
CRYPTOGRAPHY AND
NETWORK SECURITY

 (

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

NAGARJUNA NAGAR,

CRYPTOGRAPHY AND
NETWORK SECURITY

(DMCA302)

(MCA)

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

NAGARJUNA NAGAR,

GUNTUR

ANDHRA PRADESH

CRYPTOGRAPHY AND
NETWORK SECURITY

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

CONTENTS

UNIT/LESSON PARTICULARS PAGE NO

UNIT – I 1 – 81

LESSON 1 CRYPTOGRAPHY 2 – 13

LESSON 2 CONVENTIONAL ENCRYPTION TECHNIQUES 14 - 35

LESSON 3 BLOCK CIPHERS AND DES 36 - 61

LESSON 4 ADVANCED ENCRYTION STANDARD 62 – 81

UNIT – II 82 – 125

LESSON 1 NUMBER THEORY 83 - 92

LESSON 2 DISCRETE LOGARITHMS AND ALGORITHM COMPLEXITY 93 – 99

LESSON 3 PUBLIC KEY CRYPTOSYSTEMS 100 – 108

LESSON 4 RSA AND DEFFIE-HELLMAN KEY EXCHANGE ALGORITHMS 109 – 125

UNIT – III 126 – 183

LESSON 1 ELLIPTICAL CURVE CRYPTOGRAPHY 127 – 136

LESSON 2 MESSAGE AUTHENTICATION AND HASH FUNCTIONS 137 – 158

LESSON 3 DIGITAL SIGNATURES 159 – 175

LESSON 4 KEY MANAGEMENT SCHEMES 176 - 183

UNIT – IV 184 – 328

LESSON 1 KERBEROS 185 – 203

LESSON 2 DIRECTORY AUTHENTICATION SERVICES 204 – 215

LESSON 3 ELECTRONIC SECURITY 216 - 251

LESSON 4 WEB SECURITY 252 – 278

LESSON 5 SYSTEM SECURITY 279 – 315

LESSON 6 FIREWALLS 316 - 328

Network Security

NOTES

1

UNIT- I

1. CRYPTOGRAPHY

2. CONVENTIONAL ENCRYPTION TECHNIQUES

3. BLOCK CIPHERS AND DES

4. ADVANCED ENCRYPTION STANDARD

Network Security

NOTES

2

1. CRYTOGRAPHY

OBJECTIVE
This chapter describes classical symmetric encryption techniques. It

provides a gentle and interesting introduction to cryptography and

cryptanalysis and highlights important concepts.

CRYTOGRAPHY
The term Cryptology is derived from the Greek kryptós (“hidden”) and

lógos (“word”). Cryptology is the science of coding and decoding secret

messages. It is usually divided into two parts

 Cryptography, which concerns designing cryptosystems

for coding and decoding messages, and the more

glamorous

 Cryptanalysis, which is concerned with ``breaking''

cryptosystems, or deciphering messages without prior

detailed knowledge of the cryptosystem.

Cryptography (from the Greek kryptós and gráphein, “to write”) was

originally the study of the principles and techniques by which information

could be concealed in ciphers and later revealed by legitimate users

employing the secret key. It now encompasses the whole area of key-

controlled transformations of information into forms that are either

impossible or computationally infeasible for unauthorized persons to

duplicate or undo.

Cryptanalysis (from the Greek kryptós and analýein, “to loosen” or “to

untie”) is the science (and art) of recovering or forging cryptographically

secured information without knowledge of the key. Cryptology is often—

and mistakenly—considered a synonym for cryptography and

occasionally for cryptanalysis, but specialists in the field have for years

adopted the convention that cryptology is the more inclusive term,

encompassing both cryptography and cryptanalysis.

Cryptography was initially only concerned with providing secrecy for

written messages, especially in times of war. Figure 1.1.1 shows the

German Lorenz cipher machine used for encryption during the World War

II. Its principles apply equally well, however, to securing data flowing

between computers or data stored in them, to encrypting facsimile and

television signals, to verifying the identity of participants in electronic

commerce (e-commerce) and providing legally acceptable records of

Network Security

NOTES

3

those transactions. Because of this broadened interpretation of

cryptography, the field of cryptanalysis has also been enlarged.

Attacks, Services and Mechanisms
To effectively identify the information security needs of an organization

and to evaluate various security products and policies, we consider three

aspects:

 Security Attack: Any action that compromises the security of

information owned by an organization (Interruption, Interception,

Modification, Fabrication).

 Security Mechanism: A mechanism that is designed to detect,

prevent, or recover from a security attack (Encryption, Digital

Signature, SSL etc.).

 Security Service: A service that enhances the security of the

data processing systems and the information transfers of an

organization. The services are intended to counter security

attacks, and they make use of one or more security mechanisms

to provide the service.

Security Attacks
Let us consider an information source and information destination as

shown in fig 1.1.2. The normal flow is depicted in fig 1.1.2a. The following

are the four general categories of attacks.

Network Security

NOTES

4

 Interruption: This is an attack on availability. An asset of the

system is destroyed or becomes unavailable or unusable. This is

depicted in fig 1.1.2b.

Examples: Breaking communication lines, destructing hardware

such as hard disks etc.

 Interception: This is attack on confidentiality. An unauthorized

party gains access to an asset. The unauthorized party could be a

person, a program, or a computer. This is depicted in fig 1.1.2c.

Examples: wire tapping to access data in a network,

unauthorized copying of files, programs etc.

 Modification: This is attack on integrity. An unauthorized party

not only gains access but tampers with an asset. This is depicted

in fig 1.1.2d.

Examples: changing values in a data file, altering a program so

that it functions differently and modifying content of messages

being transmitted in a network.

 Fabrication: This is attack on Authenticity. An unauthorized party

inserts counterfeit objects into the system. This is depicted in fig.

1.1.2e.

Examples: Adding records to a file

Information Source Information Source

Fig. 1.1.2a Normal

Information Source Information Source

Fig 1.1.2b Interruption

Network Security

NOTES

5

Fig 1.1.2 Security Attacks

Security Attacks can also be characterized as

 Passive Attacks

 Active Attacks

Passive Attacks

Passive attack is an attack where an unauthorized attacker monitors or

listens in on the communication between two parties. Figure 1.1.3

illustrates a passive attack where Eve monitors the communication

Fig 1.1.2c Interception

Information Source Information Source

Fig. 1.1.2d Modification

Information Source Information Source

Fig.1.1.2e Fabrication

Network Security

NOTES

6

between Alice and Bob. The goal of the opponent is to obtain information

that is being transmitted. Two types of passive attacks are

 Release of Message Contents

 Traffic Analysis

Release of Messages Contents: A telephone conversation, an

Electronic mail message and a transferred file may contain sensitive or

confidential information. We would like to prevent the opponent from

learning the contents of these transmissions.

Traffic Analysis: Traffic analysis is the process of intercepting and

examining messages in order to deduce information from patterns in

communication. It can be performed even when the messages are

encrypted and cannot be decrypted. In general, the greater the number of

messages observed, or even intercepted and stored, the more can be

inferred from the traffic. This information might be useful in guessing the

nature of the communication that was taking place. The opponent could

determine the location and identity of communicating hosts.

Fig 1.1.3 Illustration of Passive Attack

Since they do not involve any alteration of the data, the passive attacks

are very difficult to detect. It is feasible to prevent them. Therefore, they

are hard to detect and easy to prevent.

Active Attacks:

These attacks involve some modification of the data stream or creation of

a false stream. Active attacks are subdivided into four categories.

 Masquerade

 Replay

 Modification of messages

 Denial of Service

Network Security

NOTES

7

Masquerade

Masquerade is a type of attack where the attacker pretends to be an

authorized user of a system in order to gain access to it or to gain greater

privileges than they are authorized for.

A masquerade may be attempted through the use of stolen logon IDs and

passwords, through finding security gaps in programs, or through

bypassing the authentication mechanism. The attempt may come from

within an organization, for example, from an employee; or from an outside

user through some connection to the public network. Weak authentication

provides one of the easiest points of entry for a masquerade, since it

makes it much easier for an attacker to gain access. Once the attacker

has been authorized for entry, they may have full access to the

organization's critical data, and (depending on the privilege level they

pretend to have) may be able to modify and delete software and data,

and make changes to network configuration and routing information.

Replay

A replay attack is a form of network attack in which a valid data

transmission is maliciously or fraudulently repeated or delayed. This is

carried out either by the originator or by an adversary who intercepts the

data and retransmits it, possibly as part of a masquerade attack by IP

packet substitution (such as stream cipher attack).

As an example, suppose A wants to prove its identity to B. B requests A’s

password as proof of identity, which A dutifully provides (possibly after

some transformation like a hash function); meanwhile, some person X is

eavesdropping the conversation and keeps the password. After the

interchange is over, X connects to B posing as A; when asked for a proof

of identity, X sends A's password read from the last session, which B

must accept.

Modification of messages

Modification of messages means that some portion of a legitimate

message is altered, or that messages are delayed or reordered, to

produce an unauthorized effect. For example, a message meaning "Allow

John Smith to read confidential file accounts" is modified to mean "Allow

Fred Brown to read confidential file accounts."

Denial of Service

The denial of service prevents or inhibits the normal use or management

of communications facilities. This attack may have a specific target; for

example, an entity may suppress all messages directed to a particular

destination (e.g., the security audit service). Another form of service

denial is the disruption of an entire network, either by disabling the

Network Security

NOTES

8

network or by overloading it with messages so as to degrade

performance.

Security Services
Security services are the base-level services that are used to combat the

security attacks. The services defined here should not be confused with

security mechanisms, which are the actual implementations of these

services. These services include

 Confidentiality

 Authentication

 Integrity

 Nonrepudiation

 Access Control

 Availability

Confidentiality

The confidentiality service provides for the secrecy of information. When

properly used, confidentiality only allows authorized users to have access

to information. In order to perform this service properly, the confidentiality

service must work with the accountability service to properly identify

individuals. In performing this function, the confidentiality service protects

against the access attack. The confidentiality service must take into

account the fact that information may reside in physical form in paper

files, in electronic form in electronic files, and in transit. For example, a

credit card transaction on the Internet requires the credit card number to

be transmitted from the buyer to the merchant and from the merchant to a

transaction processing network. The system attempts to enforce

confidentiality by encrypting the card number during transmission, by

limiting the places where it might appear (in databases, log files, backups,

printed receipts, and so on), and by restricting access to the places where

it is stored. If an unauthorized party obtains the card number in any way,

a breach of confidentiality has occurred.

Breaches of confidentiality take many forms. Permitting someone to look

over your shoulder at your computer screen while you have confidential

data displayed on it could be a breach of confidentiality. If a laptop

computer containing sensitive information about a company's employees

is stolen or sold, it could result in a breach of confidentiality. Giving out

confidential information over the telephone is a breach of confidentiality if

the caller is not authorized to have the information.

Confidentiality is necessary (but not sufficient) for maintaining the privacy

of the people whose personal information a system holds.

Network Security

NOTES

9

Authentication

Authentication is the act of establishing or confirming something (or

someone) as authentic, i.e. that claims made by or about the thing are

true. This might involve confirming the identity of a person, the origins of

an artifact, or assuring that a computer program is a trusted one.

In private and public computer networks (including the Internet),

authentication is commonly done through the use of logon passwords.

Knowledge of the password is assumed to guarantee that the user is

authentic. Each user registers initially (or is registered by someone else),

using an assigned or self-declared password. On each subsequent use,

the user must know and use the previously declared password. The

weakness in this system for transactions that are significant (such as the

exchange of money) is that passwords can often be stolen, accidentally

revealed, or forgotten. For this reason, Internet business and many other

transactions require a more stringent authentication process. The use of

digital certificates issued and verified by a Certificate Authority (CA) as

part of a public key infrastructure is considered likely to become the

standard way to perform authentication on the Internet.

Integrity

Integrity, in terms of data and network security, is the assurance that

information can only be accessed or modified by those authorized to do

so.

A connection-oriented integrity service deals with a stream of messages,

assures that messages are received as sent, with no duplication,

insertion, modification, reordering, or replays. The destruction of data is

also covered under this service. Thus, the connection-oriented integrity

service addresses both message stream modification and denial of

service. On the other hand, a connectionless integrity service deals with

individual messages without regard to any larger context. It provides

protection against message modification only.

Non-repudiation

In general, nonrepudiation is the ability to ensure that a party to a contract

or a communication cannot deny the authenticity of their signature on a

document or the sending of a message that they originated. On the

Internet, the digital signature is used not only to ensure that a message or

document has been electronically signed by the person that purported to

sign the document, but also, since a digital signature can only be created

by one person, to ensure that a person cannot later deny that they

furnished the signature.

Network Security

NOTES

10

Since no security technology is absolutely fool-proof, some experts warn

that the digital signature alone may not always guarantee non-

repudiation. It is suggested that multiple approaches be used, such as

capturing unique biometric information and other data about the sender or

signer that collectively would be difficult to repudiate.

Access Control

Access control is the ability to permit or deny the use of a particular

resource by a particular entity. Access control mechanisms can be used

in managing physical resources (such as a movie theater, to which only

ticketholders should be admitted), logical resources (a bank account, with

a limited number of people authorized to make a withdrawal), or digital

resources (for example, a private text document on a computer, which

only certain users should be able to read).

Availability

Availability is the property of a system or a system resource being

accessible and usable upon demand by an authorized system entity,

according to performance specifications for the system (i.e., a system is

available if it provides services according to the system design whenever

users request them). This refers to whether the network, system,

hardware, and software are reliable and can recover quickly and

completely in the event of an interruption in service. Ideally, these

elements should not be susceptible to denial of service attacks.

Active attacks present the opposite characteristics of passive attacks.

Whereas passive attacks are difficult to detect, measures are available to

prevent their success. On the other hand, it is quite difficult to prevent

active attacks absolutely, because of the wide variety of potential

physical, software, and network vulnerabilities. Instead, the goal is to

detect active attacks and to recover from any disruption or delays caused

by them. If the detection has a deterrent effect, it may also contribute to

prevention.

A Model for Network Security
A model for generalized network security is shown in Figure 1.1.4. A

message is to be transferred from one party to another across some sort

of internet. The two parties, who are the principals in this transaction,

must cooperate for the exchange to take place. A logical information

channel is established by defining a route through the internet from

source to destination and by the cooperative use of communication

protocols (e.g., TCP/IP) by the two principals.

Security aspects come into play when it is necessary or desirable to

protect the information transmission from an opponent who may present

Network Security

NOTES

11

a threat to confidentiality, authenticity, and so on. All the techniques for

providing security have two components:

Fig 1.1.4 Model for Network Security

 A security-related transformation on the information to be sent.

Examples include the encryption of the message, which

scrambles the message so that it is unreadable by the

opponent, and the addition of a code based on the contents of

the message, which can be used to verify the identity of the

sender

 Some secret information shared by the two principals and, it is

hoped, unknown to the opponent. An example is an encryption

key used in conjunction with the transformation to scramble

the message before transmission and unscramble it on

reception

A trusted third party may be needed to achieve secure transmission. For

example, a third party may be responsible for distributing the secret

information to the two principals while keeping it from any opponent. Or a

third party may be needed to arbitrate disputes between the two

principals concerning the authenticity of a message transmission.

This general model shows that there are four basic tasks in designing a

particular security service:

1. Design an algorithm for performing the security-related

transformation. The algorithm should be such that an opponent

cannot defeat its purpose.

Network Security

NOTES

12

2. Generate the secret information to be used with the algorithm.

3. Develop methods for the distribution and sharing of the secret

information.

4. Specify a protocol to be used by the two principals that makes use

of the security algorithm and the secret information to achieve a

particular security service.

A general model of these other situations is illustrated by Fig 1.1.5, which

reflects a concern for protecting an information system from unwanted

access.

Fig 1.1.5 Network Access Security Model

The hacker can be someone who, with no malign intent, simply gets

satisfaction from breaking and entering a computer system. Or, the

intruder can be a disgruntled employee who wishes to do damage, or a

criminal who seeks to exploit computer assets for financial gain (e.g.,

obtaining credit card numbers or performing illegal money transfers).

Another type of unwanted access is the placement in a computer system

of logic that exploits vulnerabilities in the system and that can affect

application programs as well as utility programs, such as editors and

compilers. Programs can present two kinds of threats:

 Information access threats intercept or modify data on behalf of

users who should not have access to that data.

 Service threats exploit service flaws in computers to inhibit use by

legitimate users.

Network Security

NOTES

13

REFERENCES

1. William Stallings, Cryptography and Network Security, PHI

Publishers

2. www.wikipedia.org

Review Questions:

1. Write short notes on different types of security attacks.

2. Explain the model for Network security?

3. What are the different types of security services?

Network Security

NOTES

14

2.CONVENTIONAL ENCRYPTION

TECHNIQUES
OBJECTIVE
This lesson describes classical symmetric encryption techniques. It

provides a gentle and interesting introduction to cryptography and

cryptanalysis and highlights important concepts.

INTRODUCTION
Symmetric encryption also referred to as conventional encryption or

single-key encryption was the only type of encryption in use prior to the

development of public-key encryption in the 1970s. It is the most widely

used of the two types of encryption.

Basic Definitions
Plain Text : An original message is known as Plain Text

Cipher Text : The coded message is called the cipher text.

Encryption : The process of converting from plaintext to ciphertext is

known as enciphering or encryption

Decryption : restoring the plaintext from the ciphertext is deciphering

or decryption.

The many schemes used for encryption constitute the area of study

known as cryptography. Such a scheme is known as a cryptographic

system or a cipher. Techniques used for deciphering a message without

any knowledge of the enciphering details fall into the area of

cryptanalysis. Cryptanalysis is what the layperson calls "breaking the

code."

Symmetrical Cipher Model

A symmetric encryption scheme has five ingredients (Fig 1.2.1)

 Plaintext: This is the original intelligible message or data that is

fed into the algorithm as input.

 Encryption algorithm: The encryption algorithm performs

various substitutions and transformations on the plaintext.

 Secret key: The secret key is also input to the encryption

algorithm. The key is a value independent of the plaintext and of

the algorithm. The algorithm will produce a different output

depending on the specific key being used at the time. The exact

Network Security

NOTES

15

substitutions and transformations performed by the algorithm

depend on the key.

 Ciphertext: This is the scrambled message produced as output. It

depends on the plaintext and the secret key. For a given

message, two different keys will produce two different cipher texts.

The ciphertext is an apparently random stream of data and, as it

stands, is unintelligible.

 Decryption algorithm: This is essentially the encryption

algorithm run in reverse. It takes the ciphertext and the secret key

and produces the original plaintext.

Fig 1.2.1 Simplified Model of Conventional Encryption

There are two requirements for secure use of conventional encryption:

1. We need a strong encryption algorithm. At a minimum, we would

like the algorithm to be such that an opponent who knows the

algorithm and has access to one or more ciphertexts would be

unable to decipher the ciphertext or figure out the key. This

requirement is usually stated in a stronger form: The opponent

should be unable to decrypt ciphertext or discover the key even if

he or she is in possession of a number of ciphertexts together with

the plaintext that produced each ciphertext.

2. Sender and receiver must have obtained copies of the secret key

in a secure fashion and must keep the key secure. If someone

can discover the key and knows the algorithm, all communication

using this key is readable.

We assume that it is impractical to decrypt a message on the basis of the

ciphertext plus knowledge of the encryption/decryption algorithm. In other

Network Security

NOTES

16

words, we do not need to keep the algorithm secret; we need to keep

only the key secret. This feature of symmetric encryption is what makes it

feasible for widespread use.

Conventional Cryptosystem
Consider a model conventional cryptosystem as shown in Fig 1.2.2.

A source produces a message in plaintext, X = [X1, X2, ..., XM]. The M

elements of X are letters in some finite alphabet. Traditionally, the

alphabet usually consisted of the 26 capital letters. Nowadays, the binary

alphabet {0, 1} is typically used. For encryption, a key of the form K = [K1,

K2, ..., KJ] is generated. If the key is generated at the message source,

then it must also be provided to the destination by means of some secure

channel. Alternatively, a third party could generate the key and securely

deliver it to both source and destination. With the message X and the

encryption key K as input, the encryption algorithm forms the ciphertext Y

= [Y1, Y2, ..., YN]. We can write this as

Y = E(K, X)

Fig 1.2.2 Model Conventional Cryptosystem

This notation indicates that Y is produced by using encryption algorithm E

as a function of the plaintext X, with the specific function determined by

the value of the key K.

The intended receiver, in possession of the key, is able to invert the

transformation:

X = D(K, Y)

Network Security

NOTES

17

An opponent, observing Y but not having access to K or X, may attempt

to recover X or K or both X and K. It is assumed that the opponent knows

the encryption (E) and decryption (D) algorithms. If the opponent is

interested in only this particular message, then the focus of the effort is to

recover X by generating a plaintext estimate
^
X . Often, however, the

opponent is interested in being able to read future messages as well, in

which case an attempt is made to recover K by generating an estimate
^
K

Cryptography
Cryptographic systems are characterized along three independent

dimensions:

1. The type of operations used for transforming plaintext to

ciphertext. All encryption algorithms are based on two general

principles: substitution, in which each element in the plaintext (bit,

letter, group of bits or letters) is mapped into another element, and

transposition, in which elements in the plaintext are rearranged.

The fundamental requirement is that no information be lost (that

is, that all operations are reversible). Most systems, referred to as

product systems, involve multiple stages of substitutions and

transpositions.

2. The number of keys used. If both sender and receiver use the

same key, the system is referred to as symmetric, single-key,

secret-key, or conventional encryption. If the sender and receiver

use different keys, the system is referred to as asymmetric, two-

key, or public-key encryption.

3. The way in which the plaintext is processed. A block cipher

processes the input one block of elements at a time, producing an

output block for each input block. A stream cipher processes the

input elements continuously, producing output one element at a

time, as it goes along.

ATTACKING CRYPTOSYSTEMS
The objective of attacking an encryption system is to recover the key in

use rather than simply to recover the plaintext of a single ciphertext.

There are two general approaches to attacking a conventional encryption

scheme:

 Cryptanalysis: Cryptanalytic attacks rely on the nature of the

algorithm plus perhaps some knowledge of the general

characteristics of the plaintext or even some sample plaintext-

ciphertext pairs. This type of attack exploits the characteristics of

Network Security

NOTES

18

the algorithm to attempt to deduce a specific plaintext or to

deduce the key being used.

 Brute-force attack: The attacker tries every possible key on a

piece of ciphertext until an intelligible translation into plaintext is

obtained. On average, half of all possible keys must be tried to

achieve success.

If either type of attack succeeds in deducing the key, all future and past

messages encrypted with that key are compromised.

Cryptanalysis
Cryptanalytic attacks are generally classified into six categories that

distinguish the kind of information the cryptanalyst has available to mount

an attack. The categories of attack are listed here roughly in increasing

order of the quality of information available to the cryptanalyst, or,

equivalently, in decreasing order of the level of difficulty to the

cryptanalyst. The objective of the cryptanalyst in all cases is to be able to

decrypt new pieces of ciphertext without additional information. The ideal

for a cryptanalyst is to extract the secret key.

A ciphertext-only attack is one in which the cryptanalyst obtains a sample

of ciphertext, without the plaintext associated with it. This data is relatively

easy to obtain in many scenarios, but a successful ciphertext-only attack

is generally difficult, and requires a very large ciphertext sample.

A known-plaintext attack is one in which the cryptanalyst obtains a

sample of ciphertext and the corresponding plaintext as well.

A chosen-plaintext attack is one in which the cryptanalyst is able to

choose a quantity of plaintext and then obtain the corresponding

encrypted ciphertext.

An adaptive-chosen-plaintext attack is a special case of chosen-

plaintext attack in which the cryptanalyst is able to choose plaintext

samples dynamically, and alter his or her choices based on the results of

previous encryptions.

A chosen-ciphertext attack is one in which cryptanalyst may choose a

piece of ciphertext and attempt to obtain the corresponding decrypted

plaintext. This type of attack is generally most applicable to public-key

cryptosystems.

An adaptive-chosen-ciphertext is the adaptive version of the above

attack. A cryptanalyst can mount an attack of this type in a scenario in

which he has free use of a piece of decryption hardware, but is unable to

extract the decryption key from it. All the attacks are tabled in Table 1.2.1

Network Security

NOTES

19

Type of Attack Known to Cryptanalyst

Ciphertext only
 Encryption algorithm

 Ciphertext

Known plaintext

 Encryption algorithm

 Ciphertext

 One or more plaintext-ciphertext pairs formed with

the secret key

Chosen plaintext

 Encryption algorithm

 Ciphertext

 Plaintext message chosen by cryptanalyst, together

with its corresponding ciphertext generated with the

secret key

Chosen

ciphertext

 Encryption algorithm

 Ciphertext

 Purported ciphertext chosen by cryptanalyst,

together with its corresponding decrypted plaintext

generated with the secret key

Chosen text

 Encryption algorithm

 Ciphertext

 Plaintext message chosen by cryptanalyst, together

with its corresponding ciphertext generated with the

secret key

 Purported ciphertext chosen by cryptanalyst,

together with its corresponding decrypted plaintext

generated with the secret key

Table 1.2.1 Types of Attacks on Encrypted Messages

NOTE

1) An encryption scheme is unconditionally secure if the ciphertext

generated by the scheme does not contain enough information to

determine uniquely the corresponding plaintext, no matter how

much ciphertext is available. That is, no matter how much time an

opponent has, it is impossible for him or her to decrypt the

ciphertext, simply because the required information is not there.

Except a scheme known as the one-time pad, there is no

encryption algorithm that is unconditionally secure. Therefore,

Network Security

NOTES

20

all that the users of an encryption algorithm can strive for is an

algorithm that meets one or both of the following criteria:

 The cost of breaking the cipher exceeds the value of the

encrypted information.

 The time required to break the cipher exceeds the useful

lifetime of the information.

2) An encryption scheme is said to be computationally secure if

either of the foregoing two criteria are met.

 All forms of cryptanalysis for symmetric encryption schemes

are designed to exploit the fact that traces of structure or

pattern in the plaintext may survive encryption and be visible

in the ciphertext. Cryptanalysis for public-key schemes

proceeds from a fundamentally different premise, namely, that

the mathematical properties of the pair of keys may make it

possible for one of the two keys to be deduced from the other.

 A brute-force attack involves trying every possible key until

an intelligible translation of the ciphertext into plaintext is

obtained. On average, half of all possible keys must be tried to

achieve success. Table 1.2.2 shows how much time is

involved for various key spaces. Results are shown for four

binary key sizes. The 56-bit key size is used with the DES

(Data Encryption Standard) algorithm, and the 168-bit key size

is used for triple DES. The minimum key size specified for

AES (Advanced Encryption Standard) is 128 bits. Results are

also shown for what are called substitution codes that use a

26-character key (discussed later), in which all possible

permutations of the 26 characters serve as keys. For each key

size, the results are shown assuming that it takes 1 μs to

perform a single decryption, which is a reasonable order of

magnitude for today's machines. With the use of massively

parallel organizations of microprocessors, it may be possible

to achieve processing rates many orders of magnitude

greater. The final column of Table 1.2.2 considers the results

for a system that can process 1 million keys per microsecond.

As you can see, at this performance level, DES can no longer

be considered computationally secure.

Network Security

NOTES

21

Key size

(bits)

Number of

alternative keys

Time required at 1

decryption/μs

Time required

at 10
6

decryption/μs

32 2
32 = 4.3 x

10
9 2

31
 μs = 35.8 minutes

2.15

milliseconds

56 2
56 = 7.2 x

10
16 2

55
 μs = 1142 years 10.01 hours

128 2
128 = 3.4 x

10
38 2

127
 μs

= 5.4 x 10
24

years
5.4 x 10

18
years

168 2
168 = 3.7 x

10
50 2

167
 μs

= 5.9 x 10
36

years
5.9 x 10

30
years

26 characters

(permutation)
26! = 4 x 10

26 2 x 10
26

μs

= 6.4 x 10
12

years
6.4 x 10

6
years

Table 1.2.2 Average Time Required for Exhaustive Key Search

ENCRYPTION TECHNIQUES
The two basic building blocks of all encryption techniques are

 Substitution

 Transposition.

Substitution Techniques
In cryptography, a substitution cipher is a method of encryption by which

units of plaintext are substituted with ciphertext according to a regular

system; the "units" may be single letters (the most common), pairs of

letters, triplets of letters, mixtures of the above, and so forth. The receiver

deciphers the text by performing an inverse substitution.

There are a number of different types of substitution cipher. If the cipher

operates on single letters, it is termed a simple substitution cipher; a

cipher that operates on larger groups of letters is termed polygraphic. A

monoalphabetic cipher uses fixed substitution over the entire message,

whereas a polyalphabetic cipher uses a number of substitutions at

different times in the message.

CAESAR CIPHER

In cryptography, a Caesar cipher, also known as a Caesar's cipher, the

shift cipher, Caesar's code or Caesar shift, is one of the simplest and

most widely known encryption techniques. It is a type of substitution

cipher in which each letter in the plaintext is replaced by a letter some

Network Security

NOTES

22

fixed number of positions down the alphabet. For example, with a shift of

3, A would be replaced by D, B would become E, and so on (see Fig

1.2.3). The method is named after Julius Caesar, who used it to

communicate with his generals.

The encryption step performed by a Caesar cipher is often incorporated

as part of more complex schemes, such as the Vigenère cipher, and still

has modern application in the ROT13 system (Fig 1.2.4).

The encryption can also be represented using modular arithmetic by first

transforming the letters into numbers, according to the scheme, A = 0, B

= 1... Z = 25.

Encryption of a letter x by a shift n can be described mathematically as,

Decryption is performed similarly,

Network Security

NOTES

23

If it is known that a given ciphertext is a Caesar cipher, then a brute-force

cryptanalysis is easily performed: Simply try all the 25 possible keys.

Table 1.3 shows the results of applying this strategy to the example

ciphertext.

Let us suppose that the plain text ‘HELLO’ is encrypted using ROT13 and

the resultant cipher text is URYYB. The cryptanalyst will try to decrypt the

message as follows

Table 1.2.3 Cryptanalysis of message cipher text URYYB

As with all single alphabet substitution ciphers, the Caesar cipher is easily

broken and in practice offers essentially no communication security. With

only 25 possible keys, the Caesar cipher is far from secure. A dramatic

Shifting by Resultant Plain text

1 VSZZC

2 WTAAD

3 XU BBE

4 YVCCF

5 Z WDDG

6 AXEEH

7 BYFFI

8 CZGGJ

9 DAHHK

10 EBIIL

11 FCJJM

12 GDKKN

13 HELLO

14 IFMMP

15 JGNNQ

16 KHOOR

17 LIPPS

18 MJQQT

19 NKRRU

20 OLSSV

21 PMTTW

22 QNUUX

23 ROVVY

24 SPWWZ

25 TQXX

Network Security

NOTES

24

increase in the key space can be achieved by allowing an arbitrary

substitution.

MONOALPHABETIC CIPHER

Ciphers in which the cipher alphabet remains unchanged throughout the

message are called Monoalphabetic Substitution Ciphers. The Caesar

Shift Cipher is one example of a Monoalphabetic Cipher. In a

monoalphabetic cipher, every letter in the alphabet is represented by

exactly one other letter in the key. The monoalphabetic cipher is not

restricted to using only letters, but can use symbols and numbers as well.

Let's explore another example of a monoalphabetic cipher

To construct the key, first select a keyword. We'll use "Butterfly". Now

rewrite the codeword but get rid of any duplicate letters. So Butterfly"

becomes "Buterfly", leaving the second "t" out. Write out the alphabet as

before and underneath write out the new keyword. Write out the rest of

the alphabet in order, leaving out any letters in the keyword.

A B C D E F G H I J K L M N O P Q R S T U V W X Y

Z

B U T E R F L Y A C D G H I J K M N O P Q S V W X

Z

You have now constructed the key for the cipher. A will be replaced by B,

B with U, C with T and so on.

Consider the plain text : NETWORK SECURITY IS RULING THE

WORLD

Corresponding Cipher : IRPVJND ORTQNAPX AO NQGAIL PYR

VJNGE

The same key is also available at the receiver end and he performs the

reverse mapping on the cipher text to obtain the plain text. Encrypting

and decrypting works exactly the same for all monoalphabetic ciphers,

the only difference is how the key is constructed.

Frequency Analysis

Frequency analysis exploits the known patterns of the language used in a

cryptographic system. In our case, this will be English, but the same

principles could be applied to any language.

Certain letters and combinations of letters are more likely than others to

occur in any arbitrary English sentence. For example, the letter "e" is the

most common single letter and the digram "th" is the most common two

letter combination. Fig 1.2.5 shows the percentage of occurrences (i.e.

frequency) of each letter in the alphabet for English text.

Network Security

NOTES

25

Fig 1.2.5 Frequency of Letters in English

This knowledge can be used to attack monoalphabetic ciphers because

all occurrences of the same letter in a message will be encrypted the

same way.

The Attack

1. Calculate the frequency of letters in the ciphertext and compare

this to the known frequencies in the language.

2. Then make an intelligent guess of how to decrypt the message.

For example, if we analysed a ciphertext and found that the most

commonly occurring letter was H, there is a good chance that all H's

would be E's in the plaintext. This is not guaranteed to be the case, of

course. The shorter the message, the more likely the frequencies will be

unusual. This method is still much faster than trying all possibilities and

on longer messages, it will be extremely effective.

PLAYFAIR CIPHER

The Playfair cipher encrypts pairs of letters (digraphs), instead of single

letters. This is significantly harder to break since the frequency analysis

used for simple substitution ciphers is considerably more difficult.

The Playfair cipher uses a 5 by 5 table containing a key word or phrase.

To generate the table, one would first fill in the spaces of the table with

the letters of the keyword (dropping any duplicate letters), then fill the

remaining spaces with the rest of the letters of the alphabet in order (to

reduce the alphabet to fit you can either omit "Q" or replace "J" with "I").

To encrypt a message, one would break the message into groups of 2

letters. If there is a dangling letter at the end, we add an X. For example,

Network Security

NOTES

26

"Secret Message" becomes "SE CR ET ME SS AG EX". We now take

each group and find them out on the table. Noticing the location of the

two letters in the table, we apply the following rules, in order.

1. If both letters are the same, add an X between them. Encrypt the

new pair, re-pair the remaining letters and continue.

2. If the letters appear on the same row of your table, replace them

with the letters to their immediate right respectively, wrapping

around to the left side of the row if necessary. For example, using

the table above, the letter pair GJ would be encoded as HF.

3. If the letters appear on the same column of your table, replace

them with the letters immediately below, wrapping around to the

top if necessary. For example, using the table above, the letter

pair MD would be encoded as UG.

4. If the letters are on different rows and columns, replace them with

the letters on the same row respectively but at the other pair of

corners of the rectangle defined by the original pair. The order is

important - the first letter of the pair should be replaced first. For

example, using the table above, the letter pair EB would be

encoded as WD.

To decipher, ignore rule 1. In rules 2 and 3 shift up and left instead of

down and right. Rule 4 remains the same. Once you are done, drop any

extra Xs that don't make sense in the final message and locate any

missing Qs or any Is that should be Js.

Example: (see Table 1.2.4)

Key : keyword

Plaintext : thisisasecretmessage

Cipher Text : vf jp jp cn od dk ul om nc md

K E Y W O

R D A B C

F G H I/J L

M N P Q S

T U V X Z

Table 1.2.4 5 X 5 Table generated for the

key KEYWORD

Network Security

NOTES

27

POLYALPHABETIC CIPHER

Frequency analysis was a devastating attack on monoalphabetic ciphers

and they could no longer be considered secure. The next development in

cryptography was Polyalphabetic ciphers. The idea behind the

polyalphabetic cipher is that a single letter can be encrypted to several

different letters instead of just one.

In a Caesar cipher, each letter of the alphabet is shifted along some

number of places; for example, in a Caesar cipher of shift 3, A would

become D, B would become E and so on. The Vigenère cipher consists

of several Caesar ciphers in sequence with different shift values.

To encipher, a table of alphabets can be used, termed a tabula recta,

Vigenère square, or Vigenère table. It consists of the alphabet written

out 26 times in different rows, each alphabet shifted cyclically to the left

compared to the previous alphabet, corresponding to the 26 possible

Caesar ciphers. At different points in the encryption process, the cipher

uses a different alphabet from one of the rows. The alphabet used at

each point depends on a repeating keyword.

For example, suppose that the plaintext to be encrypted is:

ATTACKATDAWN

The person sending the message chooses a keyword and repeats it until

it matches the length of the plaintext, for example, the keyword "LEMON":

LEMONLEMONLE

The first letter of the plaintext, A, is enciphered using the alphabet in row

L, which is the first letter of the key. This is done by looking at the letter in

row L and column A of the Vigenère square, namely L. Similarly, for the

second letter of the plaintext, the second letter of the key is used; the

letter at row E and column T is X. The rest of the plaintext is enciphered

in a similar fashion:

Plaintext: ATTACKATDAWN

Key: LEMONLEMONLE

Ciphertext: LXFOPVEFRNHR

The keyspace consists of all ordered permutations of the alphabet and

we call it a Vigenère square (Tab. 1.2.5). You can see there are 25 rows

that can be used as keys, each numbered with the amount they are

shifted.

Decryption is performed by finding the position of the ciphertext letter in a

row of the table, and then taking the label of the column in which it

appears as the plaintext. For example, in row L, the ciphertext L appears

in column A, which taken as the first plaintext letter. The second letter is

Network Security

NOTES

28

decrypted by looking up X in row E of the table; it appears in column T,

which is taken as the plaintext letter.

Vigenère can also be viewed algebraically. If the letters A–Z are taken to

be the numbers 0–25, and addition is performed modulo 26, then

Vigenère encryption can be written,

and decryption,

Cryptanalysis

The idea behind the Vigenère cipher, like all polyalphabetic ciphers, is to

disguise plaintext letter frequencies, which interferes with a

straightforward application of frequency analysis. Fig 1.2.6 shows the

Vigenere letter frequencies. For instance, if P is the most frequent letter in

a ciphertext whose plaintext is in English, one might suspect that P

corresponds to E, because E is the most frequently used letter in English.

However, using the Vigenère cipher, E can be enciphered as different

ciphertext letters at different points in the message, thus defeating simple

frequency analysis.

The primary weakness of the Vigenère cipher is the repeating nature of

its key. If a cryptanalyst correctly guesses the key's length, then the

cipher text can be treated as interwoven Caesar ciphers, which

individually are easily broken.

Table 1.2.5 Vigenère square

Network Security

NOTES

29

Fig 1.2.6

Vigenere letter frequencies

Transposition Techniques
In classical cryptography, a transposition cipher changes one character

from the plaintext to another (to decrypt the reverse is done). That is, the

order of the characters is changed. Mathematically a bijective function is

used on the characters' positions to encrypt and an inverse function to

decrypt.

Rail Fence cipher

The Rail Fence cipher is a form of transposition cipher that gets its name

from the way in which it is encoded. In the rail fence cipher, the plaintext

is written downwards on successive "rails" of an imaginary fence, then

moving up when we get to the bottom. The message is then read off in

rows. For example, using three "rails" (i.e., Depth = 3) and a message of

'WE ARE DISCOVERED. FLEE AT ONCE', the cipherer writes out:

W . . . E . . . C . . . R . . . L . . . T . . . E

. E . R . D . S . O . E . E . F . E . A . O . C .

. . A . . . I . . . V . . . D . . . E . . . N . .

Then reads off:

WECRLTEERDSOEEFEAOCAIVDEN

Columnar transposition

In a columnar transposition, the message is written out in rows of a fixed

length, and then read out again column by column, and the columns are

chosen in some scrambled order. Both the width of the rows and the

permutation of the columns are usually defined by a keyword. For

Network Security

NOTES

30

example, the word ZEBRAS is of length 6 (so the rows are of length 6),

and the permutation is defined by the alphabetical order of the letters in

the keyword. In this case, the order would be

6 3 2 4 1 5

In a regular columnar transposition cipher, any spare spaces are filled

with nulls; in an irregular columnar transposition cipher, the spaces are

left blank. Finally, the message is read off in columns, in the order

specified by the keyword. For example, suppose we use the keyword

ZEBRAS and the message WE ARE DISCOVERED. FLEE AT ONCE. In

a regular columnar transposition, we write this into the grid as:

6 3 2 4 1 5

W E A R E D

I S C O V E

R E D F L E

E A T O N C

E

This results in the following ciphertext:

EVLNACDTESEAROFODEECWIREE

To decipher it, the recipient has to work out the column lengths by

dividing the message length by the key length. Then he can write the

message out in columns again, and then re-order the columns by

reforming the key word.

ONE TIME PAD

A one-time pad is a system in which a private key generated randomly is

used only once to encrypt a message that is then decrypted by the

receiver using a matching one-time pad and key. Messages encrypted

with keys based on randomness have the advantage that there is

theoretically no way to "break the code" by analyzing a succession of

messages. Each encryption is unique and bears no relation to the next

encryption so that some pattern can be detected. With a one-time pad,

however, the decrypting party must have access to the same key used to

encrypt the message and this raises the problem of how to get the key to

the decrypting party safely or how to keep both keys secure. One-time

pads have sometimes been used when the both parties started out at the

same physical location and then separated, each with knowledge of the

keys in the one-time pad. The key used in a one-time pad is called a

secret key because if it is revealed, the messages encrypted with it can

easily be deciphered. One-time pads figured prominently in secret

Network Security

NOTES

31

message transmission and espionage before and during World War II

and in the Cold War era.

Suppose Alice wishes to send the message 'HELLO' to Bob. Assume two

pads of paper containing identical random sequences of letters were

somehow previously produced and securely issued to both. Alice

chooses the appropriate unused page from the pad. The way to do this is

normally arranged for in advance, as for instance 'use the 12th sheet on

Labor Day', or 'use the next available sheet for the next message'. The

material on the selected sheet is the key for this message. Each letter

from the pad will be combined in a predetermined way with one letter of

the message. It is common, but not required, to assign each letter a

numerical value: e.g., "A" is 0, "B" is 1, and so on through "Z", 25. In this

example, the technique is to combine the key and the message using

modular addition. The numerical values of corresponding message and

key letters are added together, modulo 26. If key material begins with,

X M C K L

and the message is "HELLO", then the coding would be done as follows:

7(H) 4 (E) 11(L) 11(L) 14 (O)message

+ 23(X)12 (M) 2 C) 10(K) 11 (L)key

= 30 16 13 21 25 message + key

= 4(E) 16 (Q) 13(N) 21 (V) 25(Z)message + key (mod 26)

>> ciphertext

Note that if a number is larger than 25, then in modular arithmetic fashion,

the remainder after subtraction of 26 is taken. This simply means that, if

your computations "go past" Z, you start again at A.

The ciphertext to be sent to Bob is thus "EQNVZ." Bob uses the matching

key page and the same process, but in reverse, to obtain the plaintext.

Here, the key is subtracted from the ciphertext, again using modular

arithmetic:

4 (E) 16(Q) 13 (N) 21 (V) 25 (Z) ciphertext

- 23 (X) 12(M) 2 (C) 10 (K) 11 (L) key

= -19 4 11 11 14 ciphertext - key

= 7(H) 4(E) 11(L) 11(L) 14 (O)ciphertext-key(mod 26)

>> message

Similar to above, if a number is negative, 26 is added to make the

number positive.

Thus, Bob recovers Alice's plaintext, the message "HELLO". Both Alice

and Bob destroy the key sheet immediately after use, thus preventing

reuse and an attack against the cipher. The KGB often issued its agents

Network Security

NOTES

32

one-time pads printed on tiny sheets of "flash paper", paper chemically

converted to nitrocellulose, which burns almost instantly and leaves no

ash.

ROTOR MACHINES
In cryptography, a rotor machine is an electro-mechanical device used

for encrypting and decrypting secret messages. Rotor machines were the

cryptographic state-of-the-art for a brief but prominent period of history;

they were in widespread use in the 1930s–1950s.

The primary component is a set of rotors, also termed wheels or drums,

which are rotating disks with an array of electrical contacts on either side.

The wiring between the contacts implements a fixed substitution of

letters, scrambling them in some complex fashion. On its own, this would

offer little security; however, after encrypting each letter, the rotors

advance positions, changing the substitution. By this means, a rotor

machine produces a complex polyalphabetic substitution cipher.

Fig 1.2.7 Three-Rotor Machine with Wiring Represented by Numbered

Contacts

Network Security

NOTES

33

The basic principle of the rotor machine is illustrated in Fig 1.2.7. The

machine consists of a set of independently rotating cylinders through

which electrical pulses can flow. Each cylinder has 26 input pins and 26

output pins, with internal wiring that connects each input pin to a unique

output pin. For simplicity, only three of the internal connections in each

cylinder are shown.

If we associate each input and output pin with a letter of the alphabet,

then a single cylinder defines a monoalphabetic substitution. For

example, in Fig 1.2.7, if an operator depresses the key for the letter A, an

electric signal is applied to the first pin of the first cylinder and flows

through the internal connection to the twenty-fifth output pin.

Consider a machine with a single cylinder. After each input key is

depressed, the cylinder rotates one position, so that the internal

connections are shifted accordingly. Thus, a different monoalphabetic

substitution cipher is defined. After 26 letters of plaintext, the cylinder

would be back to the initial position. Thus, we have a polyalphabetic

substitution algorithm with a period of 26.

A single-cylinder system is trivial and does not present a formidable

cryptanalytic task. The power of the rotor machine is in the use of multiple

cylinders, in which the output pins of one cylinder are connected to the

input pins of the next. Fig 1.2.7 shows a three-cylinder system. The left

half of the figure shows a position in which the input from the operator to

the first pin (plaintext letter a) is routed through the three cylinders to

appear at the output of the second pin (ciphertext letter B).

With multiple cylinders, the one closest to the operator input rotates one

pin position with each keystroke. The right half of Fig 1.2.7 shows the

system's configuration after a single keystroke. For every complete

rotation of the inner cylinder, the middle cylinder rotates one pin position.

Finally, for every complete rotation of the middle cylinder, the outer

cylinder rotates one pin position. This is the same type of operation seen

with an odometer. The result is that there are 26 x 26 x 26 = 17,576

different substitution alphabets used before the system repeats. The

addition of fourth and fifth rotors results in periods of 456,976 and

11,881,376 letters, respectively.

The significance of the rotor machine today is that it points the way to the

most widely used cipher ever: the Data Encryption Standard (DES).

STEGANOGRAPHY
Steganography is the art and science of writing hidden messages in such

a way that no one apart from the sender and intended recipient even

realizes there is a hidden message. By contrast, cryptography obscures

Network Security

NOTES

34

the meaning of a message, but it does not conceal the fact that there is a

message. Today, the term steganography includes the concealment of

digital information within computer files. For example, the sender might

start with an ordinary-looking image file, then adjust the color of every

100th pixel to correspond to a letter in the alphabet, a change so subtle

that someone who isn't actively looking for it is unlikely to notice it.

The word steganography is of Greek origin and means "covered, or

hidden writing". Generally, a steganographic message will appear to be

something else: a picture, an article, a shopping list, or some other

message. This apparent message is the covertext. For instance, a

message may be hidden by using invisible ink between the visible lines of

innocuous documents.

Consider the following message.

Fishing freshwater bends and saltwater

coasts rewards anyone feeling stressed.

Resourceful anglers usually find masterful

leapers fun and admit swordfish rank

overwhelming anyday.

By taking the third letter in each word, the following message emerges:

Send Lawyers, Guns, and Money.

The following message was actually sent by a German Spy in WWII

(World War II)

Apparently neutral's protest is thoroughly discounted

and ignored. Isman hard hit. Blockade issue affects

pretext for embargo on byproducts, ejecting suets and

vegetable oils.

Taking the second letter in each word the following message emerges:

Pershing sails from NY June 1.

Various other techniques have been used historically; some examples

are the following

 Character marking: Selected letters of printed or typewritten

text are overwritten in pencil. The marks are ordinarily not

visible unless the paper is held at an angle to bright light.

 Invisible ink: A number of substances can be used for writing

but leave no visible trace until heat or some chemical is

applied to the paper.

 Pin punctures: Small pin punctures on selected letters are

ordinarily not visible unless the paper is held up in front of a

light.

Network Security

NOTES

35

 Typewriter correction ribbon: Used between lines typed with

a black ribbon, the results of typing with the correction tape

are visible only under a strong light.

Steganography has a number of drawbacks when compared to

encryption. It requires a lot of overhead to hide a relatively few bits of

information, although using some scheme like that proposed in the

preceding paragraph may make it more effective. Also, once the system

is discovered, it becomes virtually worthless. This problem, too, can be

overcome if the insertion method depends on some sort of key.

Alternatively, a message can be first encrypted and then hidden using

steganography.

The advantage of steganography is that it can be employed by parties

who have something to lose should the fact of their secret communication

(not necessarily the content) be discovered. Encryption flags traffic as

important or secret or may identify the sender or receiver as someone

with something to hide.

REFERENCES

1. William Stallings, Cryptography and Network Security, PHI

Publishers

2. www.wikipedia.org

Review Questions:

1. Give an account of Cryptanalysis

2. Explain Substitution and Transposition techniques with

examples

3. Explain the conventional encryption model.

4. Write a short note on steganography.

Network Security

NOTES

36

3. BLOCK CIPHERS AND DES
A block cipher is a symmetric key cipher which operates on fixed-length

groups of bits, termed blocks, with an unvarying transformation. When

encrypting, a block cipher might take (for example) a 128-bit block of

plaintext as input, and output a corresponding 128-bit block of ciphertext.

The exact transformation is controlled using a second input — the secret

key. Decryption is similar: the decryption algorithm takes, in this example,

a 128-bit block of ciphertext together with the secret key, and yields the

original 128-bit block of plaintext.

A block cipher consists of two paired algorithms, one for encryption, E,

and another for decryption, E-1. Both algorithms accept two inputs: an

input block of size n bits and a key of size k bits, yielding an n-bit output

block. For any one fixed key, decryption is the inverse function of

encryption, so that

for any block M and key K.

For each key K, EK is a permutation (a bijective mapping) over the set of

input blocks. Each key selects one permutation from the possible set of

2n!.

The block size, n, is typically 64 or 128 bits, although some ciphers have

a variable block size. 64 bits was the most common length until the mid-

1990s, when new designs began to switch to the longer 128-bit length.

One of several modes of operation is generally used along with a padding

scheme to allow plaintexts of arbitrary lengths to be encrypted. Each

mode has different characteristics in regard to error propagation, ease of

random access and vulnerability to certain types of attack. Typical key

sizes (k) include 40, 56, 64, 80, 128, 192 and 256 bits. As of 2006, 80 bits

is normally taken as the minimum key length needed to prevent brute

force attacks.

ITERATED BLOCK CIPHERS
Most block ciphers are constructed by repeatedly applying a simpler

function. This approach is known as iterated block cipher (see also

product cipher). Each iteration is termed a round, and the repeated

function is termed the round function; anywhere between 4 to 32 rounds

are typical.

Many block ciphers can be categorised as Feistel networks, or, as more

general substitution-permutation networks. Arithmetic operations, logical

operations (especially XOR), S-boxes and various permutations are all

frequently used as components.

Network Security

NOTES

37

FIESTEL NETWORK
A Feistel cipher (Fig 1.3.1) is a symmetric structure used in the

construction of block ciphers, named after the German IBM cryptographer

Horst Feistel; it is also commonly known as a Feistel network. A large

proportion of block ciphers use the scheme, including the Data Encryption

Standard (DES). The Feistel structure has the advantage that encryption

and decryption operations are very similar, even identical in some cases,

requiring only a reversal of the key schedule. Therefore the size of the

code or circuitry required to implement such a cipher is nearly halved.

Feistel networks and similar constructions are product ciphers, and so

combine multiple rounds of repeated operations, such as:

 Bit-shuffling (often called permutation boxes or P-boxes)

 Simple non-linear functions (often called substitution boxes or S-

boxes)

 Linear mixing (in the sense of modular algebra) using XOR to

produce a function with large amounts of what Claude Shannon

described as "confusion and diffusion".

Bit shuffling creates the diffusion effect, while substitution is used for

confusion.

Network Security

NOTES

38

Construction Details

Let F be the round function and let K0, K1, .. Kn be the sub-keys for the

rounds 0, 1, 2, ..n respectively. Then the basic operation is as follows.

Split the plaintext block into two equal pieces, (L0, R0). For each round I =

0, 1, 2, … N , compute

Then the ciphertext is (Rn,Ln). (Commonly the two pieces Rn and Ln are

not switched after the last round.)

Decryption of a ciphertext (Rn,Ln) is accomplished by computing for I = n,

n-1, n-2, ..0.

Then (L0,R0) is the plaintext again.

One advantage of this model is that the round function F does not have to

be invertible, and can be very complex.

The diagram illustrates both encryption and decryption. Note the reversal

of the subkey order for decryption. This is the only difference between

encryption and decryption:

Unbalanced Feistel ciphers use a modified structure where L0 and R0 are

not of equal lengths. The Skipjack encryption algorithm is an example of

such a cipher. The Texas Instruments Digital Signature Transponder

uses a proprietary unbalanced Feistel cipher to perform challenge-

response authentication.

Diffusion and Confusion

In cryptography, confusion and diffusion are two properties of the

operation of a secure cipher which were identified by Shannon in his

paper, "Communication Theory of Secrecy Systems" published in 1949.

In Shannon's original definitions, confusion refers to making the

relationship between the key and the ciphertext as complex and as

involved as possible; diffusion refers to the property that redundancy in

the statistics of the plaintext is "dissipated" in the statistics of the

ciphertext.

Diffusion is associated with dependency of bits of the output on bits of the

input. In a cipher with good diffusion, flipping an input bit should change

each output bit with a probability of one half (this is termed the Strict

Avalanche Criterion).

Network Security

NOTES

39

Substitution (a plaintext symbol is replaced by another) has been

identified as a mechanism for primarily confusion. Conversely

transposition (rearranging the order of symbols) is a technique for

diffusion, although other mechanisms are also used in modern practice,

such as linear transformation. Product ciphers use alternating substitution

and transposition phases to achieve both confusion and diffusion

respectively.

DATA ENCRYPTION STANDARD
The Data Encryption Standard (DES) is a cipher (a method for

encrypting information) selected as an official Federal Information

Processing Standard (FIPS) for the United States in 1976 and which has

subsequently enjoyed widespread use internationally. DES consequently

came under intense academic scrutiny which motivated the modern

understanding of block ciphers and their cryptanalysis.

DES is the archetypal block cipher, an algorithm that takes a fixed-length

string of plaintext bits and transforms it through a series of complicated

operations into another ciphertext bit string of the same length. In the

case of DES, the block size is 64 bits. DES also uses a key to customize

the transformation, so that decryption can supposedly only be performed

by those who know the particular key used to encrypt. The key ostensibly

consists of 64 bits; however, only 56 of these are actually used by the

algorithm. Eight bits are used solely for checking parity, and are

thereafter discarded. Hence the effective key length is 56 bits.

Like other block ciphers, DES by itself is not a secure means of

encryption but must instead be used in a mode of operation.

Overall structure

The overall scheme for DES encryption is illustrated in Fig 1.3.2. As with

any encryption scheme, there are two inputs to the encryption function:

the plaintext to be encrypted and the key. In this case, the plaintext must

be 64 bits in length and the key is 56 bits in length.

Looking at the left-hand side of the figure, we can see that the processing

of the plaintext proceeds in three phases. First, the 64-bit plaintext

passes through an initial permutation (IP) that rearranges the bits to

produce the permuted input. This is followed by a phase consisting of 16

rounds of the same function, which involves both permutation and

substitution functions. The output of the last (sixteenth) round consists of

64 bits that are a function of the input plaintext and the key. The left and

right halves of the output are swapped to produce the preoutput. Finally,

the preoutput is passed through a permutation (IP-1) that is the inverse of

the initial permutation function, to produce the 64-bit ciphertext. With the

Network Security

NOTES

40

exception of the initial and final permutations, DES has the exact

structure of a Feistel cipher

The right-hand portion of Fig 1.3.2 shows the way in which the 56-bit key

is used. Initially, the key is passed through a permutation function. Then,

for each of the 16 rounds, a subkey (Ki) is produced by the combination

of a left circular shift and a permutation. The permutation function is the

same for each round, but a different subkey is produced because of the

repeated shifts of the key bits.

Fig 1.3.2 General Depiction of DES Encryption Algorithm

Fig 1.3.3 shows the internal structure of a single round. Again, begin by

focusing on the left-hand side of the diagram. The left and right halves of

each 64-bit intermediate value are treated as separate 32-bit quantities,

labeled L (left) and R (right). As in any classic Feistel cipher, the overall

processing at each round can be summarized in the following formulas:

Li = Ri-1

Ri = Li-1 F(Ri-1, Ki)

Network Security

NOTES

41

where denotes the bitwise XOR function.

The round key Ki is 48 bits. The R input is 32 bits. This R input is first

expanded to 48 bits by using a table that defines a permutation plus an

expansion that involves duplication of 16 of the R bits. The resulting 48

bits are XORed with Ki. This 48-bit result passes through a substitution

function that produces a 32-bit output.

The role of the S-boxes in the function F is illustrated in Fig 1.3.4. The

substitution consists of a set of eight S-boxes, each of which accepts 6

bits as input and produces 4 bits as output. These transformations are

defined in Table 1.3.1, which is interpreted as follows:

 The first and last bits of the input to box Si form a 2-bit binary

number to select one of four substitutions defined by the four

rows in the table for Si. The middle four bits select one of the

sixteen columns. The decimal value in the cell selected by the

row and column is then converted to its 4-bit representation to

produce the output. For example, in S1 for input 011001, the

row is 01 (row 1) and the column is 1100 (column 12). The

value in row 1, column 12 is 9, so the output is 1001.

 Each row of an S-box defines a general reversible substitution.

Fig 1.3.3 Single Round of DES Algorithm

Network Security

NOTES

42

Fig 1.3.4 Calculation of F (R, K)

Table 1.3.1 Definition of DES S-Boxes

Network Security

NOTES

43

A 64-bit key is used as input to the algorithm. The bits of the key are

numbered from 1 through 64. Every eighth bit is ignored. The key is first

subjected to a permutation governed by a Permuted Choice. The

resulting 56-bit key is then treated as two 28-bit quantities, labeled C0 and

D0. At each round, Ci-1 and Di-1 are separately subjected to a circular left

shift, or rotation, of 1 or 2 bits. These shifted values serve as input to the

next round. They also serve as input to Permuted Choice to the next

round which produces a 48-bit output that serves as input to the function

F(Ri-1, Ki).

DES DECRYPTION

As with any Feistel cipher, decryption uses the same algorithm as

encryption, except that the application of the subkeys is reversed.

AVALANCHE EFFECT

A desirable property of any encryption algorithm is that a small change in

either the plaintext or the key should produce a significant change in the

ciphertext. In particular, a change in one bit of the plaintext or one bit of

the key should produce a change in many bits of the ciphertext.

(a) Change in Plaintext (b) Change in Key

Round Number of bits that differ Round Number of bits that differ

0 1 0 0

1 6 1 2

2 21 2 14

3 35 3 28

4 39 4 32

5 34 5 30

6 32 6 32

7 31 7 35

8 29 8 34

9 42 9 40

10 44 10 38

Network Security

NOTES

44

Table1.3.2 The Avalanche Effect

DES exhibits a strong avalanche effect. In Table 1.3.2a, two plaintexts

that differ by one bit were used. The Table 1.3.2a shows that after just

three rounds, 21 bits differ between the two blocks. On completion, the

two ciphertexts differ in 34 bit positions.

Table 1.3.2b shows a similar test in which a single plaintext is input with

two keys that differ in only one bit position. Again, the results show that

about half of the bits in the ciphertext differ and that the avalanche effect

is pronounced after just a few rounds.

STRENGTH OF DES

Although more information has been published on the cryptanalysis of

DES than any other block cipher, the most practical attack to date is still a

brute force approach. Various minor cryptanalytic properties are known,

and three theoretical attacks are possible which, while having a

theoretical complexity less than a brute force attack, require an unrealistic

amount of known or chosen plaintext to carry out, and are not concerns in

practice. Since its adoption as a federal standard, there have been

lingering concerns about the level of security provided by DES. These

concerns, by and large, fall into two areas: key size and the nature of the

algorithm.

The Use of 56-Bit Keys

With a key length of 56 bits, there are 256 possible keys, which is

approximately 7.2 x 1016. Thus, on the face of it, a brute-force attack

appears impractical. Assuming that, on average, half the key space has

to be searched, a single machine performing one DES encryption per

microsecond would take more than a thousand years to break the cipher.

However, the assumption of one encryption per microsecond is overly

conservative. As far back as 1977, Diffie and Hellman postulated that the

technology existed to build a parallel machine with 1 million encryption

11 32 11 31

12 30 12 33

13 30 13 28

14 26 14 26

15 29 15 34

16 34 16 35

Network Security

NOTES

45

devices, each of which could perform one encryption per microsecond.

This would bring the average search time down to about 10 hours.

DES finally and definitively proved insecure in July 1998, when the

Electronic Frontier Foundation (EFF) announced that it had broken a DES

encryption using a special-purpose "DES cracker" machine that was built

for less than $250,000. The attack took less than three days. The EFF

has published a detailed description of the machine, enabling others to

build their own cracker. And hardware prices will continue to drop as

speeds increase, making DES virtually worthless.

It is important to note that there is more to a key-search attack than

simply running through all possible keys. Unless known plaintext is

provided, the analyst must be able to recognize plaintext as plaintext. If

the message is just plain text in English, then the result pops out easily,

although the task of recognizing English would have to be automated. If

the text message has been compressed before encryption, then

recognition is more difficult. And if the message is some more general

type of data, such as a numerical file, and this has been compressed, the

problem becomes even more difficult to automate. Thus, to supplement

the brute-force approach, some degree of knowledge about the expected

plaintext is needed, and some means of automatically distinguishing

plaintext from garble is also needed. The EFF approach addresses this

issue as well and introduces some automated techniques that would be

effective in many contexts.

The Nature of the DES Algorithm

Another concern is the possibility that cryptanalysis is possible by

exploiting the characteristics of the DES algorithm. The focus of concern

has been on the eight substitution tables, or S-boxes, that are used in

each iteration. Because the design criteria for these boxes were not made

public, there is a suspicion that the boxes were constructed in such a way

that cryptanalysis is possible for an opponent who knows the weaknesses

in the S-boxes. This assertion is tantalizing, and over the years a number

of regularities and unexpected behaviors of the S-boxes have been

discovered. Despite this, no one has so far succeeded in discovering the

supposed fatal weaknesses in the S-boxes.

Timing Attacks

A timing attack is an example of an attack that exploits the

implementation of an algorithm rather than the algorithm itself. The same

algorithm can always be re-implemented in a way that leaks little or no

information to a timing attack: consider an implementation in which every

call to a subroutine always returns in exactly x seconds, where x is the

Network Security

NOTES

46

maximum time it ever takes to execute the routine. In such an

implementation, timing gives an attacker no useful information; it also has

the adverse effect of slower response times on average.

The practicality of the attack implies several things:

 It is algorithm-independent. Notice that the theoretical security of

such algorithms remains — it is mainly the need for a high-speed

implementation of a particular algorithm that introduces such

vulnerabilities.

 Finding timing information is more routine. While finding

cryptographic errors in a crypto-primitive such as the DES may

require deeper knowledge of mathematics, timing is relatively

easy. And measuring response time for a specific query might

give away relatively large amounts of information.

A timing attack is one in which information about the key or the plaintext

is obtained by observing how long it takes a given implementation to

perform decryptions on various ciphertexts. A timing attack exploits the

fact that an encryption or decryption algorithm often takes slightly

different amounts of time on different inputs. DES appears to be fairly

resistant to a successful timing attack but suggest there are some

avenues to explore. Although this is an interesting line of attack, it so far

appears unlikely that this technique will ever be successful against DES

or more powerful symmetric ciphers such as triple DES and AES.

DES Design Criteria

The criteria used in the design of DES focused on the design of the S-

boxes and on the P function that takes the output of the S boxes (Figure

1.3.4). The criteria for the S-boxes are as follows:

1. No output bit of any S-box should be too close a linear function of

the input bits. Specifically, if we select any output bit and any

subset of the six input bits, the fraction of inputs for which this

output bit equals the XOR of these input bits should not be close

to 0 or 1, but rather should be near 1/2.

2. Each row of an S-box (determined by a fixed value of the leftmost

and rightmost input bits) should include all 16 possible output bit

combinations.

3. If two inputs to an S-box differ in exactly one bit, the outputs must

differ in at least two bits.

4. If two inputs to an S-box differ in the two middle bits exactly, the

outputs must differ in at least two bits.

Network Security

NOTES

47

5. If two inputs to an S-box differ in their first two bits and are

identical in their last two bits, the two outputs must not be the

same.

6. For any nonzero 6-bit difference between inputs, no more than 8

of the 32 pairs of inputs exhibiting that difference may result in the

same output difference.

7. This is a criterion similar to the previous one, but for the case of

three S-boxes.

The first criterion in the preceding list was needed because the S-boxes

are the only nonlinear part of DES. If the S-boxes were linear (i.e., each

output bit is a linear combination of the input bits), the entire algorithm

would be linear and easily broken. We have seen this phenomenon with

the Hill cipher, which is linear. The remaining criteria were primarily aimed

at thwarting differential cryptanalysis and at providing good confusion

properties.

The criteria for the permutation P are as follows:

1. The four output bits from each S-box at round i are distributed so

that two of them affect (provide input for) "middle bits" of round (i +

1) and the other two affect end bits. The two middle bits of input to

an S-box are not shared with adjacent S-boxes. The end bits are

the two left-hand bits and the two right-hand bits, which are

shared with adjacent S-boxes.

2. The four output bits from each S-box affect six different S-boxes

on the next round, and no two affect the same S-box.

3. For two S-boxes j, k, if an output bit from Sj affects a middle bit of

Sk on the next round, then an output bit from Sk cannot affect a

middle bit of Sj. This implies that for j = k, an output bit from Sj

must not affect a middle bit of Sj.

These criteria are intended to increase the diffusion of the

algorithm.

Number of Rounds

The cryptographic strength of a Feistel cipher derives from three aspects

of the design

 the number of rounds

 the function F

 the key schedule algorithm

The greater the number of rounds, the more difficult it is to perform

cryptanalysis, even for a relatively weak F. In general, the criterion should

be that the number of rounds is chosen so that known cryptanalytic

Network Security

NOTES

48

efforts require greater effort than a simple brute-force key search attack.

This criterion was certainly used in the design of DES.

Design of Function F

The heart of a Feistel block cipher is the function F. In DES, this function

relies on the use of S-boxes. This is also the case for most other

symmetric block ciphers. However, we can make some general

comments about the criteria for designing F. After that, we look

specifically at S-box design.

Design Criteria for F

The function F provides the element of confusion in a Feistel cipher.

Thus, it must be difficult to "unscramble" the substitution performed by F.

One obvious criterion is that F be nonlinear. The more nonlinear F, the

more difficult any type of cryptanalysis will be. In rough terms, the more

difficult it is to approximate F by a set of linear equations, the more

nonlinear F is. Another criterion proposed is the bit independence

criterion (BIC), which states that output bits j and k should change

independently when any single input bit i is inverted, for all i, j, and k.

S-Box Design

One of the most intense areas of research in the field of symmetric block

ciphers is that of S-box design. In essence, we would like any change to

the input vector to an S-box to result in random-looking changes to the

output. The relationship should be nonlinear and difficult to approximate

with linear functions.

One obvious characteristic of the S-box is its size. An n x m S-box has n

input bits and m output bits. DES has 6 x 4 S-boxes. Larger S-boxes are

more resistant to all types of cryptanalysis. On the other hand, the larger

the dimension n, the (exponentially) larger the lookup table. Thus, for

practical reasons, a limit of n equal to about 8 to 10 is usually imposed.

Another practical consideration is that the larger the S-box, the more

difficult it is to design it properly.

S-boxes are typically organized in a different manner than used in DES.

An n x m S-box typically consists of 2n rows of m bits each. The n bits of

input select one of the rows of the S-box, and the m bits in that row are

the output. For example, in an 8 x 32 S-box, if the input is 00001001, the

output consists of the 32 bits in row 9 (the first row is labeled row 0).

Nyberg, who has written a lot about the theory and practice of S-box

design, suggests the following approaches

 Random: Use some pseudorandom number generation or some

table of random digits to generate the entries in the S-boxes. This

may lead to boxes with undesirable characteristics for small sizes

Network Security

NOTES

49

(e.g., 6 x 4) but should be acceptable for large S-boxes (e.g., 8 x

32).

 Random with testing: Choose S-box entries randomly, then test

the results against various criteria, and throw away those that do

not pass.

 Human-made: This is a more or less manual approach with only

simple mathematics to support it. It is apparently the technique

used in the DES design. This approach is difficult to carry through

for large S-boxes.

 Math-made: Generate S-boxes according to mathematical

principles. By using mathematical construction, S-boxes can be

constructed that offer proven security against linear and

differential cryptanalysis, together with good diffusion.

A variation on the first technique is to use S-boxes that are both random

and key dependent. A tremendous advantage of key-dependent S-boxes

is that, because they are not fixed, it is impossible to analyze the S-boxes

ahead of time to look for weaknesses.

Key Schedule Algorithm

A final area of block cipher design, and one that has received less

attention than S-box design, is the key schedule algorithm. With any

Feistel block cipher, the key is used to generate one subkey for each

round. In general, we would like to select subkeys to maximize the

difficulty of deducing individual subkeys and the difficulty of working back

to the main key. At minimum, the key schedule should guarantee

key/ciphertext Strict Avalanche Criterion and Bit Independence Criterion.

Block Cipher Modes of Operation
In cryptography, a block cipher operates on blocks of fixed length, often

64 or 128 bits. Because messages may be of any length, and because

encrypting the same plaintext under the same key always produces the

same output (as described in the ECB section below), several modes of

operation have been invented which allow block ciphers to provide

confidentiality for messages of arbitrary length. All these modes (except

ECB) require an initialization vector, or IV -- a sort of 'dummy block' to

kick off the process for the first real block, and also to provide some

randomization for the process. There is no need for the IV to be secret, in

most cases, but it is important that it is never reused with the same key.

For CBC and CFB, reusing an IV leaks some information about the first

block of plaintext, and about any common prefix shared by the two

messages. For OFB and CTR, reusing an IV completely destroys

Network Security

NOTES

50

security. In CBC mode, the IV must, in addition, be randomly generated

at encryption time.

Electronic Codebook Mode (ECB)

The simplest mode is the electronic codebook (ECB) mode, in which

plaintext is handled one block at a time and each block of plaintext is

encrypted using the same key (Figure 1.3.5). The term codebook is used

because, for a given key, there is a unique ciphertext for every b-bit block

of plaintext. Therefore, we can imagine a gigantic codebook in which

there is an entry for every possible b-bit plaintext pattern showing its

corresponding ciphertext.

Fig 1.3.5 Electronic Code Book Mode

For a message longer than b bits, the procedure is simply to break the

message into b-bit blocks, padding the last block if necessary. Decryption

is performed one block at a time, always using the same key. In Fig 1.3.5,

the plaintext (padded as necessary) consists of a sequence of b-bit

blocks, P1, P2,..., PN; the corresponding sequence of ciphertext blocks is

C1, C2,..., CN.

The ECB method is ideal for a short amount of data, such as an

encryption key. Thus, if you want to transmit a DES key securely, ECB is

the appropriate mode to use.

Network Security

NOTES

51

The disadvantage of this method is that identical plaintext blocks are

encrypted into identical ciphertext blocks; thus, it does not hide data

patterns well. In some senses, it doesn't provide serious message

confidentiality, and it is not recommended for use in cryptographic

protocols at all.

Cipher Block Chaining Mode (CBC)

To overcome the security deficiencies of ECB, we would like a technique

in which the same plaintext block, if repeated, produces different

ciphertext blocks. A simple way to satisfy this requirement is the cipher

block chaining (CBC) mode (Fig 1.3.6). In this scheme, the input to the

encryption algorithm is the XOR of the current plaintext block and the

preceding ciphertext block; the same key is used for each block. In effect,

we have chained together the processing of the sequence of plaintext

blocks. The input to the encryption function for each plaintext block bears

no fixed relationship to the plaintext block. Therefore, repeating patterns

of b bits are not exposed.

Fig 1.3.6 Cipher block Chaining Mode

For decryption, each cipher block is passed through the decryption

algorithm. The result is XORed with the preceding ciphertext block to

produce the plaintext block. To see that this works, we can write

Cj = E(K, [Cj-1 ⊕ Pj])

Network Security

NOTES

52

Then

D(K, Cj) = D(K, E(K, [Cj-1 ⊕Pj]))

D(K, Cj) = Cj-1 ⊕Pj

Cj-1 ⊕ D (K, Cj) = Cj-1 ⊕ Cj-1 ⊕ Pj = Pj

To produce the first block of ciphertext, an initialization vector (IV) is

XORed with the first block of plaintext. On decryption, the IV is XORed

with the output of the decryption algorithm to recover the first block of

plaintext. The IV is a data block that is that same size as the cipher block.

The IV must be known to both the sender and receiver but be

unpredictable by a third party. For maximum security, the IV should be

protected against unauthorized changes. This could be done by sending

the IV using ECB encryption. One reason for protecting the IV is as

follows: If an opponent is able to fool the receiver into using a different

value for IV, then the opponent is able to invert selected bits in the first

block of plaintext. To see this, consider the following:

C1 = E (K, [IV ⊕ P1])

P1 = IV ⊕ D (K, C1)

Now use the notation that X[i] denotes the ith bit of the b-bit quantity X.

Then

P1[i] = IV[i] ⊕ D (K, C1)[i]

Then, using the properties of XOR, we can state

P1[i]' = IV[i]' ⊕D(K, C1)[i]

where the prime notation denotes bit complementation.

This means that if an opponent can predictably change bits in IV, the

corresponding bits of the received value of P1 can be changed. In

conclusion, because of the chaining mechanism of CBC, it is an

appropriate mode for encrypting messages of length greater than b bits.

Cipher Feedback Mode (CFB)

The DES scheme is essentially a block cipher technique that uses b-bit

blocks. However, it is possible to convert DES into a stream cipher, using

either the cipher feedback (CFB) or the output feedback mode. A stream

cipher eliminates the need to pad a message to be an integral number of

blocks. It also can operate in real time. Thus, if a character stream is

being transmitted, each character can be encrypted and transmitted

immediately using a character-oriented stream cipher.

One desirable property of a stream cipher is that the ciphertext be of the

same length as the plaintext. Thus, if 8-bit characters are being

transmitted, each character should be encrypted to produce a cipher text

Network Security

NOTES

53

output of 8 bits. If more than 8 bits are produced, transmission capacity is

wasted.

Figure 1.3.7 depicts the CFB scheme. In the figure, it is assumed that the

unit of transmission is s bits; a common value is s = 8. As with CBC, the

units of plaintext are chained together, so that the ciphertext of any

plaintext unit is a function of all the preceding plaintext. In this case,

rather than units of b bits, the plaintext is divided into segments of s bits.

Consider encryption. The input to the encryption function is a b-bit shift

register that is initially set to some initialization vector (IV). The leftmost

(most significant) s bits of the output of the encryption function are

XORed with the first segment of plaintext P1 to produce the first unit of

ciphertext C1, which is then transmitted. In addition, the contents of the

shift register are shifted left by s bits and C1 is placed in the rightmost

(least significant) s bits of the shift register. This process continues until

all plaintext units have been encrypted.

For decryption, the same scheme is used, except that the received

ciphertext unit is XORed with the output of the encryption function to

produce the plaintext unit. Note that it is the encryption function that is

used, not the decryption function. This is easily explained. Let Ss(X) be

defined as the most significant s bits of X. Then

C1 = P1 ⊕ Ss[E(K, IV)]

Therefore,

P1 = C1 ⊕ Ss[E(K, IV)]

The same reasoning holds for subsequent steps in the process.

Output Feedback Mode (OFB)

The output feedback (OFB) mode is similar in structure to that of CFB, as

illustrated in Fig 1.3.8. It is the output of the encryption function that is fed

back to the shift register in OFB, whereas in CFB the ciphertext unit is fed

back to the shift register.

One advantage of the OFB method is that bit errors in transmission do

not propagate. For example, if a bit error occurs in C1 only the recovered

value of is P1 affected; subsequent plaintext units are not corrupted. With

CFB, C1 also serves as input to the shift register and therefore causes

additional corruption downstream.

Network Security

NOTES

54

Fig 1.3.7 Cipher Feedback Mode

The disadvantage of OFB is that it is more vulnerable to a message

stream modification attack than is CFB. Consider that complementing a

bit in the ciphertext complements the corresponding bit in the recovered

plaintext. Thus, controlled changes to the recovered plaintext can be

made. This may make it possible for an opponent, by making the

necessary changes to the checksum portion of the message as well as to

the data portion, to alter the ciphertext in such a way that it is not

detected by an error-correcting code.

Counter Mode (CTR)

Fig 1.3.8 depicts the CTR mode. Like OFB, counter mode turns a block

cipher into a stream cipher. It generates the next keystream block by

encrypting successive values of a "counter". The counter can be any

Network Security

NOTES

55

simple function which produces a sequence which is guaranteed not to

repeat for a long time, although an actual counter is the simplest and

most popular. CTR mode has similar characteristics to OFB, but also

allows a random access property during decryption. CTR mode is well

suited to operation on a multi-processor machine where blocks can be

encrypted in parallel. A counter, equal to the plaintext block size is used.

The only requirement

Fig 1.3.8 Output Feedback Mode

is that the counter value must be different for each plaintext block that is

encrypted. Typically, the counter is initialized to some value and then

incremented by 1 for each subsequent block (modulo 2b where b is the

block size). For encryption, the counter is encrypted and then XORed

with the plaintext block to produce the ciphertext block; there is no

chaining. For decryption, the same sequence of counter values is used,

with each encrypted counter XORed with a ciphertext block to recover the

corresponding plaintext block.

Network Security

NOTES

56

Advantages of CTR mode:

 Hardware efficiency: Unlike the three chaining modes,

encryption (or decryption) in CTR mode can be done in parallel on

multiple blocks of plaintext or ciphertext. For the chaining modes,

the algorithm must complete the computation on one block before

beginning on the next block. This limits the maximum throughput

of the algorithm to the reciprocal of the time for one execution of

block encryption or decryption. In CTR mode, the throughput is

only limited by the amount of parallelism that is achieved.

 Software efficiency: Similarly, because of the opportunities for

parallel execution in CTR mode, processors that support parallel

features, such as aggressive pipelining, multiple instruction

dispatch per clock cycle, a large number of registers, and SIMD

instructions, can be effectively utilized.

 Preprocessing: The execution of the underlying encryption

algorithm does not depend on input of the plaintext or ciphertext.

Therefore, if sufficient memory is available and security is

maintained, preprocessing can be used to prepare the output of

the encryption boxes that feed into the XOR functions in Figure

1.3.9. When the plaintext or ciphertext input is presented, then the

only computation is a series of XORs. Such a strategy greatly

enhances throughput.

Fig 1.3.9 Counter Mode

Network Security

NOTES

57

 Random access: The ith block of plaintext or ciphertext can be

processed in random-access fashion. With the chaining modes,

block Ci cannot be computed until the i - 1 prior block are

computed. There may be applications in which a ciphertext is

stored and it is desired to decrypt just one block; for such

applications, the random access feature is attractive.

 Provable security: It can be shown that CTR is at least as secure

as the other modes discussed in this section.

 Simplicity: Unlike ECB and CBC modes, CTR mode requires

only the implementation of the encryption algorithm and not the

decryption algorithm. This matters most when the decryption

algorithm differs substantially from the encryption algorithm, as it

does for AES. In addition, the decryption key scheduling need not

be implemented.

Multiple Encryption and Triple DES
Given the potential vulnerability of DES to a brute-force attack, there has

been considerable interest in finding an alternative. AES is a prime

example. Another alternative, which would preserve the existing

investment in software and equipment, is to use multiple encryption with

DES and multiple keys. We begin by examining the simplest example of

this second alternative.

Double DES
The simplest form of multiple encryption has two encryption stages and

two keys (Fig 1.3.10). Given a plaintext P and two encryption keys K1 and

K2, ciphertext C is generated as

C = E(K2, E(K1, P))

Decryption requires that the keys be applied in reverse order:

P = D (K1, D (K2, C))

For DES, this scheme apparently involves a key length of 56 x 2 = 112

bits, of resulting in a dramatic increase in cryptographic strength. But we

need to examine the algorithm more closely.

Reduction to a Single Stage

Suppose it were true for DES, for all 56-bit key values, that given any two

keys K1 and K2, it would be possible to find a key K3 such that

E(K2, E(K1, P)) = E (K3,P) ----- (a)

If this were the case, then double encryption, and indeed any number of

stages of multiple encryption with DES, would be useless because the

result would be equivalent to a single encryption with a single 56-bit key.

Network Security

NOTES

58

On the face of it, it does not appear that Equation (a) is likely to hold.

Consider that encryption with DES is a mapping of 64-bit blocks to 64-bit

Fig 1.3.10 Multiple Encryption

blocks. In fact, the mapping can be viewed as a permutation. That is, if

we consider all 264 possible input blocks, DES encryption with a specific

key will map each block into a unique 64-bit block. Otherwise, if, say, two

given input blocks mapped to the same output block, then decryption to

recover the original plaintext would be impossible. With 264 possible

inputs, how many different mappings are there those generate a

permutation of the input blocks? The value is easily seen to be

(264)! = 10347380000000000000000 > ()

On the other hand, DES defines one mapping for each different key, for a

total number of mappings:

256>1017

Therefore, it is reasonable to assume that if DES is used twice with

different keys, it will produce one of the many mappings that are not

defined by a single application of DES.

Network Security

NOTES

59

Meet-in-the-Middle Attack

The use of double DES results in a mapping that is not equivalent to a

single DES encryption. But there is a way to attack this scheme, one that

does not depend on any particular property of DES but that will work

against any block encryption cipher.

The meet-in-the-middle attack algorithm is based on the observation that,

if we have

C = E(K2, E(K1, P))

Then (see Figure 1.3.10a)

X = E(K1, P) = D(K2, P)

Given a known pair, (P, C), the attack proceeds as follows. First, encrypt

P for all 256 possible values of K1 Store these results in a table and then

sort the table by the values of X. Next, decrypt C using all 256 possible

values of K2. As each decryption is produced, check the result against the

table for a match. If a match occurs, then test the two resulting keys

against a new known plaintext-ciphertext pair. If the two keys produce the

correct ciphertext, accept them as the correct keys.

For any given plaintext P, there are 264 possible ciphertext values that

could be produced by double DES. Double DES uses, in effect, a 112-bit

key, so that there are 2112 possible keys. Therefore, on average, for a

given plaintext P, the number of different 112-bit keys that will produce a

given ciphertext C is 2112/264 = 248. Thus, the foregoing procedure will

produce about 248 false alarms on the first (P, C) pair. A similar argument

indicates that with an additional 64 bits of known plaintext and ciphertext,

the false alarm rate is reduced to 248-64 = 2-16 Put another way, if the

meet-in-the-middle attack is performed on two blocks of known plaintext-

ciphertext, the probability that the correct keys are determined is 1 2-16.

The result is that a known plaintext attack will succeed against double

DES, which has a key size of 112 bits, with an effort on the order of 256,

not much more than the 255 required for single DES.

Triple DES with Two Keys
An obvious counter to the meet-in-the-middle attack is to use three

stages of encryption with three different keys. This raises the cost of the

known-plaintext attack to 2112, which is beyond what is practical now and

far into the future. However, it has the drawback of requiring a key length

of 56 x 3 = 168 bits.

As an alternative, Tuchman proposed a triple encryption method that

uses only two keys. The function follows an encrypt-decrypt-encrypt

(EDE) sequence (Figure 1.3.10b):

Network Security

NOTES

60

C = E(K1, D(K2, E(K1, P)))

There is no cryptographic significance to the use of decryption for the

second stage. Its only advantage is that it allows users of 3DES to

decrypt data encrypted by users of the older single DES:

C = E(K1, D(K1, E(K1, P))) = E(K1, P)
 3DES with two keys is a relatively popular alternative to DES.

Triple DES with Three Keys
Although the attacks just described appear impractical, anyone using two-

key 3DES may feel some concern. Thus, many researchers now feel that

three-key 3DES is the preferred alternative. Three-key 3DES has an

effective key length of 168 bits and is defined as follows:

C = E(K3, D(K2, E(K1, P)))

Backward compatibility with DES is provided by putting K3 = K2 or K1 = K2.

Mode Description Typical Application

Electronic
Codebook
(ECB)

Each block of 64 plaintext bits is
encoded independently using the same
key.

 Secure transmission of
single values (e.g., an
encryption key)

Cipher Block
Chaining
(CBC)

The input to the encryption algorithm is
the XOR of the next 64 bits of plaintext
and the preceding 64 bits of ciphertext.

 General-purpose
block-oriented
transmission

 Authentication

Cipher
Feedback
(CFB)

Input is processed j bits at a time.
Preceding ciphertext is used as input to
the encryption algorithm to produce
pseudorandom output, which is XORed
with plaintext to produce next unit of
ciphertext.

 General-purpose
stream-oriented
transmission

 Authentication

Output
Feedback
(OFB)

Similar to CFB, except that the input to
the encryption algorithm is the preceding
DES output.

 Stream-oriented
transmission over
noisy channel (e.g.,
satellite
communication)

Counter
(CTR)

Each block of plaintext is XORed with an
encrypted counter. The counter is
incremented for each subsequent block.

 General-purpose
block-oriented
transmission

 Useful for high-speed
requirements

Table 1.3.3 Block Cipher Modes of Operation

Network Security

NOTES

61

Cipher Key Length Speed (Mbps)

DES 56 9

3DES 168 3

RC2 variable 0.9

RC4 variable 45

Table 1.3.4 Speed Comparisons of Symmetric Ciphers on a Pentium II

REFERENCES

1. William Stallings, Cryptography and Network Security, PHI

Publishers

2. www.wikipedia.org

Review Questions:

1. Write a short notes on Fiestel Network

2. Explain the Des Algorithm in detail.

3. Give an account of DES design criteria

4. Explain the block ciphers modes of operations

Network Security

NOTES

62

4. ADVANCED ENCRYPTION

STANDARD

OBJECTIVE
The goal of this lesson is to introduce the Advanced Encryption Standard.

This conventional encryption algorithm is designed to replace DES and

triple DES. In this lesson, we cover the evaluation criteria and the

algorithm issues in detail

ADVANCED ENCRYPTION STANDARD
AES is a symmetric encryption algorithm processing data in block of 128

bits. A bit can take the values zero and one, in effect a binary digit with

two possible values as opposed to decimal digits, which can take one of

10 values. Under the influence of a key, a 128-bit block is encrypted by

transforming it in a unique way into a new block of the same size. AES is

symmetric since the same key is used for encryption and the reverse

transformation, decryption. The only secret necessary to keep for security

is the key. AES may configured to use different key-lengths, the standard

defines 3 lengths and the resulting algorithms are named AES-128, AES-

192 and AES-256 respectively to indicate the length in bits of the key.

Each additional bit in the key effectively doubles the strength of the

algorithm, when defined as the time necessary for an attacker to stage a

brute force attack, i.e. an exhaustive search of all possible key

combinations in order to find the right one. AES is founded on solid and

well-published mathematical ground, and appears to resist all known

attacks well.

A strong encryption algorithm need only meet only single main criteria:

 There must be no way to find the unencrypted clear text if the key

is unknown, except brute force, i.e. to try all possible keys until the

right one is found.

A secondary criterion must also be met:

 The number of possible keys must be so large that it is

computationally infeasible to actually stage a successful brute

force attack in short enough a time.

The older standard, DES or Data Encryption Standard, meets the first

criterion, but no longer the secondary one – computer speeds have

Network Security

NOTES

63

caught up with it, or soon will. AES meets both criteria in all of its variants:

AES-128, AES-192 and AES-256.

AES CIPHER

The Rijndael proposal for AES defined a cipher in which the block length

and the key length can be independently specified to be 128, 192, or 256

bits. The AES specification uses the same three key size alternatives but

limits the block length to 128 bits. A number of AES parameters depend

on the key length (Table 1.8). In the description of this section, we

assume a key length of 128 bits, which is likely to be the one most

commonly implemented.

Key size (words/bytes/bits) 4/16/128 6/24/192 8/32/256

Plaintext block size (words/bytes/bits) 4/16/128 4/16/128 4/16/128

Number of rounds 10 12 14

Round key size (words/bytes/bits) 4/16/128 4/16/128 4/16/128

Expanded key size (words/bytes) 44/176 52/208 60/240

Table 1.4.1 AES Parameters

Rijndael was designed to have the following characteristics:

 Resistance against all known attacks

 Speed and code compactness on a wide range of platforms

 Design simplicity

Fig 1.4.1 shows the overall structure of AES. The input to the encryption

and decryption algorithms is a single 128-bit block. In FIPS PUB 197, this

block is depicted as a square matrix of bytes. This block is copied into the

State array, which is modified at each stage of encryption or decryption.

After the final stage, State is copied to an output matrix. These operations

are depicted in 1.4.1a. Similarly, the 128-bit key is depicted as a square

matrix of bytes. This key is then expanded into an array of key schedule

words; each word is four bytes and the total key schedule is 44 words for

the 128-bit key (Fig 1.4.1b). Note that the ordering of bytes within a matrix

is by column. So, for example, the first four bytes of a 128-bit plaintext

input to the encryption cipher occupy the first column of the in matrix, the

second four bytes occupy the second column, and so on. Similarly, the

first four bytes of the expanded key, which form a word, occupy the first

column of the w matrix.

Network Security

NOTES

64

Before delving into details, we can make several comments about the

overall AES structure:

1. One noteworthy feature of this structure is that it is not a Feistel

structure. Recall that in the classic Feistel structure, half of the

data block is used to modify the other half of the data block, and

then the halves are swapped. Two of the AES finalists, including

Rijndael, do not use a Feistel structure but process the entire data

block in parallel during each round using substitutions and

permutation.

2. The key that is provided as input is expanded into an array of

forty-four 32-bit words, w[i]. Four distinct words (128 bits) serve as

a round key for each round.

3. Four different stages are used, one of permutation and three of

substitution:

 Substitute bytes: Uses an S-box to perform a byte-by-byte

substitution of the block

 Shift Rows : A simple permutation

 Mix Columns : A substitution that makes use of

arithmetic over GF(28)

 AddRoundKey: A simple bitwise XOR of the current block

with a portion of the expanded key

4. The structure is quite simple. For both encryption and decryption,

the cipher begins with an AddRoundKey stage, followed by nine

rounds that each includes all four stages, followed by a tenth

round of three stages. Fig 1.4.3 depicts the structure of a full

encryption round.

5. Only the AddRoundKey stage makes use of the key. For this

reason, the cipher begins and ends with an AddRoundKey stage.

Any other stage, applied at the beginning or end, is reversible

without knowledge of the key and so would add no security.

6. The AddRoundKey stage is, in effect, a form of Vernam cipher

and by itself would not be formidable. The other three stages

together provide confusion, diffusion, and nonlinearity, but by

themselves would provide no security because they do not use

the key. We can view the cipher as alternating operations of XOR

encryption (AddRoundKey) of a block, followed by scrambling of

the block (the other three stages), followed by XOR encryption,

and so on. This scheme is both efficient and highly secure.

7. Each stage is easily reversible. For the Substitute Byte,

ShiftRows, and MixColumns stages, an inverse function is used in

Network Security

NOTES

65

the decryption algorithm. For the AddRoundKey stage, the inverse

is achieved by XORing the same round key to the block, using the

result that A ⊕ A ⊕ B = B.

8. As with most block ciphers, the decryption algorithm makes use of

the expanded key in reverse order. However, the decryption

algorithm is not identical to the encryption algorithm. This is a

consequence of the particular structure of AES.

9. Once it is established that all four stages are reversible, it is easy

to verify that decryption does recover the plaintext. Fig 1.4.1 lays

out encryption and decryption going in opposite vertical directions.

At each horizontal point (e.g., the dashed line in the figure), State

is the same for both encryption and decryption.

10. The final round of both encryption and decryption consists of only

three stages. Again, this is a consequence of the particular

structure of AES and is required to make the cipher reversible.

Network Security

NOTES

66

Fig 1.4.1 AES Encryption and Decryption

Fig 1.4.2 AES Data Structure

Fig 1.4.3 AES Encryption Round

Network Security

NOTES

67

Let us discuss each of the four stages used in AES. For each stage, we

describe the forward (encryption) algorithm, the inverse (decryption)

algorithm, and the rationale for the stage. This is followed by a discussion

of key expansion.

AES uses arithmetic in the finite field GF(28), with the irreducible

polynomial

m(x) = x8 + x4 + x3 + x + 1.

Substitute Bytes Transformation

Forward and Inverse Transformations

The forward substitute byte transformation, called SubBytes, is a simple

table lookup (Fig 1.4.4a). AES defines a 16 x 16 matrix of byte values,

called an S-box (Table 1.4.2a), that contains a permutation of all possible

256 8-bit values. Each individual byte of State is mapped into a new byte

in the following way: The leftmost 4 bits of the byte are used as a row

value and the rightmost 4 bits are used as a column value. These row

and column values serve as indexes into the S-box to select a unique 8-

bit output value. For example, the hexadecimal value {95} references row

9, column 5 of the S-box, which contains the value {2A}. Accordingly, the

value {95} is mapped into the value {2A}.

Fig 1.4.4 AES Byte Level Operation

The S-box is constructed in the following fashion:

Network Security

NOTES

68

1. Initialize the S-box with the byte values in ascending sequence

row by row. The first row contains {00}, {01}, {02},.... {0F}; the

second row contains {10}, {11}, etc.; and so on. Thus, the value of

the byte at row x, column y is {xy}.

2. Map each byte in the S-box to its multiplicative inverse in the finite

field GF(28); the value {00} is mapped to itself.

3. Consider that each byte in the S-box consists of 8 bits labeled (b7,

b6, b5, b4, b3, b2, b1, b0). Apply the following transformation to each

bit of each byte in the S-box:

(1.4.1)

where ci is the ith bit of byte c with the value {63}; i.e., (C7 C6 C5

C4 C3 C2 C1 C0) = (01100011).

Table 1.4.2 AES S-Boxes

Network Security

NOTES

69

Here is an example of the SubBytes transformation:

The prime (') indicates that the variable is to be updated by the

value on the right. The AES standard depicts this transformation

in matrix form as follows:

Equation (1.4.2) has to be interpreted carefully. In ordinary matrix

multiplication, each element in the product matrix is the sum of products

of the elements or one row and one column. In this case, each element in

the product matrix is the bitwise XOR of products of elements of one row

and one column. Further, the final the final addition shown in Eqn 1.4.2 is

a bitwise XOR.

As an example, consider the input value {95}. The multiplicative inverse in

GF(28) is {95} = {8A}, which is 10001010 in binary. Using Equation (2),

The result is {2A}, which should appear in row {09} column {05} of the S-

box. This is verified by checking Table 1.4.2a.

The inverse substitute byte transformation, called InvSubBytes, makes

use of the inverse S-box shown in Table 1.4.2b. Note, for example, that

the input {2A} produces the output {95} and the input {95} to the S-box

produces {2A}. The inverse S-box is constructed by applying the inverse

(1.4.2)

Network Security

NOTES

70

of the transformation in Equation (1.4.1) followed by taking the

multiplicative inverse in GF(28). The inverse transformation is:

bi' = b(i + 2) mod 8 b(i + 5) mod 8 b(i + 7) mod 8 di

where byte d = {05}, or 00000101. We can depict this transformation as

follows:

To see that InvSubBytes is the inverse of SubBytes, label the matrices in

SubBytes and InvSubBytes as X and Y, respectively, and the vector

versions of constants c and d as C and D, respectively. For some 8-bit

vector B, Equation (2) becomes B' = XB C.

We need to show that Y (XB C) D = B. Multiply out, we must show

YXB YC D = B. This becomes

We have demonstrated that YX equals the identity matrix, and the YC =

D, so that YC D equals the null vector.

Rationale

The S-box is designed to be resistant to known cryptanalytic attacks. In

addition, the constant in Equation (1) was chosen so that the S-box has

no fixed points [S-box(a) = a] and no "opposite fixed points" [S-box(a)

=], where is the bitwise complement of a.

Of course, the S-box must be invertible, that is, IS-box[S-box(a)] = a.

However, the S-box is not self-inverse in the sense that it is not true that

S-box(a) = IS - box(a). For example, [S-box({95}) = {2A}, but IS-box({95})

= {AD}.

ShiftRows Transformation

Forward and Inverse Transformations

The forward shift row transformation, called ShiftRows, is depicted in

Figure 1.4.5a. The first row of State is not altered. For the second row, a

1-byte circular left shift is performed. For the third row, a 2-byte circular

left shift is performed. For the fourth row, a 3-byte circular left shift is

performed.

Network Security

NOTES

71

The following is an example of ShiftRows:

The inverse shift row transformation, called InvShiftRows, performs the

circular shifts in the opposite direction for each of the last three rows, with

a one-byte circular right shift for the second row, and so on.

Rationale

The shift row transformation is more substantial than it may first appear.

This is because the State, as well as the cipher input and output, is

treated as an array of four 4-byte columns. Thus, on encryption, the first 4

bytes of the plaintext are copied to the first column of State, and so on.

Further, the round key is applied to State column by column. Thus, a row

shift moves an individual byte from one column to another, which is a

linear distance of a multiple of 4 bytes.

Network Security

NOTES

72

Fig 1.4.5 AES Row and Column Operations

Also note that the transformation ensures that the 4 bytes of one column

are spread out to four different columns. Fig 1.4.3 illustrates the effect.

MixColumns Transformation

Forward and Inverse Transformations

The forward mix column transformation, called MixColumns, operates on

each column individually. Each byte of a column is mapped into a new

value that is a function of all four bytes in that column. The transformation

can be defined by the following matrix multiplication on State (Fig 1.4.5b):

Each element in the product matrix is the sum of products of elements of

one row and one column. In this case, the individual additions and

multiplications are performed in GF(28). The MixColumns transformation

on a single column j(0 j 3) of State can be expressed as

(1.4.3)

Network Security

NOTES

73

The following is an example of MixColumns:

Let us verify the first column of this example. In GF(28), addition is the

bitwise XOR operation and multiplication can be performed according to

the rule

In particular, multiplication of a value by x (i.e., by {02}) can be

implemented as a 1-bit left shift followed by a conditional bitwise XOR

with (0001 1011) if the leftmost bit of the original value (prior to the shift)

is 1. Thus, to verify the MixColumns transformation on the first column,

we need to show that

({02} ·
{87})

⊕ ({03} ·
{6E})

⊕ {46} ⊕ {A6} =
{47}

{87} ⊕ ({02} ·
{6E})

⊕ ({03} ·
{46})

⊕ {A6} =
{37}

{87} ⊕ {6E} ⊕ ({02} · {46} ⊕ ({03} · {A6}) =
{94}

({03} ·
{87})

⊕ {6E} ⊕ {46} ⊕ ({02} ·
{A6}

= {ED}

For the first equation, we have {02} · {87} = (0000 1110) ⊕ (0001 1011) =

(0001 0101); and {03} · {6E} = {6E} ⊕ ({02} · {6E}) = (0110 1110) ⊕

(1101 1100) = (1011 0010). Then

{02} · {87} = 0001 0101

{03} · {6E} = 1011 0010

{46} = 0100 0110

(1.4.4)

Network Security

NOTES

74

{02} · {87} = 0001 0101

{A6} = 1010 0110

0100 0111 = {47}

The other equations can be similarly verified.

The inverse mix column transformation, called InvMixColumns, is defined

by the following matrix multiplication:

It is not immediately clear that Equation (1.4.5) is the inverse of Equation

(1.4.3). We need to show that:

which is equivalent to showing that:

That is, the inverse transformation matrix times the forward

transformation matrix equals the identity matrix. To verify the first column

of Equation (1.4.6), we need to show that:

({0E} · {02}) ⊕ {0B} ⊕ {0D} ⊕ ({09} · {03}) = {01}

({09} · {02}) ⊕ {0E} ⊕ {0B} ⊕ ({0D} · {03}) = {00}

({0D} · {02}) ⊕ {09} ⊕ {0E} ⊕ ({0B} · {03}) = {00}

({0B} · {02}) ⊕ {0D} ⊕ {09} ⊕ ({0E} · {03}) = {00}

For the first equation, we have {0E} · {02}) ⊕ 00011100; and {09} · {03} =

{09} ⊕ ({09} · {02}) = 00001001 ⊕ 00010010 = 00011011. Then

{0E} · {02} = 00011100

{0B} = 00001011

{0D} = 00001101

(5)

(1.4.6)

Network Security

NOTES

75

{0E} · {02} = 00011100

{09} · {03} = 00011011

00000001

The other equations can be similarly verified.

The AES document describes another way of characterizing the

MixColumns transformation, which is in terms of polynomial arithmetic. In

the standard, MixColumns is defined by considering each column of State

to be a four-term polynomial with coefficients in GF(28). Each column is

multiplied modulo (x4 + 1) by the fixed polynomial a(x), given by

(1.4.7)

It can readily be shown that b(x) = a1 (x) mod (x4 + 1).

Rationale

The coefficients of the matrix in Equation (1.4.3) are based on a linear

code with maximal distance between code words, which ensures a good

mixing among the bytes of each column. The mix column transformation

combined with the shift row transformation ensures that after a few

rounds, all output bits depend on all input bits.

In addition, the choice of coefficients in MixColumns, which are all {01},

{02}, or {03}, was influenced by implementation considerations. As was

discussed, multiplication by these coefficients involves at most a shift and

an XOR. The coefficients in InvMixColumns are more formidable to

implement. However, encryption was deemed more important than

decryption for two reasons:

1. For the CFB and OFB cipher modes, only encryption is used.

2. As with any block cipher, AES can be used to construct a

message authentication code (Part Two), and for this only

encryption is used.

AddRoundKey Transformation

Forward and Inverse Transformations

In the forward add round key transformation, called AddRoundKey, the

128 bits of State are bitwise XORed with the 128 bits of the round key. As

shown in Fig 1.4.4b, the operation is viewed as a columnwise operation

between the 4 bytes of a State column and one word of the round key; it

can also be viewed as a byte-level operation. The following is an example

of AddRoundKey:

Network Security

NOTES

76

The first matrix is State, and the second matrix is the round key.

The inverse add round key transformation is identical to the forward add

round key transformation, because the XOR operation is its own inverse.

The add round key transformation is as simple as possible and affects

every bit of State. The complexity of the round key expansion, plus the

complexity of the other stages of AES, ensure security.

AES Key Expansion
Key Expansion Algorithm

The AES key expansion algorithm takes as input a 4-word (16-byte) key

and produces a linear array of 44 words (176 bytes). This is sufficient to

provide a 4-word round key for the initial AddRoundKey stage and each

of the 10 rounds of the cipher. The following pseudocode describes the

expansion:

KeyExpansion (byte key[16], word w[44])

{

word temp

for (i = 0; i < 4; i++)

w[i] = (key[4*i],

key[4*i+1],

key[4*i+2],

key[4*i+3]);

for (i = 4; i < 44; i++)

{

temp = w[i 1];

if (i mod 4 = 0) temp = SubWord (RotWord (temp))

⊕Rcon[i/4];

w[i] = w[i4] temp

}

}

The key is copied into the first four words of the expanded key. The

remainder of the expanded key is filled in four words at a time. Each

Network Security

NOTES

77

added word w[i] depends on the immediately preceding word, w[i 1], and

the word four positions back, w[i 4]. In three out of four cases, a simple

XOR is used. For a word whose position in the w array is a multiple of 4,

a more complex function is used. Fig 1.4.6 illustrates the generation of

the first eight words of the expanded key, using the symbol g to represent

that complex function. The function g consists of the following

subfunctions:

1. RotWord performs a one-byte circular left shift on a word. This

means that an input word [b0, b1, b2, b3] is transformed into [b1,

b2, b3, b0].

2. SubWord performs a byte substitution on each byte of its input

word, using the S-box(Table 1.9a).

3. The result of steps 1 and 2 is XORed with a round constant,

Rcon[j].

Fig 1.4.6 AES Key Expansion

The round constant is a word in which the three rightmost bytes are

always 0. Thus the effect of an XOR of a word with Rcon is to only

perform an XOR on the leftmost byte of the word. The round constant is

different for each round and is defined as Rcon[j] = (RC[j], 0, 0, 0), with

RC[1] = 1, RC[j] = 2 · RC[j - 1] and with multiplication defined over the

field GF(28). The values of RC[j] in hexadecimal are

Network Security

NOTES

78

j 1 2 3 4 5 6 7 8 9 10

RC[j] 01 02 04 08 10 20 40 80 1B 36

For example, suppose that the round key for round 8 is

EA D2 73 21 B5 8D BA D2 31 2B F5 60 7F 8D 29 2F

Then the first 4 bytes (first column) of the round key for round 9 are

calculated as follows:

i

(decimal)
temp

After

RotWord
After SubWord

Rcon

(9)

After

XOR

with

Rcon

w[i 4]

w[i] =

temp ⊕

w[i 4]

36
7F8D

292F
8D292F7F 5DA515D2

1B000

000

46A515

D2

EAD2

7321

AC776

6F3

Rationale

The Rijndael developers designed the expansion key algorithm to be

resistant to known cryptanalytic attacks. The inclusion of a round-

dependent round constant eliminates the symmetry, or similarity, between

the ways in which round keys are generated in different rounds.

 Knowledge of a part of the cipher key or round key does not

enable calculation of many other round key bits

 An invertible transformation [i.e., knowledge of any Nk

consecutive words of the Expanded Key enables regeneration the

entire expanded key (Nk = key size in words)]

 Speed on a wide range of processors

 Usage of round constants to eliminate symmetries

 Diffusion of cipher key differences into the round keys; that is,

each key bit affects many round key bits

 Enough nonlinearity to prohibit the full determination of round key

differences from cipher key differences only

 Simplicity of description

The authors do not quantify the first point on the preceding list, but the

idea is that if you know less than Nk consecutive words of either the

cipher key or one of the round keys, then it is difficult to reconstruct the

remaining unknown bits. The fewer bits one knows, the more difficult it is

to do the reconstruction or to determine other bits in the key expansion.

Equivalent Inverse Cipher

The AES decryption cipher is not identical to the encryption cipher

(Fig1.4.1). That is, the sequence of transformations for decryption differs

Network Security

NOTES

79

from that for encryption, although the form of the key schedules for

encryption and decryption is the same. This has the disadvantage that

two separate software or firmware modules are needed for applications

that require both encryption and decryption. There is an equivalent

version of the decryption algorithm that has the same structure as the

encryption algorithm. The equivalent version has the same sequence of

transformations as the encryption algorithm (with transformations

replaced by their inverses). To achieve this equivalence, a change in key

schedule is needed.

Two separate changes are needed to bring the decryption structure in

line with the encryption structure. An encryption round has the structure

SubBytes, ShiftRows, MixColumns, AddRoundKey. The standard

decryption round has the structure InvShiftRows, InvSubBytes,

AddRoundKey, InvMixColumns. Thus, the first two stages of the

decryption round need to be interchanged, and the second two stages of

the decryption round need to be interchanged.

Interchanging InvShiftRows and InvSubBytes

InvShiftRows affects the sequence of bytes in State but does not alter

byte contents and does not depend on byte contents to perform its

transformation. InvSubBytes affects the contents of bytes in State but

does not alter byte sequence and does not depend on byte sequence to

perform its transformation. Thus, these two operations commute and can

be interchanged. For a given State Si,

InvShiftRows [InvSubBytes (Si)] = InvSubBytes [InvShiftRows (Si)]

Interchanging AddRoundKey and InvMixColumns

The transformations AddRoundKey and InvMixColumns do not alter the

sequence of bytes in State. If we view the key as a sequence of words,

then both AddRoundKey and InvMixColumns operate on State one

column at a time. These two operations are linear with respect to the

column input. That is, for a given State Si and a given round key wj:

InvMixColumns (Si ⊕ wj) = [InvMixColumns (Si)] ⊕ [InvMixColumns (wj)]

To see this, suppose that the first column of State Si is the sequence (y0,

y1, y2, y3) and the first column of the round key wj is (k0, k1, k2, k3). Then

we need to show that

Network Security

NOTES

80

Fig 1.4.7 Equivalent Inverse Cipher

Let us demonstrate that for the first column entry. We need to show that:

[{0E} · (y0 ⊕ k0)] ⊕ [{0B} · (y1 ⊕ k1)] ⊕ [{0D} · (y2 ⊕ k2)] ⊕ [{09} · (y3 ⊕
k3)]

= [{0E} · y0] ⊕ [{0B} · y1] ⊕ [{0D} · y2] ⊕ [{09} · y3] ⊕ [[{0E} · k0] ⊕]

[{0B} · k1] ⊕ [{0D} · k2] ⊕ [{09} · k3]

This equation is valid by inspection. Thus, we can interchange

AddRoundKey and InvMixColumns, provided that we first apply

InvMixColumns to the round key. Note that we do not need to apply

InvMixColumns to the round key for the input to the first AddRoundKey

transformation (preceding the first round) nor to the last AddRoundKey

transformation (in round 10). This is because these two AddRoundKey

transformations are not interchanged with InvMixColumns to produce the

equivalent decryption algorithm. Figure 1.4.7 illustrates the equivalent

decryption algorithm.

Network Security

NOTES

81

REFERENCES

1. William Stallings, Cryptography and Network Security, PHI

Publishers

2. www.wikipedia.org

Review Questions:

1. Explain the AES algorithm in detail?

2. Explain the issues related to the strength of the AES algorithm?

Network Security

NOTES

82

UNIT II

1. NUMBER THEORY

2. DISCRETE LOGARITHMS AND ALGORITHMS

AND ALGORITHM COMPLEXITY

3. PUBLIC KEY CRYPTOSYSTEMS

4. RSA AND DEFFIE HELLMAN KEY EXCHANGE

ALGORITHMS

Network Security

NOTES

83

1.NUMBER THEORY
OBJECTIVE
A number of concepts from number theory are essential in the design of
public-key cryptographic algorithms. This lesson provides an overview of
the concepts referred to in other lessons.

Prime Numbers
An integer p > 1 is a prime number if and only if its only divisors are ± 1
and ±p. Prime numbers play a critical role in number theory. Table 2.1.1
shows the primes less than 2000.

Table 2.1.1 Primes under 2000

Any integer a > 1 can be factored in a unique way as

----- (2.1.1)
where p1 < p2 < ... < pt are prime numbers and where each is a positive
integer. This is known as the fundamental theorem of arithmetic.

91 = 7 x 13

3600 = 2
4

x 3
2

x 5
2

11011 = 7 x 11
2

x 13

If P is the set of all prime numbers, then any positive integer a can be
written uniquely in the following form:

where each ap ≥ 0.

Network Security

NOTES

84

The right-hand side is the product over all possible prime numbers p. For
any particular value of a, most of the exponents ap will be 0. The value of
any given positive integer can be specified by simply listing all the
nonzero exponents in the foregoing formulation.

The integer 12 is represented by {a2 = 2, a3 = 1}.

The integer 18 is represented by {a2 = 1, a3 = 2}.

The integer 91 is represented by {a7 = 2, a13 = 1}.

Multiplication of two numbers is equivalent to adding the corresponding
exponents. Given

Define k = ab We know that the integer k can be expressed as the
product of powers of primes:

It follows that kp = ap + bp for all p Є P.

k = 12 x 18 = (2
2

x 3) x (2 x 3
2
) = 216

k2 = 2 + 1 = 3; k3 = 1 + 2 = 3

216 = 2
3

x 3
3

= 8 x 27

Any integer of the form can be divided only by an integer that is of a
lesser or equal power of the same prime number, pj with j ≤ n. Thus, we
can say the following:

Given,

If a|b, then ap ≤ bp then for all p.

a = 12;b = 36; 12|36

12 = 2
2

x 3; 36 = 2
2

x 3
2

a2 = 2 = b2

a3 = 1 ≤ 2 = b3

Thus, the inequality ap ≤bp is satisfied for all prime numbers.

It is easy to determine the greatest common divisor of two positive
integers if we express each integer as the product of primes. The
greatest common divisor of integers a and b, expressed gcd(a, b), is an

Network Security

NOTES

85

integer c that divides both a and b without remainder and that any divisor
of a and b is a divisor of c.

300 = 2
2

x 3
1

x 5
2

18 = 2
1

x 3
2

gcd(18,300) = 2
1

x 3
1

x 5
0

= 6

The following relationship always holds:

If k = gcd(a,b) then kp = min(ap, bp) for all p

Determining the prime factors of a large number is no easy task, so the
preceding relationship does not directly lead to a practical method of
calculating the greatest common divisor.

Fermat's and Euler's Theorems
Two theorems that play important roles in public-key cryptography are
Fermat's theorem and Euler's theorem.

Fermat's Theorem
This is sometimes referred to as Fermat's little theorem. Fermat's
theorem states the following: If p is prime and a is a positive integer
not divisible by p, then

----- (2.1.2)
Proof: Consider the set of positive integers less than p:{1,2,..., p 1} and
multiply each element by a, modulo p, to get the set X = {a mod p, 2a
mod p, . . . (p 1)a mod p}. None of the elements of X is equal to zero
because p does not divide a. Furthermore no two of the integers in X are
equal. To see this, assume that ja ≡ ka(mod p) where 1 ≡ j < k ≡ p 1.
Because a is relatively prime to p, we can eliminate a from both sides of
the equation resulting in: j ≡ k(mode p). This last equality is impossible
because j and k are both positive integers less than p. Therefore, we
know that the (p 1) elements of X are all positive integers, with no two
elements equal. We can conclude the X consists of the set of integers
{1,2,..., p 1} in some order. Multiplying the numbers in both sets and
taking the result mod p yields

Recall that two numbers are relatively prime if they have no prime factors
in common; that is, their only common divisor is 1. This is equivalent to
saying that two numbers are relatively prime if their greatest common
divisor is 1.

a x 2a x ... x (p 1) ≡ [(1 x 2 x ... x (p 1)](mode p)

ap1(p 1)! ≡ (p 1)!(mod p)

We can cancel the (p 1)! term because it is relatively prime to p. This
yields Equation (2.1.2).

An alternative form of Fermat's theorem is also useful: If p is prime and a
is a positive integer, then

Network Security

NOTES

86

a = 7, p = 19

7
2
 = 49 ≡ 11(mod 19)

7
4
 ≡ 121 ≡ 7(mod 19)

7
8
 ≡ 49 ≡ 7(mod 19)

7
16

 ≡ 121 ≡ 7(mod 19)

a
p1

= 7
18

= 7
16

x 7
2
 ≡ 7 x 11 ≡ 1(mod 19)

Note that the first form of the theorem [Equation (2.1.2)] requires that a
be relatively prime to p, but this form does not.

p = 5,a = 3 ap = 35 = 243 ≡ 3(mod 5) = a(mod p)

p = 5, a = 10 ap = 105 = 100000 ≡ 10(mod 5) = 0(mod 5) = a(mod p)

Euler's Totient Function

Before presenting Euler's theorem, we need to introduce an important
quantity in number theory, referred to as Euler's totient function and
written Φ(n), defined as the number of positive integers less than n and
relatively prime to n. By convention, Φ (1) = 1.

Determine Φ(37) and Φ(35).

Because 37 is prime, all of the positive integers from 1 through
36 are relatively prime to 37. Thus Φ(37) = 36.

To determine Φ(35), we list all of the positive integers less than
35 that are relatively prime to it:

1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18,

19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34.

There are 24 numbers on the list, so Φ(35) = 24.

Table 2.1.2 lists the first 30 values of Φ (n). The value Φ (1) is without
meaning but is defined to have the value 1.

n Φ(n)

1 1

2 1

3 2

4 2

5 4

6 2

7 6

8 4

Network Security

NOTES

87

n Φ(n)

9 6

10 4

11 10

12 4

13 12

14 6

15 8

16 8

17 16

18 6

19 18

20 8

21 12

22 10

23 22

24 8

25 20

26 12

27 18

28 12

29 28

30 8

Table 2.1.2 Some Values of Euler's Totient Function f(n)

It should be clear that for a prime number p,

Φ (p) = p 1

Now suppose that we have two prime numbers p and q, with p ≠ q. Then
we can show that for n = pq,

Φ(n) = Φ(pq) = Φ(p) x Φ(q) = (p 1) x (q x 1)

To see that Φ(n) = Φ(p) x Φ(q), consider that the set of positive integers
less that n is the set {1,..., (pq 1)}. The integers in this set that are not
relatively prime to n are the set {p,2 p,..., (q 1)p} and the set {q,2q,..., (p
1)q} Accordingly,

Φ (n) = (pq 1) [(q 1) + (p 1)]

= pq (p + q) + 1

= (p 1) x (q 1)

= Φ (p) x Φ (q)

Network Security

NOTES

88

Φ (21) = Φ (3) x Φ (7) = (3 1) x (7 1) = 2 x 6 = 12

where the 12 integers are {1,2,4,5,8,10,11,13,16,17,19,20}

Euler's Theorem
Euler's theorem states that

For every a and n that are relatively prime:

----- (2.1.3)

a = 3; n = 10; Φ(10) = 4 a
(n)

= 3
4
 = 81 ≡ 1(mod 10) = 1 (mod n)

a = 2; n = 11; Φ(11) = 10 a
(n)

= 2
10

 = 1024 ≡ 1(mod 11) = 1 (mod n)

Proof: Equation (2.1.3) is true if n is prime, because in that case Φ(n) =
(n 1) and Fermat's theorem holds. However, it also holds for any integer
n. Recall that Φ(n) is the number of positive integers less than n that are
relatively prime to n. Consider the set of such integers, labeled as follows:

R {x1, x2,..., x Φ(n)}

That is, each element xi of R is a unique positive integer less than n with
gcd(xi, n) = 1. Now multiply each element by a, modulo n:

S = {(ax1 mod n), (ax2 mod n),..., (ax Φ(n) mod n)}

The set S is a permutation of R, by the following line of reasoning:

1. Because a is relatively prime to n and xi is relatively prime to n, axi

must also be relatively prime to n. Thus, all the members of S are
integers that are less than n and that are relatively prime to n.

2. There are no duplicates in S. we know that axi mod n = axj mod n
then xi = xj.

Therefore,

----- (2.1.4)
This is the same line of reasoning applied to the proof of Fermat's
theorem. As is the case for Fermat's theorem, an alternative form of the
theorem is also useful:

Network Security

NOTES

89

Again, similar to the case with Fermat's theorem, the first form of Euler's
theorem [Equation (3)] requires that a be relatively prime to n, but this
form does not.

Testing for Primality
For many cryptographic algorithms, it is necessary to select one or more
very large prime numbers at random. Thus we are faced with the task of
determining whether a given large number is prime. There is no simple
yet efficient means of accomplishing this task.

In this section, we present one attractive and popular algorithm. This
algorithm yields a number that is not necessarily a prime. However, the
algorithm can yield a number that is almost certainly a prime.

Miller-Rabin Algorithm
Also referred to in the literature as the Rabin-Miller algorithm, or the
Rabin-Miller test, or the Miller-Rabin test, the algorithm due to Miller and
Rabin is typically used to test a large number for primality. Before
explaining the algorithm, we need some background. First, any positive
odd integer n ≥ 3 can be expressed as follows:

n 1 = 2kq with k > 0, q odd

To see this, note that (n 1) is an even integer. Then, divide (n 1) by 2 until
the result is an odd number q, for a total of k divisions. If n is expressed
as a binary number, then the result is achieved by shifting the number to
the right until the rightmost digit is a 1, for a total of k shifts. We now
develop two properties of prime numbers that we will need.

Two Properties of Prime Numbers

The first property is stated as follows: If p is prime and a is a positive
integer less than p, then a2 mod p = 1 if and only if either a mod p = 1 or a
mod p= 1 mode p = p 1. By the rules of modular arithmetic (a mode p) (a
mode p) = a2 mod p. Thus if either a mode p = 1 or a mod p = 1, then a2

mod p = 1. Conversely, if a2 mod p = 1, then (a mod p)2 = 1, which is true
only for a mod p = 1 or a mod p = 1.

The second property is stated as follows: Let p be a prime number
greater than 2. We can then write p 1 = 2kq, with k > 0 q odd. Let a be
any integer in the range 1 < a < p 1. Then one of the two following
conditions is true:

1. aq is congruent to 1 modulo p. That is, aq mod p = 1, or
equivalently, aq ≡ 1 (mod p).

2. One of the numbers aq, a2q, a4q,..., a2k-1q is congruent to 1 modulo
p. That is, there is some number j in the range (1 ≤ j ≤ k) such that
a2j-1q mod p = 1 mod p = p 1, or equivalently, a2j-1q ≡ 1 (mod p).

Proof: Fermat's theorem [Equation (2.1.1)] states that an1 ≡ 1 (mod n) if n
is prime. We have p 1 = 2kq. Thus, we know that ap1 mod p = a2kq mod p
= 1. Thus, if we look at the sequence of numbers

----- (2.1.5)

we know that the last number in the list has value 1. Further, each
number in the list is the square of the previous number. Therefore, one of
the following possibilities must be true:

1. The first number on the list, and therefore all subsequent numbers
on the list, equals 1.

Network Security

NOTES

90

2. Some number on the list does not equal to 1, but its square mod p
does equal 1. By virtue of the first property of prime numbers
defined above, we know that the only number that satisfies this
condition p 1 is So, in this case, the list contains an element equal
to p 1.

This completes the proof.

A Deterministic Primality Algorithm

Prior to 2002, there was no known method of efficiently proving the
primality of very large numbers. All of the algorithms in use, including the
most popular (Miller-Rabin), produced a probabilistic result. In 2002,
Agrawal, Kayal, and Saxena developed a relatively simple deterministic
algorithm that efficiently determines whether a given large number is a
prime. The algorithm, known as the AKS algorithm, does not appear to be
as efficient as the Miller-Rabin algorithm. Thus far, it has not supplanted
this older, probabilistic technique.

Distribution of Primes

It is worth noting how many numbers are likely to be rejected before a
prime number is found using the Miller-Rabin test, or any other test for
primality. A result from number theory, known as the prime number
theorem, states that the primes near n are spaced on the average one
every (ln n) integers. Thus, on average, one would have to test on the
order of ln(n) integers before a prime is found. Because all even integers
can be immediately rejected, the correct figure is 0.5 ln(n). For example, if
a prime on the order of magnitude of 2200 were sought, then about 0.5
ln(2200) = 69 trials would be needed to find a prime. However, this figure is
just an average. In some places along the number line, primes are
closely packed, and in other places there are large gaps.

The two consecutive odd integers 1,000,000,000,061 and
1,000,000,000,063 are both prime. On the other hand, 1001! +
2,1001! + 3,..., 1001! + 1000, 1001! + 1001 is a sequence of 1000
consecutive composite integers.

The Chinese Remainder Theorem

One of the most useful results of number theory is the Chinese remainder
theorem (CRT). In essence, the CRT says it is possible to reconstruct
integers in a certain range from their residues modulo a set of pairwise
relatively prime moduli. The CRT is so called because it is believed to
have been discovered by the Chinese mathematician Sun-Tsu in around
100 A.D.

The 10 integers in Z10, that is the integers 0 through 9, can be
reconstructed from their two residues modulo 2 and 5 (the
relatively prime factors of 10). Say the known residues of a
decimal digit x are r2 = 0 and r5 = 3; that is, x mod 2 =0 and x mod
5 = 3. Therefore, x is an even integer in Z10 whose remainder, on
division by 5, is 3. The unique solution is x = 8.

The CRT can be stated in several ways. We present here a formulation
that is most useful from the point of view of this text. An alternative
formulation is explored in Problem 8.17. Let

Network Security

NOTES

91

where the mi are pairwise relatively prime; that is, gcd(mi, mj) = 1 for 1 ≤ i,
j ≤ k, and i ≠ j. We can represent any integer A in ZM by a k-tuple whose
elements are in Zmi using the following correspondence:

----- (2.1.6)
where A ЄZM, ai Є Zmi and ai = A mod mi for 1 ≤ i ≤ k. The CRT makes
two assertions.

1. The mapping of Equation (6) is a one-to-one correspondence
(called a bijection) between ZM and the Cartesian product Zm1 x
Zm2 x ... x Zmk. That is, for every integer A such that 0 ≤ A < M
there is a unique k-tuple (a1, a2,..., ak) with 0 ≤ ai < mi that
represents it, and for every such k-tuple (a1, a2,..., ak) there is a
unique integer A in ZM.

2. Operations performed on the elements of ZM can be equivalently
performed on the corresponding k-tuples by performing the
operation independently in each coordinate position in the
appropriate system.

Let us demonstrate the first assertion. The transformation from A to (a1,
a1,..., ak) is obviously unique; that is, each ai is uniquely calculated as ai =
A mod mi. Computing A from (a1, a1,..., ak) can be done as follows. Let Mi

= M/mi for 1 ≤ i ≤ k. Note that Mi = m1 x m2 x ... x mi-1 x mi+1 x ... x mk so
that Mi ≡ 0(mod mj) for all j ≠ i. Then let

for 1 ≤ I ≤ k ----- (2.1.7)

By the definition of Mi it is relatively prime to mi and therefore has a
unique multiplicative inverse mod mi So Equation (2.1.7) is well defined
and produces a unique value ci. We can now compute:

)(mod
1

McaA
k

i
ii

----- (2.1.8)

To show that the value of A produced by Equation (8) is correct, we must
show that ai = A mod mi for 1≤ i ≤ k. Note that cj ≡ Mj ≡ 0(mod mi) if j ≠ i
and that ci ≡ 1(mod mi). It follows that ai = A mod mi.

The second assertion of the CRT, concerning arithmetic operations,
follows from the rules for modular arithmetic. That is, the second
assertion can be stated as follows: If

then

One of the useful features of the Chinese remainder theorem is that it
provides a way to manipulate (potentially very large) numbers mod M in
terms of tuples of smaller numbers. This can be useful when M is 150

Network Security

NOTES

92

digits or more. However, note that it is necessary to know beforehand the
factorization of M.

Worked Example:
To represent 973 mod 1813 as a pair of numbers mod 37 and 49, define

m1 = 37

m2 = 49

M = 1813

A = 973

We also have M1 = 49 and M2 = 37. Using the extended Euclidean
algorithm, we compute

= 34 mod m1 and = 4 mod m2. (Note that we only need to

compute each Mi and each = once.)

Taking residues modulo 37 and 49, our representation of 973 is (11, 42),
because 973 mod 37 = 11 and 973 mod 49 = 42.

Now suppose we want to add 678 to 973. What do we do to (11, 42)?
First we compute

(678) (678 mod 37, 678 mod 49) = (12, 41). Then we add the tuples
element-wise and reduce (11 + 12 mod 37, 42 + 41 mod 49) = (23, 34).

To verify that this has the correct effect, we compute (23,34) a1M1

+ a2M2 mod M

= [(23)(49)(34) + (34)(37)(4)] mod 1813

= 43350 mod 1813

= 1651

Check that it is equal to (973 + 678) mod 1813 = 1651.

Remember that in the above derivation, is the multiplicative inverse

of M1 modulo m1, and is the multiplicative inverse of M2 modulo m2.

Suppose we want to multiply 1651 (mod 1813) by 73. We multiply (23,
34) by 73 and reduce to get (23 x 73 mod 37, 34 x 73 mod 49) = (14,32).
It is easily verified that

(32,14) [(14)(49)(34) + (32)(37)(4)] mod 1813

= 865

= 1651 x 73 mod 1813

Network Security

NOTES

93

2.DISCRETE LOGARITHMS AND

ALGORITHM COMPLEXITY
OBJECTIVE
Discrete logarithms are fundamental to a number of public-key
algorithms, including Diffie-Hellman key exchange and the digital
signature algorithm (DSA). This lesson provides a brief overview of
discrete logarithms.

The Powers of an Integer, Modulo n
Recall from Euler's theorem we have, for every a and n that are relatively
prime:

aΦ(n) ≡ 1(mod n)

where Φ(n), Euler's totient function, is the number of positive integers
less than n and relatively prime to n. Now consider the more general
expression:

am ≡ 1 (mod n) ------ (2.2.1)
If a and n are relatively prime, then there is at least one integer m that
satisfies Equation (2.2.1), namely, m = Φ (n). The least positive exponent
m for which Equation (2.2.1) holds is referred to in several ways:

 the order of a (mod n)

 the exponent to which a belongs (mod n)

 the length of the period generated by a

To see this last point, consider the powers of 7, modulo 19:

7
1
 ≡ 7(mod 19)

7
2
 = 49 = 2 x 19 + 11 ≡ 11(mod 19)

7
3
 = 343 = 18 x 19 + 1 ≡ 1(mod 19)

7
4
 = 2401 = 126 x 19 + 7 ≡ 7(mod 19)

7
5
 = 16807 = 884 x 19 + 11 ≡ 11(mod 19)

There is no point in continuing because the sequence is repeating. This
can be proven by noting that 7

3
 ≡ 1(mod 19) and therefore 7

3+j
 ≡ 7

3
7

j
 ≡

7
j
(mod 19), and hence any two powers of 7 whose exponents differ by 3

(or a multiple of 3) are congruent to each other (mod 19). In other words,
the sequence is periodic, and the length of the period is the smallest
positive exponent m such that 7

m
 ≡ 1(mod 19).

Table 2.2.1 shows all the powers of a, modulo 19 for all positive a < 19.
The length of the sequence for each base value is indicated by shading.
Note the following:

1. All sequences end in 1. This is consistent with the reasoning of
the preceding few paragraphs.

2. The length of a sequence divides Φ(19) = 18. That is, an integral
number of sequences occur in each row of the table.

Network Security

NOTES

94

3. Some of the sequences are of length 18. In this case, it is said
that the base integer a generates (via powers) the set of nonzero
integers modulo 19. Each such integer is called a primitive root of
the modulus 19.

Table 2.2.1 Powers of Integers, Modulo 19

The highest possible exponent to which a number can belong (mod n) is
Φ(n). If a number is of this order, it is referred to as a primitive root of n.
The importance of this notion is that if a is a primitive root of n, then its
powers

a, a2,..., aΦ(n)

are distinct (mod n) and are all relatively prime to n. In particular, for a
prime number p, if a is a primitive root of p, then

a, a2,..., ap1

are distinct (mod p). For the prime number 19, its primitive roots are 2, 3,
10, 13, 14, and 15.

Not all integers have primitive roots. In fact, the only integers with
primitive roots are those of the form 2, 4, pΦ, and 2pΦ, where p is any odd
prime and Φ is a positive integer.

Logarithms for Modular Arithmetic
With ordinary positive real numbers, the logarithm function is the inverse
of exponentiation. An analogous function exists for modular arithmetic.

Let us briefly review the properties of ordinary logarithms. The logarithm
of a number is defined to be the power to which some positive base
(except 1) must be raised in order to equal the number. That is, for base
x and for a value y:

y = xlogx(y)

The properties of logarithms include the following:

logx(1) = 0

logx(x) = 1

logx(yz) = logx(y) + logx(y) ----- (2.2.2)

Network Security

NOTES

95

logx(y
r) = r X logx(y) ----- (2.2.3)

Consider a primitive root a for some prime number p (the argument can
be developed for nonprimes as well). Then we know that the powers of a
from 1 through (p 1) produce each integer from 1 through (p 1) exactly
once. We also know that any integer b satisfies

b ≡ r(mod p) for some r, where 0 ≤ r ≤ (p 1)

by the definition of modular arithmetic. It follows that for any integer b and
a primitive root a of prime number p, we can find a unique exponent i
such that

b ≡ ai(mod p) where 0 ≤ i ≤ (p 1)

This exponent i is referred to as the discrete logarithm of the number b
for the base a (mod p). We denote this value as

dloga.p(b)

Note the following:

dloga, p(1) = 0, because a0 mod p = 1 mod p = 1 ----- (2.2.3)

dloga, p(a) = 1, because a1 mod p = a ----- (2.2.4)

Here is an example using a nonprime modulus, n = 9. Here Φ(n) = 6 and
a = 2 is a primitive root. We compute the various powers of a and find

2
0

= 1 2
4
 ≡ 7(mod 9)

2
1

= 2 2
5
 ≡ 5(mod 9)

2
2

= 4 2
6
 ≡ 1(mod 9)

2
3

= 8

This gives us the following table of the numbers with given discrete
logarithms (mod 9) for the root a = 2:

Logarithm 0 1 2 3 4 5

Number 1 2 4 8 7 5

To make it easy to obtain the discrete logarithms of a given number, we
rearrange the table:

Number 1 2 4 5 7 8

Logarithm 0 1 2 5 4 3

Now consider

x = adloga,p(x) mod p y = adloga,p(y) mod p

xy = adloga,p(xy) mod p

Using the rules of modular multiplication,

Network Security

NOTES

96

But now consider Euler's theorem, which states that, for every a and n
that are relatively prime:

aΦ(n) ≡ 1(mod n)

Any positive integer z can be expressed in the form z = q + kΦ(n), with 0
≤ q < Φ(n). Therefore, by Euler's theorem,

az ≡ aq (mod n) if z ≡ q mod Φ (n)

Applying this to the foregoing equality, we have

dloga,p(xy) ≡ [dloga,p(x) + dloga,p(y)] (mod Φ(p))

and generalizing,

dloga,p(y
r) ≡ [r x dloga.p(y)] (mod Φ(n))

This demonstrates the analogy between true logarithms and discrete
logarithms. Keep in mind that unique discrete logarithms mod m to some
base a exist only if a is a primitive root of m.

Table 2.2.1, which is directly derived from Table 2.2.1, shows the sets of
discrete logarithms that can be defined for modulus 19.

Table 2.2.2 Tables of Discrete Logarithms, Modulo 19

Calculation of Discrete Logarithms
Consider the equation

y = gx mod p

Given g, x, and p, it is a straightforward matter to calculate y. At the
worst, we must perform x repeated multiplications, and algorithms exist
for achieving greater efficiency.

However, given y, g, and p, it is, in general, very difficult to calculate x
(take the discrete logarithm). The difficulty seems to be on the same
order of magnitude as that of factoring primes required for RSA. At the

Network Security

NOTES

97

time of this writing, the asymptotically fastest known algorithm for taking
discrete logarithms modulo a prime number is on the order of:

e ((ln p)1/3(ln(ln p))2/3)

which is not feasible for large primes.

The Complexity of Algorithms
The central issue in assessing the resistance of an encryption algorithm
to cryptanalysis is the amount of time that a given type of attack will take.
Typically, one cannot be sure that one has found the most efficient attack
algorithm. The most that one can say is that for a particular algorithm, the
level of effort for an attack is of a particular order of magnitude. One can
then compare that order of magnitude to the speed of current or predicted
processors to determine the level of security of a particular algorithm.

A common measure of the efficiency of an algorithm is its time
complexity. We define the time complexity of an algorithm to be f(n) if, for
all n and all inputs of length n, the execution of the algorithm takes at
most f(n) steps. Thus, for a given size of input and a given processor
speed, the time complexity is an upper bound on the execution time.

There are several ambiguities here. First, the definition of a step is
not precise. A step could be a single operation of a Turing machine, a
single processor machine instruction, a single high-level language
machine instruction, and so on. However, these various definitions of
step should all be related by simple multiplicative constants. For very
large values of n, these constants are not important. What is important is
how fast the relative execution time is growing. For example, if we are
concerned about whether to use 50-digit (n = 1050) or 100-digit (n = 10100)
keys for RSA, it is not necessary (or really possible) to know exactly how
long it would take to break each size of key. Rather, we are interested in
ballpark figures for level of effort and in knowing how much extra relative
effort is required for the larger key size.

A second issue is that, generally speaking, we cannot pin down an exact
formula for f(n). We can only approximate it. But again, we are primarily
interested in the rate of change of f(n) as n becomes very large.

There is a standard mathematical notation, known as the "big-O"
notation, for characterizing the time complexity of algorithms that is useful
in this context. The definition is as follows: if and only if there exist two
numbers a and M such that

----- (2.2.5)

Consider the following simple algorithm.

algorithm P1;

n, i, j: integer; x, polyval: real;

a, S: array [0..100] of real;

begin

read(x, n);

for i := 0 upto n do

begin

S[i] := 1; read(a[i]);

for j := 1 upto i do S[i] := x x S[i];

Network Security

NOTES

98

S[i] := a[i] x S[i]

end;

polyval := 0;

for i := 0 upto n do polyval := polyval + S[i];

write ('value at', x, 'is', polyval)

end.

In this algorithm, each subexpression is evaluated separately. Each S[i]
requires (i + 1) multiplications: i multiplications to compute S[i] and one to
multiply by a[i]. Computing all n terms requires

multiplications. There are also (n + 1) additions, which we can ignore
relative to the much larger number of multiplications. Thus, the time
complexity of this algorithm is f(n) = (n + 2)(n + 1)/2. We now show that
f(n) = O(n2). From the definition of Equation (2.2.5), we want to show that
for a = 1 and M = 4, the relationship holds for g(n) = n2. We do this by
induction on n. The relationship holds for n = 4 because (4 + 2) (4 +1)/2 =
15 < 42 = 16. Now assume that it holds for all values of n up to k [i.e.,(k +
2)(k + 1)/2 < k2. Then, with n = k + 1.

Therefore, the result is true for n = k + 1.

In general, the big-O notation makes use of the term that grows the
fastest. For example,

1. O[ax7 + 3x3 + sin(x)] O(ax7) = O(x7)

2. O(en + an10) = O(en)

3. O(n! + n50) = O(n!)

An algorithm with an input of size n is said to be

 Linear: If the running time is O(n)

 Polynomial: If the running time is O(nt) for some constant t

 Exponential: If the running time is O(th(n)) for some constant t and
polynomial h(n)

Generally, a problem that can be solved in polynomial time is considered
feasible, whereas anything worse than polynomial time, especially
exponential time, is considered infeasible. But you must be careful with
these terms. First, if the size of the input is small enough, even very
complex algorithms become feasible. Suppose, for example, that you
have a system that can execute operations per unit time. Table 2.2.3
shows the size of input that can be handled in one time unit for algorithms
of various complexities. For algorithms of exponential or factorial time,
only very small inputs can be accommodated.

Network Security

NOTES

99

Complexity Size Operations

log2n 2
1012

= 10
3x1011

10
12

N 10
12

10
12

n
2

10
6

10
12

n
6

10
2

10
12

2
2

39 10
12

n! 15 10
12

Table 2.2.3 Level of Effort for Various Levels of Complexity

The second thing to be careful about is the way in which the input is
characterized. For example, the complexity of cryptanalysis of an
encryption algorithm can be characterized equally well in terms of the
number of possible keys or the length of the key. For the Advanced
Encryption Standard (AES), for example, the number of possible keys is
2128 and the length of the key is 128 bits. If we consider a single
encryption to be a "step" and the number of possible keys to be N = 2n,
then the time complexity of the algorithm is linear in terms of the number
of keys [O(N)] but exponential in terms of the length of the key [O(2n)].

REFERENCES

1. William Stallings, Cryptography and Network Security, PHI

Publishers

2. www.wikipedia.org

Review Questions:

1. Write short notes on algorithm complexities

Network Security

NOTES

100

3. PUBLIC KEY CRYPTOSYSTEMS

OBJECTIVE
This lesson provide an overview of public-key cryptography and
concentrates on its use to provide confidentiality. First, we look at its
conceptual framework. Interestingly, the concept for this technique was
developed and published before it was shown to be practical to adopt it.
All the key features of the Public Key cryptosystems were analysed.

INTRODUCTION
Public-key cryptography, also known as asymmetric cryptography, is a
form of cryptography in which the key used to encrypt a message differs
from the key used to decrypt it. In public key cryptography, a user has a
pair of cryptographic keys—a public key and a private key. The private
key is kept secret, while the public key may be widely distributed.
Incoming messages would have been encrypted with the recipient's
public key and can only be decrypted with his corresponding private key.
The keys are related mathematically, but the private key cannot be
practically derived from the public key.

Conversely, secret key cryptography, also known as symmetric
cryptography, uses a single secret key for both encryption and
decryption. To use symmetric cryptography for communication, both the
sender & receiver would have to know the key beforehand, or it would
have to be sent along with the message.

The two main branches of public key cryptography are:

 Public key encryption — a message encrypted with a recipient's
public key cannot be decrypted by anyone except the recipient
possessing the corresponding private key. This is used to ensure
confidentiality.

 Digital signatures — a message signed with a sender's private
key can be verified by anyone who has access to the sender's
public key, thereby proving that the sender signed it and that the
message has not been tampered with. This is used to ensure
authenticity.

An analogy for public-key encryption is that of a locked mailbox with a
mail slot. The mail slot is exposed and accessible to the public; its
location (the street address) is in essence the public key. Anyone
knowing the street address can go to the door and drop a written
message through the slot; however, only the person who possesses the
key can open the mailbox and read the message.

An analogy for digital signatures is the sealing of an envelope with a
personal wax seal. The message can be opened by anyone, but the
presence of the seal authenticates the sender.

A central problem for use of public-key cryptography is confidence
(ideally proof) that a public key is correct, belongs to the person or entity
claimed (ie, is 'authentic'), and has not been tampered with or replaced by
a malicious third party. The usual approach to this problem is to use a

Network Security

NOTES

101

public-key infrastructure (PKI), in which one or more third parties, known
as certificate authorities, certify ownership of key pairs. Another
approach, used by PGP, is the "web of trust" method to ensure
authenticity of key pairs.

So far, public key techniques have been much more computationally
intensive than purely symmetric algorithms. The judicious use of these
techniques enables a wide variety of applications without incurring a
prohibitive computational penalty. In practice, public key cryptography is
often used in combination with secret-key methods for efficiency reasons.
Such a combination is called a hybrid cryptosystem. For encryption, the
sender encrypts the message with a secret-key algorithm using a
randomly generated key, and that random key is then encrypted with the
recipient's public key. For digital signatures, the sender hashes the
message (using a cryptographic hash function) and then signs the
resulting "hash value". Before verifying the signature, the recipient also
computes the hash of the message, and compares this hash value with
the signed hash value to check that the message has not been tampered
with.

Public-Key Cryptosystems
Asymmetric algorithms rely on one key for encryption and a different but
related key for decryption. These algorithms have the following important
characteristic:

 It is computationally infeasible to determine the decryption key
given only knowledge of the cryptographic algorithm and the
encryption key.

In addition, some algorithms, such as RSA, also exhibit the following
characteristic:

 Either of the two related keys can be used for encryption, with the
other used for decryption.

A public-key encryption scheme has six ingredients (Figure 2.3.1a)

 Plaintext: This is the readable message or data that is fed into
the algorithm as input.

 Encryption algorithm: The encryption algorithm performs
various transformations on the plaintext.

 Public and private keys: This is a pair of keys that have been
selected so that if one is used for encryption, the other is used for
decryption. The exact transformations performed by the algorithm
depend on the public or private key that is provided as input.

 Ciphertext: This is the scrambled message produced as output. It
depends on the plaintext and the key. For a given message, two
different keys will produce two different ciphertexts.

 Decryption algorithm: This algorithm accepts the ciphertext and
the matching key and produces the original plaintext.

The essential steps are the following:

1. Each user generates a pair of keys to be used for the encryption and

decryption of messages.

2. Each user places one of the two keys in a public register or other

Network Security

NOTES

102

accessible file. This is the public key. The companion key is kept

private. As Fig 2.3.1a suggests, each user maintains a collection of

public keys obtained from others.

Fig 2.3.1 Public-Key Cryptography

3. If Bob wishes to send a confidential message to Alice, Bob encrypts

the message using Alice's public key.

4. When Alice receives the message, she decrypts it using her private

key. No other recipient can decrypt the message because only Alice

knows Alice's private key.

With this approach, all participants have access to public keys, and
private keys are generated locally by each participant and therefore need
never be distributed. As long as a user's private key remains protected
and secret, incoming communication is secure. At any time, a system can
change its private key and publish the companion public key to replace its
old public key.

Network Security

NOTES

103

Table 2.3.1 summarizes some of the important aspects of symmetric and
public-key encryption. To discriminate between the two, we refer to the
key used in symmetric encryption as a secret key. The two keys used for
asymmetric encryption are referred to as the public key and the private
key. Invariably, the private key is kept secret, but it is referred to as a
private key rather than a secret key to avoid confusion with symmetric
encryption.

Conventional Encryption Public-Key Encryption

Needed to Work: Needed to Work:

1. The same algorithm with
the same key is used for
encryption and
decryption.

2. The sender and receiver
must share the algorithm
and the key.

1. One algorithm is used for encryption and
decryption with a pair of keys, one for
encryption and one for decryption.

2. The sender and receiver must each have
one of the matched pair of keys (not the
same one).

Needed for Security: Needed for Security:

1. The key must be kept
secret.

2. It must be impossible or
at least impractical to
decipher a message if no
other information is
available.

3. Knowledge of the
algorithm plus samples of
ciphertext must be
insufficient to determine
the key.

1. One of the two keys must be kept secret.

2. It must be impossible or at least
impractical to decipher a message if no
other information is available.

3. Knowledge of the algorithm plus one of the
keys plus samples of ciphertext must be
insufficient to determine the other key.

Table 2.3.1 Conventional and Public-Key Encryption

Let us take a closer look at the essential elements of a public-key
encryption scheme, using Figure 2.3.2. There is some source A that
produces a message in plaintext, X =[X1, X2,..., XM,]. The M elements of X
are letters in some finite alphabet. The message is intended for
destination B. B generates a related pair of keys: a public key, PUb, and a
private key, PUb. PUb is known only to B, whereas PUb is publicly
available and therefore accessible by A.
With the message X and the encryption key PUb as input, A forms the ciphertext
Y = [Y1, Y2,..., YN]:

Y = E(PUb, X)

The intended receiver, in possession of the matching private key, is able
to invert the transformation:

X = D(PRb, Y)

An adversary, observing Y and having access to PUb but not having
access to PRb or X, must attempt to recover X and/or PRb. It is assumed
that the adversary does have knowledge of the encryption (E) and
decryption (D) algorithms. If the adversary is interested only in this
particular message, then the focus of effort is to recover X, by generating

Network Security

NOTES

104

a plaintext estimate Often, however, the adversary is interested in being
able to read future messages as well, in which case an attempt is made

to recover PRb by generating an estimate .

Fig 2.3.2 Public-Key Cryptosystem: Secrecy

We mentioned earlier that either of the two related keys can be used for
encryption, with the other being used for decryption. This enables a
rather different cryptographic scheme to be implemented. Whereas the
scheme illustrated in Fig 2.3.2 provides confidentiality, Fig 2.3.1b and
2.3.3 show the use of public-key encryption to provide authentication:

Y = E(PRa, X)

Y = E(PUa, Y)

In this case, A prepares a message to B and encrypts it using A's private
key before transmitting it. B can decrypt the message using A's public
key. Because the message was encrypted using A's private key, only A
could have prepared the message. Therefore, the entire encrypted
message serves as a digital signature. In addition, it is impossible to alter
the message without access to A's private key, so the message is
authenticated both in terms of source and in terms of data integrity.

Fig 2.3.3 Public-Key Cryptosystem: Authentication

Network Security

NOTES

105

In the preceding scheme, the entire message is encrypted although
validating both author and contents, requires a great deal of storage.
Each document must be kept in plaintext to be used for practical
purposes. A copy also must be stored in ciphertext so that the origin and
contents can be verified in case of a dispute. A more efficient way of
achieving the same results is to encrypt a small block of bits that is a
function of the document. Such a block, called an authenticator, must
have the property that it is infeasible to change the document without
changing the authenticator. If the authenticator is encrypted with the
sender's private key, it serves as a signature that verifies origin, content,
and sequencing.

It is important to emphasize that the encryption process depicted in Fig
2.3.1b and 2.3.3 does not provide confidentiality. That is, the message
being sent is safe from alteration but not from eavesdropping. This is
obvious in the case of a signature based on a portion of the message,
because the rest of the message is transmitted in the clear.

It is possible to provide both the authentication function and
confidentiality by a double use of the public-key scheme (Fig 2.3.4):

Z = E(PUb, E(PRa, X))

X = D(PUa, E(PRb, Z))

Fig 2.3.4 Public-Key Cryptosystem: Authentication and Secrecy

In this case, we begin as before by encrypting a message, using the
sender's private key. This provides the digital signature. Next, we encrypt
again, using the receiver's public key. The final ciphertext can be
decrypted only by the intended receiver, who alone has the matching
private key. Thus, confidentiality is provided. The disadvantage of this
approach is that the public-key algorithm, which is complex, must be
exercised four times rather than two in each communication.

Applications for Public-Key Cryptosystems
Before proceeding, we need to clarify one aspect of public-key
cryptosystems that is otherwise likely to lead to confusion. Public-key
systems are characterized by the use of a cryptographic algorithm with
two keys, one held private and one available publicly. Depending on the

Network Security

NOTES

106

application, the sender uses either the sender's private key or the
receiver's public key, or both, to perform some type of cryptographic
function. In broad terms, we can classify the use of public-key
cryptosystems into three categories:

 Encryption/decryption: The sender encrypts a message with the
recipient's public key.

 Digital signature: The sender "signs" a message with its private
key. Signing is achieved by a cryptographic algorithm applied to
the message or to a small block of data that is a function of the
message.

 Key exchange: Two sides cooperate to exchange a session key.
Several different approaches are possible, involving the private
key(s) of one or both parties.

Some algorithms are suitable for all three applications, whereas others
can be used only for one or two of these applications. Table 2.3.2
indicates the applications supported by the algorithms discussed in this
book.

Algorithm Encryption/Decryption Digital Signature Key Exchange

RSA Yes Yes Yes

Elliptic Curve Yes Yes Yes

Diffie-Hellman No No Yes

DSS No Yes No

Table 2.3.2 Applications for Public-Key Cryptosystems

Requirements for Public-Key Cryptography

The cryptosystem illustrated in Figures 2.3.2 through 2.3.4 depends on a
cryptographic algorithm based on two related keys. Diffie and Hellman
postulated this system without demonstrating that such algorithms exist.

The conditions that algorithms must fulfill:

1. It is computationally easy for a party B to generate a pair (public
key PUb, private key PRb).

2. It is computationally easy for a sender A, knowing the public key
and the message to be encrypted, M, to generate the
corresponding ciphertext:

C = E(PUb, M)

3. It is computationally easy for the receiver B to decrypt the
resulting ciphertext using the private key to recover the original
message:

M = D(PRb, C) = D[PRb, E(PUb, M)]

4. It is computationally infeasible for an adversary, knowing the
public key, PUb, to determine the private key, PRb.

5. It is computationally infeasible for an adversary, knowing the
public key, PUb, and a ciphertext, C, to recover the original
message, M.

Network Security

NOTES

107

We can add a sixth requirement that, although useful, is not
necessary for all public-key applications:

6. The two keys can be applied in either order:

M = D[PUb, E(PRb, M)] = D[PRb, E(PUb, M)]

These are formidable requirements, as evidenced by the fact that only a
few algorithms (RSA, elliptic curve cryptography, Diffie-Hellman, DSS)
have received widespread acceptance in the several decades since the
concept of public-key cryptography was proposed.

The requirements boil down to the need for a trap-door one-way function.
A one-way function is one that maps a domain into a range such that
every function value has a unique inverse, with the condition that the
calculation of the function is easy whereas the calculation of the inverse
is infeasible:

Y = f(X) easy

X = f1(X) infeasible

Generally, easy is defined to mean a problem that can be solved in
polynomial time as a function of input length. Thus, if the length of the
input is n bits, then the time to compute the function is proportional to na

where a is a fixed constant. Such algorithms are said to belong to the
class P. The term infeasible is a much fuzzier concept. In general, we can
say a problem is infeasible if the effort to solve it grows faster than
polynomial time as a function of input size. For example, if the length of
the input is n bits and the time to compute the function is proportional to
2n, the problem is considered infeasible. Unfortunately, it is difficult to
determine if a particular algorithm exhibits this complexity. Furthermore,
traditional notions of computational complexity focus on the worst-case or
average-case complexity of an algorithm. These measures are
inadequate for cryptography, which requires that it be infeasible to invert
a function for virtually all inputs, not for the worst case or even average
case.

The trap-door one-way function is the one which is easy to calculate in
one direction and infeasible to calculate in the other direction unless
certain additional information is known. With the additional information
the inverse can be calculated in polynomial time. We can summarize as
follows: A trap-door one-way function is a family of invertible functions fk,
such that

easy, if k and X are known

easy, if k and Y are known

infeasible, if Y is known but k is not known
Thus, the development of a practical public-key scheme depends on
discovery of a suitable trap-door one-way function.

Public-Key Cryptanalysis
As with symmetric encryption, a public-key encryption scheme is
vulnerable to a brute-force attack. The countermeasure is the same: Use
large keys. However, there is a tradeoff to be considered. Public-key
systems depend on the use of some sort of invertible mathematical
function. The complexity of calculating these functions may not scale
linearly with the number of bits in the key but grow more rapidly than that.

Network Security

NOTES

108

Thus, the key size must be large enough to make brute-force attack
impractical but small enough for practical encryption and decryption. In
practice, the key sizes that have been proposed do make brute-force
attack impractical but result in encryption/decryption speeds that are too
slow for general-purpose use. Instead, as was mentioned earlier, public-
key encryption is currently confined to key management and signature
applications.

Another form of attack is to find some way to compute the private key
given the public key. To date, it has not been mathematically proven that
this form of attack is infeasible for a particular public-key algorithm. Thus,
any given algorithm, including the widely used RSA algorithm, is suspect.
The history of cryptanalysis shows that a problem that seems insoluble
from one perspective can be found to have a solution if looked at in an
entirely different way.

Finally, there is a form of attack that is peculiar to public-key systems.
This is, in essence, a probable-message attack. Suppose, for example,
that a message were to be sent that consisted solely of a 56-bit DES key.
An adversary could encrypt all possible 56-bit DES keys using the public
key and could discover the encrypted key by matching the transmitted
ciphertext. Thus, no matter how large the key size of the public-key
scheme, the attack is reduced to a brute-force attack on a 56-bit key. This
attack can be thwarted by appending some random bits to such simple
messages.

REFERENCES

1. William Stallings, Cryptography and Network Security, PHI

Publishers

2. www.wikipedia.org

Review Questions:

1. Write short notes on public-key Cryptosystems

2. Explain the model for Network security?

a. Secrecy

b. Authentication

c. Secrecy and Authentication

3. What is the need for Public Key cryptosystems?

Network Security

NOTES

109

4. RSA AND DIFFIE-HELLMAN
ALGORITHMS

OBJECTIVE
The objective of this lesson is to introduce to the user one of the public-
key cryptosystems namely RSA. Also, we examine the RSA algorithm,
which is the most important encryption/decryption algorithm that has
been shown to be feasible for public-key encryption.

The RSA Algorithm
This was developed in 1977 by Ron Rivest, Adi Shamir, and Len
Adleman at MIT and first published in 1978. The Rivest-Shamir-Adleman
(RSA) scheme has since that time reigned supreme as the most widely
accepted and implemented general-purpose approach to public-key
encryption.

The RSA scheme is a block cipher in which the plaintext and ciphertext
are integers between 0 and n 1 for some n. A typical size for n is 1024
bits, or 309 decimal digits. That is, n is less than 21024. We examine RSA
in this section in some detail, beginning with an explanation of the
algorithm. Then we examine some of the computational and
cryptanalytical implications of RSA.

Description of the Algorithm

The scheme developed by Rivest, Shamir, and Adleman makes use of an
expression with exponentials. Plaintext is encrypted in blocks, with each
block having a binary value less than some number n. That is, the block
size must be less than or equal to log2(n); in practice, the block size is i
bits, where 2i < n ≤ 2i+1. Encryption and decryption are of the following
form, for some plaintext block M and ciphertext block C:

C = Me mod n

M = Cd mod n = (Me)d mod n = Med mod n

Both sender and receiver must know the value of n. The sender knows
the value of e, and only the receiver knows the value of d. Thus, this is a
public-key encryption algorithm with a public key of PU = {e, n} and a
private key of PU = {d, n}. For this algorithm to be satisfactory for public-
key encryption, the following requirements must be met:

1. It is possible to find values of e, d, n such that Med mod n = M for
all M < n.

2. It is relatively easy to calculate mod Me mod n and Cd for all
values of M < n.

3. It is infeasible to determine d given e and n.

For now, we focus on the first requirement and consider the other
questions later. We need to find a relationship of the form

Med mod n = M

The preceding relationship holds if e and d are multiplicative inverses
modulo Φ(n), where Φ(n) is the Euler totient function. We know that for p,

Network Security

NOTES

110

q prime, Φ (pq) = (p 1)(q 1) The relationship between e and d can be
expressed as

ed mod Φ(n) = 1 ------ (2.4.1)

This is equivalent to saying

ed ≡ 1 mod Φ(n)

d ≡ e1 mod Φ(n)

That is, e and d are multiplicative inverses mod Φ(n). Note that,
according to the rules of modular arithmetic, this is true only if d (and
therefore e) is relatively prime to Φ(n). Equivalently, gcd(Φ(n),d) = 1.

The ingredients OF RSA scheme are the following:

p,q, two prime numbers (private, chosen)

n = pq (public, calculated)

e, with gcd(Φ(n),e) = 1;1 < e < Φ(n) (public, chosen)

d ≡ e
1
(mod Φ(n)) (private, calculated)

The private key consists of {d, n} and the public key consists of {e, n}.
Suppose that user A has published its public key and that user B wishes
to send the message M to A. Then B calculates C = Me mod n and
transmits C. On receipt of this ciphertext, user A decrypts by calculating

M = Cd mod n.

Fig 2.4.1 The RSA Algorithm

Network Security

NOTES

111

Fig 2.4.1 summarizes the RSA algorithm. An example is shown in Fig
2.4.2. For this example, the keys were generated as follows:

1. Select two prime numbers, p = 17 and q = 11.

2. Calculate n = pq = 17 x 11 = 187.

3. Calculate Φ(n) = (p 1)(q 1) = 16 x 10 = 160.

4. Select e such that e is relatively prime to Φ(n) = 160 and less than Φ(n)

we choose e = 7.

5. Determine d such that de ≡ 1 (mod 160) and d < 160. The correct
value is d = 23, because 23 x 7 = 161 = 10 x 160 + 1; d can be
calculated using the extended Euclid's algorithm.

Fig 2.4.2 Example of RSA Algorithm

The resulting keys are public key PU = {7,187} and private key PR =

{23,187}. The example shows the use of these keys for a plaintext input

of M = 88. For encryption, we need to calculate

C = 887 mod 187. Exploiting the properties of modular arithmetic, we can

do this as follows:

887 mod 187 = [(884 mod 187) x (882 mod 187) x (881 mod 187)]

mod 187

881 mod 187 = 88

882 mod 187 = 7744 mod 187 = 77

884 mod 187 = 59,969,536 mod 187 = 132

887 mod 187 = (88 x 77 x 132) mod 187 = 894,432 mod 187 = 11

For decryption, we calculate M = 1123 mod 187:

1123 mod 187 = [(111 mod 187) x (112 mod 187) x (114 mod 187) x

(118 mod 187) x

(118 mod 187)] mod 187

111 mod 187 = 11

112 mod 187 = 121

114 mod 187 = 14,641 mod 187 = 55

118 mod 187 = 214,358,881 mod 187 = 33

1123 mod 187 = (11 x 121 x 55 x 33 x 33) mod 187 = 79,720,245

mod 187 = 88

Network Security

NOTES

112

Computational Aspects
We now turn to the issue of the complexity of the computation required to
use RSA. There are actually two issues to consider:
encryption/decryption and key generation. Let us look first at the process
of encryption and decryption and then consider key generation.

Exponentiation in Modular Arithmetic

Both encryption and decryption in RSA involve raising an integer to an
integer power, mod n. If the exponentiation is done over the integers and
then reduced modulo n, the intermediate values would be gargantuan.
Fortunately, as the preceding example shows, we can make use of a
property of modular arithmetic:

[(a mod n) x (b mod n)] mod n = (a x b) mod n

Thus, we can reduce intermediate results modulo n. This makes the
calculation practical.

Another consideration is the efficiency of exponentiation, because with
RSA we are dealing with potentially large exponents. To see how
efficiency might be increased, consider that we wish to compute x16. A
straightforward approach requires 15 multiplications:

x16 = x

However, we can achieve the same final result with only four
multiplications if we repeatedly take the square of each partial result,
successively forming x2, x4, x8, x16. As another example, suppose we wish
to calculate x11 mod n for some integers x and n. Observe that x11 = x1+2+8

= (x)(x2)(x8). In this case we compute x mod n, x2 mod n, x4 mod n, and x8

mod n and then calculate [(x mod n) x (x2 mod n) x (x8 mod n) mod n.

More generally, suppose we wish to find the value ab with a and b
positive integers. If we express b as a binary number bkbk1 ... b0 then we
have

Therefore,

 0

2
ib

i

aab

We can therefore develop the algorithm for computing ab mod n, shown in
Fig 2.4.3. Table 2.4.1 shows an example of the execution of this
algorithm. Note that the variable c is not needed; it is included for
explanatory purposes. The final value of c is the value of the exponent.

Network Security

NOTES

113

Fig 2.4.3 Algorithm for computing ab mod n

Note: The integer b is expressed as a binary number bkbk1 ... b0

i 9 8 7 6 5 4 3 2 1 0

bi 1 0 0 0 1 1 0 0 0 0

c 1 2 4 8 17 35 70 140 280 560

f 7 49 157 526 160 241 298 166 67 1

Table 2.4.1 Result of the Fast Modular Exponentiation Algorithm for a
b

mod n,

where a = 7, b = 560 = 1000110000, n = 561

Efficient Operation Using the Public Key
To speed up the operation of the RSA algorithm using the public key, a
specific choice of e is usually made. The most common choice is 65537
(216 1); two other popular choices are 3 and 17. Each of these choices
has only two 1 bits and so the number of multiplications required to
perform exponentiation is minimized.

However, with a very small public key, such as e = 3, RSA becomes
vulnerable to a simple attack. Suppose we have three different RSA
users who all use the value e = 3 but have unique values of n, namely n1,
n2, n3. If user A sends the same encrypted message M to all three users,
then the three ciphertexts are C1 = M3 mod n1; C2 = M3 mod n2; C3 = M3

mod n3. It is likely that n1, n2, and n3 are pairwise relatively prime.
Therefore, one can use the Chinese remainder theorem (CRT) to
compute M3 mod (n1n2n3). By the rules of the RSA algorithm, M is less
than each of the ni therefore M3 < n1n2n3. Accordingly, the attacker need
only compute the cube root of M3. This attack can be countered by
adding a unique pseudorandom bit string as padding to each instance of
M to be encrypted. This approach is discussed subsequently.

The reader may have noted that the definition of the RSA algorithm (Fig
2.4.1) requires that during key generation the user selects a value of e
that is relatively prime to Φ(n). Thus, for example, if a user has
preselected e = 65537 and then generated primes p and q, it may turn

Network Security

NOTES

114

out that gcd(Φ(n),e) ≠ 1, Thus, the user must reject any value of p or q
that is not congruent to 1 (mod 65537).

Efficient Operation Using the Private Key
We cannot similarly choose a small constant value of d for efficient
operation. A small value of d is vulnerable to a brute-force attack and to
other forms of cryptanalysis. However, there is a way to speed up
computation using the CRT. We wish to compute the value M = Cd mod
n. Let us define the following intermediate results:

Vp = Cd mod p Vq = Cd mod q

Following the CRT (Chinese Remainder Theorem), define the quantities:

Xp = q x (q1 mod p) Xq = p x (p1 mod q)

The CRT then shows that

M = (VpXp + VqXq) mod n

Further, we can simplify the calculation of Vp and Vq using Fermat's
theorem, which states that ap1 ≡ 1 (mod p) if p and a are relatively prime.
Some thought should convince you that the following are valid:

Vp = Cd mod p = Cd mod (p1) mod p Vq = Cd mod q = Cd mod (q1) mod q

The quantities d mod (P1) and d mod (q1) can be precalculated. The end
result is that the calculation is approximately four times as fast as
evaluating M = Cd mod n directly.

Key Generation

Before the application of the public-key cryptosystem, each participant
must generate a pair of keys. This involves the following tasks:

 Determining two prime numbers, p and q

 Selecting either e or d and calculating the other

First, consider the selection of p and q. Because the value of n = pq will
be known to any potential adversary, to prevent the discovery of p and q
by exhaustive methods, these primes must be chosen from a sufficiently
large set (i.e., p and q must be large numbers). On the other hand, the
method used for finding large primes must be reasonably efficient.

At present, there are no useful techniques that yield arbitrarily large
primes, so some other means of tackling the problem is needed. The
procedure that is generally used is to pick at random an odd number of
the desired order of magnitude and test whether that number is prime. If
not, pick successive random numbers until one is found that tests prime.

A variety of tests for primality have been developed. Almost invariably,
the tests are probabilistic. That is, the test will merely determine that a
given integer is probably prime. Despite this lack of certainty, these tests
can be run in such a way as to make the probability as close to 1.0 as
desired. As an example, one of the more efficient and popular algorithms,
the Miller-Rabin algorithm. With this algorithm and most such algorithms,
the procedure for testing whether a given integer n is prime is to perform
some calculation that involves n and a randomly chosen integer a. If n
"fails" the test, then n is not prime. If n "passes" the test, then n may be
prime or nonprime. If n passes many such tests with many different

Network Security

NOTES

115

randomly chosen values for a, then we can have high confidence that n
is, in fact, prime.

In summary, the procedure for picking a prime number is as follows.

1. Pick an odd integer n at random (e.g., using a pseudorandom

number generator).

2. Pick an integer a < n at random.

3. Perform the probabilistic primality test, such as Miller-Rabin, with a

as a parameter. If n fails the test, reject the value n and go to step 1.

4. If n has passed a sufficient number of tests, accept n; otherwise, go

to step 2.

This is a somewhat tedious procedure. However, remember that this
process is performed relatively infrequently: only when a new pair (PU,
PR) is needed.

It is worth noting how many numbers are likely to be rejected before a
prime number is found. A result from number theory, known as the prime
number theorem, states that the primes near N are spaced on the
average one every (ln N) integers. Thus, on average, one would have to
test on the order of ln(N) integers before a prime is found. Actually,
because all even integers can be immediately rejected, the correct figure
is ln(N)/2. For example, if a prime on the order of magnitude of 2200 were
sought, then about ln(2200)/2 = 70 trials would be needed to find a prime.

Having determined prime numbers p and q, the process of key
generation is completed by selecting a value of e and calculating d or,
alternatively, selecting a value of d and calculating e. Assuming the
former, then we need to select an e such that gcd(Φ(n), e) = 1 and then
calculate d ≡ e1(mod Φ(n)). Fortunately, there is a single algorithm that
will, at the same time, calculate the greatest common divisor of two
integers and, if the gcd is 1, determine the inverse of one of the integers
modulo the other. Thus, the procedure is to generate a series of random
numbers, testing each against Φ(n) until a number relatively prime to
Φ(n) is found. It can be shown easily that the probability that two random
numbers are relatively prime is about 0.6; thus, very few tests would be
needed to find a suitable integer.

The Security of RSA
Four possible approaches to attacking the RSA algorithm are as follows:

 Brute force: This involves trying all possible private keys.

 Mathematical attacks: There are several approaches, all
equivalent in effort to factoring the product of two primes.

 Timing attacks: These depend on the running time of the
decryption algorithm.

 Chosen ciphertext attacks: This type of attack exploits
properties of the RSA algorithm.

The defense against the brute-force approach is the same for RSA as for
other cryptosystems, namely, use a large key space. Thus, the larger the
number of bits in d, the better. However, because the calculations

Network Security

NOTES

116

involved, both in key generation and in encryption/decryption, are
complex, the larger the size of the key, the slower the system will run.

In this subsection, we provide an overview of mathematical and timing
attacks.

The Factoring Problem

We can identify three approaches to attacking RSA mathematically:

 Factor n into its two prime factors. This enables calculation of
Φ(n) = (p 1) x (q 1), which, in turn, enables determination of d ≡ e1

(mod Φ(n)).

 Determine Φ(n) directly, without first determining p and q. Again,
this enables determination of d ≡ e1 (mod Φ(n)).

 Determine d directly, without first determining Φ(n).

For a large n with large prime factors, factoring is a hard problem.

Number of
Decimal Digits

Approximate
Number of Bits

Date Achieved
MIPS-
years

Algorithm

100 332 April 1991 7 Quadratic sieve

110 365 April 1992 75 Quadratic sieve

120 398 June 1993 830 Quadratic sieve

129 428 April 1994 5000 Quadratic sieve

130 431 April 1996 1000
Generalized
number field

sieve

140 465 February 1999 2000
Generalized
number field

sieve

155 512 August 1999 8000
Generalized
number field

sieve

160 530 April 2003 Lattice sieve

174 576 December 2003 Lattice sieve

200 663 May 2005 Lattice sieve

Table 2.4.2 Progress in Factorization

A striking fact about Table 2.4.2 concerns the method used. Until the mid-
1990s, factoring attacks were made using an approach known as the
quadratic sieve. The attack on RSA-130 used a newer algorithm, the
generalized number field sieve (GNFS), and was able to factor a larger
number than RSA-129 at only 20% of the computing effort.

The threat to larger key sizes is twofold: the continuing increase in
computing power, and the continuing refinement of factoring algorithms.
We have seen that the move to a different algorithm resulted in a
tremendous speedup. We can expect further refinements in the GNFS,

Network Security

NOTES

117

and the use of an even better algorithm is also a possibility. In fact, a
related algorithm, the special number field sieve (SNFS), can factor
numbers with a specialized form considerably faster than the generalized
number field sieve. Fig 2.4.4 compares the performance of the two
algorithms. It is reasonable to expect a breakthrough that would enable a
general factoring performance in about the same time as SNFS, or even
better. Thus, we need to be careful in choosing a key size for RSA. For
the near future, a key size in the range of 1024 to 2048 bits seems
reasonable.

Fig 2.4.4 MIPS-years Needed to Factor
In addition to specifying the size of n, a number of other constraints have
been suggested by researchers. To avoid values of n that may be
factored more easily, the algorithm's inventors suggest the following
constraints on p and q:

1. p and q should differ in length by only a few digits. Thus, for a
1024-bit key (309 decimal digits), both p and q should be on the
order of magnitude of 1075 to 10100.

2. Both (p 1) and (q 1) should contain a large prime factor.

3. gcd(p 1, q 1) should be small.

In addition, it has been demonstrated that if e < n and d < n¼, then d can
be easily determined.

Timing Attacks

If one needed yet another lesson about how difficult it is to assess the
security of a cryptographic algorithm, the appearance of timing attacks
provides a stunning one. Paul Kocher, a cryptographic consultant,
demonstrated that a snooper can determine a private key by keeping
track of how long a computer takes to decipher messages. Timing attacks

Network Security

NOTES

118

are applicable not just to RSA, but to other public-key cryptography
systems. This attack is alarming for two reasons: It comes from a
completely unexpected direction and it is a ciphertext-only attack.

A timing attack is somewhat analogous to a burglar guessing the
combination of a safe by observing how long it takes for someone to turn
the dial from number to number. We can explain the attack using the
modular exponentiation algorithm of Fig 2.4.3, but the attack can be
adapted to work with any implementation that does not run in fixed time.
In this algorithm, modular exponentiation is accomplished bit by bit, with
one modular multiplication performed at each iteration and an additional
modular multiplication performed for each 1 bit.

The attack is simplest to understand in an extreme case. Suppose the
target system uses a modular multiplication function that is very fast in
almost all cases but in a few cases takes much more time than an entire
average modular exponentiation. The attack proceeds bit-by-bit starting
with the leftmost bit, bk. Suppose that the first j bits are known (to obtain
the entire exponent, start with j = 0 and repeat the attack until the entire
exponent is known). For a given ciphertext, the attacker can complete the
first j iterations of the for loop. The operation of the subsequent step
depends on the unknown exponent bit. If the bit is set, d (d x a) mod n
will be executed. For a few values of a and d, the modular multiplication
will be extremely slow, and the attacker knows which these are.
Therefore, if the observed time to execute the decryption algorithm is
always slow when this particular iteration is slow with a 1 bit, then this bit
is assumed to be 1. If a number of observed execution times for the
entire algorithm are fast, then this bit is assumed to be 0.

In practice, modular exponentiation implementations do not have such
extreme timing variations, in which the execution time of a single iteration
can exceed the mean execution time of the entire algorithm.
Nevertheless, there is enough variation to make this attack practical.
Although the timing attack is a serious threat, there are simple
countermeasures that can be used, including the following:

 Constant exponentiation time: Ensure that all exponentiations take
the same amount of time before returning a result. This is a simple
fix but does degrade performance.

 Random delay: Better performance could be achieved by adding a
random delay to the exponentiation algorithm to confuse the
timing attack. Kocher points out that if defenders don't add
enough noise, attackers could still succeed by collecting additional
measurements to compensate for the random delays.

 Blinding: Multiply the ciphertext by a random number before
performing exponentiation. This process prevents the attacker
from knowing what ciphertext bits are being processed inside the
computer and therefore prevents the bit-by-bit analysis essential
to the timing attack.

RSA Data Security incorporates a blinding feature into some of its
products. The private-key operation M = Cd mod n is implemented as
follows:

1. Generate a secret random number r between 0 and n 1.

2. Compute C' = C(re) mod n, where e is the public exponent.

Network Security

NOTES

119

3. Compute M' = (C')d mod n with the ordinary RSA implementation.

4. Compute M = M'r1 mod n. In this equation, r1 is the multiplicative
inverse of r mod n; see

It can be demonstrated that this is the correct result by observing that red

mod n =r mod n.

RSA Data Security reports a 2 to 10% performance penalty for blinding.

Chosen Ciphertext Attack and Optimal Asymmetric Encryption

Padding

The basic RSA algorithm is vulnerable to a chosen ciphertext attack
(CCA). CCA is defined as an attack in which adversary chooses a
number of ciphertexts and is then given the corresponding plaintexts,
decrypted with the target's private key. Thus, the adversary could select a
plaintext, encrypt it with the target's public key and then be able to get the
plaintext back by having it decrypted with the private key. Clearly, this
provides the adversary with no new information. Instead, the adversary
exploits properties of RSA and selects blocks of data that, when
processed using the target's private key, yield information needed for
cryptanalysis.

A simple example of a CCA against RSA takes advantage of the
following property of RSA:

We can decrypt C = Me using a CCA as follows.

1. Compute X = (C x 2e) mod n.

2. Submit X as a chosen ciphertext and receive back Y = Xd mod n.

But now note the following:

X = (C mod n) x (2e mode n)

= (Me mod n) x (2e mode n)

= (2M)e mod n

Therefore, Y = (2M) mod n From this, we can deduce M. To overcome
this simple attack, practical RSA-based cryptosystems randomly pad the
plaintext prior to encryption. This randomizes the ciphertext so that
Equation (2.4.2) no longer holds. However, more sophisticated CCAs are
possible and a simple padding with a random value has been shown to
be insufficient to provide the desired security. To counter such attacks
RSA Security Inc., a leading RSA vendor and former holder of the RSA
patent, recommends modifying the plaintext using a procedure known as
optimal asymmetric encryption padding (OAEP).

Figure 2.4.5 depicts OAEP encryption. As a first step the message M to
be encrypted is padded. A set of optional parameters P is passed through
a hash function H. The output is then padded with zeros to get the
desired length in the overall data block (DB). Next, a random seed is
generated and passed through another hash function, called the mask
generating function (MGF). The resulting hash value is bit-by-bit XORed
with DB to produce a maskedDB. The maskedDB is in turn passed
through the MGF to form a hash that is XORed with the seed to produce

Network Security

NOTES

120

the masked seed. The concatenation of the maskedseed and the
maskedDB forms the encoded message EM. Note that the EM includes

Fig 2.4.5 Encryption Using Optimal Assymetric Encryption Padding (OAEP)

the padded message, masked by the seed, and the seed, masked by the
maskedDB. The EM is then encrypted using RSA.

DIFFIE-HELLMAN KEY EXCHANGE
Diffie-Hellman key exchange (D-H) is a cryptographic protocol that
allows two parties that have no prior knowledge of each other to jointly
establish a shared secret key over an insecure communications channel.
This key can then be used to encrypt subsequent communications using
a symmetric key cipher.

Synonyms of Diffie-Hellman key exchange include:

 Diffie-Hellman key agreement

 Diffie-Hellman key establishment

 Diffie-Hellman key negotiation

Network Security

NOTES

121

 Exponential key exchange

The scheme was first published publicly by Whitfield Diffie and Martin
Hellman in 1976.

The purpose of the algorithm is to enable two users to securely exchange
a key that can then be used for subsequent encryption of messages. The
algorithm itself is limited to the exchange of secret values.

The Diffie-Hellman algorithm depends for its effectiveness on the difficulty
of computing discrete logarithms. Briefly, we can define the discrete
logarithm in the following way. First, we define a primitive root of a prime
number p as one whose powers modulo p generate all the integers from
1 to p 1. That is, if a is a primitive root of the prime number p, then the
numbers

a mod p, a2 mod p,..., ap1 mod p

are distinct and consist of the integers from 1 through p 1 in some
permutation.

For any integer b and a primitive root a of prime number p, we can find a
unique exponent i such that

b ≡ ai (mod p) where 0 ≤ i ≤ (p 1)

The exponent i is referred to as the discrete logarithm of b for the base a,
mod p. We express this value as dloga,p (b).

The Algorithm

Fig 2.4.6 summarizes the Diffie-Hellman key exchange algorithm. For this
scheme, there are two publicly known numbers: a prime number q and an
integer that is a primitive root of q. Suppose the users A and B wish to
exchange a key. User A selects a random integer XA < q and computes
YA = aXA mod q. Similarly, user B independently selects a random integer
XA < q and computes YB = aXB mod q. Each side keeps the X value
private and makes the Y value available publicly to the other side. User A
computes the key as

K = (YB)X
A mod q

and user B computes the key as

K = (YA)XB mod q.

These two calculations produce identical results:

K = (YB)XA mod q

= (aXB mod q)XA mod q

= (aXB)XA mod q by the rules of modular arithmetic

= (aXB XA mod q

= (aXA)XB mod q

= (aXA mod q)

= (aXA mod q)XB mod q

= (YA)XB mod q

Network Security

NOTES

122

Fig 2.4.6 The Diffie-Hellman Key Exchange Algorithm

The result is that the two sides have exchanged a secret value.
Furthermore, because XA and XB are private, an adversary only has the
following ingredients to work with: q, a, YA, and YB. Thus, the adversary is
forced to take a discrete logarithm to determine the key. For example, to
determine the private key of user B, an adversary must compute

XB = dloga,q (YB)

The adversary can then calculate the key K in the same manner as user
B calculates it.

The security of the Diffie-Hellman key exchange lies in the fact that, while
it is relatively easy to calculate exponentials modulo a prime, it is very
difficult to calculate discrete logarithms. For large primes, the latter task is
considered infeasible.

Here is an example. Key exchange is based on the use of the prime
number q = 353 and a primitive root of 353, in this case a = 3. A and B
select secret keys XA = 97 and XB = 233, respectively. Each computes its
public key:

A computes YA = 397 mod 353 = 40.

Network Security

NOTES

123

A computes YA = 397 mod 353 = 40.

B computes YB = 3233 mod 353 = 248.

After they exchange public keys, each can compute the common secret
key:

A computes K = (YB)X
A mod 353 = 24897 mod 353 =160.

B computes K = (YA)X
E mod 353 = 40233 mod 353 = 160.

We assume an attacker would have available the following information:

q = 353; a = 3; YA = 40; YB = 248

In this simple example, it would be possible by brute force to determine
the secret key 160. In particular, an attacker E can determine the
common key by discovering a solution to the equation 3a mod 353 = 40 or
the equation 3b mod 353 = 248. The brute-force approach is to calculate
powers of 3 modulo 353, stopping when the result equals either 40 or
248. The desired answer is reached with the exponent value of 97, which
provides 397 mod 353 = 40.

With larger numbers, the problem becomes impractical.

Key Exchange Protocols

Figure 2.4.7 shows a simple protocol that makes use of the Diffie-
Hellman calculation. Suppose that user A wishes to set up a connection
with user B and use a secret key to encrypt messages on that
connection. User A can generate a one-time private key XA, calculate YA,
and send that to user B. User B responds by generating a private value
XB calculating YB, and sending YB to user A. Both users can now
calculate the key. The necessary public values q and a would need to be
known ahead of time. Alternatively, user A could pick values for q and a
and include those in the first message.

As an example of another use of the Diffie-Hellman algorithm, suppose
that a group of users (e.g., all users on a LAN) each generate a long-
lasting private value Xi (for user i) and calculate a public value Yi. These
public values, together with global public values for q and a, are stored in
some central directory. At any time, user j can access user i's public
value, calculate a secret key, and use that to send an encrypted message
to user A. If the central directory is trusted, then this form of
communication provides both confidentiality and a degree of
authentication. Because only i and j can determine the key, no other user
can read the message (confidentiality). Recipient i knows that only user j
could have created a message using this key (authentication). However,
the technique does not protect against replay attacks.

Man-in-the-Middle Attack
The protocol depicted in Figure 2.4.7 is insecure against a man-in-the-
middle attack. Suppose Alice and Bob wish to exchange keys, and Darth
is the adversary. The attack proceeds as follows:

Network Security

NOTES

124

Figure 2.4.7 Diffie-Hellman Key Exchange

1. Darth prepares for the attack by generating two random private
keys XD1 and XD2 and then computing the corresponding public
keys YD1 and YD2.

2. Alice transmits YA to Bob.

3. Darth intercepts YA and transmits YD1 to Bob. Darth also
calculates K2 = (YA)X

D2 mod q.

4. Bob receives YD1 and calculates K1 = (YD1)
X

E mod q.

5. Bob transmits XA to Alice.

6. Darth intercepts XA and transmits YD2 to Alice. Darth calculates K1
= (YB)X

D1 mod q.

7. Alice receives YD2 and calculates K2 = (YD2)
X

A mod q.

At this point, Bob and Alice think that they share a secret key, but instead
Bob and Darth share secret key K1 and Alice and Darth share secret key
K2. All future communication between Bob and Alice is compromised in
the following way:

1. Alice sends an encrypted message M: E(K2, M).

2. Darth intercepts the encrypted message and decrypts it, to
recover M.

3. Darth sends Bob E(K1, M) or E(K1, M'), where M' is any message.
In the first case, Darth simply wants to eavesdrop on the
communication without altering it. In the second case, Darth wants
to modify the message going to Bob.

The key exchange protocol is vulnerable to such an attack because it
does not authenticate the participants. This vulnerability can be overcome
with the use of digital signatures and public-key certificates.

Network Security

NOTES

125

REFERENCES

1. William Stallings, Cryptography and Network Security, PHI

Publishers

2. www.wikipedia.org

Review Questions:

1. Write short notes on Diffie-Hellman Key Exchange algorithm

2. Write a note on computational aspects with security of RSA?

3. Explain the model for Network security?

4. What are the different types of security services?

5. Explain the Diffie-Hellman Key exchange algorithm in detail.

6. Explain RSA public key Encryption algorithm in detail.

Network Security

NOTES

126

UNIT III

1. ELLIPTICAL CURVE CRYPTOSYSTEMS

2. MESSAGE AUTHENTICATION AND HASH
FUNCTIONS

3. DIGITAL SIGNATURES

4. KEY MANAGEMENT SCHEMES

Network Security

NOTES

127

1.ELLIPTICAL CURVE
CRYPTOGRAPHY

OBJECTIVE
The objective of this lesson is to introduce the reads yet another variety of
public-key cryptosystem namely the elliptical curve encryption. The
elliptical curve encryption is a more recent public-key approach based on
elliptic curves.

ELLIPTICAL CURVES
An elliptic curve is given by a cubic with a point. The "standard elliptic
curve" has the form

y2 = x3 + ax + b

for some fixed a and b. This is called a Weierstrass equation.

Why elliptic curves?

Elliptic curves are the simplest possible curves after lines and conics.

Lines and conics (which are usually given by linear and quadratic

equations respectively) are fairly easy to understand. Curves more

complicated than elliptic curves (e.g., defined by polynomials of higher

degree than 3) are generally difficult to understand. Elliptic curves are

"just right". The fact that they can be dealt with is due to their very rich

structure; in particular, they can be viewed as a group. Most of this

course is about investigating this group structure.

In mathematics, an elliptic curve is a smooth, projective algebraic curve
of genus one, on which there is a specified point O. An elliptic curve is in
fact an abelian variety — that is, it has a multiplication defined
algebraically with respect to which it is an abelian group — and O serves
as the identity element. Often the curve itself, without O specified, is
called an elliptic curve.

If y2 = P(x), where P is any polynomial of degree three in x with no
repeated roots, then we obtain a nonsingular plane curve of genus one,
which is thus also an elliptic curve. If P has degree four and is squarefree
this equation again describes a plane curve of genus one; however, it has
no natural choice of identity element. More generally, any algebraic curve
of genus one, for example from the intersection of two three-dimensional
quadric surfaces, is called an elliptic curve, provided that it has at least
one rational point.

Using the theory of elliptic functions, it can be shown that elliptic curves
defined over the complex numbers correspond to embeddings of the
torus into the complex projective plane. The torus is also an abelian
group, and in fact this correspondence is also a group isomorphism.

Elliptic curves are especially important in number theory, and constitute a
major area of current research; for example, they were used in the proof,
by Andrew Wiles (assisted by Richard Taylor), of Fermat's Last Theorem.

They also find applications in cryptography (see the article elliptic cur
cryptography) and integer factorization.

Abelian Groups

An abelian group G, sometimes denoted by {G, •}, is a set of elements
with a binary operation, denoted by •, that associates to each ordered pair
(a, b) of elements in G an element (a • b) in G, su
axioms are obeyed:

(The operator • is generic and can refer to addition, multiplication, or
some other mathematical operation).

(A1) Closure: If a and b belong to G, then a • b is also in G.

(A2) Associative: a • (b • c) = (a • b) •

(A3) Identity
element:

There is an element e in G such that a • e = e • a = a
for all a in G.

(A4) Inverse
element:

For each a in G there is an element a' in G such that
a • a' = a' • a = e.

(A5) Commutative: a • b = b • a for a

A number of public-key ciphers are based on the use of an abelian group.
For example, Diffie-Hellman key exchange involves multiplying pairs of
nonzero integers modulo a prime number q. Keys are generated by
exponentiation over the group, with exponentiation defined as repeated

multiplication. For example, ak

Diffie-Hellman, the attacker must determine
discrete log problem.

For elliptic curve cryptography, an operation over elliptic curves, called
addition, is used. Multiplication is defined by repeated addition. For

example,
elliptic curve. Cryptanalysis involves determining k given a and (a x k).

An elliptic curve is defined by an equation in two variables, with
coefficients. For cryptography, the variables and coef
restricted to elements in a finite field, which results in the definition of a
finite abelian group. Before looking at this, we first look at elliptic curves in
which the variables and coefficients are real numbers. This case is
perhaps easier to visualize.

Elliptic Curves over Real Numbers

Elliptic curves are not ellipses. They are so named because they are
described by cubic equations, similar to those used for calculating the
circumference of an ellipse. In general, cubic equations for
take the form

y2 + axy + by = x

where a, b, c, d, and e are real numbers and x and y take on values in the
real numbers.For our purpose, it is sufficient to limit ourselves to
equations of the form

128

They also find applications in cryptography (see the article elliptic curve
cryptography) and integer factorization.

An abelian group G, sometimes denoted by {G, •}, is a set of elements
with a binary operation, denoted by •, that associates to each ordered pair
(a, b) of elements in G an element (a • b) in G, such that the following

(The operator • is generic and can refer to addition, multiplication, or
some other mathematical operation).

If a and b belong to G, then a • b is also in G.

a • (b • c) = (a • b) • c for all a, b, c in G.

There is an element e in G such that a • e = e • a = a
for all a in G.

For each a in G there is an element a' in G such that
a • a' = a' • a = e.

a • b = b • a for all a, b in G.

key ciphers are based on the use of an abelian group.
Hellman key exchange involves multiplying pairs of

nonzero integers modulo a prime number q. Keys are generated by
exponentiation over the group, with exponentiation defined as repeated

k mod q = mod q. To attack
Hellman, the attacker must determine k given a and ak; this is the

For elliptic curve cryptography, an operation over elliptic curves, called
addition, is used. Multiplication is defined by repeated addition. For

where the addition is performed over an
Cryptanalysis involves determining k given a and (a x k).

An elliptic curve is defined by an equation in two variables, with
coefficients. For cryptography, the variables and coefficients are
restricted to elements in a finite field, which results in the definition of a
finite abelian group. Before looking at this, we first look at elliptic curves in
which the variables and coefficients are real numbers. This case is

Elliptic Curves over Real Numbers

Elliptic curves are not ellipses. They are so named because they are
described by cubic equations, similar to those used for calculating the
circumference of an ellipse. In general, cubic equations for elliptic curves

+ axy + by = x3 + cx2 + dx + e

where a, b, c, d, and e are real numbers and x and y take on values in the
real numbers.For our purpose, it is sufficient to limit ourselves to

- (Eqn 3.1.1)

Network Security

NOTES

For given values of a and b, the plot consists of positive and negative
values of y for each value of x. Thus each curve is symmetric about
Fig 3.1.1 shows two examples of elliptic curves. As you can see, the
formula sometimes produces weird

Elliptic Curves over Zp

Elliptic curve cryptography makes use of elliptic curves in which the
variables and coefficients are all restricted to elements of a finite field.
Two families of elliptic curves are used in cryptographic applications:
prime curves over Zp and binary curve
over Zp, we use a cubic equation in which the variables and coefficients
all take on values in the set of integers from 0 through p 1 and in which
calculations are performed modulo p. For a binary curve defined over
GF(2m), the variables and coefficients all take on values in GF(2
calculations are performed over GF(2

There is no obvious geometric interpretation of elliptic curve arithmetic
over finite fields. The algebraic interpretation used for elliptic curve
arithmetic over real numbers does readily carry over, and this is the
approach we take.

For elliptic curves over Zp, as with real numbers, we limit ourselves to
equations of the form of Equation (3.1.1), but in this case with coefficients
and variables limited to Zp:

For example, Equation (3.1.2) is satisfied for
7, p = 23:

72 mod 23

49 mod 23

3

Now consider the set Ep (a, b) consisting of all pairs of
satisfy Equation (3.1.2), together with a point at infinity
a and b and the variables x and

For example, let p = 23 and consider the elliptic curve
this case, a = b = 1. Note that this equation is the same as that of Figure
3.1.1b. The figure shows a continuous curve with all of the real points that
satisfy the equation. For the set E
nonnegative integers in the quadrant from (0
satisfy the equation mod p. Table 3.1.1 lists the points (other than
are part of E23(1,1). Fig 3.1.2 plots the points of E
points, with one exception, are symmetric about

It can be shown that a finite abelian group can be defined based on the
set Ep(a, b) provided that (x3 +
This is equivalent to the condition

The rules for addition over Ep(a, b) correspond to the algebraic technique
described for elliptic curves defined over real number. For all points P, Q

Ep(a, b);

129

, the plot consists of positive and negative
. Thus each curve is symmetric about y = 0.

Fig 3.1.1 shows two examples of elliptic curves. As you can see, the
formula sometimes produces weird-looking curves.

Elliptic curve cryptography makes use of elliptic curves in which the
variables and coefficients are all restricted to elements of a finite field.
Two families of elliptic curves are used in cryptographic applications:

and binary curves over GF(2m). For a prime curve
, we use a cubic equation in which the variables and coefficients

all take on values in the set of integers from 0 through p 1 and in which
calculations are performed modulo p. For a binary curve defined over

the variables and coefficients all take on values in GF(2n) and in
calculations are performed over GF(2n).

There is no obvious geometric interpretation of elliptic curve arithmetic
over finite fields. The algebraic interpretation used for elliptic curve
rithmetic over real numbers does readily carry over, and this is the

, as with real numbers, we limit ourselves to
equations of the form of Equation (3.1.1), but in this case with coefficients

- (Eqn 3.1.2)

For example, Equation (3.1.2) is satisfied for a = 1, b = 1, x = 9, y = 9, y =

= (93 + 9 + 1) mod 23

= 739 mod 23

= 3

) consisting of all pairs of integers (x, y) that
satisfy Equation (3.1.2), together with a point at infinity O. The coefficients

and y are all elements of Zp.

= 23 and consider the elliptic curve y2 = x3 + x + 1. In
= 1. Note that this equation is the same as that of Figure

3.1.1b. The figure shows a continuous curve with all of the real points that
satisfy the equation. For the set E23(1, 1), we are only interested in the
nonnegative integers in the quadrant from (0, 0) through (p 1, p 1) that

. Table 3.1.1 lists the points (other than O) that
3.1.2 plots the points of E23(1,1); note that the

points, with one exception, are symmetric about y = 11.5.

that a finite abelian group can be defined based on the
+ ax + b) mod p has no repeated factors.

This is equivalent to the condition

- (Eqn 3.1.3)

a, b) correspond to the algebraic technique
described for elliptic curves defined over real number. For all points P, Q

Network Security

NOTES

Network Security

NOTES

130

Fig 3.1.1 Examples of Elliptical Curves

(0, 1) (6, 4) (12, 19)

(0, 22) (6, 19) (13, 7)

(1, 7) (7, 11) (13, 16)

(1, 16) (7, 12) (17, 3)

(3, 10) (9, 7) (17, 20)

(3, 13) (9, 16) (18, 3)

(4, 0) (11, 3) (18, 20)

(5, 4) (11, 20) (19, 5)

(5, 19) (12, 4) (19, 18)

Table 3.1.1 Points on the Elliptic Curve E23(1,1)

Fig 3.1.2 The Elliptic Curve E

1. P + O = P.

2. If P = (xP, yP) then P + (xP, y
P, denoted as P. For example, in E
(13, 7). But 7 mod 23 = 16. Therefore, P = (13, 16), which is also in
E23(1,1).

3. If P = (xP, yQ) and Q = (xQ, y
determined by the following rules:

where

4. Multiplication is defined as repeated addition; for example,

4P

For example, let P = (3,10) and

xR = (112 3 9) mod 23 = 17

yR = (11(3 17) 10) mod 23 = 164 mod 23 = 20

So P + Q = (17, 20). To find 2P,

131

The Elliptic Curve E23(1,1)

, yP) = O. The point (xP, yP) is the negative of
P, denoted as P. For example, in E23(1,1), for P = (13,7), we have P =
(13, 7). But 7 mod 23 = 16. Therefore, P = (13, 16), which is also in

, yQ) with P ≠ Q, then R = P + Q = (xR, yR) is
determined by the following rules:

xR = (2 xP xQ) mod p

yR = ((xP xR) yP) mod p

Multiplication is defined as repeated addition; for example,

P = P + P + P + P.

= (3,10) and Q = (9,7) in E23(1,1). Then

3 9) mod 23 = 17

= (11(3 17) 10) mod 23 = 164 mod 23 = 20

So P + Q = (17, 20). To find 2P,

Network Security

NOTES

The last step in the preceding equation involves taking the multiplicative
inverse of 4 in Z23. This can be done using the extended Euclidean
algorithm. To confirm, note that (6 x 4) mod 23 = 24 mod 23 = 1.

xR = (62 3 3) mod 23 = 30 mod 23 = 7

yR = (6(3 7) 10) mod 23 = (34) mod 23 = 12

and 2P = (7, 12).

For determining the security of various elliptic curve ciphers, it is of some
interest to know the number the number of points in a finite abelian group
defined over an elliptic curve. In the case of the finite group E
number of points N is bounded by

The number of points in Ep(a, b
elements in Zp, namely p elements.

Elliptic Curves over GF(2m)

A finite field GF(2m) consists of 2
multiplication operations that can be defined over polynomials. For elliptic
curves over GF(2m), we use a
coefficients all take on values in GF(2
which calculations are performed using the rules of arithmetic in

It turns out that the form of cubic equation appropriate for cryptographic
applications for elliptic curves is somewhat different for GF(2
Zp. The form is

where it is understood that the variables
and b are elements of GF(2m) of and that calculations are performed in
GF(2m).

Now consider the set E2
m(a, b) consisting of all pairs of integers (

satisfy Equation (3.1.4), together with a point at infinity

For example, let us use the finite field GF(2
polynomial f(x) = x4 + x + 1. This yields a generator that satisfies
with a value of g4 = g + 1, or in binary 0010. We can develop the powers
of g as follows:

g
0

= 0001 g
4

= 0011

g
1

= 0010 g
5

= 0110

g
2

= 0100 g
6

= 1100

g
3

= 1000 g
7

= 1011

For example, g5 = (g4)(g) = g2 +

Now consider the elliptic curve
and b = g0 = 1. One point that satisfies this equation is (

(g3)2 + (g5)(g3) = (

g6 + g8 = g15 + g14

1100 + 0101 = 0001 + 1001 + 0001

1001 = 1001

132

The last step in the preceding equation involves taking the multiplicative
. This can be done using the extended Euclidean

algorithm. To confirm, note that (6 x 4) mod 23 = 24 mod 23 = 1.

3 3) mod 23 = 30 mod 23 = 7

= (6(3 7) 10) mod 23 = (34) mod 23 = 12

= (7, 12).

For determining the security of various elliptic curve ciphers, it is of some
interest to know the number the number of points in a finite abelian group
defined over an elliptic curve. In the case of the finite group Ep(a,b), the

ded by

b) is approximately equal to the number of
elements.

) consists of 2m elements, together with addition and
t can be defined over polynomials. For elliptic

), we use a cubic equation in which the variables and
coefficients all take on values in GF(2m), for some number m, and in
which calculations are performed using the rules of arithmetic in GF(2m).

It turns out that the form of cubic equation appropriate for cryptographic
applications for elliptic curves is somewhat different for GF(2m) than for

- (Eqn 3.1.4)

where it is understood that the variables x and y and the coefficients a
) of and that calculations are performed in

) consisting of all pairs of integers (x, y) that
), together with a point at infinity O.

example, let us use the finite field GF(24) with the irreducible
+ 1. This yields a generator that satisfies f(g) = 0,

+ 1, or in binary 0010. We can develop the powers

= 0011 g
8

= 0101 g
12

= 1111

= 0110 g
9

= 1010 g
13

= 1101

= 1100 g
10

= 0111 g
14

= 1001

= 1011 g
11

= 1110 g
15

= 0001

+ g = 0110.

Now consider the elliptic curve y2 + xy = x3 + g4x2 + 1. In this case a = g4

= 1. One point that satisfies this equation is (g5, g3):

) = (g5)3 + (g4)(g5)2 + 1
14 + 1

1100 + 0101 = 0001 + 1001 + 0001

Network Security

NOTES

Table 3.1.2 lists the points (other than
plots the points of E2

4
(g

4
, 1).

(0, 1)

(1, g
6
)

(1, g
13

)

(g
3
, g

8
)

(g
3
, g

13
)

Fig 3.1.3 The Elliptic Curve E

It can be shown that a finite abelian group can be defined based on the
set E2m (a, b), provided that b ≠0. The rules for addition can be stated as
follows. For all points P, Q Є E2

1. P + O = P.

2. If P = (xP, yP), then P + (xP, x
negative of P, denoted as P.

3. If P = (xP, yP) and Q = (xQ, y
(xR, yR) is determined by the follow

xR = λ2 + λ + xP + xQ + a

yR = λ(xP + xR) + xR + yP

where

4. If = (xP, yP) then R = 2P = (x

Table 3.1.2 Points on the Elliptical curve

133

Table 3.1.2 lists the points (other than O) that are part of E2
4

(g
4
, 1). Figure 3.1.3

(g
5
, g

3
) (g

9
, g

13
)

(g
5
, g

11
) (g

10
, g)

g
6
, g

8
) (g

10
, g

8
)

(g
6
, g

14
) (g

12
,0)

(g
9
, g

10
) (g

12
, g

12
)

The Elliptic Curve E2
4(g4, 1)

It can be shown that a finite abelian group can be defined based on the
≠0. The rules for addition can be stated as

2
m (a, b):

, xp + yP) = O. The point (xP, xP + yP) is the
negative of P, denoted as P.

, yQ) with P ≠Q and P ≠Q, then R = P + Q =
) is determined by the following rules:

) then R = 2P = (xR, yR) is determined by the following rules:

Points on the Elliptical curve (g4, 1)

Network Security

NOTES

Where

Elliptic Curve Cryptography
The addition operation in ECC is the counterpart of modular multiplication
in RSA, and multiple addition is the counterpart of modular
exponentiation. To form a cryptographic system using elliptic curves, we
need to find a "hard problem" corresponding to f
two primes or taking the discrete logarithm.

Consider the equation Q = kP
relatively easy to calculate Q
determine k given Q and P. This is called th
for elliptic curves.

We give an example taken from the Certicom Web site
(www.certicom.com). Consider the group E
defined by the equation y2 mod 23 = (
discrete logarithm k of Q = (4, 5) to the base
method is to compute multiples of

Thus
P = (16, 5); 2P = (20, 20); 3P = (14, 14); 4
7P = (8, 7); 8P (12, 17); 9P = (4, 5).

Because 9P = (4, 5) = Q, the discrete logarithm
(16, 5) is k = 9. In a real application,
brute-force approach infeasible.

In the remainder of this section, we show two approaches to ECC that
give the flavor of this technique.

Analog of Diffie-Hellman Key Exchange

Key exchange using elliptic curves can be done in the following manner.
First pick a large integer q, which is either a prime number
of the form 2m and elliptic curve parameters
or Equation (3.1.3). This defines the elliptic group of points E
pick a base point G = (x1, y1) in E
n. The order n of a point G on an elliptic curve is the smallest positive
integer n such that nG = O. E
cryptosystem known to all participants.

A key exchange between users A and B can be accomplished as
follows (Figure 3.1.4):

1. A selects an integer nA

generates a public key
Eq(a, b).

2. B similarly selects a private key n

3. A generates the secret key
key K = nB x PA.

134

Elliptic Curve Cryptography
The addition operation in ECC is the counterpart of modular multiplication
in RSA, and multiple addition is the counterpart of modular
exponentiation. To form a cryptographic system using elliptic curves, we
need to find a "hard problem" corresponding to factoring the product of
two primes or taking the discrete logarithm.

kP where Q, P Є Ep(a, b) and k < p. It is
given k and P, but it is relatively hard to

. This is called the discrete logarithm problem

We give an example taken from the Certicom Web site
(www.certicom.com). Consider the group E23 (9, 17). This is the group

mod 23 = (x3 + 9x + 17) mod 23. What is the
= (4, 5) to the base P = (16.5)? The brute-force

method is to compute multiples of P until Q is found.

= (14, 14); 4P = (19, 20); 5P = (13, 10); 6P = (7, 3);
= (4, 5).

, the discrete logarithm Q = (4, 5) to the base P =
= 9. In a real application, k would be so large as to make the

force approach infeasible.

In the remainder of this section, we show two approaches to ECC that
or of this technique.

Hellman Key Exchange

Key exchange using elliptic curves can be done in the following manner.
, which is either a prime number p or an integer

and elliptic curve parameters a and b for Equation (3.1.2)
or Equation (3.1.3). This defines the elliptic group of points Eq(a, b). Next,

) in Ep (a, b) whose order is a very large value
on an elliptic curve is the smallest positive
. Eq(a, b) and G are parameters of the

cryptosystem known to all participants.

A key exchange between users A and B can be accomplished as

less than n. This is A’s private key. A then
generates a public key PA = nA x G; the public key is a point in

B similarly selects a private key nB and computes a public key PB.

A generates the secret key K = nA x PB. B generates the secret

Network Security

NOTES

Network Security

NOTES

135

User A Key Generation

Select private nA nA < n

Calculate Public PA PA = nA X G

User B Key Generation

Select private nB nB < n

Calculate Public PB PB = nB X G

Calculation of Secret Key by User A

K = nA X PB

Calculation of Secret Key by User B

K = nB X PA

Fig 3.1.4 ECC Diffie-Hellman Key Exchange

The two calculations in step 3 produce the same result because

nA x PB = nA x (nB x G) = nB x (nA x G) = nB x PA

To break this scheme, an attacker would need to be able to compute k
given G and kG, which is assumed hard.

As an example, take p = 211; Ep(0, 4), which is equivalent to the curve y2

= x3 4; and G = (2, 2). One can calculate that 240G = O. A's private key is
nA = 121, so A's public key is PA = 121(2, 2) = (115, 48). B's private key is
nB = 203, so B's public key is 203(2, 2) = (130, 203). The shared secret
key is 121(130, 203) = 203(115, 48) = (161, 69).

Note that the secret key is a pair of numbers. If this key is to be used as a
session key for conventional encryption, then a single number must be
generated. We could simply use the x coordinates or some simple
function of the x coordinate.

Elliptic Curve Encryption/Decryption

Several approaches to encryption/decryption using elliptic curves have
been analyzed in the literature. In this subsection we look at perhaps the
simplest. The first task in this system is to encode the plaintext message
m to be sent as an x-y point Pm. It is the point Pm that will be encrypted as
a ciphertext and subsequently decrypted. Note that we cannot simply
encode the message as the x or y coordinate of a point, because not all
such coordinates are in Eq(a, b); for example, see Table 3.1.1. Again,
there are several approaches to this encoding, which we will not address
here, but suffice it to say that there are relatively straightforward
techniques that can be used.

As with the key exchange system, an encryption/decryption system
requires a point G and an elliptic group Eq(a, b) as parameters. Each
user A selects a private key nA and generates a public key PA = nA x G.

To encrypt and send a message Pm to B, A chooses a random positive
integer k and produces the ciphertext Cm consisting of the pair of points:

Cm = {kG, Pm + kPB}

Note that A has used B's public key PB. To decrypt the ciphertext, B
multiplies the first point in the pair by B's secret key and subtracts the
result from the second point:

Pm + kPB nB(kG) = Pm + k(nBG) nB(kG) = Pm

A has masked the message Pm by adding kPB to it. Nobody but A knows
the value of k, so even though PB is a public key, nobody can remove the

Network Security

NOTES

136

mask kPB. However, A also includes a "clue," which is enough to remove
the mask if one knows the private key nB. For an attacker to recover the
message, the attacker would have to compute k given G and kG, which is
assumed hard.

As an example of the encryption process, take p = 751; Ep(1, 188), which
is equivalent to the curve y2 = x3 x + 188; and G = (0, 376). Suppose that
A wishes to send a message to B that is encoded in the elliptic point Pm =
(562, 201) and that A selects the random number k = 386. B's public key
is PB = (201, 5). We have 386(0, 376) = (676, 558), and (562, 201) +
386(201, 5) = (385, 328). Thus A sends the cipher text {(676, 558), (385,
328)}.

Security of Elliptic Curve Cryptography

The security of ECC depends on how difficult it is to determine k given kP
and P. This is referred to as the elliptic curve logarithm problem. The
fastest known technique for taking the elliptic curve logarithm is known as
the Pollard rho method. Table 3.1.3 compares various algorithms by
showing comparable key sizes in terms of computational effort for
cryptanalysis. As can be seen, a considerably smaller key size can be
used for ECC compared to RSA. Furthermore, for equal key lengths, the
computational effort required for ECC and RSA is comparable. Thus,
there is a computational advantage to using ECC with a shorter key
length than a comparably secure RSA.

Symmetric Scheme (key
size in bits)

ECC-Based Scheme (size of n in bits) RSA/DSA (modulus
size in bits)

56 112 512

80 160 1024

112 224 2048

128 256 3072

92 384 7680

256 512 15360

Source: Certicom

Table 3.1.3 Comparable Key Sizes in Terms of Computational Effort for
Cryptanalysis

REFERENCES

1. William Stallings, Cryptography and Network Security, PHI

Publishers

2. www.wikipedia.org

Review Questions:

1. Explain the application of Elliptical curves in public key

cryptosystems.

2. Explain Elliptical curve encryption algorithm

2.MESSAGE AUTHENTICATION
AND HASH FUNCTIONS

OBJECTIVES
The objective of this lesson
authentication and digital signature
Survey of basic approaches, including the increasingly important area of
secure hash functions. Some specific hash functions are examined.

MESSAGE AUTHENTICATION
A MAC, also known as a cryptographic checksum, is generated by a
function C of the form

MAC = C (

where, M is a variable-length message,
sender and receiver, and C(K, M
MAC is appended to the message at the source at a time when the
message is assumed or known to be correct. The receiver authenticates
that message by recomputing the MAC.

A MAC algorithm accepts as input a secret ke
length message to be authenticated, and outputs a MAC (sometimes
known as a tag). The MAC value protects both a message's data integrity
as well as its authenticity, by allowing verifiers (who also possess the
secret key) to detect any changes to the message content. Fig 3.2.1
gives the overview of MAC function.

Fig 3.2.1 Overview of MAC functions.

Message authentication is a procedure to verify that received messages
come from the alleged source and have not been altered. Message

137

MESSAGE AUTHENTICATION
AND HASH FUNCTIONS

The objective of this lesson is to introduce the requirements for
authentication and digital signature, types of attacks to be countered.
Survey of basic approaches, including the increasingly important area of

pecific hash functions are examined.

HENTICATION
A MAC, also known as a cryptographic checksum, is generated by a

MAC = C (K, M)

length message, K is a secret key shared only by
K, M) is the fixed-length authenticator. The

MAC is appended to the message at the source at a time when the
message is assumed or known to be correct. The receiver authenticates
that message by recomputing the MAC.

A MAC algorithm accepts as input a secret key and an arbitrary-
length message to be authenticated, and outputs a MAC (sometimes

). The MAC value protects both a message's data integrity
as well as its authenticity, by allowing verifiers (who also possess the

hanges to the message content. Fig 3.2.1
gives the overview of MAC function.

Overview of MAC functions.

Message authentication is a procedure to verify that received messages
come from the alleged source and have not been altered. Message

Network Security

NOTES

authentication may also verify sequencing and timeliness. A digital
signature is an authentication technique that also includes measures to
counter repudiation by the source.

Requirements for MACs

When an entire message is encrypted for confidentiality, using
symmetric or asymmetric encryption, the security of the scheme generally
depends on the bit length of the key. Barring some weakness in the
algorithm, the opponent must resort to a brute
possible keys. On average, such an atta
k-bit key. In particular, for a ciphertext
ciphertext C, would perform Pi

until a Pi was produced that matched the form of acceptable plaintext.

In the case of a MAC, the considerations are entirely different. In general,
the MAC function is a many-
nature of the function. If confidentiality is not e
access to plaintext messages and their associated MACs. Suppose
that is, suppose that the key size is greater than the MAC size. Then,
given a known M1 and MAC1, with
perform MACi = C(Ki, M1) for all possible key values
guaranteed to produce a match of
MACs will be produced, but there are only 2
Thus, a number of keys will produce the correct MAC and
has no way of knowing which is the correct key. On average, a total of
2k/2n = 2(k-n) keys will produce a match. Thus, the opponent must iterate
the attack:

 Round 1

Given: M1, MAC1 = C(K,

Compute MACi = C(Ki, M

Number of matches

 Round 2

Given: M2, MAC2 = C(K,

Compute MACi = C(Ki, M
1

Number of matches

and so on. On average, α rounds will be needed if
if an 80-bit key is used and the MAC is 32 bits long, then the first round
will produce about 248 possible keys. The second round will narrow the
possible keys to about 216 possibilities. The third round should produce
only a single key, which must be the

If the key length is less than or equal to the MAC length, then it is likely
that a first round will produce a single match. It is possible that more than
one key will produce such a match, in which case the opponent would
need to perform the same test on a new (message, MAC) pair.

Thus, a brute-force attempt to discover the authentication key is no less
effort and may be more effort than that required to discover a decryption
key of the same length. However, other attacks that do no
discovery of the key are possible.

138

entication may also verify sequencing and timeliness. A digital
signature is an authentication technique that also includes measures to
counter repudiation by the source.

When an entire message is encrypted for confidentiality, using either
symmetric or asymmetric encryption, the security of the scheme generally
depends on the bit length of the key. Barring some weakness in the
algorithm, the opponent must resort to a brute-force attack using all
possible keys. On average, such an attack will require 2(k-1) attempts for a

bit key. In particular, for a ciphertext-only attack, the opponent, given

i = D (Ki, C) for all possible key values Ki

was produced that matched the form of acceptable plaintext.

In the case of a MAC, the considerations are entirely different. In general,
-to-one function, due to the many-to-one

nature of the function. If confidentiality is not employed, the opponent has
access to plaintext messages and their associated MACs. Suppose k > n;
that is, suppose that the key size is greater than the MAC size. Then,

, with MAC1 = C(K, M1), the cryptanalyst can
) for all possible key values Ki. At least one key is

guaranteed to produce a match of MACi = MAC1. Note that a total of 2k

MACs will be produced, but there are only 2n < 2k different MAC values.
Thus, a number of keys will produce the correct MAC and the opponent
has no way of knowing which is the correct key. On average, a total of

keys will produce a match. Thus, the opponent must iterate

, M1)

M1) for all 2k keys

2(k-n)

, M2)

M2) for the 2(k-n) keys resulting from Round

2(k-2xn)

and so on. On average, α rounds will be needed if k = α x n. For example,
bit key is used and the MAC is 32 bits long, then the first round

possible keys. The second round will narrow the
possibilities. The third round should produce

only a single key, which must be the one used by the sender.

If the key length is less than or equal to the MAC length, then it is likely
that a first round will produce a single match. It is possible that more than
one key will produce such a match, in which case the opponent would

erform the same test on a new (message, MAC) pair.

force attempt to discover the authentication key is no less
effort and may be more effort than that required to discover a decryption
key of the same length. However, other attacks that do not require the
discovery of the key are possible.

Network Security

NOTES

Network Security

NOTES

139

Consider the following MAC algorithm. Let M = (X1||X2||...||Xm) be a
message that is treated as a concatenation of 64-bit blocks Xi. Then
define

Δ(M) =X1 ⊕X2⊕... ⊕Xm

C(K, M) = E(K, Δ (M))

where ⊕is the exclusive-OR (XOR) operation and the encryption
algorithm is DES in electronic codebook mode. Thus, the key length is 56
bits and the MAC length is 64 bits. If an opponent observes {M||C(K, M)},
a brute-force attempt to determine K will require at least 256 encryptions.
But the opponent can attack the system by replacing X1 through Xm-1 with
any desired values Y1 through Ym-1 and replacing Xm with Ym where Ym is
calculated as follows:

Ym = Y1 ⊕Y2⊕... ⊕Ym1 ⊕Δ(M)

The opponent can now concatenate the new message, which consists of
Y1 through Ym, with the original MAC to form a message that will be
accepted as authentic by the receiver. With this tactic, any message of
length 64 x (m 1) bits can be fraudulently inserted.

Thus, in assessing the security of a MAC function, we need to consider
the types of attacks that may be mounted against it. With that in mind, let
us state the requirements for the function. Assume that an opponent
knows the MAC function C but does not know K. Then the MAC function
should satisfy the following requirements:

1. If an opponent observes M and C(K, M), it should be
computationally infeasible for the opponent to construct a
message M' such that C(K, M') = C(K, M).

2. C(K, M) should be uniformly distributed in the sense that for
randomly chosen messages, M and M', the probability that C(K,
M) = C(K, M') is 2n, where n is the number of bits in the MAC.

3. Let M' be equal to some known transformation on M. That is, M' =
f(M). For example, f may involve inverting one or more specific
bits. In that case, Pr[C(K, M) = C(K, M')] = 2n.

The first requirement speaks to the earlier example, in which an opponent
is able to construct a new message to match a given MAC, even though
the opponent does not know and does not learn the key. The second
requirement deals with the need to thwart a brute-force attack based on
chosen plaintext. That is, if we assume that the opponent does not know
K but does have access to the MAC function and can present messages
for MAC generation, then the opponent could try various messages until
finding one that matches a given MAC. If the MAC function exhibits
uniform distribution, then a brute-force method would require, on average,
2(n1) attempts before finding a message that fits a given MAC.

The final requirement dictates that the authentication algorithm should not
be weaker with respect to certain parts or bits of the message than
others. If this were not the case, then an opponent who had M and C(K,
M) could attempt variations on M at the known "weak spots" with a
likelihood of early success at producing a new message that matched the
old MAC.

Network Security

NOTES

140

Message Authentication Code Based on DES

The Data Authentication Algorithm, based on DES, has been one of the
most widely used MACs for a number of years. The algorithm is both a
FIPS publication (FIPS PUB 113) and an ANSI standard (X9.17).
However, security weaknesses in this algorithm have been discovered
and it is being replaced by newer and stronger algorithms.

The algorithm can be defined as using the cipher block chaining (CBC)
mode of operation of DES with an initialization vector of zero. The data
(e.g., message, record, file, or program) to be authenticated are grouped
into contiguous 64-bit blocks: D1, D2,..., DN. If necessary, the final block is
padded on the right with zeroes to form a full 64-bit block. Using the DES
encryption algorithm, E, and a secret key, K, a data authentication code
(DAC) is calculated as follows (Figure 11.6):

O1 = E(K, D1)

O2 = E(K, [D2 ⊕O1])

O3 = (K, [D3 ⊕O2])

•

•

ON = E(K, [DN ⊕ON1])

Fig 3.2.2 Data Authentication Algorithm (FIPS PUB 113)
The DAC consists of either the entire block ON or the leftmost M bits of the block,
with 16 ≤ M ≤64.

HASH FUNCTIONS
A hash value h is generated by a function H of the form

h = H(M)

where M is a variable-length message and H(M) is the fixed-length hash
value. The hash value is appended to the message at the source at a
time when the message is assumed or known to be correct. The receiver

Network Security

NOTES

141

authenticates that message by recomputing the hash value. Because the
hash function itself is not considered to be secret, some means is
required to protect the hash value.

As hash functions are typically quite complex, it is useful to
examine some very simple hash functions to get a feel for the issues
involved. We then look at several approaches to hash function design.

Requirements for a Hash Function

The purpose of a hash function is to produce a "fingerprint" of a file,
message, or other block of data. To be useful for message authentication,
a hash function H must have the following properties:

1. H can be applied to a block of data of any size.

2. H produces a fixed-length output.

3. H(x) is relatively easy to compute for any given x, making both
hardware and software implementations practical.

4. For any given value h, it is computationally infeasible to find x
such that H(x) = h. This is sometimes referred to in the
literature as the one-way property.

5. For any given block x, it is computationally infeasible to find y
≠ x such that H(y) = H(x). This is sometimes referred to as
weak collision resistance.

6. It is computationally infeasible to find any pair (x, y) such that
H(x) = H(y). This is sometimes referred to as strong collision
resistance.

The first three properties are requirements for the practical application of
a hash function to message authentication. The fourth property, the one-
way property, states that it is easy to generate a code given a message
but virtually impossible to generate a message given a code. This
property is important if the authentication technique involves the use of a
secret value (Figure 3.2.3e).

The secret value itself is not sent. But, if the hash function is not one way,
an attacker can easily discover the secret value: If the attacker can
observe or intercept a transmission, the attacker obtains the message M
and the hash code C = H(SAB||M). The attacker then inverts the hash
function to obtain SAB||M = H1(C). Because the attacker now has both M
and SAB||M, it is a trivial matter to recover SAB.

The fifth property guarantees that an alternative message hashing to the
same value as a given message cannot be found. This prevents forgery
when an encrypted hash code is used (Figures 3.2.3b and c). For these
cases, the opponent can read the message and therefore generate its
hash code. However, because the opponent does not have the secret
key, the opponent should not be able to alter the message without
detection. If this property were not true, an attacker would be capable of
the following sequence: First, observe or intercept a message plus its
encrypted hash code; second, generate an unencrypted hash code from
the message; third, generate an alternate message with the same hash
code.

Network Security

NOTES

142

Fig 3.2.3 Basic Uses of Hash Function

The sixth property refers to how resistant the hash function is to a type of
attack known as the birthday attack, which we examine shortly.

Simple Hash Functions

All hash functions operate using the following general principles. The
input (message, file, etc.) is viewed as a sequence of n-bit blocks. The
input is processed one block at a time in an iterative fashion to produce
an n-bit hash function.

One of the simplest hash functions is the bit-by-bit exclusive-OR (XOR) of
every block. This can be expressed as follows:

Ci = bi1 ⊕bi1⊕... ⊕bim

Network Security

NOTES

143

where

Ci = ith bit of the hash code, 1 ≤i ≤n

m = number of n-bit blocks in the input

bij = ith bit in jth block

⊕ = XOR operation

This operation produces a simple parity for each bit position and is known
as a longitudinal redundancy check. It is reasonably effective for random
data as a data integrity check. Each n-bit hash value is equally likely.
Thus, the probability that a data error will result in an unchanged hash
value is 2n. With more predictably formatted data, the function is less
effective. For example, in most normal text files, the high-order bit of each
octet is always zero. So if a 128-bit hash value is used, instead of an
effectiveness of 2128, the hash function on this type of data has an
effectiveness of 2112.

A simple way to improve matters is to perform a one-bit circular shift, or
rotation, on the hash value after each block is processed. The procedure
can be summarized as follows:

1. Initially set the n-bit hash value to zero.

2. Process each successive n-bit block of data as follows:

a. Rotate the current hash value to the left by one bit.

b. XOR the block into the hash value.

This has the effect of "randomizing" the input more completely and
overcoming any regularities that appear in the input. Fig 3.2.4 illustrates
these two types of hash functions for 16-bit hash values.

Although the second procedure provides a good measure of data
integrity, it is virtually useless for data security when an encrypted hash
code is used with a plaintext message, as in Figures 3.2.3b and c. Given
a message, it is an easy matter to produce a new message that yields
that hash code: Simply prepare the desired alternate message and then
append an n-bit block that forces the new message plus block to yield the
desired hash code. Although a simple XOR or rotated XOR (RXOR) is
insufficient if only the hash code is encrypted, you may still feel that such
a simple function could be useful when the message as well as the hash
code are encrypted (Figure 3.2.3a). But you must be careful. A technique
originally proposed by the National Bureau of Standards used the simple
XOR applied to 64-bit blocks of the message and then an encryption of
the entire message that used the cipher block chaining (CBC) mode. We
can define the scheme as follows:

Given a message consisting of a sequence of 64-bit blocks X1, X2,..., XN,
define the hash code C as the block-by-block XOR of all blocks and
append the hash code as the final block:

C = XN+1 = X1 ⊕X2⊕... ⊕XN

Network Security

NOTES

144

Figure 3.2.4 Two Simple Hash Functions

Next, encrypt the entire message plus hash code, using CBC mode to
produce the encrypted message Y1, Y2,..., YN+1. points out several ways
in which the ciphertext of this message can be manipulated in such a way
that it is not detectable by the hash code. For example, by the definition
of CBC, we have

X1 = IV ⊕D(K, Y1)

Xi = Yi1 ⊕D(K, Yi)

XN+1 = YN ⊕D(K, YN+1)

But XN+1 is the hash code:

XN+1 = X1 ⊕X2⊕... ⊕XN

= [IV ⊕D(K, Y1)] ⊕ [Y1 ⊕D(K, Y2)] ⊕... ⊕ [YN1⊕... ⊕D (K, YN)]

Because the terms in the preceding equation can be XORed in
any order, it follows that the hash code would not change if the ciphertext
blocks were permuted.

Block Chaining Techniques

A number of proposals have been made for hash functions based on
using a cipher block chaining technique, but without the secret key. In
one of the first such proposals a message M is divided into fixed-size

Network Security

NOTES

145

blocks M1, M2,..., MN and use a symmetric encryption system such as
DES to compute the hash code G as follows:

Ho = initial value

Hi = E(Mi, Hi, Hi1)

G = HN

This is similar to the CBC technique, but in this case there is no secret
key. As with any hash code, this scheme is subject to the birthday attack,
and if the encryption algorithm is DES and only a 64-bit hash code is
produced, then the system is vulnerable.

Furthermore, another version of the birthday attack can be used even if
the opponent has access to only one message and its valid signature and
cannot obtain multiple signings. Here is the scenario; we assume that the
opponent intercepts a message with a signature in the form of an
encrypted hash code and that the unencrypted hash code is m bits long:

1. Use the algorithm defined at the beginning of this subsection
to calculate the unencrypted hash code G.

2. Construct any desired message in the form Q1, Q2,..., QN2.

3. Compute for Hi = E(Qi, Hi1) for 1 ≤ i ≤ (N 2).

4. Generate 2m/2 random blocks; for each block X, compute E(X,
HN2). Generate an additional 2m/2 random blocks; for each
block Y, compute D(Y, G), where D is the decryption function
corresponding to E.

5. Based on the birthday paradox, with high probability there will
be an X and Y such that E(X, HN2) = D(Y, G).

6. Form the message Q1, Q2,..., QN2, X, Y. This message has the
hash code G and therefore can be used with the intercepted
encrypted signature.

This form of attack is known as a meet-in-the-middle attack.

Hi = E(Mi, Hi1) ⊕Hi1

Security of Hash Functions and Macs

Just as with symmetric and public-key encryption, we can group attacks
on hash functions and MACs into two categories: brute-force attacks and
cryptanalysis.

Brute-Force Attacks

The nature of brute-force attacks differs somewhat for hash functions and
MACs.

Hash Functions

The strength of a hash function against brute-force attacks depends
solely on the length of the hash code produced by the algorithm. Recall
from our discussion of hash functions that there are three desirable
properties:

 One-way: For any given code h, it is computationally infeasible to find x
such that H(x) = h.

 Weak collision resistance: For any given block x, it is
computationally infeasible to find y ≠x with H(y) = H(x).

Network Security

NOTES

146

 Strong collision resistance: It is computationally infeasible to
find any pair (x, y) such that H(x) = H(y).

For a hash code of length n, the level of effort required, as we have seen
is proportional to the following:

One way 2
n

Weak collision resistance 2
n

Strong collision resistance 2
n/2

If strong collision resistance is required (and this is desirable for a
general-purpose secure hash code), then the value 2n/2 determines the
strength of the hash code against brute-force attacks.

Message Authentication Codes

A brute-force attack on a MAC is a more difficult undertaking because it
requires known message-MAC pairs. To attack a hash code, we can
proceed in the following way.

Given a fixed message x with n-bit hash code h = H(x), a brute-force
method of finding a collision is to pick a random bit string y and check if
H(y) = H(x). The attacker can do this repeatedly off line. Whether an off-
line attack can be used on a MAC algorithm depends on the relative size
of the key and the MAC.

To proceed, we need to state the desired security property of a MAC
algorithm, which can be expressed as follows:

 Computation resistance: Given one or more text-MAC pairs [xi, C
(K, xi)], it is computationally infeasible to compute any text-MAC
pair [x, C(K, x)] for any new input x ≠ xi.

In other words, the attacker would like to come up with the valid MAC
code for a given message x. There are two lines of attack possible: Attack
the key space and attack the MAC value. We examine each of these in
turn.

If an attacker can determine the MAC key, then it is possible to generate
a valid MAC value for any input x. Suppose the key size is k bits and that
the attacker has one known text-MAC pair. Then the attacker can
compute the n-bit MAC on the known text for all possible keys. At least
one key is guaranteed to produce the correct MAC, namely, the valid key
that was initially used to produce the known text-MAC pair. This phase of
the attack takes a level of effort proportional to 2k (that is, one operation
for each of the 2k possible key values). However, because the MAC is a
many-to-one mapping, there may be other keys that produce the correct
value. Thus, if more than one key is found to produce the correct value,
additional text-MAC pairs must be tested. It can be shown that the level of
effort drops off rapidly with each additional text-MAC pair and that the
overall level of effort is roughly 2k.

An attacker can also work on the MAC value without attempting to
recover the key. Here, the objective is to generate a valid MAC value for
a given message or to find a message that matches a given MAC value.
In either case, the level of effort is comparable to that for attacking the

Network Security

NOTES

147

one-way or weak collision resistant property of a hash code, or 2n. In the
case of the MAC, the attack cannot be conducted off line without further
input; the attacker will require chosen text-MAC pairs or knowledge of the
key.

To summarize, the level of effort for brute-force attack on a MAC
algorithm can be expressed as min(2k, 2n). The assessment of strength is
similar to that for symmetric encryption algorithms. It would appear
reasonable to require that the key length and MAC length satisfy a
relationship such as min(k, n) ≥ N, where N is perhaps in the range of 128
bits.

Cryptanalysis

As with encryption algorithms, cryptanalytic attacks on hash functions and
MAC algorithms seek to exploit some property of the algorithm to perform
some attack other than an exhaustive search. The way to measure the
resistance of a hash or MAC algorithm to cryptanalysis is to compare its
strength to the effort required for a brute-force attack. That is, an ideal
hash or MAC algorithm will require a cryptanalytic effort greater than or
equal to the brute-force effort.

Hash Functions
In recent years, there has been considerable effort, and some successes,
in developing cryptanalytic attacks on hash functions. Figure 3.2.5 shows
the general structure of Secure Hash Code. This structure is also referred
to as an iterated hash function was proposed by Merkle. This is the
structure of most hash functions in use today, including SHA and
Whirlpool. The hash function takes an input message and partitions it into
L fixed-sized blocks of b bits each. If necessary, the final block is padded
to b bits. The final block also includes the value of the total length of the
input to the hash function. The inclusion of the length makes the job of
the opponent more difficult. Either the opponent must find two messages
of equal length that hash to the same value or two messages of differing
lengths that, together with their length values, hash to the same value.

Fig 3.2.5 General Structure of Secure Hash Code

Network Security

NOTES

148

The hash algorithm involves repeated use of a compression function, f,
that takes two inputs (an n-bit input from the previous step, called the
chaining variable, and a b-bit block) and produces an n-bit output. At the
start of hashing, the chaining variable has an initial value that is specified
as part of the algorithm. The final value of the chaining variable is the
hash value. Often, b > n; hence the term compression. The hash function
can be summarized as follows:

CVo = IV = initial n-bit value

CVi = f(CVi1, Yi1) 1 ≤ i ≤ L

H(M) = CVL

where the input to the hash function is a message M consisting of the
blocks Yo, Y1,..., YL1.

The motivation for this iterative structure stems from the observation that
if the compression function is collision resistant, then so is the resultant
iterated hash function. Therefore, the structure can be used to produce a
secure hash function to operate on a message of any length. The
problem of designing a secure hash function reduces to that of designing
a collision-resistant compression function that operates on inputs of some
fixed size.

Cryptanalysis of hash functions focuses on the internal structure of f and
is based on attempts to find efficient techniques for producing collisions
for a single execution of f. Once that is done, the attack must take into
account the fixed value of IV. The attack on f depends on exploiting its
internal structure. Typically, as with symmetric block ciphers, f consists of
a series of rounds of processing, so that the attack involves analysis of
the pattern of bit changes from round to round. For any hash function
there must exist collisions, because we are mapping a message of length
at least equal to twice the block size b (because we must append a length
field) into a hash code of length n, where b ≥ n. What is required is that it
is computationally infeasible to find collisions.

SECURE HASH ALGORITHM (SHA)

The Secure Hash Algorithm (SHA) was developed by the National
Institute of Standards and Technology (NIST) and published as a federal
information processing standard and is generally referred to as SHA-1.

SHA-1 produces a hash value of 160 bits. In 2002, NIST defined three
new versions of SHA, with hash value lengths of 256, 384, and 512 bits,
known as SHA-256, SHA-384, and SHA-512 (Table 3.2.1). These new
versions have the same underlying structure and use the same types of
modular arithmetic and logical binary operations as SHA-1. In 2005, NIST
announced the intention to phase out approval of SHA-1 and move to a
reliance on the other SHA versions by 2010. Shortly thereafter, a
research team described an attack in which two separate messages
could be found that deliver the same SHA-1 hash using 269 operations,
far fewer than the 280 operations previously thought needed to find a
collision with an SHA-1 hash. This result should hasten the transition to
the other versions of SHA.

SHA-1

Message digest size 160

Message size <2
64

Block size 512

Word size 32

Number of steps 80

Security 80

Notes: 1. All sizes are measured in bits.

2. Security refers to the fact that a birthday attack on a message digest of size
produces a collision with a workfactor of approximately 2

Table 3.2.1 Comparison of SHA Parameters

SHA-512 Logic

The algorithm takes as input a message with a maximum length of less
than 2128 bits and produces as output a 512
is processed in 1024-bit blocks. Fig 3.2.6 depicts the overall proces
of a message to produce a digest.

This follows the general structure depicted in Figure 3.2.5. The
processing consists of the following steps:

 Step 1: Append padding bits

length is congruent to 896 modulo 1024 [lengt
1024)]. Padding is always added, even if the message is already
of the desired length. Thus, the number of padding bits is in the
range of 1 to 1024. The padding consists of a single 1
by the necessary number of 0

 Step 2: Append length
message. This block is treated as an unsigned 128
(most significant byte first) and contains the length of the original
message (before the padding).

The outcome of the first two st
multiple of 1024 bits in length. In Figure 3.2.7, the expanded message is
represented as the sequence of 1024
total length of the expanded message is

 Step 3: Initialize hash buffer.
intermediate and final results of the hash function. The buffer can
be represented as eight 64
These registers are initialized to the following 64
(hexadecimal values):

a=6A09E667F3BCC908
b=BB67AE8584CAA73B
c=3C6EF372FE94F82B
d=A54FF53A5F1D36F1
e=510E527FADE682D1
f=9B05688C2B3E6C1F

149

SHA-256 SHA-384 SHA-512

256 384 512

<2
64

<2
128

<2
128

512 1024 1024

32 64 64

64 80 80

128 192 256

1. All sizes are measured in bits.

2. Security refers to the fact that a birthday attack on a message digest of size n
produces a collision with a workfactor of approximately 2

n/2

Comparison of SHA Parameters

The algorithm takes as input a message with a maximum length of less
bits and produces as output a 512-bit message digest. The input

bit blocks. Fig 3.2.6 depicts the overall processing
of a message to produce a digest.

This follows the general structure depicted in Figure 3.2.5. The
processing consists of the following steps:

Step 1: Append padding bits. The message is padded so that its

length is congruent to 896 modulo 1024 [length 896 (mod
1024)]. Padding is always added, even if the message is already
of the desired length. Thus, the number of padding bits is in the
range of 1 to 1024. The padding consists of a single 1-bit followed
by the necessary number of 0-bits.

Step 2: Append length. A block of 128 bits is appended to the
message. This block is treated as an unsigned 128-bit integer
(most significant byte first) and contains the length of the original
message (before the padding).

The outcome of the first two steps yields a message that is an integer
multiple of 1024 bits in length. In Figure 3.2.7, the expanded message is
represented as the sequence of 1024-bit blocks M1, M2,..., MN, so that the
total length of the expanded message is N x 1024 bits.

ialize hash buffer. A 512-bit buffer is used to hold
intermediate and final results of the hash function. The buffer can
be represented as eight 64-bit registers (a, b, c, d, e, f, g, h).
These registers are initialized to the following 64-bit integers

a=6A09E667F3BCC908
b=BB67AE8584CAA73B
c=3C6EF372FE94F82B
d=A54FF53A5F1D36F1
e=510E527FADE682D1
f=9B05688C2B3E6C1F

Network Security

NOTES

Network Security

NOTES

150

g=1F83D9ABFB41BD6B
h = 5BE0CDI9137E2179

Figure 3.2.7 Message Digest Generation Using SHA-512

These values are stored in big-endian format, which is the most

significant byte of a word in the low-address (leftmost) byte position.

These words were obtained by taking the first sixty-four bits of the

fractional parts of the square roots of the first eight prime numbers.

 Step 4: Process message in 1024-bit (128-word) blocks. The
heart of the algorithm is a module that consists of 80 rounds; this
module is labeled F in Figure 3.2.7. The logic is illustrated in
Figure 3.2.8.

Each round takes as input the 512-bit buffer value abcdefgh, and updates
the contents of the buffer. At input to the first round, the buffer has the
value of the intermediate hash value Hi-1. Each round t makes use of a
64-bit value Wt derived from the current 1024-bit block being processed
(Mi).These values are derived using a message schedule described
subsequently. Each round also makes use of an additive constant Kt

where 0 ≤ t ≤ 79 indicates one of the 80 rounds. These words represent
the first sixty-four bits of the fractional parts of the cube roots of the first
eighty prime numbers. The constants provide a "randomized" set of 64-bit
patterns, which should eliminate any regularities in the input data.

The output of the eightieth round is added to the input to the first round
(Hi-1)to produce Hi. The addition is done independently for each of the
eight words in the buffer with each of the corresponding words in Hi-1

using addition modulo 264.

 Step 5: Output. After all N 1024-bit blocks have been processed, the
output from the Nth stage is the 512-bit message digest.

Figure 3.2.8 SHA-512 Processing of a Single 1024

We can summarize the behavior of SHA

H0 = IV

Hi = SUM

MD = HN

where

IV = initial value of the abcdefgh buffer, defined in step 3

abcdefghi = the output of the last round of processing of the
block

N = the number of blocks in the message (including padding and
length fields)

SUM64 = Addition modulo 2
the pair of inputs

MD = final message digest value

SHA-512 Round Function

The logic in each of the 80 steps is depicted in Fig 3.2.9.

Each round is defined by the following set of equations:

T1= h + Ch(e, f, g) + (

151

512 Processing of a Single 1024-Bit Block

We can summarize the behavior of SHA-512 as follows:

= SUM64(Hi-1, abcdefghi)

N

= initial value of the abcdefgh buffer, defined in step 3

= the output of the last round of processing of the ith message

= the number of blocks in the message (including padding and

= Addition modulo 264 performed separately on each word of

message digest value

The logic in each of the 80 steps is depicted in Fig 3.2.9.

Each round is defined by the following set of equations:

= h + Ch(e, f, g) + () + Wt + Kt

Network Security

NOTES

T2 = () + Maj(a, b, c)
a = T1 + T2

b = a

c= b

d = c

e = d + T1

f =e

g = f

h = g
Where

t = step number; 0

Ch(e, f, g) = (e AND f)
function: If e then f else g

Maj(a, b, c) = (a AND b)
true only of the
arguments are true

() = ROTR28 (a)

() = ROTR14 (e)

ROTRn(x) = circular right shift (rotation) of the 64

Wt = a 64-bit word derived from the current 512

Kt = a 64-bit additive constant

+ = addition modulo 264

Fig 3.2.9 Elementary SHA

152

) + Maj(a, b, c)

= step number; 0 ≤ t ≤ 79

= (e AND f) ⊕(NOT e AND g) the conditional
function: If e then f else g

= (a AND b) ⊕(a AND c) (b AND c) the function is
true only of the majority (two or three) of the
arguments are true

(a) ⊕ ROTR34 (a) ⊕ ROTR39 (a)

(e) ⊕ ROTR18 (e) ⊕ ROTR41(e)

= circular right shift (rotation) of the 64-bit argument x by n bits

bit word derived from the current 512-bit input block

bit additive constant

64

Elementary SHA-512 Operation (single round)

Network Security

NOTES

Network Security

NOTES

153

Fig 3.2.10 Creation of 80-word Input Sequence for SHA-512 Processing
of Single Block

Thus, in the first 16 steps of processing, the value of W t is equal to the
corresponding word in the message block. For the remaining 64 steps,
the value of Wt consists of the circular left shift by one bit of the XOR of
four of the preceding values of Wt, with two of those values subjected to
shift and rotate operations. This introduces a great deal of redundancy
and interdependence into the message blocks that are compressed,
which complicates the task of finding a different message block that maps
to the same compression function output.

HMAC
In recent years, there has been increased interest in developing a MAC
derived from a cryptographic hash function. The motivations for this
interest are

1. Cryptographic hash functions such as MD5 and SHA-1 generally
execute faster in software than symmetric block ciphers such as
DES.

2. Library code for cryptographic hash functions is widely available.

With the development of AES and the more widespread availability of
code for encryption algorithms, these considerations are less significant,
but hash-based MACs continue to be widely used.

A hash function such as SHA was not designed for use as a MAC and
cannot be used directly for that purpose because it does not rely on a
secret key. There have been a number of proposals for the incorporation
of a secret key into an existing hash algorithm. The approach that has
received the most support is HMAC. HMAC has been issued as RFC
2104, has been chosen as the mandatory-to-implement MAC for IP
security, and is used in other Internet protocols, such as SSL. HMAC has
also been issued as a NIST standard (FIPS 198).

HMAC Design Objectives

The following are the design objectives for HMAC:

 To use, without modifications, available hash functions. In
particular, hash functions that perform well in software, and for
which code is freely and widely available.

Network Security

NOTES

154

 To allow for easy replaceability of the embedded hash function in
case faster or more secure hash functions are found or required.

 To preserve the original performance of the hash function without
incurring a significant degradation.

 To use and handle keys in a simple way.

 To have a well understood cryptographic analysis of the strength
of the authentication mechanism based on reasonable
assumptions about the embedded hash function.

The first two objectives are important to the acceptability of HMAC.
HMAC treats the hash function as a "black box." This has two benefits.
First, an existing implementation of a hash function can be used as a
module in implementing HMAC. In this way, the bulk of the HMAC code is
prepackaged and ready to use without modification. Second, if it is ever
desired to replace a given hash function in an HMAC implementation, all
that is required is to remove the existing hash function module and drop
in the new module. This could be done if a faster hash function were
desired. More important, if the security of the embedded hash function
were compromised, the security of HMAC could be retained simply by
replacing the embedded hash function with a more secure one (e.g.,
replacing SHA with Whirlpool).

The last design objective in the preceding list is, in fact, the main
advantage of HMAC over other proposed hash-based schemes. HMAC
can be proven secure provided that the embedded hash function has
some reasonable cryptographic strengths. We return to this point later in
this section, but first we examine the structure of HMAC.

HMAC Algorithm

Fig 3.2.11 illustrates the overall operation of HMAC.

Define the following terms:

H = embedded hash function (e.g., MD5, SHA-1, RIPEMD-160)

IV = initial value input to hash function

M = message input to HMAC(including the padding specified in the
embedded hash function)

Yi = ith block of M, 0 ≤ i ≤ (L - 1)

L = number of blocks in M

b = number of bits in a block

n = length of hash code produced by embedded hash function

K = secret key recommended length is ≥ n; if key length is greater
than b; the key is input to the hash function to produce an n-bit key

K+ = K padded with zeros on the left so that the result is b bits in
length

Network Security

NOTES

155

H = embedded hash function (e.g., MD5, SHA-1, RIPEMD-160)

ipad = 00110110 (36 in hexadecimal) repeated b/8 times

opad = 01011100 (5C in hexadecimal) repeated b/8 times

Fig 3.2.11 HMAC Structure

Then HMAC can be expressed as follows:

HMAC(K,M) = H[(K+ ⊕opad)||H[(K+ ⊕ipad)||M]]

In words,

1. Append zeros to the left end of K to create a b-bit string K+(e.g., if
K is of length 160 bits and b = 512 then K will be appended with
44 zero bytes 0 x 00).

2. XOR (bitwise exclusive-OR) K+ with ipad to produce the b-bit
block Si.

3. Append M to Si.

4. Apply H to the stream generated in step 3.

5. XOR K+ with opad to produce the b-bit block So

6. Append the hash result from step 4 to So

7. Apply H to the stream generated in step 6 and output the result.

Note that the XOR with ipad results in flipping one-half of the bits of K.
Similarly, the XOR with opad results in flipping one-half of the bits of K,
but a different set of bits. In effect, by passing Si and So through the
compression function of the hash algorithm, we have pseudorandomly
generated two keys from K.

HMAC should execute in approximately the same time as the embedded
hash function for long messages. HMAC adds three executions of the

Network Security

NOTES

156

hash compression function (for Si,So and the block produced from the
inner hash).

A more efficient implementation is possible, as shown in Fig 3.2.12. Two
quantities are precomputed:

Fig 3.2.12 Efficient Implementation of HMAC

f(IV, (K+ ⊕ipad))

f(IV, (K+ ⊕opad))

where f(cv, block) is the compression function for the hash function,
which takes as arguments a chaining variable of n bits and a block of b
bits and produces a chaining variable of n bits. These quantities only
need to be computed initially and every time the key changes. In effect,
the precomputed quantities substitute for the initial value (IV) in the hash
function. With this implementation, only one additional instance of the
compression function is added to the processing normally produced by
the hash function. This more efficient implementation is especially
worthwhile if most of the messages for which a MAC is computed are
short.

CMAC
Cipher-based Message Authentication Code (CMAC) mode of operation
has been adopted by NIST for use with AES and triple DES. It is specified
in NIST Special Publication 800-38B.

Consider the operation of CMAC when the message is an integer multiple
n of the cipher block length b. For AES, b = 128 and for triple DES, b =
64. The message is divided into n blocks, M1, M2,...,Mn. The algorithm
makes use of a k-bit encryption key K and an n-bit constant K1. For AES,
the key size k is 128, 192, or 256 bits; for triple DES, the key size is 112
or 168 bits. CMAC is calculated as follows (Figure 3.2.13a):

Network Security

NOTES

157

Fig 3.2.13 Cipher-Based Message Authentication Code (CMAC)

C1 = E(K,M1)

C2 = E(K,[M2 ⊕C1])

C3 = E(K,[M3 ⊕C2])

·

·

·

Cn = E(K,[Mn ⊕Cn1

⊕K1])

T = MSBTlen(Cn)

where

T = message authentication code, also referred to as the tag

Tlen = bit length of T

MSBs(X) = the s leftmost bits of the bit string X

If the message is not an integer multiple of the cipher block length, then
the final block is padded to the right (least significant bits) with a 1 and as
many 0s as necessary so that the final block is also of length b. The

Network Security

NOTES

158

CMAC operation then proceeds as before, except that a different n-bit
key K2 is used instead of K1.

The two n-bit keys are derived from the k-bit encryption key as follows:

L = E(K, 0n)

K1 = L · x

K2 = L · x2 = (L · x) · x

where multiplication (·) is done in the finite field (2n) and x and x2 are first
and second order polynomials that are elements of GF(2n) Thus the
binary representation of x consists of n - 2 zeros followed by 10; the
binary representation of x2 consists of n - 3 zeros followed by 100. The
finite field is defined with respect to an irreducible polynomial that is
lexicographically first among all such polynomials with the minimum
possible number of nonzero terms. For the two approved block sizes, the
polynomials are and x64 + x4 + x3 + x + 1 and x128 + x7 + x2 + x + 1.

To generate K1 and K2 the block cipher is applied to the block that
consists entirely of 0 bits. The first subkey is derived from the resulting
cipher text by a left shift of one bit, and, conditionally, by XORing a
constant that depends on the block size. The second subkey is derived in
the same manner from the first subkey.

REFERENCES

1. William Stallings, Cryptography and Network Security, PHI

Publishers

2. www.wikipedia.org

Review Questions:

1. Explain about authentication algorithms

2. Explain about HMAC and CMAC algorithms in detail

3. Write a short note on message authentication codes

Network Security

NOTES

159

3. DIGITAL SIGNATURES

OBJECTIVE
An important type of authentication is the digital signature. This lesson
examines the techniques used to construct digital signatures and looks at
an important standard, the Digital Signature Standard (DSS). The various
authentication techniques based on digital signatures are building blocks
in putting together authentication algorithms. The design of such
algorithms involves the analysis of subtle attacks that can defeat many
apparently secure protocols.

INTRODUCTION
The most important development from the work on public-key
cryptography is the digital signature. The digital signature provides a set
of security capabilities that would be difficult to implement in any other
way.

Requirements

Message authentication protects two parties who exchange messages
from any third party. However, it does not protect the two parties against
each other. Several forms of dispute between the two are possible.

For example, suppose that John sends an authenticated message to
Mary, using one of the schemes of Fig 3.2.3. Consider the following
disputes that could arise:

1. Mary may forge a different message and claim that it came from
John. Mary would simply have to create a message and append
an authentication code using the key that John and Mary share.

2. John can deny sending the message. Because it is possible for
Mary to forge a message, there is no way to prove that John did in
fact send the message.

Both scenarios are of legitimate concern. Here is an example of the first
scenario: An electronic funds transfer takes place, and the receiver
increases the amount of funds transferred and claims that the larger
amount had arrived from the sender. An example of the second scenario
is that an electronic mail message contains instructions to a stockbroker
for a transaction that subsequently turns out badly. The sender pretends
that the message was never sent.

In situations where there is not complete trust between sender and
receiver, something more than authentication is needed. The most
attractive solution to this problem is the digital signature. The digital
signature is analogous to the handwritten signature. It must have the
following properties:

 It must verify the author and the date and time of the signature.

 It must to authenticate the contents at the time of the signature.

 It must be verifiable by third parties, to resolve disputes.

Thus, the digital signature function includes the authentication
function.

Network Security

NOTES

160

On the basis of these properties, we can formulate the following
requirements for a digital signature:

 The signature must be a bit pattern that depends on the message
being signed.

 The signature must use some information unique to the sender, to
prevent both forgery and denial.

 It must be relatively easy to produce the digital signature.

 It must be relatively easy to recognize and verify the digital
signature.

 It must be computationally infeasible to forge a digital signature,
either by constructing a new message for an existing digital
signature or by constructing a fraudulent digital signature for a
given message.

 It must be practical to retain a copy of the digital signature in
storage.

A secure hash function, embedded in a scheme such as that of Figure
3.2.3c or d, satisfies these requirements.

A variety of approaches has been proposed for the digital signature
function. These approaches fall into two categories

 direct

 arbitrated.

Direct Digital Signature
The direct digital signature involves only the communicating parties
(source, destination). It is assumed that the destination knows the public
key of the source. A digital signature may be formed by encrypting the
entire message with the sender's private key or by encrypting a hash
code of the message with the sender's private key.

Confidentiality can be provided by further encrypting the entire
message plus signature with either the receiver's public key (public-key
encryption) or a shared secret key (symmetric encryption). All direct
schemes described so far share a common weakness. The validity of the
scheme depends on the security of the sender's private key. If a sender
later wishes to deny sending a particular message, the sender can claim
that the private key was lost or stolen and that someone else forged his
or her signature. Administrative controls relating to the security of private
keys can be employed to thwart or at least weaken this ploy. But the
threat is to require every signed message to include a timestamp (date
and time) and to require prompt reporting of compromised keys to a
central authority.

Another threat is that some private key might actually be stolen
from X at time T. The opponent can then send a message signed with X's
signature and stamped with a time before or equal to T.

Arbitrated Digital Signature
The problems associated with direct digital signatures can be addressed
by using an arbiter.

As with direct signature schemes, there is a variety of arbitrated signature
schemes. In general terms, they all operate as follows.

Network Security

NOTES

161

 Every signed message from a sender X to a receiver Y goes first
to an arbiter A, who subjects the message and its signature to a
number of tests to check its origin and content.

 The message is then dated and sent to Y with an indication that it
has been verified to the satisfaction of the arbiter.

 The presence of A solves the problem faced by direct signature
schemes: that X might disown the message.

The arbiter plays a sensitive and crucial role in this sort of scheme, and
all parties must have a great deal of trust that the arbitration mechanism
is working properly. The use of a trusted system might satisfy this
requirement.

Table 3.3.1gives several examples of arbitrated digital signatures. In the
first, symmetric encryption is used. It is assumed that the sender X and
the arbiter A share a secret key Kxa and that A and Y share secret key
Kay. X constructs a message M and computes its hash value H(M). Then
X transmits the message plus a signature to A. The signature consists of
an identifier IDX of X plus the hash value, all encrypted using Kxa. A
decrypts the signature and checks the hash value to validate the
message. Then A transmits a message to Y, encrypted with Kay. The
message includes IDX, the original message from X, the signature, and a
timestamp. Y can decrypt this to recover the message and the signature.
The timestamp informs Y that this message is timely and not a replay. Y
can store M and the signature. In case of dispute, Y, who claims to have
received M from X, sends the following message to A:

E(Kay, [IDX||M||E(Kxa, [IDX||H(M)])])

(1) X → A: M||E(Kxa, [IDX||H(M)])

(2) A → Y: E(Kay, [IDX||M||E(Kxa, [IDX||H(M)])||T])

(a) Conventional Encryption, Arbiter Sees Message

(1) X → A: IDX||E(Kxy, M)||E(Kxa, [IDX||H(E(Kxy, M))])

(2) A → Y: E(Kay,[IDX||E(Kxy, M)])||E(Kxa, [IDX||H(E(Kxy, M))||T])

(b) Conventional Encryption, Arbiter Does Not See Message

(1) X → A: IDX||E(PRx, [IDX||E(PUy, E(PRx, M))])

(2) A → Y: E(PRa, [IDX||E(PUy, E(PRx, M))||T])

(c) Public-Key Encryption, Arbiter Does Not See Message

Notation:

X = sender

Y = recipient

A = Arbiter

Network Security

NOTES

162

(1) X → A: M||E(Kxa, [IDX||H(M)])

M = message

T = timestamp

Table 3.3.1 Arbitrated Digital Signature Techniques

The arbiter uses Kay to recover IDX, M, and the signature, and then uses
Kxa to decrypt the signature and verify the hash code. In this scheme, Y
cannot directly check X's signature; the signature is there solely to settle
disputes. Y considers the message from X authentic because it comes
through A. In this scenario, both sides must have a high degree of trust in
A:

 X must trust A not to reveal Kxa and not to generate false
signatures of the form

E(Kxa, [IDX||H(M)]).

 Y must trust A to send E(Kay, [IDX||M||E(Kxa, [IDX||H(M)])||T]) only if
the hash value is correct and the signature was generated by X.

 Both sides must trust A to resolve disputes fairly.

If the arbiter does live up to this trust, then X is assured that no one can
forge his signature and Y is assured that X cannot disavow his signature.

The preceding scenario also implies that A is able to read messages from
X to Y and, indeed, that any eavesdropper is able to do so. Table 3.3.1b
shows a scenario that provides the arbitration as before but also assures
confidentiality. In this case it is assumed that X and Y share the secret
key Kxy. Now, X transmits an identifier, a copy of the message encrypted
with Kxy, and a signature to A. The signature consists of the identifier plus
the hash value of the encrypted message, all encrypted using Kxa. As
before, A decrypts the signature and checks the hash value to validate
the message. In this case, A is working only with the encrypted version of
the message and is prevented from reading it. A then transmits
everything that it received from X, plus a timestamp, all encrypted with
Kay, to Y.

Although unable to read the message, the arbiter is still in a position to
prevent fraud on the part of either X or Y. A remaining problem, one
shared with the first scenario, is that the arbiter could form an alliance
with the sender to deny a signed message, or with the receiver to forge
the sender's signature.

All the problems just discussed can be resolved by going to a public-key
scheme, one version of which is shown in Table 3.3.1c. In this case, X
double encrypts a message M first with X's private key, PRx and then with
Y's public key, PUy. This is a signed, secret version of the message. This
signed message, together with X's identifier, is encrypted again with PRx

and, together with IDX, is sent to A. The inner, double-encrypted message
is secure from the arbiter (and everyone else except Y). However, A can
decrypt the outer encryption to assure that the message must have come
from X (because only X has PRx). A checks to make sure that X's
private/public key pair is still valid and, if so, verifies the message. Then A

Network Security

NOTES

163

transmits a message to Y, encrypted with PRa. The message includes
IDX, the double-encrypted message, and a timestamp.

This scheme has a number of advantages over the preceding two
schemes. First, no information is shared among the parties before
communication, preventing alliances to defraud. Second, no incorrectly
dated message can be sent, even if PRx is compromised, assuming that
PRa is not compromised. Finally, the content of the message from X to Y
is secret from A and anyone else. However, this final scheme involves
encryption of the message twice with a public-key algorithm. We discuss
more practical approaches subsequently.

Authentication Protocols
In this section, we focus on two general areas (mutual authentication and
one-way authentication) and examine some of the implications of
authentication techniques in both.

Mutual Authentication

Mutual authentication protocols constitute most important applications.
Such protocols enable communicating parties to satisfy themselves
mutually about each other's identity and to exchange session keys.

Central to the problem of authenticated key exchange are two issues:
confidentiality and timeliness. To prevent masquerade and to prevent
compromise of session keys, essential identification and session key
information must be communicated in encrypted form. This requires the
prior existence of secret or public keys that can be used for this purpose.
The second issue, timeliness, is important because of the threat of
message replays. Such replays, at worst, could allow an opponent to
compromise a session key or successfully impersonate another party. At
minimum, a successful replay can disrupt operations by presenting
parties with messages that appear genuine but are not.

Examples of replay attacks:

 Simple replay: The opponent simply copies a message and
replays it later.

 Repetition that can be logged: An opponent can replay a
timestamped message within the valid time window.

 Repetition that cannot be detected: This situation could arise
because the original message could have been suppressed and
thus did not arrive at its destination; only the replay message
arrives.

 Backward replay without modification: This is a replay back to
the message sender. This attack is possible if symmetric
encryption is used and the sender cannot easily recognize the
difference between messages sent and messages received on the
basis of content.

One approach to coping with replay attacks is to attach a sequence
number to each message used in an authentication exchange. A new
message is accepted only if its sequence number is in the proper order.
The difficulty with this approach is that it requires each party to keep track
of the last sequence number for each claimant it has dealt with. Because
of this overhead, sequence numbers are generally not used for

Network Security

NOTES

164

authentication and key exchange. Instead, one of the following two
general approaches is used:

 Timestamps: Party A accepts a message as fresh only if the
message contains a timestamp that, in A's judgment, is close
enough to A's knowledge of current time. This approach requires
that clocks among the various participants be synchronized.

 Challenge/response: Party A, expecting a fresh message from
B, first sends B a nonce (challenge) and requires that the
subsequent message (response) received from B contain the
correct nonce value.

The timestamp approach should not be used for connection-oriented
applications because of the inherent difficulties with this technique. First,
some sort of protocol is needed to maintain synchronization among the
various processor clocks. This protocol must be both fault tolerant, to
cope with network errors, and secure, to cope with hostile attacks.
Second, the opportunity for a successful attack will arise if there is a
temporary loss of synchronization resulting from a fault in the clock
mechanism of one of the parties. Finally, because of the variable and
unpredictable nature of network delays, distributed clocks cannot be
expected to maintain precise synchronization. Therefore, any timestamp-
based procedure must allow for a window of time sufficiently large to
accommodate network delays yet sufficiently small to minimize the
opportunity for attack.

On the other hand, the challenge-response approach is unsuitable for a
connectionless type of application because it requires the overhead of a
handshake before any connectionless transmission, effectively negating
the chief characteristic of a connectionless transaction. For such
applications, reliance on some sort of secure time server and a consistent
attempt by each party to keep its clocks in synchronization may be the
best approach

Symmetric Encryption Approaches

A two-level hierarchy of symmetric encryption keys can be used to
provide confidentiality for communication in a distributed environment. In
general, this strategy involves the use of a trusted key distribution center
(KDC). Each party in the network shares a secret key, known as a master
key, with the KDC. The KDC is responsible for generating keys to be
used for a short time over a connection between two parties, known as
session keys, and for distributing those keys using the master keys to
protect the distribution. This approach is quite common. As an example,
we look at the Kerberos system.

Fig 3.3.1 illustrates a proposal initially put forth by Needham/Schroeder
for secret key distribution using a KDC that includes authentication
features. The protocol can be summarized as follows:

1. A → KDC: IDA||IDB||N1

2. KDC → A: E(Ka, [Ks||IDB||N1||E(Kb, [Ks||IDA])])

3. A → B: E(Kb, [Ks||IDA])

Network Security

NOTES

165

1. A → KDC: IDA||IDB||N1

4. A → A: E(Ks, N2)

5. A → B: E(Ks, f(N2))

Fig 3.3.1 Secret Key Distribution Using a KDC

Secret keys Ka and Kb are shared between A and the KDC and B and the
KDC, respectively. The purpose of the protocol is to distribute securely a
session key Ks to A and B. A securely acquires a new session key in step
2. The message in step 3 can be decrypted, and hence understood, only
by B. Step 4 reflects B's knowledge of Ks, and step 5 assures B of A's
knowledge of Ks and assures B that this is a fresh message because of
the use of the nonce N2. The purpose of steps 4 and 5 is to prevent a
certain type of replay attack. In particular, if an opponent is able to
capture the message in step 3 and replay it, this might in some fashion
disrupt operations at B.

Despite the handshake of steps 4 and 5, the protocol is still vulnerable to
a form of replay attack. Suppose that an opponent, X, has been able to
compromise an old session key. Admittedly, this is a much more unlikely
occurrence than that an opponent has simply observed and recorded
step 3. Nevertheless, it is a potential security risk. X can impersonate A
and trick B into using the old key by simply replaying step 3. Unless B
remembers indefinitely all previous session keys used with A, B will be
unable to determine that this is a replay. If X can intercept the handshake
message, step 4, then it can impersonate A's response, step 5. From this
point on, X can send bogus messages to B that appear to B to come from
A using an authenticated session key.

Denning proposes to overcome this weakness by a modification to the
Needham/Schroeder protocol that includes the addition of a timestamp to
steps 2 and 3. Her proposal assumes that the master keys, Ka and Kb are
secure, and it consists of the following steps:

Network Security

NOTES

166

1. A → KDC: IDA||IDB

2. KDC → A: E(Ka, [Ks||IDB||T||E(Kb, [Ks||IDA||T])])

3. A → B: E(Kb, [Ks||IDA||T])

4. B → A: E(Ks, N1)

5. A → B: E(Ks, f(N1))

T is a timestamp that assures A and B that the session key has only just
been generated. Thus, both A and B know that the key distribution is a
fresh exchange. A and B can verify timeliness by checking that

|Clock T| < Δ t1 + Δ t2

where Δ t1 is the estimated normal discrepancy between the KDC's clock
and the local clock (at A or B) and Δ t2 is the expected network delay
time. Each node can set its clock against some standard reference
source. Because the timestamp T is encrypted using the secure master
keys, an opponent, even with knowledge of an old session key, cannot
succeed because a replay of step 3 will be detected by B as untimely.

Steps 4 and 5 were not included in the original presentation but were
added later. These steps confirm the receipt of the session key at B.

The Denning protocol seems to provide an increased degree of security
compared to the Needham/Schroeder protocol. However, a new concern
is that this new scheme requires reliance on clocks that are synchronized
throughout the network. A risk is involved based on the fact that the
distributed clocks can become unsynchronized as a result of sabotage on
or faults in the clocks or the synchronization mechanism. The problem
occurs when a sender's clock is ahead of the intended recipient's clock.
In this case, an opponent can intercept a message from the sender and
replay it later when the timestamp in the message becomes current at the
recipient's site. This replay could cause unexpected results. Gong refers
to such attacks as suppress-replay attacks.

One way to counter suppress-replay attacks is to enforce the requirement
that parties regularly check their clocks against the KDC's clock. The
other alternative, which avoids the need for clock synchronization, is to
rely on handshaking protocols using nonces. This latter alternative is not
vulnerable to a suppress-replay attack because the nonces the recipient
will choose in the future are unpredictable to the sender. The
Needham/Schroeder protocol relies on nonces only but, as we have
seen, has other vulnerabilities.

An attempt is made to respond to the concerns about suppress-replay
attacks and at the same time fix the problems in the Needham/Schroeder
protocol. Subsequently, an inconsistency in this latter protocol was noted
and an improved strategy was presented. The protocol is as follows:

1. A → B: IDA||Na

Network Security

NOTES

167

1. A → B: IDA||Na

2. B → KDC: IDB||Nb||E(Kb, [IDA||Na||Tb])

3. KDC → A: E(Ka, [IDB||Na||Ks||Tb])||E(Kb,[IDA||Ks||Tb])||Nb

4. A → B: E(Kb, [IDA||Ks||Tb])||E(Ks, Nb)

Let us follow this exchange step by step.

1. A initiates the authentication exchange by generating a nonce, Na,

and sending that plus its identifier to B in plaintext. This nonce will be

returned to A in an encrypted message that includes the session key,

assuring A of its timeliness.

2. B alerts the KDC that a session key is needed. Its message to the

KDC includes its identifier and a nonce, Nb This nonce will be

returned to B in an encrypted message that includes the session key,

assuring B of its timeliness. B's message to the KDC also includes a

block encrypted with the secret key shared by B and the KDC. This

block is used to instruct the KDC to issue credentials to A; the block

specifies the intended recipient of the credentials, a suggested

expiration time for the credentials, and the nonce received from A.

3. The KDC passes on to A B's nonce and a block encrypted with the

secret key that B shares with the KDC. The block serves as a "ticket"

that can be used by A for subsequent authentications, as will be

seen. The KDC also sends to A a block encrypted with the secret key

shared by A and the KDC. This block verifies that B has received A's

initial message (IDB) and that this is a timely message and not a

replay (Na) and it provides A with a session key (Ks) and the time limit

on its use (Tb).

4. A transmits the ticket to B, together with the B's nonce, the latter

encrypted with the session key. The ticket provides B with the secret

key that is used to decrypt E(Ks, Nb) to recover the nonce. The fact

that B's nonce is encrypted with the session key authenticates that

the message came from A and is not a replay.

This protocol provides an effective, secure means for A and B to establish
a session with a secure session key. Furthermore, the protocol leaves A
in possession of a key that can be used for subsequent authentication to
B, avoiding the need to contact the authentication server repeatedly.
Suppose that A and B establish a session using the aforementioned
protocol and then conclude that session. Subsequently, but within the
time limit established by the protocol, A desires a new session with B.
The following protocol ensues:

1. A → B: E(Kb, [IDA||Ks||Tb])||N'a

Network Security

NOTES

168

1. A → B: E(Kb, [IDA||Ks||Tb])||N'a

2. B → A: N'b||E(Ks, N'a)

3. A → B: E(Ks, N'b)

When B receives the message in step 1, it verifies that the ticket has not
expired. The newly generated nonces N'a and N'b assure each party that
there is no replay attack.

In all the foregoing, the time specified in Tb is a time relative to B's clock.
Thus, this timestamp does not require synchronized clocks because B
checks only self-generated timestamps.

Public-Key Encryption Approaches

A protocol using timestamps is provided in [DENN81]:

1. A → AS: IDA||IDB

2. AS → A: E(PRas, [IDA||PUa||T])||E(PRas, [IDB||PUb||T])

3. A → B: E(PRas, [IDA||PUa||T])||E(PRas, [IDB||PUb||T])
||E(PUb, E(PRa, [Ks||T]))

In this case, the central system is referred to as an authentication server
(AS), because it is not actually responsible for secret key distribution.
Rather, the AS provides public-key certificates. The session key is
chosen and encrypted by A; hence, there is no risk of exposure by the
AS. The timestamps protect against replays of compromised keys.

This protocol is compact but requires synchronization of clocks. Another
approach, proposed by Woo and Lam, makes use of nonces. The
protocol consists of the following steps:

1. A → KDC: IDA||IDB

2. KDC → A: E(PRauth, [IDB||PUb])

3. A → B: E(PUb, [Na||IDA])

4. B → KDC: IDA||IDB||E(PUauth, Na)

5. KDC → B: E(PRauth, [IDA||PUa])||E(PUb, E(PRauth, [Na||Ks||IDB]))

6. B → A: E(PUa, E(PRauth, [(Na||Ks||IDB)||Nb]))

7. A → B: E(Ks, Nb)

In step 1, A informs the KDC of its intention to establish a secure
connection with B. The KDC returns to A a copy of B's public-key
certificate (step 2). Using B's public key, A informs B of its desire to
communicate and sends a nonce Na (step 3). In step 4, B asks the KDC
for A's public-key certificate and requests a session key; B includes A's
nonce so that the KDC can stamp the session key with that nonce. The
nonce is protected using the KDC's public key. In step 5, the KDC returns
to B a copy of A's public-key certificate, plus the information {Na, Ks, IDB}.

Network Security

NOTES

169

This information basically says that Ks is a secret key generated by the
KDC on behalf of B and tied to Na; the binding of Ks and Na will assure A
that Ks is fresh. This triple is encrypted, using the KDC's private key, to
allow B to verify that the triple is in fact from the KDC. It is also encrypted
using B's public key, so that no other entity may use the triple in an
attempt to establish a fraudulent connection with A. In step 6, the triple
{Na, Ks, IDB}, still encrypted with the KDC's private key, is relayed to A,
together with a nonce Nb generated by B. All the foregoing are encrypted
using A's public key. A retrieves the session key Ks and uses it to encrypt
Nb and return it to B. This last message assures B of A's knowledge of
the session key.

1. A → KDC: IDA||IDB

2. KDC → A: E(PRauth, [IDB||PUb])

3. A → B: E(PUb, [Na||IDA])

4. B → KDC: IDA||IDB||E(PUauth, Na)

5. KDC → B: E(PRauth, [IDA||PUa])||E(PUb, E(PRauth, [Na||Ks||IDA||IDB])

6. B → A: E(PUa, E(PRauth, [(Na||Ks||IDA||IDB)||Nb]))

7. A → B: E(Ks, Nb)

The identifier of A, IDA, is added to the set of items encrypted with the
KDC's private key in steps 5 and 6. This binds the session key Ks to the
identities of the two parties that will be engaged in the session. This
inclusion of IDA accounts for the fact that the nonce value Na is
considered unique only among all nonces generated by A, not among all
nonces generated by all parties. Thus, it is the pair {IDA, Na} that uniquely
identifies the connection request of A.

In both this example and the protocols described earlier, protocols that
appeared secure were revised after additional analysis. These examples
highlight the difficulty of getting things right in the area of authentication.

One-Way Authentication

One application for which encryption is growing in popularity is electronic
mail (e-mail). The very nature of electronic mail, and its chief benefit, is
that it is not necessary for the sender and receiver to be online at the
same time. Instead, the e-mail message is forwarded to the receiver's
electronic mailbox, where it is buffered until the receiver is available to
read it.

The "envelope" or header of the e-mail message must be in the clear, so
that the message can be handled by the store-and-forward e-mail
protocol, such as the Simple Mail Transfer Protocol (SMTP) or X.400.
However, it is often desirable that the mail-handling protocol not require
access to the plaintext form of the message, because that would require
trusting the mail-handling mechanism. Accordingly, the e-mail message
should be encrypted such that the mail-handling system is not in
possession of the decryption key.

Network Security

NOTES

170

A second requirement is that of authentication. Typically, the recipient
wants some assurance that the message is from the alleged sender.

Symmetric Encryption Approach

Using symmetric encryption, the decentralized key distribution
impractical. This scheme requires the sender to issue a request to the
intended recipient, await a response that includes a session key, and only
then send the message.

With some refinement, the KDC strategy illustrated in Fig 3.3.1 is a
candidate for encrypted electronic mail. Because we wish to avoid
requiring that the recipient (B) be on line at the same time as the sender
(A), steps 4 and 5 must be eliminated. For a message with content M, the
sequence is as follows:

1. A → KDC: IDA||IDB||N1

2. KDC → A: E(Ka, [Ks||IDB||N1||E(Kb, [Ks||IDA])])

3. A → B: E(Kb, [Ks||IDA])||E(Ks, M)

This approach guarantees that only the intended recipient of a message
will be able to read it. It also provides a level of authentication that the
sender is A. As specified, the protocol does not protect against replays.
Some measure of defense could be provided by including a timestamp
with the message. However, because of the potential delays in the e-mail
process, such timestamps may have limited usefulness.

Public-Key Encryption Approaches

We have already presented public-key encryption approaches that are
suited to electronic mail, including the straightforward encryption of the
entire message for confidentiality, authentication), or both. These
approaches require that either the sender know the recipient's public key
(confidentiality) or the recipient know the sender's public key
(authentication) or both (confidentiality plus authentication). In addition,
the public-key algorithm must be applied once or twice to what may be a
long message.

If confidentiality is the primary concern, then the following may be more
efficient:

A → B: E(PUb, Ks)||E(Ks, M)

In this case, the message is encrypted with a one-time secret key. A also
encrypts this one-time key with B's public key. Only B will be able to use
the corresponding private key to recover the one-time key and then use
that key to decrypt the message. This scheme is more efficient than
simply encrypting the entire message with B's public key.

If authentication is the primary concern, then a digital signature may
suffice

A → B:M||E(PRa, H(M))

This method guarantees that A cannot later deny having sent the
message. However, this technique is open to another kind of fraud. Bob
composes a message to his boss Alice that contains an idea that will
save the company money. He appends his digital signature and sends it
into the e-mail system. Eventually, the message will get delivered to

Network Security

NOTES

171

Alice's mailbox. But suppose that Max has heard of Bob's idea and gains
access to the mail queue before delivery. He finds Bob's message, strips
off his signature, appends his, and requeues the message to be delivered
to Alice. Max gets credit for Bob's idea.

To counter such a scheme, both the message and signature can be
encrypted with the recipient's public key:

A → B: E(PUb, [M||E(PRa, H(M))])

The latter two schemes require that B know A's public key and be
convinced that it is timely. An effective way to provide this assurance is
the digital certificate. Now we have

A → B:M||E(PRa, H(M))||E(PRas, [T||IDA||PUa])

In addition to the message, A sends B the signature, encrypted with A's
private key, and A's certificate, encrypted with the private key of the
authentication server. The recipient of the message first uses the
certificate to obtain the sender's public key and verify that it is authentic
and then uses the public key to verify the message itself. If confidentiality
is required, then the entire message can be encrypted with B's public key.
Alternatively, the entire message can be encrypted with a one-time secret
key; the secret key is also transmitted, encrypted with B's public key.

Digital Signature Standard

The National Institute of Standards and Technology (NIST) has published
Federal Information Processing Standard FIPS 186, known as the Digital
Signature Standard (DSS). The DSS makes use of the Secure Hash
Algorithm (SHA) and presents a new digital signature technique, the
Digital Signature Algorithm (DSA).

The DSS Approach

The DSS uses an algorithm that is designed to provide only the digital
signature function. Unlike RSA, it cannot be used for encryption or key
exchange. Nevertheless, it is a public-key technique.

Fig 3.3.2 contrasts the DSS approach for generating digital signatures to
that used with RSA. In the RSA approach, the message to be signed is
input to a hash function that produces a secure hash code of fixed length.
This hash code is then encrypted using the sender's private key to form
the signature. Both the message and the signature are then transmitted.
The recipient takes the message and produces a hash code. The
recipient also decrypts the signature using the sender's public key. If the
calculated hash code matches the decrypted signature, the signature is
accepted as valid. Because only the sender knows the private key, only
the sender could have produced a valid signature.

Network Security

NOTES

172

Figure 3.3.2 Two Approaches to Digital Signatures

The DSS approach also makes use of a hash function. The hash code is
provided as input to a signature function along with a random number k
generated for this particular signature. The signature function also
depends on the sender's private key (PRa)and a set of parameters known
to a group of communicating principals. We can consider this set to
constitute a global public key (PUG). The result is a signature consisting
of two components, labeled s and r.

At the receiving end, the hash code of the incoming message is
generated. This plus the signature is input to a verification function. The
verification function also depends on the global public key as well as the
sender's public key (PUa), which is paired with the sender's private key.
The output of the verification function is a value that is equal to the
signature component r if the signature is valid. The signature function is
such that only the sender, with knowledge of the private key, could have
produced the valid signature.

The Digital Signature Algorithm

The DSA is based on the difficulty of computing discrete logarithms and is
based on schemes originally presented by ElGamal and Schnorr .

Table 13.2 summarizes the algorithm. There are three parameters that
are public and can be common to a group of users. A 160-bit prime
number q is chosen. Next, a prime number p is selected with a length
between 512 and 1024 bits such that q divides (p 1). Finally, g is chosen
to be of the form h(p1)/q mod p where h is an integer between 1 and (p 1)
with the restriction that g must be greater than 1.

Global Public-Key Components

p prime number where 2
L 1

< p < 2
L
 for 512 ≤ L ≤ 1024 and L a multiple of 64; i.e.,

bit length of between 512 and 1024 bits in increments of 64 bits

q prime divisor of (p 1), where 2
159

< q < 2
160

; i.e., bit length of 160 bits

g = h
(p 1)/q

mod p, where h is any integer with 1 < h < (p 1) such that h
(p 1)/q

mod p >
1

Network Security

NOTES

173

Global Public-Key Components

User's Private Key

x random or pseudorandom integer with 0 < x < q

User's Public Key

y = g
x

mod p

User's Per-Message Secret Number

k = random or pseudorandom integer with 0 < k < q

Signing

r = (g
k

mod p) mod q

s = [k
-1

(H(M) + xr)] mod q

Signature = (r, s)

Verifying

w = (s')
-1

mod q

u1 = [H(M')w] mod q

u2 =(r')w mod q

v = [(g
u 1

y
u 2

) mod p] mod q

TEST: v = r'

M = message to be signed

H(M) = hash of M using SHA-1

M', r',
s'

= received versions of M, r, s

Table 3.3.2 The Digital Signature Algorithm (DSA)

With these numbers in hand, each user selects a private key and

generates a public key. The private key x must be a number from 1 to (q

1) and should be chosen randomly or pseudorandomly. The public key is

calculated from the private key as y = gx mod p. The calculation of y given

x is relatively straightforward. However, given the public key y, it is

believed to be computationally infeasible to determine x, which is the

discrete logarithm of y to the base g, mod.

To create a signature, a user calculates two quantities, r and s, that are
functions of the public key components (p, q, g), the user's private key (x),
the hash code of the message, H(M), and an additional integer k that
should be generated randomly or pseudo randomly and be unique for
each signing.

Network Security

NOTES

174

At the receiving end, verification is performed using the formulas shown
in Table 3.3.2. The receiver generates a quantity v that is a function of the
public key components, the sender's public key, and the hash code of the
incoming message. If this quantity matches the r component of the
signature, then the signature is validated.

Fig 3.3.3 depicts the functions of signing and verifying.

Fig 3.3.3 DSS Signing and Verifying

The structure of the algorithm, as revealed in Fig 3.3.3, is quite
interesting. Note that the test at the end is on the value r, which does not
depend on the message at all. Instead, r is a function of k and the three
global public-key components. The multiplicative inverse of k (mod q) is
passed to a function that also has as inputs the message hash code and
the user's private key. The structure of this function is such that the
receiver can recover r using the incoming message and signature, the
public key of the user, and the global public key.

Given the difficulty of taking discrete logarithms, it is infeasible for
an opponent to recover k from r or to recover x from s. Another point
worth noting is that the only computationally demanding task in signature
generation is the exponential calculation gk mod p. Because this value
does not depend on the message to be signed, it can be computed ahead
of time. Indeed, a user could precalculate a number of values of r to be
used to sign documents as needed. The only other somewhat demanding
task is the determination of a multiplicative inverse, K1. Again, a number
of these values can be precalculated.

REFERENCES

1. William Stallings, Cryptography and Network Security, PHI

Publishers

2. www.wikipedia.org

Network Security

NOTES

175

Review Questions:

1. Explain Digital Signature Standard in Detail

2. Explain the Key Distribution mechanism in detail

3. Explain the process of DSS verification and Signing

Network Security

NOTES

176

4. KEY MANAGEMENT SCHEMES
OBJECTIVES

One of the major roles of public-key encryption has been to address the
problem of key distribution. The objective of this chapter is to cover two
distinct aspects of public-key cryptography, namely, the distribution of
public keys and the use of public-key encryption to distribute secret keys

Distribution of Public Keys
Several techniques have been proposed for the distribution of public
keys. Virtually all these proposals can be grouped into the following
general schemes:

 Public announcement

 Publicly available directory

 Public-key authority

 Public-key certificates

Public Announcement of Public Keys

On the face of it, the point of public-key encryption is that the public key is
public. Thus, if there is some broadly accepted public-key algorithm, such
as RSA, any participant can send his or her public key to any other
participant or broadcast the key to the community at large (Fig3.4.1). For
example, because of the growing popularity of PGP which makes use of
RSA, many PGP users have adopted the practice of appending their
public key to messages that they send to public forums, such as USENET
newsgroups and Internet mailing lists.

Fig 3.4.1 Uncontrolled Public-Key Distribution

Although this approach is convenient, it has a major weakness. Anyone
can forge such a public announcement. That is, some user could pretend
to be user A and send a public key to another participant or broadcast
such a public key. Until such time as user A discovers the forgery and
alerts other participants, the forger is able to read all encrypted messages
intended for A and can use the forged keys for authentication.

Publicly Available Directory

A greater degree of security can be achieved by maintaining a publicly
available dynamic directory of public keys. Maintenance and distribution
of the public directory would have to be the responsibility of some trusted

Network Security

NOTES

177

entity or organization (Fig 3.4.2). Such a scheme would include the
following elements:

1. The authority maintains a directory with a {name, public key} entry
for each participant.

2. Each participant registers a public key with the directory authority.
Registration would have to be in person or by some form of
secure authenticated communication.

3. A participant may replace the existing key with a new one at any
time, either because of the desire to replace a public key that has
already been used for a large amount of data, or because the
corresponding private key has been compromised in some way.

4. Participants could also access the directory electronically. For this
purpose, secure, authenticated communication from the authority
to the participant is mandatory.

Fig 3.4.2 Public-Key Publication

This scheme is clearly more secure than individual public announcements
but still has vulnerabilities. If an adversary succeeds in obtaining or
computing the private key of the directory authority, the adversary could
authoritatively pass out counterfeit public keys and subsequently
impersonate any participant and eavesdrop on messages sent to any
participant. Another way to achieve the same end is for the adversary to
tamper with the records kept by the authority.

Public-Key Authority

Stronger security for public-key distribution can be achieved by providing
tighter control over the distribution of public keys from the directory. A
typical scenario is illustrated in Fig 3.4.3. As before, the scenario
assumes that a central authority maintains a dynamic directory of public
keys of all participants. In addition, each participant reliably knows a
public key for the authority, with only the authority knowing the
corresponding private key. The following steps occur:

1. A sends a timestamped message to the public-key authority
containing a request for the current public key of B.

Network Security

NOTES

178

2. The authority responds with a message that is encrypted using the
authority's private key, PRauth Thus, A is able to decrypt the message
using the authority's public key. Therefore, A is assured that the
message originated with the authority. The message includes the
following:

 B's public key, PUb which A can use to encrypt messages
destined for B

 The original request, to enable A to match this response with
the corresponding earlier request and to verify that the original
request was not altered before reception by the authority

 The original timestamp, so A can determine that this is not an
old message from the authority containing a key other than
B's current public key

3. A stores B's public key and also uses it to encrypt a message to B
containing an identifier of A (IDA) and a nonce (N1), which is used to
identify this transaction uniquely.

4,
5.

B retrieves A's public key from the authority in the same manner as A
retrieved B's public key.

At this point, public keys have been securely delivered to A and B,
and they may begin their protected exchange. However, two
additional steps are desirable:

6. B sends a message to A encrypted with PUa and containing A's
nonce (N1) as well as a new nonce generated by B (N2) Because only
B could have decrypted message (3), the presence of N1 in message
(6) assures A that the correspondent is B.

7. A returns N2, encrypted using B's public key, to assure B that its
correspondent is A.

Fig3.4.3 Public-Key Distribution Scenario

Thus, a total of seven messages are required. However, the initial four
messages need be used only infrequently because both A and B can

Network Security

NOTES

179

save the other's public key for future use, a technique known as caching.
Periodically, a user should request fresh copies of the public keys of its
correspondents to ensure currency.

Public-Key Certificates

The scenario of Fig 3.4.3 has some drawbacks. The public-key authority
could be somewhat of a bottleneck in the system, for a user must appeal
to the authority for a public key for every other user that it wishes to
contact. As before, the directory of names and public keys maintained by
the authority is vulnerable to tampering.

An alternative approach is to use certificates that can be used by
participants to exchange keys without contacting a public-key authority, in
a way that is as reliable as if the keys were obtained directly from a
public-key authority. In essence, a certificate consists of a public key plus
an identifier of the key owner, with the whole block signed by a trusted
third party. Typically, the third party is a certificate authority, such as a
government agency or a financial institution that is trusted by the user
community. A user can present his or her public key to the authority in a
secure manner, and obtain a certificate. The user can then publish the
certificate. Anyone needed this user's public key can obtain the certificate
and verify that it is valid by way of the attached trusted signature. A
participant can also convey its key information to another by transmitting
its certificate. Other participants can verify that the certificate was created
by the authority. We can place the following requirements on this
scheme:

1. Any participant can read a certificate to determine the name and
public key of the certificate's owner.

2. Any participant can verify that the certificate originated from the
certificate authority and is not counterfeit.

3. Only the certificate authority can create and update certificates.

4. Any participant can verify the currency of the certificate.

A certificate scheme is illustrated in Fig 3.4.4. Each participant applies to
the certificate authority, supplying a public key and requesting a
certificate.

Fig 3.4.4 Exchange of Public-Key Certificates

Network Security

NOTES

180

Application must be in person or by some form of secure authenticated
communication. For participant A, the authority provides a certificate of
the form

CA = E(PRauth, [T||IDA||PUa])

where PRauth is the private key used by the authority and T is a
timestamp. A may then pass this certificate on to any other participant,
who reads and verifies the certificate as follows:

D(PUauth, CA) = D(PUauth, E(PRauth, [T||IDA||PUa])) = (T||IDA||PUa)

The recipient uses the authority's public key, PUauth to decrypt the
certificate. Because the certificate is readable only using the authority's
public key, this verifies that the certificate came from the certificate
authority. The elements IDA and PUa provide the recipient with the name
and public key of the certificate's holder. The timestamp T validates the
currency of the certificate. The timestamp counters the following scenario.
A's private key is learned by an adversary. A generates a new
private/public key pair and applies to the certificate authority for a new
certificate. Meanwhile, the adversary replays the old certificate to B. If B
then encrypts messages using the compromised old public key, the
adversary can read those messages.

In this context, the compromise of a private key is comparable to the loss
of a credit card. The owner cancels the credit card number but is at risk
until all possible communicants are aware that the old credit card is
obsolete. Thus, the timestamp serves as something like an expiration
date. If a certificate is sufficiently old, it is assumed to be expired.

One scheme has become universally accepted for formatting public-key
certificates: the X.509 standard. X.509 certificates are used in most
network security applications, including IP security, secure sockets layer
(SSL), secure electronic transactions (SET), and S/MIME.

Distribution of Secret Keys Using Public-Key Cryptography

Public-key encryption provides for the distribution of secret keys to be
used for conventional encryption.

Simple Secret Key Distribution

An extremely simple scheme is illustrated in Fig 3.4.5. If A wishes to
communicate with B, the following procedure is employed:

1. A generates a public/private key pair {PUa, PRa} and transmits a
message to B consisting of PUa and an identifier of A, IDA.

2. B generates a secret key, Ks, and transmits it to A, encrypted with A's
public key.

3. A computes D(PRa, E(PUa, Ks)) to recover the secret key. Because
only A can decrypt the message, only A and B will know the identity
of Ks.

4. A discards PUa and PRa and B discards PUa.

Network Security

NOTES

181

Fig 3.4.5 Simple Use of Public-Key Encryption to Establish a Session
Key

A and B can now securely communicate using conventional encryption
and the session key Ks. At the completion of the exchange, both A and B
discard Ks. Despite its simplicity, this is an attractive protocol. No keys
exist before the start of the communication and none exist after the
completion of communication. Thus, the risk of compromise of the keys is
minimal. At the same time, the communication is secure from
eavesdropping.

The protocol depicted above is insecure against an adversary who can
intercept messages and then either relay the intercepted message or
substitute another message. Such an attack is known as a man-in-the-
middle attack. In this case, E, has control of the intervening
communication channel, then E can compromise the communication in
the following fashion without being detected:

1. A generates a public/private key pair {PUa, PRa} and transmits a
message intended for B consisting of PUa and an identifier of A,
IDA.

2. E intercepts the message, creates its own public/private key pair
{PUe, PRe} and transmits PUe||IDA to B.

3. B generates a secret key, Ks, and transmits E(PUe, Ks).

4. E intercepts the message, and learns Ks by computing D(PRe,
E(PUe, Ks)).

5. E transmits E(PUa, Ks) to A.

The result is that both A and B know Ks and are unaware that Ks has also
been revealed to E. A and B can now exchange messages using Ks E no
longer actively interferes with the communications channel but simply
eavesdrops. Knowing Ks E can decrypt all messages, and both A and B
are unaware of the problem. Thus, this simple protocol is only useful in an
environment where the only threat is eavesdropping.

Secret Key Distribution with Confidentiality and Authentication

Figure 3.4.6 provides protection against both active and passive attacks.
We begin at a point when it is assumed that A and B have exchanged
public keys by one of the schemes described earlier in this section. Then
the following steps occur:

1. A uses B's public key to encrypt a message to B containing an
identifier of A (IDA) and a nonce (N1), which is used to identify this
transaction uniquely.

2. B sends a message to A encrypted with PUa and containing A's
nonce (N1) as well as a new nonce generated by B (N2) Because only
B could have decrypted message (1), the presence of N1 in message

Network Security

NOTES

182

(2) assures A that the correspondent is B.

3. A returns N2 encrypted using B's public key, to assure B that its
correspondent is A.

4. A selects a secret key Ks and sends M = E(PUb, E(PRa, Ks)) to B.
Encryption of this message with B's public key ensures that only B
can read it; encryption with A's private key ensures that only A could
have sent it.

5. B computes D(PUa, D(PRb, M)) to recover the secret key.

Fig 3.4.6 Public-Key Distribution of Secret Keys

Notice that the first three steps of this scheme are the same as the last
three steps of Fig3.4.3. The result is that this scheme ensures both
confidentiality and authentication in the exchange of a secret key.

A Hybrid Scheme

Yet another way to use public-key encryption to distribute secret keys is a
hybrid approach in use on IBM mainframes. This scheme retains the use
of a key distribution center (KDC) that shares a secret master key with
each user and distributes secret session keys encrypted with the master
key. A public key scheme is used to distribute the master keys. The
following rationale is provided for using this three-level approach:

 Performance: There are many applications, especially transaction-
oriented applications, in which the session keys change
frequently. Distribution of session keys by public-key encryption
could degrade overall system performance because of the
relatively high computational load of public-key encryption and
decryption. With a three-level hierarchy, public-key encryption is
used only occasionally to update the master key between a user
and the KDC.

 Backward compatibility: The hybrid scheme is easily overlaid on
an existing KDC scheme, with minimal disruption or software
changes.

The addition of a public-key layer provides a secure, efficient means of
distributing master keys. This is an advantage in a configuration in which
a single KDC serves a widely distributed set of users.

Network Security

NOTES

183

REFERENCES

1. William Stallings, Cryptography and Network Security, PHI

Publishers

Review Questions:

1. Explain the concept of key distribution with confidentiality and

authentication

Network Security

NOTES

184

UNIT - IV

1. KERBEROS

2. DIRECTORY AUTHENTICATION SERVICES

3. ELECTRONIC MAIL SECURITY

4. WEB SECURITY

5. SYSTEM SECURITY

6. FIREWALLS

Network Security

NOTES

185

1.KERBEROS

OBJECTIVE

The aim of this lesson is to examine some of the authentication functions
that have been developed to support application-level authentication. We
begin by looking at one of the earliest and also one of the most widely
used services: Kerberos. Kerberos is an authentication service designed
for use in a distributed environment.

INTRODUCTION

Kerberos is a network authentication protocol. It is designed to provide
strong authentication for client/server applications by using secret-key
cryptography. The Internet is an insecure place. Many of the protocols
used in the Internet do not provide any security. Tools to "sniff"
passwords off of the network are in common use by malicious hackers.
Thus, applications which send an unencrypted password over the
network are extremely vulnerable. Some sites attempt to use firewalls to
solve their network security problems. Unfortunately, firewalls assume
that "the bad guys" are on the outside, which is often a very bad
assumption. Most of the really damaging incidents of computer crime are
carried out by insiders. Firewalls also have a significant disadvantage in
that they restrict how your users can use the Internet. In many places,
these restrictions are simply unrealistic and unacceptable.

Kerberos was created by MIT as a solution to these network security
problems. The Kerberos protocol uses strong cryptography so that a
client can prove its identity to a server (and vice versa) across an
insecure network connection. After a client and server has used Kerberos
to prove their identity, they can also encrypt all of their communications to
assure privacy and data integrity as they go about their business.
Kerberos uses as its basis the Needham-Schroeder protocol. It makes
use of a trusted third party, termed a key distribution center (KDC), which
consists of two logically separate parts: an Authentication Server (AS)
and a Ticket Granting Server (TGS). Kerberos works on the basis of
"tickets" which serve to prove the identity of users.

The KDC maintains a database of secret keys; each entity on the
network, whether a client or a server, shares a secret key known only to
itself and to the KDC. Knowledge of this key serves to prove an entity's
identity. For communication between two entities, the KDC generates a
session key which they can use to secure their interactions.

Network Security

NOTES

186

The first published report on Kerberos listed the following requirements:

 Secure: A network eavesdropper should not be able to obtain the
necessary information to impersonate a user. More generally,
Kerberos should be strong enough that a potential opponent does
not find it to be the weak link.

 Reliable: For all services that rely on Kerberos for access control,
lack of availability of the Kerberos service means lack of
availability of the supported services. Hence, Kerberos should be
highly reliable and should employ distributed server architecture,
with one system able to back up another.

 Transparent: Ideally, the user should not be aware that
authentication is taking place, beyond the requirement to enter a
password.

 Scalable: The system should be capable of supporting large
numbers of clients and servers. This suggests a modular,
distributed architecture.

Kerberos Version 4

Version 4 of Kerberos makes use of DES, in a rather elaborate protocol,
to provide the authentication service. We adopt a strategy to build up to
the full protocol by looking first at several hypothetical dialogues. Each
successive dialogue adds additional complexity to counter security
vulnerabilities revealed in the preceding dialogue.

A Simple Authentication Dialogue

In an unprotected network environment, any client can apply to any
server for service. The obvious security risk is that of impersonation. An
opponent can pretend to be another client and obtain unauthorized
privileges on server machines. To counter this threat, servers must be
able to confirm the identities of clients who request service. Each server
can be required to undertake this task for each client/server interaction,
but in an open environment, this places a substantial burden on each
server.

An alternative is to use an authentication server (AS) that knows the
passwords of all users and stores these in a centralized database. In
addition, the AS shares a unique secret key with each server. These keys
have been distributed physically or in some other secure manner.
Consider the following hypothetical dialogue:

(1)

(2)

(3)

Network Security

NOTES

187

Ticket = E(Kv, [IDC||ADC||IDV])

where,

C = Client

AS = Authentication Server

V = Server

IDC = Identifier of User on C

IDV = Identifier of V

PC = Password of User on C

ADC = Network Address of C

KV = Secret Encryption key shared by AS and V

In this scenario, the user logs on to a workstation and requests access to
server V. The client module C in the user's workstation requests the
user's password and then sends a message to the AS that includes the
user's ID, the server's ID, and the user's password. The AS checks its
database to see if the user has supplied the proper password for this user
ID and whether this user is permitted access to server V. If both tests are
passed, the AS accepts the user as authentic and must now convince the
server that this user is authentic. To do so, the AS creates a ticket that
contains the user's ID and network address and the server's ID. This
ticket is encrypted using the secret key shared by the AS and this server.
This ticket is then sent back to C. Because the ticket is encrypted, it
cannot be altered by C or by an opponent.

With this ticket, C can now apply to V for service. C sends a message to
V containing C's ID and the ticket. V decrypts the ticket and verifies that
the user ID in the ticket is the same as the unencrypted user ID in the
message. If these two match, the server considers the user authenticated
and grants the requested service.

Each of the ingredients of message (3) is significant. The ticket is
encrypted to prevent alteration or forgery. The server's ID (IDV) is
included in the ticket so that the server can verify that it has decrypted the
ticket properly. IDC is included in the ticket to indicate that this ticket has
been issued on behalf of C. Finally, ADC serves to counter the following
threat. An opponent could capture the ticket transmitted in message (2),
then use the name IDC and transmit a message of form (3) from another
workstation. The server would receive a valid ticket that matches the user
ID and grant access to the user on that other workstation. To prevent this
attack, the AS includes in the ticket the network address from which the
original request came. Now the ticket is valid only if it is transmitted from
the same workstation that initially requested the ticket.

Network Security

NOTES

188

Disadvantages

There are two particular problems in the Simple Authentication Dialogue.

 First, we would like to minimize the number of times that a user
has to enter a password. Suppose each ticket can be used only
once. If user C logs on to a workstation in the morning and wishes
to check his or her mail at a mail server, C must supply a
password to get a ticket for the mail server. If C wishes to check
the mail several times during the day, each attempt requires
reentering the password. We can improve matters by saying that
tickets are reusable. For a single logon session, the workstation
can store the mail server ticket after it is received and use it on
behalf of the user for multiple accesses to the mail server. But,
under this scheme it remains the case that a user would need a
new ticket for every different service. If a user wished to access a
print server, a mail server, a file server, and so on, the first
instance of each access would require a new ticket and hence
require the user to enter the password.

 The second problem is that the earlier scenario involved a
plaintext transmission of the password [message (1)]. An
eavesdropper could capture the password and use any service
accessible to the victim.

A More Secure Authentication Dialogue

To solve the problems in the Simple Authentication Dialogue, we
introduce a scheme for avoiding plaintext passwords and a new server,
known as the ticket-granting server (TGS). The hypothetical scenario is
as follows:

Once Per User Logon Session:

(1)

(2)

Once Per Type of Service:

(3)

(4)

Once Per Service Session

(5)

Tickettgs = E(Ktgs, [IDC||ADC||IDtgs||TS1||Lifetime1])

Network Security

NOTES

189

Ticketv = E(Kv, [IDC||ADC||IDv||TS2||Lifetime2])

The new service, TGS, issues tickets to users who have been
authenticated to AS. Thus, the user first requests a ticket-granting ticket
(Tickettgs) from the AS. The client module in the user workstation saves
this ticket. Each time the user requires access to a new service, the client
applies to the TGS, using the ticket to authenticate itself. The TGS then
grants a ticket for the particular service. The client saves each service-
granting ticket and uses it to authenticate its user to a server each time a
particular service is requested. Let us look at the details of this scheme:

1. The client requests a ticket-granting ticket on behalf of the user by
sending its user's ID and password to the AS, together with the
TGS ID, indicating a request to use the TGS service.

2. The AS responds with a ticket that is encrypted with a key that is
derived from the user's password. When this response arrives at
the client, the client prompts the user for his or her password,
generates the key, and attempts to decrypt the incoming
message. If the correct password is supplied, the ticket is
successfully recovered.

Because only the correct user should know the password, only the
correct user can recover the ticket. Thus, we have used the
password to obtain credentials from Kerberos without having to
transmit the password in plaintext. The ticket itself consists of the
ID and network address of the user, and the ID of the TGS. This
corresponds to the first scenario. The idea is that the client can
use this ticket to request multiple service-granting tickets. So the
ticket-granting ticket is to be reusable. However, we do not wish
an opponent to be able to capture the ticket and use it. Consider
the following scenario: An opponent captures the login ticket and
waits until the user has logged off his or her workstation. Then the
opponent either gains access to that workstation or configures his
workstation with the same network address as that of the victim.
The opponent would be able to reuse the ticket to spoof the TGS.
To counter this, the ticket includes a timestamp, indicating the
date and time at which the ticket was issued, and a lifetime,
indicating the length of time for which the ticket is valid (e.g., eight
hours). Thus, the client now has a reusable ticket and need not
bother the user for a password for each new service request.
Finally, note that the ticket-granting ticket is encrypted with a
secret key known only to the AS and the TGS. This prevents
alteration of the ticket. The ticket is reencrypted with a key based
on the user's password. This assures that the ticket can be
recovered only by the correct user, providing the authentication.

Now that the client has a ticket-granting ticket, access to any server can
be obtained with steps 3 and 4:

Network Security

NOTES

190

3. The client requests a service-granting ticket on behalf of the user.
For this purpose, the client transmits a message to the TGS
containing the user's ID, the ID of the desired service, and the
ticket-granting ticket.

4. The TGS decrypts the incoming ticket and verifies the success of
the decryption by the presence of its ID. It checks to make sure
that the lifetime has not expired. Then it compares the user ID and
network address with the incoming information to authenticate the
user. If the user is permitted access to the server V, the TGS
issues a ticket to grant access to the requested service.

The service-granting ticket has the same structure as the ticket-
granting ticket. Indeed, because the TGS is a server, we would
expect that the same elements are needed to authenticate a client
to the TGS and to authenticate a client to an application server.
Again, the ticket contains a timestamp and lifetime. If the user
wants access to the same service at a later time, the client can
simply use the previously acquired service-granting ticket and
need not bother the user for a password. Note that the ticket is
encrypted with a secret key (Kv) known only to the TGS and the
server, preventing alteration.

Finally, with a particular service-granting ticket, the client can gain access
to the corresponding service with step 5:

5. The client requests access to a service on behalf of the user. For
this purpose, the client transmits a message to the server
containing the user's ID and the service-granting ticket. The server
authenticates by using the contents of the ticket.

This new scenario satisfies the two requirements of only one password
query per user session and protection of the user password.

Disadvantages

Although this scenario enhances security compared to the first attempt,
two additional problems remain.

 The heart of the first problem is the lifetime associated with the
ticket-granting ticket. If this lifetime is very short (e.g., minutes),
then the user will be repeatedly asked for a password. If the
lifetime is long (e.g., hours), then an opponent has a greater
opportunity for replay. An opponent could eavesdrop on the
network and capture a copy of the ticket-granting ticket and then
wait for the legitimate user to log out. Then the opponent could
forge the legitimate user's network address and send the
message of step (3) to the TGS. This would give the opponent
unlimited access to the resources and files available to the
legitimate user. Similarly, if an opponent captures a service-
granting ticket and uses it before it expires, the opponent has

Network Security

NOTES

191

access to the corresponding service. Therefore, a network service
(the TGS or an application service) must be able to prove that the
person using a ticket is the same person to whom that ticket was
issued.

 The second problem is that there may be a requirement for
servers to authenticate themselves to users. Without such
authentication, an opponent could sabotage the configuration so
that messages to a server were directed to another location. The
false server would then be in a position to act as a real server and
capture any information from the user and deny the true service to
the user.

The Version 4 Authentication Dialogue

Table 4.1.1 shows the Kerberos Protocol.

First, consider the problem of captured ticket-granting tickets and the
need to determine that the ticket presenter is the same as the client for
whom the ticket was issued. The threat is that an opponent will steal the
ticket and use it before it expires. To get around this problem, let us have
the AS provide both the client and the TGS with a secret piece of
information in a secure manner. Then the client can prove its identity to
the TGS by revealing the secret information, again in a secure manner.
An efficient way of accomplishing this is to use an encryption key as the
secure information; this is referred to as a session key in Kerberos. Table
4.1.1a shows the technique for distributing the session key.

The client sends a message to the AS requesting access to the TGS. The
AS responds with a message, encrypted with a key derived from the
user's password (Kc) that contains the ticket. The encrypted message
also contains a copy of the session key, Kc, tgs, where the subscripts
indicate that this is a session key for C and TGS. Because this session
key is inside the message encrypted with Kc, only the user's client can
read it. The same session key is included in the ticket, which can be read
only by the TGS. Thus, the session key has been securely delivered to
both C and the TGS.

(1) C → AS IDc||IDtgs||TS1

(2) AS → C E(Kc,[Kc,tgs || IDtgs || TS2 || Lifetime2 || Tickettgs])

Tickettgs = E(Ktgs, [Kc,tgs || IDc || ADc || IDtgs || TS2 || Lifetime2])

(a) Authentication Service Exchange to obtain ticket-granting ticket

Network Security

NOTES

192

(3) C →
TGS

IDv||Tickettgs||Authenticatorc

(4) TGS →
C

E(Kc,tgs, [Kc,v||IDv||TS4||Ticketv])

Tickettgs = E(Ktgs, [Kc,tgs||IDC||ADC||IDtgs||TS2||Lifetime2])

Ticketv = E(Kv, [Kc,v||IDC||ADC||IDv||TS4||Lifetime4])

Authenticatorc = E(Kc,tgs, [IDC||ADC||TS3])

(b) Ticket-Granting Service Exchange to obtain service-granting
ticket

(5) C →V Ticketv||Authenticatorc

(6) V →C E(Kc,v, [TS5 + 1]) (for mutual authentication)

Ticketv = E(Kv, [Kc,v||IDc||ADc||IDv||TS4||Lifetime4])

Authenticatorc = E(Kc,v,[IDc||ADC||TS5])

(c) Client/Server Authentication Exchange to obtain service

Table 4.1.1 Summary of Kerberos V4 Message Exchanges

Several additional pieces of information have been added to this first
phase of the dialogue. Message (1) includes a timestamp, so that the AS
knows that the message is timely. Message (2) includes several elements
of the ticket in a form accessible to C. This enables C to confirm that this
ticket is for the TGS and to learn its expiration time.

Armed with the ticket and the session key, C is ready to approach the
TGS. As before, C sends the TGS a message that includes the ticket plus
the ID of the requested service (message (3) in Table 4.1.1b). In addition,
C transmits an authenticator, which includes the ID and address of C's
user and a timestamp. Unlike the ticket, which is reusable, the
authenticator is intended for use only once and has a very short lifetime.
The TGS can decrypt the ticket with the key that it shares with the AS.
This ticket indicates that user C has been provided with the session key
Kc,tgs. In effect, the ticket says, "Anyone who uses Kc,tgs must be C." The
TGS uses the session key to decrypt the authenticator. The TGS can
then check the name and address from the authenticator with that of the

Network Security

NOTES

193

ticket and with the network address of the incoming message. If all
match, then the TGS is assured that the sender of the ticket is indeed the
ticket's real owner. In effect, the authenticator says, "At time TS3, I hereby
use Kc,tgs." Note that the ticket does not prove anyone's identity but is a
way to distribute keys securely. It is the authenticator that proves the
client's identity. Because the authenticator can be used only once and
has a short lifetime, the threat of an opponent stealing both the ticket and
the authenticator for presentation later is countered.

The reply from the TGS, in message (4), follows the form of message (2).
The message is encrypted with the session key shared by the TGS and C
and includes a session key to be shared between C and the server V, the
ID of V, and the timestamp of the ticket. The ticket itself includes the
same session key.

C now has a reusable service-granting ticket for V. When C presents this
ticket, as shown in message (5), it also sends an authenticator. The
server can decrypt the ticket, recover the session key, and decrypt the
authenticator.

If mutual authentication is required, the server can reply as shown in
message (6) of Table 4.1.1. The server returns the value of the
timestamp from the authenticator, incremented by 1, and encrypted in the
session key. C can decrypt this message to recover the incremented
timestamp. Because the message was encrypted by the session key, C is
assured that it could have been created only by V. The contents of the
message assure C that this is not a replay of an old reply.

Finally, at the end of this process, the client and server share a secret
key. This key can be used to encrypt future messages between the two or
to exchange a new random session key for that purpose.

Fig 4.1.1 provides a simplified overview of the action.

Network Security

NOTES

194

Fig 4.1.1 Overview of Kerberos

Kerberos Realms and Multiple Kerberi

A full-service Kerberos environment consisting of a Kerberos server, a
number of clients, and a number of application servers requires the
following:

1. The Kerberos server must have the user ID and hashed
passwords of all participating users in its database. All users are
registered with the Kerberos server.

2. The Kerberos server must share a secret key with each server. All
servers are registered with the Kerberos server.

Such an environment is referred to as a Kerberos realm. A Kerberos
realm is a set of managed nodes that share the same Kerberos database.
The Kerberos database resides on the Kerberos master computer
system, which should be kept in a physically secure room. A read-only
copy of the Kerberos database might also reside on other Kerberos

Network Security

NOTES

195

computer systems. However, all changes to the database must be made
on the master computer system. Changing or accessing the contents of a
Kerberos database requires the Kerberos master password. A related
concept is that of a Kerberos principal, which is a service or user that is
known to the Kerberos system. Each Kerberos principal is identified by its
principal name. Principal names consist of three parts: a service or user
name, an instance name, and a realm name

Networks of clients and servers under different administrative
organizations typically constitute different realms. That is, to have users
and servers in one administrative domain registered with a Kerberos
server elsewhere. However, users in one realm may need access to
servers in other realms, and some servers may be willing to provide
service to users from other realms, provided that those users are
authenticated.

Kerberos provides a mechanism for supporting such interrealm
authentication. For two realms to support interrealm authentication, a
third requirement is added:

3. The Kerberos server in each interoperating realm shares a secret
key with the server in the other realm. The two Kerberos servers
are registered with each other.

The scheme requires that the Kerberos server in one realm trust the
Kerberos server in the other realm to authenticate its users. Furthermore,
the participating servers in the second realm must also be willing to trust
the Kerberos server in the first realm.

With these ground rules in place, we can describe the mechanism as
follows (Fig 4.1.2): A user wishing service on a server in another realm
needs a ticket for that server. The user's client follows the usual
procedures to gain access to the local TGS and then requests a ticket-
granting ticket for a remote TGS (TGS in another realm). The client can
then apply to the remote TGS for a service-granting ticket for the desired
server in the realm of the remote TGS.

The details of the exchanges illustrated in Fig 4.1.2 are as follows:

(1) C → AS : IDc||IDtgs||TS1

(2) AS → C : E(Kc, [Kc,tgs||IDtgs||TS2||Lifetime2||Tickettgs])

(3) C → TGS : IDtgsrem||Tickettgs||Authenticatorc

(4) TGS → C : E(Kc,tgs, [Kc,tgsrem||IDtgsrem||TS4||Tickettgsrem])

(5) C → TGSrem: IDvrem||Tickettgsrem||Authenticatorc

Network Security

NOTES

196

(1) C → AS : IDc||IDtgs||TS1

(6) TGSrem →C : E(Kc,tgsrem, [Kc,vrem||IDvrem||TS6||Ticketvrem])

(7) C → Vrem : Ticketvrem||Authenticatorc

Fig 4.1.2. Request for Service in Another Realm

The ticket presented to the remote server (Vrem) indicates the realm in
which the user was originally authenticated. The server chooses whether
to honor the remote request.

One problem presented by the foregoing approach is that it does not
scale well to many realms. If there are N realms, then there must be N(N
1)/2 secure key exchanges so that each Kerberos realm can interoperate
with all other Kerberos realms.

Kerberos Version 5

Kerberos Version 5 is specified in RFC 1510 and provides a number of
improvements over version 4. Version 5 is intended to address the

Network Security

NOTES

197

limitations of version 4 in two areas: environmental shortcomings and
technical deficiencies. Overviews of the changes from version 4 to
version 5 are as follows.

Differences between Versions 4 and 5

Kerberos Version 4 was developed for use within the Project Athena
environment and, accordingly, did not fully address the need to be of
general purpose. This led to the following environmental shortcomings:

1. Encryption system dependence: Version 4 requires the use of
DES. Export restriction on DES as well as doubts about the
strength of DES were thus of concern. In version 5, ciphertext is
tagged with an encryption type identifier so that any encryption
technique may be used. Encryption keys are tagged with a type
and a length, allowing the same key to be used in different
algorithms and allowing the specification of different variations on
a given algorithm.

2. Internet protocol dependence: Version 4 requires the use of
Internet Protocol (IP) addresses. Other address types, such as the
ISO network address, are not accommodated. Version 5 network
addresses are tagged with type and length, allowing any network
address type to be used.

3. Message byte ordering: In version 4, the sender of a message
employs a byte ordering of its own choosing and tags the
message to indicate least significant byte in lowest address or
most significant byte in lowest address. This techniques works but
does not follow established conventions. In version 5, all message
structures are defined using Abstract Syntax Notation One
(ASN.1) and Basic Encoding Rules (BER), which provide an
unambiguous byte ordering.

4. Ticket lifetime: Lifetime values in version 4 are encoded in an 8-
bit quantity in units of five minutes. Thus, the maximum lifetime
that can be expressed is 28 x 5 = 1280 minutes, or a little over 21
hours. This may be inadequate for some applications (e.g., a long-
running simulation that requires valid Kerberos credentials
throughout execution). In version 5, tickets include an explicit start
time and end time, allowing tickets with arbitrary lifetimes.

5. Authentication forwarding: Version 4 does not allow credentials
issued to one client to be forwarded to some other host and used
by some other client. This capability would enable a client to
access a server and have that server access another server on
behalf of the client. For example, a client issues a request to a
print server that then accesses the client's file from a file server,
using the client's credentials for access. Version 5 provides this
capability.

Network Security

NOTES

198

6. Interrealm authentication: In version 4, interoperability among N
realms requires on the order of N2 Kerberos-to-Kerberos
relationships, as described earlier. Version 5 supports a method
that requires fewer relationships, as described shortly.

The Version 5 Authentication Dialogue

Table 4.1.3 summarizes the basic version 5 dialogue.

First, consider the authentication service exchange. Message (1) is a
client request for a ticket-granting ticket. As before, it includes the ID of
the user and the TGS. The following new elements are added:

 Realm: Indicates realm of user

 Options: Used to request that certain flags be set in the returned
ticket

 Times: Used by the client to request the following time settings in
the ticket:

from: the desired start time for the requested ticket

till: the requested expiration time for the requested ticket

rtime: requested renew-till time

(1) C → AS Options||IDc||Realmc||IDtgs||Times||Nonce1

(2) AS → C Realmc||IDC||Tickettgs||E(Kc, [Kc,tgs||Times||Nonce1||Realmtgs||IDtgs])

Tickettgs = E(Ktgs, [Flags||Kc,tgs||Realmc||IDc||ADc||Times])

(a) Authentication Service Exchange to obtain ticket-granting ticket

(3) C → TGS Options||IDv||Times||||Nonce2||Tickettgs||Authenticatorc

(4) TGS →C Realmc||IDc||Ticketv||E(Kc,tgs, [Kc,v||Times||Nonce2||Realmv||IDv])

Tickettgs = E(Ktgs, [Flags||KC,tgs||Realmc||IDC||ADC||Times])

Network Security

NOTES

199

(1) C → AS Options||IDc||Realmc||IDtgs||Times||Nonce1

Ticketv = E(Kv, [Flags||Kc,v||Realmc||IDC||ADc||Times])

Authenticatorc = E(Kc,tgs, [IDC||Realmc||TS1])

(b) Ticket-Granting Service Exchange to obtain service-granting ticket

(5) C → V Options||Ticketv||Authenticatorc

(6) V → C EKc,v [TS2||Subkey||Seq#]

Ticketv = E(Kv, [Flags||Kc,v||Realmc||IDC||ADC||Times])

Authenticatorc = E(Kc,v,[IDC||Realmc||TS2||Subkey||Seq#])

(c) Client/Server Authentication Exchange to obtain service

Table 4.1.3 Summary of Kerberos Version 5 Message Exchanges

 Nonce: A random value to be repeated in message (2) to assure
that the response is fresh and has not been replayed by an
opponent

Message (2) returns a ticket-granting ticket, identifying information for the
client, and a block encrypted using the encryption key based on the
user's password. This block includes the session key to be used between
the client and the TGS, times specified in message (1), the nonce from
message (1), and TGS identifying information. The ticket itself includes
the session key, identifying information for the client, the requested time
values, and flags that reflect the status of this ticket and the requested
options. These flags introduce significant new functionality to version 5.

Let us now compare the ticket-granting service exchange for versions 4
and 5. We see that message (3) for both versions include an
authenticator, a ticket, and the name of the requested service. In addition,
version 5 includes requested times and options for the ticket and a nonce,
all with functions similar to those of message (1). The authenticator itself
is essentially the same as the one used in version 4.

Message (4) has the same structure as message (2), returning a ticket
plus information needed by the client, the latter encrypted with the
session key now shared by the client and the TGS.

Finally, for the client/server authentication exchange, several new
features appear in version 5. In message (5), the client may request as

Network Security

NOTES

200

an option that mutual authentication is required. The authenticator
includes several new fields as follows:

 Subkey: The client's choice for an encryption key to be used to
protect this specific application session. If this field is omitted, the
session key from the ticket (Kc,v) is used.

 Sequence number: An optional field that specifies the starting
sequence number to be used by the server for messages sent to
the client during this session. Messages may be sequence
numbered to detect replays.

If mutual authentication is required, the server responds with message
(6). This message includes the timestamp from the authenticator. Note
that in version 4, the timestamp was incremented by one. This is not
necessary in version 5 because the nature of the format of messages is
such that it is not possible for an opponent to create message (6) without
knowledge of the appropriate encryption keys. The subkey field, if
present, overrides the subkey field, if present, in message (5). The
optional sequence number field specifies the starting sequence number
to be used by the client.

Ticket Flags

The flags field included in tickets in version 5 supports expanded
functionality compared to that available in version 4. Table 4.1.4
summarizes the flags that may be included in a ticket.

INITIAL This ticket was issued using the AS protocol and not issued based
on a ticket-granting ticket.

PRE-AUTHENT During initial authentication, the client was authenticated by the
KDC before a ticket was issued.

HW-AUTHENT The protocol employed for initial authentication required the use of
hardware expected to be possessed solely by the named client.

RENEWABLE Tells TGS that this ticket can be used to obtain a replacement ticket
that expires at a later date.

MAY-
POSTDATE

Tells TGS that a postdated ticket may be issued based on this
ticket-granting ticket.

POSTDATED Indicates that this ticket has been postdated; the end server can
check the authtime field to see when the original authentication
occurred.

INVALID This ticket is invalid and must be validated by the KDC before use.

Network Security

NOTES

201

INITIAL This ticket was issued using the AS protocol and not issued based
on a ticket-granting ticket.

PROXIABLE Tells TGS that a new service-granting ticket with a different network
address may be issued based on the presented ticket.

PROXY Indicates that this ticket is a proxy.

FORWARDABLE Tells TGS that a new ticket-granting ticket with a different network
address may be issued based on this ticket-granting ticket.

FORWARDED Indicates that this ticket has either been forwarded or was issued
based on authentication involving a forwarded ticket-granting ticket.

Table 4.1.4 Kerberos Version 5 Flags

The INITIAL flag indicates that this ticket was issued by the AS, not by
the TGS. When a client requests a service-granting ticket from the TGS, it
presents a ticket-granting ticket obtained from the AS. In version 4, this
was the only way to obtain a service-granting ticket. Version 5 provides
the additional capability that the client can get a service-granting ticket
directly from the AS. The utility of this is as follows: A server, such as a
password-changing server, may wish to know that the client's password
was recently tested.

The PRE-AUTHENT flag, if set, indicates that when the AS received the
initial request [message (1)], it authenticated the client before issuing a
ticket. The exact form of this preauthentication is left unspecified. As an
example, the MIT implementation of version 5 has encrypted timestamp
preauthentication, enabled by default. When a user wants to get a ticket,
it has to send to the AS a preauthentication block containing a random
confounder, a version number, and a timestamp, encrypted in the client's
password-based key. The AS decrypts the block and will not send a
ticket-granting ticket back unless the timestamp in the preauthentication
block is within the allowable time skew (time interval to account for clock
drift and network delays). Another possibility is the use of a smart card
that generates continually changing passwords that are included in the
preauthenticated messages. The passwords generated by the card can
be based on a user's password but be transformed by the card so that, in
effect, arbitrary passwords are used. This prevents an attack based on
easily guessed passwords. If a smart card or similar device was used,
this is indicated by the HW-AUTHENT flag.

When a ticket has a long lifetime, there is the potential for it to be stolen
and used by an opponent for a considerable period. If a short lifetime is
used to lessen the threat, then overhead is involved in acquiring new
tickets. In the case of a ticket-granting ticket, the client would either have
to store the user's secret key, which is clearly risky, or repeatedly ask the

Network Security

NOTES

202

user for a password. A compromise scheme is the use of renewable
tickets. A ticket with the RENEWABLE flag set includes two expiration
times: one for this specific ticket and one that is the latest permissible
value for an expiration time. A client can have the ticket renewed by
presenting it to the TGS with a requested new expiration time. If the new
time is within the limit of the latest permissible value, the TGS can issue a
new ticket with a new session time and a later specific expiration time.
The advantage of this mechanism is that the TGS may refuse to renew a
ticket reported as stolen.

A client may request that the AS provide a ticket-granting ticket with the
MAY-POSTDATE flag set. The client can then use this ticket to request a
ticket that is flagged as POSTDATED and INVALID from the TGS.
Subsequently, the client may submit the postdated ticket for validation.
This scheme can be useful for running a long batch job on a server that
requires a ticket periodically. The client can obtain a number of tickets for
this session at once, with spread-out time values. All but the first ticket
are initially invalid. When the execution reaches a point in time when a
new ticket is required, the client can get the appropriate ticket validated.
With this approach, the client does not have to repeatedly use its ticket-
granting ticket to obtain a service-granting ticket.

In version 5, it is possible for a server to act as a proxy on behalf of a
client, in effect adopting the credentials and privileges of the client to
request a service from another server. If a client wishes to use this
mechanism, it requests a ticket-granting ticket with the PROXIABLE flag
set. When this ticket is presented to the TGS, the TGS is permitted to
issue a service-granting ticket with a different network address; this latter
ticket will have its PROXY flag set. An application receiving such a ticket
may accept it or require additional authentication to provide an audit trail.

The proxy concept is a limited case of the more powerful forwarding
procedure. If a ticket is set with the FORWARDABLE flag, a TGS can
issue to the requestor a ticket-granting ticket with a different network
address and the FORWARDED flag set. This ticket can then be
presented to a remote TGS. This capability allows a client to gain access
to a server on another realm without requiring that each Kerberos
maintain a secret key with Kerberos servers in every other realm. For
example, realms could be structured hierarchically. Then a client could
walk up the tree to a common node and then back down to reach a target
realm. Each step of the walk would involve forwarding a ticket-granting
ticket to the next TGS in the path.

Network Security

NOTES

203

REFERENCES

1. William Stallings, Cryptography and Network Security, PHI

Publishers

2. www.wikipedia.org

Review Questions:

1. Explain the Kerberos and write note on Kerberos V4

authentication dialogue

2. Explain the operational details of Kerberos Realm.

Network Security

NOTES

204

2. DIRECTORY AUTHENTICATION
SERVICES

OBJECTIVE

In this lesson we examine the X.509 directory authentication service. This
standard is important as part of the directory service that it supports, but
is also a basic building block used in other standards, such as S/MIME

DIRECTORY SERVICES

In software engineering, a directory is similar to a dictionary. It enables
the look up of a name and information associated with that name. As a
word in a dictionary may have multiple definitions, in a directory, a name
may be associated with multiple, different, pieces of information.
Likewise, as a word may have different parts and different definitions, a
name in a directory may have many different types of data. Based on this
rudimentary explanation of a directory, a directory service is simply the
software system that stores, organizes and provides access to
information in a directory.

Directory services were part of an Open Systems Interconnection (OSI)
initiative to get everyone in the industry to agree to common network
standards to provide multi-vendor interoperability. In the 1980s the ITU
and ISO came up with a set of standards - X.500, for directory services,
initially to support the requirements of inter-carrier electronic messaging
and network name lookup. The Lightweight Directory Access Protocol,
LDAP, is based on the directory information services of X.500, but uses
the TCP/IP stack and a string encoding scheme of the X.500 protocol
DAP, giving it more relevance on the Internet. X.509 is an ITU-T standard
for a Public Key Infrastructure (PKI) for single sign-on and Privilege
Management Infrastructure (PMI). X.509 specifies, amongst other things,
standard formats for public key certificates, certificate revocation lists,
attribute certificates, and a certification path validation algorithm.

X.509 Authentication Service

X.509 defines a framework for the provision of authentication services by
the X.500 directory to its users. Each certificate contains the public key of
a user and is signed with the private key of a trusted certification
authority. In addition, X.509 defines alternative authentication protocols
based on the use of public-key certificates.

Network Security

NOTES

205

X.509 is an important standard because the certificate structure and
authentication protocols defined in X.509 are used in a variety of
contexts. For example, the X.509 certificate format is used in S/MIME, IP
Security, and SSL/TLS and SET.

X.509 is based on the use of public-key cryptography and digital
signatures. The standard does not dictate the use of a specific algorithm
but recommends RSA. The digital signature scheme is assumed to
require the use of a hash function. Again, the standard does not dictate a
specific hash algorithm. Fig 4.2.1 illustrates the generation of a public-key
certificate.

Certificates

The heart of the X.509 scheme is the public-key certificate associated
with each user. These user certificates are assumed to be created by
some trusted certification authority (CA) and placed in the directory by the
CA or by the user. The directory server itself is not responsible for the
creation of public keys or for the certification function; it merely provides
an easily accessible location for users to obtain certificates.

Fig 4.2.1 public-Key Certificate use

Figure 4.2.2a shows the general format of a certificate, which includes the
following elements:

 Version: Differentiates among successive versions of the
certificate format; the default is version 1. If the Issuer Unique

Network Security

NOTES

206

Identifier or Subject Unique Identifier are present, the value must
be version 2. If one or more extensions are present, the version
must be version 3.

 Serial number: An integer value, unique within the issuing CA,
that is unambiguously associated with this certificate.

Fig 4.2.2 X.509 Formats

 Signature algorithm identifier: The algorithm used to sign the
certificate, together with any associated parameters. Because this
information is repeated in the Signature field at the end of the
certificate, this field has little, if any, utility.

 Issuer name: X.500 name of the CA that created and signed this
certificate.

 Period of validity: Consists of two dates: the first and last on
which the certificate is valid.

 Subject name: The name of the user to whom this certificate
refers. That is, this certificate certifies the public key of the subject
who holds the corresponding private key.

Network Security

NOTES

207

 Subject's public-key information: The public key of the subject,
plus an identifier of the algorithm for which this key is to be used,
together with any associated parameters.

 Issuer unique identifier: An optional bit string field used to
identify uniquely the issuing CA in the event the X.500 name has
been reused for different entities.

 Subject unique identifier: An optional bit string field used to
identify uniquely the subject in the event the X.500 name has
been reused for different entities.

 Extensions: A set of one or more extension fields. Extensions
were added in version 3 and are discussed later in this section.

 Signature: Covers all of the other fields of the certificate; it
contains the hash code of the other fields, encrypted with the CA's
private key. This field includes the signature algorithm identifier.

The unique identifier fields were added in version 2 to handle the possible
reuse of subject and/or issuer names over time. These fields are rarely
used.

The standard uses the following notation to define a certificate:

CA<<A>> = CA {V, SN, AI, CA, TA, A, Ap}

where,

Y
<<X>>

= the certificate of user X issued by certification authority
Y

Y {I} = the signing of I by Y. It consists of I with an encrypted
hash code appended

The CA signs the certificate with its private key. If the corresponding
public key is known to a user, then that user can verify that a certificate
signed by the CA is valid.

Obtaining a User's Certificate

User certificates generated by a CA have the following characteristics:

 Any user with access to the public key of the CA can verify the
user public key that was certified.

 No party other than the certification authority can modify the
certificate without this being detected.

Network Security

NOTES

208

Because certificates are unforgeable, they can be placed in a directory
without the need for the directory to make special efforts to protect them.

If all users subscribe to the same CA, then there is a common trust of that
CA. All user certificates can be placed in the directory for access by all
users. In addition, a user can transmit his or her certificate directly to
other users. In either case, once B is in possession of A's certificate, B
has confidence that messages it encrypts with A's public key will be
secure from eavesdropping and that messages signed with A's private
key are unforgeable.

If there is a large community of users, it may not be practical for all users
to subscribe to the same CA. Because it is the CA that signs certificates,
each participating user must have a copy of the CA's own public key to
verify signatures. This public key must be provided to each user in an
absolutely secure (with respect to integrity and authenticity) way so that
the user has confidence in the associated certificates. Thus, with many
users, it may be more practical for there to be a number of CAs, each of
which securely provides its public key to some fraction of the users.

Now suppose that A has obtained a certificate from certification authority
X1 and B has obtained a certificate from CA X2. If A does not securely
know the public key of X2, then B's certificate, issued by X2, is useless to
A. A can read B's certificate, but A cannot verify the signature. However,
if the two CAs have securely exchanged their own public keys, the
following procedure will enable A to obtain B's public key:

1. A obtains, from the directory, the certificate of X2 signed by X1.
Because A securely knows X1's public key, A can obtain X2's
public key from its certificate and verify it by means of X1's
signature on the certificate.

2. A then goes back to the directory and obtains the certificate of B
signed by X2 Because A now has a trusted copy of X2's public key,
A can verify the signature and securely obtain B's public key.

A has used a chain of certificates to obtain B's public key. In the notation
of X.509, this chain is expressed as

X1<<X2>> X2 <>

In the same fashion, B can obtain A's public key with the reverse chain:

X2<<X1>> X1 <<A>>

This scheme need not be limited to a chain of two certificates. An
arbitrarily long path of CAs can be followed to produce a chain. A chain
with N elements would be expressed as

X1<<X2>> X2 <<X3>>... XN<>

Network Security

NOTES

209

In this case, each pair of CAs in the chain (Xi, Xi+1) must have created
certificates for each other.

All these certificates of CAs by CAs need to appear in the directory, and
the user needs to know how they are linked to follow a path to another
user's public-key certificate. X.509 suggests that CAs be arranged in a
hierarchy so that navigation is straightforward.

Figure 4.2.3 is an example of X.509 hierarchy. The connected circles
indicate the hierarchical relationship among the CAs; the associated
boxes indicate certificates maintained in the directory for each CA entry.
The directory entry for each CA includes two types of certificates:

 Forward certificates: Certificates of X generated by other CAs

 Reverse certificates: Certificates generated by X that are the
certificates of other CAs

 In this example, user A can acquire the following certificates from
the directory to establish a certification path to B:

 X<<W>> W <<V>> V <<Y>> <<Z>> Z <>

Fig 4.2.3 X.509 Hierarchy: A Hypothetical Example

Network Security

NOTES

210

When A has obtained these certificates, it can unwrap the certification
path in sequence to recover a trusted copy of B's public key. Using this
public key, A can send encrypted messages to B. If A wishes to receive
encrypted messages back from B, or to sign messages sent to B, then B
will require A's public key, which can be obtained from the following
certification path:

Z<<Y>> Y <<V>> V <<W>> W <<X>>X <<A>>

B can obtain this set of certificates from the directory, or A can provide
them as part of its initial message to B.

Revocation of Certificates

We know that each certificate includes a period of validity, much like a
credit card. Typically, a new certificate is issued just before the expiration
of the old one. In addition, it may be desirable on occasion to revoke a
certificate before it expires, for one of the following reasons:

1. The user's private key is assumed to be compromised.

2. The user is no longer certified by this CA.

3. The CA's certificate is assumed to be compromised.

Each CA must maintain a list consisting of all revoked but not expired
certificates issued by that CA, including both those issued to users and to
other CAs. These lists should also be posted on the directory.

Each certificate revocation list (CRL) posted to the directory is signed by
the issuer and includes (Fig 4.2.2b) the issuer's name, the date the list
was created, the date the next CRL is scheduled to be issued, and an
entry for each revoked certificate. Each entry consists of the serial
number of a certificate and revocation date for that certificate. Because
serial numbers are unique within a CA, the serial number is sufficient to
identify the certificate.

When a user receives a certificate in a message, the user must determine
whether the certificate has been revoked. The user could check the
directory each time a certificate is received. To avoid the delays (and
possible costs) associated with directory searches, it is likely that the user
would maintain a local cache of certificates and lists of revoked
certificates.

Authentication Procedures

X.509 also includes three alternative authentication procedures that are
intended for use across a variety of applications. All these procedures
make use of public-key signatures. It is assumed that the two parties
know each other's public key, either by obtaining each other's certificates

Network Security

NOTES

211

from the directory or because the certificate is included in the initial
message from each side. Fig 4.2.4 illustrates the three procedures.

One-Way Authentication

One way authentication involves a single transfer of information from one
user (A) to another (B), and establishes the following:

1. The identity of A and that the message was generated by A

2. That the message was intended for B

3. The integrity and originality (it has not been sent multiple times) of
the message

Note that only the identity of the initiating entity is verified in this process,
not that of the responding entity. At a minimum, the message includes a
timestamp tA, a nonce rA and the identity of B and is signed with A's
private key. The timestamp consists of an optional generation time and
an expiration time. This prevents delayed delivery of messages. The
nonce can be used to detect replay attacks. The nonce value must be
unique within the expiration time of the message. Thus, B can store the
nonce until it expires and reject any new messages with the same nonce.

For pure authentication, the message is used simply to present
credentials to B. The message may also include information to be
conveyed. This information, sgnData, is included within the scope of the
signature, guaranteeing its authenticity and integrity. The message may
also be used to convey a session key to B, encrypted with B's public key.

Two-Way Authentication

In addition to the three elements listed above, two-way authentication
establishes the following elements:

4. The identity of B and that the reply message was generated by B

5. That the message was intended for A

6. The integrity and originality of the reply

Network Security

NOTES

212

Fig 4.2.4 X.509 Strong Authentication Procedures

Two-way authentication thus permits both parties in a communication to
verify the identity of the other. The reply message includes the nonce
from A, to validate the reply. It also includes a timestamp and nonce
generated by B. As before, the message may include signed additional
information and a session key encrypted with A's public key.

Three-Way Authentication

In three-way authentication, a final message from A to B is included,
which contains a signed copy of the nonce rB. The intent of this design is
that timestamps need not be checked: Because both nonces are echoed
back by the other side, each side can check the returned nonce to detect
replay attacks. This approach is needed when synchronized clocks are
not available.

Drawbacks of X.509 Version 2

The X.509 version 2 format does not convey all of the information that
recent design and implementation experience has shown to be needed.

The following requirements are not satisfied by version 2:

Network Security

NOTES

213

1. The Subject field is inadequate to convey the identity of a key
owner to a public-key user. X.509 names may be relatively short
and lacking in obvious identification details that may be needed by
the user.

2. The Subject field is also inadequate for many applications, which
typically recognize entities by an Internet e-mail address, a URL,
or some other Internet-related identification.

3. There is a need to indicate security policy information. This
enables a security application or function, such as IPSec, to relate
an X.509 certificate to a given policy.

4. There is a need to limit the damage that can result from a faulty or
malicious CA by setting constraints on the applicability of a
particular certificate.

5. It is important to be able to identify different keys used by the
same owner at different times. This feature supports key life cycle
management, in particular the ability to update key pairs for users
and CAs on a regular basis or under exceptional circumstances.

X.509 Version 3

Version 3 includes a number of optional extensions that may be added to
the version 2 format. Each extension consists of an extension identifier, a
criticality indicator, and an extension value. The criticality indicator
indicates whether an extension can be safely ignored. If the indicator has
a value of TRUE and an implementation does not recognize the
extension, it must treat the certificate as invalid.

The certificate extensions fall into three main categories: key and policy
information, subject and issuer attributes, and certification path
constraints.

Key and Policy Information

These extensions convey additional information about the subject and
issuer keys, plus indicators of certificate policy. A certificate policy is a
named set of rules that indicates the applicability of a certificate to a
particular community and/or class of application with common security
requirements. For example, a policy might be applicable to the
authentication of electronic data interchange (EDI) transactions for the
trading of goods within a given price range.

This area includes the following:

 Authority key identifier: Identifies the public key to be used to
verify the signature on this certificate or CRL. Enables distinct
keys of the same CA to be differentiated. One use of this field is to
handle CA key pair updating.

Network Security

NOTES

214

 Subject key identifier: Identifies the public key being certified.
Useful for subject key pair updating. Also, a subject may have
multiple key pairs and, correspondingly, different certificates for
different purposes (e.g., digital signature and encryption key
agreement).

 Key usage: Indicates a restriction imposed as to the purposes for
which, and the policies under which, the certified public key may
be used. May indicate one or more of the following: digital
signature, nonrepudiation, key encryption, data encryption, key
agreement, CA signature verification on certificates, CA signature
verification on CRLs.

 Private-key usage period: Indicates the period of use of the
private key corresponding to the public key. Typically, the private
key is used over a different period from the validity of the public
key. For example, with digital signature keys, the usage period for
the signing private key is typically shorter than that for the
verifying public key.

 Certificate policies: Certificates may be used in environments
where multiple policies apply. This extension lists policies that the
certificate is recognized as supporting, together with optional
qualifier information.

 Policy mappings: Used only in certificates for CAs issued by
other CAs. Policy mappings allow an issuing CA to indicate that
one or more of that issuer's policies can be considered equivalent
to another policy used in the subject CA's domain.

Certificate Subject and Issuer Attributes

These extensions support alternative names, in alternative formats, for a
certificate subject or certificate issuer and can convey additional
information about the certificate subject, to increase a certificate user's
confidence that the certificate subject is a particular person or entity. For
example, information such as postal address, position within a
corporation, or picture image may be required.

The extension fields in this area include the following:

 Subject alternative name: Contains one or more alternative
names, using any of a variety of forms. This field is important for
supporting certain applications, such as electronic mail, EDI, and
IPSec, which may employ their own name forms.

 Issuer alternative name: Contains one or more alternative
names, using any of a variety of forms.

 Subject directory attributes: Conveys any desired X.500
directory attribute values for the subject of this certificate.

Network Security

NOTES

215

Certification Path Constraints

These extensions allow constraint specifications to be included in
certificates issued for CAs by other CAs. The constraints may restrict the
types of certificates that can be issued by the subject CA or that may
occur subsequently in a certification chain.

The extension fields in this area include the following:

 Basic constraints: Indicates if the subject may act as a CA. If so,
a certification path length constraint may be specified.

 Name constraints: Indicates a name space within which all
subject names in subsequent certificates in a certification path
must be located.

 Policy constraints: Specifies constraints that may require explicit
certificate policy identification or inhibit policy mapping for the
remainder of the certification path.

REFERENCES

1. William Stallings, Cryptography and Network Security, PHI
Publishers

2. www.wikipedia.org

Review Questions:

1. Write a short note on X.509 authentication service.

2. Explain about X.509 authentication format in detail.

3. Write a short note on different authentication procedures.

Network Security

NOTES

216

3. ELECTRONIC MAIL SECURITY

OBJECTIVE

This lesson focuses on one of the most heavily used distributed
application, the electronic mail. There is increasing interest in providing
authentication and confidentiality services as part of an electronic mail
facility. This lesson looks at the two approaches likely to dominate
electronic mail security in the near future. Pretty Good Privacy (PGP) is a
widely used scheme that does not depend on any organization or
authority. Thus, it is as well suited to individual, personal use as it is to
incorporation in network configurations operated by organizations.
S/MIME (Secure/Multipurpose Internet Mail Extension) was developed
specifically to be an Internet Standard.

INTRODUCTION

In virtually all distributed environments, electronic mail is the most heavily
used network-based application. It is also the only distributed application
that is widely used across all architectures and vendor platforms. Users
expect to be able to, and do, send mail to others who are connected
directly or indirectly to the Internet, regardless of host operating system or
communications suite.

Pretty Good Privacy

PGP is a remarkable phenomenon. Largely the effort of Phil
Zimmermann, PGP provides a confidentiality and authentication service
that can be used for electronic mail and file storage applications. In
essence, Zimmermann has done the following:

1. Selected the best available cryptographic algorithms as building
blocks

2. Integrated these algorithms into a general-purpose application
that is independent of operating system and processor and that is
based on a small set of easy-to-use commands

3. Made the package and its documentation, including the source
code, freely available via the Internet, bulletin boards, and
commercial networks such as AOL (America On Line)

4. Entered into an agreement with a company (Viacrypt, now
Network Associates) to provide a fully compatible, low-cost
commercial version of PGP

Network Security

NOTES

217

PGP has grown explosively due to number of reasons:

1. It is available free worldwide in versions that run on a variety of
platforms, including Windows, UNIX, Macintosh, and many more.
In addition, the commercial version satisfies users who want a
product that comes with vendor support.

2. It is based on algorithms that have survived extensive public
review and are considered extremely secure. Specifically, the
package includes RSA, DSS, and Diffie-Hellman for public-key
encryption; CAST-128, IDEA, and 3DES for symmetric encryption;
and SHA-1 for hash coding.

3. It has a wide range of applicability, from corporations that wish to
select and enforce a standardized scheme for encrypting files and
messages to individuals who wish to communicate securely with
others worldwide over the Internet and other networks.

4. It was not developed by, nor is it controlled by, any governmental
or standards organization. For those with an instinctive distrust of
"the establishment," this makes PGP attractive.

5. PGP is now on an Internet standards track (RFC 3156We begin
with an overall look at the operation of PGP. Next, we examine
how cryptographic keys are created and stored. Then, we address
the vital issue of public key management.

Notation

Most of the notation used in this chapter has been used before, but a few
terms are new. It is perhaps best to summarize those at the beginning.
The following symbols are used:

KS = Session Key used in symmetric encryption scheme

PRs = Private key of users A, used in public-key encryption scheme

PUs = Public Key of user A, used in public-key encryption scheme

EP = Public Key Encryption

DP = Public key Decryption

EC = Symmetric Encryption

DC = Symmetric Decryption

H = Hash Function

⃦ = Concatenation

Z = Compression using ZIP algorithm

Network Security

NOTES

218

R64 = Conversion to Radix 64 ASCII format

The PGP documentation often uses the term secret key to refer to a key
paired with a public key in a public-key encryption scheme.

Operational Description

The actual operation of PGP, as opposed to the management of keys,
consists of five services: authentication, confidentiality, compression, e-
mail compatibility, and segmentation (Table 4.3.1). Let us examine each
of these.

Authentication

Figure 4.3.1a illustrates the digital signature service provided by PGP.
The sequence is as follows:

1. The sender creates a message.

2. SHA-1 is used to generate a 160-bit hash code of the message.

3. The hash code is encrypted with RSA using the sender's private
key, and the result is prepended to the message.

4. The receiver uses RSA with the sender's public key to decrypt and
recover the hash code.

5. The receiver generates a new hash code for the message and
compares it with the decrypted hash code. If the two match, the
message is accepted as authentic.

6.

Function Algorithms Used Description

Digital
signature

DSS/SHA or
RSA/SHA

A hash code of a message is created using
SHA-1. This message digest is encrypted
using DSS or RSA with the sender's private
key and included with the message.

Message
encryption

CAST or IDEA
or Three-key
Triple DES with
Diffie-Hellman
or RSA

A message is encrypted using CAST-128 or
IDEA or 3DES with a one-time session key
generated by the sender. The session key is
encrypted using Diffie-Hellman or RSA with
the recipient's public key and included with the
message.

Compression
ZIP A message may be compressed, for storage

or transmission, using ZIP.

Network Security

NOTES

219

Function Algorithms Used Description

Email
compatibility

Radix 64
conversion

To provide transparency for email
applications, an encrypted message may be
converted to an ASCII string using radix 64
conversion.

Segmentation To accommodate maximum message size
limitations, PGP performs segmentation and
reassembly.

Table 4.3.1 Summary of PGP Services

The combination of SHA-1 and RSA provides an effective digital
signature scheme. Because of the strength of RSA, the recipient is
assured that only the possessor of the matching private key can generate
the signature. Because of the strength of SHA-1, the recipient is assured
that no one else could generate a new message that matches the hash
code and, hence, the signature of the original message. As an alternative,
signatures can be generated using DSS/SHA-1.

Confidentiality

Another basic service provided by PGP is confidentiality, which is
provided by encrypting messages to be transmitted or to be stored locally
as files. In both cases, the symmetric encryption algorithm CAST-128
may be used. Alternatively, IDEA or 3DES may be used. The 64-bit
cipher feedback (CFB) mode is used.

In PGP, each symmetric key is used only once. That is, a new key is
generated as a random 128-bit number for each message. Thus,
although this is referred to in the documentation as a session key, it is in
reality a one-time key. Because it is to be used only once, the session
key is bound to the message and transmitted with it. To protect the key, it
is encrypted with the receiver's public key. Figure 4.7b illustrates the
sequence, which can be described as follows:

1. The sender generates a message and a random 128-bit number
to be used as a session key for this message only.

2. The message is encrypted, using CAST-128 (or IDEA or 3DES)
with the session key.

3. The session key is encrypted with RSA, using the recipient's
public key, and is prepended to the message.

4. The receiver uses RSA with its private key to decrypt and recover
the session key.

Network Security

NOTES

220

5. The session key is used to decrypt the message.

As an alternative to the use of RSA for key encryption, PGP provides an
option referred to as Diffie-Hellman. PGP uses a variant of Diffie-Hellman
that does provide encryption/decryption, known as ElGamal.

Observations

 First, to reduce encryption time the combination of symmetric and
public-key encryption is used in preference to simply using RSA or
ElGamal to encrypt the message directly: CAST-128 and the other
symmetric algorithms are substantially faster than RSA or
ElGamal.

 Second, the use of the public-key algorithm solves the session
key distribution problem, because only the recipient is able to
recover the session key that is bound to the message. Note that
we do not need a session key exchange protocol, because we are
not beginning an ongoing session. Rather, each message is a
one-time independent event with its own key. Furthermore, given
the store-and-forward nature of electronic mail, the use of
handshaking to assure that both sides have the same session key
is not practical.

Network Security

NOTES

221

Fig 4.3.1PGP Cryptographic Functions

 Finally, the use of one-time symmetric keys strengthens what is
already a strong symmetric encryption approach. Only a small
amount of plaintext is encrypted with each key, and there is no
relationship among the keys. Thus, to the extent that the public-
key algorithm is secure, the entire scheme is secure. To this end,
PGP provides the user with a range of key size options from 768
to 3072 bits (the DSS key for a signature is limited to 1024 bits).

Confidentiality and Authentication

As Figure 4.3.1c illustrates, both services may be used for the same
message. First, a signature is generated for the plaintext message and
prepended to the message. Then the plaintext message plus signature is
encrypted using CAST-128 (or IDEA or 3DES), and the session key is
encrypted using RSA (or ElGamal). This sequence is preferable to the
opposite: encrypting the message and then generating a signature for the
encrypted message. It is generally more convenient to store a signature
with a plaintext version of a message.

Network Security

NOTES

222

In essence, when both services are used, the sender first signs the
message with its own private key, then encrypts the message with a
session key, and then encrypts the session key with the recipient's public
key.

Compression

As a default, PGP compresses the message after applying the signature
but before encryption. This has the benefit of saving space both for e-mail
transmission and for file storage.

The placement of the compression algorithm, indicated by Z for
compression and Z-1 for decompression in Figure 4.3.1, is critical:

1. The signature is generated before compression for two reasons:

a. It is preferable to sign an uncompressed message so that
one can store only the uncompressed message together
with the signature for future verification. If one signed a
compressed document, then it would be necessary either
to store a compressed version of the message for later
verification or to recompress the message when
verification is required.

b. Even if one were willing to generate dynamically a
recompressed message for verification, PGP's
compression algorithm presents a difficulty. The algorithm
is not deterministic; various implementations of the
algorithm achieve different tradeoffs in running speed
versus compression ratio and, as a result, produce
different compressed forms. However, these different
compression algorithms are interoperable because any
version of the algorithm can correctly decompress the
output of any other version. Applying the hash function and
signature after compression would constrain all PGP
implementations to the same version of the compression
algorithm.

2. Message encryption is applied after compression to strengthen
cryptographic security. Because the compressed message has
less redundancy than the original plaintext, cryptanalysis is more
difficult.

Cryptographic Keys and Key Rings

PGP makes use of four types of keys: one-time session symmetric keys,
public keys, private keys, and passphrase-based symmetric keys
(explained subsequently). Three separate requirements can be identified
with respect to these keys:

1. A means of generating unpredictable session keys is needed.

Network Security

NOTES

223

2. We would like to allow a user to have multiple public-key/private-
key pairs. One reason is that the user may wish to change his or
her key pair from time to time. When this happens, any messages
in the pipeline will be constructed with an obsolete key.
Furthermore, recipients will know only the old public key until an
update reaches them. In addition to the need to change keys over
time, a user may wish to have multiple key pairs at a given time to
interact with different groups of correspondents or simply to
enhance security by limiting the amount of material encrypted with
any one key. The upshot of all this is that there is not a one-to-one
correspondence between users and their public keys. Thus, some
means is needed for identifying particular keys.

3. Each PGP entity must maintain a file of its own public/private key
pairs as well as a file of public keys of correspondents.

Figure 4.3.2 shows the format of a transmitted PGP message. A
message consists of three components: the message component, a
signature (optional), and a session key component (optional).

Fig 4.3.2 General Format of PGP Message (from A to B)

Network Security

NOTES

224

The message component includes the actual data to be stored or
transmitted, a filename and a timestamp that specifies the time of
creation.

The signature component includes the following:

 Timestamp: The time at which the signature was made.

 Message digest: The 160-bit SHA-1 digest, encrypted with the
sender's private signature key. The digest is calculated over the
signature timestamp concatenated with the data portion of the
message component. The inclusion of the signature timestamp in
the digest assures against replay types of attacks. The exclusion
of the filename and timestamp portions of the message
component ensures that detached signatures are exactly the
same as attached signatures prefixed to the message. Detached
signatures are calculated on a separate file that has none of the
message component header fields.

 Leading two octets of message digest: To enable the recipient
to determine if the correct public key was used to decrypt the
message digest for authentication, by comparing this plaintext
copy of the first two octets with the first two octets of the
decrypted digest. These octets also serve as a 16-bit frame check
sequence for the message.

 Key ID of sender's public key: Identifies the public key that
should be used to decrypt the message digest and, hence,
identifies the private key that was used to encrypt the message
digest.

The message component and optional signature component may be
compressed using ZIP and may be encrypted using a session key. The
session key component includes the session key and the identifier of the
recipient's public key that was used by the sender to encrypt the session
key. The entire block is usually encoded with radix-64 encoding.

Key Rings

The key IDs are critical to the operation of PGP and two key IDs are
included in any PGP message that provides both confidentiality and
authentication. These keys need to be stored and organized in a
systematic way for efficient and effective use by all parties. The scheme
used in PGP is to provide a pair of data structures at each node, one to
store the public/private key pairs owned by that node and one to store the
public keys of other users known at this node. These data structures are
referred to, respectively, as the private-key ring and the public-key ring.

Figure 4.3.3 shows the general structure of a private-key ring. We can
view the ring as a table, in which each row represents one of the
public/private key pairs owned by this user.

Network Security

NOTES

225

Fig 4.3.3 General Structure of Private- and Public-Key Rings

Figure 4.3.3 also shows the general structure of a public-key ring. This
data structure is used to store public keys of other users that are known
to this user. For the moment, let us ignore some fields shown in the table
and describe the following fields:

 Timestamp: The date/time when this entry was generated.

 Key ID: The least significant 64 bits of the public key for this entry.

 Public Key: The public key for this entry.

 User ID: Identifies the owner of this key. Multiple user IDs may be
associated with a single public key.

The public-key ring can be indexed by either User ID or Key ID

PGP Message Transmission

Consider message transmission (Figure 4.3.4) and assume that the
message is to be both signed and encrypted. The sending PGP entity
performs the following steps:

Network Security

NOTES

226

Fig 4.3.4 PGP Message Generation (from User A to User B; no compression
or radix 64 conversion)

1. Signing the message

a. PGP retrieves the sender's private key from the private-key ring
using your_userid as an index. If your_userid was not provided
in the command, the first private key on the ring is retrieved.

b. PGP prompts the user for the passphrase to recover the
unencrypted private key.

c. The signature component of the message is constructed.

2. Encrypting the message

a. PGP generates a session key and encrypts the message.

b. PGP retrieves the recipient's public key from the public-key ring
using her_userid as an index.

c. The session key component of the message is constructed.

PGP Message Transmission

The receiving PGP entity performs the following steps (Figure 4.3.5):

Network Security

NOTES

227

1. Decrypting the message

PGP retrieves the receiver's private key from the private-key ring,
using the Key ID field in the session key component of the message
as an index.

a. PGP prompts the user for the passphrase to recover the
unencrypted private key.

b. PGP then recovers the session key and decrypts the
message.

2. Authenticating the message

a. PGP retrieves the sender's public key from the public-key
ring, using the Key ID field in the signature key component of
the message as an index.

b. PGP recovers the transmitted message digest.

c. PGP computes the message digest for the received message
and compares it to the transmitted message digest to
authenticate.

Fig 4.3.5 PGP Message Reception (from User A to User B; no compression or
radix 64 conversion)

Network Security

NOTES

228

S/MIME

S/MIME (Secure / Multipurpose Internet Mail Extensions) is a set of
specifications for securing

electronic mail. S/MIME is based upon the widely used MIME standard
[MIME] and describes a

protocol for adding cryptographic security services through MIME
encapsulation of digitally

signed and encrypted objects.

S/MIME provides the following cryptographic security services for
electronic messaging applications:

 Authentication

 Message integrity

 Non-repudiation of origin (using digital signatures)

 Privacy and data security (using encryption)

S/MIME relies on four fundamental technologies to format and protect
electronic mail messages.

These fundamental technologies are cryptographic algorithms, public key
infrastructure (PKI),

the cryptographic message syntax (CMS) data format, and MIME. Correct
implementation of

these mechanisms is essential to the security and interoperability of every
S/MIME client. While

these technologies will not be tested in isolation, they will be tested
indirectly.

S/MIME Functionality

In terms of general functionality, S/MIME is very similar to PGP. Both
offer the ability to sign and/or encrypt messages.

Functions

S/MIME provides the following functions:

 Enveloped data: This consists of encrypted content of any type
and encrypted-content encryption keys for one or more recipients.

Network Security

NOTES

229

 Signed data: A digital signature is formed by taking the message
digest of the content to be signed and then encrypting that with
the private key of the signer. The content plus signature are then
encoded using base64 encoding. A signed data message can
only be viewed by a recipient with S/MIME capability.

 Clear-signed data: As with signed data, a digital signature of the
content is formed. However, in this case, only the digital signature
is encoded using base64. As a result, recipients without S/MIME
capability can view the message content, although they cannot
verify the signature.

 Signed and enveloped data: Signed-only and encrypted-only
entities may be nested, so that encrypted data may be signed and
signed data or clear-signed data may be encrypted.

Cryptographic Algorithms

Table 4.3.2 summarizes the cryptographic algorithms used in S/MIME.
S/MIME uses the following terminology, taken from RFC 2119 to specify
the requirement level:

 Must: The definition is an absolute requirement of the
specification. An implementation must include this feature or
function to be in conformance with the specification.

 Should: There may exist valid reasons in particular
circumstances to ignore this feature or function, but it is
recommended that an implementation include the feature or
function.

S/MIME incorporates three public-key algorithms. The Digital Signature
Standard (DSS) is the preferred algorithm for digital signature. S/MIME
lists Diffie-Hellman as the preferred algorithm for encrypting session keys.
S/MIME uses a variant of Diffie-Hellman that does provide
encryption/decryption, known as ElGamal. As an alternative, RSAcan be
used for both signatures and session key encryption.

Function Requirement

Create a message digest to
be used in forming a digital
signature.

Encrypt message digest to
form digital signature.

MUST support SHA-1.

Receiver SHOULD support MD5 for backward
compatibility.

Sending and receiving agents MUST support
DSS.

Sending agents SHOULD support RSA
encryption.

Network Security

NOTES

230

Function Requirement

Receiving agents SHOULD support verification
of RSA signatures with key sizes 512 bits to
1024 bits.

Encrypt session key for
transmission with message.

Sending and receiving agents SHOULD support
Diffie-Hellman.

Sending and receiving agents MUST support
RSA encryption with key sizes 512 bits to 1024
bits.

Encrypt message for
transmission with one-time
session key.

Sending and receiving agents MUST support
encryption with triple DES

Sending agents SHOULD support encryption
with AES.

Sending agents SHOULD support encryption
with RC2/40.

Create a message
authentication code

Receiving agents MUST support HMAC with
SHA-1.

Receiving agents SHOULD support HMAC with
SHA-1.

Table 4.3.2 Cryptographic Algorithms Used in S/MIME

For the hash function used to create the digital signature, the
specification requires the 160-bit SHA-1 but recommends receiver
support for the 128-bit MD5 for backward compatibility with older versions
of S/MIME. For message encryption, three-key triple DES (tripleDES) is
recommended. In essence, a sending agent has two decisions to make.
First, the sending agent must determine if the receiving agent is capable
of decrypting using a given encryption algorithm. Second, if the receiving
agent is only capable of accepting weakly encrypted content, the sending
agent must decide if it is acceptable to send using weak encryption. To
support this decision process, a sending agent may announce its
decrypting capabilities in order of preference any message that it sends
out. A receiving agent may store that information for future use. The
following rules, in the following order, should be followed by a sending
agent:

1. If the sending agent has a list of preferred decrypting capabilities
from an intended recipient, it SHOULD choose the first (highest
preference) capability on the list that it is capable of using.

Network Security

NOTES

231

2. If the sending agent has no such list of capabilities from an
intended recipient but has received one or more messages from
the recipient, then the outgoing message SHOULD use the same
encryption algorithm as was used on the last signed and
encrypted message received from that intended recipient.

3. If the sending agent has no knowledge about the decryption
capabilities of the intended recipient and is willing to risk that the
recipient may not be able to decrypt the message, then the
sending agent SHOULD use tripleDES.

4. If the sending agent has no knowledge about the decryption
capabilities of the intended recipient and is not willing to risk that
the recipient may not be able to decrypt the message, then the
sending agent MUST use RC2/40.

If a message is to be sent to multiple recipients and a common encryption
algorithm cannot be selected for all, then the sending agent will need to
send two messages. However, in that case, it is important to note that the
security of the message is made vulnerable by the transmission of one
copy with lower security.

S/MIME Messages

S/MIME makes use of a number of new MIME content types, which are
shown in Table 4.3.3. All of the new application types use the designation
PKCS. This refers to a set of public-key cryptography specifications
issued by RSA Laboratories and made available for the S/MIME effort.

Type Subtype smime Parameter Description

Multipart Signed
A clear-signed message in two
parts: one is the message and
the other is the signature.

Application Pkcs 7-mime signedData A signed S/MIME entity.

Pkcs 7-mime envelopedData An encrypted S/MIME entity.

Pkcs 7-mime
degenerate
signedData

An entity containing only
public- key certificates.

Network Security

NOTES

232

Type Subtype smime Parameter Description

Pkcs 7-mime CompressedData A compressed S/MIME entity

Pkcs7-
signature

signedData
The content type of the
signature subpart of a
multipart/signed message.

Table 4.3.3 S/MIME Content Types

Securing a MIME Entity

S/MIME secures a MIME entity with a signature, encryption, or both. A
MIME entity may be an entire message, or if the MIME content type is
multipart, then a MIME entity is one or more of the subparts of the
message. The MIME entity is prepared according to the normal rules for
MIME message preparation. Then the MIME entity plus some security-
related data, such as algorithm identifiers and certificates, are processed
by S/MIME to produce what is known as a PKCS object. A PKCS object
is then treated as message content and wrapped in MIME (provided with
appropriate MIME headers).

S/MIME content types

EnvelopedData

The steps for preparing an envelopedData MIME entity are as follows:

1. Generate a pseudorandom session key for a particular symmetric
encryption algorithm (RC2/40 or tripleDES).

2. For each recipient, encrypt the session key with the recipient's
public RSA key.

3. For each recipient, prepare a block known as RecipientInfo
that contains an identifier of the recipient's public-key
certificate an identifier of the algorithm used to encrypt the
session key, and the encrypted session key.

4. Encrypt the message content with the session key.

The RecipientInfo blocks followed by the encrypted content constitute the
envelopedData. This information is then encoded into base64. A sample
message is the following:

Network Security

NOTES

233

Content-Type: application/pkcs7-mime; smime-
type=enveloped-

data; name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

rfvbnj75.6tbBghyHhHUujhJhjH77n8HHGT9HG4VQpfyF467GhIGfH
fYT6

7n8HHGghyHhHUujhJh4VQpfyF467GhIGfHfYGTrfvbnjT6jH7756tb
B9H

f8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpf
yF4

0GhIGfHfQbnj756YT64V

To recover the encrypted message, the recipient first strips off the base64
encoding. Then the recipient's private key is used to recover the session
key. Finally, the message content is decrypted with the session key.

SignedData

The signedData smime-type can actually be used with one or more
signers. For clarity, we confine our description to the case of a single
digital signature. The steps for preparing a signedData MIME entity are
as follows:

1. Select a message digest algorithm (SHA or MD5).

2. Compute the message digest, or hash function, of the content to
be signed.

3. Encrypt the message digest with the signer's private key.

4. Prepare a block known as SignerInfo that contains the signer's
public-key certificate, an identifier of the message digest algorithm,
an identifier of the algorithm used to encrypt the message digest,
and the encrypted message digest.

The signedData entity consists of a series of blocks, including a message
digest algorithm identifier, the message being signed, and SignerInfo.
The signedData entity may also include a set of public-key certificates
sufficient to constitute a chain from a recognized root or top-level
certification authority to the signer. This information is then encoded into
base64. A sample message is the following:

Network Security

NOTES

234

Content-Type: application/pkcs7-mime; smime-
type=signed-data;

name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

567GhIGfHfYT6ghyHhHUujpfyF4f8HHGTrfvhJhjH776tbB9HG4VQb
nj7

77n8HHGT9HG4VQpfyF467GhIGfHfYT6rfvbnj756tbBghyHhHUujhJ
hjH

HUujhJh4VQpfyF467GhIGfHfYGTrfvbnjT6jH7756tbB9H7n8HHGgh
yHh

6YT64V0GhIGfHfQbnj75

To recover the signed message and verify the signature, the recipient first
strips off the base64 encoding. Then the signer's public key is used to
decrypt the message digest. The recipient independently computes the
message digest and compares it to the decrypted message digest to
verify the signature.

Clear Signing

Clear signing is achieved using the multipart content type with a signed
subtype. As was mentioned, this signing process does not involve
transforming the message to be signed, so that the message is sent "in
the clear." Thus, recipients with MIME capability but not S/MIME
capability are able to read the incoming message.

A multipart/signed message has two parts. The first part can be any
MIME type but must be prepared so that it will not be altered during
transfer from source to destination. This means that if the first part is not
7bit, then it needs to be encoded using base64 or quoted-printable. Then
this part is processed in the same manner as signedData, but in this case
an object with signedData format is created that has an empty message
content field. This object is a detached signature. It is then transfer
encoded using base64 to become the second part of the multipart/signed
message. This second part has a MIME content type of application and a
subtype of pkcs7-signature. Here is a sample message:

Content-Type: multipart/signed;

protocol="application/pkcs7-signature";

micalg=sha1; boundary=boundary42

boundary42

Network Security

NOTES

235

Content-Type: text/plain

This is a clear-signed message.

boundary42

Content-Type: application/pkcs7-signature;
name=smime.p7s

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7s

ghyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfHf
YT6

4VQpfyF467GhIGfHfYT6jH77n8HHGghyHhHUujhJh756tbB9HGTrfv
bnj

n8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpf
yF4

7GhIGfHfYT64VQbnj756

boundary42

The protocol parameter indicates that this is a two-part clear-signed
entity. The micalg parameter indicates the type of message digest used.
The receiver can verify the signature by taking the message digest of the
first part and comparing this to the message digest recovered from the
signature in the second part.

Registration Request

Typically, an application or user will apply to a certification authority for a
public-key certificate. The application/pkcs10 S/MIME entity is used to
transfer a certification request. The certification request includes
certificationRequestInfo block, followed by an identifier of the public-key
encryption algorithm, followed by the signature of the
certificationRequestInfo block, made using the sender's private key. The
certificationRequestInfo block includes a name of the certificate subject
(the entity whose public key is to be certified) and a bit-string
representation of the user's public key.

Certificates-Only Message

A message containing only certificates or a certificate revocation list
(CRL) can be sent in response to a registration request. The message is
an application/pkcs7-mime type/subtype with an smime-type parameter of
degenerate. The steps involved are the same as those for creating a
signedData message, except that there is no message content and the
signerInfo field is empty.

Network Security

NOTES

236

Enhanced Security Services

As of this writing, three enhanced security services have been proposed
in an Internet draft. The details of these may change, and additional
services may be added. The three services are as follows:

 Signed receipts: A signed receipt may be requested in a
SignedData object. Returning a signed receipt provides proof of
delivery to the originator of a message and allows the originator to
demonstrate to a third party that the recipient received the
message. In essence, the recipient signs the entire original
message plus original (sender's) signature and appends the new
signature to form a new S/MIME message.

 Security labels: A security label may be included in the
authenticated attributes of a SignedData object. A security label is
a set of security information regarding the sensitivity of the content
that is protected by S/MIME encapsulation. The labels may be
used for access control, by indicating which users are permitted
access to an object. Other uses include priority (secret,
confidential, restricted, and so on) or role based, describing which
kind of people can see the information (e.g., patient's health-care
team, medical billing agents, etc.).

 Secure mailing lists: When a user sends a message to multiple
recipients, a certain amount of per-recipient processing is
required, including the use of each recipient's public key. The user
can be relieved of this work by employing the services of an
S/MIME Mail List Agent (MLA). An MLA can take a single
incoming message, perform the recipient-specific encryption for
each recipient, and forward the message. The originator of a
message need only send the message to the MLA, with
encryption performed using the MLA's public key.

IP Security

Internet Protocol Security (IPsec) is a suite of protocols for securing
Internet Protocol (IP) communications by authenticating and/or encrypting
each IP packet in a data stream. IPsec also includes protocols for
cryptographic key establishment.

IPsec protocols operate at the network layer, layer 3 of the OSI model.
Other Internet security protocols in widespread use, such as SSL, TLS
and SSH, operate from the transport layer up (OSI layers 4 - 7). This
makes IPsec more flexible, as it can be used for protecting layer 4
protocols, including both TCP and UDP, the most commonly used
transport layer protocols. IPsec has an advantage over SSL and other
methods that operate at higher layers: an application doesn't need to be

Network Security

NOTES

237

designed to use IPsec, whereas the ability to use SSL or another higher-
layer protocol must be incorporated into the design of an application.

IPsec is a framework of open standards that provides data confidentiality,
data integrity, and data authentication between participating peers. IPsec
provides these security services at the IP layer; it uses IKE to handle
negotiation of protocols and algorithms based on local policy and to
generate the encryption and authentication keys to be used by IPsec.
IPSec can be used to protect one or more data flows between a pair of
hosts, between a pair of security gateways, or between a security
gateway and a host. The official term of "IPsec" as defined by the IETF is
often being wrongly written as "IPSec".

Fig 4.3.6 An IP Security Scenario

Figure 4.3.6 is a typical scenario of IPSec usage. An organization
maintains LANs at dispersed locations. Nonsecure IP traffic is conducted
on each LAN. For traffic offsite, through some sort of private or public
WAN, IPSec protocols are used. These protocols operate in networking
devices, such as a router or firewall, that connect each LAN to the outside
world. The IPSec networking device will typically encrypt and compress
all traffic going into the WAN, and decrypt and decompress traffic coming
from the WAN; these operations are transparent to workstations and
servers on the LAN. Secure transmission is also possible with individual
users who dial into the WAN. Such user workstations must implement the
IPSec protocols to provide security.

Network Security

NOTES

238

Benefits of IPSec

 When IPSec is implemented in a firewall or router, it provides
strong security that can be applied to all traffic crossing the
perimeter. Traffic within a company or workgroup does not incur
the overhead of security-related processing.

 IPSec in a firewall is resistant to bypass if all traffic from the
outside must use IP, and the firewall is the only means of
entrance from the Internet into the organization.

 IPSec is below the transport layer (TCP, UDP) and so is
transparent to applications. There is no need to change software
on a user or server system when IPSec is implemented in the
firewall or router. Even if IPSec is implemented in end systems,
upper-layer software, including applications, is not affected.

 IPSec can be transparent to end users. There is no need to train
users on security mechanisms, issue keying material on a per-
user basis, or revoke keying material when users leave the
organization.

 IPSec can provide security for individual users if needed. This is
useful for offsite workers and for setting up a secure virtual
subnetwork within an organization for sensitive applications.

IPSec Documents

The IPSec specification consists of numerous documents. The
documents are divided into seven groups, as depicted in Fig 4.3.7 (RFC
2401).

 Architecture: Covers the general concepts, security
requirements, definitions, and mechanisms defining IPSec
technology.

 Encapsulating Security Payload (ESP): Covers the packet
format and general issues related to the use of the ESP for packet
encryption and, optionally, authentication.

 Authentication Header (AH): Covers the packet format and
general issues related to the use of AH for packet authentication.

 Encryption Algorithm: A set of documents that describe how
various encryption algorithms are used for ESP.

 Authentication Algorithm: A set of documents that describe how
various authentication algorithms are used for AH and for the
authentication option of ESP.

Network Security

NOTES

239

Fig 4.3.7 IPSec Document Overview

 Key Management: Documents that describe key management
schemes.

 Domain of Interpretation (DOI): Contains values needed for the
other documents to relate to each other. These include identifiers
for approved encryption and authentication algorithms, as well as
operational parameters such as key lifetime.

IPSec Services

IPSec provides security services at the IP layer by enabling a system to
select required security protocols, determine the algorithm(s) to use for
the service(s), and put in place any cryptographic keys required to
provide the requested services. Two protocols are used to provide
security: an authentication protocol designated by the header of the
protocol, Authentication Header (AH); and a combined
encryption/authentication protocol designated by the format of the packet
for that protocol, Encapsulating Security Payload (ESP). The services are

Network Security

NOTES

240

 Access control

 Connectionless integrity

 Data origin authentication

 Rejection of replayed packets (a form of partial sequence
integrity)

 Confidentiality (encryption)

 Limited traffic flow confidentiality

Table 4.3.4 shows which services are provided by the AH and ESP
protocols. For ESP, there are two cases: with and without the
authentication option. Both AH and ESP are vehicles for access control,
based on the distribution of cryptographic keys and the management of
traffic flows relative to these security protocols.

Table 4.3.4 IPSec Services

Transport and Tunnel Modes

Both AH and ESP support two modes of use:

 Transport and

 Tunnel mode.

Transport Mode

Transport mode provides protection primarily for upper-layer protocols.
That is, transport mode protection extends to the payload of an IP packet.
Examples include a TCP or UDP segment or an ICMP packet, all of
which operate directly above IP in a host protocol stack. Typically,
transport mode is used for end-to-end communication between two hosts
(e.g., a client and a server, or two workstations). When a host runs AH or
ESP over IPv4, the payload is the data that normally follow the IP header.
For IPv6, the payload is the data that normally follow both the IP header

Network Security

NOTES

241

and any IPv6 extensions headers that are present, with the possible
exception of the destination options header, which may be included in the
protection.

ESP in transport mode encrypts and optionally authenticates the IP
payload but not the IP header. AH in transport mode authenticates the IP
payload and selected portions of the IP header.

Tunnel Mode

Tunnel mode provides protection to the entire IP packet. To achieve this,
after the AH or ESP fields are added to the IP packet, the entire packet
plus security fields is treated as the payload of new "outer" IP packet with
a new outer IP header. The entire original, or inner, packet travels
through a "tunnel" from one point of an IP network to another; no routers
along the way are able to examine the inner IP header. Because the
original packet is encapsulated, the new, larger packet may have totally
different source and destination addresses, adding to the security. Tunnel
mode is used when one or both ends of an SA are a security gateway,
such as a firewall or router that implements IPSec. With tunnel mode, a
number of hosts on networks behind firewalls may engage in secure
communications without implementing IPSec. The unprotected packets
generated by such hosts are tunneled through external networks by
tunnel mode SAs set up by the IPSec software in the firewall or secure
router at the boundary of the local network.

Table 4.3.5 summarizes transport and tunnel mode functionality.

Transport Mode SA Tunnel Mode SA

AH Authenticates IP payload and
selected portions of IP header and
IPv6 extension headers.

Authenticates entire inner
IP packet (inner header
plus IP payload) plus
selected portions of outer
IP header and outer IPv6
extension headers.

ESP Encrypts IP payload and any IPv6
extension headers following the
ESP header.

Encrypts entire inner IP
packet.

ESP with
Authenticati
on

Encrypts IP payload and any IPv6
extension headers following the
ESP header. Authenticates IP
payload but not IP header.

Encrypts entire inner IP
packet. Authenticates
inner IP packet.

Table 4.3.5 Tunnel Mode and Transport Mode Functionality

Network Security

NOTES

242

Authentication Header

The Authentication Header provides support for data integrity and
authentication of IP packets. The data integrity feature ensures that
undetected modification to a packet's content in transit is not possible.
The authentication feature enables an end system or network device to
authenticate the user or application and filter traffic accordingly; it also
prevents the address spoofing attacks observed in today's Internet.

Authentication is based on the use of a message authentication code
(MAC). Hence the two parties must share a secret key.

The Authentication Header consists of the following fields (Figure 4.3.8):

 Next Header (8 bits): Identifies the type of header immediately
following this header.

 Payload Length (8 bits): Length of Authentication Header in 32-
bit words, minus 2. For example, the default length of the
authentication data field is 96 bits, or three 32-bit words. With a
three-word fixed header, there are a total of six words in the
header, and the Payload Length field has a value of 4.

 Reserved (16 bits): For future use.

 Security Parameters Index (32 bits): Identifies a security
association.

 Sequence Number (32 bits): A monotonically increasing counter
value, discussed later.

 Authentication Data (variable): A variable-length field (must be
an integral number of 32-bit words) that contains the Integrity
Check Value (ICV), or MAC, for this packet, discussed later.

Fig 4.3.8 IPSec Authentication Header

Network Security

NOTES

243

Transport and Tunnel Modes

Figure 4.3.9 shows two ways in which the IPSec authentication service
can be used. In one case, authentication is provided directly between a
server and client workstations; the workstation can be either on the same
network as the server or on an external network. As long as the
workstation and the server share a protected secret key, the
authentication process is secure. This case uses a transport mode SA. In
the other case, a remote workstation authenticates itself to the corporate
firewall, either for access to the entire internal network or because the
requested server does not support the authentication feature. This case
uses a tunnel mode SA.

Figure 4.3.10a shows typical IPv4 and IPv6 packets. In this case, the IP
payload is a TCP segment; it could also be a data unit for any other
protocol that uses IP, such as UDP or ICMP.

For transport mode AH using IPv4, the AH is inserted after the original IP
header and before the IP payload (e.g., a TCP segment); this is shown in
the upper part of Figure 4.3.10b. Authentication covers the entire packet,
excluding mutable fields in the IPv4 header that are set to zero for MAC
calculation.

In the context of IPv6, AH is viewed as an end-to-end payload; that is, it is
not examined or processed by intermediate routers. Therefore, the AH
appears after the IPv6 base header and the hop-by-hop, routing, and
fragment extension headers. The destination options extension header
could appear before or after the AH header, depending on the semantics
desired. Again, authentication covers the entire packet, excluding
mutable fields that are set to zero for MAC calculation

For tunnel mode AH, the entire original IP packet is authenticated, and
the AH is inserted between the original IP header and a new outer IP
header (Figure 4.3.10c). The inner IP header carries the ultimate source
and destination addresses, while an outer IP header may contain different
IP addresses (e.g., addresses of firewalls or other security gateways).

With tunnel mode, the entire inner IP packet, including the entire inner IP
header is protected by AH. The outer IP header (and in the case of IPv6,
the outer IP extension headers) is protected except for mutable and
unpredictable fields.

Network Security

NOTES

244

Fig 4.3.9 End-to-End versus End-to-Intermediate Authentication

Network Security

NOTES

245

Fig 4.3.10 End-to-End versus End-to-Intermediate Authentication

Encapsulating Security Payload

The Encapsulating Security Payload provides confidentiality services,
including confidentiality of message contents and limited traffic flow
confidentiality. As an optional feature, ESP can also provide an
authentication service.

ESP Format

Figure 4.3.11 shows the format of an ESP packet. It contains the
following fields:

Network Security

NOTES

246

Fig 4.3.11 IPSec ESP format

 Security Parameters Index (32 bits): Identifies a security
association.

 Sequence Number (32 bits): A monotonically increasing counter
value; this provides an anti-replay function, as discussed for AH.

 Payload Data (variable): This is a transport-level segment
(transport mode) or IP packet (tunnel mode) that is protected by
encryption.

 Padding (0255 bytes): The purpose of this field is discussed later.

 Pad Length (8 bits): Indicates the number of pad bytes
immediately preceding this field.

 Next Header (8 bits): Identifies the type of data contained in the
payload data field by identifying the first header in that payload
(for example, an extension header in IPv6, or an upper-layer
protocol such as TCP).

 Authentication Data (variable): A variable-length field (must be an
integral number of 32-bit words) that contains the Integrity Check
Value computed over the ESP packet minus the Authentication
Data field.

Encryption and Authentication Algorithms

The Payload Data, Padding, Pad Length, and Next Header fields are
encrypted by the ESP service. If the algorithm used to encrypt the
payload requires cryptographic synchronization data, such as an
initialization vector (IV), then these data may be carried explicitly at the

Network Security

NOTES

247

beginning of the Payload Data field. If included, an IV is usually not
encrypted, although it is often referred to as being part of the ciphertext.

The current specification dictates that a compliant implementation must
support DES in cipher block chaining (CBC) mode. A number of other
algorithms have been assigned identifiers in the DOI document and could
therefore easily be used for encryption; these include

 Three-key triple DES

 RC5

 IDEA

 Three-key triple IDEA

 CAST

 Blowfish

Padding

The Padding field serves several purposes:

 If an encryption algorithm requires the plaintext to be a multiple of
some number of bytes (e.g., the multiple of a single block for a
block cipher), the Padding field is used to expand the plaintext
(consisting of the Payload Data, Padding, Pad Length, and Next
Header fields) to the required length.

 The ESP format requires that the Pad Length and Next Header
fields be right aligned within a 32-bit word. Equivalently, the
ciphertext must be an integer multiple of 32 bits. The Padding field
is used to assure this alignment.

 Additional padding may be added to provide partial traffic flow
confidentiality by concealing the actual length of the payload.

Network Security

NOTES

248

Transport and Tunnel Modes

Fig 4.3.12 Transport-Mode vs. Tunnel-Mode Encryption

Figure 4.3.12 shows two ways in which the IPSec ESP service can be
used. In the upper part of the figure, encryption (and optionally
authentication) is provided directly between two hosts. Figure4.3.12b
shows how tunnel mode operation can be used to set up a virtual private
network. In this example, an organization has four private networks
interconnected across the Internet. Hosts on the internal networks use
the Internet for transport of data but do not interact with other Internet-
based hosts. By terminating the tunnels at the security gateway to each
internal network, the configuration allows the hosts to avoid implementing
the security capability. The former technique is support by a transport
mode SA, while the latter technique uses a tunnel mode SA.

Transport Mode ESP

Transport mode ESP is used to encrypt and optionally authenticate the
data carried by IP (e.g., a TCP segment), as shown in Figure 4.3.13a. For
this mode using IPv4, the ESP header is inserted into the IP packet
immediately prior to the transport-layer header (e.g., TCP, UDP, ICMP)
and an ESP trailer (Padding, Pad Length, and Next Header fields) is
placed after the IP packet; if authentication is selected, the ESP
Authentication Data field is added after the ESP trailer. The entire
transport-level segment plus the ESP trailer are encrypted. Authentication
covers all of the ciphertext plus the ESP header.

Network Security

NOTES

249

Fig 4.3.13 Scope of ESP Encryption and Authentication

In the context of IPv6, ESP is viewed as an end-to-end payload; that is, it
is not examined or processed by intermediate routers. Therefore, the
ESP header appears after the IPv6 base header and the hop-by-hop,
routing, and fragment extension headers. The destination options
extension header could appear before or after the ESP header,
depending on the semantics desired. For IPv6, encryption covers the
entire transport-level segment plus the ESP trailer plus the destination
options extension header if it occurs after the ESP header. Again,
authentication covers the ciphertext plus the ESP header.

Transport mode operation may be summarized as follows:

1. At the source, the block of data consisting of the ESP trailer plus
the entire transport-layer segment is encrypted and the plaintext
of this block is replaced with its ciphertext to form the IP packet for
transmission. Authentication is added if this option is selected.

2. The packet is then routed to the destination. Each intermediate
router needs to examine and process the IP header plus any
plaintext IP extension headers but does not need to examine the
ciphertext.

Network Security

NOTES

250

3. The destination node examines and processes the IP header plus
any plaintext IP extension headers. Then, on the basis of the SPI
in the ESP header, the destination node decrypts the remainder of
the packet to recover the plaintext transport-layer segment.

Transport mode operation provides confidentiality for any application that
uses it, thus avoiding the need to implement confidentiality in every
individual application. This mode of operation is also reasonably efficient,
adding little to the total length of the IP packet. One drawback to this
mode is that it is possible to do traffic analysis on the transmitted packets.

Tunnel Mode ESP

Tunnel mode ESP is used to encrypt an entire IP packet (Figure 4.3.13b).

For this mode, the ESP header is prefixed to the packet and then the

packet plus the ESP trailer is encrypted. This method can be used to

counter traffic analysis.

Because the IP header contains the destination address and possibly

source routing directives and hop-by-hop option information, it is not

possible simply to transmit the encrypted IP packet prefixed by the ESP

header. Intermediate routers would be unable to process such a packet.

Therefore, it is necessary to encapsulate the entire block (ESP header

plus ciphertext plus Authentication Data, if present) with a new IP header

that will contain sufficient information for routing but not for traffic

analysis.

Whereas the transport mode is suitable for protecting connections

between hosts that support the ESP feature, the tunnel mode is useful in

a configuration that includes a firewall or other sort of security gateway

that protects a trusted network from external networks. In this latter case,

encryption occurs only between an external host and the security

gateway or between two security gateways. This relieves hosts on the

internal network of the processing burden of encryption and simplifies the

key distribution task by reducing the number of needed keys. Further, it

thwarts traffic analysis based on ultimate destination.

Network Security

NOTES

251

REFERENCES

1. William Stallings, Cryptography and Network Security, PHI

Publishers

Review Questions:

1. Give an account of PGP message format

2. Explain in detail PGP message generation and reception

3. Write a short note on S/MIME

4. Explain S/MIME content types in detail

5. Explain about IPSEC in detail

6. Explain Transport and Tunnel modes of operation of IPSec in
detail

Network Security

NOTES

252

4. WEB SECURITY

OBJECTIVE

This lesson looks at the IP security scheme that has been developed to
operate both with the current IP and the emerging next-generation IP,
known as IPv6 and issues of web-security including Secured Socket
Layer (SSL) and Secure Electronic Transaction (SET).

SECURED SOCKET LAYER

Secured Socket Layer, abbreviated as SSL, is a protocol developed by
Netscape for transmitting private documents via the Internet. SSL uses a
cryptographic system that uses two keys to encrypt data − a public key
known to everyone and a private or secret key known only to the recipient
of the message. Both Netscape Navigator and Internet Explorer support
SSL, and many Web sites use the protocol to obtain confidential user
information, such as credit card numbers. By convention, URLs that
require an SSL connection start with https: instead of http:.

Secure Sockets Layer (SSL) technology protects your Web site and
makes it easy for your Web site visitors to trust you in three essential
ways:

1. An SSL Certificate enables encryption of sensitive information
during online transactions.

2. Each SSL Certificate contains unique, authenticated information
about the certificate owner.

3. A Certificate Authority verifies the identity of the certificate owner
when it is issued.

You need SSL if

 you have an online store or accept online orders and credit cards

 you offer a login or sign in on your site

 you process sensitive data such as address, birth date, license, or ID
numbers

 you need to comply with privacy and security requirements

 you value privacy and expect others to trust you.

Network Security

NOTES

253

Another protocol for transmitting data securely over the World Wide Web is
Secure HTTP (S-HTTP). Whereas SSL creates a secure connection between
a client and a server, over which any amount of data can be sent securely, S-
HTTP is designed to transmit individual messages securely. SSL and S-
HTTP, therefore, can be seen as complementary rather than competing
technologies. Both protocols have been approved by the Internet Engineering
Task Force (IETF) as a standard.

SSL Architecture

SSL is designed to make use of TCP to provide a reliable end-to-end
secure service. SSL is not a single protocol but rather two layers of
protocols, as illustrated in Figure 4.3.14.

Fig 4.3.14 SSL Protocol Stack

The SSL Record Protocol provides basic security services to various
higher-layer protocols. In particular, the Hypertext Transfer Protocol
(HTTP), which provides the transfer service for Web client/server
interaction, can operate on top of SSL. Three higher-layer protocols are
defined as part of SSL: the Handshake Protocol, The Change Cipher
Spec Protocol, and the Alert Protocol. These SSL-specific protocols are
used in the management of SSL exchanges and are examined later in
this section.

Two important SSL concepts are the SSL session and the SSL
connection, which are defined in the specification as follows:

 Connection: A connection is a transport (in the OSI layering
model definition) that provides a suitable type of service. For SSL,
such connections are peer-to-peer relationships. The connections
are transient. Every connection is associated with one session.

 Session: An SSL session is an association between a client and
a server. Sessions are created by the Handshake Protocol.
Sessions define a set of cryptographic security parameters, which
can be shared among multiple connections. Sessions are used to
avoid the expensive negotiation of new security parameters for
each connection.

Network Security

NOTES

254

Between any pair of parties (applications such as HTTP on client and
server), there may be multiple secure connections. There are actually a
number of states associated with each session. Once a session is
established, there is a current operating state for both read and write (i.e.,
receive and send). In addition, during the Handshake Protocol, pending
read and write states are created. Upon successful conclusion of the
Handshake Protocol, the pending states become the current states.

SSL Record Protocol

The SSL Record Protocol provides two services for SSL connections:

 Confidentiality: The Handshake Protocol defines a shared secret
key that is used for conventional encryption of SSL payloads.

 Message Integrity: The Handshake Protocol also defines a
shared secret key that is used to form a message authentication
code (MAC).

Figure 4.3.15 indicates the overall operation of the SSL Record Protocol.
The Record Protocol takes an application message to be transmitted,
fragments the data into manageable blocks, optionally compresses the
data, applies a MAC, encrypts, adds a header, and transmits the resulting
unit in a TCP segment. Received data are decrypted, verified,
decompressed, and reassembled and then delivered to higher-level
users.

The first step is fragmentation. Each upper-layer message is fragmented
into blocks of 214 bytes (16384 bytes) or less. Next, compression is
optionally applied. Compression must be lossless and may not increase
the content length by more than 1024 bytes.

The next step in processing is to compute a message authentication
code over the compressed data. For this purpose, a shared secret key is
used.

Network Security

NOTES

255

Fig 4.3.15 SSL Record Protocol Operation

The calculation is defined as:

hash(MAC_write_secret || pad_2 ||

hash(MAC_write_secret || pad_1 || seq_num ||

SSLCompressed.type ||

SSLCompressed.length || SSLCompressed.fragment))

where

|| = concatenation

MAC_write_secret = shared secret key

hash = cryptographic hash algorithm; either MD5
or SHA-1

pad_1 = the byte 0x36 (0011 0110) repeated 48
times (384 bits) for MD5 and 40 times
(320 bits) for SHA-1

pad_2 = the byte 0x5C (0101 1100) repeated 48
times for MD5 and 40 times for SHA-1

Network Security

NOTES

256

|| = concatenation

seq_num = the sequence number for this message

SSLCompressed.type = the higher-level protocol used to process
this fragment

SSLCompressed.length = the length of the compressed fragment

SSLCompressed.fragment = the compressed fragment (if
compression is not used, the plaintext
fragment)

Next, the compressed message plus the MAC are encrypted using
symmetric encryption. Encryption may not increase the content length by
more than 1024 bytes, so that the total length may not exceed 214 + 2048.
The following encryption algorithms are permitted:

Block Cipher Stream Cipher

Algorithm Key Size Algorithm Key Size

AES 128,256 RC4-40 40

IDEA 128 RC4-128 128

RC2-40 40

DES-40 40

DES 56

3DES 168

Fortezza 80

For stream encryption, the compressed message plus the MAC are
encrypted. Note that the MAC is computed before encryption takes place

Network Security

NOTES

257

and that the MAC is then encrypted along with the plaintext or
compressed plaintext.

For block encryption, padding may be added after the MAC prior to
encryption. The padding is in the form of a number of padding bytes
followed by a one-byte indication of the length of the padding. The total
amount of padding is the smallest amount such that the total size of the
data to be encrypted (plaintext plus MAC plus padding) is a multiple of
the cipher's block length. An example is a plaintext (or compressed text if
compression is used) of 58 bytes, with a MAC of 20 bytes (using SHA-1),
that is encrypted using a block length of 8 bytes (e.g., DES). With the
padding.length byte, this yields a total of 79 bytes. To make the total an
integer multiple of 8, one byte of padding is added.

The final step of SSL Record Protocol processing is to prepend a header,
consisting of the following fields:

 Content Type (8 bits): The higher layer protocol used to process the
enclosed fragment.

 Major Version (8 bits): Indicates major version of SSL in use. For
SSLv3, the value is 3.

 Minor Version (8 bits): Indicates minor version in use. For SSLv3, the
value is 0.

 Compressed Length (16 bits): The length in bytes of the plaintext
fragment (or compressed fragment if compression is used). The
maximum value is 2

14
+ 2048.

The content types that have been defined are change_cipher_spec, alert,
handshake, and application_data. The first three are the SSL-specific
protocols. Figure 4.3.16 illustrates the SSL record format.

Fig 4.3.16 SSL Record Format

Network Security

NOTES

258

Change Cipher Spec Protocol

The Change Cipher Spec Protocol is one of the three SSL-specific
protocols that use the SSL Record Protocol, and it is the simplest. This
protocol consists of a single message (Figure 4.3.17a), which consists of
a single byte with the value 1. The sole purpose of this message is to
cause the pending state to be copied into the current state, which
updates the cipher suite to be used on this connection.

Fig 4.3.17 SSL Record Protocol Payload

Alert Protocol

The Alert Protocol is used to convey SSL-related alerts to the peer entity.
As with other applications that use SSL, alert messages are compressed
and encrypted, as specified by the current state.

Each message in this protocol consists of two bytes (Figure 4.3.17b). The
first byte takes the value warning(1) or fatal(2) to convey the severity of
the message. If the level is fatal, SSL immediately terminates the
connection. Other connections on the same session may continue, but no
new connections on this session may be established. The second byte
contains a code that indicates the specific alert. First, we list those alerts
that are always fatal (definitions from the SSL specification):

 unexpected_message: An inappropriate message was received.

 bad_record_mac: An incorrect MAC was received.

 decompression_failure: The decompression function received
improper input (e.g., unable to decompress or decompress to greater
than maximum allowable length).

 handshake_failure: Sender was unable to negotiate an
acceptable set of security parameters given the options available.

Network Security

NOTES

259

 illegal_parameter: A field in a handshake message was out of
range or inconsistent with other fields.

 close_notify: Notifies the recipient that the sender will not send
any more messages on this connection. Each party is required to
send a close_notify alert before closing the write side of a
connection.

 no_certificate: May be sent in response to a certificate request if
no appropriate certificate is available.

 bad_certificate: A received certificate was corrupt (e.g.,
contained a signature that did not verify).

 unsupported_certificate: The type of the received certificate is
not supported.

 certificate_revoked: A certificate has been revoked by its signer.

 certificate_expired: A certificate has expired.

 certificate_unknown: Some other unspecified issue arose in
processing the certificate, rendering it unacceptable.

Handshake Protocol

The most complex part of SSL is the Handshake Protocol. This protocol
allows the server and client to authenticate each other and to negotiate
an encryption and MAC algorithm and cryptographic keys to be used to
protect data sent in an SSL record. The Handshake Protocol is used
before any application data is transmitted.

The Handshake Protocol consists of a series of messages exchanged by
client and server. All of these have the format shown in Figure 4.3.17c.
Each message has three fields:

 Type (1 byte): Indicates one of 10 messages.

 Length (3 bytes): The length of the message in bytes.

 Content (≥0 bytes): The parameters associated with this
message(Table 4.3.6).

Message Type Parameters

hello_request null

Network Security

NOTES

260

Message Type Parameters

client_hello version, random, session id, cipher suite, compression
method

server_hello version, random, session id, cipher suite, compression
method

certificate chain of X.509v3 certificates

server_key_exchange parameters, signature

certificate_request type, authorities

server_done null

certificate_verify signature

client_key_exchange parameters, signature

finished hash value

Table 4.3.6 SSL Handshake Protocol Message Types

Figure 4.3.18 shows the initial exchange needed to establish a logical
connection between client and server. The exchange can be viewed as
having four phases.

Phase1. Establish Security Capabilities

This phase is used to initiate a logical connection and to establish the
security capabilities that will be associated with it. The exchange is
initiated by the client, which sends a client_hello message with the
following parameters:

 Version: The highest SSL version understood by the client.

 Random: A client-generated random structure, consisting of a 32-
bit timestamp and 28 bytes generated by a secure random
number generator. These values serve as nonces and are used
during key exchange to prevent replay attacks.

Network Security

NOTES

261

 Session ID: A variable-length session identifier. A nonzero value
indicates that the client wishes to update the parameters of an
existing connection or create a new connection on this session. A
zero value indicates that the client wishes to establish a new
connection on a new session.

 CipherSuite: This is a list that contains the combinations of
cryptographic algorithms supported by the client, in decreasing
order of preference. Each element of the list (each cipher suite)
defines both a key exchange algorithm and a CipherSpec.

 Compression Method: This is a list of the compression methods
the client supports.

After sending the client_hello message, the client waits for the
server_hello message, which contains the same parameters as the
client_hello message. For the server_hello message, the following
conventions apply. The Version field contains the lower of the version
suggested by the client and the highest supported by the server. The
Random field is generated by the server and is independent of the client's
Random field. If the SessionID field of the client was nonzero, the same
value is used by the server; otherwise the server's SessionID field
contains the value for a new session. The CipherSuite field contains the
single cipher suite selected by the server from those proposed by the
client. The Compression field contains the compression method selected
by the server from those proposed by the client.

The first element of the Cipher Suite parameter is the key exchange
method (i.e., the means by which the cryptographic keys for conventional
encryption and MAC are exchanged).

Network Security

NOTES

262

Fig 4.3.18 Handshake Protocol Action

The following key exchange methods are supported:

 RSA

 Fixed Diffie-Hellman.

 Ephemeral Diffie

 Anonymous Diffie-Hellman

 Fortezza

Network Security

NOTES

263

Following the definition of a key exchange method is the CipherSpec,
which includes the following fields:

 CipherAlgorithm: Any of the algorithms mentioned earlier: RC4,
RC2, DES, 3DES, DES40, IDEA, Fortezza

 MACAlgorithm: MD5 or SHA-1

 CipherType: Stream or Block

 IsExportable: True or False

 HashSize: 0, 16 (for MD5), or 20 (for SHA-1) bytes

 Key Material: A sequence of bytes that contain data used in
generating the write keys

 IV Size: The size of the Initialization Value for Cipher Block
Chaining (CBC) encryption

Phase2. Server Authentication and Key Exchange

The server begins this phase by sending its certificate, if it needs to be
authenticated; the message contains one or a chain of X.509 certificates.
The certificate message is required for any agreed-on key exchange
method except anonymous Diffie-Hellman.

Next, a server_key_exchange message may be sent if it is required. It is
not required in two instances:

(1) The server has sent a certificate with fixed Diffie-Hellman parameters

(2) RSA key exchange is to be used.

In this case the hash is defined as

hash(ClientHello.random || ServerHello.random || ServerParams)

So the hash covers not only the Diffie-Hellman or RSA parameters, but
also the two nonces from the initial hello messages. This ensures against
replay attacks and misrepresentation. In the case of a DSS signature, the
hash is performed using the SHA-1 algorithm. In the case of an RSA
signature, both an MD5 and an SHA-1 hash are calculated, and the
concatenation of the two hashes (36 bytes) is encrypted with the server's
private key.

Network Security

NOTES

264

Next, a nonanonymous server (server not using anonymous Diffie-
Hellman) can request a certificate from the client. The certificate_request
message includes two parameters: certificate_type and
certificate_authorities. The certificate type indicates the public-key
algorithm and its use:

 RSA, signature only

 DSS, signature only

 RSA for fixed Diffie-Hellman; in this case the signature is used
only for authentication, by sending a certificate signed with RSA

 DSS for fixed Diffie-Hellman; again, used only for authentication

 RSA for ephemeral Diffie-Hellman

 DSS for ephemeral Diffie-Hellman

 Fortezza

The second parameter in the certificate_request message is a list of the
distinguished names of acceptable certificate authorities.

The final and always required message in Phase 2 is the server_done
message, which is sent by the server to indicate the end of the server
hello and associated messages. After sending this message, the server
will wait for a client response. This message has no parameters.

Phase3. Client Authentication and Key Exchange

Upon receipt of the server_done message, the client should verify that
the server provided a valid certificate if required and check that the
server_hello parameters are acceptable. If all is satisfactory, the client
sends one or more messages back to the server.

If the server has requested a certificate, the client begins this phase by
sending a certificate message. If no suitable certificate is available, the
client sends a no_certificate alert instead.

Next is the client_key_exchange message, which must be sent in this
phase. The content of the message depends on the type of key
exchange, as follows:

 RSA: The client generates a 48-byte pre-master secret and
encrypts with the public key from the server's certificate or
temporary RSA key from a server_key_exchange message. Its
use to compute a master secret is explained later.

 Ephemeral or Anonymous Diffie-Hellman: The client's public
Diffie-Hellman parameters are sent.

Network Security

NOTES

265

 Fixed Diffie-Hellman: The client's public Diffie-Hellman
parameters were sent in a certificate message, so the content of
this message is null.

 Fortezza: The client's Fortezza parameters are sent.

Finally, in this phase, the client may send a certificate_verify message to
provide explicit verification of a client certificate. This message is only
sent following any client certificate that has signing capability (i.e., all
certificates except those containing fixed Diffie-Hellman parameters). This
message signs a hash code based on the preceding messages, defined
as follows:

CertificateVerify.signature.md5_hash

MD5(master_secret||pad_2||

MD5(handshake_messages||master_secret ||
pad_1));

Certificate.signature.sha_hash

SHA(master_secret||pad_2|| HA(handshake_messages
|| master_secret || pad_1));

where pad_1 and pad_2 are the values defined earlier for the MAC,
handshake_messages refers to all Handshake Protocol messages sent
or received starting at client_hello but not including this message, and
master_secret is the calculated secret whose construction is explained
later in this section. If the user's private key is DSS, then it is used to
encrypt the SHA-1 hash. If the user's private key is RSA, it is used to
encrypt the concatenation of the MD5 and SHA-1 hashes. In either case,
the purpose is to verify the client's ownership of the private key for the
client certificate. Even if someone is misusing the client's certificate, he or
she would be unable to send this message.

Phase4. Finish

This phase completes the setting up of a secure connection. The client
sends a change_cipher_spec message and copies the pending
CipherSpec into the current CipherSpec. Note that this message is not
considered part of the Handshake Protocol but is sent using the Change
Cipher Spec Protocol. The client then immediately sends the finished
message under the new algorithms, keys, and secrets. The finished
message verifies that the key exchange and authentication processes
were successful. The content of the finished message is the
concatenation of two hash values:

MD5(master_secret || pad2 || MD5(handshake_messages ||

Sender || master_secret || pad1))

Network Security

NOTES

266

SHA(master_secret || pad2 || SHA(handshake_messages ||

Sender || master_secret || pad1))

where Sender is a code that identifies that the sender is the client and
handshake_messages is all of the data from all handshake messages up
to but not including this message.

In response to these two messages, the server sends its own
change_cipher_spec message, transfers the pending to the current
CipherSpec, and sends its finished message. At this point the handshake
is complete and the client and server may begin to exchange application
layer data.

SECURE ELECTRONIC TRANSACTION

SET is an open encryption and security specification designed to protect
credit card transactions on the Internet. SET is a set of security protocols
and formats that enables users to employ the existing credit card
payment infrastructure on an open network, such as the Internet, in a
secure fashion. In essence, SET provides three services:

 Provides a secure communications channel among all parties
involved in a transaction

 Provides trust by the use of X.509v3 digital certificates

 Ensures privacy because the information is only available to
parties in a transaction when and where necessary

Key Features of SET

 Confidentiality of information: Cardholder account and payment
information is secured as it travels across the network. An
interesting and important feature of SET is that it prevents the
merchant from learning the cardholder's credit card number; this is
only provided to the issuing bank. Conventional encryption by
DES is used to provide confidentiality.

 Integrity of data: Payment information sent from cardholders to
merchants includes order information, personal data, and
payment instructions. SET guarantees that these message
contents are not altered in transit. RSA digital signatures, using
SHA-1 hash codes, provide message integrity. Certain messages
are also protected by HMAC using SHA-1.

 Cardholder account authentication: SET enables merchants to
verify that a cardholder is a legitimate user of a valid card account

Network Security

NOTES

267

number. SET uses X.509v3 digital certificates with RSA
signatures for this purpose.

 Merchant authentication: SET enables cardholders to verify that
a merchant has a relationship with a financial institution allowing it
to accept payment cards. SET uses X.509v3 digital certificates
with RSA signatures for this purpose.

Note that unlike IPSec and SSL/TLS, SET provides only one choice for
each cryptographic algorithm. This makes sense, because SET is a
single application with a single set of requirements, whereas IPSec and
SSL/TLS are intended to support a range of applications.

SET Participants

Figure 4.3.19 indicates the participants in the SET system, which include
the following:

 Cardholder: In the electronic environment, consumers and
corporate purchasers interact with merchants from personal
computers over the Internet. A cardholder is an authorized holder
of a payment card (e.g., MasterCard, Visa) that has been issued
by an issuer.

 Merchant: A merchant is a person or organization that has goods
or services to sell to the cardholder. Typically, these goods and
services are offered via a Web site or by electronic mail. A
merchant that accepts payment cards must have a relationship
with an acquirer.

 Issuer: This is a financial institution, such as a bank, that provides
the cardholder with the payment card. Typically, accounts are
applied for and opened by mail or in person. Ultimately, it is the
issuer that is responsible for the payment of the debt of the
cardholder.

 Acquirer: This is a financial institution that establishes an account
with a merchant and processes payment card authorizations and
payments. Merchants will usually accept more than one credit
card brand but do not want to deal with multiple bankcard
associations or with multiple individual issuers. The acquirer
provides authorization to the merchant that a given card account
is active and that the proposed purchase does not exceed the
credit limit. The acquirer also provides electronic transfer of
payments to the merchant's account. Subsequently, the acquirer
is reimbursed by the issuer over some sort of payment network for
electronic funds transfer.

 Payment gateway: This is a function operated by the acquirer or
a designated third party that processes merchant payment
messages. The payment gateway interfaces between SET and

Network Security

NOTES

268

the existing bankcard payment networks for authorization and
payment functions. The merchant exchanges SET messages with
the payment gateway over the Internet, while the payment
gateway has some direct or network connection to the acquirer's
financial processing system.

 Certification authority (CA): This is an entity that is trusted to
issue X.509v3 public-key certificates for cardholders, merchants,
and payment gateways. The success of SET will depend on the
existence of a CA infrastructure available for this purpose. As was
discussed in previous chapters, a hierarchy of CAs is used, so
that participants need not be directly certified by a root authority.

The following are the events that are required for a transaction. The
customer opens an account. The customer obtains a credit card account,
such as MasterCard or Visa, with a bank that supports electronic
payment and SET.

1. The customer receives a certificate. After suitable verification of
identity, the customer receives an X.509v3 digital certificate,
which is signed by the bank. The certificate verifies the customer's
RSA public key and its expiration date. It also establishes a
relationship, guaranteed by the bank, between the customer's key
pair and his or her credit card.

Fig 4.3.19 Secure Electronic Commerce Components

2. Merchants have their own certificates. A merchant who accepts a
certain brand of card must be in possession of two certificates for
two public keys owned by the merchant: one for signing
messages, and one for key exchange. The merchant also needs a
copy of the payment gateway's public-key certificate.

Network Security

NOTES

269

3. The customer places an order. This is a process that may involve
the customer first browsing through the merchant's Web site to
select items and determine the price. The customer then sends a
list of the items to be purchased to the merchant, who returns an
order form containing the list of items, their price, a total price, and
an order number.

4. The merchant is verified. In addition to the order form, the
merchant sends a copy of its certificate, so that the customer can
verify that he or she is dealing with a valid store.

5. The order and payment are sent. The customer sends both order
and payment information to the merchant, along with the
customer's certificate. The order confirms the purchase of the
items in the order form. The payment contains credit card details.
The payment information is encrypted in such a way that it cannot
be read by the merchant. The customer's certificate enables the
merchant to verify the customer.

6. The merchant requests payment authorization. The merchant
sends the payment information to the payment gateway,
requesting authorization that the customer's available credit is
sufficient for this purchase.

7. The merchant confirms the order. The merchant sends
confirmation of the order to the customer.

8. The merchant provides the goods or service. The merchant ships
the goods or provides the service to the customer.

9. The merchant requests payment. This request is sent to the
payment gateway, which handles all of the payment processing.

Dual Signature

An important innovation introduced in SET is the dual signature. The
purpose of the dual signature is to link two messages that are intended
for two different recipients. In this case, the customer wants to send the
order information (OI) to the merchant and the payment information (PI)
to the bank. The merchant does not need to know the customer's credit
card number, and the bank does not need to know the details of the
customer's order. The customer is afforded extra protection in terms of
privacy by keeping these two items separate. However, the two items
must be linked in a way that can be used to resolve disputes if necessary.
The link is needed so that the customer can prove that this payment is
intended for this order and not for some other goods or service.

To see the need for the link, suppose that the customers send the
merchant two messages: a signed OI and a signed PI, and the merchant
passes the PI on to the bank. If the merchant can capture another OI

Network Security

NOTES

270

from this customer, the merchant could claim that this OI goes with the PI
rather than the original OI. The linkage prevents this.

Figure 4.3.20 shows the use of a dual signature to meet the requirement
of the preceding paragraph. The customer takes the hash (using SHA-1)
of the PI and the hash of the OI. These two hashes are then
concatenated and the hash of the result is taken. Finally, the customer
encrypts the final hash with his or her private signature key, creating the
dual signature. The operation can be summarized as

DS = E(PRc, [H(H(PI)||H(OI)])

where PRc is the customer's private signature key. Now suppose that the
merchant is in possession of the dual signature (DS), the OI, and the
message digest for the PI (PIMD). The merchant also has the public key
of the customer, taken from the customer's certificate. Then the merchant
can compute the quantities

H(PIMS||H[OI]); D(PUc, DS)

where PUc is the customer's public signature key. If these two quantities
are equal, then the merchant has verified the signature. Similarly, if the
bank is in possession of DS, PI, the message digest for OI (OIMD), and
the customer's public key, then the bank can compute

H(H[OI]||OIMD); D(PUc, DS)

In summary,

1. The merchant has received OI and verified the signature.

2. The bank has received PI and verified the signature.

3. The customer has linked the OI and PI and can prove the linkage.

Network Security

NOTES

271

Fig 4.3.20 Construction of Dual Signature

For example, suppose the merchant wishes to substitute another OI in
this transaction, to its advantage. It would then have to find another OI
whose hash matches the existing OIMD. With SHA-1, this is deemed not
to be feasible. Thus, the merchant cannot link another OI with this PI.

Payment Processing

Table 4.3.7 lists the transaction types supported by SET. We look in
some detail at the following transactions:

 Purchase request

 Payment authorization

 Payment capture

Cardholder registration Cardholders must register with a CA before they can send
SET messages to merchants.

Merchant registration Merchants must register with a CA before they can
exchange SET messages with customers and payment
gateways.

Purchase request Message from customer to merchant containing OI for
merchant and PI for bank.

Payment authorization Exchange between merchant and payment gateway to
authorize a given amount for a purchase on a given credit

Network Security

NOTES

272

Cardholder registration Cardholders must register with a CA before they can send
SET messages to merchants.

card account.

Payment capture Allows the merchant to request payment from the payment
gateway.

Certificate inquiry and
status

If the CA is unable to complete the processing of a
certificate request quickly, it will send a reply to the
cardholder or merchant indicating that the requester should
check back later. The cardholder or merchant sends the
Certificate Inquiry message to determine the status of the
certificate request and to receive the certificate if the
request has been approved.

Purchase inquiry Allows the cardholder to check the status of the processing
of an order after the purchase response has been received.
Note that this message does not include information such
as the status of back ordered goods, but does indicate the
status of authorization, capture and credit processing.

Authorization reversal Allows a merchant to correct previous authorization
requests. If the order will not be completed, the merchant
reverses the entire authorization. If part of the order will not
be completed (such as when goods are back ordered), the
merchant reverses part of the amount of the authorization.

Capture reversal Allows a merchant to correct errors in capture requests
such as transaction amounts that were entered incorrectly
by a clerk.

Credit Allows a merchant to issue a credit to a cardholder's
account such as when goods are returned or were
damaged during shipping. Note that the SET Credit
message is always initiated by the merchant, not the
cardholder. All communications between the cardholder
and merchant that result in a credit being processed
happen outside of SET.

Credit reversal Allows a merchant to correct a previously request credit.

Payment gateway

certificate request

Allows a merchant to query the payment gateway and
receive a copy of the gateway's current key-exchange and
signature certificates.

Batch administration Allows a merchant to communicate information to the
payment gateway regarding merchant batches.

Error message Indicates that a responder rejects a message because it

Network Security

NOTES

273

Cardholder registration Cardholders must register with a CA before they can send
SET messages to merchants.

fails format or content verification tests.

Table 4.3.7 SET Transaction Types

Purchase Request

Before the Purchase Request exchange begins, the cardholder has
completed browsing, selecting, and ordering. The end of this preliminary
phase occurs when the merchant sends a completed order form to the
customer. All of the preceding occurs without the use of SET.

The purchase request exchange consists of four messages: Initiate
Request, Initiate Response, Purchase Request, and Purchase Response.

In order to send SET messages to the merchant, the cardholder must
have a copy of the certificates of the merchant and the payment gateway.
The customer requests the certificates in the Initiate Request message,
sent to the merchant. This message includes the brand of the credit card
that the customer is using. The message also includes an ID assigned to
this request/response pair by the customer and a nonce used to ensure
timeliness.

The merchant generates a response and signs it with its private signature
key. The response includes the nonce from the customer, another nonce
for the customer to return in the next message, and a transaction ID for
this purchase transaction. In addition to the signed response, the Initiate
Response message includes the merchant's signature certificate and the
payment gateway's key exchange certificate.

The cardholder verifies the merchant and gateway certificates by means
of their respective CA signatures and then creates the OI and PI. The
transaction ID assigned by the merchant is placed in both the OI and PI.
The OI does not contain explicit order data such as the number and price
of items. Rather, it contains an order reference generated in the
exchange between merchant and customer during the shopping phase
before the first SET message. Next, the cardholder prepares the
Purchase Request message (Figure 4.3.21). For this purpose, the
cardholder generates a one-time symmetric encryption key, Ks. The
message includes the following:

1. Purchase-related information. This information will be forwarded
to the payment gateway by the merchant and consists of

 The PI

Network Security

NOTES

274

 The dual signature, calculated over the PI and OI, signed
with the customer's private signature key

 The OI message digest (OIMD)

The OIMD is needed for the payment gateway to verify the
dual signature, as explained previously. All of these
items are encrypted with Ks. The final item is

 The digital envelope. This is formed by encrypting Ks with
the payment gateway's public key-exchange key. It is
called a digital envelope because this envelope must be
opened (decrypted) before the other items listed previously
can be read.

The value of Ks is not made available to the merchant. Therefore, the
merchant cannot read any of this payment-related information.

2. Order-related information. This information is needed by the
merchant and consists of

 The OI

 The dual signature, calculated over the PI and OI, signed
with the customer's private signature key

 The PI message digest (PIMD)

The PIMD is needed for the merchant to verify the dual signature. Note
that the OI is sent in the clear.

3. Cardholder certificate. This contains the cardholder's public
signature key. It is needed by the merchant and by the payment
gateway.

When the merchant receives the Purchase Request message, it performs
the following actions (Figure 4.3.22):

1. Verifies the cardholder certificates by means of its CA signatures.

2. Verifies the dual signature using the customer's public signature
key. This ensures that the order has not been tampered with in
transit and that it was signed using the cardholder's private
signature key.

3. Processes the order and forwards the payment information to the
payment gateway for authorization (described later).

4. Sends a purchase response to the cardholder.

Network Security

NOTES

275

Fig 4.3.21Cardholder Sends Purchase Request

The Purchase Response message includes a response block that
acknowledges the order and references the corresponding transaction
number. This block is signed by the merchant using its private signature
key. The block and its signature are sent to the customer, along with the
merchant's signature certificate.

When the cardholder software receives the purchase response message,
it verifies the merchant's certificate and then verifies the signature on the
response block. Finally, it takes some action based on the response,
such as displaying a message to the user or updating a database with the
status of the order.

Payment Authorization

During the processing of an order from a cardholder, the merchant
authorizes the transaction with the payment gateway. The payment
authorization ensures that the transaction was approved by the issuer.
This authorization guarantees that the merchant will receive payment; the
merchant can therefore provide the services or goods to the customer.
The payment authorization exchange consists of two messages:
Authorization Request and Authorization response.

Network Security

NOTES

276

Fig 4.3.22. Merchant Verifies Customer Purchase Request

The merchant sends an Authorization Request message to the payment
gateway consisting of the following:

1. Purchase-related information. This information was obtained
from the customer and consists of

 The PI

 -The dual signature, calculated over the PI and OI, signed with
the customer's private signature key

 The OI message digest (OIMD)

 The digital envelope

2. Authorization-related information. This information is generated
by the merchant and consists of

 An authorization block that includes the transaction ID, signed
with the merchant's private signature key and encrypted with a
one-time symmetric key generated by the merchant

 A digital envelope. This is formed by encrypting the one-time
key with the payment gateway's public key-exchange key.

Network Security

NOTES

277

3. Certifcates. The merchant includes the cardholder's signature
key certificate (used to verify the dual signature), the merchant's
signature key certificate (used to verify the merchant's signature),
and the merchant's key-exchange certificate (needed in the
payment gateway's response).

The payment gateway performs the following tasks:

1. Verifies all certificates

2. Decrypts the digital envelope of the authorization block to obtain
the symmetric key and then decrypts the authorization block

3. Verifies the merchant's signature on the authorization block

4. Decrypts the digital envelope of the payment block to obtain the
symmetric key and then decrypts the payment block

5. Verifies the dual signature on the payment block

6. Verifies that the transaction ID received from the merchant
matches that in the PI received (indirectly) from the customer

7. Requests and receives an authorization from the issuer

Having obtained authorization from the issuer, the payment gateway
returns an Authorization Response message to the merchant. It includes
the following elements:

1. Authorization-related information. Includes an authorization
block, signed with the gateway's private signature key and
encrypted with a one-time symmetric key generated by the
gateway. Also includes a digital envelope that contains the one-
time key encrypted with the merchants public key-exchange key.

2. Capture token information. This information will be used to
effect payment later. This block is of the same form as (1),
namely, a signed, encrypted capture token together with a digital
envelope. This token is not processed by the merchant. Rather, it
must be returned, as is, with a payment request.

3. Certificate. The gateway's signature key certificate.

With the authorization from the gateway, the merchant can provide the
goods or service to the customer.

Payment Capture

To obtain payment, the merchant engages the payment gateway in a
payment capture transaction, consisting of a capture request and a
capture response message.

Network Security

NOTES

278

For the Capture Request message, the merchant generates, signs, and
encrypts a capture request block, which includes the payment amount
and the transaction ID. The message also includes the encrypted capture
token received earlier (in the Authorization Response) for this transaction,
as well as the merchant's signature key and key-exchange key
certificates.

When the payment gateway receives the capture request message, it
decrypts and verifies the capture request block and decrypts and verifies
the capture token block. It then checks for consistency between the
capture request and capture token. It then creates a clearing request that
is sent to the issuer over the private payment network. This request
causes funds to be transferred to the merchant's account.

The gateway then notifies the merchant of payment in a Capture
Response message. The message includes a capture response block
that the gateway signs and encrypts. The message also includes the
gateway's signature key certificate. The merchant software stores the
capture response to be used for reconciliation with payment received
from the acquirer.

REFERENCES

1. William Stallings, Cryptography and Network Security, PHI
Publishers

2. www.wikipedia.org

Review Questions:

7. Write a short note on SSL Protocol stack

8. Explain SSL Handshake protocol in detail

9. Expalin SSL Record Protocol in detail

10. Write a short note on SET.

11. Explain the payment processing in SET

Network Security

NOTES

279

5. SYSTEM SECURITY

OBJECTIVE

This lesson examines Virtual Private Networks and a variety of
information access and service threats presented by hackers that exploit
vulnerabilities in network-based computing systems. It also focuses on
the software threats to systems, with a special emphasis on viruses and
worms and then looks at countermeasures.

VIRTUAL PRIVATE NETWORKS

A virtual private network (VPN) is a computer network in which some of
the links between nodes are carried by open connections or virtual
circuits in some larger network (e.g., the Internet) instead of by physical
wires. The link-layer protocols of the virtual network are said to be
tunneled through the larger network when this is the case. One common
application is secure communications through the public Internet, but a
VPN need not have explicit security features, such as authentication or
content encryption. VPNs, for example, can be used to separate the
traffic of different user communities over an underlying network with
strong security features.

VPNs need to provide the following four critical functions to ensure
security for

data:

 authentication—ensuring that the data originates at the source
that it claims

 access control—restricting unauthorized users from gaining
admission to the network

 confidentiality—preventing anyone from reading or copying data
as it travels across the Internet

 data integrity—ensuring that no one tampers with data as it
travels across the Internet

A virtual private network (VPN) is the extension of a private network that
encompasses links across shared or public networks like the Internet. A
VPN enables you to send data between two computers across a shared
or public internetwork in a manner that emulates the properties of a point-

Network Security

NOTES

280

to-point private link. The act of configuring and creating a virtual private
network is known as virtual private networking.

To emulate a point-to-point link, data is encapsulated, or wrapped, with a
header that provides routing information allowing it to traverse the shared
or public transit internetwork to reach its endpoint. To emulate a private
link, the data being sent is encrypted for confidentiality. Packets that are
intercepted on the shared or public network are indecipherable without
the encryption keys. The portion of the connection in which the private
data is encapsulated is known as the tunnel. The portion of the
connection in which the private data is encrypted is known as the virtual
private network (VPN) connection.

Figure 4.4.1: Virtual private network connection

VPN connections allow users working at home or on the road to connect
in a secure fashion to a remote corporate server using the routing
infrastructure provided by a public internetwork (such as the Internet).
From the user’s perspective, the VPN connection is a point-to-point
connection between the user’s computer and a corporate server. The
nature of the intermediate internetwork is irrelevant to the user because it
appears as if the data is being sent over a dedicated private link.

VPN technology also allows a corporation to connect to branch offices or
to other companies over a public internetwork (such as the Internet),
while maintaining secure communications. The VPN connection across
the Internet logically operates as a wide area network (WAN) link
between the sites.

In both of these cases, the secure connection across the internetwork
appears to the user as a private network communication—despite the fact
that this communication occurs over a public internetwork—hence the
name virtual private network.

VPN technology is designed to address issues surrounding the current
business trend toward increased telecommuting and widely distributed
global operations, where workers must be able to connect to central
resources and must be able to communicate with each other.

Network Security

NOTES

281

To provide employees with the ability to connect to corporate computing
resources, regardless of their location, a corporation must deploy a
scalable remote access solution. Typically, corporations choose either an
MIS department solution, where an internal information systems
department is charged with buying, installing, and maintaining corporate
modem pools and a private network infrastructure; or they choose a
value-added network (VAN) solution, where they pay an outsourced
company to buy, install, and maintain modem pools and a
telecommunication infrastructure.

Neither of these solutions provides the necessary scalability, in terms of
cost, flexible administration, and demand for connections. Therefore, it
makes sense to replace the modem pools and private network
infrastructure with a less expensive solution based on Internet technology
so that the business can focus on its core competencies. With an Internet
solution, a few Internet connections through Internet service providers
(ISPs) and VPN server computers can serve the remote networking
needs of hundreds or thousands of remote clients and branch offices.

Common Uses of VPNs

The next few subsections describe the more common VPN configurations
in more detail.

Remote Access Over the Internet

VPNs provide remote access to corporate resources over the public
Internet, while maintaining privacy of information. Figure 4.4.2 shows a
VPN connection used to connect a remote user to a corporate intranet.

Figure 4.4.2: Using a VPN connection to connect a remote client to a
private intranet

Rather than making a long distance (or 1-800) call to a corporate or
outsourced network access server (NAS), the user calls a local ISP.
Using the connection to the local ISP, the VPN software creates a virtual
private network between the dial-up user and the corporate VPN server
across the Internet.

Network Security

NOTES

282

Connecting Networks Over the Internet

There are two methods for using VPNs to connect local area networks at
remote sites:

 Using dedicated lines to connect a branch office to a
corporate LAN. Rather than using an expensive long-haul
dedicated circuit between the branch office and the corporate hub,
both the branch office and the corporate hub routers can use a
local dedicated circuit and local ISP to connect to the Internet. The
VPN software uses the local ISP connections and the Internet to
create a virtual private network between the branch office router
and corporate hub router.

 Using a dial-up line to connect a branch office to a corporate
LAN. Rather than having a router at the branch office make a long
distance (or 1-800) call to a corporate or outsourced NAS, the
router at the branch office can call the local ISP. The VPN
software uses the connection to the local ISP to create a VPN
between the branch office router and the corporate hub router
across the Internet.

In both cases, the facilities that connect the branch office and corporate
offices to the Internet are local. The corporate hub router that acts as a
VPN server must be connected to a local ISP with a dedicated line. This
VPN server must be listening 24 hours a day for incoming VPN traffic.

Figure 4.4.3: Using a VPN connection to connect two remote sites

Connecting Computers over an Intranet

In some corporate internetworks, the departmental data is so sensitive
that the department's LAN is physically disconnected from the rest of the
corporate internetwork. Although this protects the department's
confidential information, it creates information accessibility problems for
those users not physically connected to the separate LAN.

Network Security

NOTES

283

Figure 4.4.4: Using a VPN connection to connect to a secured or hidden
network

VPNs allow the department's LAN to be physically connected to the
corporate internetwork but separated by a VPN server. The VPN server is
not acting as a router between the corporate internetwork and the
department LAN. A router would connect the two networks, allowing
everyone access to the sensitive LAN. By using a VPN, the network
administrator can ensure that only those users on the corporate
internetwork who have appropriate credentials (based on a need-to-know
policy within the company) can establish a VPN with the VPN server and
gain access to the protected resources of the department. Additionally, all
communication across the VPN can be encrypted for data confidentiality.
Those users who do not have the proper credentials cannot view the
department LAN.

Basic VPN Requirements

Typically, when deploying a remote networking solution, an enterprise
needs to facilitate controlled access to corporate resources and
information. The solution must allow roaming or remote clients to connect
to LAN resources, and the solution must allow remote offices to connect
to each other to share resources and information (router-to-router
connections). In addition, the solution must ensure the privacy and
integrity of data as it traverses the Internet. The same concerns apply in
the case of sensitive data traversing a corporate internetwork.
Therefore, a VPN solution should provide at least all of the following:

 User Authentication. The solution must verify the VPN client's
identity and restrict VPN access to authorized users only. It must
also provide audit and accounting records to show who accessed
what information and when.

 Address Management. The solution must assign a VPN client's
address on the intranet and ensure that private addresses are
kept private.

 Data Encryption. Data carried on the public network must be
rendered unreadable to unauthorized clients on the network.

Network Security

NOTES

284

 Key Management. The solution must generate and refresh
encryption keys for the client and the server.

 Multiprotocol Support. The solution must handle common
protocols used in the public network. These include IP,
Internetwork Packet Exchange (IPX), and so on.

An Internet VPN solution based on the Point-to-Point Tunneling Protocol
(PPTP) or Layer Two Tunneling Protocol (L2TP) meets all of these basic
requirements and takes advantage of the broad availability of the Internet.
Other solutions, including Internet Protocol Security (IPSec), meet only
some of these requirements, but remain useful for specific situations.

Tunneling Basics

Tunneling is a method of using an internetwork infrastructure to transfer
data for one network over another network. The data to be transferred (or
payload) can be the frames (or packets) of another protocol. Instead of
sending a frame as it is produced by the originating node, the tunneling
protocol encapsulates the frame in an additional header. The additional
header provides routing information so that the encapsulated payload can
traverse the intermediate internetwork.

The encapsulated packets are then routed between tunnel endpoints over
the internetwork. The logical path through which the encapsulated
packets travel through the internetwork is called a tunnel. Once the
encapsulated frames reach their destination on the internetwork, the
frame is decapsulated and forwarded to its final destination. Tunneling
includes this entire process (encapsulation, transmission, and
decapsulation of packets).

Figure 4.4.5: Tunneling

The transit internetwork can be any internetwork-the Internet is a public
internetwork and is the most widely known real world example. There are
many examples of tunnels that are carried over corporate internetworks.
And while the Internet provides one of the most pervasive and cost-
effective internetworks, references to the Internet in this paper can be

Network Security

NOTES

285

replaced by any other public or private internetwork that acts as a transit
internetwork.

Tunneling technologies have been in existence for some time. Some
examples of mature technologies include:

 SNA tunneling over IP internetworks. When System Network
Architecture (SNA) traffic is sent across a corporate IP
internetwork, the SNA frame is encapsulated in a UDP and IP
header.

 IPX tunneling for Novell NetWare over IP internetworks. When
an IPX packet is sent to a NetWare server or IPX router, the
server or the router wraps the IPX packet in a UDP and IP header,
and then sends it across an IP internetwork. The destination IP-to-
IPX router removes the UDP and IP header and forwards the
packet to the IPX destination.

New tunneling technologies have been introduced in recent years. These
newer technologies-which are the primary focus of this paper-include:

 Point-to-Point Tunneling Protocol (PPTP). PPTP allows IP,
IPX, or NetBEUI traffic to be encrypted, and then encapsulated in
an IP header to be sent across a corporate IP internetwork or a
public IP internetwork such as the Internet.

 Layer Two Tunneling Protocol (L2TP). L2TP allows IP, IPX, or
NetBEUI traffic to be encrypted, and then sent over any medium
that supports point-to-point datagram delivery, such as IP, X.25,
Frame Relay, or ATM.

 IPSec tunnel mode. IPSec tunnel mode allows IP packets to be
encrypted, and then encapsulated in an IP header to be sent
across a corporate IP internetwork or a public IP internetwork
such as the Internet.

Tunneling Protocols

For a tunnel to be established, both the tunnel client and the tunnel server
must be using the same tunneling protocol.

Tunneling technology can be based on either a Layer 2 or a Layer 3
tunneling protocol. These layers correspond to the Open Systems
Interconnection (OSI) Reference Model. Layer 2 protocols correspond to
the data-link layer and use frames as their unit of exchange. PPTP and
L2TP are Layer 2 tunneling protocols; both encapsulate the payload in a
PPP frame to be sent across an internetwork. Layer 3 protocols
correspond to the Network layer, and use packets. IPSec tunnel mode is
an example of a Layer 3 tunneling protocol and encapsulate IP packets in
an additional IP header before sending them across an IP internetwork.
How Tunneling Works

Network Security

NOTES

286

For Layer 2 tunneling technologies, such as PPTP and L2TP, a tunnel is
similar to a session; both of the tunnel endpoints must agree to the tunnel
and must negotiate configuration variables, such as address assignment
or encryption or compression parameters. In most cases, data transferred
across the tunnel is sent using a datagram-based protocol. A tunnel
maintenance protocol is used as the mechanism to manage the tunnel.

Layer 3 tunneling technologies generally assume that all of the
configuration issues are preconfigured, often by manual processes. For
these protocols, there may be no tunnel maintenance phase. For Layer 2
protocols (PPTP and L2TP), however, a tunnel must be created,
maintained, and then terminated.

Once the tunnel is established, tunneled data can be sent. The tunnel
client or server uses a tunnel data transfer protocol to prepare the data
for transfer. For example, when the tunnel client sends a payload to the
tunnel server, the tunnel client first appends a tunnel data transfer
protocol header to the payload. The client then sends the resulting
encapsulated payload across the internetwork, which routes it to the
tunnel server. The tunnel server accepts the packets, removes the tunnel
data transfer protocol header, and forwards the payload to the target
network. Information sent between the tunnel server and the tunnel client
behaves similarly.
Tunneling Protocols and the Basic Tunneling Requirements

Because they are based on the well-defined PPP protocol, Layer 2
protocols (such as PPTP and L2TP) inherit a suite of useful features.
These features, and their Layer 3 counterparts address the basic VPN
requirements, as outlined below.

 User Authentication. Layer 2 tunneling protocols inherit the user
authentication schemes of PPP, including the EAP methods
discussed below. Many Layer 3 tunneling schemes assume that
the endpoints were well known (and authenticated) before the
tunnel was established. An exception to this is IPSec Internet Key
Exchange (IKE) negotiation, which provides mutual authentication
of the tunnel endpoints. Most IPSec implementations including
Windows 2000 support computer-based certificates only, rather
than user certificates. As a result, any user with access to one of
the endpoint computers can use the tunnel. This potential security
weakness can be eliminated when IPSec is paired with a Layer 2
protocol such as L2TP.

 Token card support. Using the Extensible Authentication
Protocol (EAP), Layer 2 tunneling protocols can support a wide
variety of authentication methods, including one-time passwords,
cryptographic calculators, and smart cards. Layer 3 tunneling
protocols can use similar methods; for example, IPSec defines
public key certificate authentication in its IKE negotiation.

Network Security

NOTES

287

 Dynamic address assignment. Layer 2 tunneling supports
dynamic assignment of client addresses based on the Network
Control Protocol (NCP) negotiation mechanism. Generally, Layer
3 tunneling schemes assume that an address has already been
assigned prior to initiation of the tunnel. Schemes for assignment
of addresses in IPSec tunnel mode are currently under
development and are not yet available.

 Data compression. Layer 2 tunneling protocols support PPP-
based compression schemes. For example, the Microsoft
implementations of both PPTP and L2TP use Microsoft Point-to-
Point Compression (MPPC). The IETF is investigating similar
mechanisms (such as IP Compression) for the Layer 3 tunneling
protocols.

 Data encryption. Layer 2 tunneling protocols support PPP-based
data encryption mechanisms. The Microsoft implementation of
PPTP supports optional use of Microsoft Point-to-Point Encryption
(MPPE), based on the RSA/RC4 algorithm. Layer 3 tunneling
protocols can use similar methods; for example, IPSec defines
several optional data encryption methods, which are negotiated
during the IKE exchange. The Microsoft implementation of the
L2TP protocol uses IPSec encryption to protect the data stream
from the VPN client to the VPN server.

 Key Management. MPPE, a Layer 2 encryption mechanism,
relies on the initial key generated during user authentication, and
then refreshes it periodically. IPSec explicitly negotiates a
common key during the IKE exchange, and also refreshes it
periodically.

 Multiprotocol support. Layer 2 tunneling supports multiple
payload protocols, which makes it easy for tunneling clients to
access their corporate networks using IP, IPX, NetBEUI, and so
on. In contrast, Layer 3 tunneling protocols, such as IPSec tunnel
mode, typically support only target networks that use the IP
protocol.

Point-to-Point Protocol (PPP)

Because the Layer 2 protocols depend heavily on the features originally
specified for PPP, it is worth examining this protocol more closely. PPP
was designed to send data across dial-up or dedicated point-to-point
connections. PPP encapsulates IP, IPX, and NetBEUI packets within
PPP frames, and then transmits the PPP-encapsulated packets across a
point-to-point link. PPP is used between a dial-up client and an NAS.

There are four distinct phases of negotiation in a PPP dial-up session.
Each of these four phases must complete successfully before the PPP
connection is ready to transfer user data.

Network Security

NOTES

288

Phase 1: PPP Link Establishment

PPP uses Link Control Protocol (LCP) to establish, maintain, and end the
physical connection. During the initial LCP phase, basic communication
options are selected. During the link establishment phase (Phase 1),
authentication protocols are selected, but they are not actually
implemented until the connection authentication phase (Phase 2).
Similarly, during LCP a decision is made as to whether the two peers will
negotiate the use of compression and/or encryption. The actual choice of
compression and encryption algorithms and other details occurs during
Phase 4.

Phase 2: User Authentication

In the second phase, the client PC presents the user's credentials to the
remote access server. A secure authentication scheme provides
protection against replay attacks and remote client impersonation. A
replay attack occurs when a third party monitors a successful connection
and uses captured packets to play back the remote client's response so
that it can gain an authenticated connection. Remote client impersonation
occurs when a third party takes over an authenticated connection. The
intruder waits until the connection has been authenticated, and then traps
the conversation parameters, disconnects the authenticated user, and
takes control of the authenticated connection.

Most implementations of PPP provide limited authentication methods,
typically Password Authentication Protocol (PAP), Challenge Handshake
Authentication Protocol (CHAP), and Microsoft Challenge Handshake
Authentication Protocol (MS-CHAP).

 Password Authentication Protocol (PAP). PAP is a simple,
clear-text authentication scheme. The NAS requests the user
name and password, and PAP returns them in clear text
(unencrypted). Obviously, this authentication scheme is not
secure because a third party could capture the user's name and
password and use it to get subsequent access to the NAS and all
of the resources provided by the NAS. PAP provides no protection
against replay attacks or remote client impersonation once the
user's password is compromised.

 Challenge-Handshake Authentication Protocol (CHAP). CHAP
is an encrypted authentication mechanism that avoids
transmission of the actual password on the connection. The NAS
sends a challenge, which consists of a session ID and an arbitrary
challenge string, to the remote client. The remote client must use
the MD5 one-way hashing algorithm to return the user name and
an encryption of the challenge, session ID, and the client's
password. The user name is sent unhashed.
CHAP is an improvement over PAP because the clear-text
password is not sent over the link. Instead, the password is used

Network Security

NOTES

289

to create an encrypted hash from the original challenge. The
server knows the client's clear-text password and can, therefore,
replicate the operation and compare the result to the password
sent in the client's response. CHAP protects against replay
attacks by using an arbitrary challenge string for each
authentication attempt. CHAP protects against remote client
impersonation by unpredictably sending repeated challenges to
the remote client throughout the duration of the connection.

During phase 2 of PPP link configuration, the NAS collects the
authentication data, and then validates the data against its own user
database or a central authentication database server, such as one
maintained by a Windows domain controller, or the authentication data is
sent to a Remote Authentication Dial-in User Service (RADIUS) server.

Phase 3: PPP Callback Control

The Microsoft implementation of PPP includes an optional callback
control phase. This phase uses the Callback Control Protocol (CBCP)
immediately after the authentication phase. If configured for callback,
both the remote client and NAS disconnect after authentication. The NAS
then calls the remote client back at a specified phone number. This
provides an additional level of security to dial-up networking. The NAS
allows connections from remote clients physically residing at specific
phone numbers only.

Phase 4: Invoking Network Layer Protocol(s)

Once the previous phases have been completed, PPP invokes the
various network control protocols (NCPs) that were selected during the
link establishment phase (Phase 1) to configure protocols used by the
remote client. For example, during this phase the IP control protocol
(IPCP) can assign a dynamic address to the dial-in user. In the Microsoft
implementation of PPP, the compression control protocol is used to
negotiate both data compression (using MPPC) and data encryption
(using MPPE) for because both are implemented in the same routine.
Data-Transfer Phase

Once the four phases of negotiation have been completed, PPP begins to
forward data to and from the two peers. Each transmitted data packet is
wrapped in a PPP header which is removed by the receiving system. If
data compression was selected in phase 1 and negotiated in phase 4,
data is compressed before transmission. If data encryption is selected
and negotiated, data is encrypted before transmission.

Point-to-Point Tunneling Protocol (PPTP)

PPTP is a Layer 2 protocol that encapsulates PPP frames in IP
datagrams for transmission over an IP internetwork, such as the Internet.
PPTP can be used for remote access and router-to-router VPN
connections. PPTP is documented in RFC 2637.

Network Security

NOTES

290

The Point-to-Point Tunneling Protocol (PPTP) uses a TCP connection for
tunnel maintenance and a modified version of Generic Routing
Encapsulation (GRE) to encapsulate PPP frames for tunneled data. The
payloads of the encapsulated PPP frames can be encrypted and/or
compressed. Figure 4.4.6 shows the structure of a PPTP packet
containing user data.

Figure 4.4.6: Structure of a PPTP packet containing user data

Layer Two Tunneling Protocol (L2TP)

L2TP is a combination of PPTP and Layer 2 Forwarding (L2F), a
technology proposed by Cisco Systems, Inc. L2TP represents the best
features of PPTP and L2F. L2TP encapsulates PPP frames to be sent
over IP, X.25, Frame Relay, or Asynchronous Transfer Mode (ATM)
networks. When configured to use IP as its datagram transport, L2TP can
be used as a tunneling protocol over the Internet. L2TP is documented in
RFC 2661.

L2TP over IP internetworks uses UDP and a series of L2TP messages for
tunnel maintenance. L2TP also uses UDP to send L2TP-encapsulated
PPP frames as the tunneled data. The payloads of encapsulated PPP
frames can be encrypted and/or compressed. Figure 4.4.7 shows the
structure of an L2TP packet containing user data.

Figure 4.4.7: Structure of an L2TP packet containing user data

Network Security

NOTES

291

In Windows 2000, IPSec Encapsulating Security Payload (ESP) is used
to encrypt the L2TP packet. This is known as L2TP/IPSec. The result
after applying ESP is shown in Figure 4.4.8.

Figure 4.4.8: Encryption of an L2TP packet with IPSec ESP

PPTP Compared to L2TP/IPSec

Both PPTP and L2TP/IPSec use PPP to provide an initial envelope for
the data, and then append additional headers for transport through the
internetwork. However, there are the following differences:

 With PPTP, data encryption begins after the PPP connection
process (and, therefore, PPP authentication) is completed. With
L2TP/IPSec, data encryption begins before the PPP connection
process by negotiating an IPSec security association.

 PPTP connections use MPPE, a stream cipher that is based on
the Rivest-Shamir-Aldeman (RSA) RC-4 encryption algorithm and
uses 40, 56, or 128-bit encryption keys. Stream ciphers encrypt
data as a bit stream. L2TP/IPSec connections use the Data
Encryption Standard (DES), which is a block cipher that uses
either a 56-bit key for DES or three 56-bit keys for 3-DES. Block
ciphers encrypt data in discrete blocks (64-bit blocks, in the case
of DES).

 PPTP connections require only user-level authentication through a
PPP-based authentication protocol. L2TP/IPSec connections
require the same user-level authentication and, in addition,
computer-level authentication using computer certificates.

Network Security

NOTES

292

Advantages of L2TP/IPSec over PPTP

The following are the advantages of using L2TP/IPSec over PPTP in
Windows 2000:

 IPSec provides per packet data authentication (proof that the data
was sent by the authorized user), data integrity (proof that the
data was not modified in transit), replay protection (prevention
from resending a stream of captured packets), and data
confidentiality (prevention from interpreting captured packets
without the encryption key). By contrast, PPTP provides only per-
packet data confidentiality.

 L2TP/IPSec connections provide stronger authentication by
requiring both computer-level authentication through certificates
and user-level authentication through a PPP authentication
protocol.

 PPP packets exchanged during user-level authentication are
never sent in an unencrypted form because the PPP connection
process for L2TP/IPSec occurs after the IPSec security
associations (SAs) are established. If intercepted, the PPP
authentication exchange for some types of PPP authentication
protocols can be used to perform offline dictionary attacks and
determine user passwords. By encrypting the PPP authentication
exchange, offline dictionary attacks are only possible after the
encrypted packets have been successfully decrypted.

Advantages of PPTP over L2TP/IPSec

The following are advantages of PPTP over L2TP/IPSec in Windows
2000:

 PPTP does not require a certificate infrastructure. L2TP/IPSec
requires a certificate infrastructure for issuing computer
certificates to the VPN server computer (or other authenticating
server) and all VPN client computers.

 PPTP can be used by computers running Windows XP, Windows
2000, Windows NT version 4.0, Windows Millennium Edition (ME),
Windows 98, and Windows 95 with the Windows Dial-Up
Networking 1.3 Performance & Security Update. L2TP/IPSec can
only be used with Windows XP and Windows 2000 VPN clients.
Only these clients support the L2TP protocol, IPSec, and the use
of certificates.

 PPTP clients and server can be placed behind a network address
translator (NAT) if the NAT has the appropriate editors for PPTP
traffic. L2TP/IPSec-based VPN clients or servers cannot be

Network Security

NOTES

293

placed behind a NATunless both support IPSec NAT Traversal
(NAT-T). IPSec NAT-T is supported by Windows Server 2003,
Microsoft L2TP/IPSec VPN Client, and for VPN clients with
L2TP/IPSec NAT-T Update for Windows XP and Windows 2000.

Accounting, Auditing, and Alarming

To properly administer a VPN system, network administrators should be
able to track who uses the system, how many connections are made,
unusual activity, error conditions, and situations that may indicate
equipment failure. This information can be used for billing, auditing, and
alarm or error-notification purposes.

For example, an administrator may need to know who connected to the
system and for how long in order to construct billing data. Unusual activity
may indicate a misuse of the system or inadequate system resources.
Real-time monitoring of equipment (for example, unusually high activity
on one modem and inactivity on another) may generate alerts to notify
the administrator of a modem failure. The tunnel server should provide all
of this information, and the system should provide event logs, reports,
and a data storage facility to handle the data appropriately.

The RADIUS protocol defines a suite of call-accounting requests that are
independent from the authentication requests discussed above. These
messages from the NAS to the RADIUS server request the latter to
generate accounting records at the start of a call, the end of a call, and at
predetermined intervals during a call. The Routing and Remote Access
service can be configured to generate these RADIUS accounting
requests separately from connection requests (which could go to the
domain controller or to a RADIUS server). This allows an administrator to
configure an accounting RADIUS server, whether RADIUS is used for
authentication or not. An accounting server can then collect records for
every VPN connection for later analysis. A number of third-parties have
already written billing and audit packages that read these RADIUS
accounting records and produce various useful reports.

VPNs allow users or corporations to connect to remote servers, branch
offices, or to other companies over a public internetwork, while
maintaining secure communications. In all of these cases, the secure
connection appears to the user as a private network communication-
despite the fact that this communication occurs over a public
internetwork. VPN technology is designed to address issues surrounding
the current business trend toward increased telecommuting and widely
distributed global operations, where workers must be able to connect to
central resources and communicate with each other.

MACLICIOUS SOFTWARES

Malware is a general term for a piece of software inserted into an
information system to cause harm to that system or other systems, or to
subvert them for use other than that intended by their owners.6 Malware

Network Security

NOTES

294

can gain remote access to an information system, record and send data
from that system to a third party without the user‟s permission or
knowledge, conceal that the information system has been compromised,
disable security measures, damage the information system, or otherwise
affect the data and system integrity.

Infectious malware: viruses and worms

The best-known types of malware, viruses and worms, are known for the
manner in which they spread, rather than any other particular behavior.
The rest of the malwares are tabulated in table 4.4.1.The term computer
virus is used for a program which has infected some executable software
and which causes that software, when run, to spread the virus to other
executable software. Viruses may also contain a payload which performs
other actions, often malicious. A worm, on the other hand, is a program
which actively transmits itself over a network to infect other computers. It
too may carry a payload.

These definitions lead to the observation that a virus requires user
intervention to spread, whereas a worm spreads automatically. Using this
distinction, infections transmitted by email or Microsoft Word documents,
which rely on the recipient opening a file or email to infect the system,
would be classified as viruses rather than worms.

Name Description

Virus Attaches itself to a program and propagates copies of itself to other
programs

Worm Program that propagates copies of itself to other computers

Logic bomb Triggers action when condition occurs

Trojan horse Program that contains unexpected additional functionality

Backdoor
(trapdoor)

Program modification that allows unauthorized access to functionality

Exploits Code specific to a single vulnerability or set of vulnerabilities

Downloaders Program that installs other items on a machine that is under attack.
Usually, a downloader is sent in an e-mail.

Auto-rooter Malicious hacker tools used to break into new machines remotely

Network Security

NOTES

295

Name Description

Kit (virus
generator)

Set of tools for generating new viruses automatically

Spammer
programs

Used to send large volumes of unwanted e-mail

Flooders Used to attack networked computer systems with a large volume of
traffic to carry out a denial of service (DoS) attack

Keyloggers Captures keystrokes on a compromised system

Rootkit Set of hacker tools used after attacker has broken into a computer
system and gained root-level access

Zombie Program activated on an infected machine that is activated to launch
attacks on other machines

Table 4.4.1 Terminology of Malicious Programs

Malicious software can be divided into two categories: those that need a
host program, and those that are independent. The former are essentially
fragments of programs that cannot exist independently of some actual
application program, utility, or system program. Viruses, logic bombs, and
backdoors are examples. The latter are self-contained programs that can
be scheduled and run by the operating system. Worms and zombie
programs are examples.

Backdoor

A backdoor, also known as a trapdoor, is a secret entry point into a
program that allows someone that is aware of the backdoor to gain
access without going through the usual security access procedures.
Programmers have used backdoors legitimately for many years to debug
and test programs. This usually is done when the programmer is
developing an application that has an authentication procedure, or a long
setup, requiring the user to enter many different values to run the
application. To debug the program, the developer may wish to gain
special privileges or to avoid all the necessary setup and authentication.
The programmer may also want to ensure that there is a method of
activating the program should something be wrong with the authentication
procedure that is being built into the application. The backdoor is code
that recognizes some special sequence of input or is triggered by being
run from a certain user ID or by an unlikely sequence of events.

Network Security

NOTES

296

Backdoors become threats when unscrupulous programmers use them to
gain unauthorized access. The backdoor was the basic idea for the
vulnerability portrayed in the movie War Games. Another example is that
during the development of Multics, penetration tests were conducted by
an Air Force "tiger team" (simulating adversaries). One tactic employed
was to send a bogus operating system update to a site running Multics.
The update contained a Trojan horse (described later) that could be
activated by a backdoor and that allowed the tiger team to gain access.
The threat was so well implemented that the Multics developers could not
find it, even after they were informed of its presence.

It is difficult to implement operating system controls for backdoors.
Security measures must focus on the program development and software
update activities.

Logic Bomb

One of the oldest types of program threat, predating viruses and worms,
is the logic bomb. The logic bomb is code embedded in some legitimate
program that is set to "explode" when certain conditions are met.
Examples of conditions that can be used as triggers for a logic bomb are
the presence or absence of certain files, a particular day of the week or
date, or a particular user running the application. Once triggered, a bomb
may alter or delete data or entire files, cause a machine halt, or do some
other damage. A striking example of how logic bombs can be employed
was the case of Tim Lloyd, who was convicted of setting a logic bomb
that cost his employer, Omega Engineering, more than $10 million,
derailed its corporate growth strategy, and eventually led to the layoff of
80 workers. Ultimately, Lloyd was sentenced to 41 months in prison and
ordered to pay $2 million in restitution.

Trojan Horses

A Trojan horse is a useful, or apparently useful, program or command
procedure containing hidden code that, when invoked, performs some
unwanted or harmful function.

Trojan horse programs can be used to accomplish functions indirectly
that an unauthorized user could not accomplish directly. For example, to
gain access to the files of another user on a shared system, a user could
create a Trojan horse program that, when executed, changed the
invoking user's file permissions so that the files are readable by any user.
The author could then induce users to run the program by placing it in a
common directory and naming it such that it appears to be a useful utility.
An example is a program that ostensibly produces a listing of the user's
files in a desirable format. After another user has run the program, the
author can then access the information in the user's files. An example of
a Trojan horse program that would be difficult to detect is a compiler that
has been modified to insert additional code into certain programs as they
are compiled, such as a system login program. The code creates a
backdoor in the login program that permits the author to log on to the

Network Security

NOTES

297

system using a special password. This Trojan horse can never be
discovered by reading the source code of the login program.

Another common motivation for the Trojan horse is data destruction. The
program appears to be performing a useful function (e.g., a calculator
program), but it may also be quietly deleting the user's files. For example,
a CBS executive was victimized by a Trojan horse that destroyed all
information contained in his computer's memory. The Trojan horse was
implanted in a graphics routine offered on an electronic bulletin board
system.

Zombie

A zombie is a program that secretly takes over another Internet-attached
computer and then uses that computer to launch attacks that are difficult
to trace to the zombie's creator. Zombies are used in denial-of-service
attacks, typically against targeted Web sites. The zombie is planted on
hundreds of computers belonging to unsuspecting third parties, and then
used to overwhelm the target Web site by launching an overwhelming
onslaught of Internet traffic.

The Nature of Viruses

A virus is a piece of software that can "infect" other programs by
modifying them; the modification includes a copy of the virus program,
which can then go on to infect other programs.

Biological viruses are tiny scraps of genetic codeDNA or RNAthat can
take over the machinery of a living cell and trick it into making thousands
of flawless replicas of the original virus. Like its biological counterpart, a
computer virus carries in its instructional code the recipe for making
perfect copies of itself. The typical virus becomes embedded in a
program on a computer. Then, whenever the infected computer comes
into contact with an uninfected piece of software, a fresh copy of the virus
passes into the new program. Thus, the infection can be spread from
computer to computer by unsuspecting users who either swap disks or
send programs to one another over a network. In a network environment,
the ability to access applications and system services on other computers
provides a perfect culture for the spread of a virus.

A virus can do anything that other programs do. The only difference is
that it attaches itself to another program and executes secretly when the
host program is run. Once a virus is executing, it can perform any
function, such as erasing files and programs.

During its lifetime, a typical virus goes through the following four phases:

 Dormant phase: The virus is idle. The virus will eventually be
activated by some event, such as a date, the presence of another
program or file, or the capacity of the disk exceeding some limit.
Not all viruses have this stage.

Network Security

NOTES

298

 Propagation phase: The virus places an identical copy of itself
into other programs or into certain system areas on the disk. Each
infected program will now contain a clone of the virus, which will
itself enter a propagation phase.

 Triggering phase: The virus is activated to perform the function
for which it was intended. As with the dormant phase, the
triggering phase can be caused by a variety of system events,
including a count of the number of times that this copy of the virus
has made copies of itself.

 Execution phase: The function is performed. The function may
be harmless, such as a message on the screen, or damaging,
such as the destruction of programs and data files.

Most viruses carry out their work in a manner that is specific to a
particular operating system and, in some cases, specific to a particular
hardware platform. Thus, they are designed to take advantage of the
details and weaknesses of particular systems.

Virus Structure

A virus can be prepended or postpended to an executable program, or it
can be embedded in some other fashion. The key to its operation is that
the infected program, when invoked, will first execute the virus code and
then execute the original code of the program.

A very general depiction of virus structure is shown in Fig 4.4.9. In this
case, the virus code, V, is prepended to infected programs, and it is
assumed that the entry point to the program, when invoked, is the first
line of the program.

Network Security

NOTES

299

Fig 4.4.9 A Simple Virus

An infected program begins with the virus code and works as follows. The
first line of code is a jump to the main virus program. The second line is a
special marker that is used by the virus to determine whether or not a
potential victim program has already been infected with this virus. When
the program is invoked, control is immediately transferred to the main
virus program. The virus program first seeks out uninfected executable
files and infects them. Next, the virus may perform some action, usually
detrimental to the system. This action could be performed every time the
program is invoked, or it could be a logic bomb that triggers only under
certain conditions. Finally, the virus transfers control to the original
program. If the infection phase of the program is reasonably rapid, a user
is unlikely to notice any difference between the execution of an infected
and uninfected program.

A virus such as the one just described is easily detected because an
infected version of a program is longer than the corresponding uninfected
one. A way to thwart such a simple means of detecting a virus is to
compress the executable file so that both the infected and uninfected
versions are of identical length. Fig 4.4.10 shows in general terms the
logic required. The key lines in this virus are numbered, and Fig 4.4.11
illustrates the operation. We assume that program P1 is infected with the
virus CV. When this program is invoked, control passes to its virus, which
performs the following steps:

Network Security

NOTES

300

Fig 4.4.10 Logic for a Compression Virus

In this example, the virus does nothing other than propagate. As in the
previous example, the virus may include a logic bomb.

Initial Infection

Once a virus has gained entry to a system by infecting a single program,
it is in a position to infect some or all other executable files on that system
when the infected program executes. Thus, viral infection can be
completely prevented by preventing the virus from gaining entry in the
first place. Unfortunately, prevention is extraordinarily difficult because a
virus can be part of any program outside a system. Thus, unless one is
content to take an absolutely bare piece of iron and write all one's own
system and application programs, one is vulnerable.

Network Security

NOTES

301

Fig 4.4.11 A Compression Virus

Types of Viruses

There has been a continuous arms race between virus writers and writers
of antivirus software since viruses first appeared. As effective
countermeasures have been developed for existing types of viruses, new
types have been developed. The following categories are among the
most significant types of viruses:

 Parasitic virus: The traditional and still most common form of
virus. A parasitic virus attaches itself to executable files and
replicates, when the infected program is executed, by finding
other executable files to infect.

 Memory-resident virus: Lodges in main memory as part of a
resident system program. From that point on, the virus infects
every program that executes.

 Boot sector virus: Infects a master boot record or boot record
and spreads when a system is booted from the disk containing the
virus.

 Stealth virus: A form of virus explicitly designed to hide itself from
detection by antivirus software.

 Polymorphic virus: A virus that mutates with every infection,
making detection by the "signature" of the virus impossible.

 Metamorphic virus: As with a polymorphic virus, a metamorphic
virus mutates with every infection. The difference is that a
metamorphic virus rewrites itself completely at each iteration,
increasing the difficulty of detection. Metamorphic viruses my
change their behavior as well as their appearance.

Network Security

NOTES

302

One example of a stealth virus was discussed earlier: a virus that uses
compression so that the infected program is exactly the same length as
an uninfected version. Far more sophisticated techniques are possible.
For example, a virus can place intercept logic in disk I/O routines, so that
when there is an attempt to read suspected portions of the disk using
these routines, the virus will present back the original, uninfected
program. Thus, stealth is not a term that applies to a virus as such but,
rather, is a technique used by a virus to evade detection.

A polymorphic virus creates copies during replication that are
functionally equivalent but have distinctly different bit patterns. As with a
stealth virus, the purpose is to defeat programs that scan for viruses. In
this case, the "signature" of the virus will vary with each copy. To achieve
this variation, the virus may randomly insert superfluous instructions or
interchange the order of independent instructions. A more effective
approach is to use encryption. A portion of the virus, generally called a
mutation engine, creates a random encryption key to encrypt the
remainder of the virus. The key is stored with the virus, and the mutation
engine itself is altered. When an infected program is invoked, the virus
uses the stored random key to decrypt the virus. When the virus
replicates, a different random key is selected.

Another weapon in the virus writers' armory is the virus-creation toolkit.
Such a toolkit enables a relative novice to create quickly a number of
different viruses. Although viruses created with toolkits tend to be less
sophisticated than viruses designed from scratch, the sheer number of
new viruses that can be generated creates a problem for antivirus
schemes.

Macro Viruses

In the mid-1990s, macro viruses became by far the most prevalent type of
virus. Macro viruses are particularly threatening for a number of reasons:

1. A macro virus is platform independent. Virtually all of the macro
viruses infect Microsoft Word documents. Any hardware platform
and operating system that supports Word can be infected.

2. Macro viruses infect documents, not executable portions of code.
Most of the information introduced onto a computer system is in
the form of a document rather than a program.

3. Macro viruses are easily spread. A very common method is by
electronic mail.

Macro viruses take advantage of a feature found in Word and other office
applications such as Microsoft Excel, namely the macro. In essence, a
macro is an executable program embedded in a word processing
document or other type of file. Typically, users employ macros to
automate repetitive tasks and thereby save keystrokes. The macro
language is usually some form of the Basic programming language. A

Network Security

NOTES

303

user might define a sequence of keystrokes in a macro and set it up so
that the macro is invoked when a function key or special short
combination of keys is input.

Successive releases of Word provide increased protection against macro
viruses. For example, Microsoft offers an optional Macro Virus Protection
tool that detects suspicious Word files and alerts the customer to the
potential risk of opening a file with macros. Various antivirus product
vendors have also developed tools to detect and correct macro viruses.
As in other types of viruses, the arms race continues in the field of macro
viruses, but they no longer are the predominant virus threat.

E-mail Viruses

A more recent development in malicious software is the e-mail virus. The
first rapidly spreading e-mail viruses, such as Melissa, made use of a
Microsoft Word macro embedded in an attachment. If the recipient opens
the e-mail attachment, the Word macro is activated. Then

1. The e-mail virus sends itself to everyone on the mailing list in the
user's e-mail package.

2. The virus does local damage.

At the end of 1999, a more powerful version of the e-mail virus appeared.
This newer version can be activated merely by opening an e-mail that
contains the virus rather than opening an attachment. The virus uses the
Visual Basic scripting language supported by the e-mail package.

Thus we see a new generation of malware that arrives via e-mail and
uses e-mail software features to replicate itself across the Internet. The
virus propagates itself as soon as activated (either by opening an e-mail
attachment of by opening the e-mail) to all of the e-mail addresses known
to the infected host. As a result, whereas viruses used to take months or
years to propagate, they now do so in hours. This makes it very difficult
for antivirus software to respond before much damage is done.
Ultimately, a greater degree of security must be built into Internet utility
and application software on PCs to counter the growing threat.

Worms

A worm is a program that can replicate itself and send copies from
computer to computer across network connections. Upon arrival, the
worm may be activated to replicate and propagate again. In addition to
propagation, the worm usually performs some unwanted function. An e-
mail virus has some of the characteristics of a worm, because it
propagates itself from system to system. However, we can still classify it
as a virus because it requires a human to move it forward. A worm
actively seeks out more machines to infect and each machine that is
infected serves as an automated launching pad for attacks on other
machines.

Network Security

NOTES

304

Network worm programs use network connections to spread from system
to system. Once active within a system, a network worm can behave as a
computer virus or bacteria, or it could implant Trojan horse programs or
perform any number of disruptive or destructive actions.

To replicate itself, a network worm uses some sort of network vehicle.
Examples include the following:

 Electronic mail facility: A worm mails a copy of itself to other
systems.

 Remote execution capability: A worm executes a copy of itself on
another system.

 Remote login capability: A worm logs onto a remote system as a
user and then uses commands to copy itself from one system to
the other.

The new copy of the worm program is then run on the remote system
where, in addition to any functions that it performs at that system, it
continues to spread in the same fashion.

A network worm exhibits the same characteristics as a computer virus: a
dormant phase, a propagation phase, a triggering phase, and an
execution phase. The propagation phase generally performs the following
functions:

1. Search for other systems to infect by examining host tables or
similar repositories of remote system addresses.

2. Establish a connection with a remote system.

3. Copy itself to the remote system and cause the copy to be run.

The network worm may also attempt to determine whether a system has
previously been infected before copying itself to the system. In a
multiprogramming system, it may also disguise its presence by naming
itself as a system process or using some other name that may not be
noticed by a system operator.

As with viruses, network worms are difficult to counter.

The Morris Worm

Until the current generation of worms, the best known was the worm
released onto the Internet by Robert Morris in 1998. The Morris worm
was designed to spread on UNIX systems and used a number of different
techniques for propagation. When a copy began execution, its first task

Network Security

NOTES

305

was to discover other hosts known to this host that would allow entry from
this host. The worm performed this task by examining a variety of lists
and tables, including system tables that declared which other machines
were trusted by this host, users' mail forwarding files, tables by which
users gave themselves permission for access to remote accounts, and
from a program that reported the status of network connections. For each
discovered host, the worm tried a number of methods for gaining access:

1. It attempted to log on to a remote host as a legitimate user. In this
method, the worm first attempted to crack the local password file,
and then used the discovered passwords and corresponding user
IDs. The assumption was that many users would use the same
password on different systems. To obtain the passwords, the
worm ran a password-cracking program that tried

a. Each user's account name and simple permutations of it

b. A list of 432 built-in passwords that Morris thought to be
likely candidates

c. All the words in the local system directory

2. It exploited a bug in the finger protocol, which reports the
whereabouts of a remote user.

3. It exploited a trapdoor in the debug option of the remote process
that receives and sends mail.

If any of these attacks succeeded, the worm achieved communication
with the operating system command interpreter. It then sent this
interpreter a short bootstrap program, issued a command to execute that
program, and then logged off. The bootstrap program then called back
the parent program and downloaded the remainder of the worm. The new
worm was then executed.

Recent Worm Attacks

The contemporary era of worm threats began with the release of the
Code Red worm in July of 2001. Code Red exploits a security hole in the
Microsoft Internet Information Server (IIS) to penetrate and spread. It also
disables the system file checker in Windows. The worm probes random
IP addresses to spread to other hosts. During a certain period of time, it
only spreads. It then initiates a denial-of-service attack against a
government Web site by flooding the site with packets from numerous
hosts. The worm then suspends activities and reactivates periodically. In
the second wave of attack, Code Red infected nearly 360,000 servers in
14 hours. In addition to the havoc it causes at the targeted server, Code
Red can consume enormous amounts of Internet capacity, disrupting
service.

Network Security

NOTES

306

Code Red II is a variant that targets Microsoft IISs. In addition, this newer
worm installs a backdoor allowing a hacker to direct activities of victim
computers.

In late 2001, a more versatile worm appeared, known as Nimda. Nimda
spreads by multiple mechanisms:

 from client to client via e-mail

 from client to client via open network shares

 from Web server to client via browsing of compromised Web sites

 from client to Web server via active scanning for and exploitation
of various Microsoft IIS 4.0 / 5.0 directory traversal vulnerabilities

 from client to Web server via scanning for the back doors left
behind by the "Code Red II" worms

The worm modifies Web documents (e.g., .htm, .html, and .asp files) and
certain executable files found on the systems it infects and creates
numerous copies of itself under various filenames.

In early 2003, the SQL Slammer worm appeared. This worm exploited a
buffer overflow vulnerability in Microsoft SQL server. The Slammer was
extremely compact and spread rapidly, infecting 90% of vulnerable hosts
within 10 minutes. Late 2003 saw the arrival of the Sobig.f worm, which
exploited open proxy servers to turn infected machines into spam
engines. At its peak, Sobig.f reportedly accounted for one in every 17
messages and produced more than one million copies of itself within the
first 24 hours.

Mydoom is a mass-mailing e-mail worm that appeared in 2004. It followed
a growing trend of installing a backdoor in infected computers, thereby
enabling hackers to gain remote access to data such as passwords and
credit card numbers. Mydoom replicated up to 1000 times per minute and
reportedly flooded the Internet with 100 million infected messages in 36
hours.

State of Worm Technology

The state of the art in worm technology includes the following:

 Multiplatform: Newer worms are not limited to Windows machines
but can attack a variety of platforms, especially the popular
varieties of UNIX.

 Multiexploit: New worms penetrate systems in a variety of ways,
using exploits against Web servers, browsers, e-mail, file sharing,
and other network-based applications.

Network Security

NOTES

307

 Ultrafast spreading: One technique to accelerate the spread of a
worm is to conduct a prior Internet scan to accumulate Internet
addresses of vulnerable machines.

 Polymorphic: To evade detection, skip past filters, and foil real-
time analysis, worms adopt the virus polymorphic technique. Each
copy of the worm has new code generated on the fly using
functionally equivalent instructions and encryption techniques.

 Metamorphic: In addition to changing their appearance,
metamorphic worms have a repertoire of behavior patterns that
are unleashed at different stages of propagation.

 Transport vehicles: Because worms can rapidly compromise a
large number of systems, they are ideal for spreading other
distributed attack tools, such as distributed denial of service
zombies.

 Zero-day exploit: To achieve maximum surprise and distribution, a
worm should exploit an unknown vulnerability that is only
discovered by the general network community when the worm is
launched.

Virus Countermeasures

Antivirus Approaches

The ideal solution to the threat of viruses is prevention: Do not allow a
virus to get into the system in the first place. This goal is, in general,
impossible to achieve, although prevention can reduce the number of
successful viral attacks. The next best approach is to be able to do the
following:

 Detection: Once the infection has occurred, determine that it has
occurred and locate the virus.

 Identification: Once detection has been achieved, identify the
specific virus that has infected a program.

 Removal: Once the specific virus has been identified, remove all
traces of the virus from the infected program and restore it to its
original state. Remove the virus from all infected systems so that
the disease cannot spread further.

If detection succeeds but either identification or removal is not possible,
then the alternative is to discard the infected program and reload a clean
backup version.

Advances in virus and antivirus technology go hand in hand. Early viruses
were relatively simple code fragments and could be identified and purged
with relatively simple antivirus software packages. As the virus arms race

Network Security

NOTES

308

has evolved, both viruses and, necessarily, antivirus software have grown
more complex and sophisticated.

Four generations of antivirus software:

 First generation: simple scanners

 Second generation: heuristic scanners

 Third generation: activity traps

 Fourth generation: full-featured protection

A first-generation scanner requires a virus signature to identify a virus.
The virus may contain "wildcards" but has essentially the same structure
and bit pattern in all copies. Such signature-specific scanners are limited
to the detection of known viruses. Another type of first-generation
scanner maintains a record of the length of programs and looks for
changes in length.

A second-generation scanner does not rely on a specific signature.
Rather, the scanner uses heuristic rules to search for probable virus
infection. One class of such scanners looks for fragments of code that are
often associated with viruses. For example, a scanner may look for the
beginning of an encryption loop used in a polymorphic virus and discover
the encryption key. Once the key is discovered, the scanner can decrypt
the virus to identify it, then remove the infection and return the program to
service.

Another second-generation approach is integrity checking. A checksum
can be appended to each program. If a virus infects the program without
changing the checksum, then an integrity check will catch the change. To
counter a virus that is sophisticated enough to change the checksum
when it infects a program, an encrypted hash function can be used. The
encryption key is stored separately from the program so that the virus
cannot generate a new hash code and encrypt that. By using a hash
function rather than a simpler checksum, the virus is prevented from
adjusting the program to produce the same hash code as before.

Third-generation programs are memory-resident programs that identify a
virus by its actions rather than its structure in an infected program. Such
programs have the advantage that it is not necessary to develop
signatures and heuristics for a wide array of viruses. Rather, it is
necessary only to identify the small set of actions that indicate an
infection is being attempted and then to intervene.

Fourth-generation products are packages consisting of a variety of
antivirus techniques used in conjunction. These include scanning and
activity trap components. In addition, such a package includes access
control capability, which limits the ability of viruses to penetrate a system

Network Security

NOTES

309

and then limits the ability of a virus to update files in order to pass on the
infection.

The arms race continues. With fourth-generation packages, a more
comprehensive defense strategy is employed, broadening the scope of
defense to more general-purpose computer security measures.

Advanced Antivirus Techniques

More sophisticated antivirus approaches and products continue to
appear. In this subsection, we highlight two of the most important.

Generic Decryption

Generic decryption (GD) technology enables the antivirus program to
easily detect even the most complex polymorphic viruses, while
maintaining fast scanning speeds. Recall that when a file containing a
polymorphic virus is executed, the virus must decrypt itself to activate. In
order to detect such a structure, executable files are run through a GD
scanner, which contains the following elements:

 CPU emulator: A software-based virtual computer. Instructions in
an executable file are interpreted by the emulator rather than
executed on the underlying processor. The emulator includes
software versions of all registers and other processor hardware,
so that the underlying processor is unaffected by programs
interpreted on the emulator.

 Virus signature scanner: A module that scans the target code
looking for known virus signatures.

 Emulation control module: Controls the execution of the target
code.

At the start of each simulation, the emulator begins interpreting
instructions in the target code, one at a time. Thus, if the code includes a
decryption routine that decrypts and hence exposes the virus, that code is
interpreted. In effect, the virus does the work for the antivirus program by
exposing the virus. Periodically, the control module interrupts
interpretation to scan the target code for virus signatures.

During interpretation, the target code can cause no damage to the actual
personal computer environment, because it is being interpreted in a
completely controlled environment.

The most difficult design issue with a GD scanner is to determine how
long to run each interpretation. Typically, virus elements are activated
soon after a program begins executing, but this need not be the case.
The longer the scanner emulates a particular program, the more likely it is
to catch any hidden viruses. However, the antivirus program can take up
only a limited amount of time and resources before users complain.

Network Security

NOTES

310

Digital Immune System

The digital immune system is a comprehensive approach to virus
protection developed by IBM. The motivation for this development has
been the rising threat of Internet-based virus propagation. We first say a
few words about this threat and then summarize IBM's approach.

Traditionally, the virus threat was characterized by the relatively slow
spread of new viruses and new mutations. Antivirus software was
typically updated on a monthly basis, and this has been sufficient to
control the problem. Also traditionally, the Internet played a comparatively
small role in the spread of viruses. But, two major trends in Internet
technology have had an increasing impact on the rate of virus
propagation in recent years:

 Integrated mail systems: Systems such as Lotus Notes and
Microsoft Outlook make it very simple to send anything to anyone
and to work with objects that are received.

 Mobile-program systems: Capabilities such as Java and ActiveX
allow programs to move on their own from one system to another.

In response to the threat posed by these Internet-based capabilities, IBM
has developed a prototype digital immune system. This system expands
on the use of program emulation discussed in the preceding subsection
and provides a general-purpose emulation and virus-detection system.
The objective of this system is to provide rapid response time so that
viruses can be stamped out almost as soon as they are introduced. When
a new virus enters an organization, the immune system automatically
captures it, analyzes it, adds detection and shielding for it, removes it,
and passes information about that virus to systems running IBM AntiVirus
so that it can be detected before it is allowed to run elsewhere.

Fig 4.4.12 Digital Immune System

Network Security

NOTES

311

Figure 4.4.12 illustrates the typical steps in digital immune system
operation:

1. A monitoring program on each PC uses a variety of heuristics based
on system behavior, suspicious changes to programs, or family
signature to infer that a virus may be present. The monitoring
program forwards a copy of any program thought to be infected to an
administrative machine within the organization.

2. The administrative machine encrypts the sample and sends it to a
central virus analysis machine.

3. This machine creates an environment in which the infected program
can be safely run for analysis. Techniques used for this purpose
include emulation, or the creation of a protected environment within
which the suspect program can be executed and monitored. The
virus analysis machine then produces a prescription for identifying
and removing the virus.

4. The resulting prescription is sent back to the administrative machine.

5. The administrative machine forwards the prescription to the infected
client.

6. The prescription is also forwarded to other clients in the
organization.

7. Subscribers around the world receive regular antivirus updates that
protect them from the new virus.

The success of the digital immune system depends on the ability of the
virus analysis machine to detect new and innovative virus strains. By
constantly analyzing and monitoring the viruses found in the wild, it
should be possible to continually update the digital immune software to
keep up with the threat.

Behavior-Blocking Software

Unlike heuristics or fingerprint-based scanners, behavior-blocking
software integrates with the operating system of a host computer and
monitors program behavior in real-time for malicious actions. The
behavior blocking software then blocks potentially malicious actions
before they have a chance to affect the system. Monitored behaviors can
include the following:

 Attempts to open, view, delete, and/or modify files;

Network Security

NOTES

312

 Attempts to format disk drives and other unrecoverable disk
operations;

 Modifications to the logic of executable files or macros;

 Modification of critical system settings, such as start-up settings;

 Scripting of e-mail and instant messaging clients to send
executable content; and

 Initiation of network communications.

If the behavior blocker detects that a program is initiating would-be
malicious behaviors as it runs, it can block these behaviors in real-time
and/or terminate the offending software. This gives it a fundamental
advantage over such established antivirus detection techniques as
fingerprinting or heuristics. While there are literally trillions of different
ways to obfuscate and rearrange the instructions of a virus or worm,
many of which will evade detection by a fingerprint scanner or heuristic,
eventually malicious code must make a well-defined request to the
operating system. Given that the behavior blocker can intercept all such
requests, it can identify and block malicious actions regardless of how
obfuscated the program logic appears to be.

The ability to watch software as it runs in real time clearly confers a huge
benefit to the behavior blocker; however, it also has drawbacks. Since the
malicious code must actually run on the target machine before all its
behaviors can be identified, it can cause a great deal of harm to the
system before it has been detected and blocked by the behavior blocking
system. For instance, a new virus might shuffle a number of seemingly
unimportant files around the hard drive before infecting a single file and
being blocked. Even though the actual infection was blocked, the user
may be unable to locate their files, causing a loss to productivity or
possibly worse.

Distributed Denial of Service Attacks

Distributed denial of service (DDoS) attacks present a significant security
threat to corporations, and the threat appears to be growing. A denial of
service (DoS) attack is an attempt to prevent legitimate users of a service
from using that service. When this attack comes from a single host or
network node, then it is simply referred to as a DoS attack. A more
serious threat is posed by a DDoS attack. In a DDoS attack, an attacker
is able to recruit a number of hosts throughout the Internet to
simultaneously or in a coordinated fashion launch an attack upon the
target. This section is concerned with DDoS attacks. First, we look at the
nature and types of attacks. Next, we examine means by which an
attacker is able to recruit a network of hosts for attack launch. Finally, this
section looks at countermeasures.

Network Security

NOTES

313

DDoS Attack Description

A DDoS attack attempts to consume the target's resources so that it
cannot provide service. One way to classify DDoS attacks is in terms of
the type of resource that is consumed. Broadly speaking, the resource
consumed is either an internal host resource on the target system or data
transmission capacity in the local network to which the target is attacked.

A simple example of an internal resource attack is the SYN flood attack.
Figure 4.4.13a shows the steps involved:

1. The attacker takes control of multiple hosts over the Internet,
instructing them to contact the target Web server.

2. The slave hosts begin sending TCP/IP SYN
(synchronize/initialization) packets, with erroneous return IP address
information, to the target.

3. Each SYN packet is a request to open a TCP connection. For each
such packet, the Web server responds with a SYN/ACK
(synchronize/acknowledge) packet, trying to establish a TCP
connection with a TCP entity at a spurious IP address. The Web
server maintains a data structure for each SYN request waiting for a
response back and becomes bogged down as more traffic floods in.
The result is that legitimate connections are denied while the victim
machine is waiting to complete bogus “half-open” connections.

The TCP state data structure is a popular internal resource target but by
no means the only one. gives the following examples:

1. In many systems, a limited number of data structures are
available to hold process information (process identifiers, process
table entries, process slots, etc.). An intruder may be able to
consume these data structures by writing a simple program or
script that does nothing but repeatedly create copies of itself.

2. An intruder may also attempt to consume disk space in other
ways, including

 generating excessive numbers of mail messages

 intentionally generating errors that must be logged

 placing files in anonymous ftp areas or network-shared
areas

Figure 4.4.13b illustrates an example of an attack that consumes data
transmission resources. The following steps are involved:

Network Security

NOTES

314

1. The attacker takes control of multiple hosts over the Internet,
instructing them to send ICMP ECHO packets with the target's
spoofed IP address to a group of hosts that act as reflectors, as
described subsequently.

Fig 4.4.13 Examples of Simple DDoS Attacks

2. Nodes at the bounce site receive multiple spoofed requests and
respond by sending echo reply packets to the target site.

3. The target's router is flooded with packets from the bounce site,
leaving no data transmission capacity for legitimate traffic.

Another way to classify DDoS attacks is as either direct or reflector DDoS
attacks. In a direct DDoS attack (Fig 4.4.14a), the attacker is able to
implant zombie software on a number of sites distributed throughout the
Internet. Often, the DDoS attack involves two levels of zombie machines:
master zombies and slave zombies. The hosts of both machines have
been infected with malicious code. The attacker coordinates and triggers
the master zombies, which in turn coordinate and trigger the slave
zombies. The use of two levels of zombies makes it more difficult to trace

Network Security

NOTES

315

the attack back to its source and provides for a more resilient network of
attackers.

DDoS Countermeasures

In general, there are three lines of defense against DDoS attacks:

 Attack prevention and preemption (before the attack): These
mechanisms enable the victim to endure attack attempts without
denying service to legitimate clients. Techniques include enforcing
policies for resource consumption and providing backup resources
available on demand. In addition, prevention mechanisms modify
systems and protocols on the Internet to reduce the possibility of
DDoS attacks.

 Attack detection and filtering (during the attack): These
mechanisms attempt to detect the attack as it begins and respond
immediately. This minimizes the impact of the attack on the target.
Detection involves looking for suspicious patterns of behavior.
Response involves filtering out packets likely to be part of the
attack.

 Attack source traceback and identification (during and after the
attack): This is an attempt to identify the source of the attack as a
first step in preventing future attacks. However, this method
typically does not yield results fast enough, if at all, to mitigate an
ongoing attack.

The challenge in coping with DDoS attacks is the sheer number of ways
in which they can operate. Thus DDoS countermeasures must evolve
with the threat.

REFERENCES

1. William Stallings, Cryptography and Network Security, PHI
Publishers

2. www.wikipedia.org

3. Microsoft TechNet (VPN’s)

Review Questions:

1. Write a short note on virus and worm.

2. Explain the nature of viruses

3. Give an account of virus counter measures

4. write a short note on Digital Immune System

Network Security

NOTES

316

6. FIREWALLS

OBJECTIVE

In this lesson, we discuss the principles of firewall design and looks at
specific techniques. This lesson also covers the related issue of trusted
systems.

INTRODUCTION

Firewalls can be an effective means of protecting a local system or
network of systems from network-based security threats while at the
same time affording access to the outside world via wide area networks
and the Internet.

Firewall Design Principles

Information systems in corporations, government agencies, and other
organizations have undergone a steady evolution:

 Centralized data processing system, with a central mainframe
supporting a number of directly connected terminals

 Local area networks (LANs) interconnecting PCs and terminals to
each other and the mainframe

 Premises network, consisting of a number of LANs,
interconnecting PCs, servers, and perhaps a mainframe or two

 Enterprise-wide network, consisting of multiple, geographically
distributed premises networks interconnected by a private wide
area network (WAN)

 Internet connectivity, in which the various premises networks all
hook into the Internet and may or may not also be connected by a
private WAN

Internet connectivity is no longer optional for organizations. The
information and services available are essential to the organization.
Moreover, individual users within the organization want and need Internet
access, and if this is not provided via their LAN, they will use dial-up
capability from their PC to an Internet service provider (ISP). However,
while Internet access provides benefits to the organization, it enables the
outside world to reach and interact with local network assets. This creates
a threat to the organization. While it is possible to equip each workstation

Network Security

NOTES

317

and server on the premises network with strong security features, such as
intrusion protection, this is not a practical approach. Consider a network
with hundreds or even thousands of systems, running a mix of various
versions of UNIX, plus Windows. When a security flaw is discovered,
each potentially affected system must be upgraded to fix that flaw. The
alternative, increasingly accepted, is the firewall. The firewall is inserted
between the premises network and the Internet to establish a controlled
link and to erect an outer security wall or perimeter. The aim of this
perimeter is to protect the premises network from Internet-based attacks
and to provide a single choke point where security and audit can be
imposed. The firewall may be a single computer system or a set of two or
more systems that cooperate to perform the firewall function.

Fig 4.4.14 Types of Flooding-Based DDoS Attacks

Network Security

NOTES

318

Firewall Characteristics

The following are the design goals for a firewall:

1. All traffic from inside to outside, and vice versa, must pass
through the firewall. This is achieved by physically blocking all
access to the local network except via the firewall. Various
configurations are possible, as explained later in this section.

2. Only authorized traffic, as defined by the local security policy, will
be allowed to pass. Various types of firewalls are used, which
implement various types of security policies, as explained later in
this section.

3. The firewall itself is immune to penetration. This implies that use
of a trusted system with a secure operating system.

Four general techniques that firewalls use to control access and enforce
the site's security policy.

 Service control: Determines the types of Internet services that can
be accessed, inbound or outbound. The firewall may filter traffic
on the basis of IP address and TCP port number; may provide
proxy software that receives and interprets each service request
before passing it on; or may host the server software itself, such
as a Web or mail service.

 Direction control: Determines the direction in which particular
service requests may be initiated and allowed to flow through the
firewall.

 User control: Controls access to a service according to which user
is attempting to access it. This feature is typically applied to users
inside the firewall perimeter (local users). It may also be applied to
incoming traffic from external users; the latter requires some form
of secure authentication technology, such as is provided in IPSec.

 Behavior control: Controls how particular services are used. For
example, the firewall may filter e-mail to eliminate spam, or it may
enable external access to only a portion of the information on a
local Web server.

Before proceeding to the details of firewall types and configurations, it is
best to summarize what one can expect from a firewall. The following
capabilities are within the scope of a firewall:

1. A firewall defines a single choke point that keeps unauthorized
users out of the protected network, prohibits potentially vulnerable
services from entering or leaving the network, and provides
protection from various kinds of IP spoofing and routing attacks.
The use of a single choke point simplifies security management

Network Security

NOTES

319

because security capabilities are consolidated on a single system
or set of systems.

2. A firewall provides a location for monitoring security-related
events. Audits and alarms can be implemented on the firewall
system.

3. A firewall is a convenient platform for several Internet functions
that are not security related. These include a network address
translator, which maps local addresses to Internet addresses, and
a network management function that audits or logs Internet usage.

4. A firewall can serve as the platform for IPSec. Using the tunnel
mode capability, the firewall can be used to implement virtual
private networks.

Firewalls have their limitations, including the following:

1. The firewall cannot protect against attacks that bypass the
firewall. Internal systems may have dial-out capability to connect
to an ISP. An internal LAN may support a modem pool that
provides dial-in capability for traveling employees and
telecommuters.

2. The firewall does not protect against internal threats, such as a
disgruntled employee or an employee who unwittingly cooperates
with an external attacker.

3. The firewall cannot protect against the transfer of virus-infected
programs or files. Because of the variety of operating systems and
applications supported inside the perimeter, it would be
impractical and perhaps impossible for the firewall to scan all
incoming files, e-mail, and messages for viruses.

Types of Firewalls

Figure 4.4.15 illustrates the three common types of firewalls: packet
filters, application-level gateways, and circuit-level gateways. We
examine each of these in turn.

Network Security

NOTES

320

Fig 4.4.15 Firewall Types

Packet-Filtering Router

A packet-filtering router applies a set of rules to each incoming and
outgoing IP packet and then forwards or discards the packet. The router
is typically configured to filter packets going in both directions (from and
to the internal network). Filtering rules are based on information
contained in a network packet:

 Source IP address: The IP address of the system that originated
the IP packet (e.g., 192.178.1.1)

 Destination IP address: The IP address of the system the IP
packet is trying to reach (e.g., 192.168.1.2)

Network Security

NOTES

321

 Source and destination transport-level address: The transport
level (e.g., TCP or UDP) port number, which defines applications
such as SNMP or TELNET

 IP protocol field: Defines the transport protocol

 Interface: For a router with three or more ports, which interface of
the router the packet came from or which interface of the router
the packet is destined for

The packet filter is typically set up as a list of rules based on matches to
fields in the IP or TCP header. If there is a match to one of the rules, that
rule is invoked to determine whether to forward or discard the packet. If
there is no match to any rule, then a default action is taken. Two default
policies are possible:

 Default = discard: That which is not expressly permitted is
prohibited.

 Default = forward: That which is not expressly prohibited is
permitted.

The default discard policy is more conservative. Initially, everything is
blocked, and services must be added on a case-by-case basis. This
policy is more visible to users, who are more likely to see the firewall as a
hindrance. The default forward policy increases ease of use for end users
but provides reduced security; the security administrator must, in
essence, react to each new security threat as it becomes known.

One advantage of a packet-filtering router is its simplicity. Also, packet
filters typically are transparent to users and are very fast. The following
are the weaknesses of packet filter firewalls:

 Because packet filter firewalls do not examine upper-layer data,
they cannot prevent attacks that employ application-specific
vulnerabilities or functions. For example, a packet filter firewall
cannot block specific application commands; if a packet filter
firewall allows a given application, all functions available within
that application will be permitted.

 Because of the limited information available to the firewall, the
logging functionality present in packet filter firewalls is limited.
Packet filter logs normally contain the same information used to
make access control decisions (source address, destination
address, and traffic type).

 Most packet filter firewalls do not support advanced user
authentication schemes. Once again, this limitation is mostly due
to the lack of upper-layer functionality by the firewall.

Network Security

NOTES

322

 They are generally vulnerable to attacks and exploits that take
advantage of problems within the TCP/IP specification and
protocol stack, such as network layer address spoofing. Many
packet filter firewalls cannot detect a network packet in which the
OSI Layer 3 addressing information has been altered. Spoofing
attacks are generally employed by intruders to bypass the security
controls implemented in a firewall platform.

 Finally, due to the small number of variables used in access
control decisions, packet filter firewalls are susceptible to security
breaches caused by improper configurations. In other words, it is
easy to accidentally configure a packet filter firewall to allow traffic
types, sources, and destinations that should be denied based on
an organization's information security policy.

Some of the attacks that can be made on packet-filtering routers
and the appropriate countermeasures are the following:

 IP address spoofing: The intruder transmits packets from the
outside with a source IP address field containing an address of an
internal host. The attacker hopes that the use of a spoofed
address will allow penetration of systems that employ simple
source address security, in which packets from specific trusted
internal hosts are accepted. The countermeasure is to discard
packets with an inside source address if the packet arrives on an
external interface.

 Source routing attacks: The source station specifies the route that
a packet should take as it crosses the Internet, in the hopes that
this will bypass security measures that do not analyze the source
routing information. The countermeasure is to discard all packets
that use this option.

 Tiny fragment attacks: The intruder uses the IP fragmentation
option to create extremely small fragments and force the TCP
header information into a separate packet fragment. This attack is
designed to circumvent filtering rules that depend on TCP header
information. Typically, a packet filter will make a filtering decision
on the first fragment of a packet. All subsequent fragments of that
packet are filtered out solely on the basis that they are part of the
packet whose first fragment was rejected. The attacker hopes that
the filtering router examines only the first fragment and that the
remaining fragments are passed through. A tiny fragment attack
can be defeated by enforcing a rule that the first fragment of a
packet must contain a predefined minimum amount of the
transport header. If the first fragment is rejected, the filter can
remember the packet and discard all subsequent fragments.

Network Security

NOTES

323

Stateful Inspection Firewalls

A traditional packet filter makes filtering decisions on an individual packet
basis and does not take into consideration any higher layer context. To
understand what is meant by context and why a traditional packet filter is
limited with regard to context, a little background is needed. Most
standardized applications that run on top of TCP follow a client/server
model. For example, for the Simple Mail Transfer Protocol (SMTP), e-mail
is transmitted from a client system to a server system. The client system
generates new e-mail messages, typically from user input. The server
system accepts incoming e-mail messages and places them in the
appropriate user mailboxes. SMTP operates by setting up a TCP
connection between client and server, in which the TCP server port
number, which identifies the SMTP server application, is 25. The TCP
port number for the SMTP client is a number between 1024 and 65535
that is generated by the SMTP client.

In general, when an application that uses TCP creates a session with a
remote host, it creates a TCP connection in which the TCP port number
for the remote (server) application is a number less than 1024 and the
TCP port number for the local (client) application is a number between
1024 and 65535. The numbers less than 1024 are the "well-known" port
numbers and are assigned permanently to particular applications (e.g., 25
for server SMTP). The numbers between 1024 and 65535 are generated
dynamically and have temporary significance only for the lifetime of a
TCP connection.

A simple packet-filtering firewall must permit inbound network traffic on all
these high-numbered ports for TCP-based traffic to occur. This creates a
vulnerability that can be exploited by unauthorized users.

Application-Level Gateway

An application-level gateway, also called a proxy server, acts as a relay
of application-level traffic (Fig 4.4.15b). The user contacts the gateway
using a TCP/IP application, such as Telnet or FTP, and the gateway asks
the user for the name of the remote host to be accessed. When the user
responds and provides a valid user ID and authentication information, the
gateway contacts the application on the remote host and relays TCP
segments containing the application data between the two endpoints. If
the gateway does not implement the proxy code for a specific application,
the service is not supported and cannot be forwarded across the firewall.
Further, the gateway can be configured to support only specific features
of an application that the network administrator considers acceptable
while denying all other features.

Application-level gateways tend to be more secure than packet filters.
Rather than trying to deal with the numerous possible combinations that
are to be allowed and forbidden at the TCP and IP level, the application-
level gateway need only scrutinize a few allowable applications. In

Network Security

NOTES

324

addition, it is easy to log and audit all incoming traffic at the application
level.

A prime disadvantage of this type of gateway is the additional processing
overhead on each connection. In effect, there are two spliced connections
between the end users, with the gateway at the splice point, and the
gateway must examine and forward all traffic in both directions.

Circuit-Level Gateway

A third type of firewall is the circuit-level gateway (Fig 4.4.15c). This can
be a stand-alone system or it can be a specialized function performed by
an application-level gateway for certain applications. A circuit-level
gateway does not permit an end-to-end TCP connection; rather, the
gateway sets up two TCP connections, one between itself and a TCP
user on an inner host and one between itself and a TCP user on an
outside host. Once the two connections are established, the gateway
typically relays TCP segments from one connection to the other without
examining the contents. The security function consists of determining
which connections will be allowed.

A typical use of circuit-level gateways is a situation in which the system
administrator trusts the internal users. The gateway can be configured to
support application-level or proxy service on inbound connections and
circuit-level functions for outbound connections. In this configuration, the
gateway can incur the processing overhead of examining incoming
application data for forbidden functions but does not incur that overhead
on outgoing data.

Bastion Host

A bastion host is a system identified by the firewall administrator as a
critical strong point in the network's security. Typically, the bastion host
serves as a platform for an application-level or circuit-level gateway.
Common characteristics of a bastion host include the following:

 The bastion host hardware platform executes a secure version of
its operating system, making it a trusted system.

 Only the services that the network administrator considers
essential are installed on the bastion host. These include proxy
applications such as Telnet, DNS, FTP, SMTP, and user
authentication.

 The bastion host may require additional authentication before a
user is allowed access to the proxy services. In addition, each
proxy service may require its own authentication before granting
user access.

Network Security

NOTES

325

 Each proxy is configured to support only a subset of the standard
application's command set.

 Each proxy is configured to allow access only to specific host
systems. This means that the limited command/feature set may
be applied only to a subset of systems on the protected network.

 Each proxy maintains detailed audit information by logging all
traffic, each connection, and the duration of each connection. The
audit log is an essential tool for discovering and terminating
intruder attacks.

 Each proxy module is a very small software package specifically
designed for network security. Because of its relative simplicity, it
is easier to check such modules for security flaws. For example, a
typical UNIX mail application may contain over 20,000 lines of
code, while a mail proxy may contain fewer than 1000.

 Each proxy is independent of other proxies on the bastion host. If
there is a problem with the operation of any proxy, or if a future
vulnerability is discovered, it can be uninstalled without affecting
the operation of the other proxy applications. Also, if the user
population requires support for a new service, the network
administrator can easily install the required proxy on the bastion
host.

 A proxy generally performs no disk access other than to read its
initial configuration file. This makes it difficult for an intruder to
install Trojan horse sniffers or other dangerous files on the bastion
host.

 Each proxy runs as a nonprivileged user in a private and secured
directory on the bastion host.

Firewall Configurations

In addition to the use of a simple configuration consisting of a single

system, such as a single packet-filtering router or a single gateway (Fig

4.4.15), more complex configurations are possible and indeed more

common. Fig 4.4.16 illustrates three common firewall configurations. We

examine each of these in turn.

Network Security

NOTES

326

Fig 4.4.16 Firewall Configurations

In the screened host firewall, single-homed bastion configuration (Fig

4.4.16a), the firewall consists of two systems: a packet-filtering router and

a bastion host. Typically, the router is configured so that

1. For traffic from the Internet, only IP packets destined for the
bastion host are allowed in.

2. For traffic from the internal network, only IP packets from the
bastion host are allowed out.

Network Security

NOTES

327

The bastion host performs authentication and proxy functions. This

configuration has greater security than simply a packet-filtering router or

an application-level gateway alone, for two reasons. First, this

configuration implements both packet-level and application-level filtering,

allowing for considerable flexibility in defining security policy. Second, an

intruder must generally penetrate two separate systems before the

security of the internal network is compromised.

This configuration also affords flexibility in providing direct Internet
access. For example, the internal network may include a public
information server, such as a Web server, for which a high level of
security is not required. In that case, the router can be configured to allow
direct traffic between the information server and the Internet.

In the single-homed configuration just described, if the packet-filtering
router is completely compromised, traffic could flow directly through the
router between the Internet and other hosts on the private network. The
screened host firewall, dual-homed bastion configuration physically
prevents such a security breach (Fig 4.4.16b). The advantages of dual
layers of security that were present in the previous configuration are
present here as well. Again, an information server or other hosts can be
allowed direct communication with the router if this is in accord with the
security policy.

The screened subnet firewall configuration of Fig 4.4.16c is the most
secure of those we have considered. In this configuration, two packet-
filtering routers are used, one between the bastion host and the Internet
and one between the bastion host and the internal network. This
configuration creates an isolated subnetwork, which may consist of
simply the bastion host but may also include one or more information
servers and modems for dial-in capability. Typically, both the Internet and
the internal network have access to hosts on the screened subnet, but
traffic across the screened subnet is blocked. This configuration offers
several advantages:

 There are now three levels of defense to thwart intruders.

 The outside router advertises only the existence of the screened
subnet to the Internet; therefore, the internal network is invisible to
the Internet.

 Similarly, the inside router advertises only the existence of the
screened subnet to the internal network; therefore, the systems on
the inside network cannot construct direct routes to the Internet.

Network Security

NOTES

328

REFERENCES

1. William Stallings, Cryptography and Network Security, PHI
Publishers

2. www.wikipedia.org

3. Microsoft TechNet (VPN’s)

Review Questions:

1. Explain firewall design principles and characteristics in
detail

2. Explain the configuration of firewalls in detail.

3. Write a short note on Bastion Host

