance(Caesar, ruler)

3. tx: instance(x, Roman) —> loyalto{x, Caesar) V nate(x,
Caesar)

6. VJT : Vy : Vz : instance(x, y) A i'M(>', 2) —> instance(x,
z)

Figure 3.3: Three Ways of Representing Class Membership

These examples illustrate two points. The first is fairly specific.
It is that, although class and superclass memberships are

important facts that need to be represented, those
memberships need not be represented with predicates labeled
instance and isa. In fact, in a logical framework it is usually

unwieldy to do that, and instead unary predicates
corresponding to the classes are often used. The second point

is more general. There are usually several different ways of
representing a given fact within a particular representational

framework, be it logic or anything else. The choice depends
partly on which deductions need to be supported most
efficiently and partly on taste. The only important thing is that

within a particular knowledge base consistency of
representation is critical. Since any particular inference rule is

designed to work on one particular form of representation, it is
necessary that all the knowledge to which that rule is intended
to apply be in the form that the rule demands. Many errors in

 Artificial
 Intelligence

 NOTES

116

the reasoning performed by knowledge-based programs are the
result of inconsistent representation decisions. The moral is

simply to be careful.

There is one additional point that needs to be made here on

the subject of the use of isa hierarchies in logic-based systems.
The reason that these hierarchies are so important is not that
they permit the inference of superclass membership. It is that

by permitting the inference of superclass membership, they
permit the inference of other properties associated with

membership in that superclass. So, for example, in our sample
knowledge base it is important to be able to conclude that
Marcus is a Roman because we have some relevant knowledge

about Romans, namely that they either hate

Caesar or are loyal to him. we were able to associate knowledge
with superclasses that could then be overridden by more
specific knowledge associated either with individual instances

or with subclasses. In other words, we recorded default values
that could be accessed whenever necessary. For example, there

was a height associated with adult males and a different height
associated with baseball players. Our procedure for
manipulating the isa hierarchy guaranteed that we always

found the correct (i.e., most specific) value for any attribute.
Unfortunately, reproducing this result in logic is difficult.

Suppose, for example, that, in addition to the facts we already
have, we add the following.'

Pompeian(Paulus} -i [loyalto(Paulus,
Caesar) V hate(Paulus, Caesar)]

In other words, suppose we want to make Paulus an exception
to the general rule about Romans and their feelings toward
Caesar. Unfortunately, we cannot simply add these facts to our

existing knowledge base the way we could just add new nodes
into a semantic net. The difficulty is that if the old assertions

are left unchanged, then the addition of the new assertions
makes the knowledge base inconsistent. In order to restore
consistency, it is necessary to modify the original assertion to

 Artificial
 Intelligence

 NOTES

117

which an exception is being made. So our original sentence 5
must become:

VJC : Roman{x) A ~'eq(x, Paulus) —> loyalto(x. Caesar) V
hate(x, Caesar)

In this framework, every exception to a general rule' must be
stated twice, once in a particular statement and once in an
exception list that forms part of the general rule. This makes

the use of general rules in this framework less convenient and
less efficient when there are exceptions than is the use t)f

general rules in a semantic net.

A further problem arises when information is incomplete and it
is not possible to prove that no exceptions apply in a particular

instance.

3.3 Computable Functions and Predicates

In the example we explored in the last section, all the simple
facts were expressed as combinations of individual predicates,

such as:

tryassassinate(Marcus, Caesar)

This is fine if the number of facts is not very large or if the
facts themselves are sufficiently unstructured that there is
little alternative. But suppose we want to express simple facts,

such as the following greater-than and less-than relationships:

' For convenience, we now return to our original notation using

unary predicates to denote class relations.

gt(l,0) /r(0,l) gt(2,l)
lt(l,2) gt(3,2)
/r(2,3)

Clearly we do not want to have to write out the representation

of each of these facts individually. For one thing, there are
infinitely many of them. But even if we only consider the finite
number of them that can be represented, say, using a single

machine word per number, it would be extremely inefficient to

 Artificial
 Intelligence

 NOTES

118

store explicitly a large set of statements when we could,
instead, so easily compute each on& as we need it. Thus it

becomes useful to augment our representation by these
computable predicates. Whatever proof procedure we use, when

it comes Upon one of these predicates, instead of searching for
it explicitly in the database or attempting to deduce it by
further reasoning, we can simply invoke a procedure, which we

will specify in addition to our regular rules, that will evaluate it
and return true or false.

It is often also useful to have computable functions as well as
computable predicates. Thus we might want to be able to
evaluate the truth of

^(2+3,1)

To do so requires that we first compute the value of the plus

function given the arguments 2 and 3, and then send the
arguments 5 and 1 to gt.

The next example shows how these ideas of computable
functions and predicates can be useful. It also makes use of
the notion of equality and allows equal objects tobe substituted

for each other whenever it appears helpful to do so during a
proof.

Consider the following set of facts, again involving Marcus:

1. Marcus was a man.

man(Marcus) Again we ignore the issue of tense.

2. Marcus was a Pompeian.

Pompeian(Marcus)

3. Marcus was born in 40
A.D. horn (Marcus, 40)

For simplicity, we will not represent A.D. explicitly, just as
we normally omit it in everyday discussions. If we ever need
to represent dates B.C., then we will have to decide on a

way to do that, such as by using negative numbers. Notice
that the representation of a sentence does not have to look

 Artificial
 Intelligence

 NOTES

119

like the sentence itself as long as there is a way to convert
back and forth between them. This allows us to choose a

representation, such as positive and negative numbers,
that is easy for a program to work with.

4. All men are mortal.

VJ: : man(x) —> mortal(x)

3. All Pompeians died when the volcano

erupted in 79 A.D. erupted(volcano,79) A ^x :
[Pompeian(x) —> died(x,79)]

This sentence clearly asserts the two facts represented above.
It may also assert another that we have not shown, namely
that the eruption of the volcano caused the death of the

Pompeians. People often assume causality between concurrent
events if such causality seems plausible.

Another problem that arises in interpreting this sentence is
that of determining the referent of the phrase "the volcano."
There is more than one volcano in the world. Clearly the one

referred to here is Vesuvius, which is near Pompeii and
erupted in 79 A.D. In general, resolving references such as

these can require both a lot of reasoning and a lot of additional
knowledge.

6. No mortal lives longer than 150 years.

VA- : Vfi : V/2 : mortal(x) A horn(x,t\) A gt(t-i — ?i;150) —»
dead{x, ti)

There are several ways that the content of this sentence could
be expressed. For example, we could introduce a function age

and assert that its value is never greater than 150. The
representation shown above is simpler, though, and it will
suffice for this example.

7. It is now 1991.
now= 1991

 Artificial
 Intelligence

 NOTES

120

Here we will exploit the idea of equal quantities that can be
substituted for each other.

Now suppose we want to answer the question "Is Marcus
alive?" A quick glance through the statements we have

suggests that there may be two ways of deducing an answer.
Either we can show that Marcus is dead because he was killed
by the volcano or we can show that he must be dead because

he would otherwise be more than 150 years old, which we
know is not possible. As soon as we attempt to follow either of

those paths rigorously, however, we discover, just as we did in
the last example, that we need some additional knowledge. For
example, our statements talk about dying, but they say

nothing that relates to being alive, which is what the question
is asking. So we add the following facts:

8. Alive means not dead.

VJC : Vr: [alive(x, t) —> -^dead(x,t)] A [-'dead(x, t) —> alive(x,
t)]

This is not strictly correct, since -'dead implies alive only for
animate objects. (Chairs can be neither dead nor alive.) Again,

we will ignore this for now. This is an example of the fact that
rarely do two expressions have truly identical meanings in all

circumstances.

9. If someone dies, then he is dead at all later times.

\/x : V/i : Vf2 : died(x, f|) A gt{l^ t\) -> dead(x, tz)

This representation says that one is dead in all years after the
one in which one died. It ignores the question of whether one is

dead in the year in which one died.

 Artificial
 Intelligence

 NOTES

121

Figure 3.4: A Set of Facts about Marcus

To answer that requires breaking time up into smaller
units than years. If we do that, we can then add rules that
say such things as "One is dead at time{yeart, monthi) if

one died during (yearl, month!) and month! precedes
month]." We can extend this to days, hours, etc., as

necessary. But vye do not want to reduce all time
statements to that level of detail, which is unnecessary and

often not available.

A summary of all the facts we have now represented is given in
Figure 3.4. (The numbering is changed slightly because

sentence 5 has been split into two pans.) Now let's attempt to
answer the question''Is Marcus alive?" by proving:

-ialive(Marcus, now)

Two such proofs are shown in Figures 3.5 and 3.6. The term
nil at the end of each proof indicates that the list of conditions

remaining to be proved is empty and so the proof has
succeeded. Notice in those proofs that whenever a statement of

the form:

a A b —> c

was used, a and h were set up as independent subgoals. In one
sense they are, but in another sense they are not if they share

the same bound variables, since, in that case, consistent

 Artificial
 Intelligence

 NOTES

122

substitutions must be made in each of them. For example, in
Figure 3.6 look at the step justified by statement 3. We can

satisfy the goal

born(Marcus, t\)

usmg statement.S by binding t\ to 40, but then we
must also bind /i to 40 in gl(naw - t\, 150)

since the two fi's were the same variable in statement 4, from
which the two goals came. A good computational proof
procedure has to include both a way of determining

Figure 3.5: One Way of Proving That Marcus Is Dead

that a match exists and a way of guaranteeing uniform

substitutions throughout a proof. Mechanisms for doing both
those things are discussed below.

From looking at the proofs we have just shown, two things

should be clear:

 Artificial
 Intelligence

 NOTES

123

• Even very simple conclusions can require many steps to
prove.

• A variety of processes, such as matching, substitution,
and application of modus ponens are involved in the

production of a proof. This is true even for the simple
statements we are using. It would be worse if we had
implications with more than a single term on the right or

with complicated expressions involving ands and ors on
the left.

The first of these observations suggests that if we want to be
able to do nontrivial reasoning, we are going to need some

statements that allow us to take bigger steps along the way.
These should represent the facts that people gradually acquire
as they become experts. How to get computers to acquire them

is a hard problem for which no very good answer is known.

The second observation suggests that actually building a

program to do what people do in producing proofs such as
these may not be easy. In the next section, we introduce a
proof procedure called resolution that reduces some of the

complexity because it operates on statements that have first
been converted to a single canonical form. 1

3.4 Resolution

As we suggest above, it would be useful from a computational
point of view ffwe had a proof procedure that carried out in a

single operation the variety of processes involved

 Artificial
 Intelligence

 NOTES

124

Figure 3.6: Another Way of Proving That Marcus Is Dead

in reasoning with statements in predicate logic. Resolution is

such a procedure, which gains its efficiency from the fact that
it operates on statements that have been convened to a very
convenient standard form, which is described below.

Resolution produces proofs by refutation. In other words, to
prove a statement (i.e., show that it is valid), resolution

attempts to show that the negation of the statement produces
a contradiction with the known statements (i.e., that it is

unsatisfiable). This approach contrasts with the technique that
we have been using to generate proofs by chaining backward
from the theorem to be proved to the axioms. Further

discussion of how resolution operates will be much more

 Artificial
 Intelligence

 NOTES

125

straightforward after we have discussed the standard form in
which statements will be represented, so we defer it until then.

3.4.1 Conversion to Clause Form

Suppose we know that all Romans who know Marcus either

hate Caesar or think that anyone who hates anyone is crazy.
We could represent that in the following wff:

1x : [Roman(x) A know(.x, Marcus)} —>

[hate(x. Caesar) V (V>': 3z : hate(y, z) —> thinkcrazy(x. y))]

To use this formula in a proof requires a complex matching

process. Then, having matched one piece of it, such as
thinkcrazy(x, y), it is necessary to do the right thing with the

rest of the formula including the pieces in which the matched
part is embedded and those in which it is not. If the formula
were in a simpler form, this process would be much easier. The

formula would be easier to work with if

• It were flatter, i.e., there was less embedding of

components.

• The quantifiers were separated from the rest of the
formula so that they did not need to be considered.

Conjunctive normal form [Davis and Putnam, 1960] has both of
these properties. For example, the formula given above for the

feelings of Romans who know Marcus would be represented in
conjunctive normal form as

~'Roman(x) V -^know(x. Marcus) V

hate(x, Caesar) V -•hate(y, z) V thinkcrazy(x, z)

Since there exists an algorithm for converting any wff into
conjunctive normal form, we lose no generality if we employ a
proof procedure (such as resolution) that operates only on wff's

in this form. In fact, for resolution to work, we need to go one
step further. We need to reduce a set of wff's to a set of

clauses, where a clause is defined to be a wff in conjunctive
normal form but with no instances of the connector A. We can
do this by first converting each wff into conjunctive normal

 Artificial
 Intelligence

 NOTES

126

form and then breaking apart each such expression into
clauses, one for each conjunct. All the conjuncts will be

considered to be conjoined together as the proof procedure
operates. To convert a wff into clause form, perform the

following sequence of steps.

Algorithm: Convert to Clause Form

1. Eliminate —>, using the fact that a —> b is equivalent to
-ia V b. Performing this transformation on the wff given

above yields

VJC : -i[Rffman(x) A know(x, Marcus)] V [hate(x,
Caesar) V (Vy : -<3z : hate(y, z)) V thinkcrazy(x,y))]

2. Reduce the scope of each -i to a single term, using the

fact that -'(-'/?) = p, deMorgan's laws [which say that -<a A
b) = -<a V -'b and -1(0 V b) = -<a A -ih}, and the standard

correspondences between quantifiers [-iV.r : P(x) = 3x : ~'P(x)
and -'It : P(x) = V.T : -'/'(.<•)]. Performing this transformation

on the wff from step 1 yields

V.r : [-iRoman(x) V -iknow(x, Marcus)] V

[hate(x, Caesar) V (Vy : Vz : ^hate(y, z) V thinkcrazy(x. y))]

3. Standardize variables so that each quantifier binds a unique
variable. Since variables are just dummy names, this process

cannot affect the truth value of the wff. For example, the
formula

V-t: P{.\) V V.v : 0(.r) would be converted to
|

V.i : P(x) V Vv : Q(y) This step

is in preparation for the next.

4. Move all quantifiers to the left of the formula without

changing their relative order. This is possible since there is no
conflict among variable names. Performing this operation on

the formula of step 2, we get

 Artificial
 Intelligence

 NOTES

127

V,y : Vy : V; : [Roman(x) V -know(x, Marcus)] V [hate Caesar) V
(hate(y,:) V thinkcrazy(x. y))]

At this point, the formula is in what is known as prenex
normal form. It consists of & prefix of quantifiers followed by

a matrix, which is quantifier-free.

3. Eliminate existential quantifiers. A formula that contains an

existentially quantified variable asserts that there is a value
that can be substituted for the variable that makes the formula

true. We can eliminate the quantifier by substituting for the
variable a reference to a function that produces the desired
value. Since we do not necessarily know how to produce the

value, we must create a new function name for every such
replacement. We make no assertions about these functions

except that they must exist. So, for example, the formula

3y : President(y) can be
transformed into the formula

President^ I)

where 51 is a function with no arguments that somehow

produces a value that satisfies President.

If existential quantifiers occur within the scope of universal
quantifiers, then the value that satisfies the predicate may

depend on the values of the universally quantified variables.
For example, in the formula

V-r : 3y : father-of(y. x)

the value of y that satisfies father-of depends on the

particular value of x. Thus we must generate functions with
the same number of arguments as the number of universal
quantifiers in whose scope the expression occurs. So this

example would be transformed into

\rfx•.fathel•-of(S'2(x),x))

These generated functions are called Skolem functions.
Sometimes ones with no arguments are called Skolem
constants.

 Artificial
 Intelligence

 NOTES

128

6. Drop the prefix. At this point, all remaining variables are
universally quantified, so the prefix can just be dropped and

any proof procedure we use

that any variable it sees is universally quantified. Now the

formula prod'iced in step 4 appears as

[^Roman(x) V -^know(x, Marcus)] V

[hate(x. Caesar) V (^hate(y, z) V thinkcrazy(x.y))]

7. Convert the matrix into a conjunction of disjuncts. In the
case of our example. since there are no and's, it is only

necessary to exploit the associative property of or [i.e., a V
(h V c) =\a V b) V c] and simply remove the parentheses,

giving

-<Roman(x) V -<know(x, Marcus) V

hate(x. Caesar) V -ihate(y, z) V
thinkcrazy(x, y)

However, it is also frequently necessary to exploit the
distributive property [i.e., (a A h) V c = (a V c) A (ft V c)]. For

example, the formula

(winter A wearingboots) V (summer /\

wearingsandals) becomes, after one
application of the rule

[winter V (summer A wearingsandals)}

A [wearingbootsV (summer A wearingsandals)}

and then, after a second application, required since there

are still conJuncts joined by OR'S,

(winter V summer) A

(winter V wearingsandals) A

(wearingboots V summer) A

(wearingboots V wearingsandals)

 Artificial
 Intelligence

 NOTES

129

8. Create a separate clause corresponding to each
conjunct. In order for a wff to be true, all the clauses that

are generated from it must be true. If we are going to be
working with several wff's, all the clauses generated by

each of them can now be combined to represent the
sameset of facts as were represented by the original wff's.

9. Standardize apart the variables in the set of clauses

generated in step 8. By this we mean rename the variables
so that no two clauses make reference to the same

variable. In making this transformation, we rely on the fact
that

(V.y : P(x) A Q(x)) = V-r : P(x) A VA- : Q(x)

Thus since each clause is a separate conjunct and since all

the variables are universally quantified, there need be no
relationship between the variables of two clauses, even if
they were generated from the same wff.

Performing this final step of standardization is important
because during the resolution procedure it is sometimes

necessary to instantiate a universally quantified variable (i.e.,
substitute for it a particular value). But, in general, we want to
keep clauses in their most general form as long as possible. So

when a variable is instantiated, we want to know the minimum
number of substitutions that must be made to preserve the

truth value of the system.

After applying this entire procedure to a set of wff's, we will
have a set of clauses, each of which is a disjunction of literals.
These clauses can now be exploited by the resolution
procedure to generate proofs.

3.4.2 The Basis of Resolution

The resolution procedure is a simple iterative process: at each

step, two clauses, called the parent clauses, are compared
(resolved), yielding a new clause that has been inferred from

them. The new clause represents ways that the two parent
clauses interact with each other. Suppose that there are two
clauses in the system:

 Artificial
 Intelligence

 NOTES

130

winter V summer

-'winter V cold

Recall that this means that both clauses must be true (i.e., the
clauses, although they look independent, aie really conjoined).

Now we observe that precisely one of winter and -^winter will
be true at any point. If winter is true, then cold must be true to

guarantee the truth of the second clause. If —winter is true,
then summer must be true to guarantee the truth of the first

clause. Thus we see that from these two clauses we can
deduce

summer V cold

This is the deduction that the resolution procedure will make.
Resolution operates by taking two clauses that each contain

the same literal, in this example, winter. The literal must occur
in positive form in one clause and in negative form in the

other. The resolvent is obtained by combining all of the literals
of the two parent clauses except the ones that cancel.

If the clause that is produced is the empty clause, then a
contradiction has been found. For example, the two clauses

winter

-^winter

will produce the empty clause. If a contradiction exists, then

eventually it will be found. Of course, if no contradiction exists,
it is possible that the procedure will never terminate, although
as we will see, there are often ways of detecting that no

contradiction exists.

So far, we have discussed only resolution in propositionat

logic. In predicate logic, the situation is more complicated since
we must consider all possible ways of substituting values for
the variables. The theoretical basis of the resolution procedure

in predicate logic is Herbrand's theorem which tells us the
following:

 Artificial
 Intelligence

 NOTES

131

• To show that a set of clauses S is unsatisfiable, it is
necessary to consider only interpretations over a particular

set, called the Herhrand universe of S.

• A set of clauses S is unsatisfiable if and only if a finite

subset of ground instances (in which all bound variables
have had a value substituted for them) of S is

unsatisfiable.

The second part of the theorem is important if there is to exist

any computational procedure for proving unsatisfiability, since
in a finite amount of time no procedure will be able to examine
an infinite set. The first part suggests that one way to go about

finding a contradiction is to try systematically the possible
substitutions and see if each produces a contradiction. But

that is highly inefficient. The resolution principle, first
introduced by Robinson [1965], provides a way of finding
contradictions by trying a minimum number of substitutions.

The idea is to keep clauses in their general form as long as
possible and only introduce specific substitutions when they

are required. For more details on different kinds of resolution.

3.4.3 Resolution in Prepositional Logic

In order to make it clear how resolution works, we first present

the resolution procedure for prepositional logic. We then
expand it to include predicate logic.

In prepositional logic, the procedure for producing a proof by
resolution of proposition P with respect to a set of axioms F is
the following.

Algorithm: Prepositional Resolution

1. Convert all the propositions of F to clause form.

2. Negate P and convert the result to clause form. Add it to
the set of clauses obtained in step 1.

3. Repeat until either a contradiction is found or no
progress can be made:

(a) Select two clauses. Call these the parent clauses.

 Artificial
 Intelligence

 NOTES

132

(b) Resolve them together. The resulting clause, called
the resolvent, will be the disjunction of all of the literals

of both of the parent clauses with the following
exception: If there are any pairs of literals L and -'/.

such that one of the parent clauses contains L and the
other contains -'L, then select one such pair and

eliminate both L and -iL from the resolvent.

(c) If the resolvent is the empty clause, then a

contradiction has been found. If it is not, then add it to
the set of clauses available to the procedure.

Let's look at a simple example. Suppose we are given the

axioms shown in the first column of Figure 3.7 and we want to
prove R. First we convert the axioms to clause form, as shown

in the second column of the figure. Then we negate /?,
producing -i/?, which is already in clause form. Then we begin
selecting pairs of clauses to resolve together. Although any pair

of clauses can be resolved, only those pairs that contain
complementary literals will produce a resolvent that is likely to

lead to the goal of producing the empty clause (shown as a
box). We might, for example, generate ^he sequence of
resolvents shown in Figure 3.8. We begin by resolving with the

clause -'/? since that is one of the clauses that must be
involved in the contradiction we are trying to find.

One way of viewing the resolution process is that it takes a set
of clauses that are all assumed to be true and, based on
information provided by the others, it generates new clauses

that represent restrictions on the way each of those original
clauses can be made true. A contradiction occurs when a

clause becomes so restricted that there is no way it can be
true. This is indicated by the generation of the empty clause.
To see how this works, let's look again at the example. In order

for proposition 2 to be true, one of three things must be true: -
if, -i0, or R. But we are assuming that -i/? is true. Given

 Artificial
 Intelligence

 NOTES

133

Figure 3.7: A Few Facts in Propositional Logic

Figure 5-8: Resolution in Propositional Logic

that, the only way for proposition 2 to be true is for one of two
things to be true: -iP or -iQ. That is what the first resolvent
clause says. But proposition 1 says that P is true, which

means that -iP cannot be true, which leaves only one way for
proposition 2 to be true, namely for -ig to be true (as shown in

the second resolvent clause). Proposition 4 can be true if either
-if or Q is true. But since we now know that -iQ must be true,

the only way for proposition 4 to be true is for -'7' to be true
(the third resolvent). But proposition 5 says that T is true.

Thus there is no way for all of these clauses to be true in a

 Artificial
 Intelligence

 NOTES

134

single interpretation. This is indicated by the empty clause (the
last resolvent).

3.4.4 The Unification Algorithm

In prepositional logic, it is easy to determine that two literals

cannot both be true at the same time. Simply look for L and -
iL. In predicate logic, this matching process is more
complicated since the arguments of the predicates must be

considered. For example, man(John) and -^man{John) is a
contradiction, while nwn(John) and -'man(Spot) is not. Thus, in

order to determine contradictions, we need a matching
procedure that compares two literals and discovers whether

there exists a set of substitutions that makes them identical.
There is a straightforward recursive procedure, called the
unification algorithfn, that does just this.

The basic idea of unification is very simple. To attempt to unify
two literals, we first check if their initial predicate symbols are

the same. If so, we can proceed. Otherwise, there is no way
they can be unified, regardless of their arguments. For

exaniple, the two literals

tryassassinate(Marcus, Caesar)
hate(Marcus, Caesar)

cannot be unified. If the predicate symbols match, then we
must check the arguments, one pair at a time. If the first

matches, we can continue with the secbnd, and so on. To test
each argument pair, we can simply call the unification
procedurd recursively. The matching rules are simple. Different

constants or predicates cannot match; identical ones can. A
variable can match another variable, any constant, or a

predicate expression, with the restriction that the predicate
expression must not contain arty instances of the variable
being matched.

The only complication in this procedure is that we must find/a
single, consistent substitution for the entire literal, not

separate ones for each piece of it. To do this, we must take
each substitution that we find and apply it to the remainder of
the literals before we continue trying to unify them. For

example, suppose^ we want to unify the expressions

 Artificial
 Intelligence

 NOTES

135

P(x,x) P(y,z)

The two instances of P match fine. Next we compare x and y,
and decide that if we substitute y for x, they could match. We
will write that substitution as

y/x

(We could, of course, have decided instead to substitute JC for

y, since they are both just dummy variable names. The
algorithm will simply pick one of these two substitutions.) But
now, if we simply continue and match x and z, we produce the

substitution z/x. But we cannot substitute both y and z SOTX,
so we have not produced a consistent substitution.

What we need to do after finding the first substitution y/x is to
make that substitution throughout the literals, giving

P(y,y) P(y,z)

Now we can attempt to unify arguments y and z, which

succeeds with the substitution z/y. The entire unification
process has now succeeded with a substitution that is the

composition of the two substitutions we found. We write the
composition as

(z/y)(y/x)

following standard notation for function composition. In
general, the substitution (01/02,03/04,.. •)(6i/&2,^3//'4,...)...

means to apply all the substitutions of the rightmost list, then
lake the result and apply all the ones of the next list, and so
forth, until all substitutions have been applied.

The object of the unification procedure is to discover at least
one substitution that causes two literals to match. Usually, if

there is one such substitution there are many. For example,
the literals

hale(x, y)
hate(Marcus, z)

could be unified with any of the following substitutions:

 Artificial
 Intelligence

 NOTES

136

(Marcus/x, z/y)

(Marcus/x, y/z)

(Marcus I x, Caesar I y, Caesar/z)

(Marcus/x, Polonius/y, Polonius/z)

The first two of these are equivalent except for lexical variation.
But the second two, although they produce a match, also
produce a substitution that is more restrictive than absolutely

necessary for the match. Because the final substitution
produced by the unification process will be used by the

resolution procedure, it is useful to generate the most general
unifier possible. The algorithm shown below will do that.

Having explained the operation of the unification algorithm, we

can now state it concisely. We describe a procedure Unify(Ll,
LI), which returns as its value a list representing the

composition of the substitutions that were performed during
the match. The empty list, NIL, indicates that a match was
found without any substitutions. The list consisting of the

single value FAIL indicates that the unification procedure
failed.

Algorithm: Unify(Ll, L2)

1. If LI or L2 are both variables or constants, then:

(a) If LI and L2 are identical, then return NIL.

(b) Else if LI is a variable, then if LI occurs in L2 then
return {FAIL}, else return (L2/L1).

(c) Else ifL2 is a variable then ifL2 occurs in LI then
return {FAIL}, else return (L1/L2).

(d) Else return {FAIL}.

2. If the initial predicate symbols in L 1 and L2 are not
identical, then return {FAIL}.

3. If LI and L2 have a different number of arguments, then
return {FAIL}.

 Artificial
 Intelligence

 NOTES

137

4. Set SUBST to NIL. (At the end of this procedure, SUBST
will contain all the substitutions used to unify LI and L2.)

3. For / <— 1 to number of arguments in / I •

(a) Call Unify with the ;th argument of LI and the /th

argument ofL2, putting result in 5'.

(b) If S contains FAIL then return {FAIL}.

(c) IfS is not equal to NIL then:

i. Apply S to the remainder of both L 1

and LI. ii. SUBST := APPENDS, SUBST).

6. Return SUBST.

The only part of this algorithm that we have not yet discussed

is the check in steps l(b) and 1(c) to make sure that an
expression involving a given variable is not unified with that

variable. Suppose we were attempting to unify the expressions

AX,X) f(8(x),g(x))

If we accepted g(x) as a substitution for x, then we would have
to substitute it for A in the remainder of the expressions. But
this leads to infinite recursion since if will never be possible to

eliminate x.

Unification has deep mathematical roots and is a useful

operation in many AI programs, for example, theorem provers
and natural language parsers. As a result, efficient data
structures and algorithms for unification have been developed.

For an introduction to these techniques and applications.

3.4.5 Resolution in Predicate Logic

We now have an easy way of determining that two literals are
contradictory—they are if one of them can be unified with the
negation of the other. So, for example, man{x) and -'man(Spot)
are contradictory, since man(x) and man(Spot) can be unified.
This corresponds to the intuition that says that man(x) cannot

be true for all x if there is known to be some x, say Spot, for
which man(x) is false. Thus in order to use resolution for

 Artificial
 Intelligence

 NOTES

138

expressions in the predicate logic, we use the unification
algorithm to locate pairs of literals that cancel out.

We also need to use the unifier produced by the unification
algorithm to generate the resolvent clause. For example,

suppose we want to resolve two clauses:

1. man(Marcus) 1.
^man(x\) V mortal(x\)

The literal man(Marcus} can be unified with the literal man(x\)
with the substitution Marcus/x\, telling us that for x\ =

Marcus, ^man(Mcircus) is false. But we cannot simply cancel
out the two man literals as we did in prepositional logic and

generate the resolvent mortal(x\). Clause 2 says that for a given
x\, either -^man(x\) or mortal(x\). So for it to be true, we can

now conclude only that mortal(Marcus) must be true. It is not
necessary that mortal{x\) be true for all x\, since for some

values ofA'i, -'mun(xi) might be true, making mortal(x\)
irrelevant to the truth of the complete clause. So the resolvent

generated by clauses 1 and 2 must be mortai(Marcus), which
we get by applying the result of the unification process to the

resolvent. The resolution process can

then proceed from there to discover whether mortal(Marcus)
leads to a contradiction with other available clauses.

This example illustrates the importance of standardizing
variables apart during the process of converting expressions to

clause form. Given that that standardization has bee'n done, it
is easy to determine how the unifier must be used to perform

substitutions to create the resolvent. If two instances of the
same variable occur, then they must be given identical
substitutions.

We can now state the resolution algorithm for predicate logic
as follows, assuming a set of given statements F and a

statement to be proved P:

Algorithm: Resolution

1. Convert all the statements of F to clause form.

 Artificial
 Intelligence

 NOTES

139

2. Negate P and convert the result to clause form. Add it to
the set of clauses obtained in 1.

3. Repeat until either a contradiction is found, no progress
can be made, or a predetermined amount of effort has been

expended.

(a) Select two clauses. Call these the parent clauses.

(b) Resolve them together. The resolvent will be the disjunction

of all the literals of both parent clauses with appropriate
substitutions performed and with the following exception: If

there is one pair of literals Tl and -'77 such that one of the
parent clauses contains T\ and the other contains Tl and if 7T

and T2 are unifiable, then neither T\ nor T2 should appear in
the resolvent. We call 7T and T2 Complementary literals. Use

the substitution produced by the unification to create the
resolvent. If there is more than one pair of complementary
literals, only one pair should be omitted from the resolvent.

(c) If the resolvent is the empty clause, then a contradiction
has been found. If it is not, then add it to the set of clauses

available to the procedure,

If the choice of clauses to resolve together at each step is made
in certain systematic ways, then the resolution procedure will

find a contradiction if one exists. However, it may take a very
long time. There exist strategies for making the choice that can

speed up the process considerably:

• Only resolve pairs of clauses that contain complementary
literals, since only such resolutions produce new clauses

that are harder to satisfy than their parents. To facilitate
this, index clauses by the predicates they contain,

combined with an indication of whether the predicate is
negated. Then, given a particular clause, possible
resolvents that contain a complementary occurrence of one

of its predicates can be located directly.

• Eliminate certain clauses as soon as they are generated

so that they cannot participate in later resolutions. Two
kinds of clauses should be eliminated: tautologies (which
can never be unsatisfied) and clauses that are subsumed

 Artificial
 Intelligence

 NOTES

140

by other clauses (i.e., they are easier to satisfy. For
example, P V Q is subsumed by P.)

• Whenever possible, resolve either with one of the clauses that

is part of the statement we are trying to refute or with a clause
generated by a resolution with such a clause. This is called the
set-of-support strategy and corresponds to the intuition that

the contradiction we are looking for must involve the statement
we are trying to prove. Any other contradiction would say that

the previously believed statements were inconsistent.

• Whenever possible, resolve with clauses that have a single

literal. Such resolutions generate new clauses with fewer
literals than the larger of their parent clauses and thus are
probably closer to the goal of a resolvent with zero terms. This

method is called the unit-preference strategy.

Let's now return to our discussion of Marcus and show how

resolution can be used to prove new things about him. Let's
first consider the set of statements introduced in Section 3.1.
To use them in resolution proofs, we must convert them to

clause form as described in Section 3.4.1. Figure 3.9(a) shows
the results of that conversion. Figure 3.9(b) shows a resolution

proof of the statement

hate(Marcus, Caesar)

Of course, many more resolvents could have been generated
than we have shown, but we used the heuristics described
above to guide the search. Notice (hat what we have done here

essentially is to reason backward from the statement we want
to show is a contradiction through a set of intermediate

conclusions to the final conclusion of inconsistency.

Suppose our actual goal in proving the assertion

hate(Marcus, Caesar)

was to answer the question "Did Marcus hate Caesar?" In that
case, we might just as easily have attempted to prove the

statement

 Artificial
 Intelligence

 NOTES

141

•ihate(Marcus, Caesar) To do
so, we would have added

hate(Marcus, Caesar)

to the set of available clauses and begun the resolution

process. But immediately we notice that there are no clauses
that contain a literal involving -'hate. Since the resolution

process can only generate new clauses that are composed of
combinations of literals from already existing clauses, we know
that no such clause can be generated and thus we conclude

that hate(Marcus, Caesar) will not produce a contradiction with
the known statements. This is an example of the kind of

situation in which the resolution procedure can detect that no
contradiction exists. Sometimes this situation is detected not

at the beginning of a proof, but part way through, as shown in
the example in Figure 3.10(a), based on the axioms given in
Figure 3.9.

But suppose our knowledge base contained the two
additional statements

 Artificial
 Intelligence

 NOTES

142

Figure 3.9: A Resolution Proof

 Artificial
 Intelligence

 NOTES

143

Figure 3.10: An Unsuccessful Attempt at Resolution

 Artificial
 Intelligence

 NOTES

144

9. persecute(x, y) —> hate(y, x)

10. hate(x,y) —> persecute(y,x)
Converting to clause form, we get

9. -'per secate(xs, yz) V hate(y^, Xs)

10. -'hate(X6, yz) V persecute^, xs)

These statements enable the proof of Figure 3.10(a) to continue

as shown in Figure 3.10). Now to detect that there is no
contradiction we must discover that the only resolvents that

can be generated have been generated before. In other words,
although we can generate resolvents, we can generate no new
ones.

Figure 3.11: The Need to Standardize Variables

 Artificial
 Intelligence

 NOTES

145

Recall that the final step of the process of converting a set of
formulas to clause form was to standardize apart the variables

that appear in the final clauses. Now that we have discussed
the resolution procedure, we can see cleaily why this step is so

important. Figure-3.11 shows an example of the difficulty that
may arise if standardization is not done. Because the variable y
occurs in both clause 1 and clause 2, the substitution at the

second resolution step produces a clause that is too restricted
and so does not lead to the contradiction that is present in the

database. If, instead^e clause

-^father(Chris.y)

had been produced, the contradiction with clause 4 would
have emerged. This would have happened if clause 2 had been

rewritten-as

-imother^a, h) V woman(a)

In its pure form, resolution requires all the knowledge it uses

to be represented in the form of clauses. But as we pointed out
in Section 3.3, it is often more efficient to represent certain

kinds of information in the form of computable functions,
computable predicates, and equality relationships. It is not
hard to augment-resolution to handle this sort of knowledge.

Figure 3.12 shows a resolution proof of the statement

-'alive(Marcus, now)

 Artificial
 Intelligence

 NOTES

146

Figure 3.12: Using Resolution with Equality and Reduce

 Artificial
 Intelligence

 NOTES

147

based on the statements given in Section 3.3. We have added
two ways of generating new clauses, in addition to the

resolution rule:

• Substitution of one value for another to which it is equal.

• Reduction of computable predicates. If the predicate
evaluates to FALSE, it can simply be dropped, since adding
V FALSE to a disjunction cannot change its truth value. If

the predicate evaluates to TRUE, then the generated clause
is a tautology and cannot lead to a contradiction.

3.4.6 The Need to Try Several Substitutions

Resolution provides a very good way of finding a refutation
proof without actually trying all the substitutions that

Herbrand's theorem suggests might be necessary. But it does
not always eliminate the necessity of trying more than one

substitution. For example, suppose we know, in addition to the
statements in Section 3.1, that

hate(Marcus, Paulus)
hate(Marcus, Julian)

Now if we want to prove that Marcus hates some ruler, we

would be likely to try each substitution shown in Figure 3.13(a)
and (b) before finding the contradiction shown in (c).
Sometimes there is no way short of very good luck to avoid
trying several substitutions.

3.4.7 Question Answering

Very early in the history of AI it was realized that theorem-
proving techniques could be applied to the problem of
answering questions. As we have already suggested;

this seems natural since both deriving theorems from axioms
and deriving neyv facts (answers) from old facts employ the

process of deduction. We have already shown how resolution
can be used to answer yes-no questions, such as "Is Marcus
alive?" In this section, we show how resolution can be used to

answer fill-in-the-blank questions, such as "When did Marcus
die?" or "Who tried to assassinate a ruler?" Answering these

questions involves finding a known statement that matches the

 Artificial
 Intelligence

 NOTES

148

terms given in the question and then responding with another
piece of that same statement that fills the slot demanded by

the question. For example, to answer the question "When did
Marcus die?" we need a statement of the form

died(Marcus, ??)

with ?? actually filled in by some particular year. So, since
we can prove the statement died(Marcus, 79)

we can respond with the answer 79.

It turns out that the resolution procedure provides an easy way

of locating just the statement we need and finding a proof for
it. Let's continue with the example question

Figure 3.13: Trying Several Substitutions

 Artificial
 Intelligence

 NOTES

149

'When did Marcus die?" In order to be able to answer this
question, it must first be true that Marcus died. Thus it must

be the case that

3t: died(Marcus, t)

A reasonable first step then might be to try to prove this. To do
so using resolution, we attempt to show that

-i3r: died(Marcus, t)

produces a contradiction. What does it mean for that
statement to produce a contradiction? Either it conflicts with a

statement of the form

Vr: died(Marcus,t)

where t is a variable, in which case we can either answer the
question by reporting that there are many times at which

Marcus died, or we can simply pick one such time and respond
with it. The other possibility is that we produce a contradiction
with one or more specific statements of the form

died(Marcus, date)

for some specific value of date. Whatever value of date we use

in producing that contradiction is the answer we want. The
value that proves that there is a value (and thus the
inconsistency of the statement that there is no such value) is

exactly the value we want.

Figure 3.14(a) shows how the resolution process finds the

statement for which we are looking. The answer to the question
can then be derived from the chain of unifications that lead
back to the starting clause. We can eliminate the necessity for

this final step by adding an additional expression to the one we
are going to use to try to find a contradiction. This new

expression will simply be the one we are trying to prove true
(i.e., it will be the negation of the expression that is actually
used in the resolution). We can tag it with a special marker so

that it will not interfere with the resolution process. (In the
figure, it is underlined.) It will just get carried along, but each

time unification is done, the variables in this dummy
expression will be bound just as are the ones in the clauses

 Artificial
 Intelligence

 NOTES

150

that are actively being used. Instead of terminating on reaching
the nil clause, the resolution procedure will terminate when all

that is left is the dummy expression. The bindings of its
variables at that point provide the answer to the question.

Figure 3.14(fc) shows how this process produces an answer to
our question.

Unfortunately, given a particular representation of the facts in

a system, there will usually be some questions that cannot be
answered using this mechanism. For example, suppose that

we want to answer the question "What happened in 79 A.D.?"
using the statements in Section 3.3. In order to answer the
question, we need to prove that something happened in 79. We

need to prove

Sr: event(x, 79)

Figure 3.14: Answer Extraction Using Resolution

 Artificial
 Intelligence

 NOTES

151

and to discover a value for x. But we do not have any
statements of the form event(x, y). We can, however, answer

the question if we change our representation. Instead of
saying

erupted(volcano, 79) we
can say

event(erupted(volcano), 79)

Then the simple proof shown in Figure 3.15 enables us to
answer the question.

This new representation has the drawback that it is more
complex than the old one. And it still does not make it possible

to answer all conceivable questions. In general, it is necessary
to decide on the kinds of questions that will be asked and to
design a representation appropriate for those questions.

Figure 3.15: Using the New Representation

Of course, yes-no and fill-in-the-blank questions are not the
only kinds one could ask. For example, we might ask how to do

something. So we have not yet completely solved the problem
of question answering. In later chapters, we discuss some

other methods for answering a variety of questions. Some of
them exploit resolution; others do not.]|

 Artificial
 Intelligence

 NOTES

152

3.5 Natural Deduction

In the last section, we introduced resolution as an easily

implementable proof procedure that relies for its simplicity on
a uniform representation of the statements it uses.

Unfortunately, uniformity has its price—everything looks the
same. Since everything looks the same, there is no easy way to
select those statements that are the most likely to be useful in

solving a particular problem. In converting everything to clause
form, we often lose valuable heuristic information that is

contained in the original representation of the facts. For
example, suppose we believe that all judges who are not
crooked are well-educated, which can be represented as

VJC : judge(x) A -^£rooked(x) —) educated(x)

In this form, the statement suggests a way of deducing that

someone is educated. But when the same statement is
convened to clause form,

-ijudge(x) V crooked(x) V educated(x)

it appears also to be a way of deducing thai someone is not a
judge by showing that he is not crooked and not educated. Of

course, in a logical sense, it is. But it is almost certainly not
the best way, or even a very good way, to go about showing

that someone is not a judge. The heuristic information
contained in the original statement has been lost in the
transformation.

Another problem with the use of resolution as the basis of a
theorem-proving system is that people do not think in

resolution. Thus it is very difficult for a person to interact with
a resolution theorem prover, either to give it advice or to be
given advice by it. Since proving very hard things is something

that computers still do poorly, it is important from a practical
standpoint that such interaction be possible. To facilitate it, we

are forced to look for a way of doing machine theorem proving
that corresponds more closely to the

 Artificial
 Intelligence

 NOTES

153

processes used in human theorem proving. We are thus led to
what we call, mostly by definition, natural deduction.

Natural deduction is not a precise term. Rather it describes a
melange of techniques, used in combination to solve problems

that are not tractable by any one method alone. One common
technique is to arrange knowledge, not by predicates, as we
have been doing, but rather by the objects involved in the

predicates. Another technique is to use a set of rewrite rules
that not only describe logical implications but also suggest the

way that those implications can be exploited in proofs.

For a good survey of the variety of techniques that can be
exploited in a natural deduction system. Although the

emphasis in that paper is on proving mathematical theorems,
many of the ideas in it can be applied to a variety of domains

in which it is necessary to deduce new statements from known
ones. For another discussion of theorem proving using natural
mechanisms, which describes a system for reasoning about

programs. It places particular emphasis on the use'of
mathematical induction as a proof technique. ^

3.6 Summary

In this chapter we showed how predicate logic can be used as
the basis of a technique for knowledge representation. We also

discussed a problem-solving technique, resolution, that can be
applied when knowledge is represented in this way. The

resolution procedure is not guaranteed to halt if given a
nontheorem to prove. But is it guaranteed to halt and find a
contradiction if one exists? This is called the completeness

question. In the form in which we have presented the
algorithm, the answer to this question is no. Some small

changes, usually not implemented in theorem-proving systems,
must be made to guarantee completeness. But, from a

computational point of view, completeness is not the only
important question. Instead, we must ask whether a proof can
be found in the limited amount of time that is available. There

are two ways to approach achieving this computational goal.
The first is to search for good heuristics that can inform a
theorem-proving program. Current theorem-proving research

attempts to do this. The other approach is to change not the
program but the data given to the program. In this approach,

 Artificial
 Intelligence

 NOTES

154

we recognize that a knowledge base that is just a list of logical
assertions possesses no structure. Suppose an information-

bearing structure could be imposed on such a knowledge base.
Then that additional information could be used to guide the

program that uses the knowledge. Such a program may not
look a lot like a theorem prover, although it will still be a
knowledge-based problem solver.

A second difficulty with the use of theorem proving in AI
systems is that there are some kinds of information that are

not easily represented in predicate logic. Consider the following
examples:

• "It is very hot today." How can relative degrees of heat be

represented?

• "Blond-haired people often have blue eyes." How can the

amount of certainty be represented?

• "If there is no evidence to the contrary, assume that any
adult you meet knows how to read." How can we represent

that one fact should be inferred from the absence of
another?

• "It's better to have more pieces on the board than the
opponent has." How can we represent this kind of heuristic
information?

• "I know Bill thinks the Giants will win, but I think they
are going to lose." How can several different belief systems

be represented at once?

These examples suggest issues in knowledge representation
that we have not yet satisfactorily addressed. They deal

primarily with the need to make do with a knowledge base that
is incomplete, although other problems also exist, such as the

difficulty of representing continuous phenomena in a discrete
system. Some solutions to these problems are presented in the

remaining chapters in this part of the book.

 Artificial
 Intelligence

 NOTES

155

3.7. Model Questions

1. trace the operation of the unification algorithm on each of

the following pairs of literals.

 a. f(marcus) and f(caesar)

 b. f(x) and f(g(x))

 c. f(marcus,g(x,y)) and f(x,g(caesar,marcus))

2. consider the following sentences:

 1. john likes all kinds of food

 2. apples are food

 3. chicken is food

 4. anything anyone eats and isn‘t killed by is food.

 5. bill eats peanuts and is still alive.

 6. sue eats everything bill eats.

a) Translate these sentences info formulas in predicate

logic

b) Prove that john likes peanuts using backware chaining

c) Convert the formulas of part a into clause form

d) Prove that jhon likes peanuts using resolution.

e) Use resolution to answer the question. ―what food does

sue cat?‖

 Artificial
 Intelligence

 NOTES

156

3. assume the following facts:

 a) steve only likes easy courses.

 b) science courses are hard.

 c) all the courses in the basketweaving department are

 easy.

 d) BK301 is a basketweaving course.

4. suppose that we are attempting to resolve the following

clauses.

 Loves(father(a),a)

 ⌐loves(y,x) V loves(x,y)

a) What will be the result of the unification algorithm when
applied to clause 1 and the first term of clause 2?

b) What must be generated as a result of resolving these

two clauses?

c) What does this example show about the order in which
the substitutions determined by the unification

procedure must be performed?

5. what is wrong with the following argument

 a) men are widely distributed over the earth

 Artificial
 Intelligence

 NOTES

157

The nodes HI and HI are new concepts representing John's
height and Bill's height, respectively. They are defined by their

relationships to the nodes John and Bill. Using these defined
concepts, it is possible to represent such facts as that John's
height increased, which we could not do before. (The number

72 increased?)

Sometimes it is useful to introduce the arc value to make this

distinction clear. Thus we might use the following net to
represent the fact that John is 6 feet tall and that he is

^The node labeled BK23 represents the particular book that
was referred to by the phrase "the book." Discovering which
particular book was meant by that phrase is similar to the

problem of deciding on the correct referent for a pronoun, and
it can be a very hard problem..

The procedures that operate on nets such as this can exploit

the fact that some arcs, such as height, define new entities,
while others, such as greater-than and value, merely describe

relationships among existing entities.

 Artificial
 Intelligence

 NOTES

158

Another example of an important distinction we have missed is
the difference between the properties of a node itself and the

properties that a node simply holds and passes on to its
instances. For example, it is a property of the node Person that

it is a subclass of the node Mammal. But the node Person does
not have as one of its parts a nose. Instances of the node

Person do, and we want them to inherit it.

It is difficult to capture these distinctions without assigning
more structure to our notions of node, link, and value. In the

next section, when we talk about frame systems, we do that.
But first, we discuss a network-oriented solution to a simpler

problem;

this solution illustrates what can be done in the network model
but at what price in complexity.

 Artificial
 Intelligence

 NOTES

159

UNIT – IV

REPRESENTING KNOWLEDGE
USING RULES

In this chapter, we discuss the use of rules to encode

knowledge. This is a particularly important issue since rule-
Dased reasoning systems have played a very important role in
the evolution of AI from a purely laboratory science into a

commercially significant one.

We have already talked about rules as the basis for a search

program. But we gave little consideration to the way knowledge
about the world was represented in the rules (although we can
see a simple example of this in Section 4.2). In particular, we

have been assuming that search control knowledge was
maintained completely separately from the rules themselves.

We will now relax that assumption and consider a set of rules
to represent both knowledge about relationships in the world,
as well as knowledge about how to solve problems using the

content of the rules.

4.1 Procedural versus Declarative Knowledge

Since our discussion of knowledge representation has
concentrated so far on the use of logical assertions, we use
logic as a starting point in our discussion of rule-based

systems.

In the previous chapter, we viewed logical assertions as

declarative representations of knowledge. A declarative
representation is one in which knowledge is specified, but the

use to which that knowledge is to be put is not given. To use a
declarative representation, we must augment it with a program
that specifies what is to be done to the knowledge and how.

 Artificial
 Intelligence

 NOTES

160

For example, a set of logical assertions can be combined with a
resolution theorem prover to give a complete program for

solving problems. There is a different way, though, in which
logical assertions can be viewed, namely as a program, rather

than as data to a program. In this view, the implication
statements define the legitimate reasoning paths and the

atomic assertions provide the starting points (or, if we reason
backward, the ending points) of those paths. These reasoning
paths define the possible execution paths of the program in

much the same way that traditional control constructs, such
as if-then-else. define the execution paths through traditional

programs. In other words, we could view logical assertions as
procedural representations of knowledge. A procedural
representation is one in which the control information that is
necessary to use the knowledge is considered to be embedded
in the knowledge itself. To use a procedural representation, we

need to augment it with an interpreter that follows the
instructions given in the knowledge.

Actually, viewing logical assertions as code is not a very radical
idea, given that all programs are really data to other programs
that interpret (or compile) and execute them. The real

difference between the declarative and the procedural views of
knowledge lies in where control information resides. For

example, consider the knowledge base:

man(Marcus)

man(Caesar)

person(Cleopatra)

VJC : man(x) —» person(x)

Now consider trying to extract from this knowledge base the
answer to the question 3y: person(y)

We want to bind y to a particular value for which person is
true. Our knowledge base justifies any of the following

answers:

y = Marcus y =
Caesar y =
Cleopatra

 Artificial
 Intelligence

 NOTES

161

Because there is more than one value that satisfies the
predicate, but only one value is needed, the answer to the

question will depend on the order in which the assertions are
examined during the search for a response. If we view the

assertions as declarative, then they do not themselves say
anything about how they will be examined. If we view them as
procedural, then they do. Of course, nondeterministic

programs are possible— for example, the concurrent and
parallel programming constructs described in Dijkstra [1976],

Hoare [1985], and Chandy and Misra [1989]. So, we could view
these assertions as a nondeterministic program whose output
is simply not defined. If we do this, then we have a

"procedural" representation that actually contains no more
information than does the "declarative" form. But most

systems that view knowledge as procedural do not do this. The
reason for this is that, at least if the procedure is to execute on
any sequential or on most existing parallel machines, some

decision must be made about the order in which the assertions
will be examined. There is no hardware support for

randomness. So if the interpreter must have a way of deciding,
there is no real reason not to specify it as part of the definition
of the language and thus to define the meaning of any

particular program in the language. For example, we might
specify that assertions will be examined in the order in which

they appear in the program and that search will proceed
depth-first, by which we mean that if a new subgoal is
established then it will be pursued immediately and other

paths will only be examined if the new one fails. If we do that,
then the assertions we gave above describe a program that will

answer our question with

}' = Cleopatra

To see clearly the difference between declarative and

procedural representations, consider the following assertions:

man(Marcus)

man(Caesar)

V.v : man(x) —> person(x)

person{CleOpatra)

 Artificial
 Intelligence

 NOTES

162

Viewed declaratively, this is the same knowledge base that we
had before. All the same answers are supported by the system

and no one of them is explicitly selected. But viewed
proceduratly, and using the control model we used to get

Cleopatra as our answer before, this is a different knowledge
base since now the answer to our question is Marcus. This

happens because the first statement that can achieve the
person goal is the inference rule 1x : man(x) —> person(x). This
rule sets up a subgoal to find a man. Again the statements are

examined from the beginning, and now Marcus is found to
satisfy the subgoal and thus also the goal. So Marcus is

reported as the answer.

It is important to keep in mind that although we have said that

a procedural representation encodes control information in the
knowledge base, it does so only to the extent that the
interpreter for the knowledge base recognizes that control

information. So we could have gotten a different answer to the
person question by leaving our original knowledge base intact

and changing the interpreter so that it examines statements
from last to first (but still pursuing depth-first search).

Following this control regime, we report Caesar as our answer.

There has been a great deal of controversy in AI over whether
declarative or procedural knowledge representation

frameworks are better. There is no clearcut answer to the
question. As you can see from this discussion, the distinction

between the two forms is often very fuzzy. Rather than try to
answer the question of which approach is better, what we do in
the rest of this chapter is to describe ways in which rule

formalisms and interpreters can be combined to solve
problems. We begin with a mechanism called logic
programming, and then we consider more flexible structures for
rule-based systems.

4.2 Logic Programming

Logic programming is a programming language paradigm in
which logical assertions are viewed as programs, as described

in the previous section. There are several logic programming
systems in use today, the most popular of which is PROLOG A

PROLOG program is described as a series of logical assertions,
each of which is & Horn clause.1 A Horn clause is a clause (as

 Artificial
 Intelligence

 NOTES

163

defined in Section 5.4.1) that has at most one positive literal.
Thus p, -7? V q, and p —> q are all Horn clauses. The last of

these does not look like a clause and it appears to have two
positive literals. Any logical expression can be converted to

clause form. If we do that for this example, the resulting clause
is -'p V q,

' Programs written in pure PROLOG are composed only of Horn
clauses. PROLOG, as an actual programming language,
however, allows departures from Horn clauses. In the rest of

this section, we limit our discussion to pure PROLOG.

Figure 4.1:A Declarative and a Procedural Representation

which is a well-formed Horn clause. As we will see below, when

Horn clauses are written in PROLOG programs, they actually
look more like the form we started with (an implication with at

most one literal on the right of the implication sign) than the
clause form we just produced. Some examples of PROLOG
Horn clauses appear below.

The fact that PROLOG programs are composed only of Horn
clauses and not of arbitrary logical expressions has two

 Artificial
 Intelligence

 NOTES

164

important consequences. The first is" that because of the
uniform representation a simple and efficient interpreter can

be written. The second consequence is even more important.
The logic of Horn clause systems is decidable (unlike that of

full first-order predicate logic).

The control structure that is imposed on a PROLOG program
by the PROLOG interpreter is the same one we used at the

beginning of this chapter to find the answers Cleopatra and
Marcus. The input to a program is a goal to be proved.

Backward reasoning is applied to try to prove the goal given
the assertions in the program. The program is read top to

bottom, left to right and search is performed depth-first with
backtracking.

Figure 4.1 shows an example of a simple knowledge base

represented in standard logical notation and then in PROLOG.
Both of these representations contain two types of statements,

facts, which contain only constants (i.e., no variables) and
rules, which do contain variables. Facts represent statements

about specific objects. Rules represent statements about
classes of objects.

Notice that there are several superficial, syntactic differences

between the logic and the PROLOG representations, including:

1. In logic, variables are explicitly quantified. In PROLOG,

quantification is pro-, vided implicitly by the way the
variables are interpreted (see below). The distinction
between variables and constantsTs made in PROLOG by

having all variables

begin with upper case letters and all constants begin with
lower case letters or numbers.

2. In logic, there are explicit symbols for and (A) and or (V).

In PROLOG, there is an explicit symbol for and (,), but
there is none for or. Instead, disjunction must be

represented as a list of alternative statements, any one of
which may provide the basis for a conclusion.

 Artificial
 Intelligence

 NOTES

165

3. In logic, implications of the form"/? implies^" are
writtenas/? —» q. InPROLOG, the same implication is

written "backward," as q : - p. This form is natural in
PROLOG because the interpreter always works backwards

from a goal, and this form causes every rule to begin with
the component that must therefore be matched first. This
first component is called the head of the rule.

The first two of these differences arise naturally from the fact
that PROLOG programs are actually sets of Horn clauses that

have been transformed as follows:

1. If the Horn clause contains no negative literals (i.e., it

contains a single literal which is positive), then leave it as
it is.

2. Otherwise, rewrite the Horn clause as an implication,

combining all of the negative literals into the antecedent of
the implication and leaving the single positive literal (if

there is one) as the consequent.

This procedure causes a clause, which originally consisted of a
disjunction of literals (all but one of which were negative), to be

transformed into a single implication whose antecedent is a
conjunction of (what are now positive) literals. Further, recall

that in a clause, all variables are implicitly universally
quantified. But, when we apply this transformation, any
variables that occurred in negative literals and so now occur in

the antecedent become existentially quantified, while the
variables in the consequent (the head) are still universally

quantified. For example, the PROLOG clause

P(x) :- Q(x, y) is equivalent to
the logical expression
^x:3y:Q(x,y)-)P(x)

A key difference between logic and the PROLOG representation

is that the PROLOG interpreter has a fixed control strategy,
and so the assertions in the PROLOG program define a
particular search path to an answer to any question. In

contrast, the logical assertions define only the set of answers
that they justify; they themselves say nothing about how to

choose among those answers if there are more than one.

 Artificial
 Intelligence

 NOTES

166

The basic PROLOG control strategy outlined above is simple.
Begin with a problem statement, which is viewed as a goal to

be proved. Look for assertions that can prove the goal.
Consider facts, which prove the goal directly, and also consider

any rule whose head matches the goal. To decide whether a
fact or a rule can be applied to the current problem, invoke a
standard unification procedure. Reason backward from that

goal until a path is found that terminates with assertions in
the program. Consider paths using a depth-first search

strategy and using backtracking. At each choice point,
consider options in the order in which they appear in the
program. If a goal has more than one conjunctive part, prove

the pans in the order in which they appear, propagating
variable bindings as they are determined during unification.

We can illustrate this strategy with a simple example.

Suppose the problem we are given is to find a value of X that
satisfies the predicate apartmentpet (X). We state this goal to

PROLOG as

?- apartmentpet(X) .

Think of this as the input to the program. The PROLOG
interpreter begins looking for a fact with the predicate
apartmentpet or a rule with that predicate as its head. Usually

PROLOG programs are written with the facts containing a
given predicate coming before the rules for that predicate so

that the facts can be used immediately if they are appropriate
and the rules will only be used when the desired fact is not
immediately available. In this example, there are no facts with

this predicate, though, so the one rule there is must be used.
Since the rule will succeed if both of the clauses on its right-

hand side can be satisfied, the next thing the interpreter does
is to try to prove each of them. They will be tried in the order in
which they appear. There are no facts with the predicate pet

but again there are rules with it on the right-hand side. But
this time there are two such rules, rather than one. All that is

necessary for a proof though is that one of them succeed. They
will be tried in the order in which they occur. The first will fail
because there are no assertions about the predicate cat in the

program. The second will eventually lead to success, using the
rule about dogs and poodles and using the fact poodle (fluffy).

This results in the variable X being bound to fluffy. Now the

 Artificial
 Intelligence

 NOTES

167

second clause smal 1 (X) of the initial rule must be checked.
Since X is now bound to fluffy, the more specific goal, small

(fluffy), must be proved. This too can be done by reasoning
backward to the assertion poodle (fluffy) . The program. then

halts with the result apartmentpet (fluffy).

Logical negation (-1) cannot be represented explicitly in pure
PROLOG. So, for example, it is not possible to encode directly

the logical assertion

V-v : dos(x) —> -icat(x)

Instead, negation is represented implicitly by the lack of an
assertion. This leads to the problem-solving strategy called
negation as failure If the PROLOG program of Figure 4.1 were

given the goal

?- cat(fluffy).

it would return FALSE because it is unable to prove that Fluffy
is a cat. Unfortunately, this program returns the same answer
when given the goal

even though the program knows nothing about Mittens and
specifically knows nothing that might prevent Mittens from

being a cat. Negation by failure requires that we make what is
called the closed world assumption, which states that ail

relevant, true assertions are contained in our knowledge'-base
or are derivable from assertions that are so contained. Any
assertion that is not present can therefore be assumed to be

false. This assumption, while often justified, can cause serious
problems when knowledge bases are incomplete.

There is much to say on the topic ot'PROLOG-style versus
LISP-style programming. A great advantage of logic
programming is that the programmer need only specify rules

and facts since a search engine is built directly into the
language. The disadvantage is that the search control is fixed.

Although it is possible to write PROLOG code that uses search
strategies other than depth-first with backtracking, it is
difficult to do so. It is even more difficult to apply domain

knowledge to constrain a search. PROLOG does allow for
rudimentary control of search through a non-logical operator

 Artificial
 Intelligence

 NOTES

168

called cut. A cut can be inserted into a rule to specify a point
that may not be backtracked over.

More generally, the fact tliat PROLOG programs must be
composed of a restricted set of logical operators can be viewed

as a limitation of the express! veness of the language. But the
other side of the coin is that it is possible to build PROLOG
compilers that produce very efficient code.

In the rest of this chapter, we retain the rule-based nature of
PROLOG, but we relax a number of PROLOG'S design

constraints, leading to more flexible rule-based architectures.

4.3 Forward versus Backward Reasoning

The object of a search procedure is to discover a path through
a problem space from an initial configuration to a goal state.
While PROLOG only searches from a goal state, there are

actually two directions in which such a search could proceed:

• Forward, from the start slates

• Backward, from the goal states

The production system model of the search process provides
an easy way of viewing forward and backward reasoning as

symmetric processes. Consider the problem of solving a
particular instance of the 8-puzzle. The rules to be used for

solving the puzzle can be written as shown in Figure 4.2. Using
those rules we could attempt to solve the puzzle:

• Reason forward from the initial states. Begin building a

tree of move sequences that might be solutions by starting
with the initial configuration(s) at the root of the tree.

Generate the next level of the tree by findingall the rules
whose left sides match the root node and using their right

sides to create the new configurations. Generate the next
level by taking each node generated at the previous level
and applying to it all of the rules whose left sides match it.

Continue until a configuration that matches the goal state
is generated.

 Artificial
 Intelligence

 NOTES

169

Assume the areas of the tray are numbered:

Square 1 empty Vnd Square 2 contains tile n -)

Square 2. empty and Square 1 contains
tile n Square 1 empty and Square

4contains tile n —>

Square 4 empty and Square 1 contains tile

n Square 2 empty and Square 1 contains
tile n —)

Square 1 empty and Square 2 contains tile n

Figure 4.2: A Sample of the Rules for Solving the 8-Puzzle

• Reason backward from the goal states. Begin building a tree

of move sequences that might be solutions by starting with
the goal configuration(s) at the root of the tree. Generate the

next level of the tree by finding all the rules whose right sides
match the root node. These are all the rules that, if only we

could apply them, would generate the state we want. Use the
left sides of the rules to generate the nodes at this second level
of the tree. Generate the next level of the tree by taking each

node at the previous level and finding all the rules whose right
sides match it. Then use the corresponding left sides to

generate the new nodes. Continue until a node that matches
the initial state is generated. This method of reasoning
backward from the desired final state is often called goal-
directed reasoning.

Notice that the same rules can be vised both to reason forward

from the initial state and to reason backward from the goal
state. To reason forward, the left sides (the preconditions) are

matched against the current state and the right sides (the
results) are used to generate new nodes until the goal is
reached. To reason backward, the right sides are matched

against the current node and the left sides are used to generate
new nodes representing new goal states to be-achieved. This

 Artificial
 Intelligence

 NOTES

170

continues until one of these goal states is matched by an initial
state.

In the case of the 8-puzzle, it does not make much difference
whether we reason forward or backward; about the same

number of paths will be explored in either case. But this is not
always true. Depending on the topology of the problem space,
it may be significantly more efficient to search in one direction

rather than the other.

Four factors influence, the question of whether it is better to

reason forward or backward:

• Are there more possible start states or goal states? We would
like to move from the smaller set of states to the larger (and

thus easier to find) set of states.

• In which direction is the branching factor (i.e., the
average number of nodes that can be reached directly from
a single node) greater? We would like to proceed in the

direction with the lower branching factor..

• Will the program be asked to justify its reasoning process

to a user? If so, it is important to proceed in the direction
that corresponds more closely with the way the user will
think.

• What kind of event is going to trigger a problem-solving
episode? If it 4s the arrival of a new fact, forward reasoning

makes sense. If it is a query to which a response is
desired, backward reasoning is more natural.

A few examples make these issues clearer. It seems easier to

drive from an unfamiliar place home than from home to an
unfamiliar place. Why is this? The branching factor is roughly

the same in both directions (unless one-way streets are laid
out very strangely). But for the purpose of finding our way
around, there are many more locations that count as being

home than there are locations that count as the unfamiliar
target place. Any place from which we know how to get home

can be considered as equivalent to home. If we can get to any
such place, we can get home easily. But in order to find a route

 Artificial
 Intelligence

 NOTES

171

from where we are to an unfamiliar place, we pretty much have
to be already attbe unfamiliar place. So in going toward the

unfamiliar place, we are aiming at a much smaller target than
in going home. This suggests that if our starting position is

home and our goal position is the unfamiliar place, we should
plan our route by reasoning backward from We unfamiliar
place.

On the other hand, consider the problem of symbolic
integration. The problem space is the set of formulas, some of

which contain integral expressions. The start state is a
particular formula containing some integral expression. The
desired goal state is a formula that is equivalent to the initial

one and that does not contain any integral expressions. So we
begin with a single easily identified start state and a huge

number of possible goal states. Thus to solve this problem, if is
better to reason forward using the rules for integration to try to
generate an Sntegral-free, expression than to start with

arbitrary integral-free expressions, use the rules for
differentiation, and try to generate the particular integral we

are trying to solve. Again we want to headloward the largest
target; this time that means chaining forward.

These two examples have illustrated the importance of die

relative number of start states to goal states in determining the
optimal" direction ifl which to search when the branching

factor is approximately the same in both directions. When the
branching factor is not the same, however, it must also be
taken into account.

Consider again the problem of proving theorems in xome
particular domain of mathematics. Our goal state is the

particular theorem to 1x proved. Our initial states are normally
a small set of axioms. Neither of these^s is significantly bigger
than the other. But consider the btanching factor in each of

the two directions. From a small set of axioms we can derive a
very large number of theorems. On the other hand, this large

number of theorems must go back to the small set of axioms.
So the branching factor is significantly greater going forward
from the axioms to the theorems than it is going backward

from theorems to axioms. This suggests that it would-be much
better to reason backward when trying to prove theorems.

 Artificial
 Intelligence

 NOTES

172

Mathematicians have long realized this as have the designers
of theorem-proving programs.

The third factor that determines the direction in which search

should proceed is the need to generate coherent justifications
of the reasoning process as it proceeds. This is often crucial for
the acceptance of programs for the performance of very

important tasks. For example, doctors are unwilling to accept
the advice of a diagnostic program that cannot explain its

reasoning to the doctors' satisfaction. This issue was of
concern to the designers of MYCIN , a program that diagnoses
infectious diseases. It reasons backward from its goal of

determining the cause of a patient's illness. To do that, it uses
rules that tell it such things as "If the organism has the

following set of characteristics as determined by the lab
results, then it is likely that it is organism x." By reasoning
backward using such rules, the program can answer questions

like "Why should I perform that test you just asked for?" with
such answers as "Because it would .help to determine whether

organism x is present."

Most of the search techniques described can be used to search

either forward or backward. By describing the search process
as the application of a set of production rules, it is easy to
describe the specific search algorithms without reference to the

direction of the search.

V/e can also search both forward from the start state and

backward from the goal simultaneously until two paths meet
somewhere in between. This strategy is called bidirectional
search. It seems appealing if the number of nodes at each step

grows exponentially with the number of steps that have been
taken. Empirical results suggest that for blind search, this

divide-and-conquer strategy is indeed effective. Unfortunately,
other results suggest that for informed, heuristic search it is

much less likely to be so. Figure 4.3 shows why bidirectional
search may be ineffective. The two searches may pass each
other, resulting in more work than it would have taken for one

of them, on its own, to have finished. However, if individual
forward and backward steps are performed as specified by a

program that has been carefully constructed to exploit each in

 Artificial
 Intelligence

 NOTES

173

exactly those situations where it can be the most profitable,
the results can be more encouraging. In fact, many successful

AI applications have been written using a combination of
forward and backward reasoning, and most AI programming

environments provide explicit support for such hybrid
reasoning.

Although in principle the same set of rules can be used for

both forward and backward reasoning, in practice it has
proved useful to define two classes of rules, each of which

encodes a particular
kind of knowledge. i

• Forward rules, which encode knowledge about how to

respond to certain input configurations.

• Backward rules, which encode knowledge about how to

achieve particular goals.

By separating rules into these two classes, we essentially add

to each rule an additional piece of information, namely how it
should be used in problem solving. In the next three sections,
we describe in more detail the two kinds of rule systems and

how they can be combined.

"One exception to this is the means-ends analysis technique,

which proceeds not by making successive steps in a single
direction but by reducing differences between the current and
the goal states, and, as a result, sometimes reasoning

backward and sometimes forward.

Figure 4.3: A Bad Use of Heuristic Bidirectional Search

 Artificial
 Intelligence

 NOTES

174

4.3.1 Backward-Chaining Rule Systems

Backward-chaining rule systems, of which PROLOG is an

example, are good for goal-directed problem solving. For
example, a query system would probably use backward

chaining to reason about and answer user questions.

In PROLOG, rules are restricted to Horn clauses. This allows
for rapid indexing because all of the rules for deducing a given

fact share the same rule head. Rules are matched with the
unification procedure. Unification tries to find a set of bindings

for variables to equate a (sub)goal with the head of some rule.
Rules in a PROLOG program are matched in the order in which
they appear.

Other backward-chaining systems allow for more complex
rules. In MYCIN, for example, rules can be augmented with

probabilistic certainty factors to reflect the fact that some rules
are more reliable than others.

4.3.2 Forward-Chaining Rule Systems

Instead of being directed by goals, we sometimes want to be
directed by incoming data. For example, suppose you sense

searing heat near your hand. You are likely to jerk your hand
away. While this could be construed as goal-directed behavior,
it is modeled more naturally by the recognize-act cycle

characteristic of forward-chaining rule systems. In forward-
chaining systems, left sides of rules are matched against the.

state description. Rules that match dump their right-hand side
assertions into the state, and the process repeats.

Matching is typically more complex for forward-chaining

systems than backward ones. For example, consider a rule
that checks for some condition in the state description and

then adds an assertion. After the rule fires, its conditions are
probably still valid, so it could fire again immediately. However,
we will need some mechanism to prevent repeated firings,

especially if the state remains unchanged.

While simple matching and control strategies are possible,

most forward-chaining systems implement highly efficient
matchers and supply several mechanisms for preferring one

 Artificial
 Intelligence

 NOTES

175

rule over another. We discuss matching in more detail in the
next section.

4.3.3 Combining Forward and Backward Reasoning

Sometimes certain aspects of a problem are best handled via
forward chaining and other aspects by backward chaining.
Consider a forward-chaining medical diagnosis program. It

might accept twenty or so facts about a patient's condition,
then forward chain on those facts to try to deduce the nature

and/or cause of the disease. Now suppose that at some point,
the left side of a rule was nearly satisfied—say, nine out of ten
of its preconditions were met. It might be efficient to apply

backward reasoning to satisfy the tenth precondition in a
directed manner, rather than wait for forward chaining to

supply the fact by accident. Or perhaps the tenth condition
requires further medical tests. In that case, backward chaining
can be used to query the user.

Whether it is possible to use the same rules for both forward-
and backward reasoning also depends on the form of the rules

themselves. If both left sides and right sides contain pure
assertions, then forward chaining can match assertions on the
left side of a rule and add to the state description the

assertions on the right side. But if arbitrary procedures are
allowed as the right sides of rules, then the rules will not be

reversible. Some production languages allow only reversible
rules; others do not. When irreversible rules are used, then a
commitment to the direction of the search must be made at the

time the rules are written. But, as we suggested above, this is
often a useful thing to do anyway because it allows the rule

writer to add control knowledge to the rules themselves:

4.4 Matching

So far, we have described the process of using search to solve

problems as the application of appropriate rules to individual
problem states to generate new states to which the rules can

then be applied, and so forth, until a solution is found. We
have suggested that clever search involves choosing from
among the rules that can be applied at a particular point, the

 Artificial
 Intelligence

 NOTES

176

ones that are most likely to lead to a solution. But we have
said little about how we extract from the entire collection of

rules those that can be applied at a given point. To do so
requires some kind of matching between the current state and

the preconditions of the rules. How should this be done? The
answer to this question can be critical to the success of a rule-
based system. We discuss a few proposals below.

4.4.1 Indexing

One way tQJselect applicable rules is to do a simple search

through all the rules, comparing each one's preconditions to
the current state and extracting all the ones that match. But
there are two problems with this simple solution:

• In order to solve very interesting problems, it will be
necessary to use a large number of rules. Scanning

through all of them at every step of the search would be
hopelessly inefficient.

• It is not always immediately obvious whether a rule's

preconditions are satisfied by a particular state.

Sometimes there are easy ways to deal with the first of these

problems. Instead of searching through the rules, use the
current state as an index into the rules and select the

Figure 4.4: One Legal Chess Move

 Artificial
 Intelligence

 NOTES

177

Figure 4.5: Another Way to Describe Chess Moves

matching ones immediately. For example, consider the legal-
move generation rule for chess shown in in Figure 4.4. To be

able to access the appropriate rules immediately, all we need
do is assign an index to each board position. This can be done

simply by treating the board description as a large number.
Any reasonable hashing function can then be used to treat
that number as an index into the rules. All the rules that

describe a given board position will be stored under the same
key and so will be found together. Unfortunately, this simple

indexing scheme only works because preconditions of rules
match exact board configurations. Thus the matching process*
is easy but at the price of complete lack of generality in the

statement of the rules. It is often better to write rules in a more
general form, such as that shown in Figure 4.5. When this is

done, such simple indexing is not possible. In fact, there is
often a trade-off between the ease of writing rules (which is
increased by the use of high-level descriptions) and the

simplicity of the matching process (which is decreased by such
descriptions).

All of this does not mean that indexing cannot be helpful even
when the preconditions of rules are stated as fairiy high-level
predicates. In PROLOG and many theorem-proving systems,

for example, rules are indexed by the predicates they contain,
so all the rules that could be applicable to proving a particular

fact can be accessed fairly quickly.

In the chess example, rules can be indexed by pieces and their
positions. Despite some limitations of this approach, indexing

 Artificial
 Intelligence

 NOTES

178

in some form i* very important in the efficient operation of
rule-based systems.

4.4.2 Matching with Variables

The problem of selecting applicable rules is made more difficult

when preconditions are not stated as exact descriptions of
particular situations but rather describe properties (of varying
complexity) that the situations must have. It often turns out

that discovering whether there is a match between a particular
situation and the preconditions of a given rule must itself

involve a significant search process.

If we want to match a single condition against a single element
in a state description, then the unification procedure will

suffice. However, in many rule-based systems, we need to
compute the whole set of rules that match the current state

description. Backward-chaining systems usually use depth-
first backtracking to select individual rules, but forward-
chaining systems generally employ sophisticated conflict
resolution strategies to choose among the applicable rules.3
While it is possible to apply unification repeatedly over the

cross product of preconditions and state description elements,
it is more efficient to consider the many-many match problem,

in which many rules are matched against many elements in
the state description simultaneously.

One efficient many-many match algorithm is RETE, which

gains efficiency from three major sources:

• The temporal nature of data. Rules usually do not alter

the state description radically. Instead, a rule will typically
add one or two elements, or perhaps delete one or two, but
most of the state description remains the same. (Recall our

discussion of this as part of our treatment of the frame
problem in Section 4.4.) If a rule did not match in the

previous cycle, it will most likely fail to apply in the current
cycle. RETE maintains a network of rule conditions, and it
uses changes in the state description to determine which

new rules might apply (and which rules might no longer
apply). Full matching is only pursued for candidates that

could be affected by incoming or outgoing data.

 Artificial
 Intelligence

 NOTES

179

• Structural similarity in rules. Different rules may share a
large number of preconditions. For example, consider rules

for identifying wild animals. One rule concludes jaguar(x) if
mammal(x), feline{x), carnivorous{x), and has-spots(x).
Another rule concludes tiger(x) and is identical to the first
rule except that it replaces has-spots with has-stripes. If we

match the two rules independently, we will repeat a lot of
work unnecessarily. RETE stores the rules so that they

share structures in memory; sets of conditions that appear
in several rules are matched (at most) once per cycle.

• Persistence of variable binding consistency. While all the

individual preconditions of a rule might be met, there may
be variable binding conflicts that prevent the rule from

firing. For example, suppose we know the facts son(Mary,
Joe) and son(Bill, Bob). The individual preconditions of the

rule

•Conflict resolution is discussed in the next section.

son(x,y) A son(y, z) —> grandparent(x, z)

can be matched, but not in a manner that-satisfies the

constraint imposed by the variable y. Fortunately, it is not
necessary to compute binding consistency from scratch

every time a new condition is satisfied. RETE remembers its
previous calculations and is able to merge new binding
information efficiently.

Other matching algorithms take different stands on how much
time to spend on saving state information between cycles. They

can be more or less efficient than RETE, depending on the
types of rules written for the. domain and on the degree of
hardware parallelism available.

4.4.3 Complex and Approximate Matching

A more complex matching process is required when the

preconditions or a rule specify required properties that are not
stated explicitly in the description of the current state. In this
case, a separate set of rules must be used to describe how

some properties can be inferred from others.

 Artificial
 Intelligence

 NOTES

180

An even more complex matching process is required if rules
should be applied if their preconditions approximately match

the current situation. This is often the case in situations
involving physical descriptions of the world. For example, a

speech-understanding program must contain rules that map
from a description of a physical waveform to phones (instances
of English phonemes, such as p or d). There is so much

variability in the physical signal, as a result of background
noise, differences in the way individuals speak, and so forth,

that one can hope to find only an approximate match between
the rule that describes an ideal sound and the input that

describes an unideal world. Approximate matching is
particularly difficult to deal with because as we increase the
tolerance allowed in the match, we also increase the number of

rules that will match, thus increasing the size of the main
search process. But approximate matching is nevertheless

superior to exact matching in situations such as speech
understanding, where exact matching may often result in no
rules being matched and the search process coming to a

grinding halt. Although symbolic techniques for approximate
matching exist, there is another, very different approach that

can be used to solve this problem. We describe connecUonist
systems (also called neural nets).

For some problems, almost all the action is in the matching of

the rules to the problem state. Once that is done, so few rules
apply that the remaining search is trivial. This was the case,

for example, in ELIZA an early AI program that simulated the
behavior .of a Rogerian therapist. A fragment of a dialogue
between ELIZA and a user is shown in Figure 4.4. ELIZA's

knowledge about both English and psychology was coded in a
set of simple rules. Figure 4.7 shows some ELIZA-like rules.

ELIZA operated by matching the left sides of the rules against
the user's last sentence and using the appropriate right side to
generate a response. For example, if the user typed "My

brother is mean to me," ELIZA might respond, "Who else in
your family is mean to you?" or "Tell me more about your

family." The rules were indexed by keywords so only a few had
actually to be matched against a canicular sentence. Some

 Artificial
 Intelligence

 NOTES

181

Figure 4.6: A Bit of a Dialogue with ELIZA

Figure 4.7: Some ELIZA-like rules

of the rules had no left side, so the rule could apply anywhere.
These rules were used if no other rules matched and they

generated replies such as "Tell me more about that." Notice
that the rules themselves cause a form of approximate
matching to occur. The patterns ask about specific words in

the user's sentence. They do not need to match entire
sentences. Thus a great variety of sentences can be matched

by a single rule, and the grammatical complexity of English is
pretty much ignored. This accounts both for ELIZA's major
strength, its ability to say something fairly reasonable almost

all of the time, and its major weakness, the superficiality, of its
understanding and its ability to be led completely astray.

Approximate matching can easily lead to both these results.

 Artificial
 Intelligence

 NOTES

182

As if the matching process were not already complicated
enough, recall the frame problem mentioned. One way of

dealing with the frame problem is to avoid storing entire state
descriptions at each node but instead to store only the changes

from the previous node. If this is done, the matching process
will have to be modified to scan backward from a node through
its predecessors, looking for the required objects.

4.4.4 Conflict Resolution

The result of the matching process is a list of rules whose
antecedents have matched the current state description along
with whatever variable bindings were generated by the

matching process. It is the job of the search method to decide
on the order in which rules will be applied. But sometimes it is

useful to incorporate some of that decision making into the
matching process. This phase of the matching process is then
called conflict resolution.

There are three basic approaches to the problem of conflict
resolution in a production system:

• Assign a preference based on the rule that matched.

• Assign a preference based on the objects that matched.

• Assign a preference based on the action that the matched

rule would perform.

Preferences Based on Rules

There are two common ways of assigning a preference based
on the rules themselves. The first, and simplest, is to consider
the rules to have been specified in a particular order, such as

the physical order in which they are presented to the system.
Then priority is given to the rules in the order in which they

appear. This is the scheme used in PROLOG.

The other common rule-directed preference scheme is to give
priority to special case rules over rules that are more general.

In the case of the water jug problem, recall that rules 11 and
12 were special cases of rules 9 and 5, respectively. The

 Artificial
 Intelligence

 NOTES

183

purpose of such specific rules is to allow for the kind of
knowledge that expert problem solvers use when they solve

problems directly, without search. If we consider all rules that
match, then the addition of such special-purpose rules will

increase the size of the search rather than decrease it. In order
to prevent that, we build the matcher so that it rejects rules
that are more general than other rules that also match. How

can the matcher decide that one rule is more general than
another'? There are a few easy ways:

• If the set of preconditions of one rule contains all the
preconditions of another (plus some others), then the
second rule is more general than the first.

• 'If the preconditions of one rule are the same as those of
another except that in the first case variables are specified

where in the second there are constants, then the first rule
is more general than the second.

Preferences Based on Objects

Another way in which the matching process can ease the
burden on the search mechanism is to order the matches it

finds based on the importance of the objects that are matched.
There are a variety of ways this can happen. Consider again
ELIZA, which matched patterns against a user's sentence in

order to find a rule to generate a reply. The patterns looked for
specific combinations of important keywords. Often an input

sentence contained several of the keywords that ELIZA knew. If
that happened, then ELIZA made use of the fact that some
keywords had been marked as being more significant than

others. The pattern matcher returned the match involving the
highest priority keyword. For example, ELIZA knew the word

"I" as a keyword. Matching the input sentence "I know
everybody laughed at me" by the keyword "I" would have
enabled it to respond, "You say you know everybody laughed at

you." But ELIZA also knew the word "everybody" as a keyword.
Because "everybody" occurs more rarely than "I," ELIZA knows

it to be more semantically significant and thus to be the clue to
which it should respond. So it will produce a response such as
"Who in particular are you thinking of?" Notice that priority

matching such as this is particularly important if only one of
the choices will ever be tried. This was true for ELIZA and

 Artificial
 Intelligence

 NOTES

184

would also be true, say, for a person who, when leaving a fast-
burning room, must choose between turning off the lights

(normally a good thing to do) and grabbing the baby (a more
important thing to do).

Another form of priority matching can occur as a function of
the position of the matchable objects in the current state
description. For example, suppose we want to model the

behavior of human short-term memory (STM). Rules can be
matched against the current contents of STM and then used to

generate actions, such as producing output to the environment
or storing something in long-term memory. In this situation,
we might like to have the matcher first try to match against the

objects that have most recently entered STM and only compare
against older elements if the newer elements do not trigger a

match. For a discussion of this method as a conflict resolution
strategy in a production system.

Preferences Based on States

Suppose that here are several rules waiting to fire. One way of
selecting among them is to fire all of them temporarily and to

examine the results of each. Then, using a heuristic function
that can evaluate each of the resulting states, compare the
merits of the results, and select the preferred one. Throw away

(or maybe keep for later if necessary) the remaining ones.

This approach should look familiar—it is identical to the best-

first search procedure. Although conceptually this approach
can be thought of as a conflict resolution strategy, it is usually
implemented as a search control technique that operates on

top of the states generated by rule applications. The drawback
to this design is that 'LISP-coded search control knowledge is

procedural and therefore difficult to modify. Many AI search
programs, especially ones that leam from their experience,
represent their control strategies declaratively. The next

section describes some methods for capturing knowledge about
control using rules.

4.5 Control Knowledge

A major theme of this book is that while intelligent programs
require search, search is computationally intractable unless it

 Artificial
 Intelligence

 NOTES

185

is constrained by knowledge about the world. In large
knowledge bases that contain thousands of rules, the

intractability of search is an overriding concern. When there
are many possible paths of reasoning, it is critical that

Figure 4.8: Syntax for a Control Rule

fruitless ones not be pursued. Knowledge about which paths

are most likely to lead quickly to a goal state is often called
search control knowledge. It can take many forms:

1. Knowledge about which states are more preferable to
others.

2. Knowledge about which rule to apply in a given situation.

3. Knowledge about the order in which to pursue subgoals.

4. Knowledge about useful sequences of rules to apply.

The first type of knowledge could be represented with heuristic
evaluation functions. There are many ways of representing the
other types of control knowledge. For example, rules can be

labeled and partitioned. A medical diagnosis system might
have one set of rules for reasoning about bacteriological

diseases and another set for immunological diseases. If the
system is trying to prove a particular fact by backward
chaining, it can probably eliminate one of the two rule sets,

depending on what the fact is. Another method is to assign
cost and probability-of-success measures to rules. The

 Artificial
 Intelligence

 NOTES

186

problem solver can then use probabilistic decision analysis to
choose a cost-effective alternative at each point in the search.

By now it should be clear that we are discussing how to
represent knowledge about knowledge. For this reason, search

control knowledge is sometimes called metaknowledge. Davis
[1980] first pointed out the need for meta-knowledge, and"
suggested that it be represented declaratively using rules. The

syntax for one type of control rule is shown in Figure 4.8.

A number of AI systems represent their control knowledge with

rules. We look briefly at two such systems, SOAR and
PRODIGY.

SOAR [Laird et al., 1987] is a general architecture for building

intelligent systems, SOAR is based on a set of specific,
cognitively motivated hypotheses about the structure of human

problem solving. These hypotheses are derived from what we
know about short-term memory, practice effects, etc. In SOAR:

 1. Long-term memory is stored as a set of productions (or,
rules).

2. Short-term memory (also called working memory) is a

buffer that is affected by perceptions and' serves as a
storage area for facts deduced by rules in long-term

memory. Working memory is analogous to the state
description in problem solving.

3. All problem-solving activity takes place as state space

traversal. There are several classes of problem-solving
activities, including reasoning about which states to

explore, which rules to apply in a given situation, and what
effects those rules will have.

4. All intermediate and final results of problem solving are

remembered (or, chunked) for future reference.

The third feature is of most interest to us here. When SOAR is

given a start state and a goal state, Tt sets up an initial
problem space. In order to take the first step in that space, it

must choose a rule from the set of applicable ones. Instead of
employing a fixed conflict resolution strategy, SOAR considers
that choice of rules to be a substantial problem in its own

 Artificial
 Intelligence

 NOTES

187

right, and it actually sets up another, auxiliary problem space.
The rules that apply in this space look something like the rule

shown in Figure 4.8. Operator preference rules may be very
general, such as the ones described in the previous section on

conflict resolution, or they may contain domain-specific
knowledge.

SOAR also has rules for expressing a preference for applying a

whole sequence of rules in a given situation. In learning mode,
SOAR can take useful sequences and build frorti them more

complex productions that it can apply in the future.

We can also write rules based on preferences for some states
over others. Such rules can be used to implement the basic

search strategies. For example, if we always prefer to work
from the state we generated last, we will get depth-first

behavior. On the other hand, if we prefer states that were
generated earlier in time, we will get breadth-first behavior. If
we prefer any state that looks better than the current state

(according to some heuristic function), we will get hill climbing.
Best-first search results when state preference rules prefer the

state with the highest heuristic score. Thus we see that all of
the weak methods are subsumed by an architecture that
reasons with explicit search control knowledge. Different

methods may be employed for different problems, and specific
domain knowledge can override the more general strategies.

PRODIGY [Minton et a/., 1989] is a general-purpose problem-
solving system that incorporates several different learning
mechanisms. A good deal of the learning in PRODIGY is

directed at automatically constructing a set of control rules to
improve search in a particular domain. We return to PRODIGY'S

learning methods, but we mention here a few facts that bear
on the issue of search control rules. PRODIGY can acquire
control rules in.a number of ways:

• Through hand coding by programmers.

• Through a static analysis of the domain's operators.

• Through looking at traces of its own problem-solving
behavior.

 Artificial
 Intelligence

 NOTES

188

PRODIGY leams control rules from its experience, but unlike
SOAR it also leams from its failures. If PRODIGY pursues an

unfruitful path, it will try to come up with an explanation of
why that path failed. It will. then use that explanation to build
control knowledge that will help it avoid fruitless search paths

in the future.

One reason why a path may lead to difficulties is that subgoals
can interact with one another. In the process of solving one
subgoal, we may undo our solution of a previous subgoal.

Search control knowledge can tell us something about the
order in which we should pursue our subgoals. Suppose we

are faced with the problem of building a piece of wooden
furniture. The problem specifies that the wood must be
sanded, sealed, and painted. Which of the three goals do we

pursue first? To humans who have knowledge about this sort
of thing, the answer is clear. An AI program, however, might

decide to try painting first, since any physical object can be
painted, regardless of whether it has been sanded. However, as
the program plans further, it will realize that one of the effects

of the sanding process is to remove the paint. The program will
then be forced to plan a repainting step or else backtrack and

try working on another subgoal first. Proper search control
knowledge can prevent this wasted computational effort. Rules
we might consider include:

• If a problem's subgoals include sanding and painting,

then we should solve the sanding subgoal first.

• If subgoals include sealing and painting, then consider
what the object is made of. If the object is made of wood,

then we should seal it before painting it.

Before closing this section, we should touch on a couple of

seemingly paradoxical issues concerning control rules. The
first issue is called the utility problem .As we add more and

 Artificial
 Intelligence

 NOTES

189

more control knowledge to a system, the system is able to
search more judiciously. This cuts down on the number of

nodes it expands. However, in deliberating about which step to
take next in the search space, the system musi consider all the

control rules. If there are many control rules, simply matching
them all can be very time-consuming. It is easy to reach a
situation (especially in systems that generate control

knowledge automatically) in which the system's problem-
solving efficiency, as measured in CPU cycles, is worse with the

control rules than without them. Different systems handle this
problem in different ways.

The second issue concerns the complexity of the production
system interpreter. As this chapter has progressed, we have

seen a trend toward explicitly representing more and more
knowledge about how search should proceed. We have found it
useful to create meta-rules that talk about when to apply other

rules. Now, a production system interpreter must know how to
apply various rules and meta-rules, so we should expect that

our interpreters will have to become more complex as we
progress away from simple backward-chaining systems like
PROLOG. And yet, moving to a declarative representation for

control knowledge means that previously hand coded LISP
functions can be eliminated from the interpreter. In this sense,

the interpreter becomes more streamlined.

4.6 Summary

In this chapter, we have seen how to represent knowledge
declaratively in rule-based systems and how to reason with

that knowledge. We began with a simple mechanism, logic
programming, and progressed to more complex production

system models that can reason both forward and backward,
apply sophisticated and efficient matching techniques, and
represent their search control knowledge in rules.

 Artificial
 Intelligence

 NOTES

190

In later chapters, we expand further on rule-based systems.
The use of rules that allow default reasoning to occur in the

absence of specific counter evidence. The idea of attaching
probabilistic measures to rules. The rule-based systems are

being used to solve complex, real-world problems.

The book Pattern-Directed Inference Systems is a collection of
papers describing the wide variety of uses to which production

systems have been put in AI. Its introduction provides a good
overview of the subject as a introduction to programming in

production rules, with an emphasis on the OPS5 programming
language.

4.7 Exercises

1. Consider the following knowledge base:

VJC : Vy : cat(x) /\fish(y) —> likes —to— eat(x,y)

1x : calico(x) —> cat(x)

1x: tuna(x) —>fish(x)

tuna(Charlie)

tuna(Herb)

calico(Puss)

(a) Convert these wff's into Horn clauses.

(b) Convert *he Horn clauses into a PROLOG program.

(c) Write a PROLOG query corresponding to the
question, "What does Puss like to eat?" and show how
it will be answered by your program.

 Artificial
 Intelligence

 NOTES

191

(d) Write another PROLOG program that corresponds to
the same set of wff's but returns a different answer to

the same query.

2. A problem-solving search can proceed either forward

(from a known start state to a desired goal state) or
backward (from a goal state to a start state). What factors
determine the choice of direction for a particular problem?

3. If a problem-solving search program were to be written
to solve each of the following types of problems, determine

whether the search should proceed forward or backward:

(a) water jug problem

(b) blocks world

(c) natural language understanding

4. Program the interpreter for a production system. You will
need to build a table that holds the rules and a matcher that
compares the current state to the left sides of the rules. You

will also need to provide an appropriate control strategy to
select among competing rules. Use your interpreter as the

basis of a program that solves water jug problems.

 Artificial
 Intelligence

 NOTES

192

UNIT - V

WEAK SLOT-AND-FILLER STRUCTURES,

STRONG SLOT-AND-FILLER STRUCTURES

In this chapter, we continue the discussion of slot-and-filler
structures. Recall that we originally introduced them as a
device to support property 'inheritance along isa and instance

links. This is an important aspect of these structures.
Monotonic inheritance can be performed substantially more

efficiently with such structures than with pure logic, and
nonmonotonic inheritance is easily supported. The reason that

inheritance is easy is that the knowledge in slot-and-filler
systems is structured as a set of entities and their attributes.
This structure turns out to be a useful one for other reasons

besides the support of inheritance, though, including:

• It indexes assertions by the entities they describe. More

formally, it indexes binary predicates [such as team(Three-
Finger-Brown, Chicago-Cuhs)] by their first argument. As a

result, retrieving the value for an attribute of an entity is
fast.

• It makes it easy to describe properties of relations. To do

this in a purely logical system requires some higher-order
mechanisms.

• It is a form of object-oriented programming and has the
advantages that such systems normally have, including
modularity and ease of viewing by people.

We describe two views of this kind of structure: semantic nets
and frames. We talk about the representations themselves and

about techniques for reasoning with them. We do not say
much, though, about the specific knowledge that the
structures should contain. We call these "knowledge-poor"

structures "weak," by analogy with the weak methods for

 Artificial
 Intelligence

 NOTES

193

problem solving that we discussed in Chapter 3. In the next
chapter, we expand this discussion to include "strong" slot-

and-filler structures, in which specific commitments to the
content of the representation are made.

The slot-and-filler structures described in the previous chapter
are very general, Indi vidual semantic networks and frame
systems may have specialized links and inference procedures,

but there are no hard and fast rules about what kinds of
objects and links are good in general for knowledge

representation. Such decisions are left up to the builder of the
semantic network or frame system.

The three structures discussed in this chapter, conceptual
dependency, scripts, and CYC, on the other hand, embody
specific notions of what types of objects and relations are

permitted. They stand for powerful theories of how AI programs
can represent and use knowledge about common situations.

5.1. Semantic Nets

The main idea behind semantic nets is that the meaning of a
concept comes,, from the ways in which it is connected to

other concepts. In a semantic net, information is represented
as a set of nodes connected to each other by a set of labeled

arcs, which

Figure 5.1: A Semantic Network

 Artificial
 Intelligence

 NOTES

194

represent relationships among the nodes. A fragment of a

typical semantic net is shown in Figure 5.1.

This network contains examples of both the isa and instance

relations, as well as some other, more domain-specific
relations like team and uniform-color. In this network, we could

use inheritance to derive the additional relation

has-part(Pee-Wee-Reese, Nose)

5.1.1 Intersection Search

One of the early ways that semantic nets were used was to find

relationships among objects by spreading activation out from
each of two nodes and seeing where the activation meL This
process is called intersection search . Using this process, it is

possible to use the network of Figure 5.1 to answer questions
such as "What is the connection between the Brooklyn Dodgers

and blue?"' This kind of reasoning exploits one of the
important advantages that slot-and-filler structures have over
purely logical representations because it takes advantage of

the entity-based organization of knowledge that slot-and-fiiler
representations provide.

To answer more structured questions, however, requires
networks that are themselves more highly structured. In the
next few sections we expand and refine our notion of a network

in order to support more sophisticated reasoning.

5.1.2 Representing Nonbinary Predicates

Semantic nets are a natural way to represent relationships
that would appear as ground instances of binary predicates in
predicate logic For example, some of the arcs from Figure 5.1

could be represented in logic as

Actually, to do this we need to assume that the inverses of the

links we have shown also exist.

 Artificial
 Intelligence

 NOTES

195

Figure 5.2: A Semantic Net for an w-Place Predicate

isa(Person, Mammal)

instance(Pee- Wee-Reese, Person)

team{Pee-Wee-Reese, Brooklyn-Dodgers)

uniform-color(Pee-Wee-Reese,Blue)

But the knowledge expressed by predicates of other arities can

also be expressed in semantic nets. We have already seen that
many unary predicates in logic can be thought of as binary
predicates using some very general-purpose predicates, such

as isa and instance. So, for ex-ample,

man(Marcus) could be

rewritten as

instance(Marcus, Man)

thereby making it easy to represent in a semantic net.

Three or more place predicates can also be converted to a
binary form by creating one new object representing the entire

predicate statement and then introducing binary predicates to
describe the relationship to this new object of each of the

original arguments. For example, suppose we know that

score(Cuhs, Dodgers, 5-3)

 Artificial
 Intelligence

 NOTES

196

This can be represented in a semantic net by creating a node
to represent the specific game and then relating each of the

three pieces of information to it. Doing this produces the
network shown in Figure 5.2.

This technique is particularly useful for representing the
contents of a typical declarative sentence that describes several
aspects of a particular event. The sentence

John gave the book to Mary.

Figure 5.3: A Semantic Net Representing a Sentence

could be represented by the network shown in Figure 5.3.2 In

fact, several of the earliest uses of semantic nets were in
English-understanding programs.

5.1.3 Making Some Important Distinctions

In the networks we have described so far, we have glossed over
some distinctions that are important in reasoning. For

example, there should be a difference between a link that
defines a new entity and one that relates two existing entities.

Consider the net

 Artificial
 Intelligence

 NOTES

197

Both nodes represent objects that exist independently of their
relationship to each other. But now suppose we want to

represent the fact that John is taller than Bill, using the net

The nodes HI and HI are new concepts representing John's
height and Bill's height, respectively. They are defined by their

relationships to the nodes John and Bill. Using these defined
concepts, it is possible to represent such facts as that John's

height increased, which we could not do before. (The number
72 increased?)

Sometimes it is useful to introduce the are value to make this
distinction clear. Thus we might use the following net to
represent the fact that John is 6 feet tall and that he is

The node labeled BK23 represents the particular book that was
referred to by the phrase "the book." Discovering which

particular book was meant by that phrase is similar to the
problem of deciding on the correct referent for a pronoun, and

it can be a very hard problem.

 ARTIFICIAL
 INTELLIGENCE
 NOTES

198

The procedures that operate on nets such as this can exploit
the fact that some arcs, such as height, define new entities,

while others, such as greater-than and value, merely describe
relationships among existing entities.

Another example of an important distinction we have missed is

the difference between the properties of a node itself and the
properties that a node simply holds and passes on to its

instances. For example, it is a property of the node Person that
it is a subclass of the node Mammal. But the node Person does

not have as one of its parts a nose. Instances of the node
Person do, and we want them to inherit it.

It is difficult to capture these distinctions without assigning

more structure to our notions of node, link, and value. In the
next section, when we talk about frame systems, we do that.

But first, we discuss a network-oriented solution to a simpler
problem;

this solution illustrates what can be done in the network model

but at what price in complexity.

5.1.4 Partitioned Semantic Nets

Suppose we want to represent simple quantified expressions in
semantic nets. One way to do this is to partition the semantic

 ARTIFICIAL
 INTELLIGENCE
 NOTES

199

net into a hierarchical set of spaces, each of which corresponds

to the scope of one or more variables. To see how this works,
consider first the simple net shown in Figure 5.4(a). This net
corresponds to the statement

The dog bit the mail carrier.

The nodes Dogs, Bite, and Mail-Carrier represent the classes of

dogs, bitings, and mail carriers, respectively, while the nodes
a, h, and m represent a particular dog, a particular biting, and

a particular mail carrier. This fact can easily be represented by
a single net with no partitioning.

But now suppose that we want to represent the fact

Every dog has bitten a mail carrier. or, in logic:

Figure 5.4: Using Partitioned Semantic Nets

 ARTIFICIAL
 INTELLIGENCE
 NOTES

200

V.v : Dog(x) —> 3y : Mail-Carrier^) A Bite(x,y)

To represent this fact, it is necessary to encode the scope of the
universally quantified variable x. This can be done using
partitioning as shown in Figure 5.4(h). The node g stands for

the assertion given above. Node g is an instance of the special
class GS of general statements about the world (i.e., those with

universal quantifiers). Every element of GS has at least two
attributes: a form, which states the relation that is being

asserted, and one or more V connections, one for each of the
universally quantified variables. In this example, there is only

one such variable d, which can stand for any element of the
class Dogs. The other two variables in the form, h and m. are

understood to be existentially quantified. In other words, for
every dog d, there exists a biting event h, and a mail carrier m,
such that d is the assailant of b and m is the victim.

To see how partitioning makes variable quantification explicit,
consider next the similar sentence:

Every dog in town has bitten the constable.

The representation of this sentence is shown in Figure 5.4(c).

In this net, the node c representing the victim lies outside the
form of the general statement. Thus it is not viewed as an
existentially quantified variable whose value may depend on

the value of d. Instead it is interpreted as standing for a
specific entity (in this case, a particular

constable), just as do other nodes in a standard,

nonpartitioned net. Figure 5.4(d} shows how yet
another similar sentence:

Every dog has bitten every mail carrier.

would be represented. In this case, g has two V links, one
pointing to d, which represents any dog, and one pointing to m,
representing any mail carrier.

The spaces of a partitioned semantic net are related to each

other by an inclusion hierarchy. For example, in Figure 5.4(d),
space Sl is included in space SA. Whenever a search process

operates in a partitioned semantic net, it can explore nodes
and arcs in the space from which it starts and in other spaces

 ARTIFICIAL
 INTELLIGENCE
 NOTES

201

that contain the starting point, but it cannot go downward,
except in special circumstances, such as when a form arc is

being traversed. So, returning to Figure 5.4(d), from node d it
can be determined that d must be a dog. But if we were to start

at the node Dogs and search for all known instances of dogs by
traversing isa links, we would not find d since it and the link to

it are in the space Sl, which is at a lower level than space SA,
which contains Dogs. This is important, since d does not stand

for a particular dog; it is merely a variable that can be
instantiated with a value that represents a dog.

5.1.5 The Evolution into Frames

The idea of a semantic net started out simply as a way to

represent labeled connections among entities. But, as we have
just seen, as we expand the range of problem-solving tasks
that the representation must support, the representation itself

necessarily begins to become more complex. In particular, it
becomes useful to assign more structure to nodes as well as to

links. Although there is no clear distinction between a
semantic net and a frame system, the more structure the
system has, the more likely it is to be termed a frame system.

In the next section we continue our discussion of structured
slot-and-filler representations by describing some of the most

important capabilities that frame systems offer.

5.2. Conceptual Dependency

Conceptual dependency (often nicknamed CD) is a theory of
how to represent the kind of knowledge about events that is

usually contained in natural language sentences. The goal is
to represent the knowledge in a way that

• Facilitates drawing inferences from the sentences.

• Is independent of the language in which the sentences were
originally stated.

Because of the two concerns just mentioned, the CD
representation of a sentence is built not out of primitives
corresponding to the words used in the sentence, but rather

out of conceptual primitives that can be combined to form the
meanings of words in any particular language. The theory was

 ARTIFICIAL
 INTELLIGENCE
 NOTES

202

first described in Schank and was further developed in Schank
It has since been implemented 'n a variety of programs that

read and understand natural language text. Unlike semantic
nets, which provide only a structure into which nodes

representing information at any level can be placed. conceptual
dependency provides both a structure and a specific set of
primitives, at a particular level of granularity, out of which

representations of particular pieces of information can be
constructed.

Figure 5.5: A Simple Conceptual Dependency Representation

As a simple example of the way knowledge is represented in

CD, the event represented by the sentence

I gave the man a book.

would be represented as shown in Figure 5.5

In CD, representations of actions are built from a set of
primitive acts. Although there are slight differences in the

exact set of primitive actions provided in the various sources

 ARTIFICIAL
 INTELLIGENCE
 NOTES

203

on CD. a typical set is the following, taken from Schank and
Abelson:

ATRANS Transfer of an abstract relationship (e.g., give)

PTRANS Transfer of the physical location of an object

(e.g., go)

PROPEL Application of physical force to an object (e.g.,
push)

MOVE Movement of a body pan by its owner (e.g., kick)

GRASP Grasping of an object by an actor (e.g., clutch)

INGEST Ingestion of an object by an animal (e.g., eat)

EXPEL Expulsion of something from the body of an
animal (e.g., cry)

MTRANS Transfer of mental information (e.g., tell)

MRUILD Building new information out of old (e.g., decide)

SPEAK Production of sounds (e.g., say)

ATTEND Focusing of a sense organ toward a stimulus
(e.g., listen)

A second set of CD building blocks is the set of allowable

dependencies among the conceptualizations described in a
sentence. There are four primitive conceptual categories from
which dependency structures can be built. These are

In addition, dependency structures are themselves
conceptualizations and can serve as components of larger

dependency structures.

 ARTIFICIAL
 INTELLIGENCE
 NOTES

204

The dependencies among conceptualizations correspond to
semantic relations among the underlying concepts. Figure 5.6

lists the most important ones allowed by CD.' The first column
contains the rules; the second contains examples of their use;

and the third contains an English version of each example. The
rules shown in the figure can be interpreted as follows:

• Rule 1 describes the relationship between an actor and the

event he or she causes. This is a two-way dependency sinee
neither actor nor event can be considered primary. The letter p

above the dependency link indicates past tense.

• Rule 2 describes the relationship between a PP and a PA that
is being asserted to describe it. Many state descriptions, such

as height, are represented in CD as numeric scales.

• Rule 3 describes the relationship between two PPs, one of

which belongs to the set defined by the other.

• Rule 4 describes the relationship between a PP and an
attribute that has already been predicated of it. The direction

of the arrow is toward the PP being described.

• Rule 5 describes the relationship between two PPs, one of

which provides a particular kind of information about the
other. The three most common types of information to be
provided in this way are possession (shown as POSS-BY),

location (shown as LOC), and physical containment (shown as
CONT). The direction of the arrow is again toward the concept

being described.

• Rule 6 describes the relationship between an ACT and the PP
that is the object of that ACT. The direction of the arrow is

toward the ACT since the context of the specific ACT
determines the meaning of the object relation.

• Rule 7 describes the relationship between an ACT and the
source and the recipient of the ACT.

• Rule 8 describes the relationship between an ACT and the

instrument with which it is performed. The instrument must
always be a full conceptualization (i.e., it must contain an

ACT), not just a single physical object.

 ARTIFICIAL
 INTELLIGENCE
 NOTES

205

Figure 5.6: The Dependencies of CD

 ARTIFICIAL
 INTELLIGENCE
 NOTES

206

• Rule 9 describes the relationship between an ACT and its

physical source and destination.

• Rule 10 represents the relationship between a PP and a state

in which it started and another in which it ended.

• Rule 11 describes the relationship between one
conceptualization and another that causes it. Notice that the

arrows indicate dependency of one conceptualization on
another and so point in the opposite direction of the

implication arrows. The two forms of the rule describe the
cause of an action and the cause of a state change.

• Rule 12 describes the relationship between a

conceptualization and the time at which the event it describes
occurred.

• Rule 13 describes the relationship between one
conceptualization and another that is the time of the first. The
example for this rule also shows how CD exploits a model of

the human information processing system; see is represented
as the transfer of information between the eyes and the

conscious processor.

• Rule 14 describes the relationship between a

conceptualization and the place at which it occurred.

Conceptualizations representing events can be modified in a
variety of ways to supply information normally indicated in

language by the tense, mood, or aspect of a verb form. The use
of the modifier p to indicate past tense has already been

shown. The set of conceptual tenses proposed by Schank
includes

 ARTIFICIAL
 INTELLIGENCE
 NOTES

207

As an example of the use of these tenses, consider the CD
representation shown in Figure 5.7 (taken from Schank [1973])

of the sentence

Since smoking can kill you, I stopped.

The vertical causality link indicates that smoking kills one.
Since it is marked c, however, we know only that smoking can
kill one, not that it necessarily does. The horizontal causality

link indicates that it is that first causality that made me stop
smoking. The qualification t attached to the dependency

between I and INGEST indicates that the smoking (an instance
of INGESTING) has stopped and that the stopping happened in
the past.

Figure 5.7: Using Conceptual Tenses

There are three important ways in which representing
knowledge using the conceptual dependency model facilitates

reasoning with the knowledge:

1. Fewer inference rules are needed than would be

required if knowledge were not broken down into
primitives.

2. Many inferences are already contained in the

representation itself.

 ARTIFICIAL
 INTELLIGENCE
 NOTES

208

3. The initial structure that is built to represent the
information contained in one sentence will have holes that

need to be filled. These holes can serve as an attention
focuser for the program that must understand ensuing

sentences.

Each of these points merits further discussion.

The first argument in favor of representing knowledge in terms

of CD primitives rather than in the higher-level terms in which
it is normally described is that using the primitives makes it

easier to describe the inference rules by which the knowledge
can be manipulated. Rules need only be represented once for
each primitive ACT rather than once for every word that

describes that ACT. For example, all of the following verbs
involve a transfer of ownership or an object:

• Give

• Take

• Steal

• Donate

If any of them occurs, then inferences about who now has the

object and who once had the object (and thus who may know
something about it) may be important. In a CD representation,
those possible inferences can be slated once and associated

with the primitive ACT ATRANS.

A second argument in favor of the use of CD representation is

that to construct it, we must use not only the information that
is stated explicitly in a sentence but also a set

 ARTIFICIAL
 INTELLIGENCE
 NOTES

209

Figure 5.8: The CD Representation of a Threat

of inference rules associated with the specific information.
Having applied these rules once, we store these results as part

of the representation and they can be used repeatedly without
the rules being reapplied. For example, consider the sentence

Bill threatened John with a broken nose.

The CD representation of the information contained in this
sentence is shown in Figure 10.4. (For simplicity, believe is

shown as a single unit. In fact, it must be represented in terms
of primitive ACTs and a model of the human information

processing system.) It says that Bill informed John that he
(Bill) will do something to break John's nose. Bill did this so
that John will believe that if he (John) does some other thing

(different from what Bill will do to break his nose), then Bill will
break John's nose. In this representation, the word "believe"

has been used to simplify the example. But the! idea behind
believe can be represented in CD as an MTRANS of a fact into
John's memory. The actions doj and do^ are dummy

placeholders that refer to some as yet unspecified actions.

 ARTIFICIAL
 INTELLIGENCE
 NOTES

210

A third argument for the use of the CD representation is that
unspecified elements of the representation of one piece of

information can be used as a focus for the understanding of
later events as they are encountered. So, for example, after

hearing that

Bill threatened John with a broken nose.

we might expect to find out what action Bill was trying to

prevent John from performing. That action could then be
substituted for the dummy action represented in Figure 5.8 as

do2. The presence of such dummy objects provides clues as to
what other events or objects are important for the
understanding of the known event.

Of course, there are also arguments against the use of CD as a
representation formalism. For one thing, it requires that all

knowledge be decomposed into fairly low-level primitives. We
discussed how this may be inefficient or perhaps even
impossible in some situations as we put it,

CD is a theory of representing fairly simple actions. To
express, for example, "John bet Sam fifty dollars that

the Mets would win the World Series" takes about two
pages of CD forms. This does not seem reasonable.

Thus, although there are several arguments in favor of the use

of CD as a model for representing events, it is not always
completely appropriate to do so, and it may be worthwhile to

seek out higher-level primitives.

Another difficulty with the theory of conceptual dependency as
a general model for the representation of knowledge is that it is

only a theory of the representation of events. But to represent
all the information that a complex program may need, it must

be able to represent other things besides events. There have
been attempts to define a set of primitives, similar to those of
CD for actions, that can be used to describe other kinds of

knowledge. For example, physical objects, which in CD are
simply represented as atomic units, have been analyzed in

Lehnert . A similar analysis of social actions is provided in
several other books. These theories continue the style of
representation pioneered by CD, but they have not yet been

subjected to the same amount of empirical investigation (i.e.,
use in real programs) as CD.

 ARTIFICIAL
 INTELLIGENCE
 NOTES

211

We have discussed the theory of conceptual dependency in
some detail in order to illustrate the behavior of a knowledge

representation system built around a fairly small set of specific
primitive elements. But CD is not the only such theory to have

been developed and used in AI programs. For another example
of a primitive-based system, see Wilks [1972].

5.3. Scripts

CD is a mechanism for representing and reasoning about
events. But rarely do events occur in isolation. In this section,

we present a mechanism for representing knowledge about
common sequences of events.

A script is a structure that describes a stereotyped sequence of

events in a particular context. A script consists of a set of slots.
Associated with each slot may be some information about what

kinds of values it may contain as well as a default value to be
used if no other information is available. So far, this definition

of a script looks very similar to that of a frame given, and at
this level of detail, the two structures are identical. But now,
because of the specialized role to be played by a script, we can

make some more precise statements about its structure.

5.4. Model Questions

 1. construct semantric net representations for the

 following:

 a. Pompeian(marcus),blacksmith(marcus)

 b. mary gave the green flowered vase to her favorite

 cousin.

2. suppose we want to use a semantic net discover
relationships that could help in disambiguating the word
―bank‖ in the sentence

John went downtown to deposit his money in the bank

The financial institution meaning for bank should be preferred
over the river bank meaning.

 ARTIFICIAL
 INTELLIGENCE
 NOTES

212

a. Constructing a semantic net that contains
representations for the relevant concepts.

b. Show how intersection search could be to find the
connection between the correct meaning for bank and

the rest of the sentence more easily than it can find a
connection with the incorrect meaning.

3. construct partitioned semantic net representations for the

following:

 a. every batter hit a ball

 b. all the batters like the pitcher.

4. show a conceptual dependency representation of the
sentence

 John begged mary for a pencil

 How does this representation make it possible to answer

the question

 Did john talk to mary?

5. construct a script for going to a movie from the viewpoint of

the movie goer.

6. would conceptual dependency be a good way to represent

the contents of a typical issue of national geographic?

7. state where in the CYC ontology following concepts should
fall:

 a. cat

 b. court case.

 c. new York times

 d. france

 e. glass of water.

8. consider the following paragraph :

 ARTIFICIAL
 INTELLIGENCE
 NOTES

213

 Jane was extremely hungry. She thought about going to
her favorite restaurtant for dinner, but it was the day before

payday. So instead she decided to go home and pop a frozen
pizza in the oven. On the way though , she ran into her friend,

judy. Judy invited jane to go out to dinner with her jane
instantly agreed. When they got to their favorite place, they
found a good table and relaxed over their meal.

How could the restaurant script be invoked by the contents of
this story? Trace the process throughout the story. Might any

other scripts also be invoked? For example, how wouyld your
answer the question, ―did jane pay for her dinner‖?

 ARTIFICIAL
 INTELLIGENCE
 NOTES

214

UNIT - VI

Introduction

This lecture has two main goals:

1. To introduce Prolog's inbuilt abilities for performing

arithmetic, and

2. To apply them to simple list processing problems, using

accumulators.

Objectives

To be familiar with

Arithmetic in Prolog

 Lists

Comparing integers

and other syntactic constructs of PROLOG

6.1 Arithmetic in Prolog

Prolog provides a number of basic arithmetic tools for

manipulating integers (that is, numbers of the form ...-3, -2, -1,
0, 1, 2, 3, 4...). Most Prolog implementation also provide tools

for handling real numbers (or floating point numbers) such as
1.53 or , but we're not going to discuss these, for they are not
particularly useful for the symbolic processing tasks discussed

in this course. Integers, on the other hand, are useful for
various tasks (such as finding the length of a list), so it is
important to understand how to work with them. We'll start by

looking at how Prolog handles the four basic operations of
addition, multiplication, subtraction, and division.

 ARTIFICIAL
 INTELLIGENCE
 NOTES

215

Arithmetic examples Prolog Notation

8 is 6+2.

12 is 6*2.

4 is 6-2.

-2 is 6-8.

3 is 6/2.

3 is 7/2.

1 is the remainder when 7 is divided by 2 1 is mod(7,2).

(Note that as we are working with integers, division gives us
back an integer answer. Thus

 gives 3 as an answer, leaving a reminder of 1.)

Posing the following queries yields the following responses:

 ?- 8 is 6+2. yes

 ?- 12 is 6*2. yes

 ?- -2 is 6-8. yes

 ?- 3 is 6/2. yes

 ?- 1 is mod(7,2). Yes

More importantly, we can work out the answers to arithmetic
questions by using variables. For

example:

?- X is 6+2.

 X = 8

 ?- X is 6*2.

 ARTIFICIAL
 INTELLIGENCE
 NOTES

216

X = 12

 ?- R is mod(7,2).

 R = 1

Moreover, we can use arithmetic operations when we define

predicates. Here's a simple example. Let's define a predicate
add_3_and_double2/ whose arguments are both integers.

This predicate takes its first argument, adds three to it, doubles

the result, and returns the number obtained as the second
argument. We define this predicate as follows:

add_3_and_double(X,Y) :- Y is (X+3)*2.

And indeed, this works:

?- add_3_and_double(1,X).

X = 8

 ?- add_3_and_double(2,X).

 X = 10

One other thing. Prolog understands the usual conventions we

use for disambiguating arithmetical expressions. For example,
when we write we mean and not and Prolog knows this
convention:

?- X is 3+2*4.

X = 11

6.2 A closer look

That's the basics, but we need to know more. The most
important to grasp is this: +, *, -, and mod do not carry out

any arithmetic. In fact, expressions such as 3+2, 3-2 and 3*2
are simply terms. The functors of these terms are +, - and *
respectively, and the arguments are 3 and 2. Apart from the fact

that the functors go between their arguments (instead of in front

 ARTIFICIAL
 INTELLIGENCE
 NOTES

217

of them) these are ordinary Prolog terms, and unless we do
something special, Prolog will not actually do any arithmetic. In

particular, if we pose the query

?- X = 3+2

we don't get back the answer X=5. Instead we get back

X = 3+2

yes

That is, Prolog has simply bound the variable X to the complex
term 3+2. It has not carried out any arithmetic. It has simply
done what it usually does: performed unification Similarly, if

we pose the query

?- 3+2*5 = X

we get the response

X = 3+2*5

yes

Again, Prolog has simply bound the variable X to the complex
term 3+2*5. It did not evaluate this expression to 13. To force

Prolog to actually evaluate arithmetic expressions we have to
use isjust as we did in our in our earlier examples. In fact, is
does something very special: it sends a signal to Prolog that

says `Hey! Don't treat this expression as an ordinary complex
term! Call up your inbuilt arithmetic capabilities and carry out
the calculations!'

In short, is forces Prolog to act in an unusual way. Normally
rolog is quite happy just unifying variables to structures: that's

its job, after all. Arithmetic is something extra that has been
bolted on to the basic Prolog engine because it is useful.
Unsurprisingly, there are some restrictions on this extra ability,

and we need to know what they are.

For a start, the arithmetic expressions to be evaluated must be

on the right hand side of is.

In our earlier examples we carefully posed the query

 ARTIFICIAL
 INTELLIGENCE
 NOTES

218

?- X is 6+2.

 X = 8

which is the right way to do it. If instead we had asked

6+2 is X.

we would have got an error message saying instantiation_error,
or something similar get some sort of instantiation_error
message. And this makes perfect sense. Arithmetic isn't
performed using Prolog usual unification and knowledge base
search mechanisms: it's done by calling up a special `black box'
which knows about integer arithmetic. If we hand the black box
the wrong kind of data, naturally its going to complain.

Here's an example. Recall our `add 3 and double it' predicate.

add_3_and_double(X,Y) :- Y is (X+3)*2.

When we described this predicate, we carefully said that it
added 3 to its first argument, doubled the result, and returned

the answer in its second argument. For example,
add_3_and_double(3,X) returns X = 12. We didn't say anything

about using this predicate in the reverse direction. For example,
we might hope that posing the query add_3_and_double(X,12).

would return the answer X=3. But it doesn't! Instead we get the

instantiation_error message. Why? Well, when we pose the
query this way round, we are asking Prolog to evaluate 12 is

(X+3)*2, which it can't do as X is not instantiated.

Two final remarks. As we've already mentioned, for Prolog 3 + 2
is just a term. In fact, for Prolog, it really is the term +(3,2). The

expression 3 + 2 is just a user-friendly notation that's nicer for
us to use. This means that if you really want to, you can give
Prolog queries like

X is +(3,2)

and Prolog will correctly reply

X = 5

Actually, you can even given Prolog the query

 ARTIFICIAL
 INTELLIGENCE
 NOTES

219

is(X,+(3,2))

and Prolog will respond

X = 5

This is because, for Prolog, the expression X is +(3,2) is the term

is(X,+(3,2)). The expression X is +(3,2) is just user friendly
notation. Underneath, as always, Prolog is just working away
with terms.

Summing up, arithmetic in Prolog is easy to use. Pretty much
all you have to remember is to use is to force evaluation, that
stuff to be evaluated must goes to the right of is, and to take

care that any variables are correctly instantiated. But there is a
deeper lesson that is worth reflecting on. By `bolting on' the

extra capability to do arithmetic we have further widened the
distance between the procedural and declarative interpretation
of Prolog processing.

6.3 Arithmetic and lists

Probably the most important use of arithmetic in this course is

to tell us useful facts about data-structures, such as lists. For
example, it can be useful to know how long a list is. We'll give
some examples of using lists together with arithmetic

capabilities.

How long is a list? Here's a recursive definition.

1. The empty list has length zero.

2. A non-empty list has length 1 + len(T), where len(T) is the
length of its tail.

This definition is practically a Prolog program already. Here's
the code we need:

len([],0).

len([_|T],N) :- len(T,X), N is X+1.

This predicate works in the expected way. For example:

?- len([a,b,c,d,e,[a,b],g],X).

 ARTIFICIAL
 INTELLIGENCE
 NOTES

220

X = 7

Now, this is quite a good program: it's easy to understand and
efficient. But there is another method of finding the length of a

list. We'll now look at this alternative, because it introduces the
idea of accumulators, a standard Prolog technique we will be
seeing lots more of.

If you're used to other programming languages, you're probably
used to the idea of using variables to hold intermediate results.
An accumulator is the Prolog analog of this idea.

Here's how to use an accumulator to calculate the length of a
list. We shall define a predicate

accLen3/ which takes the following arguments.

accLen(List,Acc,Length)

Here List is the list whose length we want to find, and Length is

its length (an integer).

What about Acc? This is a variable we will use to keep track of

intermediate values for length (so it will also be an integer).
Here's what we do. When we call this predicate, we are going to

give Acc an initial value of 0. We then recursively work our way

down the list, adding 1 to Acc each time we find a head element,
until we reach the empty list. When we do reach the empty set,
Acc will contain the length of the list. Here's the code:

accLen([_|T],A,L) :- Anew is A+1, accLen(T,Anew,L).

accLen([],A,A).

The base case of the definition, unifies the second and third
arguments. Why? There are actually two reasons. The first is
because when we reach the end of the list, the accumulator (the

second variable) contains the length of the list. So we give this
value (via unification) to the length variable (the third variable).

The second is that this trivial unification gives a nice way of
stopping the recursion when we reach the empty list. Here's an
example trace:

 ARTIFICIAL
 INTELLIGENCE
 NOTES

221

?- accLen([a,b,c],0,L).

 Call: (6) accLen([a, b, c], 0, _G449) ?

 Call: (7) _G518 is 0+1 ?

 Exit: (7) 1 is 0+1 ?

 Call: (7) accLen([b, c], 1, _G449) ?

 Call: (8) _G521 is 1+1 ?

 Exit: (8) 2 is 1+1 ?

 Call: (8) accLen([c], 2, _G449) ?

 Call: (9) _G524 is 2+1 ?

 Exit: (9) 3 is 2+1 ?

 Call: (9) accLen([], 3, _G449) ?

 Exit: (9) accLen([], 3, 3) ?

 Exit: (8) accLen([c], 2, 3) ?

 Exit: (7) accLen([b, c], 1, 3) ?

 Exit: (6) accLen([a, b, c], 0, 3) ?

As a final step, we'll define a predicate which calls accLen for
us, and gives it the initial value of 0:

leng(List,Length) :- accLen(List,0,Length).

So now we can pose queries like this:

leng([a,b,c,d,e,[a,b],g],X).

Accumulators are extremely common in Prolog programs. (We'll
see another accumulator based program later in this lecture.
And many more in the rest of the course.) But why is this?

In what way is accLen better than len? After all, it looks more
difficult. The answer is that accLen is tail recursive while len is

not. In tail recursive programs the result is all calculated once
we reached the bottom of the recursion and just has to be

 ARTIFICIAL
 INTELLIGENCE
 NOTES

222

passed up. In recursive programs which are not tail recursive
there are goals in one level of recursion which have to wait for

the answer of a lower level of recursion before they can be
evaluated. To understand this, compare the traces for the

queries accLen([a,b,c],0,L) (see above) and len([a,b,c],0,L) (given
below). In the first case the result is built while going into the
recursion -- once the bottom is reached at accLen([],3,_G449)

the result is there and only has to be passed up. In the second
case the result is built while coming out of the recursion -- the
result of len([b,c], _G481), for instance, is only computed after

the recursive call of len has been completed and the result of
len([c], _G489) is known.

?- len([a,b,c],L).

 Call: (6) len([a, b, c], _G418) ?

 Call: (7) len([b, c], _G481) ?

 Call: (8) len([c], _G486) ?

 Call: (9) len([], _G489) ?

 Exit: (9) len([], 0) ?

 Call: (9) _G486 is 0+1 ?

 Exit: (9) 1 is 0+1 ?

 Exit: (8) len([c], 1) ?

 Call: (8) _G481 is 1+1 ?

 Exit: (8) 2 is 1+1 ?

 Exit: (7) len([b, c], 2) ?

 Call: (7) _G418 is 2+1 ?

 Exit: (7) 3 is 2+1 ?

 Exit: (6) len([a, b, c], 3) ?

 ARTIFICIAL
 INTELLIGENCE
 NOTES

223

6.4 Comparing integers

Some Prolog arithmetic predicates actually do carry out

arithmetic all by themselves (that is, without the assistance of
is). These are the operators that compare integers.

Arithmetic examples Prolog Notation

X < Y.

X =< Y.

X =:= Y.

X =\= Y.

X >= Y

X > Y

These operators have the obvious meaning:

2 < 4.

yes

 2 =< 4.

yes

 4 =< 4.

yes

 4=:=4.

yes

 4=\=5.

yes

 4=\=4.

no

4 >= 4.

 ARTIFICIAL
 INTELLIGENCE
 NOTES

224

yes

4 > 2.

Yes

Moreover, they force both their right-hand and left-hand

arguments to be evaluated:

2 < 4+1.

yes

 2+1 < 4.

yes

 2+1 < 3+2.

yes

Note that =:= really is different from =, as the following examples

show:

4=4.

yes

 2+2 =4.

no

 2+2 =:= 4.

yes

That is, = tries to unify its arguments; it does not force

arithmetic evaluation. That's =:='s job.

For example, all the following queries lead to instantiation
errors.

X < 3.

 3 < Y.

 ARTIFICIAL
 INTELLIGENCE
 NOTES

225

X =:= X.

Moreover, variables have to be instantiated to integers. The

query

X = 3, X < 4.

succeeds. But the query

X = b, X < 4.

fails.

OK, let's now look at an example which puts Prolog's abilities to
compare numbers to work.

We're going to define a predicate which takes takes a list of non-

negative integers as its first argument, and returns the
maximum integer in the list as its last argument. Again, we'll

use an accumulator. As we work our way down the list, the
accumulator will keep track of the highest integer found so far.
If we find a higher value, the accumulator will be updated to

this new value. When we call the program, we set accumulator
to an initial value of 0. Here's the code. Note that there are two

recursive clauses:

accMax([H|T],A,Max) :-

 H > A,

 accMax(T,H,Max).

accMax([H|T],A,Max) :-

 H =< A,

 accMax(T,A,Max).

accMax([],A,A).

The first clause tests if the head of the list is larger than the

largest value found so far. If it is, we set the accumulator to this
new value, and then recursively work through the tail of the list.

 ARTIFICIAL
 INTELLIGENCE
 NOTES

226

The second clause applies when the head is less than or equal
to the accumulator; in this case we recursively work through

the tail of the list using the old accumulator value. Finally, the
base clause unifies the second and third arguments; it gives the

highest value we found while going through the list to the last
argument. Here's how it works:

accMax([1,0,5,4],0,_5810)

accMax([0,5,4],1,_5810)

accMax([5,4],1,_5810)

accMax([4],5,_5810)

accMax([],5,_5810)

accMax([],5,5)

Again, it's nice to define a predicate which calls this, and
initializes the accumulator. But wait:

what should we initialize the accumulator too? If you say 0, this

means you are assuming that all the numbers in the list are
positive. But suppose we give a list of negative integers as

input. Then we would have

accMax([-11,-2,-7,-4,-12],0,Max).

Max = 0

yes

 ARTIFICIAL
 INTELLIGENCE
 NOTES

227

This is not what we want: the biggest number on the list is -2.
Our use of 0 as the initial value of the accumulator has ruined

everything, because it's bigger than any number on the list.

There's an easy way around this: since our input list will always

be a list of integers, simply initialize the accumulator to the ead
of the list. That way we guarantee that the accumulator is
initialized to a number on the list. The following predicate does

this for us:

max(List,Max) :-

 List = [H|_],

 accMax(List,H,Max).

So we can simply say:

max([1,2,46,53,0],X).

X = 53

yes

And furthermore we have:

max([-11,-2,-7,-4,-12],X).

X = -2

yes

6.5 Exercises

Exercise 6.1

How does Prolog respond to the following queries?

1. X = 3*4
2. X is 3*4.
3. 4 is X.

 ARTIFICIAL
 INTELLIGENCE
 NOTES

228

4. X = Y.
5. 3 is 1+2.

6. 3 is +(1,2)
7. 3 is X+2.

8. X is 1+2.
9. 1+2 is 1+2
10.is(X,+(1,2))

11.3+2 = +(3,2)
12.*(7,5) = 7*5.
13.*(7,+(3,2)) = 7*(3+2).

14.*(7,(3+2)) = 7*(3+2).
15.*(7,(3+2)) = 7*(+(3,2)).

Exercise 6.2

Define a 2-place predicate increment that holds only when its second
argument is an integer one larger than its first argument. For example,

increment(4,5) should hold, but increment(4,6) should
not.

2. Define a 3-place predicate sum that holds only when its
third argument is

the sum of the first two arguments. For example, sum(4,5,9)

should hold, but sum(4,6,12)should not.

Exercise 6.3

Write a predicate addone2/ whose first argument is a list of
integers, and whose second argument is the list of integers
obtained by adding 1 to each integer in the first list. For

example, the query

 addone([1,2,7,2],X).

should give

X = [2,3,8,3].

maximum of a list of integers. By changing the code slightly,
turn this into a 3-place

 ARTIFICIAL
 INTELLIGENCE
 NOTES

229

6.6 Practical Session (optional)

The purpose of Practical Session 5 is to help you get familiar

with Prolog's arithmetic capabilities, and to give you some
further practice in list manipulation. To this end, we suggest the

following programming exercises:

In the text we discussed the 3-place predicate accMax which which returned the
predicate accMin which returns the minimum of a list of integers.

In mathematics, an n-dimensional vector is a list of
numbers of length n. For example,

[2,5,12] is a 3-dimensional vector, and [45,27,3,-4,6] is a 5-
dimensional vector.

One of the basic operations on vectors is scalar multiplication.
In this operation, every element of a vector is multiplied by some
number. For example, if we scalar multiply the 3-dimensional

vector [2,7,4] by 3 the result is the 3-dimensional vector
[6,21,12].

Write a 3-place predicate scalarMult whose first argument is an
integer, whose second argument is a list of integers, and whose
third argument is the result of scalar multiplying the second

argument by the first. For example, the query
scalarMult(3,[2,7,4],Result).

should yield

Result = [6,21,12]

Another fundamental operation on vectors is the dot product. This
operation combines two vectors of the same dimension and yields a

number as a result. The operation is carried out as follows: the

corresponding elements of the two vectors are multiplied,
and the results added. For example, the dot product of

[2,5,6] and [3,4,1] is 6+20

+6, that is, 32. Write a 3-place predicate dot whose first

argument is a list of integers, whose second argument is a list of
integers of the same length as the first, and whose

third argument is the dot product of the first argument with the
second. For example,

 ARTIFICIAL
 INTELLIGENCE
 NOTES

230

the query

dot([2,5,6],[3,4,1],Result).

should yield

Result = 32

instead of

[the,cow,under,the,table,shoots].

 [a,dead,woman,likes,he].

 ARTIFICIAL
 INTELLIGENCE
 NOTES

231

UNIT - 7

OTHER FEATURES OF PROLOG

Introduction

This chapter describes the basic Prolog facts. They are the

simplest form of Prolog predicates, and are similar to records in
a relational database. As we will see in the next chapter they
can be queried like database records.

Objectives

To be able to understand and develop prolog scripts to achieve

the desired effects in artificial intelligence

7.1 FACTS

The syntax for a fact is

pred(arg1, arg2, ... argN).

where

pred

The name of the predicate

arg1, ...

The arguments

N

The arity The syntactic end of all Prolog clauses

A predicate of arity 0 is simply pred.

The arguments can be any legal Prolog term. The basic Prolog

terms are integer

 ARTIFICIAL
 INTELLIGENCE
 NOTES

232

A positive or negative number whose absolute value is less than
some implementation-specific

power of 2

atom

A text constant beginning with a lowercase letter variable

Begins with an uppercase letter or underscore (_)structure
Complex terms

Various Prolog implementations enhance this basic list with
other data types, such as floating point

Numbers, or strings.

The Prolog character set is made up of

q Uppercase letters, A-Z

q Lowercase letters, a-z

q Symbols, + - * / \ ^ , . ~ : . ? @ # $ &

q Digits, 0-9

Integers are made from digits. Other numerical types are
allowed in some Prolog implementations.

Atoms are usually made from letters and digits with the
first character being a lowercase letter, such as

hello

twoWordsTogether

x14

For readability, the underscore (_), but not the hyphen (-), can
be used as a separator in longer names. So

the following are legal.

a_long_atom_name

z_23

 ARTIFICIAL
 INTELLIGENCE
 NOTES

233

The following are not legal atoms.

no-embedded-hyphens

123nodigitsatbeginning

_nounderscorefirst

Nocapsfirst

Use single quotes to make any character combination a
legal atom as follows.

'this-hyphen-is-ok'

'UpperCase'

'embedded blanks'

Do not use double quotes ("") to build atoms. This is a special

syntax that causes the character string to

be treated as a list of ASCII character codes.

Atoms can also be legally made from symbols, as follows.

-->

++

Variables are similar to atoms, but are distinguished by
beginning with either an uppercase letter or the

underscore (_).

Using these building blocks, we can start to code facts. The
predicate name follows the rules for atoms.

The arguments can be any Prolog terms.

Facts are often used to store the data a program is using. For
example, a business application might have

customer/3.

customer('John Jones', boston, good_credit).

 ARTIFICIAL
 INTELLIGENCE
 NOTES

234

customer('Sally Smith', chicago, good_credit).

The single quotes are needed around the names because they

begin with uppercase letters and because

they have embedded blanks.

example the arguments give the window name and
coordinates of the upper left and lower right corners

window(main, 2, 2, 20, 72).

window(errors, 15, 40, 20, 78).

A medical diagnostic expert system might have disease/2.

disease(plague, infectious).

A Prolog listener provides the means for dynamically recording

facts and rules in the logicbase, as well

as the means to query (call) them. The logicbase is updated by
'consult'ing or 'reconsult'ing program

source. Predicates can also be typed directly into the listener,
but they are not saved between sessions.

Nani Search

We will now begin to develop Nani Search by defining the basic
facts that are meaningful for the game.

These include

q The rooms and their connections

q The things and their locations

q The properties of various things

q Where the player is at the beginning of the game

 ARTIFICIAL
 INTELLIGENCE
 NOTES

235

Open a new source file and save it as 'myadven.pro', or

whatever name you feel is appropriate. You will make your
changes to the program in that source file. (A completed version
of nanisrch.pro is in the Prolog samples directory,

samples/prolog/misc_one_file.)

First we define the rooms with the predicate room/1, which has
five clauses, all of which are facts. They are based on the game

map in figure 6.1.

room(kitchen).

room(office).

room(hall).

room('dining room').

room(cellar).

mean the thing and the second will mean its location. To begin
with, we will add the following things.

location(desk, office).

location(apple, kitchen).

location(flashlight, desk).

location('washing machine', cellar).

location(nani, 'washing machine').

location(broccoli, kitchen).

 ARTIFICIAL
 INTELLIGENCE
 NOTES

236

location(crackers, kitchen).

location(computer, office).

The symbols we have chosen, such as kitchen and desk have
meaning to us, but none to Prolog. The relationship between the

arguments should also accurately reflect our meaning.

For example, the meaning we attach to location/2 is "The first
argument is located in the second argument." Fortunately

Prolog considers location(sink, kitchen) and location(kitchen,
sink) to be different. Therefore, as long as we are consistent in
our use of arguments, we can accurately represent our meaning

and avoid the potentially ambiguous interpretation of the
kitchen being in the sink.

We are not as lucky when we try to represent the connections
between rooms. Let's start, however, with door/2, which will
contain facts such as door(office, hall).

We would like this to mean "There is a connection from the
office to the hall, or from the hall to the office."

accurately represent a two-way connection, we would have to
define door/2 twice for each connection

door(office, hall).

door(hall, office).

The strictness about order serves our purpose well for location,
but it creates this problem for connections between rooms. If

the office is connected to the hall, then we would like the
reverse to be true as well.

For now, we will just add one-way doors to the program; we will
address the symmetry problem again in the next chapter and
resolve it in chapter 5.

door(office, hall).

door(kitchen, office).

door(hall, 'dining room').

door(kitchen, cellar).

 ARTIFICIAL
 INTELLIGENCE
 NOTES

237

door('dining room', kitchen).

Here are some other facts about properties of things the game
player might try to eat.

edible(apple).

edible(crackers).

tastes_yucky(broccoli).

Finally we define the initial status of the flashlight, and the
player's location at the beginning of the game.

turned_off(flashlight).

here(kitchen).

We have now seen how to use basic facts to represent data in a

Prolog program.

Exercises

During the course of completing the exercises you will develop

three Prolog applications in addition to Nani Search. The
exercises from each chapter will build on the work of previous

chapters. Suggested solutions to the exercises are contained in
the Prolog source files listed in the appendix, and are also
included in samples/prolog/misc_one_file. The files are gene

A genealogical intelligent logicbase custord

A customer order entry application

Birds

An expert system that identifies birds

Not all applications will be covered in each chapter. For
example, the expert system requires an understanding of rules
and will not be started until the end of chapter 5.

Genealogical Logicbase

 ARTIFICIAL
 INTELLIGENCE
 NOTES

238

- First create a source file for the genealogical logicbase
application. Start by adding a few members of your family tree.

It is important to be accurate, since we will be exploring family
relationships. Your own knowledge of who your relatives are will

verify the correctness of your Prolog programs.

Start by recording the gender of the individuals. Use two
separate predicates, male/1 and female/1. For example

male(dennis).

male(michael).

female(diana).

Remember, if you want to include uppercase characters or
embedded blanks you must enclose the name in single (not

double) quotes. For example male('Ghenghis Khan').

2- Enter a two-argument predicate that records the parent-child
relationship. One argument represents the parent, and the

other the child. It doesn't matter in which order you enter the
arguments, as long as you are consistent. Often Prolog

programmers adopt the convention that parent(A,B) is
interpreted "A is the parent of B". For example

parent(dennis, michael).

parent(dennis, diana).

Customer Order Entry

3- Create a source file for the customer order entry program. We

will begin it with three record types (predicates). The first is
customer/3 where the three arguments are

arg1

Customer name

arg2

City

arg3

Credit rating (aaa, bbb, etc)

 ARTIFICIAL
 INTELLIGENCE
 NOTES

239

Add as many customers as you see fit.

4- Next add clauses that define the items that are for sale. It

should also have three arguments

arg1

Item identification number

arg2

Item name

arg3

The reorder point for inventory (when at or below this level,
reorder)

5- Next add an inventory record for each item. It has two
arguments.

arg1

Item identification number (same as in the item record)

arg2

Amount in stock

7.2 Rules

We said earlier a predicate is defined by clauses, which may be
facts or rules. A rule is no more than a stored query. Its syntax
is

head :- body.

where

head a predicate definition (just like a fact)

the neck symbol, sometimes read as "if"

body

one or more goals (a query)

 ARTIFICIAL
 INTELLIGENCE
 NOTES

240

For example, the compound query that finds out where the good
things to eat are can be stored as a rule with the predicate

name where_food/2.

where_food(X,Y) :-

 location(X,Y),

 edible(X).

It states "There is something X to eat in room Y if X is located in

Y, and X is edible."

We can now use the new rule directly in a query to find things
to eat in a room. As before, the semicolon

(;) after an answer is used to find all the answers.

?- where_food(X, kitchen).

X = apple ;

X = crackers ;

no

?- where_food(Thing, 'dining room').

no

Or it can check on specific things

?- where_food(apple, kitchen).

yes

Or it can tell us everything.

?- where_food(Thing, Room).

Thing = apple

Room = kitchen ;

Thing = crackers

Room = kitchen ;

 ARTIFICIAL
 INTELLIGENCE
 NOTES

241

no

Just as we had multiple facts defining a predicate, we can have

multiple rules for a predicate. For example, we might want to
have the broccoli included in where_food/2. (Prolog doesn't have

an opinion on whether or not broccoli is legitimate food. It just
matches patterns.) To do this we add another

where_food/2 clause for things that 'taste_yucky.'

where_food(X,Y) :-

 location(X,Y),

 edible(X).

where_food(X,Y) :-

 location(X,Y),

 tastes_yucky(X).

Now the broccoli shows up when we use the semicolon (;) to ask
for everything.

?- where_food(X, kitchen).

X = apple ;

X = crackers ;

X = broccoli ;

no

Until this point, when we have seen Prolog try to satisfy goals by
searching the clauses of a predicate, all of the clauses have
been facts.

How Rules Work

With rules, Prolog unifies the goal pattern with the head of the

clause. If unification succeeds, then Prolog initiates a new query
using the goals in the body of the clause.

Rules, in effect, give us multiple levels of queries. The first level

is composed of the original goals. The next level is a new query

 ARTIFICIAL
 INTELLIGENCE
 NOTES

242

composed of goals found in the body of a clause from the first
level.

Each level can create even deeper levels. Theoretically, this
could continue forever. In practice it can continue until the

listener runs out of space.

Figure 6.2 shows the control flow after the head of a rule has
been matched. Notice how backtracking from the third goal of

the first level now goes into the second level.

In this example, the middle goal on the first level succeeds or
fails if its body succeeds or fails. When entered from the right

(redo) the goal reenters its body query from the right (redo).
When the query fails, the next clause of the first-level goal is

tried, and if the next clause is also a rule, the process is
repeated with the second clause's body.

As always with Prolog, these relationships become clearer by

studying a trace. Figure 6.3 contains the annotated trace of the
where_food/2 query. Notice the appearance of a two-part
number. The first part of the number indicates the query level.

The second part indicates the number of the goal within the
query, as before. The parenthetical number is the clause

number. For example

2-1 EXIT (7) location(crackers, kitchen)

means the exit occurred at the second level, first goal using

clause number seven.

 ARTIFICIAL
 INTELLIGENCE
 NOTES

243

The query is

?- where_food(X, kitchen).

First the clauses of where_food/2 are searched.

1-1 CALL where_food(X, kitchen)

The pattern matches the head of the first clause, and while it is
not at a port, the trace could inform us of the clause it is
working on.

1-1 try (1) where_food(X, kitchen)

The body of the first clause is then set up as a query, and the
trace continues.

 2-1 CALL location(X, kitchen)

From this point the trace proceeds exactly as it did for the

compound query in the previous chapter.

 2-1 EXIT (2) location(apple, kitchen)

 2-2 CALL edible(apple)

 2-2 EXIT (1) edible(apple)

Since the body has succeeded, the goal from the previous (first)

level succeeds.

1-1 EXIT (1) where_food(apple, kitchen)

 X = apple ;

Backtracking goes from the first-level goal, into the second level,
proceeding as before.

1-1 REDO where_food(X, kitchen)

 2-2 REDO edible(apple)

 2-2 FAIL edible(apple)

 2-1 REDO location(X, kitchen)

 2-1 EXIT (6) location(broccoli, kitchen)

 ARTIFICIAL
 INTELLIGENCE
 NOTES

244

 2-2 CALL edible(broccoli)

 2-2 FAIL edible(broccoli)

 2-1 REDO location(X, kitchen)

 2-1 EXIT (7) location(crackers, kitchen)

 2-2 CALL edible(crackers)

 2-2 EXIT (2) edible(crackers)

1-1 EXIT (1) where_food(crackers, kitchen)

 X = crackers ;

Now any attempt to backtrack into the query will result in no
more answers, and the query will fail

2-2 REDO edible(crackers)

 2-2 FAIL edible(crackers)

 2-1 REDO location(X, kitchen)

 2-1 FAIL location(X, kitchen)

This causes the listener to look for other clauses whose heads

match the query pattern. In our

example, the second clause of where_food/2 also matches the

query pattern.

1-1 REDO where_food(X, kitchen)

Again, although traces usually don't tell us so, it is building a

query from the body of the second clause.

1-1 try (2) where_food(X, kitchen)

Now the second query proceeds as normal, finding the broccoli,

which tastes_yucky.

 2-1 CALL location(X, kitchen)

 2-1 EXIT (2) location(apple, kitchen)

 ARTIFICIAL
 INTELLIGENCE
 NOTES

245

 2-2 CALL tastes_yucky(apple)

 2-2 FAIL tastes_yucky(apple)

 2-1 REDO location(X, kitchen)

 2-1 EXIT (6) location(broccoli, kitchen)

 2-2 CALL tastes_yucky(broccoli)

 2-2 EXIT (1) tastes_yucky(broccoli)

1-1 EXIT (2) where_food(broccoli, kitchen)

 X = broccoli ;

Backtracking brings us to the ultimate no, as there are no more
where_food/2 clauses to try.

 2-2 REDO tastes_yucky(broccoli)

 2-2 FAIL tastes_yucky(broccoli)

 2-1 REDO location(X,kitchen)

 2-1 EXIT (7) location(crackers, kitchen)

 2-2 CALL tastes_yucky(crackers)

 2-2 FAIL tastes_yucky(crackers)

 2-2 REDO location(X, kitchen)

 2-2 FAIL location(X, kitchen)

1-1 REDO where_food(X, kitchen)

1-1 FAIL where_food(X, kitchen)

 no

It is important to understand the relationship between the first-
level and second-level variables in this

query. These are independent variables, that is, the X in the
query is not the same as the X that shows up in the body of the

 ARTIFICIAL
 INTELLIGENCE
 NOTES

246

where_food/2 clauses, values for both happen to be equal due
to unification.

To better understand the relationship, we will slowly step
through the process of transferring control.

Subscripts identify the variable levels.

The goal in the query is

?- where_food(X1, kitchen)

The head of the first clause is

where_food(X2, Y2)

Remember the 'sleeps' example in chapter 3 where a query with

a variable was unified with a fact with a variable? Both variables
were set to be equal to each other. This is exactly what happens

here. This might be implemented by setting both variables to a
common internal variable. If either one takes on a new value,
both take on a new value.

So, after unification between the goal and the head, the variable
bindings are

X1 = _01

X2 = _01

Y2 = kitchen

The second-level query is built from the body of the clause,
using these bindings.

location(_01, kitchen), edible(_01).

When internal variable _01 takes on a value, such as 'apple,'
both X's then take on the same value. This is fundamentally

different from the assignment statements that set variable
values in most computer languages.

Using Rules

 ARTIFICIAL
 INTELLIGENCE
 NOTES

247

Using rules, we can solve the problem of the one-way doors. We
can define a new two-way predicate with two clauses, called

connect/2.

connect(X,Y) :- door(X,Y).

connect(X,Y) :- door(Y,X).

It says "Room X is connected to a room Y if there is a door from
X to Y, or if there is a door from Y to

X." Note the implied 'or' between clauses. Now connect/2
behaves the way we would like.

?- connect(kitchen, office).

yes

?- connect(office, kitchen).

yes

We can list all the connections (which is twice the number of
doors) with a general query.

?- connect(X,Y).

X = office

Y = hall ;

X = kitchen

Y = office ;

...

X = hall

Y = office ;

X = office

Y = kitchen ;

...

 ARTIFICIAL
 INTELLIGENCE
 NOTES

248

With our current understanding of rules and built-in predicates
we can now add more rules to Nani Search. We will start with

look/0, which will tell the game player where he or she is, what
things are in the room, and which rooms are adjacent.

To begin with, we will write list_things/1, which lists the things
in a room. It uses the technique developed at the end of chapter
4 to loop through all the pertinent facts.

list_things(Place) :-

location(X, Place),

 tab(2),

 write(X),

 nl,

 fail.

We use it like this.

?- list_things(kitchen).

 apple

 broccoli

 crackers

no

There is one small problem with list_things/1. It gives us the

list, but it always fails. This is all right if we call it by itself, but
we won't be able to use it in conjunction with other rules that
follow it (to the right as illustrated in our diagrams). We can fix

this problem by adding a second list_things/1 clause which
always succeeds.

list_things(Place) :-

 location(X, Place),

 tab(2),

 write(X),

 ARTIFICIAL
 INTELLIGENCE
 NOTES

249

 nl,

 fail.

list_things(AnyPlace).

Now when the first clause fails (because there are no more

location/2s to try) the second list_things/1 clause will be tried.
Since its argument is a variable it will successfully match with
anything, causing list_things/1 to always succeed and leave

through the 'exit' port.

As with the second clause of list_things/1, it is often the case
that we do not care what the value of a variable is, it is simply a

place marker. For these situations there is a special variable
called the

anonymous variable, represented as an underscore (_). For
example

list_things(_).

as well as to facts, we can write list_connections/1 just like
list_things/1 by using the connection/2 rule.

list_connections(Place) :-

 connect(Place, X),

tab(2),

 write(X),

 nl,

 fail.

list_connections(_).

Trying it gives us

?- list_connections(hall).

 dining room

 office

 ARTIFICIAL
 INTELLIGENCE
 NOTES

250

yes

Now we are ready to write look/0. The single fact here(kitchen)

tells us where we are in the game.

look :-

 here(Place),

 write('You are in the '), write(Place), nl,

 write('You can see:'), nl,

 list_things(Place),

 write('You can go to:'), nl,

 list_connections(Place).

Given we are in the kitchen, this is how it works.

?- look.

You are in the kitchen

You can see:

 apple

 broccoli

 crackers

You can go to:

 office

 cellar

 dining room

yes

We now have an understanding of the fundamentals of Prolog,

and it is worth summarizing what we have learned so far. We
have seen the following about rules in Prolog.

 ARTIFICIAL
 INTELLIGENCE
 NOTES

251

q A Prolog program is a logicbase of interrelated facts and
rules.

q The rules communicate with each other through
unification, Prolog's built-in pattern matcher.

q The rules communicate with the user through built-in
predicates such as write/1.

q The rules can be queried (called) individually from the

listener.

We have seen the following about Prolog's control flow.

q The execution behavior of the rules is controlled by Prolog's

built-in backtracking search

q We can force backtracking with the built-in predicate fail.

q We can force success of a predicate by adding a final
clause with dummy variables as arguments

We now understand the following aspects of Prolog

programming.

q Facts in the logicbase (locations, doors, etc.) replace

conventional data definition.

q The backtracking search (list_things/1) replaces the coding
of many looping constructs.

q Passing of control through pattern matching (connect/2)
replaces conditional test and branch

q The rules can be tested individually, encouraging modular

program development.

q Rules that call rules encourage the programming practices

of procedure abstraction and data

With this level of understanding, we can make a lot of progress
on the exercise applications. Take some time to work with the

programs to consolidate your understanding before moving on
to the following chapters.

Exercises

 ARTIFICIAL
 INTELLIGENCE
 NOTES

252

Nonsense Prolog

1- Consider the following Prolog logicbase.

a(a1,1).

a(A,2).

a(a3,N).

b(1,b1).

b(2,B).

b(N,b3).

c(X,Y) :- a(X,N), b(N,Y).

d(X,Y) :- a(X,N), b(Y,N).

d(X,Y) :- a(N,X), b(N,Y).

Predict the answers to the following queries, then check them

with Prolog, tracing.

?- a(X,2).

?- b(X,kalamazoo).

?- c(X,b3).

?- c(X,Y).

?- d(X,Y).

Adventure Game

2- Experiment with the various rules that were developed

during this chapter, tracing them all.

3- Write look_in/1 for Nani Search. It should list the things
located in its argument. For example, look_in

(desk) should list the contents of the desk.

4- Build rules for the various family relationships that were

developed as queries in the last chapter. For example

 ARTIFICIAL
 INTELLIGENCE
 NOTES

253

mother(M,C):-

 parent(M,C),

 female(M).

5- Build a rule for siblings. You will probably find your rule lists

an individual as his/her own sibling.

Use trace to figure out why.

6- We can fix the problem of individuals being their own siblings

by using the built-in predicate that succeeds if two values are
unequal, and fails if they are the same. The predicate is \=(X,Y).
Jumping ahead a bit (to operator definitions in chapter 12), we

can also write it in the form X \= Y.

7- Use the sibling predicate to define additional rules for

brothers, sisters, uncles, aunts, and cousins.

8- If we want to represent marriages in the family logicbase, we
run into the two-way door problem we encountered in Nani

Search. Unlike parent/2, which has two arguments with
distinct meanings, married/2 can have the arguments reversed

without changing the meaning.

Using the Nani Search door/2 predicate as an example, add
some basic family data with a spouse/2 predicate. Then write

the predicate married/2 using connect/2 as a model.

9- Use the new married predicate to add rules for uncles and
aunts that get uncles and aunts by marriage as well as by

blood. You should have two rules for each of these
relationships, one for the blood case and one for the marriage

case. Use trace to follow their behavior.

10- Explore other relationships, such as those between in-laws.

11- Write a predicate for grandparent/2. Use it to find both a

grandparent and a grandchild.

grandparent(someone, X).

grandparent(X, someone).

 ARTIFICIAL
 INTELLIGENCE
 NOTES

254

Trace its behavior for both uses. Depending on how you wrote
it, one use will require many more steps than the other. Write

two predicates, one called grandparent/2 and one called
grandchild/2. Order the goals in each so that they are efficient

for their intended uses.

Customer Order Entry

12- Write a rule item_quantity/2 that is used to find the

inventory level of a named item. This shields the user of this
predicate from having to deal with the item numbers.

13- Write a rule that produces an inventory report using the

item_quantity/2 predicate. It should display the name of the
item and the quantity on hand. It should also always succeed. It

will be similar to list_things/2.

14- Write a rule which defines a good customer. You might want
to identify different cases of a good

customer.

Expert Systems

Expert systems are often called rule-based systems. The rules
are "rules of thumb" used by experts to solve certain problems.
The expert system includes an inference engine, which knows

how to use the rules.

expert systems. Prolog is an excellent language for building any
kind of expert system. However, certaintypes of expert systems

can be built directly using Prolog's native rules. These systems
are called

Structured selection systems.

The code listing for 'birds' in the appendix contains a sample
system that can be used to identify birds.

You will be asked to build a similar system in the exercises. It
can identify anything, from animals to cars to diseases.

15- Decide what kind of expert system you would like to build,
and add a few initial identification rules.

 ARTIFICIAL
 INTELLIGENCE
 NOTES

255

For example, a system to identify house pets might have these
rules.

pet(dog):- size(medium), noise(woof).

pet(cat):- size(medium), noise(meow).

pet(mouse):- size(small), noise(squeak).

16- For now, we can use these rules by putting the known facts
in the logicbase. For example, if we add

size(medium) and noise(meow) and then pose the query pet(X)
we will find X=cat.

?- size(medium) :- true.

recorded

?- noise(meow) :- true.

recorded

Jumping ahead, you can also use assert/1 like this

?- assert(size(medium)).

yes

?- assert(noise(meow)).

yes

These examples use the predicates in the general form
attribute(value). In this simple example, the pet attribute is

deduced. The size and noise attributes must be given.

17- Improve the expert system by having it ask for the
attribute/values it can't deduce. We do this by first adding the

rules

size(X):- ask(size, X).

noise(X):- ask(noise, X).

For now, ask/2 will simply check with the user to see if an
attribute/value pair is true or false. It will use the built-in

 ARTIFICIAL
 INTELLIGENCE
 NOTES

256

predicate read/1 which reads a Prolog term (ending in a period
of course).

ask(Attr, Val):-

 write(Attr),tab(1),write(Val),

 tab(1),write('(yes/no)'),write(?),

 read(X),

 X = yes.

The last goal, X = yes, attempts to unify X and yes. If yes was
read, then it succeeds, otherwise, it fails.

Arithmetic

Prolog must be able to handle arithmetic in order to be a useful
general purpose programming language.

However, arithmetic does not fit nicely into the logical scheme of
things.

That is, the concept of evaluating an arithmetic expression is in

contrast to the straight pattern matching we have seen so far.
For this reason, Prolog provides the built-in predicate 'is' that

evaluates arithmetic expressions. Its syntax calls for the use of
operators.

X is <arithmetic expression>

The variable X is set to the value of the arithmetic expression.
On backtracking it is unassigned.

The arithmetic expression looks like an arithmetic expression in

any other programming language.

Here is how to use Prolog as a calculator.

?- X is 2 + 2.

X = 4

?- X is 3 * 4 + 2.

X = 14

 ARTIFICIAL
 INTELLIGENCE
 NOTES

257

Parentheses clarify precedence.

?- X is 3 * (4 + 2).

X = 18

?- X is (8 / 4) / 2.

X = 1

In addition to 'is,' Prolog provides a number of operators that
compare two numbers. These include 'greater than', 'less than',

'greater or equal than', and 'less or equal than.' They behave
more logically, and succeed or fail according to whether the
comparison is true or false. Notice the order of the symbols in

the greater or equal than and less than or equal operators. They
are specifically constructed not to look like an arrow, so that

you can use arrow symbols in your programs without
confusion.

X > Y

X < Y

X >= Y

X =< Y

Here are a few examples of their use.

?- 4 > 3.

yes

?- 4 < 3.

no

?- X is 2 + 2, X > 3.

X = 4

?- X is 2 + 2, 3 >= X.

no

?- 3+4 > 3*2.

 ARTIFICIAL
 INTELLIGENCE
 NOTES

258

yes

They can be used in rules as well. Here are two example

predicates. One converts centigrade temperatures to
Fahrenheit, the other checks if a temperature is below freezing.

c_to_f(C,F) :-

 F is C * 9 / 5 + 32.

freezing(F) :- Here are some examples of their use.

?- c_to_f(100,X).

X = 212

yes

?- freezing(15).

yes

?- freezing(45).

no

Exercises

Customer Order Entry

1- Write a predicate valid_order that checks whether a customer
order is valid. The arguments should be customer, item, and
quantity. The predicate should succeed only if the customer is a

valid customer with a good credit rating, the item is in stock,
and the quantity ordered is less than the quantity in stock.

2- Write a reorder/1 predicate which checks inventory levels in

the inventory record against the reorder quantity in the item
record. It should write a message indicating whether or not it's

time to reorder.

Recursion

 ARTIFICIAL
 INTELLIGENCE
 NOTES

259

Recursion in any language is the ability for a unit of code to call
itself, repeatedly, if necessary.

Recursion is often a very powerful and convenient way of
representing certain programming constructs.

In Prolog, recursion occurs when a predicate contains a goal
that refers to itself.

As we have seen in earlier chapters, every time a rule is called,

Prolog uses the body of the rule to create a new query with new
variables. Since the query is a new copy each time, it makes no
difference whether a rule calls another rule or itself.

A recursive definition (in any language, not just Prolog) always
has at least two parts, a boundary condition and a recursive

case.

The boundary condition defines a simple case that we know to
be true. The recursive case simplifies the problem by first

removing a layer of complexity, and then calling itself. At each
level, the boundary condition is checked. If it is reached the

recursion ends. If not, the recursion continues.

We will illustrate recursion by writing a predicate that can
detect things which are nested within other things.

Currently our location/2 predicate tells us the flashlight is in
the desk and the desk is in the office, but it does not indicate
that the flashlight is in the office.

?- location(flashlight, office).

no

Using recursion, we will write a new predicate,
is_contained_in/2, which will dig through layers of nested
things, so that it will answer 'yes' if asked if the flashlight is in

the office.

To make the problem more interesting, we will first add some

more nested items to the game. We will continue to use the
location predicate to put things in the desk, which in turn can
have other things inside them.

location(envelope, desk).

 ARTIFICIAL
 INTELLIGENCE
 NOTES

260

location(stamp, envelope).

location(key, envelope).

To list all of things in the office, we would first have to list those
things that are directly in the office, like the desk. We would

then list the things in the desk, and the things inside the things
in the desk.

If we generalize a room into being just another thing, we can

state a two-part rule which can be used to deduce whether
something is contained in (nested in) something else.

q A thing, T1, is contained in another thing, T2, if T1 is

directly located in T2. (This is the

q A thing, T1, is contained in another thing, T2, if some

intermediate thing, X, is located in

We will now express this in Prolog. The first rule translates into
Prolog in a straightforward manner.

is_contained_in(T1,T2) :-

 location(T1,T2).

The recursive rule is also straightforward. Notice that it refers to
itself.

is_contained_in(T1,T2) :-

 location(X,T2),

 is_contained_in(T1,X).

Now we are ready to try it.

?- is_contained_in(X, office).

X = desk ;

X = computer ;

X = flashlight ;

X = envelope ;

 ARTIFICIAL
 INTELLIGENCE
 NOTES

261

X = stamp ;

X = key ;

?- is_contained_in(envelope, office).

yes

?- is_contained_in(apple, office).

How Recursion Works

As in all calls to rules, the variables in a rule are unique, or
scoped, to the rule. In the recursive case, this means each call
to the rule, at each level, has its own unique set of variables. So

the values of X, T1, and T2 at the first level of recursion are
different from those at the second level.

However, unification between a goal and the head of a clause
forces a relationship between the variables of different levels.
Using subscripts to distinguish the variables, and internal

Prolog variables, we can trace the relationships for a couple of
levels of recursion.

First, the query goal is

?- is_contained_in(XQ, office).

The clause with variables for the first level of recursion is

is_contained_in(T11, T21) :-

 location(X1, T21),

 is_contained_in(T11, X1).

When the query is unified with the head of the clause, the
variables become bound. The bindings are

XQ = _01

T11 = _01

T21 = office

 ARTIFICIAL
 INTELLIGENCE
 NOTES

262

X1 = _02

Note particularly that XQ in the query becomes bound to T11 in

the clause, so when a value of _01 is found, both variables are
found.

With these bindings, the clause can be rewritten as

is_contained_in(_01, office) :-

 location(_02, office),

 is_contained_in(_01, _02).

When the location/2 goal is satisfied, with _02 = desk, the
recursive call becomes

is_contained_in(_01, desk)

That goal unifies with the head of a new copy of the clause, at

the next level of the recursion. After that

unification the variables are

XQ = _01 T11 = _01 T12 = _01

 T21 = office T22 = desk

 X1 = desk X2 = _03

When the recursion finds a solution, such as 'envelope,' all of
the T1s and X0 immediately take on that

value. Figure 6.4 contains a full annotated trace of the query.

The query is

?- is_contained_in(X, office).

Each level of the recursion will have its own unique variables,

but as in all calls to rules, the variables at a called level will be
bound in some relationship to the variables at the calling level.

In the following trace, we will use Prolog internal variables, so
we can see which variables are bound together and which are
not. The items directly in the office are found easily, as the

variable _0 is

 ARTIFICIAL
 INTELLIGENCE
 NOTES

263

bound to X in the query and T1 in the rule.

1-1 CALL is_contained_in(_0, office)

1-1 try (1) is_contained_in(_0, office)

 2-1 CALL location(_0, office)

 2-1 EXIT location(desk, office)

1-1 EXIT is_contained_in(desk, office)

 X = desk ;

 2-1 REDO location(_0, office)

 2-1 EXIT location(computer, office)

1-1 EXIT is_contained_in(computer, office)

 X = computer ;

 2-1 REDO location(_0,office)

 2-1 FAIL location(_0,office)

When there are no more location(X, office) clauses, the first
clause of is_contained_in/2 fails, and the second clause is tried.

Notice that the call to location does not have its first argument
bound to the same variable. It was X in the rule, and it gets a

new internal value, _4. T1 stays bound to _0.

1-1 REDO is_contained_in(_0, office)

1-1 try (2) is_contained_in(_0, office)

 2-1 CALL location(_4, office)

 2-1 EXIT location(desk, office)

 3-2 REDO is_contained_in(_0, flashlight)

 3-2 try (2) is_contained_in(_0, flashlight)

 4-1 CALL location(_11, flashlight)

 4-1 FAIL location(_11, flashlight)

 ARTIFICIAL
 INTELLIGENCE
 NOTES

264

 3-2 FAIL is_contained_in(_0, flashlight)

Next, it tries to find things in the envelope and comes up with

the stamp.

 3-1 REDO location(_7, desk)

 3-1 EXIT location(envelope, desk)

 3-2 CALL is_contained_in(_0, envelope)

 4-1 CALL location(_0, envelope)

 4-1 EXIT location(stamp, envelope)

 3-2 EXIT is_contained_in(stamp, envelope)

 2-2 EXIT is_contained_in(stamp, desk)

1-1 EXIT is_contained_in(stamp, office)

 X = stamp ;

And then the key.

 4-1 REDO location(_0,envelope)

 4-1 EXIT location(key, envelope)

 3-2 EXIT is_contained_in(key, envelope)

 2-2 EXIT is_contained_in(key, desk)

1-1 EXIT is_contained_in(key, office)

 X = key ;

And then it fails its way back to the beginning.

3-2 REDO is_contained_in(_0, envelope)

 3-2 try (2) is_contained_in(_0, envelope)

 4-1 CALL location(_11, envelope)

 4-1 EXIT location(stamp, envelope)

 4-2 CALL is_contained_in(_0, stamp)

 ARTIFICIAL
 INTELLIGENCE
 NOTES

265

 5-1 CALL location(_0, stamp)

 5-1 FAIL location(_0, stamp)

 4-2 REDO is_contained_in(_0, stamp)

 4-2 try(2) is_contained_in(_0, stamp)

 5-1 CALL location(_14, stamp)

 5-1 FAIL location(_14, stamp)

 4-1 REDO location(_11, envelope)

 4-1 EXIT location(key, envelope)

4-2 CALL is_contained_in(_0, key)

 4-2 try (1) is_contained_in(_0, key)

 5-1 CALL location(_0, key)

 5-1 FAIL location(_0, key)

 4-2 REDO is_contained_in(_0, key)

 4-2 try (2) is_contained_in(_0, key)

 5-1 CALL location(_14, key)

 5-1 FAIL location(_14, key)

 4-1 REDO location(_7, desk)

 4-1 FAIL location(_7, desk)

 3-1 REDO location(_4, office)

 3-1 EXIT location(computer, office)

 3-2 CALL is_contained_in(_0, computer)

 4-1 CALL location(_0, computer)

 4-1 FAIL location(_0, computer)

 3-2 REDO is_contained_in(_0, computer)

 ARTIFICIAL
 INTELLIGENCE
 NOTES

266

 4-1 CALL location(_7, computer)

 4-1 FAIL location(_7, computer)

 3-1 REDO location(_4, office)

 3-1 FAIL location(_4, office)

 no

When writing a recursive predicate, it is essential to ensure that
the boundary condition is checked at each level . Otherwise, the

program might recurse forever.

The simplest way to do this is by always defining the boundary
condition first, ensuring that it is always tried first and that the

recursive case is only tried if the boundary condition fails.

Pragmatics

We now come to some of the pragmatics of Prolog programming.
First consider that the goal location(X,Y) will be satisfied by
every clause of location/2. On the other hand, the goals

location(X, office) or location(envelope, X) will be satisfied by
fewer clauses.

Let's look again at the second rule for is_contained_in/2, and an
equally valid alternate coding.

is_contained_in(T1,T2):-

 location(X,T2),

 is_contained_in(T1,X).

is_contained_in(T1,T2):-

 location(T1,X),

 is_contained_in(X,T2).

Both will give correct answers, but the performance of each will
depend on the query. The query is_contained_in(X, office) will
execute faster with the first version. That is because T2 is

bound, making the search for location(X, T2) easier than if both
variables were unbound. Similarly, the second version is faster

for queries such as is_contained_in(key, X).

 ARTIFICIAL
 INTELLIGENCE
 NOTES

267

Exercises

Adventure Game

1- Trace the two versions of is_contained_in/2 presented at the
end of the chapter to understand the performance differences

between them.

2- Currently, the can_take/1 predicate only allows the player to
take things which are directly located in a room. Modify it so it

uses the recursive is_contained_in/2 so that a player can take
anything in a room.

Genealogical Logicbase

3- Use recursion to write an ancestor/2 predicate. Then trace it
to understand its behavior. It is possible to write endless loops

with recursive predicates. The trace facility will help you debug
ancestor/2 if it is not working correctly.

- Use ancestor/2 for finding all of a person's ancestors and all of

a person's descendants. Based on your experience with
grandparent/2 and grandchild/2, write a descendant/2

predicate optimized for descendants, as opposed to ancestor/2,
which is optimized for ancestors.

Lists

Lists are powerful data structures for holding and manipulating
groups of things.

In Prolog, a list is simply a collection of terms. The terms can be

any Prolog data types, including structures and other lists.
Syntactically, a list is denoted by square brackets with the

terms separated by commas. For example, a list of things in the
kitchen is represented as [apple, broccoli, refrigerator] This gives
us an alternative way of representing the locations of things.

Rather than having separate location predicates for each thing,
we can have one location predicate per container, with a list of

things in the container.

loc_list([apple, broccoli, crackers], kitchen).

loc_list([desk, computer], office).

loc_list([flashlight, envelope], desk).

 ARTIFICIAL
 INTELLIGENCE
 NOTES

268

loc_list([stamp, key], envelope).

For lists to be useful, there must be easy ways to access, add,
and delete list elements. Moreover, we

loc_list(['washing machine'], cellar).

loc_list([nani], 'washing machine').

There is a special list, called the empty list, which is represented

by a set of empty brackets ([]). It is also referred to as nil. It can
describe the lack of contents of a place or thing.

loc_list([], hall)

Unification works on lists just as it works on other data
structures. With what we now know about lists

we can ask

?- loc_list(X, kitchen).

X = [apple, broccoli, crackers]

?- [_,X,_] = [apples, broccoli, crackers].

X = broccoli

This last example is an impractical method of getting at list
elements, since the patterns won't unify unless both lists have
the same number of elements.

Should not have to concern ourselves about the number of list
items, or their order

These two features allow us to write list utility predicates, such

as member/2, which finds members of a list, and append/3,
which joins two lists together. List predicates all follow a similar

strategy--try something with the first element of a list, then
recursively repeat the process on the rest of the list.

First, the special notation for list structures.

[X | Y]

 ARTIFICIAL
 INTELLIGENCE
 NOTES

269

When this structure is unified with a list, X is bound to the first
element of the list, called the head. Y is bound to the list of

remaining elements, called the tail.

We will now look at some examples of unification using lists.

The following example successfully unifies because the two
structures are syntactically equivalent. Note that the tail is a
list.

?- [a|[b,c,d]] = [a,b,c,d].

yes

This next example fails because of misuse of the bar (|) symbol.

What follows the bar must be a single term, which for all
practical purposes must be a list. The example incorrectly has

three terms after the bar.

?- [a|b,c,d] = [a,b,c,d].

no

Here are some more examples.

?- [H|T] = [apple, broccoli, refrigerator].

H = apple

T = [broccoli, refrigerator]

?- [H|T] = [a, b, c, d, e].

H = a

T = [b, c, d, e]

?- [H|T] = [apples, bananas].

H = apples

T = [bananas]

In the previous and following examples, the tail is a list with one
element.

?- [H|T] = [a, [b,c,d]].

 ARTIFICIAL
 INTELLIGENCE
 NOTES

270

H = a

T = [[b, c, d]]

In the next case, the tail is the empty list.

?- [H|T] = [apples].

H = apples

T = []

The empty list does not unify with the standard list syntax

because it has no head.

?- [H|T] = [].

no

NOTE: This last failure is important, because it is often used to
test for the boundary condition in a recursive routine. That is,

as long as there are elements in the list, a unification with the
[X|Y] pattern will succeed. When there are no elements in the
list, that unification fails, indicating that the boundary

condition applies.

We can specify more than just the first element before the bar

(|). In fact, the only rule is that what follows it should be a list.

?- [One, Two | T] = [apple, sprouts, fridge, milk].

One = apple

Two = sprouts

T = [fridge, milk]

tail of the left-hand list is unified with [Z]. In both cases, Prolog

looks for the most general way to relate or bind the variables.

?- [X,Y|T] = [a|Z].

X = a

Y = _01

T = _03

 ARTIFICIAL
 INTELLIGENCE
 NOTES

271

Z = [_01 | _03]

?- [H|T] = [apple, Z].

H = apple

T = [_01]

Z = _01

Study these last two examples carefully, because list unification
is critical in building list utility predicates.

A list can be thought of as a head and a tail list, whose head is
the second element and whose tail is a list whose head is the
third element, and so on.

?- [a|[b|[c|[d|[]]]]] = [a,b,c,d].

yes

We have said a list is a special kind of structure. In a sense it is,
but in another sense it is just like any other Prolog term. The
last example gives us some insight into the true nature of the

list. It is really an ordinary two-argument predicate. The first
argument is the head and the second is the tail. If we called it

dot/2, then the list [a,b,c,d] would be

dot(a,dot(b,dot(c,dot(d,[]))))

In fact, the predicate does exist, at least conceptually, and it is

called dot, but it is represented by a period (.) instead of dot.

To see the dot notation, we use the built-in predicate display/1,
which is similar to write/1, except it always uses the dot syntax

for lists when it writes to the console.

?- X = [a,b,c,d], write(X), nl, display(X), nl.

 [a,b,c,d]

.(a,.(b,.(c,.d(,[]))))

?- X = [Head|Tail], write(X), nl, display(X), nl.

 [_01, _02]

 ARTIFICIAL
 INTELLIGENCE
 NOTES

272

.(_01,_02)

?- X = [a,b,[c,d],e], write(X), nl, display(X), nl.

 [a,b,[c,d],e]

.(a,.(b,.(.(c,.(d,[])),.(e,[]))))

From these examples it should be clear why there is a different
syntax for lists. The easier syntax makes for easier reading, but
sometimes obscures the behavior of the predicate. It helps to

keep this "real" structure of lists in mind when working with
predicates that manipulate lists.

This structure of lists is well-suited for the writing of recursive

routines. The first one we will look at is member/2, which
determines whether or not a term is a member of a list.

As with most recursive predicates, we will start with the
boundary condition, or the simple case. An element is a member
of a list if it is the head of the list.

member(H,[H|T]).

This clause also illustrates how a fact with variable arguments

acts as a rule.

The second clause of member/2 is the recursive rule. It says an
element is a member of a list if it is a member of the tail of the

list.

member(X,[H|T]) :- member(X,T).

The full predicate is

member(H,[H|T]).

member(X,[H|T]) :- member(X,T).

Note that both clauses of member/2 expect a list as the second
argument. Since T in [H|T] in the second clause is itself a list,
the recursive call to member/2 works.

?- member(apple, [apple, broccoli, crackers]).

yes

 ARTIFICIAL
 INTELLIGENCE
 NOTES

273

?- member(broccoli, [apple, broccoli, crackers]).

yes

?- member(banana, [apple, broccoli, crackers]).

no

The query is

?- member(b, [a,b,c]).

1-1 CALL member(b,[a,b,c])

The goal pattern fails to unify with the head of the first clause of
member/2, because the pattern in the head of the first clause
calls for the head of the list and first argument to be identical.

The goal pattern can unify with the head of the second clause.

1-1 try (2) member(b,[a,b,c])

The second clause recursively calls another copy of member/2.

 2-1 CALL member(b,[b,c])

It succeeds because the call pattern unifies with the head of the

first clause.

 2-1 EXIT (1) member(b,[b,c])

The success ripples back to the outer level. 1-1 EXIT (2)
member(b,[a,b,c])

 yes

As with many Prolog predicates, member/2 can be used in
multiple ways. If the first argument is a variable, member/2
will, on backtracking, generate all of the terms in a given list.

?- member(X, [apple, broccoli, crackers]).

X = apple ;

X = broccoli ;

X = crackers ;

 ARTIFICIAL
 INTELLIGENCE
 NOTES

274

no

We will now trace this use of member/2 using the internal

variables. Remember that each level has its own unique
variables, but that they are tied together based on the

unification patterns between the goal at one level and the head
of the clause on the next level.

In this case the pattern is simple in the recursive clause of

member. The head of the clause unifies X with the first
argument of the original goal, represented by _0 in the following
trace. The body has a call to member/2 in which the first

argument is also X, therefore causing the next level to unify
with the

same _0.

The query is?- member(X,[a,b,c]).

The goal succeeds by unification with the head of the first

clause, if X = a.

1-1 CALL member(_0,[a,b,c])

1-1 EXIT (1) member(a,[a,b,c])

 X = a ;

Backtracking unbinds the variable and the second clause is

tried.

1-1 REDO member(_0,[a,b,c])

1-1 try (2) member(_0,[a,b,c])

It succeeds on the second level, just as on the first level.

 2-1 CALL member(_0,[b,c])

Further backtracking causes an attempt to find a member of
the empty list. The empty list does not

2-1 EXIT (1) member(b,[b,c])

1-1 EXIT member(b,[a,b,c])

 ARTIFICIAL
 INTELLIGENCE
 NOTES

275

 X = b ;

Backtracking continues onto the third level, with similar

results.

2-1 REDO member(_0,[b,c])

 2-1 try (2) member(_0,[b,c])

 3-1 CALL member(_0,[c])

 3-1 EXIT (1) member(c,[c])

 2-1 EXIT (2) member(c,[b,c])

1-1 EXIT (2) member(c,[a,b,c])

 X = c ;

unify with either of the list patterns in the member/2 clauses,
so the query fails back to the beginning

3-1 REDO member(_0,[c])

 3-1 try (2) member(_0,[c])

 4-1 CALL member(_0,[])

 4-1 FAIL member(_0,[])

 3-1 FAIL member(_0,[c])

 2-1 FAIL member(_0,[b,c])

1-1 FAIL member(_0,[a,b,c])

 no

Another very useful list predicate builds lists from other lists or
alternatively splits lists into separate pieces. This predicate is
usually called append/3. In this predicate the second argument

is appended to the first argument to yield the third argument.
For example

?- append([a,b,c],[d,e,f],X).

X = [a,b,c,d,e,f]

 ARTIFICIAL
 INTELLIGENCE
 NOTES

276

reducing the first list recursively The boundary condition states
that if a list X is appended to the empty list, the resulting list is

also X.

append([],X,X).

The recursive condition states that if list X is appended to list
[H|T1], then the head of the new list is also

H, and the tail of the new list is the result of appending X to the

tail of the first list.

append([H|T1],X,[H|T2]) :-

 append(T1,X,T2).

The full predicate is

append([],X,X).

append([H|T1],X,[H|T2]) :-

append(T1,X,T2).

Real Prolog magic is at work here, which the trace alone does

not reveal. At each level, new variable bindings are built, that
are unified with the variables of the previous level. Specifically,

the third argument in the recursive call to append/3 is the tail
of the third argument in the head of the clause.

These variable relationships are included at each step in the

annotated trace shown in Figure 6.7.

The query is

?- append([a,b,c],[d,e,f],X).

1-1 CALL append([a,b,c],[d,e,f],_0)

 X = _0

 2-1 CALL append([b,c],[d,e,f],_5)

 _0 = [a|_5]

 3-1 CALL append([c],[d,e,f],_9)

 ARTIFICIAL
 INTELLIGENCE
 NOTES

277

 _5 = [b|_9]

 4-1 CALL append([],[d,e,f],_14)

 _9 = [c|_14]

By making all the substitutions of the variable relationships, we

can see that at this point X is bound as follows (thinking in
terms of the dot notation for lists might make append/3 easier
to understand).

X = [a|[b|[c|_14]]]

We are about to hit the boundary condition, as the first
argument has been reduced to the empty list.

Unifying with the first clause of append/3 will bind _14 to a
value, namely [d,e,f], thus giving us the desired result for X, as

well as all the other intermediate variables. Notice the bound
third arguments at each level, and compare them to the
variables in the call ports above.

 4-1 EXIT (1) append([],[d,e,f],[d,e,f])

 3-1 EXIT (2) append([c],[d,e,f],[c,d,e,f])

 2-1 EXIT (2) append([b,c],[d,e,f],[b,c,d,e,f])

1-1 EXIT (2)append([a,b,c],[d,e,f],[a,b,c,d,e,f])

 X = [a,b,c,d,e,f]

Like member/2, append/3 can also be used in other ways, for
example, to break lists apart as follows.

?- append(X,Y,[a,b,c]).

X = []

Y = [a,b,c] ;

X = [a]

Y = [b,c] ;

X = [a,b]

 ARTIFICIAL
 INTELLIGENCE
 NOTES

278

Y = [c] ;

X = [a,b,c]

Y = [] ;

no

Using the List Utilities

Now that we have tools for manipulating lists, we can use them.
For example, if we choose to use loc_list/2 instead of location/2

for storing things, we can write a new location/2 that behaves
exactly like the old one, except that it computes the answer
rather than looking it up. This illustrates the sometimes fuzzy

line between data and procedure. The rest of the program
cannot tell how location/2 gets its results, whether as data or

by computation. In either case it behaves the same, even on
backtracking.

location(X,Y):-

 loc_list(List, Y),

 member(X, List).

In the game, it will be necessary to add things to the loc_lists
whenever something is put down in a room. We can write
add_thing/3 which uses append/3. If we call it with NewThing

and Container, it will provide us with the NewList.

add_thing(NewThing, Container, NewList):-

 loc_list(OldList, Container),

 append([NewThing],OldList, NewList).

Testing it gives

?- add_thing(plum, kitchen, X).

X = [plum, apple, broccoli, crackers]

However, this is a case where the same effect can be achieved

through unification and the [Head|Tail] list notation.

add_thing2(NewThing, Container, NewList):-

 ARTIFICIAL
 INTELLIGENCE
 NOTES

279

 loc_list(OldList, Container),

 NewList = [NewThing | OldList].

It works the same as the other one.

?- add_thing2(plum, kitchen, X).

X = [plum, apple, broccoli, crackers]

We can simplify it one step further by removing the explicit
unification, and using the implicit unification that occurs at the

head of a clause, which is the preferred form for this type of
predicate.

add_thing3(NewTh, Container,[NewTh|OldList]) :-

 loc_list(OldList, Container).

It also works the same.

?- add_thing3(plum, kitchen, X).

X = [plum, apple, broccoli, crackers]

In practice, we might write put_thing/2 directly without using

the separate add_thing/3 predicate to build a new list for us.

put_thing(Thing,Place) :-

 retract(loc_list(List, Place)),

 asserta(loc_list([Thing|List],Place)).

situations. Sometimes backtracking over multiple predicates

You might find that some parts of a particular application fit
better with multiple facts in the logicbase and other parts fit
better with lists. In these cases it is useful to know how to go

from one format to the other.

Going from a list to multiple facts is simple. You write a

recursive routine that continually asserts the head of the list. In
this example we create individual facts in the predicate stuff/1.

break_out([]).

break_out([Head | Tail]):-

 ARTIFICIAL
 INTELLIGENCE
 NOTES

280

 assertz(stuff(Head)),

 break_out(Tail).

Here's how it works.

?- break_out([pencil, cookie, snow]).

yes

?- stuff(X).

X = pencil ;

X = cookie ;

X = snow ;

no

Transforming multiple facts into a list is more difficult. For this
reason most Prologs provide built-in predicates that do the job.

The most common one is findall/3. The arguments are

arg1

A pattern for the terms in the resulting list

arg2

A goal pattern

arg3

The resulting list

findall/3 automatically does a full backtracking search of the

goal pattern and stores each result in the list. It can recover our
stuff/1 back into a list.

?- findall(X, stuff(X), L).

L = [pencil, cookie, snow]

Fancier patterns are available. This is how to get a list of all the

rooms connecting to the kitchen.

 ARTIFICIAL
 INTELLIGENCE
 NOTES

281

?- findall(X, connect(kitchen, X), L).

L = [office, cellar, 'dining room']

potential ambiguity. Here findall/3 builds a list of structures
that locates the edible things?- findall(foodat(X,Y), (location(X,Y),

edible(X)), L).

L = [foodat(apple, kitchen), foodat(crackers, kitchen)]

Exercises

List Utilities

1- Write list utilities that perform the following functions.

q Remove a given element from a list

q Find the element after a given element

q Split a list into two lists at a given element (Hint -

append/3 is close.)

q Get the last element of a list

Count the elements in a list (Hint - the length of the empty list

is 0, the length a non-empty list is

1 + the length of its tail.)

2- Because write/1 only takes a single argument, multiple
'writes' are necessary for writing a mixed string of text and
variables. Write a list utility respond/1 which takes as its single

argument a list of terms to be written. This can be used in the
game to communicate with the player. For example
respond(['You can''t get to the', Room, 'from here'])

3- Lists with a variable tail are called open lists. They have some
interesting properties. For example, member/2 can be used to

add items to an open list. Experiment with and trace the
following queries.

?- member(a,X).

?- member(b, [a,b,c|X]).

?- member(d, [a,b,c|X]).

 ARTIFICIAL
 INTELLIGENCE
 NOTES

282

?- OpenL = [a,b,c|X], member(d, OpenL), write(OpenL).

Nonsense Prolog

4- Predict the results of the following queries.

?- [a,b,c,d] = [H|T].

?- [a,[b,c,d]] = [H|T].

?- [] = [H|T].

?- [a] = [H|T].

?- [apple,3,X,'What?'] = [A,B|Z].

?- [[a,b,c],[d,e,f],[g,h,i]] = [H|T].

?- [a(X,c(d,Y)), b(2,3), c(d,Y)] = [H|T].

Genealogical Logicbase

5- Consider the following Prolog program

parent(p1,p2).

parent(p2,p3).

parent(p3,p4).

parent(p4,p5).

ancestor(A,D,[A]) :- parent(A,D).

ancestor(A,D,[X|Z]) :-

 parent(X,D),

 ancestor(A,X,Z).

- What is the purpose of the third argument to ancestor?

7- Predict the response to the following queries. Check by
tracing in Prolog.

?- ancestor(a2,a3,X).

?- ancestor(a1,a5,X).

 ARTIFICIAL
 INTELLIGENCE
 NOTES

283

?- ancestor(a5,a1,X).

?- ancestor(X,a5,Z).

Expert System

8- Lists provide a convenient way to provide a simple menu

capability to our expert system. We can replace the 'ask'
predicate with menuask/3 where appropriate. menuask/3 will
ask the player to select an item from a menu. The format is

menuask(Attribute, Value, List_of_Choices).

For example

size(X):- menuask(size, X, [large, medium, small]).

This requires two intermediate predicates, menu_display/2 and
menu_select/2. The first writes each choice on a separate line

preceded by a unique number. The second uses a number
entered by the user to return the "nth" element of the list.

Operators

We have seen that the form of a Prolog data structure is

functor(arg1,arg2,...,argN).

This is the ONLY data structure in Prolog. However, Prolog
allows for other ways to syntactically represent the same data
structure. These other representations are sometimes called

syntactic sugaring.

The equivalence between list syntax and the dot (.) functor is
one example. Operator syntax is another.

Chapter 6 introduced arithmetic operators. In this chapter we
will equate them to the standard Prolog data structures, and

learn how to define any functor to be an operator.

Each arithmetic operator is an ordinary Prolog functor, such as
-/2, +/2, and -/1. The display/1 predicate can be used to see

the standard syntax.

?- display(2 + 2).

+(2,2)

 ARTIFICIAL
 INTELLIGENCE
 NOTES

284

?- display(3 * 4 + 6).

+(*(3,4),6)

?- display(3 * (4 + 6)).

*(3,+(4,6))

You can define any functor to be an operator, in which case the
Prolog listener will be able to read the structure in a different
format. For example, if location/2 was an operator we could

write apple location kitchen.

instead of

location(apple, kitchen).

NOTE: The fact that location is an operator is of NO significance
to Prolog's pattern matching. It simply means there is an

alternative way of writing the same term.

Operators are of three types.

 infix

Example: 3 + 4

prefix

Example: -7 postfix

Example: 8 factorial

They have a number representing precedence which runs from

1 to 1200. When a term with multiple operators is converted to
pure syntax, the operators with higher precedences are
converted first. A high precedence is indicated by a low number.

Operators are defined with the built-in predicate op/3, whose
three arguments are precedence, associativity, and the operator

name.

Associativity in the second argument is represented by a pattern
that defines the type of operator. The first example we will see is

the definition of an infix operator which uses the associativity
pattern 'xfx.'

 ARTIFICIAL
 INTELLIGENCE
 NOTES

285

The 'f' indicates the position of the operator in respect to its
arguments. We will see other patterns as we proceed.

For our current purposes, we will again rework the location/2
predicate and rename it is_in/2 to go with its new look, and we

will represent rooms in the structure room/1.

is_in(apple, room(kitchen)).

We will now make is_in/2 an infix operator of arbitrary

precedence 35.

?- op(35,xfx,is_in).

Now we can ask

?- apple is_in X.

X = room(kitchen)

or

?- X is_in room(kitchen).

X = apple

We can add facts to the program in operator syntax.

banana is_in room(kitchen).

To verify that Prolog treats both syntaxes the same we can
attempt to unify them.

?- is_in(banana, room(kitchen)) = banana is_in room(kitchen).

yes

And we can use display/1 to look at the new syntax.

?- display(banana is_in room(kitchen)).

is_in(banana, room(kitchen))

Let's now make room/1 a prefix operator. Note that in this case

the associativity pattern fx is used to indicate the functor comes
before the argument. Also we chose a precedence (33) higher
(higher precedence has lower number) than that used for is_in

 ARTIFICIAL
 INTELLIGENCE
 NOTES

286

(35) in order to nest the room structure inside the is_in
structure.

?- op(33,fx,room).

Now room/1 is displayed in operator syntax.

?- room kitchen = room(kitchen).

yes

?- apple is_in X.

X = room kitchen\

The operator syntax can be used to add facts to the program.

pear is_in room kitchen.

?- is_in(pear, room(kitchen)) = pear is_in room kitchen.

yes

?- display(pear is_in room kitchen).

is_in(pear, room(kitchen))

CAUTION: If you mix up the precedence (easy to do) you will get

strange bugs. If room/1 had a lower precedence (higher
number) than is_in/2, then the structure would be

room(is_in(apple, kitchen))

Not only doesn't this capture the information as intended, it
also will not unify the way we want.

For completeness, an example of a candidate for a postfix
operator would be turned_on. Again note that the 'xf' pattern
says that the functor comes after the argument.

?- op(33,xf,turned_on).

We can now say

flashlight turned_on.

and

 ARTIFICIAL
 INTELLIGENCE
 NOTES

287

?- turned_on(flashlight) = flashlight turned_on.

yes

Operators are useful for making more readable data structures
in a program and for making quick and easy user interfaces.

In our command-driven Nani Search, we use a simple natural
language front end, which will be described in the last chapter.
We could have alternatively made the commands operators so

that

goto(kitchen)

becomes goto kitchen.

turn_on(flashlight)

becomes turn_on flashlight. take(apple)

becomes take apple.

It's not natural language, but it's a lot better than parentheses
and commas.

We have seen how the precedence of operators affects their
translation into structures. When operators are of equal

precedence, the Prolog reader must decide whether to work from
left to right, or right to left.

This is the difference between right and left associativity.

An operator can also be non-associative, which means an error
is generated if you try to string two together.

The same pattern used for precedence is used for associativity

with the additional character y. The options are

Infix:

xfx non-associative

xfy right to left

yfx left to right

Prefix fx non-associative

 ARTIFICIAL
 INTELLIGENCE
 NOTES

288

fy left to right

Postfix:

xf non-associative

yf right to left

The is_in/2 predicate is currently non-associative so this gets
an error.

key is_in desk is_in office.

To represent nesting, we would want this to be evaluated from
right to left.

?- op(35,xfy,is_in).

yes

?- display(key is_in desk is_in office).

is_in(key, is_in(desk, office))

If we set it left to right the arguments would be different.

yes?- display(key is_in desk is_in office).

is_in(is_in(key, desk), office)

We can override operator associativity and precedence with

parentheses. Thus we can get our left to

right is_in to behave right to left like so.

?- display(key is_in (desk is_in office)).

is_in(key, is_in(desk, office))

Many built-in predicates are actually defined as infix operators.
That means that rather than following the standard

predicate(arg1,arg2) format, the predicate can appear between
the arguments as arg1 predicate arg2.

The arithmetic operators we have seen already illustrate this.
For example +, -, *, and / are used as you would expect.
However, it is important to understand that these arithmetic

 ARTIFICIAL
 INTELLIGENCE
 NOTES

289

structures are just structures like any others, and do not imply
arithmetic evaluation. 3 + 4 is not the same as 7 any more than

plus

(3,4) is or likes(3,4). It is just +(3,4).

Only special built-in predicates, like is/2, actually perform an
arithmetic evaluation of an arithmetic expression. As we have
seen, is/2 causes the right side to be evaluated and the left side

is unified with the evaluated result.

This is in contrast to the unification (=) predicate, which just
unifies terms without evaluating them.

?- X is 3 + 4.

X = 7

?- X = 3 + 4.

X = 3 + 4

?- 10 is 5 * 2.

yes

?- 10 = 5 * 2.

no

Arithmetic expressions can be as arbitrarily complex as other
structures.

?- X is 3 * 4 + (6 / 2).

X = 15

Even if they are not evaluated.

?- X = 3 * 4 + (6 / 2).

X = 3 * 4 + (6 / 2)

The operator predicates can also be written in standard
notation.

?- X is +(*(3,4) , /(6,2)).

 ARTIFICIAL
 INTELLIGENCE
 NOTES

290

X = 15

?- 3 * 4 + (6 / 2) = +(*(3,4),/(6,2)).

yes

To underscore that these arithmetic operators are really

ordinary predicates with no special meaning unless being
evaluated by is/2, consider

?- X = 3 * 4 + likes(john, 6/2).

X = 3 * 4 + likes(john, 6/2).

?- X is 3 * 4 + likes(john, 6/2).

error

We have seen that Prolog programs are composed of clauses.
These clauses are simply Prolog data structures written with

operator syntax. The functor is the neck (:-) which is defined as
an infix operator.

There are two arguments.

:-(Head, Body).

The body is a data structure with the functor 'and' represented

by a comma (,). The body looks like

,(goal1, ,(goal2,,goal3))

&(goal1, &(goal2, & goal3))

and the following would be equivalent.

head :- goal1 & goal2 & goal3.

:-(head, &(goal1, &(goal2, & goal3))).

But that is not how it was done, so the two forms are

head :- goal1 , goal2 , goal3.

:-(head, ,(goal1, ,(goal2, , goal3))).

Every other comma has a different meaning.

 ARTIFICIAL
 INTELLIGENCE
 NOTES

291

The arithmetic operators are often used by Prolog programmers
to syntactically join related terms. For example, the write/1

predicate takes only one argument, but operators give an easy
way around this restriction.

?- X = one, Y = two, write(X-Y).

one - two

The slash (/) can be used the same way. In addition, some

Prologs define the colon (:) as an operator just for this purpose.
It can improve readability by removing some parentheses. For
example, the complex structures for defining things in the game

can be syntactically represented with the colon as well.

object(apple, size:small, color:red, weight:1).

A query looking for small things would be expressed

?- object(X, size:small, color:C, weight:W).

X = apple

C = red

W = 1

The pattern matching is the same as always, but instead of
size(small) we use the pattern size:small,

which is really :(size,small).

Exercises

Adventure Game

1- Define all of the Nani Search commands as operators so the
current version of the game can be played without parentheses

or commas.

Genealogical Logicbase

2- Define the various relationships in the genealogical logicbase

as operators.

 ARTIFICIAL
 INTELLIGENCE
 NOTES

292

Cut

Up to this point, we have worked with Prolog's backtracking

execution behavior. We have seen how to use that behavior to
write compact predicates.

Sometimes it is desirable to selectively turn off backtracking.
Prolog provides a predicate that performs this function. It is
called the cut, represented by an exclamation point (!).

The cut effectively tells Prolog to freeze all the decisions made so
far in this predicate. That is, if required to backtrack, it will
automatically fail without trying other alternatives.

We will first examine the effects of the cut and then look at
some practical reasons to use it.

When the cut is encountered, it re-routes backtracking, as
shown in figure 6.8. It short-circuits backtracking in the goals
to its left on its level, and in the level above, which contained

the cut. That is, both the parent goal (middle goal of top level)
and the goals of the particular rule being executed (second level)

are affected by the cut. The effect is undone if a new route is
taken into the parent goal.

 ARTIFICIAL
 INTELLIGENCE
 NOTES

293

Contrast figure 6.8 with figure 6.2.

We will write some simple predicates that illustrate the behavior

of the cut, first adding some data to

backtrack over.

data(one).

data(two).

data(three).

Here is the first test case. It has no cut and will be used for
comparison purposes.

cut_test_a(X) :-

 data(X).

cut_test_a('last clause').

This is the control case, which exhibits the normal behavior.

?- cut_test_a(X), write(X), nl, fail.

one

two

three

last clause

no

Next, we put a cut at the end of the first clause.

cut_test_b(X) :-

 data(X),

 !.

cut_test_b('last clause').

Note that it stops backtracking through both the data/1

subgoal (left), and the cut_test_b parent (above).

 ARTIFICIAL
 INTELLIGENCE
 NOTES

294

?- cut_test_b(X), write(X), nl, fail.

one

no

Next we put a cut in the middle of two subgoals.

cut_test_c(X,Y) :-

 data(X),

 !,

 data(Y).

cut_test_c('last clause').

Note that the cut inhibits backtracking in the parent cut_test_c

and in the goals to the left of (before) the cut (first data/1). The
second data/1 to the right of (after) the cut is still free to

backtrack.

?- cut_test_c(X,Y), write(X-Y), nl, fail.

one - one

one - two

one - three

no

Performance is the main reason to use the cut. This separates
the logical purists from the pragmatists.

Various arguments can also be made as to its effect on code
readability and maintainability. It is often called the 'goto' of
logic programming.

You will most often use the cut when you know that at a certain
point in a given predicate, Prolog has either found the only

answer, or if it hasn't, there is no answer. In this case you insert
a cut in the predicate at that point.

 ARTIFICIAL
 INTELLIGENCE
 NOTES

295

Similarly, you will use it when you want to force a predicate to
fail in a certain situation, and you don't want it to look any

further.

Using the Cut

We will now introduce to the game the little puzzles that make
adventure games fun to play. We will put them in a predicate
called puzzle/1. The argument to puzzle/1 will be one of the

game commands, and puzzle/1 will determine whether or not
there are special constraints on that command, reacting
accordingly.

We will see examples of both uses of the cut in the puzzle/1
predicate. The behavior we want is

q If there is a puzzle, and the constraints are met, quietly
succeed.

q If there is a puzzle, and the constraints are not met, noisily

fail.

q If there is no puzzle, quietly succeed.

The puzzle in Nani Search is that in order to get to the cellar,
the game player needs to both have the flashlight and turn it
on. If these criteria are met we know there is no need to ever

backtrack through puzzle/1 looking for other clauses to try. For
this reason we include the cut.

puzzle(goto(cellar)):-

 have(flashlight),

 turned_on(flashlight),

 !.

If the puzzle constraints are not met, then let the player know
there is a special problem. In this case we also want to force the

calling predicate to fail, and we don't want it to succeed by
moving to other clauses of puzzle/1. Therefore we use the cut to

stop backtracking, and we follow it with fail.

puzzle(goto(cellar)):-

 ARTIFICIAL
 INTELLIGENCE
 NOTES

296

 write('It''s dark and you are afraid of the dark.'),

 !, fail.

The final clause is a catchall for those commands that have no
special puzzles associated with them.

They will always succeed in a call to puzzle/1.

puzzle(_).

For logical purity, it is always possible to rewrite the predicates

without the cut. This is done with the built-in predicate not/1.
Some claim this provides for clearer code, but often the explicit
and liberal use of 'not' clutters up the code, rather than

clarifying it.

When using the cut, the order of the rules becomes important.

Our second clause for puzzle/1 safely prints an error message,
because we know the only way to get there is by the first clause
failing before it reached the cut.

The third clause is completely general, because we know the
earlier clauses have caught the special cases.

If the cuts were removed from the clauses, the second two
clauses would have to be rewritten.

puzzle(goto(cellar)):-

 not(have(flashlight)),

 not(turned_on(flashlight)),

 write('Scared of dark message'),

 fail.

puzzle(X):-

 not(X = goto(cellar)).

In this case the order of the clauses would not matter.

It is interesting to note that not/1 is defined using the cut. It

also uses call/1, another built-in predicate

 ARTIFICIAL
 INTELLIGENCE
 NOTES

297

that calls a predicate.

not(X) :- call(X), !, fail.

not(X).

In the next chapter we will see how to add a command loop to

the game. Until then we can test the puzzle predicate by
including a call to it in each individual command. For example

goto(Place) :-

 puzzle(goto(Place)),

 can_go(Place),

 move(Place),

 look.

Assuming the player is in the kitchen, an attempt to go to the

cellar will fail.

?- goto(cellar).

It's dark and you are afraid of the dark.

no

?- goto(office).

You are in the office...

Then if the player takes the flashlight, turns it on, and return to
the kitchen, all goes well.

?- goto(cellar).

You are in the cellar...

Exercises

Adventure Game

 ARTIFICIAL
 INTELLIGENCE
 NOTES

298

1- Test the puzzle/1 predicate by setting up various game
situations and seeing how it responds. When testing predicates

with cuts you should always use the semicolon (;) after each
answer to make sure it behaves correctly on backtracking. In

our case puzzle/1 should always give one response and fail on
backtracking.

2- Add your own puzzles for different situations and commands.

Expert System

3- Modify the ask and menu ask predicates to use cut to replace
the use of not.

Customer Order Entry

4- Modify the good_customer rules to use cut to prevent the
search of other cases once we know one has been found.

Model questions:

1. for the following facts and recursive predicate, state what

order solutions to the given query are returned:

on_top_of(prolog_book, desk).

on_top_of(ai_notes, prolog_book).

on_top_of(time_table, ai_notes).

on_top_of(ai_book, desk).

above(X,Y) :- on_top_of(X,Y).

above(X,Y) :- on_top_of(X,Z),

 above(Z,Y).

?- above(Object, desk).

2. What will happen if you try the following program/query:

above(prolog_book, desk).

 ARTIFICIAL
 INTELLIGENCE
 NOTES

299

above(ai_notes, prolog_book).

above(time_table, ai_notes).

above(X,Y) :- above(X,Z),

 above(Z,Y).

?- above(desk, ai_notes).

To check you understand terms, unification and backtracking
try the following. I may ask questions like these in the exam!

(though they wouldn't be worth many marks).

1. Which of the following are valid Prolog terms:

 23

 foo(X, bar(+(3,4)))

 Foo(x)

 +(fred, jim)

 1+2.

 Alison Cawsey

2. Which of the following match, and for the ones that match,
what are the resultant bindings.

 a(1, 2) = a(X, X).

 a(X, 3) = a(4, Y).

 ARTIFICIAL
 INTELLIGENCE
 NOTES

300

 a(a(3, X)) = a(Y).

 1+2 = 3.

 X = 1+2.

 a(X, Y) = a(1, X).

 a(X, 2) = a(1, X).

3. For the following (silly) program, state what order the

solutions will be returned given the query flies(X). (Your answer
should be of the form X=soln1; X=soln2; etc).

 aeroplane(concorde).

 aeroplane(jumbo).

 on(fred, concorde).

 on(jim, no_18_bus).

 bird(percy).

 animal(leo).

 animal(tweety).

 animal(peter).

 has_feathers(tweety).

 has_feathers(peter).

 flies(X) :- bird(X).

 flies(X) :- aeroplane(X).

 flies(X) :- on(X, Y), aeroplane(Y).

 bird(X) :- animal(X), has_feathers(X).

Once you have worked out the answers by hand, check them

using Prolog.

 ARTIFICIAL
 INTELLIGENCE
 NOTES

301

1. What are the bindings which result from the following
queries. If there is more than one solution, given the order in

which they are returned:

 ?- [First, Second|Rest] = [cabbage, onion, tomato, orange]

 ?- [small(X), small(Y)] = [small(cabbage), small(tomato)]

 ?- [First, Second|Rest] = [a,b]

 ?- member(small(X), [large(cabbage), small(tomato)]).

 ?- member(small(carrot), [large(Y), small(Y)]).

 ?- member(large(X), [large(apple), large(banana)]).

 ?- member([X,Y], [[1,2],[3,4],[5,6]]).

