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Structure
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Objective

After going through this lesson, you should be able to:
» Understand the Nature of Data Sets;
» Discuss Models and Patterns;

» Discuss Components of Data Mining Algorithms;

1.1 Introduction

Progress in digital data acquisition and storage technology has
resulted in the growth of huge databases. This has occurred in all
areas of human endeavor, from the mundane (such as
supermarket transaction data, credit card usage records,
telephone call details, and government statistics) to the more
exotic (such as images of astronomical bodies, molecular
databases, and medical records). Little wonder, then, that interest
has grown in the possibility of tapping these data, of extracting
from them information that might be of value to the owner of the
database. The discipline concerned with this task has become
known as data mining.
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2 Data

Defining a scientific discipline is always a controversial task;
researchers often disagree about the precise range and limits of
their field of study. Bearing this in mind, and accepting that others
might disagree about the details, we shall adopt as our working
definition of data mining:

Data mining is the analysis of (often large) observational data sets
to find unsuspected relationships and to summarize the data in
novel ways that are both understandable and useful to the data
owner.

The relationships and summaries derived through a data mining
exercise are often referred to as models or patterns. Examples
include linear equations, rules, clusters, graphs, tree structures,
and recurrent patterns in time series.

The definition above refers to "observational data,” as opposed to
"experimental data." Data mining typically deals with data that have
already been collected for some purpose other than the data
mining analysis (for example, they may have been collected in
order to maintain an up -to-date record of all the transactions in a
bank). This means that the objectives of the data mining exercise
play no role in the data collection strategy. This is one way in
which data mining differs from much of statistics, in which data are
often collected by using efficient strategies to answer specific
qguestions. For this reason, data mining is often referred to as
"secondary" data analysis.

The process of seeking relationships within a data set of seeking
accurate, convenient, and useful summary representations of
some aspect of the data involves a number of steps:

e determining the nature and structure of the representation to be
used;

e deciding how to quantify and compare how well different
representations fit the data (that is, choosing a "score" function);

e choosing an algorithmic process to optimize the score function;
and deciding what principles of data management are required
to implement the algorithms efficiently.

Data mining is an interdisciplinary exercise. Statistics, database
technology, machine learning, pattern recognition, artificial
intelligence, and visualization, all play a role and just as it is difficult
to define sharp boundaries between these disciplines, so it is
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difficult to define sharp boundaries between each of them and data
mining. At the boundaries, one person's data mining is another's
statistics, database, or machine learning problem.

1.2 The Nature of Data Sets

We begin by discussing at a high level the basic nature of data
sets.

A data set is a set of measurements taken from some environment
or process. In the simplest case, we have a collection of
objects, and for each object we have a set of the same p
measurements. In this case, we can think of the collection of the
measurements on n objects as a form of n x p data matrix. The n
rows represent the n objects on which measurements were taken
(for example, medical patients, credit card customers, or individual
objects observed in the night sky, such as stars and galaxies).
Such rows may be referred to as individuals, entities, cases,
objects, or records depending on the context.

The other dimension of our data matrix contains the set of p
measurements made on each object. Typically we assume that the
same p measurements are made on each individual although this
need not be the case (for example, different medical tests could be
performed on different patients). The p columns of the data matrix
may be referred to as variables, features, attributes, or fields; again,
the language depends on the research context. In all situations the
idea is the same: these names refer to the measurement that is
represented by each column.

1.3 Types of Structure: Models and Patterns

The different kinds of representations sought during a data mining
exercise may be characterized in various ways. One such
characterization is the distinction between a global model and a
local pattern.

A model structure, as defined here, is a global summary of a data
set; it makes statements about any point in the full measurement
space. Geometrically, if we consider the rows of the data matrix as
corresponding to p-dimensional vectors (i.e. points in p-
dimensional space), the model can make a statement about any
point in this space (and hence, any object). For example, it can
assign a point to a cluster or predict the value of some other
variable. Even when some of the measurements are missing (i.e.,

some of the components of the p-dimensional vector are unknown),

Mining Techniques

NOTES



4 Data

a model can typically make some statement about the object
represented by the (incomplete) vector.

A simple model might take the form Y = aX + ¢, where Y and X are
variables a and c are parameters of the model (constants
determined during the course of the data mining exercise). Here
we would say that the functional form of the model is linear, since
Y is a linear function of X. The conventional statistical use of the
term is slightly different. In statistics, a model is linear if it is a linear
function of the parameters. We will try to be clear in the text about
which form of linearity we are assuming, but when we discuss the
structure of a model (as we are doing here) it makes sense to
consider linearity as a function of the variables of interest rather
than the parameters. Thus, for example, the model structure Y =

ax2 + bX + c, is considered a linear model in classic statistical
terminology, but the functional form of the model relating Y and X
is nonlinear (it is a second-degree polynomial).

In contrast to the global nature of models, pattern structures make
statements only about restricted regions of the space spanned by
the variables. An example is a simple probabilistic statement of the
form if X > x1 then prob(Y > y1) = pl1. This structure consists of
constraints on the values of the variables X and Y, related in the
form of a probabilistic rule. Alternatively we could describe the
relationship as the conditional probability p(Y > y1|X > x1) = p1,
which is semantically equivalent. Or we might notice that certain
classes of transaction records do not show the peaks and troughs
shown by the vast majority, and look more closely to see why.
(This sort of exercise led one bank to discover that it had several
open accounts that belonged to people who had died.)

Note that the model and pattern structures described above have
parameters associated with them; a, b, c for the model and x1, y1
and pl for the pattern. In general, once we have established the
structural form we are interested in finding; the next step is to
estimate its parameters from the available data. Once the
parameters have been assigned values, we refer to a particular
model, such as y = 3.2x + 2.8, as a "fitted model," or just "model"
for short (and similarly for patterns). This distinction between
model (or pattern) structures and the actual (fitted) model (or
pattern) is quite important. The structures represent the general
functional forms of the models (or patterns), with unspecified
parameter values. A fitted model or pattern has specific values for
its parameters.
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1.4 Data Mining Tasks

It is convenient to categorize data mining into types of tasks,
corresponding to different objectives for the person who is
analyzing the data. The categorization below is not unique, and
further division into finer tasks is possible, but it captures the types
of data mining activities and previews the major types of data
mining algorithms we will describe later in the text.

1. Exploratory Data Analysis (EDA):

As the name suggests, the goal here is simply to explore the data
without any clear ideas of what we are looking for. Typically, EDA
techniques are interactive and visual, and there are many effective
graphical display methods for relatively small, low-dimensional data
sets. As the dimensionality (number of variables, p) increases, it
becomes much more difficult to visualize the cloud of points in p-
space. For p higher than 3 or 4, projection techniques (such as
principal components analysis) that produce informative low-
dimensional projections of the data can be very useful. Large
numbers of cases can be difficult to visualize effectively, however,
and notions of scale and detail come into play: "lower resolution”
data samples can be displayed or summarized at the cost of
possibly missing important details.

2. Descriptive Modeling:

The goal of a descriptive model is describe all of the data (or the
process generating the data). Examples of such descriptions
include models for the overall probability distribution of the data
(density estimation), partitioning of the p-dimensional space into
groups (cluster analysis and segmentation), and models describing
the relationship between variables (dependency modeling ). In
segmentation analysis, for example, the aim is to group together
similar records, as in market segmentation of commercial
databases. Here the goal is to split the records into homogeneous
groups so that similar people (if the records refer to people) are put
into the same group. This enables advertisers and marketers to
efficiently direct their promotions to those most likely to respond.
The number of groups here is chosen by the researcher; there is
no "right" number. This contrasts with cluster analysis, in which the
aim is to discover "natural" groups in data in scientific databases,
for example.
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3. Predictive Modeling: Classification and Regression:

The aim here is to build a model that will permit the value of one variable
to be predicted from the known values of other variables. In classification,
the variable being predicted is categorical, while in regression the
variable is quantitative. The term "prediction" is used here in a general
sense, and no notion of a time continuum is implied. So, for example,
while we might want to predict the value of the stock market at some
future date, or which horse will win a race, we might also want to
determine the diagnosis of a patient, or the degree of brittleness of a
weld. A large number of methods have been developed in statistics and
machine learning to tackle predictive modeling problems, and work in
this area has led to significant theoretical advances and improved
understanding of deep issues of inference. The key distinction between
prediction and description is that prediction has as its objective a unique
variable (the market's value, the disease class, the brittleness, etc.);
while in descriptive problems no single variable is central to the model.

4. Discovering Patterns and Rules:

The three types of tasks listed above are concerned with model
building. Other data mining applications are concerned with pattern
detection. One example is spotting fraudulent behavior by
detecting regions of the space defining the different types of
transactions where the data points significantly different from the
rest. Another use is in astronomy, where detection of unusual stars
or galaxies may lead to the discovery of previously unknown
phenomena. Yet another is the task of finding combinations of
items that occur frequently in transaction databases (e.g., grocery
products that are often purchased together). This problem has
been the focus of much attention in data mining and has been
addressed using algorithmic techniques based on association
rules.

5. Retrieval by Content:

Here the user has a pattern of interest and wishes to find similar
patterns in the data set. This task is most commonly used for text
and image data sets. For text, the pattern may be a set of
keywords, and the user may wish to find relevant documents within
a large set of possibly relevant documents (e.g., Web pages). For
images, the user may have a sample image, a sketch of an image,
or a description of an image, and wish to find similar images from a
large set of images. In both cases the definition of similarity is
critical, but so are the details of the search strategy.
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1.5 Components of Data Mining Algorithms

In the preceding sections we have listed the basic categories of
tasks that may be undertaken in data mining. We now turn to the
guestion of how one actually accomplishes these tasks. We will
take the view that data mining algorithms that address these tasks
have four basic components:

1. Model or Pattern Structure: determining the underlying
structure or functional forms that we seek from the data.

2. Score Function: judging the quality of a fitted model.

3. Optimization and Search Method: optimizing the score
function and searching over different model and pattern structures.

4. Data management Strategy: handling data access efficiently
during the search/optimization.

We have already discussed the distinction between model and
pattern structures. In the remainder of this section we briefly
discuss the other three components of a data mining algorithm.

1.5.1 Score Functions

Score functions quantify how well a model or parameter structure
fits a given data set. In an ideal world the choice of score function
would precisely reflect the utility (i.e., the true expected benefit) of
a particular predictive model. In practice, however, it is often
difficult to specify precisely the true utility of a model's predictions.
Hence, simple, "generic" score functions, such as least squares
and classification accuracy are commonly used.

Without some form of score function, we cannot tell whether one
model is better than another or, indeed, how to choose a good set
of values for the parameters of the model.

Several score functions are widely used for this purpose; these
include likelihood, sum of squared errors, and misclassification rate
(the latter is used in supervised classification problems). For
example, the well-known squared error score function is defined as

i:(}"ii} - ¥1(i)*

i=1
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where we are predicting n "target" values y(i), 1 <i < n, and our

predictions for each are denoted as ¥li! (typically this is a function
of some other "input" variable values for prediction and the
parameters of the model).

1.5.2 Optimization and Search Methods

The score function is a measure of how well aspects of the data
match proposed models or patterns. Usually, these models or
patterns are described in terms of a structure, sometimes with
unknown parameter values. The goal of optimization and search is
to determine the structure and the parameter values that achieve a
minimum (or maximum, depending on the context) value of the
score function. The task of finding the "best" values of parameters
in models is typically cast as an optimization (or estimation)
problem. The task of finding interesting patterns (such as rules)
from a large family of potential patterns is typically cast as a
combinatorial search problem, and is often accomplished using
heuristic search techniques. In linear regression, a prediction rule
is usually found by minimizing a least squares score function (the
sum of squared errors between the prediction from a model and
the observed values of the predicted variable). Such a score
function is amenable to mathematical manipulation, and the model
that minimizes it can be found algebraically. In contrast, a score
function such as misclassification rate in supervised classification
is difficult to minimize analytically. For example, since it is
intrinsically discontinuous the powerful tool of differential calculus
cannot be brought to bear.

1.5.3 Data Management Strategies

The final component in any data mining algorithm is the data
management strategy: the ways in which the data are stored,
indexed, and accessed. Most well-known data analysis algorithms
in statistics and machine learning have been developed under the
assumption that all individual data points can be accessed quickly
and efficiently in random -access memory (RAM). While main
memory technology has improved rapidly, there have been equally
rapid improvements in secondary (disk) and tertiary (tape) storage
technologies, to the extent that many massive data sets still reside
largely on disk or tape and will not fit in available RAM. Thus, there
will probably be a price to pay for accessing massive data sets,
since not all data points can be simultaneously close to the main
processor.
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1.6 Data Mining: Dredging, Snooping, and
Fishing

An introductory chapter on data mining would not be complete
without reference to the historical use of terms such as "data
mining," "dredging,” "snooping,” and “fishing." In thel960s, as
computers were increasingly applied to data analysis problems, it
was noted that if you searched long enough, you could always find
some model to fit a data set arbitrarily well. There are two factors
contributing to this situation: the complexity of the model and the
size of the set of possible models.

Clearly, if the class of models we adopt is very flexible (relative to
the size of the available data set), then we will probably be able to
fit the available data arbitrarily well. However, as we remarked
above, the aim may be to generalize beyond the available data; a
model that fits well may not be ideal for this purpose. Moreover,
even if the aim is to fit the data (for example, when we wish to
produce the most accurate summary of data describing a complete
population) it is generally preferable to do this with a simple model.
To take an extreme, a model of complexity equivalent to that of the
raw data would certainly fit it perfectly, but would hardly be of
interest or value.

Even with a relatively simple model structure, if we consider
enough different models with this basic structure, we can
eventually expect to find a good fit. For example, consider
predicting a response variable, Y from a predictor variable X which
is chosen from a very large set of possible variables, X1, ..., Xp,
none of which are related to Y. By virtue of random variation in the
data generating process, although there are no underlying
relationships between Y and any of the X variables, there will
appear to be relationships in the data at hand. The search process
will then find the X variable that appears to have the strongest
relationship to Y. By this means, as a consequence of the large
search space, an apparent pattern is found where none really
exists. The situation is particularly bad when working with a small
sample size n and a large number p of potential X variables.
Familiar examples of this sort of problem include the spurious
correlations which are popularized in the media, such as the
"discovery" that over the past 30 years when the winner of the
Super Bowl championship in American football is from a particular
league, a leading stock market index historically goes up in the
following months. Similar examples are plentiful in areas such as
economics and the social sciences, fields in which data are often

relatively sparse but models and theories to fit to the data are
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relatively plentiful. For instance, in economic time-series prediction,
there may be a relatively short time-span of historical data
available in conjunction with a large number of economic indicators
(potential predictor variables). One particularly humorous example
of this type of prediction was provided by Leinweber (personal
communication) who achieved almost perfect prediction of annual
values of the well-known Standard and Poor 500 financial index as
a function of annual values from previous years for butter
production, cheese production, and sheep populations in
Bangladesh and the United States.
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2. Measurement and Data

Structure

2.1Introduction

2.2 Types of Measurement

2.3 Distance Measures

2.5 The Form of Data

2.6 Data Quality for Individual Measurements

2.7 Data Quality for Collections of Data

Objective

After going through this lesson, you should be able to:
» Discuss different types of measurements;
» Discuss about Quality of Measurements ;

» Discuss about Quality of collections of data;

2.1Introduction

Our aim is to discover relationships that exist in the "real world,"
where this may be the physical world, the business world, the
scientific world, or some other conceptual domain. However, in
seeking such relationships, we do not go out and look at that
domain firsthand. Rather, we study data describing it. So first we
need to be clear about what we mean by data.

Data are collected by mapping entities in the domain of interest to
symbolic representation by means of some measurement
procedure, which associates the value of a variable with a given
property of an entity. The relationships between objects are
represented by numerical relationships between variables. These
numerical representations, the data items, are stored in the data
set; it is these items that are the subjects of our data mining
activities.
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2.2 Types of Measurement

Measurements may be categorized in many ways. Some of the
distinctions arise from the nature of the properties the
measurements represent, while others arise from the use to which
the measurements are put.

To illustrate, we will begin by considering how we might measure
the property WEIGHT. In this discussion we will denote a property
by using uppercase letters, and the variable corresponding to it
(the result of the mapping to numbers induced by the
measurement operation) by lowercase letters. Thus a
measurement of WEIGHT vyields a value of weight. For
concreteness, let us imagine we have a collection of rocks.

The first thing we observe is that we can rank the rocks according
to the WEIGHT property. We could do this, for example, by placing
a rock on each pan of a weighing scale and seeing which way the
scale tipped. On this basis, we could assign a number to each rock
so that larger numbers corresponded to heavier rocks. Note that
here only the ordinal properties of these numbers are relevant. The
fact that one rock was assigned the number 4 and another was
assigned the number 2 would not imply that the first was in any
sense twice as heavy as the second. We could equally have
chosen some other number, provided it was greater than 2, to
represent the WEIGHT of the first rock. In general, any monotonic
(order preserving) transformation of the set of numbers we
assigned would provide an equally legitimate assignment. We are
only concerned with the order of the rocks in terms of their
WEIGHT property.

We can take the rocks example further. Suppose we find that,
when we place a large rock on one pan of the weighing scale and
two small rocks on the other pan, the pans balance. In some sense
the WEIGHT property of the two small rocks has combined to be
equal to the WEIGHT property of the large rock. It turns out (this
will come as no surprise!) that we can assign numbers to the rocks
in such a way that not only does the order of the numbers
correspond to the order observed from the weighing scales, but
the sum of the numbers assigned to the two smaller rocks equals
the number assigned to the larger rock. That is, the total weight of
the two smaller rocks equals the weight of the larger rock. Note
that even now the assignment of numbers is not unique. Suppose
we had assigned the numbers 2 and 3 to the smaller rocks, and
the number 5 to the larger rock. This assignment satisfies the

ordinal and additive property requirements, but so too would the
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assignment of 4, 6, and 10 respectively. There is still some
freedom in how we define the variable weight corresponding to the
WEIGHT property.

The point of this example is that our numerical representation
reflects the empirical properties of the system we are studying.
Relationships between rocks in terms of their WEIGHT property
correspond to relationships between values of the measured
variable weight. This representation is useful because it allows us
to make inferences about the physical system by studying the
numerical system. Without juggling sacks of rocks, we can see
which sack contains the largest rock, which sack has the heaviest
rocks on average, and so on.

The rocks example involves two empirical relationships: the order
of the rocks, in terms of how they tip the scales, and their
concatenation property the way two rocks together balance a third.
Other empirical systems might involve less than or more than two
relationships. The order relationship is very common; typically, if
an empirical system has only one relationship, it is an order
relationship. Examples of the order relationship are provided by the
SEVERITY property in medicine and the PREFERENCE property
in psychology.

Of course, not even an order relationship holds with some
properties, for example, the properties HAIR COLOR, RELIGION,
and RESIDENCE OF PROGRAMMER; do not have a natural
order. Numbers can still be used to represent "values" of the
properties, (blond = 1, black = 2, brown = 3, and so on), but the
only empirical relationship being represented is that the colors are
different (and so are represented by different numbers). It is
perhaps even more obvious here that the particular set of numbers
assigned is not unique. Any set in which different numbers
correspond to different values of the property will do.

Given that the assignment of numbers is not unique, we must find
some way to restrict this freedom or else problems might arise if
different researchers use different assignments. The solution is to
adopt some convention. For the rocks example, we would adopt a
basic "value" of the property WEIGHT, corresponding to a basic
value of the variable weight, and defined measured values in terms
of how many copies of the basic value are required to balance
them. Examples of such basic values for the WEIGHT/weight
system are the gram and pound.
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Types of measurement may be categorized in terms of the
empirical relationships they seek to preserve. However, an
important alternative is to categorize them in terms of the
transformations that lead to other equally legitimate numerical
representations. Thus, a numerical severity scale, in which only
order matters, may be represented equally well by any numbers
that preserve the order numbers derived through a monotonic or
ordinal transformation of the original ones. For this reason, such
scales are termed ordinal scales.

2.3 Distance Measures

Many data mining techniques (for example, nearest neighbor
classification methods, cluster analysis, and multidimensional
scaling methods) are based on similarity measures between
objects. There are essentially two ways to obtain measures of
similarity. First, they can be obtained directly from the objects. For
example, a marketing survey may ask respondents to rate pairs of
objects according to their similarity, or subjects in a food tasting
experiment may be asked to state similarities between flavors of
ice-cream. Alternatively, measures of similarity may be obtained
indirectly from vectors of measurements or characteristics
describing each object. In the second case it is necessary to define
precisely what we mean by "similar," so that we can calculate
formal similarity measures. Instead of talking about how similar two
objects are, we could talk about how dissimilar they are. Once we
have a formal definition of either "similar" or "dissimilar,” we can
easily define the other by applying a suitable monotonically
decreasing transformation. For example, if s(i, j) denotes the
similarity and d(i, j) denotes the dissimilarity between objects i and
j, possible transformations include d(, j) = 1 - s(i, j) and
d(i,) =+(2(1 —s(i.i¥) . The term proximity is often used as a
general term to denote either a measure of similarity or
dissimilarity.

Two additional terms distance and metric are often used in this
context. The term distance is often used informally to refer to a
dissimilarity measure derived from the characteristics describing
the objects as in Euclidean distance, defined below. A metric, on
the other hand, is a dissimilarity measure that satisfies three
conditions:

1.d(i, j)= 0 for alliand j, and d(i, j) = 0 if and only if i = j;
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2.d(i, j) = d(, i) for all i and j; and

3. d(i, j) =d(i, k) + dk, j) for all i, j, and k. The third condition is
called the triangle inequality.

Suppose we have n data objects with p real-valued measurements
on each object. We denote the vector of observations for the ith
object by x(i) = (x,(i), X,(i), . . ., %,(i)), 1 =i = n, where the value of
the k th variable for the ith object is x,(i). The Euclidean distance
between the ith and jth objects is defined as

[ ]T=Y

- P

dg(i,j) = 88E ( E (xpli) —x (1 éf'f':E)

k=1

This measure assumes some degree of commensurability
between the different variables. Thus, it would be effective if each
variable was a measure of length (with the number p of dimensions
being 2 or 3, it would yield our standard physical measure of
distance) or a measure of weight, with each variable measured
using the same units. It makes less sense if the variables are
noncommensurate. For example, if one variable were length and
another were weight, there would be no obvious choice of units; by
altering the choice of units we would change which variables were
most important as far as the distance was concerned.

Since we often have to deal with data sets in which the variables
are not commensurate, we must find some way to overcome the
arbitrariness of the choice of units. A common strategy is to
standardize the data by dividing each of the variables by its
sample standard deviation, so that they are all regarded as equally
important. (But note that this does not resolve the issue—treating
the variables as equally important in this sense is still making an
arbitrary assumption.) The standard deviation for the k th variable
Xk can be estimated as

1 | st

Oy = (%Z{XL(H— Ly, }j)

i=1

where . is the mean for variable %, which (if unknown) can be

n
1 .
fhz—TXk.i. o Xk

. . i X = —
estimated using the sample mean i .Thus, © Ok removes
the effect of as captured by .
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In addition, if we have some idea of the relative importance that
should be accorded to each variable, then we can weight them
(after standardization), to yield the weighted Euclidean distance
measure

L
2

P
dywe (i, ) = BEE ( Z wi, (xp, () — %, NI )
k=t

The Euclidean and weighted Euclidean distances are both additive,
in the sense that the variables contribute independently to the
measure of distance. This property may not always be appropriate.
To take an extreme case, suppose that we are measuring the
height s and diameters of a number of cups. Using commensurate
units, we could define similarities between the cups in terms of
these two measurements. Now suppose that we measured the
height of each cup 100 times, and the diameter only once (so that
for any give n cup we have 101 variables, 100 of which have almost
identical values). If we combined these measurements in a
standard Euclidean distance calculation, the height would
dominate the apparent similarity between the cups. However, 99
of the height measurements do not contribute anything to what we
really want to measure; they are very highly correlated (indeed,
perfectly, apart from measurement error) with the first height
measurement. To eliminate such redundancy we need a data-
driven method. One approach is to standardize the data, not just in
the direction of each variable, as with weighted Euclidean distance,
but also taking into account the covariance between the variables.

Then the sample covariance between X and Y is defined as
Cov(X,Y) = %Z{x“] —Z)(pleh — g,
=]

where it is' the sample mean of the X values and is the sample
mean of the Y values.

The covariance is a measure of how X and Y vary together: it will
have a large positive value if large values of X tend to be
associated with large values of Y and small values of X with small
values of Y. If large values of X tend to be associated with small
values of Y, it will take a negative value.

More generally, with p variables we can construct a p x p matrix
of covariances, in which the element (k, I) is the covariance
between the kth and Ith variables. From the definition of covariance
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above, we can see that such a matrix (a co-variance matrix) must
be symmetric.

The value of the covariance depends on the ranges of X and Y.
This dependence can be removed by standardizing, dividing the
values of X by their standard deviation and the values of Y by their
standard deviation. The result is the sample correlation coefficient
p(X, Y) between X and Y:

3o w i = B)uli) — @)

A Y) =

T

]
(E.ﬂ.:{fii'l — P 3w (08) - ::rF)

In the same way that a covariance matrix can be formed if there
are p variables, a p x p correlation matrix can be formed in the
same manner.

Note that covariance and correlation capture linear dependencies
between variables (they are more accurately termed linear
covariance and linear correlation). Consider data points that are
uniformly distributed around a circle in two dimensions (X and Y),
centered at the origin. The variables are clearly dependent, but in a
nonlinear manner and they will have zero linear correlation. Thus,
independence implies a lack of correlation, but the reverse is not
generally true.

Recall again our coffee cup example with 100 measurements of
height and one measurement of width. We can discount the effect
of the 100 correlated variables by incorporating the covariance
matrix in our definition of distance. This leads to the Mahalanobis
distance between two p-dimensional measurements x(i) and x(j),
defined as:

v !
dyn(iy ) = ((x () = x ()" £ (x (3) - x (7))

where T represents the transpose, ) is the p x p sample

covariance matrix, and Z'l standardizes the data relative to }.
Note that although we have been thinking about our p-dimensional
measurement vectors x(i) as rows in our data matrix, the
convention in matrix algebra is to treat these as p x 1 column
vectors (we can still visualize our data matrix as being an n x p
matrix). Entry (k, 1) of ) is defined between variable Xk and X|.

Thus, we have a p x 1 vector transposed (to give a 1 x p vector),
multiplied by the p x p matrix Z’l, multiplied by a p x 1 vector,

Mining Techniques

NOTES



18 Data

yielding a scalar distance. Of course, other matrices could be used
in place of ). Indeed, the statistical frameworks of canonical
variates analysis and discriminate analysis use the average of the
covariance matrices of different groups of cases.

The Euclidean metric can also be generalized in other ways. For
example, one obvious generalization is to the Minkowski or Ly
metric:

p 3
(Emm - uum}*}) :

k=1

where A2 1. Using this, the Euclidean distance is the special case
of A = 2. The L, metric (also called the Manhattan or city-block
metric) can be defined as

3 Lali) = zeli)) |-

k=1
The case A—« yields the L. metric

max lzxld} = 2 ()] .

There is a huge number of other metrics for quantitative
measurements, so the problem is not so much defining one but
rather deciding which is most appropriate for a particular situation.

For multivariate binary data we can count the number of variables
on which two objects take the same or take different values.
Consider, in which all p variables defined for objects i and j take
values in {0, 1}; the entry n1 1 in the box for i = 1 and j = 1 denotes
that there are n1,1 variables such that i and j both have value 1.

With binary data, rather than measuring the dissimilarities between
objects, we often measure the similarities. Perhaps the most
obvious measure of similarity is the simple matching coefficient,
defined as

11+ Bon
ny+ o+ Roa + oo

the proportion of the variables on which the objects have the same
value, where n1,1 + n1,0 + no,1 + no,0 = p, the total number of
variables. Sometimes, however, it is inappropriate to include the
(0,0) cell (or the (1,1) cell, depending on the meaning of 0 and 1).
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For example, if the variables are scores of the presence (1) or
absence (0) of certain properties, we may not care about all the
irrelevant properties had by neither object. (For instance, in vector
representations of text documents it may be not be relevant that
two documents do not contain thousands of specific terms). This
consideration leads to a modification of the matching coefficient,
the Jaccard coefficient, defined as

LW
ny+ng0+ o

The Dice coefficient extends this argument. If (0,0) matches are
irrelevant, then (0,1) and (1,0) mismatches should lie between (1,
1) matches and (0,0) matches in terms of relevance. For this
reason the number of (0,1) and (1,0) mismatches should be
multiplied by a half. This yields 2n1,1/(2n1,2 + n1,0 + nQ,1). As
with quantitative data, there are many different measures for
multivariate binary data again the problem is not so much defining
such measures but choosing one that possesses properties that
are desirable for the problem at hand.

For categorical data in which the variables have more than two
categories, we can score 1 for variables on which the two objects
agree and 0 otherwise, expressing the sum of these as a fraction
of the possible total p. If we know about the categories, we might
be able to define a matrix giving values for the different kinds of
disagreement.

Additive distance measures can be readily adapted to deal with
mixed data types (e.g., some binary variables, some categorical,
and some quantitative) since we can add the contributions from
each variable. Of course, the question of relative standardization
still arises.

2.5 The Form of Data

The data sets come in different forms; these forms are known as
schemas. The simplest form of data (and the only form we have
discussed in any detail) is a set of vector measurements on objects
o(1), . . ., o(n). For each object we have measurements of p
variables X1, ..., Xp. Thus, the data can be viewed as a matrix
with n rows and p columns. We refer to this standard form of data
as a data matrix, or simply standard data. We can also refer to the
data set as a table.
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Often there are several types of objects we wish to analyze. For
example, in a payroll database, we might have data both about
employees, with variables name, department - name, age, and
salary, and about departments with variables department -name,
budget and manager. These data matrices are connected to each
other by the occurrence of the same (categorical) values in the
department -name fields and in the fields name and manager. Data
sets consisting of several such matrices or tables are called
multirelational data.

In many cases multirelational data can be mapped to a single data
matrix or table. For example, we could join the two data tables
using the values of the variable department - name. This would
give us a data matrix with the variables name, department -name,
age, salary, budget (of the department), and manager (of the
department). The possibility of such a transformation seems to
suggest that there is no need to consider multirelational structures
at all since in principle we could represent the data in one large
table or matrix. However, this way of joining the data sets is not the
only possibility: we could also create a table with as many rows as
there are departments (this would be useful if we were interested
in getting information about the departments, e.g., determining
whether there was dependence between the budget of a
department and the age of the manager). Generally no single table
best captures all the information in a multirelational data set. More
important, from the point of view of efficiency in storage and data
access, "flattening” multirelational data to form a single large table
may involve the needless replication of numerous values.

Some data sets do not fit well into the matrix or table form. A
typical example is a time series, in which consecutive values
correspond to measurements taken at consecutive times, (e.g.,
measurements of signal strength in a waveform, or of responses of
a patient at a series of times after receiving medical treatment). We
can represent a time series using two variables, one for time and
one for the measurement value at that time. This is actually the
most natural representation to use for storing the time series in a
database. However, representing the data as a two-variable matrix
does not take into account the ordered aspect of the data. In
analyzing such data, it is important to recognize that a natural
order does exist. It is common, for example, to find that
neighboring observations are more closely related (more highly
correlated) than distant observations. Failure to account for this
factor could lead to a poor model.
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A string is a sequence of symbols from some finite alphabet. A
sequence of values from

a categorical variable is a string, and so is standard English text, in
which the values are alphanumeric characters, spaces, and
punctuation marks. Protein and DNA/RNA sequences are other
examples. Here the letters are individual proteins (note that a
string representation of a protein sequence is a 2-dimensional view
of a 3-dimensional structure). A string is another data type that is
ordered and for which the standard matrix form is not necessarily
suitable.

A related ordered data type is the event-sequence. Given a finite
alphabet of categorical event types, an event -sequence is a
sequence of pairs of the form {event, occurrence time}. This is
quite similar to a string, but here each item in the sequence is
tagged with an occurrence time. An example of an event-sequence
is a telecommunication alarm log, which includes a time of
occurrence for each alarm. More complicated event -sequences
include transaction data (such as records of retail or financial
transactions), in which each transaction is time-stamped and the
events themselves can be relatively complex (e.g., listing all
purchases along with prices, department names, and so forth).
Furthermore, there is no reason to restrict the concept of event
sequences to categorical data; for example we could extend it to
real -valued events occurring asynchronously, such as data from
animal behavioral experiments or bursts of energy from objects in
deep space.

2.6 Data Quality for Individual Measurements

The effectiveness of a data mining exercise depends critically on
the quality of the data. In computing this idea is expressed in the
familiar acronym GIGO Garbage In, Garbage Out. Since data
mining involves secondary analysis of large data sets, the dangers
are multiplied. It is quite possible that the most interesting patterns
we discover during a data mining exercise will have resulted from
measurement inaccuracies, distorted samples or some other
unsuspected difference between the reality of the data and our
perception of it.

It is convenient to characterize data quality in two ways: the quality
of the individual records and fields, and the overall quality of the
collection of data. We deal with each of these in turn.
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No measurement procedure is without the risk of error. The
sources of error are infinite, ranging from human carelessness,
and instrumentation failure, to inadequate definition of what it is
that we are measuring. Measuring instruments can lead to errors in
two ways: they can be inaccurate or they can be imprecise. This
distinction is important, since different strategies are required for
dealing with the different kinds of errors.

A precise measurement procedure is one that has small variability
(often measured by its variance). Using a precise process,
repeated measurements on the same object under the same
conditions will yield very similar values. Sometimes the word
precision is taken to connote a large number of digits in a given
recording. We do not adopt this interpretation, since such
"precision” can all too easily be spurious, as anyone familiar with
modern data analysis packages (which sometimes give results of
calculations to eight or more decimal places) will know.

An accurate measurement procedure, in contrast, not only
possesses small variability, but also yields results close to what we
think of as the true value. A measurement procedure may Yyield
precise but inaccurate measurements. For example repeated
measurements of someone's height may be precise, but if these
were made while the subject was wearing shoes, the result would
be inaccurate. In statistical terms, the difference between the mean
of repeated measurements and the true value is the bias of a
measurement procedure. Accurate procedures have small bias as
well as small variance.

2.7 Data Quality for Collections of Data

In addition to the quality of individual observations, we need to
consider the quality of collections of observations. Much of
statistics and data mining is concerned with inference from a
sample to a population, that is, how, on the basis of examining just
a fraction of the objects in a collection, one can infer things about
the entire population. Statisticians use the term parameter to refer
to descriptive summaries of populations or distributions of objects
(more generally, of course, a parameter is a value that indexes a
family of mathematical functions). Values computed from a sample
of objects are called statistics, and appropriately chosen statistics
can be used as estimates of parameters. Thus, for example, we
can use the average of a sample as an estimate of the mean
(parameter) of an entire population or distribution.
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Such estimates are useful only if they are accurate. As we have
just noted, inaccuracies can occur in two ways. Estimates from
different samples might vary greatly, so that they are unreliable:
using a different sample might have led to a very different estimate.
Or the estimates might be biased, tending to be too large or too
small. In general, the precision of an estimate (the extent to which
it would vary from sample to sample) increases with increasing
sample size; as resources permit, we can reduce this uncertainty
to an acceptable value. Bias, on the other hand, is not so easily
diminished.

Some estimates are intrinsically biased, but do not cause a
problem because the bias decreases with increasing sample size.
Of more significance in data mining are biases arising from an
inappropriate sample. If we wanted to calculate the average weight
of people living in New York, it would obviously be inadvisable to
restrict our sample to women. If we did this, we would probably
underestimate the average. Clearly, in this case, the population
from which our sample is drawn (women in New York) is not the
population to which we wish to generalize (everyone in New York).
Our sampling frame, the list of people from which we will draw our
sample, does not match the population about which we want to
make an inference. This is a simple example we were able to
clearly identify the population from which the sample was drawn
(women in New York). Difficulties arise when it is less obvious what
the effect of the incorrect sampling frame will be. Suppose, for
example, that we drew our sample from people working in offices.
Would this lead to biased estimates? Maybe the sexes are
disproportionately represented in offices. Maybe office workers
have a tendency to be heavier than average because of their
sedentary occupation. There are many reasons why such a
sample might not be representative of the population we aim to
study.

Because we often have no control over the way the data are
collected, quality issues are particularly important in data. Our data
set may be a distorted sample of the population we wish to
describe. If we know the nature of this distortion then we might be
able to allow for it in our inferences, but in general this is not the
case and inferences must be made with care. The terms
opportunity sample and convenience sample are sometimes used
to describe samples that are not properly drawn from the
population of interest. The sample of office workers above would
be a convenience sample it is much more convenient to sample
from them than to sample from the whole population of New York.
Distortions of a sample can occur for many reasons, but the risk is
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especially grave when humans are involved. The effects can be
subtle and unexpected: for instance, in large samples, the
distribution of stated ages tends to cluster around integers ending
with O or 5 just the sort of pattern that data mining would detect as
potentially interesting. Interesting it may be, but will probably be of
no value in our analysis.

A different kind of distortion occurs when customers are selected
through a chain of selection steps. With bank loans, for example,
an initial population of potential customers is contacted (some
reply and some do not), those who reply are assessed for
creditworthiness (some receive high scores and some do not),
those with high scores are offered a loan (some accept and some
do not), those who take out a loan are followed up (some are good
customers, paying the installments on time, and others are not),
and so on. A sample drawn at any particular stage would give a
distorted perspective on the population at an earlier stage.

In this example of candidates for bank loans, the selection criteria
at each step are clearly and explicitly stated but, as noted above,
this is not always the case. For example, in clinical trials samples
of patients are selected from across the country, having been
exposed to different diagnostic practices and perhaps different
previous treatments in different primary care facilities. Here the
notion of taking a "random sample from a well-defined population”
makes no sense. This problem is compounded by the imposition of
inclusion/exclusion criteria: perhaps the patients must be male,
aged between 18 and 50, with a primary diagnosis of the disease
in question made no longer than two years ago, and so on. (It is
hardly surprising in this context, that the sizes of effects recorded
in clinical trials are typically larger than those found when the
treatments are applied more widely. On the other hand it is
reassuring that the directions of the effects do normally generalize
in this way.)

In addition to sample distortion arising from a mismatch between
the sample population and the population of interest other kinds of
distortion arise. The aim of many data mining exercises is to make
some prediction of what will happen in the future. In such cases it
is important to remember that populations are not static. For
instance the nature of a customers shopping at a certain store will
change over time, perhaps because of changes in the social
culture of the surrounding neighborhood, or in response to a
marketing initiative, or for many other reasons. Much work on
predictive methods has failed to take account of such population
drift. Typically, the future performance of such methods is
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assessed using data collected at the same time as the data used
to build the modelimplicitly assuming that the distribution of objects
used to construct the model is the same as that of future objects.
Ideally, a more sophisticated model is required that can allow for
evolution over time. In principle, population drift can be modeled,
but in practice this may not be easy.

Distortion of samples can be viewed as a special case of
incomplete data, one in which entire records are missing from what
would otherwise be a representative sample. Data can also be
missing in other ways. In particular, individual fields may be
missing from records. In some ways this is not as serious as the
situation described above. (At least here, one can see that the data
are missing!) Still, significant problems may arise from incomplete
data. The fundamental question is "Why are the data missing?"
Was there information in the missing data that is not present in the
data that have been recorded? If so, inferences based on the
observed data are likely to be biased. In any incomplete data
problem, it is crucial to be clear about the objectives of the
analysis. In particular, if the aim is to make an inference only about
the cases that have complete records, inferences based only on
the complete cases is entirely valid.
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3. Visualizing and Exploring Data

Structure

3.1 Introduction

3.2 Summarizing Data: Some Simple Examples

3.3 Tools for Displaying Single Variables

3.4 Tools for Displaying Relationships between Two Variables
3.5 Tools for Displaying More Than Two Variables

3.6 Principal Components Analysis

3.7 Multidimensional Scaling

Objective

After going through this lesson, you should be able to:
» Discuss different types of tools for displaying;
» Discuss about principal components analysis;

» Discuss about multidimensional scaling;

3.1 Introduction

This lesson explores visual methods for finding structures in data.
Visual methods have a special place in data exploration because
of the power of the human eye/brain to detect structures the
product of aeons of evolution. Visual methods are used to display
data in ways that capitalize upon the particular strengths of human
pattern processing abilities. This approach lies at quite the opposite
end of the spectrum from methods for formal model building and
for testing to see whether observed data could have arisen from a
hypothesized data generating structure. Visual methods are
important in data mining because they are ideal for sifting through
data to find unexpected relationships. On the other hand, they do
have their limitations, particularly, as we illustrate below, with very
large data sets.

Exploratory data analysis can be described as data-driven
hypothesis generation. We examine the data, in search of
structures that may indicate deeper relationships between cases or
variables. This process stands in contrast to hypothesis testing
which begins with a proposed model or hypothesis and undertakes
statistical manipulations to determine the likelihood that the data
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arose from such a model. The phrase data based in the above
description indicates that it is the patterns in the data that give rise
to the hypotheses in contrast to situations in which hypotheses are
generated from theoretical arguments about underlying
mechanisms. This distinction has implications for the legitimacy of
subsequent testing of the hypotheses. If we take 10 random
samples of size 20 from the same population, and measure the
values of a single variable, the random samples will have different
means (just by virtue of random variability). We could compare the
means using formal tests. Suppose, however, we took only the two
samples giving rise to the smallest and largest means, ignoring the
others. A test of the difference between these means might well
show significance. If we took 100 samples, instead of 10, then we
would be even more likely to find a significant difference between
the largest and the smallest means. By ignoring the fact that these
are the largest and smallest in a set of 100, we are biasing the
analysis toward detecting a difference even though the samples
were generated from the same population.

In general, when searching for patterns, we cannot test whether a
discovered pattern is a real property of the underlying distribution
(as opposed to a chance property of the sample) without taking
into account the size of the search the number of possible patterns
we have examined. The informal nature of exploratory data
analysis makes this very difficult it is often impossible to say how
many patterns have been examined. For this reason researchers
often use a separate data set, obtained from the same source as
the first, to conduct formal testing for the existence of any pattern.

3.2 Summarizing Data: Some Simple Examples

We mentioned in earlier chapters that the mean is a simple
summary of the average of a collection of values. Suppose that
X(1), ..., Xx(n) comprise a set of n data values. The sample mean is
defined as

j=_ x(i)/n.

(Note that we use u to refer to the true mean of the population,
and £ to refer a sample- based estimate of this mean). The
sample mean has the property that it is the value that is "central” in
the sense that it minimizes the sum of squared differences
between it and the data values. Thus, if there are n data values,
the mean is the value such that the sum of n copies of it equals the
sum of the data values.
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The mean is a measure of location. Another important measure of
location is the median, which is the value that has an equal
number of data points above and below it. (Easy if n is an odd
number. When there is an even number it is usually defined as
halfway between the two middle values.)

The most common value of the data is the mode. Sometimes
distributions have more than one mode (for example, there may be
10 objects which take the value 3 on some variable, and another
10 which take the value 7, with all other values taken less often
than 10 times) and are therefore called multimodal.

Other measures of location focus on different parts of the
distribution of data values. The first quartile is the value that is
greater than a quarter of the data points. The third quartile is
greater than three quarters. (We leave it to you to discover why we
have not mentioned the second quartile.) Likewise, deciles and
percentiles are sometimes used. Various measures of dispersion
or variability are also common. These include the standard
deviation and its square, the variance. The variance is defined as
the average of the squared differences between the mean and the
individual data values:

&l = E{r{:’} - u)¥/n.

Note that since the mean minimizes the sum of these squared
differences, there is a close link between the mean and the
variance. If i is unknown, as is often the case in practice, we can
replace p above with, our data based estimate. When L is replaced
with Z to get an unbiased estimate, the variance is estimated as

el = @ fin = 1)

The standard deviation is the square root of the variance:

T = \/Z”m —u)3/n.

The interquartile range, common in some applications, is the
difference between the third and first quartile. The range is the
difference between the largest and smallest data point.

Skewness measures whether or not a distribution has a single long
tail and is commonly defined as
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For example, the distribution of peoples' incomes typically shows
the vast majority of people earning small to moderate amounts,
and just a few people earning large sums, tailing off to the very
few who earn astronomically large sums the Bill Gateses of the
world. A distribution is said to be right-skewed if the long talil
extends in the direction of increasing values and left-skewed
otherwise. Right-skewed distributions are more common.
Symmetric distributions have zero skewness.

3.3 Tools for Displaying Single Variables

One of the most basic displays for univariate data is the histogram,
showing the number of values of the variable that lie in consecutive
intervals. With small data sets, histograms can be misleading:
random fluctuations in the values or alternative choices for the
ends of the intervals can give rise to very different diagrams.
Apparent multimodality can arise, and then vanish for different
choices of the intervals or for a different small sample. As the size
of the data set increases, however, these effects diminish. With
large data sets, even subtle features of the histogram can
represent real aspects of the distribution.

Figure 3.1 shows a histogram of the number of weeks during 1996
in which owners of a particular credit card used that card to make
supermarket purchases (the label on the vertical axis has been
removed to conceal commercially sensitive details). There is a
large mode to the left of the diagram: most people did not use their
card in a supermarket, or used it very rarely. The number of people
who used the card a given number of times decreases rapidly with
increases in the number of times. However, the relatively large
number of people represented in this diagram allows us to detect
another, much smaller mode toward the right hand end of the
diagram. Apparently there is a tendency for people to make regular
weekly trips to a supermarket, though this is reduced from 52
annual transactions, probably by interruptions such as holidays.
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Figure 3.1: Histogram of the number of weeks of the year a
particular brand of credit card was used.

The disadvantages of histograms have also been tackled by
smoothing estimates. One of the most widely used types is the
kernel estimate.

Kernel estimates smooth out the contribution of each observed
data point over a local neighborhood of that point. Consider a
single variable X for which we have measured values {x(1),
x(n)}. The contribution of data point x(i) to the estimate at some
point x* depends on how far apart x(i) and x* are. The extent of
this contribution is dependent upon on the shape of the kernel
function adopted and the width accorded to it. Denoting the kernel
function by K and its width (or bandwidth) by h, the estimated
density at any point x is

f(e) = Eh ( ””)

(kvat = 1 . o
where - to ensure that the estimate f(x) itself integrates

to 1 (i.e., is a proper density) and where the kernel function K is
usually chosen to be a smooth unimodal function with a peak at O.
The quality of a kernel estimate depends less on the shape of K
than on the value of h.A common form for K is the Normal
(Gaussian) curve, with h as its spread parameter (standard
deviation), i.e.,

K(t,h) = Cem3EF
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where C is a normalization constant and t = x - x(i) is the distance
of the query point x to data point x(i ). The bandwidth h is
equivalent to s, the standard deviation (or width) of the Gaussian
kernel function.

There are formal methods for optimizing the fit of these estimates
to the unknown distribution that generated the data, but here our
interest is in graphical procedures. For our purposes the attraction
of such estimates is that by varying h, we can search for
peculiarities in the shape of the sample distribution. Small values
of h lead to very spiky estimates (not much smoothing at all), while
large values lead to over smoothing. The limits at each extreme of
h are the empirical distribution of the data points (i.e., "delta
functions" on each data point x(i)) as h—0, and a uniform flat
distribution as h—8. These limits correspond to the extremes of
total commitment to the data (with no mass anywhere except at
the observed data points), versus completely ignoring the observed
data.

Figure 3.2 shows a kernel estimate of the density of the weights of
856 elderly women who took part in a study of osteoporosis. The
distribution is clearly right skewed and there is a hint of
multimodality. Certainly the assumption often made in classical
statistical work that distributions are normal does not apply in this
case. (This is not to say that statistical techniques nominally based
on that assumption might not still be valid. Often the arguments are
asymptotic based on normality arising from the central limit
theorem. In this case, the assumption that the sample mean of 856
subjects would vary from sample to sample according to a normal
distribution would be reasonable for practical purposes.)
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Figure 3.2: Kernel estimate of the weights (in kg) of 856 elderly

women.
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Figure 3.3 shows what happens when a larger value is used for
the smoothing parameter h. Which of the two kernel estimates is
"better" is a difficult question to answer. Figure 3.3 is more
conservative in that less credence is given to local (potentially
random) fluctuations in the observed data values.

Figure 3.3: As figure 3.2, but with more smoothing.

Although this section focuses on displaying single variables, it is
often desirable to display different groups of scores on a single
variable separately, so that the groups may be compared. (Of
course, we can think of this as a two-variable situation, in which one
of the variables is the grouping factor.) Histograms, kernel plots, and
other unidimensional displays can be used separately for each
group. However, this can become unwieldy if there are more than
two or three groups. In such cases a useful alternative display is the
box and whisker plot.

Although various versions of box and whisker plots exist, the
essential ideas are the same. A box containing which the bulk of the
data is defined for example, the interval between the first and third
quartiles. A line across this box indicates some measure of location
often the median of the data. Whiskers project from the ends of the
box to indicate the spread of the tails of the empirical distribution.

3.4 Tools for Displaying Relationships between
Two Variables

The scatterplot is a standard tool for displaying two variables at a
time. Figure 3.4 shows the relationship between two variables
describing credit card repayment patterns (the details are
confidential). It is clear from this diagram that the variables are

Mining Techniques

NOTES



33 Data

strongly correlated when one value has a high (low) value; the other
variable is likely to have a high (low) value. However, a significant
number of people depart from this pattern; showing high values on
one of the variables and low values on the other. It might be worth
investigating these individuals to find out why they are unusual.

Unfortunately, in data mining, scatterplots are not always so useful.
If there are too many data points we will find ourselves looking at a
purely black rectangle. Figure 3.5 illustrates this sort of problem.
This shows a scatterplot of 96,000 points from a study of bank
loans. Little obvious structure is discernible, although it might
appear that later applicants in general are older. On the other
hand, the apparent greater vertical dispersion toward the right end
of the diagram could equally be caused by a greater number of
samples on the right side. In fact, the linear regression fit to these
data has a very small but highly significant downward slope.
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Figure 3.4: A standard scatterplot for two banking variables.
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Figure 3.5: A scatterplot of 96,000 cases, with much overprinting.
each data point represents an individual applicant for a loan. the
vertical axis shows the age of the applicant, and the horizontal axis
indicates the day on which the application was made.

Even when the situation is not quite so extreme, scatterplots with
large numbers of points can conceal more than they reveal. Figure
3.6 plots the number of weeks a particular credit card was used to
buy petrol (gasoline) in a given year against the number of weeks
the card was used in a supermarket (each data point represents
an individual credit card). There is clearly some correlation, but the
actual correlation 0.482 is much higher than it appears here. The
diagram is deceptive because it conceals a great deal of
overprinting in the bottom left corner there are 10,000 customers
represented here altogether. The bimodality shown in figure 3.1
can also be discerned in this figure, though not as easily as in
figure 3.1.

Another curious phenomenon is also apparent in figure 3.6. The
distribution of the number of weeks the card was used in a petrol
station is skewed for low values of the supermarket variable, but
fairly uniform for high values. What could explain this? (Of course,
bearing in mind the point above, this apparent phenomenon needs
to be checked for overprinting.)
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Figure 3.6: Overprinting conceals the actual strength of the
correlation.

Contour plots can help overcome some of these problems. Note
that creating a contour plot in two dimensions effectively requires
us to construct a two -dimensional density estimate, using
something like a two -dimensional generalization of the kernel
method of equation, again raising the issue of bandwidth selection
but now in a two -dimensional context. A contour plot of the 96,000
points shown in figure 3.5 is given in figure 3.7. Certain trends are
clear from this display that cannot be discerned in figure 3.5. For
instance the density of points increases toward the right side of the
diagram; the apparent increasing dispersion of the vertical axis is
due to there being a greater concentration of points in that area.
The vertical skewness of the data is also very evident in this
diagram. The unimodality of the data and the position of the single
mode cannot be seen at all in figure 3.5 but is quite clear in figure
3.7. Note that since the horizontal axis in these plots is time, an
alternative way to display the data is to plot contours of constant
conditional probability density, as time progresses.
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Figure 3.7: A contour plot of the data from figure 3.5.

Other standard forms of display can be used when one of the two
variables is time, to show the value of the other variable as time
progresses. This can be a very effective way of detecting trends
and departures from expected or standard behaviour. Figure 3.8
shows a plot of the number of credit cards issued in the United
Kingdom from 1985 t01993 inclusive. A smooth curve has been
fitted to the data to place emphasis on the main features of the
relationship. It is clear that around 1990 something caused a break
in a growth pattern that had been linear up to that point. In fact,
what happened was that in 1990 and 1991 annual fees were
introduced for credit cards, and many users reduced their holding
to a single card.
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Figure 3.8: A plot of the number of credit cards in circulation in the

united kingdom, by year.
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Figure 3.9 shows a plot of the number of miles flown by UK
airlines, during each month from January 1963 to December 1970.
There are several patterns immediately apparent from this display
that conform with what one might expect to observe, such as the
gradually increasing trend and the periodicity (with large peaks in
the summer and small peaks around the new year). The plot also
reveals an interesting bifurcation of the summer peak, suggesting a
tendency for travelers to favor the early and late summer over the
middle period.
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Figure 3.9: Patterns of change over time in the number of miles
flown by uk airlines in the 1960s.

Figure 3.10 provides a third example of the power of plots in which
time is one of the two variables. From February to June 1930, an
experiment was carried out in Lanarkshire, Scotland to investigate
whether adding milk to children's diets had an effect on "physique,
general health and increasing mental alertness" (Leighton and
McKinlay,1930). In this study 20,000 children were allocated to one
of three groups; 5000 of the children received three-quarters of a
pint of raw milk per day, 5000 received three - quarters of a pint of
pasteurized milk per day, and 10,000 formed a control group
receiving no dietary milk supplement. The children were weighed
at the start of the experiment and again four months later. Interest
lay in whether there was differential growth between the three
groups.

Figure 3.10 plots the mean weight of the control group of girls
against the mean age of the group they are in. The first point
corresponds to the youngest age group (mean age 5.5 years) at

the start of the experiment, and the second point corresponds to
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this group four months later. The third and fourth points correspond
to the second age group, and so on. The points are connected by
lines to make the shape easier to discern. Similar shapes are
apparent for all groups in the experiment.

5

i
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A

Figure 3.10: Weight changes over time in a group of 10,000
school children in the 1930s. the steplike pattern in the data
highlights a problem with the measurement process.

The plot immediately reveals an unexpected pattern that cannot be
seen from a table of the data. We would expect a smooth plot, but
there are clear steps evident here. It seems that each age group
does not gain as much weight as expected. There are various
possible explanations for this shape. Perhaps children grow less
during the early months of the year than during the later ones.
However, similar plots of heights show no such intermittent growth,
so we need a more elaborate explanation in which height
increases uniformly but weight increases in spurts. Another
possible explanation arises from the fact that the children were
weighed in their clothes. The report does say, "All of the children
were weighed without their boots or shoes and wearing only their
ordinary outdoor clothing. The boys were made to turn out the
miscellaneous collection of articles that is normally found in their
pockets, and overcoats, mufflers, etc., were also discarded. Where
a child was found to be wearing three or four jerseys a not
uncommon experience all in excess of one were removed.” It still
seems likely, however, that the summer garb was lighter than the

winter garb. This example illustrates that the patterns discovered
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by data mining may not shed much light on the phenomena under
investigation, but finding data anomalies and shortcomings may be
just as valuable.

3.5 Tools for Displaying More Than Two Variables

Since sheets of paper and computer screens are flat, they are
readily suited for displaying two-dimensional data, but are not
effective for displaying higher dimensional data. We need some
kind of projection, from the higher dimensional data to a two
dimensional plane, with modifications to show (aspects of) the
other dimensions.

Figure 3.11 illustrates a scatterplot matrix for characteristics,
performance measures, and relative performance measures of 209
computer CPUs dating from over 10 years ago. The variables are
cycle time, minimum memory (kb), maximum memory (kb), cache
size (kb), minimum channels, maximum channels, relative
performance, and estimated relative performance (relative to an
IBM 370/158 -3). While some pairs of variables appear to be
unrelated, others are strongly related. Brushing allows us to
highlight points in a scatterplot matrix in such a way that the points
corresponding to the same objects in each scatterplot are
highlighted. This is particularly useful in interactive exploration of
data.
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Figure 3.11: A scatterplot matrix for the computer CPU data.

Of course, scatterplot matrices are not really multivariate solutions:
they are multiple bivariate solutions, in which the multivariate data
are projected into multiple two - dimensional plots (and in each
two-dimensional plot all other variables are ignored). Such
projections necessarily sacrifice information. Picture a cube formed
from eight smaller cubes. If data points are uniformly distributed in
alternate subcubes, with the others being empty, all three one -
dimensional and all three two-dimensional projections show

uniform distributions. Interactive graphics come into their own
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when more than two variables are involved, since then we can
rotate ("spin") the direction of projection in a search for structure.
Some systems even let the software follow random rotations, while
we watch and wait for interesting structures to become apparent.
While this is a good idea in principle, the excitement of watching a
cloud of points shift relative position as the direction of viewing
changes can quickly pall, and more structured methods are
desirable.

Trellis plotting also utilizes multiple bivariate plots. Here, however,
rather than displaying a scatterplot for each pair of variables, they
fix a particular pair of variables that is to be displayed and produce
a series of scatterplots conditioned on levels of one or more other
variables .

Figure 3.12 shows a trellis plot for data on epileptic seizures. The
horizontal axis of each plot gives the number of seizures that 58
patients experienced over a certain two week period, and the
vertical axis gives the number of seizures experienced over a later
two week period. The two left hand graphs show the figures for
males, and the two right hand graphs the figures for females. The
two upper graphs show ages 29 to 42 while the two lower graphs
show ages 18 to 28. (The original data set included the record of
another subject who had much higher counts. We have removed
this subject here so that we can more clearly see the relationships
between the scores of the other subjects.) From these plots, we
can see that the younger group show lower average counts than
the older group. The figures also hint at some possible differences
between the slopes of the estimated best fitting lines relating the y
and x axes, though we would need to carry out formal tests to be
confident that these differences were real.

Trellis plots can be produced with any kind of component graph.
Instead of scatterplots in each cell, we could have histograms, time
series plots, contour plots, or any other types of plots.
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Figure 3.12: A trellis plot for the epileptic seizures data.

An entirely different way to display multivariate data is through the
use of icons, small diagrams in which the sizes of different features
are determined by the values of particular variables. Star icons are
among the most popular. In these, different directions from the
origin correspond to different variables, and the lengths of radii
projecting in these directions correspond to the magnitudes of the
variables. Figure 3.13 shows an example. The data displayed here
come from 12 chemical properties that were measured on 53
mineral samples equally spaced along a long drill into the Earth's
surface.

Another type of icon plot, Chernoff's faces, is discussed frequently
in introductory texts on the subject. In these plots, the sizes of
features in cartoon faces (length of nose, degree of smile, shape of
eyes, etc.) represent the values of the variables. The method is
based on the principle that the human eye is particularly adept at
recognizing and distinguishing between faces. Although they are
entertaining, plots of this type are seldom used in serious data
analysis since the idea does not work very well in practice with
more than a handful of cartoon faces. In general, iconic
representations are effective only for relatively small numbers of
cases since they require the eye to scan each case
separately.Parallel coordinates plots show variables as parallel

axes, representing each case as a piecewise linear plot connecting
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the measured values for that case. Figure 3.14 shows such a plot
repeated measurements of the number of epileptic
seizures experienced by 58 patients during successive two week
periods. The data are clearly skewed and might be modeled by a
Poisson distribution. Since the data set is not too large, we can
follow the trajectories of individual patients.
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Figure 3.13: An example of a star plot.
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Figure 3.14: A parallel coordinates plot for the epileptic seizure
data.

Another way of representing dimensions is through the use of
color. Line styles, as in the parallel coordinates plot above, can
serve the same purpose.

No single method of representing multivariate data is a universal
solution. Which method is most useful in a given situation will
depend on the data and on the structures being sought.
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3.6 Principal Components Analysis

Scatterplots project multivariate data into a two-dimensional space
defined by just two of the variables. This allows us to examine pair
wise relationships between variables, but such simple projections
might conceal more complicated relationships. To detect these
relationships we can use projections along different directions,
defined by any weighted linear combination of variables (e.g.,
along the direction defined by 2x1 + 3x2 + Xx3).

With only a few variables, it might be feasible to search for such
interesting spaces manually, rotating the distribution of the data.
With more than a few variables, however, it is best to let the
computer loose to search by itself. To do this, we need to define
what an "interesting” projection might look like, so that the
computer knows when it has found one. Projection pursuit methods
are based on this general principle of allowing the computer to
search for interesting directions.

However, in one special case for one specific definition of what
constitutes an "interesting" direction a computationally efficient
explicit solution can be found. This is when we seek the projection
onto the two-dimensional plane for which the sum of squared
differences between the data points and their projections onto this
plane is smaller than when any other plane is used. (We use two
dimensional projections here for convenience, but in general we
can use any k -dimensional projection, 1 < k < p - 1). This two-
dimensional plane can be shown to be spanned by (1) the linear
combination of the variables that has maximum sample variance
and (2) the linear combination that has maximum variance subject
to being uncorrelated with the first linear combination. Thus
"Iinteresting” here is defined in terms of the maximum variability in
the data.

Of course, we can take this process further, seeking additional
linear combinations that maximize the variance subject to being
uncorrelated with all those already selected. In general, if we are
lucky, we find a set of just a few such linear combinations
("components") that describes the data fairly accurately. The
mathematics of this process is described below. Our aim here is to
capture the intrinsic variability in the data. This is a useful way of
reducing the dimensionality of a data set, either to ease
interpretation or as a way to avoid over fitting and to prepare for
subsequent analysis.
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Suppose that X is an n x p data matrix in which the rows represent
the cases (each row is a data vector x(i)) and the columns
represent the variables. Strictly speaking, the ith row of this matrix
is actually the transpose x' of the ith data vector x(i), since the
convention is to consider data vectors as being p x 1 column
vectors rather than 1 x p row vectors. In addition, assume that X is
mean-centered so that the value of each variable is relative to the
sample mean for that variable (i.e., the estimated mean has been
subtracted from each column).

Let a be the p x 1 column vector of projection weights (unknown at
this point) that result in the largest variance when the data X are
projected along a. The projection of any particular data vector X is
2

alX = Z a;x,
the linear combination i=1 . Note that we can express the
projected values onto a of all data vectors in X as Xa (n x p by p x
1, yielding an n x 1 column vector of projected values).
Furthermore, we can define the variance along a as

Ty
- (X:\) LX;;)
= a'X"Xa

= a'Va.

3
Il

where V = X'X is the p x p covariance matrix of the data (since X
has zero mean), as defined in chapter 2. Thus, we can express 7a
(the variance of the projected data (a scalar) that we wish to
maximize) as a function of both a and the covariance matrix of the
data V.

Of course, maximizing @5 directly is not well-defined, since we can
increase @i without limit simply by increasing the size of the
components of a. Some kind of constraint must be imposed, so we
in;pose a normalization constraint on the a vectors such that
aa=1.

With this normalization constraint we can rewrite our optimization
problem as that of maximizing the quantity

u=al Va— ,"n.l:el..rel. — 1],

where A is a Lagrange multiplier. Differentiating with respect to a
yields
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H
i 2Va -2 a=1,

o=
which reduces to the familiar eigenvalue form of
(V =Al)a=10.

Thus, the first principal component a is the eigenvector associated
with the largest eigenvalue of the covariance matrix V.
Furthermore, the second principal component (the direction
orthogonal to the first component that has the largest projected
variance) is the eigenvector corresponding to the second largest
eigenvalue of V, and so on (the eigenvector for the k th largest
eigenvalue corresponds to the kth principal component direction).

In practice of course we may be interested in projecting to more
than two dimensions. A basic pro perty of this projection scheme is

that if the data are projected into the first k eigenvectors, the
ke

A
variance of the projected data can be expressed asi=:1 , where 4i
is the jth eigenvalue. Equivalently, the squared error in terms of
approximating the true data matrix X using only the first k
eigenvectors can be expressed as

Thus, in choosing an appropriate number k of principal
components, one approach is to increase k until the squared error
guantity above is smaller than some acceptable degree of squared
error. For high -dimensional data sets, in which the variables are
often relatively well -correlated, it is not uncommon for a relatively
small number of principal components (say, 5 or 10) to capture
90% or more of the variance in the data.

A useful visual aid in this context is the scree plot which shows the
amount of variance explained by each consecutive eigenvalue.
This is necessarily nonincreasing with the number of the
component, and the hope is that it demonstrates a sudden
dramatic fall toward zero. A principal components analysis of the
correlation matrix of the computer CPU data described earlier gives
rise to eigenvalues proportional to 63.26, 10.70, 10.30, 6.68, 5.23,
2.18, 1.31, and 0.34 (see figure 3.15). The fall from the first to the
second eigenvalue is dramatic, but after that the decline is gradual.
(The weights that the first component puts on the eight variables
are (0.199, -0.365, -0.399, -0.336, -0.331, - 0.298, -0.421, -0.423).

Note that, it gives them all roughly similar weights, but gives the
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first variable (cycle time) a weight opposite in sign to those of the
other variables.) If, instead of the correlation matrix, we analyzed
the covariance matrix, the variables with larger ranges of values
would tend to dominate. In the case of these data, the values given
for memory are much larger than those for the other variables.
(This is because they are given in kilobytes. Had they been given
in megabytes, this would not be the case an example of the
arbitrariness of the scaling of noncommensurate variables).
Principal components analysis of the covariance matrix gives
proportions of variation attributable to the different components as
96.02, 3.93, 0.04, 0.01, 0.00, 0.00, 0.00, and 0.00 (see figure 3.15
). Here the fall from the first component is very striking the
variability in the data can, indeed, be explained almost entirely by
the differences in memory capacity. Often, however, there is no
obvious fall such as this no point at which the remaining variance
in the data can be attributed to random variation. Then the choice
of how many components to extract is fairly arbitrary. The
proportion of the total variance that we regard as providing an
adequate simplified description of the data depends on the field of
application. In some cases it might be sufficient for the first few
components to describe 60% of the variance, but in other fields
one might hope for 95% or more.

To illustrate the simple graphical use of principal components
analysis, figure 3.16 shows the projections (indicated by the
numbers) of 17 pills onto the space spanned by the first two
principal components. The six measurements on each pill are the
times at which a specified proportion (10%, 30%, 50%, 70%, 75%,
and 90%) of the pill has dissolved. It is clear from this diagram that
one of the pills is very different from the others, lying in the bottom
right corner, far from the other points.
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Figure 3.15: Scree plots for the computer cpu data set. the upper
plot displays the eigenvalues from the correlation matrix, and the
lower plot is for the covariance matrix.

Sometimes we can gain insights from the pattern of weights (or
loadings, as they are sometimes called) defining the components
of a principal components analysis. Huba et al, collected data on
1684 students in Los Angeles showing consumption of each of
thirteen legal and illegal psychoactive substances: cigarettes,
beer, wine, spirits, cocaine, tranquilizers, drug store medications
used to get high, heroin and other opiates, marijuana, hashish,
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inhalants (such as glue), hallucinogenic, and amphetamines. They
scored each as 1 (never tried), 2 (tried only once), 3 (tried a few
times), 4 (tried many times), 5 (tried regularly). Taking these
variables in order, the weights of the first component from a
principal components analysis were (0.278, 0.286, 0.265, 0.318,
0.208, 0.293, 0.176, 0.202, 0.339, 0.329, 0.276, 0.248, 0.329).
This component assigns roughly equal weights to each of the
variables and can be regarded as a general measure of how often
students use such substances. Thus, the biggest difference
between the students is in terms of how often they use
psychoactive substances, regardless of which substances they
use.

18

Comg. 2

Comg, 1
Figure 3.16: Projection onto the First Two Principal Components.

The second component had weights (0.280, 0.396, 0.392, 0.325, -
0.288, -0.259, -0.189, -0.315, 0.163, -0.050, -0.169, -0.329, -
0.232). This is interesting because it gives positive weights to the
legal substances and negative weights to the illegal ones:
therefore, once we have controlled for overall substance use, the
major difference between the students lies in their use of legal
versus illegal substances. This is just the sort of relationship one
would hope to discover from a data mining exercise.

Another statistical technique, factor analysis, is often confused
with principal components analysis, but the two have very different
aims. As described above, principal components analysis is a
transformation of the data to new variables. We can then select
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just some of these as providing an adequate description of the
data. Factor analysis, on the other hand, is a model for data, based
on the notion that we can define the measured variables X1, ..., Xp
as linear combinations of a smaller number m (m < p) of "latent”
(unobserved) factors variables that cannot be measured explicitly.
The objective of factor analysis is to unearth information about
these latent variables.

We can define F = (F1, ..., Fm)' as the m x 1 column vector of
unknown latent variables, taking values f = (f1, ..., fm). Then a
measured data vector x = (x1, ..., x|o)T (defined here as a p x 1

column vector) is regarded as a linear function of f defined by
X=NAf+e.

Here A is a p x m matrix of factor loadings giving the weights with
which each factor contributes to each manifest variable. The
components of the p x 1 vector e are uncorrelated random
variables, sometimes termed specific factors since they contribute
only to single manifest (observed) variables, Xj, 1 <j < p. Factor
analysis is a special case of structural linear relational models
described in chapter 9, so we will not dwell on estimation
procedures here. However, since factor analysis was the earliest
model structure of this form to be developed, it has a special place,
not only because of its history, but also because it continues to be
among the most widely used of such models.

Factor analysis has not had an entirely uncontroversial history,
partly because its solutions are not invariant to various
transformations. It is easy to see that new factors can be defined
from equation via m x m orthogonal matrices M, such that x = (A
M) (Mf) +e. This corresponds to rotating the factors in the space
they span. Thus, the extracted factors are essentially nonunique,
unless extra constraints are imposed. There are various
constraints in general use, including methods that seek to extract
factors for which the weights are as close to 0 or 1 as possible,
defining the variables as clearly as possible in terms of a subset of
the factors.

3.7 Multidimensional Scaling

In the preceding section we described how to use principal
components analysis to project a multivariate data set onto the
plane in which the data has maximum dispersion. This allows us to
examine the data visually, while sacrificing the minimum amount of
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information. Such a method is effective only to the extent that the
data lie in a two- dimensional linear subspace of the area spanned
by the measured variables. But what if the data forms a set that is
intrinsically two-dimensional, but instead of being "flat,” is curved
or otherwise distorted in the space spanned by the original
variables? (Imagine a crumpled piece of paper, intrinsically two
dimensional, but occupying three dimensions.) In this event it is
quite possible that principal components analysis might fail to
detect the underlying two-dimensional structure. In such cases,
multidimensional scaling can be helpful. Multidimensional scaling
methods seek to represent data points in a lower dimensional
space while preserving, as far as is possible, the distances
between the data points. Since, we are mostly concerned with two-
dimensional representations; we shall restrict most of our
discussion to such cases. The extension to higher dimensional
representations is immediate.

Many multidimensional scaling methods exist, differing in how they
define the distances that are being preserved, the distances they
map to, and how the calculations are performed. Principal
components analysis may be regarded as a basic form. In this
approach the distances between the data points are taken as
Euclidean (or Pythagorean), and they are mapped to distances in a
reduced space that are also measured using the Euclidean metric.
The sum of squared distances between the original data points
and their projections provides a measure of quality of the
representation. Other methods of multidimensional scaling also
have associated measures of the quality of the representation.

Since multidimensional scaling methods seek to preserve
interpoint distances, such distances can serve as the starting point
for an analysis. That is, we do not need to know any measured
values of variables for the objects being analyzed, only how similar
the objects are, in terms of some distance measure. For example,
the data may have been collected by asking respondents to rate
the similarity between pairs of objects. (A classic example of this is
a matrix showing the number of times the Morse codes for different
letters are confused. There are no "variables" here; simply a matrix
of "similarities" measuring how often letter is was mistaken for
another.) The end point of the process is the same a configuration
of data points in a two -dimensional space. In a sense, the objects
and the raters are used to determine on what dimensions
"similarity" is to be measured. Multidimensional scaling methods
are widely used in areas such as psychometrics and market
research, in attempts to understand perceptions of relationships
and similarities between objects.
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From an n x p data matrix X we can compute an n x n matrix B =
XX'. (Since this scales as O(n® in both time and memory, it is
clear that this approach is not practical for very large numbers of
objects n). It is straightforward to see from this that the Euclidean
distance between the ith and jth objects is given by

dl_l = h'.'. +h” - 2'.1”

If we could invert this relationship, then, given a matrix of distances
D (derived from original data points by computing Euclidean
distances or obtained by other means), we could compute the
elements of B. B could then be factorized to yield the coordinates
of the points. One factorization of B would be in terms of the
eigenvectors. If we chose those associated with the two largest
eigenvalues, we would have a two -dimensional representation that
preserved the structure of the data as well as possible.

The feasibility of this procedure hinges upon our ability to invert
equation Unfortunately, this is not possible without imposing some
extra constraints. Because shifting the mean and rotating a
configurati on of points does not affect the interpoint distances, for
any given a set of distances there is an infinite number of possible
solutions, differing in the location and orientation of the point
configuration.

A sufficient constraint to impose is the assumption that the means
Xig = 0

of all the variables are 0. That is, we assume = for all k =

1... p. This means that is, * i Now, by summing

equation first over i, then over j, and finally over both i and j, we
obtain

Z-'f;': = ir{B)+4 .lrf.'_._I

= fr'u:]].i- T Ii'lr.r”
= Inir(B)

where tr(B) is the trac e of the matrix B. The third equation
expresses tr(B) in terms of the 9ii the first and second express bij
and bj; in terms of i and tr(B), and hence in terms of dii alone.

=

Plugging these into equation expresses bjj as a function of di;,
yielding the required inversion. This process is known as the
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principal coordinates method. It can be shown that the scores on
the components calculated from a principal components analysis
of a data matrix X (and hence a factorization of the matrix X') are
the same as the coordinates of the above scaling analysis.

If course, if the matrix B does not arise not as a product XX', but
by some other route (such as simple subjective differences
between pairs of objects), then there is no guarantee that all the
eigenvalu es will be non-negative. If the negative eigenvalues are
small in absolute value, they can be ignored.

Classical multidimensional scaling into two dimensions finds the
projection into two dimensions that is most accurate in the sense
that it minimizes

Z E[ri:_., o ""l-'_.: :Iu.

where djj is the observed distance between points i and j in the p-
dimensional space and dijj is the distance between the points
representing these objects in the two-dimensional space.
Expressed this way the process permits ready generalization.
Given distances or dissimilarities, derived in one way or another,
we can seek a distribution of points in a two-dimensional space
th : o Z0 . 0 \2

at minimizes the sum of squared differences | j (dij - dij)~.
Thus, we relax the restriction that the configuration must be found
by projection. With this relaxation an exact algebraic solution will
generally not be possible, so numerical methods must be used: we
simply have a function of 2n parameters (the coordinates of the
points in the two-dimensional space) that is to be minimized.

The score function Y, i (dij - dij)z, measuring how well the
interposing distances in the derived configuration match those
originally provided, is invariant with respect to rotations and
translations. However, it is not invariant to rescaling: if the djj were
multiplied by a constant, we would end up with the same solution,
Z i Z ; (dij - dij)2. To permit different

but a different value of

situations to be properly compared we divide | z j (dij - dij)2

B L
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dz
ij

by, i yielding the standardized residual sum of squares. A

common by score function is the square root of this quantity, the

stress. A variant on the stress is the sstress, defined as

These measures effectively assume that the differences between
the original dissimilarities and the distances in the two dimensional
configuration are due to random discrepancies and arbitrary
distortions that is, that djj = &jj +djj. More sophisticated models can
also be built. For example, we might assume that djj = a + bdjj +d
ij. Now a two-stage procedure is necessary. Beginning with a
proposed configuration, we regress the distances djj in the two -
dimensional space on the given dissimilarities, yielding estimates
for a and b. We then find new values of the djj that minimize the
stress

\;"'_Z D - a= 865/ S S

and repeat this process until we achieve satisfactory convergence.
Multidimensional scaling methods such as the above, which
attempt to model the dissimilarities as given, are called metric
methods. Sometimes, however, a more general approach is
required. For example, we may not be given the precise
similarities, only their rank order (objects A and B are more similar
than B and C, and so on); or we may not be prepared to assume
that the relationship between djj and dij has a particular form, just
that some monotonic relationship exists. This requires a two -stage
approach similar to that described in the preceding paragraph, but
with a technique known as monotonic regression replacing simple
linear regression, yielding non-metric multidimensional scaling. The
term non-metric here indicates that the method seeks to preserve
only ordinal relationships.

Multidimensional scaling is a powerful method for displaying data
to reveal structure. However, as with the other graphical methods
described in this chapter, if there are too many data points the
structure becomes obscured. Moreover, since multidimensional
scaling involves applying highly sophisticated transformations to
the data (more so than a simple scatterplot or principal
components analysis) there is a possibility that artifacts may be
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introduced. In particular, in some situations the dissimilarities
between objects can be determined more accurately when the
objects are similar than when they are quite different. Consider the
evolution of the style of a manufactured object. Those objects that
are produced within a short time of each other will probably have
much in common, while those separated by a greater time gap
may have very little in common. The consequence will be an
induced curvature in the multidimensional scaling plot, where we
might have hoped to achieve a more or less straight line. This
phenomenon is known as the horseshoe effect.

Figure 3.17 shows a plot produced using non-metric scaling to
minimize the sstress score function of equation 3.15. The data
arose from a study of English dialects. Each pair of a group of 25
villages was rated according to the percentages of 60 items for
which the villages used different words. The villages, and the
counties in which they are located, are listed in table 3.1. The
figure shows that villages from the same county (and hence that
are relatively close geographically) tend to use the same words.
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Figure 3.17: A Multidimensional Scaling Plot of the Village Dialect
Similarities Data.
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1 North Mottinghamshire
Wheatley
2 South Nottinghamshire

Clifton

| 3 | Cxton | Mottinghamshire

| 4 | Eastoft | Lincolnshire

| 5 | Keelby | Lincolnshire

| & | Wiloughton | Lincolnshire

| 7 ‘ Wraghby | Lincolnshire

‘ 8 ‘ Oid ‘ Lincolnshire
Bolingbroke

| 9 | Fulbeck | Lincolnshire

| 10 | Sutterton | Lincelnshire

| 1 | Swinstead | Lincalnshire

| 12 ‘ Crowland | Lincolnshire

| 13 ‘ Harby | Leicestershire

| 14 ‘ Packington | Leicestershire

i 18 | Goadby | Leicestershire

| 16 | Ullesthorpe | Leicestershire

| 17 | Empingham | Rutland

Table 3.1: Numerical Codes, Names, And Counties for the 25
Villages with Dialect Similarities Displayed in Figure 3.17.

Multidimensional scaling methods typically display the data points
in a two-dimensional space. If the variables are also described in
this space (provided the data are in vector form) the relationships
between data points and variables may be clearly seen. Given the
complicated nonlinear relationship between the space defined by
the original variables and the space used to display the data,
representing the original variables is a non -trivial task. Plots that
display both data points and variables are known as biplots. The
"bi" here signifies that there are two modes being displayed the
points and the variables not that the display is two-dimensional.
Indeed, three -dimensional biplots have also been developed.
Forms of multidimensional scaling that involve nonlinear
transformations produce nonlinear biplots. Biplots have even been
produced for categorical data, and in this case the levels of the
variables are represented by regions in the plot. Effective
interpretation of multidimensional and biplot display s requires
practice and experience.
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4. Data Analysis and Uncertainty

Structure

4.1 Introduction

4.2 Dealing with Uncertainty

4.3 Random Variables and Their Relationships
4.3.1 Multivariate Random Variables

4.4 Samples and Statistical Inference

4.5 Estimation
4.5.1 Desirable Properties of Estimators
4.5.2 Maximum Likelihood Estimation
4.5.3 Bayesian Estimation

4.6 Hypothesis Testing
4.6.1 Classical Hypothesis Testing
4.6.2 Hypothesis Testing in Context

4.7 Sampling Methods

Objectives

After going through this lesson, you should be able to:
* Discuss about dealing with uncertainty;
» Discuss about random variables and their relationships;

» Discuss about estimation and hypothesis testing;

4.1 Introduction

In this lesson, we focus on uncertainty and how to cope with it. Not
only is the process of mapping from the real world to our
databases seldom perfect, but the domain of the mapping the real
world itself is beset with ambiguities and uncertainties. The basic
tool for dealing with uncertainty is probability, and we begin by
defining the concept and showing how it is used to construct
statistical models.
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4.2 Dealing with Uncertainty

The ubiquity of the idea of uncertainty is illustrated by the rich
variety of words used to describe it and related concepts.
Probability, chance, randomness, luck, hazard, and fate are just a
few examples. The omnipresence of uncertainty requires us to be
able to cope with it: modeling uncertainty is a necessary
component of almost all data analysis. Indeed, in some cases our
primary aim is to model the uncertain or random aspects of data. It
is one of the great achievements of science that we have
developed a deep and powerful understanding of uncertainty. The
capricious gods that were previously invoked to explain the lack of
predictability in the world have been replaced by mathematical,
statistical, and computer-based models that allow us to understand
and manipulate uncertain events. We can even attempt the
seemingly impossible and predict uncertain events, where
prediction for a data miner either can mean the prediction of future
events (where the notion of uncertainty is very familiar) or
prediction in a nontemporal sense of a variable whose true value is
somehow hidden from us (for example, diagnosing whether a
person has cancer, based on only descriptive symptoms).

We may be uncertain for various reasons. Our data may be only a
sample from the population we wish to study, so that we are
uncertain about the extent to which different samples differ from
each other and from the overall population. Perhaps our interest
lies in making a prediction about tomorrow, based on the data we
have today, so that our conclusions are subject to uncertainty
about what the future will bring. Perhaps we are ignorant and
cannot observe some value, and have to base our ideas on our
"best guess" about it. And so on.

Many conceptual bases have been formulated for handling
uncertainty and ignorance. Of these, by far the most widely used is
probability. Fuzzy logic is another that has a moderately large
following, but this area along with closely related areas such as
possibility theory and rough sets remains rather controversial: it
lacks the sound theoretical backbone and widespread application
and acceptance of probability. These ideas may one day develop
solid foundations, and become widely used, but because of their
current uncertain status we will not consider them further in this
book.

It is useful to distinguish between probability theory and probability
calculus. The former is concerned with the interpretation of
probability while the latter is concerned with the manipulation of
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the mathematical representation of probability. (Unfortunately, not
all textbooks make this distinction between the two terms often
books on probability calculus are given titles such as "Introduction
to the Theory of Probability.") The distinction is an important one
because it permits the separation of those areas about which there
is universal agreement (the calculus) from those areas about
which opinions differ (the theory). The calculus is a branch of
mathematics, based on well-defined and generally accepted
axioms (stated by the Russian mathematician Kolmogorov in the
1930s); the aim is to explore the consequences of those axioms.
(There are some areas in which different sets of axioms are used,
but these are rather specialized and generally do not impinge on
problems of data mining.) The theory, on the other hand, leaves
scope for perspectives on the mapping from the real world to the
mathematical representationi.e., on what probability is.

A study of the history and philosophy of probability theory reveals
that there are as many perspectives on the meaning of probability
as there are thinkers. However, the views can be grouped into
variants of a few different types. Here we shall restrict ourselves to
discussing the two most important types (in terms of their impact
on data mining practice).

The frequents view of probability takes the perspective that
probability is an objective concept. In particular, the probability of
an event is defined as the limiting proportion of times that the
event would occur in repetitions of essentially identical situations.
A simple example is the proportion of times a head comes up in
repeatedly tossing a coin. This interpretation restricts our
application of probability: for instance we cannot assess the
probability that a particular athlete will win a medal in the next
Olympics because this is a one-off event, where the notion of a
"limiting proportion" makes no sense. On the other hand, we can
certainly assess the probability that a customer in a supermarket
will purchase a certain item, since we can use a large number of
similar customers as the basis for a limiting proportion argument. It
is clear in this last example that some idealization is going on:
different customers are not really the same as repetitions of a
single customer. As in all scientific modeling we need to decide
what aspects are important for our model to be sufficiently
accurate. In predicting customer behavior we might decide that the
differences between customers do not matter.

The frequentist view was the dominant perspective on probability
throughout most of the last century, and hence it underpins most
widely used statistical software. However, in the last decade or so,
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a competing view has acquired increasing importance. This view,
that of subjective probability, has been around since people first
started formalizing probabilistic notions, but until recently it was
primarily of theoretical interest. What revived the approach was the
development of the computer and of powerful algorithms for
manipulating and processing subjective probabilities. The
principles and methodologies for data analysis that derive from the
subjective point of view are often referred to as Bayesian statistics.
A central tenet of Bayesian statistics is the explicit characterization
of all forms of uncertainty in a data analysis problem, including
uncertainty about any parameters we estimate from the data,
uncertainty as to which among a set of model structures are best
or closest to "truth,” uncertainty in any forecast we might make,
and so on. Subjective probability is a very flexible framework for
modeling such uncertainty in different forms.

4.3 Random Variables and Their Relationships

A random variable is a mapping from a property of objects to a
variable that can take one of a set of possible values, via a process
that appears to the observer to have some element of
unpredictability to it. The possible values of a random variable X
are called the domain of X. We use uppercase letters such as X to
refer to a random variable and lowercase letters such as x to refer
to a value of a random variable.

An example of a random variable is the outcome of a coin toss (the
domain is the set {heads, tails}). Less obvious examples of random
variables include the number of times we have to toss a coin to
obtain the first head (the domain is the set of positive integers) and
the flying time of a paper aeroplane in seconds (the domain is the
set of positive real numbers).

4.3.1 Multivariate Random Variables

Since data mining often deals with multiple variables, we must also
introduce the concept of a multivariat e random variable. A
multivariate random variable X is a set Xi1,..., Xp of random
variables. We use the m-dimensional vector x = {x1, ..., Xp} to
denote a set of values for X. The density function f(X) of the
multivariate random variable X is called the joint density function of
X. We denote this as f(X) = f(X1 = X1, ..., Xp = Xp), or simply
f(x1, ..., xp). Similarly, we have joint probability distributions for
variable staking values in a finite set. Note that f(X ) is a scalar
function of p variables.
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The density function of any single variable in the set X (or, more
generally, any subset of the complete set of variables) is called a
marginal density of the joint density. Technically, it is derived from
the joint density by summing or integrating across the variables not
included in the subset. For example, for a tri-variate random
variable X = (X1, X2, X3) the marginal density of f(X1) is given by

fx1) =1J f(x1, x2, x3)dx2 dx3.

The density of a single variable (or a subset of the complete set of
variables) given (or "conditional on") particular values of the other
variables is a conditional density. Thus we can speak of the
conditional density of variable X1 given that X2 takes the value 6,
denoted f(x1 | x2 = 6). In general, the conditional density of X1
given some value of X2 is denoted by f(x1 | x2), and is defined as

i s flzy,2a)
e |29 = L0020

For discrete-valued random variables we have equivalent
definitions (p(a1 | a2 ), etc.). We can also use mixtures of the two
e.g., a conditional probability density function f(x1 | a1) for a
continuous variable conditioned on a categorical variable, and a
conditional probability mass function p(al | x1) for the reverse
case.

Note that particular variables in the multivariate set X may well be
related to each other in some manner. Indeed, a generic problem
in data mining is to find relationships between variables. Is
purchasing item A likely to be related to purchasing item B? Is
detection of pattern A in the trace of a measuring instrument likely
to be followed shortly afterward by a particular fault? Variables are
said to be independent if there is no relationship between the
occurrences of values of the variables; otherwise they are
dependent. More formally, variables X and Y are independent if
and only if p(x, y) = p(X)p(y) for all values of X and Y . An
equivalent formulation is that X and Y are independent if and only if
p(x|y)=pX)orp(y]| x)=p(y) for all values of X and Y . (Note that
these definitions hold whether each p in the expression is a
probability mass function or a density function in the latter case the
variables are independent if and only if f(x, y) = f( X)f(y)). The
second form of the definition shows that when X and Y are
independent the distribution of X is the same whether or not the
value of Y is known. Thus, Y carries no information about X, in the
sense that the value taken by Y does not influence the probability
of X taking any value.
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We can generalize these ideas to more than two variables. For
example, we say that X is conditionally independent of Y given Z if
for all values of X, Y, and Z we have that p(x, y | z) = p(x | 2)p(y |
z), or equivalently p(x | y, z) = p(x | z). To illustrate, suppose a
person purchases bread (so that a random variable Z takes the
value 1). Then subsequent purchases of butter (random \ariable X
takes the value 1) and cheese (random variable Y takes the value
1) might be modeled as being conditionally independent the
probability of purchasing cheese is unaffected by whether or not
butter was purchased, once we know that bread has been
purchased.

Note that conditional independence need not imply marginal
(unconditional) independence. That is, the conditional
independence relations above do not imply p(x, y) = p(X)p(y). For
example, in our illustration we might reasonably expect purchases
of butter and cheese to be dependent in general (since they are
both dependent on bread purchases). The reverse also applies: X
and Y may be (unconditionally) independent, but conditionally
dependent given a third variable Z. The subtleties of these
dependence and independence relations have important
consequences for data miners. In particular, even though two
observed variables (such as butter and cheese) may appear to be
dependent given the data, their true relationship may be masked
by a third (potentially unobserved) variable (such as bread in our
illustration).

The assumption of conditional independence is widely used in the
context of sequential data, for which the next value in the
sequence is often independent of all of the past values in the
sequence given only the current value in the sequence. In this
context, conditional independence is known as the first-order
Markov property.

The notions of independence and conditional independence (which
can be viewed as a generalization of independence) are central to
many of the key concepts in data analysis, as we shall see in later
chapters. The assumptions of independence and conditional
independence enable us to factor the joint densities of many
variables into much more tractable products of simpler densities,

e.g.,

f(m1i-oimn) = o) ] Hasles-a),

where each variable xj is conditionally independent of variables xi,
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..., Xj-2, given the value of xj (this is an example of a first-order

Markov model). In addition to the computational benefits provided
by such simplifications, it also provides important modeling gains
by allowing us to construct more understandable models with
fewer parameters. Nonetheless, independence is a very strong
assumption that is frequently violated in practice (for example,
assuming sequences of letters in text are first-order Markov may
not be realistic). Still, keeping in mind that our models are
inevitably approximations to the real world, the benefits of
appropriate independence assumptions often outweigh the
alternative of building more complex but less stable models.

A special case of dependency is correlation or linear dependency
(Note that statistical dependence is not the same as correlation:
two variables may be dependent but not linearly correlated).
Variables are said to be positively correlated if high values of one
variable tend to be associated with high values of the other, and to
be negatively correlated if high values of one tend to be associated
with low values of the other. It is important not to confuse
correlation with causation. Two variables may be highly positively
correlated without any causal relationship between them. For
example, yellow-stained fingers and lung cancer may be
correlated, but are causally linked only via a third variable, namely
whether a person smokes or not. Similarly, human reaction time
and earned income may be negatively correlated, but this does not
mean that one causes the other. In this case a more convincing
explanation is that a third variable, age, is causally related to both
of these variables.

4.4 Samples and Statistical Inference

As many data mining problems involve the entire population of
interest, while others involve just a sample from this population. In
the latter case, the samples may arise at the start perhaps only a
sample of tax-payers is selected for detailed investigation; perhaps
a complete census of the population is carried out only
occasionally, with just a sample being selected in most years; or
perhaps the data set consists of market research results. In other
cases, even though the complete data set is available, the data
mining operation is carried out on a sample. This is entirely
legitimate if the aim is modeling, which seeks to represent the
prominent structures of the data, and not small idiosyncratic
deviations. Such structures will be preserved in a sample, provided
it is not too small. However, working with a small sample of a large
data set may be less appropriate if the aim is pattern detection: in
this case the aim may be to detect small deviations from the bulk

Mining Techniques

NOTES



65 Data

of the data, and if the sample is too small such deviations may be
excluded. Moreover, if the aim is to detect records that show
anomalous behavior, the analysis must be based on the entire
sample.

It is when a sample is used that the power of inferential statistics
comes into play. Statistical inference allows us to make statements
about population structures, to estimate the size of these
structures, and to state our degree of confidence in them, all on
the basis of a sample. (See figure 4.1 for a simple illustration of the
roles of probability and statistics). Thus, for example, we could say
that our best estimate of a population value is 6.3, and that one is
95% confident that the true population value lies between 5.9 and
6.7. (Definition and interpretation of intervals such as these is a
delicate point, and depends on what philosophical basis we adopt
frequentist or Bayesian, for example. We shall say more about
such intervals later in this chapter.) Note the use of the word
estimate for the population value here. If we were basing our
analysis on the entire population, we would use the word calculate:
if all the constituent numbers are known, we can actually calculate
the population value, and no notion of estimation arises.

PROBABILITY
'--__a-'- -\-\._\_\_%x
MODEL DATA
\H-% 33/

STATISTICAL INFERENCE

Figure 4.1: An illustration of the dual roles of probability and
statistics in data analysis. probability specifies how observed data
can be generated from models. statistical inference allows us to
infer models from observed data.

In order to make an inference about a population structure, we
must have a model or pattern structure in mind: we would not be
able to assess the evidence for some structure underlying the data
if we never contemplated the existence of such a structure. So, for

example, we might hypothesize that the value of some variable Z
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depends on the values of two other variables X and Y . Our model
is that Z is related to X and Y . Then we can estimate the strength
of these relationships in the population. (Of course, we may
conclude that one or both of the relationships are of strength zero
that there is no relationship.)

Statistical inference is based on the premise that the sample has
been drawn from the population in a random manner that each
member of the population had a particular probability of appearing
in the sample. The model will specify the distribution function for
the population the probability that a particular value for the random
variable will arise in the sample. For example, if the model
indicates that the data have arisen from a Normal distribution with
a mean of 0 and a standard deviation of 1, it also tells us that the
probability of observing a value as large as +20 is very small.
Indeed, under the assumption that the model is correct, a precise
probability can be put on observing a value greater than +20.
Given the model, we can generally compute the probability that an
observation will fall within any interval. For samples from
categorical distributions, we can estimate the probability that
values equal to each of the observed values would have arisen. In
general, if we have a model M for the data we can state the
probability that a random sampling process would lead to the data
D = {x(1), ..., x(n)}, here x(i) is the ith p- dimensional vector of
measurements (the ith row in our n x p data matrix). This
probability is expressed as p(D | M). Often we do not make
dependence on the model M explicit and simply write p(D), relying
on the context to make it clear. Let p(x(i)) be the probability of
individual i having vector measurement x(i) (here p could be a
probability mass function or a density function, depending on the
nature of x). If we further assume that the probability of each
member of the population being selected for inclusion in the
sample has no effect on the probability of other members being
selected (that is, that the separate observations are independent,
or that the data are drawn "at random"), the overall probability of
observing the entire distribution of values in the sample is simply
the product of the individual probabilities:

plD |0, M) = ng-;x-_’r'] 8 M),
i=1

where M is the model and e are the parameters of the model
(assumed fixed at this point). (When regarded as a function of the
parameters e in the model M, this is called the likelihood function.
We discuss it in detail below.) Methods have been developed to
cope with situations in which observing one value alters the
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chance of observing another, but independence is by far the most
commonly used assumption, even when it is only approximately
true.

4.5 Estimation

Inseveral techniques for summarizing a given set of data. When we
are concerned with inference, we want to make more general
statements, statements about the entire population of values that
might have been drawn. These are statements about the
probability  distribution or probability density function (or,
equivalently, about the cumulative distribution function) from which
the data are assumed to have arisen.

4.5.1 Desirable Properties of Estimators

In the following subsections we describe the two most important
methods of estimating the parameters of a model: maximum
likelihood estimation and Bayesian estimation. It is important to be
aware of the differing properties of different methods so that we
can adopt a method suited to our problem. Here we briefly

describe some attractive properties of estimators. Let 8 be an

estimator of a parameter 6. Since 6 is a number derived from the
data, if we were to draw a different sample of data, we would

obtain a different value for €. Thus, € is a random variable.
Therefore, it has a distribution, with different values arising as
different samples are drawn. We can obtain descriptive summaries
of that distribution. It will, for example, have a mean or expected

value,E[€]. Here the expectation function E is taken with respect to
the true (unknown) distribution from which the data are assumed to
be sampled that is, over all possible data sets of size n that could
occur weighted by their probability of occurrence.

The bias of is defined as Bias(6) = E[0] - 6 the difference
between the expected value of the estimator E[6] and the true

value of the parameter 6. Estimators for which E[6] = # have bias
0 are said to be unbiased. Such estimators show no systematic
departure from the true parameter value on average, although for

any particular single data set D we might have that 0 is far away
from 0. Note that since both the sampling distribution and the true
value of 6 are unknown in practice, we cannot typically calculate
the actual bias for a given data set. Nonetheless, the general
concept of bias (and variance, below) is of fundamental
importance in estimation.
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Just as the bias of an estimator can be used as a measure of its
quality, so also can its variance:

Var(8) = E[# — E[0]]".

The variance measures the random, data-driven component of
error in our estimation procedure; it reflects how sensitive our
estimator will be to the idiosyncrasies of individual data sets. Note
that the variance does not depend on the true value of 6 it simply
measures how much our estimates will vary across different
observed data sets. Thus, although the true sampling distribution
is unknown, we can in principle get a data- driven estimate of the
variance of an estimator, for a given value of n, by repeatedly
subsampling our original data set and calculating the variance of

the estimated ©s across these simulated samples. We can choose
between estimators that have the same bias by choosing one with
minimum variance. Unbiased estimators that have minimum
variance are called, unsurprisingly, best unbiased estimators.

As an extreme example, if we were to completely ignore our data
D and simply say arbitrarily that € =1 for every data set, then

var(?) is zero since the estimate never changes as D changes
however this would be a very the estimate ineffective estimator in
practice since unless we made a very lucky guess we are almost
certainly wrong in our estimate of e, i.e., there will be a non -zero
(and potentially very large) bias.

The mean squared error of & is EL8-8)31 the mean of the
squared difference between the value of the estimator and the true
value of the parameter. Mean squared error has a natural

decomposition as the sum of the squared bias of & and its
variance:

E [[H f)* E -“a E[0] + E[f] _”:"_-]

El0) - 0) +E (0 - El6))?]
Jlfn;n'.ﬁ.{l'.ll:l}.:l + 1.rJr'|:-|'.l':|.

(
(

where in going from the first to second lines above we took
advantage of the fact that various cross-terms in the squared
expression cancel out, noting (for example) that E[0]=60 since 0 is
a constant, etc. Mean squared error is a very useful criterion since
it incorporates both systematic (bias) and random (variance)
differences between the estimated and true values. (Of course it
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too is primarily of theoretical interest, since to calculate it we need
to know 6, which we don't in practice). Unfortunately, bias and
variance often work in different directions: modifying an estimator
to reduce its bias increases its variance, and vice versa. The trick
is to arrive at the best compromise.

There are also more subtle aspects to the use of mean squared
error in estimation. For example, mean squared error treats equally
large departures from e as equally serious, regardless of whether
they are above or below e. This is appropriate for measures of
location, but may not be appropriate for measures of dispersion
(which, by definition, have a lower bound of zero) or for estimates
of probabilities or probability densities.

Suppose that we have sequence énl,... & .m Of estimators, based
on increasing sample sizes n,, ..., n,. The sequence is said to be

consistent if the probability of the difference between ¢ and the
true value e being greater than any given value tends to O as the
sample size increases. This is clearly an attractive property
(especially in data mining contexts, with large samples) since the
larger the sample is the closer the estimator is likely to be to the
true value.

45.2 Maximum Likelihood Estimation

Maximum likelihood estimation is the most widely used method of
parameter estimation. Consider a data set of n observations D =
{x, ..., x(n)}, independently sampled from the same distribution f(x
| @) (as statisticians say, independently and identically distributed
or iid). The likelihood function L(e | x(1), ..., x(n)) is the probability
that the data would have arisen, for a given value of e, regarded
as a function of e, i.e,, p(D | 8). Note that although we are
implicitly assuming a particular model M here, as defined by f(x |
0), for convenience we do not explicitly condition on M in our
likelihood definitions below later, when we consider multiple
models we will need to explicitly keep track of which model we are
talking about.

Since we have assumed that the observations are independent we
have

Lie| D)

Lig | x(1),....x(n))
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which is a scalar function of 8 (where 0 itself may be a vector of
parameters rather than a single parameter). The likelihood of a
data set L(6 | D), the probability of the actual observed data D for
a particular model, is a fundamental concept in data analysis.
Defining a likelihood for a given problem amounts to specifying a
probabilistic model for how the data were generated. It turns out
that once we can state such a likelihood, the door is opened to the
application of many general and powerful ideas from statistical
inference. Note that since likelihood is defined as a function of e
the convention is that we can drop or ignore any terms in p(D | 6)
that do not contain e, i.e., likelihood is only defined within an
arbitrary scaling constant, so it is the shape as a function of 6 that
matters and not the actual values that it takes. Note also that the
idd assumption above is not necessary to define a likelihood: for
example, if our n observations had a Markov dependence (where
each x(i) depends on x(i - 1), we would define the likelihood as a
product of terms such as f(x(i) | x(i - 1), ).

The value for 6 for which the data has the highest probability of
having arisen is the maximum likelihood estimator (or MLE). We

will denote the maximum likelihood estimator for 8 as & ..

Maximum likelihood estimators are intuitively and mathematically
attractive; for example, they are consistent estimators in the sense

defined earlier. Moreover, if &y is the MLE of a parameter &,

then  g(%w.) is the MLE of the function g(e), though some care
needs to be exercised if g is not a one -to-one function. On the
other hand, nothing is perfect maximum likelihood estimators are
often biased (depending on the parameter and the underlying
model), although this bias may be extremely small for large data
sets, often scaling as O(1/n).

For simple problems (where "simple" refers to the mathematical
structure of the problem, and not to the number of data points,
which can be large), MLEs can be found using differential calculus.
In practice, the log-likelihood I(e) is usually maximized (as in the
Binomial and Normal density examples above), since this replaces
the awkward product in the definition with a sum; this process
leads to the same result as maximizing L(e) directly because the
logarithm is a monotonic function. Of course we are often
interested in models that have more than one parameter (models
such as neural networks can have hundreds or thousands of
parameters). The univariate definition of likelihood generalizes
directly to the multivariate case, but in this situation the likelihood
is a mulutivariate function of d parameters (that is, a scalar-valued
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function defined on a d-dimensional parameter space). Since d
can be large, finding the maximum of this d- dimensional function
can be quite challenging if no closed -form solution exists. Multiple
maxima can present a difficult problem (which is why stochastic
optimization methods are often necessary), as can situations in
which optima occur at the boundaries of the parameter space.

Up to this now we have been discussing point estimates, single
number estimates of the parameter in question. A point estimate is
"best” in some sense, but it conveys no idea of the uncertainty
associated with it perhaps there was a large number of almost
equally good estimates, or perhaps this estimate was by far the
best. Interval estimates provide this sort of information. In place of
a single number they give an interval with a specified degree of
confidence that this interval contains the unknown parameter.
Such an interval is called a confidence interval, and the upper and
lower limits of the interval are called confidence limits.
Interpretation of confidence intervals is rather subtle. Here, since
we are assuming that e is unknown but fixed, it does not make
sense to say that e has a certain probability of lying within a given
interval: it either does or it does not. However, it does make sense
to say that an interval calculated by the given procedure contains
e with a certain probability: after all, the interval is calculated from
the sample, and is thus a random variable.

4.5.3 Bayesian Estimation

In the frequentist approach to inference described so far the
parameters of a population are fixed but unknown, and the data
comprise a random sample from that population (since the sample
was drawn in a random way). The intrinsic variability thus lies in
the data D = {x(1), ..., x(n)}. In contrast, Bayesian statistics treats
the data as known after all, they have been observed and recorded
and the parameters 6 as random variables. Thus, whereas
frequentists regard a parameter 6 as a fixed but unknown
guantity, Bayesians regard 6 as having a distribution of possible
values and see the observed data as possibly shedding light on
this distribution. p(6@) reflects our degree of belief on where the
true (unknown) parameters 6 may be. If p(0) is very peaked about
some value of 6 then we are very sure about our convictions
(although of course we may be entirely wrong!). If p(8) is very
broad and flat (and this is the more typical case) then we are
expressing a prior belief that is less certain on the location of 6.
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Note that while the term Bayesian has a fairly precise meaning in
statistics, it has sometimes been used in a somewhat looser
manner in the computer science and pattern recognition literature
to refer to the use of any form of probabilistic model in data
analysis. In this text we adopt the more standard and widespread
statistical definition, which is described below.

Before the data are analyzed, the distribution of the probabilities
that 6 will take different values is known as the prior distribution
p(6). Analysis of the data D leads to modification of this
distribution to take into account the information in the empirical
data, yielding the posterior distribution, p(6 | D). The modification
from prior to posterior is carried out by means of a theorem named
after Thomas Bayes:

: . [ 1| Myp( ) o D | @yl )
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Note that this updating procedure leads to a distribution, rather
than a single value, for & However, the distribution can be used to
yield a single value estimate. We could, for example, take the
mean of the posterior distribution, or its mode (the latter technique
is known as the maximum a posteriori method, or MAP). If we
choose the prior p(0) in a specific manner (e.g., p(0) is uniform
over some range), the MAP and maximum likelihood estimates of
0 may well coincide (since in effect the prior is "flat" and prefers
no one value of 6 over any other). In this sense, maximum
likelihood can be viewed as a special case of the MAP procedure,
which in turn is a restricted ("point estimate") form of Bayesian
estimation.

For a given set of data D and a particular model, the denominator
in above equation is a constant, so we can alternatively write the
expression as

Pl | D) oo p( I | 8Ypl(d).

Here we see that the posterior distribution of 8 given D (that is,
the distribution conditional on having observed the data D) is
proportional to the product of the prior p(8) and the likelihood p(D |
0). If we have only weak beliefs about the likely value of the
parameter before collecting the data, we will want to choose a prior
that spreads the probability widely (for example, a Normal

distribution with large variance). In any case, the larger the set of
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observed data, the more the likelihood dominates the posterior
distribution, and the lower the importance of the particular shape of
the prior.

One of the primary distinguishing characteristics of the Bayesian
approach is the avoidance of so-called point estimates (such as a
maximum likelihood estimate of a parameter) in favor of retaining
full knowledge of all uncertainty involved in a problem (e.g.,
calculating a full posterior distribution on ).

As an example, consider the Bayesian approach to making a
prediction about a new data point x(n + 1), a data point not in our
training data set D. Here x might be the value of the Dow -Jones
financial index at the daily closing of the stock-market and n + 1 is
one day in the future. Instead of using a point estimate for #in our
model for prediction (as we would in a maximum likelihood or MAP
framework), the Bayesian approach is to average over all possible
values of e, weighted by their posterior probability p(e | D):

plein+ 1) | ) = /;-[x[u 1), 8| D)dd

= -/ placn 4 1) | @)pld | D)dd,

since x(n + 1) is conditionally independent of the training data D,
given e, by definition. In fact, we can take this further and also
average over different models, using a technique known as
Bayesian model averaging. Naturally, all of this averaging can
entail considerably more computation than the maximum likelihood
approach. This is a primary reason why Bayesian methods have
become practical only in recent years (at least for small-scale data
sets). For large-scale problems and high-dimensional data, fully
Bayesian analysis methods can impose significant computational
burdens.

Note that the structure of equations enables the distribution to be
updated sequentially. For example, after we build a model with
data D1, we can update it with further data D2:

p(0 | Dy, Dy) ox p(Dy | O)p( Dy | 0)p(0).

This sequential updating property is very attractive for large sets of
data, since the result is independent of the order of the data
(provided, of course, that D1 and D2 are conditionally independent

given the underlying model p).
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The denominator p(D) = Lp p(D | @)p(p Mo, is called the predictive
distribution of D, and represents our predictions about the value of
D. It includes our uncertainty about e, via the prior p (8), and our
uncertainty about D when 6 is known, via p(D | ). The predictive
distribution changes as new data are observed, and can be useful
for model checking: if observed data D has only a small probability
according to the predictive distribution, that distribution is unlikely
to be correct.

The choice of prior distribution can play an important role in
Bayesian analysis (more for small samples than for large samples
as mentioned earlier). The prior distribution represents our initial
belief that the parameter takes different values. The more
confident we are that it takes particular values, the more closely
the prior will be bunched around those values. The less confident
we are, the larger the dispersion of the prior. In the case of a
Normal mean, if we had no idea of the true value, we would want
to use a prior that gave equal probability to each possible value,
i.e., a prior that was perfectly flat or that had infinite variance. This
would not correspond to any proper density function (which must
have some non-zero values and which must integrate to unity).
Still, it is sometimes useful to adopt improper priors that are
uniform throughout the space of the parameter. We can think of
such priors as being essentially flat in all regions where the
parameter might conceivably occur. Even so, there remains the
difficulty that priors that are uniform for a particular parameter are
not uniform for a nonlinear transformation of that parameter.

Another issue, which might be seen as either a difficulty or strength
of Bayesian inference, is that priors show an individual's prior belief
in the various possible values of a parameter and individuals differ.
It is entirely possible that your prior will differ from mine and
therefore we will probably obtain different results from an analysis.
In some circumstances this is fine, but in others it is not. One way
to overcome this problem is to use a so-called reference prior, a
prior that is agreed upon by convention. A common form of
reference prior is Jeffrey's prior. To define this, we first need to
define the Fisher information:

; g 5 log L0 | r)

I@|x)=-E [T]

for a scalar parameter 6 that is, the negative of the expectation of
the second derivative of the log-likelihood. Essentially this
measures the curvature or flatness of the likelihood function. The
flatter a likelihood function is, the less the information it provides
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about the parameter values. Jeffrey's prior is then defined as
Il||':|:- . \ijlllj?l-;l

This is a convenient reference prior since if ® = ® () is some
function of @, this has a prior proportional tov7’i#Ix. This means
that a consistent prior will result no matter how the parameter is
transformed.

The distributions in the examples display began with a Beta or
Normal prior and ended with a Beta or Normal posterior. Conjugate
families of distributions satisfy this property in general: the prior
distribution and posterior distribution belong to the same family.
The advantage of using conjugate families is that the complicated
updating process can be replaced by a simple updating of the
parameters.

4.6 Hypothesis Testing

Although data mining is primarily concerned with looking for
unsuspected features in data (as opposed testing specific
hypotheses that are formed before we see the data), practice we
often do want to test specific hypotheses (for example, if our data
mining algorithm generates a potentially interesting hypothesis that
we would like to explore further).

In many situations we want to see whether the data support some
idea about the value of a parameter. For example, we might want
to know if a new treatment has an effect greater than that of the
standard treatment, or if two variables are related in a population.
Since we are often unable to measure these for an entire
population, we must base our conclusions on a sample. Statistical
tools for exploring such hypotheses are called hypothesis tests.

4.6.1 Classical Hypothesis Testing

The basic principle of hypothesis tests is as follows. We begin by
defining two complementary hypotheses: the null hypothesis and
the alternative hypothesis. Often the null hypothesis is some point
value (e.g., that the effect in question has value zero that there is
no treatment difference or regression slope) and the alternative
hypothesis is simply the complement of the null hypothesis.
Suppose, for example, that we are trying to draw conclusions about
a parameter e. The null hypothesis, denoted by HQ, might state

that 0 = 6, and the alternative hypothesis (H;) might state that 6
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#0 . Using the observed data, we calculate a statistic (what form of
statistic is best depends on the nature of the hypothesis being
tested; examples are given below). The statistic would vary from
sample to sample it would be a random variable. If we assume that
the null hypothesis is correct, then we can determine the expected
distribution for the chosen statistic, and the observed value of the
statistic would be one point from that distribution. If the observed
value were way out in the tail of the distribution, we would have to
conclude either that an unlikely event had occurred or that the null
hypothesis was not, in fact, true. The more extreme the observed
value, the less confidence we would have in the null hypothesis.

We can put numbers on this procedure. Looking at the top tail of
the distribution of the statistic (the distribution based on the
assumption that the null hypothesis is true), we can find those
potential values that, taken together, have a probability of 0.05 of
occurring. These are extreme values of the statistic values that
deviate quite substantially from the bulk of the values, assuming
the null hypothesis is true. If this extreme observed value did lie in
this top region, we could reject the null hypothesis "at the 5%
level": only 5% of the time would we expect to see a result in this
region as extreme as this if the null hypothesis were correct. For
obvious reasons, this region is called the rejection region or critical
region. Of course, we might not merely be interested in deviations
from the null hypothesis in one direction. That is, we might be
interested in the lower tail, as well as the upper tail of the
distribution. In this case we might define the rejection region as the
union of the test statistic values in the lowest 2.5% of the
probability distribution and the test statistic values in the uppermost
2.5% of the probability distribution. This would be a two tailed test,
as opposed to the previously described one-tailed test. The size of
the rejection region, known as the significance level of the test, can
be chosen at will. Common values are 1%, 5%, and 10%.

We can compare different test procedures in terms of their power.
The power of a test is the probability that it will correctly reject a
false null hypothesis. To evaluate the power of a test, we need a
specific alternative hypothesis so we can calculate the probability
that the test statistic will fall in the rejection region if the alternative
hypothesis is true.

A fundamental question is how to find a good test statistic for a
particular problem. One strategy is to use the likelihood ratio. The
likelihood ratio statistic used to test the hypothesis H,: 0 = 6,

against the alternative H;: 0 # 0 s defined as
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Lify | D)
> sup,, Ly | )
where D = {x(1), ..., Xx(n)}. That is, the ratio of the likelihood when e
= o0 to the largest value of the likelihood when e is unconstrained.
Clearly, the null hypothesis should be rejected when A is small.
This procedure can easily be generalized to situations in which the
null hypothesis is not a point hypothesis but includes a set of
possible values for A.

Certain types of tests are used very frequently. These include tests
of differences between means, tests to compare variances, and
tests to compare an observed distribution with a hypothesized
distribution (so-called goodness-of-fit tests). The common t-test of
the difference between the means of two independent groups is
described in the display below. Descriptions of other tests can be
found in introductory statistics texts.

The hypothesis testing strategy outlined above is based on the
assumption that a random sample has been drawn from some
distribution, and the aim of the testing is to make a probability
statement about a parameter of that distribution. The ultimate
objective is to make an inference from the sample to the underlying
population of potential values. For obvious reasons, this is
sometimes described as the sampling paradigm. An alternative
strategy is sometimes appropriate, especially when we are not
confident that the sample has been obtained though probability
sampling, and therefore inference to the underlying population is
not possible. In such cases, we can still sometimes make a
probability statement about some effect under a null hypothesis.
Consider, for example, a comparison of a treatment and a control
group. We might adopt as our null hypothesis that there is no
treatment effect, so the distribution of scores of people who
received the treatment should be the same as that of those who did
not. If we took a sample of people (possibly not randomly drawn)
and randomly assign them to the treatment and control groups, we
would expect the difference of mean scores between the groups to
be small if the null hypothesis was true. Indeed, under fairly
general assumptions, it is not difficult to work out the distribution of
the difference between the sample mea ns of the two groups we
would expect if there were no treatment effect, and if such
difference were just a consequence of an imbalance in the random
allocation. We can then explore how unlikely it is that a difference
as large or larger than that actually obtained would be seen. Tests
based on this principle are termed randomization tests or
permutation tests. Note that they make no statistical inference from
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the sample to the overall population, but they do enable us to make
conditional probability statements about the treatment effects,
conditional on the observed values.

Many statistical tests make assumptions about the forms of the
population distributions from which the samples are drawn. For
example, in the two -sample t-test, illustrated above, an assumption
of Normality was made. Often, however, it is inconvenient to make
such assumptions. Perhaps we have little justification for the
assumption, or perhaps we know that the data do not to follow the
form required by a standard test. In such circumstances we can
adopt distribution-free tests. Tests based on ranks fall into this
class. Here the basic data are replaced by the numerical labels of
the positions in which they occur. For example, to explore whether
two samples arose from the same distribution, we could replace
the actual numerical values by their ranks. If they did arise from the
same distribution, we would expect the ranks of the members of
the two samples to be well mixed. If, however, one distribution had
a larger mean than the other, we would expect one sample to tend
to have large ranks and the other to have small ranks. If the
distributions had the same means but one sample had a larger
variance than the other, we would expect one sample to show a
surfeit of large and small ranks and the other to dominate the
intermediate ranks. Test statistics can be constructed based on the
average values or some other measurements of the ranks, and
their significance levels can be evaluated using randomization
arguments. Such test statistics include the sign test statistic, the
rank sum test statistic, the Kolmogorov-Smirnov test statistic, and
the Wilcoxon test statistic. Sometimes the term nonparametric test
is used to describe such tests the rationale being that these tests
are not testing the value of a parameter of any assumed
distribution.

Comparison of hypotheses HQ and Hi1 from a Bayesian
perspective is achieved by comparing their posterior probabilities:

plH ) o p x| H) p(H;)

Taking the ratio of these leads to a factorization in terms of the
prior odds and the likelihood ratio, or Bayes factor:

#(Hglx) : plHg) plz|Hg)
p(H|2) - p(HL) plzlH)

There are some complications here, however. The likelihoods are
marginal likelihoods obtained by integrating over parameters not
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specified in the hypotheses, and the prior probabilities will be zero
if the H, refer to particular values from a continuum of possible
values (e.g., if they refer to values of a parameter e, where e can
take any value between 0 and 1). One strategy for dealing with this
problem is to assign a discrete non- zero prior probability to the
given values of 9.

4.6.2 Hypothesis Testing in Context

This section has so far described the classical (frequentist)
approach to statistical hypothesis testing. In data mining, however,
analyses can become more complicated.

Firstly, because data mining involves large data sets, we should
expect to obtain statistical significance: even slight departures from
the hypothesized model form will be identified as significant, even
though they may be of no practical importance. (If they are of
practical importance, of course, then well and good.) Worse, slight
departures from the model arising from contamination or data
distortion will show up as significant. We have already remarked on
the inevitability of this problem.

Secondly, sequential model fitting processes are common. For
various stepwise model fitting procedures, which gradually refine a
model by adding or deleting terms. Running separate tests on each
model, as if it were de novo, leads to incorrect probabilities. Formal
sequential testing procedures have been developed, but they can
be quite complex. Moreover, they may be weak because of the
multiple testing going on.

Thirdly, the fact that data mining is essentially an exploratory
process has various implications. One is that many models will be
examined. Suppose we test m true (though we will not know this)
null hypotheses at the 5% level, each based on its own subset of
the data, independent of the other tests. For each hypothesis
separately, there is a probability of 0.05 of incorrectly rejecting the
hypothesis. Since the tests are independent, the probability of
incorrectly rejecting at least one isp=1 - (1 - 0.05)". When m =1
we have p = 0.05, which is fine. But when m = 10 we obtain p =
0.4013, and when m = 100 we obtain p = 0.9941. Thus, if we test
as few as even 100 true null hypotheses, we are almost certain to
incorrectly reject at least one. Alternatively, we could control the
overall family error rate, setting the probability of incorrectly
rejecting one of more of the m true null hypotheses to 0.05. In this
case we use 0.05 =1 - (1 - a)™ for each given m to obtain the level
a at which each of the separate null hypotheses is tested. With m
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= 10 we obtain a = 0.0051, and with m = 100 we obtain a = 0.0005.
This means that we have a very small probability of incorrectly
rejecting any of the separate component hypotheses.

Of course, in practice things are much more complicated: the
hypotheses are unlikely to be completely independent (at the other
extreme, if they are completely dependent, accepting or rejecting
one implies the acceptance or rejection of all), with an essentially
unknowable dependence structure, and there will typically be a
mixture of true (or approximately true) and false null hypotheses.

Various simultaneous test procedures have been developed to
ease these difficulties (even though the problem is not really one of
inadequate methods, but is really more fundamental). A basic
approach is based on the Bonferroni inequality. We can expand
the probability (1 - a)™ that none of the true null hypotheses are
rejected to yield (1 - a)™ =1 - ma. It follows that 1 - (1 - a)™ = ma
that is, the probability that one or more true null hypotheses is
incorrectly rejected is less than or equal to ma. In general, the
probability of incorrectly rejecting one or more of the true null
hypotheses is smaller than the sum of probabilities of incorrectly
rejecting each of them. This is a first-order Bonferroni inequality. By
including other terms in the expansion, we can develop more
accurate boundsthough they require knowledge of the dependence
relationships between the hypotheses.

With some test procedures difficulties can arise in which a global
test of a family of hypotheses rejects the null hypothesis (so we
believe at least one to be false), but no single component is
rejected. Once again strategies have been developed for
overcoming this in particular applications. For example, in
multivariate analysis of variance, which compares several groups
of objects that have been measured on multiple variables, test
procedures have been developed that overcome these problems
by comparing each test statistic with a single threshold value.

It is obvious from the above discussion that while attempts to put
probabilities on statements of various kinds, via hypothesis tests,
do have a place in data mining, and they are not a universal
solution. However, they can be regarded as a particular type of a
more general procedure that maps the data and statement to a
numerical value or score. Higher scores (or lower scores,
depending upon the procedure) indicate that one statement or
model is to be preferred to another, without attempting any
absolute probabilistic interpretation.
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4.7 Sampling Methods

As mentioned earlier, data mining can be characterized as
secondary analysis, and data miners are not typically involved
directly with the data collection process. Still, if we have information
about that process that might be useful for our analysis, we should
take advantage of it. Traditional statistical data collection is usually
carried out with a view to answering some particular question or
guestions in an efficient and effective manner. However, since
data mining is a process seeking the unexpected or the
unforeseen, it does not try to answer questions that were specified
before the data were collected. For this reason we will not be
discussing the sub-discipline of statistics known as experimental
design, which is concerned with optimal ways to collect data. The
fact that data miners typically have no control over the data
collection process may sometimes explain poor data quality: the
data may be ideally suited to the purposes for which it was
collected, but not adequate for its data mining uses.

We have already noted that when the database comprises the
entire population, notions of statistical inference are irrelevant: if
we want to know the value of some population parameter (the
mean transaction value, say, or the largest transaction value), we
can simply calculate it. Of course, this assumes that the data
describe the population perfectly, with no measurement error,
missing data, data corruption, and so on. Since, as we have seen,
this is an unlikely situation, we may still be interested in making an
inference from the data as recorded to the "true" underlying
population values.

Furthermore, the notions of populations and samples can be
deceptive. For example, even when values for the entire population
have been captured in the database, often the aim is not to
describe that population, but rather to make some statement about
likely future values. For example, we may have available the entire
population of transactions made in a chain of supermarkets on a
given day. We may well wish to make some kind of inferential
statement about the mean transaction value for the next day or
some other future day. This also involves uncertainty, but it is of a
different kind from that discussed above. Essentially, here, we are
concerned with forecasting. In market basket analysis we do not
really wish to describe the purchasing patterns of last month's
shoppers, but rather to forecast how next month's shoppers are
likely to behave.
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We have distinguished two ways in which samples arise in data
mining. First, sometimes the database itself is merely a sample
from some larger population. The implications of this situation and
the dangers associated with it. Second the database contains
records for every object in the population, but the analysis of the
data is based on only a sample from it. This second technique is
appropriate only in modeling situations and certain pattern
detection situations. It is not appropriate when we are seeking
individual unusual records.

Our aim is to draw a sample from the database that allows us to
construct a model that reflects the structure of the data in the
database. The reason for using just a sample, rather than the
entire data set, is one of efficiency. At an extreme, it may be
infeasible, in terms of time or computational requirements, to use
the entirety of a large database. By basing our computations solely
on a sample, we make the computations quicker and easier. It is
important, however, that the sample be drawn in such a way that it
reflects the structure of the complete set i.e., that it is
representative of the entire database.

There are various strategies for drawing samples to try to ensure
representativeness. If we wanted to take just 1 in 2 of the records
(a sampling fraction of 0.5), we could simply take every other
record. Such a direct app roach is termed systematic sampling.
Often it is perfectly adequate. However, it can also lead to
unsuspected problems. For instance, if the database contained
records of married couples, with husbands and wives alternating,
systematic sampling could be disastrous the conclusions drawn
would probably be entirely mistaken. In general, in any sampling
scheme in which cases are selected following some regular pattern
there is a risk of interaction with an unsuspected regularity in the
database. Clearly what we need is a selection pattern that avoids
regularities a random selection pattern.

The word random is used here in the sense of avoiding
regularities. This is slightly different from the usage employed
previously in this chapter, where the term referred to the
mechanism by which the sample was chosen. There it described
the probability that a record would be chosen for the sample. As
we have seen, samples that are random in this second sense can
be used as the basis for statistical inference: we can, for example,
make a statement about how likely it is that the sample mean will
differ substantially from the population mean.

Mining Techniques

NOTES



83 Data

If we draw a sample using a random process, the sample will
satisfy the second meaning and is likely to satisfy the first as well.
(Indeed, if we specify clearly what we mean by "regularities” we
can give a precise probability that a randomly selected sample will
not match such regularities.) To avoid biasing our conclusions, we
should design our sample selection mechanism in such a way that
that each record in the database has an equal chance of being
chosen. A sample with equal probability of selecting each member
of the population is known as an epsem sample. The most basic
form of epsem sampling is simple random sampling, in which the n
records comprising the sample are selected from the N records in
the database in such a way that each set of n records has an
equal probability of being chosen. The estimate of the population
mean from a simple random sample is just the sample mean.

At this point we should note the distinction between sampling with
replacement and sampling without replacement. In the former, a
record selected for inclusion in the sample has a chance of being
drawn again, but in the latter, once a record is drawn it cannot be
drawn a second time. In data mining since the sample size is often
small relative to the population size, the differences between the
results of these two procedures are usually negligible.

Figure 4.2 illustrates the results of a simple random sampling
process used in calculating the mean value of a variable for some
population. It is based on drawing samples from a population with
a true mean of 0.5. A sample of a specified size is randomly drawn
and its mean value is calculated; we have repeated this procedure
200 times and plotted histograms of the results. Figure 4.2 shows
the distribution of sample mean values (a) for samples of size 10,
(b) size 100, and (c) size 1000. It is apparent from this figure that
the larger the sample, the more closely the values of the sample
mean is distributed around about the true mean. In general, if the
variance of a population of size N is s?, the variance of the mean of
a simple random sample of size n from that population, drawn
without replacement, is

Since we normally deal with situations in which N is large relative
to n (i.e., situations that involve a small sampling fraction), we can
usually ignore the second factor, so that, a good approximation of
the variance is 0% /n. From this it follows that the larger the sample
is the less likely it is that the sample means will deviate
significantly from the population mean which explains why the

dispersion of the histograms decreases with increasing sample
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size. Note also that this result is independent of the population
size. What matters here is the size of the sample, not the size of
the sampling fraction, and not the proportion of the population that
is included in the sample. We can also see that, when the sample
size is doubled, the standard deviation is reduced not by a factor
of 2, but only by a factor of v2 there are diminishing returns to
increasing the sample size. We can estimate s® from the sample
using the standard estimator

Z[J'{r’} - Z)f(n-1),

where x(i) is the value of the ith sample unit and ? is the mean of
the n values in the sample.

mENEE RS I

Figure 4.2: Means of Samples of Size 10(a), 100(b), and 1000(c)
Drawn From a Population with a Mean of 0.5.

The simple random sample is the most basic form of sample
design, but others have been developed that have desirable
properties under different circumstances. Details can be found in
books on survey sampling, such as those cited at the end of this

chapter. Here we will briefly describe two important schemes.
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In stratified random sampling, the entire population is split into non
over -lapping subpopulations or strata, and a sample (often, but not
necessarily, a simple random sample) is drawn separately from
within each stratum. There are several potential advantages to
using such a procedure. An obvious one is that it enables us to
make statements about each of the subpopulations separately,
without relying on chance to ensure that a reasonable number of
observations come from each subpopulation. A more subtle, but
often more important, advantage is that if the strata are relatively
homogeneous in terms of the variable of interest (so that much of
the variability between values of the variable is accounted for by
differences between strata), the variance of the overall estimate
may be smaller than that arising from a simple random sample. To
illustrate, one of the credit card companies we work with
categorizes transactions into 26 categories: supermarket, travel
agent, gas station, and so on. Suppose we wanted to estimate the
average value of a transaction. We could take a simple random
sample of transaction values from the database of records, and
compute its mean, using this as our estimate. However, with such
a procedure some of the transaction types might end up being
underrepresented in our sample, and some might be
overrepresented. We could control for this by forcing our sample to
include a certain number of each transaction type. This would be a
stratified sample, in which the transaction types were the strata.
This example illustrates why the strata must be relatively
homogeneous internally, with the heterogeneity occurring between
strata. If all the strata had the same dispersion as the overall
population, no advantage would be gained by stratification.

In general, suppose that we want to estimate the population means
for some variable, and that we are using a stratified sample, with
simple random sampling within each stratum. Suppose that the kth
stratum has N, elements in it, and that n, of these are chosen for
the sample from this stratum. Denoting the sample mean within the
k th stratum by X , the estimate of the overall population mean is
given by

s

where N is the total size of the population. The variance of this
estimator is

1 .
ul z;'a’;; var(Ey)

NV
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where var(xy) is the variance of the simple random sample of size
nk for the kth stratum, computed as above.

Data often have a hierarchical structure. For example, letters occur
in words, which lie in sentences, which are grouped into
paragraphs, which occur in chapters, which form books, which sit
in libraries. Producing a complete sampling frame and drawing a
simple random sample may be difficult. Files will reside on different
computers at a site within an organization, and the organization
may have many sites; if we are studying the properties of those
files, we may find it impossible to produce a complete list from
which we can draw a simple random sample. In cluster sampling,
rather than drawing a sample of the indiMdual elements that are of
interest, we draw a sample of units that contain several elements.
In the computer file example, we might draw a sample of
computers. We can the examine all of the files on each of the
chosen computers, or move on to a further stage of sampling.

Clusters are often of unequal sizes. In the above example we can
view a computer as providing a cluster of files, and it is very
unlikely that all computers in an organization would have the same
number of files. But situations with equal-sized clusters do arise.
Manufacturing industries provide many examples: six-packs of
beer or packets of condoms, for instance. If all of the units in each
selected cluster are chosen (if the subsampling fraction is 1) each
unit has the probability a/K of being selected, where a is the
number of clusters chosen from the entire set of K clusters. If not
all the units are chosen, but the sampling fraction in each cluster is
the same, each unit will have the same probability of being
included in the sample (it will be an epsem sample). This is a
common design. Estimating the variance of a statistic based on
such a design is less straightforward than the cases described
above since the sample size is also a random variable (it is
dependent upon which clusters happen to be included in the
sample). The estimate of the mean of a variable is a ratio of two
random variables: the total sum for the units included in the sample
and the total number of units included in the sample. Denoting the
size of the simple random sample chosen from the kth cluster by
n,, and the total sum for the units chosen from the kth cluster by
sk, the sample mean r is

E .-".-,..-"E .
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If we denote the overall sampling fraction by f (often this is small
and can be ignored) the variance of ris

[LT.JIH:{]__, I rr - (Z s; + r.'_’z n? — 2|-2: .-.,,m.) _

Summary

Data mining should not be seen as a simple one-time exercise. Huge
data collections may be analyzed and examined in an unlimited
number of ways. As time progresses, so new kinds of structures and
patterns may attract interest, and may be worth seeking in the data.

Data mining has, for good reason, recently attracted a lot of attention:
it is a new technology, tackling new problems, with great potential for
valuable commercial and scientific discoveries. However, we should
not expect it to provide answers to all questions. Like all discovery
processes, successful data mining has an element of serendipity.
While data mining provides useful tools that does not mean that it will
inevitably lead to important, interesting, or valuable results. We must
beware of over exaggerating the likely outcomes. But the potential is
there.

We have restricted our discussion to numeric data. However, other
kinds of data also arise. For example, text data is an important class
of non-numeric data. Sometimes the definition of an individual data
item (and hence whether it is numeric or non-numeric) depends on
the objectives of our analysis: in economic contexts, in which
hundreds of thousands of time series are stored in databases, the
data items might be entire time series, rather than the individual
numbers within those series. Even with non-numeric data, numeric
data analysis plays a fundamental role. Often non-numeric data
items, or the relationships between them, are reduced to numeric
descriptions, which are subject to standard methods of analysis. For
example, in text processing us might measure the number of times a
particular word occurs in each document, or the probability that
certain pairs of words appear in documents.

Nothing is certain. In the data mining context, our objective is to
make discoveries from data. We want to be as confident as we can
that our conclusions are correct, but we often must be satisfied with a
conclusion that could be wrong though it will be better if we can also
state our level of confidence in our conclusions. When we are
analyzing entire populations, the uncertainty will creep in via less
than perfect data quality: some values may be incorrectly recorded,
some values may be missing, and some members of the population
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are omitted from the database entirely, and so on. When we are
working with samples, our aim is often to draw a conclusion that
applies to the broader population from which the sample was drawn.
The fundamental tool in tackling all of these issues is probability. This
is a universal language for handling uncertainty, a language that has
been refined throughout this century and has been applied across a
vast array of situations. Application of the ideas of probability enables
us to obtain "best" estimates of values, even in the face of data
inadequacies, and even when only a sample has been measured.
Moreover, application of these ideas also allows us to quantify our
confidence in the results.
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UNIT -

5. A Systematic Overview of Data Mining
Algorithms

Structure

5.1 Introduction

5.2 An Example: The CART Algorithm for Building Tree Classifiers
5.3 The Reductionist Viewpoint on Data Mining Algorithms

5.3.1 Multilayer Perceptions for Regression and Classification
5.3.2 The A Priori Algorithm for Association Rule Learning

5.3.3 Vector-Space Algorithms for Text Retrieval

Objective

After going through this lesson, you should be able to:
» Understand the nature of data sets;
» Discuss models and patterns;

» Discuss components of data mining algorithms;

5.1 Introduction

This lesson will examine what we mean in a general sense by a
data mining algorithm as well as what components make up such
algorithms. A working definition is as follows:

A data mining algorithm is a well-defined procedure that takes data
as input and produces output in the form of models or patterns.

We use the term well-defined indicate that the procedure can be
precisely encoded as a finite set of rules. To be considered an
algorithm, the procedure must always terminate after some finite
number of steps and produce an output. In contrast, a
computational method has all the properties of an algorithm except
a method for guaranteeing that the procedure will terminate in a
finite number of steps. While specification of an algorithm typically
involves defining many practical implementation details, a
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computational method is usually described more abstractly. For
example, the search technique steepest descent is a
computational method but is not in itself an algorithm (this search
method repeatedly moves in parameter space in the direction that
has the steepest decrease in the score function relative to the
current parameter values). To specify an algorithm using the
steepest descent method, we would have to give precise methods
for determining where to begin descending, how to identify the
direction of steepest descent (calculated exactly or
approximated?), how far to move in the chosen direction, and
when to terminate the search (e.g., detection of convergence to a
local minimum).

As discussed briefly inlesson-1, the specification of a data mining
algorithm to solve a particular task involves defining specific
algorithm components:

1. the data mining task the algorithm is used to address (e.qg.,
visualization, classification, clustering, regression, and so forth).
Naturally, different types of algorithms are required for different
tasks.

2. the structure (functional form) of the model or pattern we are
fitting to the data (e.g., a linear regression model, a
hierarchical clustering model, and so forth). The structure
defines the boundaries of what we can approximate or learn.
Within these boundaries, the data guide us to a particular model
or pattern.

3. the score function we are using to judge the quality of our fitted
models or patterns based on observed data (e.g.,
misclassification error or squared error). Therefore, it is
important that the score function reflects the relative practical
utility of different parameterizations of our model or pattern
structures. Furthermore, the score function is critical for
learning and generalization. It can be based on goodness-of-fit
alone (i.e., how well the model can describe the observed data)
or can try to capture generalization performance (i.e., how well
will the model describe data we have not yet seen). As we will
see in later chapters, this is a subtle issue.

4. the search or optimization method we use to search over
parameters and structures, i.e., computational procedures and
algorithms used to find the maximum (or minimum) of the score
function for particular models or patterns. Issues here include
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computational methods used to optimize the score function
(e.g., steepest descent) and search-related parameters (e.g.,
the maximum number of iterations or convergence specification
for an iterative algorithm). If the model (or pattern) structure is a
single fixed structure (such as a k th-order polynomial function
of the inputs), the search is conducted in parameter space to
optimize the score function relative to this fixed structural form.
If the model (or pattern) structure consists of a set (or family) of
different structures, there is a search over both structures and
their associated parameter spaces. Optimization and search
are traditionally at the heart of any data mining algorithm.

5. The data management technique to be used for storing,
indexing, and retrieving data. Many statistical and machine
learning algorithms do not specify any data management
technique, essentially assuming that the data set is small
enough to reside in main memory so that random access of any
data point is free (in terms of time) relative to actual
computational costs. However, massive data sets may exceed
the

capacity of available main memory and reside in secondary (e.g.,
disk) or tertiary (e.g., tape) memory. Accessing such data is
typically orders of magnitude slower than accessing main memory,
and thus, for massive data sets, the physical location of the data
and the manner in which it is accessed can be critically important
in terms of algorithm efficiency.

Table 5.1 illustrates how three well-known data mining algorithms
(CART, back propagation, and the A Priori algorithm) can be
described in terms of these basic components. Each of these
algorithms will be discussed in detail later in this chapter. (One of
the differences between statistical and data mining perspectives is
evident from this table. Statisticians would regard CART as a
model, and back propagation as a parameter estimation algorithm.
Data miners tend to see things more in terms of algorithms:
processing the data using the algorithm to yield a result. The
difference is really more one of perspective than substance.)
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Table 5.1: Three Well-Kknown Data Mining Algorithms Broken Down in
Terms of their algorithm Components.

CART Bac"pr‘r’]paga“o A Priori
Task Classification and Regression Rule Pattern
Regression Discovery
Structure Decision Neural Network | agsociation
Tree (Nonl_mear Rules
funetinng)
Score _vali
Function C[gzz Igll?rlllgt?ctid Squared Error | Support/Accuracy
Search Greedy Search Gradient Breath-First with
Method over Structures Descent on Pruning
Parameters
Data
Management Unspecified Unspecified Linear Scans
Technique

5.2 An Example: The CART Algorithm for Building
Tree Classifiers

To clarify the general idea of viewing algorithms in terms of their
components, we will begin by looking at one well-known algorithm
for classification problems.

The CART (Classification And Regression Trees) algorithm is a
widely used statistical procedure for producing classification and
regression models with a tree-based structure. For the sake of
simplicity we will consider only the classification aspect of CART,
that is, mapping an input vector x to a categorical (class) output
label y (see figure 5.1). In the context of the components
discussed above, CART can be viewed as the "algorithm tuple"
consisting of the following:

1. task = prediction (classification)

2. model structure = tree

3. score function = cross-validated loss function
4.search method = greedy local search

5.data management method = unspecified

The fundamental distinguishing aspect of the CART algorithm is
the model structure being used; the classification tree. The CART
tree model consists of a hierarchy of univariate binary decisions.
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Figure 5.2 shows a simple example of such a classification tree for
the data in figure 5.1. Each internal node in the tree specifies a
binary test on a single variable, using thresholds on real and
integer-valued variables and subset membership for categorical
variables. (In general we use b branches at each node, b =22.) A
data vector x descends a unique path from the root node to a leaf
node depending on how the values of individual components of x
match the binary tests of the internal nodes. Each leaf node
specifies the class label of the most likely class at that leaf or,
more generally, a probability distribution on class values
conditioned on the branch leading to that leaf.
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Figure 5.1: A scatterplot of data showing color intensity versus
alcohol content for a set of wines. the data mining task is to
classify the wines into one of three classes (three different
cultivars), each shown with a different symbol in the plot. the data
originate from a 13-dimensional data set in which each variable
measures of a particular characteristic of a specific wine.

The structure of the tree is derived from the data, rather than being
specified a priori (this is where data mining comes in). CART
operates by choosing the best variable for splitting the data into
two groups at the root node. It can use any of several different
splitting criteria; all produce the effect of partitioning the data at an
internal node into two disjoint subsets (branches) in such a way
that the class labels in each subset are as homogeneous as
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possible. This splitting procedure is then recursively applied to the
data in each of the child nodes, and so forth. The size of the final
tree is a result of a relatively complicated "pruning" process,
outlined below. Too large a tree may result in overfitting, and too
small a tree may have insufficient predictive power for accurate

classification.
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Figure 5.2: A classification tree for the data in figure 5.1 in which
the tests consist of thresholds (shown beside the branches) on
variables at each internal node and leaves contain class decisions.
note that one leaf is denoted? to illustrate that there is
considerable uncertainty about the class labels of data points in
this region of the space.

The hierarchical form of the tree structure clearly separates
algorithms like CART from classification algorithms based on non-
tree structures (e.g., a model that uses a linear combination of all
variables to define a decision boundary in the input space). A tree
structure used for classification can readily deal with input data
that contain mixed data types (i.e., combinations of categorical and
real-valued data), since each internal node depends on only a
simple binary test. In addition, since CART builds the tree using a
single variable at a time, it can readily deal with large numbers of
variables. On the other hand, the representational power of the
tree structure is rather coarse: the decision regions for
classifications are constrained to be hyper -rectangles, with
boundaries constrained to be parallel to the input variable axes (as
an example, see figure 5.3).
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Figure 5.3: The decision boundaries from the classification tree in
figure 5.2 are superposed on the original data. note the axis-
parallel nature of the boundaries.

The score function used to measure the quality of different tree
structures is a general misclassification loss function, defined as

n

z{ '(_!.r[ i), _r_.lnj:']).

where C ( y(i), ¥(i) ) is the loss incurred (positive) when the class
label for the ith data vector, y(i), is predicted by the tree to be ¥ (j).
In general, C is specified by an m x m matrix, where m is the
number of classes. For the sake of simplicity we will assume here
a loss of 1 is incurred whenever ¥(i) # y(i), and the loss is 0
otherwise. (This is known as the "0-1" loss function or the
misclassification rate if we normalize the sum above by dividing

by n.)

CART uses a technique known as cross-validation to estimate this
misclassification loss function. Basically, this method partitions the
training data into a subset for building the tree and then estimates
the misclassification rate on the remaining validation subset. This
partitioning is repeated multiple times on different subsets, and the
misclassification rates are then averaged to yield a cross-validation
estimate of how well a tree of a particular size will perform on new,
unseen data. The size of tree that produces the smallest cross-
validated misclassification estimate is selected as the appropriate
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size for the final tree model. (This description captures the essence
of tree selection via cross-validation, but in practice the process is
a little more complex.)

Cross-validation allows CART to estimate the performance of any
tree model on data not used in the construction of the tree i.e., it
provides an estimate of generalization performance. This is critical
in the tree-growing procedure, since the misclassification rate on
the training data (the data used to construct the tree) can often be
reduced by simply making the tree more complex; thus, the
training data error is not necessarily indicative of how the tree will
perform on new data.

Figure 5.4 illustrates this point with a hypothetical plot of typical
error rates as a function the size of the tree. The error rate on the
training data decreases monotonically (to an error rate of zero if
the variables can produce leaves that each contains data from a
only single class). The test error rate on new data (which is what
we are typically interested in for prediction) also decreases at first.
Very small trees (to the left) do not have sufficient predictive power
to make accurate predictions. However, unlike the training error,
the test error "bottoms out" and begins to increase again as the
algorithm overfits the data and adds nodes that are merely
predicting noise or random variation in the training data, and which
is irrelevant to the predictive task. The goal of an algorithm like
CART s to find a tree close to the optimal tree size (which is of
course unknown ahead of time); it tries to find a model that is
complex enough to capture any structure that exists, but not so
complex that it overfits. For small to medium amounts of data it is
preferable to do this without having to reserve some of our data to
estimate this out -of-sample error. For very large data sets we can
sometimes afford to simply partition the data into training and
validation data sets and to monitor performance on the validation
data.
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Figure 5.4: A Hypothetical Plot of Misclassification Error Rates for
Both Training and Test data as a Function of Tree Complexity
(e.g., Number of Leaves in the Tree).

5.3 The Reductionist Viewpoint on Data Mining
Algorithms

The reductionist (i.e., a component -based) view for data mining
algorithms is quite useful in practice. It clarifies the underlying
operation of a particular data mining algorithm by reducing it to its
essential components. In turn, this makes it easier to compare
different algorithms, since we can clearly see similarities and
differences at the component level (e.g., we were able to
distinguish between CART and C4.5 primarily in terms of what
score functions they use).

Even more important, this view places an emphasis on the
fundamental properties of an algorithm avoiding the tendency to
think of lists of algorithms. When faced with a data mining
application, a data miner should think about which components fit
the specifics of his or her problem, rather than which specific "off-
the-shelf" algorithm to choose. In an ideal world, the data miners
would have available a software environment within which they
could compose components (from a library of model structures,
score functions, search methods, etc.) to synthesize an algorithm
customized for their specific applications. Unfortunately this
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remains a ideal state of affairs rather than the practical norm;
current data analysis software packages often provide only a list of
algorithms, rather than a component -based toolbox for algorithm
synthesis. This is understandable given the aim of providing usable
tools for data miners who do not have the background or the time
to understand the underlying details at a component level.
However these software tools may not be ideal for more skilled
practitioners who wish to customize and synthesize problem-
specific algorithms. The "cookbook" approach is also somewhat
dangerous, since naive users of data mining tools may not fully
understand the limitations (and underlying assumptions) of the
particular black-box algorithms they are using. In contrast, a
description based on components makes it relatively clear what is
inside the black box.

5.3.1 Multilayer Perceptions for Regression and Classification

Feedforward multilayer perceptrons (MLPs) are the most widely
used models in the general class of artificial neural network
models. The MLP structure provides a nonlinear mapping from a
real-valued input vector x to a real -valued output vector y. As a
result, an MLP can be used as a nonlinear model for regression
problems, as well as for classification, through appropriate
interpretation of the outputs. The basic idea is that a vector of p
input values is multiplied by a p x d; weight matrix, and the
resulting d, values are each individually transformed by a nonlinear
function to produce d; "hidden node" outputs. The resulting d,
values are then multiplied by a d; x d, weight matrix (another
"layer" of weights), and the d, values are each put through a non-
linear function. The resulting d, values can either be used as the
outputs of the model or be put through another layer of weight
multiplications and non -linear transformations, and so on (hence,
the "multilayer” nature of the model; the term perceptron refers to
the original model of this form proposed in the 1960s, consisting of
a single layer of weights followed by a threshold nonlinearity).

As an example, consider the simple network model in figure 5.5

4
5 = E o Xy
with a single "hidden" layer. Two inner products, i=1 and

4
§3 = E Bi x4
i=1 , are calculated via the first layer of weights (the as
and the Bs), and each in turn transformed by a nonlinear function
at the hidden nodes to produce two scalar values: h; and h,. The

Mining Techniques

NOTES




99 Data

nonlinear logistic function, i.e., hy=h(s:)=1/(1+e), is widely used.
Next h1 and h2 are weighted and combined to produce the output
42
y= N Wi b,

value i= (we could in principle perform a nonlinear
transformation on y also). Thus, y is a nonlinear function of the
input vector x. The hs can be viewed as nonlinear transformations
of the four-dimensional input, a new set of two "basis functions," h;
and h,. The parameters of this model to be estimated from the data
are the eight weights on the input layer (ay, ..., a,, By, ..., B,) and
the two weights on the output layer (w; and w,). In general, with p
inputs, a single hidden layer with h hidden nodes, and a single
output, there are (p + 1)h parameters (weights) in all to be
estimated from the data. In general we can have multiple layers of
such weight multiplications and nonlinear transformations, but a
single hidden layer is used most often since multiple hidden layer
networks can be slow to train. The weights of the MLP are the
parameters of the model and must be determined from the data.

'\*y
/

s

Figure 5.5: A diagram of a simple multilayer perceptron (or neural
network) model with two hidden nodes (d;, = 2) and a single output
node (d, = 1).

Note that if the output y is a scalar y (i.e., d, = 1) and is bounded
between 0 and 1 (we can just choose a nonlinear transformation of
the weighted values coming from the previous layer to ensure this
condition), we can use y as an indicator of class membership for
two class problems and (for example) threshold at 0.5 to decide
between class 1 and class 2. Thus, MLPs can easily be used for
classification as well as for regression. Because of the nonlinear
nature of the model, the decision boundaries between different
classes produced by a network model can also be quite non-linear.
Figure 5.6 provides an example of such decision boundaries. Note
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that they are highly nonlinear, in contrast to those produced by the
classification tree in figure 5.3. Unlike the classification tree in
figure 5.2, however, there is no simple summary form we can use
to describe the workings of the neural network model.
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Figure 5.6: An example of the type of decision boundaries that a
neural network model would produce for the two-dimensional wine
data of figure 5.2(a).

The reductionist view of an MLP learning algorithm vyields the
following "algorithm-tuple":

1. task = prediction: classification or regression

2. structure = multiple layers of nonlinear transformations of
weighted sums of the inputs

3. score function = sum of squared errors

4. search method = steepest-descent from randomly chosen initial
parameter values

5. data management technique = online or batch
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The distinguishing feature of this algorithm is the multilayer,
nonlinear nature of its model structure (note both that the output y
is a nonlinear function of the inputs and that the parameters 6
(the weights) appear nonlinearly in the score function). This clearly
sets a neural network apart from more traditional linear and
polynomial functional forms for regression and from tree -based
models for classification.

The sum of squared errors (SSE), the most widely used score
function for MLPs, is defined as:

Sggp = Z [_.',.'l,r.r'l _.'_.'[.'-:I) :

where y(i) and ¥(i) are the true target value and the output of the
network, respectively, for the ith data point, and where ¥(i) is a
function of the input vector x(i) and the MLP parameters (weights)
6 . It is sometimes assumed that squared error is the only score
function that can be used with a neural network model. In fact, as
long as it is differentiable as a function of the model parameters
(allowing us to determine the direction of steepest descent), any
score function can be used as the basis for a steepest-descent
search method such as backpropagation. For example, if we view
squared error as just a special case of a more general log
likelihood function, we can use a variety of other likelihood -based
score functions in place of squared error, tailored for specific
applications.

Training a neural network consists of minimizing Sgge by treating it
as a function of the unknown parameters 6 (i.e., parameter
estimation of 6 given the data). Given that each ¥(i) is typically a
highly nonlinear function of the parameters 6 , the score function
Sgse IS also highly nonlinear as a function of 6 . Thus, there is no
closed-form solution for finding the parameters 6 that minimize
Sgge  for an MLP. In addition, since there can be many local
minima on the surface of Sqge as a function of 6 , training a neural
network (i.e., finding the parameters that minimize Sgqe for a
particular data set and model structure) is often a highly non -trivial
multivariate optimization problem. Iterative local search techniques
are required to find satisfactory local minima.

The original training method proposed for MLPs, known as back
propagation, is a relatively simple optimization method. It
essentially performs steepest-descent on the score function (the
sum of squared errors) in parameter space, solving this nonlinear
optimization problem by descending to a local minimum given a
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randomly chosen starting point in parameter space. (In practice we
usually descend from multiple starting points and select the best
local minimum found overall.) In a more general context, there is a
large family of optimization methods for such nonlinear
optimization problems. It is often assumed that steepest-descent is
the only optimization method that can be used to train an MLP, but
in fact more powerful nonlinear optimization techniques such as
conjugate gradient techniques can be brought to bear on this
problem.

In terms of data management, a neural network can be trained
either online (updating the weights based on cycling through one
data point at a time) or in batch mode (updating the weights after
seeing all of the data points). The online updating version of the
algorithm is a special case of a more general class of online
estimation algorithms.

5.3.2 The A Priori Algorithm for Association Rule Learning

An association rule is a simple probabilistic statement about the
co-occurrence of certain events in a database, and is particularly
applicable to sparse transaction data sets. For the sake of
simplicity we assume that all variables are binary. An association
rule takes the following form:

IFA=1ANDB=1THEN C = 1 with probability p

where A, B, and C are binary variables and p=p(C=1A=1,B =
1), i.e., the conditional probability that C = 1 given that A=1 and B
= 5. The conditional probability p is sometimes referred to as the
"accuracy" or "confidence" of the rule, and p(A=1,B=1,C=1)is
referred to as the "support.” This pattern structure or rule structure
is quite simple and interpretable, which helps explain the general
appeal of this approach. Typically the goal is to find all rules that
satisfy the constraint that the accuracy p is greater than some
threshold pa and the support is greater than some threshold p, (for
example, to find all rules with support greater than 0.05 and
accuracy greater than 0.8). Such rules comprise a relatively weak
form of knowledge; they are really just summaries of co-occurrence
patterns in the observed data, rather than strong statements that
characterize the population as a whole. Indeed, in the sense that
the term "rule" usually implies a causal interpretation (from the left
to the right hand side), the term "association rule" is strictly
speaking a misnomer since these patterns are inherently
correlational but need not be causal.
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The general idea of finding association rules originated in
applications involving "market - basket data." These data are
usually recorded in a database in which each observation consists
of an actual basket of items (such as grocery items), and the
variables indicate whether or not a particular item was purchased.
We can think of this type of data in terms of a data matrix of n rows
(corresponding to baskets) and p columns (corresponding to
grocery items). Such a matrix can be very large, with n in the
millions and p in the tens of thousands, and is generally very
sparse, since a typical basket contains only a few items.
Association rules were invented as a way to find simple patterns in
such data in a relatively efficient computational manner.

In our reductionist framework, a typical data mining algorithm for
association rules has the following components:

1.task = description: associations between variables

2.structure = probabilistic "association rules" (patterns)

3. score function = thresholds on accuracy and support

4.search method = systematic search (breadthfirst with pruning)
5.data management technique = multiple linear scans

The score function used in association rule searching is a simple
binary function. There are two thresholds: ps is a lower bound on
the support of the rule (e.g., ps = 0.1 when we want only those
rules that cover at least 10% of the data) and pa is a lower bound
on the accuracy of the rule (e.g., pa = 0.9 when we want only rules
that are at least 90% accurate). A pattern gets a score of 1 if it
satisfies both of the threshold conditions, and gets a score of 0
otherwise. The goal is find all rules (patterns) with a score of 5.

The search problem is formidable given the exponential number of

-1
possible association rules namely, O(p2p ) for binary variables if
we limit our attention to rules with positive propositions (e.g., A =
1) in the left and right -hand sides. Nonetheless, by taking
advantage of the nature of the score function, we can reduce the
average run -time of the algorithm to much more manageable
proportions. Note that if either p(A = 1) < ps or p(B = 1) < p,,
clearly p(A = 1, B = 1) < p,. We can use this observation in our
search for association rules by first finding all of the individual
events (such as A = 1) that have a probability greater than the
threshold ps (this takes one linear scan of the entire database). An
event (or set of events) is called "frequent” if the probability of the
event(s) is greater than the support threshold ps. We consider all
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possible pairs of these frequent events to be candidate frequent
sets of size 2.

In the more general case of going from frequent sets of size k - 1
to frequent sets of size k, we can prune any sets of size k that
contain a subset of k - 1 items that themselves are not frequent at
the k - 1 level. For example, if we had only frequent sets {A =1, B
=1} and {B = 1, C = 1}, we could combine them to get the
candidate k = 3 frequent set {A =1, B =1, C = 1}. However, if the
subset of items {A = 1, C = 1} was not frequent (i.e., this item set
were not on the list of frequent sets of sizek = 2),then{A =1, B =
1, C = 1} could not be frequent either, and it could safely be
pruned. Note that this pruning can take place without searching the
data directly, resulting in a considerable computational speedup for
large data sets.

Given the pruned list of candidate frequent sets of size k , the
algorithm performs another

linear scan of the database to determine which of these sets are in
fact frequent. The confirmed frequent sets of size k (if any) are
combined to generate all possible frequent sets containing k + 1
events, followed by pruning, and then another scan of the
database, and so onuntil no more frequent sets can be generated.
(In the worst case, all possible sets of events are frequent and the
algorithm takes exponential time.

However, since in practice the data are often very sparse for the
types of transaction data sets analyzed by these algorithms, the
cardinality of the largest frequent set is usually quite small (relative
to n), at least for relatively large support values.) The algorithm
then makes one final linear scan through the data set, using the
list of all frequent sets that have been found. It determines which
subset combinations of the frequent sets also satisfy the accuracy
threshold when expressed as a rule, and then returns the
corresponding association rules.

Association rule algorithms comprise an interesting class of data
mining algorithms in that the search and data management
components are their most critical components. In particular,
association rule algorithms use a systematic breadth-first, general-t
o-specific search method that explicitly tries to minimize the
number of linear scans through the database. While there exist
numerous other rule-finding algorithms in the machine learning
literature (with similar rule -based representations), association rule
algorithms are designed specifically to operate on very large data
sets in a relatively efficient manner. Thus, for example, research
papers on association rule algorithms tend to emphasize
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computational efficiency rather than interpretation of the rules that
the algorithms produce.

5.3.3 Vector-Space Algorithms for Text Retrieval

The general task of "retrieval by content" is loosely described as
follows: we have a query object and a large database of objects,
and we would like to find the k objects in the database that are
most similar to the query object. We are all familiar with this
problem in the context of searching through online collections of
text. For example, our query could be a short set of keywords and
the "database" could correspond to a large set of Web pages. Our
task in this case would be to find the Web pages that are most
relevant to our keywords.

Here we look at a generic text retrieval algorithm in terms of its
components. One of the most important aspects of this problem is
how similarity is defined. Text documents are of different lengths
and structure. How can we compare such diverse documents? A
key idea in text retrieval is to reduce all documents to a uniform
vector representation, as follows. Let t;, ..., t; be p terms (words,
phrases, etc.). We can think of these as variables, or columns in
our data matrix. A document (a row in our data matrix) is
represented by a vector of length p, where the ith component
contains the count of how often term tj appears in the document.
As with market -basket data, in practice we can have a very large
data matrix (n in the millions, p in the tens of thousands) that is
very sparse (most documents will have many zeros). Again, of
course, we normally would not actually store the data as a large n
X p matrix: a more efficient representation is to store a list for each
term t; of all the documents containing that term.

Given this "vector -space" representation, we can now readily
define similarity. One simple definition is to make the similarity
distance a function of the angle between the two vectors in p-
space. The angle measures similarity in a given direction in "term -
space” and factors out any differences arising from the fact that
large documents tend to have more occurrences of a word than
small documents. The vector-space representation and the angle
similarity measure may seem relatively primitive, but in practice
this scheme works surprisingly well, and there exists a multitude of
variations on this basic theme in text retrieval.

With this information, we are ready to define the components of a
simple generic text- retrieval algorithm that takes one document
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and finds the k most similar documents:

1. task = retrieval of the k most similar documents in a database
relative to a given query

2. representation = vector of term occurrences

3. score function = angle between two vectors

4.search method = various techniques

5.data management technique = various fast indexing strategies

There are many variations on the specific definitions of the
components given above. For example, in defining the score
function, we can specify similarity metrics more general than the
angle function. In specifying the search method, various heuristic
search techniques are possible. Note that search in this context is
real-time search, since the algorithm has to retrieve the patterns in
real time for a user (unlike the data mining algorithms we looked at
earlier, for which search meant off-line searching for the optimal
parameters and model structures).

Different applications may call for different components to be used
in a retrieval algorithm. For example, in searching through legal
documents, the absence of particular terms might be significant,
and we might want to reflect this in our definition of a score
function. In a different context we might want the opposite effect,
l.e., to down weight the fact that two documents do not contain
certain terms (relative to the terms they have in common).

It is clear, however, that the model representation is really the key
idea here. Once the use vector representation has been
established, we can define a wide range of similarity metrics in
vector -space, and we can use standard search and indexing
techniques to find near neighbors in sparse p-dimensional space.
Different retrieval algorithms may vary in the details of the score
function or search methods, but most share the same underlying
vector representation of the data. Were we to define a different
representation for a document (say a generative model for the data
based on some form of grammar), we would probably have to
come up with fundamentally different score functions and search
methods.
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Objective

After going through this lesson, you should be able to:
» Discuss about a model structures for prediction;
» Discuss models for probability distributions and density
functions;
» Discuss about a curse of dimensionality;
» Discuss about a models for structured data and

pattern structures;

6.1 Introduction

We have introduced the distinction between models and patterns
in earlier chapters. Here we explore these ideas in more depth,
and examine some of the major classes of models and patterns
used in data mining, in preparation for a detailed examination in
subsequent chapters.

A model is a high -level, global description of a data set. It takes a
large sample perspective. It may be descriptive summarizing the
data in a convenient and concise way or it may be inferential,
allowing one to make some statement about the population from
which the data were drawn or about likely future data values. In
this chapter we will discuss a variety of basic model forms such as
linear regression models, mixture models, and Markov models.

In contrast, a pattern is a local feature of the data, perhaps holding
for only a few records or a few variables (or both). An example of a
pattern would be a local "structural® feature in our p-dimensional
variable space such as a mode (or a gap) in a density function or
an inflexion point in a regression curve. Often patterns are of
interest because they represent departures from the general run of
the data: a pair of variables that have a particularly high
correlation, a set of items that have exceptionally high values on
some variables, a group of records that always score the same on
some variables, and so on. As with models, we may want to find
patterns for descriptive reasons or for inferential reasons. We may
want to identify members of the existing database that have
unusual properties, or we may want to predict which future records
are likely to have unusual properties. Examples of patterns are
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transient waveforms in an EEG trace, unusual combinations of
products that are frequently purchased together by retalil
customers, and outliers in a database of semiconductor
manufacturing data.

Data compression can provide a useful way to illustrate the
concept of patterns versus a model. Consider transmitter T that
has an image | that is to be sent to a receiver R (though the
principle holds for data sets that are not images). There are two
main strategies: (a) send all of the data (the pixels in the image 1)
exactly, or (b) transmit some compressed version of the image that
is, some summary of the image |. Data mining to a large extent
corresponds to the second approach, the compression being
achieved either by representing the original data as a model, or by
identifying unusual features of the data through patterns.

In modeling, some loss in fidelity is likely to be incurred when we
summarize the data this means that the receiver R will not be able
to reconstruct the data precisely. An example of a model for the
image data might be replacing each square of 16 x 16 pixels in the
original image by the average values of these pixels. The "model"
in this case would just be a set of smaller and lower resolution
(1/16th) images. A more sophisticated model might adaptively
partition each image into local regions of different sizes and
shapes, where the pixel values can be fairly accurately described
by constant pixel intensity within each such region. The "model" (or
message) in this case would be both the values of the constants
within each region and the description of the boundaries of the
regions for each. For both types of models (the average-pixel
model and the locally constant model) it is clear that the complexity
of the image model (the number of pixels being averaged, the
average size of the locally constant regions) can be traded for the
amount of information being transmitted (or equivalently, the
amount of information being lost in the transmission that is, the
compression rate).

From a pattern detection viewpoint, a pattern in an image is some
structure in the image that is purely local: for example, a partially
obscured circular object in the upper -left corner of the image. This
is clearly a different form of compression from the global
compression models above. The receiver R can no longer
reconstruct a summary of the whole image, but it does have a
description of some local part of the image. Depending on the
problem and objectives, local structure may be much more
relevant than a global model. Rather than sending a summary
model description of a vast noisy "sea" of pixel values, the
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transmitter T instead "focuses" the receiver R's attention on the
important aspects.

The analogy between image coding and data analysis is not
perfect (for example, compression, as we have described it, does
not take into account the idea of generalization to unseen data),
but nonetheless, it allows us to grasp the essential trade-offs
between representing local structure at a fairly high resolution and
lower resolution global structure.

6.2 Fundamentals of Modeling

A model is an abstract representation of a real-world process. For
example, Y = 3X + 2 is a very simple model of how the variable Y
might relate to the variable X. This particular model can be thought
of as an instance of the more general model structure Y = aX + c,
where for this particular model we have set a = 3 and ¢ = 2. More
generally still, we could put Y = aX + ¢ + e, where e is a random
variable accounting for a random component of the mapping from
Xto Y (we will return to this later). We often refer to a and c as the
parameters of the model, and will often use the notation 0 to refer
to a generic parameter or a set (or vector) of parameters. In this
example, 8 = {a, c}. Given the form or structure of a model, we
choose appropriate values for its parameters by estimation that is,
by minimizing or maximizing an appropriate score function
measuring the fit of the model to the data.

However, before we can estimate the parameters of a model, we
must first choose an appropriate functional form of the mod el itself.
The aim of this section is to present a high-level overview of the
main classes of models used in data mining.

Model building in data mining is data-driven. It is usually not driven
by the notion of any underlying mechanism or "reality," but simply
seeks to capture the relationships in the data. Even in those cases
in which there is a postulated true generative mechanism for the
data, we should bear in mind that, as George Box put it, "All
models are wrong but some are useful." For example, while we
might postulate the existence of a linear model to explain the data,
it is likely to be a fiction, since even in the best of circumstances
there will be small nonlinear effects that we will be unable to
capture in the model. We are looking for a model that encapsulates
the main aspects of the data generating process.
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Since data mining is data-driven, the discovery of a highly
predictive model (for example) should not be taken to mean that
there is a causal relationship. For example, an analysis of
customer records may show that customers who buy high quality
wines are also more likely to buy designer clothes. Clearly one
propensity is not causally related to the other propensity (in either
direction). Rather, they are both more likely to be the consequence
of a relatively high income. However, the fact that neither the wine
nor the clothes variable causes the other does not mean that they
are not useful for predictive purposes. Predicting the likely clothes -
buying behavior from observed wine-buying behavior would be
entirely legitimate (if the relationship were found in the data), from
a marketing perspective. Since no causal relationship has been
established, however, it would be false to conclude that
manipulating one of the variables would lead to a change in the
other. That is, inducing people to buy high-quality wines would be
unlikely to lead them also to buy designer clothes, even if the
relationship existed in the data.

6.3 Model Structures for Prediction

In a predictive model, one of the variables is expressed as a
function of the others. This permits the value of the response
variable to be predicted from given values of the others (the
explanatory or predictor variables). The response variable in
general predictive models is often denoted by Y, and the p
predictor variables by X;. .. X,. Thus, for example, we might want
to construct a model for predicting the probability that an applicant
for a loan will default, based on application forms and the behavior
of past customers contained in a database. The record for the ith
past customer can be conveniently represented as {(x(i ), y(i))}.
Here y(i) is the outcome class (good or bad) of the ith customer,

and x(i) is the vector x = (x1(i), . . . , Xp(i)) of application form
values for the ith customer. The model will yield predictions, y =
fXy, - .., X 0) where y is the prediction of the model and 6

represents the parameters of the model structure. When Y is
quantitative, this task of estimating a mapping from the p-
dimensional X to Y is known as regression. When Y is categorical,
the task of learning a mapping from X to Y is called classification
learning or supervised classification. Both of these tasks can be
considered function approximation problems in that we are learning
a mapping from a p-dimensional variable X to Y. For simplicity of
exposition in this chapter we will focus primarily on the regression
task, since many of the same general principles carry over directly
to the classification task.
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6.3.1 Regression Models with Linear Structure

We begin our discussion of predictive models with models in which
the response variable is a linear function of the predictor variables:

P
Y =ag +E{Ij.\.j
F=1

where 6 ={aQ, ..., ap}. Again we note that the model is purely
empirical, so that the existence of a well-fitting and highly
predictive model does not imply any causal relationship. We have
used Y rather than simply Y on the left of this expression because
it is a model, which has been constructed from the data. That is,
the values of Y are values predicted from the X, and not values
actually observed.

Geometrically, this model describes a p-dimensional hyperplane
embedded in a (p + 1)- dimensional space with slope determined
by the aj's and intercept by ag. The aim of parameter estimation is
to choose the a values to locate and angle this hyperplane so as
to provide the best fit to the data {(x(i), y())}, i=1, ..., n, where
the quality of fit is measured in terms of the differences between
observed y values and the values y predicted from the model.

Models with this type of linear structure hold a special place in the
history of data analysis, partly because estimation of parameters is
straightforward with appropriate score functions, and partly
because the structure of the model is simple and easy to interpret.
For example, the additive nature of the model means that the
parameters tell us the effect of changing any one of the predictor
variables "keeping the others constant.” Of course, there are
circumstances in which the notion of individual contribution makes
little sense. In particular, if two variables are highly correlated, then
it is not meaningful to talk of the contribution from changing one
while "holding the other constant.”

We can retain the additive nature of the model, while generalizing
beyond linear functions of the predictor variables. Thus

F
Y =ao+ Y aifi(X;)

i=l1

where the f; functions are smooth (but possibly nonlinear)
functions of the X;s. For example, the fss could be log, square-root,
or related transformations of the original X variables. This model
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still assumes that the dependent variable Y depends on the
independent variables in the model (the Xs) in an additive fashion.
Again, this may be a strong assumption in practice, but it will lead
to a model in which it may be easy to interpret the contribution of
each individual X variable. The simplicity of the model also means
that there are relatively few parameters (p + 1) to estimate from
the data, making the estimation problem relatively straightforward.

We can also generalize this linear model structure to allow general
polynomials in the Xs with cross-product terms to allow interaction
among the Xjs in the model. The one -dimensional case is again
familiar we can imagine a 2nd or 3rd or k th order polynomial
interpolating the observed y values. The multidimensional case
generalizes this so that we have a smooth surface defined on p
variables in the (p + 1) dimensional space.

Note in passing that even though these predictive models are
nonlinear in the variables X, they are still linear in the parameters.
This makes estimation of these parameters much easier than in
the case where the parameters enter in a nonlinear fashion.

Note that by allowing models with higher order terms and
interactions between the components of X we can in principle
estimate a more complex surface than with a simple linear model
(a hyperplane). However, note that as p (the dimensionality of the
input space) increases, the number of possible interaction terms in
our model (such as XX,) increases as a combinatorial function of
p. Since each term has a weight coefficient (a parameter) in the
additive model, the number of parameters to be estimated for the
full model (with all possible interaction terms of order k among p
variables) increases dramatically as p increases. The interpretation
and understanding of such a model makes the estimation problem
more difficult, and it also becomes increasingly difficult as p
increases. A practical alternative is to select some small subset of
the overall set of possible interactions to participate in the model.
However, if the selection is carried out in a data-driven fashion (as
is typically the fashion in a data mining application), the number of
all possible interaction terms (the size of the search space) scales

P . . -
as 2, making the search problem exponentially more difficult as
dimensionality p increases. We will return to this issue of how to
handle dimensionality later in this chapter.

The generalization to polynomials brings up an important point,
namely the complexity of the model. The more complex models
contain the simpler models as special cases (so- called nesting).
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For example, the first-order #1X; + @; model can be viewed as a

special case of the 2nd order polynomial model waXi + oy Xy +aq
by setting a2 to zero. Thus, it is clear that a complex model (a
high-order polynomial in the X variables) can always fit the
observed data at least as well any simpler model can (since it
includes any simpler model as a special case). In turn, this raises
the complicated issue of how we should choose one model over
another when the complexity (or expressive power) of each is
different. This is a subtle question: we may want the model that is
closest to some hypothesized unknown "truth"; we may want to
find a model that captures the main features of the data without
being too complicated; we may want to find the model that has the
best predictive performance on data that it has not seen; and so
on. We will return to this in later chapters. For now, however, we
return to focus on the expressive capabilities of the models
themselves without thinking yet of how we will choose among such
models given observed data.

Transforming the predictor variables is one way to generalize a
linear structure. Another way is to transform the response variable.
sqrt(Y ) may be perfectly related to a linear combination of the X
variables, so that rather than fitting Y directly we may want to
transform it by taking the square root first, and then use a linear
combination of the X variables to predict sqgrt(Y). Of course, we will
not know beforehand that the square root is an appropriate
transformation. We have to experiment, trying different
transformations. This is why data mining is an exciting voyage of
discovery, and not a mere exercise in applying standard tools in
standard ways.

The simple linear regression model can be thought of as seeking
to predict the expected value of the Y distribution at each value of
the X predictors, namely E[Y|X]. That is, the regression model
provides a prediction of a parameter of the conditional distribution
of Y, where the parameter is the mean. More generally, of course,
we can seek to predict other parameters of the conditional Y
distribution from a linear combination of the X variables. This leads
to the ideas of generalized linear models and neural networks.

We see that, although linear models are simple and easy to
interpret (and, we will also see, their parameters can be easily
estimated), they permit ready generalization to very powerful and
flexible families of models. Any idea that the word linear implies a
narrow class of models is illusory.
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6.3.2 Local Piecewise Model Structures for Regression

Yet further generalizations of the basic linear model can be
achieved if we assume that Y is locally linear in the X's, with a
different local dependence in various regions of the X space that
is, a piecewise linear model. Geometrically, our model structure
consists of a set of different p-dimensional hyperplanes, each
covering a region of the input (X) space disjoint from the others.
The parameters of this model structure include both the local
parameters for each hyperplane as well as the locations
(boundaries) of the hyperplanes. For a one -dimensional X the
picture is quite easy to visualize: a curve is approximated by k
different line segments (see figure 6.1 for an example). Note that,
in this figure, the line is continuous, with the line segments joining
up. We could define a model structure that relaxes this, not
requiring continuity at the ends of the line segments. This can be a
useful model form, but sometimes the discontinuities can be
problematic and undesirable because they imply a sudden jump in
the predicted value of the response variable for an infinitesimal
change in a predictor variable. To take an example, if a split
between two line segments occurs at the value $50,000 for the
variable income, we might get widely varying y predictions of the
response variable, probability of loan default, for two applicants
who are identical except that one earns $50,001 and the other
earns $49,999. If the discontinuities are regarded as undesirable,
one can go further and enforce continuity of derivatives of various
orders at the end of the segments (which would clearly no longer
be straight lines). Such curve segments are termed splines, with
the whole model being a spline function. Typically, each line
segment is taken to be a low-degree (quadratic or cubic)
polynomial. The result is a smooth curve, but one that may change
direction many times the model would be highly flexible.

These ideas can be generalized to more than one predictor
variable. Again the local segments (which will now be (hyper)
surfaces, not merely lines) may, but need not, join at their edges.
Tree structures provide an example of models of this form.
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Figure 6.1: An example of a piecewise linear fit to the data of
figure 6.1 with k =5 linear segments.

6.3.3 Nonparametric "Memory-Based" Local Models

In the preceding subsection we gave some examples of how
models that are based on local characteristics of the data are
related to, indeed are on a continuum including, broad global
models. In this subsection we develop the ideas of local modeling
further. (We recall that patterns, while also local, are isolated
structures, and are not components of a global summary of the
data. Thus we can talk of local modeling techniques as distinct
from patterns.)

Roughly speaking, the spline and tree models briefly described
above replace the data points by a function estimated from a
neighborhood of data points. An alternative strategy is to retain the
data points, and to leave the estimation of the predicted value of Y
until the time at which a prediction is actually required. No longer
are the data replaced by a function and its estimated parameters.
For example, to estimate the value of a response variable Y for a
new case, we could take the average of the Y values of the most
similar k objects in the data set, where most similar is defined in
terms of the predictor variables.
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This idea has been extended to include all of the data set objects,
but to weight them according to how similar they are to the new
object dissimilar ones will have small weight, similar ones large
weight. The weight determines just how much their Y value
contributes to the final estimate. An example of such an estimator
is the locally weighted regression or loess regression model.

The obvious question with such estimators is how to determine the
form of the weight function. A weight function that decays only
slowly with decreasing similarity will lead to a smooth estimate,
while one that decays rapidly will lead to a jagged estimate. A
compromise must be found that is best suited to the aims of the
analysis.

The weight function can be decomposed into two parts. One is its
precise functional form, and the other is its "bandwidth." Thus,
X— Z

suppose that k[T) is a smoothing function, which determines
the contribution to the estimate at a new point z from a data set
point at X. The size of this contribution will depend on the form of K
and also on the size of the bandwidth h. A larger bandwidth h
leads to a smoother function estimate, and a smaller bandwidth
leads to a rougher, more jagged estimate. In practice, the precise
form of the weight function turns out to be less important than the
"band-width."

Kernel methods are closely related to nearest neighbor methods.
Indeed, both classes of methods have now been extended and
developed so that in some cases they are identical. Whereas
kernel methods define the degree of smoothing in terms of a
kernel function and bandwidth, nearest neighbor methods let the
data determine the bandwidth by defining it in terms of the number
of nearest neighbors. For example, the basic single nearest
neighbor classifier (where Y is a class identifier) assigns a new
object to the same class as its most similar object in the data set,
and the k-nearest neighbor classifier assigns a new object to the
most common class amongst the most similar k objects in the data
set. More sophisticated nearest neighbor methods weight the
contribution of according to distance from the point to be classified,
and more sophisticated kernel methods let the bandwidth h depend
on the data so that they can be seen to be almost identical in
terms of model structure.

Local model structures such as kernel models are often described
as non-parametric because the model is largely data-driven with
no parameters in the conventional sense (except for the bandwidth
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h). Such data-driven smoothing techniques (such as the kernel
models) are useful for data interpretation, at least in one or two
dimensions.

It will be clear that local models have their attractions. However, no
model provides an answer to all problems, and local models have
weaknesses. In particular, as the number of variables in the
predictor space increases, so the number of data points required
to obtain accurate estimates increases exponentially. This means
that these "local neighborhood" models tend to scale poorly to high
dimensions.

Another drawback, particularly from a data mining viewpoint, is the
lack of interpretability of the model. In low dimensions (p < 3 or so),
we can plot the estimates. In high dimensions this is not possible,
and there is no direct manner by which to summarize the model.
Indeed, it is stretching the definition of a model to even call these
representations models at all, since they are never explicitly
defined as functions but instead are implicitly defined by the data.

6.3.4 Stochastic Components of Model Structures

Until this point, apart from a few brief references, we have ignored
the fact that, with real data, we generally cannot find a perfect
functional relationship between the predictor variables X and the
response variable Y . That is, for any given vector of predictor
variables x, more than one value of Y can be observed. The
distribution of the values y at each value of X represents an aspect
of variation that cannot be reduced by more sophisticated model
building using just the variables in X. For this reason it is
sometimes termed the unexplainable or nonsystematic or random
component of the variation, with the variation in Y that can be
explained in terms of the X variables being termed the explainable
or systematic variation. (Of course merely because the systematic
variation can be explained in principle by the variables in X, does
not mean that we can necessarily build a model that will be able to
do it).

In most of our discussion we have focused on the systematic
component of the models, but we also need to consider the
random component. The random component of models can arise
from many sources. It can arise from simple measurement error
repeated measurements of Y will give different results. The
random component can also arise because our set of X variables
does not include all of the variables that are required to make a
perfect prediction of Y (for example, predicting whether a customer
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will purchase a particular product or not based only on past
purchasing behavior will ignore potentially relevant demographic
information about them such as age, income, and so on). Indeed,
we should expect this usually to be the case it would be a rare
situation in which all of the variability in a variable was perfectly
explained by just a handful of other variables, down to the finest
detail.

The random component is important when it comes to choosing
suitable score functions for estimating parameters and choosing
between models. The likelihood score function. Extensions of the
likelihood function that include a smoothness penalty so that too
complex a model is not fitted also require assumptions about the
distribution of the random component. More advanced methods
based on likelihood concepts (for example, so-called quasi-
likelihood methods) relax detailed distributional assumptions, but
still base their choice of parameter estimates on aspects of the
distribution of the random component.

6.3.5 Predictive Models for Classification

So far we have concentrated on predictive models in which the
variable to be predicted, Y, was quantitative. We now briefly
consider the case of a categorical variable Y, taking only a few
possible categorical values. This is a (supervised) classification
problem, with the aim being to assign a new object to its correct
class (that is, the correct Y category) on the basis of its observed X
values.

In classification we are essentially interested in modeling the
boundaries between classes. As with regression, we can could
make simple parametric assumptions about the functional form of
the boundaries. For example, a classic approach is to use a linear
hyper plane in the p-dimensional X space to define a decision
boundary between two classes. That is, the model partitions the X-
space into disjoint decision regions (one for each class), where the
decision regions are separated by linear boundaries. A more
complex model might allow higher-order polynomial terms, yielding
smooth polynomial decision boundaries.

There are a large number of different classification techniques,
providing different ways to model decision boundaries. Something
like nearest-neighbor is very flexible (allowing multiple local disjoint
decision regions for each class, with flexible boundaries) whereas
a single global hyperplane is a much simpler model.
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From a practical modeling standpoint, prior knowledge about the
shape of classification boundaries may not be as readily available
as knowledge we may have about how Y is related to X in a
regression problem. Nonetheless, the functional forms used
successfully for discrimination models are quite similar to those we
discussed earlier for regression modeling, and the same general
themes emerge.

6.3.6 An Aside: Selecting a Model of Appropriate Complexity

In our discussion so far we have seen that model structures range
from the relatively simple to the complex. For example, in
regression we saw that the complexity of a "piecewise-local" model
structure is controlled by the number k of local regions (assuming
that the complexity of the local function in each region is fixed). As
we make Kk larger, we can obtain a curve that "follows" the
observed data more closely. Put another way, the expressive
power of the model structure increases in that it can represent
more complex functions.

As we increase the expressive power of a model it is clear that we
can in general continue to get a better fit to the available data.
However, we need to be careful. While our score function on the
training data may be improving, our model may actually be getting
worse in terms of generalizing to new data. (Recall our discussion
of this "overfitting" phenomenon in the context of classification
trees. On the other hand, if we go the other direction and over-
simplify our model structure, it may end being too simple. This
issue of selecting a model of the appropriate complexity is always
a key concern in any data analysis venture where we consider
models of different complexities.

In practice how can we choose a suitable compromise between
simplicity and complexity? From a data-driven viewpoint (i.e., data
mining) we can define a score function that tries to estimate how
well a model will perform on new data and not just on the training
data. A commonly used approach is to combine both the usual
goodness-of- fit term (on the training data) with an explicit second
term to penalize model complexity. Another widely used approach
is to partition the training data into two or more subsets and to train
models on one subset and select models using a different
validation data set.

Since the focus of this chapter is on the representational
capabilities of different model and pattern structures (rather than
on how they are scored relative to the data). However, for the
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reader who up to this point was wondering how we would be able
to select among the many different models being discussed here,
the answer is that there do indeed exist well-defined data-driven
score functions that allow us to search over different model
structures in a principled manner to find what appears to be the
best model for a given task.

6.4 Models for Probability Distributions and
Density Functions

6.4.1 General Concepts

In this section we focus on some of the general classes of models
used for density estimation. While the functional form of the
underlying models tend to be somewhat different from those we
have seen earlier (for example, unimodal "bump" functions versus
the linear and polynomial functions we saw for regression), several
of the main concepts such as linear combinations of simpler
models are once again widely applicable.

There are two general classes of distribution and density models:
1. Parametric Models:

W here a particular functional form is assumed. For real-valued
variables the function is often characterized by a location
parameter (the mean) and a scale parameter (characterizing the
variability) for example, the Normal density function and Binomial
distribution. Parametric models have the advantage of simplicity
(easy to estimate and interpret) but may have relatively high bias
because real data may not obey the assumed functional form. The
appendix contains a brief review of some of the more well-known
parametric density and distribution models.

2. Nonparametric Models:

W here the distribution or density estimate is data-driven and
relatively few assumptions are made a priori about the functional
form. For example, we can use the kernel estimates local density
at x is defined as a weighted average of points near to x.

Taking the above as the extremes, we can also define intermediate
models that lie between these parametric and nonparametric
extremes: mixture models. These are discussed below.
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6.4.2 Mixtures of Parametric Models

A mixture density for x is defined as
&
plx) = Zl"k{xw#]:ﬁ#.
k=1

This model decomposes the overall density (or distribution) for x
into a weighted linear combination of K component or class
densities (or distributions). Each of the component densities pk( X|
0 k) typically consists of a relatively simple parametric model (such
as a Normal distribution) with parameters 6 k. Tk represents the
probability that a randomly chosen data point was generated by
component k,

Yim=1

To illustrate, consider a single Normal distribution used as a model
for a two-dimensional data set. This distribution can be thought of
as a "symmetric bump function,” whose location and shape we can
to try to locate in the 2-space to model the density of the data as
well as possible (see figure 6.2 for a simple example). An intuitive
interpretation of the mixture model is that it allows us to place k of
these bumps (or components) in the two - dimensional space to
approximate the true density. The locations and shapes of the k
bump functions can be fixed independently of each other. In
addition, we are allowed to attach weights to the components. If
the weights are positive and sum to 1 the overall function is still a
probability density.

As k increases, the mixture model allows for quite flexible
functional forms, as local bumps can be placed to capture local
characteristics of the density (this is reminiscent of the local
modeling ideas in regression). Clearly k plays the role of
controlling complexity: for larger k we get a more flexible model but
also one that it is more complicated to interpret and more difficult
to fit.

The usual bias -variance trade -offs again apply. Of course, we are
not constrained to use only Normal components (although these
tend to be quite popular in practice). Mixtures of exponentials and
other densities could equally well be used. The important point
here is that mixtures provide a natural generalization of the simple
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parametric density model (which is global) to a weighted sum of
these models, allowing local adaptation to the density of the data
in p-space.
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Figure 6.2: From the top: (a) data points generated from a mixture
of three bivariate normal distributions (appendix 1) with equal
weights, (b) the underlying component densities plotted as
contours that are located 3s from the means, and (c) the resulting
contours of the overall mixture density function.
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The general principles underlying a mixture model are broadly
applicable, and the general idea occurs in many guises in
probabilistic model building. For example, the idea of hierarchical
structure can be nicely captured using mixture models.

In terms of interpretability, either mixture models can be used
simply as "black boxes" that provide a flexible model form, or the
individual mixture components can be given an explicit
interpretation. For example, components of a mixture model fitted
to customer data could be interpreted as characterizing different
types of customers. One interpretation of a mixture model
(particularly in a clustering context) is that the components are
generated by a hidden variable taking K values, and the location
and shapes in p-space of the components are unknown to us a
priori, but may be revealed by the data. Thus, mixture models
share with projection pursuit and related methods the general idea
of hypothesizing a relatively simple latent or hidden structure that
may be generating the observed data.

6.4.3 Joint Distributions for Unordered Categorical Data

For categorical data we have a joint distribution function defined in
the cross-product of all possible values of the p individual ariables.
For example, if A is a variable taking values {a1, a2, a3} and B is a
variable taking values {b1, b2}, then there are six possible values
for the joint distribution of A and B. We will assume here (for
simplicity) that the values are truly categorical and that there is (for
example) no notion of scale or order. For small values of p, and for
small numbers of variable values, it is convenient to display the
values of the distribution in the form of a contingency table of cells,
one cell per joint value, as shown in the example of table 6.1. This
becomes impractical as the number of variables and values get
beyond four or five. In addition, the contingency table does not
really allow us to see any potential structure that might be in the
data. For example, the data in table 6.1 have been constructed so
that the variables are independent. however, this fact is not
immediately apparent from looking at the table.

Table 6.1: A simple contingency table for two-dimensional
categorical data for a hypothetical data set of medical patients
who have been diagnosed for dementia.
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Dementia
Smoker -
none mild serve
No 426 66 132
Yes 284 44 88

In contrast to the case of quantitative variables, with categorical
variables in which the categories are unordered there is no notion
of a smooth probability function. Thus, if for example all variables
each have m possible values, one would have to specify mP — 1
independent probability values to specify the model fully (the -1
comes from the constraint that they sum to 1). Clearly this quickly
becomes impractical as p and m increase.

6.4.4 Factorization and Independence in High Dimensions

Dimensionality is a fundamental challenge in density and
distribution estimation. As the dimensions of the x, space grow it
rapidly becomes more difficult to construct fully specified model
structures since model complexity tends to grow exponentially with
dimension.

Factorization of a density function into simpler component parts
provides a general technique for constructing simple models for
multivariate data. This is a simple yet powerful idea that recurs
throughout multivariate modeling. For example, if we assume that
the individual variables are independent , we can write the joint
density function as

where x = (x;, . . ., x;) and pk is the one-dimensional density

function for X,. Typically it is much simpler to model the one-
dimensional densities separately, than to model their joint density.
Note that the independence model for log p(x) has an additive
form, reminiscent of the linear and additive model structures we
discussed for regression.

This factorization certainly simplifies things, but it has come at a
modeling cost. The assumption that the variables are independent
will not be even approximately true for many real problems. Thus,
a full independence assumption is in essence one extreme end of
a spectrum (the low -complexity end), a spectrum that extends to
the fully specified joint density model at the other end (the high-
complexity end). Of course, we do not have to choose models
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solely from the extremes of this complexity continuum, and can,
instead, try to find something in between. The joint probability
function p(x) can be written in general as

r
rix) = pi{x1) HPF-‘li’h iy Bl

k=2

The righthand side factorizes the joint function into a sequence of
conditional distributions. Now we can try to model each of those
conditional distributions separately. Often considerable
simplification results because each variable Xk is dependent on
only a few of its predecessors. That is, in the conditional
distribution for the k th variable, we can often ignore some of
variables X,, . . ., X,;. Such factorizations permits a natural
representation of the model as a directed graph, with the nodes
corresponding to variables, and the edges showing dependencies
between the variables. Thus the edges directed into the node for
the kth variable will be coming from (a subset of) the variables x, .

. » X1 These variables are, naturally enough, called the parents

of variable x;.

Sometimes we have to experiment by fitting different models to
the data to seek such simplifying factorizations. In other cases
such simplifications will be evident from the structure of the data
for example, if the variables represent the same property
measured sequentially (for instance, at different times). In this
case, a Markov chain model is often appropriate in which all of the
previous information relevant to the kth variable is contained in the
immediately preceding variable (so that the terms in this
factorization simplify to p(X Xy, - - -, X)) = PXlX.1) )- The model
structure for a first- order Markov model is shown in figure 6.3.

o000+ - - 00

M X7 A3 LY Xp-1 %

Figure 6.3: A graphical model structure corresponding to a first-
order markov assumption.

Graphs that are used represent probability models, such as that in
figure 6.3 are often referred to as graphical models. In the
discussion below we focus specifically on the widely -used subclass
of acyclic directed graphs (also sometimes known in computer
science as belief networks when used as probability models). Note
that this graph representation emphasizes the independence
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structure of the model (e.g., see figure 6.3 again) and leaves the
actual functional and numeric parametrization of parent -child
relationships unspecified.

For another example of a graphical model, consider the variables
age, education (level of education a person has) and baldness
(whether a person is bald or not). Clearly age cannot depend on
either of the other two variables. Conversely, both education and
baldness are directly dependent on age. Furthermore, it is quite
implausible that education and baldness are directly dependent on
each other given age that is, once we know the person's age,
knowing whether or not they are bald tells us nothing about their
education level (and vice versa). On the other hand, if we do not
know a person's age, then baldness may provide information about
education (for example, a bald person is more likely to be older,
and hence, in turn, more likely to have a university degree). Thus,
a plausible graphical model is the one in figure 6.4.

Age

Education Baldness

Figure 6.4: A plausible graphical model structure for two variables
education and baldness that are conditionally independent given
age.

These ideas can be taken further, by the postulation of the
existence of unobserved hidden or latent variables, which explain
many of the observe d relationships in the data. Figure 6.5 provides
such an example. In this model structure a single latent variable
has been introduced as an intermediate variable that simplifies the
relationship between the observed data (in this case, medical
symptom) and the underlying causal factors (here, two
independent diseases). The introduction of hidden variables in a

Mining Techniques

NOTES



128 Data

manner such as this can serve to simplify the relationships in a
model structure; for example, given the values here of the
intermediate variable, the symptoms become independent.
However, we must exercise discretion in practice in terms of how
many hidden variables we introduce into the model structure to
avoid introducing spurious structure into the fitted model. In
addition, parameter estimation and model selection with hidden
variables is quite nontrivial.

Disease Y LHagine ¥p CRhagild

Iniermedinie Yarinhle & Huddien

i ﬂl-:_'r'. |,'|_1

Svmploms

Figure 6.5: The graphical model structure for a problem with two
diseases that are marginally (unconditionally) independent, a
single intermediate variable z that directly depends on both
diseases, and six symptom variables that are conditionally
independent given z.

In the context of classification and clustering, it is often convenient
to assume that the variables are conditionally independent of each
other given the value of the class variable. That is,

p(xly) = [ ] pitailv),

i=l

where y is a particular (categorical) class value. This is simply the
conditional independence ("naive") Bayes model introduced in the
context of classification modeling. The graphical representation for
such a model is shown in figure 6.6.
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{lass Y

Figure 6.6: The first-order bayes graphical model structure, with a
single class y and 6conditionally independent feature variables x;,

The above equation can also be used in the case where Y is an
unobserved (hidden, latent) variable that is introduced to simplify
the modeling of p(x), i.e., we have a finite mixture of the form

K r

pix) =Y (Hrﬂj[rjly . k})my k),

=1 =1

where Y takes K values, and each component p(x|y = k) is
modeled using the conditional independence assumption of
equation p(x]y). As an example, we might model the joint
distribution of how customers purchase p products in this fashion,
where (for example) if a customer belongs to a specific component
k then the likelihood of purchasing certain subsets of products, i.e.,
pi(xly = k), is increased for certain subsets of products xj. Thus,
although the products (the X ) are modeled as being conditionally
independent given y = Kk, the mixture model induces an
unconditional (marginal) independence by virtue of the fact that
certain products co-occur with higher probability in certain
components k. In effect, the hidden Y variable acts to group the
variables X together into equivalence classes, where within each
equivalence class the variables are modeled as being conditionally
independent.

6.5 The Curse of Dimensionality

We have noted in various places that what works well in a one-
dimensional setting may not scale up very well to multiple
dimensions. In particular, the amount of data we need often
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increases exponentially with dimensionality if we are to maintain a
specific level of accuracy in our parameter or function estimates.
This is sometimes referred to as the "curse of dimensionality.” This
can be important, since data miners are often interested in finding
models and patterns in high-dimensional problems. Note that "high
- dimensional” can be as few as p = 10 variables or as many as p
= 1000 variables or beyond it depends on the complexity of the
models concerned and on the size of the available data.

There are two basic (and fairly obvious) strategies for coping with
high-dimensional problems. The first is simply to use a subset of
relevant variables to construct the model. That is, to find a subset
of p' variables where p' << p. The second is to transform the
original p variables into a new set of p' variables, where again p'
<< p. Examples of this approach include of p principal component
analysis, projection pursuit, and neural networks.

6.5.1 Variable Selection for High-Dimensional Data

Variable selection is a fairly general (and sensible) strategy when
dealing with high - dimensional problems. Consider for example
the problem of predicting Y using X;, . . ., X,. It is often plausible
that not all of the p variables are necessary for accurate prediction.
Some X variables may be completely unrelated to the predictor
variable Y (for example, the month of a person's birth is unlikely to
be related to their creditworthiness). Others may be redundant in
the sense that two or more X variables contain essentially the
same predictive information. (For example, the variables income
before tax and income after tax are likely to be highly correlated.)

We can use the notion of independence to gauge relevance in a
quantitative manner. For example, if p(y | x, ) = p(y) for all values of
y and Xx;, then the target variable Y is independent of input variable
X1. 1f p(y [X5, %) = p(yl X,), then Y is independent of X, if the value
of X, is already known. In practice, of course, we are not
necessarily able to identify from a finite sample which variables are
independent and which are not; that is, we must estimate this
effect. Furthermore, we are interested not only in strict
independence or dependence, but also in the degree of
dependence. Thus, we could (for example) rank individual X
variables in terms of their estimated linear correlation coefficient
with Y: that would tell us about estimated individual linear
dependence. If Y is categorical (as in classification), we could
measure the average mutual information between Y and X':
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plwi, )

IY; X' = Zp{y"‘*'j:lmg plui)p(x})

1.

to provide an estimate of the dependence of X and Y, where X'
here is a categorical variable (for example, a quantized version of
a real-valued X). Other measures of the relationship between Y
and the Xs can also be used.

However, the interaction of individual X variables with Y does not
necessarily tell us anything about how sets of variables may
interact with Y . The classic example, for Boolean variables, is the
parity function, where Y is defined to be 1 if the sum of the (binary)
values of the X;, .. ., X, variables in the set is an even integer,
and Y is 0 otherwise. Y is independent of any individual X variable,
yet is a deterministic function of the full set. While this is something
of an extreme example, it nonetheless illustrates that such non-
linear non -additive interactions can be masked if we only look at
individual pair-wise interactions between Xs and Y. Thus, in the
general case, the set of k best individual X variables (as ranked by
correlation for example) is not the same as the best set of X
variables of size k. Since one can have 2°-1 different nonempty
subsets of p variables, exhaustive search is not feasible except for
very small p. Worse still, for many prediction problems, there is no
optimal search algorithm (in the sense of being guaranteed to find
the best set of variables) that has worst-case time complexity any

better than O(2P).

This means that, in practice, subset selection methods tend to rely
on heuristic search to find good model structures. Many algorithms
are based on the simple heuristic of greedy selection, such as
adding or deleting one variable at a time.

6.5.2 Transformations for High -Dimensional Data

The second general category of ideas is based on transforming
the predictor variables. The intuitive idea here is to search for a set
of p' variables (let us call them Z,, ..., Z,),

where typically p' is much smaller than p, where the Z variables
are defined as functions of the original X variables, and where the
Zs are chosen in some sense to be the "best" set of p' variables
for our task. This general theme, of replacing the observed
variables with a smaller set of variables that are somehow more
fundamental to the task at hand, shows up repeatedly in different
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branches of data analysis. The Zs are variously referred to as
basis functions, factors, latent variables, principal components,
and so forth, depending on the specific goals and methods used to
derive them. We will examine some of these models (and their
associated fitting algorithms) in detail in later chapters, but for now
we illustrate the general idea with just two specific examples:

» Projection Pursuit: Regression uses a model structure of
the form

PJ
y= Z u.'j;fij [ﬂjx}

i=1

where x is the projection of the vector x onto the jth weight
vector aj (both vectors being p-dimensional, resulting in a
scalar inner product), hjis a nonlinear function of this scalar
projection, and the wj are scalar weights for the resulting
nonlinear functions. The procedures for determining the wj, the
form of the hj, and the "projection directions" aj can be rather
complex and algorithm-dependent, but the underlying idea is
quite general.

For example, this is essentially the form of the model structure that
underlies neural networks, where for such networks the functional
forms of the hj are usually chosen to be something like hj(t) = 1/(1

+ e't). One limitation of this class of models is the fact that they are
quite difficult to interpret unless p' = 1. Another limitation is that the
algorithms for estimating the parameters of these models can be
computationally quite complex and may not be practical for very
large data sets.

» Principal Components Analysis: We introduced principal
components analysis (PCA). This is a classic technique in
which the original p predictor variables are replaced by
another set of p variables (Z1, . . ., Zp) that are formed from
linear combinations of the original variables. The data
vectors comprising the original data set map to new vectors
in the Z space and, as explained, the sets of weights
defining the Zs are chosen so as to maximize the variance
of the original data set when expressed in terms of these
new variables. Principal components analysis is thus a
special case of projection pursuit, where the projection index
in this case is the variance along the projected direction.
Principal components have two merits as a data reduction
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technique. Firstly, it sequentially extracts most of the
variance of the data in the X space, so we might hope that
only the first few components (far fewer than the full number
p of original X variables) contain most of the information in
the data. Secondly, by virtue of the way in which the
components are extracted they are orthogonal, so that
interpretation is eased. However, one should be aware that
the principal component vectors in the X space may not
necessarily be the ideal projection directions for optimizing
predictive performance on a different variable Y (for
example). For example, when we try to model differences
among groups (or classes) in the data (for classification and
clustering), the principal component projections need not
emphasize group differences and indeed can even hide
them. (Similar remarks can be made about more general
projection pursuit methods.) Nonetheless,

PCA is widely used in data analysis and can be a very useful
dimension - reduction tool. There are a wide number of other
techniques (each with different properties) available for dimension
reduction, including factor analysis, projection pursuit, independent
component analysis, and so forth.

6.6 Models for Structured Data

In many situations either the individuals, the variables, or both,
possess some well - defined relationships that are known a priori.
Examples include linear chains or sequences (where the
measurements are ordered for example, protein sequences), time
series (where the measurements are ordered in time, perhaps on a
uniform time scale), and spatial or image data (where the
measurements are defined on a spatial grid). Even more complex
structure is possible. For example, in medicine one can have
imaging data of the brain measured on a three-dimensional grid,
with repeated measurements over time.

Such structured data is inherently different from the types of
measurements we have discussed in most places in this chapter.
Up to this point we have implicitly assumed that the n individual
objects (the patients, the customers) in our data set are a random
sample from an underlying population. Specifically, we have
assumed that the measurement vectors x(i), 1 < i < n, are
conditionally independent of each other given a particular fitted
model (that is, that the likelihood of the data can be expressed as
the product of individual p(x(i)). For example, if we have a Normal
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density model for the variable weight, then we are assuming that
knowing the weight of one person tells us nothing about the weight
of any other person in the data set. (We are, of course, here
ignoring subtle dependencies that may exist such as having
members of the same family appear sequentially in our data set,
where such family members might be predisposed to having
similar overweight or underweight tendencies.) Thus, although it
may be an approximation, we have been working with this
assumption on the basis that it is a useful assumption for many
practical situations.

However, there are problems for which the dependence is explicit
and needs to be modeled. For example, if we take measurements
of a person’'s blood pressure every five minutes over a 24-hour
period, then clearly there is very likely to be some significant
dependence between the successive values. How should we
model such dependence?

One approach is to reduce the multiple observations on each
object to one or a few variables (that is, a fixed multivariate
description x), using ideas about the expected relationships
between them (we referred to this possibility above). This is
sometimes called the feature extraction approach. For example,
we might expect blood pressure to decrease over the 24 -hour
period as a medication begins to take effect, so we might replace
the 5 times 12 times 24 observations for each person by just two
numbers showing a starting value and the decreasing slope of a
linear trend. Or we might use the same principle and fit a curve in
which the rate of decrease reduces over time. The numbers
describing the curves for each subject (which are often called
derived variables) can then be analyzed in the standard way.

Note that this general approach (of converting sequential
measurements into a non - sequential vector representation) may
be sufficient for a given data mining task, but in general there is a
loss of information in this process, in that we lose the timing and
order information present in the original measurements. For
certain applications this sequential information may be critical. As
an example, we may have a population of Web users, among who
are a group who navigate from Web page A, to page B, to page C,
repeatedly in that order, in a cyclic fashion. If we were to reduce
this information to a histogram of which pages were visited
(yielding a histogram with three roughly equal bins), we would lose
the ability to discover the dynamic cyclic pattern underlying the
data.
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Let us consider an example of a sequential data model, namely a
first-order Markov model for T data points observed sequentially,
y1, . . ., ¥r. Note that for even moderately large values of T , a full
joint density for p(y1, y2, . .., yT) will be a very complex object (for
example, if Y takes m discrete values, it will require the

specification of O(m T) numbers). Thus, in modeling data with
structure, we can take direct advantage of the ideas presented in
the last section on factorization; that is, the structure of the data
will suggest a natural structuring for any models we will build.
Thus, we return to our first- order Markov model, again defined as:

T
plan,....ur) =min) ]___[I‘r(yr |te=1)

We can simplify this model considerably if we make the
assumption of stationary, namely that the probability functions in
the model do not depend on the specific time t, that is, pt(yt|yt-1) =
p(ytlyt-1)- Thus, the same conditional probability function is used in
different parts of the sequence. This drastically cuts down on the
number of parameters we need for the model. For example, if Y is

m-ary, the non-stationary model would require O(m2T) parameters
(a matrix of m x m conditional probabilities for each time point in

the sequence), while the stationary model only requires O (m2)
probabilities (one matrix of m x m conditional probabilities that is
used throughout the sequence). The notion of stationary can be
applied to much more general Markov models than the first-order
model above, and indeed extends naturally to spatial data models
as well (for which we would assume stationary in space, rather
than in time). If we assume stationary, then we cannot account for
changes in the statistical model as a function of time or space.
However, stationary is advantageous from a parameterization
standpoint, making it a very useful and practical assumption in
model building we will assume it throughout our discussion unless
specifically stated otherwise.

The Markov model in above equation has a simple generative
interpretation). The firs t value in the sequence y1 is chosen by

drawing a y1 value randomly according to some initial distribution
p(y1). The value at time t = 2 is randomly chosen according to the
conditional density function p(y2 |y1 ), where the value y1 is known
and fixed. Once y2 has been chosen in this manner, y3 is now
generated according to p(y3]y2) where the value y2 is now fixed,
and so on until time T.
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However, the Markov model assumption is rather strong. In words,
it says that the influence of the past is completely summarized by
the value of Y at time t-1. Specifically, Yt does not have any "long-
range" dependencies other than its immediate dependence on Y-
1. Clearly there are many situations in which this model may not be

accurate. For example, consider modeling the grammatical
structure of English text, where Y takes values such as verb,
adjective, noun, and so on. The first-order Markov assumption is
inadequate here since (for example) deciding whether a verb is
singular or plural will depend on the subject of the verb that in turn
may be much further back in the sentence than just one word
back.

For real-valued Y s, the Markov model is often specified as a
conditional Normal distribution:

2
(grelwe-1) = ;(-J:p_l vt — 9lye—1)
R ) vima 2 o

where g(yt-1) plays the role of the mean of the Normal (it is a
deterministic function linking the past yt-1 to the present yt) and s

iIs the noise in the model (assumed stationary here). A common
choice for the function g is to make it a linear function of yt-1, g(yt-

1) = a0 + a 1yt- 1, leading to the well-known first-order
autoregressive model,

=gt o +¢

where e is zero -mean Gaussian noise with standard deviation s
and the as are the parameters of the model. Note that the above
equation can be expressed in the form of equation p0:lv:_s+} under
these assumptions.

The model in equation y; has a simple interpretation from a
generative viewpoint; the value y, at time t in the sequence is gene
rated by taking the previous value vy, ,, multiplying it by a constant
a1, adding an offset ap, and adding some amount of random noise
e. For y to remain stable (bounded as t — ¢ ) it is necessary that
-1 < a1 < 1. Values of |a1]| closer to 1 imply stronger dependence
among successive y values; values of |a1]| closer to 0 imply weaker

dependence. Instead of regressing on independent X values, here
Y is regressed on "lagged" values of itself. Thus, from our
knowledge of regression model structures, we can immediately
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think of a multitude of generalizations of the simple first-order
model above. For example, yt can depend on earlier lags in the
sequence; that is, we can replace the mean at time t by g(yt-1)
with g(yt-1, yt-2, - . . , Ytk), known as a kth order Markov model.
Again, a common choice for g(yt-1, yt-2, - - ., Yt-k) iSs a simple
linear model of the form ap + S ajyi. In principle, however, rather
than just linear regression, such as additive models, polynomial
models, local linear models, data-driven local models, and so forth.

A further important generalization of the Markov model structures
we have discussed so far is to explicitty model the notion of a
hidden state variable. The general notion of hidden state for
sequential and spatial models is prevalent in engineering and the
sciences and recurs in a variety of functional model forms. Specific
examples of such structures include hidden Markov models
(HMMs) and Kalman filters. The HMM structure is easily explained
by looking at its corresponding graphical model structure, shown in
figure 6.7. From a generative viewpoint a first-order HMM operates
as follows (picture the observations being generated by moving
from left to right along the chain). The hidden state variable X is
categorical (corresponding to m discrete states) and is first-order
Markov. Thus, xt is generated by sampling a value from the
conditional distribution function p(xt|xt-1) in the usual Markov chain
fashion, where p(xt|xt-1) iIs an m x m matrix of conditional
probabilities. Once the state at time t is generated (with value xt),
an observation yt is now generated with probability p(yt|xt). Here yt
could be univariate or multivariate, or real -valued or categorical, or
a combination of both. Thus, in a HMM, the observations yt only
depend on the state at time t, and the state sequence is a first-
order Markov chain. The state sequence is unobserved or hidden,
and the ys are directly observed: thus, there is uncertainty (given a
model structure and a set of observed y's) about which particular
state sequence generated the data.
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Figure 6.7: A graphical model structure corresponding to a first-
order hidden markov assumption.

We can think of the HMM structure as a form of mixture model (m
different density functions for the Y variable), where we have now
added Markov dependence between “adjacent" mixture
components xt and xt+1. For the record, the joint probability of an
observed sequence and any particular hidden state sequence for
a first-order HMM can be written as:

T
Plony-- .. wr.xy, - o) = play)plmla) Hr-r[ur [z )p(ae|ee—1)-

=1

The factorization on the right -hand side is apparent from the
graphical model structure in figure 6.7. When regarded as a
function of the parameters of the distributions, this is the likelihood
of the variables (Y1, ..., YT, X1, ..., XT). The likelihood of the
observed ys is useful for fitting such model structures to data (that
is, learning the parameters of p(yt|xt) and p(xt|xt-1)). To calculate
p(y1, . . ., yT) (the likelihood of the observed data) one has to sum

the left -hand side terms over the m! possible state sequences,
that appears at first glance to involve a sum over an exponential
number of terms. Fortunately there is a convenient recursive way

to perform this calculation in time proportional to O(mZT).

Again, it is clear that we can generalize the first-order HMM
structure in different directions. A kth order Markov model
corresponds to having xt depend on the previous k states. The
dependence of the ys can also be generalized, allowing for
example yt to have a linear dependence on the k previous ys (as
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in an auto regressive model) as well as direct dependence on xt.
This yields a natural generalization of the usual autoregressive
model structure to a mixture of autoregressive models, which we
can think of generatively as switching (in Markov fashion) among
m different autoregressive models. Kalman filters are a closely
related cousin of the HMM, where now the hiddenstates are real-
valued (such as the unknown velocity or momentum of a vehicle,
for example), but the independence structure of the model is
essentially the same as we have described it for an HMM.

Computer scientists will recognize in our generative description of
a hidden Markov model that it is quite reminiscent of a finite state
machine (FSM). In fact, as we have described it here, a first-order
HMM is directly equivalent to a stochastic FSM with m states; that
is, the choice of the next state is governed by p(xt+1|xt). This
naturally suggests a generalization of model structures in terms of
different grammars. Finite-state machines are simple forms of
grammar known as regular grammars. The next level up (in the so
called Chomsky hierarchy of grammars) is the context-free
grammar, which can be thought of as augmenting the finite-state
machine with a stack , permitting the model structure to
"remember" long-range dependencies such as closing parentheses
at the ends of clauses, and so forth. As we ascend the grammar
hierarchy, our model structures become more expressive, but also
become much more difficult to fit to data. Thus, despite the fact
that regular grammars (or HMMs) are relatively simple in structure,
this form of model structure has dominated the application of
Markov models to sequential data (over other more complex
grammar structures), due to the difficulties of fitting such complex
structures to real data.

Finally, although we have only described simple data structures
where the Y s exist in an ordered sequence, it is clear that for
more general data dependencies (such as data on a two-
dimensional grid) we can think of equivalent generalizations of the
Markov model structures to model such dependence. For example,
Markov random fields are essentially the multidimensional analogs
of Markov chains (for example, in two dimensions we would have
a grid structure rather than a chain for our graphical model).

It turns out that such models are much more difficult to analyze
and work with than chain models. For example, problems such as
summing out the hidden variables in the likelihood do not typically
admit tractable solutions and must be approximated. Thus, spatial
data can be more difficult to work with than sequential data,
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although conceptually the ideas of stationary, Markovianity, linear
models, and so forth, can all still be applied. One common
approach with gridded data, which may or may not make sense
depending on the application, is to "shape" the two- dimensional

grid data (say n x n grid points) into a single vector of length n2,

perform PCA on these vectors, project each set of grid
measurements onto a small set of PCA vectors, and model the
data using standard multivariate models in this reduced
dimensional space. This approach ignores much of the inherent
spatial information in the original grid, but nonetheless can be quite
practical in many situations. Similarly, for multivariate time series
or sequences, where we have p different time series or sequences
measured over the same time frame (corresponding for example
to different biomedical monitors on the same patient), we can use
PCA to reduce the p original time series to a much smaller number
of "component" series for further analysis.

6.7 Pattern Structures

Throughout this book, we have characterized a model as
describing the whole (or a large part of the) data set, and a pattern
as characterizing some local aspect of the data. A pattern can be
considered to be a predicate that returns true for those objects or
parts of objects in the data for which the pattern occurs, and false
otherwise. To define a class of patterns we need to specify two
things: the syntax of the patterns (the language specifying how
they are defined) and their semantics (our interpretation of what
they tell us about data to which they are applied). In this section we
consider patterns for two different types of discrete-valued data:
data in standard matrix form and data described as strings.

6.7.1 Patterns in Data Matrices

A generic approach for building patterns is to start from primitive
patterns and combine them using logical connectives. (An
alternative is to build a special class of patterns for a particular
application.) Returning again to our data matrix notation, assume
we have p variables X1, ..., Xp. Let x = (x1, . . ., Xp) be a p-
dimensional vector of measurements of these variables. We
denote the ith individual in the data set as x(i), where 1< | <n. The
entire data set D = {x(1), . . ., x(n). In turn, xk(i) is the value of the
kth measurement on the ith individual.

In general, a pattern for the variables X1, . . . , Xp identifies a
subset of all possible observations over these \ariables. A general
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language for expressing patterns can be built by starting from
primitive patterns . These are simply conditions on the values of
the variables. For example, if ¢ is a possible value of Xk, then Xk =
c is a primitive pattern. If the values of Xk are ordered (for
example, numbers on the real line), we can also include
inequalities such as Xk < c as primitive conditions. If needed, the
primitive patterns could also include multivariate conditions such as
XkXj > 2 for numeric data or Xk = Xj for discrete data.

Given a set of primitive patterns, we can form more complex
patterns by using logical connectives such as AND (A ) and OR
(V). For example, we can form a pattern

(age =40) A (income =10)

that describes a certain subset of the input records in a payroll
database. Note, for example, that each branch of a classification
tree forms a conjunctive pattern of this form. Another example is
the pattern

(chips = 1) A (beer =1V soft drink = 1)
describing a subset of rows in a market basket database.

A pattern class is a set of legal patterns. A pattern class C is
defined by specifying the collection of primitive patterns and the
legal ways of combining primitive patterns. For example, if the
variables X1, ..., Xp all range over {0,1}, we can define a class of

patterns C consisting of all possible conjunctions of the form

(X, = DA (X, =1)A--A(Xj, =1).

Patterns in this class that occur frequently in a data set D are
called frequent sets (of variables), since each such pattern is
uniquely determined by a sub -set of the variables: this pattern
could be written just as ¥..¥.....Xu, Conjunctive patterns such as
frequent sets are relatively easy to discover from data.

Given a pattern class and a dataset D, one of the important
properties of a pattern is its frequency in the data set. The
frequency fr(p) of a pattern p can be defined as the relative
number of observations in the dataset about which p is true. In
some cases, only patterns that occur reasonably often are of
interest in data mining. However, having a frequency of a pattern
close to 0 can also be quite informative in its own right. (Indeed,
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sometimes it is the rare but unusual pattern that is of particular
interest.) Of course, the frequency of a pattern is not the only
important property of the pattern. Properties such as semantic
simplicity, understandability, and the novelty or surprise of the
pattern are obviously also of interest. As an example, for any
particular observation (x1, . . ., Xp) in the data set we can write a
conjunctive pattern (X1 = x1) A ... A (Xp = xp) that matches
exactly that observation. The disjunction of all of such conjunctive
patterns forms a pattern that has frequency 1 for the data set.
However, the pattern would be just a bloated way of writing out the
entire data set and would be quite uninteresting.

Given a class of patterns, a pattern discovery task is to find all
patterns from that class that satisfy certain conditions with respect
to the data sets. For example, we might be interested in finding all
the frequent set patterns whose frequency is at least 0.1 and
where the variable X7 occurs in the pattern. More generally, the
definition of the pattern discovery task might include also
conditions on the informativeness, novelty, and understandability
of the pattern. In defining the pattern class and the pattern
discovery task the challenge is to find the right balance between
expressivity of the patterns, their comprehensibility, and the
computational complexity of solving the discovery task.

Given a class of patterns C, we can easily define rules. A rule is

simply an expression p== ¢, where p and ¢ are patterns from a
pattern class C. The semantics of a logical rule are that if the
expression p is true for an object, then ¢ is also true. We can
relax this definition to allow for uncertainty in the mapping from p
to @ , where ¢ is true with some probability if p is true. The
accuracy of such a rule is defined as p(¢ | p), the conditional
probability that ¢ is true for an object, given that p is true. We can
easily estimate such probabilities from a data set using appropriate
frequency counts; that is

plelp) = ﬁ—}f&;ﬂ :

The support fr(p== @) of the rule p=> ¢ can be defined either as
fr(p) (the fraction of objects to which the rule applies) or fr(p A ¢ )
(the fraction of objects for which both the left and right-hand sides
of the rule are true).
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6.7.2 Patterns for Strings

In the last section we discussed examples of patterns for data in
the traditional matrix form. Other types of data require other types
of patterns. To illustrate, we consider patterns for strings. Formally,
a string over alphabet S is a sequence aj . . . an of elements (also
called letters) of S. The alphabet S can be the binary alphabet
{0,1}, the set of all ASCII codes, the DNA alphabet {A,C,G, T}, or
the set of all words consisting of ASCII characters. The set of all
strings built from letters from S is denoted by S*.

Note how string data differs from data in standard matrix form: for
a string, there is no fixed set of variables. If and when we want to
use the notions of probability to describe string data, we typically
consider each of the letters of the string to be a random variable.
The data can be one or several strings, and in most cases we are
interested in finding

out how many times a certain pattern occurs in the strings. (For
example, we might want

to compute the number of exact occurrences of a certain DNA
sequenc e in a large collection of sequences.) The simplest string
pattern is a substring: the pattern b1 . .. bk occurs in the string a1

. . an at position i, if aj+j-1 = bjforallj=1,..., k. For example,
for DNA sequences we might be interested in fin ding occurrences
of the substring pattern ATTATTAA, and for strings over the ASCII
alphabet we might be interested in whether or not the pattern data
mining occurs in a given string.

For strings we might, however, be interested in a larger class of
patterns. A regular expression E is an expression that defines a set
L(E) of strings. The expression E is one of

1.a string s; then L(s) = {s}

2. a concatenation E1E2; in this case the set L(E1E2) consists of
all strings that are a concatenation of a string in L(E1) and a string
in L(E2)

3.achoice E1 | E2; then L(E1 | E2) = L(E1)U L(E2)

4. an iteration E*; then L(E*) consists of all strings that can be
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written as a concatenation of 0 or more strings from L(E)

Thus, 10(00|11)*01 is a regular expression that describes all
strings that start with 10 and end with 01 and in between contain a
sequence of pairs 00 and 11.

Regular expressions are a form of patterns that are quite well
suited to describing interesting classes of strings. While there are
simple classes of strings that cannot be described by regular
expressions (such as the set of strings consisting of all balanced
sequences of parentheses), many quite complicated phenomena
of strings can still be captured by using them.

While regular expressions are fine for defining patterns over
strings, they are not sufficiently expressive for expressing
variations in the occurrence times of events. A simple class of
patterns that can take the occurrence times into account is the
episode. At a high level, an episode is a partially ordered collection
of events occurring together. The events may be of different types,
and may refer to different variables. For example, in biostatistical
data an event might be a headache followed by a sense of
disorientation occurring within a given time period. It is also useful
for them to be insensitive to intervening events as with, for
example, alarms in a telecommunications network, logs of user
interface actions, and so on. Episodes can also be incorporated
into the type of rules discussed earlier.

Summary

This unit examined what we mean in a general sense by a data
mining algorithm as what components make up such algorithms. A
working definition is as follows: A data mining algorithm is a well-
defined procedure that takes data as input and produces output in
the form of models or patterns. We use the term well-defined
indicate that the procedure can be precisely encoded as a finite set
of rules. To be considered an algorithm, the procedure must always
terminate after some finite number of steps and produce an output.

We have introduced the distinction between models and patterns in
more depth, and examine some of the major classes of models and
patterns used in data mining, in preparation for a detailed
examination. A model is a high-level, global description of a data set.
It takes a large sample perspective. It may be descriptive
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summarizing the data in a convenient and concise way or it may be
inferential, allowing one to make some statement about the
population from which the data were drawn or about likely future data
values. We have discussed a variety of basic model forms such as
linear regression models, mixture models, and Markov models.
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UNIT — [l

7. Score Functions for Data Mining
Algorithms

Structure

7.1 Introduction
7.2 Scoring Patterns
7.3 Predictive versus Descriptive Score Functions
7.3.1 Score Functions for Predictive Models
7.3.2 Score Functions for Descriptive Models
7.4 Scoring Models with Different Complexities
7.4.1 General Concepts in Comparing Models
7.4.2 Bias-Variance Again
7.4.3 Score Functions that Penalize Complexity
7.4.4 Score Functions using External Validation
7.5 Evaluation of Models and Patterns
7.6 Robust Methods

Objective

After going through this lesson, you should be able to:
» Discuss about a Scoring Patterns;
» Discuss predictive versus descriptive score functions;
» Discuss about a scoring models with different
complexities;
> Discuss about a evaluation of models, patterns, and
robust methods
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7.1 Introduction

In lesson 6 we focused on different representations and structures
that are available to us for fitting models and patterns to data. Now
we are ready to consider how we will match these structures to
data. Recall that a model or pattern structure is the functional form,
with the parameters left "floating.” For example, Y = aX + b might
be one such model structure, with a and b the parameters. Given a
model or pattern structure, we must score different settings of the
parameter values with respect to data, so that we can choose a
good set (or even "the best"). We saw how a least squares
principle could be used to choose between different parameter
values. This involved finding the values of the parameters a and b
that minimized the sum of squared differences between the
predicted values of y (from the model) and the observe d (data)
values of y. In this case, the score function is thus the sum of
squared errors between model predictions and actual target
measurements. Our goal in this chapter is to broaden the reader's
horizon in terms of the score functions that can be used for data
mining. We will see that the venerable squared error score function
is but one of many, and indeed can be viewed as a special case
arising from more general principles.

It is important to bear in mind why we are interested in score
functions in the first place. Ultimately the purpose of a score
function should be to rank models as a function of how useful the
models are to the data miner. Unfortunately in practice it can be
quite difficult to measure "utility" in terms of direct practical
usefulness to the person building the model. For example, in
predicting stock market returns one might use squared error
between predictions and actual data as a score function to train
one's model. However, if the model is then used in a real financial
environment, a host of other factors such as trading costs, risks,
diversity, and so forth, comes into play to determine the true utility
of the model. This illustrates that we often settle for simpler
"generic" score functions (such as squared error) that have many
desirable well-understood properties and are relatively easy to
work with. Of course, one should not take this to an extreme: the
score function being used should reflect the overall goals of the
data mining task as far as are possible. One should try to avoid the
situation, unfortunately all too common in practice, of using a
convenient score function (perhaps because it is the default score
function in the software package being used) that is completely
inappropriate for the task.

Mining Techniques

NOTES




148 Data

Different score functions have different properties, and are useful
in different situations. One of the goals of this chapter is to make
the reader aware of these differences and of the implications of
using one score function rather than another. Just as there are a
few fundamental principles underlying model and pattern
structures, so there are some basic principles underlying the
different score functions. These are outlined in this chapter.

It is useful to make three distinctions at the outset. The first is
between score functions for models, and score functions for
patterns. The second is between score functions for predictive
structures, and score functions for descriptive structures. And the
third is between score functions for models of fixed complexity,
and score functions for models of different complexity. These
distinctions will be illustrated below.

A minor comment on the terminology used below is in order. In
some places we will refer to score functions (such as error) that we
clearly wish to minimize, whereas in other places we will refer to
score functions (such as log-likelihood) that we clearly wish to
maximize. The general concept is the same in either case, since
the negative (or "inverse") of an "error-based" score function can
always be maximized, and vice versa.

7.2 Scoring Patterns

Since the whole idea of searching for local patterns in data is
relatively recent, there is a far smaller toolbox of techniques
available for scoring patterns compared to the plethora of
techniques for scoring models. Indeed, there is really no general
consensus on how patterns should be scored. This is largely a
result of the fact that the usefulness of a pattern lies in the eye of
the beholder. One person's noisy outlier may be another person's
Nobel Prize. Fundamentally, patterns might be evaluated in terms
of how interesting or unexpected they are to the data analyst. But
we could only hope to quantify this if some-how we had a precise
model of what the user actually knows already. We are all familiar
with the experience that the first time we learn something
surprising is a lot more informative than the fifth or tenth time we
hear the same information again. Thus, the degree to which a
pattern is interesting to a person must be a function of their prior
knowledge.

In practice, however, we cannot hope (except in simple situations)
to be able to model a person's prior knowledge. Faced with a data
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set, a scientist or a marketing expert would have difficulty in
precisely formulating what it is that they already know about the
problem. Even subjective Bayesians can have problems choosing
priors for complex multiparameter models and evade them by
choosing standard forms for the priors that are only very simplistic
representations of prior knowledge. We have found that, once
certain patterns begin to emerge from the data (via visualization,
descriptive statistics, or rules found by a data mining algorithm),
database owners often say "Ah yes, but of course we knew that
already,” changing their minds about what they claim to have
expected once they have seen the data.

Having said all of this, the fact remains that most techniques
currently used in data mining for scoring patterns essentially
assume that they are measuring degree of informativeness relative
to a completely uninformed prior model; that is, it is effectively
assumed that the data analyst has no prior information at all about
the problem, beyond perhaps a few simple marginal and
descriptive statistics. The hope is that this will eliminate the very
obvious patterns (by focusing attention on patterns that are
different from the known simple ones) and that the user can
effectively "post-prune” the remaining patterns found by the
algorithm to retain the truly interesting ones. The danger, of
course, is that for some data sets and some forms of pattern
searches, almost all patterns that are found by the data mining
algorithm will essentially be uninteresting to the data analyst.

To illustrate these ideas we choose one simple (but widely used)
pattern structure, the probabilistic rule. This has the form IF a
THEN b with probability p

Where a and b are Boolean propositions (events) defined on a
subset of the variables of interest and p = p(bla). How can we
measure how interesting or informative this rule is to an
uninformed observer? One simple approach is to assume that the
observer already knows the marginal (unconditional) probability for
the event b, p(b).

For example, suppose that we are studying a population of data
miners. Let b represent the event that a randomly chosen person
in this population is a data mining researcher, and let a be the
event that such a person has read this book. Suppose we find that
p(b) = 0.25 and that p(bja) = 0.75; that is, 25% of this population
are researchers and 75% of people who have read this book are
researchers. This is interesting because it tells us that the
proportion of people who undertake research is higher among
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those who have read the book than it is in this population of data
miners in general (and hence, by implication, it is higher than
among the people who have not read the book). Note, as an aside,
that there are no causal implications to this. It could be that the
book inspired a reader to take up research, or that a person
involved in research hoped the book would help them.

The types of simple score functions that are used to capture the
informativeness of such a rule rely in general on how "far" the
posterior probability p(bla) is (after learning that event a is true),
from the prior probability p(b). Thus, for exé"imple, one could simply
measure absolute distance between the probabilities |p(bla) -
p(b)], or perhaps measure distance on log-odds scale, log
log{ p(bla))

pibla)  where b represents the event that a person is not a
researcher.

When we compare different patterns, such as p(bja) and p(b|c), it
is also useful to take into account the coverage of a pattern that is,
the proportion of the data to which it applies. To continue our
example above, let ¢ be the condition that the randomly chosen
data miner is one of the three authors of this book. A second
pattern might be "if ¢ then b" ("if a data miner is an author of this
book then they are a researcher"), with p(b|c) = 1 since the three
authors are all researchers. However, the condition ¢ only applies
to three data miners, which is a very small fraction of the universe
of data miners. On the other hand, (we hope that) the coverage of
event a will be much larger; that is, p(a) is significantly greater than
p(c). To illustrate, suppose that p(a) = 0.2 and p(c) = 0.003. Then,
although the second pattern is very accurate (p(blc) = 1) it is not
particularly useful since it only applies to a very small fraction of
the population (0.3%), whereas the first pattern is not as accurate
(p(bja) = 0.75) but it has much broader applicability (to 20% of the
population). It is easy to develop a variety of measures that
augment the score function to take coverage into account. For
example, we could multiply the previously defined scores by the
probability of the conditioning event; p(a)|p(bla) - p(b)| = |p(b, a) -
p(b)p(a)| that can be interpreted as measuring the difference in
probability between an independence assumption and the
observed joint probability for the two events a and b. Alternatively,
the approach used in association rule mining defines a threshold
pt, and only seeks patterns with coverage greater than pt.

There are numerous other score functions for patterns that have
been proposed in the data mining literature. None have gained
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widespread acceptance or general use, largely because judging
the novelty and utility of a pattern is often quite subjective and
application-specific. Thus, human interpretation by a domain
expert remains the most practical way to evaluate patterns at
present (e.g., having a human search through and interpret a set
of candidate patterns produced by a data mining algorithm).

7.3 Predictive versus Descriptive Score Functions

We now turn to score functions for models, where there is a much
greater selection of useful methods available compared to
patterns.

7.3.1 Score Functions for Predictive Models

A convenient place to begin is by considering the distinction
between prediction and description. Score functions for predictive
problems are relatively straightforward. In a prediction task, our
training data comes with a "target" value Y, this being a
guantitative variable for regression or a categorical variable for
classification, and our data set D = {(x(1), y(1)), ... ,(x(n), y(n))}
consists of pairs of input vectors and target values. Let f(x(i); ) be
the prediction generated by the model for individual i, 1 < i < n,
using parameter values e. Let y(i) be the actual observed value (or
"target") for the ith individual in the training data set.

Clearly our score function should be a function of the difference
between the predictions f(x(i); ) and the targets y(i). Commonly
used score functions include the sum of squared errors,

N

Ssse(f) = 1 Z (ﬂx {1):8) — H':‘]')

i=1

for quantitative Y, and the misclassification rate (or error rate or
"zero-one" score function) for categorical Y, namely,

N

Sop1(0) = 5 31 {£(x(3):6), (0

where I(a, b) = 1 if a is not equal to b and 0 otherwise. These are
the two most widely- used score functions for regression and
classification respectively. They are simple to understand and (in
the case of squared error at least) often lead to straightforward
optimization problems.

Mining Techniques

NOTES




152 Data

However, note that we have made some strong assumptions in
how these score functions are defined above. For example, by
summing over the individual errors we are assuming that errors for
all individuals may be treated equally. This is a very common
assumption and generally useful. However, if (for example) we
have a data set in which the measurements were taken at different
times, we might want to assign higher weight in the score function
to predictions on more recent items. Similarly, we might have
different subsets of items in the data set where the target values
are more reliable in some subsets than others (for example, some
quantification of measurement error in a subset). Here we might
wish to assign lower weight in the score function to predictions on
the items with less reliable measurements.

Furthermore, both are functions only of the difference between the
predictions and targets in particular, they do not depend on the
values of the target y(i). This is something we might want to take
account of. For example, if Y were a categorical variable indicating
whether or not a person had cancer, we might wish to give more
weight to the error of not detecting a true cancer and less weight
to errors that correspond to false alarms. For real-valued Y,
squared-error may not be appropriate perhaps the quality of the
model is more appropriately reflected in absolute error (squared-
error gives greater weight to extreme differences between the
observed and predicted Y values than doe’s absolute error). And,
as a third example, in an investment scenario, we might want be
more tolerant (from a risk-taking standpoint) of predictions of Y that
underestimate the true value than we are to predictions that
overestimate, suggesting that an asymmetric function might be
more appropriate.

7.3.2 Score Functions for Descriptive Models

For descriptive models, in which there is no "target" variable to be
predicted, it is less clear how to define a score function. A
fundamental approach is through the likelihood function, but which
we here describe from a slightly different perspective. Let B(x;e) be
the estimated probability of observing a data point at x, as defined
by our model B with parameters e, where X is categorical (the
extension to continuous variables is straightforward, and rwould
then be a probability density function). If the model is a good one,
then it might be expected to place a high probability at those
values of X where a data point is observed. Thus B(x) itself can be
taken as a measure of quality of the model a score function at the
point x. This is the basic idea of maximum likelihood once again:
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better models assign higher probability to observed data. (This is
fine actually as long as we can assume that all the models we are
considering have equal functional complexity, so that the
comparison is "fair"t he case in which we are comparing models of
different complexities.)

If we assume that the data points have arisen independently, we
can define an overall score function for the model by combining
these score functions for the individual data points simply by
multiplying them together:

L{#) = H;’J{x{r’}:ﬂj.
i=1

This is a set of data points that we maximize to find an estimate of
e. As we noted there, it is typically more convenient to work with
the log-likelihood. Now the contribution of an individual data point
to the overall score function is logP(x(i;Z] , and the overall
function is the sum of these:

log L{#) = E log pix(i); #).
i=1
If we work with the negative of the logB(x(i);Z) | as is often done,
then this function needs to be minimized. We define

SL(8) = —log L(8) = — 3 log jp(x(i); 6).

=1

Note again the intuitive interpretation: -logP is our error term (it
gets larger as P gets smaller), and we are summing this over all of
our data points. The largest possible value for P is 1 (for
categorical data) and, hence, S;(e) is lower bounded by 0.Thus, we
can think of S\ (e) as a type of entropy term that measures how well
the parameters e can compress (or predict) the training data.

A particularly useful feature of the likelihood (or, equivalently, the
negative log-likelihood) is that it is very general. It can be defined
for any problem in which the model or pattern being examined is
expressed in terms of probability functions. For example, one
might assume that Y in a predictive model is a perfect linear
function of some predictor variable X, as well as extra randomly
distributed errors, as discussed in the last section. If one can
postulate a parametric form for the probability distribution of these
errors, then one can compute the likelihood of the data for any

Mining Techniques

NOTES




154 Data

proposed parameters in the model. If the error terms are supposed
to be normally distributed with mean 0 about a deterministic
function of X then the likelihood score function is equivalent to the
sum of squared errors score function.

Although (negative log-) likelihood is a powerful and useful score
function, it too has its limitations. In particular, if a parameterization
assigns any data point a probability near 0, the log-likelihood will
approach - . Thus, the overall error can be dominated by
extreme points. If the true probability of that same point is also
very small, then the model is being penalized for a prediction in the
tails of the density function (very unlikely events), that may have
little relation to the practical utility of the model. Conversely, there
may be problems (such as predicting the occurrence df rare
events) in which it is precisely in the tails of the density that we are
most interested in accurate prediction. Thus, while likelihood is
based on strong theoretical foundations and is generally useful for
scoring probabilistic models, it is import ant to realize that it may
not necessarily reflect the true utility of a model for a particular
task. Other score functions for determining the quality of
probabilistic predictions are also possible, each with its own
particular characteristics. For example we can define the
integrated squared error between our estimate B(x:Z) and the true
. [ I[pxse) —p(x)] | dx .
probability p(x), ~ ™ ' . By completing the square,
and ignoring terms not depending on e, we get a score function of
the form [ = K K(p“(x:e)] 2dx - 2E[p“(x:e)] 1 | where each term
can be empirically approximated to provide an estimate of the true
integrated squared error as a function of e.

For nonprobabilistic descriptive models, such as partition -based
clustering, it is quite easy to come up with all sorts of score
functions based on how well separated the clusters are, how
compact they are, and so forth. For example, for simple prototype-
based clustering, a simple and widely used score function is the
sum of square errors within each cluster

K

-‘gf".»'x'r:{ﬂ.'I:Z’k- Bk = Z (i) — puse|I*

k=1 iCeluater,

where e is the parameter vector for the cluster model, e = {u1, ...
,UK}, and the pks are the cluster centers. However, it is quite

difficult to formulate any score function for cluster models that
reflect how close the clusters are to "truth” (if this is regarded as
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meaningful). The ultimate judgment on the utility of a given
clustering depends on how useful the clustering is in the context of
the particular application. Does it provide new insight into the data?
Does it permit a meaningful categorization of the data? And so on.
These are questions that typically can only be answered in the
context of a particular problem and cannot be captured by a single
score metric. To put it another way, once again the score functions
for tasks such as clustering are not necessarily very closely related
to the true utility function for the problem.

To summarize, there are simple "generic" score functions for tasks
such as classification, regression, and density estimation, that are
all useful in their own right. However, they do have limitations, and
it is perhaps best to regard them as starting points from which to
generalize to more application-specific score functions.

7.4 Scoring Models with Different Complexities

In the preceding sections we described score functions as
minimizing some measure of discrepancy between the observed
data and the proposed model. One might expect models that are
close to the data (in the sense embodied in the score function) to
be "good" models. However, we need to be clear about why we
are building the model.

7.4.1 General Concepts in Comparing Models

We can distinguish between two types of situations (as we have in
earlier chapters). In one type of situation we are merely trying to
build a summarizing descriptive model of a data set that captures
its main features. Thus, for example, we might want to summarize
the main chemical compounds among the members of a particular
family of compounds, where our database contains records for all
possible members of this family. In this case, accuracy of the
model is paramount though it will be mediated by considerations of
comprehensibility. The best accuracy is given by a model that
exactly reproduces the data, or describes the data in some
equivalent form, but the whole point of the modeling exercise in this
case is to reduce the complexity of the data to something that is
more comprehensible. In situations like this, simple goodness of fit
of the model to the data will be one part of an overall score
measure, with comprehensibility being another part (and this part
will be subjective). An example of a general technique in this
context is based on data compression and information -theoretic
arguments, where our score function is generally decomposed as
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Si(e, M) = number of bits to describe the data given the model +
number of bits to describe the model (and parameters) where the
first term measures the goodness of fit to the data and the second
measures the complexity of the model M and its parameters e. In
fact, for the first term ("number of bits to describe the data given
the model") we can use S| = -log p(D | e , M) (negative log-
likelihood, log base 2). For the second term ("number of bits to
describe the model") we can use - log p(e, M). Intuitively, we can
think of - log p(e, M) (the second term) as the communication
"cost" in bits to transmit the model structure and its parameters
from some hypothetical transmitter to a hypothetical receiver, and
SL (the first term) as the cost of transmitting the portion of the data
(the errors) that the model and its parameters do not account for.
These two parts will tend to work in opposite directions a good fit to
the data will be achieved by a complicated model, while
comprehensibility will be achieved by a simple model. The overall
score function trades off what is meant by an acceptable model.

7.4.2 Bias-Variance Again

Before examining score functions that we might hope will provide a
good fit to data as yet unseen, it will be useful to look in more
detail at the need to avoid modeling the available data too closely.
We discussed bias and variance in the context of estimates of
parameters e and we discuss it again here in the more general
context of score functions.

As we have mentioned in earlier chapters, it is extremely unlikely
that one's chosen model structure will be "correct." There are too
many features of the real world for us to be able to model them
exactly (and there are also deep questions about just what
"correct” means). This implies that the chosen model form will
provide only an approximation to the "truth." Let us take a
predictive model to illustrate. Then, at any given value of X (which
we take to be univariate for simplicity exactly the same argument
holds for multivariate X), the model is likely to provide predicted
values of Y that are not exactly right. More formally, suppose we
draw many different data sets, fit a model of the specified structure
(for example, a piecewise local model with given number of
components, each of given complexity; a polynomial function of X
of given degree;

and so on) to each of them, and determine the expected value of
the predicted Y at any X. Then this expected predicted value is
unlikely to coincide exactly with the true value. That is, the model
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is likely to provide a biased prediction of the true Y at any given X.
(Recall that bias of an estimate was defined as the difference
between the expected value of the estimate and the true value.)
Thus, perfect prediction is too much to hope for!

However, we can make the difference between the expected value
of the predictions and the unknown true value smaller (indeed, we
can make it as small as we like for some classes of models and
some situations) by increasing the complexity of the model
structure.

At first glance, this looks great we can obtain a model that is as
accurate as we like, in terms of bias, simply by taking a
complicated enough model structure. Unfortunately, there is no
such thing as a free lunch, and the increased accuracy in terms of
bias is only gained at a loss in other terms.

By virtue of the very flexibility of the model structure, its predictions
at any fixed X could vary dramatically between different data sets.
That is, although the average of the predictions at any given X will
be close to the true Y (this is what small bias means), there may
be substantial variation between the predictions arising from the
different data sets. Since, in practice, we will only ever observe
one of these predictions (we really have only one data set to use
to estimate the model's parameters) the fact that "on average"
things are good will provide little comfort. For all we know we have
picked a data set that yields predictions far from the average.
There is no way of telling.

There is another way of looking at this. Our very flexible model
(with, for example, a large number of piecewise components or a
high degree) has led to one that closely follows the data. Since, at
any given X, the observed value of Y will be randomly distributed
about its mean, our flexible model is also modeling this random
component of the observed Y value. That is, the flexible model is
overfitting the data.

Finally (though, yet again, it is really just another way of looking at
the same thing), increasing the complexity of the model structure
means increasing the number of parameters to be estimated.
Generally, if more parameters are being estimated, then the
accuracy of each estimate will decrease (its variance, from data
set to data set, will increase).

The complementarity of bias and variance in the above, is termed
the bias -variance trade-off. We want to choose a model in which
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neither is too large but reducing either one tends to increase the
other. They can be combined to yield an overall measure of
discrepancy between the data and the model to yield the mean
squared error (MSE). Consider the standard regression setting we
have discussed before, where we are assuming that y is a
deterministic function of x (where we now generalize to the vector
case) with additive noise, that is, y = f(x; e) + e, where e is (for
example) Normal with zero mean. Thus, py = E[y[x] represents the
true (and unknown) expected value for any data point x (where
here the expectation E is with respect to the noise e), and y = f(x;
o) is the estimate provided by our model and fitted parameters o.
The MSE at x is then defined as:

MSE(x) = Fly- .U;,.:E
- & [ﬂ - K {_hf:l]._' + & [lr'- () — ”5.']._J

or MSE = Variance + Bias?. (The expectation E here is taken with
respect to p(D), the probability distribution over all possible data
sets for some fixed size n). This equation bears close inspection.
We are treating our prediction y here as a random quantity, where
the randomness arises from the random sampling that generated
the training data D. Different data sets D would lead to different
models and parameters, and different predictions y. The
expectation, E, is over different data sets of the same size n, each
randomly chosen from the population in question. The variance

term E [F - E (F)]2 tell us how much our estimate ¥ will vary
across different potential data sets of size n. In other words, it
measures the sensitivity of ¥ to the particular data set being used
to train our model. As an extreme example, if we always picked a
constant y1 as our prediction, without regard to the data at all, then
this variance would be zero. At the other extreme, if we have an
extremely complex model with many parameters, our predictions y
may vary greatly depending from one individual training data set to
the next.

The bias term E [E(¥) - Hy] reflects the systematic error in our

prediction that is how far away our average prediction is, E (¥),
from truth py. If we use a constant y1 as our prediction, ignoring
the data, we may have large bias (that is, this difference may be
large). If we use a more complex model, our average prediction
may get closer to the truth, but our variance may be quite large.
The bias -variance quantifies the tension between simpler models
(low variance, but potentially high bias) and more complex ones
(potentially low bias but typically high variance).
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In practice, of course, we are interested in the average MSE over
the entire domain of the function we are estimating, so we might
define the expected MSE (with respect to the input distribution
p(x)) as JMSE(x)p(x) dx, that again has the same additive
decomposition (since expectation is linear).

Note that while we can in principle measure the variance of our
predictions y (for example, by some form of resampling such as
the bootstrap method), the bias will always be unknown since it
involves py that is itself unknown (this is after all what we are trying
to learn). Thus, the bias -variance decomposition is primarily of
theoretical interest since we cannot measure the bias component
explicitly, and in turn it does not provide a practical score function
combining these two aspects of estimation error. Nonetheless, the
practical implications in general are clear: we need to choose a
model that is not too inflexible (because its predictions will then
have substantial bias) but not too flexible (since then its predictions
will have substantial variance). That is, we need a score function
that can handle models of different complexities and take into
account this compromise, and one that can be implemented in
practice.

We should note that in certain data mining applications, the issue
of variance may not be too important, particularly when the models
are relatively simple compared to the amount of data being used
to fit them. This is because variance is a function of sample size.
Increasing the sample size decreases the variance of an estimator.
Unfortunately, no general statements can be made about when
variance and overfitting will be important issues. It depends on
both the sample size of the training data D and the complexity of
the model being fit.

7.4.3 Score Functions that Penalize Complexity

How, then, can we choose a suitable compromise between
flexibility (so that a reasonable fit to the available data is obtained)
and overfitting (in which the model fits chance components in the
data)? One way is to choose a score function that encapsulates
the compromise. That is, we choose an overall score function that
is explicitly composed of two components: a component that
measures the goodness of fit of the model to the data, and an
extra component that puts a premium on simplicity. This yields an
overall score function of the form

score(model) = error(model) + penalty-function(model),
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where we want to minimize this score. We have discussed several
different ways to define the error component of the score in the
preceding sections. What might the additional penalty component
look like?

In general (though there are subtleties that mean that this is
something of a simplification), the complexity of a model M will be
related to the number of parameters, d, under consideration. We
will adopt the following notation in this context. Consider that there
are K different model structures, M1, ... ,MK, from which we wish
to choose one (ideally the one that predicts best on future data).
Model Mk has dk parameters. We will assume that for each model
structure Mk, 1< k < K, the best fitting parameters & for that
model (those that maximize goodness-of-fit to the data) have
already been chosen; that is, we have already determined point
estimates of these parameters for each of these K model
structures and now we wish to choose among these fitted models.
The widely used Akaike information criterion or AIC is defined as

Sac(M) =250 M) +2d,, 1<k< K.

where S| is the negative log-likelihood and the penalty term is
2dk. This can be derived formally using asymptotic arguments.

An alternative, based on Bayesian arguments, also takes into
account the sample size, n. This Bayesian Information Criterion or
BIC is defined as

Serc(My) = 2500, M) + di logn

where S| is again the negative log -likelihood. Note the effect of
the additive penalty term dk log n. For fixed n, the penalty term
grows linearly in number of parameters dk, which is quite intuitive.
For a fixed number of parameters dk, the penalty term increases in
proportion to log n. Note that this logarithmic growth in n is offset
by the potentially linear growth in S| as a function of n (since it is a
sum of n terms). Thus, asymptotically as n gets very large, for
relatively small values of dk, the error term SL (linear in n) will
dominate the penalty term (logarithmic in n). Intuitively, for very
large numbers of data points n, we can "trust" the error on the
training data and the penalty function term is less relevant.
Conversely, for small numbers of data points n, the penalty
function term dk log n will play a more influential role in model
selection.
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There are many other penalized score functions with similar
additive forms to those above (namely an error-based term plus a

penalty term) include the adjusted R? and Cp scores for
regression, the minimum description length (MDL) method and
Vapnik's structural risk minimization approach (SRM).

Several of these penalty functions can be derived from fairly
fundamental theoretical arguments. However, in practice these
types of penalty functions are often used under far broader
conditions than the assumptions used in the derivation of the
theory justify. Nonetheless, since they are easy to compute they
are often quite convenient in practice in terms of giving at least a
general idea of what the appropriate complexity for a model is,
given a particular data set and data mining task.

A different approach is provided by the Bayesian framework. We
can try to compute the posterior probability of each model given
the data directly, and select the one with the highest posterior
probability; that is,

plMe D) = pl DM pl M)
= /}J[”.ﬂ',;.|_‘|h,.}_y[_”;‘]dl‘l;,

= / pl N0 1 p( 0 | My ) d iy p{ Mg )

where the integral represents calculating the expectation of the
likelihood of the data over parameter space (also known as
marginal likelihood), relative to a prior in parameter space
p(ek|Mk), and the term p(Mk) is a prior probability for each model.
This is clearly quite different from the "point estimate” methods the
Bayesian philosophy is to fully acknowledge uncertainty and, thus,
average over our parameters (since we are unsure of their exact
values) rather than "picking" point estimates such as &.. Note that
this Bayesian approach implicitly penalizes complexity, since
higher dimensional parameter spaces (more complex models) will
mean that the probability mass in p(ek|Mk) is spread more thinly
than in simpler models.

Of course, in practice explicit integration is often intractable for
many parameter spaces and models of interest and Monte Carlo
sampling techniques are used. Furthermore, for large data sets,
the p(D|ek) function may in fact be quite "peaked" about a single

value &k, in which case we can reasonably approximate the
Bayesian expression above by the value of the peak plus some
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estimate of the surrounding volume (for example, a Taylor series
type of expansion around the posterior mode of p(D|e) p(e)) this
type of argument can be shown to lead to approximations such as
BIC above).

7.4.4 Score Functions using External Validation

A different strategy for choosing models is sometimes used, not
based on adding a penalty term, but instead based on external
validation of the model. The basic idea is to (randomly) split the
data into two mutually exclusive parts, a design part Dd, and a
validation part Dy. The design part is used to construct the models
and estimate the parameters. Then the score function is
recalculated using the validation part. These validation scores are
used to select models (or patterns). An important point here is that
our estimate of the score function for a particular model, say
S(Mk), is itself a random variable, where the randomness comes
from both the data set being used to train (design) the model and
the data set being used to validate it. For example, if our score is
some error function between targets and model predictions (such
as sum of squared errors), then ideally we would like to have an
unbiased estimate of the value of this score function on future
data, for each model under consideration. In the validation context,
since the two data sets are independently and randomly selected,
for a given model the validation score provides an unbiased
estimate of the score value of that model for new ("out-of-sample™)
data points. That is, the bias in estimates, that inevitably arises
with the design component, is absent from the independent
validation estimate. It follows from this (and the linearity of
expectation) that the difference between the scores of two models
evaluated on a validation set will have an expected value in the
direction favoring the better model. Thus, the difference in
validation scores can be used to choose between models. Note
that we have previously discussed unbiased estimates of
parameters e (unbiased estimates of what we are trying to predict
Wy (earlier in this chapter), and now unbiased estimates of our
score function S. The same principles of bias and variance underly
all three contexts, and indeed all three contexts are closely
interlinked (accuracy in parameter estimates will affect accuracy of
our predictions, for example) it is important, however, to
understand the distinction between them.

This general idea of validation has been extended to the notion of
cross-validation. The splitting into two independent sets is
randomly repeated many times, each time estimating a new model
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(of the given form) from the design part of the data and obtaining
an unbiased estimate the out -of-sample performance of each
model from the validation component. These unbiased estimates
are then averaged to yield an overall estimate. We described the
use of cross-validation to choose between CART recursive
partitioning models. Cross-validation is popular in practice, largely
because it is simple and reasonably robust (in the sense that it
relies on relatively few assumptions).However, if the partitioning is
repeated m times it does come at a cost of (on the order of) m
times the complexity of a method based on just using a single
validation set. (There are exceptions in special cases. For
example, there is an algorithm for the leave - one-out special case
of cross-validation applied to linear discriminant analysis that has
the same order of computational complexity as the basic model
construction algorithm.)

For small data sets, the process of selecting validation subsets D,
can lead to significant variation across data sets, and thus, the
variance of the cross-validation score also needs to be monitored
in practice to check whether or not the variation may be
unreasonably high. Finally, there is a subtlety in cross-validation
scoring in that we are averaging over models that have potentially
different parameters but the same complexity. It is important that
we are actually averaging over essentially the same basic model
each time. If, for example, the fitting procedure we are using can
get trapped at different local maxima in parameter space, on
different subsets of training data, it is not clear that it is meaningful
to average over the validation scores for these models.

It is true, as stated above, that the estimate of performance
obtained from such a process for a given model is unbiased. This
is why such methods are very widely used and have been
extensively developed for performance assessment. However,
some care needs to be exercised. If the validation measures are
subsequently used to choose between models (for example, to
choose between models of different complexity), then the
validation score of the model that is finally selected will be a biased
estimate of this model's performance. To see this, imagine that,
purely by chance some model did exceptionally well on a
validation set. That is, by the accidental way the validation set
happened to have fallen, this model did well. Then this model is
likely to be chosen as the "best"” model. But clearly, this model will
not do so well with new out-of-sample data sets. What this means
in practice is that, if an assessment of the likely future performance
of a (predictive) model is needed, then this must be based on yet a
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third data set, the test set, about which we shall say more in the
next subsection.

7.5 Evaluation of Models and Patterns

Once we have selected a model or pattern, based on its score
function, we will often want to know (in a predictive context) how
well this model or pattern will perform on new unseen data. For
example, what error rate, on future unseen data, would we expect
from a predictive classification model we have built using a given
training set? We have already referred to this issue when
discussing the validation set method of model selection above.

Again we note that if any of the same data that have been used for
selecting a model or used for parameter estimation are then also
used again for performance evaluation, then the evaluation will be
optimistically biased. The model will have been chosen precisely
because it does well on this particular data set. This means that
the apparent or resubstitution performance, as the estimate based
on reusing the training set is called, will tend to be optimistically
biased.

If we are only considering a single model structure, and not using
validation to select a model, then we can use subsampling
techniques such as validation or cross-validation, splitting the data
into training and test sets, to obtain an unbiased estimate of our
model's future performance. Again this can be repeated multiple
times, and the results averaged. At an extreme, the test set can
consist of only one point, so that the process is repeated N times,
with an average of the N single scores yielding the final estimate.
This principle of leaving out part of the data, so that it can provide
an independent test set, has been refined and developed to a
great degree of technical depth and sophistication, notably in
jackknife and bootstrap methods, as well as the leaving -one-out
cross- validation method (all of these are different, though related
and sometimes confused). The further reading section below gives
pointers to publications containing more details.

The essence of the above is that, to obtain unbiased estimates of
likely future performance of a model we must assess its
performance using a data set which is independent of the data set
used to construct and select the model. This also applies if
validation data sets are used. Suppose, for example, we chose
between K models by partitioning the data into two subsets, where
we fit parameters on the first subset, and select the single "best"
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model using the model scores on the second (validation) subset.
Then, since we will choose that model which does best on the
validation data set, the model will be selected so that it fits the
idiosyncrasies of this validation data set. In effect, the validation
data set is being used as part of the design process and
performance as measured on the validation data will be optimistic.
This be comes more severe, the larger is the set of models from
which the final model is chosen.

The message here is that if one uses a validation set to choose
between models, one cannot also use it to provide an estimate of
likely future performance. The very fact that one is choosing
models which do well on the validation set means that
performance estimates on this set are biased as estimates of
performance on other unseen data. As we said above, the
validation set, being used to choose between models, has really
become part of the design process. This means that to obtain
unbiased estimates of likely future performance we ideally need
access to yet another data set (a "hold-out" set) that has not been
used in any way in the estimation or model selection so far. For
very large data sets this is usually not a problem, in that data is
readily available, but for small data sets it can be problematic since
it effectively reduces the data available for training.

7.6 Robust Methods

We have pointed out elsewhere that the notion of a "true” model is
nowadays regarded as a weak one. Rather, it is assumed that all
models are approximations to whatever is going on in nature, and
our aim is to find a model that is close enough for the purpose to
hand. In view of this, it would be reassuring if our model did not
change too dramatically as the data on which it was based changed.
Thus, if a slight shift in value of one data point led to radically
different parameter estimates and predictions in a model, one might
be wary of using it. Put another way, we would like our models and
patterns to be insensitive to small changes in the data. Likewise, the
score functions and models may be based on certain assumptions
(for example, about underlying probability distributions). Again it
would be reassuring if, if such assumptions were relaxed slightly, the
fitted model and its parameters and predictions did not change
dramatically.
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Score functions aimed at achieving these aims have been
developed. For example, in a timmed mean a small proportion of the
most extreme data points are dropped, and the mean of the
remainder used. Now the values of outlying points have no effect on
the estimate. The extreme version of this (assuming a univariate
distribution with equal numbers being dropped from each tail), arising
as a higher and higher proportion is dropped from the tails, is the
median which is well known to be less sensitive to changes in
outlying points than is the arithmetic mean. As another example, the
Winsorized mean involves reducing the most extreme points to have
the same values as the next most extreme points, before computing
the usual mean.

Although such modifications can be thought of as robust forms of
score functions, it is sometimes easier to describe them (and, indeed
think of them) in terms of the algorithms used to compute them.
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8. Search and Optimization Methods

Structure

8.1 Introduction
8.2 Searching for Models and Patterns
8.2.1 Background on Search
8.2.2 The State -Space Formulation for Search in Data
Mining
8.2.3 A Simple Greedy Search Algorithm
8.2.4 Systematic Search and Search Heuristics
8.2.5 Branch -and-Bound
8.3 Parameter Optimization Methods
8.3.1 Parameter Optimization: Background
8.3.2 Closed Form and Linear Algebra Methods
8.3.3 Gradient-Based Methods for Optimizing Smooth
Functions
8.3.4 Univariate Parameter Optimization
8.3.5 Multivariate Parameter Optimization
8.3.6 Constrained Optimization
8.4 Optimization with Missing Data: The EM Algorithm
8.5 Online and Single-Scan Algorithms
8.6 Stochastic Search and Optimization Techniques
Objective
After going through this lesson, you should be able to:
» Discuss about a searching for models and patterns;
» Discuss parameter optimization methods;
» Discuss about a optimization with missing data: the EM
algorithm;

» Discuss varies optimization methods
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8.1 Introduction

This lesson focuses on the computational methods used for model
and pattern-fitting in data mining algorithms; that is, it focuses on
the procedures for searching and optimizing over parameters and
structures guided by the available data and our score functions.
The importance of effective search and optimization is often
underestimated in the data mining, statistical and machine learning
algorithm literatures, but successful applications in practice depend
critically on such methods.

We recall that a score function is the function that numerically
expresses our preference for one model or pattern over another.
For example, if we are using the sum of squared errors, SSSE, we
will prefer models with lower SSSE this measures the error of our
model (at least on the training data). If our algorithm is searching
over multiple models with different representational power (and
different complexities), we may prefer to use a penalized score
function such as SBIC whereby more complex models are
penalized by adding a penalty term related to the number of
parameters in the model.

Regardless of the specific functional form of our score function S,
once it has been chosen, our goal is to optimize it. (We will usually
assume without loss of generality in this chapter that we wish to
minimize the score function, rather than maximize it). So, let S(e|D,
M) = S(e, ..., 84|D, M) be the score function. It is a scalar function
of a d-dimensional parameter vector e and a model structure M (or
a pattern structure e), conditioned on a specific set of observed
data D.

This lesson examines the fundamental principles of how to go
about finding the values of parameter(s) that minimize a general
score function S. It is useful in practical terms, although there is no
high -level conceptual difference, to distinguish between two
situations, one referring to parameters that can only take discrete
values (discrete parameters) and the other to parameters that can
take values from a continuum (continuous parameters).

Examples of discrete parameters are those indexing different
classes of models (so that 1 might correspond to trees, 2 to neural
networks, 3 to polynomial functions, and so on) and parameters
that can take only integral values (for example, the number of
variables to be included in a model). The second example
indicates the magnitude of the problems that can arise. We might
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want to use, as our model, a regression model based on a subset

of variables chosen from possible p variables. There are K = 2P
such subsets, which can be very large, even for moderate p.
Similarly, in a pattern context, we might wish to examine patterns
that are probabilistic rules involving some subset of p binary
variables expressed as a conjunction on the left-hand side (with a

fixed right-hand side). There are J = 3P possible conjunctive rules
(each variable takes value 1, O, or is not in the conjunction at all).
Once again, this can easily be an astronomically large number.
Clearly, both of these examples are problems of combinatorial
optimization, involving searching over a set of possible solutions to
find the one with minimum score.

Examples of continuous parameters are a parameter giving the
mean value of a distribution or a parameter vector giving the
centers of a set of clusters into which the data set has been
partitioned. With continuous parameter spaces, the powerful tools
of differential calculus can be brought to bear. In some special but
very important special cases, this leads to closed form solutions. In
general, however, these are not possible and iterative methods are
needed. Clearly the case in which the parameter vector e is
unidimensional is very important, so we shall examine this first. It
will give us insights into the multidimensional case, though we will
see that other problems also arise in this situation. Both
unidimensional and multidimensional situations can be complicated
by the existence of local minima: parameter vectors with values
smaller than any other similar vectors, but are not the smallest
values that can be achieved. We shall explore ways in which such
problems can be overcome.

Very often, the two problems of searching over a set of possible
model structures and optimizing parameters within a given model
go hand in hand; that is, since any single model or pattern structure
typically has unknown parameters then, as well as finding the best
model or pattern structure, we will also have to find the best
parameters for each structure considered during the search. For
example, consider the set of models in which y is predicted as a
simple linear combination of some subset of the three predictor
variables x1, x2, and x3. One model would be y (i) = ax1 (i) + bx2
(i) + cx3 (i), and others would have the same form but merely
involving pairs of the predictor variables or single predictor
variables. Our search will have to roam over all possible subsets of
the xj variables, as noted above, but for each subset, it will also be
necessary to find the values of the parameters (a, b, and c in the
case with all three variables) that minimize the score function.
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This description suggests that one possible design choice, for
algorithms that minimize score functions over both model structures
and parameter estimates, is to nest a loop for the latter in a loop for
the former. This is often used since it is relatively simple, though it
iIs not always the most efficient approach from a computational
viewpoint.

It is worth remarking at this early stage that in some data mining
algorithms the focus is on finding sets of models, patterns, or
regions within parameter space, rather than just the single best
model, pattern, or parameter vector, according to the chosen score
function. This occurs, for example, in Bayesian averaging
techniques and in searching for sets of patterns. Usually (although,
as always, there are exceptions) in such frameworks similar
general principles of search and optimization will arise as in the
single model/pattern/parameter case and, so in the interests of
simplicity of presentation we will focus primarily on the problem of
finding the single best model, pattern, and/or parameter-vector.

8.2 Searching for Models and Patterns
8.2.1 Background on Search

This subsection discusses some general high level issues of
search. In many practical data mining situations we will not know
ahead of time what particular model structure M or pattern
structure p is most appropriate to solve our task, and we will
search over a family of model structures M = {M,,..., M} or pattern
structures P = {p,,..., p;}. We gave some examples of this earlier:
finding the best subset of variables in a linear regression problem
and finding the best set of conditions to include in the left -hand
side of a conjunctive rule. Both of these problems can be
considered "best subsets" problems, and have the general
characteristic that a combinatorially large number of such solutions
can be generated from a set of p "components” (p variables in this
case). Finding "best subsets" is a common problem in data mining.
For example, for predictive classification models in general (such
as nearest neighbor, naive Bayes, or neural network classifiers) we
might want to find the subset of variables that produces the lowest
classification error rate on a validation data set.

A related model search problem, that we used as an illustration is
that of finding the best tree-structured classifier from a "pool" of p
variables. This has even more awesome combinatorial properties.
Consider the problem of searching over all possible binary trees
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(that is, each internal node in the tree has two children). Assume
that all trees under consideration have depth p so that there are p
variables on the path from the root node to any leaf node. In
addition, let any variable be eligible e to appear at any node in the
tree, remembering that each node in a classification tree contains
a test on a single variable, the outcomes of which define which
branch is taken from that node. For this family of trees there are on

the order of »* different tree structures that is, #* classification
trees that differ from each other in the specification of at least one
internal node. In practice, the number of possible tree structures
will in fact be larger since we also want to consider various
subtrees of the full-depth trees. Exhaustive search over all possible
trees is clearly infeasible!

We note that from a purely mathematical viewpoint one need not
necessarily distinguish between different model structures in the
sense that all such model structures could be considered as
special cases of a single "full* model, with appropriate parameters
set to zero (or some other constant that is appropriate for the
model form) so that they disappear from the model. For example,
the linear regression model y = ax] + b is a special case of y =
axi+cx2+dx3+b with ¢ = d = 0. This would reduce the model
structure search problem to the type of parameter optimization
problem we will discuss later in this chapter. Although
mathematically correct, this viewpoint is often not the most useful
way to think about the problem, since it can obscure important
structural information about the models under consideration.

In the discussion that follows we will often use the word models
rather than the phrase models or patterns to save repetition, but it
should be taken as referring to both types of structure: the same
general principles that are outlined for searching for models are
also true for the problem of searching for patterns.

Some further general comments about search are worth making
here:

e We noted in the opening section that finding the model or
structure with the optimum score from a family M necessarily
involves finding the best parameters 6 k for each model structure
Mk within that family. This means that, conceptually and often in
practice, a nested loop search process is needed, in which an
optimization over parameter values is nested within a search over
model structures.
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e As we have already noted, there is typically no notion of the
score function S being a "smooth" function in "model space," and
thus, many of the traditional optimization techniques that rely on
smoothness information (for example, gradient descent) are not
applicable. Instead we are in the realm of combinatorial
optimization where the underlying structure of the problem is
inherently discrete (such as an index over model structures) rather
than a continuous function. Most of the combinatorial optimization
problems that occur in data mining are inherently intractable in the
sense that the only way to guarantee that one will find the best
solution is to visit all possible solutions in an exhaustive fashion.

e For some problems, we will be fortunate in that we will not
need to perform a full new optimization of parameter space as we
move from one model structure to the next. For example, if the
score function is decomposable, then the score function for a new
structure will be an additive function of the score function for the
previous structure as well as a term accounting for the change in
the structure. For example, adding or deleting an internal node in a
classification tree only changes the score for data points belonging
to the subtree associated with that node. However, in many cases,
changing the structure of the model will mean that the old
parameter values are no longer optimal in the new model. For
example, suppose that we want to build a model to predict y from x
based on two data points (x, y) = (1, 1) and (x, y) = (3, 3). First let
us try very simple models of the form y = a, that is y is a constant
(so that all our predictions are the same). The value of a that

minimizes the sum of squared errors (1 - a)2+(3 - a)2 is 2. Now let
us try the more elaborate model y = bx+a. This adds an extra term
into the model. Now the values of a and b that minimize the sum of
squared errors (this is a standard regression problem, although a
particularly simple example) are, respectively, 0 and 1. We see that
the estimate of depends upon what else is in the model. It is
possible to formalize the circumstances in which changing the
model will leave parameter estimates unaltered, in terms of
orthogonality of the data. In general, it is clearly useful to know
when this applies, since much faster algorithms can then be
developed (for example, if variables are orthogonal in a regression
case, we can just examine them one at a time). However, such
situations tend to arise more often in the cont ext of designed
experiments than in the secondary data occurring in data mining
situations. For this reason, we will not dwell on this issue here.

For linear regression, parameter estimation is not difficult and so it
is straightforward (if somewhat time-consuming) to recalculate the
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optimal parameters for each model structure being considered.
However, for more complex models such as neural networks,
parameter optimization can be both computationally demanding as
well as requiring careful "tuning" of the optimization method itself
(as we will see later in this chapter). Thus, the "inner loop" of the
model search algorithm can be quite taxing computationally. One
way to ease the problem is to leave the existing parameters in the
model fixed to their previous values and to estimate only the values
of parameters added to the model. Although this strategy is clearly
suboptimal, it permits a trade-off between highly accurate
parameter estimation of just a few models or approximate
parameter estimation of a much larger set of models.

e Clearly for the best subsets problem and the best classification
tree problem, exhaustive search (evaluating the score function for
all candidate models in the model family M) is intractable for any

nontrivial values of p since there are 2° and »*  models to be
examined in each case. Unfortunately, this combinatorial explosion
in the number of possible model and pattern structures will be the
norm rather than the exception for many data mining problems
involving search over model structure. Thus, without even taking
into account the fact that for each model one may have to perform
some computationally complex parameter optimization procedure,
even simply enumerating the models is likely to become intractable
for large p. This problem is particularly acute in data mining
problems involving very high-dimensional data sets (large p).

e Faced with inherently intractable problems, we must rely on
what are called heuristic search techniques. These are techniques
that experimentally (or perhaps provably on average) provide good
performance but that cannot be guaranteed to provide the best
solution always. The greedy heuristic (also known as local
improvement) is one of the better known examples. In a model
search context, greedy search means that, given a current model
Mk we look for other models that are "near" Mk (where we will
need to define what we mean by "near”) and move to the best of
these (according to our score function) if indeed any are better than
MKk.

8.2.2 The State-Space Formulation for Search in Data Mining

A general way to describe a search algorithm for discrete spaces is
to specify the problem as follows:
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1. State Space Representation:

We view the search problem as one of moving through a discrete
set of states. For model search, each model structure Mk consists
of a state in our state space. It is conceptually useful to think of
each state as a vertex in a graph (which is potentially very large).
An abstract definition of our search problem is that we start at
some particular node (or state), say M1, and wish to move through
the state space to find the node corresponding to the state that has
the highest score function.

2. Search Operators:

Search operators correspond to legal "moves" in our search space.
For example, for model selection in linear regression the operators
could be defined as either adding a variable to or deleting a
variable from the current model. The search operators can be
thought of as defining directed edges in the state space graph.
That is, there is a directed edge from state Mj to M if there is an
operator that allows one to move from one model structure M; to
another model structure M,;.

A simple example will help illustrate the concept. Consider the
general problem of selecting the best subset from p variables for a
particular classification model (for example, the nearest neighbor
model). Let the score function be the cross-validated classification
accuracy for any particular subset. Let Mk denote an individual

model structure within the general family we are considering,
namely all K = 2P - 1 different subsets containing at least one

variable. Thus, the state-space has 2P - 1 states, ranging from
models consisting of subsets of single variables M1 = {x1 }, M2 =
{x2},... all the way through to the full model with all p variables, MK
= {X1,..., Xp}. Next we define our operators. For subset selection it
is common to consider simple operators such as adding one
variable at a time and deleting one variable at a time. Thus, from
any state with p' variables (model structure) there are two
"directions” one can "move" in the model family: add a variable to
move to a state with p' + 1 variables, or delete a variable to move
to a state with p' - 1 variables (figure 8.1 shows a state-space for
subset selection for 4 variables with these two operators). We can
easily generalize these operators to adding or deleting r variables
at a time. Such "greedy local" heuristics are embedded in many
data mining algorithms. Search algorithms using this idea vary in
terms of what state they start from: forward selection algorithms
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work "forward" by starting with a minimally sized model and
iteratively adding variables, whereas backward selection algorithms
work in reverse from the full model. Forward selection is often the
only tractable option in practice when p is very large since working
backwards may be computationally impractical.

i1t

9 Y
Wy

. T LTY
2 s X XKy X,y

% %% Ky Ky Xy
oG A

A%y

Figure 8.1: An example of a simple state-space involving four
variables x1, x2, X3, x4. the node on the left is the null set i.e., no

variables in the model or pattern.

It is important to note that by representing our problem in a state-
space with limited connectivity we have not changed the underlying
intractability of the general model search problem. To find the
optimal state it will still be necessary to visit all of the exponentially
many states. What the stat e-space/operator representation does is
to allow us to define systematic methods for local exploration of the
state-space, where the term "local" is defined in terms of which
states are adjacent in the state-space (that is, which states have
operators connecting them).
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8.2.3 A Simple Greedy Search Algorithm

A general iterative greedy search algorithm can be defined as
follows:

1. Initialize:

Choose an initial state M(0) corresponding to a particular model
structure M.

2. lterate:

Letting MO be the current model structure at the ith iteration,
evaluate the score function at all possible adjacent states (as
defined by the operators) and move to the best one. Note that this
evaluation can consist of performing parameter estimation (or the
change in the score function) for each neighboring model structure.
The number of score function evaluations that must be made is the
number of operators that can be applied to the current state. Thus,
there is a trade-off between the number of operators available and
the time taken to choose the next model in state-space.

3. Stopping Criterion:

Repeat step 2 until no further improvement can be attained in the
local score function (that is, a local minimum is reached in state-
space).

4. Multiple Restarts:

(optional) Repeat steps 1 through 3 from different initial starting
points and choose the best solution found.

This general algorithm is similar in spirit to the local search
methods we will discuss later in this chapter for parameter
optimization. Note that in step 2 that we must explicitly evaluate the
effect of moving to a neighboring model structure in a discrete
space, in contrast to parameter optimization in a continuous space
where we will often be able to use explicit gradient information to
determine what direction to move. Step 3 helps avoid ending at a
local minimum, rather than the global minimum (though it does not
guarantee it, a point to which we return later). For many structure
search problems, greedy search is provably suboptimal. However,
in general it is a useful heuristic (in the sense that for many
problems it will find quite good solutions on average) and when
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repeated with multiple restarts from randomly chosen initial states,
the simplicity of the method makes it quite useful for many practical
data mining applications.

8.2.4 Systematic Search and Search Heuristics

The generic algorithm described above is often described as a "hill-
climbing" algorithm because (when the aim is to maximize a
function) it only follows a single "path” in state- space to a local
maximum of the score function. A more general (but more
complexes) approach is to keep track of multiple models at once
rather than just a single current model. A useful way to think about
this approach is to think of a search tree, a data structure that is
dynamically constructed as we search the state-space to keep
track of the states that we have visited and evaluated. (This has
nothing to do with classification trees, of course.) The search tree
is not equivalent to the state-space; rather, it is a representation of
how a particular search algorithm moves through a state-space.

An example will help to clarify the notion of a search tree. Consider
again the problem of finding the best subset of variables to use in a
particular classification model. We start with the "model" that
contains no variables at all and predicts the value of the most likely
class in the training data as its prediction for all data points. This is
the root node in the search tree. Assume that we have a forward-
selection algorithm that is only allowed to add variables one at a
time. From the root node, there are p variables we can add to the
model with no variables, and we can represent these p new
models as p children of the original root node. In turn, from each of
these p nodes we can add p variables, creating p children for

each, or p? in total (clearly, p* — 5" are redundant, and in practice
we need to implement a duplicate-state detection scheme to
eliminate the redundant nodes from the tree).

Figure 8.2 shows a simple example of a search tree for the state
space of figure 8.1. Here the root node contains the empty set (no
variables) and only the two best states so far are considered at any
stage of the search. The search algorithm (at this point of the
search) has found the two best states (as determined by the score
function) to be X2 and X1, X3, X4.

Mining Techniques

NOTES




178 Data

N
I\.\ /,'
—,
/ .
£ by
i ",
I b
; .
sy Son
g s o
i 'd M
( J(E ) | ){3
\\-- --/.I' -\.\

(a5 40)
Figure 8.2: An example of a simple search tree for the state-space
of figure 8.1.

Search trees evolve dynamically as we search the state-space,
and we can imagine (hypothetically) keeping track of all of the leaf
nodes (model structures) as candidate models for selection. This
quickly becomes infeasible since at depth k in the tree there will be
p“ leaf nodes to keep track of (where the root node is at depth zero
and we have branching factor p). We will quickly run out of memory
using this brute-force method (which is essentially breadth-first
search of the search tree). A memory -efficient alternative is depth-
first search, which (as its name implies) explores branches in the
search tree to some maximum depth before backing up and
repeating the depth-first search in a recursive fashion on the next
available branch.

Both of these techniques are examples of blind search, in that they
simply order the nodes to be explored lexicographically rather than
by the score function. Typically, improved performance (in the
sense of finding higher quality models more quickly) can be gained
by exploring the more promising nodes first. In the search tree this
means that the leaf node with the highest score is the one whose
children are next considered; after the children are added as
leaves, the new leaf with the highest score is examined. Again, this
strategy can quickly lead to many more model structures (nodes in
the tree) being generated than we will be feasibly able to keep in
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memory. Thus, for example, one can implement a beam search
strategy that uses a beam width of size b to "track™ only the b best
models at any point in the search (equivalently to only keep track
of the b best leaves on the tree). (In figure 8.2 we had b = 2))
Naturally, this might be suboptimal if the only way to find the
optimal model is to first consider models that are quite suboptimal
(and thus, might be outside the "beam"). However, in general,
beam search can be quite effective. It is certainly often much more
effective than simple hill -climbing, which is similar to depth-first
search in the manner in which it explores the search tree: at any
iteration there is only a single model being considered, and the
next model is chosen as the child of the current model with the
highest score.

8.2.5 Branch -and-Bound

A related and useful idea in a practical context is the notion of
branch-and-bound. The general idea is quite simple. When
exploring g a search tree, and keeping track of the best model
structure evaluated so far, it may be feasible to calculate
analytically a lower bound on the best possible score function from
a particular (as yet unexplored) branch of the search tree. If this
bound is greater than the score of the best model so far, then we
need not search this subtree and it can be pruned from further
consideration. Consider, for example, the problem of finding the
best subset of k variables for classification from a set of p variables
where we use the training set error rate as our score function.
Define a tree in which the root node is the set of all p variables, the
immediate child nodes are the p nodes each of which have a single
variable dropped (so they each have p — 1 variables), the next layer

has two variables dropped (so there are 2 unique such nodes,

each with p - 2 variables), and so on down to the L~ leaves that
each contain subsets of k variables (these are the candidate
solutions). Note that the training set error rate cannot decrease as
we work down any branch of the tree, since lower nodes are based
on fewer variables.

Now let us begin to explore the tree in a depth-first fashion. After
our depth-first algorithm has descended to visit one or more leaf
nodes, we will have calculated scores for the models (leaves)
corresponding to these sets of k variables. Clearly the smallest of
these is our best candidate k -variable model so far. Now suppose
that, in working down some other branch of the tree, we encounter
a node that has a score larger than the score of our smallest k -
variable node so far. Since the score cannot decrease as we
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continue to work down this branch, there is no point in looking
further: nodes lower on this branch cannot have smaller training set
error rate than the best k -variable solution we have already found.
We can thus save the effort of evaluating nodes further down this
branch. Instead, we back up to the nearest node above that
contained an unexplored branch and begin to investigate that. This
basic idea can be improved by ordering the tree so that we explore
the most promising nodes first (where "promising” means they are
likely to have low training set error rate). This can lead to even
more effective pruning. This type of general branch and bound
strategy can significantly improve the computational efficiency of
model search. (Although, of course, it is not a guaranteed solution
many problems are too large even for this strategy to provide a
solution in a reasonable time.)

These ideas on searching for model structure have been presented
in a very general form. More effective algorithms can usually be
designed for specific model structures and score functions.
Nonetheless, general principles such as iterative local
improvement, beam search, and branch-and-bound have
significant practical utility and recur commonly under various
guises in the implementation of many data mining algorithms.

8.3 Parameter Optimization Methods
8.3.1 Parameter Optimization: Background

Let S(@) = S(O0|D, M) be the score function we are trying to
optimize, where 6 are the parameters of the model. We will
usually suppress the explicit dependence on D and M for
simplicity. We will now assume that the model structure M is fixed
(that is, we are temporarily in the inner loop of parameter
estimation where there may be an outer loop over multiple model
structures). We will also assume, again, that we are trying to
minimize S, rather than maximize it. Notice that S and g(S) will be
minimized for the same value of 6 if g is a monotonic function of S
(such as log S).

In general 6 will be a d-dimensional vector of parameters. For
example, in a regression model 6 will be the set of coefficients
and the intercept. In a tree model, 6 will be the thresholds for the
splits at the internal nodes. In an artificial neural network model, 6
will be a specification of the weights in the network.
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In many of the more flexible models we will consider (neural
networks being a good example), the dimensionality of our
parameter vector can grow very quickly. For example, a neural
network with 10 inputs and 10 hidden units and 1 output, could
have 10 x 10 + 10 = 110 parameters. This has direct implications
for our optimization problem, since it means that in this case (for
example) we are trying to find the minimum of a nonlinear function
in 110 dimensions.

Furthermore, the shape of this potentially high -dimensional
function may be quite complicated. For example, except for
problems with particularly simple structure, S will often be
multimodal. Moreover, since S = S(?|D, M) is a function of the
observed data D, the precise structure of S for any given problem
iIs data-dependent. In turn this means that we may have a
completely different function S to optimize for each different data
set D, so that (for example) it may be difficult to make statements
about how many local minima S has in the general case.

Commonly used score functions can be written in the form of a
sum of local error functions (for example, when the training data
points are assumed to be independent of each other):

N

S = Z. (_e,r[ i), ta 1:})

=1

Where Yaa is our model's estimate of the target value y(i) in the
training data, and e is an error function measuring the distance
between the model's prediction and the target (such as square
error or log-likelihood). Note that the complexity in the functional
form S (as a function of © ) can enter both through the complexity
of the model structure being used (that is, the functional form of ¥)
and also through the functional form of the error function e. For
example, if ¥ is linear in & and e is defined as squared error, then
S will be quadratic in 8 , making the optimization problem relatively
straightforward since a quadratic function has only a single (global)
minimum or maximum. However, if ¥ is generated by a more
complex model or if e is more complex as a function of 6, S will
not necessarily be a simple smooth function of 6 with a single
easy-to-find extremum. In general, finding the parameters 0 that
minimize S (6 ) is usually equivalent to the problem of minimizing
a complicated function in a high-dimensional space.
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Let us define the gradient function of S as

; : as(f) s a5 )
8) = V5(0) = >
E ||_ ] -] ‘ ] ( F]lﬁ'l |-_.|!T-_- r.}l!l-i',f

which is a d-dimensional vector of partial derivatives of S
evaluated at ?. In general, ¥25(8) =0 is a necessary condition for
an extremum (such as a minimum) of S at 6. This is a set of d
simultaneous equations (one for each partial derivative) in d
variables. Thus, we can search for solutions 6 (that correspond to
extrema of S(0 )) of this set of d equations.

We can distinguish two general types of parameter optimization
problems:

1. The first is when we can solve the minimization problem in
closed form. For example, if S(6) is quadratic in 6 , then the
gradient g(6 ) will be linear in 8 and the solution of ¥ S(#) = 0
involves the solution of a set of d linear equations. However, this
situation is the exception rather than the rule in practical data
mining problems.

. The second general case occurs when S(6) is a smooth nonlinear
function of 6 such that the set of d equations g(6) = 0 does not
have a direct closed form solution. Typically we use iterative
improvement search techniques for these types of problems, using
local information about the curvature of S to guide our local search
on the surface of S. These are essentially hill -climbing or
descending methods (for example, steepest descent). The
backpropagation technique used to train neural networks is an
example of such a steepest descent algorithm.

Since the second case relies on local information, it may end up
converging to a local minimum rather than the global minimum.
Because of this, such methods are often supplemented by a
stochastic component in which, to take just one example, the
optimization procedure starts several times from different randomly
chosen starting points.
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8.3.2 Closed Form and Linear Algebra Methods

Consider the special case when S(0) is a quadratic function of 6 .
This is a very useful special case since now the gradient g(0 ) is
linear in & and the minimum of S is the unique solution to the set
of d linear equations g() = 0 (assuming the matrix of second
derivatives of S at these solutions satisfies the condition of being
positive definite). This is illustrated in the context of multiple
regressions (which usually uses a sum of squared errors score
function). In general, since such problems can be framed as solving
for the inverse of an d x d matrix, the complexity of solving such

linear problems tends to scale in general as O(nd2 + d3), where it
takes order of nd? steps to construct the original matrix of interest
and order of d3 steps to invert it.

8.3.3 Gradient-Based Methods for Optimizing Smooth
Functions

In general of course, we often face the situation in which S(0) is
not a simple function of 8 with a single minimum. For example, if
our model is a neural network with nonlinear functions in the hidden
units, then S will be a relatively complex nonlinear function of 6
with multiple local minima. We have already noted that many
approaches are based on iteratively repeating some local
improvement to the model.

The typical iterative local optimization algorithm can be broken
down into four relatively simple components:

1. Initialize: Choose an initial value for the parameter vector 6 =
00 (this is often chosen randomly).

2. Iterate: Starting with i = 0, let

lr‘ll'+l — !-_;..' 4 _ll'ul

where v is the direction of the next step (relative to 0l in parameter
space) and 6' determines the distance. Typically (but not

necessarily) v! is chosen to be in a direction of improving the score
function.
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3. Convergence: Repeat step 2 until S(6?i ) appears to have
attained a local minimum.

4. Multiple Restarts: Repeat steps 1 through 3 from different
initial starting points and choose the best minimum found.

Particular methods based on this general structure differ in terms

of the chosen direction v' in parameter space and the distance 6'

moved along the chosen direction, amongst other things. Note that
this is this algorithm has essentially the same design as the one for
local search among a set of discrete states, except that here we
are moving in continuous d-dimensional space rather than taking
discrete steps in a graph.

The direction and step size must be determined from local
information gathered at the current point of the searchfor example,
whether first derivative or second derivative information is gathered
to estimate the local curvature of S. Moreover, there are important
trade-offs between the quality of the information gathered and the
resources (time, memory) required to calculate this information. No
single method is universally superior to all others; each has
advantages and disadvantages.

All of the methods discussed below require specification of initial
starting points and a convergence (termination) criterion. The exact
specifications of these aspects of the algorithm can vary from
application to application. In addition, all of the methods are used
to try to find a local extremum of S(6). One must check in practice
that the found solution is in fact a minimum (and not a maximum or
saddle point). In addition, for the general case of a nonlinear
function S with multiple minima, little can be said about the quality
of the local minima relative to the global minima without carrying
out a brute-force search over the entire space (or using
sophisticated probabilistic arguments that are beyond this text).
Despite these reservations, the optimization techniques that follow
are extremely useful in practice and form the core of many data
mining algorithms.

8.3.4 Univariate Parameter Optimization

Consider first the special case in which we just have a single
unknown parameter 6 and we wish to minimize the score function
S(8) (for example, figure 8.3). Although in practical data mining
situations we will usually be optimizing a model with more than just
a single parameter, the univariate case is nonetheless worth
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looking at, since it clearly illustrates some of the general principles
that are relevant to the more general multivariate optimization
problem. Moreover, univariate search can serve as a component in
a multivariate search procedure, in which we first find the direction
of search using the gradient and then decide how far to move in
that direction using univariate search for a minimum along that
direction.

‘541*]
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Figure 8.3: An Example of a Score Function S (6) of a Single
Univariate Parameter 6 with both a Global Minimum and a Local
Minimum.

GG
Letting “am , the minimum of S occurs wherever
g(@) = 0 and the second derivative g' (6) > 0. If a closed form
solution is possible, then we can find it and we are done. If not,
then we can use one of the methods below.

g{ﬂ} = Srl:ﬂ :I =

The Newton-Raphson Method

Suppose that the solution occurs at some unknown point 6°; that

is, g(0°) = 0. Now, for points 6* not too far from 65 we have, by
using a Taylor series expansion

g(0°) =~ g(07) + (0° = 67 )g'(87),

where this linear approximation ignores terms of order (6% - 9*)2
and above. Since 63
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satisfies g(6°) = 0, the left -hand side of this expression is zero.
Hence, by rearranging terms we get

gie )
g'(0%)

¢ a0 —

In words, this says that given an initial value 6* then an

approximate solution of the equation g(65) = 0 is given by
adjusting 0 as indicated in equation. By repeatedly iterating this,
we can in theory get as close to the solution as we like. This
iterative

process is the Newton-Raphson (NR) iterative update for univariate
optimization based on first and second derivative information. The
ith step is given by

g(f")

gl =gt — .
g'(")

The effectiveness of this method will depend on the quality of the
linear approximation in equation. If the starting value is close to the

true solution 6% then we can expect the approximation to work
well; that is, we can locally approximate the surface around S(6%*)

as parabolic in form (or equivalently, the derivative g(8) is linear
near 6* and 95). In fact, when the current 0 is close to the
solution 65, the convergence rate of the NR method is quadr atic in

the sense that the error at step i of the iteration ej = |6' - 05| can
be recursively written as

.
€ X E_q.

To use the Newton-Raphson update, we must know both the
derivative function g(6) and the second derivative g'(6) in closed
form. In practice, for complex functions we may not have closed -
form expressions, necessitating numerical approximation of g(g)

and ¢ (6), which in turn may introduce more error into the
determination of where to move in parameter space. Generally
speaking, however, if we can evaluate the gradient and second
derivative accurately in closed form, it is advantageous to do so
and to use this information in the course of moving through
parameter space during iterative optimization.
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The drawback of NR is, of course, that our initial estimate 0! may

not be sufficiently close to the solution 65 to make the
approximation work well. In this case, the NR step can easily
overshoot the true minimum of S and the method need not
converge at all.

The Gradient Descent Method

An alternative approach, which can be particularly useful early in

the optimization process (when we are potentially far from 95), IS
to use only the gradient information (which provides at least the
correct direction to move in for a 1-dimensional problem) with a
heuristically chosen step size 6:

The multivariate version of this method is known as gradient (or

steepest) descent. Here 6 is usually chosen to be quite small to

ensure that we do not step too far in the chosen direction. We can

view gradient descent as a special case of the NR method,
1

whereby the second derivative information g'I(81%) is replaced by a

constant 6.

Momentum-Based Methods

There is a practical trade-off in choosing 6. If it is too small, then
gradient descent may converge very slowly indeed, taking very
small steps at each iteration. On the other hand, if 6 is too large,
then the guarantee of convergence is lost, since we may overshoot
the minimum by stepping too far. We can try to accelerate the
convergence of gradient descent by adding a momentum term:

gl = g 4 AN

where 6'is defined recursively as

A = —dg(0*) + pA!

and where p is a "momentum" parameter, 0< y <1. Note that y =0
gives us the standard gradient descent method of equation, and p
> 0 adds a "momentum” term in the sense that the current direction
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Al js now also a function of the previous direction 4 -1 The effect
of W in regions of low curvature in S is to accelerate convergence
(thus, improving standard gradient descent, which can be very slow
in such regions) and fortunately has little effect in regions of high
curvature. The momentum heuristic and related ideas have been
found to be quite useful in practice in training models such as
neural networks.

Bracketing Methods

For functions which are not well behaved (if the derivative of S is
not smooth, for example) there exists a different class of scalar
optimization methods that do not rely on any gradient information at
all (that is, they work directly on the function S and not its
derivative g). Typically these methods are based on the notion of
bracketing finding a bracket [61, 62] that provably contains an
extremum of the function. For example, if there exists a "middle" 0
value Om, such that 61 > 6m > 62 and S(Om) is less than both
S(01) and S(62), then clearly a local minimum of the function S
must exist between 61 and 62 (assuming that S is continuous).
One can use this idea to fit a parabola through the three points 61,
Om, and 02 and evaluate S(0p) where Op is located at the
minimum value of parabola. Either 6p is the desired local
minimum, or else we can narrow the bracket by eliminating 61 or
62 and iterating with another parabola. A variety of methods exist
that use this idea with varying degrees of sophistication (for
example, a technique known as Brent's method is widely used). It
will be apparent from this outline that bracketing methods are really
a search strategy. We have included them here, however, partly
because of their importance in finding optimal values of
parameters, and partly because they rely on the parameter space
having a connected structure (for example, ordinality) even if the
function is being minimized is not continuous.

8.3.5 Multivariate Parameter Optimization

We now move on to the much more difficult problem we are usually
faced with in practice, namely, finding the minimum of a scalar
score function S of a multivariate parameter vector 6 in d-
dimensions. Many of the methods used in the multivariate case are
analogous to the scalar case. On the other hand, d may be quite
large for our models, so that the multidimensional optimization
problem may be significantly more complex to solve than its
univariate cousin. It is possible, for example, that local minima may
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be much more prevalent in high-dimensional spaces than in lower-
dimensional spaces. Moreover, a problem similar (in fact, formally
equivalent) to the combinatorial explosion that we saw in the
discussion of search also manifests itself in multidimensional
optimization; this is the curse of dimensionality that we have
already encountered.

8.3.6 Constrained Optimization

Many optimization problems involve constraints on the parameters.
Common examples include problems in which the parameters are
probabilities (which are constrained to be positive and to sum to 1),
and models that include the variance as a parameter (which must
be positive). Constraints often occur in the form of inequalities,
requiring that a parameter 6 satisfy c1 < 6 < c2, for example, with
c1 and c2 being constants, but more complex constraints are
expressed as functions: g (01,..., 6d) < 0 for example.
Occasionally, constraints have the form of equalities. In general,
the region of parameter vectors that satisfy the constraints is
termed the feasible region.

Problems that have linear constraints and convex score functions
can be solved by methods of mathematical programming. For
example, linear programming methods have been used in
supervised classification problems, and quadratic programming is
used in support vector machines. Problems in which the score
functions and constraints are nonlinear are more challenging.

Sometimes constrained problems can be converted into
unconstrained problems. For example, if the feasible region is
restricted to positive values of the parameters (61,..., 6d), we

could, instead, optimize over (f 1,...,f d), where 6,=®% | i=1,.., d.
Other (rather more complicated) transformations can remove
constraints of the form ¢c1 <9 <c2.

A basic strategy for removing equality constraints is through
Lagrange multipliers. A necessary condition for 6 to be a local
minimum of the score function S = S (6) subject to constraints

) 4 Tny(8)

hj(6) =0, ] =1,.., m, is that it satisfies ¥V S(0) + i = 0, for
some scalars, 4. These equations and the constraints yield a
system of (d + m) simultaneous (nonlinear) equations, that can be
solved by standard methods (often by using a least squares
routine to minimize the sum of squares of the left hand sides of the
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(d + m) equations). These ideas are extend to inequality constraints
in the Kuhn-Tucker conditions.

Unconstrained optimization methods can be modified to vyield
constrained methods. For example, penalties can be added to the
score function so that the parameter estimates are repelled if they
should approach boundaries of the feasible region during the
optimization process.

8.4 Optimization with Missing Data: The EM
Algorithm

In this section we consider the special but important problem of
maximizing a likelihood score function when some of the data are
missing, that is, there are variables in our data set whose values
are unobserved for some of the cases. It turns out that a large
number of problems in practice can effectively be modeled as
missing data problems. For example, measurements on medical
patients where for each patient only a subset of test results are
available, or application form data where the responses to some
guestions depends on the answers to others.

More generally, any model involving a hidden variable (i.e., a
variable that cannot be directly observed) can be modeled as a
missing data problem, in which the values of this variable are
unknown for all n objects or individuals. Clustering is a specific
example; in effect we assume the existence of a discrete-valued
hidden cluster variable C taking values {c1,..., ck} and the goal is to
estimate the values of C (that is, the cluster labels) for each
observation x(i), 1 <i<n.

The Expectation -Maximization (EM) algorithm is a rather
remarkable algorithm for solving such missing data problems in a
likelihood context. Specifically, let D = {x(1),..., x(n)} be a set of n
observed data vectors. Let H = {z(1),..., z(n)} represent a set of n
values of a hidden variable Z, in one -to-one correspondence with
the observed data points D; that is, z(i) is associated with data
point x(i). We can assume Z to be discrete (this is not necessary,
but is simply convenient for our description of the algorithm), in
which case we can think of the unknown z(i) values as class (or
cluster) labels for the data, that are hidden.

We can write the log-likelihood of the observed data as
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1{0) = log p( D|#) = lﬁgzlr:[”. H|9)
H

where the term on the right indicates that the observed likelihood
can be expressed as the likelihood of both the observed and
hidden data, summed over the hidden data values, assuming a
probabilistic model in the form p(D, H|#) that is parametrized by a
set of unknown parameters 0. Note that our optimization problem
here is doubly complicated by the fact that both the parameters 6
and the hidden data H are unknown.

Let Q(H) be any probability distribution on the missing data H. We
can then write the log-likelihood in the following fashion:

[(0) = logy_ p(D, H|0)
H

o~ pl, HI|#)
log ¥ QHH)———m—
nn% A =50

p(D. H|0)
TQH)

I

D Q(H)log

i

|
Q) logp( D, H|0) + ) og ——
; % Q2(H)

F(Q,0)

where the inequality is a result of the concavity of the log function
(known as Jensen's inequality).

The function F (Q, #) is a lower bound on the function we wish to
maximize (the likelihood 1(6)). The EM algorithm alternates
between maximizing F with respect to the distribution Q with the
parameters 6 fixed, and then maximizing F with respect to the
parameters 6 with the distribution Q = p(H) fixed. Specifically:

E-step: QF+ = arg max F(Q*, %)
M-step: 8%t = P(QRH, o
M-step: = argmax F(Q"*!, §%)

It is straightforward to show that the maximum in the E-step is

achieved when Qk+1 = p(H|D, Ok), a term that can often be
calculated explicitly in a relatively straightforward fashion for many
models. Furthermore, for this value of Q the bound becomes tight,

i.e., the inequality becomes an equality above and I(Qk) = F(Q,
k
0").
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The maximization in the M-step reduces to maximizing the first
term in F (since the second term does not depend on 6), and can
be written as

gErl — Arg max E plHD, f.l'k:l log i 12, Hlfa’":l
]
i

This expression can also fortunately often be solved in closed
form.

Clearly the E and M steps as defined cannot decrease I(6) at each
step: at the beginning of the M-step we have that I(Ok) =F (Qk+1,

Ok) by definition, and the M-step further adjusts 6 to maximize this
F.

The EM steps have a simple intuitive interpretation. In the E-step
we estimate the distribution on the hidden variables Q, conditioned

on a particular setting of the parameter vector oK, Then, keeping
the Q function fixed, in the M-step we choose a new set of

parameters 0X*1 50 as to maximize the expected log -likelihood of
observed data (with expectation defined with respect to Q = p(H)).
In turn, we can now find a new Q distribution given the new

parameters 0K+l

0k+2, and so forth in an iterative manner. As sketched above,
each such application of the E and M steps is guaranteed not to
decrease the log -likelihood of the observed data, and under fairly
general conditions this in turn implies that the parameters 6 will
converge to at least a local maximum of the log-likelihood function.

, then another application of the M-step to get

To specify an actual algorithm we need to pick an initial starting
point (for example, start with either an initial randomly chosen Q or
0) and a convergence detection method (for example, detect when
any of Q, 0, or I(8) do not change appreciably from one iteration
to the next). The EM algorithm is essentially similar to a form of
local hill-climbing in multivariate parameter space (as discussed in
earlier sections of this chapter) where the direction and distance of
each step is implicitly (and automatically) specified by the E and M
steps. Thus, just as with hill-climbing, the method will be sensitive
to initial conditions, so that different choices of initial conditions can
lead to different local maxima. Because of this, in practice it is
usually wise to run EM from different initial conditions (and then
choose the highest likelihood solution) to decrease the probability
of finally settling on a relatively poor local maximum. The EM
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algorithm can converge relatively slowly to the final parameter
values, and for example, it can be combined with more traditional
optimization techniques (such as Newton -Raphson) to speed up
convergence in the later iterations. Nonetheless, the standard EM
algorithm is widely used given the broad generality of the
framework and the relative ease with which an EM algorithm can
be specified for many different problems.

The computational complexity of the EM algorithm is dictated by
both the number of iterations required for convergence and the
complexity of each of the E and M steps. In practice it is often
found that EM can converges relatively slowly as it approaches a
solution, although the actual rate of convergence can depend on a
variety of different factors. Nonetheless, for simple models at least,
the algorithm can often converge to the general vicinity of the
solution after only a few (say 5 or 10) iterations. The complexity of
the E and M steps at each iteration depends on the nature of the
model being fit to the data (that is, the likelihood function p(D,
H|6)). For many of the simpler models (such as the mixture models
discussed below) the E and M steps need only take time linear in
n, i.e., each data point need only be visited once during each
iteration.

8.5 Online and Single-Scan Algorithms

All of the optimization methods we have discussed so far implicitly
assume that the data are all resident in main memory and, thus,
that each data point can be easily accessed multiple times during
the course of the search. For very large data sets we may be
interested in optimization and search algorithms that see each data
point only once at most. Such algorithms may be referred to as
online or single-scan and clearly are much more desirable than
"multiple -pass" algorithms when we are faced with a massive data
set that resides in secondary memory (or further away).

In general, it is usually possible to modify the search algorithms
above directly to deal with data points one at a time. For example,
consider simple gradient descent methods for parameter
optimization. As discussed earlier, for the "offline" (or batch)
version of the algorithm, one finds the gradient g(@) in parameter

space, evaluates it at the current location Ok, and takes a step
proportional to distance 6 in that direction. Now moving in the
direction of the gradient g(@) is only a heuristic, and it may not
necessarily be the optimal direction. In practice, we may do just as
well (at least, in the long run) if we move in a direction
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approximating that of the gradient. This idea is used in practice in
an online approximation to the gradient that uses the current best
estimate based both on the current location and the current and
(perhaps) recent data points. The online estimates can be viewed
as stochastic (or "noisy") estimates of the full gradient estimate that
would be produced by the batch algorithm looking at all of the data
points. There exists a general theory in statistics for this type of
search technique, known as stochastic approximation, which is
beyond the scope of this text but that is relevant to online
parameter estimation. Indeed, in using gradient descent to find
weight parameters for neural networks (for example) stochastic
online search has been found to be useful in practice. The
stochastic (data-driven) nature of the search is even thought to
sometimes improve the quality of the solutions found by allowing
the search algorithm to escape from local minima in a manner
somewhat reminiscent of simulated annealing.

More generally, the more sophisticated search methods (such as
multivariate methods based on the Hessian matrix) can also be
implemented in an online manner by appropriately defining online
estimators for the required search directions and step-sizes.

8.6 Stochastic Search and Optimization Techniques

The methods we have presented thus far on model search and
parameter optimization rely heavily on the notion of taking local
greedy steps near the current state. The main disadvantage is the
inherent myopia of this approach. The quality of the solution that is
found is largely a function of the starting point. This means that, at
least with a single starting position, there is the danger that the
minimum (or maximum) one finds may be a nonglobal local
optimum. Because of this, methods have been developed that
adopt a more global view by allowing large steps away from the
current state in a nondeterministic (stochastic) manner. Each of the
methods below is applicable to either the parameter optimization or
model search problem, but for simplicity we will just focus here on
model search in a state-space.

e Genetic Search: Genetic algorithms are a general set of
heuristic search techniques based on ideas from evolutionary
biology. The essential idea is to represent states (models in our
case) as chromosomes (often encoded as binary strings) and to
"evolve" a population of such chromosomes by selectively pairing
chromosomes to create new offspring. Chromosomes (states) are
paired based on their "fitness" (their score function) to encourage
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the fitter chromosomes to survive from one generation to the next
(only a limited number of chromosomes are allowed to survive
from one generation to the next). There are many variations on this
general theme, but the key ideas in genetic search are:

- Maintenance of a set of candidate states (chromosomes) rather
than just a single state, allowing the search algorithm to explore
different parts of the state space simultaneously

- Creating new states to explore based on combinations of
existing states, allowing in effect the algorithm to "jump" to different
parts of the state-space (in contrast to the local improvement
search techniques we discussed earlier)

Genetic search can be viewed as a specific type of heuristic, so it
may work well on some problems and less well on others. It is not
always clear that it provides better performance on specific
problems than a simpler method such as local iterative
improvement with random restarts. A practical drawback of the
approach is the fact that there are usually many algorithm
parameters (such as the number of chromosomes, specification of
how chromosomes are combined, and so on) that must be
specified and it may not be clear what the ideal settings are for
these parameters for any given problem.

e Simulated Annealing: Just as genetic search is motivated by
ideas from evolutionary biology, the approach in simulated
annealing is motivated by ideas from physics. The essential idea is
to not to restrict the search algorithm to moves in state-space that
decrease the score function (for a score function we are trying to
minimize), but to also allow (with some probability) moves that can
increase the score function. In principle, this allows a search
algorithm to escape from a local minimum. The probability of such
non-decreasing moves is set to be quite high early in the process
and gradually decreased as the search progresses. The decrease
in this probability is analogous to the process of gradually
decreasing the temperature in the physical process of annealing a
metal with the goal of obtaining a low-energy state in the metal
(hence the name of the method).

For the search algorithm, higher temperatures correspond to a
greater probability of large moves in the parameter space, while
lower temperatures correspond to greater probability of only small
moves that decrease the function being taken. Ultimately, the
temperature schedule reduces the temperature to zero, so that the
algorithm by then only moves to states that decrease the score
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function. Thus, at this stage of the search, the algorithm will
inevitably converge to a point at which no further decrease is
possible. The hope is that the earlier (more random) moves have
led the algorithm to the deepest "basin™ in the score function
surface. In fact, one of the appeals of the approach is that it can be
mathematically proved that (under fairly general conditions) this will
happen if one is using the appropriate temperature schedule. In
practice, however, there is usually no way to specify the optimal
temperature schedule (and the precise details of how to select the
possible non-decreasing moves) for any specific problem. Thus,
the practical application of simulated annealing reduces to (yet
another) heuristic search method with its own set of algorithm
parameters that are often chosen in an ad hoc manner.

We note in passing that the idea of stochastic search is quite
general, where the next set of parameters or model is chosen
stochastically based on a probability distribution on the quality of
neighboring states conditioned on the current state. By exploring
state-space in a stochastic fashion, a search algorithm can in
principle spend more time (on average) in the higher quality states
and build up a model on the distribution of the quality (or score)
function across the state-space. This general approach has
become very popular in Bayesian statistics, with techniques such
as Monte Carlo Markov Chain (MCMC) being widely used. Such
methods can be viewed as generalizations of the basic simulated
annealing idea, and again, the key ideas originated in physics. The
focus in MCMC s to find the distribution of scores in parameter or
state-space, weighted by the probability of those parameters or
models given the data, rather than just finding the location of the
single global minimum (or maximum).

It is difficult to make general statements about the practical utility of
methods such as simulated annealing and genetic algorithms when
compared to a simpler approach such as iterative local
improvement with random restarts, particularly if we want to take
into account the amount of time taken by each method. It is
important when comparing different search methods to compare
not only the quality of the final solution but also the computational
resources expended to find that solution. After all, if time is
unlimited, we can always use exhaustive enumeration of all models
to find the global optimum. It is fair to say that since stochastic
search techniques typically involve considerable extra computation
and overhead (compared to simpler alternatives) that they tend to
be used in practice on specialized problems involving relatively
small data sets, and are often not practical from a computational
viewpoint for very large data sets.
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Summary

We discussed the principles of how such structures (in the form of
models and patterns) can be scored in terms of how well they match
the observed data. This chapter focuses on the computational
methods used for model and pattern-fitting in data mining algorithms;
that is, it focuses on the procedures for searching and optimizing
over parameters and structures guided by the available data and our
score functions. The importance of effective search and optimization
is often underestimated in the data mining, statistical and machine
learning algorithm literatures, but successful applications in practice
depend critically on such methods.

We have explained what is meant, in the context of data mining, by
the terms model and pattern. A model is a high-level description,
summarizing a large collection of data and describing its important
features. Often a model is global in the sense that it applies to all
points in the measurement space. In contrast, a pattern is a local
description, applying to some subset of the measurement space,
perhaps showing how just a few data points behave or characterizing
some persistent but unusual structure within the data. Examples
would be a mode (peak) in a density function or a small set of
outliers in a scatter plot.

Reference
1. Hand D, Mannila H. Smith P: Principles of Data Mining (PHI).

2. Pujari A: Data Mining Techniques, University Press(orient
Longman.
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UNIT — IV
9. Descriptive Modeling

Structure

9.1 Introduction
9.2 Describing Data by Probability Distributions and Densities
9.2.1 Introduction
9.2.2 Score Functions for Estimating Probability Distributions and
Densities
9.2.3 Parametric Density Models
9.2.4 Mixture Distributions and Densities
9.2.5 The EM Algorithm for Mixture Models
9.2.6 Nonparametric Density Estimation
9.2.7 Joint Distributions for Categorical Data
9.3 Background on Cluster Analysis
9.4 Partition-Based Clustering Algorithms
9.4.1 Score Functions for Partition -Based Clustering
9.4.2 Basic Algorithms for Partition-Based Clustering
9.5 Hierarchical Clustering
9.5.1 Agglomerative Methods
9.5.2 Divisive Methods
9.6 Probabilistic Model-Based Clustering using Mixture Models

Objective

After going through this lesson, you should be able to:
» Discuss about a describing data by probability distributions
and densities
» Discuss background on cluster analysis;
» Discuss about partition-based clustering algorithms;

» Discuss about a hierarchical clustering;
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This lesson is concerned with descriptive models, presenting
outlines of several algorithms for finding descriptive models that are
import ant in data mining contexts. We have already noted that
data mining is usually concerned with building empirical models
that are not based on some underlying theory about the
mechanism through which the data arose, but that are simply a
description of the observed data. The fundamental objective is to
produce insight and understanding about the structure of the data,
and to enable us to see its important features. Beyond this, of
course, we hope to discover unsuspected structure as well as
structure that is interesting and valuable in some sense. A good
model can also be thought of as generative in the sense that data
generated according to the model will have the same
characteristics as the real data from which the model was
produced. If such synthetically generated data have features not
possessed by the original data, or do not possess features of the
original data (such as, for example, correlations between
variables), then the model is a poor one: it is failing to summarize
the data adequately.

There are, in fact, many different types of model, each related to
the others in various ways (special cases, generalizations, and
different ways of looking at the same structure, and so on). We
cannot hope to examine all possible models types in detail in a
single chapter. Instead we will look at just some of the more
important types, focusing on methods for density estimation and
cluster analysis in particular. The reader is alerted to the facts that
are other descriptive techniques in the literature (techniques such
as structural equation modeling or factor analysis for example) that
we do not discuss here. One point is worth making at the start.
Since we are concerned here with global models, with structures
that are representative of a mass of objects in some sense, then
we do not need to worry about failing to detect just a handful of
objects possessing some property; that is, in this chapter we are
not concerned with patterns.

9.2 Describing Data by Probability Distributions
and Densities

9.2.1 Introduction
For data that are drawn from a larger population of values, or data

that can be regarded as being drawn from such a larger population
(for example, because the measurements have associated
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measurement error), describing data in terms of their underlying
distribution or density function is a fundamental descriptive
strategy. Adopting our usual notation of a p-dimensional data
matrix, with variables X1, ..., Xp, our goal is to model the joint
distribution or density f(X1, ..., Xp) as first encountered. For
convenience, we will refer to "densities" in this discussion, but the
ideas apply to discrete as well as to continuous X variables.

The joint density in a certain sense provides us with complete
information about the variables X1, ..., Xp. Given the joint density,
we can answer any question about the relationships among any
subset of variable; for example, are X3 and X7 independent? Thus,
we can answer questions about the conditional density of some
variables given others; for example, what is the probability
distribution of X3 given the value of X7, f(x3 | x7)?.

There are many practical situations in which knowing the joint
density is useful and desirable. For example, we may be interested
in the modes of the density (for real- valued Xs). Say we are
looking at the variables income and credit-card spending for a data
set of n customers at a particular bank. For large n, in a scatter
plot we will just see a mass of points, many overlaid on top of each
other. If instead we estimate the joint density f(income, spending)
(where we have yet to describe how this would be done), we get a
density function of the two dimensions that could be plotted as a
contour map or as a three-dimensional display with the density
function being plotted in the third dimension. The estimated joint
density would in principle impart useful information about the
underlying structure and patterns present in the data. For example,
the presence of peaks (modes) in the density function could
indicate the presence of subgroups of customers. Conversely,
gaps, holes, or valleys might indicate regions where (for one
reason or another) this particular bank had no customers. And the
overall shape of the density would provide an indication of how
income and spending are related, for this population of customers.

A quite different example is given by the problem of generating
approximate answers to queries for large databases (also known
as query selectivity estimation). The task is the following: given a
query (that is, a condition that the observations must satisfy),
estimate the fraction of rows that satisfy this condition (the
selectivity of the query). Such estimates are needed in query
optimization in database systems, and a single query optimization
task might need hundreds of such estimates. If we have a good
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approximation for the joint distribution of the data in the database,
we can use it to obtain approximate selectivity in a computationally
efficient manner.

Thus, the joint density is fundamental and we will need to find ways
to estimate and conveniently summarize it (or its main features).

9.2.2 Score Functions for Estimating Probability Distributions
and Densities

As we have noted in earlier chapters, the most common score
function for estimating the parameters of probability functions is the
likelihood (or, equivalently by virtue of the monotonicity of the log
transform, the log-likelihood). As a reminder, if the probability
function of random variables X is f(x; 6); where 6 are the
parameters that need to be estimated, then the log-likelihood is log
f(D] 6) where D = {x(1), ..., x(n)} is the observed data. Making the
common assumption that that the separate rows of the data matrix
have arisen independently, this becomes

Si(8) == log f(x{i); 0).

i=1

If f has a simple functional form (for example, if it has the form of
the single univariate distributions outlined in the appendix) then this
score function can usually be minimized explicitly, producing a
closed form estimator for the parameters 6. However, if f is more
complex, iterative optimization methods may be required.

Despite its importance, the likelihood may not always be an
adequate or appropriate measure for comparing models. In
particular, when models of different complexity (for example,
Normal densities with covariance structures parameterized in
terms of different numbers of parameters) are compared then
difficulties may arise. For example, with a nested series of models
in which higher-level models include lower-level ones as special
cases; the more flexible higher level models will always have a
greater likelihood. This will come as no surprise. The likelihood
score function is a measure of how well the model fits the data,
and more flexible models necessarily fit the data no worse (and
usually better) than a nested less flexible model. This means that
likelihood will be appropriate in situations in which we are using it
as a score function to summarize a complete body of data (since
then our aim is simply closeness of fit between the simplifying
description and the raw data) but not if we are using it to select a
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single model (from a set of candidate model structures) to apply it
to a sample of data from a larger population (with the implicit aim
being to generalize beyond the data actually observed). In the
latter case, we can solve the problem by modifying the likelihood to
take the complexity of the model into account. For example, the
BIC (Bayesian Information Criterion) score function was defined
as:

Spre (M) = 250 (0 M) + dy logn, 1 <k <K,

where dk is the number of parameters in model Mk and St [E'l'ﬁ Mk)
Is the minimizing value of the negative log -likelihood (achieved at
éh).

Alternatively, we can calculate the score using an independent
sample of data, producing an "out -of-sample" evaluation. Thus the
validation log-likelihood (or "holdout log-likelihood") is defined as

Su(Mi) = D log far, (x|0). 1 <k < K,

xE [2,.

where the points x are from the validation data set D, the

parameters 6 were estimated (for example, via maximum
likelihood) on the disjoint training data Dt = D \ D,, and there are K
models under consideration.

9.2.3 Parametric Density Models

There are two general classes of density function model structures:
parametric and nonparametric. Parametric models assume a
particular functional form (usually relatively simple) for the density
function, such as a uniform distribution, a Normal distribution, an
exponential distribution, a Poisson distribution, and so on. These
distribution functions are often motivated by underlying causal
models of generic data-generating mechanisms. Choice of what
might be an appropriate density function should be based on
knowledge of the variable being measured (for example, the
knowledge that a variable such as income can only be positive
should be reflected in the choice of the distribution adopted to
model it). Parametric models can often be characterized by a
relatively small number of parameters. For example, the p-
dimensional Normal distribution is defined as
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F(x) = —g—em xS M),

E o
(27)%|x|?

where ) is the p x p covariance matrix of the X variables, |>| is the
determinant of this matrix, and p is the p-dimensional vector mean
of the X s. The parameters of the model are the mean vector and
the covariance matrix (thus, p + p(p + 1)/2 parameters in all). The
multivariate Normal (or Gaussian) distribution is particularly
important in data analysis. For example, because of the central
limit theorem, under fairly broad assumptions the mean of N
independent random variables (each from any distribution) tends to
have a Normal distribution. Although the result is asymptotic in
nature, even for relatively small values of N (e.g., N = 10) the
sample mean will typically be quite Normal. Thus, if a measurement
can be thought of as being made up of the sum of multiple
relatively independent causes, the Normal model is often a
reasonable model to adopt.

The functional form of the multivariate Normal model in above
equation is less formidable than it looks. The exponent, (X - u)TZ'

1(x - M), is a scalar value (a quadratic form) known as the
Mahalanobis distance between the data point x and the mean ,

denoted as "= This is a generalization of standard
Euclidean distance that takes into account (through the covariance
matrix ) ) correlations in p-space when distance is calculated. The
denominator is simply a normalizing constant (call it C) to ensure
that the function integrates to 1 (that is, to ensure it is a true
probability density function).

Thus, we can write our Normal model in significantly simplified
form as

$lx) = gemrtoemr.

If we were to plot (say for p = 2) all of the points x that have the

same fixed values of "= »} (or equivalently, all of the points x
that like on iso-density contours f(x) = c for some constant c), we
would find that they trace out an ellipse in 2-space (more generally,
a hyperellipsoid in p-space), where the ellipse is centered at .
That is, the contours describing the multivariate Normal distribution
are ellipsoidal, with height falling exponentially from the center as a

function of "Z*= ) Figure 9.1 provides a simple illustration in
two dimensions. The eccentricity and orientation of the elliptical
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contours is determined by the form of S. If S is a multiple of the
identity matrix (all variables have the same variance and are
uncorrelated) then the contours are circles. If S is a diagonal
matrix, but with different variance terms on the diagonals, then the
ax es of the elliptical contours are parallel to the variable axes and
the contours are elongated along the variable axes with greater
variance. Finally, if some of the variables are highly correlated, the
(hyper) elliptical contours will tend to be elongated along vectors
defined as linear combinations of these variables. In figure 9.1, for
example, the two variables X1 and X2 are highly correlated, and
the data are spread out along the line defined by the linear
combination X1 + X2.

rat ]

Figure 9.1: lllustration of the Density Contours for a Two -
Dimensional Normal Density Function, With Mean [3, 3] and

Z _ (l.n 0.0 )
Covariance Matrix 09 Lo
simulated from this Density.

. Also shown are 100 Data Points

For high-dimensional data (large p) the number of parameters in

the Normal model will be dominated by the O(p2) covariance terms
in the covariance matrix. In practice we may not want to model all
of these covariance terms explicitly, since for large p and finite n
(the number of data points available) we may not get very reliable
estimates of many of the covariance terms. We could, for example,
instead assume that the variables are independent, which is
equivalent in the Normal case to assuming that the covariance
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matrix has a diagonal structure (and, hence, has only p
parameters). (Note that if we assume that } is diagonal it is easy to
show that the p-dimensional multivariate Normal density factors
into a product of p univariate Normal distributions, a necessary
and sufficient condition for independence of the p variables.) An

even more extreme assumption would be to assume that } = o 2)
where | is the identity matrix that is, that the data has the same
variance for all p variables as well as being independent.

Independence is a highly restrictive assumption. A less restrictive
assumption would be that the covariance matrix had a block
diagonal structure: we assume that there are groups of variables
(the "blocks") that are dependent, but that variables are
independent across the groups. In general, all sorts of assumptions
may be possible, and it is important, in practice, to test the
assumptions. In this regard, the multivariate Normal distribution has
the attractive property that two variables are conditionally
independent, given the other variables, if and only if the
corresponding element of the inverse of the covariance matrix is

zero. This means that the inverse covariance matrix Z'l reveals
the pattern of relationships between the variables. (Or, at least, it
does in principle: in fact, of course, it will be necessary to decide
whether a small value in the inverse covariance matrix is sufficiently
small to be regarded as zero.) It also means that we can
hypothesize a graphical model in which there are no edges linking
the nodes corresponding to variables that have a small value in this
inverse matrix.

It is important to test the assumptions made in a model. Specific
statistical goodness-of- fit tests are often available, but even simple
eyeballing can be revealing. The simple histogram, or one of its
more sophisticated cousins outlined, can immediately reveal
constraints on permissible ranges (for example, the non -negativity
of income noted above), lack of symmetry, and so on. If the
assumptions are not justified, then analysis of some transformation
of the raw scores may be appropriate. Unfortunately, there are no
hard -and-fast rules about whether or not an assumption is justified.
Slight departures may well be unimportant but it will depend on the
problem. This is part of the art of data mining. In many situations in
which the distributional assumptions break down we can obtain
perfectly legitimate estimates of parameters, but statistical tests
are invalid. For example, we can physically fit a regression model
using the least squares score function, whether or not the errors
are Normally distributed, but hypothesis tests on the estimated
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parameters may well not be accurate. This might matter during the
model building process in helping to decide whether or not to
include a variable but it may not matter for the final model. If the
final model is good for its purpose (for example, predictive
accuracy in regression) that is sufficient justification for it to be
adopted.

Fitting a p-dimensional Normal model is quite easy. Maximum
likelihood (or indeed Bayesian) estimation of each of the means
and the covariance terms can be defined in closed form, and takes

only O(n) steps for each parameter, so O(np2) in total. Other well -
known parametric models (such as those defined in the appendix)
also usually possess closed-form parameter solutions that can be
calculated by a single pass through the data.

The Normal model structure is a relatively simple and constrained
model. It is unimodal and symmetric about the axes of the ellipse.
It is parametrized completely in terms of its mean vector and
covariance matrix. However, it follows from this that nonlinear
relationships cannot be captured, nor can any form of multimodality
or grouping. The reader should also note that although the Normal
model is probably the most widely-used parametric model in
practice, there are many other density functions with different
"shapes" that are very useful for certain applications (e.g., the
exponential model, the log-normal, the Poisson, the Gamma: the
interested reader is referred to the appendix). The multivariate t-
distribution is similar in form to the multivariate Normal but allows
for longer tails, and is found useful in practical problems where
more data can often occur in the tails than a Normal model would
predict.

9.2.4 Mixture Distributions and Densities

This can be viewed as the next natural step in complexity in our
discussion of density modeling: namely, the generalization from
parametric distributions to weighted linear combinations of such
functions, providing a general framework for generating more
complex density and distribution models as combinations of
simpler ones. Mixture models are quite useful in practice for
modeling data when we are not sure what specific parametric form
is appropriate (later in this chapter we will see how such mixture
models can also be used for the task of clustering).

It is quite common in practice that a data set is heterogeneous in
the sense that it represents multiple different subpopulations or
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groups, rather than one single homogeneous group. Heterogeneity
Is particularly prevalent in very large data sets, where the data may
represent different underlying phenomena that have been collected
to form one large data set. This is a histogram of the number of
weeks owners of a particular credit card used that card to make
supermarket purchases in 1996. As we pointed out there, the
histogram appears to be bimodal, with a large and obvious mode to
the left and a smaller, but nevertheless possibly important mode to
the right. An initial stab at a model for such data might be that it
follows a Poisson distribution (despite being bounded above by
52), but this would not have a sufficiently heavy tail and would fall
to pick up the right-hand mode. Likewise, a binomial model would
also fail to follow the right -hand mode. Something more
sophisticated and flexible is needed. An obvious suggestion here is
that the empirical distribution should be modeled by a theoretical
distribution that has two components. Perhaps there are two kinds
of people: those who are unlikely to use their credit card in a
supermarket and those who do so most weeks. The first set of
people could be modeled by a Poisson distribution with a small
probability. The second set could be modeled by a reversed
Poisson distribution with its mode around 45 or 46 weeks (the
position of the mode would be a parameter to be estimated in fitting
the model to the data). This leads us to an overall distribution of the
form

= (M)Fe (Ag)**#g M
flz) =a-——— 1 —"}w

where x is the value of the random variable X taking values
between 0 and 52 (indicating how many weeks a year a person
uses their card in a supermarket), and A1 > 0, A2 > 0 are
parameters of the two component Poisson models. Here p is the
probability that a person belongs to the first group, and, given this,
A
the expression x! gives the probability that this person will use
their card x times in the year. Likewise, 1 - 1 is the probability that
PR

this person belong to the second group and (52—=x)! is the
conditional probability that such a person will use their card x times
in the year.

One way to think about this sort of model is as a two-stage
generative process for a particular individual. In the first step there
is a probability " (and 1 - n) that the individual comes from one
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group or the other. In the second step, an observation x is
generated for that person according to the component distribution
he or she was assigned to in the first step.

The general form of a mixture distribution (for multivariate x) is
K
Fx) =3 mefi(x:0).
k=1

where N is the probability that an observation will come from the k
th component (the so- called kth mixing proportion or weight), K is
the number of components, fk(x; 6k) is the distribution of the kth
component, and 6 k is the vector of parameters describing the kth
component (in the Poisson mixture example above, each 6k
consisted of a single parameter Ak). In most applications the
component distributions fk have the same form, but there are
situations where this is not the case. The most widely used form of
mixture distribution has Normal components. Note that the mixing
proportions pk must lie between 0 and 1 and sum to 1.

Some examples of the many practical situations in which mixture
distributions might be expected on theoretical grounds are the
length distribution of fish (since they hatch at a specific time of the
year), failure data (where there may be different causes of failure,
and each cause results in a distribution of failure times), time to
death, and the distribution of characteristics of heterogeneous
populations of people (e.g., heights of males and females).

9.2.5 The EM Algorithm for Mixture Models

Unlike the simple parametric models discussed earlier in this
chapter, there is generally no direct closed-form technique for
maximizing the likelihood score function when the underlying model
is a mixture model, given a data set D = {x(1), ..., x(n)}. This is
easy to see by writing out the log-likelihood for a mixture model we
get a sum of terms such as log(>, ™ f.(x;% )), leading to a
nonlinear optimization problem (unlike, for example, the closed
form solutions for the multivariate Normal model).

Over the years, many different methods have been applied in
estimating the parameters of mixture distributions given a particular
mixture form. One of the more widely used modern methods in this
context is the EM approach. The mixture model can be regarded
as a distribution in which the class labels are missing. If we knew
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these labels, we could get closed-form estimates for the
parameters of each component by partitioning the data points into
their respective groups. However, since we do not know the origin
of each data point, we must simultaneously try to learn which
component a data point originated from and the parameters of
these components. This "chicken-and-egg" problem is neatly
solved by the EM algorithm; it starts with some guesses at the
parameter values for each component, then calculates the
probability that each data point came from one of the K
components (this is known as the E-step), calculates new
parameters for each component given these probabilistic
memberships (this is the M- step, and can typically be carried out
in closed form), recalculates the probabilistic memberships, and
continues on in this manner until the likelihood converges. The
complexity of the EM algorithm depends on the complexity of the E
and M steps at each iteration. For multivariate normal mixtures with
K components the computation will be dominated by the calculation
of the K covariance matrices during the M-step at each iteration. In

p dimensions, with K clusters, there are O(Kp2 ) covariance
parameters to be estimated, and each of these requires summing

over n data points and membership weights, leading to a O(Kp2 n)
time-complexity per step. For univariate mixtures (such as the
Poisson above) we get O(Kn). The space-complexity is typically
O(Kn) to store the K membership probability vectors for each of the
n data points x(i). However, for large n, we often need not store the
n x K membership probability matrix explicitly, since we may be
able to calculate the parameter estimates during each M-step
incrementally via a single pass through the n data points.

EM often provides a large increase in likelihood over the first few
iterations and then can slowly converge to its final value; however
the likelihood function as a function of iterations need not be
concave. For example, figure 9.2 illustrates the convergence of the
log-likelihood as a function of the EM iteration number, for a
problem involving fitting Gaussian mixtures to a two-dimensional
medical data set. For many data sets and models we can often find
a reasonable solution in only 5 to 20 iterations of the algorithm.
Each solution provided by EM is of course a function of where one
started the search (since it is a local search algorithm), and thus,
multiple restarts from randomly chosen starting points are a good
idea to try to avoid poor local maxima. Note that as either (or both)
K and p increase; the number of local maxima of the likelihood can
increase greatly as the dimensionality of the parameter space
scales accordingly.
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Figure 9.2: The log -likelihood of the red-blood cell data under a
two -component normal mixture model as a function of Iteration
number.

Sometimes caution has to be exercised with maximum likelihood
estimates of mixture distributions. For example, in a normal
mixture, if we put the mean of one component equal to one of the
sample points and let its standard deviation tend to zero, the
likelihood will increase without limit. The maximum likelihood
solution in this case is likely to be of limited value. There are
various ways around this. The largest finite value of the likelihood
might be chosen to give the estimated parameter values.
Alternatively, if the standard deviations are constrained to be equal,
the problem does not arise. A more general solution is to set up the
problem in a Bayesian context, with priors on the parameters, and
maximize the MAP score function (for example) instead of the
likelihood. Here the priors provide a framework for "biasing" the
score function (the MAP score function) away from problematic
regions in parameter space in a principled manner. Note that the
EM algorithm generalizes easily from the case of maximizing
likelihood to maximizing MAP (for example, we replace the M-step
with an MAP-step, and so forth).

Mining Techniques

NOTES




211 Data

Another problem that can arise is due to lack of identifiability. A
family of mixture distributions is said to be identifiable if and only if
the fact that two members of the family are equal,

cl

S mf(eie) =3 wif(«:0),
k=1

=1

implies that ¢ = c¢', and that for all k there is some j such that

M =1 and % = 9 Ifa family is not identifiable, then two different
members of it may be indistinguishable, which can lead to
problems in estimation.

Non-identifiability is more of a problem with discrete distributions
than continuous ones because, with m categories, only m - 1
independent equation can be set up. For example, in the case of a
mixture of several Bernoulli components, there is effectively only a
single piece of information available in the data, namely, the
proportion of 1s that occur in the data. Thus, there is no way of
estimating the proportions that are separately due to each
component Bernoulli, or the parameters of those components.

9.2.6 Nonparametric Density Estimation

A more general model structure for local densities is to define the
density at any point x as being proportional to a weighted sum of
all points in the training data set, where the weights are defined by
an appropriately chosen kernel function. For the one-dimensional
case we have

flz) = ;'Zw.-, w; = f{("‘T’{’})
i=1

where f(X) is the kernel density estimate at a query point x, K(t) is
the kernel function (for example, K() = 1 - |t|, t = 1; K{t) = 0
otherwise) and h is the bandwidth of the kernel. Intuitively, the
density at x is proportional to the sum of weights evaluated at X,
which in turn depend on the proximity of the n points in the training
data to x. As with nonparametric regression, the model is not
defined explicitly, but is determined implicitly by the data and the
kernel function. The approach is "memory -based" in the sense that
all of the data points are retained in the model; that is, no
summarization occurs. For very large data sets of course this may
be impractical from a computational and storage viewpoint.
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In one dimension, the kernel function K is usually chosen as a
smooth unimodal function (such as a Normal or triangular
distribution) that integrates to 1; the precise shape is typically not
critical. As in regression, the bandwidth h plays the role of
determining how smooth the model is. If h is relatively large, then
the kernel is relatively wide so that many points receive significant
weight in the sum and the estimate of the density is very smooth. If
h is relatively small, the kernel estimate is determined by the small
number of points that are close to x, and the estimate of the density
is more sensitive locally to the data (more "spiky" in appearance).
Estimating a good value of h in practice can be somewhat
problematic. There is no single objective methodology for finding
the bandwidth h that has wide acceptance. Techniques based on
cross-validation can be useful but are typically computationally
complex and not always reliable. Simple "eyeballing" of the
resulting density along specific dimensions is always
recommended to check whether or not the chosen values for h
appear reasonable.

Under appropriate assumptions these kernel models are flexible
enough to approximate any smooth density function, if h is chosen
appropriately, which adds to their appeal. However, this
approximation result holds in the limit as we get an infinite number
of data points, making it somewhat less relevant for the finite data
sets we see in practice. Nonetheless, kernel models can be very
valuable for low-dimensional problems as a way to determine
structure in the data (such as local peaks or gaps) in a manner that
might not otherwise be visible.

Density estimation with kernel models becomes much more difficult
as p increases. To begin with, we now need to define a p-
dimensional kernel function. A popular choice is to define the p-
dimensional kernel as a product of one -dimensional kernels, each
with its own bandwidth, which keeps the number of parameters
(the bandwidths hi, ..., hp for each dimension) linear in the number
of dimensions. A less obvious problem is the fact that in high
dimensions it is natural for points to be farther away from each
other than we might expect intuitively (the "curse of dimensionality”
again). In fact, if we want to keep our approximation error constant
as p increases, the number of data points we need grows
exponentially with p. This is rather unfortunate and means in
practice that kernel models are really practical only for relatively
low-dimensional problems.
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Kernel methods are often complex to implement for large data
sets. Unless the kernel function K(t) has compact support (that is,
unless it is zero outside some finite range on t) then calculating the
kernel estimate f(x) at some point x potentially involves summing
over contributions from all n data points in the database. In practice
of course since most of these contributions will be negligible (that
is, will be in the tails of the kernel) there are various ways to speed
up this calculation. Nonetheless, this "memory -based"
representation can be a relatively complex one to store and
compute with (it can be O(n) to compute the density at just one
query data point).

9.2.7 Joint Distributions for Categorical Data

First there is the problem of how to estimate ‘stich a large number
of probabilities. As an example, let {p;...pm"} represent a list of all
the joint probability terms in the unknown distribution we are trying
to estimate from a data set with n p-dimensional observations.

Hence, we can think of mP different “cells,” { c1...cn”} each

containing nj observations, 1 <i < mP. The expected number of
data points in celli, given a random sample from p(x) of size n, can
be written as Ep(x)[ni] = npi. Assuming (for example) that p(x) is

approximately uniform (that is, p, ® 1/mP) we get that

i n
er(x][f“] === m.

Thus, for example, if n < 0.5mP, the expected number of data
points falling in any given cell is closer to O than to 1. Furthermore,
if we use straightforward frequency counts as our method for
estimating probabilities, we will estimate B; =0 for each empty cell,
whether or not pj = 0 in truth. Note that if p(x) is nonuniform the
problem is actually worse since there will be more cells with
smaller p; (that is, less chance of any data falling in them). The

fundamental problem here is the mP exponential growth in the
number of cells. With p = 20 binary variables (m = 2) we get mP
~ 105, By doubling the number of variables to p = 40 we now get

mP = 1012, Say that we had n data points for the case of p = 20
and that we wanted to add some new variables to the analysis
while still keeping the expected number of data points per cell to
be constant (that is, the same as it was with n data points). If we
added extra 20 variables to the problem we would need to increase
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the data set from n to n' = 10° n, an increase by a factor of a
million.

A second practical problem is that even if we can reliably estimate
a full joint distribution from data, it is exponential in both space and

time to work with directly. A full joint distribution will have a O(mP)

memory requirement; for example, O (1012) real-valued
probabilities would need to be stored for a full distribution on 40
binary variables. Furthermore, many computations using this
distribution will also scale exponentially. Let the variables be {X1,
..., Xp}, each taking m values. If we wanted to determine the
marginal distribution on any single variable Xj (say), we could
calculate it as

plej) = E X1, X1, %5, X -0 00 Xp),
X Xy Ky X,

that is, by summing over all the other variables in the distribution.
The sum on the right involves O(mp'l) summations for example, O

(1039) summations when p = 40 and m = 2. Clearly this sort of
exercise is intractable except for relatively small values of m and p.

The practical consequence is that we can only reliably estimate
and work with full joint distributions for relatively low-dimensional
problems. Although our examples were for categorical data,
essentially the same problems also arise of course for ordered or
real valued data.

9.3 Background on Cluster Analysis

We now move beyond probability density and distribution models
to focus on the related descriptive data mining task of cluster
analysis that is, decomposing or partitioning a (usually multivariate)
data set into groups so that the points in one group are similar to
each other and are as different as possible from the points in other
groups. Although the same techniques may often be applied, we
should distinguish between two different objectives. In one, which
we might call segmentation or dissection, the aim is simply to
partition the data in a way that is convenient. "Convenient" here
might refer to administrative convenience, practical convenience,
or any other kind. For example, a manufacturer of shirts might want
to choose just a few sizes and shapes so as to maximize coverage
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of the male population. He or she will have to choose those sizes
in terms of collar size, chest size, arm length, and so on, so that no
man has a shape too different from that of a well -fitting shirt. To do
this, he or she will partition the population of men into a few groups
in terms of the variables collar, chest, and arm length. Shirts of one
size will then be made for each group.

In contrast to this, we might want to see whether a sample of data
is composed of natural subclasses. For example, whiskies can be
characterized in terms of color, nose, body, palate, and finish, and
we might want to see whether they fall into distinct classes in
terms of these variables. Here we are not partitioning the data for
practical convenience, but rather are hoping to discover something
about the nature of the sample or the population from which it
arose to discover whether the overall population is, in fact,
heterogeneous.

Technically, this second exercise is what cluster analysis seeks to
do to see whether the data fall into distinct groups, with members
within each group being similar to other members in that group but
different from members of other groups. However, the term "cluster
analysis" is often used in general to describe both segmentation
and cluster analysis problems (and we shall also be a little lax in
this regard). In each case the aim is to split the data into classes,
so perhaps this is not too serious a misuse. It is resolved, as we
shall see below, by the fact that there is a huge number of different
algorithms for partitioning data in this way. The important thing is to
match our method with our objective. This way, mistakes will not
arise, whatever we call the activity.

It will be obvious from this that such methods (cluster and
dissection techniques) hinge on the notion of distance. In order to
decide whether a set of points can be split into subgroups, with
members of a group being closer to other members of their group
than to members of other groups, we need to say what we mean
by "closer to." The notion of "distance,” and different measures of
it. Any of the measures described there, or indeed any other
distance measure, can be used as the basis for a cluster or
dissection analysis. As far as these techniques are concerned, the
concept of distance is more fundamental than the coordinates of
the points. In principle, to carry out a cluster analysis all we need to
know is the set of interpoint distances, and not the values on any
variables. However, some methods make use of "central points" of
clusters, and so require that the raw coordinates be available.
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Cluster analysis has been the focus of a huge amount of research
effort, going back for several decades, so that the literature is now
vast. It is also scattered. Considerable portions of it exist in the
statistical and machine learning literatures, but other many other
publications on cluster analysis may be found elsewhere. One of
the problems is that new methods are constantly being developed,
sometimes without an awareness of what has already been
developed. More seriously, a proper understanding of their
properties and the way they behave with different kinds of data is
available for very few of the methods. One of the reasons for this is
that it is difficult to tell whether a cluster analysis has been
successful. Contrast this with predictive modeling, in which we can
take a test data set and see how accurately the value of the target
variable is predicted in this set. For a clustering problem,
unfortunately, there is no direct notion of generalization to a test
data set, although, as we will see in our discussion of probabilistic
clustering, it is possible in some situations to pose the question of
whether or not the cluster structure discovered in the training data
is genuinely present in the underlying population. Generally
speaking, however, the validity of a clustering is often in the eye of
the beholder; for example, if a cluster produces an interesting
scientific insight, we can judge it to be useful. Quantifying this
precisely is difficult, if not impossible, since the interpretation of
how interesting a clustering is will inevitably be application-
dependent and subjective to some degree.

As we shall see in the next few sections, different methods of
cluster analysis are effective at detecting different kinds of clusters,
and we should consider this when we choose a particular algorithm.
That is, we should consider what we mean or intend to mean by a
"cluster." In effect, different clustering algorithms will be biased
toward finding different types of cluster structures (or "shapes") in
the data, and it is not always easy to ascertain precisely what this
bias is from the description of the clustering algorithm.

To illustrate, we might take a "cluster" as being a collection of
points such that the maximum distance between all pairs of points
in the cluster is as small as possible. Then each point will be
similar to each other point in the cluster. An algorithm will be
chosen that seeks to partition the data so as to minimize this
maximum interpoint distance (more on this below). We would
clearly expect such a method to produce compact, roughly
spherical, clusters. On the other hand, we might take a "cluster" as
being a collection of points such that each point is as close as
possible to some other member of the cluster although not
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necessarily to all other members. Clusters discovered by this
approach need not be compact or roughly spherical, but could
have long (and not necessarily straight) sausage shapes. The first
approach would simply fail to pick up such clusters. The first
approach would be appropriate in a segmentation situation, while
the second would be appropriate if the objects within each
hypothesized group were measured at different stages of some
evolutionary process. For example, in a cluster analysis of people
suffering from some iliness, to see whether there were different
subtypes, we might want to allow for the possibility that the patients
had been measured at different stages of the disease, so that they
had different symptom patterns even though they belonged to the
same subtype.

The important lesson to be learned from this is that we must match
the method to the objectives. In particular, we must adopt a cluster
analytic tool that is effective at detecting clusters that conform to
the definition of what is meant by "cluster" in the problem at hand.
It is perhaps worth adding that we should not be too rigid about it.
Data mining, after all, is about discovering the unexpected, so we
must not be too determined in imposing our preconceptions on the
analysis. Perhaps a search for a different kind of cluster structure
will throw up things we have not previously thought of.

Broadly speaking, we can identify three different general types of
cluster analysis algorithms: those based on an attempt to find the
optimal partition into a specified number of clusters, those based
on a hierarchical attempt to discover cluster structure, and those
based on a probabilistic model for the underlying clusters. We
discuss each of these in turn in the next three sections.

9.4 Partition-Based Clustering Algorithms

In data mining algorithms can often be conveniently thought of in
five parts: the task, the model, the score function, the search
method, and the data management technique. In partition -based
clustering the task is to partition a data set into k disjoint sets of
points such that the points within each set are as homogeneous as
possible, that is, given the set of n data points D = {x(1), ..., x(n)},
our task is to find K clusters C = {C1, ..., CK} such that each data
point x(i) is assigned to a unique cluster Ck. Homogeneity is
captured by an appropriate score function (as discussed below),
such as minimizing the distance between each point and the
centroid of the cluster to which it is assigned. Partition-based
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clustering typically places more emphasis on the score function
than on any formal notion of a model. Often the centroid or
average of the points belonging to a cluster is considered to be a
representative point for that cluster, and there is no explicit
statement of what sort of shape of cluster is being sought. For
cluster representations based on the notion of a single "center" for
each cluster, however, the boundaries between clusters will be
implicitly defined. For example, if a point x is assigned to a cluster
according to which cluster center is closest in a Euclidean -distance
sense, then we will get linear boundaries between the clusters in x
space.

9.4.1 Score Functions for Partition -Based Clustering

A large number of different score functions can be used to
measure the quality of clustering and a wide range of algorithms
has been developed to search for an optimal (or at least a good)
partition.

In order to define the clustering score function we need to have a
notion of distance between input points. Denote by d(x, y) the
distance between points x, y € D, and assume for simplicity that
the function d defines a metric on D. Most score functions for
clustering stress two aspects: clusters should be compact, and
clusters should be as far from each other as possible. A
straightforward formulation of these intuitive notions is to look at
within cluster variation wc (C) and between cluster variation bc(C)
of a clustering C. The within cluster variation measures how
compact or tight the clusters are, while the between cluster
variation looks at the distances between different clusters.

9.4.2 Basic Algorithms for Partition-Based Clustering

In principle, at least, the problem is straightforward. We simply
search through the space of possible assignments C of points to
clusters to find the one that minimizes the score (or maximizes it,
depending on the chosen score function).

The nature of the search problem can be thought of as a form of
combinatorial optimization, since we are searching for the allocation
of n objects into K classes that maximizes (or minimizes) our
chosen score function. The number of possible allocations

(different clusterings of the data) is approximately K". For

5100 & 110

example, there are some possible allocations of 100
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objects into two classes. Thus, as we have seen with other data
mining problems, direct exhaustive search methods are certainly
not applicable unless we are dealing with tiny data sets.
Nonetheless, for some clustering score functions, methods have
been developed that permit exhaustive coverage of all possible
clusterings without actually carrying out an exhaustive search.
These include branch and bound methods, which eliminate
potential clusterings on the grounds that they have poorer scores
than alternatives already found, without actually evaluating the
scores for the potential clusterings. Such methods, while extending
the range over which exhaustive evaluation can be made, still
break down for even moderately -sized data sets. For this reason,
we do not examine them further here.

Unfortunately, neither do there exist closed-form solutions for any
score function of interest; that is, there is usually no direct method
for finding a specific clustering C that optimizes the score function.
Thus, since closed form solutions do not exist and exhaustive
search is infeasible, we must resort to some form of systematic
search of the space of possible clusters. It is important to
emphasize that given a particular score function, the problem of
clustering has been reduced to an optimization problem, and thus
there are a large variety of choices available in the optimization
literature that are potentially applicable.

Iterative improvement algorithms based on local search are
particularly popular for cluster analysis. The general idea is to start
with a randomly chosen clustering of the points, then to reassign
points so as to give the greatest increase (or decrease) in the score
function, then to recalculate the updated cluster centers, to
reassign points again, and so forth until there is no change in the
score function or in the cluster memberships. This greedy approach
has the \rtue of being simple and guaranteeing at least a local
maximum (minimum) of the score function. Of course it suffers the
usual drawback of greedy search algorithms in that we do not know
how good the clustering C that it converges to is relative to the
best possible clustering of the data (the global optimum for the
score function being used).

Here we describe one well-known example of this general
approach, namely, the K-means algorithm. The number K of
clusters is fixed before the algorithm is run (this is typical of many
clustering algorithms). There are several variants of the K-means
algorithm. The basic version begins by randomly picking K cluster
centers, assigning each point to the cluster whose mean is closest
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in a Euclidean distance sense, then computing the mean vectors of
the points assigned to each cluster, and using these as new
centers in an iterative approach. As an algorithm, the method is as
follows: assuming we have n data points D = {x1, ..., Xn}, our task

is to find K clusters {C1...,CK}:

fork =1, ..., Klet r(k) be a randomly chosen point from D;
while changes in clusters Ck happen do
form clusters:
fork =1, ..., Kdo
Ck = €D |d(rk, x) =d(rj, x) forall j =1, ..., K,j * K
¢
end;
compute new cluster centers:
fork =1, ..., Kdo
rk = the vector mean of the points in Ck
end;
end;

The complexity of the K-means algorithm is O(Knl), where | is the
number of iterations. Namely, given the current cluster centers rk,

we can in one pass through the data compute all the Kn distances
d(rk, x) and for each x select the minimal one; then computing the
new cluster centers can also be done in time O(n).

A variation of this algorithm is to examine each point in turn and
update the cluster centers whenever a point is reassigned,
repeatedly cycling through the points until the solution does not
change. If the data set is very large, we can simply add in each
data point, without the recycling. Further extensions (for example,
the ISODATA algorithm) include splitting and/or merging clusters.
Note that there are a large number of different partition -based
clustering algorithms, many of which hinge around adding or
removing one point at a time from a cluster. Efficient updating
formula been developed in the context of evaluating the change
incurred in a score function by moving one data point in or out of a
cluster in particular, for all of the score functions involving W
discussed in the last section.

The search in the K-means algorithm is restricted to a small part of
the space of possible partitions. It is possible that a good cluster
solution will be missed due to the algorithm converging to a local
rather than global minimum of the score function. One way to
alleviate (if not solve) this problem is to carry out multiple searches
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from different randomly chosen starting points for the cluster
centers. We can even take this further and adopt a simulated
annealing strategy to try to avoid getting trapped in local minima of
the score function.

Since cluster analysis is essentially a problem of searching over a
huge space of potential solutions to find whatever optimizes a
specified score function, it is no surprise that various kinds of
mathematical programming methods have been applied to this
problem. These include linear programming, dynamic
programming, and linear and nonlinear integer programming.

Clustering methods are often applied on large data sets. If the
number of observations is so large that standard algorithms are not
tractable, we can try to compress the data set by replacing groups
of objects by succinct representations. For example, if 100
observations are very close to each other in a metric space, we
can replace them with a weighted observation located at the
centroid of those observations and having an additional feature (the
radius of the group of points that is represented). It is relatively
straightforward to modify some of the clustering algorithms to
operate on such "condensed" representations.

9.5 Hierarchical Clustering

Whereas partition-based methods of cluster analysis begin with a
specified number of clusters and search through possible
allocations of points to clusters to find an allocation that optimizes
some clustering score function, hierarchical methods gradually
merge points or divide super clusters. In fact, on this basis we can
identify two distinct types of hierarchical methods: the
agglomerative (which merge) and the divisive (which divide). The
agglomerative are the more important and widely used of the two.
Note that hierarchical methods can be viewed as a specific (and
particularly straightforward) way to reduce the size of the search.

A notable feature of hierarchical clustering is that it is difficult to
separate the model from the score function and the search method
used to determine the best clustering. Because of this, in this
section we will focus on clustering algorithms directly. We can
consider the final hierarchy to be a model, as a hierarchical
mapping of data points to clusters; however, the nature of this
model (that is, the cluster "shape") is implicit in the algorithm rather
than being explicitly represented. Similarly for the score function,
there is no notion of an explicit global score function. Instead,
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various local scores are calculated for pairs of leaves in the tree
(that is, pairs of clusters for a particular hierarchical clustering of
the data) to determine which pair of clusters are the best
candidates for agglomeration (merging) or dividing (splitting). Note
that as with the global score functions used for partition-based
clustering, different local score functions can lead to very different
final clusterings of the data.

Hierarchical methods of cluster analysis permit a convenient
graphical display, in which the entire sequence of merging (or
splitting) of clusters is shown. Because of its tree-like nature, such
a display is called a dendrogram. We illustrate in an example
below.

Cluster analysis is particularly useful when there are more than two
variables: if there are only two, then we can eyeball a scatterplot to
look for structure. However, to illustrate the ideas on a data set
where we can see what is going on, we will apply a hierarchical
method to some two dimensional data. Figure 9.3 shows a
scatterplot of the two dimensional data. The vertical axis is the time
between eruptions and the horizontal axis is the length of the
following eruption, both measured in minutes. The points are given
numbers in this plot merely so that we can relate them to the
dendrogram in this exposition, and have no other substantive
significance.
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Figure 9.3: Duration of eruptions versus waiting time between
eruptions (in minutes) for the old faithful geyser in Yellowstone
Park.
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As an example, figure 9.4 shows the dendrogram that results from
agglomerative merging the two clusters that leads to the smallest
increase in within-cluster sum of squares. The height of the
crossbars in the dendrogram (where branches merge) shows
values of this score function. Thus, initially, the smallest increase is
obtained by merging points 18 and 27, and from figure 9.3 we can
see that these are indeed very close (in fact, the closest). Note that
closeness from a visual perspective is distorted because of the fact
that the x-scale is in fact compressed on the page relative to the y-
scale. The next merger comes from merging points 6 and 22. After
a few more mergers of individual pairs of neighboring points, point
12 is merged with the cluster consisting of the two points 18 and
27, this being the merger that leads to least increase in the
clustering criterion. This procedure continues until the final merger,
which is of two large clusters of points. This structure is evident
from the dendrogram. (It need not always be like this. Sometimes
the final merger is of a large cluster with one single outlying point
as we shall see below.) The hierarchical structure displayed in the
dendrogram also makes it clear that we could terminate the
process at other points. This would be equivalent to making a
horizontal cut through the dendrogram at some other level, and
would yield a different number of clusters.

Figure 9.4: Dendrogram resulting from clustering of data in figure
9.3 using the criterion of merging clusters that leads to the smallest
increase in the total sum of squared errors.
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9.5.1 Agglomerative Methods

Agglomerative methods are based on measures of distance
between clusters.Essentially, given an initial clustering, they merge
those two clusters that are nearest, to form a reduced number of
clusters. This is repeated, each time merging the two closest
clusters, until just one cluster, of all the data points, exists. Usually
the starting point for the process is the initial clustering in which
each cluster consists of a single data point, so that the procedure
begins with the n points to be clustered.

Assume we are given n data points D = {x(1), ..., x(n)}, and a
function D(Cj, Cj) for measuring the distance between two clusters
Ci and Cj. Then an agglomerative algorithm for clustering can be
described as follows:

fori=1, ..., nlet Cj = {x(i)}
while there is more than one cluster left do
let Cj and Cj be the clusters minimizing the distance D(Ck,
Ch) between any two clusters;
Ci=Ci U Cj
remove cluster Cj;
end;

What is the time complexity of this method? In the beginning there
are n clusters, and in the end 1; thus there are n iterations of the
main loop. In iteration i we have to find the closest pair of clusters
among n - i + 1 clusters. We will see shortly that there are a variety
of methods for defining the intercluster distance D(Cj, Cj). All of
them, however, require in the first iteration that we locate the

closest pair of objects. This takes O(n2) time, unless we have
special knowledge about the distance between objects and so, in

most cases, the algorithm requires O(n2) time, and frequently
much more. Note also that the space complexity of the method is

also O(n2 ), since all pairwise distances between objects must be
available at the start of the algorithm. Thus, the method is typically
not feasible for large values of n. Furthermore, interpreting a large
dendrogram can be quite difficult (just as interpreting a large
classification tree can be difficult).

Note that in agglomerative clustering we need distances between
individual data objects to begin the clustering, and during clustering
we need to be able to compute distances between groups of data
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points (that is, distances between clusters). Thus, one advantage
of this approach (over partition -based clustering, for example) is
the fact that we do not need to have a vector representation for
each object as long as we can compute distances between objects
or between sets of objects. Thus, for example, agglomerative
clustering provides a natural framework for clustering objects that
are not easily summarized as vector measurements. A good
example would be clustering of protein sequences where there
exist several well-defined notions of distance such as the edit-
distance between two sequences (that is, a measure of how many
basic edit operations are required to transform one sequence into
another).

In terms of the general case of distances between sets of objects
(that is, clusters) many measures of distance have been proposed.
If the objects are vectors then any of the global

However, local pairwise distance measures (that is, between pairs
of clusters) are especially suited to hierarchical methods since they
can be computed directly from pairwise distances of the members
of each cluster. One of the earliest and most important of these is
the nearest neighbor or single link method. This defines the
distance between two clusters as the distance between the two
closest points, one from each cluster;

(PalCi, ) = min{d(x.y) | x € Ci,y € Cj},

where d(x, y) is the distance between objects x and y. The single
link method is susceptible (which may be a good or bad thing,
depending upon our objectives) to the phenomenon of "chaining,"
in which long strings of points are assigned to the same cluster
(contrast this with the production of compact spherical clusters).
This means that the single link method is of limited value for
segmentation. It also means that the method is sensitive to small
perturbations of the data and to outlying points (which, again, may
be good or bad, depending upon what we are trying to do). The
single link method also has the property (for which it is unique no
other measure of distance between clusters possesses it) that if
two pairs of clusters are equidistant it does not matter which is
merged first. The overall result will be the same, regardless of the
order of merger.

The dendrogram from the single link method applied to the data in
figure 9.3 is shown in figure 9.5. Although on this particular data set
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the results of single link clustering and that of figure 9.4 are quite
similar, the two methods can in general produce quite different
results.
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Figure 9.5: Dendrogram of the single link method applied to the
data in figure 9.3.

At the other extreme from single link, furthest neighbor, or
complete link , takes as the distance between two clusters the
distance between the two most distant points, one from each
cluster:

PuiCi C5) = n’:a;rx{n’{x_.y:l | x € Ci, ¥y € C;}.

where d(x, y) is again the distance between objects x and y. For
vector objects this imposes a tendency for the groups to be of
equal size in terms of the volume of space occupied (and not in
terms of numbers of points), making this measure particularly
appropriate for segmentation problems.

Other important measures, intermediate between single link and
complete link, include (for vector objects) the centroid measure
(the distance between two clusters is the distance between their
centroids), the group average measure (the distance between two
clusters is the average of all the distances between pairs of points,
one from each cluster), and Ward's measure for vector data (the
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distance between two clusters is the difference between the total
within cluster sum of squares for the two clusters separately, and
the within cluster sum of squares resulting from merging the two
clusters discussed above). Each such measure has slightly
different properties and other variants also exist; for example, the
median measure for vector data ignores the size of clusters, taking
the "center" of a combination of two clusters to be the midpoint of
the line joining the centers of the two components. Since we are
seeking the novel in data mining, it may well be worthwhile to
experiment with several measures, in case we throw up something
unusual and interesting.

9.5.2 Divisive Methods

Just as stepwise methods of variable selection can start with no
variables and gradually add variables according to which lead to
most improvement (analogous to agglomerative cluster analysis
methods), so they can also start with all the variables and gradually
remove those whose removal leads to least deterioration in the
model. This second approach is analogous to divisive methods of
cluster analysis. Divisive methods begin with a single cluster
composed of all of the data points, and seek to split this into
components. These further components are then split, and the
process is taken as far as necessary. Ultimately, of course, the
process will end with a partition in which each cluster consists of a
single point.

Monothetic divisive methods split clusters using one variable at a
time. This is a convenient (though restrictive) way to limit the
number of possible partitions that must be examined. It has the
attraction that the result is easily described by the dendrogram the
split at each node is defined in terms of just a single variable. The
term association analysis is sometimes uses to describe
monothetic divisive procedures applied to multivari ate binary data.

Polythetic divisive methods make splits on the basis of all of the
variables together. Any intercluster distance measure can be used.
The difficulty comes in deciding how to choose potential allocations
to clusters that is, how to restrict the search through the space of
possible partitions. In one approach, objects are examined one at a
time, and that one is selected for transfer from a main cluster to a
subcluster that leads to the greatest improvement in the clustering
score.
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In general, divisive methods are more computationally intensive
and tend to be less widely used than agglomerative methods.

9.6 Probabilistic Model-Based Clustering using
Mixture Models

This is often referred to as probabilistic model-based clustering
since there is an assumed probability model for each component
cluster. In this framework it is assumed that the data come from a
multivariate finite mixture model of the general form

o

flx) = Z ny o (s 6.}

k=1

where f, are the component distributions. Roughly speaking, the
general procedure is as follows: given a data set D = {x(1), ...,
x(n)}, determine how many clusters K we want to fit to the data,
choose parametric models for each of these K clusters (for
example, multivariate Normal distributions are a common choice),
and then use the EM algorithm to determine the component
parameters 6k and component probabilities n, from the data. (We
can of course also try to determine a good value of K from the
data, we will return to this question later in this section.) Typically
the likelihood of the data (given the mixture model) is used as the
score function, although other criteria (such as the so-called
classification likelihood) can also be used. Once a mixture
decomposition has been found, the data can then be assigned to
clusters for example, by assigning each point to the cluster from
which it is most likely to have come.

The advantages come at a certain cost. The main "cost" is the
assumption of a parametric model for each component; for many
problems it may be difficult a priori to know what distributional
forms to assume. Thus, model-based probabilistic clustering is
really only useful when we have reason to believe that the
distributional forms are appropriate. For our red blood cell data, we
can see by visual inspection that the normal assumptions are quite
reasonable. Furthermore, since the two measurements consist of
estimated means from large samples of blood cells, basic
statistical theory also suggests that a normal distribution is likely to
be quite appropriate.

The other main disadvantage of the probabilistic approach is the
complexity of the associated estimation algorithm. Consider the
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difference between EM and K-means. We can think of K-means as
a stepwise approximation to the EM algorithm applied to a mixture
model with Normal mixture components (where the covariance
matrices for each cluster are all assumed to be the identity matrix).
However, rather than waiting until convergence is complete before
assigning the points to the clusters; the K-means algorithm
reassigns them at each step.

The probabilistic clustering, consider the problem of finding the best
value for K from the data. Note that as K (the number of clusters)
is increased, the value of the likelihood at its maximum cannot
decrease as a function of K. Thus, likelihood alone cannot tell us
directly about which of the models, as a function of K, is closest to
the true data generating process. Moreover, the usual approach of
hypothesis testing (for example, testing the hypothesis of one
component versus two, two versus three, and so forth) does not
work for technical reasons related to the mixture likelihood.
However, a variety of other ingenious schemes have been
developed based to a large extent on approximations of theoretical
analyses. We can identify three general classes of techniques in
relatively widespread use:

Penalized Likelihood: Subtract a term from the maximizing value
of the likelihood. The BIC (Bayesian (Bayesian Information Criterion)
is widely used. Here

Serc{My) = 25L(0k; Mx) + dx logn

where SL(0« ; M) is the minimizing value of the negative log -
likelihood and dK is the number of parameters, both for a mixture

model with K components. This is evaluated from K = 1 up to some
Knax and the minimum taken as the most likely value of K. The
original derivation of BIC was based on asymptotic arguments in a
different (regression) context, arguments that do not strictly hold
for mixture modeling. Nonetheless, the technique has been found
to work quite well in practice and has the merit of being relatively
cheap to compute relative to the other methods listed below. In
figure 9.6 the negative of the BIC score function is plotted for the
red blood cell data and points to K = 2 as the best model (recall
that there is independent medical knowledge that the data belong
to two groups here, so this result is quite satisfying). There are a
variety of other proposals for penalty terms, but BIC appears to be
the most widely used in the clustering context.
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Figure 9.6: Log-Likelihood and BIC Score as a Function of the

Number of Normal Components Fitted to the Red Blood Cell Data
of Figure 9.11.

Resampling Techniques: We can use either bootstrap methods
or cross- validated likelihood using resampling ideas as another
approach to generate "honest" estimates of which K value is best.
These techniques have the drawback of requiring significantly
more computation than BIC for example, ten times more for the
application of ten-fold cross-validation. However, they do provide a
more direct assessment of the quality of the models, avoiding the
need for the assumptions associated with methods such as BIC.

Bayesian Approximations: The fully Bayesian solution to the
problem is to estimate a distribution p(K |D), that is, the probability
of each K value given the data, where all uncertainty about the
parameters is integrated out in the usual fashion. In practice, of
course, this integration is intractable (recall that we are integrating
in a dK -dimensional space) so various approximations are sought.
Both analytic approximations (for example, the Laplace
approximation about the mode of the posterior distribution) and
sampling techniques (such as Markov chain Monte Carlo) are
used. For large data sets with many parameters in the model,
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sampling techniques may be computationally impractical, so
analytic approximation methods tend to be more widely used. For
example, the AUTOCLASS algorithm of Cheese man and Stutz
(1996) for clustering with mixture models uses a specific analytic
approximation of the posterior distribution for model selection. The
BIC penalty-based score function can also be viewed as an
approximation to the full Bayesian approach.

In a sense, the formal probabilistic modeling implicit in mixture
decomposition is more general than cluster analysis. Cluster
analysis aims to produce merely a partition of the available data,
whereas mixture decomposition produces a description of the
distribution underlying the data (that this distribution is composed
of a number of components). Once these component probability
distributions have been identified, points in the data set can be
assigned to clusters on the basis of the component that is most
likely to have generated them. We can also look at another way:
the aim of cluster analysis is to divide the data into naturally
occurring regions in which the points are closely or densely
clustered, so that there are relatively sparse regions between the
clusters. From a probability density perspective, this will
correspond to regions of high density separated by valleys of low
density, so that the probability density function is fundamentally
multimodal. However, mixture distributions, even though they are
composed of several components, can well be unimodal.

Consider the case of a two-component univariate normal mixture.
Clearly, if the means are equal, then this will be unimodal. In fact, a
sufficient condition for the mixture to be unimodal (for all values of
the mixing proportions) when the means are different is | p1 - 42 |=
2 min(c,, o,). Furthermore, for every choice of values of the

means and standard deviations in a two-component normal mixture
there exist values of the mixing proportions for which the mixture is
unimodal. This means that if the means are close enough there will
be just one cluster, even though there are two components. We
can still use the mixture decomposition to induce a clustering, by
assigning each data point to the cluster from which it is most likely
to have come, but this is unlikely to be a useful clustering.
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10. Predictive Modeling for
Classification

Structure

10.1 A Brief Overview of Predictive Modeling

10.2 Introduction to Classification Modeling
10.2.1 Discriminative Classification and Decision Boundaries
10.2.2 Probabilistic Models for Classification
10.2.3 Building Real Classifiers

10.3 The Perceptron

10.4 Linear Discriminants

10.5 Tree Models

10.6 Nearest Neighbor Methods

10.7 Logistic Discriminant Analysis

10.8 The Naive Bayes Model

10.9 Other Methods

10.10 Evaluating and Comparing Classifiers

10.11 Feature Selection for Classification in High Dimensions

Objective

After going through this lesson, you should be able to:
» Discuss about a classification modeling;
» Discuss the perceptron and linear discriminants;
» Discuss different predictive models;

10.1 A Brief Overview of Predictive Modeling

Predictive modeling can be thought of as learning a mapping from
an input set of vector measurements x to a scalar output y (we can
learn mappings to vector outputs, but the scalar case is much more
common in practice). In predictive modeling the training data Dtrain
consists of pairs of measurements, each consisting of a vector x(i)
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with a corresponding "target" value y(i), 1 <i < n. Thus the goal of
predictive modeling is to estimate (from the training data) a
mapping or a function y = f(x; 6) that can predict a value y given
an input vector of measured values x and a set of estimated
parameters @ for the model f. f is the functional form of the model
structure, the 6s are the unknown parameters within f whose
values we will determine by minimizing a suitable score function on
the data, and the process of searching for the best 0 values is the
basis for the actual data mining algorithm. We thus need to choose
three things: a particular model structure (or a family of model
structures), a score function, and an optimization strategy for
finding the best parameters and model within the model family.

In data mining problems, since we typically know very little about
the functional form of f(x; 6) ahead of time, there may be
attractions in adopting fairly flexible functional forms or models for
f. On the other hand, simpler models have the advantage of often
being more stable and more interpretable, as well as often
providing the functional components for more complex model
structures. For predictive modeling, the score function is usually
relatively straightforward to define, typically a function of the
difference between the prediction of the model ¥(i)= f(x(ixe)and
the true value y(i) that is,

5@ = 3 d(y{fw{ﬂ)

Dirain

= ¥ a{ui.1tx(0)

DIFIII

where the sum is taken over the tuples (x(i), y(i)) in the training
data set D, and the function d defines a scalar distance such as
squared error for real -valued y or an indicator function for
categorical y. The actual heart of the data mining algorithm then
involves minimizing S as a function of 6; the details of this are
determined both by the nature of the distance function and by the
functional form of f(x; 6) that jointly determine how S depends
on 6.

To compare predictive models we need to estimate their
performance on "out-of-sample data" data that have not been used
in constructing the models (or else, as discussed earlier, the
performance estimates are likely to be biased). In this case we can
redefine the score function S(?) so that it is estimated on a
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validation data set, or via cross- validation, or using a penalized
score function, rather than on the training data directly).

10.2 Introduction to Classification Modeling

Here we briefly review some of the basic concepts. In classification
we wish to learn a mapping from a vector of measurements x to a
categorical variable Y. The variable to be predicted is typically
called the class variable (for obvious reasons), and for convenience
of notation we will use the variable C, taking values in the set {c,,
..., Cy} to denote this class variable for the rest of this chapter
(instead of using Y). The observed or measured variables X, ...,
X, are variously referred to as the features, attributes, explanatory
variables, input variables, and so on the generic term input variable
will be used throughout this chapter. We will refer to x as a p-
dimensional vector (that is, we take it to be comprised of p
variables), where each component can be real-valued, ordinal,
categorical, and so forth. x(i) is the jth component of the ith input
vector, where 1 =i =n, 1 = =p. In our introductory discussion we
will implicitly assume that we are using the so-called "0-1" loss
function, where a correct prediction incurs a loss of 0 and an
incorrect class prediction incurs a loss of 1 irrespective of the true
class and the predicted class.

We will begin by discussing two different but related general views
of classification: the decision boundary (or discriminative)
viewpoint, and the probabilistic viewpoint.

10.2.1 Discriminative Classification and Decision Boundaries

In the discriminative framework a classification model f(x; 0) takes
as input the measurements in the vector x and produces as output
a symbol from the set {c1, ..., cm}. Consider the nature of the
mapping function f for a simple problem with just two real- valued
input variables X1 and X2. The mapping in effect produces a
piecewise constant surface over the (X1, X2) plane; that is, only in
certain regions does the surface take the value c1. The union of all
such regions where a c1 is predicted is known as the decision
region for class c1; that is, if an input x(i) falls in this region its
class will be predicted as c1 (and the complement of this region is
the decision region for all other classes). Knowing where these
decision regions are located in the (X1, X2) plane is equivalent to
knowing where the decision boundaries or decision surfaces are

Mining Techniques

NOTES




235 Data

between the regions. Thus we can think of the problem of learning
a classification function f as being equivalent to learning decision
boundaries between the classes. In this context, we can begin to
think of the mathematical forms we can use to describe decision
boundaries, for example, straight lines or planes (linear
boundaries), curved boundaries such as low- order polynomials,
and other more exotic functions.

In most real classification problems the classes are not perfectly
separable in the X space. That is, it is possible for members of
more than one class to occur at some (perhaps all) values of X
though the probability that members of each class occur at any
given value x will be different. (It is the fact that these probabilities
differ that permits us to make a classification. Broadly speaking, we
assign a point x to the most probable class at x.) The fact that the
classes "overlap" leads to another way of looking at classification
problems. Instead of focusing on decision surfaces, we can seek a
function f(x; 6) that maximizes some measure of separation
between the classes. Such functions are termed discriminant
functions. Indeed, the earliest formal approach to classification,
Fisher's linear discriminant analysis method, was based on
precisely this idea: it sought that linear combination of the variables
in X that maximally discriminated between the (two) classes.

10.2.2 Probabilistic Models for Classification

Let p(c,) be the probability that a randomly chosen object or
individual i comes from class ck. Then >, p(c,) = 1, assuming that
the classes are mutually exclusive and exhaustive. This may not
always be the case for example, if a person had more than one
disease (classes are not mutually exclusive) we might model the
problem as set of multiple two -class classification problems
("disease 1 or not,” "disease 2 or not,” and so on). Or there might
be a disease that is not in our classification model (the set of
classes is not exhaustive), in which case we could add an extra
class ¢ +1 to the model to account for "all other diseases." Despite
these potential practical complications, unless stated otherwise we
will use the mutually exclusive and exhaustive assumption
throughout this chapter since it is widely applicable in practice and
provides the essential basis for probabilistic classification.

Imagine that there are two classes, males and females, and that
p(ck), k = 1, 2, represents the probability that at conception a
person receives the appropriate chromosomes to develop as male
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or female. The p(ck) are thus the probabilities that individual i
belongs to class ck if we have no other information (no
measurements x(i)) at all. The p(ck) are sometime referred to as
the class "prior probabilities,” since they represent the probabilities
of class membership before observing the vector x. Note that
estimating the p(ck) from data is often relatively easy: if a random
sample of the entire population has been drawn, the maximum
likelihood estimate of p(ck) is just the frequency with which ck
occurs in the training data set. Of course, if other sampling
schemes have been adopted, things may be more complicated.
For example, in some medical situations it is common to sample
equal numbers from each class deliberately, so that the priors have
to be estimated by some other means.

Objects or individuals belonging to class k are assumed to have
measurement vectors x distributed according to some distribution
or density function p(x|ck, 6k) where the 6k are unknown
parameters governing the characteristics of class ck. For example,
for multivariate real -valued data, the assumed model structure for
the x for each class might be multivariate Normal, and the
parameters Ok would represent the mean (location) and variance
(scale) characteristics for each class. the means are far enough
apart, and the variances small enough, we can hope that the
classes are relatively well separated in the input space, permitting
classification with very low misclassification (or error) rate. The
general problem arises when neither the functional form nor the
parameters of the distributions of the xs are known a priori.

Once the p(x|ck, 6k) distributions have been estimated, we can
apply Bayes theorem to yield the posterior probabilities

pixle, @)ples)
T p(Xler, Opler)

plee|x) = 5 L < k< m.

The posterior probabilities p(ck|x, 6k) implicitly carve up the input
space x into m decision regions with corresponding decision
boundaries. For example, with two classes (m = 2) the decision
boundaries will be located along the contours where p(ci|x, 61) =
p(c2|x, 62). Note that if we knew the true posterior class
probabilities (instead of having to estimate them), we could make
optimal predictions given a measurement vector x. For example,
for the case in which all errors incur equal cost we should predict
the class value ck that has the hig hest posterior probability p(ck|x)
(is most likely given the data) for any given x value. Note that this
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scheme is optimal in the sense that no other prediction method can
do better (with the given variables x) it does not mean that it
makes no errors. Ind eed, in most real problems the optimal
classification scheme will have a nonzero error rate, arising from
the overlap of the distributions p(x|ck, 6k). This overlap means
that the maximum class probability p(ck|x) < 1, so that there is a
non-zero probability 1-p(ck|x) of data arising from the other (less
likely) classes at x, even though the optimal decision at x is to
choose ck. Extending this argument over the whole space, and
averaging with respect to x (or summing over discrete-valued
variables), the Bayes Error Rate is defined as

Pp = f{l = m;ixp{rﬂx]l]p{xjdx,

This is the minimum possible error rate. No other classifier can
achieve a lower expected error rate on unseen new data. In
practical terms, the Bayes error is a lower -bound on the best
possible classifier for the problem.

Now consider a situation in which x is bivariate, and in which the
members of one class are entirely surrounded by members of the
other class. Here neither of the two X variables alone will lead to
classification rules with zero error rate, but (provided an
appropriate model was used) a rule based on both variables
together could have zero error rate. Analogous situations, though
seldom quite so extreme, often occur in practice: new variables
add information, so that we can reduce the Bayes error rate by
adding extra variables. While the Bayes error rate can only stay the
same or decrease if we add more variables to the model, in fact we
do not know the optimal classifier or the Bayes error rate. We have
to estimate a classification rule from a finite set of training data. If
the number of variables for a fixed number of training points is
increased, the training data are representing the underlying
distributions less and less accurately. The Bayes error rate may be
decreasing, but we have a poorer approximation to it. At some
point, as the number of variables increases, the paucity of our
approximation overwhelms the reduction in Bayes error rate, and
the rules begin to deteriorate.

The solution is to choose our variables with care; we need
variables that, when taken together, separate the classes well.
Finding appropriate variables (or a small number of features
combinations of variables) is the key to effective classification. This
is perhaps especially marked for complex and potentially very high
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dimensional data such as images, where it is generally
acknowledged that finding the appropriate features can have a
much greater impact on classification accuracy than the variability
that may arise by choosing different classification models. One
data-driven approach in this context is to use a score function such
as cross-validated error rate to guide a search through
combinations of features of course, for some classifiers this may be
very computationally intensive, since the classifier may need to be
retrained for each subset examined and the total number of such
subsets is combinatorial in p (the number of variables).

10.2.3 Building Real Classifiers

While this framework provides insight from a theoretical viewpoint,
it does not provide a prescriptive framework for classification
modeling. That is, it does not tell us specifically how to construct
classifiers unless we happen to know precisely the functional form
of p(x|ck) (which is rare in practice). We can list three fundamental

approaches:
1.The discriminative approach:

Here we try to model the decision boundaries directly that is, a
direct mapping from inputs x to one of m class label c1... cm. No
direct attempt is made to model either the class-conditional or
posterior class probabilities. Examples of this approach include
perceptions and the more general support vector machines.

2.The regression approach:

The posterior class probabilities p(ck|x) are modeled explicitly, and
for prediction the maximum of these probabilities (possibly
weighted by a cost function) is chosen. The most widely used
technique in this category is known as logistic regression. Note
that decision trees can be considered under either the
discriminative approach (if the tree only provides the predicted
class at each leaf) or the regression approach (if in addition the
tree provides the posterior class probability distribution at each
leaf).
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3.The class-conditional approach:

Here, the class-conditional distributions p(x|ck, 6k) are modeled
explicitly, and along with estimates of p(ck) are inverted via Bayes
rule to arrive at p(ck|x) for each class ck, a maximum is picked
(possibly weighted by costs), and so forth, as in the regression
approach. We can refer to this as a "generative" model in the
sense that we are specifying (via p(x|ck, €k)) precisely how the
data are generated for each class. Classifiers using this approach
are also sometimes referred to as "Bayesian" classifiers because
of the use of Bayes theorem, but they are not necessarily Bayesian
in the formal sense of Bayesian parameter estimation. In practice

the parameter estimates used in equation p(ck|x), by , are often
estimated via maximum likelihood for each class ck, and "plugged
in" to p(X|ck, 6k). There are Bayesian alternatives that average
over Ok. Furthermore, the functional form of p(x|ck, 6k) can be
quite general any of parametric (for example, Normal), semi-
parametric (for example, finite mixtures), or non-parametric (for
example, kernels) can be used to estimate p(x|ck, 6 k). In addition,
in principle, different model structures can be used for each class
c, (for example, class c, could be modeled as a Normal density,
class c, could be modeled as a mixture of exponentials, and class
C, could be modeled via a kernel density estimate).

Note that both the discriminative and regression approaches focus
on the differences between the classes (or, more formally, the
focus is on the probabilities of class membership conditional on the
values of x), whereas the class-conditional/generative approach
focuses on the distributions of x for the classes. Methods that
focus directly on the probabilities of class membership are
sometimes referred to as diagnostic methods, while methods that
focus on the distribution of the x values are termed sampling
methods. Of course, all of the methods are related. The class-
conditional/generative approach is related to the regression
approach in that the former ultimately produces posterior class
probabilities, but calculates them in a very specific manner (that is,
via Bayes rule), whereas the regression approach is unconstrained
in terms of how the posterior probabilities are modeled. Similarly,
both the regression and class- conditional/generative approaches
implicitly contain decision boundaries; that is, in "decision mode"
they map inputs x to one of m classes; however, each does so
within a probabilistic framework, while the "true" discriminative
classifier is not constrained to do so.
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10.3 The Perceptron

One of the earliest examples of an automatic computer-based
classification rule was the perceptron. The perceptron is an
example of a discriminative rule, in that it focuses directly on
learning the decision boundary surface. The perceptron model was
originally motivated as a very simple artificial neural network model
for the "accumulate and fire" threshold behavior of real neurons in
our brain.

In its simplest form, the perceptron model (for two classes) is just a
linear combination of the measurements in x. Thus, define h (x) =
2 WjXj, where the wj, 1 < j < p are the weights (parameters) of the
model. One usually adds an additional input with constant value 1
to allow for an additional trainable offset term in the operation of
the model. Classification is achieved by comparing h (x) with a
threshold, which we shall here take to be zero for simplicity. If all
class 1 points have h (x) > 0 and all class 2 points have h (x) < 0,
we have perfect separation between the classes. We can try to
achieve this by seeking a set of weights such that the above
conditions are satisfied for all the points in the training set. This
means that the score function is the number of misclassification
errors on the training data for a given set of weights wi, ..., wp+1.
Things are simplified if we transform the measurements of our
class 2 points, replacing all the xj by -xj . Now we simply need a
set of weights for which h (x) > 0 for all the training set points.

The weights wj are estimated by examining the training points
sequentially. We start with an initial set of weights and classify the
first training set point. If this is correctly classified, the weights
remain unaltered. If it is incorrectly classified, so that h (x) < 0, the
weights are updated, so that h (x) is increased. This is easily
achieved by adding a multiple of the misclassified vector to the
weights. That is, the updating rule is w = w+Axj. Here A is a small
constant. This is repeated for all the data points, cycling through
the training set several times if necessary. It is possible to prove
that if the two classes are perfectly separable by a linear decision
surface, then this algorithm will eventually fin d a separating
surface, provided a sufficiently small value of A is chosen. The
updating algorithm is reminiscent of the gradient descent
techniques, although it is actually not calculating a gradient here
but instead is gradually reducing the error rate score function.
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Of course, other algorithms are possible, and others are indeed
more attractive if the two classes are not perfectly linearly
separable as is often the case. In such cases, the misclassification
error rate is rather difficult to deal with analytically (since it is not a
smooth function of the weights), and the squared error score
function is often used instead:

" Pt 2
Siw) = Z(Z wiz (i) = y[.r']) .

i=1 ‘=1

Since this is a quadratic error function it has a single global
minimum as a function of the weight vector w and is relatively
straightforward to minimize. Numerous variations of the basic
perceptron idea exist, including (for example) extensions to handle
more than two classes. The appeal of the perceptron model is that
it is simple to understand and analyze. However, its applicability in
practice is limited by the fact that its decision boundaries are linear
(that is, hyperplanes in the input space X) and real world
classification problems may require more complex decision
surfaces for low error rate classification.

10.4 Linear Discriminants

The linear discriminant approach to classification can be conside
red a "cousin" of the perceptron model within the general family of
linear classifiers. It is based on the simple but useful concept of
searching for the linear combination of the variables that best
separates the classes. Again, it can be regarded an exam ple of a
discriminative approach, since it does not explicitly estimate either
the posterior probabilities of class membership or the class-
conditional distributions. Fisher presents one of the earliest
treatments of linear discriminant analysis (for the two -class case).
Let C be the pooled sample covariance matrix defined as

C= : (“‘lél + ﬂzﬁz) )

ny + Ra

where nj is the number of training data points per class, and C:i are
the p x p sample (estimated) covariance matrices for each class, 1
< i £ 2. To capture the notion of separability along any p-
dimensional vector w , Fisher defined a scalar score function as
follows:
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wl iy —wl i

Stw) = wTCw

where #. and Iz are the p x 1 mean vectors for x for data from
class 1 and class 2 respectively. The top term is the difference in
projected means for each class, which we wish to maximize. The
denominator is the estimated pooled variance of the projected data
along direction w and takes into account the fact that the different
variables xj can have both different individual variances and
covariance with each other.

Given the score function S(w ), the problem is to determine the
direction w that maximizes this expression. In fact, there is a
closed form solution for the maximizing w, given by:

Wiga = C7'{jiy = jia).

A new point is classified by projecting it onto the maximally
separating direction, and classifying x to class 1 if

1
Wil (x - 5tin —;1:1) > log ;Ej’;

where p(c1) and p(c2) are the respective class probabilities.

In the special case in which the distributions within each class have
a multivariate Normal distribution with a common covariance
matrix, this method yields the optimal classification rule as in
equation p(ck|x) (and, indeed, it is optimal whenever the two
classes have ellipsoidal distributions with equal quadratic forms).
Note, however, that since w,, was determined without assuming
Normality, the linear discriminant methodology can often provide a
useful classifier even when Normality does not hold. Note also that
if we approach the linear discriminant analysis method from the
perspective of assumed forms for the underlying distributions, the
method might be more appropriately viewed as being based on the
class-conditional distribution approach, rather than on the
discriminative approach.

A variety of extensions to Fisher's original linear discriminant model
have been developed. Canonical discriminant functions generate m
- 1 different decision boundaries (assuming m - 1 < p) to handle
the case where the number of classes m > 2. Quadratic
discriminant functions lead to quadratic decision boundaries in the
input space when the assumption that the covariance matrices are
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equal is relaxed. Regularized discriminant analysis shrinks the
quadratic method toward a simpler form.

Determining the linear discriminant model has computational

complexity O(mpzn). Here we are assuming that n >> {p, m} so
that the main cost is in estimating the class covariance matrices C;j,
1 <i <m. All of these matrices can be found with at most two linear
scans of the database (one to get the means and one to generate

the O(p2) covariance matrix terms). Thus the method scales well
to large numbers of observations, but is not particularly reliable for
large numbers of variables, as the dependence (in terms of the
number of parameters to be estimated) on p, the number of
variables, is quadratic.

10.5 Tree Models

The basic principle of tree models is to partition (in a recursive
manner) the space spanned by the input variables to maximize a
score of class purity meaning (roughly, depending on the particular
score chosen) that the majority of points in each cell of the partition
belong to one class. Thus, for example, with three input variables,
X, Y, and z, one might split x, so that the input space is divided into
two cells. Each of these cells is then itself split into two, perhaps
again at some threshold on x or perhaps at some threshold on y or
z. This process is repeated as many times as necessary (see
below), with each branch point defining a node of a tree. To predict
the class value for a new case with known values of input
variables, we work down the tree, at each node choosing the
appropriate branch by comparing the new case with the threshold
value of the variable for that node.

Tree models have been around for a very long time, although
formal methods of building them are a relatively recent innovation.
Before the development of such methods they were constructed on
the basis of prior human understanding of the underlying
processes and phenomena generating the data. They have many
attractive properties. They are easy to understand and explain.
They can handle mixed variables (continuous and discrete, for
example) with ease since, in their simplest form, trees partition the
space using binary tests (thresholds on real variables and subset
membership tests on categorical variables). They can predict the
class value for a new case very quickly. They are also very flexible,
so that they can provide a powerful predictive tool. However, their
essentially sequential nature, which is reflected in the way they are
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constructed, can sometimes lead to suboptimal partitions of the
space of input variables.

The basic strategy for building tree models is simplicity itself: we
simply recursively split the cells of the space of input variables. To
split a given cell (equivalently, to choose the variable and threshold
on which to split the node) we simply search over each possible
threshold for each variable to find the threshold split that leads to
the greatest improvement in a specified score function. The score
iIs assessed on the basis of the training data set elements. If the
aim is to predict to which one of two classes an object belongs, we
choose the variable and threshold that leads to the greatest
average improvement to the local score (averaged across the two
child nodes). Splitting a node cannot lead to a deterioration in the
score function on the training data. For classification it turns out
that using classification error directly is not a useful score function
for selecting variables to split on. Other more indirect measures
such as entropy have been found to be much more useful. Note
that, for ordered variables, a binary split simply corresponds to a
single threshold on the variable values. For nominal variables, a
split corresponds to partitioning the variable values into two
subsets of values.

In principle, this splitting procedure can be continued until each leaf
node contains a single training data point or, in the case when
some training data points have identical vectors of input variables
(which can happen if the input variables are categorical) continuing
until each leaf node contains only training data points with identical
input variable values. However, this can lead to severe over fitting.
Better trees (in the sense that they lead to better predictions on
new data drawn from the same distributions) can typically be
obtained by not going to such an extreme (that is, by constructing
smaller, more parsimonious trees).

Early work sought to achieve this by stopping the growing process
before the extreme had been reached. However, this approach
suffers from a consequence of the sequential nature of the
procedure. It is possible that the best improvement that can be
made at the next step is only very small, so that growth stops,
while the step after this could lead to substantial improvement in
performance. The "poor" step might be necessary to set things up
so that the next step can make a substantial improvement. There is
nothing specific to trees about this, of course. It is a general
disadvantage of sequential methods: precisely the same applies to
the stepwise regression search algorithms which is why more
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sophisticated methods involving stepping forward and backward
have been developed. Similar algorithms have evolved for tree
methods.

Nowadays a common strategy is to build a large tree to continue
splitting until some termination criterion has been reached in each
leaf (for example the points in a node all belong to one class or all
have the same x vector) and then to prune it back. That is, at each
step the two leaf nodes are merged that lead to least reduction in
predictive performance on the training set. Alternatively, measures
such as minimum description length or cross-validation are used to
trade off goodness of fit to the training data against model
complexity.

Two other strategies for avoiding the problem of over fitting the
training set are also fairly widely used. The first is to average the
predictions obtained by the leaves and the nodes leading to the
leaves. The second, which has attracted much attention recently,
Is to base predictions on the averages of several trees, each one
constructed by slightly perturbing the data in some way. Such
model averaging methods are, in fact, generally suitable for all
predictive modeling situations. Model averaging works particularly
well with tree models since trees have relatively high variance in
the following sense: a tree can be relatively sensitive to small
changes in the training data since a slight perturbation in the data
could lead to a different root node being chosen and a completely
different tree structure being fit. Averaging over multiple
perturbations of the data set (e.g., averaging over trees built on
bootstrap samples from the training data) tends to counteract this
effect by reducing variance.

The most common class value among the training data points at a
given leaf node (the majority class) is typically declared as the
predicted label for any data points that arrive at this leaf. In effect
the region in the input space defined by the branch leading to this
node is assigned the label of the most likely class in the region.
Sometimes useful information is contained in the overall probability
distribution of the classes in the training data at a given leaf. Note
that for any particular class, the tree model produces probabilities
that are in effect piecewise-constant in the input space, so small
changes in the value of an input variable could send a data point
down different branches (into a different leaf or region) with
dramatically different class probabilities.
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When seeking the next best split while building a large tree prior to
pruning, the algorithm searches through all variables and all
possible splits on those variables. For real -valued variables the
number of possible positions for splits is typically taken to be n' - 1
(that is, one less than the number of data points n' at each node),

each possible position being |ocated halfway between two data
points (putting them halfway between is not necessarily optimal,
but has the virtue of simplicity). The computational complexity of
finding the best splits among p real -valued variables will typically
scale as O(pn' log n') if it is carried out in a direct manner. The n'

log n' term results from having to sort the variable values at the

node in order to calculate the score function: for any threshold we
need to know how many points are above and below that
threshold. For many score functions we can show that the optimal
threshold for ordered variables must be located between two
values of the variable that have different class labels. This fact can
be used to speed up the search, particularly for large numbers of
data points. In addition, various bookkeeping efficiencies can be
taken advantage of to avoid resorting as we proceed from node to
node. For categorical valued variables, some form of combinatorial
search must be conducted to find the best subset of variable
values for defining a split.

From a database viewpoint, tree growing can be an expensive
procedure. If the number of data points at a node exceeds the
capacity of main memory, then the function must operate with a
cache of data in main memory and the rest in secondary memory.
A brute force implementation will result in linear scans of the
database for each node in the tree, resulting in a potentially very
slow algorithm. Thus, when we use tree algorithms with data that
exceeds the capacity of main memory, we typically either use
clever tree algorithms whose data management strategy is tailored
to try to minimize secondary memory access, or we resort to
working with a random sample that can fit in main memory.

One disadvantage of the basic form of tree is that it is monothetic:
each node is split on just one variable. Sometimes, in real
problems, the class variable changes most rapidly with a
combination of input variables. For example, in a classification
problem involving two input variables, it might be that one class is
characterized by having low values on both variables while the
other has high values on both variables. The decision surface for
such a problem would lie diagonally in the input variable space.
Standard methods would try to achieve this by multiple splits,
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ending up with a staircase like approximation to this diagonal
decision surface. Figure 10.1 provides a simple illustration of this
effect. The optimum, of course, would be achieved by using a
threshold defined on a linear combination of the input variables and
some extensions to tree methods do just this, permitting linear
combinations of the raw input variables to be included in the set of
possible variables to be split. Of course, this complicates the
search process required for building the tree.
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Figure 10.1: Decision Boundary for a Decision Tree for the Red
Blood Cell Data from Chapter 9, Composed of "Axis-Parallel"
Linear Segments.

10.6 Nearest Neighbor Methods

At their basic level, nearest neighbor methods are very
straightforward: to classify a new object, with input vector y, we
simply examine the k closest training data set points to y and
assign the object to the class that has the majority of points among
these k. Close is defined here in terms of the p - dimensional input
space. Thus we are seeking those objects in the training data that
are most similar to the new object, in terms of the input variables,
and then classifying the new object into the most heavily
represented class among these most similar objects.
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In theoretical terms, we are taking a small volume of the space of
variables, centered at x, and with radius the distance to the k th
nearest neighbor. Then the maximum likelihood estimators of the
probability that a point in this small volume belongs to each class
are given by the proportion of training points in this volume that
belong to each class. The k- nearest neighbor method assigns a
new point to the class that has the largest estimated probability.
Nearest neighbor methods are essentially in the class of what we
have termed '"regression” methods they directly estimate the
posterior probabilities of class membership.

Of course, this simple outline leaves a lot unsaid. In particular, we
must choose a value for k and a metric through which to define
close. The most basic form takes k = 1, but this makes a rather
unstable classifier (high variance, sensitive to the data), and the
predictions can often be made more consistent by increasing k
(reduces the variance, but may increase the bias of the method
since there is more averaging). However, increasing k means that
the training data points now being included are not necessarily very
close to the object to be classified. This means that the "small
volume" may not be small at all. Since the estimates are estimates
of the average probability of belonging to each class in this volume,
this may deviate substantially from the value at any particular point
within the volume and this deviation is likely to be larger as the
volume is larger. The dimensionality p of course plays an important
role here: for a fixed number of data points n we increase p (add
variables) the data become more and more sparse. This means
that the predicted probability may be biased from the true
probability at the point in question.

We are back at the ubiquitous issue of the bias/variance trade-off,
where increasing k reduces variance but may increase bias. There
is theoretical work on the best choice of k, but since this will
depend on the particular structure of the data set, as well as other
general issues, the best strategy for choosing k seems to be a
data-adaptive one: try various values, plotting the performance
criterion (the misclassification rate, for example) against k , to find
the best. In following this approach, the evaluation must be carried
out on a data set independent of the training data (or else the usual
problem of overoptimistic results ensues). However, for smaller
data sets it would be unwise to reduce the size of the training data
set too much by splitting off too large a test set, since the best
value of k clearly depends on the number of points in the training
data set. A leaving -one-out cross-validated score function is often
a useful strategy to follow, particularly for small data sets.
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Many applications of nearest neighbor methods adopt a Euclidean
metric: if y is the input vector for the point to be classified, and x is
the input vector for a training set point, then the Euclidean distance

between them is j(xj - yj)2. The problem with this is that it does
not provide an explicit measure of the relative importance of the
different input variables. We could seek to overcome this by using

2 i Wil -y )%, where the wj are weights. This seems more
complicated than the Euclidean metric, but the appearance that
the Euclidean metric does not require a choice of weights is
illusory.

This is easily seen simply by changing the units of measurement of
one of the variables before calculating the Euclidean metric. (An
exception to this is when all variables are measured in the same
unitsas, for example, with situations where the same variable is
measured on several different occasions so-called repeated
measures data.)

In the two-class case, an optimal metric would be one defined in
terms of the contours of probability of belonging to class c, that is,
P(c1|x). Training data points on the same contour as y have the
same probability of belonging to class c1 as does a point at y, so
no bias is introduced by including them in the k nearest neighbors.
This is true no matter how far from y they are, provided they are on
the contour. In contrast, points close to y but not on the contour of
P(c1|x) through y will have different probabilities of belonging to
class c1, so including them among the k will tend to introduce bias.
Of course, we do not know the positions of the contours. If we did,
we would not need to undertake the exercise at all. This means
that, in practice, we estimate approximate contours and base the
metrics on these. Both global approaches (for example estimating
the classes by multivariate Normal distributions) and local
approaches (for example iterative application of nearest neighbor
methods) have been used for finding approximate contours.

Nearest neighbor methods are closely related to the kernel
methods for density estimation. The basic kernel method defines a
cell by a fixed bandwidth and calculates the proportion of points
within this cell that belong to each class. This means that the
denominator in the proportion is a random variable. The basic
nearest neighbor method fixes the proportion (at k/n) and lets the
"bandwidth" be a random variable. More sophisticated extensions
of both methods (for example, smoothly decaying kernel functions,
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differential weights on the nearest neighbor points according to
their distance from x, or choice of bandwidth that varies according
to x) often lead to methods that are barely distinguishable in
practice.

The nearest neighbor method has several attractive properties. It is
easy to program and no optimization or training is required. Its
classification accuracy can be very good on some problems,
comparing favorably with alternative more exotic methods such as
neural networks. It permits easy application of the reject option, in
which a decision is deferred if we are not sufficiently confident
about the predicted class. Extension to multiple classes is
straightforward (though the best choice of metric is not so clear
here). Handling missing values (in the vector for the object to be
classified) is simplicity itself: we simply work in the subspace of
those variables that are present.

From a theoretical perspective, the nearest neighbor method is a
valuable tool: as the design sample size increases, so the bias of
the estimated probability will decrease, for fixed k . If we can
contrive to increase k at a suitable rate (so that the variance of the
estimates also decreases), the misclassification rate of a nearest
neighbor rule will converge to a value related to the Bayes error
rate. For example, the asymptotic nearest neighbor
misclassification rate (the rate as the number of data points n goes
to 8) is bounded above by twice the Bayes error rate.

High-dimensional applications cause problems for all methods.
Essentially such problems have to be overcome by adopting a
classification rule that is not so flexible that it over fits the data,
given the large opportunity for over fitting provided by the many
variables. Parametric models of superficially restricted form (such
as linear methods) often do well in such circumstances. Nearest
neighbor methods often do not do well.

With large numbers of variables (and not correspondingly large
numbers of training data cases) the nearest k points are often quite
far in real terms. This means that fairly gross smoothing is induced,
smoothing that is not related to the classification objectives. The
consequence is that nearest neighbor methods can perform poorly
in problems with many variables.

In addition, theoretical analyses suggest potential problems for
nearest neighbor methods in high dimensions. Under some
distributional conditions the ratio of the distance to the closest point
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and the distance to the most distant point, from any particular x
point, approaches 1 as the number of dimensions grows. Thus the
concept of the nearest neighbor becomes more or Iless
meaningless. However, the distributional assumptions needed for
this result are relatively strong, and other more realistic
assumptions imply that the notion of nearest neighbor is indeed
well defined.

A potential drawback of nearest neighbor methods is that they do
not build a model, relying instead on retaining all of the training
data set points (for this reason, they are sometimes called "lazy"
methods). If the training data set is large, searching through them
to find the k nearest can be a time-consuming process. Specifically
it can take O(np) per query data point if performed in brute force
manner, visiting each of the n training data points and performing p
operations to calculate the distance to each. From a memory
viewpoint, the method requires us to store the full training data set
of size np. Both the time and storage requirements make the direct
approach impractical for applications involving very large values of
n and/or real-time classification (for example, real-time
recommendation of a product to a visitor at a Web site using a
nearest neighbor algorithm to find similar individuals from a
database with millions of customers). A variety of methods have
been developed for accelerating the search and reducing the
memory demands of the basic approach. For example, branch and
bound methods can be applied: if it is already known that at least k
points lie within a distance d of the point to be classified, then a
training set point is not worth considering if it lies within a distance
d of a point already known to be further than 2d from the point to
be classified. This involves preprocessing the training data set.
Other preprocessing methods discard certain training data points.
For example, condensed nearest neighbor and reduced nearest
neighbor methods selectively discard design set points so that
those remaining still correctly classify all other training data points.
The edited nearest neighbor method discards isolated points from
one class that are in dense regions of another class, smoothing out
the empirical decision surface in this manner. The gains in speed
and memory from these methods depend in general on a variety of
factors: the values of n and p, the nature of the particular data set
at hand, the particular technique used, and trade-offs between time
and memory.

An alternative method for scaling up nearest neighbor methods for
large data sets in high dimensions is to use clustering to obtain a
grouping of the data. The data points are stored on disk according
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to their membership in clusters. When finding the nearest point for
input point y, the clusters nearest to y are located and search
confined to those clusters. With high probability, under fairly broad
assumptions, this method can produce the true nearest neighbor.

10.7 Logistic Discriminant Analysis

For the two-class case, one of the most widely used basic methods
of classification based on the regression perspective is logistic
discriminant analysis. Given a data point x, the estimated
probability that it belongs to class c1 is

1
plerfx) = 1 +exp(Fx)
Since the probabilities of belonging to the two classes sum to one,
by subtraction, the probability of belonging to class 2 is

_exp('x)
P{fﬂlx}— ].+F."K|J|:_.'.'I;K}L

By inverting this relationship, it is easy to see that the logarithm of
the odds ratio is a linear function of the xj. That is,

Plealx) _
kel A
This approach to modeling the posterior probabilities has several
attractive properties. For example, if the distributions are
multivariate normal with equal covariance matrices, it is the optimal
solution. Furthermore, it is also optimal with discrete x variables if
the distributions can be modeled by log -linear models with the
same interaction terms. These two optimality properties can
combine, to yield an attractive model for mixed variables (that is,
discrete and continuous) types.

Fisher's linear discriminant analysis method is also optimal for the
case of multivariate normal classes with equal covariance matrices.
If the data are known to be sampled from such distributions, then
Fisher's method is more efficient. This is because it makes explicit
use of this information, by modeling the covariance matrix,
whereas the logistic method sidesteps this. On the other hand, the
more general validity of the logistic method (no real data is ever
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exactly multivariate normally distributed) means that this is
generally preferred to linear discriminant analysis nowadays. The
word nowadays here arises because of the algorithms required to
compute the parameters of the two models. The mathematical
simplicity of the linear discriminant analysis model means that an
explicit solution can be found. This is not the case for logistic
discriminant analysis, and an iterative estimation procedure must
be adopted. The most common such algorithm is a maximum
likelihood approach, based on using the likelihood as the score
function.

10.8 The Naive Bayes Model

In principle, methods based on the class-conditional distributions in
which the variables are all categorical are straightforward: we
simply estimate the probabilities that an object from each class will
fall in each cell of the discrete variables (each possible discrete
value of the vector variable X), and then use Bayes theorem to
produce a classification. In practice, however, this is often very
difficult to implement because of the sheer number of probabilities

that must be estimated O(k P) for p k-valued variables. For example,
with p = 30 and bigg}ary varigbles (k = 2) we would need to estimate

i

on the order of 2 # 10 probabilities. Assuming (as a rule of
thumb) that we should have at least 10 data points for every
parameter we estimate (where here the parameters in our model
are the probabilities spel%ifying the joint distribution), we would

need on the order of 10 data points to accurately estimate the
required joint distribution. For m classes (m > 2) we would need m
times this number. As p grows the situation clearly becomes
impractical.

We can always simplify any joint distribution by making appropriate
independence assumptions, essentially approximating a full table

of kP probabilites by products of much smaller tables. At an
extreme, we can assume that all the variables are conditionally
independent, given the classesthat is, that

r
plx|ex) = plzy, ..., Tplex) = l-‘[;.l1'|1:_,-|c_i‘}~ l<k<m

i=1

This is sometimes referred to as the Naive Bayes or first-order
Bayes assumption. The approximation allows us to approximate

the full conditional distribution requiring O(kp) probabilities with a
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product of univariate distributions, requiring in total O(kp)
probabilities per class. Thus the conditional independence model is
linear in the number of variables

p rather than being exponential. To use the model for classification
we simply use the product form for the class-conditional
distributions, yielding the Naive Bayes classifier. The reduction in
the number of parameters by using the Naive Bayes model above
comes at a cost: we are making a very strong independence
assumption. In some cases the conditional independence
assumption may be quite reasonable. For example, if the Xj are
medical symptoms, and the ck are different diseases, then it may

(perhaps) be reasonable to assume that given that a person has
disease ck, the probability of any one symptom depends only on
the disease ck and not on the occurrence of any other symptom. In
other words, we are modeling how symptoms appear, given each
disease, as having no interactions (note that this does not mean
that we are assuming marginal (unconditional) independence). In
many practical cases this conditional independence assumption
may not be very realistic. For example, let x1 and x2 be measures
of annual income and savings total respectively for a group of
people, and let ck represent their creditworthiness, this being
divided into two classes: good and bad. Even within each class we
might expect to observe dependence between x1 and x2, because
it is likely that people who earn more also save more. Assuming
that two variables are independent means, in effect, that we will
treat them as providing two distinct pieces of information, which is
clearly not the case in this example.

Although the independence assumption may not be a realistic
model of the probabilities involved, it may still permit relatively
accurate classification performance. There are various reasons for
this, including: the fact that relatively few parameters are estimated
implies that the variance of the estimates will be small; although
the resulting probability estimates may be biased, since we are not
interested in their absolute values but only in their ranked order,
this may not matter; often a variable selection process has already
been undertaken, in which one of each pair of highly correlated
variables has been discarded; the decision surface from the naive
Bayes classifier may coincide with that of the optimal classifier.

Apart from the fact that its performance is often surprisingly good,
there is another reason for the popularity of this particularly simple
form of classifier. Using Bayes theorem, our estimate of the
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probability that a point with measurement vector x will belong to the
kth class is

plerlx) oo p(x|ex)ples)

FI
= ples) [] plesles) 1<k <m

=1

by conditional independence. Now let us take the log -odds ratio
and assume that we have just two classes c1 and c2. After some

straightforward manipulation we get

p(e1x) pler) plzjlel)
| =] | :
& tealn) ~ % plen) T 2 aglen)

Thus the log odds that a case belongs to class c1 are given by a

simple sum of contributions from the priors and separate
contributions from each of the variables. This additive form can be

08 (p(x)|cy))
quite useful for explanation purposes since each term ! x5lez)

, can be viewed as contributing a positive or negative additive
contribution to whether c1 is c2 is more likely.

The naive Bayes model can easily be generalized in many different
directions. If our measurements xj are real-valued we can still
make the conditional independence assumption, where now we
have products of estimated univariate densities, instead of
distributions. For any real-valued xj we can estimate f(Xxj|ck) using
any of our favorite density estimation techniques for example,
parametric models such as a Normal density, more flexible models
such as a mixture, or a non-parametric estimate such as a kernel
density function. Combinations of real-valued and discrete
variables can be handled simply by products of distributions and
densities in equation p(c, |x)above.

Despite the simplicity of the form of equations above, the decision
surfaces can be quite complicated and are certainly not constrained
to be linear (e.g., the multivariate Normal naive Bayes model
produces quadratic boundaries in general), in contrast to the linear
surfaces produced by simple weighted sums of raw variables (such
as those of the perceptron and Fisher's linear discriminant). The
simplicity, parsimony, and interpretability of the naive Bayes model
have led to its widespread popularity, particularly in the machine
learning literature.
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We can generalize the model equally well by including some but
not all dependencies beyond first-order. One can imagine
searching for higher order dependencies to allow for selected
"significant” pair wise dependencies in the model (such as p(x,
xk|ck), and then triples, and so forth). In doing so we are in fact
building a general graphical model for the conditional distribution
p(x|ck). However, the conventional wisdom in practice is that such
additions to the model often provide only limited improvements in
classification performance on many data sets, once again
underscoring the difference between building accurate density
estimators and building good classifiers.

Finally we comment on the computational complexity of the naive
Bayes classifier. Since we are just using (in effect) additive models
based on simple functions of univariate densities, the complexity
scales roughly as pm times the complexity of the estimation for
each of the individual univariate class-dependent densities or
distributions. For discrete valued variables, the sufficient statistics
are simple counts of the number of data points in each bin, so we
can construct a naive Bayes classifier with just a single pass
through the data. A single scan is also sufficient for parametric
univariate density models of real- valued variables (we just need to
collect the sufficient statistics, such as the mean and the variance
for Normal distributions). For more complex density models, such
as mixture models, we may need multiple scans to build the model
because of the iterative nature of fitting such density functions.

10.9 Other Methods

A huge number of predictive classification methods have been
developed in recent years. Many of these have been powerful and
flexible methods, in response to the exciting possibilities offered by
modern computing power. We have outlined some of these,
showing how they are related. Many other methods also exist, but
in just one chapter of one book it is not feasible to do justice to all
of them. Furthermore, development and invention have not ended.
Exciting work continues even as we write. Examples of methods
that we have not had space to cover are:

e Mixture models and radial basis function approaches
approximate each class- conditional distribution by a mixture of
simpler distributions (for example, multivariate Normal
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distributions). Even the use of just a few component
distributions can lead to a function that is surprisingly effective
in modeling the class-conditional distributions.

Feed-forward neural networks are a generalization of
perceptrons. Sometimes they are called multi-layer perceptrons.
The first later generates hi linear terms, each a weighted
combination of the p inputs (in effect, h1 perceptrons). The hi
terms are then non-linearly transformed (the logistic function is
a popular choice) and the process repeated through multiple
layers. The nonlinearity of the transformations permits highly
flexible decision surface shapes, so that such models can be
very effective for some classification problems. However, their
fundamental nonlinearity means that estimation is not
straightforward and iterative techniques (such as hill-climbing)
must be used. The computational complexity of the estimation
process means that such methods may not be particularly
useful with large data sets.

Projection pursuit methods can be viewed as a "cousin" of
neural networks. They can be shown, mathematically, to be just
as powerful, but they have the advantage that the estimation is
more straightforward. They again consist of linear combinations
of nonline ar transformations of linear combinations of the raw
variables. However, whereas neural networks fix the
transformations, in projection pursuit they are data-driven.

Just as neural networks emerged from early work on the
perceptron, so also did support vec tor machines. The early
perceptron work assumed that the classes were perfectly
separable, and then sought a suitable separating hyperplane.
The best generalization performance was obtained when the
hyperplane was as far as possible from all of the data points.
Support vector machines generalize this to more complex
surfaces by extending the measurement space, so that it
includes transformations (combinations) of the raw variables. A
linear decision surface that perfectly separates the data in this
enhanced space is equivalent to a nonlinear decision surface
that perfectly separates the data in the original raw
measurement space. A distinct feature of this approach is the
use of a unique score function, namely the "margin,” which
attempts to optimize the loc action of the linear decision
boundary between the two classes in a manner that is likely to
lead to the best possible generalization performance. Practical
experience with such methods is rapidly improving, but
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estimation can be slow since it involves solving a complicated

optimization problem that can require O(n2) storage and O(n3)
time to solve.

Frequently in classification a very flexible model is fitted, and after
that it is smoothed in some way to avoid over fitting (or the two
processes occur simultaneously), and thus a suitable compromise
between bias and variance is obtained. This is manifest in pruning
of trees, in weight decay techniques for fitting neural networks, in
regularization in discriminant analysis, in the "flatness" of support
vector machines, and so on. A rather different strategy, that has
proven highly effective in predictive modeling, is to estimate
several (or many) models and to average their predictions, as with
averaging multiple tree classifiers. This approach clearly has
conceptual similarities to the Bayesian model averaging approach,
which explicitly regards the parameters of a model (or the model
itself) as being uncertain and then averages over this uncertainty
when making a prediction. Whereas model averaging has its
natural origins in statistics, the similar approach of majority voting
among classifiers has its natural origins in machine learning. Yet
other ways of combining classifiers are also possible; for example,
we can regard the output of classifiers as inputs to a higher level
classifier. In principle, any type of predictive classification model
can be used at each stage. Of course, parameter estimation will
generally not be easy.

A question that obviously arises with the model averaging strategy
is: how to weight the different contributions to the average how
much weight should each individual classifier be accorded? The
simplest strategy is to use equal weights, but it seems obvious that
there may be advantages to permitting the use of different weights
(not least because equal weights are a special case of this more
general model). Various strategies have been suggested for finding
the weights, including letting them depend on the predictive
performance of the individual model and on the relative complexity
of the model. The method of boosting can also be viewed as a
model averaging method. Here a succession of models is built,
each one being trained on a data set in which points misclassified
by the previous model are given more weight. This has obvious
similarities to the basic error correction strategy used in early
perceptron algorithms. Recent research has provided empirical
and theoretical evidence suggesting that boosting can be a highly
effective data-driven strategy for building flexible predictive
models.
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10.10 Evaluating and Comparing Classifiers

This chapter has discussed predictive classification models models
for predicting the likely class members hip of a new object, based
on a series of measurements on that object. There are many
different methods available, so a perfectly reasonable question is
"which particular method we should use for a given problem?"
Unfortunately, there is no general answer to this question. Choice
must depend on features of the problem, the data, and the
objectives. We can be aware of the properties of the different
methods, and this can help us make a choice, but theoretical
properties are not always an effective guide to practical
performance (the effectiveness of the independence Bayes model
illustrates this). Of course, differences in expected and observed
performance serve as a stimulus for further theoretical work,
leading to deeper understanding.

If practical results sometimes confound the state of current
understanding, we must often resort to empirical comparison of
performance to guide our choice of method. There has been a
huge amount of work on the assessment and evaluation of
classification rules. Much of this work has provided an initial test
bed for enhanced understanding in other areas of model building.
This section provides a brief introduction to assessing the
performance of classification models.

We have so far referred to the error rate or misclassification rate of
classification models the proportion of future objects that the rule is
likely to incorrectly classify. We defined the Bayes error rate as the
optimal error rate the error rate that would result if our model were
based on the true distribution functions underlying the data. In
practice, of course, these functional forms must be selected a priori
(or the alternative discriminative or regression approaches used,
and their parameters estimated), so that the model is likely to
depart from the optimal. In this case, the model has a true or actual
error rate (which can be no smaller than the Bayes error rate). The
true error rate is sometimes called the conditional error rate,
because it is conditioned on the given training data set.

We will need ways to estimate this true error rate. One obvious
way to do this is to reclassify the training data and see what
proportion was misclassified. This is the apparent or resubstitution
error rate. Unfortunately, this is likely to underestimate the future
proportion misclassified. This is because the predictive model has
been built so that it does well, in some sense, on the training data.
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(It would be perverse, to say the least, deliberately to choose a
model that did poorly on the training data!) Since the training data
is merely a sample from the distributions in question, it will not
perfectly reflect these distributions. This means that our model may
well reflect part of the data- specific aspects of the training data.
Thus, if the training data are reclassified, a higher proportion will be
correctly classified than would be the case for future data points.

We have already discussed this phenomenon in different contexts.
Many ways have been proposed to overcome it. One
straightforward possibility is to estimate future error rate by
calculating the proportion misclassified in a new sample a test set.
This is perfectly fine apart from the fact that, if a test set is
available, we might more fruitfully use it to make a larger training
data set. This will permit a more accurate predictive classification
model to be constructed. It seems wasteful to ignore part of the
data deliberately when we construct the model, unless of course n
is very large and we are confident that training on (say) one million
data points (keeping another million for testing) is just about as
good as training on the full two million.

When our data size is more moderate, various cross-validation
approaches have been suggested, in which some small portion
(say, one tenth) of the data is left out when the rule is constructed,
and then the rule is evaluated on the part that was left out. This
can be repeated, with different parts of the data being omitted.
Important methods based on this principle are:

e the leaving-one -out method, in which only one point is left
out at each stage, but each point in turn is left out, so that
we end up with a test set of size equal to that of the entire
training set, but where each single point test set is
independent of the model it is tested on. Other methods use
larger fractions of the data for the test sets (for example, one
tenth of the entire data set) but these are more biased than
the leaving-one-out method as estimates of the future
performance of the model based on the entire data set.

e bootstrap methods, of which there are several. These
model the relationship between the unknown true
distributions and the sample by the relationship between the
sample and a subsample of the same size drawn, with
replacement, from the sample. In one method, this
relationship is used to correct the bias of the resubstitution
error rate. Some highly sophisticated variants of bootstrap
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methods have been developed and they are the most
effective methods known to date. Jackknife methods are
also based on leaving one training set element out at a time
(as in cross-validation), but are equivalent to an
approximation to the bootstrap approach.

There are many other methods of error rate estimation. Error rate
treats the misclassification of all objects as equally serious.
However, this is often (some argue almost always) unrealistic.
Often, certain kinds of misclassification are more serious than other
kinds. For example, misdiagnosing a patient with a curable but
otherwise lethal disease as suffering from some minor illness is
more serious than the reverse. In this case, we may want to attach
costs to the different kinds of misclassification. In place of simple
error rate, then, we seek a model that will minimize overall loss.

These ideas generalize readily enough to the multiple-class case.
Often it is useful to draw up a confusion matrix, a cross-
classification of the predicted class against the true class. Each cell
of such a matrix can be associated with the cost of making that
particular kind of misclassification (or correct classification, in the
case of the diagonal of the matrix) so that overall loss can be
evaluated.

Unfortunately, costs are often difficult to determine. When this is
the case, an alternative strategy is to integrate over all possible
values of the ratio of one cost to the other (for the two-class case
generalizations are possible for more than two classes). This
approach leads to what is known as the Gini co-efficient of
performance. This measure is equivalent to the test statistic used
in the Mann -Whitney -Wilcoxon statistical test for comparing two
independent samples, and is also equivalent to the area under a
Receiver Operating Characteristic or ROC curve (a plot of the
estimated proportion of class 1 objects correctly classified as class
1 against the estimated proportion of class 2 objects incorrectly
classified as class 1). ROC curves and the areas under them are
widely used in some areas of research. They are not without their
interpretation problems, however.

Simple performance of classification models is but one aspect of
the choice of a method. Another is how well the method matches
the data. For example, some methods are better suited to discrete
X variables, and others to continuous x, while others work with
either type with equal facility. Missing values, of course, are a
potential (and, indeed, ubiquitous) problem with any method. Some
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methods can handle incomplete data more readily than others. The
independence Bayes method, for example, handles such data very
easily, whereas Fisher's linear discriminant analysis approach does
not. Things are further complicated by the fact that data may be
missing for various reasons, and that the reasons can affect the
validity of the model built on the incomplete data.

10.11 Feature Selection for Classification in High
Dimensions

An important issue that often confronts data miners in practice is
the problem of having too many variables. Simply put, not all
variables that are measured are likely to be necessary for accurate
discrimination and including them in the classification model may
in fact lead to a worse model than if they were removed. Consider
the simple example of building a system to discriminate between
images of male and female faces (a task that humans perform
effortlessly and relatively accurately but that is quite challenging
for an image classification algorithm). The colors of a person's
eyes, hair, or skin are hardly likely to be useful in this discriminative
context. These are variables that are easy to measure (and indeed
are general characteristics of a person's appearance) but carry
little information as to the class identity in this particular case.

In most data mining problems it is not so obvious which variables
are (or are not) relevant. For example, relating a person's
demographic characteristics to online purchasing behavior may be
quite subtle and may not necessarily follow the traditional patterns
(consider a hypothetical group of high-income PhD -educated
consumers who spend a lot of money on comic books if they exist,
a comic-book retailer would like to know!). In data mining we are
particularly interested in letting the data speak, which in the context
of variable selection means using data-adaptive methods for
variable

selection (while noting as usual that should useful prior knowledge
be available to inform us about which variables are clearly
irrelevant to the task, then by all means we should use this
information).

Where we outlined some general strategies that we briefly review
here:

e Variable Selection: The idea here is to select a subset p' of
the original p variables. Of course we don't know in advance
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what value of p' will work well or which variables should be
included, so there is a combinatorially large search space of
variable subsets that could be considered. Thus most
approaches rely on some form of heuristic search through
the space of variable subsets, often using a greedy
approach to add or delete variables one at a time. There are
two general approaches here: the first uses a classification
algorithm that automatically performs variable selection as
part of the definition of the basic model, the classification
tree model being the best-known example. The second
approach is to use the classifier as a "black box" and to
have an external loop (or "wrapper") that systematically
adds and subtracts variables to the current subset, each
subset being evaluated on the basis of how well the
classification model performs.

e Variable Transformations: The idea here is to transform
the original measurements by some linear or nonlinear
function via a preprocessing step, typically resulting in a
much smaller set of derived variables, and then to build the
classifier on this transformed set.

Summary

Descriptive models as described in simply summarize data in
convenient ways or in ways that we hope will lead to increased
understanding of the way things work. In contrast, predictive models
have the specific aim of allowing us to predict the unknown value of a
variable of interest given known values of other variables. Examples
include providing a diagnosis for a medical patient on the basis of a
set of test results, estimating the probability that customers will buy
product A given a list of other products they have purchased, or
predicting the value of the Dow Jones index six months from now,
given current and past values of the index.

We described in detail predictive models in which the variable to be
predicted (the response variable) was a nominal variable that is, it
could take one of only a finite (and typically small) number of values
and these values had no numerical significance, so that they were
simply class identifiers. In this chapter we turn to predictive models in
which the response variable does have numerical significance.
Examples are the amount a retail store might earn from a given
customer over a ten-year period, the rate of fuel consumption of a
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given type of car under normal conditions, the number of people who
might access a particular Web site in a given month, and so on. The
variables to be used as input for prediction will be called predictor
variables and the variable to be predicted is the response variable.
Other authors sometimes use the terms dependent or target for the
response variable, and independent, explanatory, or regressor for the
predictor variables. Other names used in the classification context
were mentioned. Note that the predictor variables can be numerical,
but they need not be. Our aim, then, is to use a sample of objects, for
which both the response variable and the predictor variables are
known, to construct a model that will allow prediction of the numerical
value of the response variable for a new case for which only the
predictor variables are known.. In fact, as we will see later in this
chapter, we can also treat prediction of nominal variables (that is,
classification) within this general framework of regression.

Reference
1. Hand D, Mannila H. Smith P: Principles of Data Mining (PHI).

2. Pujari A: Data Mining Techniques, University Press (orient
Longman.
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UNIT -V

11. Predictive Modeling for Regression

Structure

11.1 Introduction
11.2 Linear Models and Least Squares Fitting
11.2.1 Computational Issues in Fitting the Model
11.2.2 A Probabilistic Interpretation of Linear Regression
11.2.3 Interpreting the Fitted Model
11.2.4 Inference and Generalization
11.2.5 Model Search and Model Building
11.2.6 Diagnostics and Model Inspection
11.3 Generalized Linear Models
11.4 Artificial Neural Networks
11.5 Other Highly Parameterized Models
11.5.1 Generalized Additive Models
11.5.2 Projection Pursuit Regression

Objective

After going through this lesson, you should be able to:

> Discuss about a linear models and least squares fitting;
» Discuss generalized linear models;
> Discuss artificial neural networks;

11.1 Introduction

In this lesson we turn to predictive models in which the response
variable does have numerical significance. Examples are the
amount a retail store might earn from a given customer over a ten-
year period, the rate of fuel consumption of a given type of car
under normal conditions, the number of people who might access a
particular Web site in a given month, and so on. The variables to
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be used as input for prediction will be called predictor variables and
the variable to be predicted is the response variable. Other authors
sometimes use the terms dependent or target for the response
variable, and independent, explanatory, or regressor for the
predictor variables. Note that the predictor variables can be
numerical, but they need not be. Our aim, then, is to use a sample
of objects, for which both the response variable and the predictor
variables are known, to construct a model that will allow prediction
of the numerical value of the response variable for a new case for
which only the predictor variables are known.

Accuracy of prediction is one of the most important properties of
such models, so various measures of accuracy have been devised.
These measures may also be used for choosing between
alternative models, and for choosing the values of parameters in
models. In the terminology introduced earlier, these measures are
score functions, by which different models may be compared.

Predictive accuracy is a critical aspect of models, but it is not the
only aspect. For example, we might use the model to shed insight
into which of the predictor variables are most important. We might
even insist that some variables be included in the model, because
we know they should be there on substantive grounds, even
though they lead to only small predictive improvement.
Contrariwise, we might omit variables that we feel would enhance
our predictive performance. (An example of this situation arises in
credit scoring, in which, in many countries, it is illegal to include sex
or race as a predictor variable.) We might be interested in whether
predictor variables interact, in the sense that the effect that one
has on the response variable depends on the values taken by
others. For obvious reasons, we might be interested in whether
good prediction can be achieved by a simple model. Sometimes
we might even be willing to sacrifice some predictive accuracy in
exchange for substantially reduced model complexity. Though
predictive accuracy is perhaps the most important component of
the performance of a predictive model, this has to be tempered by
the context in which the model is to be applied.

11.2 Linear Models and Least Squares Fitting

The idea of linear models they are linear in the parameters. The
simplest such model yields predicted values, y, of the response
variable y, that are also a linear combination of the predictor
variables X
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In fact, of course, we will not normally be able to predict the
response variable perfectly (life is seldom so simple) and a
common aim is to predict the mean value that y takes at each
vector of the predictor variables so vy, is our predicted estimate of
the mean value at x = (x1, ..., Xp). Models of this form are known
as linear regression models. In the simplest case of a single
predictor variable (simple regression), we have a regression line in
the space spanned by the response and predictor variables. More
generally (multiple regression) we have a regression plane. Such
models are the oldest, most important, and single most widely used
form of predictive model. One reason for this is their evident
simplicity; a simple weighted sum is very easy both to compute and
to understand. Another compelling reason is that they often
perform very well even in circumstances in which we know enough
to be confident that the true relationship between the predictor and
response variables cannot be linear. This is not altogether
surprising: when we expand continuous mathematical functions in
a Taylor series we often find that the lowest order terms the linear
terms are the most important, so that the best simple approximation
is obtained by using a linear model.

It is extremely rare that the chosen model is exactly right. This is
especially true in data mining situations, where our model is
generally empirical rather than being based on an underlying
theory. The model may not include all of the predictor variables that
are needed for perfect prediction (many may not have been
measured or even be measurable); it may not include certain
functions of the predictor variables (maybe *iis needed as well as
X1, or maybe products of the predictor variables are needed
because they interact in their effect on y); and, in any case, no
measurement is perfect; the y variable will have errors associated
with it so that each vector (x1, ..., xp) will be associated with a

distribution of possible y values, as we have noted above.

All of this means that the actual y values in a sample will differ
from the predicted values. The differences between observed and
predicted values are called residuals, and we denote these by e:

B
yi) =y +el =+ ) ax+el), 1s<i<n
j=1
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In matrix terms, if we denote the observed y measurements on the
n objects in the training sample by the vector y and the p
measurements of the predictor variables on the n objects by the n
by p + 1 matrix X (an additional column of 1s are added to
incorporate the intercept term ag in the model), we can express the
relationship between the observed response and predictor
measurements, in terms of our model, as

vy =Xa+e,

where y is an n x 1 matrix of response values, a = (a0, ..., ap)
represents the (p+1) x 1 vector of parameter values, and the n x 1
vector e = (e(1), ..., e(n)) contains the residuals. Clearly we want to
choose the parameters in our model (the values in the p + 1 vector
a) so as to yield predictions that are as accurate as possible. Put
another way, we must find estimates for the aj that minimize the e
discrepancies in some way. To do this, we combine the elements of
e in such a way as to yield a single numerical measure that we can
minimize. Various ways of combining the e(i) have been proposed,
but by far the most popular method is to sum their squares that is,
the sum of squared errors score function. Thus we seek the values
for the parameter vector a that minimizes

n m P ?
Ylei*=3" (ym - qurj{ﬂ)
i=1

i=1 j=0

In this expression, y(i) is the observed y value for the ith training
sample point and

(xo(), x1(i), ..., Xp(®) = (L, x2 (@), --., xp(i))

is the vector of predictor variables for this point. For obvious
reasons, this method is known as the least squares method. For
simplicity, we will denote the parameter vector that minimizes this
by (@0, ..., ap). (It would be more correct, of course, if we used
some notation to indicate that it is an estimate, such as (ao, ..., ap),
but our notation has the merit of simplicity.) In matrix terms, the

el(i)®
values of the parameters that minimize equation =1 can be
shown to be

a=(X'X) I}{"},r'.
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In linear regression in general, the parameters are called
regression coefficients.

11.2.1 Computational Issues in Fitting the Model

Solving equation a directly requires that the matrix XX be
invertible. Problems will arise if the sample size n is small (rare in
data mining situations) or if there are linear dependencies between
the measured values of the predictor variables (not so rare). In the
latter case, modern software packages normally issue warnings,
and appropriate action can be taken, such as dropping some of the
predictor variables.

A rather more subtle problem arises when the measured values of
the predictor variables are not exactly linearly dependent, but are
almost so. Now the matrix can be inverted, but the solution will be
unstable. This means that slight alterations to the observed X
values would lead to substantial differences in the estimated values
of a. Different measurement errors or a slightly different training
sample would have led to different parameter estimates. This
problem is termed multicollinearity. The instability in the estimated
parameters is a problem if these values are the focus of interest for
example, if we want to know which of the variables is most
important in the model. However, it will not normally be a problem
as far as predictive accuracy is concerned: although substantially
different a vectors may be produced by slight variations of the data,
all of these vectors will lead to similar predictions for most xk

vectors.

Solving equation a is usually carried out by numerical linear
algebra techniques for equation solving (such as the LU
decomposition or the singular value decomposition (SVD)), which
tend to have better numerical stability than that achieved by

inverting the matrix xT x directly. The underlying computational
complexity is typically the same no matter which particular

technique is used, namely, O(p2n + p3). The p2 n term comes from
the n multiplications required to calculate each element in the p x p

matrix C = X' X. The p3 term comes from then solving Ca = xT y
for a.

In lesson 6 we remarked that the additive nature of the regression
model could be retained while permitting more flexible model forms
by including transformations of the raw xj as well as the raw
variables themselves. Figure 11.1 shows a plot of data collected in
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an experiment in which a subject performed a physical task at a
gradually increasing level of difficulty. The vertical axis shows a
measure on the gases expired from the lungs while the horizontal
axis shows the oxygen uptake. The nonlinearity of the relationship
between these two variables is quite clear from the plot. A straight
line y = ap + a1x provides a poor fitas is shown in the figure. The

predicted values from this model would be accurate only for x
(oxygen uptake) values just above 1000 and just below 4000.
(Despite this, the model is not grossly inaccurate the point made
earlier about models linear in x providing reasonable
approximations is clearly true.) However, the model y = ag + aix +

a2x2 gives the fitted line shown in figure 11.2. This model is still
linear in the parameters, so that these can be easily estimated
using the same standard matrix manipulation shown above in
equation a. It is clear that the predictions obtained from this model
are about as good as they can be. The remaining inaccuracy in the
model is the irreducible measurement error associated with the
variance of y about its mean at each value of x.
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Figure 11.1: Expired ventilation plotted against oxygen uptake in a
series of trials, with fitted straight line.
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Figure 11.2: The data from figure 11.1 with a model that includes
a term in x2.

11.2.2 A Probabilistic Interpretation of Linear Regression

This informal data analytic route allows us to fit a regression model
to any data set involving a response variable and a set of predictor
variables, and to obtain a vector of estimated regression
coefficients. If our aim were merely to produce a convenient
summary of the training data (as, very occasionally, it is) we could
stop there. However, this chapter is concerned with predictive
models. Our aim is to go beyond the training data to predict y
values for other "out -of-sample” objects. Goodness of fit to the
given data is all very well, but we are really interested in fit to future
data that arise from the same process, so that our future
predictions are as accurate as possible. In order to explore this, we
need to embed the model-building process in a more formal
inferential context. To do this, we suppose that each observed
vr;tlue y(i ) is produced as a sum of weighted predigtor variables

a x(i) and a random term (i ) that follows a N(O, s ) distribution

independent of other values. (Note that implicit in this is the

assumption that the variances of the random terms are all the
2

same s is the same for all possible values of the vector of predictor
variables. We will discuss this assumption further below.) The n x 1
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random vector Y thus takes the form Y = Xa +e. The observed n x
1 y vector is a realization from this distribution. The components of
the n x 1 vector are often called errors. Note that they are different
from the residuals, e. An "error" is a random realization from a
given distribution, whereas a residual is a difference between a
fitted model and an observed y value. Note also that is different
from a. a is represents the underlying and unknown truth, whereas
a gives the values used in a model of the truth.

It turns out that within this framework the least squares estimate a
is also the maximum likelihood estimate of a. Furthermore, the

covariance matrix of the estimate a obtained above is (XT X)'laz,
where this covariance matrix expresses the uncertainty in our
parameter estimates a. In the case of a single predictor variable,
this gives

i -——-f“i? 2
alzli)=2) ) n

for the variance of the intercept term and

i
o=

3o lz(i) — 2)°

for the variance of the slope. Here £  is the sample mean of the
single predictor variable. The diagonal elements of the covariance
matrix for a above give the variances of the regression coefficients
which can be used to test whether the individual regression
coefficients are significantly different from zero. If vj is the jth
a.
diagonal element of O(T X)'laz, then the ratio v can be
compared with a t(n - p - 1) distribution to see whether the
regression coefficient is zero. However, as we discuss below, this
test makes sense only in the context of the other variables included
in the model, and alternative methods, also discussed below, are
available for more elaborate model-building exercises. If x is the
vector of predictor variables for a new object, with predicted y value

y, then the variance of y is xT(XT X)'lxa 2 With one predictor
£+ (x—x)°
variable, this reduces to 7 Zlx(=li) - x)F . Note that this

variance is greater the further x is from the mean of the training
sample. That is, the least accurate predictions, in terms of variance,
are those in the tails of the distribution of predictor variables. Note
also that confidence intervals based on this variance are
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confidence values for the predicted value of y.

We may also be interested in (what are somewhat confusingly
called) prediction intervals, telling us a range of plausible values for
the observed y at a given value of x, not a range of plausible values
for the predicted value. Prediction intervals must include the
uncertainty arising from our prediction and also that arising from
the variability of y about our predicted value. This mearzls that the

variance above is increased by an extra term s , vyielding
1 (x —x)?

—t o

o iy — x)s

11.2.3 Interpreting the Fitted Model

The coefficients in a multiple regression model can be interpreted
as follows: if the jth predictor variable, Xj, is increased by one unit,
while all the other predictor variables are kept fixed, then the
response variable y will increase by aj. The regression coefficients
thus tell us the conditional effect of each predictor variable,
conditional on keeping the other predictor variables constant. This
is an important aspect of the interpretation. In particular, the size of
the regression coefficient associated with the jth variable will
depend on what other variables are in the model. This is clearly
especially important if we are constructing models in a sequential
manner: add another variable and the coefficients of those already
in the model will change. (There is an exception to this. If the
predictor variables are orthogonal, then the estimated regression
coefficients are unaffected by the presence or absence of others in
the model. However, this situation is most common in designed
experiments, and is rare in the kinds of secondary data analyses
encountered in data mining.) The sizes of the regression
coefficients tell us the relative importance of the variables, in the
sense that we can compare the effects of unit changes. Note also
that the size of the effects depends on the chosen units of
measurement for the predictor variables. If we measure x1 in
kilometers instead of millimeters, then its associated regression
coefficient will be multiplied by a million. This can make
comparisons between variables difficult, so people often work with
standardized variables measuring each predictor variable relative to
its standard deviation. We used the sum of squared errors between
the predictions and the observed y values as a criterion through
which to cho ose the values of the parameters in the model. This is
the residual sum of squares or the sum of squared
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e(i)? = E (y(i)—y(i))

residuals, ' . In a sense, the worst model
would be obtained if we simply predicted all of the y values by the
value ¥ the mean of the sample of y values that is constant relative
to the x values (thus effectively ignoring the inputs to the model
and always guessing the output to be the mean of y). The total sum

of squares is defined as the sum of squared errors for this worst

I_ ‘_Ii,FI__lJI —_ ‘_Ii,?'l__ 1JI _I

model Z . The difference between the residual sum of
squares from a model and the total sum of squares is the sum of
squares that can be attributed to the regression for that model it is
the regression sum of squares. This is the sum of squared

differences of the predicted values, ¥li), from the overall mean,

¥ (@) - v 2

. The symbol R is often used for the "multiple
correlation coefficient,” the ratio of the regression sum of squares
to total sum of squares:

it = D) = 9’
So(wli) — p)*

A value near 1 tells us that the model explains most of the y
variation in the data. The number of independent components
contributing to each sum of squares is called the number of
degrees of freedom for that sum of squares. The degrees of
freedom for the total sum of squares is n - 1 (one less than the
sample size, since the components are all calculated relative to the
mean). The degrees of freedom for the residual sum of squares is
n -1 - p (although there are n terms in the summation, p + 1
regression coefficients are calculated). The degrees of freedom for
the regression sum of squares are p, the difference between the
total and residual degrees of freedom. These sums of squares and
their associated degrees of freedom are usefully put together in an
analysis of variance table, as in table 11.1, summarizing the
decomposition of the totals into components. The meaning of the
final column is described below.

Table 11.1: The Analysis of Variance Decomposition Table for a
Regression

Degree
Source of
. Sum of squares of Mean square
variation
freedom
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S (560 - FOY

P > (F0) - o)
Regression PP Ip
residual Z \yi =y n-p-1
total . PP
._‘_‘,FLI,'—"_‘,?LI,' _.I
n-1 z ' /(n-p-1

; _ 2
Zu:_ yii)—¥(i))

11.2.4 Inference and Generalization

We have already noted that our real aim in building predictive
models is one of inference: we want to make statements
(predictions) about objects for which we do not know the y values.
This means that goodness of fit to the training data is not our real
objective. In particular, for example, merely because we have
obtained nonzero estimated regression coefficients, this does not
necessarily mean that the variables are related: it could be merely
that our model has captured chance idiosyncrasies of the training
sample. This is particularly relevant in the context of data mining
where many models may be explored and fit to the data in a
relatively automated fashion. As discussed earlier, we need some
way to test the model, to see how easily the observed data could
have arisen by chance, even if there was no structure in the
population the data were collected from. In this case, we need to
test whether the population regression coefficients are really zero.
(Of course, this is not the only test we might be interested in, but it
is the one most often required.) It can be shown that if the values of
aj are actually all zero (and still making the assumption that the €i)

are independently distributed as N(O, 02)),

»olwli) —9)*/p
2wl =)/ (n—p—1)

has an F(p, n - p - 1) distribution. This is just the ratio of the two
mean squares given in table 11.1. The test is carried out by
comparing the value of this ratio with the upper critical level of the
F(p, n - p - 1) distribution. If the ratio exceeds this value the test is
significant and we would conclude that there is a linear relationship
between the y and nxj variables (or that a very unlikely event has
occurred). If the ratio is less than the critical value we have no
evidence to reject the null hypothesis that the population regression
coefficients are all zero.
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11.2.5 Model Search and Model Building

We have described an overall test to see whether the regression
coefficients in a given model are all zero. However, we are more
often involved in a situation of searching over model space or
model building in which we examine a sequence of models to find
one that is "best" in some sense. In particular, we often need to
examine the effect of adding a set of predictor variables to a set
we have already included. Note that this includes the special case
of adding just one extra variable, and that the idea is applied in
reverse, it can also handle the situation of removing variables from
a model.

In order to compare models we need a score function. Once again,
the obvious one is the sum of squared errors between the
predictions and the observed y values. Suppose we are comparing
two models: a model with p predictor variables (model M) and the
largest model we are prepared to contemplate, with q variables
(these will include all the untransformed predictor variables we
think might be relevant, along with any transformations of them we
think might be relevant), model M*. Each of these models will have
an associated residual sum of squares, and the difference between
them will tell us how much better the larger model fits the data than
the smaller model. (Equivalently, we could calculate the difference
between the regression sums of squares. Since the residual and
regression sum of squares sum to the total sum of squares, which
is the same for both models, the two calculations will yield the
same result.) The degrees of freedom associated with the
difference between the residual sums of squares for the two
models is q - p, the extra number of regression coefficients
computed in fitting the larger model, M*. The ratio between the
difference of the residual sums of squares and the difference of
degrees of freedom again gives us a mean sguare now a mean
square for the difference between the two models. Comparison of
this with the residual mean

square for model M* gives us an F -test of whether the difference
between the models is real or not. Table 11.2 illustrates this
extension. From this table, the ratio

(SS(M*) - .x'.*;(:tf]]] / [{5.*;(';'] — SS(M*))
(4 —p) (n—q—1)

is compared with the critical value of an F(q - p, n - g - 1)
distribution.
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Table 11.2: The Analysis of Variance Decomposition Table for Model
Building.

Source of Degree of
iati Sum of squares Mean square
variation freedom
Regression
model 1 SS(M) P SS(M)/p
Regression full « .
model SSM) g SS(M)/p
Difference SS(M") - SS(M) g-p SS(M ;];. _— pss.jm;.
Residual SS(T) - SS(M*) n-g-1 5S( ::I—_q S_S;M )
Total SS(T) n-1

This is fine if we have just a few models we want to compare, but
data mining problems are such that often we need to rely on
automatic model building processes. Such automatic methods are
available in most modern data mining computer packages. There
are various strategies that may be adopted. A basic form is a
forward selection method, in which variables are added one at a
time to an existing model. At each step that variable is chosen from
the set of potential variables that leads to the greatest increase in
predictive power (measured in terms of reduction of sum of
squared residuals), provided the increase exceeds some specified
threshold. Ideally, the addition would be made as long as the inc
rease in predictive power was statistically significant, but in
practice this is complicated to ensure: the variable selection
process necessarily involves carrying out many tests, not all
independent, so that computing correct significance values is a
nontrivial process. The simple significance level based on table
11.2 does not apply when multiple dependent tests are made. (The
implication of this is that if the significance level is being used to
choose variables, then it is being used as a score function, and
should not be given a probabilistic interpretation.)

We can, of course, in principle use any of the score functions
discussed for model selection in regression, such as BIC, minimum
description length, cross validation, or more Bayesian methods.
These provide an alternative to the hypothesis- testing framework
that measures the statistical significance of adding and deleting
terms on a model-by-model basis. Penalized score functions such
as BIC, and variations on cross-validation tailored specifically to
regression, are commonly used in practice as score functions for
model selection in regression.
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A strategy opposite to that of forward selection is backward
elimination. We begin with the most complex model we might
contemplate (the "largest model,” M* above) and progressively
eliminate variables, selecting them on the basis that eliminating
them leads to the least increase in sum of squared residuals
(again, subject to some threshold). Other variants include
combinations of forward selection and backward elimination. For
example, we might add two variables, eliminate one, add two, and
remove one, and so on. For data sets where the number of
variables p is very large, it may be much more practical
computationally to build the model in the forward direction than in
the backward direction. Stepwise methods are attempts to restrict
the search of the space of all possible sets of predictor variables,
so that the search is manageable. But if the search is restricted, it
is possible that some highly effective combination of variables may
be overlooked. Very occasionally (if the set of potential predictor
variables is small), we can examine all possible sets of variables

(although, with p variables, there are (2P - 1) possible subsets).
The size of problems for which all possible subsets can be
examined has been expanded by the use of strategies such as
branch and bound, which rely on the monotonicity of the residual
sum of squares criterion.

A couple of cautionary comments are worth making here. First, as
we have noted, the coefficients of variables already in the model
will generally change as new variables are added. A variable that
is important for one model may become less so when the model is
extended. Second, as we have discussed in earlier chapters, if too
elaborate a search is carried out there is a high chance of over
fitting the training set that is, of obtaining a model that provides a
good fit to the training set (small residual sum of squares) but does
not predict new data very well.

11.2.6 Diagnostics and Model Inspection

Although multiple regressions are a very powerful and widely used
technique, some of the assumptions might be regarded as
restrictive. The assumption that the variance of the vy distribution is
the same at each vector x is often inappropriate. (This assumption
of equal variances is called homoscedasticity. The converse is
heteroscedasticity.) For example, figure 11.3 shows the normal
average January minimum temperature (in deg F) plotted against
the latitude (deg N) for 56 cities in the United States. There is
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evidence that, for smaller latitudes, at least, the variance of the
temperature increases with increasing latitude (although the mean
temperature seems to decrease). We can still apply the standard
least squares algorithm above to estimate parameters in this new
situation (and the resulting estimates would still be unbiased if the
model form were correct), but we could do better in the sense that
it is possible to find estimators with smaller variance.
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Figure 11.3: Temperature (degrees f) against latitude (degrees n)
for 56 cities in the United States.

To do this we need to modify the basic method. Essentially, we
need to arrange things so that those values of x associated with y
values with larger variance are weighted less heavily in the model
fitting process. This makes perfect sense it means that the
estimator is more influenced by the more accurate values.
Formally, this idea leads to a modification of the solution equation
a. Suppose that the covariance matrix of the nx1 random vector €

is the n x n matrix o 2V (previously we took V = 1). The case of
unequal variances means that V is diagonal with terms that are not
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all equal. Now it is possible (see any standard text on linear
algebra) to find a unique nonsingular matrix P such that P"P=V we

1

can use this to define a new random vector f = P ~¢, and it is easy

to show that the covariance matrix of fis o 2, Using this idea, we

form a new model by pre-multiplying the old one by p-1.
P'Y =P 'Xa+P ¢
Or Z=Wg34f,

now of the form required to apply the standard least squares
algorithm. If we do this, and then convert the solution back into the
original variables Y, we obtain:

a= (XTVIX)XV-ly,

a weighted least squares solution. The variance of this estimated
parameter vector a is (XTV'1X)'1G 2,

Unequal variances of the y distributions for different x vectors is
one way in which the assumptions of basic multiple regression can
break down. There are others. What we really need are ways to
explore the quality of the model and tools that will enable us to
detect where and why the model deviates from the assumptions.
That is, we require diagnostic tools. In simple regression, where
there is only one predictor variable, we can see the quality of the
model from a plot of y against x (see figures 11.1, 11.2and 11.3).
More generally, however, when there is more than one predictor
variable, such a simple plot is not possible, and more sophisticated
methods are needed. In general, the key features for examining
the quality of a regression model are the residuals, the components
of the vector e = y - y. If there is a pattern to these, it tells us that
the model is failing to explain the distribution of the data. Various
plots involving the residuals are used, including plotting the
residuals against the fitted values, plotting standardized residuals
(obtained by dividing the residuals by their standard errors) against
the fitted values, and plotting the standardized residuals against
standard normal quintiles. (The latter are "normal probability plots."
If the residuals are approximately normally distributed, the points in
this plot should lie roughly on a straight line.) Of course,
interpreting some of the diagnostic plots requires practice and
experience.

One general cautionary comment, applies to all predictive models:
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such models are valid only within the bounds of the data. It can be
very risky to extrapolate beyond the data. A very simple example is
given in figure 11.4. This shows a plot of the tensile strength of
paper plotted against the percentage of hardwood in the pulp from
which the paper was made. But suppose only those samples with
pulp values between 1 and 9 had been measured. The figure
shows that a straight line would provide quite a good fit to this
subset of the data. For new samples of paper, with pulp values
lying between 1 and 9, quite good prediction of the strength could
legitimately be expected. But the figure also shows, strikingly
clearly, that our model would produce predictions that were
seriously amiss if we used it to predict the strength of paper with
pulp values greater than 9. Only within the bounds of our data is
the model trustworthy. These examples are particularly clear but
they involve just a few data points and a single predictor variable.
In data mining applications, with large data sets and many
variables, things may not be so clear. Caution needs to be
exercised when we make predictions.
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Figure 11.4: A plot of tensile strength of paper against the
percentage of hardwood in the pulp.

11.3 Generalized Linear Models

Section 11.2 described the linear model, in which the response
variable was decomposed into two parts: a weighted sum of the
predictor variables and a random component: Y (i) = jajxj(i)+ €(i).
For inferential purposes we also assumed that the ¢€i )were

independently distributed as N(O, 02). We can write this another
way, which permits convenient generalization, splitting the
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description of the model into three parts:

i. The Y (i) are independent random variables, with distribution
N((), o 2).

ii. The parameters enter the model in a linear way via the sum v(i)

= 3 ajx(i).
iii. The v(i) and (i) are linked by v(i) = p().

This permits two immediate generalizations, while retaining the
advantages of the linear combination of the parameters. First, in (i)
we can relax the requirement that the random variables follow a
normal distribution. Second, we can generalize the link expressed
in (iii), so that some other link function g(u(i)) = v(i) relates the
parameter of the distribution to the linear term v(i) = > ajxj(i). These
extensions result in what are called generalized linear models.
They are one of the most important advances in data analysis of
the last two decades. As we shall see, such models can also be
regarded as fundamental components of feed forward neural
networks.

One of the most important kinds of generalized linear model for
data mining is logistic regression. We have already encountered
this in the form of logistic discrimination, but we describe it in rather
more detail here, and use it as an illustration of the ideas
underlying generalized linear models. In many situations the
response variable is not continuous, as we have assumed above,
but is a proportion: the number of flies from a given sample that die
when exposed to an insecticide, the proportion of questions people
get correct in a test, the proportion of oranges in a carton that are
rotten. The extreme of this arises when the proportion is out of 1,
that is, the observed response is binary: whether or not an
individual insect dies, whether or not a person gets a particular one
of the questions right, whether or not an individual orange is rotten.
We are now dealing with a binary response variable, with the
random variable taking values 0 or 1 corresponding to the two
possible outcomes. We will assume that the probability that the ith
individual yields the value 1 is p(i), and that the responses of
different individuals are independent. This means that the response
for the ith individual follows a Bernoulli distribution:

p('.l'{f] = y[.«']) = I,[J'].J.ri":l L= p[}}}]_””" i
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where here y(i) € {0, 1}. For logistic regression, this is the
generalization of (i) above: the Bernoulli distribution is replacing the
normal distribution.

Our aim is to formulate a model for the probability that an object
with predictor vector x will take value 1. That is, we want a model
for the mean value of the response, the probability p(y = 1|x). We
could use a linear model a weighted sum of the predictor variables.
However, this would not be ideal. Most obviously, a linear model
can take values less than O and greater than 1 (if the x values are
extreme enough). This suggests that we need to modify the model
to include a nonlinear aspect. We achieve this by transforming the
probability, nonlinearly, so that it can be modeled by a linear
combination. That is, we use a nonlinear link function in (iii). A
suitable function (not the only possible one) is a logistic (or logit)
link function, in which

{ 1|x)
i (JIILI'J =1l=x] | = ].._:_:\ _ﬁ.f-__l:ﬁ___n._l
1 —p{y = 1|x)

where g (p(y = 1[x)) is modeled as }ajxj. As p varies from 0 to 1,
log( p/1 - p) clearly varies from -t to @ , matching the potential
range of g(p) = > ajxj(i). One of the advantages of the logistic link

function over alternatives is that it permits convenient interpretation.
For example:

ply = 1|x]
e The ratio 1 - p{v =1} in the transformation is the familiar odds
Py = 1|x)
that a 1 will be observed and log 1 - p{¥ = 1Ix} is the log odds.

. Gi
ven a new vector of predictor variables x = (x1, ..., Xp), the
predicted probability of observing a 1 is derived from
logl ply = 1]x) ]
1-ply=1|x) The effect on this of changing the jth predictor
variable by one unit is simply aj. Thus the coefficients tell us the
difference in log odds or, equivalently, the log odd ratio resulting
from the two values. From this it is easy to see thate®, is the
factor by which the odds changes when the jth predictor
variable changes by one unit.

Generalized linear models thus have three main features:

i.The Y (i), i =1, ..., n, are independent random variables, with the

same exponential family distribution (see below).
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ii. The predictor variables are combined in a form v(i) = >ajxj (i),
called the linear predictor, where the ajs are estimates of the qjs.

iii. The mean p(i) of the distribution for a given predictor vector is
related to the linear combination in (ii) through the link function

glu@) = vl = Z a;x ;i)

The exponential family of distributions is an important family that
includes the normal, the Poisson, the Bernoulli, and the binomial
distributions. Members of this family can be expressed in the
general form

0 6,0) = e'((0'6 — B(E))/ (@(®) + c(v, 2)))

If & is known, then 0 is called the natural or canonical parameter.
When, as is often the case, a(? ) =® , ¥ is called the dispersion
or scale parameter. A little algebra reveals that the mean of this
distribution is given by b' () and variance by a(® )b'(6). Note
that the variance is related to the mean via b'(8), and this,
expressed in the form V(6#), is sometimes called the variance
function. In the model as described in (i) to (iii) above, there are no
restrictions on the link function. However (and this is where the
exponential family comes in), things simplify if the link function is
chosen to be the function expressing the canonical parameter for
the distribution being used as a linear sum. For multiple regression
this is simply the identity distribution and for logistic regression it is
the logistic transformation presented above. For Poisson
regression, in which the distribution in (i) is the Poisson distribution,
the canonical link is the log link g(u) = log (u).

Prediction from a generalized linear model requires the inversion of
the relationship g(u(i)) =3ajxj(i). The algorithms in least squares
estimation were very straightforward, essentially involving only
matrix inversion. For generalized linear models, however, things
are more complicated: the non -linearity means that an iterative
scheme has to be adopted. We will not go into details of the
mathematics here, but it is not difficult to show that the maximum
likelihood solution is given by solving the equations

Z K (@) — N/ (anf (YW (D™ () = 0, i=1..p1

where the i indices for aj(f) and u(i) are in recognition of the fact
that these vary from data point to data point. Standard application
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of the Newton-Raphson method leads to iteration of the equations

(3] (s=1}

-1
a =a - DM, yu.1,

where a(S) represents the vector of values of (a1, ..., ap) at the sth
iteration, us-1 is the vector of first derivatives of the log likelihood,

evaluated at a(S'l), and Ms-1 is the matrix of second derivatives of
the log likelihood, again evaluated at a(5™1),

11.4 Artificial Neural Networks

Artificial neural networks (ANNs) are one of a class of highly
parameterized statistical models that have attracted considerable
attention in recent years (other such models are outlined in later
sections). In the present context, we will be concerned only with
feed- forward neural networks or multilayer perceptrons. In this
section, we can barely scratch the surface of this topic, and
suitable further reading is suggested below. The fact that ANNs
are highly parameterized makes them very flexible, so that they
can accurately model relatively small irregularities in functions. On
the other hand, as we have noted before, such flexibility means
that there is a serious danger of over fitting. Indeed, early work was
characterized by inflated claims when such networks were
overfitted to training set s, with predictions of future performance
being based on the training set performance. In recent years
strategies have been developed for overcoming this problem,
resulting in a very powerful class of predictive models.

To set ANNSs in context, recall that the generalized linear models of
the previous section formed a linear combination of the predictor
variables, and transformed this via a nonlinear transformation.
Feed forward ANNs adopt this as the basic element. However,
instead of using just one such element, they use multiple layers of
many such elements. The outputs from one layer the transformed
linear combinations from each basic element serve as inputs to the
next layer. In this next layer the inputs are combined in exactly the
same way each element forms a weighted sum that is then non -
linearly transformed. Mathematically, for a network with just one
layer of transformations between the input variables x and the
output y (one hidden layer), we have

y= E ttijl::,!:lfk (z u'_';;”.rj) .

k J
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Here the w is the weights in the linear combinations and the fks
are the non -linear transformations. The nonlinearity of these
transformations is essential, since otherwise the model reduces to
a nested series of linear combinations of linear combinations which
is simply a linear combination. The term network derives from a
graphical representation of this structure in which the predictor
variables and each weighted sum are nodes, with edges
connecting the terms in the summation to the node.

There is no limit to the number of layers that can be used, though it
can be proven that a single hidden layer (with enough nodes in that
layer) is sufficient to model any continuous functions. Of course,
the practicality of this will depend on the available data, and it
might be convenient for other reasons (such as interpretability) to
use more than one hidden layer. There are also generalizations, in
which layers are skipped, with inputs to a node coming not only
from the layer immediately preceding it but also from other
preceding layers.

The earliest forms of ANN used threshold logic units as the
nonlinear transformations: the output was 0 if the weighted sum of
inputs was below some threshold and 1 other wise. However, there
are mathematical advantages to be gained by adopting
differentiable forms for these functions. In applications, the two

most common forms are logistic f(X) = €X/(1 +eX) and hyperbolic
tangent f(x) = tanh(x) transformations of the weighted sums.

We saw, when we moved from simple linear models to generalized
linear models, that estimating the parameters became more
complicated. A further extra level of complication occurs when we
move from generalized linear models to ANNs. This will probably
not come as a surprise, given the number of parameters (these
now being the weights in the linear combinations) in the model and
the fundamental nonlinearity of the transformations. As a
consequence of this, neural network models can be slow to train.
This can limit their applicability in data mining problems involving
large data sets. (But slow estimation and convergence is not all
bad. There are stories within the ANN folklore relating how severe
over fitting by a flexible model has been avoided by accident,
simply because the estimation procedure was stopped early.)
Various estimation algorithms have been proposed. A popular
approach is to minimize the score function consisting of the sum of
squared deviations (again!) between the output and predicted
values by steepest descent on the weight parameters. This can be
expressed as a sequence of steps in which the weights are
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updated, working from the output node(s) back to the input nodes.
For this reason, the method is called back -propagation. Other
criteria have also been used. When Y takes only two values the
sum of squared deviations is rather unnatural (since, as we have
seen, the sum of squared deviations arises as a score function
naturally from the log -likelihood for normal distributions). A more
natural score function, based on log-likelihood for Bernoulli data, is
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As it happens, in practical applications with reasonably sized data
sets, the precise choice of criterion seems to make little difference.
The vast amount of work on neural networks in recent years, which
has been carried out by a diverse range of intellectual communities,
has led to the rediscovery of many concepts and phenomena
already well known and understood in other areas. It has also led
to the introduction of unnecessary new terminology.

Nonetheless, research in this area has also led to several novel
general forms of models that we have not discussed here. For
example, radial basis function networks replace the typical logistic
nonlinearity of feed forward net -works with a "bump" function (a
radial basis function). An example would be a set of p-dimensional
Gaussian bumps in x space, with specified widths. The output is
approximated as a linear weighted combination of these bumps
functions. Model training consists of estimating the locations,
widths, and weights of the bumps, in a manner reminiscent of
mixture models.

11.5 Other Highly Parameterized Models

The characterizing feature of neural networks is that they provide a
very flexible model with which to approximate functions. Partly
because of this power and flexibility, but probably also partly
because of the appeal of their name with its implied promise, they
have attracted a great deal of media attention. However, they are
not the only class of flexible models. Others, in some cases with an
approximating power equivalent to that of neural net-works, have
also been developed. Some of these have advantages as far as
interpretation and estimation goes. In this section we briefly outline
two of the more important classes of flexible model.

11.5.1 Generalized Additive Models
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We have seen how the generalized linear model extends the ideas
of linear models. Yet further extension arises in the form of
generalized additive models. These replace the simple weighted
sums of the predictor variables by weighted sums of transformed
versions of the predictor variables. To achieve greater flexibility,
the relationships between the response variable and the predictor
variables are estimated nonparametrically for example, by kernel or
spline smoothing, so that the generalized linear model form g(u(i))
= ajxj(i) becomes g(u(i)) =>ajfj (xj (). The right-hand side here is
sometimes termed the additive predictor. Such models take to the
nonparametric limit the idea of extending the scope of linear
models by transforming the predictor variables. Generalized
additive models of this form retain the merits of linear and
generalized linear models. In particular, how g changes with any
particular predictor variable does not depend on how other
predictor variables change; interpretation is eased. Of course, this
is at the cost of assuming that such an additive form does provide
a good approximation to the "true" surface. The model can be
readily generalized by including multiple predictor variables within
individual f components of the sum, but this is at the cost of
relaxing the simple additive interpretation. The additive form also
means that we can examine each smoothed predictor variable
separately, to see how well it fits the data.

In the special case in which g is the identity function, appropriate
smoothing functions can be found by a backfitting algorithm. If the
additive model y(i) =3 a;f; (x (1)) +e&(i) is correct, then

fulXe)=FE (1' - Z”_. FilX; (i _\'k) .

This leads to an iterative algorithm in which, at each step the
"partial residuals" y - ;. ajfj(x(i)) for the kth predictor variable are
smoothed, cycling through the predictor variables until the
smoothed functions do not change. The precise details will, of
course, depend on the choice of smoothing method: kernel, spline,
or whatever.

To extend this from additive to generalized additive models, we
make the same extension as above, where we extended the ideas
from linear to generalized linear models. We have already outlined
the iteratively weighted least squares algorithm for fitting
generalized linear models. We showed that this was essentially an
iteration of a weighted least squares solution applied to an

"adjusted" response variable, defined by
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For generalized additive models, instead of the weighted linear
regression we adopt an algorithm for fitting a weighted additive
model.

11.5.2 Projection Pursuit Regression

Projection pursuit regression models can be proven to have the
same ability to estimate arbitrary functions as neural networks, but
they are not as widely used. This is perhaps unfortunate, since
estimating their parameters can have advantages over the neural
network situation. The additive models of the last section
essentially focus on individual variables (albeit transformed
versions of these). Such models can be extended so that each
additive component involves several variables, but it is not clear
how best to select such subsets. If the total number of available
variables is large, then we may also be faced with a combinatorial
explosion of possibilities. The basic projection pursuit regression
model takes the form

Y _4|,|+Z_jr.'_ fn:JU + £.

This has obvious close similarities to the neural network model it is
a linear combination of (potentially nonlinear) transformations of
linear combinations of the raw variables. Here, however, the f
functions are not constrained (as in neural networks) to take a
particular form, but are usually found by smoothing, as in
generalized additive models. This makes them a generalization of
neural networks. Various forms of smoothing have been used,
including spline methods, Friedman's "supersmoother" (which
makes a local linear fit about the point where the smooth is
required), and various polynomial functions. The term projection
pursuit arises from the viewpoint that one is projecting X in
direction ak, and then seeking directions of projection that are
optimal for some purpose. (In this case, optimal as components in
a predictive model.) Various algorithms have been developed to
estimate the parameters. In one, components of the sum are
added sequentially up to some maximum value, and then
sequentially dropped, each time selecting on the basis of least
squares fit of the model to the data. For a given number of terms,
the model is fitted using standard iterative procedures to estimate
the parameters in the ak vector. This fitting process is rather
complex from a computational viewpoint, so that projection pursuit
regression tends may not be practical for data sets that are
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massive (large n) and high-dimensional (large p).
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Structure

12.1 Introduction

12.2 Memory Hierarchy

12.3 Index Structures
12.3.1 B-trees
12.3.2 Hash Indices




291 Datal

12.4 Multidimensional Indexing

12.5 Relational Databases

12.6 Manipulating Tables

12.7 The Structured Query Language (SQL)

12.8 Query Execution and Optimization

12.9 Data Warehousing and Online Analytical Processing (OLAP)

12.10 Data Structures for OLAP

12.11 String Databases

12.12 Massive Data Sets, Data Management, and Data Mining
12.12.1 Force the Data into Main Memory
12.12.2 Scalable Versions of Data Mining Algorithms
12.12.3 Special-Purpose Algorithms for Disk Access
12.12.4 Pseudo Data Sets and Sufficient Statistics

Objective

After going through this lesson, you should be able to:

» Discuss about a index structures;
Discuss relational databases and manipulating tables;
Discuss structured query language;

Discuss about a OLAP and string databases;

YV V V VYV

Discuss about a massive data sets, data management, and

data mining

12.1 Introduction

One of the features that distinguish data mining from other types
of data analytic tasks is the quantity of data. In many data mining
applications (such as Web log analysis for example) there may be
millions of rows and thousands of columns in the standard form
data matrix, so that questions of efficiency of data analysis
algorithms are very important. An algorithm whose running time
scales exponentially in the number n of rows may be unusable for
all but the smallest data sets. Examples of operations that can be
carried out in time O(n) or O(n log n) are counting simple
frequencies from the data, finding the mode of a discrete variable
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or attribute, or sorting the data. Generally, such computations are
feasible even for large data sets. However, even a linear time
algorithm can be prohibitively costly to use if multiple passes
through a data set are required.

If the number of rows n of a data set influences algorithm
complexity, so also can the number of variables p. For some
applications p is very small (less than 10, for example), but in
others, like market basket analysis or analysis of text documents,

we can encounter data sets with 10° or even 108 variables. In
such situations we cannot use methods that involve, for example,

operations as the O (p2) computation of pair wise measures of
association for all pairs of attributes.

In any data analysis project it is useful to distinguish between two
phases. The first is actually getting the data to the analysis
algorithm, and the second is running the analysis method itself.
The first phase might seem trivial, but it can often become the
bottleneck. For example, in analyzing a set of data it may be
necessary to apply an algorithm to many different subsets of the
data. This means we have to be able to search and identify the
members of each subset rapidly, and also to load that subset into
main memory. Tree algorithms provide an obvious illustration of
this, where the data set is progressively split into smaller subsets,
each of which has to be identified before the tree can be extended.
The purpose of data organization is to find methods for storing the
data so that accessing subgroups of data is as fast as possible.
Even in cases when all the data fit into main memory, data
organization is important.

In addition to supporting efficient access to data for data mining
algorithms, data organization plays an important role in the iterative
and interactive nature of the overall data mining process. The aim
of this chapter is to discuss briefly the memory hierarchy of
modern computer and then present some index structures that
database systems use to speed up the evaluation of queries. We
then move to a discussion on relational databases and their query
languages, as well as some special purpose database systems.

12.2 Memory Hierarchy

The memory of a computer is divided into several layers. These
layers have different access times (where access time is the
average time to retrieve a randomly selected byte of memory).

Indeed, if disk storage were as fast as on-board cache, there would
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be no need to develop any sophisticated methods for data
organization.

A general categorization of different memory structures is the
following:

1. Registers of the processor. Typically there are fewer than 100
of these, and the processor can access data in the registers
directly; that is, there is no slowdown associated with accessing
a register.

2. On-processor or on-board cache. This is fast semiconductor
memory implemented on the same chip as the processor or
residing on the mother-board. Typical size is 16—1,000 kilobytes
and access time is about 20 ns.

3. Main memory normal semiconductor memory, with sizes from
16 megabytes to several gigabytes, and access time about 70
ns.

4. Disk cache. Semiconductor memory implemented as an
intermediate storage between main memory and disks.

5. Disk memory. Sizes vary from 1 gigabyte to hundreds or
thousands of gigabytes for large arrays of disks. Typical access
time is around 10 ms.

6. Magnetic tape. A magnetic tape can hold up to several
gigabytes of data. Access time varies, but can be minutes.

The differences between the access times are truly large: in the 10
milliseconds needed for accessing a disk, we could perform up to a
million accesses to fast cache. Another way to think about this is to
pretend that access time is linearly proportional to actual distance.
Thus, if we imagine main memory to be an effective distance of 1
meter away (within reach of your hand), the equivalent distance for

disk memory is order of 10° times greater, i.e., 100 km!

Another major difference between main memory and disk is that
individual bytes of main memory can be accessed, whereas for
disk, whenever we access a byte, actually the whole disk page,
about 4 kilobytes, containing that byte will be loaded to main
memory. So if that page happens to contain information that can be
used later, it will already be in fast memory. As an example, if we
want to retrieve 1,000 integers, each taking 4 bytes to store, this
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can take between 1 and 1,000 disk accesses, depending on
whether the integers are all stored in the same disk page or each
on a page of their own.

The physical properties of the memory hierarchy lead to the
following rules of thumb:

e If possible, data should be in main memory.

e In main memory, data items that are used together should be
logically close to each other (that is, we should quickly be able to
find the next element of a subset).

e On disk, data items that are used together should be also
physically close to each other (that is, on the same disk page, if
possible).

In practice, the user of a system typically has little control over the
details of the way the data are placed in caches, or over the actual
physical layout of data on disk. Normally, the systems try to load as
much data as possible into main memory, and decide on their own
how to deal the data objects onto disk pages. The user can
influence the kinds of auxiliary structures that are created to access
subgroups of the data.

12.3 Index Structures

A primary goal of data organization is to find ways of quickly
locating all the data points that satisfy a given selection condition.
Usually the selection condition is a conjunction of conditions on
individual attributes, such as "Age < 40" and "Income < 20,000."
We consider first data structures that are especially applicable to
situations in which there is only one conjunct.

An index on an attribute A is a data structure that makes it possible
to locate points with a given value of A more efficiently than by a
sequential scan of the whole data set. Indices are typically built
either by the use of B*-trees or by the use of hash functions.

12.3.1 B-trees

A search tree is probably the simplest index structure. Suppose we
have a set S of data vectors {x(1), ..., x(n)}, and that we want to
find all points having a particular value of an ordinal attribute
(variable) A as quickly as we can. A search tree is a binary tree

structure such that each node has a value of A stored into it, and
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each leaf has a pointer to an element of S. Moreover, the tree is
structured so that all elements of S pointed to by leaves from the
left subtree of a node u containing value a will have values of A
which are less than or equal to a. Likewise, all elements of S
pointed to by leaves in the right subtree of u have values for A that
are greater than a.

Given a binary search tree for an attribute A, it is easy to find the
data points from S that have a given value b for A. We simply start
from the root of the tree, selecting the left or the right subtree by
comparing b against the \alues stored in the nodes. When we get
to a leaf, either we find a pointer to the record(s) with A = b, or we
find that no such pointer exists.

It is also easy to find all the points from S that satisfy the condition
b < A <c, a so-called "interval query." Simply locate the leaf where
b should be (as above), locate the leaf where ¢ should be, and the
desired records are pointed to by the leaves between these two
positions.

The time needed for finding the records with a given value for
attribute A is proportional to the height of the tree plus the number
of such records. In the worst case, the height of the tree is n, the
number of points in the set S, but there are ways of ensuring that
the height of the tree will be O(log n) (although they are beyond the
scope of this text). In practice, binary search trees are relatively
seldom used, since B*-trees, discussed below, are clearly superior
for accessing data on a disk.

The basic idea for B*-trees are the same as for search trees: the
pointers to the data objects are in the leaves of the tree, and
interior nodes contain values of the attribute A that indicate where
certain pointers are to be found. However, instead of having two
children and one value for A per interior node, a B*-tree typically
has hundreds of children and values.

In more detail, a B*-tree of degree M for set of values is a tree
where

e all leaves are at the same depth;

e each leaf contains between M/2 and M keys (possible target
values);

e each interior node (except possibly the root) has K children C1,

..., CK, where M/2 <K £ M and K -1 values a1, ..., ak-1; for all

Mining Techniques

NOTES



296 Datal

i, all the key values stored in the leaves of subtree Cj are larger
than aj-1 and at most as large as a;.

Searching from a B*-tree is carried out in the same way as from a
binary search tree: for each interior node of the tree, the values aj
are used to select the correct subtree.

A B*-tree differs from the basic binary search tree in that the height
is guaranteed to be O(log n), since all leaves are on the same
depth. Actually, the depth of the tree is bounded by logy, n .

Typically, the value of M is selected so that each nogle of the tree

fits into a single disk page. If M is 100, then (M/2) is over 300
million, and we find that for most realistic values of n, the number
of elements in the set, the tree will have at most five levels: This
means that finding a data point from 300 million points on the basis
of the value of a single attribute can be done in three disk
accesses, as the root node and the second level of the tree can be
held in main memory. Most database management systems use
B*-tree structures as one of their index structures.

12.3.2 Hash Indices

Suppose again that we have a set S of data points, and that we
want to find all points such that attribute A has value a. If the set of
possible values of A is small, we can do the following: for each
possible value, construct a list of pointers to the data points with
that value for A. Then, given the query "Find the points with A = a,"
we need only to access the list for a. This method is not feasible,
however, if there is a large number of potential values for A: we

cannot maintain a list for each of the possible 232 integers which
can be represented by 32 bits, for example. What we can do is to
apply a transformation to the A-values so as to reduce the range of
possible values. In more detail, let Dom(A) be the set of possible
values of A. A hash function is a function h from Dom(A) to {1, ...,
M}, where M is the size of the hash table r. For each j € {1, ..., M}
we store into r[j] a list of pointers to those records xj in S whose A
value aj satisfies h(aj) = j. When we want to find all the data points
with A = a, we simply compute h(a), go to location r[h(a)] and
traverse the list of data points, for each of them checking whether
the value of A really was a, or whether it was another value b with
the property that h(b) = h(a) (this is called a collision).

A typical hash function is a mod M, when M is chosen to be
suitable prime larger than n, the number of data points. If the hash
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function is well chosen and the hash table is sufficiently large,
collisions are rare, and searching for the points with a given A
value can be done in time essentially proportional to the number of
such points. Hash indices, however, do not directly support interval
queries.

12.4 Multidimensional Indexing

Traditional index structures such as hashing and B*-trees provide
fast access to rows of tables on the basis of values of a given
attribute or collection of attributes. In some applications, however, it
IS necessary to express selection conditions on the basis of several
attributes, and normal index structures do not help. Consider, for
example, the case of storing geographic information about cities.
Suppose, for example, we wish to find all the cities with latitude
between 30 N and 40 N, longitude between 60 W and 70 W, and
population at least 1,000. Such a query is called a rectangular
range query.

Suppose the cities table is large, containing millions of city names.
How should the query be evaluated? A B*-tree index on the
latitude attribute makes it possible to find the cities that satisfy the
conditions for that attribute, but for finding the rows that satisfy the
conditions on longitude among these, we have to resort to a
sequential scan. Similarly, an index on longitude does not help
much. What is needed is an index structure that makes it possible
to use directly the conditions on both attributes.

Multidimensional indexing refers to techniques for finding rows of
tables on the basis of conditions on multiple attributes. One of the
widely used methods is the R*tree. Each node in the tree
corresponds to a region in the underlying space, and the node
represents the points within that region. For dimensions up to
about 10, the multidimensional index structures speed up searches
on large databases. Fast evaluation of range queries for data sets
with larger numbers of dimensions (e.g., in the 100s) is still an
open problem.

12.5 Relational Databases

In data mining we often need to access a particular subset of the
data and compute a function from the values of certain attributes
on that subset. We have discussed some data structures that can
help in finding the relevant data points quickly. Relational
databases provide a unified mechanism for fast access to selected
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parts of the data.

In database terminology, a data model is a set of constructs that
can be used to describe the structure of data, plus a set of
operations for manipulating the data. (Note that this use of the
word model is rather different from that given earlier in the book.
Here it is a structure imposed on the data by design, rather than a
structure discovered existing within the data. The dual use of the
word model is perhaps unfortunate, and arises because of the
different disciplines that have contributed to data mining; in this
case, statistics and database theory. Fortunately, confusion seldom
arises; which of the two meanings is intended will generally be
clear from the context). The relational data model is based on the
idea of representing data in tabular form. A table header (schema)
consists of the table name and a set of named columns; the
column names are also called attributes. The actual table (an
instance of the schema), also called a relation, is a named set of
rows. Each table entry in the column for attribute A is a value from
the domain Dom(A) of A. Note that when the attributes are defined,
the domain of each must also be specified. An attribute can be of
any data type: categorical, numeric, etc. The order of the row and
columns in a table is not significant.

We can put this more formally. A relation schema R is a set of
attributes {A1, ..., Ap}, where each attribute Aj has an associated
domain Dom(Aj). A row over the schema R is a mapping t : R —
Ui Dom(Aj) where t(Aj ) € Dom(Aj). A table or relation over the
schema R is a collection of rows over R. A relational database
schema R is a collection {R1, ..., Rk} of relation schemas (with
possibly some constraints on the relation instances), and a
relational database r over the schema R consists of a relation over
Rij, foreach i=1, ..., k.

Thus the relational data model is based on the idea of tabular
representation. The values in the cells may be arbitrary atomic
values, such as real numbers, integers, or strings; sets or lists of
values are not allowed. This means that, if, for example, we want
to represent information about people, their ages, and phone
numbers, we cannot store multiple phone numbers in one attribute.
If restricted in this way, the model is said to have first normal form.

The relational model is widely used in data management, and
virtually all major database systems are based on it. Some
systems provide additional functionality, such as the possibility of
using object-oriented data modeling methods.
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Even in relatively small organizations, relational databases can
have hundreds of tables and thousands of attributes. Managing the
schema of the database can, therefore, be a complicated task.
Sometimes it is claimed that for data analysis purposes it suffices
to combine all the tables into a massive observation matrix, or
"universal table," and that therefore in data mining one does not
have to care about the fact that the data are in a database.
However, an examination of simple examples shows that this is
not feasible: the universal table would be so large that operations
on it would be prohibitively costly.

12.6 Manipulating Tables

Being able to describe the structure of data and to store data using
this structure is not sufficient in itself for data management: we also
must be able to retrieve data from the database. We briefly
describe two languages for manipulating collections of tables (that
is, relational databases): relational algebra, in this section, and the
Structured Query Language (SQL), in the next. Relational algebra
is based on set-theoretic notation and is quite handy for theoretical
purposes, while SQL is widely used in practice.

In the examples, we use r, s, etc. to refer to tables, and R, S, etc.
to refer to the sets of attributes for those tables.

Relational algebra contains a set of basic operations for
manipulating data given in tabular form, and several derived
operations (operations that can be expressed as a sequence of
basic operations) are also used. The operations include the three
set operations union, intersection, and difference and the projection
operation for removing columns, the selection operation for
selecting rows, and the join and Cartesian product operations for
combining rows from two tables.

Set Operations

Tables are sets of rows, and all operations in the relational algebra
are set-oriented: they take sets as arguments and produce a set as
their result. This makes it possible to compose relational queries:
the results of a query are relations, as are the arguments.
Conventional set operations are useful for manipulating tables. We
shall include union, intersection, and difference (denoted by rUs, r
N s, and r \ s, respectively) as the basic operations in relational
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algebra. The union operation combines two tables over the same
set of attributes: the result r Us contains all the rows that occur in r
or s. The intersection operation r N s results in the table containing
those rows that occur in r and in s. The difference operation r\ s
gives the rows that occur in r but not in s. These operations all
assume that r and s are tables over the same set of attributes.

As an example, suppose r is a table representing the prices of all
soft drinks, and s is a table representing the prices of all products
costing at most $2.00. Then r Us is the table of all soft drinks and
products costing less than $2.00, r N s is the table of all soft drinks
costing less than $2.00, and r \ s contains one row for each soft
drink that does not cost less than $2.00, i.e. that costs at least
$2.00. The intersection operation could, of course, be defined
using the union and difference operations: rN s = (rUs)\ (r\s)U

(s\n).

Care must be taken to ensure that the resulting set is a table, in
the sense that it has a schema. Therefore rUs, rN s and r\ s are
defined only if r and s are tables over the same schema—that is,
over the same set of attributes.

Intersection queries can be used in construction of rule sets, for
example. Suppose, we have computed a table r corresponding to
the observations that satisfy a condition F, and similarly another
table s that corresponds to the observations satisfying condition G.

The intersection r N s corresponds to those observations that
satisfy both conditions; the cardinality of the intersection tells what
the overlap between the conditions is. If r and s are computed from
the same base table of observations, we can also achieve the
same effect by using the conjunction F A G as the selection
condition in the query. Intersection queries occur most naturally in
situations in which we need to check whether the same value
occurs in two tables.

Projection

The purpose of the projection operation is to trim a table so that
only the data in specific columns of interest remain. Given a table r
with attributes R, and X < R, the projection of r on X is obtained
by removing from the table all the columns outside X. A side effect
of projecting a table is that the number of rows, as well as the
number of columns, may decrease. If the argument table over R is
projected on a set of attributes X, and if table r over R contains two
rows that agree on the X attributes, but differ on some attribute in
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R\ X, the projected rows would be identical. Such identical rows
are commonly called duplicates . Since tables are sets, they cannot
contain duplicates, and only one representative of each duplicate is
retained. Because this feature is implicit in the concept of a set, it
does not show up in the definition of the projection operation.

Commercial database systems often differ from the pure relational
model on this point. In real implementations, tables are stored as
files. Files, of course, can contain several identical records.
Checking the uniqueness of records could take a lot of time. It is
therefore customary that tables in commercial database
management systems can contain duplicates.

The projection operation in relational databases is related to but
not identical to the projection encountered in vector spaces. Both
operations take points (called rows in databases) and produce
points in a lower-dimensional space (rows with fewer attributes). In
relational databases, we can project only to subspaces defined
directly by the attributes; for vector spaces, projection can be
defined for any subspace (that is, any linear combination of basis
vectors (here attributes)).

Selection

The selection operation is used to select rows from a table. Given
a Boolean condition F on the rows of a table r, the selection
operation s F applied to r yields the table sF (r) consisting of those

rows of r that satisfy the condition.

Selection is probably the most frequently used operation of the
relational algebra: each time we want to focus on a particular row
or subset of rows in a table, we need to use selection. Selection
occurs often in the implementation of data mining algorithms. For
example, in building a decision tree we want a list of the
observations that belong to a particular node of the tree. This set of
observations is exactly the answer to a selection query, where the
selection condition is the conjunction of the conditions appearing in
the nodes from the root of the tree to the node in question.
Similarly, if we want to implement association rule algorithms using
the relational algebra, one has to execute several selection
queries; each one that looks at the subset of observations
satisfying the condition that each variable in a candidate frequent
set has value 1.

In pure relational algebra, selections are based on exact equalities
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or inequalities. For data mining, we often need concepts of inexact
or approximate matching. If a predicate match for approximate
matching between attribute values is available, we can (at least in
some database systems) use that directly in database operations
to select rows that satisfy the approximate matching condition.

12.7 The Structured Query Language (SQL)

Relational algebra is a useful and compact notation. In database
management systems, SQL is the standard adopted by most
database management system vendors. SQL implements a
superset of the relational algebra. Here we introduce only the
basic structure of SQL programs.

The basic statement of SQL is the "select-from -where" expression
or query, which has the form

select A1, A2,..., Ap
from ri, r2,..., 1k
where

list of conditi ons

Here each rj is a table, and each Aj is an attribute. The intuitive
meaning is that for each possible choice of rows t1, ..., tk from the
tables r1, ..., rk, we test whether the conditions are true. If they are,
a row consisting of the values of the attributes Aj is output.

The second line of the query, the from clause, specifies the tables
to which the SQL statement is applied. The third line, the where
clause, specifies the conditions that the rows in those tables must
satisfy to be accepted into the result of the statement. The first
line, the select clause, then specifies which attributes of the
participating tables should appear in the result. It corresponds to
the projection operation of relational algebra (not the selection
operation). The "where" clause is used for representing the
selection conditions occurring in the selection and the join
operations. For a selection operation, the selection conditions are
simply listed in the list of conditions of the where clause, separated
by the keywords and, or, and not.

If some tables in the "from" clause have common attributes, the
attribute names must be prefixed by a dot and the name of the
table when they appear in the "select" clause or "where" clause. If
all attributes of participating tables should appear in the result, the
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list of attributes in the "select" clause can be replaced by a star.

Aggregation in database queries refers to the combination of
several values into one, by the sum or maximum operators, for
example. Relational algebra does not have operations for
aggregation, but SQL does. An aggregate is in general a quantity
computed from the database whose value depends on several
rows of the database.

SQL was developed for traditional database applications such as
generating reports and concurrent access and updating of
transaction data by many users in real-time. Thus, it is not a big
surprise that the language as such does not provide a very good
platform for implementing data mining algorithms. There are two
reasons for this: lack of suitable primitives and the need for
efficiency.

Regarding the primitives, in SQL it is quite easy to do counting and
aggregation. Therefore, for example, the operations needed for
association rule algorithms are straightforward to implement by
accessing the data using SQL. For building decision trees we need
to be able to count the number of observations that fulfill the
conditions occurring in the tree nodes from the root to the node in
guestion. This is possible to do by selection and count queries.
Where the primitives of SQL fail is in common statistical operations,
such as matrix inversion, singular value decomposition (SVD), and
so forth.

Such operations would be extremely cumbersome to implement
using SQL. This means that fitting complicated models is usually
carried out outside the database system.

Even in cases when the SQL primitives are sufficient for
expressing the operations in the data mining algorithm, there are
reasons to implement the algorithm in a loosely-coupled manner,
i.e., by downloading the relevant data to the algorithm. The reason
is that the connection between a database management system
and an application program typically enforces a large overhead for
each query. Thus, while it is quite elegant to express the basic
operations of association rule algorithms (for example) using SQL,
such an implementation would typically be fairly slow. An additional
cause for performance problems is that in association rule
algorithms (for example) we must compute the frequency of a large
number of candidate frequent sets. In a specialized implementation
it is easy to do many of these counting operations in one pass
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through the data, whereas in an implementation based on using an
SQL database management system, each candidate frequent set
would cause a separate query to be issued.

12.8 Query Execution and Optimization

A query can be evaluated in various different ways. Consider, for
example, the query

select t.product

from baskets t, baskets u

where t.transaction = u.transaction
and u.product = "beer"

Here the notation baskets t, baskets u means that, in the query, t
and u refer to rows of the baskets table. The notation is needed
because we want to be able to refer to two different rows of the
same table. The query finds all the products that have been bought
in a transaction that also included beer.

The trivial method for evaluating such a query would be to try all
possible pairs of rows from the baskets table, to check whether
they agree on the basket -id attribute, and to test that the second

row has "beer" in the product attribute. This would require n2

operations on rows, where n is the size of the baskets table.

A more efficient method is to first locate the rows from the baskets
table that have "beer" in the product attribute and sort the basket -
ids of those rows into a list L. Then we can sort the baskets table
using the basket -id attribute as the sort key and extract the
products from the rows whose basket -id appears in the list L.
Assuming that L is a relatively short list, this approach requires
O(n) operations for finding the rows with beer, O(nh log n)
operations for sorting the rows, and O (n) operations for scanning
the sorted list and selecting the correct values; i.e., altogether O(n
log n) operations are needed. This is a clear improvement over the

O(n2) operations needed for the naive method.

Query optimization is the task of finding the best possible
evaluation method for a given query. Typically, query optimizers
translate the SQL query into an expression tree, where the leaves
represent tables and the internal nodes represent operations on
the children of the nodes. Next, algebraic equalities between
operations can be used to transform the tree into an equivalent

form that is faster to evaluate. In the previous example, we have
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used the equation o ((r < s) = o F(r) < s, where F is a selection
condition that concerns only the attributes of r. After a suitable
expression tree is found, evaluation methods for each of the
operations are selected. For example, a join operation can be
evaluated in several different ways: by nested loops (as in the
trivial method above), by sorting, or by using indices. The efficiency
of each method depends on the sizes of the tables and the
distribution of the values in the tables. Thus, query optimizers keep
information about such changing quantities to find a good
evaluation method. Theoretically, finding the best evaluation
strategy for a given query is an NP -hard problem, so that finding
the best method is not feasible. However, good query optimizers
can be surprisingly effective.

Database management systems strive to provide good
performance for a wide variety of queries. Thus, while for a single
qguery it might be possible to write a program that computes the
result more efficiently than a database management system would
compute it, the strength of databases is that they provide fast
execution for most of the queries. In data mining applications this is
useful, as the queries are typically not known in advance (for
example, in decision tree construction).

12.9 Data Warehousing and Online Analytical
Processing (OLAP)

A retail database, with information about customers, transactions,
products, prices, etc., is a typical example of an operational
database: the database is used to conduct the daily operations of
the organization, and the operations can rely quite heavily on it.
Other examples of operational databases include airline
reservation systems, bank account databases, etc. Strategic
databases are databases that are used in decision making in the
organization. The decision support viewpoint is quite closely
aligned with the goal of data mining. Indeed one could say that a
major goal of data mining is decision support.

Typically, an organization has several different operational
databases. For example, a retail outlet might have a database
about market baskets, a warehouse system, a customer database
(or several), a payroll database, a database about suppliers, etc.
Indeed, a diversified service company might even have several
customer databases. Altogether, large organizations can have tens
or hundreds of different operational databases. For decision

support purposes one needs to combine information from various
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operational databases to find out overall patterns of activity within
the company and with its customers. Building decision support
applications that directly access the operational databases can be
quite difficult.

Operational databases such as our hypothetical retail database,
any customer database, or the reservation system of an airline, are
most often used to answer well-defined and repetitive queries such
as "What is the total price of the products in this basket,” "What is
the address of customer Smith,"” or "What is the balance of account
1234567?" Such databases have to support a large number of
transactions consisting of simple queries and updates on the
contents of the data. This type of database usage is called online
transaction processing (OLTP).

Decision support tasks require different types of queries:
aggregation is far more important. A typical decision support query
might be "Find the sales of all products by region and by month,
and the difference compared to last year." The term online
analytical processing (OLAP) refers to the use of databases for
obtaining summaries of the data, with aggregation as the principal
mechanism.

OLTP and OLAP pose different requirements on the database
management system. OLTP requires that the data are completely
up to date, allows the queries to modify the database, allow several
transactions to execute concurrently without interfering with each
other, requires that responses be fast, and so forth. However, the
OLTP queries and updates themselves are relatively simple. In
contrast, in OLAP the queries can be quite complex, but normally
only one of them executes at a given time. OLAP queries do not
modify the data, and in finding out facts about last year's sales it is
not crucial to have today's sale information. The requirements are
so different that it makes sense to use different types of storage
organizations for handling the two applications.

A data warehouse e is a database system used to store information
from various operational databases for decision support purposes.
A data warehouse for a retailer might include information from a
market basket database, a supplier database, customer databases,
etc. The data in the payroll database might not be in the data
warehouse if they are not considered to be crucial in decision
support. A data warehouse is not created just by dumping the data
from various databases to a single disk. Several integration tasks
have to be carried out, such as resolving possible inconsistencies

between attribute nhames and usages, finding out the semantics of
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attributes and values, and so on. Building data warehouses is often
an expensive operation, as it requires much manual intervention
and a detailed understanding of the operational databases.

The difference between OLTP, OLAP, and data mining is not
always clear cut. We can in fact see a continuum of queries: find
the address of a customer; find the sales of this product in the last
month; find the sales of all products by region and month; find the
trends in the sales; find what products have similar sales patterns;
find rules that predict the sale of a certain product customer
segmentation/clustering. The first query is typically carried out by
using an OLTP query, the second is a typical OLAP query, and the
last two might be called data mining queries. But it is difficult to
define exactly where data mining starts and OLAP ends.

12.10 Data Structures for OLAP

OLAP requires the computation of various aggregates from large
base tables. Since many aggregates will be needed over and over
again, it makes sense to store some of them. The data cube is a
clever technique for viewing the results of various aggregations in
a tabular way.
The previous example showed the sales table with the schema
sales(product,store,date,amount).
A possible row from this table might be
sales(red wine, store 1, August 25, 17.25),
indicating that the sales of red wine at store number 1 on August
25 were $17.25. Inventing a new value all to stand for any product,
we might consider rows like
sales(all, store 1, August 25, 14214.70),
with the intended meaning that the total sales of all products in
store 1 on August 25 were $14,214.70. In statistical terms, this
gives us the marginal of the table, summing over values of the first
attribute.
The data cube for the sales table contains all rows

sales(a, b, c, d),
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where a, b, and c, are either values from the domains of the
corresponding attributes or the specific value all, and d is the
corresponding sum. That is, the data cube consists of the raw table
and all marginal tables: the one -dimensional ones, the two -
dimensional ones, and so on up to those obtained by summing
over each attribute individually.

12.11 String Databases

Interest in text and string -oriented databases has increased
dramatically in recent years. Molecular biology is one of the
reasons: modern biotechnology generates huge amounts of protein
and DNA data sets that are often recorded as strings. Even more
important has been the rise of the Web: search engines require
efficient methods for finding documents that include a given set of
terms. Relational databases are fine for storing data in a tabular
form, but they are not well suited for representing and accessing
large volumes of text. Recently, several commercial database
systems have added support for the efficient querying of large text
data fields.

Given a large collection of text, a typical query might be "find all
occurrences of the word mining in the text." More generally, the
problem is to find occurrences of a pattern P in a text T . The
pattern P might be a simple string, a string with wildcards, or even
a regular expression. The occurrence of P in T might be defined as
an exact match or an approximate match, where errors are
allowed.

The occurrences of the pattern P in text T can obviously be found
by sequentially scanning the text and for each position testing
whether P matches or not. Much more efficient solutions exist,
however. For example, using the suffix tree data structure we can
find the list of all occurrences of pattern p in time that is
proportional to the length of p (and not dependent on the size of
the text), and outputting the occurrences of p can be done in time
O(|lp| + L), where L is the number of occurrences of p in the text.
The suffix tree can be constructed in linear time in the size of the
original text, and it is fast also in practice.

Schematically, a Web search engine might have two data
structures: a relational table pages (page -address, page -text) and a
suffix tree containing all the text of all the documents loaded into
the system. When a user issues a query such as "find all
documents containing the words data and mining," the suffix tree
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is used to find two lists pages: those containing the word data and
those containing mining. Assuming the lists are sorted, it is
straightforward to find the documents containing both words. Note,
however, that the number of documents containing both data and
mining is probably much less than the number containing one of
the terms.

12.12 Massive Data Sets, Data Management, and
Data Mining

So far in this chapter we have focused on database technology in
a general sense. An important question remains as to how data
mining and database technology interact. Our discussion of this
interaction will be relatively brief, since there is no consensus to
date among researchers and practitioners as to any "best"
approach in terms of handling the interaction between data mining
algorithms and database technology. At issue is the following:
many massive data sets are either already stored in relational
databases or could be more effectively managed and accessed
during a data mining project if they were converted into relational
database form. On the other hand, most data mining algorithms
focus on the modeling and optimization aspects of the problem
and effectively assume the data reside in a flat file in main memory.
If the data to be mined are primarily on disk, and/or stored in a
relational format (perhaps with an SQL interface), how then should
we approach the question of interfacing our data mining algorithm
to the data? This is the issue of data management, which, is
typically not addressed explicitly in most descriptions of data
mining algorithms. And perhaps this is indeed the most flexible
approach, since the solutions we adopt in practice will be a
function of various application factors, such as the amount of data,
the amount of available main memory, how often the algorithm will
need to be rerun, and so forth. Nonetheless, we can identify a few
general approaches to this problem, which we discuss below.

12.12.1 Force the Data into Main Memory

The most obvious approach, and one that practitioners have used
for years, is to see whether the data can in fact be stored in main
memory and (subsequently) accessed efficiently by the data mining
algorithm. As main memory technology allows random access
memory sizes to grow into the gigabyte range, this approach can
be quite practical for many "medium -sized" data analysis
applications. Of course there are other applications, e.g., those
with hundreds of millions of complex transactions, where we cannot
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hope to ever load the data into main memory in the foreseeable
future. In such cases we can hope to subselect parts of the data,
perhaps by generating a random sample of records so that we
have n' transactions instead of n to deal with (where n' is much
smaller than n).

We could also select subsets of features in some manner. For
example, one of the authors worked on a predictive modeling
application involving on the order of 1,000 variables and 200,000
customers. Decision trees we re built on random samples of 5,000
customers, and the union of variables from the resulting trees was
then used to build models (using trees, nonlinear regression, and
other techniques) on the entire set of 200,000 records. This is of
course an entirely heuristic procedure, and an important variable
might have been omitted from the trees as a result of the multiple
random sampling during model building. Nonetheless, this is a
fairly typical example of the type of "data engineering” that is often
required in practice to obtain meaningful results in a reasonable
amount of time. Note also that generating a random sample from a
relational database can itself be a nontrivial process. There are, of
course, numerous refinements to the basic idea of random
sampling, e.g., taking an initial small sample to gets a general
idea of the "data landscape,” then further refining this sample in
some automated manner, and so forth.

Of course even if the data fit in main memory, we still must be
careful. It may well be that we have to subsample the data even
further to get our data mining algorithm to run in reasonable time.
Furthermore, naive implementations of algorithms may create
large internal data structures when they run (e.g., unnecessary
copies of data matrices), which in turn may cause available
memory to be exceeded. Thus, it goes without saying that efficient
implementation from a memory and time viewpoint is still important,
even when the data all reside in main memory.

12.12.2 Scalable Versions of Data Mining Algorithms

The term scalable is somewhat loosely used in the data mining
literature, but we can think of it as referring to data mining
algorithms that scale gracefully and predictably (e.g., linearly) as
the number of records n implementation of a decision tree
algorithm will exhibit a dramatic slowdown in run-time performance
once n becomes large enough that the algorithm needs to
frequently access data on disk. In practice, research on scalability
focuses more on the large n problem than on the large p problem:

large p is inherently more difficult than large n.
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One line of investigation in scalable data mining algorithms is to
develop special-purpose scalable implementations of existing well -
known algorithms that are guaranteed to return the same result as
the original (naive) implementation, but that typically will run much
faster on large data sets. An example of this general approach is
that of Gehrke et al. Who propose a family of algorithms called
BOAT (Bootstrapped Optimistic Algorithm for Tree Construction).
The BOAT approach uses two scans through the entire data set. In
the first scan an "optimistic tree" is constructed using a small
random sample from the full data (and that can fit in main memory).
The second scan then takes care of any differences between the
initial tree and the tree that would have been built using all of the
data. The resulting tree is then the same tree that the naive
algorithm would have constructed (in a potentially inefficient
manner). The method involves various clever data structures to
keep track of tree -node statistics. Gehrke et al report fitting
classification trees to nine-dimensional synthetically generated
data sets with 10 million data vectors in about 200 seconds.

A related strategy is to derive new approximate algorithms that
inherently have desirable scaling performance by virtue of relying
on various heuristics based on a relatively small number of linear
scans of the data. These algorithms typically return "good"
solutions but are not necessarily in agreement with the original
"nonscalable” version of the algorithm. For example, scalable
clustering algorithms of this nature are described by Badey, Fayyad,
and Reina and Zhang, Ramakrishnan, and Livny.

12.12.3 Special-Purpose Algorithms for Disk Access

Yet another approach to the problem of dealing with data on disk
has been the development of new algorithms that are closely
coupled with relational databases and transaction data. The search
component of association rule algorithms takes advantage of the
typical sparsity of transaction data sets (i.e., most customers
purchase relatively few items per transaction). At a high level, the
algorithms typically involve breadth-first search strategies, where
each level of the tree involves a single scan of the data that can be
executed relatively easily. Agrawal et al. report results on synthetic
data involving 1,000 items and up to 10 million transactions. They
empirically demonstrate that the runtime of their algorithm scales
up linearly on these data sets as a function of the number of
transactions. Similar results have since been reported on a wide

range of sparse transaction data sets and many variations of the

Mining Techniques

NOTES



312 Datal

basic algorithm have been developed.
12.12.4 Pseudo Data Sets and Sufficient Statistics

Figure 12.1 illustrates another general idea that can be thought of
as a generalization of random sampling. An approximate (and
typically much smaller) data set is created that can then be
accessed (e.g., in main memory) by the data mining algorithm
instead of dealing with the full data (on disk). This general
approach can, of course, only approximate the results we would
have obtained had the algorithm been run on the full data.
However, if the approximate data set is constructed in a clever
enough manner, we can often get almost the same results on only
a fraction of the data. It is often the case in practice that as part of
the overall data mining process we will run our data mining
algorithm many times, with different models, different variables,
and so forth, in an exploratory manner, before finally settling on a
final model. The use of an approximate data set for such
exploratory modeling can be particularly useful (rather than having
to deal with the full data set).

Original
Reduced .
Databasa ’ i Diana kg
Dala Set Algedithm

Figure 12.1: The concept of data mining algorithms which operate
on an approximate version of the full data set.

In this general context Du Mouchel et al. propose a statistically
motivated methodology for "data-squashing” which amounts to
creating a set of n' weighted "pseudo” data points, where n' is
much smaller than the original number n, and where the pseudo
data points are automatically chosen by the algorithm to mimic the
statistical structure of the original larger data set. The general idea
is to approximate the structure of the likelihood function as closely
as possible, even without the functional form of the model being
used in the data mining algorithm being specified. The method was
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empirically demonstrated to provide significant reduction in
prediction error on a logistic regression problem compared to
simple random sampling of a data set .On a related theme, for
some data sets it may be sufficient simply to store the original data
via a more efficient data structure than as a flat file or multiple
tables in a relational database. The A D-Tree data structure
proposed by Moore and Lee provides an efficient mechanism for
storing multivariate categorical data (i.e., counts). Data mining
algorithms can then quickly access counts and related statistics
from the AD-Tree much more quickly than if the algorithm had to
access the original data. Computational speed- ups of 50 to 5,000-
fold on various classification algorithms (compared to naive
implementation of the algorithms) have been reported).

In conclusion, we see that many different techniques can be used
to implement data mining algorithms that are efficient in both time
and space when we deal with very large data sets. Indeed there
are several other approaches we have not even mentioned here,
including the use of online algorithms that see each data point only
once (useful for applications where data are arriving rapidly in a
continuous stream over time) and more hardware-oriented
solutions such as parallel processing implementations of
algorithms (in cases when both the algorithm and the data permit
efficient parallel approaches). Choice of a particular technique often
depends on quite practical aspects of the data mining application
i.e., how quickly must the data mining algorithm produce an
answer? Does the model need to be continually updated? and so
forth. Research on scalable data mining algorithms is likely to
continue for some time, and we can expect more developments in
this area. The reader should be cautioned to be aware that, as in
everything else, there is no free lunch! In other words, there are
typically trade-offs inwlving model accuracy, algorithm speed and
memory, and so forth. Informed judgment on which type of
algorithm and data structures best suit your problem will require
careful consideration of both algorithmic issues and application
details about how the algorithm and model will be used in practice.

Summary

We have discussed the memory hierarchy of modern computer and
then present some index structures that database systems use to
speed up the evaluation of queries. We then move to a discussion on
relational databases and their query languages, as well as some
special purpose database systems.
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We have discussed the problem of finding useful patterns and rules
from large data sets. Recall that a pattern is a local concept, telling
us something about a particular aspect of the data, while a model can
be thought of as giving a full description of the data.
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Glossary

Accuracy: The measure of a model's ability to correctly label a
previously unseen test case. If the label is categorical
(classification), accuracy is commonly reported as the rate which a
case will be labeled with the right category. For example, a model
may be said to predict whether a customer responds to a
promotional campaign with 85.5% accuracy. If the label is
continuous, accuracy is commonly reported as the average distance
between the predicted label and the correct value. For example, a
model may be said to predict the amount a customer will spend on a
given month within $55. See also Accuracy Estimation,
Classification, Estimation, Model, and Statistical Significance.

Accuracy Estimation: The use of a validation process to
approximate the true value of a model's accuracy based on a data
sample. See also Accuracy, RMS, Resampling Techniques and
Validation.
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Affinity Modeling: The generation of a model that predicts which
products or services sell together.

Algorithm: A well specified sequence of steps that accepts an input
and produces an output. See also Data Mining Algorithm.

Analysis description file: A file used by InductionEngine to
summarize the type of processes that will be performed in the data
file. (i.e. target column, cost-matrix value). This file is generated after
the first time of data analysis, and it can be used to speed up the
process of defining the process information for analyzing other data
file that has exactly the same data structure next time. See:
InductionEngine, Train file.

Artificial Intelligence (Al): The science of algorithms that exhibit
intelligent (rational) behaviour. See: Abductive logic, Deductive logic,
Inductive logic, Expert Systems, Machine Learning, Heuristics.

Association: When one data item is found to be conditionally
dependent on each other we say that they are associated. The term
has similar implications to the term "correlation" but is not as
precisely defined. See: Association Rule, Correlation.

Automated Discretization: Discretization which sets the number of
bins based on the range of a numeric value. Therefore, the user is
not required to specify the number of bins. However, certain values
may be 'lost' from the decision tree because of automatic binning,
which is not the case with intelligent binning. See Binning ,
Discretization.

Bayes Theorem : Describes a useful relationship between the
likelihood of a future event (posteriors) and the likelihood of a prior
event (priors). Given a hypothesis h and a dataset D the likelihood
that the hypothesis is correct for the dataset P(h|D) can be
expressed as P(D|h)P(h)/P(D). The use of P(h), "the prior", is the
source of some debate among statisticians. The theorem can be
proved by application of the product rule
P(h"D)=P(h|D)P(D)=P(D|h)P(h). See: Naive-Bayes Classifier.

Binning: Choosing the number of bins into which a numeric range is
split. For example, if salaries range from $20,000 to $100,000, the
values must be binned into some number of groups, probably
between eight and twenty. Many data mining products require the
user to manually set binning. See Automated Binning, Discretization.
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Black-Box Method: Any technique that does not explain how it
achieved its results. A black-box method may be unsuitable for many
applications where external experts are required to assess the
reasonableness of the model. See Neural Nets.

Bootstrap: A technique used to estimate a model's accuracy.
Bootstrap performs b experiments with a training set that is randomly
sampled from the data set. Finally, the technique reports the average
and standard deviation of the accuracy achieved on each of the b
runs. Bootstrap differs from cross-validation in that test sets across
experiments will likely share some rows, while in cross-validation is
guaranteed to test each row in the data set once and only once. See
also accuracy, resampling techniques and cross-validation.

C4.5: A decision tree algorithm developed by Ross Quinlan, and a
direct descendant of the ID3 algorithm. C4.5 can process both
discrete and continuous data and makes classifications. C4.5
implements the information gain measure as its splitting criterion and
employs post-pruning. Through the 1990s it was the most common
algorithm to compare results against. See ID3, Pruning, Gini.

Campaign Response Modeling: This model predicts the people
that will most likely respond to a promotional campaign.

CART: A decision tree algorithm developed in the early 80s by
Breiman and other statisticians. CART stands for classification and
regression trees. The algorithm uses a gini index for its splitting
criterion. See: CHAID, Decision Tree, Gini.

Causal Factor: Any feature in the data which drives, influences, or
causes another feature in the data. A simple example of cause &
effect is that the sunrise causes the rooster to crow, not the other
way around. See: Assoction, Correlation, Discriminating Factor.

CHAID: A decision tree splitting criterion based on the chi squared
statistics formula, and the AID heuristics which enables it to also
handle numerical data. See AID, Gini, Information Gain, statistics,
heuristics.

Chi Square Distribution: A mathematical distribution with positive
skew. The shape depends on the degree of freedom (df). The skew
is less with more degree of freedom. The distribution is used directly
or indirectly in many tests of significance. See also Chi Square Test.
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Chi Square Test: The significance test used on contingency table to
determine the relationship between two variables. Chi square test
assumes that the data distribution follows the chi square distribution.

Classification/Classifier: The act of labeling a test case into one of
a finite number of output classes. A model that classifies is
sometimes referred to as a "classifier". Commonly a classifer's
performance is measured by its ability to correctly label unseen test
cases, that is its "accuracy". Inversely a classifier's performance may
be measured by its "error rate". A more detailed insight into a
classifier's performance is given by the Confusion Matrix structure
because it captures how well the classifier predicts each of the
available classes. If a Cost-Benefit Matrix is available then the
classifier's performance is measured by the product of the Confusion
and Cost-Benefit matrices. See also: Accuracy, Classification
Algorithm, Confusion Matrix, Cost-Benefit Matrix, Estimation, Model,
and Type | and Type Il Errors.

Classification Algorithm: An algorithm that performs classification.
Some algorithms first construct a model that then can be used to
classify (e.g. Decision Tree, Logistic Regression), while other
algorithms perform the labeling directly (e.g. k-Nearest-Neighbor).
See also Decision Tree, Kk-Nearest-Neighbor, and Logistic
Regression.

Cluster: A set of similar cases.

Clustering: The development of a model that labels a new record as
a member of a group of similar records (a cluster). See clustering
algorithms. For example, clustering could be used by a company to
group customers according to income, age, prior purchase behavior.
Cluster detection rarely provides actionable information, but rather
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feeds information to other data mining tasks. See also Clustering
Algorithms, Segmentation and Profiling.

Clustering Algorithms: Given a data set these algorithms induce a
model that classifies a new instance into a group of similar instances.
Commonly the algorithms require that the number of (c) clusters to
be identified is prespecified. E.g. find the c=10 best clusters. Given a
distance metric, these algorithms will try to find groups of records
that have low distances within the cluster but large distances with the
records of other clusters. See also Agglomerative Clustering
Algorithms, Clustering, Divisive Clustering Algorithms, K-means
Algorithm, and Unsupervised Learning.

Confidence Window or Level: A statistical measurement of how
sure one can be that a certain result is true. The window or level
describes how close the value is likely to be to the exact result. See
statistical significance.

Confounding Factor: (from the Latin confundere: to mix together) A
distortion of an association between an intervention (I) and response
(R) brought about by an extraneous cofactor (C). This problem
occurs when the intervention is associated with C and C is an
independent factor for the response. For example, (C) confounds
the relationship between (R) and couponing (1), since R and C are
related, and C is an independent risk factor for R.

When the differences between the treatment and control groups
other than the treatment produce differences in response that are not
distinguishable from the effect of the treatment, those differences
between the groups are said to be confounded with the effect of the
treatment (if any). For example, prominent statisticians questioned
whether differences between individuals that led some to smoke and
others not to (rather than the act of smoking itself) were responsible
for the observed difference in the frequencies with which smokers
and non-smokers contract various illnesses. If that were the case,
those factors would be confounded with the effect of smoking.
Confounding is quite likely to affect observational studies and
experiments that are not randomized. Confounding tends to be
decreased by randomization. See also Simpson's Paradox.

Confusion Matrix: A table that illustrates how well a classifier
predicts. Instead of a simple misclassification error rate the table
highlights where the model encounters difficulties. For each of the c
output classes, the table presents an algorithm's likelihood of
predicting each one of ¢ classes. The sample confusion matrix below
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shows a classifier's accuracy on a problem with the three (c=3)
output classes: cans, produce and dairy. The test set used to
evaluate the algorithm contained 100 cases with a distribution of 30
cans, 35 produce and 35 dairy. A perfect classifier would have only
made predictions along the diagonal, but the results below show that
the algorithm was only correct on (20+25+24)/100 = 69% of the
cases. The matrix also shows that the classifier often confuses dairy
for cans (11 incorrect) and cans for dairy (9 wrong).

ACTUAL PREDICTED

Cans Produce Dairy SUM
Cans 20 2 11 34
Produce 2 25 1 20
Dairy 9 a 24 30
5UM 31 32 5] 100

See: Cost-Benefit Matrix, Classification.

Contingency Tables: Used to examine the relationship between two
continuous or categorical variables. Chi square test is used to test
the significance between the column and the row frequencies, that is,
whether the frequencies of one of the variables depends on the
other.

Control Group Study (a.k.a. Randomized Controlled Study):
Click here for more information. A model of evaluation in which the
performance of cases who experience an intervention (the treatment
group) is compared to the performance of cases (the control group)
who did not experience the intervention in question. In medical
studies where the intervention is the administration of drugs, for
example, the control group is known as the placebo group because a
neutral substance (placebo) is administered to the control group
without the subjects (or researchers) knowing if it is an active drug or
not. Typically, the intervention is considered successful if its
performance exceeds that of the control group's by a statistically
significant amount. When assignment to control and treatment
groups is made at random, and no other factors enter into the
assignment into control or treatment, any differences between the
two groups are due either to the treatment or to random variation.
When a given difference between the two groups is observed, say in
spending on a particular set of items, it is possible to calculate the
probability of this difference arising purely by chance. If the
probability of an observed difference is very small (generally less
than 5 percent but more stringent rules can be adopted) the
observed difference is said to be due to the treatment. Click here for
more information.
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Correlation Coefficient (also Pearson's Product Moment
Correlation Coefficient): A correlation coefficient is a number,
usually between -1 and 1, that measures the degree to which two
continuous columns are related. Usually the term really refers to the
Peason's Product Moment Correlation Coefficient, usually denoted
by r, which measures the linear association between two variables. If
there is a perfect linear relationship with positive slope between the
two variables, we have a correlation coefficient of 1; if there is
positive correlation, whenever one varialbe has a high (low) value, so
does the other. If there is a perfect linear relationship with negative
slope between the two variables, we have a correlation coefficient of
-1; if there is negative correlation, whenever one variable has a high
(low) value, the other has a low (high) value. A correlation of O
means that there is no linear relationship between the variables. See
also Spearman Rank Correlation Coefficient.

Cost-Benefit  Matrix: (Click here for more information)
A cost-benefit matrix is an input to the modeling process that allows
predictive modelers to describe the costs and the benefits associated
with each possible prediction. By default the cost-benefit matrix has a
value of one (1.0) for correct predictions and zero (0.0) for incorrect
predictions. This configuration asks that the predictive model
optimize raw accuracy. In most real-world situations, however, an
incorrect prediction has a net monetary cost (less than zero), and a
correct prediction has a positive benefit. The correct or incorrect
values that are chosen affect the values chosen for the matrix. The
default cost matrix assumes no weighting for each output possibility.
When the cost-benefit matrix has new non-default values assigned,
the model optimizes the net benefit (profit) associated with each
prediction. The cost-benefit matrix input is essential for businesses
that want to optimize their return on investment. PredictionWorks
supports the use of a cost-benefit matrix. Click here for more
information.

Cross Sell Modeling: The generation of a model that predicts which
products a specific customer would likely buy, or that predicts which
customers would likely buy a specific product. This task is similar to
Affinity Modeling and Campaign Response Modeling except that the
resulting model is customer centric and targets existing customers
instead of new prospects.

Cross-validation: A resampling technique used to estimate a
model's accuracy. Cross-validation first segments the data rows into
n nearly equally sized folds (F;..F,). Once the segmentation is
accomplished, n experiments are run, each using F; as a test set and

the other n-1 folds appended together to form the train set. Finally,
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the technique reports the average and standard deviation of the
accuracy achieved on each of the n runs. Too small a value for n will
not achieve a confident accuracy estimate while too large a value for
n will increase the variance of the estimate and will require increased
computation. Empirical investigation into this technique has
suggested the value of n=10 (10 fold cross-validation) to achieve
useful results. See accuracy, resampling techniques and bootstrap.

Customer Relationship Management (CRM): The business
processes that strengthens the relationship between a seller and
their customers. To ensure positive contacts a CRM requires the
measurement of each customer's value to the enterprise, the storing
of all relevant transactional (behavioral) data, and the ability to
predict future customer behavior. The implementation of a CRM
process requires a significant technological investment in computing
hardware and software, personnel and customer contact (touch
point) systems.

Worldwide revenues in the customer relationship management
(CRM) services markets will increase at a compound annual growth
rate of 29 percent from $34.4 billion in 1999 to $125.2 billion in 2004,
according to International Data Corp. (IDC). META Group predicts a
50 percent annual growth rate for the global CRM market and
projects it will grow from more than $13 billion in 2000 to $67 billion
in 2004.

CRM (customer relationship management) is an information industry
term for methodologies, software, and usually Internet capabilities
that help an enterprise manage customer relationships in an
organized way. For example, an enterprise might build a database
about its customers that described relationships in sufficient detail so
that management, salespeople, people providing service, and
perhaps the customer directly could access information, match
customer needs with product plans and offerings, remind customers
of service requirements, know what other products a customer had
purchased, and so forth. According to one industry view, CRM
consists of:

1. Helping an enterprise to enable its marketing departments to
identify and target their best customers, manage marketing
campaigns with clear goals and objectives, and generate
quality leads for the sales team.

2. Assisting the organization to improve telesales, account, and
sales management by optimizing information shared by
multiple employees, and streamlining existing processes (for

example, taking orders using mobile devices)
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3. Allowing the formation of individualized relationships with
customers, with the aim of improving customer satisfaction
and maximizing profits; identifying the most profitable
customers and providing them the highest level of service.

4. Providing employees with the information and processes
necessary to know their customers, understand their needs,
and effectively build relationships between the company, its
customer base, and distribution partner

Customer Value Modeling: The generation of a model that
forecasts a customer's future spending in general or within specific
business areas.

Data Selection: See Data Mining.

Data Mining: The automatic detection of trends and associations
hidden in data, often in very structured data. Data Mining Iis
sometimes thought of as a single phase of a larger process that
includes Data Selection, Data Cleansing, Data Transformation, Data
Mining, and Evaluation. See Data Mining Algorithms, Machine
Learning, Statistics.

Data Cleansing: Locate and resolve problems with dataset:

e repeated rows, non-unigue keys

e (gapsintime

e missing data

e columns dominated by one value

e columns with a large number of categorical values
« discretizing or numeralizing columns

See Data Mining.

Data Mining Algorithm: An algorithm that accepts structured data
and returns a model of the relationships within a data set. The
algorithm's performance is measure by its accuracy, training/testing
time, training/testing resource requirements and the model's
understandability. See also Accuracy, Algorithm, Classification,
Estimation, Parametric Modeling, and Non-Parametric Modeling.

Data Mining Task: A general problem for which data mining is called
in to generate a model for. In this glossary data mining tasks are
described according to the following template:
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Decision Tree: A model made up of a root, branches and leaves.
Each branch in the tree contains a simple IF X THEN branch Al
ELSE IF ... ELSE branch An. Each leaf of the tree contains the
prediction to be made, e.g. True 84%. Decision trees are similar to
organization charts, with statistical information presented at each
node. See: Axis Parallel Representations, Decision Tree Algorithm.

Decision Tree Algorithm: An predictive modeling technique from
the fields of Machine Learning and Statistics that builds a simple
tree-like structure to model the underlying pattern. The basic
approach of the algorithm is to use a splitting criterion to determine
the most predictive factor and place it as the first decision point in the
tree (the root). The algorithm continually perform this search for
predictive factors to build the branches of the tree until there is no
more splits are necessary because only records of . Tree prunning
raises accuracy on noisy data and can be performed as the tree is
being constructed (pre-prunning), or after the construction (post-
prunning). The algorithm is commonly used for -classification
problems that require the model represented in a human-readable
model. PredictionWorks has several implementations of the Decision
Tree Algorithm. Two of them use different splitting criterion (gini and
entropy), and C4.5 is an implementation of a well-known algorithm by
J.R. Quinlan. See also: Classification Algorithm, Estimation
Algorithm, C4.5, Entropy, and Gini.

Demand Modeling: The generation of a model that forecasts when
an item will be ordered and how large the order will be.

Diapers and Beer: A popular anecdote used to illustrate the
unexpected but useful patterns discovered by data mining. The
anecdote (probably apocryphal) recounts that a large supermarket
chain used data mining to discover that customers often bought
diapers and beer at the same time. When the retailer displayed two
items together, sales increased for both items.

Discovery: Finding unexpected but useful trends and associations
hidden in data. See modeling, associations.

Discriminating Factor: A measure of how important a causal factor
is, used by decision trees to build the tree. See decision trees, causal
factor.

Entropy: In data mining, a measure of the relative difference
between two or more data partitions based on information theory.
See also Gini.
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Entropy Heuristic: Use of entropy to determine the information gain
of a particular attribute (predictor) in Decision Tree Algorithm. The
attribute with the greatest entropy reduction is chosen as the test
attribute in a Decision Tree model, because splitting on the attribute
produces the purest / most uniformity data distribution. The purity of
the data distribution affects the ultimate accuracy or the resulted
model. The attribute with the greatest entropy reduction is also the
attribute with the highest information gain. See also Gini Heuristic.

Estimation/Regressor: The act of labeling a test case with an
continuous value. A model or algorithm that estimates is sometimes
referred to as a "regressor”. Commonly a regressor's repfermance is
measured by its ability to predict a value that is near tot he actual
value, such as with a correlation coefficient. See also Classification,
Correlation Coefficient, and Estimation Algorithm.

Estimation Algorithm: An algorithm that performs estimation. Some
algorithms first conduct a model that then can be used to estimate
(e.g. Decision Tree, Linear Regression), while other algorithms
perform the labeling directly (e.g. K-Nearest-Neighbor). See also:
Decision Tree, Estimation, K-Nearest-Neighbor, Linear Regression.

Euclidean Distance: Measure of the distance between two points.
For any two n-dimensional points a = (a;,a,,...a,) and b = (by,by,...by),
the distance between a and b is equal to:

sqrt( (a1 - b1)? + (@2 - bp)? + ... + (an - by)?)

Forecasting: Adapting data mining techniques to forecast future
trends with statistical reliability. Forecasting is often confused with
prediction, but is usually much more complex.
See time series analysis/forecasting, what-if analysis, neural nets.

Fraud Detection: This modeling procedure predicts infrequent
events that bear a large financial penalty. This type of modeling is
commonly used to detect criminal activity such as credit card fraud,
insurance claim fraud, and Internet/wireless hacking. Each type of
fraud detection requires a slightly different technique. Generally,
anomalous events that do not fit the normal usage patterns trigger
fraud detection alarms. The main challenges to these tasks are due
to the low frequency of the undesirable events, usually under one
percent (1%). Usage of the cost-benefit matrix is critical to properly
weigh the benefits of correct and incorrect predictions. These
conditions often mean that 1) The lack of examples of fraudulent
events makes it difficult to discriminate between legitimate and
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fraudulent behavior. 2) The overwhelming number of legitimate
events leaves little room for lift on the already high accuracy from the
simple model that simply predicts all events to be legitimate. 3) The
existence of a cost-benefit matrix allows us to dismiss the simple
model described in condition 2. The use of cost-benefit matrix
information into predictive modeling, however, is a new concept.

Gini: A modern decision tree index algorithm developed by Ron
Bryman. Gini handles both numbers and text, and offers good
processing speed. See also C4.5, and CHAID.

Gini Heuristic: Use of Gini to determine the information gain of a
particular attribute (predictor) in Decision Tree Algorithm. See also
Entropy Heuristic.

Heuristics: A rule of thumb that speeds up the locating of an optimal
result.

Horizon Effect: The event where a Decision Tree construction in
halted prematurely because no further benefit seemed apparent.
Usually happens as the result with Pre Pruning.

ID3: The first algorithm which was designed to build decision trees.
ID3 was invented by Ross Quinlan at the University of Sidney
Australia. ID3 was followed by ID4, ID6 and see 5. See C4.5, Gini,
CHAID, CART.

Information Gain: A measurement used to select the test attribute
(predictor) at each node during Decision Tree model construction.
See also Attribute Selection Measure or Splitting Criterion.

Instance-based Learning: Machine learning technique in which
training datasets are stored in entirety and a distance function is
used to make predictions. See also: KNN

k-Nearest-Neighbor (kNN) Algorithm: An algorithm from the field of
Pattern Recognition that generates both estimation and classification
models. The algorithm assumes that similar cases behave similarly.
The most common proximity measure is based on the Euclidean
distance between two vectors. For classification problems the
prediction is based on the statistical mode (most common) of the
response value for the k closest cases. For example to predict the
target value of a test case and k is set to the value seven (k=7) then
the seven cases most similar to the test case would be fetched and
the most common value from among the seven would be used to
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make the prediction. If the problem was an estimation challenge then
the average from the seven would be used for the prediction. This
algorithm works most all datatypes but is most effective in the
presence of continuous columns where the Euclidean distance can
be calculated.

Least Squares: A method used to find the line that goes through the
datapoints with the shortest squares of distances between the
datapoints and this line.

Gain Chart (Lift Curve): A method from direct marketing that helps
to visualize a classifier's accuracy on binary (positive/negative)
problems. Lift charts are commonly used in promotion campaign
response modeling (responded/did not respond) to present how well
a model performs when compared to a random mailing. The x-axis
represents the percentage of the total population covered, say a city
of 100,000. The y-axis presents the cumulative percentage of
correctly classified positive cases, say 30,000 would respond if they
received the mailout. The chart should include the performance of a
random case selection (a straight line from [0%,0%] to [100%,100%])
and the performance of the model under investigation. Other
possible lines in the chart include the performance of other
competing models, the performance of a perfect classifier, and the
guota to be achieved. From the chart below we notice that KNN (k-
Nearest Neighbor) reaches the 85% quota faster than the DT
(Decision Tree).
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Linear Regression: An algorithm that generates estimation models
from the field of Statistics. The algorithm assumes that a linear
relationship exists between the independent variables and the
response Vvariable. PredictionWorks uses Least Squares as a
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measure of model fithess. See also Parametric Modeling, and Least
Squares.

Log-Likelihood: The logarithm of a likelihood equation. It is used
when the logarithm is easier to work with than the equation itself and
the outcome is unaffected..

Logistic Regression: An algorithm that generates classification
models from the field of Statistics. The target column may be NON-
binary, but most implementations are limited to two value (binary)
predictions. PredictionWorks' logistic regression algorithm uses
maximum likelihood estimation to determine parameters of the
regression equation. Forward stepwise selection is used to find the
most predictive columns from which to build the model. The stopping
criterion is based on a chi-square distribution. See also:
Classification Algorithm, and Log-Likelihood.

Machine Learning: Is the research area within Al that studies
algorithms which induce models from a set of data. Machine learning
differs from statistics and pattern recognition in its focus on
knowledge representation, symbolic data, automated discovery, and
computational complexity analysis.

Majority Model Algorithm: A classification algorithm that simply
predicts the most common value found in the target column. For
example, if 87% of a data set's rows contain the value
"Did_Not_Respond" in the target column, then the Majority Model will
simply predict "Did_Not_Respond" for every row, and on average
achieve a raw accuracy of 87%. If one single value (class) is very
prevalent is the data set, say greater than 95%, then this model's raw
accuracy will be difficult to imporve on. When this is the case, the
situation usually requires a Cost-Benefit Matrix to represent the fact
that predicting the majority class may have little value in the real
world. For example, predicting that all customers will not respond to
a direct mail campaign may be accurate but that model will generate
no revenue. See also: Classification Algorithm, Minority Model
Algorithm, Mean Model Algorithm, and Naive Model Algorithm.

Market Basket Analysis: A technique, used in large retail chains,
which studies every purchase made by customers to find out which
sales are most commonly made together. See Diapers and Beer.

Maximum Likelihood Estimation: Method of choosing parameters
for a regression equation that maximizes the likelihood of observing
the target value. Mean Model Algorithm: An estimation algorithm
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that simply predicts the mean (average) value found in the target
column. For example, if the average value of a data set's target
column is 7.875, then the Mean Model will simply predict 7.875 for
every row. Often the central tendency of a data set is better captured
by the median value, however calculating a column's median is
significantly more complex (requires sorting) than calculating the
mean value. See also: Naive Model Algoirthm. Meta data file: This
file contains the necessary information about the data structure (ie
delimiter, data type for each column). This file is generated after the
first time of data analysis, and it can be used to speed up the
process of defining the data structure for analyzing other data file
that has exactly the same data structure next time. Minority Model
Algorithm: A classification algorithm that simply predicts the least
common value found in the target column. PredictionWorks implicitly
supports this model through the Naive Model Algorithm by creating a
separate model for every value in the target class. This model is of
interest when a Cost-Benefit Matrix biases the value of predicting
against the majority value (class). See also: Naive Model Algorithm.
Missing Value: A data value that is not known or does not exist.
Two common reasons for missing values are unfilled optional
features, data entry malfunctions, and non-applicability of column.
Some algorithms require that missing-values be filled-in (imputed).
PredictionWorks' imputes values based on the mean if the column is
numeric or the mode if the column is categorical.

Mode: In mathematics, the most common class in a set

Model: A structure that labels an event based on the event's
characteristics. A model is measured by its accuracy and speed, and
sometimes by its ability to clearly justify its prediction. See Accuracy,
Modeling.

Model Validation: The testing of a model with unseen data. See:
Model.

Modeling: Building a model from a set of training data. See also
Model, Non-Parametric Modeling, and Parametric Modeling.

Naive Bayes Classifier: An predictive modeling algorithm that uses
the conditional probabilities estimates calculated from the training
data to estimate the posterior probability of seeing an event. In a
binary True/False classification problem, for example, each record x
is tested to see if it is more likely that P(True)P(True|x) or
P(False)P(False|x). The key assumption that makes the algorithm
fast is that all predictive attributes are independent of each other.
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This assumption allows the conditional probability P(True|x) to be
rewritten as a simple multiplication of the conditinal probabilities for
each individual attribute-value xiP, P(Truel|x) =
(True|x1)"..."P(True|xm). Although this assumption is typically invalid
for general datasets the algorithm generally continues to perform
well. The algorithm is generally faster but less accurate than other
predictive modeling techniques. It has however been found to be
very accurate for text classification. See: Bayes Theorem.
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Naive Model Algorithm: An algorithm that generates both
classification and estimation predictions. The approach of the
algorithm is simply to make predictions based on the distribution of
the target column. There are several possible versions of this
algorithm that make assumptions. PredictionWorks' implements the
Majority Model, and Single Class Model. See also: Majority Model
Algorithm, Minority Model Algorithm, Mean Model Algorithm, Single
Class Model Algorithm, classification/estimation models, domain X,
and target column.

Neural Networks: A predictive modeling technique that uses
artificial neural networks (ANN) to model an underlying pattern.
Neural networks are particularly good at modeling mathematical
functions. See black box.

Non-Parametric Modeling: The development of a model without the
need to assume that the data abide by a specific (parametric)
distribution. Most data mining predictive modeling techniques are
non-parametric in order to make them general enough to apply to
most datasets. See: Parametric Modeling.

Overfitting: The act of mistaking noise in training data for true trends
in the population. An overfitted model will make incorrect predictions
in those regions it overfit. A general technique to compensate for a
predictive modeling algorithm that overfits data is to use pruning.
See: Pruning.

Parametric Modeling: The development of a model with the
requirement that the data abide by some specific (parametric)
distribution. The use of these algorithms generally requires a through
understanding of their specific assumptions and how to test for their
validity. If the assumption is correct, the generated model will be

more accurate than a model generated by a non-parametric
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modeling algorithm. Statiscal modeling techniques, such as linear
regression, are generally parametric. See Linear Regression, Non-
Parametric Modeling.

Partitioning: Choosing data which is most interesting for mining.
This is typically at least eighty percent of the work of data mining.
See sampling.

Post-Pruning: A type of Pruning where the pruning process is
performed after the model is constructed. The approach uses data
that has been set aside to test for sections in the model that are
inaccurate. Also see Pre-Pruning, Pruning and Overfitting.

Predictive Modeling: Modeling that emphasizes accuracy on
unseen data.

Prediction: Using existing data to predict how other factors will
behave, assuming that some facts are known about the new factor.
Making a credit check of new customers by using data on existing
customers is a good example of prediction. See What-If? analysis,
time series analysis/forecasting, forecasting.

Pre-Pruning: A type of Pruning where each update to the model is
first tested for its likelihood of being accurate. This approach is faster
than Post Pruning, but will be less accurate due to the horizon effect.
See also Pruning and Overfitting.

Price Elasticity Modeling: The generation of a model that forecasts
a product's sales volume based on its price. For example, if the price
of milk is increased from $3.50/g to $4/g the sales of this product
from 683/week to 546/week.

Probability Distribution: A term from statistics for the likelihood
associated with each of the values in a random variable. For
example the pdf of a random variable for the tos of unbiased coin is
{Tails=0.5, Heads=0.5}. See: Expected Value, Probability Density
Function (pdf), Random Variable.

Probability Density Function (pdf): See: Probability Distribution.

Pruning: The technique of removing parts of a predictive model that
do not capture true features of the underlying pattern. There are two
types of pruning process, Pre-Pruning and Post Pruning. Decision
Tree algorithms typically employ prunning to avoid overfitting. See
also Overfitting.
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Posterior Probability (a posteriori probability) Models:
Classification model which estimates the probability that input x
belongs to class C, denoted by P(C|x). With these estimates a set of
inputs can be ranked from most to least certain so that resources can
be focused on the top prospects. See also Campaign Response
Modeling, and Gain Chart.

Random Error: Can be thought of as either sampling variation or as
the sum total of other unobservable chance deviations that occur
with sampled data. The key to working with random error is that it
tends to balance out in predictable ways over the long run. It can
thus be dealt with using routine methods of estimation and
hypothesis testing.

Random Model Algorithm: An algorithm that generates
classification predictions. The basic approach is to randomly predict
one of the classes without consideration for its frequency.

Random Variable: A term from statistics for a symbol, e.g. X , that
represents an experiment with a probabilistic outcome, e.g. the
flipping of a coin. The values of a random variable represent an
outcome of an experiment, e.g. {Heads,Heads}. In data mining each
attribute in a dataset can be though of as a random variable. See:
Expected Value, Probability Distribution.

Resampling Techniques: An empirical approach to model accuracy
estimation based on the training and testing on multiple samples of
the data set. See also Accuracy Estimation, Cross-Validation and
Bootstrap.

Retention Modeling: The generation of a model that forecasts the
probability that a customer will significantly reduce the business they
bring in, or defect all together.

Root-mean-squared Error (RMS error): A measure of an
estimation model's error. Given a data set, it is defined as the square
root of the square of the difference between the true values and the
model's predicted values. For a data set with n records

2_1 J (actual , — predicted i
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Rule Induction: A method of performing discovery by inducing rules
about data. Rule induction tests given values in the data set to see
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which other data are its strongest associated factors. See decision
trees, discovery, causal factor.

Sampling: Taking a random sample of data in order to reduce the
number of records to mine. Sampling is statistically complicated, but
can be done in an RDBMS by use of a simple random number
generator and column in the database. See partitioning.

Scoring: The process of applying a model to a database or list.
Segment: A well-defined set of cases.

Segmentation and Profiling: The generation of a model that groups
like-minded customers into ‘prototypical’ customer types.

Simpson's Paradox: What is true for the parts is not necessarily
true for the whole.

Single Class Model Algorithm: An algorithm that generates
classification predictions. The approach of the algorithm is to choose
a single class and predict that class every time. This algorithm is
simpler than Majority Model because it does not need to know the
frequency of the target column. Can only be better than Majority
Model when a Cost Matrix is used to give priority a minority class.
See also: Majority Model Algorithm, Target Column, and Cost-Benefit
Matrix.

Statistical significance: A measure the statistical likeliness that a
given numerical value is true. See confidence window or level.

Statistics: The field in mathematics which studies the quantification
of variance. One of the basic building blocks of data mining. See
Heuristics, Machine Learning.

Systematic Error: In contrast to random error, is less easily
managed. According to modern epidemiologic theory, systematic
error (or bias, as they say), can result from: information bias (due to
errors in measurement), selection bias (due to flaws in the sampling),
and confounding (due to the damaging / biasing effects of
extraneous factors

Target Column: (a.k.a. dependent variable/attribute, label)the
column whose values a predictive model has to accurately predict. If
the target column is categorical the modeling challenge is referred to
as classification, otherwise if the target column is numeric the
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challenge is referred to as an estimation problem. See also test file,
train file, classifier, and estimation.

Test file: The dataset file on which predictions will be made. The
best predictive model discovered during the training stage will be
used to predict the values of the target column for each of the rows in
the file. The file should be the same format as the train file although
the values in the target column may be represented by a missing
value such as a question mark. See also target column.

Time Series Analysis/Forecasting: A complicated technology
which is used to give statistically accurate forecasting. This is often
confused with prediction or simple forecasting, but time series
analysis/forecasting is much more difficult, and mathematically
based. See forecasting.

Total Wallet Modeling: The generation of a model that forecasts a
customer's total spending for a particular product or service.

Train file: The dataset file that will be tested against with many
algorithms to discover the best predictive model. One of file's the
columns is selected as the target (dependent) column. The
PredictionWorks' web-service accepts comma, tab or single-space
delimited files. If the discovered model is will be used to predict
future behavior then the predictor (independent) columns in the train
file must contain information that was available before the value of
the target column was known, and possibly further back. For
example, if the target value contains whether a banner was clicked
on or not then the data in the predictor columns must have data that
was available before the person saw the banner. In the example of a
mailed-out coupon, the predictor columns must have data that was
available not just before the coupon was redeemed but data that was
available when the coupon was mailed out.

Threshold: The minimum percentage of occurrence of a class
needed to choose that class. e.g. If you have a dataset consisting of
blue socks and red socks and your threshold is 0.6, you will need at
least 60% of one colour of sock to choose that colour. See also:
classification

Type | and Type Il Errors: Decisions based on two-valued (binary)
predictive models may be in error for two reasons:

e Type | Error (False Positive) errors occur when the difference
with the null-hypothesis is significant, due to factors other than
chance, when in fact it is not. The probability of this type of

error is the same as the significance level of the test. Many
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domains consider this the most serious type of error to make.
It is equivalent to a judge finding an innocent suspect guilty.

e Type Il Error (False Negative) errors occur when the
difference with the null-hypothesis is due to chance, when in
fact it is not. Some domains, such as direct marketing
represent this type of error as lost income because the person
who would have responded positively was never contacted.
See also Cost-Benefit Matrix.

Value Drivers Modeling: The generation of a model that predicts
the top reasons for a customer to continue to do business with the
company.

Variance: A term from statistics for the measure of the dispersion of

a random variable's probability distribution around its expected value.
Typically written as Var(Y).

2
Variance is calculated as E({}? B 1”5’} )

See: Expected Value, Probability Distribution, Random Variable.

Visualization: Visual representation of discovered patterns.




