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UNIT – I 

 

Problems, Problem Spaces, and Search 

 

Objectives of this lesson are  

 To define the Problem as a State Space Search 
   

 To know about the Production Systems  
   

 To analyze the Problem Characteristics  
   

 To explore the Production System 

Characteristics    

 To know the issues in the Design of Search 

Programs & to solve a few problems  
  

Introduction  

Artificial Intelligence is typically concerned with different kinds 
of problems as well as the techniques it offers to solve those 
problems. To build a system to solve a particular problem, we 

need to do four things: 

1.Define the problem precisely. This definition must include 

precise specifications of what the initial situation(s) will be as 
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well as what final situations constitute acceptable solutions to 
the problem. 

2. Analyze the problem. A few very important features can have 
an immense impact on the appropriateness of various possible 

techniques for solving the problem. 

3. Isolate and represent the task knowledge that is necessary 
to solve the problem. 

4. Choose the best problem-solving technique(s) and apply it 
(them) to the particular problem. 

In this chapter and the next, we discuss the first two and the last of these issues. 
Then, in the chapters in Part II, we focus on the issue of knowledge representation. 

1.1 Defining the Problem as a State Space Search 

Suppose we start with the problem statement "Play chess." 

Although there are a lot of people to whom we could say that 
and reasonably expect that they will do as we intended, as our 

request now stands it is a very incomplete statement of the 
problem we want solved. To build a program that could "Play 
chess," we would first have to specify the starting position of 

the chess board, the rules that define the legal moves, and the 
board positions that represent a win for one side or the other. 

In addition, we must make explicit the previously implicit goal 
of not only playing a legal game of chess but also winning the 
game, if possible. 
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Figure 1.1: One Legal Chess Move 

For the problem "Play chess," it is fairly easy to provide a 

formal and complete problem description. The starting position 
can be described as an 8-by-8 array where each position 
contains a symbol standing for the appropriate piece in the 

official chess opening position. We can define as our goal any 
board position in which the opponent does not have a legal 

move and his or her king is under attack. The legal moves 
provide the way of getting from the initial state to a goal state. 
They can be described easily as a set of rules consisting of two 

parts: a left side that serves as a pattern to be matched against 
the current board position and a right side that describes the 

change to be made to the board position to reflect the move. 
There are several ways in which these rules can be written. For 
example, we could write a rule such as that shown in Figure 

1.1. 

However, if we write rules like the one above, we have to write 

a very large number of them since there has to be a separate 
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rule for each of the roughly 10120 possible board positions. 
Using so many rules poses two serious practical difficulties: 

• No person could ever supply a complete set of such rules. It 
would take too long and could certainly not be done without 

mistakes. 

• No program could easily handle all those rules. Although a 
hashing scheme could be used to find the relevant rules for 

each move fairly quickly, just storing that many rules poses 
serious difficulties. 

In order to minimize such problems, we should look for a way 
to write the rules describing the legal moves in as general a 
way as possible. TO do this, it is useful to' introduce some 

convenient notation for describing patterns and substitutions. 
For example, the rule described in Figure 1.1, as well as many 

like it, could be written as shown in Figure 1..2, In general, the 
more succinctly we can describe the rules we need, the less 
work we will have to do to provide them and the more efficient 

the program that uses them can be. 

We ‗have just defined the problem of playing chess as a 

problem of moving around in a state space, where each state 
corresponds to a legal position of the board. We can 

'To be completely accurate, this rule should include a check for 

pinned pieces, which have been ignored here. 

 

 

Figure 1.2: Another Way to Describe Chess Moves 
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play chess by starting at an initial state, using a set of rules to 
move from one state to another, and attempting to end up in 

one of a set of final states. This state space representation 
seems natural for chess because the set of states, which 

corresponds to the set of board positions, is artificial and well-
organized. This same kind of representation is also useful for 
naturally occurring, less well-structured problems, although it 

may be necessary to use more complex structures than a 
matrix to describe an individual state. The state space 

representation forms the basis of most of the AI methods we 
discuss here. Its structure corresponds to the structure of 
problem solving in two important ways: 

• It allows for a formal definition of a problem as the need to 
convert some given situation into some desired situation 

using a set of permissible operations. 

• It permits us to define the process of solving a particular 
problem as a combination of known techniques (each 

represented as a rule defining a single step in the space) 
and search, the general technique of exploring the space to 

try to find some path from the current state to a goal state. 
Search is a very important process in the solution of hard 
problems for which no more direct techniques are available. 

In order to show the generality of the state space 
representation, we use it to describe a problem very different 

from that of chess. 

A Water Jug Problem:  

You are given two jugs, a 4-gallon one and a 3-gallon one. 

Neither have any measuring markers on it. There is a pump 
that can be used to fill the jugs with water. How can you get 

exactly 2 gallons of water into the 4-gallon jug? 

The state space for this problem can be described as the set of 
ordered pairs of integers (x, y), such that x = 0,1,2,3, or 4 and 

y = 0,1,2, or 3; x represents the number of gallons of water in 
the 4-gallon jug, and y represents the quantity of water in the 

3-gallon jug. The start state is (0, 0). The goal state is (2, n) for 
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any value of n (since the problem does not specify how many 
gallons need to be in the 3-gallon jug). 

The operators to be used to solve the problem can be described 
as shown in Figure 1.3. As in the chess problem, they are 

represented as rules whose left sides are matched against the 
current state and whose right sides describe the new state that 
results from applying the rule. Notice that in order to describe 

the operators completely, it was necessary to make explicit 
some assumptions not mentioned in the problem statement. 

We have assumed that we can fill a jug from the pump, that we 
can pour water out of a jug onto the ground, that we can pour 
water from one jug to another, and that there are no other 

measuring devices available. Additional assumptions such as 
these are almost always required when converting from a 

typical problem statement given in English to a formal 
representation of the problem suitable for use by a program. 

To solve the water jug problem, all we need, in addition to the 

problem description given above, is a control structure that 
loops through a simple cycle in which some rule whose left 

side matches the current state is chosen, the appropriate 
change to the state is made as described in the corresponding 
right side, and the resulting state is checked to see if it 

corresponds to a goal state. As long as it does not, the cycle 
continues. Clearly the speed with which the problem gets 

solved depends on the mechanism that is used to select the 
next operation to be performed. In Chapter 3, we discuss 
several ways of making that selection. 

For the water jug problem, as with many others, there are 
several sequences of operators that solve the problem. One 

such sequence is shown in Figure 1.4. Often, a problem 
contains the explicit or implied statement that the shortest (or 
cheapest) such sequence be found. If present, this requirement 

will have a significant effect on the choice of an appropriate 
mechanism to guide the search for a solution.  

Several issues that often arise in converting an informal 
problem statement into a formal problem description are 
illustrated by this sample water jug problem. The first of these 
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issues concerns the role of the conditions that occur in the left 
sides of the rules. All but one of the rules shown in Figure 1.3 

contains conditions that must be satisfied before the operator 
described by the rule can be applied. For example, the first 

rule says, "If the 4-gallonjug is not already full, fill it." This rule 
could, however, have been written as, "Fill the 4-gallon jug," 
since it is physically possible to fill the jug even if it is already 

full. It is stupid to do so since no change in the problem state 
results, but it is possible. By encoding in the left sides of the 

rules constraints that are not strictly necessary but that 
restrict the application of the rules to states in which the rules 
are most likely to lead to a solution, we can generally increase 

the efficiency of the problem-solving program that uses the 
rules. 

Each entry in the move vector corresponds to a rule that 
describes an operation. The left side of each rule describes a 
board configuration and is represented implicitly by the index 

position. The right side of each rule describes the operation to 
be performed and is represented by a nine-element vector that 

corresponds to the resulting board configuration. Each of these 
rules is maximally specific; it applies only to a single board 
configuration, and, as a result, no search is required when 

such rules are used. However, the drawback to this extreme 
approach is that the problem solver can take no action at all in 

a novel situation. In fact, essentially no problem solving ever 
really occurs. For a tic-tac-toe playing program, this is not a 
serious problem, since it is possible to enumerate all the 

situations (i.e., board configurations) that may occur. Bull for 
most problems, this is not the case. In order to solve new 

problems, more general rules must be available. 
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Figure 1.3: Production Rules for the Water Jug Problem 
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Figure 1.4: One Solution to the Water Jug Problem 

A second issue is exemplified by rules 3 and 4 in Figure1.3. 
Should they or should they not be included in the list of 

available operators? Emptying an unmeasured amount of 
water onto the ground is certainly allowed by the problem 
statement. But a superficial preliminary analysis of the 

problem makes it clear that doing so will never get us any 
closer to a solution. Again, we see the tradeoff between writing 

a set of rules that describe just the problem itself, as opposed 
to a set of rules that describe both the problem and some 
knowledge about its solution. 

Rules 11 and 12 illustrate a third issue. To see the problem-
solving knowledge that these rules represent, look at the last 

two steps of the solution shown in Figure 1.4. Once the state 
(4, 2) is reached, it is obvious what to do next. The desired 2 
gallons have been produced, but they are in the wrong jug. So 

the thing to do is to move them (rule 11). But before that can 
be done, the water that is already in the 4-gallon jug must be 

emptied out (rule 12). The idea behind these special-purpose 
rules is to capture the special-case knowledge that can be used 
at this stage in solving the problem. These rules do not 

actually add power to the system since the operations they 
describe are already provided by rule 9 (in the case of rule 11) 

and by rule 5 (in the case of rule 12). In fact depending on the 
control strategy that is used for selecting rules to use during 
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problem solving, the use of these rules may degrade 
performance. But the use of these roles may also improve 

performance if preference is given to special-case rules as we 
discuss in further chapters. 

We have now discussed two quite different problems, chess 
and the water jug problem. From these discussions, it should 
be clear that the first step toward the design of a program to 

solve a problem must be the creation of a formal and 
manipulatable description of the problem itself. Ultimately, we 

would like to be able to write programs that can themselves 
produce such formal descriptions from informal ones. This 
process is called operationalization. It is not at all well-

understood how to construct such programs. Until it becomes 
possible to automate this process, it must be done by hand, 

however. For simple problems, such as chess or the water Jug, 
this is not very difficult. The problems are artificial and highly 
structured. For other problems,, particularly naturally 

occurring ones, this step is much more difficult. Consider, for 
example, the task of specifying precisely what it means to 

understand an English sentence. Although such a specification 
must somehow be provided before we can design a program to 
solve ten problem, producing such a specification is itself a 

very hard problem. Although our ultimate goal is to be able to 
solve difficult, unstructured problems, such as natural 

language understanding, it is useful to explore simpler 
problems, such as the water jug problem, in order to gain 
insight into the details of methods that can form the basis for 

solutions to the harder problems. 

Summarizing what we have just said, in order to provide a 

formal description of a problem, we must do the following: 

1. Define a state space that contains all the possible 
configurations of the relevant objects (and perhaps some 

impossible ones). It is, of course, possible to define this 
space without explicitly enumerating all of the states it 

contains. 
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2. Specify one or more states within that space that describe 
possible situations from which the problem-solving process 

may start. These states are called the initial states. 

3. Specify one or more states that would be acceptable as 

solutions to the problem. These states are called goal states. 

4. Specify a set of rules that describe the actions (operators) 
available. Doing this will require giving thought to the 

following issues: 

• What unstated assumptions are present in the informal 

problem description? 

• How general should the rules be? 

• How much of the work required to solve the problem should 

be precompiled and represented in the rules? 

The problem can then be solved by using the rules, in 

combination with an appropriate control strategy, to move 
through the problem space until a path from an initial state to 
a goal state is found. Thus the process of search is 

fundamental to the problem-solving process. The fact that 
search provides the basis for the process of problem solving 

does not, however, mean that other, more direct approaches 
cannot also be exploited. Whenever possible, they can be 
included as steps in the search by encoding them into the 

rules. For example, in the water jug problem, we use the 
standard arithmetic operations as single steps in the rules. We 

do not use search to find a number with the property that it is 
equal to y — (4 — x). Of course, for complex problems, more 
sophisticated computations will be needed. Search is a general 

mechanism that can be used when no more direct method is 
known. At the same time, it provides the framework into which 

more direct methods for solving subparts of a problem can be 
embedded.  
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1.2 Production Systems 

Since search forms the core of many intelligent processes, it is 

useful to structure AI programs in a way that facilitates 
describing and performing the search process. Production 

systems provide such structures. A definition of a production 
system is given below. Do not be confused by other uses of the 
word production, such as to describe what is done in factories. 

A production system consists of: 

• A set of rules, each consisting of a left side (a pattern) that 

determines the applicability of the rule and a right side that 
describes the operation to be performed if the rule is applied.3 

• One or more knowledge/databases that contain whatever 

information is appropriate for the particular task. Some parts 
of the database may be permanent, while other parts of it may 

pertain only to the solution of the current problem. The 
information in these databases may be structured in any 
appropriate way. 

• A control strategy that specifies the order in which the rules 
will be compared to the database and a way of resolving the 

conflicts that arise when several rules match at once. 

• A rule applier. 

So far, our definition of a production system has been very 

general. It encompasses a great many systems, including our 
descriptions of both a chess player and a water jug problem 

solver. It also encompasses a family of general production 
system interpreters, including: 

• Basic production system languages, such as OPS5 and ACT*. 

• More complex, often hybrid systems called expert system 
shells, which provide complete (relatively speaking) 

environments for the construction of knowledge-based expert 
systems. 
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• General problem-solving architectures like SOAR, a system 
based on a specific set of cognitively motivated hypotheses 

about the nature of problem solving. 

All of these systems provide the overall architecture of a 

production system and allow the programmer to write rules 
that define particular problems to be solved.  

We have now seen that in order to solve a problem, we must 

first reduce it to one for which a precise statement can be 
given. This can be done by defining the problem's state space 

(including the start and goal states) and a set of operators for 
moving in that space. The problem can then be solved by 
searching for a path through the space from an initial state to 

a goal state. The process of solving the problem can usefully be 
modeled as a production system. In the rest of this section, we 

look at the problem of choosing the appropriate control 
structure for the production system so that the search can be 
as efficient as possible. 

1.2.1 Control Strategies 

So far, we have completely ignored the question of how to 

decide which rule to apply next during the process of searching 
for a solution to a problem. This question arises since often 
more than one rule (and sometimes fewer than one rule) will 

have its left side match the current state. Even without a great 
deal of thought, it is clear that how such decisions are made 

will have a crucial impact on how quickly, and even whether, a 
problem is finally solved. 

• The first requirement of a good control strategy is that it 

cause motion. Consider again the water jug problem of the last 
section. Suppose we implemented the simple control strategy 

of starting each time at the top of the list of rules and choosing 
the first applicable one. If we did that, we would never solve 
the problem. We would continue indefinitely filling the 4-gallon 

jug with water Control strategies that do not cause motion will 
never lead to a solution. 
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• The second requirement of a good control strategy is that it 
he systematic. Here is another simple control strategy for the 

water jug problem: On each cycle, choose at random from 
among the applicable rules. This strategy is better than the 

first. It causes motion. It will lead to a solution eventually. But 
we are likely to arrive at the same state several times during 
the process and to use many more steps than are necessary. 

Because the control strategy is not systematic, we may explore 
a particular useless sequence of operators several times before 

we finally find a solution. The requirement that a control 
strategy be systematic corresponds to the need for global 
motion (over the course of several steps) as well as for local 

motion (over the course of a single step). One systematic 
control strategy for the water jug problem is the following. 

Construct a tree with the initial state as its root. Generate all 
the offspring of the root by applying each of the applicable 
rules to the initial state. Figure 1.5 shows how the tree looks at 

this point. Now for each leaf node, generate all its successors 
by applying all the rules that are appropriate. The tree at this 

point is shown in Figure 1.6.4 Continue this process until some 
rule produces a goal state. This process, called breadth-first 
search, can be described precisely as follows. 

Algorithm: Breadth-First Search 

1. Create a variable called NODE-LIST and set it to the initial 

state. 

2. Until a goal state is found or NODE-LIST is empty do: 

(a) Remove the first element from NODE-LIST and call it £. If 

NODE-LIST was empty, quit. 

 

Figure 1.5: One Level of a Breadth-First Search Tree 
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Figure 1.6: Two Levels of a Breadth-First Search Tree 

(b) For each way that each rule can match the state described 

in E do: 

i. Apply the rule to generate a new state. ii. If the new 
state is a goal state, quit and return this state. iii. 

Otherwise, add the new state to the end of NODE-LIST. 

Other systematic control strategies are also available. For 

example, we could purse a single branch of the tree until it 
yields a solution or until a decision to terminate the( path is 
made. It makes sense to terminate a path if it reaches a dead-

end, produces i previous state, or becomes longer than some 
pre-specified "futility" limit. In such a case backtracking 

occurs. The most recently created state from which alternative 
moves an available will be revisited and a new state will be 
created. This form of backtracking i; called chronological 

backtracking because the order in which steps are undone 
depend; only on the temporal sequence in which the steps were 

originally made. Specifically the most recent step is always the 
first to be undone. This form of backtracking is what is usually 
meant by the simple term backtracking. But there are other 

ways of retracting steps of a computation. We discuss one 
important such way, dependency-directs backtracking, in 

Chapter 7. Until then, though, when we use the term 
backtracking, i means chronological backtracking. 

The search procedure we have just described is also called 

depth-first search. The< following algorithm describes this 
precisely. 
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Figure 1.7: A Depth-First Search Tree 

 

Algorithm: Depth-First Search  

1. If the initial state is a goal state, quit and return success. 

2. Otherwise, do the following until success or failure is 
signaled: 

(a) Generate a successor, E, of the initial state. If there are no 
more successors, signal failure. 

(b) Call Depth-First Search with E as the initial state. 

(c) If success is returned, signal success. Otherwise continue in 
this loop. 

Figure 1.7 shows a snapshot of a depth-first search for the 
water jug problem. A comparison of these two simple methods 
produces the following observations. 

Advantages of Depth-First Search 

• Depth-first search requires less memory since only the nodes 

on the current path are stored. This contrasts with breadth-
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first search, where all of the tree that has so far been generated 
must be stored. 

• By chance (or if care is taken in ordering the alternative 
successor states), depth-first search may find a solution 

without examining much of the search space at all. This 
contrasts with breadth-first search in which all parts of the 
tree must be examined to level n before any nodes on level n + 

1 can be examined. This is particularly significant if many 
acceptable solutions exist. Depth-first search can stop when 

one of them is found. 

Advantages of Breadth-First Search 

• Breadth-first search will not get trapped exploring a blind 

alley. This contrast with depth-first searching, which may 
follow a single, unfruitful path for a very long time, perhaps 

forever, before the path actually terminates in a state that has 
no successors. This is a particular problem in depth-first 
search if there are loops (i.e., a state has a successor that is 

also one of its ancestors) unless special care is expended to 
test for such a situation. The example in Figure 1.7, if it 

continues always choosing the first (in numerical sequence) 
rule that applies, will have exactly this problem. 

If there is a solution, then breadth-first search is guaranteed to 

find it. Furthermore, if there are multiple solutions, then a 
minimal solution (i.e., one that requires the minimum number 

of steps) will be found. This is guaranteed by the fact that 
longer paths are never explored until all shorter ones have 
already been examined. This contrasts with depth-first search, 

which may find a long path to a solution in one part of the 
tree, when a shorter path exists in some other, unexplored part 

of the tree. 

Clearly what we would like is a way to combine the advantages 
of both of these methods. In other section we will talk about 

one way of doing this when we have some additional 
information. Later, in later section, we will describe an 

uninformed way of doing so. 
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For the water jug problem, most control strategies that cause 
motion and are systematic will lead to an answer. The problem 

is simple. But this is not always the case. In order to solve 
some problems during our lifetime, we must also demand a 

control structure that is efficient. 

Consider the following problem. 

The Traveling Salesman Problem:  

A salesman has a list of cities, each of which he must visit 
exactly once. There are direct roads between each pair of 

cities on the list. Find the route the salesman should follow 
for the shortest possible round trip that both starts and 
finishes at any one of the cities. 

A simple, motion-causing and systematic control structure 
could, in principle, solve this problem. It would simply explore 

all possible paths in the tree and return the one with the 
shortest length. This approach will even work in practice for 
very short lists of cities. But it breaks down quickly as the 

number of cities grows. If there are N cities, then the number 
of different paths among them is 1 •2-- -(N- l),or(N- 1)!. The 

time to examine a single path is proportional to N. So the total 
time required to perform this search is proportional to Nl. 
assuming there are only 10 cities, 10! is 3,628,800, which is a 

very large number. The salesman could easily have 25 cities to 
visit. To solve this problem would take more time than he 

would be willing to spend. This phenomenon is called 
combinatorial explosion. To combat it, we need a new control 
strategy. 

We can beat the simple strategy outlined above using a 
technique called branch-and-bound. Begin generating 

complete paths, keeping track of the shortest path found so 
far. Give up exploring any path as soon as its partial length 
becomes greater than the shortest path found so far. Using 

this technique, we are still guaranteed to find the shortest 
path. Unfortunately, although this algorithm is more efficient 

than the first one, it still requires exponential time. The exact 
amount of time it saves for a particular problem depends on 
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the order in which the paths are explored. But it is still 
inadequate for solving large problems. 

1.2.2 Heuristic Search 

In order to solve many hard problems efficiently, it is often 

necessary to compromise the requirements of mobility and 
systematicity and to construct a control structure that is no 
longer guaranteed to find the best answer but that will almost 

always find a very good answer. Thus we introduce the idea of 
a heuristic.5 IA heuristic is a technique that improves the 

efficiency of a search process, possibly by sacrificing claims of 
completeness/ Heuristics are like tour guides. They are good to 
the extent that they point in generally interesting directions; 

they are bad to the extent that they may miss points of interest 
to particular individuals. Some heuristics help to guide a 

search process without sacrificing any claims to completeness 
that the process might previously have had. Others (in fact, 
many of the best ones) may occasionally cause an excellent 

path to be overlooked. But, on the average, they improve the 
quality of the paths that are explored. Using good heuristics, 

we can hope to get good (though possibly non optimal) 
solutions to hard problems, such as the traveling salesman, in 
less than exponential time. There are some good general-

purpose heuristics that are useful in a wide variety of problem 
domains. In addition, it is possible to construct special-

purpose heuristics that exploit domain-specific knowledge to 
solve particular problems. 

One example of a good general-purpose heuristic that is useful 

for a variety of combinatorial problems is the nearest neighbor 
heuristic, which works by selecting the locally superior 

alternative at each step. Applying it to the traveling salesman 
problem, we produce the following procedure: 

1. Arbitrarily select a starting city. 

2. To select the next city, look at all cities not yet visited, and 
select the one-closest to the current city. Go to it next. 

3. Repeat step 2 until all cities have been visited. 
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This procedure executes in time proportional to N2, a 
significant improvement over N, and it is possible to prove an 

upper bound on the error it incurs. For general-purpose 
heuristics, such as nearest neighbor, it is often possible to 

prove such error bounds, which provides reassurance that one 
is not paying too high a price in accuracy for speed. 

In many AI problems, however, it is not possible to produce 

such reassuring bounds. This is true for two reasons: 

• For real world problems, it is often hard to measure precisely 

the value of a particular solution. Although the length of a 
trip to several cities is a precise notion, the appropriateness 
of a particular response to such questions as "Why has 

inflation increased?" is much less so. 

• For real world problems, it is often useful to introduce 

heuristics based on relatively unstructured knowledge. It is 
often impossible to define this knowledge in such a way that 
a mathematical analysis of its effect on the search process 

can be performed. 

The word heuristic comes from the Greek word heuriskein, 

meaning "to discover," which is also the origin of eureka, 
derived from Archimedes' reputed exclamation, heurika (for "I 
have found"), uttered when he had discovered a method for 

determining the purity of gold. 

There are many heuristics that, although they are not as 

general as the nearest neighbor heuristic, are nevertheless 
useful in a wide variety of domains. For example, consider the 
task of discovering interesting ideas in some specified area. 

The following heuristic [Lenat, 1983b] is often useful: 

If there is an interesting function of two arguments/(A-, y), 

look at what happens if the two arguments are identical. 

In the domain of mathematics, this heuristic leads to the 
discovery of squaring if/ is the multiplication function, and it 

leads to the discovery of an identity function if is the function 
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of set union. In less formal domains, this same heuristic leads 
to the discovery of introspection if/ is the function contemplate 

or it leads to the notion of suicide iff is the function kill. 

Without heuristics, we would become hopelessly ensnarled in a 

combinatorial explosion. This alone might be a sufficient 
argument in favor of their use. But there are other arguments 
as well: 

• Rarely do we actually need the optimum solution; a good 
approximation will usually serve very well. In fact, there is 

some evidence that people, when they solve problems, are 
not optimizers but rather are satisfiers -[Simon, 1981]. In 
other words, they seek any solution that satisfies some set 

of requirements, and as soon as they find one they quit. A 
good example of this is the search for a parking space. Most 

people stop as soon as they find a fairly good space, even if 
there might be a slightly better space up ahead. 

• Although the approximations produced by heuristics may not 

be very good in the worst case, worst cases rarely arise in 
the real world. For example, although many graphs are not 

separable (or even nearly so) and thus cannot be considered 
as a set of small problems rather than one large one, a lot of 
graphs describing the real world are.6 

• Trying to understand why a heuristic works, or why it doesn't 
work, often leads to a deeper understanding of the problem. 

One of the best descriptions of the importance of heuristics in 
solving interesting problems is How to Solve It. Although the 
focus of the book is the solution of mathematical problems, 

many of the techniques it describes are more generally 
applicable. For example, given a problem to solve, look for a 

similar problem you have solved before. Ask whether you can 
use either the solution of that problem or the method that was 
used to obtain the solution to help solve the new problem. 

Polya's work serves as an excellent guide for people who want 
to become better problem solvers. Unfortunately, it is not a 

panacea for AI for a couple of reasons. One is that it relies on 
human abilities that we must first understand well enough to 
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build into a program. For example, many of the problems Polya 
discusses are geometric ones in which once an appropriate 

picture is drawn, the answer can be seen immediately. But to 
exploit such techniques in programs, we must develop a good 

way of representing and manipulating descriptions of those 
figures. Another is that the rules are very general. 

They have extremely underspecified left sides, so it is hard to 

use them to guide a search too many of them are applicable at 
once. Many of the rules are really only useful for looking back 

and rationalizing a solution after it has been found. In essence, 
the problem is that Polya's rules have not been operationalized. 

Nevertheless, Polya was several steps ahead of AI. A comment 

he made in the preface to the first printing of the book is 
interesting in this respect: 

The following pages are written somewhat concisely, but as 
simply as possible, and are based on a long and serious 
study of methods of solution. This sort of study, called 

heuristic by some writers, is not in fashion nowadays but 
has a long past and, perhaps, some future. 

There are two major ways in which domain-specific, heuristic 
knowledge can be incorporated into a rule-based search 
procedure: 

• In the rules themselves. For example, the rules for a chess-
playing system might describe not simply the set of legal 

moves but rather a set of "sensible" moves, as determined 
by the rule writer. 

• As a heuristic function that evaluates individual problem 

states and determines how desirable' they are. 

(A heuristic function is a function that maps from problem 

state descriptions to measures of desirability, usually 
represented as numbers} Which aspects of the problem state 
are considered, how those aspects are evaluated, and the 

weights given to individual aspects are chosen in such a way 
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that the value of the heuristic function at a given node in the 
search process gives as good an estimate as possible of 

whether that node is on the desired path to a solution. 

Well-designed heuristic functions can play an important part 

in efficiently guiding a search process toward a solution. 
Sometime is very simple heuristic functions can provide a 
fairly good estimate of whether a path is any good or not. In 

other situations, more complex heuristic functions should be 
employed. Figure 1.8 shows some simple heuristic functions 

for a few problems. Notice that sometimes a high value of the 
heuristic function indicates a relatively good position (as 
shown for chess and tic-tac-toe), while at other times a low 

value indicates an advantageous situation (as shown for the 
traveling salesman). It does not matter, in general, which way 

the function is stated. The program that uses the values of the 
function can attempt to minimize it or to maximize it as 
appropriate. 

The purpose of a heuristic function is to guide the search 
process in the most profitable direction by suggesting which 

path to follow first when more than one is available. The more 
accurately the heuristic function estimates the true merits of 
each node in the search tree (or graph), the more direct the 

solution process. In the extreme, the heuristic function would 
be so good that essentially no search would be required. The 

system would move directly to a solution. But for many 
problems, the cost of computing the value of such a function 
would outweigh the effort saved in the search process, After all, 

it would be possible to compute a perfect heuristic function by 
doing a complete search from the node in question and 

determining whether it leads to a good solution,. In general, 
there is a trade-off between the cost of evaluating a heuristic 
function and the savings in search time that the function 

provides. 
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Figure 1.8: Some Simple Heuristic Functions 

In the previous section, the solutions to AI problems were 
described as centering on a search process. From the 

discussion in this section, it should be clear that it can more 
precisely be described as a process of heuristic search. Some 

heuristics will be used to define the control structure that 
guides the application of rules in the search process. Others, 
as we shall see, will be encoded in the rules themselves. In 

both cases, they will represent either general or specific world 
knowledge that makes the solution of hard problems feasible. 

This leads to another way that one could define artificial 
intelligence: the study of techniques for solving exponentially 
hard problems in polynomial time by exploiting knowledge 

about the problem domain,  

1.3 Problem Characteristics 

Heuristic search is a very general method applicable to a large 
class of problems. It encompasses a variety of specific 
techniques, each of which is particularly effective for a small 

class of problems. In order to choose the most appropriate 
method (or combination of methods) for a; particular problem, 

it is necessary to analyze the problem along several key 
dimensions 

• Is the problem decomposable into a set of (nearly) 

independent smaller or easier sub problems? 
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• Can solution steps be/ignored or at least undone if they 
prove unwise? 

• Is the problem's universe predictable? 

• Is a good solution to the problem obvious without comparison 

to all other possible solutions? 

• Is the desired/Solution a state of the world or a path to a 
state? 

• Is a large amount of knowledge absolutely required to solve 
the problem, or is knowledge important only to constrain 

the search? 

• Can a computer that is simply given the problem return the 
solution, or will the solution of the problem require 

interaction between the computer and a person? 

 

Figure 1.9: A Decomposable Problem 
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In the rest of this section, we examine each of these questions 
in greater detail. Notice that some of these questions involve 

not just the statement of the problem itself but also 
characteristics of the solution that is desired and the 

circumstances under which the solution must take place. 

1.3.1 Is the Problem Decomposable? 

Suppose we want to solve the problem of computing the 

expression 

 

We can solve this problem by breaking it down into three 
smaller problems, each of which we can then solve by using a 

small collection of specific rules. Figure 1.9 shows the problem 
tree that will be generated by the process of problem 

decomposition as it can be exploited by a simple recursive 
integration program that works as follows: At each step, it 
checks to see whether the problem it is working on is 

immediately solvable. If so, then the answer is returned 
directly. If the problem is not easily solvable, the integrator 

checks to see whether it can decompose the problem into 
smaller problems. If it can, it creates those problems and calls 
itself recursively on them. Using this technique of problem 

decomposition, we can often solve very large problems easily. 

Now consider the problem illustrated in Figure 1.10. This 

problem is drawn from the domain often referred to in AI 
literature as the blocks world. Assume that the following 
operators are available: 

 

Figure 1.10: A Simple Blocks World Problem 
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Figure 1.11: A Proposed Solution for the Blocks Problem 

1. CLEARS) [block x has nothing on it] -<• ON(-c, Table) [pick 
up x and put it on the table] 

2. CLEAR (JC) and CLEARS) -^ ON(x, y) [put .corny] 

Applying the technique of problem decomposition to this 
simple blocks world example would lead to a solution tree such 

as that shown in Figure 1.11. In the figure, goals are 
underlined. States that have been achieved are not underlined. 
The idea of this solution is to reduce the problem of getting B 

on C and A on B to two separate problems, The first of these 
new problems, getting B on C, is simple, given the start state. 

Simply put B on C. The second sub goal is not quite so simple. 
Since the only operators we have allow us to pick up single 
blocks at a time, we have to clear off A by removing (^ before 

we can pick up A and put it on B. This can easily be done. 
However, if we now try to combine the two sub solutions into 

one solution, we will fail. Regardless of which one we do first, 
we will not be able to do the second as we had planned. In this 
problem) the two sub problems are not independent. They 

interact and those interactions must be considered in order to 
arrive at a solution for the entire problem. 
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These two examples, symbolic integration and the blocks 
world, illustrate the difference between decomposable and no 

decomposable problems.  

 

Figure 1.12: An Example of the 8-Puzzle 

1.3.2 Can Solution Steps Be Ignored or Undone? 

Suppose we are trying to prove a mathematical theorem. We 
proceed by first proving a lemma that we think will be useful. 

Eventually, we realize that the lemma is no help at all. Are we 
in trouble? 

No. Everything we need to know to prove the theorem is still 
true and in memory, if it ever was. Any rules that could have 
been applied at the outset? can still be applied. We can just 

proceed as we should have in the first place. All we have lost is 
the effort that was spent exploring the blind alley. 

Now consider a different problem. 

The 8-Puzzle:  

The 8-puzzle is a square tray in which are placed eight 

square tiles. The remaining ninth square is uncovered. 
Each tile has a number on it. A tile that is adjacent to the 

blank space can be slid into that space. A game consists of 
a starting position and a specified goal position. The goal is 
to transform the starting position into the goal position by 

sliding the tiles around. 
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A sample game using the 8-puzzle is shown in Figure 1.12. In 
attempting to solve the 8-puzzle, we might make a stupid 

move. For example, in the game shown above, we might start 
by sliding tile 5 into the empty space. Having done that, we 

cannot change our mind and immediately slide tile 6 into the 
empty space since the empty space will essentially have 
moved. But we can backtrack and undo the first move, sliding 

tile 5 back to where it was, then we can move tile 6. Mistakes 
can still be recovered from but not quite as easily as in the 

theorem-proving problem. An additional step must be 
performed to undo each incorrect step, whereas no action was 
required to "undo" a useless lemma. In addition, the control 

mechanism for an 8 puzzle solver must keep track of the order 
in which operations are performed so that the operations can 

be undone one at a time if necessary. The control structure for 
a theorem proven does not need to record all that information. 

Now consider again the problem of playing chess. Suppose a 

chess-playing program makes a stupid move and realizes it a 
couple of moves later. It cannot simply play as though it had 

never made the stupid move. Nor can it simply back up and 
start the game over from that point. All it can do is to try to 
make the best of the current situation and go on from there. 

These three problems theorem proving, the 8-puzzle, and chess 
illustrate the differences between three important classes of 

problems: 

• Ignorable (e.g., theorem proving), in which solution steps can 
be ignored 

• Recoverable (e.g., 8-puzzle), in which solution steps can be 
undone 

• Irrecoverable (e.g., chess), in which solution steps cannot be 
undone 

These three definitions make reference to the steps of the 

solution to a problem and thus may appear to characterize 
particular production systems for solving a problem rather 

than the problem itself. Perhaps a different formulation of the 
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same problem would lead to the problem being characterized 
differently. Strictly speaking, this is true. But for a great many 

problems, there is only one (or a small number of essentially 
equivalent) formulations that naturally describe the problem. 

This was true for each of the problems used as examples 
above. When this is the case, it makes sense to view the 
recoverability of a problem as equivalent to the recoverability of 

a natural formulation of it. 

The recoverability of a problem plays an important role in 

determining the complexity of the control structure necessary 
for the problem's solution. Ignorable problem can be solved 
using a simple control structure that never backtracks. Such a 

control structure is easy to implement. Recoverable problems 
can be solved by a slightly more complicated control strategy 

that does sometimes make mistakes. Backtracking will be 
necessary to recover from such mistakes, so the control 
structure must be implemented using a push-down stack, in 

which decisions are recorded in case they need to be undone 
later. Irrecoverable problems, on the other hand, will need to 

be solved by a system that expends a great deal of effort 
making each decision since the decision must be final. Some 
irrecoverable problems can be solved by recoverable style 

methods used in a planning process, in which an entire 
sequence of steps is analyzed in advance to discover where it 

will lead before the first step is actually taken. We discuss next 
the kinds of problems in which this is possible. 

1.3.3 Is the Universe Predictable? 

Again suppose that we are playing with the 8-puzzle. Every 
time we make a move, know exactly what will happen. This 

means that it is possible to plan an entire sequence of moves 
and be confident that we know what the resulting state will be. 
We can use planning to avoid having to undo actual moves, 

although it will still be necessary to backtrack past those 
moves one at a time during the planning process. Thus a 

CONTROL structure that allows backtracking will be necessary.   

However, in games other than the 8-puzzle, this planning 
process may not be possible suppose we want to play bridge. 
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One of the decisions we will have to make is which card to play 
on the first trick. What we would like to do is to plan the entire 

hand before making that first play. But now it is not possible 
to do such planning with certainty since we cannot know 

exactly where all the cards are or what the other players will do 
on their turns. The best we can do is to investigate several 
plans and use probabilities of the various outcomes to choose 

a plan that has the highest estimated probability of leading to 
a good score on the hand. 

These two games illustrate the difference between certain-
outcome (e.g., 8-puzzle) in uncertain-outcome (e.g., bridge) 
problems. One way of describing planning is that it problem 

solving without feedback from the environment. For .solving 
certain-outcome problems, this open-loop approach will work 

fine since the result of an action can be predicted perfectly. 
Thus, planning can be used to generate a sequence of 
operators that is guaranteed to lead to a solution. For 

uncertain outcome problems, however, planning an at best 
generate a sequence of operators that has a good probability of 

leading to a Bullion. To solve such problems, we need to allow 
for a process of plan revision to take lace as the plan is carried 
out and the necessary feedback is provided. In addition to 

providing no guarantee of an actual solution, planning f0r 
uncertain-outcome problems as the drawback that it is often 

very expensive since the number of solution paths that need to 
be explored increases exponentially with the; number of points 
at which the outcome cannot be predicted. 

The last two problem characteristics we have discussed, 
ignorable versus recoverable rises irrecoverable and certain-

outcome versus uncertain-outcome, interact in an in-resting 
way. As has already been mentioned, one way to solve 
irrecoverable problems into plan an entire solution before 

embarking on an implementation of the plan. But his planning 
process can only be done effectively for certain-outcome 

problems. Thus ne of the hardest types of problems to solve is 
the irrecoverable, uncertain-outcome. I few examples of such 
problems are: 
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» Playing bridge. But we can do fairly well since we have 
available accurate estimates of the probabilities of each of the 

possible outcomes. 

• Controlling a robot arm. The outcome is uncertain for a 

variety of reasons. Someone might move something into the 
path of the arm. The gears of the am might stick. A slight 
error could cause the arm to knock over a whole stack of 

things. 

• Helping a lawyer decide how to defend his client against a 

murder charge. Here we probably cannot even list all the 
possible outcomes, much less assess their probabilities. 

1.3.4 Is a Good Solution Absolute or Relative? 

Consider the problem of answering questions based on a 
database of simple facts, such f the following: 

1. Marcus was a man. 

2. Marcus was a Pompeian. 

3. Marcus was born in 40 A.D. j   4. Ail men are mortal. ».  5. 

All Pompeian‘s died when the volcano erupted in 79 A.D. 

6. No-mortal lives longer than 150 years. 

7. It is now 1991 A.D. 

Suppose we ask the question "Is Marcus alive?'' By 
representing each of these facts in a formal language, such as 

predicate logic, and then using formal inference methods, 
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Figure 1.13: Two Ways of Deciding That Marcus Is Dead 

 

Figure 1 14: An Instance of the Traveling Salesman Problem 

We can fairly easily derive an answer to the question. In fact, 
either of two reasoning paths will lead to the answer, as shown 
in Figure 1.13. Since all we are interested in is the answer to 

the question, it does not matter which path we follow. If we do 
follow one path successfully to the answer, there is no reason 

to go back and see if some other path might also lead to a 
solution. 

But now consider again the traveling salesman problem. Our 

goal is to find the shortest route that visits each city exactly 
once. Suppose the cities to be visited and the distances 

between them are as shown in Figure 1.14. 
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One place the salesman could start is Boston. In that case, one 
path that might be followed is the one shown in Figure 1.15, 

which is 8850 miles long. But is this the solution to the 
problem? The answer is that we cannot be sure unless we also 

try all other paths to make sure that none of them is shorter. 
In this case, as can be seen from Figure 1.16, the first path is 
definitely not the solution to the salesman's problem. 

These two examples illustrate the difference between any-path 
problems and best-path problems. Best-path problems are, in 

general, computationally harder than any-path problems. Any-
path problems can often be solved in a reasonable amount of 
time by using heuristics that suggest good paths to explore. 

(See the discussion of best-first search in Chapter 3 for one 
way of doing this.) If the heuristics are not perfect, the search 

for a solution may not be as direct as possible, but that does 
not matter. For true best-path problems, however, no heuristic 
that could possibly miss the best solution can be used. So a 

much more exhaustive search will be performed. 

 

Figure 1.15: One Path among the Cities 
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1.3.5 Is the Solution a State or a Path? 

Consider the problem of finding a consistent interpretation for 

the sentence. The bank president ate a dish of pasta salad with 
the fork. 

There are several components of this sentence, each of which, 
in isolation, may have more than one interpretation. But the 
components must form a coherent whole, and so they 

constrain each other's interpretations. Some of the sources of 
ambiguity in this sentence are the following: 

The word "bank" may refer either to a financial institution or to 
a side of a river. But only one of these may have a president. 

 

 

          Total: (8850)              Total: (7750)  

Figure 1.16: Two Paths Among the Cities 

• The word "dish" is the object of the verb "eat." It is possible 

that a dish was eaten. But it is more likely that the pasta 
salad in the dish was eaten. 
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• Pasta salad is a salad containing pasta. But there are other 
ways meanings can be formed from pairs of nouns. For 

example, dog food does not normally contain dogs. 

• The phrase "with the fork" could modify several parts of the 

sentence. In this case, it modifies the verb "eat." But, if the 
phrase had been "with vegetables," then the modification 
structure would be different. And if the phrase had been 

"with her friends," the structure would be different still. 

Because of the interaction among the interpretations of the 

constituents of this sentence, some search may be required to 
find a complete interpretation for the sentence. But to solve the 
problem of finding the interpretation we need to produce only 

the interpretation itself. No record of the processing by which 
the interpretation was found is necessary. 

Contrast this with the water jug problem. Here it is not 
sufficient to report that we have solved the problem and that 
the final state is (2,0). For this kind of problem, what we really 

must report is hot the final state but the path that we found to 
that state. Thus a statement of a solution to this problem must 

be a sequence of operations (sometimes called apian) that 
produces the final state. 

These two examples, natural language understanding and the 

water jug problem, illustrate the difference between problems 
whose solution is a state of the world and problems whose 

solution is a path to a state. At one level, this difference can be 
ignored and all problems can be formulated as ones in which 
only a state is required to be reported. If we do this for 

problems such as the water jug, then we must re describe our 
states so that each state represents a partial path to a solution 

rather than just a single state of the world. So this question is 
not a formally significant one. But, just as for the question of 
ignitability versus recoverability, there is often a natural (and 

economical) formulation of a problem in which problem states 
correspond to situations in the world, not sequences of 

operations. In this case, the answer to this question tells us 
whether it is necessary to record the path of the problem-
solving process as it proceeds. 
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1.3.6 What Is the Role of Knowledge? 

Consider again the problem of playing chess. Suppose you had 

unlimited computing power available. How much knowledge 
would be required by a perfect program? The answer to this 

question is very little just the rules for determining legal moves 
and some simple control mechanism that implements an 
appropriate search procedure. Additional knowledge about 

such things as good strategy and tactics could of course help 
considerably to constrain the search and speed up the 

execution of the program. 

But now consider the problem of scanning daily newspapers to 
decide which are supporting the Democrats and which are 

supporting the Republicans in some upcoming election. Again 
assuming unlimited computing power, how much knowledge 

would be required by a computer trying ‗to solve this problem? 
This time the answer is a great deal. It would have to know 
such things as: 

• The names of the candidates in each party. 

• The fact that if the major thing you want to see done is have 

taxes lowered, you are probably supporting the 
Republicans. 

• The fact that if the major thing you want to see done is 

improved education for minority students, you are probably 
supporting the Democrats. 

• The fact that if you are opposed to big government, you are 
probably supporting the Republicans. 

• And so on ... 

These two problems, chess and newspaper story 
understanding, illustrate the difference between problems for 

which a lot of knowledge is important only to constrain the 
search for a solution and those for which a lot of knowledge is 
required even to be able to recognize a solution. 



                                                                                                                                              
    Artificial 
           Intelligence 

  NOTES 

 
 

38 

1.3.7 Does the Task Require Interaction with a Person? 

Sometimes it is useful to program computers to solve problems 

in ways that the majority of people would not be able to 
understand. This is fine if the level of the interaction between 

the computer and its human users is problem-in solution-out. 
But increasingly we are building programs that require 
intermediate interaction with people, both to provide additional 

input to the program and to provide additional reassurance to 
the user. 

Consider, for example, the problem of proving mathematical 
theorems.  

1. All we want is to know that there is a proof 

2. The program is capable of finding a proof by itself 

then it does not matter what strategy the program takes to find 

the proof. It can use, for example, the resolution procedure, 
which can be very efficient but which does not appear natural 
to people. But if either of those conditions is violated, it may 

matter very much how a proof is found. Suppose that we are 
trying to prove some new, very difficult theorem. We might 

demand a proof that follows traditional patterns so that a 
mathematician can read the proof and check to make sure it is 
correct. Alternatively, finding a proof of the theorem might be 

sufficiently difficult that the program does not know where to 
start. At the moment, people are still better at doing the high-

level strategy required for a proof. So the computer might like 
to be able to ask for advice. For example, it is often much 
easier to do a proof in geometry if someone suggests the right 

line to draw into the figure. To exploit such advice, the 
computer's reasoning must be analogous to that of its human 

advisor, at least on a few levels. As computers move into areas 
of great significance to human lives, such as medical 
diagnosis, people will be very unwilling to accept the verdict of 

a program whose reasoning they cannot follow. Thus we must 
distinguish between two types of problems: 
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• Solitary, in which the computer is given a problem 
description and produces an answer with no intermediate 

communication and with no demand for an explanation of 
the reasoning process 

• Conversational, in which there is intermediate 
communication between a person and the computer, either 
to provide additional assistance to the computer or to 

provide additional information to the user, or both 

Of course, this distinction is not a strict one describing 

particular problem domains. As we just showed, mathematical 
theorem proving could be regarded as either. But for a 
particular application, one or the other of these types of 

systems will usually be desired and that decision will be 
important in the choice of a problem-solving method. 

1.3.8 Problem Classification 

When actual problems are examined from the point of view of 
all of these questions, it becomes apparent that there are 

several broad classes into which the problems fall. These 
classes can each be associated with a generic control strategy 

that is appropriate for solving the problem. For example, 
consider the generic problem of classification. The task here is 
to examine an input and then decide which of a set of known 

classes the input is an instance of. Most diagnostic tasks, 
including medical diagnosis as well as diagnosis of faults in 

mechanical devices, are examples of classification. Another 
example of a generic strategy is propose and refine. Many 
design and planning problems can be attacked with this 

strategy. 

Depending on the granularity at which we attempt to classify 

problems and control strategies, we may come up with 
different lists of generic tasks and procedures. The important 
thing to remember here, though, since we are about to embark 

on a discussion of a variety of problem-solving methods, is that 
there is no one single way of solving all problems. But neither 

must each new problem be considered totally ab initio. 
Instead, if we analyze our problems carefully and sort our 
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problem-solving methods by the kinds of problems for which 
they are suitable, we will be able to bring to each new problem 

much of what we have learned from solving other, similar 
problems. 

1.4 Production System Characteristics 

 We have just examined a set of characteristics that distinguish 
various classes of problems. We have also argued that 

production systems are a good way to describe the operations 
that can be performed in a search for a solution to a problem. 

Two questions we might reasonably ask at this point are: 

1. Can production systems, like problems, be described by a 
set of characteristics that shed some light on how they can 

easily be implemented? 

2. If so, what relationships are there between problem types 

and the types of production systems best suited to solving 
the problems? 

The answer to the first question is yes. Consider the following 

definitions of classes of production systems. A monotonic 
production system is a production system in which the 

application of a rule never prevents the later application of 
another rule that could also have been applied at the time the 
first rule was selected. A nonmonotonic production system is 

one in which this is not true. A partially commutative 
production system is a production system with the property 

that if the application of a particular sequence of rules 
transforms state x into state y, then any permutation of those 
rules that is allowable (i.e., each rule's preconditions are 

satisfied when it is applied) also transforms state x into state. 
A commutative production system is a production system that 

is both monotonic and partially commutative. 

The significance of these categories of production systems lies 
in the relationship between the categories and appropriate 

implementation strategies. But before discussing that 
relationship, it may be helpful to make the meanings of the 
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definitions clearer by showing how they relate to specific 
problems. 

Thus we arrive at the second question above, which asked 
whether there is an interesting relationship between classes of 

production systems and classes of problems. For any solvable 
problem, there exist an infinite number of production systems 
that describe ways to find solutions. Some will be more natural 

or efficient than others. Any problem that can be solved by any 
production system can be solved by a commutative one (our 

most restricted class), but the commutative one may be so 
unwieldy as to be practically useless* It may use individual 
states to represent entire sequences of applications of rules of 

a simpler, noncommutative system. So in a formal sense, there 
is no relationship between kinds of problems and kinds of 

production systems since all problems can be solved by all 
kinds of systems. But in a practical sense, there definitely is 
such a relationship between kinds of problems and the kinds 

of systems that lend themselves naturally to describing those 
problems. To see this, let us look at a few examples. Figure 

1.17 shows the four categories of production systems produced 
by the two dichotomies, monotonic versus nonmonotonic and 
partially commutative versus nonpartially commutative, along 

with some problems that can naturally be solved by each type 
of system. The upper left comer represents commutative 

systems. 

 

 

 

Monotonic Non-monotonic 

 
Partially commutative Theorem 

proving 
Robot navigation 

Not partially commutative Chemical 
synthesis 

Bridge 

 

Figure 1.17: The Four Categories of Production Systems 
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Partially commutative, monotonic production systems are 
useful for solving ignorable problems. This is not surprising 

since the definitions of the two are essentially the same. But 
recall that ignorable problems are those for which a natural 

formulation leads to solution steps that can be ignored. Such a 
natural formulation will then be a partially commutative, 
monotonic system. Problems that involve creating new things 

rather than changing old ones are generally ignorable. 
Theorem proving, as we have described it, is one example of 

such a creative process. Making deductions from some known 
facts is a similar creative process. Both of those processes can 
easily be implemented with a partially commutative, monotonic 

system. 

Partially commutative, monotonic production systems are 

important from an implementation standpoint because they 
can be implemented without the ability to backtrack to 
previous states when it is discovered that an incorrect path 

has been followed. Although it is often useful to implement 
such systems with backtracking in order to guarantee a 

systematic search, the actual database representing the 
problem state need not be restored. This often results in a 
considerable increase in efficiency, particularly because, since 

the database will never have to be restored, it is not necessary 
to keep track of wherein the Search process every change was 

made. 

We have now discussed partially commutative production 
systems that are also monotonic. They are good for problems 

where things do not change; new things get created. 
Nonmonotonic, partially commutative systems, on the other 

hand, are useful for problems in which changes occur but can 
be reversed and in which order of operations is not critical. 
This is usually the case in physical manipulation problems, 

such as robot navigation on a flat plane. Suppose that a robot 
has the following operators: go north (N), go east (E), go south 

(S), and go west (W). To reach its goal, it does not matter 
whether the robot executes N-N-E or N-E-N. Depending on how 
the operators are chosen, the 8-Puzzle and the blocks world 

problem can also be considered partially commutative. 
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Both types of partially commutative production systems are 
significant from an implementation point of view because they 

tend to. lead to many duplications of individual states during 
the search process. This is discussed further in Section 1.5. 

Production systems that are not partially commutative are 
useful for many problems in which irreversible changes occur. 
For example, consider the problem of determining a process to 

produce a desired chemical compound. The operators available 
include such things as "Add chemical x to the pot" or "Change 

the temperature to l degrees." These operators may cause 
irreversible changes to the potion being brewed. The order 

 

Figure 1.18: A Search Tree for the Water Jug Problem 

in which they are performed can be very important in 
determining the final output. It is possible that if y is added to 

y, a stable compound will be formed, so later addition of 2 will 
have no effect; if : is added to y, however, a different stable 
compound may be formed, so later addition of will have no 

effect. No partially commutative production systems are less 
likely to produce the same node many times in the search 

process. When dealing with ones that describe irreversible 
processes, it is particularly important to make correct 
decisions the first time, although rather universe is 

predictable, planning can be used to make that less important. 

1.5 Issues in the Design of Search Programs 

Every search process can be viewed as a traversal of a tree 
structure in which each node represents a problem state and 
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each arc represents a relationship between the states 
represented by the nodes it connects. For example. Figure 1.18 

shows part of a search tree for a water jug problem. The arcs 
have not been labeled in the figure, but they correspond to 

particular water-pouring operations. The search process must 
find a path or paths through the tree that connect an initial 
state with one or more final states. The tree that must be 

searched could, in principle, be constructed in its entirety from 
the rules that define allowable moves in the problem space. 

But, in practice, most of it never is. It is too large and most of 
it need never be explored. Instead of first building the tree 
explicitly and then searching it, most search programs 

represent the tree implicitly in the rules and generate explicitly 
only those parts that they decide to explore. Throughout our 

discussion of search methods, it is important to keep in mind 
this distinction between implicit search, trees and the explicit 
partial search trees that are actually constructed by the search 

program. 

In the next chapter, we present a family of general-purpose 

search techniques. But before doing so we need to mention 
some important issues that arise in all of them: 

• The direction in which to conduct the search (forward versus 

backward reasoning). 

We can search forward through the state space from the start 

state to a goal state or we can search backward from the goal. 

• How to select applicable rules (matching). Production 
systems typically spend most of their time looking for rules to 

apply, so it is critical to have efficient procedures for matching 
rules against states. 

• How to represent each node of the search process (the 
knowledge representation problem and the frame problem). For 
problems like chess, a node can be fully represented by a 

simple array. In more complex problem solving, however, it is 
inefficient and/or impossible to represent all of the facts in the 

world and to determine all of the side effects an action may 
have. 
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We discuss the knowledge representation and frame problems 
further. We investigate matching and forward versus backward 

reasoning when we return to production systems. 

One other issue we should consider at this point is that of 

search trees versus search graphs. As mentioned above, we 
can think of production rules as generating nodes in a search 
tree. Each node can be expanded in turn, generating a set of 

successors. This process continues until a node representing a 
solution is found. Implementing such a procedure requires 

little bookkeeping. However, this process often results in the 
same node being generated as pan of several paths and so 
being processed more than once. This happens because the 

search space may really be an arbitrary directed graph rather 
than a tree. 

For example, in the tree shown in Figure 1.18, the node (4,3), 
representing 4 gallons of water in one jug and 3 gallons in the 
other, can be generated either by first filling the 4-gallon jug 

and then the 3-gallon one or by filling them in the opposite 
order. Since the order does not matter, continuing to process 

both these nodes would be redundant. This example also 
illustrates another problem that often arises when the search 
process operates as a tree walk. On the third level, the node (0, 

0) appears. (In fact, it appears twice.) But this is the same as 
the top node of the tree, which has already been expanded. 

Those two paths have not gotten us anywhere. So we would 
like to eliminate them and continue only along the other 
branches. 

The waste of effort that arises when the same node is 
generated more than once can be avoided at the price of 

additional bookkeeping. Instead of traversing a search tree, we 
traverse a directed graph. This graph differs from a tree in that 
several paths may come together at a node. The graph 

corresponding to the tree of Figure 1.18 is shown in Figure 
1.19. 

Any tree search procedure that keeps track of all the nodes 
that have been generated so far can be convened to a graph 
search procedure by modifying the action performed each time 
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a node is generated. Notice that of the two systematic search 
procedures we have discussed so far, this requirement that 

nodes be kept track of is met by breadth-first search but not 
by depth-first search. But, of course, depth-first search could 

be modified, at the expense of additional storage, to retain in 
memory nodes that have been expanded and then backed-up 
over. Since all nodes are saved in the search graph, we must 

use the following algorithm instead of simply adding a new 
node to the graph. 

Algorithm: Check Duplicate Nodes 

1. Examine the set of nodes that have been created so far to 
see if the new node already exists. 

 

Figure 1.19: A Search Graph for the Water Jug Problem 

2. If it does not/simply add it to the graph just as for a tree. 

3. If it does already exist, then do the following: 

(a) Set the node that is being expanded to point to the already 
existing node corresponding to its successor rather than to the 

new one. The new one can simply be thrown away. 

(b) If you are keeping track of the best (shortest or otherwise 
least-cost) path to each node, then check to see if the new path 

is better or worse than the old one. If worse, do nothing. If 
better, record the new path as the correct path to use to get to 
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the node and propagate the corresponding change in cost 
down through successor nodes as necessary. 

One problem that may arise here is that cycles may be 
introduced into the search graph. A cycle is a path through the 

graph in which a given node appears more than once.  

Treating the search process as a graph search rather than as a 
tree Search reduces the amount of effort that is spent 

exploring essentially the same path several times. But it 
requires additional effort each time a node is generated to see if 

it has been generated before. Whether this effort is justified 
depends on the particular problem. If it is very likely that the 
same node will be generated in several different ways, then it is 

more worthwhile to use a graph procedure than if such 
duplication will happen only rarely. 

Graph search procedures are especially useful for dealing with 
partially commutative production systems in which a given set 
of operations will produce the same result regardless of the 

order in which the operations are applied. A systematic search 
procedure will try many of the permutations of these operators 

and so will generate the same node many times. This is exactly 
what happened in the water jug example shown above.  

1.6 Additional Problems 

Several specific problems have been discussed throughout this 
chapter. Other problems have not yet been mentioned, but are 

common throughout the AI literature. Some have become such 
classics that no AI book could be complete without them, so we 
present them in this section. A useful exercise, at this point, 

would be to evaluate each of them in light of the seven problem 
characteristics we have just discussed. 

A brief justification is perhaps required before this parade of 
toy problems is presented. Artificial intelligence is not merely a 
science of toy problems and micro worlds (such as the blocks 

world). Many of the techniques that have been developed for 
these problems have become the core of systems that solve 

very monotony problems. So think about these problems not 
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as defining the scope of Al but rather as providing a core from 
which much more has developed. 

The Missionaries and Cannibals Problem 

Three missionaries and three cannibals find themselves on one 

side to a river. They have agreed that they would all like to get 
to the other side. But the/missionaries are not sure what else 
the cannibals have agreed to. So the missionaries want to 

manage the trip across the river in such a way that the 
number of missionaries on either side of the river is never less 

than the number of cannibals who are on the same side. The 
only boat available holds only two people at a time. How can 
everyone get across the rivet without the missionaries risking 

being eaten? 

The Tower of Hanoi 

Somewhere near Hanoi there is a monastery whose monks 
devote their lives to a very important task. In their courtyard 
are three tall posts. On these posts is a set of sixty-four disks, 

each with a hole in the center and each of a different radius. 
When the monastery was established, all of the disks were on 

one of the posts, each disk resting on the one just larger than 
it. The monks' task is to move all of the disks to one of the 
other pegs. Only one disk may be moved at a time, and all the 

other disks must be on one of the pegs. In addition, at no time 
during the process may a disk be placed on top of a smaller 

disk. The third peg can, of course, be used as a temporary 
resting place for the disks. What is the quickest way for the 
monks to accomplish their mission? 

Even the best solution to this problem will take the monks a 
very long time. This is fortunate, since legend has it that the 

world will end when they have finished. 

The Monkey and Bananas Problem 

A hungry monkey finds himself in a room in which a bunch of 

bananas is hanging from the ceiling. The monkey, 
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unfortunately, cannot reach the bananas. However, in the 
room there are 'also a chair and a stick. The ceiling is just the 

right height so that a monkey standing on a chair could knock 
the bananas down with the stick. The monkey knows how to 

move around, carry other things around, reach for the 
bananas, and wave a stick in the air. What is the best 
sequence of actions for the monkey to take to acquire lunch? 

 

Figure 1.20: Some Cryptarithmetic  Problems 

Cryptarithmetic 

Consider an arithmetic problem represented in letters, as 
shown in the examples in Figure 1.20. Assign a decimal digit to 

each of the letters in such a way that the answer to the 
problem is correct. If the same letter occurs more than once, it 

must be assigned the same digit each time. No two different 
letters may be assigned the same digit. 

People's strategies for solving Cryptarithmetic problems have 

been, studied intensively by Newell and Simon. 

1.7 Summary 

In this chapter we have discussed the first two steps that must 
be taken toward the design of a program to solve a particular 
problem: 

1. Define the problem precisely. Specify the problem space, the 
operators for moving within the space, and the starting and 

goal state(s). 

2. Analyze the problem to determine where it falls with respect 
to seven important issues. 
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The last two steps for developing a program to solve that 
problem are. of course: 

3. Identify and represent the knowledge required by the task. 

4. Choose one or more techniques for problem solving, and 

apply those techniques to the problem. 

Several general-purpose, problem-solving techniques are 
presented in the next chapter, and several of them have 

already been alluded to in the discussion of the problem 
characteristics in this chapter. The relationships between 

problem characteristics and specific techniques should become 
even clearer as we go on. Then, in later art II, we discuss the 
issue of how domain knowledge ‗is to be represented. 

1.9. Model Questions 

1. In this chapter the following problem were mentioned 

a. chess 

 b. water jug 

 c. 8-puzzel 

 d. travelling salesman 

 e. missionaries and cannibals 

 f. tower of hanio 

 g. monkey and bananas 

 h. cryptarithmetic 

 i. bridge 

Before we can solve a problem using state space search, we 
must define an appropriate state space. For each of the 

problems mentioned above for which it was not done in the 
text. Find a good state space representation. 
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2.  Describe how the branch-and-bound technique be used to 
find the shortest solution to a water jug problem. 

3   For each of the following types of problems, try to describe a 
good heuristic function. 

 a. blocks of word 

 b. Theorem proving 

 c. missionaries and cannibals 

4. Give an example of a problem for which breadth –first 
search would work better than depth-first search. Give an 

example of a problem for which depth-first search would work 
better than breadth-first search. 

5. Write an algorithm to perform breadth-first search of a 

problem graph. Make sure your algorithm works properly when 
a single node is generated at more than one level in the graph. 
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UNIT – II 

 

HEURISTIC SEARCH TECHNIQUES 

 

Objectives 

In this chapter we will discuss about various heuristic 
search techniques. 

 Generate - and – Test     

 Hill Climbing 

 Best first Search 

 Problem Reduction 

 Constrained Satisfaction 

 Means – ends Analysis 

Introduction 

In the last chapter, we saw that many of the problems that fall 

within the purview of artificial intelligence are too complex to 
be solved by direct techniques; rather they must be attacked 
by appropriate search methods armed with whatever direct 

techniques are available to guide the search. In this chapter, a 
framework for describing search methods is provided and 

several general-purpose search techniques are discussed. 
These methods are all varieties of heuristic search. They can be 
described independently of any particular task or problem 

domain. But when applied to particular problems, their 
efficacy is highly dependent on the way they exploit domain-

specific knowledge since in and of themselves they are unable 
to overcome the combinatorial explosion to which search 
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processes are so vulnerable. For this reason, these techniques 
are often called weak methods. Although a realization of the 

limited effectiveness of these weak methods to solve hard 
problems by themselves has been an important result that 

emerged from the last three decades of AI research, these 
techniques continue to provide the framework into which 
domain-specific knowledge can be placed, either by hand or as 

a result of automatic learning. Thus they continue to form the 
core of most AI systems. We have already discussed two very 

basic search strategies: 

• Depth-first search 

• Breadth-first search In the rest of this chapter, we present 

some others: 

• Generate-and-test 

• Hill climbing 

• Best-first search 

• Problem reduction 

• Constraint satisfaction 

• Means-ends analysis 

2.1 Generate-and-Test 

 The generate-and-test strategy is the simplest of all the 
approaches we discuss. It consists of the following steps: 
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Algorithm: Generate-and-Test 

1. Generate a possible solution. For some problems, this 

means generating a particular point in the problem space. For 
others, it means generating a path from a start state. 

2. Test to see if this is actually a solution by comparing the 
chosen point or the endpoint of the chosen path to the set of 
acceptable goal states. 

3. If a solution has been found, quit. Otherwise, return to step 
1. 

If the generation of possible solutions is done systematically, 
then this procedure will find a solution eventually, if one 
exists. Unfortunately, if the problem space is very large, 

"eventually" may be a very long time. 

The generate-and-test algorithm is a depth-first search 

procedure since complete solutions must be generated before 
they can be tested. In its most systematic form, it is simply an 
exhaustive search of the problem space. Generate-and-test 

can, of course, also operate by generating solutions randomly, 
but then there is no guarantee that a solution will ever be 

found. In this form, it is also known as the British Museum 
algorithm, a reference to a method for finding an object in the 
British Museum by wandering randomly.' Between these two 

extremes lies a practical middle ground in which the search 
process proceeds systematically, but some paths are not 

considered because they seem unlikely to lead to a solution. 

The most straightforward way to implement systematic 
generate-and-test is as a depth-first search tree with 

backtracking. If some intermediate states are likely to appear 
often in the tree, however, it may be better to modify that 

procedure, as described above, to traverse a graph rather than 
a tree. 

For simple problems, exhaustive generate-and-test is often a 

reasonable technique. For example, consider the puzzle that 
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consists of four six-sided cubes, with each side of each cube 
painted one of four colors. A solution to the puzzle consists of 

an arrangement of the cubes in a row such that on all four 
sides of the row one block face of each color is showing. This 

problem can be solved by a person (who is a much slower 
processor for this son of thing than even a very cheap 
computer) in several minutes by systematically and 

exhaustively trying all possibilities. It can be solved even .more 
quickly using a heuristic generate-and-test procedure. A quick 

glance at the four blocks reveals that there are more, say, red 
faces than there are of other colors. Thus when placing a block 
with several red faces, it would be a good idea to use as few of 

them as possible as outside faces. As many of them as possible 
should be placed to abut the next block. Using this heuristic, 

many configurations need never be explored and a solution can 
be found quite quickly. 

Or, as another story goes, if a sufficient number of monkeys 

were placed in front of a set of typewriters and left alone long 
enough, then they would eventually produce all of the works of 

Shakespeare. 

Unfortunately, for problems much harder than this, even 
heuristic generate-and-test, all by itself, is not a very effective 

technique. But when combined with other techniques to 
restrict the space in which to search even further, the 

technique can be very effective. 

For example, one early example of a successful AI program is 
DENDRAL which infers the structure of organic compounds 

using mass spectrogram and nuclear magnetic resonance 
(NMR) data. It uses a strategy called plan-generate-test, in 

which a planning process that uses constraint-satisfaction 
techniques creates lists of recommended and contraindicated 
substructures. The generate-and-test procedure then uses 

those lists so that it can explore only a fairly limited set of 
structures. Constrained in this way, the generate-and-test 

procedure has proved highly effective. 

This combination of planning, using one problem-solving 
method (in this case, constraint satisfaction) with the use of 
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the plan by another problem-solving method, generate-and-
test, is an excellent example of the way techniques can be 

combined to overcome the limitations that each possesses 
individually. A major weakness of planning is that it often 

produces somewhat inaccurate solutions since there is no 
feedback from the world. But by using it only to produce pieces 
of solutions that will then be exploited in the generate-and-test 

process, the lack of detailed accuracy becomes unimportant. 
And, at the same time, the combinatorial problems that arise 

in simple generate-and-test are avoided by judicious reference 
to the plans. ) 

2.2 Hill Climbing 

Hill climbing is a variant of generate-and-test in which 
feedback from the test procedure is used to help the generator 

decide which direction to move in the search space. In a pure 
generate-and-test procedure, the test function responds with 
only a yes or no. But if the test function is augmented with a 

heuristic function2 that provides an estimate of how close a 
given state is to a goal state, the generate procedure can 

exploit it as shown in the procedure below. This is particularly 
nice because often the computation of the heuristic function 
can be done at almost no cost at the same time that the test 

for a solution is being performed. Hill climbing is often used 
when a good heuristic function is available for evaluating 

states but when no other useful knowledge is available. For 
example, suppose you are in an unfamiliar city without a map 
and you want to get downtown. You simply aim for the tall 

buildings. The heuristic function is just distance between the 
current location and the location of the tall buildings and the 

desirable states are those in which this distance is minimized. 

2.2.1 Simple Hill Climbing 

The simplest way to implement hill climbing is as follows. 

 

 



                                                                                                                                              
    Artificial 
           Intelligence 

  NOTES 

 
 

57 

Algorithm: Simple Hill Climbing 

1. Evaluate the initial state. If it is also a goal state, then 

return it and quit. Otherwise, continue with the initial state as 
the current state. 

2. Loop until a solution is found or until there are no new 
operators left to be applied in the current state: 

(a) Select an operator that has riot yet been applied to the 

current state and apply it to produce a new state. 

(b) Evaluate the new state. 

If it is a goal state, then return it and quit. ii. If it is not a goal 
state but it is better than the current state, then make it the 
current state. iii. If it is not better than the current state, then 

continue in the loop. 

The key difference between this algorithm and the one we gave 

for generate-and-test is the use of an evaluation function as a 
way to inject task-specific knowledge into the control process. 
It is the use of such knowledge that makes this and the other 

methods discussed in the rest of this chapter heuristic search 
methods, and it is that same knowledge that gives these 

methods their power to solve some otherwise intractable 
problems. 

Notice that in this algorithm, we have asked the relatively 

vague question, "Is one state better than another?" For the 
algorithm to work, a precise definition of better must be 

provided. In some cases, it means a higher value of the 
heuristic function. In others, it means a lower value. It does 
not matter which, as long as a particular hill-climbing program 

is consistent in its interpretation. 

To see how hill climbing works, let's return to the puzzle of the 

four colored blocks. To solve the problem, we first need to 
define a heuristic function that describes how close a 
particular configuration is to being a solution. On such 
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function it^ simply the sum of the number of different colors 
on each of the four sides. A solution to the puzzle will have a 

value of 16. Next we need to define a set of rules that describe 
ways of transforming one configuration into another. Actually, 

one rule will suffice. It says simply pick a block and rotate it 90 
degrees in any direction. Having provided these definitions, the 
next step is to generate a starting configuration. This can 

either be done at random or with the aid of the heuristic 
function described in the last section. Now hill climbing can 

begin. We generate a new state by selecting a block and 
rotating it. If the resulting state is better, then we keep it. If 
not, we return to the previous state and try a different 

perturbation. 

2.2.2 Steepest-Ascent Hill Climbing 

A useful variation on simple hill climbing considers all the 
moves from the current state and selects the best one as the 
next state. This method is called steepest-accent hill climbing 

or gradient search. Notice that this contrasts with the basic 
method in which the first state that is better than the current 

state is selected. The algorithm works as follows. 

Algorithm: Steepest-Ascent Hill Climbing 

1. Evaluate the initial state. If it is also a goal state, then 

return it and quit. Otherwise, continue with the initial state as 
the current state. 

2. Loop until a solution is found or until a complete iteration 
produces no change to current state: 

(a) Let SUCC be a state such that any possible successor of the 

current state will be better than SUCC. 

(b) For each operator that applies to the current state do: 

i. Apply the operator and generate a new state. 
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ii. Evaluate the new state. If it is a goal state, then return it 
and quit. If not, compare it to SUCC. If it is better, then set 

SUCC to this state. If it is not better, leave SUCC alone. 

(c) If the SUCC is better than current state, then set current 

state to SUCC. 

To apply steepest-ascent hill climbing to the colored blocks 
problem, we must consider all perturbations of the initial state 

and choose the best. For this problem, this is difficult since 
there are so many possible moves. There is a trade-off between 

the time required to select a move (usually longer for steepest-
ascent hill climbing) and the number of moves required to get 
to a solution (usually longer for basic hill climbing) that must 

be considered when deciding which method will work better for 
a particular problem. 

Both basic and steepest-ascent hill climbing may fail to find a 
solution. Either algorithm may terminate not by finding a goal 
state but by getting to a state from which no better states can 

be generated. This will happen if the program has reached a 
local maximum, a plateau, or a ridge. 

A local maximum is a state that is better than all its neighbors 
but is not better than some other states farther away. At a 
local maximum, all moves appear to make things worse. Local 

maxima are particularly frustrating because they often occur 
almost within sight of a solution. In this case, they are called 

foothills. 

A plateau is a flat area of the search space in which a whole 
set of neighboring states has the same value. On a plateau, it 

is not possible to determine the best direction in which to move 
by making local comparisons. 

A ridge is a special kind of local maximum. It is an area of the 
search space that is higher than surrounding areas and that 
itself has a slope (which one would like to climb). But the 

orientation of the High region, compared to the set of available 
moves and the directions in which they move, makes it 

impossible to traverse a ridge by single moves. 
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There are some ways of dealing with these problems, although 
these methods are by no means guaranteed: 

• Backtrack to some earlier node and try going in a different 
direction. This is particularly reasonable if at that node there 

was another direction that looked as promising or almost as 
promising as the one that was chosen earlier. To implement 
this strategy, maintain a list of paths almost taken and go 

back to one of them if the path that was taken leads to a dead 
end. This is a fairly good way of dealing with local maxima. 

• Make a big jump in some direction to try to get to a new 
section of the search space. This is a particularly good way of 
dealing with plateaus. If the only rules available describe single 

small steps, apply them several times in the same direction. 

• Apply two or more rules before doing the test. This 

corresponds to moving in several directions at once. This is a 
particularly good strategy for dealing with ridges. 

Even with these first-aid measures, hill climbing is not always 

very effective. It is particularly unsuited to problems where the 
value of the heuristic function drops off suddenly as you move 

away from a solution. This is often the case whenever any sort 
of threshold effect is present. Hill climbing is a local method, 
by which we mean that it decides what to do next by looking 

only at the "immediate" consequences of its choice rather than-
by exhaustively exploring all the consequences. It shares with 

other local methods, such as the nearest neighbor heuristic 
described in Section 1.2.2, the advantage of being less 
combinatorial explosive than comparable global methods. But 

it also shares with other local methods a lack of a guarantee 
that it will be effective. Although it is true that the hill-climbing 

procedure itself looks only one move ahead and not any 
farther, that examination may in fact exploit an arbitrary 
amount of global information if that information is encoded in 

the heuristic function. Consider the blocks world problem 
shown in Figure 3.1. Assume the same operators (i.e., pick up 

one block and put it on the table; pick up one block and put it 
on another one) that were used in Section 2.3.1. Suppose we 
use the following heuristic function: 
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Local: Add one point for every block that is resting on the thing 
it is supposed to be resting on. Subtract one point for every 

block that is sitting on the wrong thing. 

Using this function, the goal state has a score of 8. The initial 

state has a score of 4 (since it gets one point added for blocks 
C, D, E, F, G, and H and one point subtracted for blocks A and 
B). There is only one move from the initial state, namely to 

move block A to the table. That produces a state with a score of 
6 (since now A's position causes a point to be added rather 

than subtracted). The hill-climbing procedure will accept that 
move. From the new state, there are three possible moves, 
leading to the three states shown in Figure 2.2. These states 

have the scores: (o) 4, (h) 4, and (c) 4. Hill climbing will halt 
because all these states have lower scores than the current 

state. The process has reached a local maximum that is not 
the global maximum. The problem is that by purely local 
examination of support structures, the current state appears 

to be better than any of its successors because more blocks 
rest on the correct objects. To solve this problem, it is 

necessary to disassemble a good local structure (the stack B 
through H) because it is in the wrong global context. 

 

Figure 2.1: A Hill-Climbing problem 
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Figure 2.2: Three Possible Moves 

We could blame hill climbing itself for this failure to look far 
enough ahead to find a solution. But we could also blame the 
heuristic function and try to modify it. Suppose we try the 

following heuristic function in place of the first one: 

Global: For each block that has the correct support structure 

(i.e., the complete structure underneath it is exactly as it 
should be), add one point for every block in the support 
structure. For each block that has an incorrect support 

structure, subtract one point for every block in the existing 
support structure. 

Using this function, the goal state has the score 28 (1 for B, 2 
for C, etc.). The initial state has the score -28. Moving A to 
table yields a state with a score of -21 since A no longer has 

seven wrong blocks under it. The three Mates that can be 
produced next now have the following scores: (a) —28, (b) —16, 

and (c) —15. This time, steepest-ascent hill climbing will 
choose move (c), which is the correct one. This new heuristic 
function captures the two key aspects of this problem: 

incorrect structures are bad and should be taken apart; and 
correct structures are good and should be built up. As a result, 

the same hill climbing procedure that failed with the earlier 
heuristic function now works perfectly. 

Unfortunately, it is not always possible to construct such a 

perfect heuristic function. For example, consider again the 
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problem of driving downtown. The perfect heuristic function 
would need to have knowledge about one-way and dead-end 

streets, which, in the case of a strange city, is not always 
available. And even if perfect knowledge is, in principle, 

available, it may not be computationally tractable to use. As an 
extreme example, imagine a heuristic function that computes a 
value for a state by invoking its own problem-solving procedure 

to look ahead from ‗the state it is given to find a solution. It 
then knows the exact cost of finding that solution and can 

return that cost as its value. A heuristic function that does this 
converts the local hill-climbing procedure into a global method 
by embedding a global method within it. But now the 

computational advantages of a local method have been lost. 
Thus it is still true that hill climbing can be very inefficient in a 

large, rough problem space. But it is often useful when 
combined with other methods that get it started in the right 
general neighborhood. 

2.2.3 Simulated Annealing 

Simulated annealing is a variation of hill climbing in which, at 

the beginning of the process, some downhill moves may be 
made. The idea is to do enough exploration of the whole space 
early on so that the final solution is relatively insensitive to the 

starting state. This should lower the chances of getting caught 
at a local maximum, a plateau, or a ridge. 

In order to be compatible with standard usage in discussions 
of simulated annealing, we make two notational changes for 
the duration of this section. We use the term objective function 

in place of the term heuristic/unction. 

And we attempt to minimize rather than maximize the value of 

the objective function. Thus we actually describe a process of 
valley descending rather than hill climbing. 

Simulated annealing as a computational process is patterned 

after the physical process of annealing, in which physical 
substances such as metals are melted (i.e., raised to high 

energy levels) and then gradually cooled until some solid state 
is reached. The goal of this process is to produce a minimal-
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energy final state. Thus this process is one of valley descending 
in which the objective function is the energy level. Physical 

substances usually move from higher energy configurations to 
lower ones. so the valley descending occurs naturally. But 

there is some probability that a transition to a higher energy 
state will occur. This probability is given by the function 

P = e – ΔE/kt 

where A £ is the positive change in the energy levels T is the 
temperature, and k is Boltzmann's constant. Thus, in the 

physical valley descending that occurs during annealing, the 
probability of a large uphill move is lower than the probability 
of a small one. Also, the probability that an uphill move will be 

made decreases as the temperature decreases. Thus such 
moves are more likely during the beginning of the process 

when the temperature is high, and they become less likely at 
the end as the temperature becomes lower. One way to 
characterize this process is that downhill moves are allowed 

anytime. Large upward moves may occur early on, but as the 
process progresses, only relatively small upward moves are 

allowed until finally the process converges to a local minimum 
configuration. 

The rate at which the system is cooled is called the annealing 

schedule. Physical annealing processes are very sensitive to 
the annealing schedule. If cooling occurs too rapidly, stable 

regions of high energy will form. In other words, a local but not 
global minimum is reached. If, however, a slower schedule is 
used, a uniform crystalline structure, which corresponds to a 

global minimum, is more likely to develop. But, if the schedule 
is too slow, time is wasted. At high temperatures, where 

essentially random motion is allowed, nothing useful happens. 
At low temperatures a lot of time may be wasted after the final 
structure has already been formed. The optimal annealing 

schedule for each particular annealing problem must usually 
be discovered empirically. 

These properties of physical annealing can be used to define an 
analogous process of simulated annealing, which can be used 
(although not always effectively) whenever simple hill climbing 
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can be used. In this analogous process, A£ is generalized so 
that it represents not specifically the change in energy but 

more generally, the change in the value of the objective 
function, whatever it is. The analogy for kT is slightly less 

straightforward. In the physical process, temperature is a well-
defined notion, measured in standard units. The variable k 
describes the correspondence between the units of 

temperature and the units of energy. Since, in the analogous 
process, the units for both E and T are artificial, it makes 

sense to incorporate k into T, selecting values for T that 
produce desirable behavior on the part of the algorithm. Thus 
we use the revised probability formula 

P’ = e – ΔE/t 

But we still need to choose a schedule of values for T (which we 

still call temperature). We discuss this briefly below after we 
present the simulated annealing algorithm. 

The algorithm for simulated annealing is only slightly different 

from the simple hill-climbing procedure. The three differences 
are: 

• The annealing schedule must be maintained. 

• Moves to worse states may be accepted. 

• It is a good idea to maintain, in addition to the current state, 

the best state found so far. Then, if the final state is worse 
than that earlier state (because of bad luck in accepting moves 

to worse states), the earlier state is still available. 

Algorithm: Simulated Annealing 

1. Evaluate the initial state. If it is also a goal state, then 

return it and quit. Otherwise, continue with the initial state as 
the current state. 

2. Initialize BEST-SO-FAR to the current state. 
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3. Initialize T according to the annealing schedule. 

4. Loop until a solution is found or until there are no new 

operators left to be applied in the current state. 

(a) Select an operator that has not yet been applied to the 

current state and apply it to produce a new state. 

(b) Evaluate the new state. Compute 

A£ = (value of current) — <value of new state) 

• If the new state is a goal state, then return it and quit. 

• If it is not a goal state but is better than the current state, 

then make it the current state. Also set BEST-SO-FAR to this 
new state. 

• If it is not better than the current state, then make it the 

current state with probability// as defined above. This step is 
usually implemented by invoking a random number generator 

to produce a number in the range [0,1]. If that number is less 
than p', then the move is accepted. Otherwise, do nothing. 

(c) Revise T as necessary according to the annealing schedule. 

5. Return BEST-SO-FAR, as the answer. 

To implement this revised algorithm, it is necessary to select 

a;", annealing schedule, which has three components. The first 
is the initial value to be used for temperature. The second is 
the criteria that will be used to decide when the temperature of 

the system should be reduced. The third is the amount by 
which the temperature will be reduced each time it is changed. 

There may also be a fourth component of the schedule, 
namely, when to quit. Simulated annealing is often used to 
solve problems in which the number of moves from a given 

state is very large (such as the number of permutations that 
can be made to a proposed traveling salesman route). For such 

problems, it may not make sense to try all possible moves. 
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Instead, it may be useful to exploit some criterion involving the 
number of moves that have been tried since an improvement 

was found. 

Experiments that have been done with simulated annealing on 

a variety of problems suggest that the best way to select an 
annealing schedule is by trying several and observing the effect 
on both the quality of the solution that is found and the rate at 

which the process converges. To begin to get a feel for how to 
come up with a schedule, the first thing to notice is that as T 

approaches zero, the probability of accepting a move to a worse 
state goes to zero and simulated annealing becomes identical 
to simple hill climbing. The second thing to notice is that what 

really matters in computing the probability of accepting a move 
is the ratio A E/T. Thus it is important that values of T be 

scaled so that this ratio is meaningful. For example, T could be 
initialized to a value such that, for an average A E, p' would be 
0.5.                          

2.3 Best-First Search 

Until now, we have really only discussed two systematic 

control strategies, breadth-first search and depth-first search 
(of several varieties). In this section, we discuss a new method, 
best-first search, which is a way of combining the advantages 

of both depth-first and breadth-first search into a single 
method. 

2.3.1 OR Graphs 

Depth-first search is good because it allows a solution to be 
found without all competing branches having to be expanded. 

Breadth-first search is good because it does not get trapped on 
dead-end paths. One way of combining the two is to follow a 
single path at a time, but switch paths whenever some 

competing path looks more promising than the current one 
does. 
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At each step of the best-first search process, we select the most 
promising of the nodes we have generated so far. This is done 

by applying an appropriate heuristic function to each of them. 
We then expand the chosen node by using the rules to 

generate its successors. If one of them is a solution, we can 
quit. If not, all those new nodes are added to the set of nodes 
generated so far. Again the most promising node is selected 

and the process continues. Usually what happens is that a bit 
of depth-first searching occurs as the most promising branch 

is explored. But eventually, if a solution is not found, that 
branch will start to look less promising than one of the top-
level branches that had been ignored. At that point, the now 

more promising, previously ignored branch will be explored. 
But the old branch is not forgotten.. Its last node remains in 

the set of generated but unexpanded nodes. The search can 
return to it whenever all the others get bad enough that it is 
again the most promising path. 

Figure 2.3 shows the beginning of a best-first search 
procedure. Initially, there is only one node, so it will be 

expanded. Doing so generates three new nodes. The heuristic 
function, which, in this example, is an estimate of the cost of 
getting to a solution from a given node, is applied to each of 

these new nodes. Since node D is the most promising, it is 
expanded next, producing two successor nodes, E and F. But 

then the heuristic function is applied to them. Now another 
path, that going through node B, looks more promising, so it is 
pursued, generating nodes G and H. But again when these new 

nodes are evaluated they look less promising than another 
path, so attention is returned to the path through D to E. E is 

then expanded, yielding nodes I and J. At the next step, J will 
be expanded, since it is the most promising. This process can 
continue until a solution is found. 

Notice that this procedure is very similar to the procedure for 
steepest-ascent hill climbing, with two exceptions. In hill 

climbing, one move is selected and all the others are rejected, 
never to be reconsidered. This produces the straight-line 
behavior that is characteristic of hill climbing. In best-first 

search, one move is selected, but the others are kept around so 
that they can be revisited later if the selected path becomes 

less promising. Further, the best available state is selected in 
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best-first search, even if that state has a value that is lower 
than the value of the state that was just explored. This 

contrasts with hill climbing, which will stop if there are no 
successor states with better values than the current state. 

Although the example shown above illustrates a best-first 
search of a tree, it is sometimes important to search a graph 
instead so that duplicate paths will not be pursued. An 

algorithm to do this will operate by searching a directed graph 
in which each node represents a point in the problem space. 

Each node will contain, in addition to a description of the 
problem state it represents, an indication of how promising it 
is, a parent link that points back to the best node from which 

it came, and a list of the nodes that were generated from it. 
The parent link will make it possible to recover the path to the 

goal once the goal is found. The list of successors will make it 
possible, if a better path is found to an already existing node, 
to propagate the improvement down to its successors. We will 

call a graph of this sort an OR graph, since each of its 
branches represents an alternative problem-solving path. 

 

Figure 2.3: A Best-First Search 
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To implement such a graph-search procedure, we will need to 
use two lists of nodes: 

• OPEN—nodes that have been generated and have had the 
heuristic function applied to thena but which have not yet 

been examined (i.e., had their successors generated). OPEN is 
actually a priority queue in which the elements with the 
highest priority are those with the most promising value of the 

heuristic function. Standard techniques for manipulating 
priority queues can be used to manipulate the list. 

• CLOSED—nodes that have already been examined. We need 
to keep these nodes in memory if we want to search a graph 
rather than a tree, since whenever a new node is generated; we 

need to check whether it has been generated before. 

We will also need a heuristic function that estimates the merits 

of each node we generate. This will enable the algorithm to 
search more promising paths first. Call this function (to 
indicate that it is an approximation to a function/that gives 

the true evaluation of the node). For many applications, it is 
convenient to define this function as the sum of two 

components that we calling and h'. The function g is a measure 
of the cost of getting from the initial state to the current node. 
Note that g is not an estimate of anything; it is known to be the 

exact sum of the costs of applying each of the rules that were 
applied along the best path to the node. The function h' is an 

estimate of the additional cost of getting from the current node 
to a goal state. This is the place where knowledge about the 
problem domain is exploited. The combined function/', then, 

represents an estimate of the cost of getting from the initial 
state to a goal state along the path that generated the current 

node. If more than one path generated the node, then the 
algorithm will record the best one. Note that because g and h' 
must be added, it is important that h' be a measure of the cost 

of getting from the node to a solution (i.e., good nodes get low 
values; bad nodes get high values) rather than a measure of 

the goodness of a node (i.e., good nodes get high values). But 
that is easy to arrange with judicious placement of minus 
signs. It is also important that g be nonnegative. If this is not 

true, then paths that traverse cycles in the graph will appear to 
get better as they get longer. 



                                                                                                                                              
    Artificial 
           Intelligence 

  NOTES 

 
 

71 

The actual operation of the algorithm is very simple. It 
proceeds in steps, expanding one node at each step, until it 

generates a node that corresponds to a goal state. At each step, 
it picks the most promising of the nodes that have so far been 

generated but not expanded. It generates the successors of the 
chosen node, applies the heuristic function to them, and adds 
them to the list of open nodes, after checking to see if any of 

them have been generated before. By doing this check, we can 
guarantee that each node only appears once in the graph, 

although many nodes may point to it as a successor. Then the 
next step begins. 

This process can be summarized as follows. 

Algorithm: Best-First Search 

1. Start with OPEN containing just the initial state. 

2. Until a goal is found or there are no nodes left on OPEN do: 

(a) Pick the best node on OPEN. 

(b) Generate its successors. 

(c) For each successor do: 

i. If it has not been generated before, evaluate it, add it to 

OPEN, and record its parent. 

ii. If it has been generated before, change the parent if this new 
path is better than the previous one. In that case, update the 

cost of getting to this node and to any successors that this 
node may already have. 

The basic idea of this algorithm is simple. Unfortunately, it is 
rarely the case that graph traversal algorithms are simple to 
write correctly. And it is even rarer that it is simple to 

guarantee the correctness‘ of such algorithms. In the section 
that follows, we describe this algorithm in more detail as an 

example of the design and analysis of a graph-search program. 
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2.3.2 The A* Algorithm 

The best-first search algorithm that was just presented is a 

simplification of an algorithm called A*, which was first 
presented by Hart et al. [1968; 1972]. This algorithm uses the 

same/', g, and h' functions, as well as the lists OPEN and 
CLOSED, that we have already described. 

Algorithm: A* 

1. Start with OPEN containing only the initial node. -Set that-
node's g value to 0, its h' value to whatever it is, and its/' value 

to h' + 0, or h'. Set CLOSED to the empty list. 

2. Until a goal node is found, repeat the following procedure: If 
there are no nodes on OPEN, report failure. Otherwise, pick 

the node on OPEN with the lowest/' value. Call it BESTNODE. 
Remove it from OPEN. Place it on CLOSED. See if BESTNODE 

is a goal node. If so, exit and report a solution (either 
BESTNODE if all we-want is the node or the path that has 
been created between the initial state and BESTNODE if we are 

interested in the path). Otherwise, generate the successors of 
BESTNODE but do not set BESTNODE to point to them yet. 

(First we need to see if any of them have already been 
generated.) For each such SUCCESSOR, do the following: 

(a) Set SUCCESSOR to point back to BESTNODE. These 

backwards links will make it possible to recover the path once 
a solution is found. 

(b) Compute g(SUCCESSOR) = g(BESTNODE) + the cost of 
getting from BESTNODE to SUCCESSOR. 

(c) See if SUCCESSOR is the same as any node on OPEN (i.e., 

it has already been generated but not processed). If so, call 
that node OLD. Since this node already exists in the graph, we 

can throw SUCCESSOR away and add OLD to the list of 
BESTNODE's successors. Now we must decide whether OLDS 

parent link should be reset to point to BESTNODE. It should 

be if the path we have just found to SUCCESSOR is cheaper 
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than the current best path to OLD (since SUCCESSOR and 
OLD are really the same node). So see whether it is cheaper to 

get to OLD via its current parent or to SUCCESSOR via 
BESTNODE by comparing their g values. If OLD is cheaper (or 

just as cheap), then we need do nothing, if SUCCESSOR is 
cheaper, then reset OLD'S parent link to point to BESTNODE, 
record the new cheaper path in g(OLD), and update /'(OLD). 

(d) If SUCCESSOR was not on OPEN, see if it is on CLOSED. If 
so, call the node on CLOSED OLD and add OLD to the list of 

BESTNODE's successors. Check to see if the new path or the 
old path is better just as in step 2(t), and set the parent link 
and g and/' values appropriately. If we have just found a better 

path to OLD, we must propagate the improvement to OLD'S 

successors. This is a bit tricky. OLD points to its successors. 

Each successor in turn points to its successors, and so forth, 
until each branch terminates with a node that either is still on 
OPEN or has no successors. So to propagate the new cost 

downward, do a depth-first traversal of the tree starting at 
OLD, changing each node's g value (and thus also its/' value), 

terminating each branch when you reach either a node with no 
successors or a node to which an equivalent or better path has 
already been found. This condition is easy to check for. Each 

node's parent link points back to its best known parent. As we 
propagate down to a node, see if its parent points to the node 

we are coming from. If so, continue the propagation. If not, 
then its g value already reflects the better path of which it is 
part. So the propagation may stop here. But it is possible that 

with the new value of g being propagated downward, the path 
we are following may become better than the path through the 

current parent. So compare the two. If the path through the 
current parent is still better, stop the propagation. If the path 
we are propagating through is now better, reset the parent and 

continue propagation. 

(e) If SUCCESSOR was not already on either OPEN or 

CLOSED, then put it on OPEN, and add it to the list of 
BESTNODE's successors. Compute /'(SUCCESSOR) = 
g(SUCCESSOR) + ^(SUCCESSOR). 
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Several interesting observations can be made about this 
algorithm. The first concerns the role of the g function. It lets 

us choose which node to expand next on the basis not only of 
how good the node itself looks (as measured by h'), but also pn 

the basis of how good the path to the node was. By 
incorporating^ into/', we will not always choose as our next 
node to expand the node that appears to be closest to the goal. 

This is useful if we care about the path we find. If, on the other 
hand, we only care about getting to a solution somehow, we 

can define g always to be 0, thus always choosing the node 
that seems closest to a goal. If we want to find a path involving 
the fewest number of steps, then we set the cost of going from 

a node to its successor as a constant, usually 1. If, on the 
other hand, we want to find the cheapest path and some 

operators cost more than others, then we set the cost of going 
from one node to another to reflect those costs. Thus the A* 
algorithm can be used whether we are interested in finding a 

minimal-cost overall path or simply any path as quickly as 
possible. 

The second observation involves h', the estimator of h, the 
distance of a node to the goal. If h' is a perfect estimator of h, 
then A* will converge immediately to the goal with no search. 

The better h' is, the closer we will get to that direct approach. 
It, on the other hand, the value of h' is always 0, the search 

will be controlled by g. If the value of g is also 0, the search 
strategy will be random. If the value of g is always 1, the 
search will be breadth first. All nodes on one level will have 

lower g values, and thus lower/' values than will all nodes on 
the next level. What if, on the other hand, h' is neither perfect 

nor O? Can we say anything interesting about the behavior of 
the search? The answer is yes if we care guarantee that h' 
never overestimates h. In that case, the A* algorithm is 

guaranteed to find an optimal (as determined by g) path to a 
goal, if one exists. This can easily be seen from a few examples. 
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Figure 2.4: h' Underestimates h 

Consider the situation shown in Figure 2.4. Assume that the 

cost of all arcs is I. Initially, all nodes except A are on OPEN 
(although the figure shows the situation two steps later, after B 
and E have been expanded). For each node,/' is indicated as 

the sum of h' and g. In this example, node B has the lowest/', 
4, so it is expanded first. Suppose it has only one successor E, 

which also appears to be three moves away from a goal. Now 
/'(E) is 5, the same as /'(C). Suppose we resolve this in favor of 
the path we are currently following. Then we will expand E 

next. Suppose it too has a single successor F, also judged to be 
three moves from a goal. We are clearly using up moves and 

making no progress. But (F) = 6, which is greater than (C). So 
we will expand C next. Thus we see that by underestimating (B) 
we have wasted some effort. But eventually we discover that B 

was farther away than we thought and we go back and try 
another path. 

Now consider the situation shown in Figure 2.5. Again we 
expand B on the first step. On the second step we again 
expand E. At the next step we expand F, and finally we 

generate G, for a solution path of length 4. But suppose there 
is a direct path from D to a solution, giving a path of length 2. 

We will never find it. By overestimating h'(D) we make D look 
so bad that we may find' some other, worse solution without 
ever expanding D.  
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Consider, for example, the task faced by the mathematics 
discovery program AM, written by Leant .AM was given a small 

set of starting facts about number theory and a set of 
operators it could use to develop new ideas. These operators 

included such things as "Find examples of a concept you 
already know." AM's goal was to generate new "interesting" 
mathematical concepts. It succeeded in discovering such 

things as prime numbers and Holdback‘s conjecture. 

Armed solely with its basic operators, AM would have been 

able to create a great many new concepts, most of which would 
have been worthless. It needed a way to decide intelligently 
which rules to apply. For this it was provided with a set of 

heuristic rules that said such things as "The extreme cases of 
any concept are likely to be interesting." "Interest" was then 

used as the measure of merit of individual tasks that the 
system could perform. The system operated by selecting at 
each cycle the most interesting task, doing it, and possibly 

generating new tasks in the process. This corresponds to the 
selection of the most promising node in the best-first search 

procedure. But in AM's situation the fact that several paths 
recommend the same task does matter. Each contributes a 
reason why the task would lead to an interesting result. The 

more such reasons there are, the more likely it is that the task 
really would lead to ‗something good. So we need a way to 

record proposed tasks along with the reasons they have been 
proposed. AM used a task agenda. An agenda is a list of tasks 
a system could perform. Associated with each task there are 

usually two things: a list of reasons why the task is being 
proposed (often called justifications) and a rating representing 

the overall weight of evidence suggesting that the task would 
be useful. 

An agenda-driven system uses the following procedure. 

Algorithm: Agenda-Driven Search 

1. Do until a goal state is reached or the agenda is empty: 

(a) Choose the most promising task from the agenda. Notice 
that this task can be represented in any desired form. It can be 
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thought of as an explicit statement of what to do next or simply 
as an indication of the next node to be expanded. 

(b) Execute the task by devoting to it the number of resources 
determined .by its importance. The important resources to 

consider are time and space. Executing the task will probably 
generate additional tasks (successor nodes). For each of them, 
do the following: 

i. See if it is already on the agenda. If so, then see if this same 
reason for doing it is already on its list of justifications. If so, 

ignore this current evidence. If this justification was not 
already present, add it to the list. If the task was not on the 
agenda, insert it. 

ii. Compute the new task's rating, combining the evidence from 
all its justifications. Not all justifications need have equal 

weight. It is often useful to associate with each justification a 
measure of how strong areason it is. These measures are then 
combined at this step to produce an overall rating for the task. 

One important question that arises in agenda-driven systems 
is how to find the most promising task on each cycle. One way 

to do this is simple. Maintain the agenda sorted by rating. 
When a new task is created, insert it into the agenda in- its 
proper place. When a task has its justifications changed, 

recompute its rating and move it to the correct place in the list. 
But this method causes a great deal of time to be spent 

keeping the agenda in perfect order. Much of this time is 
wasted since we do not need perfect order. We only need to 
know the proper first element. The following modified strategy 

may occasionally cause a task other than the best to be 
executed, but it is significantly cheaper than the perfect 

method. When a task is proposed, or a new justification is 
added to an existing task, compute the new rating and 
compare it against the top few (e.g., five or ten) elements on the 

agenda. If it is better, insert the node into its proper position at 
the top of the list. Otherwise, leave it where it is or simply 

insert it at the end of the agenda. At the beginning of each 
cycle, choose the first task on the agenda. In addition, once in 
a while, go through the agenda and reorder it properly. 
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An agenda-driven control structure is also useful if some tasks 
(or nodes) provide negative evidence about the merits of other 

tasks (or nodes). This can be represented by justifications with 
negative weightings. If these negative weightings are used, it 

may be important to check not only for the possibility of 
moving a task to the head of the agenda but also of moving a 
top task to the bottom if new, negative justifications appear. 

But this is easy to do. 

As you can see, the agenda mechanism provides a good way of 

focusing the attention of a complex system in the areas 
suggested by the greatest number of positive indicators. But 
the overhead for each task executed may be fairly high. This 

raises the question of the proper grain size for the division of 
the entire problem-solving process into individual tasks. 

Suppose each task is very small. Then we will never do even a 
very small thing unless it really is the best thing to do. But we 
will spend a large percentage of our total effort on figuring out 

what to do next. If, on the other hand, the size of an individual 
task is very large, then some effort may be spent finishing one 

task when there are more promising ones that could be done. 
But a smaller percentage of the total time will be Spent on the 
overhead of figuring out what to do. The exact choice of task 

size for a particular system depends on the extent to which 
doing one small thing really means that a set of other small 

things is likely to be very good to do too. It often requires some 
experimentation to get right. 

There are some problem domains for which an agenda 

mechanism is inappropriate. The agenda mechanism assumes 
that if there is good reason to do something now, then there 

will also be the same good reason to do something later unless 
something better comes along in the interim. But this is not 
always the case, particularly for systems that are interacting 

with people. The following dialogue would not be acceptable to 
most people: 

Person:           I don't want to read any more about China. Give 
me something else. 

Computer:        OK. What else are you interested in? 
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Person:           How about Italy? I think I'd find Italy 
fascinating. 

Computer:        What things about Italy are you interested in 
reading about? 

Person:           I think I'd like to start with its history. 

 Computer:        Why don't you want to read any more 
about China? 

It would have been fine to have tried to find out why the person 
was no longer interested in China right after he or she 

mentioned it. The computer chose instead to try to find a new 
area of positive interest, also a very reasonable thing to do. But 
in conversations, the fact that something is reasonable now 

does not mean that it will continue to be so after the 
conversation has proceeded for a while. So it is not a good idea 

simply to put possible statements on an agenda, wait until a 
later lull, and then pop out with them. More precisely, agendas 
are a good way to implement monotonic production systems (in 

the sense of Section 1.4) and a poor way to implement 
nonmonotonic ones. 

Despite these difficulties, agenda-driven control structures are 
very useful. They provide an excellent way of integrating 
information from a variety of sources into one program since 

each source simply adds tasks and justifications to the 
agenda. As Al programs become more complex and their 

knowledge bases grow, this becomes a particularly significant 
advantage. 

2.4 Problem Reduction 

So far, we have considered search strategies for OR graphs 
through which we want to find a single path to a goal. Such 

structures represent the fact that we will know how to get from 
a node to a goal state if we can discover how to get from that 
node to a goal state along any one of the branches leaving it. 
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2.4.1 AND-OR Graphs 

Another kind of structure, the AND-OR graph (or tree), is 

useful for representing the solution of problems that can be 
solved by decomposing them into a set of smaller problems, all 

of which must then be solved. This decomposition, or 
reduction, generates arcs that we call AND arcs. One AND arc 
may point to any number of successor nodes, all of which 

must be solved in order for the arc to point to a solution. Just 
as in an OR graph, several arcs may emerge from a single 

node, indicating a variety of ways in which the original problem 
might be solved. This is why the structure is called not simply 
an AND graph but rather an AND-OR graph. An example of an 

AND-OR graph (which also happens to be an AND-OR tree) is 
given in Figure 2.6. AND arcs are indicated with a line 

connecting all the components, 

In order to find solutions in an AND-OR graph, we need an 
algorithm similar to best-first search but with the ability to 

handle the AND arcs appropriately. This algorithm should find 
a path from the starting node of the graph to a set of nodes 

representing solution states. Notice that it may be necessary to 
get to more than one solution state since each arm of an AND 
arc must lead to its own solution node. 

To see why our best-first search algorithm is not adequate for 
searching AND-OR graphs, consider Figure 2.7(a). The top 

node. A, has been expanded, producing two arcs, one leading 
to B and one leading to C and D. The numbers at each node 
represent the value of/' at that node. We assume, for 

simplicity, that every operation has a uniform cost, so each arc 
with a single successor has a cost of 1 and each AND arc with 
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Figure 2.6: A Simple AND-OR Graph 

 

Figure 2.7: AND-OR Graphs 

 

multiple successors has a cost of 1 for each of its components. 
If we look just at the nodes and choose for expansion the one 
with the lowest/' value, we must select C. But using the 

information now available, it would be better to explore the 
path going through B since to use C we must also use D, for a 

total cost of 9 (C+D+2) compared to the cost of 6 that we get by 
going through B. The problem is that the choice of which node 
to expand next must depend not only on the/' value of that 

node but also on whether that node is part of the current best 
path from the initial node. The tree shown in Figure 2.7(b) 
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makes this even clearer. The most promising single node is G 
with an /' value of 3. It is even part of the most promising arc 

G-H, with a total cost of 9. But that arc is not part of the 
current best path since to use it we must also use the arc I-J, 

with a cost of 27. The path from A, through B, to E and F is 
better, with a total cost of 18. So we should not expand G next; 
rather we should examine either E or F. 

In order to describe an algorithm for searching an AND-OR 
graph, we need to exploit a value that we call. FUTILITY. If the 

estimated cost of a solution becomes greater than the value of 
FUTILITY, then we abandon the search. FUTILITY should be 
chosen to correspond to a threshold such that any solution 

with a cost above it is too expensive to be practical, even if it 
could ever be found. Now we can state the algorithm. 

Algorithm: Problem Reduction 

1. Initialize the graph to the starting node. 

2. Loop until the starting node is labeled SOLVED or until its 

cost goes above FUTILITY: 

(a) Traverse the graph, starting at the initial node and following 

the current best path, and accumulate the set of nodes that 
are on that path and have not yet been expanded or labeled as 
solved. 

(b) Pick one of these unexpanded nodes and expand it. If there 
are no successors, assign FUTILITY as the value of this node. 

Otherwise, add its successors to the graph and for each of 
them compute /' (use only h' and ignore g, for reasons we 
discuss below). If/' of any node is 0, mark that node as 

SOLVED. 

(c) Change the estimate of the newly expanded node to reflect 

the new information provided by its successors. Propagate this 
change backward through the graph. If any node contains a 
successor arc whose descendants are all solved, label the node 

itself as SOLVED. At each node that is visited while going up 
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the graph, decide which of its successor arcs is the most 
promising and mark it as part of the current best path. This 

may cause the current best path to change. This propagation 
of revised cost estimates back up the tree was not necessary in 

the best-first search algorithm because only unexpanded 
nodes were examined. But now expanded nodes must be 
reexamined so that the best current path can be selected. Thus 

it is important that their/' values be the best estimates 
available. 

This process is illustrated in Figure 2.8. At step 1, A is the only 
node, so it is at the end of the current best path. It is 
expanded, yielding nodes B, C, and D. The arc to D is labeled 

as the most promising one emerging from A, since it costs 6 
compared to B and C, which costs 9. (Marked arcs are 

indicated in the figures by arrows.) In step 2, node D is chosen 
for expansion. This process produces one new arc, the AND arc 
to E and F, with a combined cost estimate of 10. So we update 

the/' value of D to 10. Going back one more level, we see that 
this makes the AND arc B-C better than the arc to D, so it is 

labeled as the current best path. At step 3, we traverse that arc 
from A and discover the unexpanded nodes B and C. If we are 
going to find a solution along this path, we will have to expand 

both B and C eventually, so let's choose to explore B first. This 
generates two new arcs, the ones to G and to H. Propagating 

their/' values backward, we update/' of B to 6 (since that is 
the best we think we can do, which we can achieve by going 
through G). This requires updating the cost of the AND arc B-C 

to 12 (6+4+2). After doing that, the arc to D is again the better 
path from A, so we record that as the current best path and 

either node E or node F will be chosen for expansion at step 4. 
This process continues until either a solution is found or all 
paths have led to dead ends, indicating that there is no 

solution. 

In addition to the difference discussed above, there is a second 

important way in which an algorithm for searching an AND-OR 
graph must differ from one for searching an OR graph. This 
difference, too, arises from the fact that individual paths from 

node to node cannot be considered independently of the paths 
through other nodes connected 
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Figure 2.8: The Operation of Problem Reduction 

to the original ones by AND arcs. In the best-first search 
algorithm, the desired path from one node to another was 
always the one with the lowest cost. But this is not always the 

case when searching an AND-OR graph. 

Consider the example shown in Figure 2.9(a). The nodes were 

generated in alphabetical order. Now suppose that node J is 
expanded at the next step and that one of its successors is 
node E, producing the graph shown in Figure 2.9(b). This new 

path to E is longer than the previous path to E going through 
C. But since the path through C will only lead to a solution if 

there is also a solution to D, which we know there is not, the 
path through J is better. 

There is one important limitation of the algorithm we have just 

described. It fails to take into account any interaction between 
sub goals. A simple example of this failure is shown in Figure 
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2.10. Assuming that both node C and node E ultimately lead to 
a solution, our algorithm will report a complete solution that 

includes both of them. The AND-OR graph states that for A to 
be solved, both C and D must he solved. But then the 

algorithm considers the solution of D as a completely separate 
process from the solution of C. Looking just at the alternatives 
from D, E is the best path. But it turns out that C is necessary 

anyway, so it would be better also to use it to satisfy D. But 
since our algorithm does not consider such interactions, it will 

find a nonoptimal path. problem-solving methods that can 
consider interactions among subgoals art presented. 

 

 

Figure 2.10: Interacting Subgoals 
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2.4.2 The AO* Algorithm 

The problem reduction algorithm we just described is a 

simplification of an algorithm described in Martelli and 
Montanari [1973],MartelliandMontanari [1978],and Nilsson 

[)980]. Nilsson calls it the AO* algorithm, the name we assume. 

Rather than the two lists, OPEN and CLOSED, that were used 
in the A* algorithm, the AO* algorithm will use a single 

structure GRAPH, representing the pan of the search graph 
that has been explicitly generated so far. Each node in the 

graph will point both down to its immediate successors and up 
to its immediate predecessors. Each node in the graph will also 
have associated with it an h' value, an estimate of the cost of a 

path from itself to a set of solution nodes. We will not store g 
(the cost of getting from the start node to the current node) as 

we did in the A* algorithm. It is not possible to compute a 
single such value since there may be many paths to the same 
state. And such a value is not necessary because of the top-

down traversing of the best-known path, which guarantees 
that only nodes that are in the best path will ever be 

considered for expansion. So h' will serve as the estimate of 
goodness of a node. 

Algorithm: AO* 

1. Let GRAPH consist only <>the node representing the initial 
state. (Call this node INIT.) Compute h'(/NIT), 

2. Until INIT is labeled SOLVED or until INlT's h' value 
becomes greater than FUTILITY, repeat the following 
procedure: 

(a) Trace the labeled arcs from INIT and select for expansion 
one of the as yet unexpanded nodes that occurs on this path. 

Call the selected node NODE. 

(b) Generate the successors of NODE. If there are none, then 
assign FUTILITY as the h' value of NODE. This is equivalent to 

saying that NODE is not solvable. If there are successors, then 
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for each one (called SUCCESSOR) that is not also an ancestor 
of NODE do the following: 

i.  Add SUCCESSOR to GRAPH. ii. If SUCCESSOR is a terminal  

ii. node, label it SOLVED and assign it an h' value of 0.  

iii. If SUCCESSOR is not a terminal node, compute its h' 
value. 

(c) Propagate the newly discovered information up the graph by 

doing the 

following: Let S be a set of nodes that have been labeled 

SOLVED or whose h' values have been changed and so need to 
have values propagated back to their parents. Initialize 5 to 
NODE. Until S is empty, repeat the following procedure: 

i. If possible, select from S a node none of whose descendants 
in GRAPH occurs in S. If there is no such node, select any 

node from S. Call thisnode CURRENT, and remove it from S.  

ii. Compute the cost of each of the arcs emerging from 
CURRENT. The cost of each arc is equal to the sum of the h' 

values of each of the nodes at the end of the arc plus whatever 
the cost of the arc itself is. Assign as CURRENT'S new h' value 

the minimum of the costs just computed for the arcs emerging 
from it. 

iii. Mark the best path out of CURRENT by marking the arc 

that had the minimum cost as computed in the previous step.  

iv. Mark CURRENT SOLVED if all of the nodes connected to it 

through the new, labeled arc have been labeled SOLVED.  

v. If CURRENT has been labeled SOLVED or if the cost of 
CURRENT was just changed, then its new status must be 

propagated back up the graph. So add all of the ancestors of 
CURRENT to S. 
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It is worth noticing a couple of points about the operation of 
this algorithm. In step 2(c)v, the ancestors of a node whose 

cost was altered are added to the set of nodes whose costs 
must also be revised. As stated, the algorithm will insert all the 

node's ancestors' into the set, which may result in the 
propagation of the cost change back up through a large 
number of paths that are already known not to be very good. 

For example. in Figure 2.11, it is clear that the path through C 
will always be better than the path through B, so work 

expended on the path through B is wasted. But if the cost of E 
is 

 

Figure 2.11: An Unnecessary Backward Propagation 

revised and that change is not propagated up through B as 

well as through C, B may appear to be better. For example, if, 
as a result of expanding node E, we update its cost to 10, then 

the cost of C will be updated to 11. If this is all that is done, 
then when A is examined, the path through B will have a cost 
of only 11 compared to 12 for the path through C, and it will 

be labeled erroneously as the most promising path. In this 
example, the mistake might be detected at the next step, 

during which D will be expanded. If its cost changes and is 
propagated back to B, B's cost will be recomputed and the new 
cost of E will be used. Then the new cost of B will propagate 

back to A. At that point, the path through C will again be 
better. All that happened was that some time was wasted in 

expanding D. But if the node whose cost has changed is 
farther down in the search graph, the error may never be 
detected. An example of this is shown in Figure 2.12(a). If the 

cost of G is revised as shown in Figure 2.12(b) and if it is not 
immediately propagated back to E, then the change will never 

be recorded and a nonoptimal solution through B may be 
discovered. 
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A second point concerns the termination of the backward cost 
propagation of step 2(c). Because GRAPH may contain cycles, 

there is no guarantee that this process will terminate simply 
because it reaches the "top" of the graph. It turns out that the 

process can be guaranteed to terminate for a different reason, 
though.  

2.5 Constraint Satisfaction 

Many problems in AI can be viewed as problems of constraint 
satisfaction in which the goal is to discover some problem state 

that satisfies a given set of constraints. Examples of this sort of 
problem include crypt arithmetic puzzles (as described in 
Section 1.6) and many real-world perceptual labeling 

problems. Design tasks can also be viewed as constraint-
satisfaction problems in which a design must be created within 

fixed limits on time, cost, and materials. 

By viewing a problem as one of constraint satisfaction, it is 
often possible to reduce substantially the amount of search 

that is required as compared with a method that attempts to 
form partial solutions directly by choosing specific values for 

components of the eventual solution. For example, a 
straightforward search procedure to solve a crypt arithmetic 
problem might operate in a state space of partial solutions in 

which letters are assigned particular numbers as their values. 
A depth-first control scheme could then follow a path of 

assignments until either a solution or an inconsistency is 
discovered. In contrast to this, a constraint satisfaction 
approach to solving this problem avoids making guesses on 

particular assignments of numbers to letters until it has to. 
Instead, the initial set of constraints, which says that each 

number may correspond to only one letter and that the sums 
of the digits must be as they are given in the problem, is first 
augmented to include restrictions that can be inferred from the 

rules of arithmetic. Then, although guessing may still be 
required, the number of allowable guesses is reduced and so 

the degree of search is curtailed. 
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Figure 2.12: A Necessary Backward Propagation 

Constraint satisfaction is a search procedure that operates in a 

space of constraint sets. The initial state contains the 
constraints that are originally given in the problem description. 

A goal state is any state that has been constrained "enough," 
where "enough" must be defined for each problem. For 
example, for crypt arithmetic, enough means that each letter 

has been assigned a unique numeric value. 

Constraint satisfaction is a two-step process. First, constraints 

are discovered and propagated as far as possible throughout 
the system. Then, if there is still not a solution, search begins. 
A guess about something is made and added as a new 

constraint. Propagation can then occur with this new 
constraint, and so forth. 

The first step, propagation, arises from the fact that there are 
usually dependencies among the constraints. These 
dependencies occur because many constraints involve more 

than one object and many objects participate in more than one 
constraint. So, for example, assume we start with one 

constraint, N = E + I. Then. if we added the constraint N = 3, 
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we could propagate that to get a stronger constraint on E, 
namely E = 2. Constraint propagation also arises from the 

presence of inference rules that allow additional constraints to 
be inferred from the ones that are given. Constraint 

propagation terminates for one of two reasons. First, a 
contradiction may be detected. If this happens, then there is 
no solution consistent with all the known constraints. If the 

contradiction involves only those constraints that were given 
as part of the problem specification (as opposed to ones that 

were guessed during problem solving), then no solution exists. 
The second possible reason for termination is that the 
propagation has run out of steam and there are no further 

changes that can be made on the basis of current knowledge. If 
this happens and a solution has not yet been adequately 

specified, then search is necessary to get the process moving 
again. 

At this point, the second step begins. Some hypothesis about a 

way to strengthen the constraints must be made. In the case of 
the crypt arithmetic problem, for example, this usually means 

guessing a particular value for some letter. Once this has been 
done, constraint propagation can begin again from this new 
state. If a solution is found, it can be reported. If still more 

guesses are required, they can be made. If a contradiction is 
detected, then backtracking can be used to try a different 

guess and proceed with it. We can state this procedure more 
precisely as follows: 

Algorithm: Constraint Satisfaction 

1. Propagate available constraints. To do this, first set OPEN to 
the set of all objects that must have values assigned to them in 

a complete solution. Then do until an inconsistency is detected 
or until OPEN is empty: 

(a) Select an object OB from OPEN. Strengthen as much as 

possible the set of constraints that apply to OB. 

(b) If this set is different from the set that was assigned the last 

time OB was examined or if this is the first time OB has been 
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examined, then add to OPEN all objects that share any 
constraints with OB. 

(c) Remove OB from OPEN. 

2. If the union of the constraints discovered above defines a 

solution, then quit and report the solution. 

3. If the union of the constraints discovered above defines a 
contradiction, then return failure. 

4. If neither of the above occurs, then it is necessary to make a 
guess at something in order to proceed. To do this, loop until a 

solution is found or all possible solutions have been 
eliminated: 

(a) Select an object whose value is not yet determined and 

select a way of strengthening the constraints on that object. 

(b) Recursively invoke constraint satisfaction with the current 

set of constraints augmented by the strengthening constraint 
just selected. 

This algorithm has been stated as generally as possible. To 

apply it in a particular problem domain requires the use of two 
kinds of rules: rules that define the way constraints may 

validly be propagated and rules that suggest guesses when 
guesses are necessary. It is worth noting, though, that in some 
problem domains guessing may not be required. For example, 

the Waltz algorithm for propagating line labels in a picture is a 
version of this constraint satisfaction algorithm with the 

guessing step eliminated. In general, the more powerful the 
rules for propagating constraints, the less need there is for 
guessing. 
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Figure 2.13: A Crypt arithmetic Problem 

To see how this algorithm works, consider the crypt 

arithmetic problem shown in Figure 2.13. The goal state is a 
problem state in which all letters have been assigned a digit in 

such a way that all the initial constraints are satisfied. 

The solution process proceeds in cycles. At each cycle, two 
significant things are done (corresponding to steps 1 and 4 of 

this algorithm): 

1. Constraints are propagated by using rules that correspond 

to the properties of arithmetic. 

2. A value is guessed for some letter whose value is not yet 
determined. 

In the first step, it does not usually matter a great deal what 
order the propagation is done in, since all available 

propagations will be performed before the step ends. In the 
second step, though, the order in which guesses are tried may 
have a substantial impact on the degree of search that is 

necessary. A few useful heuristics can help to select the best 
guess to try first. For example, if there is a letter that has only 

two possible values and another with six possible values, there 
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is a better chance of guessing right on the first than on the 
second. Another useful heuristic is that if there is a letter that 

participates in many constraints then it is a good idea to prefer 
it to a letter that participates in a few. A guess on such a 

highly constrained letter will usually lead quickly either to a 
contradiction (if it is wrong) or to the generation of many 
additional constraints (if it is right), A guess on a less 

constrained letter, on the other hand, provides less 
information. 

The result of the first few cycles of processing this example is 
shown in Figure 2.14. Since constraints never disappear at 
lower levels, only the ones being added are shown for each 

level. It will not be much harder for the problem solver to 
access the constraints as a set of lists than as one long list, 

and this approach is efficient both in terms of storage space 
and the ease of backtracking. Another reasonable approach for 
this problem would be to store all the constraints in one 

central database and also to record at each node the changes 
that must be undone during backtracking. Cl, C2, C3, and C4 

indicate the carry bits out of the columns, numbering from the 
right. Initially, rules for propagating constraints generate the 
following additional constraints: 

• M = 1, since two single-digit numbers plus a carry cannot 
total more than 19. 

• S = 8 or 9, since S + M + C3 > 9 (to generate the carry) and 
M = 1, S + 1 + C3 > 9, so S + C3 > 8 and C3 is at most 1. 

•; 0=0, since S +M(1) + C3 (<= 1) must be .at least 10 to 

generate a carry and it can be at most 11. But M is already 
1, so 0 must be 0. 

• N = E or E + 1, depending on the value of C2. But N 
cannot have the same value as E. So N = E + 1 and C2 is 
1. 

• In order for C2 to be 1, the sum of N + R + Cl must be 
greater than 9, so N + R must be greater than 8. 
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• N + R cannot be greater than 18, even with a carry in, so E 
cannot be 9. 

At this point, let us assume that no more constraints can be 
generated. Then, to make progress from here, we must guess. 

Suppose E is assigned the value 2. (We chose to guess a value 
for E because it occurs three times and thus interacts highly 
with the other letters.) Now the next cycle begins. 

The constraint propagator now deserves that: 

• N = 3, since N = E + 1. 

• R= 8 or 9, since R+N (3)+C1 (1 or O) = 2 or 12. But since N 
is already 3, the sum of these nonnegative numbers cannot 
be less than 3. Thus R + 3 + (0 or 1) = 12 and R =8 or 9. 

• 2 + D = Y or 2 + D = 10 + Y, from the sum in the rightmost 
column. 

Again, assuming no further constraints can be generated, a 
guess is required. Suppose Cl is chosen to guess a value for. If 
we try the value 1, then we eventually reach dead ends, as 

shown in the figure. When this happens, the process will 
backtrack and Cl =0. 

A couple of observations are worth making on this process. 
Notice that all that is required of the constraint propagation 
rules is that they not infer spurious constraints. They do not 

nave to infer all legal ones. For example, we could have 
reasoned through to the result that Cl equals 0. We could have 

done so by observing that for Cl to be 1, the following must 
hold: 2 + D = 10 + Y. For this to be the case, D would have to 
be 8 or 9. But both S and R must be either 8 or 9 and three 

letters cannot share two values. So Cl cannot be 1. If we-had 
realized this initially, some search could have been avoided. 

But since the constraint propagation rules we used were not 
that sophisticated, 
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Figure 2.14: Solving a Cryptarithmetic problem 

it took some search. Whether the search route takes more or 
less actual time than does the constraint propagation route 
depends on how long it takes to perform the reasoning 

required for constraint propagation. 

A second thing to notice is that there are often two kinds of 

constraints. The first kind is simple; they just list possible 
values for a single object. The second kind is more complex; 
they describe relationships between or among objects. Both 

kinds of constraints play the same role in the constraint 
satisfaction process, and in the cryptarithmetic example they 

were treated identically. For some problems, however, it may 
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be useful to represent the two kinds of constraints differently. 
The simple, value-listing constraints are always dynamic, and 

so must always be represented explicitly in each problem state. 
The more complicated, relationship-expressing constraints are 

dynamic in the cryptarithmetic domain since they are different 
for each cryptarithmetic problem. But in many other domains 
they are static. For example, in the Waltz line labeling 

algorithm, the only binary constraints arise from the nature of 
the physical world, in which surfaces can meet in only a fixed 

number of possible ways. These ways are the same for all 
pictures that that algorithm may see. Whenever the binary 
constraints are static, it may be computationally efficient not 

to represent them explicitly in the state description but rather 
to encode them in the algorithm directly. When this is done, 

the only things that get propagated are possible values. But 
the essential algorithm is the same in both cases. 

So far, we have described a fairly simple algorithm for 

constraint satisfaction in which chronological backtracking is 
used when guessing leads to an inconsistent set of constraints. 

An alternative is to use a more sophisticated scheme in which 
the specific cause of the inconsistency is identified and only 
constraints that depend on that culprit are undone. Others, 

even though they may have been generated after the culprit, 
are left alone if they are independent of the problem and its 

cause. This approach is called dependency-directed 
backtracking (DDB).  

2.6 Means-Ends Analysis 

So far, we have presented a collection of search strategies that 
can reason either forward or backward, but for a given 

problem, one direction or the other must be chosen. Often, 
however, a mixture of the two directions is appropriate. Such a 
mixed strategy would make it possible to solve the major parts 

of a problem first and then go back and solve the small 
problems that arise in "gluing" the big pieces together. A 

technique known as means-ends analysis allows us to do that. 

The means-ends analysis process centers around the detection 
of differences between the current state and the goal state. 
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Once such a difference is isolated, an operator that can reduce 
the difference must be found. But perhaps that operator 

cannot be applied to the current state. So we set up a 
subproblem of getting to a state in which it can be applied. The 

kind of backward chaining in which operators are selected and 
then subgoals are set up to establish the preconditions of the 
operators is called operator subgoaling. But maybe the 

operator does not produce exactly the goal state we want. Then 
we have a second subproblem of getting from the state it does 

produce to the goal. But if the difference was chosen correctly 
and if the operator is really effective at reducing the difference^ 
then the two subproblems should be easier to solve than the 

 

Figure 2.15: The Robot's Operators 

original problem. The means-ends analysis process can then 
be applied recursively. In order to focus the system's attention 

on the big problems first, the differences can be assigned 
priority levels. Differences of higher priority can then be 

considered before lower priority ones. 

The first AI program to exploit means-ends analysis was the 
General Problem Solver (GPS) [Newell and Simon, 1963;-Ernst 

and Newell, 1969]. Its design was motivated by the observation 
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that people often use this technique when they solve problems. 
But GPS provides a good example of the fuzziness of the 

boundary between building programs that simulate what 
people do and building programs that simply solve a problem 

any way they can. 

Just like the other problem-solving techniques we have 
discussed, means-ends analysis relies on a set of rules that 

can transform one problem state into another. These rules are 
usually not represented with complete state descriptions on 

each side. Instead, they are represented as a left side that 
describes the conditions that must be met for the rule to be 
applicable (these conditions are called the rule's preconditions)' 

and a right side that describes those aspects of the problem 
state that will be changed by the application of the rule. A 

separate data structure called a difference table indexes the 
rules by the differences that they can be used to reduce. 

Consider a simple household robot domain. The available 

operators are shown in Figure 2.15, along with their 
preconditions and results. Figure 2.16 shows the difference 

table that describes when each of the operators is appropriate. 
Notice that sometimes there may be more than one operator 
that can reduce a given difference and that a given operator 

may be able to reduce more than one difference. 

Suppose that the robot in this domain were given the problem 

of moving a desk with two things on it from one room to 
another. The objects on top must also be moved. The 

 

Figure 2.16: A Difference Table 
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Figure 2.17: The Progress of the Means-Ends 
Analysis Method 

main difference between the start state and the goal state 
would be the location of the desk. To reduce this difference, 
either PUSH or CARRY could be chosen. If CARRY is chosen 

first, its preconditions must be met. This results in two more 
differences that must be reduced: the location of the robot and 

the size of the desk. The location of the robot can be handled 
by applying WALK, but there are no operators than can change 
the size of an object (since we did not include SAW-APART). So 

this path leads to a dead-end. Following the other branch, we 
attempt to apply PUSH. Figure 2.17 shows the problem solver's 

progress at this point. It has found a way of doing something 
useful. But it is not yet in a position to do that thing. And the 
thing does not get it quite to the goal state. So now the 

differences between A and B and between C and D must be 
reduced. 

PUSH has four preconditions, two of which produce differences 
between the start and the goal states: the robot must be at the 
desk, and the desk must be clear. Since the desk is already 

large, and the robot's arm is empty, those two preconditions 
can be ignored. The robot can be brought to the correct 

location by using WALK. And the surface of the desk can be 
cleared by two uses of PICKUP. But after one PICKUP, an 
attempt to do the second results in another difference—the 

arm must be empty. PUTDOWN can be used to reduce that 
difference. 

Once PUSH is performed, the problem state is close to the goal 
state, but not quite. The objects must be placed back on the 
desk. PLACE will put them there. But it cannot be applied 

immediately. Another difference must be eliminated, since the 
robot must be holding the objects. The progress of the problem 

solver at this point is shown in Figure 2.18. 
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The final difference between C and E can be reduced by using 
WALK to get the robot back to the objects, followed by PICKUP 

and CARRY. 

The process we have just illustrated (which we call MEA for 

short) can be summarized as follows: 

 

Figure 2.18: More Progress of the Means-Ends Method 

Algorithm: Means-Ends Analysis (CURRENT, GOAL) 

1. Compare CURRENT to GOAL. If there are no differences 

between them then return. 

2. Otherwise, select the most important difference and reduce 
it by doing the following until success or failure is signaled: 

(a) Select an as yet untried operator 0 that is applicable to the 
current difference. If there are no such operators, then signal 

failure. 

(b) Attempt to apply 0 to CURRENT. Generate descriptions of 
two states: 

0-START, a state in which 0's preconditions are satisfied 
and 0-RESULT, the state that would result if 0 were 

applied in 0-START. 

(c) If (FIRST-PART <- MEA(.CURRENT, 0-START)) and 

(LAST-PART <- MEA(0-RESULT, GOAL)) 
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are successful, then signal success and return the result of 
concatenating 

FIRST-PART, 0, and LAST-PART. 

Many of the details of this process have been omitted in this 

discussion. In particular, the order in which differences are 
considered can be critical. It is important that significant 
differences be reduced before less critical ones. If this is not 

done. a great deal of effort may be wasted on situations that 
take care of themselves once the main parts of the problem are 

solved. 

The simple process we have described is usually not adequate 
for solving complex problems. The number of permutations of 

differences may get too large. Working on one difference may 
interfere with the plan for reducing another. And in complex 

worlds, the required difference tables would be immense. In 
Chapter 13 we look at some ways in which the basic means-
ends analysis approach can be extended to tackle some of 

these problems. 

2.7 Summary 

We listed four steps that must be taken to design a program to 
solve an AI problem. The first two steps were: 

1. Define the problem precisely. Specify the problem space, 

the operators for moving within the space, and the starting 
and goal state(s). 

2. Analyze the problem to determine where it falls with 
respect to seven important issues. 

The other two steps were to isolate and represent the task 

knowledge required, and to choose problem solving techniques 
and apply them to the problem. In this chapter, we began our 

discussion of the last step of this process by presenting some 
general-purpose, problem-solving methods. There are several 
important ways in which these algorithms differ, including: 
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• What the states in the search space(s) represent. 
Sometimes the states represent complete potential 

solutions (as in hill climbing). Sometimes they represent 
solutions that are partially specified (as in constraint 

satisfaction). 

• How, at each stage of the search process, a state is 
selected for expansion. 

• How operators to be applied to that node are selected. 

• Whether an optimal solution can be guaranteed. 

• Whether a given state may end up being considered more 
than once. 

• How many state descriptions must be maintained 

throughout the search process. 

• Under what circumstances should a particular search path 

be abandoned. 

In the chapters that follow, we talk about ways that knowledge 
about task domains can be encoded in problem-solving 

programs and we discuss techniques for combining problem-
solving techniques with knowledge to solve several important 

classes of problems. 

2.8. Model Questions 

1. Discuss about Means – ends Analysis 

2. when would best-first search be worse than sinple 
breadth-first search. 

3. suppose we have a problem that we intend to solve using 

a heuristic best-first search procedure. We need to 
decide whether to implement it as a tree search or as a 
graph search. Suppose that we know that on the 
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average, each distinct node will be generated N times 
during the search process. We also know that if we use a 

graph, it will take, on the average, the same amount of 
time to check a node to see if it has already been 

generated as it takes to process M nodes if no checking 
is done. How can we describe whether to use a tree or a 
graph? In addition to the parameters N and M. what 

other assumptions must be made? 

4. describe the behavior of a revised of the steepest ascent 
hill climbing algorithm in which step 2© is replaced by 

―set current state to best successor‖. 

5. formalize the graceful decay of admissibility corollary 
and prove that it is true of the A* algorithm 

6. consider again the AO* algorithm. Under  what 

circumstances will it happen that there are nodes in S 
but there are no nodes in S that have no descendants 
also in S? 

7. the constraint satisfaction procedure we have described 

performs depth-first search whenever some kind of 
search is necessary. But depth-first is not the only way 

to conduct such a search  

a. rewrite the constraint satisfaction procedure to 
use breadth-first search 

b. rewrite the constraint satisfaction procedure to 

use best-first search 

7. show how means-ends analysis could be used to solve the 
problem of getting from one place to another, assume that the 
available operates are walk drive, take the bus, take a cab and 

fly. 
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UNIT – III 

 

USING PREDICATE LOGIC 

 

I In this chapter, we begin exploring one particular way of 
representing facts—the language of logic. Other 
representational formalisms are discussed in later chapters. 

The logical formalism is appealing because it immediately 
suggests a'powerful way of deriving new knowledge from old—
mathematical deduction. In this formalism, we can conclude 

that a new statement is true by proving that it follows from the 
statements that are already known. Thus the idea of a proof, 

as developed in mathematics as a rigorous way of 
demonstrating the truth of an already believed proposition, can 
be extended to include deduction as a way of deriving answers 

to questions and solutions to problems. 

One of the early domains in which AI techniques were explored 

was mechanical theorem proving, by which was meant proving 
statements in various areas of mathematics. For example, the 
Logic Theorist proved theorems from the tirst chapter of 

Whitehead and Russell's Principia Mathematica [1950]. Another 
iheorem prover proved theorems in geometry. Mathematical 

theorem proving is still an active area of AI research. But, as 
we sh6w in this chapter, the usefulness of some mathematical 

techniques extends well beyond the traditional scope of 
mathematics. It turns out that mathematics is no different 
from any other complex intellectual endeavor in requiring both 

reliable deductive mechanisms and a mass of heuristic 
knowledge to control what would otherwise be a completely 

intractable search problem. 

At this point, readers who are unfamiliar with prepositional 
and predicate logic may want to consult a good introductory 

logic text before reading the rest of this chapter. Readers who 
want a more complete and formal presentation of the material 
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in this chapter should consult Chang and Lee [1973]. 
Throughout the chapter, we use the following standard logic 

symbols: "—»" (material implication}, "-i" (not), "V" (or), "A" (and), 
"V" (for all), and "3" (there exists). 

3.1 Representing Simple Facts in Logic 

Let's first explore the use of prepositional logic as a way of 

representing the sort of world knowledge that an AI system 
might need. Prepositional logic is appealing because it is 
simple to deal with and a decision procedure for it exists. We 

can easily 

It is raining. 

RAINING 

It is sunny. 

SUNNY 

It is windy. 
WINDY 

If it is raining, then it is not 
sunny. RAINING -> -. SUNNY 

Figure 3.1: Some Simple Facts in Prepositional Logic 

represent real-world facts as logical propositions written as 
well-formed formulas (wffs) in prepositional logic, as shown in 

Figure 3.1. Using these propositions, we could, for example, 
conclude from the fact that it is raining the fact that it is not 

sunny. But very quickly we run up against the limitations of 
prepositional logic. Suppose we want to represent the obvious 
fact stated by the classical sentence 

Socrates is a man. We 
could write: 

SOCRATESMAN But if we also 
wanted to represent 

PIatu is a man. we would have to write something such as: 
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PLATOMAN 

which would be a totally separate assertion, and we would not 

be able to draw any conclusions about similarities between 
Socrates and Plato. It would be much better to represent these 

facts as: 

MAN(SOCRATES) MAN(PLATO) 

since now the structure of the representation reflects the 

structure of the knowledge itself. But to do that, we need to be 
able to use predicates applied to arguments. We are in even 

more difficulty if we try to represent the equally classic 
sentence 

 

All men are mortal. We 
could represent this as: 

MORTALMAN 

But that fails to capture the relationship between any 
individual being a man and that individual being a mortal. To 

do that, we really need variables and quantification unless we 
are willing to write separate statements about the mortality of 
every known man. 

So we appear to be forced to move to first-order predicate logic 
(or just predicate logic, since we do not discuss higher order 

theories in this chapter) as a way of representing knowledge 
because it permits representations of things that cannot 
reasonably be represented in prepositional logic. In predicate 

logic, we can represent real-world facts as statements written 
as wff's. 

But a major motivation for choosing to use logic at all is that if 
we use logical statements as a way of representing knowledge, 

then we have available a good way of reasoning with that 
knowledge. Determining the validity of a proposition in 
prepositional logic is straightforward, although it may be 

computationally hard. So before we adopt predicate logic as a 
good medium for representing knowledge, we need to ask 
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whether it also provides a good way of reasoning with the 
knowledge. At first glance, the answer is yes. It provides a way 

of deducing new statements from old ones. Unfortunately, 
however, unlike prepositional logic, it does not possess a 

decision procedure, even an exponential one. There do exist 
procedures that will find a proof of a proposed theorem if 
indeed it is a theorem. But these procedures are not 

guaranteed to halt if the proposed statement is not a theorem. 
In other words, although first-order predicate logic is not 

decidable, it is semidecidable. A simple such procedure is to 
use the rules of inference to generate theorems from the 
axioms in some orderly fashion, testing each to see if it is the 

one for which a proof is sought. This method is not particularly 
efficient, however, and we will want to try to find a better one. 

Although negative results, such as the fact that there can exist 
no decision procedure for predicate logic, generally have little 
direct effect on a science such as AI, which seeks positive 

methods for doing things, this particular negative result is 
helpful since it tells us that in our search for an efficient proof 

procedure, we should be content if we find one that will prove 
theorems, even if it is not guaranteed to halt if given a 
nontheorem. And the fact that there cannot exist a decision 

procedure that halts on all possible inputs does not mean that 
there cannot exist one that will halt on almost all the inputs it 

would see in the process of trying to solve real problems. So 
despite the theoretical undecidability of predicate logic, it can 
still serve as a useful way of representing and manipulating 

some of the kinds of knowledge that an AI system might need. 

Let's now explore the use of predicate logic as a way of 

representing knowledge by looking at a specific example. 
Consider the following set of sentences 

1. Marcus was a man. 

2. Marcus was a Pompeian. 

3. All Pompeians were Romans. 

4.  Caesar was a ruler. 

3.  All Romans were either loyal to Caesar or hated him. 
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6.  Everyone is loyal to someone. 

7.   People only try to assassinate rulers they are not loyal to. 

8.  Marcus triedio assassinate Caesar. 

 

The facts described by these sentences can be represented as a 
set of wff's in predicate             logic as follows: 

 1. Marcus was a man.                

man(Marcus 

This representation captures the critical fact of Marcus being a 

man. It fails to, capture some of the information in the English 
sentence, namely the notion of past i                  tense. Whether 
this omission is acceptable or not depends on the use to which 

we | intend to put the knowledge. For this simple example, it 
will be all right. 

2. Marcus was a Pompeian. 
Pompeian (Marcus) 

3. All Pompeians were Romans. 

 VJT : Pompeian(x) —> Roman(x) 

4. Caesar was a ruler. 

ruler(Caesar) 

Here we ignore the fact that proper names are often not 
references to unique individuals, since many people share the 

same name. Sometimes deciding which of several people of the 
same name is being referred to in a particular statement may 

require a fair amount of knowledge and reasoning. 

3. All Romans were either loyal to Caesar or hated 
him.  

 Roman(x) —» loyalto(x. Caesar) V hate(x, Caesar) 

In English, the word "or" sometimes means the logical 

inclusive-or and sometimes means the logical exclusive-or 
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(XOR). Here we have used the inclusive interpretation. Some 
people will argue, however, that this English sentence is really 

stating an.exclusive-or. To express that, we would have to 
write: 

VJ: : Roman(x) -> [(loyallo(x, Caesar) V 
hate(x, Caesar)) A -i(loyallo(x, Caesar) 
A hate(x. Caesar))] 

6. Everyone is loyal to someone. 

V.r : 3y : loyalto(x, y) 

 

A.major problem that arises when trying to convert English 

sentences into logical statements is the scope of quantifiers. 
Does this sentence say, as we have assumed in writing the 

logical formula above, that for each person there exists 
someone to 

whom he or she is loyal, possibly a different someone for 

everyone? Or does it say that there exists someone to 
whom everyone is loyal (which would be written as 3y : VJT 

: loyalto(x,y)Y! Often only one of the two interpretations 
seems likely, so people tend to favor it. 

7. People only try to assassinate rulers they are not loyal 
to. 

V.< : Vy : person(x) A rulerty) A tryassassinate(x, y) —» 

~iloyalto{x,y) 

This sentence, too, is ambiguous. Does it mean that the 

only rulers that people try to assassinate are those to 
whom they are not loyal (the interpretation used here), or 
does it mean that the only thing people try to do is to 

assassinate rulers to whom they are not loyal? 

In representing this sentence the way we did, we have 

chosen to write "try to assassinate" as a single predicate. 
This gives a fairly simple representation with which we can 
reason about trying to assassinate. But using this 

representation, the connections between trying to 
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assassinate and trying to do other things and between 
trying to assassinate and actually assassinating could not 

be made easily. If such connections were necessary, we 
would need to choose a different representation. 

8. Marcus tried to assassinate 
Caesar. 
tryassassinate(Marcus, 
Caesar} 

From this brief attempt to convert English sentences into 

logical statements, it should be clear how difficult the task is. 
For a good description of many issues involved in this process. 

Now suppose that we want to use these statements to answer 

the question 

Was Marcus loyal to Caesar? 

It seems that using 7 and 8, we should be able to prove that 
Marcus was not loyal to Caesar (again ignoring the distinction 
between past and present tense). Now let's try to produce a 

formal proof, reasoning backward from the desired goal: 

-iloyalto(Marcus, Caesar) 

In order to prove" the goal, we need to use the rules of 
inference to transform it into another goal (or possibly a set of 
goals) that can in turn be transformed, and so on, until there 

are no unsatisfied goals remaining. This process may require 
the search of an AND-OR graph (as described in Section 3.4) 

when there are alternative ways of satisfying individual goals. 
Here, for simplicity, we show only a single path. Figure 3.2 
shows an attempt to produce a proof of the goal by reducing 

the set of necessary but as yet unattained goals to the empty 
set. The attempt fails, however, since there is no way to satisfy 

the goal person(Marcus) with the statements we have available. 

The problem is that, although we know that Marcus was a 
man, we do not have any way to conclude from that that 

Marcus was a person. We need to-add the representation of 
another fact to our system, namely: 
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Figure 3.2: An Attempt to Prove -iloyalto(Marcus, Caesar) 

9. All men are people. 

VJC : man(x) —» person(x) 

Now we can satisfy the last goal and produce a proof that 
Marcus was not loyal to Caesar. 

From this simple example, we see that three important issues 
must be addressed in the process of converting English 

sentences into logical statements and then using those 
statements to deduce new ones: 

• Many English sentences are ambiguous (for example, 5,6, 

and 7 above). Choosing the correct interpretation may be 
difficult. 

• There is often a choice of how to represent the knowledge (as 
discussed in connection with 1, and 7 above). Simple 
representations are desirable, but they may preclude certain 

kinds of reasoning. The expedient" representation for a 
particular set of sentences depends on the use to which the 

knowledge contained in the sentences will be put. 

• Even in very simple situations, a set of sentences is unlikely 
to contain all the information necessary to reason about the 

topic at hand. In order to be able to use a set of statements 
effectively, it is usually necessary to have access to another set 
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of statements that represent facts that people consider too 
obvious to mention. 

An additional problem arises in situations where we do not 
know in advance which statements to deduce. In the example 

just presented, the object was to answer the question "Was 
Marcus loyal to Caesar?" How would a program decide whether 
it should try to prove 

loyalto(Marcus, Caesar) or 

-iloyalto{Marcus, Caesar) 

There are several -things it could do. It could abandon the 
strategy we have outlined of reasoning backward from a 
proposed truth to the axioms and instead try to reason 

forward and see which answer it gets to. The problem with 
this approach is that, in general, the branching factor going 

forward from the axioms is so great that it would probably not 
get to either answer in any reasonable amount of time. A 
second thing it could do is use some sort of heuristic rules for 

deciding which answer is more likely and then try to prove 
that one first. If it fails to find a proof after some reasonable 

amount of effort, it can try the other answer. This notion of 
limited effort is important, since any proof procedure we use 
may not halt if given a nontheorem. Another thing it could do 

is simply try to prove both answers simultaneously and stop 
when one effort is successful. Even here, however, if there is 

not enough information available to answer the question with 
certainty, the program may never halt. Yet a fourth strategy is 
to try both to prove one answer and to disprove it, and to use 

information gained in one of the processes to guide the other.  

3.2 Representing Instance and Isa Relationships 

We discussed the specific attributes instance and isa and 
described the important role they play in a particularly useful 

form of reasoning, property inheritance. But if we look back at 
the way we just represented our knowledge about Marcus and 
Caesar, we do not appear to have used these attributes at all. 

We certainly have not used predicates with those names. Why 
not? The answer is that although we have not used the 
predicates instance and isa explicitly, we have captured the 
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relationships they are used to express, namely class 
membership and class inclusion. 

 

Figure 3.3 shows the first five sentences of the last section 

represented in logic in three different ways. The first pan of the 
figure contains the representations we have already discussed. 
In these representations, class membership is represented with 

unary predicates (such as Roman), each of which corresponds 
to a class. Asserting that P(x) is true is equivalent to asserting 

that x is an instance (or element) of P. The second pan of the 
figure contains representations that use the instance predicate 

explicitly. The predicate instance is a binary one, whose first 
argument is an object and whose second argument is a class to 

which the object belongs. But these representations do not use 
an explicit isa predicate. Instead, subclass relationships, such 

as that between Pompeians and Romans, are described as 
shown in sentence 3. The implication rule there states that if 
an object is an instance of the subclass Pompeian then it is an 

instance of the superclass Roman. Note that this rule is 
equivalent to the standard set-theoretic definition of the 

subclass-superclass relationship. The third pan contains 
representations that use both the instance and isa predicates 

explicitly. The use of the isa predicate simplifies the 
representation of sentence 3, but it requires that one 

additional axiom (shown here as number 6) be provided. This 
additional axiom describes how an instance relation and an isa 
relation can be combined to derive a new instance relation. 

This one additional axiom is general, though, and does not 
need to be provided separately for additional isa relations. 

 

1. man(Marcus) 

2. Pompeian(Marcus) 

3. VJt: Pompeian(x) —> Roman(x) 

4. ruler(Caesar) 

3. V.r : Roman(x) —> loyalto(x, Caesar) V hate(x, Caesar) 
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1. instance(Marcus, man) 

2. instance(Marcus, ompeian) 

3. V.r : instance(x. Pompeian) —» instancef.x, Roman) 

4. instance(Caesar, ruler) 

3. VJC : mstance(x. Roman) —> loyalto(x, Caesar) V hale(x, 
Caesar) 

1. instance(Marcus, man) 

2. instance(Marcus, Pompeian) 

3. isa(Pompeian, Roman) 

4. instance(Caesar, ruler) 

3. tx: instance(x, Roman) —> loyalto{x, Caesar) V nate(x, 
Caesar) 

6. VJT : Vy : Vz : instance(x, y) A i'M(>', 2) —> instance(x, 
z) 

Figure 3.3: Three Ways of Representing Class Membership 

These examples illustrate two points. The first is fairly specific. 
It is that, although class and superclass memberships are 

important facts that need to be represented, those 
memberships need not be represented with predicates labeled 
instance and isa. In fact, in a logical framework it is usually 

unwieldy to do that, and instead unary predicates 
corresponding to the classes are often used. The second point 

is more general. There are usually several different ways of 
representing a given fact within a particular representational 

framework, be it logic or anything else. The choice depends 
partly on which deductions need to be supported most 
efficiently and partly on taste. The only important thing is that 

within a particular knowledge base consistency of 
representation is critical. Since any particular inference rule is 

designed to work on one particular form of representation, it is 
necessary that all the knowledge to which that rule is intended 
to apply be in the form that the rule demands. Many errors in 
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the reasoning performed by knowledge-based programs are the 
result of inconsistent representation decisions. The moral is 

simply to be careful. 

There is one additional point that needs to be made here on 

the subject of the use of isa hierarchies in logic-based systems. 
The reason that these hierarchies are so important is not that 
they permit the inference of superclass membership. It is that 

by permitting the inference of superclass membership, they 
permit the inference of other properties associated with 

membership in that superclass. So, for example, in our sample 
knowledge base it is important to be able to conclude that 
Marcus is a Roman because we have some relevant knowledge 

about Romans, namely that they either hate 

 

Caesar or are loyal to him. we were able to associate knowledge 
with superclasses that could then be overridden by more 
specific knowledge associated either with individual instances 

or with subclasses. In other words, we recorded default values 
that could be accessed whenever necessary. For example, there 

was a height associated with adult males and a different height 
associated with baseball players. Our procedure for 
manipulating the isa hierarchy guaranteed that we always 

found the correct (i.e., most specific) value for any attribute. 
Unfortunately, reproducing this result in logic is difficult. 

Suppose, for example, that, in addition to the facts we already 
have, we add the following.' 

Pompeian(Paulus} -i [loyalto(Paulus, 
Caesar) V hate(Paulus, Caesar)] 

In other words, suppose we want to make Paulus an exception 
to the general rule about Romans and their feelings toward 
Caesar. Unfortunately, we cannot simply add these facts to our 

existing knowledge base the way we could just add new nodes 
into a semantic net. The difficulty is that if the old assertions 

are left unchanged, then the addition of the new assertions 
makes the knowledge base inconsistent. In order to restore 
consistency, it is necessary to modify the original assertion to 
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which an exception is being made. So our original sentence 5 
must become: 

VJC : Roman{x) A ~'eq(x, Paulus) —> loyalto(x. Caesar) V 
hate(x, Caesar) 

In this framework, every exception to a general rule' must be 
stated twice, once in a particular statement and once in an 
exception list that forms part of the general rule. This makes 

the use of general rules in this framework less convenient and 
less efficient when there are exceptions than is the use t)f 

general rules in a semantic net. 

A further problem arises when information is incomplete and it 
is not possible to prove that no exceptions apply in a particular 

instance.  

 

3.3 Computable Functions and Predicates 

In the example we explored in the last section, all the simple 
facts were expressed as combinations of individual predicates, 

such as: 

tryassassinate(Marcus, Caesar) 

This is fine if the number of facts is not very large or if the 
facts themselves are sufficiently unstructured that there is 
little alternative. But suppose we want to express simple facts, 

such as the following greater-than and less-than relationships: 

' For convenience, we now return to our original notation using 

unary predicates to denote class relations. 

gt(l,0)  /r(0,l) gt(2,l)   
lt(l,2) gt(3,2)  
/r(2,3) 

Clearly we do not want to have to write out the representation 

of each of these facts individually. For one thing, there are 
infinitely many of them. But even if we only consider the finite 
number of them that can be represented, say, using a single 

machine word per number, it would be extremely inefficient to 
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store explicitly a large set of statements when we could, 
instead, so easily compute each on& as we need it. Thus it 

becomes useful to augment our representation by these 
computable predicates. Whatever proof procedure we use, when 

it comes Upon one of these predicates, instead of searching for 
it explicitly in the database or attempting to deduce it by 
further reasoning, we can simply invoke a procedure, which we 

will specify in addition to our regular rules, that will evaluate it 
and return true or false. 

It is often also useful to have computable functions as well as 
computable predicates. Thus we might want to be able to 
evaluate the truth of 

^(2+3,1) 

To do so requires that we first compute the value of the plus 

function given the arguments 2 and 3, and then send the 
arguments 5 and 1 to gt. 

The next example shows how these ideas of computable 
functions and predicates can be useful. It also makes use of 
the notion of equality and allows equal objects tobe substituted 

for each other whenever it appears helpful to do so during a 
proof. 

Consider the following set of facts, again involving Marcus: 

1. Marcus was a man. 

man(Marcus) Again we ignore the issue of tense. 

2. Marcus was a Pompeian.  

Pompeian(Marcus) 

3. Marcus was born in 40 
A.D. horn (Marcus, 40) 

For simplicity, we will not represent A.D. explicitly, just as 
we normally omit it in everyday discussions. If we ever need 
to represent dates B.C., then we will have to decide on a 

way to do that, such as by using negative numbers. Notice 
that the representation of a sentence does not have to look 
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like the sentence itself as long as there is a way to convert 
back and forth between them. This allows us to choose a 

representation, such as positive and negative numbers, 
that is easy for a program to work with. 

 

4. All men are mortal. 

VJ: : man(x) —> mortal(x) 

 

3. All Pompeians died when the volcano 

erupted in 79 A.D. erupted(volcano,79) A ^x : 
[Pompeian(x) —> died(x,79)] 

This sentence clearly asserts the two facts represented above. 
It may also assert another that we have not shown, namely 
that the eruption of the volcano caused the death of the 

Pompeians. People often assume causality between concurrent 
events if such causality seems plausible. 

Another problem that arises in interpreting this sentence is 
that of determining the referent of the phrase "the volcano." 
There is more than one volcano in the world. Clearly the one 

referred to here is Vesuvius, which is near Pompeii and 
erupted in 79 A.D. In general, resolving references such as 

these can require both a lot of reasoning and a lot of additional 
knowledge. 

6. No mortal lives longer than 150 years. 

VA- : Vfi : V/2 : mortal(x) A horn(x,t\) A gt(t-i — ?i;150) —» 
dead{x, ti) 

There are several ways that the content of this sentence could 
be expressed. For example, we could introduce a function age 

and assert that its value is never greater than 150. The 
representation shown above is simpler, though, and it will 
suffice for this example. 

7. It is now 1991. 
now= 1991 
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Here we will exploit the idea of equal quantities that can be 
substituted for each other. 

Now suppose we want to answer the question "Is Marcus 
alive?" A quick glance through the statements we have 

suggests that there may be two ways of deducing an answer. 
Either we can show that Marcus is dead because he was killed 
by the volcano or we can show that he must be dead because 

he would otherwise be more than 150 years old, which we 
know is not possible. As soon as we attempt to follow either of 

those paths rigorously, however, we discover, just as we did in 
the last example, that we need some additional knowledge. For 
example, our statements talk about dying, but they say 

nothing that relates to being alive, which is what the question 
is asking. So we add the following facts: 

8. Alive means not dead. 

VJC : Vr: [alive(x, t) —> -^dead(x,t)] A [-'dead(x, t) —> alive(x, 
t)] 

This is not strictly correct, since -'dead implies alive only for 
animate objects. (Chairs can be neither dead nor alive.) Again, 

we will ignore this for now. This is an example of the fact that 
rarely do two expressions have truly identical meanings in all 

circumstances. 

9. If someone dies, then he is dead at all later times. 

\/x : V/i : Vf2 : died(x, f|) A gt{l^ t\) -> dead(x, tz) 

This representation says that one is dead in all years after the 
one in which one died. It ignores the question of whether one is 

dead in the year in which one died. 
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Figure 3.4: A Set of Facts about Marcus 

To answer that requires breaking time up into smaller 
units than years. If we do that, we can then add rules that 
say such things as "One is dead at time{yeart, monthi) if 

one died during (yearl, month!) and month! precedes 
month]." We can extend this to days, hours, etc., as 

necessary. But vye do not want to reduce all time 
statements to that level of detail, which is unnecessary and 

often not available. 

A summary of all the facts we have now represented is given in 
Figure 3.4. (The numbering is changed slightly because 

sentence 5 has been split into two pans.) Now let's attempt to 
answer the question''Is Marcus alive?" by proving: 

-ialive(Marcus, now) 

Two such proofs are shown in Figures 3.5 and 3.6. The term 
nil at the end of each proof indicates that the list of conditions 

remaining to be proved is empty and so the proof has 
succeeded. Notice in those proofs that whenever a statement of 

the form: 

a A b —> c 

was used, a and h were set up as independent subgoals. In one 
sense they are, but in another sense they are not if they share 

the same bound variables, since, in that case, consistent 
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substitutions must be made in each of them. For example, in 
Figure 3.6 look at the step justified by statement 3. We can 

satisfy the goal 

born(Marcus, t\) 

usmg statement.S by binding t\ to 40, but then we 
must also bind /i to 40 in gl(naw - t\, 150) 

since the two fi's were the same variable in statement 4, from 
which the two goals came. A good computational proof 
procedure has to include both a way of determining 

 

Figure 3.5: One Way of Proving That Marcus Is Dead 

that a match exists and a way of guaranteeing uniform 

substitutions throughout a proof. Mechanisms for doing both 
those things are discussed below. 

From looking at the proofs we have just shown, two things 

should be clear: 
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• Even very simple conclusions can require many steps to 
prove. 

• A variety of processes, such as matching, substitution, 
and application of modus ponens are involved in the 

production of a proof. This is true even for the simple 
statements we are using. It would be worse if we had 
implications with more than a single term on the right or 

with complicated expressions involving ands and ors on 
the left. 

The first of these observations suggests that if we want to be 
able to do nontrivial reasoning, we are going to need some 

statements that allow us to take bigger steps along the way. 
These should represent the facts that people gradually acquire 
as they become experts. How to get computers to acquire them 

is a hard problem for which no very good answer is known. 

The second observation suggests that actually building a 

program to do what people do in producing proofs such as 
these may not be easy. In the next section, we introduce a 
proof procedure called resolution that reduces some of the 

complexity because it operates on statements that have first 
been converted to a single canonical form.  1 

3.4 Resolution 

As we suggest above, it would be useful from a computational 
point of view ffwe had a proof procedure that carried out in a 

single operation the variety of processes involved 
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Figure 3.6: Another Way of Proving That Marcus Is Dead 

in reasoning with statements in predicate logic. Resolution is 

such a procedure, which gains its efficiency from the fact that 
it operates on statements that have been convened to a very 
convenient standard form, which is described below. 

Resolution produces proofs by refutation. In other words, to 
prove a statement (i.e., show that it is valid), resolution 

attempts to show that the negation of the statement produces 
a contradiction with the known statements (i.e., that it is 

unsatisfiable). This approach contrasts with the technique that 
we have been using to generate proofs by chaining backward 
from the theorem to be proved to the axioms. Further 

discussion of how resolution operates will be much more 
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straightforward after we have discussed the standard form in 
which statements will be represented, so we defer it until then. 

3.4.1 Conversion to Clause Form 

Suppose we know that all Romans who know Marcus either 

hate Caesar or think that anyone who hates anyone is crazy. 
We could represent that in the following wff: 

1x : [Roman(x) A know(.x, Marcus)} —> 

[hate(x. Caesar) V (V>': 3z : hate(y, z) —> thinkcrazy(x. y))] 

To use this formula in a proof requires a complex matching 

process. Then, having matched one piece of it, such as 
thinkcrazy(x, y), it is necessary to do the right thing with the 

rest of the formula including the pieces in which the matched 
part is embedded and those in which it is not. If the formula 
were in a simpler form, this process would be much easier. The 

formula would be easier to work with if 

• It were flatter, i.e., there was less embedding of 

components. 

• The quantifiers were separated from the rest of the 
formula so that they did not need to be considered. 

Conjunctive normal form [Davis and Putnam, 1960] has both of 
these properties. For example, the formula given above for the 

feelings of Romans who know Marcus would be represented in 
conjunctive normal form as 

~'Roman(x) V -^know(x. Marcus) V 

hate(x, Caesar) V -•hate(y, z) V thinkcrazy(x, z) 

Since there exists an algorithm for converting any wff into 
conjunctive normal form, we lose no generality if we employ a 
proof procedure (such as resolution) that operates only on wff's 

in this form. In fact, for resolution to work, we need to go one 
step further. We need to reduce a set of wff's to a set of 

clauses, where a clause is defined to be a wff in conjunctive 
normal form but with no instances of the connector A. We can 
do this by first converting each wff into conjunctive normal 
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form and then breaking apart each such expression into 
clauses, one for each conjunct. All the conjuncts will be 

considered to be conjoined together as the proof procedure 
operates. To convert a wff into clause form, perform the 

following sequence of steps. 

 

Algorithm: Convert to Clause Form 

1. Eliminate —>, using the fact that a —> b is equivalent to 
-ia V b. Performing this transformation on the wff given 

above yields 

VJC : -i[Rffman(x) A know(x, Marcus)] V [hate(x, 
Caesar) V (Vy : -<3z : hate(y, z)) V thinkcrazy(x,y))] 

2. Reduce the scope of each -i to a single term, using the 

fact that -'(-'/?) = p, deMorgan's laws [which say that -<a A 
b) = -<a V -'b and -1(0 V b) = -<a A -ih}, and the standard 

correspondences between quantifiers [-iV.r : P(x) = 3x : ~'P(x) 
and -'It : P(x) = V.T : -'/'(.<•)]. Performing this transformation 

on the wff from step 1 yields 

V.r : [-iRoman(x) V -iknow(x, Marcus)] V 

[hate(x, Caesar) V (Vy : Vz : ^hate(y, z) V thinkcrazy(x. y))] 

3. Standardize variables so that each quantifier binds a unique 
variable. Since variables are just dummy names, this process 

cannot affect the truth value of the wff. For example, the 
formula 

V-t: P{.\) V V.v : 0(.r) would be converted to                                                            
| 

V.i : P(x) V Vv : Q(y) This step 

is in preparation for the next. 

4. Move all quantifiers to the left of the formula without 

changing their relative order. This is possible since there is no 
conflict among variable names. Performing this operation on 

the formula of step 2, we get 
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V,y : Vy : V; : [Roman(x) V -know(x, Marcus)] V [hate Caesar) V 
(hate(y,:) V thinkcrazy(x. y))] 

At this point, the formula is in what is known as prenex 
normal form. It consists of & prefix of quantifiers followed by 

a matrix, which is quantifier-free. 

3. Eliminate existential quantifiers. A formula that contains an 

existentially quantified variable asserts that there is a value 
that can be substituted for the variable that makes the formula 

true. We can eliminate the quantifier by substituting for the 
variable a reference to a function that produces the desired 
value. Since we do not necessarily know how to produce the 

value, we must create a new function name for every such 
replacement. We make no assertions about these functions 

except that they must exist. So, for example, the formula 

3y : President(y) can be 
transformed into the formula 

President^ I) 

where 51 is a function with no arguments that somehow 

produces a value that satisfies President. 

If existential quantifiers occur within the scope of universal 
quantifiers, then the value that satisfies the predicate may 

depend on the values of the universally quantified variables. 
For example, in the formula 

V-r : 3y : father-of(y. x) 

the value of y that satisfies father-of depends on the 

particular value of x. Thus we must generate functions with 
the same number of arguments as the number of universal 
quantifiers in whose scope the expression occurs. So this 

example would be transformed into 

\rfx•.fathel•-of(S'2(x),x)) 

These generated functions are called Skolem functions. 
Sometimes ones with no arguments are called Skolem 
constants. 
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6. Drop the prefix. At this point, all remaining variables are 
universally quantified, so the prefix can just be dropped and 

any proof procedure we use 

that any variable it sees is universally quantified. Now the 

formula prod'iced in step 4 appears as 

[^Roman(x) V -^know(x, Marcus)] V 

[hate(x. Caesar) V (^hate(y, z) V thinkcrazy(x.y))] 

7. Convert the matrix into a conjunction of disjuncts. In the 
case of our example. since there are no and's, it is only 

necessary to exploit the associative property of or [i.e., a V 
(h V c) =\a V b) V c] and simply remove the parentheses, 

giving 

-<Roman(x) V -<know(x, Marcus) V 

hate(x. Caesar) V -ihate(y, z) V 
thinkcrazy(x, y) 

However, it is also frequently necessary to exploit the 
distributive property [i.e., (a A h) V c = (a V c) A (ft V c)]. For 

example, the formula 

(winter A wearingboots) V (summer /\ 

wearingsandals) becomes, after one 
application of the rule 

[winter V (summer A wearingsandals)} 

A [wearingbootsV (summer A wearingsandals)} 

and then, after a second application, required since there 

are still conJuncts joined by OR'S, 

(winter V summer) A 

(winter V wearingsandals) A 

(wearingboots V summer) A 

(wearingboots V wearingsandals) 



                                                                                                                                              
    Artificial 
           Intelligence 

  NOTES 

 
 

129 

8. Create a separate clause corresponding to each 
conjunct. In order for a wff to be true, all the clauses that 

are generated from it must be true. If we are going to be 
working with several wff's, all the clauses generated by 

each of them can now be combined to represent the 
sameset of facts as were represented by the original wff's. 

9. Standardize apart the variables in the set of clauses 

generated in step 8. By this we mean rename the variables 
so that no two clauses make reference to the same 

variable. In making this transformation, we rely on the fact 
that 

 

(V.y : P(x) A Q(x)) = V-r : P(x) A VA- : Q(x) 

Thus since each clause is a separate conjunct and since all 

the variables are universally quantified, there need be no 
relationship between the variables of two clauses, even if 
they were generated from the same wff. 

Performing this final step of standardization is important 
because during the resolution procedure it is sometimes 

necessary to instantiate a universally quantified variable (i.e., 
substitute for it a particular value). But, in general, we want to 
keep clauses in their most general form as long as possible. So 

when a variable is instantiated, we want to know the minimum 
number of substitutions that must be made to preserve the 

truth value of the system. 

After applying this entire procedure to a set of wff's, we will 
have a set of clauses, each of which is a disjunction of literals. 
These clauses can now be exploited by the resolution 
procedure to generate proofs. 

3.4.2 The Basis of Resolution 

The resolution procedure is a simple iterative process: at each 

step, two clauses, called the parent clauses, are compared 
(resolved), yielding a new clause that has been inferred from 

them. The new clause represents ways that the two parent 
clauses interact with each other. Suppose that there are two 
clauses in the system: 
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winter V summer 

-'winter V cold 

Recall that this means that both clauses must be true (i.e., the 
clauses, although they look independent, aie really conjoined). 

Now we observe that precisely one of winter and -^winter will 
be true at any point. If winter is true, then cold must be true to 

guarantee the truth of the second clause. If —winter is true, 
then summer must be true to guarantee the truth of the first 

clause. Thus we see that from these two clauses we can 
deduce 

summer V cold 

This is the deduction that the resolution procedure will make. 
Resolution operates by taking two clauses that each contain 

the same literal, in this example, winter. The literal must occur 
in positive form in one clause and in negative form in the 

other. The resolvent is obtained by combining all of the literals 
of the two parent clauses except the ones that cancel. 

If the clause that is produced is the empty clause, then a 
contradiction has been found. For example, the two clauses 

winter 

-^winter 

will produce the empty clause. If a contradiction exists, then 

eventually it will be found. Of course, if no contradiction exists, 
it is possible that the procedure will never terminate, although 
as we will see, there are often ways of detecting that no 

contradiction exists. 

So far, we have discussed only resolution in propositionat 

logic. In predicate logic, the situation is more complicated since 
we must consider all possible ways of substituting values for 
the variables. The theoretical basis of the resolution procedure 

in predicate logic is Herbrand's theorem which tells us the 
following: 
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• To show that a set of clauses S is unsatisfiable, it is 
necessary to consider only interpretations over a particular 

set, called the Herhrand universe of S. 

• A set of clauses S is unsatisfiable if and only if a finite 

subset of ground instances (in which all bound variables 
have had a value substituted for them) of S is 

unsatisfiable. 

The second part of the theorem is important if there is to exist 

any computational procedure for proving unsatisfiability, since 
in a finite amount of time no procedure will be able to examine 
an infinite set. The first part suggests that one way to go about 

finding a contradiction is to try systematically the possible 
substitutions and see if each produces a contradiction. But 

that is highly inefficient. The resolution principle, first 
introduced by Robinson [1965], provides a way of finding 
contradictions by trying a minimum number of substitutions. 

The idea is to keep clauses in their general form as long as 
possible and only introduce specific substitutions when they 

are required. For more details on different kinds of resolution. 

3.4.3 Resolution in Prepositional Logic 

In order to make it clear how resolution works, we first present 

the resolution procedure for prepositional logic. We then 
expand it to include predicate logic. 

In prepositional logic, the procedure for producing a proof by 
resolution of proposition P with respect to a set of axioms F is 
the following. 

Algorithm: Prepositional Resolution 

1. Convert all the propositions of F to clause form. 

2. Negate P and convert the result to clause form. Add it to 
the set of clauses obtained in step 1. 

3. Repeat until either a contradiction is found or no 
progress can be made: 

(a) Select two clauses. Call these the parent clauses. 
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(b) Resolve them together. The resulting clause, called 
the resolvent, will be the disjunction of all of the literals 

of both of the parent clauses with the following 
exception: If there are any pairs of literals L and -'/. 

such that one of the parent clauses contains L and the 
other contains -'L, then select one such pair and 

eliminate both L and -iL from the resolvent. 

(c) If the resolvent is the empty clause, then a 

contradiction has been found. If it is not, then add it to 
the set of clauses available to the procedure. 

Let's look at a simple example. Suppose we are given the 

axioms shown in the first column of Figure 3.7 and we want to 
prove R. First we convert the axioms to clause form, as shown 

in the second column of the figure. Then we negate /?, 
producing -i/?, which is already in clause form. Then we begin 
selecting pairs of clauses to resolve together. Although any pair 

of clauses can be resolved, only those pairs that contain 
complementary literals will produce a resolvent that is likely to 

lead to the goal of producing the empty clause (shown as a 
box). We might, for example, generate ^he sequence of 
resolvents shown in Figure 3.8. We begin by resolving with the 

clause -'/? since that is one of the clauses that must be 
involved in the contradiction we are trying to find. 

One way of viewing the resolution process is that it takes a set 
of clauses that are all assumed to be true and, based on 
information provided by the others, it generates new clauses 

that represent restrictions on the way each of those original 
clauses can be made true. A contradiction occurs when a 

clause becomes so restricted that there is no way it can be 
true. This is indicated by the generation of the empty clause. 
To see how this works, let's look again at the example. In order 

for proposition 2 to be true, one of three things must be true: -
if, -i0, or R. But we are assuming that -i/? is true. Given 
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Figure 3.7: A Few Facts in Propositional Logic 

 

 

Figure 5-8: Resolution in Propositional Logic 

 

that, the only way for proposition 2 to be true is for one of two 
things to be true: -iP or -iQ. That is what the first resolvent 
clause says. But proposition 1 says that P is true, which 

means that -iP cannot be true, which leaves only one way for 
proposition 2 to be true, namely for -ig to be true (as shown in 

the second resolvent clause). Proposition 4 can be true if either 
-if or Q is true. But since we now know that -iQ must be true, 

the only way for proposition 4 to be true is for -'7' to be true 
(the third resolvent). But proposition 5 says that T is true. 

Thus there is no way for all of these clauses to be true in a 
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single interpretation. This is indicated by the empty clause (the 
last resolvent). 

3.4.4 The Unification Algorithm 

In prepositional logic, it is easy to determine that two literals 

cannot both be true at the same time. Simply look for L and -
iL. In predicate logic, this matching process is more 
complicated since the arguments of the predicates must be 

considered. For example, man(John) and -^man{John) is a 
contradiction, while nwn(John) and -'man(Spot) is not. Thus, in 

order to determine contradictions, we need a matching 
procedure that compares two literals and discovers whether 

there exists a set of substitutions that makes them identical. 
There is a straightforward recursive procedure, called the 
unification algorithfn, that does just this. 

The basic idea of unification is very simple. To attempt to unify 
two literals, we first check if their initial predicate symbols are 

the same. If so, we can proceed. Otherwise, there is no way 
they can be unified, regardless of their arguments. For 

exaniple, the two literals 

tryassassinate(Marcus, Caesar) 
hate(Marcus, Caesar) 

cannot be unified. If the predicate symbols match, then we 
must check the arguments, one pair at a time. If the first 

matches, we can continue with the secbnd, and so on. To test 
each argument pair, we can simply call the unification 
procedurd recursively. The matching rules are simple. Different 

constants or predicates cannot match; identical ones can. A 
variable can match another variable, any constant, or a 

predicate expression, with the restriction that the predicate 
expression must not contain arty instances of the variable 
being matched. 

The only complication in this procedure is that we must find/a 
single, consistent substitution for the entire literal, not 

separate ones for each piece of it. To do this, we must take 
each substitution that we find and apply it to the remainder of 
the literals before we continue trying to unify them. For 

example, suppose^ we want to unify the expressions 
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P(x,x) P(y,z) 

The two instances of P match fine. Next we compare x and y, 
and decide that if we substitute y for x, they could match. We 
will write that substitution as 

y/x 

(We could, of course, have decided instead to substitute JC for 

y, since they are both just dummy variable names. The 
algorithm will simply pick one of these two substitutions.) But 
now, if we simply continue and match x and z, we produce the 

substitution z/x. But we cannot substitute both y and z SOTX, 
so we have not produced a consistent substitution. 

What we need to do after finding the first substitution y/x is to 
make that substitution throughout the literals, giving 

P(y,y) P(y,z) 

Now we can attempt to unify arguments y and z, which 

succeeds with the substitution z/y. The entire unification 
process has now succeeded with a substitution that is the 

composition of the two substitutions we found. We write the 
composition as 

(z/y)(y/x) 

following standard notation for function composition. In 
general, the substitution (01/02,03/04,.. •)(6i/&2,^3//'4,...)... 

means to apply all the substitutions of the rightmost list, then 
lake the result and apply all the ones of the next list, and so 
forth, until all substitutions have been applied. 

The object of the unification procedure is to discover at least 
one substitution that causes two literals to match. Usually, if 

there is one such substitution there are many. For example, 
the literals 

hale(x, y) 
hate(Marcus, z) 

could be unified with any of the following substitutions: 
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(Marcus/x, z/y) 

(Marcus/x, y/z) 

(Marcus I x, Caesar I y, Caesar/z) 

(Marcus/x, Polonius/y, Polonius/z) 

The first two of these are equivalent except for lexical variation. 
But the second two, although they produce a match, also 
produce a substitution that is more restrictive than absolutely 

necessary for the match. Because the final substitution 
produced by the unification process will be used by the 

resolution procedure, it is useful to generate the most general 
unifier possible. The algorithm shown below will do that. 

Having explained the operation of the unification algorithm, we 

can now state it concisely. We describe a procedure Unify(Ll, 
LI), which returns as its value a list representing the 

composition of the substitutions that were performed during 
the match. The empty list, NIL, indicates that a match was 
found without any substitutions. The list consisting of the 

single value FAIL indicates that the unification procedure 
failed. 

Algorithm: Unify(Ll, L2) 

1. If LI or L2 are both variables or constants, then: 

(a) If LI and L2 are identical, then return NIL. 

(b) Else if LI is a variable, then if LI occurs in L2 then 
return {FAIL}, else return (L2/L1). 

(c) Else ifL2 is a variable then ifL2 occurs in LI then 
return {FAIL}, else return (L1/L2). 

(d) Else return {FAIL}. 

2. If the initial predicate symbols in L 1 and L2 are not 
identical, then return {FAIL}. 

3. If LI and L2 have a different number of arguments, then 
return {FAIL}. 
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4. Set SUBST to NIL. (At the end of this procedure, SUBST 
will contain all the substitutions used to unify LI and L2.) 

3. For / <— 1 to number of arguments in / I • 

(a) Call Unify with the ;th argument of LI and the /th 

argument ofL2, putting result in 5'. 

(b) If S contains FAIL then return {FAIL}. 

(c) IfS is not equal to NIL then: 

i. Apply S to the remainder of both L 1 

and LI. ii. SUBST := APPENDS, SUBST). 

6. Return SUBST. 

The only part of this algorithm that we have not yet discussed 

is the check in steps l(b) and 1(c) to make sure that an 
expression involving a given variable is not unified with that 

variable. Suppose we were attempting to unify the expressions 

AX,X) f(8(x),g(x)) 

If we accepted g(x) as a substitution for x, then we would have 
to substitute it for A in the remainder of the expressions. But 
this leads to infinite recursion since if will never be possible to 

eliminate x. 

Unification has deep mathematical roots and is a useful 

operation in many AI programs, for example, theorem provers 
and natural language parsers. As a result, efficient data 
structures and algorithms for unification have been developed. 

For an introduction to these techniques and applications. 

3.4.5 Resolution in Predicate Logic 

We now have an easy way of determining that two literals are 
contradictory—they are if one of them can be unified with the 
negation of the other. So, for example, man{x) and -'man(Spot) 
are contradictory, since man(x) and man(Spot) can be unified. 
This corresponds to the intuition that says that man(x) cannot 

be true for all x if there is known to be some x, say Spot, for 
which man(x) is false. Thus in order to use resolution for 
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expressions in the predicate logic, we use the unification 
algorithm to locate pairs of literals that cancel out. 

We also need to use the unifier produced by the unification 
algorithm to generate the resolvent clause. For example, 

suppose we want to resolve two clauses: 

1. man(Marcus) 1. 
^man(x\) V mortal(x\) 

The literal man(Marcus} can be unified with the literal man(x\) 
with the substitution Marcus/x\, telling us that for x\ = 

Marcus, ^man(Mcircus) is false. But we cannot simply cancel 
out the two man literals as we did in prepositional logic and 

generate the resolvent mortal(x\). Clause 2 says that for a given 
x\, either -^man(x\) or mortal(x\). So for it to be true, we can 

now conclude only that mortal(Marcus) must be true. It is not 
necessary that mortal{x\) be true for all x\, since for some 

values ofA'i, -'mun(xi) might be true, making mortal(x\) 
irrelevant to the truth of the complete clause. So the resolvent 

generated by clauses 1 and 2 must be mortai(Marcus), which 
we get by applying the result of the unification process to the 

resolvent. The resolution process can 

then proceed from there to discover whether mortal(Marcus) 
leads to a contradiction with other available clauses. 

This example illustrates the importance of standardizing 
variables apart during the process of converting expressions to 

clause form. Given that that standardization has bee'n done, it 
is easy to determine how the unifier must be used to perform 

substitutions to create the resolvent. If two instances of the 
same variable occur, then they must be given identical 
substitutions. 

We can now state the resolution algorithm for predicate logic 
as follows, assuming a set of given statements F and a 

statement to be proved P: 

Algorithm: Resolution 

1. Convert all the statements of F to clause form. 
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2. Negate P and convert the result to clause form. Add it to 
the set of clauses obtained in 1. 

3. Repeat until either a contradiction is found, no progress 
can be made, or a predetermined amount of effort has been 

expended. 

(a) Select two clauses. Call these the parent clauses. 

(b) Resolve them together. The resolvent will be the disjunction 

of all the literals of both parent clauses with appropriate 
substitutions performed and with the following exception: If 

there is one pair of literals Tl and -'77 such that one of the 
parent clauses contains T\ and the other contains Tl and if 7T 

and T2 are unifiable, then neither T\ nor T2 should appear in 
the resolvent. We call 7T and T2 Complementary literals. Use 

the substitution produced by the unification to create the 
resolvent. If there is more than one pair of complementary 
literals, only one pair should be omitted from the resolvent. 

(c) If the resolvent is the empty clause, then a contradiction 
has been found. If it is not, then add it to the set of clauses 

available to the procedure, 

If the choice of clauses to resolve together at each step is made 
in certain systematic ways, then the resolution procedure will 

find a contradiction if one exists. However, it may take a very 
long time. There exist strategies for making the choice that can 

speed up the process considerably: 

• Only resolve pairs of clauses that contain complementary 
literals, since only such resolutions produce new clauses 

that are harder to satisfy than their parents. To facilitate 
this, index clauses by the predicates they contain, 

combined with an indication of whether the predicate is 
negated. Then, given a particular clause, possible 
resolvents that contain a complementary occurrence of one 

of its predicates can be located directly. 

• Eliminate certain clauses as soon as they are generated 

so that they cannot participate in later resolutions. Two 
kinds of clauses should be eliminated: tautologies (which 
can never be unsatisfied) and clauses that are subsumed 
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by other clauses (i.e., they are easier to satisfy. For 
example, P V Q is subsumed by P.) 

 

• Whenever possible, resolve either with one of the clauses that 

is part of the statement we are trying to refute or with a clause 
generated by a resolution with such a clause. This is called the 
set-of-support strategy and corresponds to the intuition that 

the contradiction we are looking for must involve the statement 
we are trying to prove. Any other contradiction would say that 

the previously believed statements were inconsistent. 

• Whenever possible, resolve with clauses that have a single 

literal. Such resolutions generate new clauses with fewer 
literals than the larger of their parent clauses and thus are 
probably closer to the goal of a resolvent with zero terms. This 

method is called the unit-preference strategy. 

Let's now return to our discussion of Marcus and show how 

resolution can be used to prove new things about him. Let's 
first consider the set of statements introduced in Section 3.1. 
To use them in resolution proofs, we must convert them to 

clause form as described in Section 3.4.1. Figure 3.9(a) shows 
the results of that conversion. Figure 3.9(b) shows a resolution 

proof of the statement 

hate(Marcus, Caesar) 

Of course, many more resolvents could have been generated 
than we have shown, but we used the heuristics described 
above to guide the search. Notice (hat what we have done here 

essentially is to reason backward from the statement we want 
to show is a contradiction through a set of intermediate 

conclusions to the final conclusion of inconsistency. 

Suppose our actual goal in proving the assertion 

hate(Marcus, Caesar) 

was to answer the question "Did Marcus hate Caesar?" In that 
case, we might just as easily have attempted to prove the 

statement 
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•ihate(Marcus, Caesar) To do 
so, we would have added 

hate(Marcus, Caesar) 

to the set of available clauses and begun the resolution 

process. But immediately we notice that there are no clauses 
that contain a literal involving -'hate. Since the resolution 

process can only generate new clauses that are composed of 
combinations of literals from already existing clauses, we know 
that no such clause can be generated and thus we conclude 

that hate(Marcus, Caesar) will not produce a contradiction with 
the known statements. This is an example of the kind of 

situation in which the resolution procedure can detect that no 
contradiction exists. Sometimes this situation is detected not 

at the beginning of a proof, but part way through, as shown in 
the example in Figure 3.10(a), based on the axioms given in 
Figure 3.9. 

But suppose our knowledge base contained the two 
additional statements 
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Figure 3.9: A Resolution Proof 
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Figure 3.10: An Unsuccessful Attempt at Resolution 
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9. persecute(x, y) —> hate(y, x) 

10. hate(x,y) —> persecute(y,x) 
Converting to clause form, we get 

9. -'per secate(xs, yz) V hate(y^, Xs) 

10. -'hate(X6, yz) V persecute^, xs) 

These statements enable the proof of Figure 3.10(a) to continue 

as shown in Figure 3.10). Now to detect that there is no 
contradiction we must discover that the only resolvents that 

can be generated have been generated before. In other words, 
although we can generate resolvents, we can generate no new 
ones. 

 

 

Figure 3.11: The Need to Standardize Variables 
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Recall that the final step of the process of converting a set of 
formulas to clause form was to standardize apart the variables 

that appear in the final clauses. Now that we have discussed 
the resolution procedure, we can see cleaily why this step is so 

important. Figure-3.11 shows an example of the difficulty that 
may arise if standardization is not done. Because the variable y 
occurs in both clause 1 and clause 2, the substitution at the 

second resolution step produces a clause that is too restricted 
and so does not lead to the contradiction that is present in the 

database. If, instead^e clause 

 

-^father(Chris.y) 

had been produced, the contradiction with clause 4 would 
have emerged. This would have happened if clause 2 had been 

rewritten-as 

-imother^a, h) V woman(a) 

In its pure form, resolution requires all the knowledge it uses 

to be represented in the form of clauses. But as we pointed out 
in Section 3.3, it is often more efficient to represent certain 

kinds of information in the form of computable functions, 
computable predicates, and equality relationships. It is not 
hard to augment-resolution to handle this sort of knowledge. 

Figure 3.12 shows a resolution proof of the statement 

-'alive(Marcus, now) 
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Figure 3.12: Using Resolution with Equality and Reduce 
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based on the statements given in Section 3.3. We have added 
two ways of generating new clauses, in addition to the 

resolution rule: 

• Substitution of one value for another to which it is equal. 

• Reduction of computable predicates. If the predicate 
evaluates to FALSE, it can simply be dropped, since adding 
V FALSE to a disjunction cannot change its truth value. If 

the predicate evaluates to TRUE, then the generated clause 
is a tautology and cannot lead to a contradiction. 

3.4.6 The Need to Try Several Substitutions 

Resolution provides a very good way of finding a refutation 
proof without actually trying all the substitutions that 

Herbrand's theorem suggests might be necessary. But it does 
not always eliminate the necessity of trying more than one 

substitution. For example, suppose we know, in addition to the 
statements in Section 3.1, that 

hate(Marcus, Paulus) 
hate(Marcus, Julian) 

Now if we want to prove that Marcus hates some ruler, we 

would be likely to try each substitution shown in Figure 3.13(a) 
and (b) before finding the contradiction shown in (c). 
Sometimes there is no way short of very good luck to avoid 
trying several substitutions. 

3.4.7 Question Answering 

Very early in the history of AI it was realized that theorem-
proving techniques could be applied to the problem of 
answering questions. As we have already suggested; 

this seems natural since both deriving theorems from axioms 
and deriving neyv facts (answers) from old facts employ the 

process of deduction. We have already shown how resolution 
can be used to answer yes-no questions, such as "Is Marcus 
alive?" In this section, we show how resolution can be used to 

answer fill-in-the-blank questions, such as "When did Marcus 
die?" or "Who tried to assassinate a ruler?" Answering these 

questions involves finding a known statement that matches the 
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terms given in the question and then responding with another 
piece of that same statement that fills the slot demanded by 

the question. For example, to answer the question "When did 
Marcus die?" we need a statement of the form 

died(Marcus, ??) 

with ?? actually filled in by some particular year. So, since 
we can prove the statement died(Marcus, 79) 

we can respond with the answer 79. 

It turns out that the resolution procedure provides an easy way 

of locating just the statement we need and finding a proof for 
it. Let's continue with the example question 

 

Figure 3.13: Trying Several Substitutions 
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'When did Marcus die?" In order to be able to answer this 
question, it must first be true that Marcus died. Thus it must 

be the case that 

3t: died(Marcus, t) 

A reasonable first step then might be to try to prove this. To do 
so using resolution, we attempt to show that 

-i3r: died(Marcus, t) 

produces a contradiction. What does it mean for that 
statement to produce a contradiction? Either it conflicts with a 

statement of the form 

Vr: died(Marcus,t) 

where t is a variable, in which case we can either answer the 
question by reporting that there are many times at which 

Marcus died, or we can simply pick one such time and respond 
with it. The other possibility is that we produce a contradiction 
with one or more specific statements of the form 

died(Marcus, date) 

for some specific value of date. Whatever value of date we use 

in producing that contradiction is the answer we want. The 
value that proves that there is a value (and thus the 
inconsistency of the statement that there is no such value) is 

exactly the value we want. 

Figure 3.14(a) shows how the resolution process finds the 

statement for which we are looking. The answer to the question 
can then be derived from the chain of unifications that lead 
back to the starting clause. We can eliminate the necessity for 

this final step by adding an additional expression to the one we 
are going to use to try to find a contradiction. This new 

expression will simply be the one we are trying to prove true 
(i.e., it will be the negation of the expression that is actually 
used in the resolution). We can tag it with a special marker so 

that it will not interfere with the resolution process. (In the 
figure, it is underlined.) It will just get carried along, but each 

time unification is done, the variables in this dummy 
expression will be bound just as are the ones in the clauses 
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that are actively being used. Instead of terminating on reaching 
the nil clause, the resolution procedure will terminate when all 

that is left is the dummy expression. The bindings of its 
variables at that point provide the answer to the question. 

Figure 3.14(fc) shows how this process produces an answer to 
our question. 

Unfortunately, given a particular representation of the facts in 

a system, there will usually be some questions that cannot be 
answered using this mechanism. For example, suppose that 

we want to answer the question "What happened in 79 A.D.?" 
using the statements in Section 3.3. In order to answer the 
question, we need to prove that something happened in 79. We 

need to prove 

Sr: event(x, 79) 

 

Figure 3.14: Answer Extraction Using Resolution 
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and to discover a value for x. But we do not have any 
statements of the form event(x, y). We can, however, answer 

the question if we change our representation. Instead of 
saying 

erupted(volcano, 79) we 
can say 

event(erupted(volcano), 79) 

Then the simple proof shown in Figure 3.15 enables us to 
answer the question. 

This new representation has the drawback that it is more 
complex than the old one. And it still does not make it possible 

to answer all conceivable questions. In general, it is necessary 
to decide on the kinds of questions that will be asked and to 
design a representation appropriate for those questions. 

 

 

Figure 3.15: Using the New Representation 

Of course, yes-no and fill-in-the-blank questions are not the 
only kinds one could ask. For example, we might ask how to do 

something. So we have not yet completely solved the problem 
of question answering. In later chapters, we discuss some 

other methods for answering a variety of questions. Some of 
them exploit resolution; others do not.]| 
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3.5 Natural Deduction 

In the last section, we introduced resolution as an easily 

implementable proof procedure that relies for its simplicity on 
a uniform representation of the statements it uses. 

Unfortunately, uniformity has its price—everything looks the 
same. Since everything looks the same, there is no easy way to 
select those statements that are the most likely to be useful in 

solving a particular problem. In converting everything to clause 
form, we often lose valuable heuristic information that is 

contained in the original representation of the facts. For 
example, suppose we believe that all judges who are not 
crooked are well-educated, which can be represented as 

VJC : judge(x) A -^£rooked(x) —) educated(x) 

In this form, the statement suggests a way of deducing that 

someone is educated. But when the same statement is 
convened to clause form, 

-ijudge(x) V crooked(x) V educated(x) 

it appears also to be a way of deducing thai someone is not a 
judge by showing that he is not crooked and not educated. Of 

course, in a logical sense, it is. But it is almost certainly not 
the best way, or even a very good way, to go about showing 

that someone is not a judge. The heuristic information 
contained in the original statement has been lost in the 
transformation. 

Another problem with the use of resolution as the basis of a 
theorem-proving system is that people do not think in 

resolution. Thus it is very difficult for a person to interact with 
a resolution theorem prover, either to give it advice or to be 
given advice by it. Since proving very hard things is something 

that computers still do poorly, it is important from a practical 
standpoint that such interaction be possible. To facilitate it, we 

are forced to look for a way of doing machine theorem proving 
that corresponds more closely to the 
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processes used in human theorem proving. We are thus led to 
what we call, mostly by definition, natural deduction. 

Natural deduction is not a precise term. Rather it describes a 
melange of techniques, used in combination to solve problems 

that are not tractable by any one method alone. One common 
technique is to arrange knowledge, not by predicates, as we 
have been doing, but rather by the objects involved in the 

predicates. Another technique is to use a set of rewrite rules 
that not only describe logical implications but also suggest the 

way that those implications can be exploited in proofs. 

For a good survey of the variety of techniques that can be 
exploited in a natural deduction system. Although the 

emphasis in that paper is on proving mathematical theorems, 
many of the ideas in it can be applied to a variety of domains 

in which it is necessary to deduce new statements from known 
ones. For another discussion of theorem proving using natural 
mechanisms, which describes a system for reasoning about 

programs. It places particular emphasis on the use'of 
mathematical induction as a proof technique. ^ 

3.6 Summary 

In this chapter we showed how predicate logic can be used as 
the basis of a technique for knowledge representation. We also 

discussed a problem-solving technique, resolution, that can be 
applied when knowledge is represented in this way. The 

resolution procedure is not guaranteed to halt if given a 
nontheorem to prove. But is it guaranteed to halt and find a 
contradiction if one exists? This is called the completeness 

question. In the form in which we have presented the 
algorithm, the answer to this question is no. Some small 

changes, usually not implemented in theorem-proving systems, 
must be made to guarantee completeness. But, from a 

computational point of view, completeness is not the only 
important question. Instead, we must ask whether a proof can 
be found in the limited amount of time that is available. There 

are two ways to approach achieving this computational goal. 
The first is to search for good heuristics that can inform a 
theorem-proving program. Current theorem-proving research 

attempts to do this. The other approach is to change not the 
program but the data given to the program. In this approach, 
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we recognize that a knowledge base that is just a list of logical 
assertions possesses no structure. Suppose an information-

bearing structure could be imposed on such a knowledge base. 
Then that additional information could be used to guide the 

program that uses the knowledge. Such a program may not 
look a lot like a theorem prover, although it will still be a 
knowledge-based problem solver.  

A second difficulty with the use of theorem proving in AI 
systems is that there are some kinds of information that are 

not easily represented in predicate logic. Consider the following 
examples: 

• "It is very hot today." How can relative degrees of heat be 

represented? 

• "Blond-haired people often have blue eyes." How can the 

amount of certainty be represented? 

• "If there is no evidence to the contrary, assume that any 
adult you meet knows how to read." How can we represent 

that one fact should be inferred from the absence of 
another? 

• "It's better to have more pieces on the board than the 
opponent has." How can we represent this kind of heuristic 
information? 

• "I know Bill thinks the Giants will win, but I think they 
are going to lose." How can several different belief systems 

be represented at once? 

These examples suggest issues in knowledge representation 
that we have not yet satisfactorily addressed. They deal 

primarily with the need to make do with a knowledge base that 
is incomplete, although other problems also exist, such as the 

difficulty of representing continuous phenomena in a discrete 
system. Some solutions to these problems are presented in the 

remaining chapters in this part of the book. 
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3.7. Model Questions 

1. trace the operation of the unification algorithm on each of 

the following pairs of literals. 

 a. f(marcus) and f(caesar) 

 b. f(x) and f(g(x)) 

 c. f(marcus,g(x,y)) and f(x,g(caesar,marcus)) 

2. consider the following sentences: 

 1. john likes all kinds of food 

 2. apples are food 

 3. chicken is food 

 4. anything anyone eats and isn‘t killed by is food. 

 5. bill eats peanuts and is still alive. 

 6. sue eats everything bill eats. 

a) Translate these sentences info formulas in predicate 

logic 

b) Prove that john likes peanuts using backware chaining 

c) Convert the formulas of part a into clause form 

d) Prove that jhon likes peanuts using resolution. 

e) Use resolution to answer the question. ―what food does 

sue cat?‖ 
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3. assume the following facts: 

 a) steve only likes easy courses. 

 b) science courses are hard. 

 c) all the courses in the basketweaving department are  

             easy. 

 d) BK301 is a basketweaving course. 

4. suppose that we are attempting to resolve the following 

clauses. 

   Loves(father(a),a)  

   ⌐loves(y,x) V loves(x,y) 

a) What will be the result of the unification algorithm when 
applied to clause 1 and the first term of clause 2? 

b) What must be generated as a result of resolving these 

two clauses? 

c) What does this example show about the order in which 
the substitutions determined by the unification 

procedure must be performed? 

5. what is wrong with the following argument 

 a) men are widely distributed over the earth 
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The nodes HI and HI are new concepts representing John's 
height and Bill's height, respectively. They are defined by their 

relationships to the nodes John and Bill. Using these defined 
concepts, it is possible to represent such facts as that John's 
height increased, which we could not do before. (The number 

72 increased?) 

Sometimes it is useful to introduce the arc value to make this 

distinction clear. Thus we might use the following net to 
represent the fact that John is 6 feet tall and that he is 

^The node labeled BK23 represents the particular book that 
was referred to by the phrase "the book." Discovering which 
particular book was meant by that phrase is similar to the 

problem of deciding on the correct referent for a pronoun, and 
it can be a very hard problem.. 

 

The procedures that operate on nets such as this can exploit 

the fact that some arcs, such as height, define new entities, 
while others, such as greater-than and value, merely describe 

relationships among existing entities. 
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Another example of an important distinction we have missed is 
the difference between the properties of a node itself and the 

properties that a node simply holds and passes on to its 
instances. For example, it is a property of the node Person that 

it is a subclass of the node Mammal. But the node Person does 
not have as one of its parts a nose. Instances of the node 

Person do, and we want them to inherit it. 

It is difficult to capture these distinctions without assigning 
more structure to our notions of node, link, and value. In the 

next section, when we talk about frame systems, we do that. 
But first, we discuss a network-oriented solution to a simpler 

problem; 

this solution illustrates what can be done in the network model 
but at what price in complexity. 
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UNIT – IV 

 

REPRESENTING KNOWLEDGE 
USING RULES 

 

In this chapter, we discuss the use of rules to encode 

knowledge. This is a particularly important issue since rule-
Dased reasoning systems have played a very important role in 
the evolution of AI from a purely laboratory science into a 

commercially significant one. 

We have already talked about rules as the basis for a search 

program. But we gave little consideration to the way knowledge 
about the world was represented in the rules (although we can 
see a simple example of this in Section 4.2). In particular, we 

have been assuming that search control knowledge was 
maintained completely separately from the rules themselves. 

We will now relax that assumption and consider a set of rules 
to represent both knowledge about relationships in the world, 
as well as knowledge about how to solve problems using the 

content of the rules. 

4.1 Procedural versus Declarative Knowledge 

Since our discussion of knowledge representation has 
concentrated so far on the use of logical assertions, we use 
logic as a starting point in our discussion of rule-based 

systems. 

In the previous chapter, we viewed logical assertions as 

declarative representations of knowledge. A declarative 
representation is one in which knowledge is specified, but the 

use to which that knowledge is to be put is not given. To use a 
declarative representation, we must augment it with a program 
that specifies what is to be done to the knowledge and how. 
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For example, a set of logical assertions can be combined with a 
resolution theorem prover to give a complete program for 

solving problems. There is a different way, though, in which 
logical assertions can be viewed, namely as a program, rather 

than as data to a program. In this view, the implication 
statements define the legitimate reasoning paths and the 

atomic assertions provide the starting points (or, if we reason 
backward, the ending points) of those paths. These reasoning 
paths define the possible execution paths of the program in 

much the same way that traditional control constructs, such 
as if-then-else. define the execution paths through traditional 

programs. In other words, we could view logical assertions as 
procedural representations of knowledge. A procedural 
representation is one in which the control information that is 
necessary to use the knowledge is considered to be embedded 
in the knowledge itself. To use a procedural representation, we 

need to augment it with an interpreter that follows the 
instructions given in the knowledge. 

Actually, viewing logical assertions as code is not a very radical 
idea, given that all programs are really data to other programs 
that interpret (or compile) and execute them. The real 

difference between the declarative and the procedural views of 
knowledge lies in where control information resides. For 

example, consider the knowledge base: 

man(Marcus) 

man(Caesar) 

person(Cleopatra) 

VJC : man(x) —» person(x) 

Now consider trying to extract from this knowledge base the 
answer to the question 3y: person(y) 

We want to bind y to a particular value for which person is 
true. Our knowledge base justifies any of the following 

answers: 

y = Marcus y = 
Caesar y = 
Cleopatra 
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Because there is more than one value that satisfies the 
predicate, but only one value is needed, the answer to the 

question will depend on the order in which the assertions are 
examined during the search for a response. If we view the 

assertions as declarative, then they do not themselves say 
anything about how they will be examined. If we view them as 
procedural, then they do. Of course, nondeterministic 

programs are possible— for example, the concurrent and 
parallel programming constructs described in Dijkstra [1976], 

Hoare [1985], and Chandy and Misra [1989]. So, we could view 
these assertions as a nondeterministic program whose output 
is simply not defined. If we do this, then we have a 

"procedural" representation that actually contains no more 
information than does the "declarative" form. But most 

systems that view knowledge as procedural do not do this. The 
reason for this is that, at least if the procedure is to execute on 
any sequential or on most existing parallel machines, some 

decision must be made about the order in which the assertions 
will be examined. There is no hardware support for 

randomness. So if the interpreter must have a way of deciding, 
there is no real reason not to specify it as part of the definition 
of the language and thus to define the meaning of any 

particular program in the language. For example, we might 
specify that assertions will be examined in the order in which 

they appear in the program and that search will proceed 
depth-first, by which we mean that if a new subgoal is 
established then it will be pursued immediately and other 

paths will only be examined if the new one fails. If we do that, 
then the assertions we gave above describe a program that will 

answer our question with 

}' = Cleopatra 

To see clearly the difference between declarative and 

procedural representations, consider the following assertions: 

man(Marcus) 

man(Caesar) 

V.v : man(x) —> person(x) 

person{CleOpatra) 
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Viewed declaratively, this is the same knowledge base that we 
had before. All the same answers are supported by the system 

and no one of them is explicitly selected. But viewed 
proceduratly, and using the control model we used to get 

Cleopatra as our answer before, this is a different knowledge 
base since now the answer to our question is Marcus. This 

happens because the first statement that can achieve the 
person goal is the inference rule 1x : man(x) —> person(x). This 
rule sets up a subgoal to find a man. Again the statements are 

examined from the beginning, and now Marcus is found to 
satisfy the subgoal and thus also the goal. So Marcus is 

reported as the answer. 

It is important to keep in mind that although we have said that 

a procedural representation encodes control information in the 
knowledge base, it does so only to the extent that the 
interpreter for the knowledge base recognizes that control 

information. So we could have gotten a different answer to the 
person question by leaving our original knowledge base intact 

and changing the interpreter so that it examines statements 
from last to first (but still pursuing depth-first search). 

Following this control regime, we report Caesar as our answer. 

There has been a great deal of controversy in AI over whether 
declarative or procedural knowledge representation 

frameworks are better. There is no clearcut answer to the 
question. As you can see from this discussion, the distinction 

between the two forms is often very fuzzy. Rather than try to 
answer the question of which approach is better, what we do in 
the rest of this chapter is to describe ways in which rule 

formalisms and interpreters can be combined to solve 
problems. We begin with a mechanism called logic 
programming, and then we consider more flexible structures for 
rule-based systems. 

4.2 Logic Programming 

Logic programming is a programming language paradigm in 
which logical assertions are viewed as programs, as described 

in the previous section. There are several logic programming 
systems in use today, the most popular of which is PROLOG A 

PROLOG program is described as a series of logical assertions, 
each of which is & Horn clause.1 A Horn clause is a clause (as 
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defined in Section 5.4.1) that has at most one positive literal. 
Thus p, -7? V q, and p —> q are all Horn clauses. The last of 

these does not look like a clause and it appears to have two 
positive literals. Any logical expression can be converted to 

clause form. If we do that for this example, the resulting clause 
is -'p V q, 

' Programs written in pure PROLOG are composed only of Horn 
clauses. PROLOG, as an actual programming language, 
however, allows departures from Horn clauses. In the rest of 

this section, we limit our discussion to pure PROLOG.                                         

 

 

Figure 4.1:A Declarative and a Procedural Representation 

which is a well-formed Horn clause. As we will see below, when 

Horn clauses are written in PROLOG programs, they actually 
look more like the form we started with (an implication with at 

most one literal on the right of the implication sign) than the 
clause form we just produced. Some examples of PROLOG 
Horn clauses appear below. 

The fact that PROLOG programs are composed only of Horn 
clauses and not of arbitrary logical expressions has two 
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important consequences. The first is" that because of the 
uniform representation a simple and efficient interpreter can 

be written. The second consequence is even more important. 
The logic of Horn clause systems is decidable (unlike that of 

full first-order predicate logic). 

The control structure that is imposed on a PROLOG program 
by the PROLOG interpreter is the same one we used at the 

beginning of this chapter to find the answers Cleopatra and 
Marcus. The input to a program is a goal to be proved. 

Backward reasoning is applied to try to prove the goal given 
the assertions in the program. The program is read top to 

bottom, left to right and search is performed depth-first with 
backtracking. 

Figure 4.1 shows an example of a simple knowledge base 

represented in standard logical notation and then in PROLOG. 
Both of these representations contain two types of statements, 

facts, which contain only constants (i.e., no variables) and 
rules, which do contain variables. Facts represent statements 

about specific objects. Rules represent statements about 
classes of objects. 

Notice that there are several superficial, syntactic differences 

between the logic and the PROLOG representations, including: 

1. In logic, variables are explicitly quantified. In PROLOG, 

quantification is pro-, vided implicitly by the way the 
variables are interpreted (see below). The distinction 
between variables and constantsTs made in PROLOG by 

having all variables 

 

begin with upper case letters and all constants begin with 
lower case letters or numbers. 

2. In logic, there are explicit symbols for and (A) and or (V). 

In PROLOG, there is an explicit symbol for and (,), but 
there is none for or. Instead, disjunction must be 

represented as a list of alternative statements, any one of 
which may provide the basis for a conclusion. 
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3. In logic, implications of the form"/? implies^" are 
writtenas/? —» q. InPROLOG, the same implication is 

written "backward," as q : - p. This form is natural in 
PROLOG because the interpreter always works backwards 

from a goal, and this form causes every rule to begin with 
the component that must therefore be matched first. This 
first component is called the head of the rule. 

The first two of these differences arise naturally from the fact 
that PROLOG programs are actually sets of Horn clauses that 

have been transformed as follows: 

1. If the Horn clause contains no negative literals (i.e., it 

contains a single literal which is positive), then leave it as 
it is. 

2. Otherwise, rewrite the Horn clause as an implication, 

combining all of the negative literals into the antecedent of 
the implication and leaving the single positive literal (if 

there is one) as the consequent. 

This procedure causes a clause, which originally consisted of a 
disjunction of literals (all but one of which were negative), to be 

transformed into a single implication whose antecedent is a 
conjunction of (what are now positive) literals. Further, recall 

that in a clause, all variables are implicitly universally 
quantified. But, when we apply this transformation, any 
variables that occurred in negative literals and so now occur in 

the antecedent become existentially quantified, while the 
variables in the consequent (the head) are still universally 

quantified. For example, the PROLOG clause 

P(x) :- Q(x, y) is equivalent to 
the logical expression 
^x:3y:Q(x,y)-)P(x) 

A key difference between logic and the PROLOG representation 

is that the PROLOG interpreter has a fixed control strategy, 
and so the assertions in the PROLOG program define a 
particular search path to an answer to any question. In 

contrast, the logical assertions define only the set of answers 
that they justify; they themselves say nothing about how to 

choose among those answers if there are more than one. 
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The basic PROLOG control strategy outlined above is simple. 
Begin with a problem statement, which is viewed as a goal to 

be proved. Look for assertions that can prove the goal. 
Consider facts, which prove the goal directly, and also consider 

any rule whose head matches the goal. To decide whether a 
fact or a rule can be applied to the current problem, invoke a 
standard unification procedure. Reason backward from that 

goal until a path is found that terminates with assertions in 
the program. Consider paths using a depth-first search 

strategy and using backtracking. At each choice point, 
consider options in the order in which they appear in the 
program. If a goal has more than one conjunctive part, prove 

the pans in the order in which they appear, propagating 
variable bindings as they are determined during unification. 

We can illustrate this strategy with a simple example. 

Suppose the problem we are given is to find a value of X that 
satisfies the predicate apartmentpet (X). We state this goal to 

PROLOG as 

?- apartmentpet(X) . 

Think of this as the input to the program. The PROLOG 
interpreter begins looking for a fact with the predicate 
apartmentpet or a rule with that predicate as its head. Usually 

PROLOG programs are written with the facts containing a 
given predicate coming before the rules for that predicate so 

that the facts can be used immediately if they are appropriate 
and the rules will only be used when the desired fact is not 
immediately available. In this example, there are no facts with 

this predicate, though, so the one rule there is must be used. 
Since the rule will succeed if both of the clauses on its right-

hand side can be satisfied, the next thing the interpreter does 
is to try to prove each of them. They will be tried in the order in 
which they appear. There are no facts with the predicate pet 

but again there are rules with it on the right-hand side. But 
this time there are two such rules, rather than one. All that is 

necessary for a proof though is that one of them succeed. They 
will be tried in the order in which they occur. The first will fail 
because there are no assertions about the predicate cat in the 

program. The second will eventually lead to success, using the 
rule about dogs and poodles and using the fact poodle (fluffy). 

This results in the variable X being bound to fluffy. Now the 



                                                                                                                                              
    Artificial 
           Intelligence 

  NOTES 

 
 

167 

second clause smal 1 (X) of the initial rule must be checked. 
Since X is now bound to fluffy, the more specific goal, small 

(fluffy), must be proved. This too can be done by reasoning 
backward to the assertion poodle (fluffy) . The program. then 

halts with the result apartmentpet (fluffy). 

Logical negation (-1) cannot be represented explicitly in pure 
PROLOG. So, for example, it is not possible to encode directly 

the logical assertion 

V-v : dos(x) —> -icat(x) 

Instead, negation is represented implicitly by the lack of an 
assertion. This leads to the problem-solving strategy called 
negation as failure If the PROLOG program of Figure 4.1 were 

given the goal 

?- cat(fluffy). 

it would return FALSE because it is unable to prove that Fluffy 
is a cat. Unfortunately, this program returns the same answer 
when given the goal 

even though the program knows nothing about Mittens and 
specifically knows nothing that might prevent Mittens from 

being a cat. Negation by failure requires that we make what is 
called the closed world assumption, which states that ail 

relevant, true assertions are contained in our knowledge'-base 
or are derivable from assertions that are so contained. Any 
assertion that is not present can therefore be assumed to be 

false. This assumption, while often justified, can cause serious 
problems when knowledge bases are incomplete.  

There is much to say on the topic ot'PROLOG-style versus 
LISP-style programming. A great advantage of logic 
programming is that the programmer need only specify rules 

and facts since a search engine is built directly into the 
language. The disadvantage is that the search control is fixed. 

Although it is possible to write PROLOG code that uses search 
strategies other than depth-first with backtracking, it is 
difficult to do so. It is even more difficult to apply domain 

knowledge to constrain a search. PROLOG does allow for 
rudimentary control of search through a non-logical operator 
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called cut. A cut can be inserted into a rule to specify a point 
that may not be backtracked over. 

More generally, the fact tliat PROLOG programs must be 
composed of a restricted set of logical operators can be viewed 

as a limitation of the express! veness of the language. But the 
other side of the coin is that it is possible to build PROLOG 
compilers that produce very efficient code. 

In the rest of this chapter, we retain the rule-based nature of 
PROLOG, but we relax a number of PROLOG'S design 

constraints, leading to more flexible rule-based architectures. 

4.3 Forward versus Backward Reasoning 

The object of a search procedure is to discover a path through 
a problem space from an initial configuration to a goal state. 
While PROLOG only searches from a goal state, there are 

actually two directions in which such a search could proceed: 

• Forward, from the start slates 

• Backward, from the goal states 

The production system model of the search process provides 
an easy way of viewing forward and backward reasoning as 

symmetric processes. Consider the problem of solving a 
particular instance of the 8-puzzle. The rules to be used for 

solving the puzzle can be written as shown in Figure 4.2. Using 
those rules we could attempt to solve the puzzle: 

• Reason forward from the initial states. Begin building a 

tree of move sequences that might be solutions by starting 
with the initial configuration(s) at the root of the tree. 

Generate the next level of the tree by findingall the rules 
whose left sides match the root node and using their right 

sides to create the new configurations. Generate the next 
level by taking each node generated at the previous level 
and applying to it all of the rules whose left sides match it. 

Continue until a configuration that matches the goal state 
is generated. 
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Assume the areas of the tray are numbered: 

 

Square 1 empty Vnd Square 2 contains tile n    -) 

Square 2. empty and Square 1 contains 
tile n Square 1 empty and Square 

4contains tile n    —> 

Square 4 empty and Square 1 contains tile 

n Square 2 empty and Square 1 contains 
tile n    —) 

Square 1 empty and Square 2 contains tile n 

Figure 4.2: A Sample of the Rules for Solving the 8-Puzzle 

• Reason backward from the goal states. Begin building a tree 

of move sequences that might be solutions by starting with 
the goal configuration(s) at the root of the tree. Generate the 

next level of the tree by finding all the rules whose right sides 
match the root node. These are all the rules that, if only we 

could apply them, would generate the state we want. Use the 
left sides of the rules to generate the nodes at this second level 
of the tree. Generate the next level of the tree by taking each 

node at the previous level and finding all the rules whose right 
sides match it. Then use the corresponding left sides to 

generate the new nodes. Continue until a node that matches 
the initial state is generated. This method of reasoning 
backward from the desired final state is often called goal-
directed reasoning. 

Notice that the same rules can be vised both to reason forward 

from the initial state and to reason backward from the goal 
state. To reason forward, the left sides (the preconditions) are 

matched against the current state and the right sides (the 
results) are used to generate new nodes until the goal is 
reached. To reason backward, the right sides are matched 

against the current node and the left sides are used to generate 
new nodes representing new goal states to be-achieved. This 
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continues until one of these goal states is matched by an initial 
state. 

In the case of the 8-puzzle, it does not make much difference 
whether we reason forward or backward; about the same 

number of paths will be explored in either case. But this is not 
always true. Depending on the topology of the problem space, 
it may be significantly more efficient to search in one direction 

rather than the other. 

Four factors influence, the question of whether it is better to 

reason forward or backward: 

• Are there more possible start states or goal states? We would 
like to move from the smaller set of states to the larger (and 

thus easier to find) set of states. 

 

• In which direction is the branching factor (i.e., the 
average number of nodes that can be reached directly from 
a single node) greater? We would like to proceed in the 

direction with the lower branching factor.. 

• Will the program be asked to justify its reasoning process 

to a user? If so, it is important to proceed in the direction 
that corresponds more closely with the way the user will 
think. 

• What kind of event is going to trigger a problem-solving 
episode? If it 4s the arrival of a new fact, forward reasoning 

makes sense. If it is a query to which a response is 
desired, backward reasoning is more natural. 

A few examples make these issues clearer. It seems easier to 

drive from an unfamiliar place home than from home to an 
unfamiliar place. Why is this? The branching factor is roughly 

the same in both directions (unless one-way streets are laid 
out very strangely). But for the purpose of finding our way 
around, there are many more locations that count as being 

home than there are locations that count as the unfamiliar 
target place. Any place from which we know how to get home 

can be considered as equivalent to home. If we can get to any 
such place, we can get home easily. But in order to find a route 
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from where we are to an unfamiliar place, we pretty much have 
to be already attbe unfamiliar place. So in going toward the 

unfamiliar place, we are aiming at a much smaller target than 
in going home. This suggests that if our starting position is 

home and our goal position is the unfamiliar place, we should 
plan our route by reasoning backward from We unfamiliar 
place. 

On the other hand, consider the problem of symbolic 
integration. The problem space is the set of formulas, some of 

which contain integral expressions. The start state is a 
particular formula containing some integral expression. The 
desired goal state is a formula that is equivalent to the initial 

one and that does not contain any integral expressions. So we 
begin with a single easily identified start state and a huge 

number of possible goal states. Thus to solve this problem, if is 
better to reason forward using the rules for integration to try to 
generate an Sntegral-free, expression than to start with 

arbitrary integral-free expressions, use the rules for 
differentiation, and try to generate the particular integral we 

are trying to solve. Again we want to headloward the largest 
target; this time that means chaining forward. 

These two examples have illustrated the importance of die 

relative number of start states to goal states in determining the 
optimal" direction ifl which to search when the branching 

factor is approximately the same in both directions. When the 
branching factor is not the same, however, it must also be 
taken into account. 

Consider again the problem of proving theorems in xome 
particular domain of mathematics. Our goal state is the 

particular theorem to 1x proved. Our initial states are normally 
a small set of axioms. Neither of these^s is significantly bigger 
than the other. But consider the btanching factor in each of 

the two directions. From a small set of axioms we can derive a 
very large number of theorems. On the other hand, this large 

number of theorems must go back to the small set of axioms. 
So the branching factor is significantly greater going forward 
from the axioms to the theorems than it is going backward 

from theorems to axioms. This suggests that it would-be much 
better to reason backward when trying to prove theorems. 
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Mathematicians have long realized this as have the designers 
of theorem-proving programs. 

 

The third factor that determines the direction in which search 

should proceed is the need to generate coherent justifications 
of the reasoning process as it proceeds. This is often crucial for 
the acceptance of programs for the performance of very 

important tasks. For example, doctors are unwilling to accept 
the advice of a diagnostic program that cannot explain its 

reasoning to the doctors' satisfaction. This issue was of 
concern to the designers of MYCIN , a program that diagnoses 
infectious diseases. It reasons backward from its goal of 

determining the cause of a patient's illness. To do that, it uses 
rules that tell it such things as "If the organism has the 

following set of characteristics as determined by the lab 
results, then it is likely that it is organism x." By reasoning 
backward using such rules, the program can answer questions 

like "Why should I perform that test you just asked for?" with 
such answers as "Because it would .help to determine whether 

organism x is present."  

Most of the search techniques described can be used to search 

either forward or backward. By describing the search process 
as the application of a set of production rules, it is easy to 
describe the specific search algorithms without reference to the 

direction of the search. 

V/e can also search both forward from the start state and 

backward from the goal simultaneously until two paths meet 
somewhere in between. This strategy is called bidirectional 
search. It seems appealing if the number of nodes at each step 

grows exponentially with the number of steps that have been 
taken. Empirical results suggest that for blind search, this 

divide-and-conquer strategy is indeed effective. Unfortunately, 
other results suggest that for informed, heuristic search it is 

much less likely to be so. Figure 4.3 shows why bidirectional 
search may be ineffective. The two searches may pass each 
other, resulting in more work than it would have taken for one 

of them, on its own, to have finished. However, if individual 
forward and backward steps are performed as specified by a 

program that has been carefully constructed to exploit each in 
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exactly those situations where it can be the most profitable, 
the results can be more encouraging. In fact, many successful 

AI applications have been written using a combination of 
forward and backward reasoning, and most AI programming 

environments provide explicit support for such hybrid 
reasoning. 

Although in principle the same set of rules can be used for 

both forward and backward reasoning, in practice it has 
proved useful to define two classes of rules, each of which 

encodes a particular 
kind of knowledge. i 

• Forward rules, which encode knowledge about how to 

respond to certain input configurations. 

• Backward rules, which encode knowledge about how to 

achieve particular goals. 

By separating rules into these two classes, we essentially add 

to each rule an additional piece of information, namely how it 
should be used in problem solving. In the next three sections, 
we describe in more detail the two kinds of rule systems and 

how they can be combined. 

"One exception to this is the means-ends analysis technique, 

which proceeds not by making successive steps in a single 
direction but by reducing differences between the current and 
the goal states, and, as a result, sometimes reasoning 

backward and sometimes forward. 

 

Figure 4.3: A Bad Use of Heuristic Bidirectional Search 
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4.3.1 Backward-Chaining Rule Systems 

Backward-chaining rule systems, of which PROLOG is an 

example, are good for goal-directed problem solving. For 
example, a query system would probably use backward 

chaining to reason about and answer user questions. 

In PROLOG, rules are restricted to Horn clauses. This allows 
for rapid indexing because all of the rules for deducing a given 

fact share the same rule head. Rules are matched with the 
unification procedure. Unification tries to find a set of bindings 

for variables to equate a (sub)goal with the head of some rule. 
Rules in a PROLOG program are matched in the order in which 
they appear. 

Other backward-chaining systems allow for more complex 
rules. In MYCIN, for example, rules can be augmented with 

probabilistic certainty factors to reflect the fact that some rules 
are more reliable than others.  

4.3.2 Forward-Chaining Rule Systems 

Instead of being directed by goals, we sometimes want to be 
directed by incoming data. For example, suppose you sense 

searing heat near your hand. You are likely to jerk your hand 
away. While this could be construed as goal-directed behavior, 
it is modeled more naturally by the recognize-act cycle 

characteristic of forward-chaining rule systems. In forward-
chaining systems, left sides of rules are matched against the. 

state description. Rules that match dump their right-hand side 
assertions into the state, and the process repeats. 

Matching is typically more complex for forward-chaining 

systems than backward ones. For example, consider a rule 
that checks for some condition in the state description and 

then adds an assertion. After the rule fires, its conditions are 
probably still valid, so it could fire again immediately. However, 
we will need some mechanism to prevent repeated firings, 

especially if the state remains unchanged. 

While simple matching and control strategies are possible, 

most forward-chaining systems implement highly efficient 
matchers and supply several mechanisms for preferring one 
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rule over another. We discuss matching in more detail in the 
next section. 

 

4.3.3 Combining Forward and Backward Reasoning 

Sometimes certain aspects of a problem are best handled via 
forward chaining and other aspects by backward chaining. 
Consider a forward-chaining medical diagnosis program. It 

might accept twenty or so facts about a patient's condition, 
then forward chain on those facts to try to deduce the nature 

and/or cause of the disease. Now suppose that at some point, 
the left side of a rule was nearly satisfied—say, nine out of ten 
of its preconditions were met. It might be efficient to apply 

backward reasoning to satisfy the tenth precondition in a 
directed manner, rather than wait for forward chaining to 

supply the fact by accident. Or perhaps the tenth condition 
requires further medical tests. In that case, backward chaining 
can be used to query the user. 

Whether it is possible to use the same rules for both forward-
and backward reasoning also depends on the form of the rules 

themselves. If both left sides and right sides contain pure 
assertions, then forward chaining can match assertions on the 
left side of a rule and add to the state description the 

assertions on the right side. But if arbitrary procedures are 
allowed as the right sides of rules, then the rules will not be 

reversible. Some production languages allow only reversible 
rules; others do not. When irreversible rules are used, then a 
commitment to the direction of the search must be made at the 

time the rules are written. But, as we suggested above, this is 
often a useful thing to do anyway because it allows the rule 

writer to add control knowledge to the rules themselves: 

4.4 Matching 

So far, we have described the process of using search to solve 

problems as the application of appropriate rules to individual 
problem states to generate new states to which the rules can 

then be applied, and so forth, until a solution is found. We 
have suggested that clever search involves choosing from 
among the rules that can be applied at a particular point, the 
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ones that are most likely to lead to a solution. But we have 
said little about how we extract from the entire collection of 

rules those that can be applied at a given point. To do so 
requires some kind of matching between the current state and 

the preconditions of the rules. How should this be done? The 
answer to this question can be critical to the success of a rule-
based system. We discuss a few proposals below. 

4.4.1 Indexing 

One way tQJselect applicable rules is to do a simple search 

through all the rules, comparing each one's preconditions to 
the current state and extracting all the ones that match. But 
there are two problems with this simple solution: 

• In order to solve very interesting problems, it will be 
necessary to use a large number of rules. Scanning 

through all of them at every step of the search would be 
hopelessly inefficient. 

• It is not always immediately obvious whether a rule's 

preconditions are satisfied by a particular state. 

Sometimes there are easy ways to deal with the first of these 

problems. Instead of searching through the rules, use the 
current state as an index into the rules and select the 

 

Figure 4.4: One Legal Chess Move 
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Figure 4.5: Another Way to Describe Chess Moves 

matching ones immediately. For example, consider the legal-
move generation rule for chess shown in in Figure 4.4. To be 

able to access the appropriate rules immediately, all we need 
do is assign an index to each board position. This can be done 

simply by treating the board description as a large number. 
Any reasonable hashing function can then be used to treat 
that number as an index into the rules. All the rules that 

describe a given board position will be stored under the same 
key and so will be found together. Unfortunately, this simple 

indexing scheme only works because preconditions of rules 
match exact board configurations. Thus the matching process* 
is easy but at the price of complete lack of generality in the 

statement of the rules. It is often better to write rules in a more 
general form, such as that shown in Figure 4.5. When this is 

done, such simple indexing is not possible. In fact, there is 
often a trade-off between the ease of writing rules (which is 
increased by the use of high-level descriptions) and the 

simplicity of the matching process (which is decreased by such 
descriptions). 

All of this does not mean that indexing cannot be helpful even 
when the preconditions of rules are stated as fairiy high-level 
predicates. In PROLOG and many theorem-proving systems, 

for example, rules are indexed by the predicates they contain, 
so all the rules that could be applicable to proving a particular 

fact can be accessed fairly quickly. 

In the chess example, rules can be indexed by pieces and their 
positions. Despite some limitations of this approach, indexing 
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in some form i* very important in the efficient operation of 
rule-based systems. 

4.4.2 Matching with Variables 

The problem of selecting applicable rules is made more difficult 

when preconditions are not stated as exact descriptions of 
particular situations but rather describe properties (of varying 
complexity) that the situations must have. It often turns out 

that discovering whether there is a match between a particular 
situation and the preconditions of a given rule must itself 

involve a significant search process. 

If we want to match a single condition against a single element 
in a state description, then the unification procedure will 

suffice. However, in many rule-based systems, we need to 
compute the whole set of rules that match the current state 

description. Backward-chaining systems usually use depth-
first backtracking to select individual rules, but forward-
chaining systems generally employ sophisticated conflict 
resolution strategies to choose among the applicable rules.3 
While it is possible to apply unification repeatedly over the 

cross product of preconditions and state description elements, 
it is more efficient to consider the many-many match problem, 

in which many rules are matched against many elements in 
the state description simultaneously. 

One efficient many-many match algorithm is RETE, which 

gains efficiency from three major sources: 

• The temporal nature of data. Rules usually do not alter 

the state description radically. Instead, a rule will typically 
add one or two elements, or perhaps delete one or two, but 
most of the state description remains the same. (Recall our 

discussion of this as part of our treatment of the frame 
problem in Section 4.4.) If a rule did not match in the 

previous cycle, it will most likely fail to apply in the current 
cycle. RETE maintains a network of rule conditions, and it 
uses changes in the state description to determine which 

new rules might apply (and which rules might no longer 
apply). Full matching is only pursued for candidates that 

could be affected by incoming or outgoing data. 
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• Structural similarity in rules. Different rules may share a 
large number of preconditions. For example, consider rules 

for identifying wild animals. One rule concludes jaguar(x) if 
mammal(x), feline{x), carnivorous{x), and has-spots(x). 
Another rule concludes tiger(x) and is identical to the first 
rule except that it replaces has-spots with has-stripes. If we 

match the two rules independently, we will repeat a lot of 
work unnecessarily. RETE stores the rules so that they 

share structures in memory; sets of conditions that appear 
in several rules are matched (at most) once per cycle. 

• Persistence of variable binding consistency. While all the 

individual preconditions of a rule might be met, there may 
be variable binding conflicts that prevent the rule from 

firing. For example, suppose we know the facts son(Mary, 
Joe) and son(Bill, Bob). The individual preconditions of the 

rule 

•Conflict resolution is discussed in the next section. 

 

son(x,y) A son(y, z) —> grandparent(x, z) 

can be matched, but not in a manner that-satisfies the 

constraint imposed by the variable y. Fortunately, it is not 
necessary to compute binding consistency from scratch 

every time a new condition is satisfied. RETE remembers its 
previous calculations and is able to merge new binding 
information efficiently. 

Other matching algorithms take different stands on how much 
time to spend on saving state information between cycles. They 

can be more or less efficient than RETE, depending on the 
types of rules written for the. domain and on the degree of 
hardware parallelism available. 

4.4.3 Complex and Approximate Matching 

A more complex matching process is required when the 

preconditions or a rule specify required properties that are not 
stated explicitly in the description of the current state. In this 
case, a separate set of rules must be used to describe how 

some properties can be inferred from others. 
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An even more complex matching process is required if rules 
should be applied if their preconditions approximately match 

the current situation. This is often the case in situations 
involving physical descriptions of the world. For example, a 

speech-understanding program must contain rules that map 
from a description of a physical waveform to phones (instances 
of English phonemes, such as p or d). There is so much 

variability in the physical signal, as a result of background 
noise, differences in the way individuals speak, and so forth, 

that one can hope to find only an approximate match between 
the rule that describes an ideal sound and the input that 

describes an unideal world. Approximate matching is 
particularly difficult to deal with because as we increase the 
tolerance allowed in the match, we also increase the number of 

rules that will match, thus increasing the size of the main 
search process. But approximate matching is nevertheless 

superior to exact matching in situations such as speech 
understanding, where exact matching may often result in no 
rules being matched and the search process coming to a 

grinding halt. Although symbolic techniques for approximate 
matching exist, there is another, very different approach that 

can be used to solve this problem. We describe connecUonist 
systems (also called neural nets). 

For some problems, almost all the action is in the matching of 

the rules to the problem state. Once that is done, so few rules 
apply that the remaining search is trivial. This was the case, 

for example, in ELIZA an early AI program that simulated the 
behavior .of a Rogerian therapist. A fragment of a dialogue 
between ELIZA and a user is shown in Figure 4.4. ELIZA's 

knowledge about both English and psychology was coded in a 
set of simple rules. Figure 4.7 shows some ELIZA-like rules. 

ELIZA operated by matching the left sides of the rules against 
the user's last sentence and using the appropriate right side to 
generate a response. For example, if the user typed "My 

brother is mean to me," ELIZA might respond, "Who else in 
your family is mean to you?" or "Tell me more about your 

family." The rules were indexed by keywords so only a few had 
actually to be matched against a canicular sentence. Some 
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Figure 4.6: A Bit of a Dialogue with ELIZA 

 

Figure 4.7: Some ELIZA-like rules 

 

of the rules had no left side, so the rule could apply anywhere. 
These rules were used if no other rules matched and they 

generated replies such as "Tell me more about that." Notice 
that the rules themselves cause a form of approximate 
matching to occur. The patterns ask about specific words in 

the user's sentence. They do not need to match entire 
sentences. Thus a great variety of sentences can be matched 

by a single rule, and the grammatical complexity of English is 
pretty much ignored. This accounts both for ELIZA's major 
strength, its ability to say something fairly reasonable almost 

all of the time, and its major weakness, the superficiality, of its 
understanding and its ability to be led completely astray. 

Approximate matching can easily lead to both these results. 
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As if the matching process were not already complicated 
enough, recall the frame problem mentioned. One way of 

dealing with the frame problem is to avoid storing entire state 
descriptions at each node but instead to store only the changes 

from the previous node. If this is done, the matching process 
will have to be modified to scan backward from a node through 
its predecessors, looking for the required objects. 

 

4.4.4 Conflict Resolution 

The result of the matching process is a list of rules whose 
antecedents have matched the current state description along 
with whatever variable bindings were generated by the 

matching process. It is the job of the search method to decide 
on the order in which rules will be applied. But sometimes it is 

useful to incorporate some of that decision making into the 
matching process. This phase of the matching process is then 
called conflict resolution. 

There are three basic approaches to the problem of conflict 
resolution in a production system: 

• Assign a preference based on the rule that matched. 

• Assign a preference based on the objects that matched. 

• Assign a preference based on the action that the matched 

rule would perform. 

Preferences Based on Rules 

There are two common ways of assigning a preference based 
on the rules themselves. The first, and simplest, is to consider 
the rules to have been specified in a particular order, such as 

the physical order in which they are presented to the system. 
Then priority is given to the rules in the order in which they 

appear. This is the scheme used in PROLOG. 

The other common rule-directed preference scheme is to give 
priority to special case rules over rules that are more general. 

In the case of the water jug problem, recall that rules 11 and 
12 were special cases of rules 9 and 5, respectively. The 
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purpose of such specific rules is to allow for the kind of 
knowledge that expert problem solvers use when they solve 

problems directly, without search. If we consider all rules that 
match, then the addition of such special-purpose rules will 

increase the size of the search rather than decrease it. In order 
to prevent that, we build the matcher so that it rejects rules 
that are more general than other rules that also match. How 

can the matcher decide that one rule is more general than 
another'? There are a few easy ways: 

• If the set of preconditions of one rule contains all the 
preconditions of another (plus some others), then the 
second rule is more general than the first. 

• 'If the preconditions of one rule are the same as those of 
another except that in the first case variables are specified 

where in the second there are constants, then the first rule 
is more general than the second. 

Preferences Based on Objects 

Another way in which the matching process can ease the 
burden on the search mechanism is to order the matches it 

finds based on the importance of the objects that are matched. 
There are a variety of ways this can happen. Consider again 
ELIZA, which matched patterns against a user's sentence in 

order to find a rule to generate a reply. The patterns looked for 
specific combinations of important keywords. Often an input 

sentence contained several of the keywords that ELIZA knew. If 
that happened, then ELIZA made use of the fact that some 
keywords had been marked as being more significant than 

others. The pattern matcher returned the match involving the 
highest priority keyword. For example, ELIZA knew the word 

"I" as a keyword. Matching the input sentence "I know 
everybody laughed at me" by the keyword "I" would have 
enabled it to respond, "You say you know everybody laughed at 

you." But ELIZA also knew the word "everybody" as a keyword. 
Because "everybody" occurs more rarely than "I," ELIZA knows 

it to be more semantically significant and thus to be the clue to 
which it should respond. So it will produce a response such as 
"Who in particular are you thinking of?" Notice that priority 

matching such as this is particularly important if only one of 
the choices will ever be tried. This was true for ELIZA and 
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would also be true, say, for a person who, when leaving a fast-
burning room, must choose between turning off the lights 

(normally a good thing to do) and grabbing the baby (a more 
important thing to do). 

Another form of priority matching can occur as a function of 
the position of the matchable objects in the current state 
description. For example, suppose we want to model the 

behavior of human short-term memory (STM). Rules can be 
matched against the current contents of STM and then used to 

generate actions, such as producing output to the environment 
or storing something in long-term memory. In this situation, 
we might like to have the matcher first try to match against the 

objects that have most recently entered STM and only compare 
against older elements if the newer elements do not trigger a 

match. For a discussion of this method as a conflict resolution 
strategy in a production system. 

Preferences Based on States 

Suppose that here are several rules waiting to fire. One way of 
selecting among them is to fire all of them temporarily and to 

examine the results of each. Then, using a heuristic function 
that can evaluate each of the resulting states, compare the 
merits of the results, and select the preferred one. Throw away 

(or maybe keep for later if necessary) the remaining ones. 

This approach should look familiar—it is identical to the best-

first search procedure. Although conceptually this approach 
can be thought of as a conflict resolution strategy, it is usually 
implemented as a search control technique that operates on 

top of the states generated by rule applications. The drawback 
to this design is that 'LISP-coded search control knowledge is 

procedural and therefore difficult to modify. Many AI search 
programs, especially ones that leam from their experience, 
represent their control strategies declaratively. The next 

section describes some methods for capturing knowledge about 
control using rules. 

4.5 Control Knowledge 

A major theme of this book is that while intelligent programs 
require search, search is computationally intractable unless it 
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is constrained by knowledge about the world. In large 
knowledge bases that contain thousands of rules, the 

intractability of search is an overriding concern. When there 
are many possible paths of reasoning, it is critical that 

 

Figure 4.8: Syntax for a Control Rule  

fruitless ones not be pursued. Knowledge about which paths 

are most likely to lead quickly to a goal state is often called 
search control knowledge. It can take many forms: 

1. Knowledge about which states are more preferable to 
others. 

2. Knowledge about which rule to apply in a given situation. 

3. Knowledge about the order in which to pursue subgoals. 

4. Knowledge about useful sequences of rules to apply. 

The first type of knowledge could be represented with heuristic 
evaluation functions. There are many ways of representing the 
other types of control knowledge. For example, rules can be 

labeled and partitioned. A medical diagnosis system might 
have one set of rules for reasoning about bacteriological 

diseases and another set for immunological diseases. If the 
system is trying to prove a particular fact by backward 
chaining, it can probably eliminate one of the two rule sets, 

depending on what the fact is. Another method is to assign 
cost and probability-of-success measures to rules. The 
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problem solver can then use probabilistic decision analysis to 
choose a cost-effective alternative at each point in the search. 

By now it should be clear that we are discussing how to 
represent knowledge about knowledge. For this reason, search 

control knowledge is sometimes called metaknowledge. Davis 
[1980] first pointed out the need for meta-knowledge, and" 
suggested that it be represented declaratively using rules. The 

syntax for one type of control rule is shown in Figure 4.8. 

A number of AI systems represent their control knowledge with 

rules. We look briefly at two such systems, SOAR and 
PRODIGY. 

SOAR [Laird et al., 1987] is a general architecture for building 

intelligent systems, SOAR is based on a set of specific, 
cognitively motivated hypotheses about the structure of human 

problem solving. These hypotheses are derived from what we 
know about short-term memory, practice effects, etc. In SOAR:     

   1. Long-term memory is stored as a set of productions (or, 
rules). 

2. Short-term memory (also called working memory) is a 

buffer that is affected by perceptions and' serves as a 
storage area for facts deduced by rules in long-term 

memory. Working memory is analogous to the state 
description in problem solving. 

3. All problem-solving activity takes place as state space 

traversal. There are several classes of problem-solving 
activities, including reasoning about which states to 

explore, which rules to apply in a given situation, and what 
effects those rules will have. 

4. All intermediate and final results of problem solving are 

remembered (or, chunked) for future reference. 

The third feature is of most interest to us here. When SOAR is 

given a start state and a goal state, Tt sets up an initial 
problem space. In order to take the first step in that space, it 

must choose a rule from the set of applicable ones. Instead of 
employing a fixed conflict resolution strategy, SOAR considers 
that choice of rules to be a substantial problem in its own 
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right, and it actually sets up another, auxiliary problem space. 
The rules that apply in this space look something like the rule 

shown in Figure 4.8. Operator preference rules may be very 
general, such as the ones described in the previous section on 

conflict resolution, or they may contain domain-specific 
knowledge. 

SOAR also has rules for expressing a preference for applying a 

whole sequence of rules in a given situation. In learning mode, 
SOAR can take useful sequences and build frorti them more 

complex productions that it can apply in the future. 

We can also write rules based on preferences for some states 
over others. Such rules can be used to implement the basic 

search strategies. For example, if we always prefer to work 
from the state we generated last, we will get depth-first 

behavior. On the other hand, if we prefer states that were 
generated earlier in time, we will get breadth-first behavior. If 
we prefer any state that looks better than the current state 

(according to some heuristic function), we will get hill climbing. 
Best-first search results when state preference rules prefer the 

state with the highest heuristic score. Thus we see that all of 
the weak methods are subsumed by an architecture that 
reasons with explicit search control knowledge. Different 

methods may be employed for different problems, and specific 
domain knowledge can override the more general strategies. 

PRODIGY [Minton et a/., 1989] is a general-purpose problem-
solving system that incorporates several different learning 
mechanisms. A good deal of the learning in PRODIGY is 

directed at automatically constructing a set of control rules to 
improve search in a particular domain. We return to PRODIGY'S 

learning methods, but we mention here a few facts that bear 
on the issue of search control rules. PRODIGY can acquire 
control rules in.a number of ways: 

• Through hand coding by programmers. 

• Through a static analysis of the domain's operators. 

• Through looking at traces of its own problem-solving 
behavior. 
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PRODIGY leams control rules from its experience, but unlike 
SOAR it also leams from its failures. If PRODIGY pursues an 

unfruitful path, it will try to come up with an explanation of 
why that path failed. It will. then use that explanation to build 
control knowledge that will help it avoid fruitless search paths 

in the future. 

 

One reason why a path may lead to difficulties is that subgoals 
can interact with one another. In the process of solving one 
subgoal, we may undo our solution of a previous subgoal. 

Search control knowledge can tell us something about the 
order in which we should pursue our subgoals. Suppose we 

are faced with the problem of building a piece of wooden 
furniture. The problem specifies that the wood must be 
sanded, sealed, and painted. Which of the three goals do we 

pursue first? To humans who have knowledge about this sort 
of thing, the answer is clear. An AI program, however, might 

decide to try painting first, since any physical object can be 
painted, regardless of whether it has been sanded. However, as 
the program plans further, it will realize that one of the effects 

of the sanding process is to remove the paint. The program will 
then be forced to plan a repainting step or else backtrack and 

try working on another subgoal first. Proper search control 
knowledge can prevent this wasted computational effort. Rules 
we might consider include: 

 

• If a problem's subgoals include sanding and painting, 

then we should solve the sanding subgoal first. 

• If subgoals include sealing and painting, then consider 
what the object is made of. If the object is made of wood, 

then we should seal it before painting it. 

Before closing this section, we should touch on a couple of 

seemingly paradoxical issues concerning control rules. The 
first issue is called the utility problem .As we add more and 
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more control knowledge to a system, the system is able to 
search more judiciously. This cuts down on the number of 

nodes it expands. However, in deliberating about which step to 
take next in the search space, the system musi consider all the 

control rules. If there are many control rules, simply matching 
them all can be very time-consuming. It is easy to reach a 
situation (especially in systems that generate control 

knowledge automatically) in which the system's problem-
solving efficiency, as measured in CPU cycles, is worse with the 

control rules than without them. Different systems handle this 
problem in different ways.  

 

The second issue concerns the complexity of the production 
system interpreter. As this chapter has progressed, we have 

seen a trend toward explicitly representing more and more 
knowledge about how search should proceed. We have found it 
useful to create meta-rules that talk about when to apply other 

rules. Now, a production system interpreter must know how to 
apply various rules and meta-rules, so we should expect that 

our interpreters will have to become more complex as we 
progress away from simple backward-chaining systems like 
PROLOG. And yet, moving to a declarative representation for 

control knowledge means that previously hand coded LISP 
functions can be eliminated from the interpreter. In this sense, 

the interpreter becomes more streamlined. 

 

4.6 Summary   

                                           

In this chapter, we have seen how to represent knowledge 
declaratively in rule-based systems and how to reason with 

that knowledge. We began with a simple mechanism,  logic 
programming, and progressed to more complex production 

system models that can reason both forward and backward, 
apply sophisticated and efficient matching techniques, and 
represent their search control knowledge in rules. 
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In later chapters, we expand further on rule-based systems. 
The use of rules that allow default reasoning to occur in the 

absence of specific counter evidence. The idea of attaching 
probabilistic measures to rules. The rule-based systems are 

being used to solve complex, real-world problems. 

The book Pattern-Directed Inference Systems  is a collection of 
papers describing the wide variety of uses to which production 

systems have been put in AI. Its introduction provides a good 
overview of the subject as a introduction to programming in 

production rules, with an emphasis on the OPS5 programming 
language. 

 

4.7 Exercises 

 

1. Consider the following knowledge base: 

VJC : Vy : cat(x) /\fish(y) —> likes —to— eat(x,y) 

1x : calico(x) —> cat(x) 

1x: tuna(x) —>fish(x) 

tuna(Charlie) 

tuna(Herb) 

calico(Puss) 

 

(a) Convert these wff's into Horn clauses. 

(b) Convert *he Horn clauses into a PROLOG program. 

(c) Write a PROLOG query corresponding to the 
question, "What does Puss like to eat?" and show how 
it will be answered by your program. 
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(d) Write another PROLOG program that corresponds to 
the same set of wff's but returns a different answer to 

the same query. 

2. A problem-solving search can proceed either forward 

(from a known start state to a desired goal state) or 
backward (from a goal state to a start state). What factors 
determine the choice of direction for a particular problem? 

3. If a problem-solving search program were to be written 
to solve each of the following types of problems, determine 

whether the search should proceed forward or backward: 

(a) water jug problem 

(b) blocks world 

(c) natural language understanding 

 

4. Program the interpreter for a production system. You will 
need to build a table that holds the rules and a matcher that 
compares the current state to the left sides of the rules. You 

will also need to provide an appropriate control strategy to 
select among competing rules. Use your interpreter as the 

basis of a program that solves water jug problems. 
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UNIT - V 

 

WEAK SLOT-AND-FILLER STRUCTURES, 

STRONG SLOT-AND-FILLER STRUCTURES 

 

In this chapter, we continue the discussion of slot-and-filler 
structures. Recall that we originally introduced them as a 
device to support property 'inheritance along isa and instance 

links. This is an important aspect of these structures. 
Monotonic inheritance can be performed substantially more 

efficiently with such structures than with pure logic, and 
nonmonotonic inheritance is easily supported. The reason that 

inheritance is easy is that the knowledge in slot-and-filler 
systems is structured as a set of entities and their attributes. 
This structure turns out to be a useful one for other reasons 

besides the support of inheritance, though, including: 

• It indexes assertions by the entities they describe. More 

formally, it indexes binary predicates [such as team(Three-
Finger-Brown, Chicago-Cuhs)] by their first argument. As a 

result, retrieving the value for an attribute of an entity is 
fast. 

• It makes it easy to describe properties of relations. To do 

this in a purely logical system requires some higher-order 
mechanisms. 

• It is a form of object-oriented programming and has the 
advantages that such systems normally have, including 
modularity and ease of viewing by people. 

We describe two views of this kind of structure: semantic nets 
and frames. We talk about the representations themselves and 

about techniques for reasoning with them. We do not say 
much, though, about the specific knowledge that the 
structures should contain. We call these "knowledge-poor" 

structures "weak," by analogy with the weak methods for 
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problem solving that we discussed in Chapter 3. In the next 
chapter, we expand this discussion to include "strong" slot-

and-filler structures, in which specific commitments to the 
content of the representation are made. 

The slot-and-filler structures described in the previous chapter 
are very general, Indi vidual semantic networks and frame 
systems may have specialized links and inference procedures, 

but there are no hard and fast rules about what kinds of 
objects and links are good in general for knowledge 

representation. Such decisions are left up to the builder of the 
semantic network or frame system. 

The three structures discussed in this chapter, conceptual 
dependency, scripts, and CYC, on the other hand, embody 
specific notions of what types of objects and relations are 

permitted. They stand for powerful theories of how AI programs 
can represent and use knowledge about common situations. 

5.1. Semantic Nets 

The main idea behind semantic nets is that the meaning of a 
concept comes,, from the ways in which it is connected to 

other concepts. In a semantic net, information is represented 
as a set of nodes connected to each other by a set of labeled 

arcs, which 

 

 

Figure 5.1: A Semantic Network 
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represent relationships among the nodes. A fragment of a 

typical semantic net is shown in Figure 5.1. 

This network contains examples of both the isa and instance 

relations, as well as some other, more domain-specific 
relations like team and uniform-color. In this network, we could 

use inheritance to derive the additional relation 

has-part(Pee-Wee-Reese, Nose) 

 

5.1.1 Intersection Search 

One of the early ways that semantic nets were used was to find 

relationships among objects by spreading activation out from 
each of two nodes and seeing where the activation meL This 
process is called intersection search . Using this process, it is 

possible to use the network of Figure 5.1 to answer questions 
such as "What is the connection between the Brooklyn Dodgers 

and blue?"' This kind of reasoning exploits one of the 
important advantages that slot-and-filler structures have over 
purely logical representations because it takes advantage of 

the entity-based organization of knowledge that slot-and-fiiler 
representations provide. 

To answer more structured questions, however, requires 
networks that are themselves more highly structured. In the 
next few sections we expand and refine our notion of a network 

in order to support more sophisticated reasoning. 

5.1.2 Representing Nonbinary Predicates 

Semantic nets are a natural way to represent relationships 
that would appear as ground instances of binary predicates in 
predicate logic For example, some of the arcs from Figure 5.1 

could be represented in logic as 

Actually, to do this we need to assume that the inverses of the 

links we have shown also exist. 
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Figure 5.2: A Semantic Net for an w-Place Predicate 

 

isa(Person, Mammal) 

instance(Pee- Wee-Reese, Person) 

team{Pee-Wee-Reese, Brooklyn-Dodgers) 

uniform-color(Pee-Wee-Reese,Blue) 

But the knowledge expressed by predicates of other arities can 

also be expressed in semantic nets. We have already seen that 
many unary predicates in logic can be thought of as binary 
predicates using some very general-purpose predicates, such 

as isa and instance. So, for ex-ample, 

man(Marcus) could be 

rewritten as 

instance(Marcus, Man) 

thereby making it easy to represent in a semantic net. 

Three or more place predicates can also be converted to a 
binary form by creating one new object representing the entire 

predicate statement and then introducing binary predicates to 
describe the relationship to this new object of each of the 

original arguments. For example, suppose we know that 

score(Cuhs, Dodgers, 5-3) 
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This can be represented in a semantic net by creating a node 
to represent the specific game and then relating each of the 

three pieces of information to it. Doing this produces the 
network shown in Figure 5.2. 

This technique is particularly useful for representing the 
contents of a typical declarative sentence that describes several 
aspects of a particular event. The sentence 

John gave the book to Mary. 

 

Figure 5.3: A Semantic Net Representing a Sentence 

 

could be represented by the network shown in Figure 5.3.2 In 

fact, several of the earliest uses of semantic nets were in 
English-understanding programs. 

5.1.3 Making Some Important Distinctions 

In the networks we have described so far, we have glossed over 
some distinctions that are important in reasoning. For 

example, there should be a difference between a link that 
defines a new entity and one that relates two existing entities. 

Consider the net 
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Both nodes represent objects that exist independently of their 
relationship to each other. But now suppose we want to 

represent the fact that John is taller than Bill, using the net 

 

 

 

The nodes HI and HI are new concepts representing John's 
height and Bill's height, respectively. They are defined by their 

relationships to the nodes John and Bill. Using these defined 
concepts, it is possible to represent such facts as that John's 

height increased, which we could not do before. (The number 
72 increased?) 

Sometimes it is useful to introduce the are value to make this 
distinction clear. Thus we might use the following net to 
represent the fact that John is 6 feet tall and that he is 

The node labeled BK23 represents the particular book that was 
referred to by the phrase "the book." Discovering which 

particular book was meant by that phrase is similar to the 
problem of deciding on the correct referent for a pronoun, and 

it can be a very hard problem. 
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The procedures that operate on nets such as this can exploit 
the fact that some arcs, such as height, define new entities, 

while others, such as greater-than and value, merely describe 
relationships among existing entities. 

Another example of an important distinction we have missed is 

the difference between the properties of a node itself and the 
properties that a node simply holds and passes on to its 

instances. For example, it is a property of the node Person that 
it is a subclass of the node Mammal. But the node Person does 

not have as one of its parts a nose. Instances of the node 
Person do, and we want them to inherit it. 

It is difficult to capture these distinctions without assigning 

more structure to our notions of node, link, and value. In the 
next section, when we talk about frame systems, we do that. 

But first, we discuss a network-oriented solution to a simpler 
problem; 

this solution illustrates what can be done in the network model 

but at what price in complexity. 

5.1.4 Partitioned Semantic Nets 

Suppose we want to represent simple quantified expressions in 
semantic nets. One way to do this is to partition the semantic 
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net into a hierarchical set of spaces, each of which corresponds 

to the scope of one or more variables. To see how this works, 
consider first the simple net shown in Figure 5.4(a). This net 
corresponds to the statement 

The dog bit the mail carrier. 

The nodes Dogs, Bite, and Mail-Carrier represent the classes of 

dogs, bitings, and mail carriers, respectively, while the nodes 
a, h, and m represent a particular dog, a particular biting, and 

a particular mail carrier. This fact can easily be represented by 
a single net with no partitioning. 

But now suppose that we want to represent the fact 

Every dog has bitten a mail carrier. or, in logic: 

 

Figure 5.4: Using Partitioned Semantic Nets 
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V.v : Dog(x) —> 3y : Mail-Carrier^) A Bite(x,y) 

To represent this fact, it is necessary to encode the scope of the 
universally quantified variable x. This can be done using 
partitioning as shown in Figure 5.4(h). The node g stands for 

the assertion given above. Node g is an instance of the special 
class GS of general statements about the world (i.e., those with 

universal quantifiers). Every element of GS has at least two 
attributes: a form, which states the relation that is being 

asserted, and one or more V connections, one for each of the 
universally quantified variables. In this example, there is only 

one such variable d, which can stand for any element of the 
class Dogs. The other two variables in the form, h and m. are 

understood to be existentially quantified. In other words, for 
every dog d, there exists a biting event h, and a mail carrier m, 
such that d is the assailant of b and m is the victim. 

To see how partitioning makes variable quantification explicit, 
consider next the similar sentence: 

Every dog in town has bitten the constable. 

The representation of this sentence is shown in Figure 5.4(c). 

In this net, the node c representing the victim lies outside the 
form of the general statement. Thus it is not viewed as an 
existentially quantified variable whose value may depend on 

the value of d. Instead it is interpreted as standing for a 
specific entity (in this case, a particular 

 

constable), just as do other nodes in a standard, 

nonpartitioned net. Figure 5.4(d} shows how yet 
another similar sentence: 

Every dog has bitten every mail carrier. 

would be represented. In this case, g has two V links, one 
pointing to d, which represents any dog, and one pointing to m, 
representing any mail carrier. 

The spaces of a partitioned semantic net are related to each 

other by an inclusion hierarchy. For example, in Figure 5.4(d), 
space Sl is included in space SA. Whenever a search process 

operates in a partitioned semantic net, it can explore nodes 
and arcs in the space from which it starts and in other spaces 
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that contain the starting point, but it cannot go downward, 
except in special circumstances, such as when a form arc is 

being traversed. So, returning to Figure 5.4(d), from node d it 
can be determined that d must be a dog. But if we were to start 

at the node Dogs and search for all known instances of dogs by 
traversing isa links, we would not find d since it and the link to 

it are in the space Sl, which is at a lower level than space SA, 
which contains Dogs. This is important, since d does not stand 

for a particular dog; it is merely a variable that can be 
instantiated with a value that represents a dog. 

5.1.5 The Evolution into Frames 

The idea of a semantic net started out simply as a way to 

represent labeled connections among entities. But, as we have 
just seen, as we expand the range of problem-solving tasks 
that the representation must support, the representation itself 

necessarily begins to become more complex. In particular, it 
becomes useful to assign more structure to nodes as well as to 

links. Although there is no clear distinction between a 
semantic net and a frame system, the more structure the 
system has, the more likely it is to be termed a frame system. 

In the next section we continue our discussion of structured 
slot-and-filler representations by describing some of the most 

important capabilities that frame systems offer. 

 

5.2. Conceptual Dependency 

Conceptual dependency (often nicknamed CD) is a theory of 
how to represent the kind of knowledge about events that is 

usually contained in natural language sentences. The goal is 
to represent the knowledge in a way that 

• Facilitates drawing inferences from the sentences. 

• Is independent of the language in which the sentences were 
originally stated. 

Because of the two concerns just mentioned, the CD 
representation of a sentence is built not out of primitives 
corresponding to the words used in the sentence, but rather 

out of conceptual primitives that can be combined to form the 
meanings of words in any particular language. The theory was 
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first described in Schank and was further developed in Schank 
It has since been implemented 'n a variety of programs that 

read and understand natural language text. Unlike semantic 
nets, which provide only a structure into which nodes 

representing information at any level can be placed. conceptual 
dependency provides both a structure and a specific set of 
primitives, at a particular level of granularity, out of which 

representations of particular pieces of information can be 
constructed. 

 

 

 

Figure 5.5: A Simple Conceptual Dependency Representation 

As a simple example of the way knowledge is represented in 

CD, the event represented by the sentence 

I gave the man a book. 

would be represented as shown in Figure 5.5 

In CD, representations of actions are built from a set of 
primitive acts. Although there are slight differences in the 

exact set of primitive actions provided in the various sources 
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on CD. a typical set is the following, taken from Schank and 
Abelson: 

ATRANS         Transfer of an abstract relationship (e.g., give) 

PTRANS         Transfer of the physical location of an object 

(e.g., go) 

PROPEL         Application of physical force to an object (e.g., 
push) 

MOVE          Movement of a body pan by its owner (e.g., kick) 

GRASP          Grasping of an object by an actor (e.g., clutch) 

INGEST         Ingestion of an object by an animal (e.g., eat) 

EXPEL          Expulsion of something from the body of an 
animal (e.g., cry) 

MTRANS        Transfer of mental information (e.g., tell) 

MRUILD        Building new information out of old (e.g., decide) 

SPEAK          Production of sounds (e.g., say) 

ATTEND        Focusing of a sense organ toward a stimulus 
(e.g., listen) 

 

A second set of CD building blocks is the set of allowable 

dependencies among the conceptualizations described in a 
sentence. There are four primitive conceptual categories from 
which dependency structures can be built. These are 

 

In addition, dependency structures are themselves 
conceptualizations and can serve as components of larger 

dependency structures. 
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The dependencies among conceptualizations correspond to 
semantic relations among the underlying concepts. Figure 5.6 

lists the most important ones allowed by CD.' The first column 
contains the rules; the second contains examples of their use; 

and the third contains an English version of each example. The 
rules shown in the figure can be interpreted as follows: 

• Rule 1 describes the relationship between an actor and the 

event he or she causes. This is a two-way dependency sinee 
neither actor nor event can be considered primary. The letter p 

above the dependency link indicates past tense. 

• Rule 2 describes the relationship between a PP and a PA that 
is being asserted to describe it. Many state descriptions, such 

as height, are represented in CD as numeric scales. 

• Rule 3 describes the relationship between two PPs, one of 

which belongs to the set defined by the other. 

• Rule 4 describes the relationship between a PP and an 
attribute that has already been predicated of it. The direction 

of the arrow is toward the PP being described. 

• Rule 5 describes the relationship between two PPs, one of 

which provides a particular kind of information about the 
other. The three most common types of information to be 
provided in this way are possession (shown as POSS-BY), 

location (shown as LOC), and physical containment (shown as 
CONT). The direction of the arrow is again toward the concept 

being described. 

• Rule 6 describes the relationship between an ACT and the PP 
that is the object of that ACT. The direction of the arrow is 

toward the ACT since the context of the specific ACT 
determines the meaning of the object relation. 

• Rule 7 describes the relationship between an ACT and the 
source and the recipient of the ACT. 

• Rule 8 describes the relationship between an ACT and the 

instrument with which it is performed. The instrument must 
always be a full conceptualization (i.e., it must contain an 

ACT), not just a single physical object. 
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Figure 5.6: The Dependencies of CD 
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• Rule 9 describes the relationship between an ACT and its 

physical source and destination. 

• Rule 10 represents the relationship between a PP and a state 

in which it started and another in which it ended. 

• Rule 11 describes the relationship between one 
conceptualization and another that causes it. Notice that the 

arrows indicate dependency of one conceptualization on 
another and so point in the opposite direction of the 

implication arrows. The two forms of the rule describe the 
cause of an action and the cause of a state change. 

• Rule 12 describes the relationship between a 

conceptualization and the time at which the event it describes 
occurred. 

• Rule 13 describes the relationship between one 
conceptualization and another that is the time of the first. The 
example for this rule also shows how CD exploits a model of 

the human information processing system; see is represented 
as the transfer of information between the eyes and the 

conscious processor. 

• Rule 14 describes the relationship between a 

conceptualization and the place at which it occurred. 

Conceptualizations representing events can be modified in a 
variety of ways to supply information normally indicated in 

language by the tense, mood, or aspect of a verb form. The use 
of the modifier p to indicate past tense has already been 

shown. The set of conceptual tenses proposed by Schank 
includes 
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As an example of the use of these tenses, consider the CD 
representation shown in Figure 5.7 (taken from Schank [1973]) 

of the sentence 

Since smoking can kill you, I stopped. 

The vertical causality link indicates that smoking kills one. 
Since it is marked c, however, we know only that smoking can 
kill one, not that it necessarily does. The horizontal causality 

link indicates that it is that first causality that made me stop 
smoking. The qualification t attached to the dependency 

between I and INGEST indicates that the smoking (an instance 
of INGESTING) has stopped and that the stopping happened in 
the past. 

 

 

 

Figure 5.7: Using Conceptual Tenses 

There are three important ways in which representing 
knowledge using the conceptual dependency model facilitates 

reasoning with the knowledge: 

1. Fewer inference rules are needed than would be 

required if knowledge were not broken down into 
primitives. 

2. Many inferences are already contained in the 

representation itself. 
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3. The initial structure that is built to represent the 
information contained in one sentence will have holes that 

need to be filled. These holes can serve as an attention 
focuser for the program that must understand ensuing 

sentences. 

Each of these points merits further discussion. 

The first argument in favor of representing knowledge in terms 

of CD primitives rather than in the higher-level terms in which 
it is normally described is that using the primitives makes it 

easier to describe the inference rules by which the knowledge 
can be manipulated. Rules need only be represented once for 
each primitive ACT rather than once for every word that 

describes that ACT. For example, all of the following verbs 
involve a transfer of ownership or an object: 

• Give 

• Take 

• Steal 

• Donate 

If any of them occurs, then inferences about who now has the 

object and who once had the object (and thus who may know 
something about it) may be important. In a CD representation, 
those possible inferences can be slated once and associated 

with the primitive ACT ATRANS. 

A second argument in favor of the use of CD representation is 

that to construct it, we must use not only the information that 
is stated explicitly in a sentence but also a set 
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Figure 5.8: The CD Representation of a Threat 

of inference rules associated with the specific information. 
Having applied these rules once, we store these results as part 

of the representation and they can be used repeatedly without 
the rules being reapplied. For example, consider the sentence 

Bill threatened John with a broken nose. 

The CD representation of the information contained in this 
sentence is shown in Figure 10.4. (For simplicity, believe is 

shown as a single unit. In fact, it must be represented in terms 
of primitive ACTs and a model of the human information 

processing system.) It says that Bill informed John that he 
(Bill) will do something to break John's nose. Bill did this so 
that John will believe that if he (John) does some other thing 

(different from what Bill will do to break his nose), then Bill will 
break John's nose. In this representation, the word "believe" 

has been used to simplify the example. But the! idea behind 
believe can be represented in CD as an MTRANS of a fact into 
John's memory. The actions doj and do^ are dummy 

placeholders that refer to some as yet unspecified actions. 
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A third argument for the use of the CD representation is that 
unspecified elements of the representation of one piece of 

information can be used as a focus for the understanding of 
later events as they are encountered. So, for example, after 

hearing that 

Bill threatened John with a broken nose. 

we might expect to find out what action Bill was trying to 

prevent John from performing. That action could then be 
substituted for the dummy action represented in Figure 5.8 as 

do2. The presence of such dummy objects provides clues as to 
what other events or objects are important for the 
understanding of the known event. 

Of course, there are also arguments against the use of CD as a 
representation formalism. For one thing, it requires that all 

knowledge be decomposed into fairly low-level primitives. We 
discussed how this may be inefficient or perhaps even 
impossible in some situations as we put it, 

CD is a theory of representing fairly simple actions. To 
express, for example, "John bet Sam fifty dollars that 

the Mets would win the World Series" takes about two 
pages of CD forms. This does not seem reasonable. 

Thus, although there are several arguments in favor of the use 

of CD as a model for representing events, it is not always 
completely appropriate to do so, and it may be worthwhile to 

seek out higher-level primitives. 

Another difficulty with the theory of conceptual dependency as 
a general model for the representation of knowledge is that it is 

only a theory of the representation of events. But to represent 
all the information that a complex program may need, it must 

be able to represent other things besides events. There have 
been attempts to define a set of primitives, similar to those of 
CD for actions, that can be used to describe other kinds of 

knowledge. For example, physical objects, which in CD are 
simply represented as atomic units, have been analyzed in 

Lehnert . A similar analysis of social actions is provided in 
several other books. These theories continue the style of 
representation pioneered by CD, but they have not yet been 

subjected to the same amount of empirical investigation (i.e., 
use in real programs) as CD. 
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We have discussed the theory of conceptual dependency in 
some detail in order to illustrate the behavior of a knowledge 

representation system built around a fairly small set of specific 
primitive elements. But CD is not the only such theory to have 

been developed and used in AI programs. For another example 
of a primitive-based system, see Wilks [1972]. 

5.3. Scripts 

CD is a mechanism for representing and reasoning about 
events. But rarely do events occur in isolation. In this section, 

we present a mechanism for representing knowledge about 
common sequences of events. 

A script is a structure that describes a stereotyped sequence of 

events in a particular context. A script consists of a set of slots. 
Associated with each slot may be some information about what 

kinds of values it may contain as well as a default value to be 
used if no other information is available. So far, this definition 

of a script looks very similar to that of a frame given, and at 
this level of detail, the two structures are identical. But now, 
because of the specialized role to be played by a script, we can 

make some more precise statements about its structure. 

5.4. Model Questions 

 1. construct semantric net representations for the   

             following: 

 a. Pompeian(marcus),blacksmith(marcus) 

 b. mary gave the green flowered vase to her favorite  

              cousin. 

2. suppose we want to use a semantic net discover 
relationships that could help in disambiguating the word 
―bank‖ in the sentence 

John went downtown to deposit his money in the bank 

The financial institution meaning for bank should be preferred 
over the river bank meaning. 
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a. Constructing a semantic net that contains 
representations for the relevant concepts. 

b. Show how intersection search could be to find the 
connection between the correct meaning for bank and 

the rest of the sentence more easily than it can find a 
connection with the incorrect meaning. 

3. construct partitioned semantic net representations for the 

following:  

 a. every batter hit a ball 

 b. all the batters like the pitcher. 

4. show a conceptual dependency representation of the 
sentence 

 John begged mary for a pencil 

 How does this representation make it possible to answer 

the question  

 Did john talk to mary? 

5. construct a script for going to a movie from the viewpoint of 

the movie goer. 

6. would conceptual dependency be a good way to represent 

the contents of a typical issue of national geographic? 

7. state where in the CYC ontology following concepts should 
fall: 

 a. cat 

 b. court case. 

 c. new York times 

 d. france 

 e. glass of water. 

8. consider the following paragraph : 
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 Jane was extremely hungry. She thought about going to 
her favorite restaurtant for dinner, but it was the day before 

payday. So instead she decided to go home and  pop a frozen 
pizza in the oven. On the way though , she ran into her friend, 

judy. Judy invited jane to go out to dinner with her jane 
instantly agreed. When they got to their favorite place, they 
found a good table and relaxed over their meal. 

How could the restaurant script be invoked by the contents of 
this story? Trace the process throughout the story. Might any 

other scripts also be invoked? For example, how wouyld your 
answer the question, ―did jane pay for her dinner‖? 
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UNIT - VI 

 

Introduction 

This lecture has two main goals:  

1.  To introduce Prolog's inbuilt abilities for performing 

arithmetic, and  

2.  To apply them to simple list processing problems, using 

accumulators. 

 

Objectives 

To be familiar with   

Arithmetic in Prolog 

  Lists 

Comparing integers 

and other syntactic constructs of PROLOG 

 

6.1 Arithmetic in Prolog 

Prolog provides a number of basic arithmetic tools for 

manipulating integers (that is, numbers of the form ...-3, -2, -1, 
0, 1, 2, 3, 4...). Most Prolog implementation also provide tools 

for handling real numbers (or floating point numbers) such as 
1.53 or  , but we're not going to discuss these, for they are not 
particularly useful for the symbolic processing tasks discussed 

in this course. Integers, on the other hand, are useful for 
various tasks (such as finding the length of a list), so it is 
important to understand how to work with them. We'll start by 

looking at how Prolog handles the four basic operations of 
addition, multiplication, subtraction, and division.  
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Arithmetic examples    Prolog Notation 

8 is 6+2. 

12 is 6*2. 

4 is 6-2. 

-2 is 6-8. 

3 is 6/2. 

3 is 7/2. 

1 is the remainder when 7 is divided by 2 1 is mod(7,2). 

(Note that as we are working with integers, division gives us 
back an integer answer. Thus  

   gives 3 as an answer, leaving a reminder of 1.) 

Posing the following queries yields the following responses:  

 ?- 8 is 6+2.  yes  

 ?- 12 is 6*2.  yes  

 ?- -2 is 6-8.  yes  

 ?- 3 is 6/2. yes  

 ?- 1 is mod(7,2). Yes 

 

More importantly, we can work out the answers to arithmetic 
questions by using variables. For  

example:  

?- X is 6+2.  

 X = 8    

 ?- X is 6*2.  
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X = 12    

 ?- R is mod(7,2).  

 R = 1  

Moreover, we can use arithmetic operations when we define 

predicates. Here's a simple example. Let's define a predicate 
add_3_and_double2/ whose arguments are both integers.  

This predicate takes its first argument, adds three to it, doubles 

the result, and returns the number obtained as the second 
argument. We define this predicate as follows:  

add_3_and_double(X,Y) :- Y is (X+3)*2. 

And indeed, this works:  

?- add_3_and_double(1,X).  

  

X = 8    

 ?- add_3_and_double(2,X).  

 X = 10  

One other thing. Prolog understands the usual conventions we 

use for disambiguating arithmetical expressions. For example, 
when we write   we mean   and not and Prolog knows this 
convention: 

?- X is 3+2*4.  

X = 11  

6.2 A closer look 

That's the basics, but we need to know more. The most 
important to grasp is this: +, *, -,   and mod do not carry out 

any arithmetic. In fact, expressions such as 3+2, 3-2 and 3*2 
are simply terms. The functors of these terms are +, - and * 
respectively, and the arguments are 3 and 2. Apart from the fact 

that the functors go between their arguments (instead of in front  
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of them) these are ordinary Prolog terms, and unless we do 
something special, Prolog will not actually do any arithmetic. In 

particular, if we pose the query  

?- X = 3+2 

we don't get back the answer X=5. Instead we get back  

X = 3+2  

yes 

That is, Prolog has simply bound the variable X to the complex 
term 3+2. It has not carried out any arithmetic. It has simply 
done what it usually does: performed unification Similarly, if  

we pose the query  

?- 3+2*5 = X 

we get the response  

X = 3+2*5    

yes 

Again, Prolog has simply bound the variable X to the complex 
term 3+2*5. It did not evaluate this expression to 13. To force 

Prolog to actually evaluate arithmetic expressions we have to 
use isjust as we did in our in our earlier examples. In fact, is 
does something very special: it sends a signal to Prolog that 

says `Hey! Don't treat this expression as an ordinary complex 
term! Call up your inbuilt arithmetic capabilities and carry out 
the calculations!' 

In short, is forces Prolog to act in an unusual way. Normally 
rolog is quite happy just unifying variables to structures: that's 

its job, after all. Arithmetic is something extra that has been 
bolted on to the basic Prolog engine because it is useful. 
Unsurprisingly, there are some restrictions on this extra ability, 

and we need to know what they are. 

For a start, the arithmetic expressions to be evaluated must be 

on the right hand side of is.  

In our earlier examples we carefully posed the query  
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?- X is 6+2.  

 X = 8  

which is the right way to do it. If instead we had asked  

6+2 is X. 

we would have got an error message saying instantiation_error, 
or something similar get some sort of instantiation_error 
message. And this makes perfect sense. Arithmetic isn't 
performed using Prolog usual unification and knowledge base 
search mechanisms: it's done by calling up a special `black box' 
which knows about integer arithmetic. If we hand the black box 
the wrong kind of data, naturally its going to complain. 

Here's an example. Recall our `add 3 and double it' predicate.  

add_3_and_double(X,Y) :- Y is (X+3)*2. 

When we described this predicate, we carefully said that it 
added 3 to its first argument, doubled the result, and returned 

the answer in its second argument. For example, 
add_3_and_double(3,X) returns X = 12. We didn't say anything 

about using this predicate in the reverse direction. For example, 
we might hope that posing the query add_3_and_double(X,12). 

would return the answer X=3. But it doesn't! Instead we get the 

instantiation_error message. Why? Well, when we pose the 
query this way round, we are asking Prolog to evaluate 12 is 

(X+3)*2, which it can't do as X is not instantiated. 

Two final remarks. As we've already mentioned, for Prolog 3 + 2 
is just a term. In fact, for Prolog, it really is the term +(3,2). The 

expression 3 + 2 is just a user-friendly notation that's nicer for 
us to use. This means that if you really want to, you can give 
Prolog queries like  

X is +(3,2) 

and Prolog will correctly reply  

X = 5 

Actually, you can even given Prolog the query  
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is(X,+(3,2)) 

and Prolog will respond  

X = 5 

This is because, for Prolog, the expression X is +(3,2) is the term 

is(X,+(3,2)). The expression X is +(3,2) is just user friendly 
notation. Underneath, as always, Prolog is just working away 
with terms. 

Summing up, arithmetic in Prolog is easy to use. Pretty much 
all you have to remember is to use is to force evaluation, that 
stuff to be evaluated must goes to the right of is, and to take 

care that any variables are correctly instantiated. But there is a 
deeper lesson that is worth reflecting on. By `bolting on' the 

extra capability to do arithmetic we have further widened the 
distance between the procedural and declarative interpretation 
of Prolog processing. 

6.3 Arithmetic and lists 

Probably the most important use of arithmetic in this course is 

to tell us useful facts about data-structures, such as lists. For 
example, it can be useful to know how long a list is. We'll give 
some examples of using lists together with arithmetic 

capabilities. 

How long is a list? Here's a recursive definition.  

1.  The empty list has length zero. 

2.  A non-empty list has length 1 + len(T), where len(T) is the 
length of its tail. 

This definition is practically a Prolog program already. Here's 
the code we need:  

len([],0).  

len([_|T],N) :- len(T,X), N is X+1. 

This predicate works in the expected way. For example:  

?- len([a,b,c,d,e,[a,b],g],X).  
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X = 7  

Now, this is quite a good program: it's easy to understand and 
efficient. But there is another method of finding the length of a 

list. We'll now look at this alternative, because it introduces the 
idea of accumulators, a standard Prolog technique we will be 
seeing lots more of. 

If you're used to other programming languages, you're probably 
used to the idea of using variables to hold intermediate results. 
An accumulator is the Prolog analog of this idea. 

Here's how to use an accumulator to calculate the length of a 
list. We shall define a predicate  

accLen3/ which takes the following arguments.  

accLen(List,Acc,Length) 

Here List is the list whose length we want to find, and Length is 

its length (an integer).  

What about Acc? This is a variable we will use to keep track of 

intermediate values for length (so it will also be an integer). 
Here's what we do. When we call this predicate, we are going to  

give Acc an initial value of 0. We then recursively work our way 

down the list, adding 1 to Acc each time we find a head element, 
until we reach the empty list. When we do reach the empty set, 
Acc will contain the length of the list. Here's the code:  

accLen([_|T],A,L) :-  Anew is A+1, accLen(T,Anew,L).  

accLen([],A,A). 

The base case of the definition, unifies the second and third 
arguments. Why? There are actually two reasons. The first is 
because when we reach the end of the list, the accumulator (the 

second variable) contains the length of the list. So we give this 
value (via unification) to the length variable (the third variable). 

The second is that this trivial unification gives a nice way of 
stopping the recursion when we reach the empty list. Here's an 
example trace:  
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?- accLen([a,b,c],0,L).  

  Call: (6) accLen([a, b, c], 0, _G449) ?    

  Call: (7) _G518 is 0+1 ?    

  Exit: (7) 1 is 0+1 ?    

  Call: (7) accLen([b, c], 1, _G449) ?    

  Call: (8) _G521 is 1+1 ?    

  Exit: (8) 2 is 1+1 ?    

  Call: (8) accLen([c], 2, _G449) ?    

  Call: (9) _G524 is 2+1 ?    

  Exit: (9) 3 is 2+1 ?    

  Call: (9) accLen([], 3, _G449) ?    

  Exit: (9) accLen([], 3, 3) ?    

  Exit: (8) accLen([c], 2, 3) ?    

  Exit: (7) accLen([b, c], 1, 3) ?    

  Exit: (6) accLen([a, b, c], 0, 3) ?  

As a final step, we'll define a predicate which calls accLen for 
us, and gives it the initial value of 0:  

leng(List,Length) :- accLen(List,0,Length). 

So now we can pose queries like this:  

leng([a,b,c,d,e,[a,b],g],X). 

Accumulators are extremely common in Prolog programs. (We'll 
see another accumulator based program later in this lecture. 
And many more in the rest of the course.) But why is this?  

In what way is accLen better than len? After all, it looks more 
difficult. The answer is that accLen is tail recursive while len is 

not. In tail recursive programs the result is all calculated once 
we reached the bottom of the recursion and just has to be 
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passed up. In recursive programs which are not tail recursive 
there are goals in one level of recursion which have to wait for 

the answer of a lower level of recursion before they can be 
evaluated. To understand this, compare the traces for the 

queries accLen([a,b,c],0,L) (see above) and len([a,b,c],0,L) (given 
below). In the first case the result is built while going into the 
recursion -- once the bottom is reached at accLen([],3,_G449) 

the result is there and only has to be passed up. In the second 
case the result is built while coming out of the recursion -- the 
result of len([b,c], _G481), for instance, is only computed after 

the recursive call of len has been completed and the result of 
len([c], _G489) is known.  

?- len([a,b,c],L).  

  Call: (6) len([a, b, c], _G418) ?    

  Call: (7) len([b, c], _G481) ?    

  Call: (8) len([c], _G486) ?    

  Call: (9) len([], _G489) ?    

  Exit: (9) len([], 0) ?    

  Call: (9) _G486 is 0+1 ?    

  Exit: (9) 1 is 0+1 ?    

  Exit: (8) len([c], 1) ?    

  Call: (8) _G481 is 1+1 ?    

  Exit: (8) 2 is 1+1 ?    

  Exit: (7) len([b, c], 2) ?    

  Call: (7) _G418 is 2+1 ?    

  Exit: (7) 3 is 2+1 ?    

  Exit: (6) len([a, b, c], 3) ?  
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6.4 Comparing integers 

Some Prolog arithmetic predicates actually do carry out 

arithmetic all by themselves (that is, without the assistance of 
is). These are the operators that compare integers.  

Arithmetic examples Prolog Notation 

X < Y. 

X =< Y. 

X =:= Y. 

X =\= Y. 

X >= Y 

X > Y 

These operators have the obvious meaning:  

2 < 4.  

yes  

 2 =< 4.  

yes  

 4 =< 4.  

yes  

 4=:=4.  

yes  

 4=\=5.  

yes  

 4=\=4.  

no  

4 >= 4.  
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yes 

4 > 2.  

Yes 

Moreover, they force both their right-hand and left-hand 

arguments to be evaluated:  

2 < 4+1.  

yes  

 2+1 < 4.  

yes  

 2+1 < 3+2.  

yes 

Note that =:= really is different from =, as the following examples 

show:  

4=4.  

yes  

 2+2 =4.  

no  

 2+2 =:= 4.  

yes 

That is, = tries to unify its arguments; it does not force 

arithmetic evaluation. That's =:='s job. 

For example, all the following queries lead to instantiation 
errors. 

X < 3.  

 3 < Y.  
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X =:= X. 

Moreover, variables have to be instantiated to integers. The 

query  

X = 3, X < 4. 

succeeds. But the query  

X = b, X < 4. 

fails. 

OK, let's now look at an example which puts Prolog's abilities to 
compare numbers to work.  

We're going to define a predicate which takes takes a list of non-

negative integers as its first argument, and returns the 
maximum integer in the list as its last argument. Again, we'll 

use an accumulator. As we work our way down the list, the 
accumulator will keep track of the highest integer found so far. 
If we find a higher value, the accumulator will be updated to 

this new value. When we call the program, we set accumulator 
to an initial value of 0. Here's the code. Note that there are two 

recursive clauses:  

accMax([H|T],A,Max) :-  

   H > A,  

   accMax(T,H,Max).  

  

accMax([H|T],A,Max) :-  

   H =< A,  

   accMax(T,A,Max).  

  

accMax([],A,A). 

The first clause tests if the head of the list is larger than the 

largest value found so far. If it is, we set the accumulator to this 
new value, and then recursively work through the tail of the list. 
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The second clause applies when the head is less than or equal 
to the accumulator; in this case we recursively work through 

the tail of the list using the old accumulator value. Finally, the 
base clause unifies the second and third arguments; it gives the 

highest value we found while going through the list to the last 
argument. Here's how it works:  

accMax([1,0,5,4],0,_5810)    

  

accMax([0,5,4],1,_5810)    

  

accMax([5,4],1,_5810)    

  

accMax([4],5,_5810)    

  

accMax([],5,_5810)    

  

accMax([],5,5)  

Again, it's nice to define a predicate which calls this, and 
initializes the accumulator. But wait:  

what should we initialize the accumulator too? If you say 0, this 

means you are assuming that all the numbers in the list are 
positive. But suppose we give a list of negative integers as  

input. Then we would have  

accMax([-11,-2,-7,-4,-12],0,Max).  

  

Max = 0    

yes 
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This is not what we want: the biggest number on the list is -2. 
Our use of 0 as the initial value of the accumulator has ruined 

everything, because it's bigger than any number on the list. 

There's an easy way around this: since our input list will always 

be a list of integers, simply initialize the accumulator to the ead 
of the list. That way we guarantee that the accumulator is 
initialized to a number on the list. The following predicate does 

this for us:  

max(List,Max) :-    

    List = [H|_],  

    accMax(List,H,Max). 

So we can simply say:  

max([1,2,46,53,0],X).  

  

X = 53  

yes 

And furthermore we have:  

max([-11,-2,-7,-4,-12],X).  

  

X = -2    

yes 

 

6.5 Exercises 

Exercise 6.1 

How does Prolog respond to the following queries?  

1. X = 3*4 
2.   X is 3*4. 
3. 4 is X. 
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4. X = Y. 
5. 3 is 1+2. 

6. 3 is +(1,2) 
7. 3 is X+2. 

8. X is 1+2. 
9. 1+2 is 1+2 
10.is(X,+(1,2)) 

11.3+2 = +(3,2) 
12.*(7,5) = 7*5. 
13.*(7,+(3,2)) = 7*(3+2). 

14.*(7,(3+2)) = 7*(3+2). 
15.*(7,(3+2)) = 7*(+(3,2)). 

 

 
Exercise 6.2 
 

Define a 2-place predicate increment that holds only when its second 
argument is an integer one larger than its first argument. For example,  

increment(4,5) should hold, but increment(4,6) should 
not. 

2.  Define a 3-place predicate sum that holds only when its 
third argument is  

the sum of the first two arguments. For example, sum(4,5,9) 

should hold, but sum(4,6,12)should not. 

Exercise 6.3 

Write a predicate addone2/ whose first argument is a list of 
integers, and whose second argument is the list of integers 
obtained by adding 1 to each integer in the first list. For 

example, the query  

        addone([1,2,7,2],X). 

should give  

X = [2,3,8,3]. 

maximum of a list of integers. By changing the code slightly, 
turn this into a 3-place  
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6.6 Practical Session (optional) 

The purpose of Practical Session 5 is to help you get familiar 

with Prolog's arithmetic capabilities, and to give you some 
further practice in list manipulation. To this end, we suggest the 

following programming exercises:  

In the text we discussed the 3-place predicate accMax which which returned the 
predicate accMin which returns the minimum of a list of integers. 

In mathematics, an n-dimensional vector is a list of 
numbers of length n. For example, 

[2,5,12] is a 3-dimensional vector, and [45,27,3,-4,6] is a 5-
dimensional vector.  

One of the basic operations on vectors is scalar multiplication. 
In this operation, every element of a vector is multiplied by some 
number. For example, if we scalar multiply the 3-dimensional 

vector [2,7,4] by 3 the result is the 3-dimensional vector 
[6,21,12].  

Write a 3-place predicate scalarMult whose first argument is an 
integer, whose second argument is a list of integers, and whose 
third argument is the result of scalar multiplying the second 

argument by the first. For example, the query 
scalarMult(3,[2,7,4],Result). 

should yield  

Result = [6,21,12] 

Another fundamental operation on vectors is the dot product. This 
operation combines two vectors of the same dimension and yields a 

number as a result. The operation is carried out as follows: the 

corresponding elements of the two vectors are multiplied, 
and the results added. For example, the dot product of 

[2,5,6] and [3,4,1] is 6+20 

+6, that is, 32. Write a 3-place predicate dot whose first 

argument is a list of integers, whose second argument is a list of 
integers of the same length as the first, and whose  

third argument is the dot product of the first argument with the 
second. For example,  
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the query  

dot([2,5,6],[3,4,1],Result). 

should yield  

Result = 32 

instead of  

[the,cow,under,the,table,shoots].  

 [a,dead,woman,likes,he].  
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UNIT - 7 

OTHER FEATURES OF PROLOG 

Introduction 

This chapter describes the basic Prolog facts. They are the 

simplest form of Prolog predicates, and are similar to records in 
a relational database. As we will see in the next chapter they 
can be queried like database records.  

Objectives 

To be able to understand and develop prolog scripts to achieve 

the desired effects in artificial intelligence 

 

7.1 FACTS 

The syntax for a fact is  

pred(arg1, arg2, ...  argN). 

where  

pred  

The name of the predicate 

arg1, ... 

The arguments 

N  

The arity The syntactic end of all Prolog clauses  

A predicate of arity 0 is simply pred. 

The arguments can be any legal Prolog term. The basic Prolog 

terms are integer  
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A positive or negative number whose absolute value is less than 
some implementation-specific  

power of 2  

atom  

A text constant beginning with a lowercase letter variable  

Begins with an uppercase letter or underscore (_)structure 
Complex terms 

Various Prolog implementations enhance this basic list with 
other data types, such as floating point  

Numbers, or strings.  

The Prolog character set is made up of  

q     Uppercase letters, A-Z  

q     Lowercase letters, a-z  

q     Symbols, + - * / \ ^ , . ~ : . ? @ # $ &  

q     Digits, 0-9  

Integers are made from digits. Other numerical types are 
allowed in some Prolog implementations.  

Atoms are usually made from letters and digits with the 
first character being a lowercase letter, such as 

hello 

twoWordsTogether 

x14 

For readability, the underscore (_), but not the hyphen (-), can 
be used as a separator in longer names. So  

the following are legal.  

a_long_atom_name 

z_23 
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The following are not legal atoms.  

no-embedded-hyphens 

123nodigitsatbeginning 

_nounderscorefirst 

Nocapsfirst 

Use single quotes to make any character combination a 
legal atom as follows. 

'this-hyphen-is-ok' 

'UpperCase' 

'embedded blanks' 

Do not use double quotes ("") to build atoms. This is a special 

syntax that causes the character string to  

be treated as a list of ASCII character codes.  

Atoms can also be legally made from symbols, as follows.  

--> 

++ 

Variables are similar to atoms, but are distinguished by 
beginning with either an uppercase letter or the  

underscore (_).  

Using these building blocks, we can start to code facts. The 
predicate name follows the rules for atoms.  

The arguments can be any Prolog terms.  

Facts are often used to store the data a program is using. For 
example, a business application might have  

customer/3.  

customer('John Jones', boston, good_credit). 
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customer('Sally Smith', chicago, good_credit). 

The single quotes are needed around the names because they 

begin with uppercase letters and because  

they have embedded blanks.  

example the arguments give the window name and 
coordinates of the upper left and lower right corners 

window(main, 2, 2, 20, 72). 

window(errors, 15, 40, 20, 78). 

A medical diagnostic expert system might have disease/2.  

disease(plague, infectious). 

A Prolog listener provides the means for dynamically recording 

facts and rules in the logicbase, as well  

as the means to query (call) them. The logicbase is updated by 
'consult'ing or 'reconsult'ing program  

source. Predicates can also be typed directly into the listener, 
but they are not saved between sessions.  

Nani Search  

We will now begin to develop Nani Search by defining the basic 
facts that are meaningful for the game.  

These include  

q     The rooms and their connections  

q     The things and their locations  

q     The properties of various things  

q     Where the player is at the beginning of the game  
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Open a new source file and save it as 'myadven.pro', or 

whatever name you feel is appropriate. You will make your 
changes to the program in that source file. (A completed version 
of nanisrch.pro is in the Prolog samples directory, 

samples/prolog/misc_one_file.)  

First we define the rooms with the predicate room/1, which has 
five clauses, all of which are facts. They are based on the game 

map in figure 6.1.  

room(kitchen). 

room(office). 

room(hall). 

room('dining room'). 

room(cellar). 

mean the thing and the second will mean its location. To begin 
with, we will add the following things. 

location(desk, office). 

location(apple, kitchen). 

location(flashlight, desk). 

location('washing machine', cellar). 

location(nani, 'washing machine'). 

location(broccoli, kitchen). 
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location(crackers, kitchen). 

location(computer, office). 

The symbols we have chosen, such as kitchen and desk have 
meaning to us, but none to Prolog. The relationship between the 

arguments should also accurately reflect our meaning.  

For example, the meaning we attach to location/2 is "The first 
argument is located in the second argument." Fortunately 

Prolog considers location(sink, kitchen) and location(kitchen, 
sink) to be different. Therefore, as long as we are consistent in 
our use of arguments, we can accurately represent our meaning 

and avoid the potentially ambiguous interpretation of the 
kitchen being in the sink.  

We are not as lucky when we try to represent the connections 
between rooms. Let's start, however, with door/2, which will 
contain facts such as door(office, hall). 

We would like this to mean "There is a connection from the 
office to the hall, or from the hall to the office."  

accurately represent a two-way connection, we would have to 
define door/2 twice for each connection 

door(office, hall). 

door(hall, office). 

The strictness about order serves our purpose well for location, 
but it creates this problem for connections between rooms. If 

the office is connected to the hall, then we would like the 
reverse to be true as well.  

For now, we will just add one-way doors to the program; we will 
address the symmetry problem again in the next chapter and 
resolve it in chapter 5.  

door(office, hall). 

door(kitchen, office). 

door(hall, 'dining room'). 

door(kitchen, cellar). 
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door('dining room', kitchen). 

 

Here are some other facts about properties of things the game 
player might try to eat.  

edible(apple). 

edible(crackers). 

tastes_yucky(broccoli). 

Finally we define the initial status of the flashlight, and the 
player's location at the beginning of the game.  

turned_off(flashlight). 

here(kitchen). 

We have now seen how to use basic facts to represent data in a 

Prolog program.  

Exercises 

During the course of completing the exercises you will develop 

three Prolog applications in addition to Nani Search. The 
exercises from each chapter will build on the work of previous 

chapters. Suggested solutions to the exercises are contained in 
the Prolog source files listed in the appendix, and are also 
included in samples/prolog/misc_one_file. The files are gene 

A genealogical intelligent logicbase custord 

 

A customer order entry application 

Birds 

An expert system that identifies birds  

Not all applications will be covered in each chapter. For 
example, the expert system requires an understanding of rules 
and will not be started until the end of chapter 5.  

Genealogical Logicbase 
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- First create a source file for the genealogical logicbase 
application. Start by adding a few members of your family tree. 

It is important to be accurate, since we will be exploring family 
relationships. Your own knowledge of who your relatives are will 

verify the correctness of your Prolog programs.  

Start by recording the gender of the individuals. Use two 
separate predicates, male/1 and female/1. For example 

male(dennis). 

male(michael). 

female(diana). 

Remember, if you want to include uppercase characters or 
embedded blanks you must enclose the name in single (not 

double) quotes. For example male('Ghenghis Khan'). 

2- Enter a two-argument predicate that records the parent-child 
relationship. One argument represents the parent, and the 

other the child. It doesn't matter in which order you enter the 
arguments, as long as you are consistent. Often Prolog 

programmers adopt the convention that parent(A,B) is 
interpreted "A is the parent of B". For example  

parent(dennis, michael). 

parent(dennis, diana). 

Customer Order Entry 

3- Create a source file for the customer order entry program. We 

will begin it with three record types (predicates). The first is 
customer/3 where the three arguments are  

arg1  

Customer name 

arg2  

City  

arg3  

Credit rating (aaa, bbb, etc) 
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Add as many customers as you see fit.  

4- Next add clauses that define the items that are for sale. It 

should also have three arguments  

arg1 

Item identification number  

arg2  

Item name 

arg3 

The reorder point for inventory (when at or below this level, 
reorder)  

5- Next add an inventory record for each item. It has two 
arguments.  

arg1 

Item identification number (same as in the item record)  

arg2  

Amount in stock 

7.2 Rules 

We said earlier a predicate is defined by clauses, which may be 
facts or rules. A rule is no more than a stored query. Its syntax 
is  

head :- body. 

where  

head a predicate definition (just like a fact) 

the neck symbol, sometimes read as "if"  

body 

one or more goals (a query) 
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For example, the compound query that finds out where the good 
things to eat are can be stored as a rule with the predicate 

name where_food/2.  

where_food(X,Y) :-   

 location(X,Y), 

 edible(X). 

It states "There is something X to eat in room Y if X is located in 

Y, and X is edible."  

We can now use the new rule directly in a query to find things 
to eat in a room. As before, the semicolon  

(;) after an answer is used to find all the answers.  

?- where_food(X, kitchen). 

X = apple ; 

X = crackers ; 

no 

?- where_food(Thing, 'dining room'). 

no 

Or it can check on specific things 

?- where_food(apple, kitchen). 

yes 

Or it can tell us everything.  

?- where_food(Thing, Room). 

Thing = apple 

Room = kitchen ; 

Thing = crackers 

Room = kitchen ; 
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no 

Just as we had multiple facts defining a predicate, we can have 

multiple rules for a predicate. For example, we might want to 
have the broccoli included in where_food/2. (Prolog doesn't have 

an opinion on whether or not broccoli is legitimate food. It just 
matches patterns.) To do this we add another  

where_food/2 clause for things that 'taste_yucky.'  

where_food(X,Y) :- 

 location(X,Y), 

 edible(X). 

where_food(X,Y) :- 

 location(X,Y), 

 tastes_yucky(X). 

Now the broccoli shows up when we use the semicolon (;) to ask 
for everything.  

?- where_food(X, kitchen). 

X = apple ; 

X = crackers ; 

X = broccoli ; 

no 

Until this point, when we have seen Prolog try to satisfy goals by 
searching the clauses of a predicate, all of the clauses have 
been facts.  

How Rules Work 

With rules, Prolog unifies the goal pattern with the head of the 

clause. If unification succeeds, then Prolog initiates a new query 
using the goals in the body of the clause.  

Rules, in effect, give us multiple levels of queries. The first level 

is composed of the original goals. The next level is a new query 
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composed of goals found in the body of a clause from the first 
level.  

Each level can create even deeper levels. Theoretically, this 
could continue forever. In practice it can continue until the 

listener runs out of space.  

Figure 6.2 shows the control flow after the head of a rule has 
been matched. Notice how backtracking from the third goal of 

the first level now goes into the second level.  

 

In this example, the middle goal on the first level succeeds or 
fails if its body succeeds or fails. When entered from the right 

(redo) the goal reenters its body query from the right (redo). 
When the query fails, the next clause of the first-level goal is 

tried, and if the next clause is also a rule, the process is 
repeated with the second clause's body.  

As always with Prolog, these relationships become clearer by 

studying a trace. Figure 6.3 contains the annotated trace of the 
where_food/2 query. Notice the appearance of a two-part 
number. The first part of the number indicates the query level. 

The second part indicates the number of the goal within the 
query, as before. The parenthetical number is the clause 

number. For example  

2-1 EXIT (7) location(crackers, kitchen) 

means the exit occurred at the second level, first goal using 

clause number seven.  



                                                                                                                      ARTIFICIAL 
                                                                                                                                           INTELLIGENCE 
  NOTES 
 

 

243  

The query is  

?- where_food(X, kitchen). 

First the clauses of where_food/2 are searched. 

1-1 CALL where_food(X, kitchen) 

The pattern matches the head of the first clause, and while it is 
not at a port, the trace could inform us of the clause it is 
working on. 

1-1 try (1) where_food(X, kitchen) 

The body of the first clause is then set up as a query, and the 
trace continues. 

    2-1 CALL location(X, kitchen) 

From this point the trace proceeds exactly as it did for the 

compound query in the previous chapter. 

    2-1 EXIT (2) location(apple, kitchen) 

   2-2 CALL edible(apple) 

   2-2 EXIT (1) edible(apple) 

Since the body has succeeded, the goal from the previous (first) 

level succeeds. 

1-1 EXIT (1) where_food(apple, kitchen) 

     X = apple ; 

Backtracking goes from the first-level goal, into the second level, 
proceeding as before. 

1-1 REDO where_food(X, kitchen) 

   2-2 REDO edible(apple) 

   2-2 FAIL edible(apple) 

   2-1 REDO location(X, kitchen) 

   2-1 EXIT (6) location(broccoli, kitchen) 
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   2-2 CALL edible(broccoli) 

   2-2 FAIL edible(broccoli) 

   2-1 REDO location(X, kitchen) 

   2-1 EXIT (7) location(crackers, kitchen) 

   2-2 CALL edible(crackers) 

   2-2 EXIT (2) edible(crackers) 

1-1 EXIT (1) where_food(crackers, kitchen) 

     X = crackers ; 

Now any attempt to backtrack into the query will result in no 
more answers, and the query will fail 

2-2 REDO edible(crackers) 

   2-2 FAIL edible(crackers) 

   2-1 REDO location(X, kitchen) 

   2-1 FAIL location(X, kitchen) 

This causes the listener to look for other clauses whose heads 

match the query pattern. In our  

example, the second clause of where_food/2 also matches the 

query pattern. 

1-1 REDO where_food(X, kitchen) 

Again, although traces usually don't tell us so, it is building a 

query from the body of the second clause. 

1-1 try (2) where_food(X, kitchen) 

Now the second query proceeds as normal, finding the broccoli, 

which tastes_yucky. 

     2-1 CALL location(X, kitchen) 

    2-1 EXIT (2) location(apple, kitchen) 
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    2-2 CALL tastes_yucky(apple) 

    2-2 FAIL tastes_yucky(apple) 

    2-1 REDO location(X, kitchen) 

    2-1 EXIT (6) location(broccoli, kitchen) 

    2-2 CALL tastes_yucky(broccoli) 

    2-2 EXIT (1) tastes_yucky(broccoli) 

1-1 EXIT (2) where_food(broccoli, kitchen) 

     X = broccoli ; 

Backtracking brings us to the ultimate no, as there are no more 
where_food/2 clauses to try. 

     2-2 REDO tastes_yucky(broccoli) 

    2-2 FAIL tastes_yucky(broccoli) 

    2-1 REDO location(X,kitchen) 

    2-1 EXIT (7) location(crackers, kitchen) 

    2-2 CALL tastes_yucky(crackers) 

    2-2 FAIL tastes_yucky(crackers) 

    2-2 REDO location(X, kitchen) 

     2-2 FAIL location(X, kitchen) 

1-1 REDO where_food(X, kitchen) 

1-1 FAIL where_food(X, kitchen) 

     no 

It is important to understand the relationship between the first-
level and second-level variables in this  

query. These are independent variables, that is, the X in the 
query is not the same as the X that shows up in the body of the 
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where_food/2 clauses, values for both happen to be equal due 
to unification.  

To better understand the relationship, we will slowly step 
through the process of transferring control.  

Subscripts identify the variable levels.  

The goal in the query is  

?- where_food(X1, kitchen) 

The head of the first clause is  

where_food(X2, Y2) 

Remember the 'sleeps' example in chapter 3 where a query with 

a variable was unified with a fact with a variable? Both variables 
were set to be equal to each other. This is exactly what happens 

here. This might be implemented by setting both variables to a 
common internal variable. If either one takes on a new value, 
both take on a new value.  

So, after unification between the goal and the head, the variable 
bindings are  

X1 = _01 

X2 = _01 

Y2 = kitchen 

The second-level query is built from the body of the clause, 
using these bindings.  

location(_01, kitchen), edible(_01). 

When internal variable _01 takes on a value, such as 'apple,' 
both X's then take on the same value. This is fundamentally 

different from the assignment statements that set variable 
values in most computer languages.  

 

 

Using Rules  
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Using rules, we can solve the problem of the one-way doors. We 
can define a new two-way predicate with two clauses, called 

connect/2.  

connect(X,Y) :- door(X,Y). 

connect(X,Y) :- door(Y,X). 

It says "Room X is connected to a room Y if there is a door from 
X to Y, or if there is a door from Y to  

X." Note the implied 'or' between clauses. Now connect/2 
behaves the way we would like.  

?- connect(kitchen, office). 

yes 

?- connect(office, kitchen). 

yes 

We can list all the connections (which is twice the number of 
doors) with a general query.  

?- connect(X,Y). 

X = office 

Y = hall ; 

X = kitchen 

Y = office ; 

... 

X = hall 

Y = office ; 

X = office 

Y = kitchen ; 

... 
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With our current understanding of rules and built-in predicates 
we can now add more rules to Nani Search. We will start with 

look/0, which will tell the game player where he or she is, what 
things are in the room, and which rooms are adjacent.  

To begin with, we will write list_things/1, which lists the things 
in a room. It uses the technique developed at the end of chapter 
4 to loop through all the pertinent facts.  

list_things(Place) :-   

location(X, Place), 

 tab(2), 

 write(X), 

 nl, 

 fail. 

We use it like this.  

?- list_things(kitchen). 

 apple 

 broccoli 

 crackers 

no 

There is one small problem with list_things/1. It gives us the 

list, but it always fails. This is all right if we call it by itself, but 
we won't be able to use it in conjunction with other rules that 
follow it (to the right as illustrated in our diagrams). We can fix 

this problem by adding a second list_things/1 clause which 
always succeeds.  

list_things(Place) :- 

 location(X, Place), 

 tab(2), 

 write(X), 
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 nl, 

 fail. 

list_things(AnyPlace). 

Now when the first clause fails (because there are no more 

location/2s to try) the second list_things/1 clause will be tried. 
Since its argument is a variable it will successfully match with 
anything, causing list_things/1 to always succeed and leave 

through the 'exit' port.  

As with the second clause of list_things/1, it is often the case 
that we do not care what the value of a variable is, it is simply a 

place marker. For these situations there is a special variable 
called the  

anonymous variable, represented as an underscore (_). For 
example  

list_things(_). 

as well as to facts, we can write list_connections/1 just like 
list_things/1 by using the connection/2 rule. 

list_connections(Place) :- 

 connect(Place, X), 

tab(2), 

 write(X), 

 nl, 

 fail. 

list_connections(_). 

Trying it gives us  

?- list_connections(hall). 

 dining room 

 office 
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yes 

Now we are ready to write look/0. The single fact here(kitchen) 

tells us where we are in the game.  

look :- 

 here(Place), 

 write('You are in the '), write(Place), nl, 

 write('You can see:'), nl, 

 list_things(Place), 

 write('You can go to:'), nl, 

 list_connections(Place). 

Given we are in the kitchen, this is how it works.  

?- look. 

You are in the kitchen 

You can see: 

 apple 

 broccoli 

 crackers 

You can go to: 

 office 

 cellar 

 dining room 

yes 

We now have an understanding of the fundamentals of Prolog, 

and it is worth summarizing what we have learned so far. We 
have seen the following about rules in Prolog.  
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q     A Prolog program is a logicbase of interrelated facts and 
rules.  

q     The rules communicate with each other through 
unification, Prolog's built-in pattern matcher.  

q     The rules communicate with the user through built-in 
predicates such as write/1.  

q     The rules can be queried (called) individually from the 

listener.  

We have seen the following about Prolog's control flow.  

q     The execution behavior of the rules is controlled by Prolog's 

built-in backtracking search  

q     We can force backtracking with the built-in predicate fail.  

q     We can force success of a predicate by adding a final 
clause with dummy variables as arguments  

We now understand the following aspects of Prolog 

programming.  

q     Facts in the logicbase (locations, doors, etc.) replace 

conventional data definition.  

q     The backtracking search (list_things/1) replaces the coding 
of many looping constructs.  

q     Passing of control through pattern matching (connect/2) 
replaces conditional test and branch  

q     The rules can be tested individually, encouraging modular 

program development.  

q     Rules that call rules encourage the programming practices 

of procedure abstraction and data  

With this level of understanding, we can make a lot of progress 
on the exercise applications. Take some time to work with the 

programs to consolidate your understanding before moving on 
to the following chapters.  

Exercises  
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Nonsense Prolog 

1- Consider the following Prolog logicbase.  

a(a1,1). 

a(A,2). 

a(a3,N).         

b(1,b1). 

b(2,B). 

b(N,b3). 

c(X,Y) :- a(X,N), b(N,Y). 

d(X,Y) :- a(X,N), b(Y,N). 

d(X,Y) :- a(N,X), b(N,Y). 

Predict the answers to the following queries, then check them 

with Prolog, tracing.  

?- a(X,2). 

?- b(X,kalamazoo). 

?- c(X,b3). 

?- c(X,Y). 

?- d(X,Y). 

Adventure Game 

2- Experiment with the various rules that were developed 

during this chapter, tracing them all.  

3- Write look_in/1 for Nani Search. It should list the things 
located in its argument. For example, look_in 

(desk) should list the contents of the desk.  

4- Build rules for the various family relationships that were 

developed as queries in the last chapter. For example  
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mother(M,C):- 

 parent(M,C), 

 female(M). 

5- Build a rule for siblings. You will probably find your rule lists 

an individual as his/her own sibling.  

Use trace to figure out why.  

6- We can fix the problem of individuals being their own siblings 

by using the built-in predicate that succeeds if two values are 
unequal, and fails if they are the same. The predicate is \=(X,Y). 
Jumping ahead a bit (to operator definitions in chapter 12), we 

can also write it in the form X \= Y.  

7- Use the sibling predicate to define additional rules for 

brothers, sisters, uncles, aunts, and cousins.  

8- If we want to represent marriages in the family logicbase, we 
run into the two-way door problem we encountered in Nani 

Search. Unlike parent/2, which has two arguments with 
distinct meanings, married/2 can have the arguments reversed 

without changing the meaning.  

Using the Nani Search door/2 predicate as an example, add 
some basic family data with a spouse/2 predicate. Then write 

the predicate married/2 using connect/2 as a model.  

9- Use the new married predicate to add rules for uncles and 
aunts that get uncles and aunts by marriage as well as by 

blood. You should have two rules for each of these 
relationships, one for the blood case and one for the marriage 

case. Use trace to follow their behavior.  

10- Explore other relationships, such as those between in-laws.  

11- Write a predicate for grandparent/2. Use it to find both a 

grandparent and a grandchild.  

grandparent(someone, X). 

grandparent(X, someone). 
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Trace its behavior for both uses. Depending on how you wrote 
it, one use will require many more steps than the other. Write 

two predicates, one called grandparent/2 and one called 
grandchild/2. Order the goals in each so that they are efficient 

for their intended uses.  

Customer Order Entry 

12- Write a rule item_quantity/2 that is used to find the 

inventory level of a named item. This shields the user of this 
predicate from having to deal with the item numbers.  

13- Write a rule that produces an inventory report using the 

item_quantity/2 predicate. It should display the name of the 
item and the quantity on hand. It should also always succeed. It 

will be similar to list_things/2.  

14- Write a rule which defines a good customer. You might want 
to identify different cases of a good  

customer.  

Expert Systems 

Expert systems are often called rule-based systems. The rules 
are "rules of thumb" used by experts to solve certain problems. 
The expert system includes an inference engine, which knows 

how to use the rules.  

expert systems. Prolog is an excellent language for building any 
kind of expert system. However, certaintypes of expert systems 

can be built directly using Prolog's native rules. These systems 
are called  

Structured selection systems.  

The code listing for 'birds' in the appendix contains a sample 
system that can be used to identify birds.  

You will be asked to build a similar system in the exercises. It 
can identify anything, from animals to cars to diseases.  

15- Decide what kind of expert system you would like to build, 
and add a few initial identification rules.  
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For example, a system to identify house pets might have these 
rules.  

pet(dog):- size(medium), noise(woof). 

pet(cat):- size(medium), noise(meow). 

pet(mouse):- size(small), noise(squeak). 

16- For now, we can use these rules by putting the known facts 
in the logicbase. For example, if we add  

size(medium) and noise(meow) and then pose the query pet(X) 
we will find X=cat.  

?- size(medium) :- true. 

recorded 

?- noise(meow) :- true. 

recorded 

Jumping ahead, you can also use assert/1 like this  

?- assert(size(medium)). 

yes 

?- assert(noise(meow)). 

yes 

These examples use the predicates in the general form 
attribute(value). In this simple example, the pet attribute is 

deduced. The size and noise attributes must be given.  

17- Improve the expert system by having it ask for the 
attribute/values it can't deduce. We do this by first adding the 

rules  

size(X):- ask(size, X). 

noise(X):- ask(noise, X). 

For now, ask/2 will simply check with the user to see if an 
attribute/value pair is true or false. It will use the built-in 
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predicate read/1 which reads a Prolog term (ending in a period 
of course).  

ask(Attr, Val):- 

 write(Attr),tab(1),write(Val), 

 tab(1),write('(yes/no)'),write(?), 

 read(X), 

 X = yes. 

The last goal, X = yes, attempts to unify X and yes. If yes was 
read, then it succeeds, otherwise, it fails.  

Arithmetic 

Prolog must be able to handle arithmetic in order to be a useful 
general purpose programming language.  

However, arithmetic does not fit nicely into the logical scheme of 
things.  

That is, the concept of evaluating an arithmetic expression is in 

contrast to the straight pattern matching we have seen so far. 
For this reason, Prolog provides the built-in predicate 'is' that 

evaluates arithmetic expressions. Its syntax calls for the use of 
operators.  

X is <arithmetic expression> 

The variable X is set to the value of the arithmetic expression. 
On backtracking it is unassigned.  

The arithmetic expression looks like an arithmetic expression in 

any other programming language.  

Here is how to use Prolog as a calculator.  

?- X is 2 + 2. 

X = 4 

?- X is 3 * 4 + 2. 

X = 14 
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Parentheses clarify precedence.  

?- X is 3 * (4 + 2). 

X = 18 

?- X is (8 / 4) / 2. 

X = 1 

In addition to 'is,' Prolog provides a number of operators that 
compare two numbers. These include 'greater than', 'less than', 

'greater or equal than', and 'less or equal than.' They behave 
more logically, and succeed or fail according to whether the 
comparison is true or false. Notice the order of the symbols in 

the greater or equal than and less than or equal operators. They 
are specifically constructed not to look like an arrow, so that 

you can use arrow symbols in your programs without 
confusion.  

X > Y 

X < Y 

X >= Y 

X =< Y 

Here are a few examples of their use.  

?- 4 > 3. 

yes 

?- 4 < 3. 

no 

?- X is 2 + 2, X > 3. 

X = 4 

?- X is 2 + 2, 3 >= X. 

no 

?- 3+4 > 3*2. 
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yes 

They can be used in rules as well. Here are two example 

predicates. One converts centigrade temperatures to 
Fahrenheit, the other checks if a temperature is below freezing.  

c_to_f(C,F) :- 

 F is C * 9 / 5 + 32. 

freezing(F) :- Here are some examples of their use.  

?- c_to_f(100,X). 

X = 212 

yes 

?- freezing(15). 

yes 

?- freezing(45). 

no 

 

Exercises  

Customer Order Entry 

1- Write a predicate valid_order that checks whether a customer 
order is valid. The arguments should be customer, item, and 
quantity. The predicate should succeed only if the customer is a 

valid customer with a good credit rating, the item is in stock, 
and the quantity ordered is less than the quantity in stock.  

2- Write a reorder/1 predicate which checks inventory levels in 

the inventory record against the reorder quantity in the item 
record. It should write a message indicating whether or not it's 

time to reorder.  

 

Recursion 
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Recursion in any language is the ability for a unit of code to call 
itself, repeatedly, if necessary.  

Recursion is often a very powerful and convenient way of 
representing certain programming constructs.  

In Prolog, recursion occurs when a predicate contains a goal 
that refers to itself.  

As we have seen in earlier chapters, every time a rule is called, 

Prolog uses the body of the rule to create a new query with new 
variables. Since the query is a new copy each time, it makes no 
difference whether a rule calls another rule or itself.  

A recursive definition (in any language, not just Prolog) always 
has at least two parts, a boundary condition and a recursive 

case.  

The boundary condition defines a simple case that we know to 
be true. The recursive case simplifies the problem by first 

removing a layer of complexity, and then calling itself. At each 
level, the boundary condition is checked. If it is reached the 

recursion ends. If not, the recursion continues.  

We will illustrate recursion by writing a predicate that can 
detect things which are nested within other things.  

Currently our location/2 predicate tells us the flashlight is in 
the desk and the desk is in the office, but it does not indicate 
that the flashlight is in the office.  

?- location(flashlight, office). 

no 

Using recursion, we will write a new predicate, 
is_contained_in/2, which will dig through layers of nested 
things, so that it will answer 'yes' if asked if the flashlight is in 

the office.  

To make the problem more interesting, we will first add some 

more nested items to the game. We will continue to use the 
location predicate to put things in the desk, which in turn can 
have other things inside them.  

location(envelope, desk). 
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location(stamp, envelope). 

location(key, envelope). 

To list all of things in the office, we would first have to list those 
things that are directly in the office, like the desk. We would 

then list the things in the desk, and the things inside the things 
in the desk.  

If we generalize a room into being just another thing, we can 

state a two-part rule which can be used to deduce whether 
something is contained in (nested in) something else.  

q     A thing, T1, is contained in another thing, T2, if T1 is 

directly located in T2. (This is the  

q     A thing, T1, is contained in another thing, T2, if some 

intermediate thing, X, is located in 

We will now express this in Prolog. The first rule translates into 
Prolog in a straightforward manner.  

is_contained_in(T1,T2) :-   

 location(T1,T2). 

The recursive rule is also straightforward. Notice that it refers to 
itself.  

is_contained_in(T1,T2) :- 

 location(X,T2), 

 is_contained_in(T1,X). 

Now we are ready to try it.  

?- is_contained_in(X, office). 

X = desk ; 

X = computer ; 

X = flashlight ; 

X = envelope ; 
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X = stamp ; 

X = key ; 

?- is_contained_in(envelope, office). 

yes 

?- is_contained_in(apple, office). 

 

How Recursion Works  

As in all calls to rules, the variables in a rule are unique, or 
scoped, to the rule. In the recursive case, this means each call 
to the rule, at each level, has its own unique set of variables. So 

the values of X, T1, and T2 at the first level of recursion are 
different from those at the second level.  

However, unification between a goal and the head of a clause 
forces a relationship between the variables of different levels. 
Using subscripts to distinguish the variables, and internal 

Prolog variables, we can trace the relationships for a couple of 
levels of recursion.  

First, the query goal is  

?- is_contained_in(XQ, office). 

The clause with variables for the first level of recursion is  

is_contained_in(T11, T21) :- 

 location(X1, T21), 

 is_contained_in(T11, X1). 

When the query is unified with the head of the clause, the 
variables become bound. The bindings are  

XQ = _01 

T11 = _01 

T21 = office 
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X1 = _02 

Note particularly that XQ in the query becomes bound to T11 in 

the clause, so when a value of _01 is found, both variables are 
found.  

With these bindings, the clause can be rewritten as  

is_contained_in(_01, office) :- 

 location(_02, office), 

 is_contained_in(_01, _02). 

When the location/2 goal is satisfied, with _02 = desk, the 
recursive call becomes  

is_contained_in(_01, desk) 

That goal unifies with the head of a new copy of the clause, at 

the next level of the recursion. After that  

unification the variables are  

XQ = _01        T11 = _01       T12 = _01 

               T21 = office    T22 = desk 

               X1 = desk       X2 = _03 

When the recursion finds a solution, such as 'envelope,' all of 
the T1s and X0 immediately take on that  

value. Figure 6.4 contains a full annotated trace of the query. 

The query is  

?- is_contained_in(X, office). 

Each level of the recursion will have its own unique variables, 

but as in all calls to rules, the variables at a called level will be 
bound in some relationship to the variables at the calling level. 

In the following trace, we will use Prolog internal variables, so 
we can see which variables are bound together and which are 
not. The items directly in the office are found easily, as the 

variable _0 is  
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bound to X in the query and T1 in the rule. 

1-1 CALL is_contained_in(_0, office)  

1-1 try (1) is_contained_in(_0, office) 

   2-1 CALL location(_0, office)  

   2-1 EXIT location(desk, office)  

1-1 EXIT is_contained_in(desk, office)  

     X = desk ; 

   2-1 REDO location(_0, office)  

   2-1 EXIT location(computer, office)  

1-1 EXIT is_contained_in(computer, office)  

     X = computer ; 

   2-1 REDO location(_0,office)  

   2-1 FAIL location(_0,office)  

When there are no more location(X, office) clauses, the first 
clause of is_contained_in/2 fails, and the second clause is tried. 

Notice that the call to location does not have its first argument 
bound to the same variable. It was X in the rule, and it gets a 

new internal value, _4. T1 stays bound to _0. 

1-1 REDO is_contained_in(_0, office)  

1-1 try (2) is_contained_in(_0, office) 

   2-1 CALL location(_4, office)  

   2-1 EXIT location(desk, office)  

        3-2 REDO is_contained_in(_0, flashlight)  

       3-2 try (2) is_contained_in(_0, flashlight) 

           4-1 CALL location(_11, flashlight)  

           4-1 FAIL location(_11, flashlight)  
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       3-2 FAIL is_contained_in(_0, flashlight) 

Next, it tries to find things in the envelope and comes up with 

the stamp. 

        3-1 REDO location(_7, desk)  

       3-1 EXIT location(envelope, desk)  

       3-2 CALL is_contained_in(_0, envelope)  

           4-1 CALL location(_0, envelope)  

           4-1 EXIT location(stamp, envelope)  

       3-2 EXIT is_contained_in(stamp, envelope)  

   2-2 EXIT is_contained_in(stamp, desk)  

1-1 EXIT is_contained_in(stamp, office)  

     X = stamp ; 

And then the key. 

            4-1 REDO location(_0,envelope)  

           4-1 EXIT location(key, envelope)  

       3-2 EXIT is_contained_in(key, envelope)  

   2-2 EXIT is_contained_in(key, desk)  

1-1 EXIT is_contained_in(key, office)  

     X = key ; 

And then it fails its way back to the beginning. 

3-2 REDO is_contained_in(_0, envelope)  

       3-2 try (2) is_contained_in(_0, envelope) 

           4-1 CALL location(_11, envelope)  

           4-1 EXIT location(stamp, envelope)  

           4-2 CALL is_contained_in(_0, stamp)  
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               5-1 CALL location(_0, stamp)  

               5-1 FAIL location(_0, stamp)  

           4-2 REDO is_contained_in(_0, stamp)  

           4-2 try(2) is_contained_in(_0, stamp) 

               5-1 CALL location(_14, stamp)  

               5-1 FAIL location(_14, stamp)  

           4-1 REDO location(_11, envelope)  

           4-1 EXIT location(key, envelope)  

4-2 CALL is_contained_in(_0, key)  

           4-2 try (1) is_contained_in(_0, key) 

               5-1 CALL location(_0, key)  

               5-1 FAIL location(_0, key)  

           4-2 REDO is_contained_in(_0, key)  

           4-2 try (2) is_contained_in(_0, key) 

               5-1 CALL location(_14, key)  

               5-1 FAIL location(_14, key)  

           4-1 REDO location(_7, desk)  

           4-1 FAIL location(_7, desk)  

       3-1 REDO location(_4, office)  

       3-1 EXIT location(computer, office)  

       3-2 CALL is_contained_in(_0, computer)  

           4-1 CALL location(_0, computer)  

           4-1 FAIL location(_0, computer)  

       3-2 REDO is_contained_in(_0, computer)  
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           4-1 CALL location(_7, computer)  

           4-1 FAIL location(_7, computer)  

       3-1 REDO location(_4, office)  

       3-1 FAIL location(_4, office)  

      no 

When writing a recursive predicate, it is essential to ensure that 
the boundary condition is checked at each level . Otherwise, the 

program might recurse forever.  

The simplest way to do this is by always defining the boundary 
condition first, ensuring that it is always tried first and that the 

recursive case is only tried if the boundary condition fails.  

Pragmatics  

We now come to some of the pragmatics of Prolog programming. 
First consider that the goal location(X,Y) will be satisfied by 
every clause of location/2. On the other hand, the goals 

location(X, office) or location(envelope, X) will be satisfied by 
fewer clauses.  

Let's look again at the second rule for is_contained_in/2, and an 
equally valid alternate coding.  

is_contained_in(T1,T2):- 

 location(X,T2), 

 is_contained_in(T1,X). 

is_contained_in(T1,T2):- 

 location(T1,X), 

 is_contained_in(X,T2). 

Both will give correct answers, but the performance of each will 
depend on the query. The query is_contained_in(X, office) will 
execute faster with the first version. That is because T2 is 

bound, making the search for location(X, T2) easier than if both 
variables were unbound. Similarly, the second version is faster 

for queries such as is_contained_in(key, X).  
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Exercises  

Adventure Game 

1- Trace the two versions of is_contained_in/2 presented at the 
end of the chapter to understand the performance differences 

between them.  

2- Currently, the can_take/1 predicate only allows the player to 
take things which are directly located in a room. Modify it so it 

uses the recursive is_contained_in/2 so that a player can take 
anything in a room.  

Genealogical Logicbase 

3- Use recursion to write an ancestor/2 predicate. Then trace it 
to understand its behavior. It is possible to write endless loops 

with recursive predicates. The trace facility will help you debug 
ancestor/2 if it is not working correctly.  

- Use ancestor/2 for finding all of a person's ancestors and all of 

a person's descendants. Based on your experience with 
grandparent/2 and grandchild/2, write a descendant/2 

predicate optimized for descendants, as opposed to ancestor/2, 
which is optimized for ancestors.  

Lists 

Lists are powerful data structures for holding and manipulating 
groups of things.  

In Prolog, a list is simply a collection of terms. The terms can be 

any Prolog data types, including structures and other lists. 
Syntactically, a list is denoted by square brackets with the 

terms separated by commas. For example, a list of things in the 
kitchen is represented as [apple, broccoli, refrigerator] This gives 
us an alternative way of representing the locations of things. 

Rather than having separate location predicates for each thing, 
we can have one location predicate per container, with a list of 

things in the container.  

loc_list([apple, broccoli, crackers], kitchen). 

loc_list([desk, computer], office). 

loc_list([flashlight, envelope], desk). 



                                                                                                                      ARTIFICIAL 
                                                                                                                                           INTELLIGENCE 
  NOTES 
 

 

268  

loc_list([stamp, key], envelope). 

 

For lists to be useful, there must be easy ways to access, add, 
and delete list elements. Moreover, we  

loc_list(['washing machine'], cellar). 

loc_list([nani], 'washing machine'). 

There is a special list, called the empty list, which is represented 

by a set of empty brackets ([]). It is also referred to as nil. It can 
describe the lack of contents of a place or thing.  

loc_list([], hall) 

Unification works on lists just as it works on other data 
structures. With what we now know about lists  

we can ask  

?- loc_list(X, kitchen). 

X = [apple, broccoli, crackers]  

?- [_,X,_] = [apples, broccoli, crackers]. 

X = broccoli  

This last example is an impractical method of getting at list 
elements, since the patterns won't unify unless both lists have 
the same number of elements.  

Should not have to concern ourselves about the number of list 
items, or their order 

These two features allow us to write list utility predicates, such 

as member/2, which finds members of a list, and append/3, 
which joins two lists together. List predicates all follow a similar 

strategy--try something with the first element of a list, then 
recursively repeat the process on the rest of the list.  

First, the special notation for list structures.  

[X | Y] 
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When this structure is unified with a list, X is bound to the first 
element of the list, called the head. Y is bound to the list of 

remaining elements, called the tail.  

We will now look at some examples of unification using lists. 

The following example successfully unifies because the two 
structures are syntactically equivalent. Note that the tail is a 
list.  

?- [a|[b,c,d]] = [a,b,c,d]. 

yes 

This next example fails because of misuse of the bar (|) symbol. 

What follows the bar must be a single term, which for all 
practical purposes must be a list. The example incorrectly has 

three terms after the bar.  

?- [a|b,c,d] = [a,b,c,d]. 

no 

Here are some more examples.  

?- [H|T] = [apple, broccoli, refrigerator]. 

H = apple 

T = [broccoli, refrigerator]  

?- [H|T] = [a, b, c, d, e]. 

H = a 

T = [b, c, d, e]  

?- [H|T] = [apples, bananas]. 

H = apples 

T = [bananas]  

In the previous and following examples, the tail is a list with one 
element.  

?- [H|T] = [a, [b,c,d]]. 
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H = a 

T = [[b, c, d]]  

In the next case, the tail is the empty list.  

?- [H|T] = [apples]. 

H = apples 

T = []  

The empty list does not unify with the standard list syntax 

because it has no head.  

?- [H|T] = []. 

no 

NOTE: This last failure is important, because it is often used to 
test for the boundary condition in a recursive routine. That is, 

as long as there are elements in the list, a unification with the 
[X|Y] pattern will succeed. When there are no elements in the 
list, that unification fails, indicating that the boundary 

condition applies.  

We can specify more than just the first element before the bar 

(|). In fact, the only rule is that what follows it should be a list.  

?- [One, Two | T] = [apple, sprouts, fridge, milk]. 

One = apple 

Two = sprouts 

T = [fridge, milk]  

tail of the left-hand list is unified with [Z]. In both cases, Prolog 

looks for the most general way to relate or bind the variables.  

?- [X,Y|T] = [a|Z]. 

X = a 

Y = _01 

T = _03 
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Z = [_01 | _03]  

?- [H|T] = [apple, Z]. 

H = apple 

T = [_01] 

Z = _01  

Study these last two examples carefully, because list unification 
is critical in building list utility predicates.  

A list can be thought of as a head and a tail list, whose head is 
the second element and whose tail is a list whose head is the 
third element, and so on.  

?- [a|[b|[c|[d|[]]]]] = [a,b,c,d]. 

yes 

We have said a list is a special kind of structure. In a sense it is, 
but in another sense it is just like any other Prolog term. The 
last example gives us some insight into the true nature of the 

list. It is really an ordinary two-argument predicate. The first 
argument is the head and the second is the tail. If we called it  

dot/2, then the list [a,b,c,d] would be  

dot(a,dot(b,dot(c,dot(d,[])))) 

In fact, the predicate does exist, at least conceptually, and it is 

called dot, but it is represented by a period (.) instead of dot.  

To see the dot notation, we use the built-in predicate display/1, 
which is similar to write/1, except it always uses the dot syntax 

for lists when it writes to the console.  

?- X = [a,b,c,d], write(X), nl, display(X), nl. 

 [a,b,c,d] 

.(a,.(b,.(c,.d(,[])))) 

?- X = [Head|Tail], write(X), nl, display(X), nl. 

 [_01, _02] 
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.(_01,_02) 

?- X = [a,b,[c,d],e], write(X), nl, display(X), nl. 

 [a,b,[c,d],e] 

.(a,.(b,.(.(c,.(d,[])),.(e,[])))) 

From these examples it should be clear why there is a different 
syntax for lists. The easier syntax makes for easier reading, but 
sometimes obscures the behavior of the predicate. It helps to 

keep this "real" structure of lists in mind when working with 
predicates that manipulate lists.  

This structure of lists is well-suited for the writing of recursive 

routines. The first one we will look at is member/2, which 
determines whether or not a term is a member of a list.  

As with most recursive predicates, we will start with the 
boundary condition, or the simple case. An element is a member 
of a list if it is the head of the list.  

member(H,[H|T]). 

This clause also illustrates how a fact with variable arguments 

acts as a rule.  

The second clause of member/2 is the recursive rule. It says an 
element is a member of a list if it is a member of the tail of the 

list.  

member(X,[H|T]) :- member(X,T). 

The full predicate is  

member(H,[H|T]). 

member(X,[H|T]) :- member(X,T). 

Note that both clauses of member/2 expect a list as the second 
argument. Since T in [H|T] in the second clause is itself a list, 
the recursive call to member/2 works.  

?- member(apple, [apple, broccoli, crackers]). 

yes 
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?- member(broccoli, [apple, broccoli, crackers]). 

yes 

?- member(banana, [apple, broccoli, crackers]). 

no 

The query is  

?- member(b, [a,b,c]). 

1-1 CALL member(b,[a,b,c]) 

The goal pattern fails to unify with the head of the first clause of 
member/2, because the pattern in the head of the first clause 
calls for the head of the list and first argument to be identical. 

The goal pattern can unify with the head of the second clause. 

1-1 try (2) member(b,[a,b,c]) 

The second clause recursively calls another copy of member/2. 

    2-1 CALL member(b,[b,c]) 

It succeeds because the call pattern unifies with the head of the 

first clause. 

    2-1 EXIT (1) member(b,[b,c])  

The success ripples back to the outer level. 1-1 EXIT (2) 
member(b,[a,b,c])  

    yes 

As with many Prolog predicates, member/2 can be used in 
multiple ways. If the first argument is a variable, member/2 
will, on backtracking, generate all of the terms in a given list.  

?- member(X, [apple, broccoli, crackers]). 

X = apple ; 

X = broccoli ; 

X = crackers ; 
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no 

We will now trace this use of member/2 using the internal 

variables. Remember that each level has its own unique 
variables, but that they are tied together based on the 

unification patterns between the goal at one level and the head 
of the clause on the next level.  

In this case the pattern is simple in the recursive clause of 

member. The head of the clause unifies X with the first 
argument of the original goal, represented by _0 in the following 
trace. The body has a call to member/2 in which the first 

argument is also X, therefore causing the next level to unify 
with the  

same _0.  

The query is?- member(X,[a,b,c]). 

The goal succeeds by unification with the head of the first 

clause, if X = a. 

1-1 CALL member(_0,[a,b,c])  

1-1 EXIT (1) member(a,[a,b,c])  

   X = a ; 

Backtracking unbinds the variable and the second clause is 

tried. 

1-1 REDO member(_0,[a,b,c])  

1-1 try (2) member(_0,[a,b,c]) 

It succeeds on the second level, just as on the first level. 

    2-1 CALL member(_0,[b,c])  

Further backtracking causes an attempt to find a member of 
the empty list. The empty list does not  

 

2-1 EXIT (1) member(b,[b,c])  

1-1 EXIT  member(b,[a,b,c])  
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   X = b ; 

Backtracking continues onto the third level, with similar 

results. 

2-1 REDO member(_0,[b,c])  

   2-1 try (2) member(_0,[b,c]) 

       3-1 CALL member(_0,[c])  

       3-1 EXIT (1) member(c,[c])  

   2-1 EXIT (2) member(c,[b,c])  

1-1 EXIT (2) member(c,[a,b,c])  

   X = c ; 

unify with either of the list patterns in the member/2 clauses, 
so the query fails back to the beginning         

3-1 REDO member(_0,[c])  

       3-1 try (2) member(_0,[c]) 

           4-1 CALL member(_0,[]) 

           4-1 FAIL member(_0,[]) 

       3-1 FAIL member(_0,[c]) 

   2-1 FAIL member(_0,[b,c]) 

1-1 FAIL member(_0,[a,b,c]) 

    no 

Another very useful list predicate builds lists from other lists or 
alternatively splits lists into separate pieces. This predicate is 
usually called append/3. In this predicate the second argument 

is appended to the first argument to yield the third argument. 
For example  

?- append([a,b,c],[d,e,f],X). 

X = [a,b,c,d,e,f] 
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reducing the first list recursively The boundary condition states 
that if a list X is appended to the empty list, the resulting list is 

also X.  

append([],X,X). 

The recursive condition states that if list X is appended to list 
[H|T1], then the head of the new list is also  

H, and the tail of the new list is the result of appending X to the 

tail of the first list.  

append([H|T1],X,[H|T2]) :- 

 append(T1,X,T2). 

The full predicate is  

append([],X,X). 

append([H|T1],X,[H|T2]) :- 

append(T1,X,T2). 

Real Prolog magic is at work here, which the trace alone does 

not reveal. At each level, new variable bindings are built, that 
are unified with the variables of the previous level. Specifically, 

the third argument in the recursive call to append/3 is the tail 
of the third argument in the head of the clause.  

These variable relationships are included at each step in the 

annotated trace shown in Figure 6.7.  

The query is  

?- append([a,b,c],[d,e,f],X). 

1-1 CALL append([a,b,c],[d,e,f],_0) 

   X = _0 

   2-1 CALL append([b,c],[d,e,f],_5) 

       _0 = [a|_5] 

       3-1 CALL append([c],[d,e,f],_9) 
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           _5 = [b|_9] 

           4-1 CALL append([],[d,e,f],_14) 

               _9 = [c|_14] 

By making all the substitutions of the variable relationships, we 

can see that at this point X is bound as follows (thinking in 
terms of the dot notation for lists might make append/3 easier 
to understand). 

X = [a|[b|[c|_14]]] 

We are about to hit the boundary condition, as the first 
argument has been reduced to the empty list.  

Unifying with the first clause of append/3 will bind _14 to a 
value, namely [d,e,f], thus giving us the desired result for X, as 

well as all the other intermediate variables. Notice the bound 
third arguments at each level, and compare them to the 
variables in the call ports above. 

            4-1 EXIT (1) append([],[d,e,f],[d,e,f]) 

       3-1 EXIT (2) append([c],[d,e,f],[c,d,e,f]) 

   2-1 EXIT (2) append([b,c],[d,e,f],[b,c,d,e,f]) 

1-1 EXIT (2)append([a,b,c],[d,e,f],[a,b,c,d,e,f]) 

   X = [a,b,c,d,e,f]  

Like member/2, append/3 can also be used in other ways, for 
example, to break lists apart as follows.  

?- append(X,Y,[a,b,c]). 

X = [] 

Y = [a,b,c] ; 

X = [a] 

Y = [b,c] ; 

X = [a,b] 
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Y = [c] ; 

X = [a,b,c] 

Y = [] ; 

no 

Using the List Utilities  

Now that we have tools for manipulating lists, we can use them. 
For example, if we choose to use loc_list/2 instead of location/2 

for storing things, we can write a new location/2 that behaves 
exactly like the old one, except that it computes the answer 
rather than looking it up. This illustrates the sometimes fuzzy 

line between data and procedure. The rest of the program 
cannot tell how location/2 gets its results, whether as data or 

by computation. In either case it behaves the same, even on 
backtracking.  

location(X,Y):-   

 loc_list(List, Y), 

 member(X, List). 

In the game, it will be necessary to add things to the loc_lists 
whenever something is put down in a room. We can write 
add_thing/3 which uses append/3. If we call it with NewThing 

and Container, it will provide us with the NewList.  

add_thing(NewThing, Container, NewList):-   

 loc_list(OldList, Container), 

 append([NewThing],OldList, NewList). 

Testing it gives  

?- add_thing(plum, kitchen, X). 

X = [plum, apple, broccoli, crackers] 

However, this is a case where the same effect can be achieved 

through unification and the [Head|Tail] list notation.  

add_thing2(NewThing, Container, NewList):-  
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   loc_list(OldList, Container), 

 NewList = [NewThing | OldList]. 

It works the same as the other one.  

?- add_thing2(plum, kitchen, X). 

X = [plum, apple, broccoli, crackers] 

We can simplify it one step further by removing the explicit 
unification, and using the implicit unification that occurs at the 

head of a clause, which is the preferred form for this type of 
predicate.  

add_thing3(NewTh, Container,[NewTh|OldList]) :- 

 loc_list(OldList, Container). 

It also works the same.  

?- add_thing3(plum, kitchen, X). 

X = [plum, apple, broccoli, crackers] 

In practice, we might write put_thing/2 directly without using 

the separate add_thing/3 predicate to build a new list for us.  

put_thing(Thing,Place) :- 

 retract(loc_list(List, Place)), 

 asserta(loc_list([Thing|List],Place)). 

situations. Sometimes backtracking over multiple predicates 

You might find that some parts of a particular application fit 
better with multiple facts in the logicbase and other parts fit 
better with lists. In these cases it is useful to know how to go 

from one format to the other.  

Going from a list to multiple facts is simple. You write a 

recursive routine that continually asserts the head of the list. In 
this example we create individual facts in the predicate stuff/1.  

break_out([]). 

break_out([Head | Tail]):- 
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 assertz(stuff(Head)), 

 break_out(Tail). 

Here's how it works.  

?- break_out([pencil, cookie, snow]). 

yes 

?- stuff(X). 

X = pencil ; 

X = cookie ; 

X = snow ; 

no 

Transforming multiple facts into a list is more difficult. For this 
reason most Prologs provide built-in predicates that do the job. 

The most common one is findall/3. The arguments are  

arg1  

A pattern for the terms in the resulting list  

arg2 

A goal pattern  

arg3  

The resulting list  

findall/3 automatically does a full backtracking search of the 

goal pattern and stores each result in the list. It can recover our 
stuff/1 back into a list.  

?- findall(X, stuff(X), L). 

L = [pencil, cookie, snow] 

Fancier patterns are available. This is how to get a list of all the 

rooms connecting to the kitchen.  
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?- findall(X, connect(kitchen, X), L). 

L = [office, cellar, 'dining room'] 

potential ambiguity. Here findall/3 builds a list of structures 
that locates the edible things?- findall(foodat(X,Y), (location(X,Y), 

edible(X)), L). 

L = [foodat(apple, kitchen), foodat(crackers, kitchen)] 

Exercises  

List Utilities 

1- Write list utilities that perform the following functions.  

q     Remove a given element from a list  

q     Find the element after a given element  

q     Split a list into two lists at a given element (Hint - 

append/3 is close.)  

q     Get the last element of a list  

Count the elements in a list (Hint - the length of the empty list 

is 0, the length a non-empty list is  

1 + the length of its tail.)  

2- Because write/1 only takes a single argument, multiple 
'writes' are necessary for writing a mixed string of text and 
variables. Write a list utility respond/1 which takes as its single 

argument a list of terms to be written. This can be used in the 
game to communicate with the player. For example 
respond(['You can''t get to the', Room, 'from here']) 

3- Lists with a variable tail are called open lists. They have some 
interesting properties. For example, member/2 can be used to 

add items to an open list. Experiment with and trace the 
following queries.  

?- member(a,X). 

?- member(b, [a,b,c|X]). 

?- member(d, [a,b,c|X]). 
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?- OpenL = [a,b,c|X], member(d, OpenL), write(OpenL). 

Nonsense Prolog 

4- Predict the results of the following queries.  

?- [a,b,c,d] = [H|T]. 

?- [a,[b,c,d]] = [H|T]. 

?- [] = [H|T]. 

?- [a] = [H|T]. 

?- [apple,3,X,'What?'] = [A,B|Z]. 

?- [[a,b,c],[d,e,f],[g,h,i]] = [H|T]. 

?- [a(X,c(d,Y)), b(2,3), c(d,Y)] = [H|T]. 

Genealogical Logicbase 

5- Consider the following Prolog program  

parent(p1,p2). 

parent(p2,p3). 

parent(p3,p4). 

parent(p4,p5). 

ancestor(A,D,[A]) :- parent(A,D). 

ancestor(A,D,[X|Z]) :- 

       parent(X,D), 

       ancestor(A,X,Z). 

- What is the purpose of the third argument to ancestor? 

7- Predict the response to the following queries. Check by 
tracing in Prolog.  

?- ancestor(a2,a3,X). 

?- ancestor(a1,a5,X). 
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?- ancestor(a5,a1,X). 

?- ancestor(X,a5,Z). 

Expert System 

8- Lists provide a convenient way to provide a simple menu 

capability to our expert system. We can replace the 'ask' 
predicate with menuask/3 where appropriate. menuask/3 will 
ask the player to select an item from a menu. The format is 

menuask(Attribute, Value, List_of_Choices). 

For example  

size(X):- menuask(size, X, [large, medium, small]). 

This requires two intermediate predicates, menu_display/2 and 
menu_select/2. The first writes each choice on a separate line 

preceded by a unique number. The second uses a number 
entered by the user to return the "nth" element of the list.  

Operators 

We have seen that the form of a Prolog data structure is  

functor(arg1,arg2,...,argN). 

This is the ONLY data structure in Prolog. However, Prolog 
allows for other ways to syntactically represent the same data 
structure. These other representations are sometimes called 

syntactic sugaring.  

The equivalence between list syntax and the dot (.) functor is 
one example. Operator syntax is another.  

Chapter 6 introduced arithmetic operators. In this chapter we 
will equate them to the standard Prolog data structures, and 

learn how to define any functor to be an operator.  

Each arithmetic operator is an ordinary Prolog functor, such as 
-/2, +/2, and -/1. The display/1 predicate can be used to see 

the standard syntax.  

?- display(2 + 2). 

+(2,2) 
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?- display(3 * 4 + 6). 

+(*(3,4),6) 

?- display(3 * (4 + 6)). 

*(3,+(4,6)) 

You can define any functor to be an operator, in which case the 
Prolog listener will be able to read the structure in a different 
format. For example, if location/2 was an operator we could 

write apple location kitchen. 

instead of  

location(apple, kitchen). 

NOTE: The fact that location is an operator is of NO significance 
to Prolog's pattern matching. It simply means there is an 

alternative way of writing the same term.  

Operators are of three types.  

 infix  

Example: 3 + 4 

prefix  

Example: -7 postfix  

Example: 8 factorial  

They have a number representing precedence which runs from 

1 to 1200. When a term with multiple operators is converted to 
pure syntax, the operators with higher precedences are 
converted first. A high precedence is indicated by a low number.  

Operators are defined with the built-in predicate op/3, whose 
three arguments are precedence, associativity, and the operator 

name.  

Associativity in the second argument is represented by a pattern 
that defines the type of operator. The first example we will see is 

the definition of an infix operator which uses the associativity 
pattern 'xfx.'  
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The 'f' indicates the position of the operator in respect to its 
arguments. We will see other patterns as we proceed.  

For our current purposes, we will again rework the location/2 
predicate and rename it is_in/2 to go with its new look, and we 

will represent rooms in the structure room/1.  

is_in(apple, room(kitchen)). 

We will now make is_in/2 an infix operator of arbitrary 

precedence 35.  

?- op(35,xfx,is_in). 

Now we can ask  

?- apple is_in X. 

X = room(kitchen) 

or  

?- X is_in room(kitchen). 

X = apple 

We can add facts to the program in operator syntax.  

banana is_in room(kitchen). 

To verify that Prolog treats both syntaxes the same we can 
attempt to unify them.  

?- is_in(banana, room(kitchen)) = banana is_in room(kitchen). 

yes 

And we can use display/1 to look at the new syntax.  

?- display(banana is_in room(kitchen)). 

is_in(banana, room(kitchen)) 

Let's now make room/1 a prefix operator. Note that in this case 

the associativity pattern fx is used to indicate the functor comes 
before the argument. Also we chose a precedence (33) higher 
(higher precedence has lower number) than that used for is_in 
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(35) in order to nest the room structure inside the is_in 
structure.  

?- op(33,fx,room). 

Now room/1 is displayed in operator syntax.  

?- room kitchen = room(kitchen). 

yes 

?- apple is_in X. 

X = room kitchen\ 

The operator syntax can be used to add facts to the program.  

pear is_in room kitchen. 

?- is_in(pear, room(kitchen)) = pear is_in room kitchen. 

yes 

?- display(pear is_in room kitchen). 

is_in(pear, room(kitchen)) 

CAUTION: If you mix up the precedence (easy to do) you will get 

strange bugs. If room/1 had a lower precedence (higher 
number) than is_in/2, then the structure would be 

room(is_in(apple, kitchen)) 

Not only doesn't this capture the information as intended, it 
also will not unify the way we want.  

For completeness, an example of a candidate for a postfix 
operator would be turned_on. Again note that the 'xf' pattern 
says that the functor comes after the argument.  

?- op(33,xf,turned_on). 

We can now say  

flashlight turned_on. 

and  
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?- turned_on(flashlight) = flashlight turned_on. 

yes 

Operators are useful for making more readable data structures 
in a program and for making quick and easy user interfaces.  

In our command-driven Nani Search, we use a simple natural 
language front end, which will be described in the last chapter. 
We could have alternatively made the commands operators so 

that  

goto(kitchen)  

becomes goto kitchen.  

turn_on(flashlight)  

becomes turn_on flashlight. take(apple)  

becomes take apple.  

It's not natural language, but it's a lot better than parentheses 
and commas.  

We have seen how the precedence of operators affects their 
translation into structures. When operators are of equal 

precedence, the Prolog reader must decide whether to work from 
left to right, or right to left.  

This is the difference between right and left associativity.  

An operator can also be non-associative, which means an error 
is generated if you try to string two together.  

The same pattern used for precedence is used for associativity 

with the additional character y. The options are  

Infix:  

xfx non-associative 

xfy right to left 

yfx left to right  

Prefix fx non-associative 
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fy left to right  

Postfix:  

xf non-associative 

yf right to left  

The is_in/2 predicate is currently non-associative so this gets 
an error.  

key is_in desk is_in office. 

To represent nesting, we would want this to be evaluated from 
right to left.  

?- op(35,xfy,is_in). 

yes 

?- display(key is_in desk is_in office). 

is_in(key, is_in(desk, office)) 

If we set it left to right the arguments would be different.  

yes?- display(key is_in desk is_in office). 

is_in(is_in(key, desk), office) 

We can override operator associativity and precedence with 

parentheses. Thus we can get our left to  

right is_in to behave right to left like so.  

?- display(key is_in (desk is_in office)). 

is_in(key, is_in(desk, office)) 

Many built-in predicates are actually defined as infix operators. 
That means that rather than following the standard 

predicate(arg1,arg2) format, the predicate can appear between 
the arguments as arg1 predicate arg2. 

The arithmetic operators we have seen already illustrate this. 
For example +, -, *, and / are used as you would expect. 
However, it is important to understand that these arithmetic 
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structures are just structures like any others, and do not imply 
arithmetic evaluation. 3 + 4 is not the same as 7 any more than 

plus 

(3,4) is or likes(3,4). It is just +(3,4).  

Only special built-in predicates, like is/2, actually perform an 
arithmetic evaluation of an arithmetic expression. As we have 
seen, is/2 causes the right side to be evaluated and the left side 

is unified with the evaluated result.  

This is in contrast to the unification (=) predicate, which just 
unifies terms without evaluating them.  

?- X is 3 + 4. 

X = 7 

?- X = 3 + 4. 

X = 3 + 4 

?- 10 is 5 * 2. 

yes 

?- 10 = 5 * 2. 

no 

Arithmetic expressions can be as arbitrarily complex as other 
structures.  

?- X is 3 * 4 + (6 / 2). 

X = 15 

Even if they are not evaluated.  

?- X = 3 * 4 + (6 / 2). 

X = 3 * 4 + (6 / 2) 

The operator predicates can also be written in standard 
notation.  

?- X is +(*(3,4) , /(6,2)). 
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X = 15 

?- 3 * 4 + (6 / 2) = +(*(3,4),/(6,2)). 

yes 

To underscore that these arithmetic operators are really 

ordinary predicates with no special meaning unless being 
evaluated by is/2, consider  

?- X = 3 * 4 + likes(john, 6/2). 

X = 3 * 4 + likes(john, 6/2). 

?- X is 3 * 4 + likes(john, 6/2). 

error 

We have seen that Prolog programs are composed of clauses. 
These clauses are simply Prolog data structures written with 

operator syntax. The functor is the neck (:-) which is defined as 
an infix operator.  

There are two arguments.  

:-(Head, Body). 

The body is a data structure with the functor 'and' represented 

by a comma (,). The body looks like  

,(goal1, ,(goal2,,goal3)) 

&(goal1, &(goal2, & goal3)) 

and the following would be equivalent.  

head :- goal1 & goal2 & goal3. 

:-(head, &(goal1, &(goal2, & goal3))). 

But that is not how it was done, so the two forms are  

head :- goal1 , goal2 , goal3. 

:-(head, ,(goal1, ,(goal2, , goal3))). 

Every other comma has a different meaning.  
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The arithmetic operators are often used by Prolog programmers 
to syntactically join related terms. For example, the write/1 

predicate takes only one argument, but operators give an easy 
way around this restriction.  

?- X = one, Y = two, write(X-Y). 

one - two  

The slash (/) can be used the same way. In addition, some 

Prologs define the colon (:) as an operator just for this purpose. 
It can improve readability by removing some parentheses. For 
example, the complex structures for defining things in the game 

can be syntactically represented with the colon as well.  

object(apple, size:small, color:red, weight:1). 

A query looking for small things would be expressed  

?- object(X, size:small, color:C, weight:W). 

X = apple 

C = red 

W = 1  

The pattern matching is the same as always, but instead of 
size(small) we use the pattern size:small,  

which is really :(size,small).  

 

Exercises  

Adventure Game 

1- Define all of the Nani Search commands as operators so the 
current version of the game can be played without parentheses 

or commas.  

Genealogical Logicbase 

2- Define the various relationships in the genealogical logicbase 

as operators.  
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Cut 

Up to this point, we have worked with Prolog's backtracking 

execution behavior. We have seen how to use that behavior to 
write compact predicates.  

Sometimes it is desirable to selectively turn off backtracking. 
Prolog provides a predicate that performs this function. It is 
called the cut, represented by an exclamation point (!).  

The cut effectively tells Prolog to freeze all the decisions made so 
far in this predicate. That is, if required to backtrack, it will 
automatically fail without trying other alternatives.  

 

 

 

 

We will first examine the effects of the cut and then look at 
some practical reasons to use it.  

When the cut is encountered, it re-routes backtracking, as 
shown in figure 6.8. It short-circuits backtracking in the goals 
to its left on its level, and in the level above, which contained 

the cut. That is, both the parent goal (middle goal of top level) 
and the goals of the particular rule being executed (second level) 

are affected by the cut. The effect is undone if a new route is 
taken into the parent goal.  
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Contrast figure 6.8 with figure 6.2.  

We will write some simple predicates that illustrate the behavior 

of the cut, first adding some data to  

backtrack over.  

data(one). 

data(two). 

data(three). 

Here is the first test case. It has no cut and will be used for 
comparison purposes.  

cut_test_a(X) :- 

 data(X). 

cut_test_a('last clause'). 

This is the control case, which exhibits the normal behavior.  

?- cut_test_a(X), write(X), nl, fail. 

one 

two 

three 

last clause 

no 

Next, we put a cut at the end of the first clause.  

cut_test_b(X) :- 

 data(X), 

 !. 

cut_test_b('last clause'). 

Note that it stops backtracking through both the data/1 

subgoal (left), and the cut_test_b parent (above).  
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?- cut_test_b(X), write(X), nl, fail. 

one 

no 

Next we put a cut in the middle of two subgoals.  

cut_test_c(X,Y) :- 

 data(X), 

 !, 

 data(Y). 

cut_test_c('last clause'). 

Note that the cut inhibits backtracking in the parent cut_test_c 

and in the goals to the left of (before) the cut (first data/1). The 
second data/1 to the right of (after) the cut is still free to 

backtrack.  

?- cut_test_c(X,Y), write(X-Y), nl, fail. 

one - one 

one - two 

one - three 

no 

Performance is the main reason to use the cut. This separates 
the logical purists from the pragmatists.  

Various arguments can also be made as to its effect on code 
readability and maintainability. It is often called the 'goto' of 
logic programming.  

You will most often use the cut when you know that at a certain 
point in a given predicate, Prolog has either found the only 

answer, or if it hasn't, there is no answer. In this case you insert 
a cut in the predicate at that point.  
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Similarly, you will use it when you want to force a predicate to 
fail in a certain situation, and you don't want it to look any 

further.  

Using the Cut  

We will now introduce to the game the little puzzles that make 
adventure games fun to play. We will put them in a predicate 
called puzzle/1. The argument to puzzle/1 will be one of the 

game commands, and puzzle/1 will determine whether or not 
there are special constraints on that command, reacting 
accordingly.  

We will see examples of both uses of the cut in the puzzle/1 
predicate. The behavior we want is  

q     If there is a puzzle, and the constraints are met, quietly 
succeed.  

q     If there is a puzzle, and the constraints are not met, noisily 

fail. 

q     If there is no puzzle, quietly succeed.  

The puzzle in Nani Search is that in order to get to the cellar, 
the game player needs to both have the flashlight and turn it 
on. If these criteria are met we know there is no need to ever 

backtrack through puzzle/1 looking for other clauses to try. For 
this reason we include the cut.  

puzzle(goto(cellar)):- 

 have(flashlight), 

 turned_on(flashlight), 

 !. 

If the puzzle constraints are not met, then let the player know 
there is a special problem. In this case we also want to force the 

calling predicate to fail, and we don't want it to succeed by 
moving to other clauses of puzzle/1. Therefore we use the cut to 

stop backtracking, and we follow it with fail.  

puzzle(goto(cellar)):- 
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 write('It''s dark and you are afraid of the dark.'), 

 !, fail. 

The final clause is a catchall for those commands that have no 
special puzzles associated with them.  

They will always succeed in a call to puzzle/1.  

puzzle(_). 

For logical purity, it is always possible to rewrite the predicates 

without the cut. This is done with the built-in predicate not/1. 
Some claim this provides for clearer code, but often the explicit 
and liberal use of 'not' clutters up the code, rather than 

clarifying it.  

When using the cut, the order of the rules becomes important. 

Our second clause for puzzle/1 safely prints an error message, 
because we know the only way to get there is by the first clause 
failing before it reached the cut.  

The third clause is completely general, because we know the 
earlier clauses have caught the special cases.  

If the cuts were removed from the clauses, the second two 
clauses would have to be rewritten.  

puzzle(goto(cellar)):- 

 not(have(flashlight)), 

 not(turned_on(flashlight)), 

 write('Scared of dark message'), 

 fail. 

puzzle(X):- 

 not(X = goto(cellar)). 

In this case the order of the clauses would not matter.  

It is interesting to note that not/1 is defined using the cut. It 

also uses call/1, another built-in predicate  
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that calls a predicate.  

not(X) :- call(X), !, fail. 

not(X). 

In the next chapter we will see how to add a command loop to 

the game. Until then we can test the puzzle predicate by 
including a call to it in each individual command. For example  

goto(Place) :-  

 puzzle(goto(Place)), 

 can_go(Place), 

 move(Place), 

 look. 

Assuming the player is in the kitchen, an attempt to go to the 

cellar will fail.  

?- goto(cellar). 

It's dark and you are afraid of the dark. 

no 

?- goto(office). 

You are in the office... 

Then if the player takes the flashlight, turns it on, and return to 
the kitchen, all goes well.  

?- goto(cellar). 

You are in the cellar...  

 

Exercises  

Adventure Game 
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1- Test the puzzle/1 predicate by setting up various game 
situations and seeing how it responds. When testing predicates 

with cuts you should always use the semicolon (;) after each 
answer to make sure it behaves correctly on backtracking. In 

our case puzzle/1 should always give one response and fail on 
backtracking.  

2- Add your own puzzles for different situations and commands.  

Expert System 

3- Modify the ask and menu ask predicates to use cut to replace 
the use of not.  

 

Customer Order Entry 

4- Modify the good_customer rules to use cut to prevent the 
search of other cases once we know one has been found. 

Model questions: 

1. for the following facts and recursive predicate, state what 

order solutions to the given query are returned:  

on_top_of(prolog_book, desk). 

on_top_of(ai_notes, prolog_book). 

on_top_of(time_table, ai_notes). 

on_top_of(ai_book, desk). 

above(X,Y) :- on_top_of(X,Y). 

above(X,Y) :- on_top_of(X,Z), 

       above(Z,Y). 

?- above(Object, desk). 

2. What will happen if you try the following program/query:  

above(prolog_book, desk). 
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above(ai_notes, prolog_book). 

above(time_table, ai_notes). 

 

above(X,Y) :- above(X,Z), 

       above(Z,Y). 

 

?- above(desk, ai_notes). 

 

To check you understand terms, unification and backtracking 
try the following. I may ask questions like these in the exam! 

(though they wouldn't be worth many marks).  

1. Which of the following are valid Prolog terms:  

 23  

 foo(X, bar(+(3,4)))  

 Foo(x)  

 +(fred, jim)  

 1+2.  

 Alison Cawsey  

 

2. Which of the following match, and for the ones that match, 
what are the resultant bindings.  

 a(1, 2) = a(X, X).  

 a(X, 3) = a(4, Y).  



                                                                                                                      ARTIFICIAL 
                                                                                                                                           INTELLIGENCE 
  NOTES 
 

 

300  

 a(a(3, X)) = a(Y).  

 1+2 = 3.  

 X = 1+2.  

 a(X, Y) = a(1, X).  

 a(X, 2) = a(1, X).  

3. For the following (silly) program, state what order the 

solutions will be returned given the query flies(X). (Your answer 
should be of the form X=soln1; X=soln2; etc).  

  aeroplane(concorde). 

  aeroplane(jumbo). 

  on(fred, concorde). 

  on(jim, no_18_bus). 

  bird(percy). 

  animal(leo). 

  animal(tweety). 

  animal(peter). 

  has_feathers(tweety). 

  has_feathers(peter). 

  flies(X) :- bird(X). 

  flies(X) :- aeroplane(X). 

  flies(X) :- on(X, Y), aeroplane(Y). 

    bird(X) :- animal(X), has_feathers(X). 

Once you have worked out the answers by hand, check them 

using Prolog.  
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1. What are the bindings which result from the following 
queries. If there is more than one solution, given the order in 

which they are returned:  

   ?- [First, Second|Rest] = [cabbage, onion, tomato, orange] 

   ?- [small(X), small(Y)] = [small(cabbage), small(tomato)] 

   ?- [First, Second|Rest] = [a,b] 

   ?- member(small(X), [large(cabbage), small(tomato)]). 

   ?- member(small(carrot), [large(Y), small(Y)]). 

   ?- member(large(X), [large(apple), large(banana)]). 

   ?- member([X,Y], [[1,2],[3,4],[5,6]]). 

 

 


