
SYSTEMS AUDITING
 (DMCA

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

NAGARJUNA NAGAR,

SYSTEMS AUDITING
DMCA305)

(MCA)

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

NAGARJUNA NAGAR,

GUNTUR

ANDHRA PRADESH

SYSTEMS AUDITING

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

CONTENTS

Page Nos.

UNIT-I ……. 1 - 51
1. Overview of Information System Auditing

2. Conducting an Information System Audit

3. Summary

4. Questions

UNIT-II ……. 52 - 135
1. Programming Management Controls

2. Security Management Controls

3. Quality Assurance Management Control

4. Summary

5. Questions

UNIT-III ……. 136 - 237
1. Input Controls

2. Communication Controls

3. Database Controls

4. Output Controls

5. Summary

6. Questions

UNIT-VI ……. 238 - 290
1. Audit Control

2. Code Review, Test Data and Code Comparison

3. Concurrent Auditing

4. Summary

5. Questions

UNIT-V ……. 291 - 324
1. Evaluating Asset Safe guarding and Data Integrity

2. Evaluating System Effectiveness and Efficiency

3. Summary

4. Questions

SYSTEMS AUDITING

NOTES

1

UNIT – I

1. Overview of Information Systems
Auditing

Structure

1.1 Introduction

1.2 Need for control and audit of computers

1.2.1 Organizational Costs of Data Loss

1.2.2 Incorrect Decision Making

1.2.3 Costs of Computer Abuse

1.2.4 Value of Computer Hardware, Software, and Personnel

1.2.5 High Costs of Computer Error

1.2.6 Maintenance of Privacy

1.2.7 Controlled Evolution of Computer Use

1.3 Information systems auditing defined

1.3.1 Asset Safeguarding Objectives

1.3.2 Data Integrity Objectives

1.3.3 System Effectiveness Objectives

1.3.4 System Efficiency Objectives

1.4 Effects of computers on internal controls

1.4.1 Separation of Duties

1.4.2 Delegation of Authority and Responsibility

1.4.3 Competent and Trustworthy Personnel

1.4.4 System of Authorizations

1.4.5 Adequate Documents and Records

1.4.6 Physical Control over Assets and Records

1.4.7 Adequate Management Supervision

1.4.8 Independent Checks on Performance

1.4.9 Comparing Recorded Accountability with Assets

SYSTEMS AUDITING

NOTES

2

1.5 Effects of computers on auditing

1.5.1 Changes to Evidence Collection

1.5.2 Changes to Evidence Evaluation

1.6 Foundations of information systems auditing

1.6.1 Traditional Auditing

1.6.2 Information Systems Management

Objectives

In this lesson you will learn about:

• Need for control and audit of computers

• Information systems auditing

• Effects of computers on internal controls

• Effects of computers on auditing

• Foundations of information systems auditing

1.1 Introduction

Whereas 50 years ago we fulfilled most of our data processing needs
manually, today computers perform much of the data processing required in
both the private and public sectors of our economies. As a result, the need
to maintain the integrity of data processed by computers now seems to
pervade our lives. Many people fear that our substantially increased data-
processing capabilities are not well controlled. The media make much of
computer abuse. We have concerns about the privacy of data we exchange
with organizations such as the tax department, medical authorities, and
credit granting institutions. All of us have probably suffered the frustrations
of trying to get an organization to update its computer-maintained name and
address file.

Uncontrolled use of computers can have a widespread impact on a society.
For example, inaccurate information causes misallocation of resources
within the economy, and fraud can be perpetrated because of inadequate
system controls. Unfortunately, those who suffer most often are those who
can least afford to suffer for example, small shareholders and low-income
earners. Perhaps more subtle is the growing distrust of institutions that
gather and process large volumes of data. Because computers now seem to
be ubiquitous, many people have a sense of lost individuality: The "big
brother" of George Orwell's 1984 is upon us.

SYSTEMS AUDITING

NOTES

3

1.2 Need for control and audit of computers

Computers are used extensively to process data and to provide information
for decision making. Initially, they were available only to large organizations
that could afford their high purchase and operation costs. The advent of
minicomputers and the rapid decrease in the cost of computer technology
then enabled medium-sized organizations to take advantage of computers
for their data processing. Nowadays, the widespread availability of powerful
microcomputers and their associated packaged software has resulted in the
extensive use of computers in the workplace and at home. Given the
intensely competitive marketplace for computer hardware and software
technology, the rapid diffusion of computers in our economies will continue.

Because computers play such a large part in assisting us to process data
and to make decisions, it is important that their use be controlled. Figure 1-1
shows seven major reasons for establishing a function to examine controls
over computer-based data processing. In the following subsections, we
examine these reasons in more detail.

FIGURE 1-1 Factors influencing an organization toward control and audit of
computers.

1.2.1 Organizational Costs of Data Loss

Data make up a critical resource necessary for an organization's continuing
operations. In this regard, Everest (1985) proposes that data provides the
organization with an image of itself, its environment, its history, and its
future. If this image is accurate, the organization increases its abilities to
adapt and survive in a changing environment. If this image is inaccurate or
lost, the organization can incur substantial losses.

SYSTEMS AUDITING

NOTES

4

For example, consider a large department store whose accounts receivable
file has been destroyed. Unless its customers are honest and also remem-
ber what they have purchased from the store, the firm can suffer a major
loss in cash receipts through customers failing to pay their debts. The
department store's long-run survival could be affected. Consider, also, a
department store that loses its accounts payable file. Most likely it will be
unable to pay its debts on time. As a result, it could suffer a loss of credit
rating as well as any discounts available for early payment. If it contacts
creditors requesting their assistance, the department store has to rely on the
honesty of its creditors in notifying it of the amounts it owes. Furthermore,
creditors might now begin to question the competence of the department
store's management. As a result, they might be unwilling to extend credit to
the department store in the future.

Such losses can occur when existing controls over computers are lax. For
example, management might not provide adequate backup for computer
files. Thus, the loss of a file through computer program error, sabotage, or
natural disaster means the file cannot be recovered, and the organization's
continuing operations are thereby impaired.

1.2.2 Incorrect Decision Making

Making high-quality decisions depends in part on the quality of the data and
the quality of the decision rules that exist within computer-based information
systems. Let's consider the significance of both in turn.

The importance of accurate data in a computer system depends on the
types of decisions made by persons having some interest in an organization.
For example, if managers are making strategic planning decisions, they will
probably tolerate some errors in the data, given the long-run nature of
strategic planning decisions and the inherent uncertainty surrounding these
types of decisions. If managers are making management control and opera-
tional control decisions, however, they will probably require highly accurate
data. These types of decisions involve detection, investigation, and correc-
tion of out-of-control processes. Thus, inaccurate data can cause costly, un-
necessary investigations to be undertaken or out-of-control processes to re-
main undetected.

Besides management, incorrect data can also have an impact on other par-
ties who have an interest in an organization. For example, shareholders
might make poor investment decisions if they are provided with inaccurate
financial information. Similarly, governments, labor, and lobby groups might
make poor decisions if they are provided with inaccurate or incomplete data
about an organization. They might begin to make demands on the
organization (e.g., for control of greenhouse emissions or higher wages) that
the organization cannot sustain.

The importance of having accurate decision rules in a computer system also
depends on the types of decisions made by persons having some interest in
an organization. In some cases, an incorrect decision rule can have minor
consequences. For example, a small, inconsequential error can occur in the

SYSTEMS AUDITING

NOTES

5

calculation of depreciation on a low-value asset. In other cases, however,
the consequences can be significant. For example, if the algorithm that
determines the interest rate to be paid to customers of a bank is incorrect,
the bank might make substantial overpayments to its customers. It might not
be able to recover these monies without substantial losses of goodwill.
Similarly, if a decision rule in an expert system that supports medical
diagnosis is incorrect, doctors could prescribe inappropriate treatments for
patients, some of which could be fatal.

1.2.3 Costs of Computer Abuse

The major stimulus for development of the information systems audit
function within organizations often seems to have been computer abuse.
Parker defines computer abuse to be "any incident associated with
computer technology in which a victim suffered or could have suffered loss
and a perpetrator by intention made or could have made gain."

Some major types of computer abuse that an organization might encounter
include the following:

Type of
Abuse

Explanation

Hacking
A person gains unauthorized access to a
computer system to read, modify, or delete
programs or data or to disrupt services.

Viruses

Viruses are programs that attach themselves to
executable files, system areas on diskettes, or
data files that contain macros to cause disruption
to computer operations or damage to data and
programs. They are designed to achieve two
objectives: to replicate themselves and to deliver
a payload that causes disruption of some kind.

Illegal
physical
access

A person gains unauthorized physical access to
computer facilities (e.g., they gain illegal entry to a
computer room or a terminal). As a result, they
are able to cause physical damage to hardware or
make unauthorized copies of programs or data.

Abuse of
privileges

A person uses the privileges they have been
assigned for unauthorized purposes (eg., they
make unauthorized copies of sensitive data they
are permitted to access).

SYSTEMS AUDITING

NOTES

6

Computer abuse can lead to the following types of consequences:

Consequences
of Abuse

Explanation

Destruction of
assets

Hardware, software, data, facilities, documentation, or
supplies can be destroyed.

Theft of assets
Hardware, software, data, documentation, or supplies
can he illegally removed.

Modification of
assets

Hardware, software, data, or documentation can he
modified in an unauthorized way.

Privacy
violations

The privacy of data pertaining to a person or an
organization can be compromised.

Disruption of
operations

The day-to-day operations of the information systems
function can cease temporarily.

Unauthorized
use of assets

Hardware, software, data, facilities, documentation, or
supplies are used for unauthorized purposes (e.g.,
computer time is used for private consulting
purposes).

Physical harm
to personnel

Personnel can suffer physical harm.

Computer abuse usually is a less serious problem for organizations than
errors and omissions in computer systems or the effects of natural and
human made disasters (such as floods and fires). Nonetheless,
organizations now appear to be encountering a high incidence of computer
abuse. Furthermore, the average losses incurred from computer abuse
seem to be substantially higher than those incurred from conventional fraud.

In addition, the number and types of threats that lead to computer abuse
also seem to be increasing. For example, as of November 1996,
Nachenberg reports that more than 10,000 DOS-based computer viruses
had bee written. Moreover, more complex, more lethal viruses continue to
appear. Similarly, the rapid growth of the Internet has exposed organizations
with inadequate security to many threats from outside hostile parties that
previously would not have affected them.

Unfortunately, surveys continue to indicate that a large number of
organizations are not well prepared to deal with computer abuse. For
example Benbow reports that 80 percent of computer abuse cases
investigate in his research were committed by internal employees, but only
20 percent (the organizations he studied performed security reviews of

SYSTEMS AUDITING

NOTES

7

potential employs. Several surveys also have reported that the chances of
many organizations surviving a major incident of computer abuse are poor.
A substantial number of organizations could operate for only a few hours
without their computer systems, and many would be out of business within a
few days.

1.2.4 Value of Computer Hardware, Software, and Personnel

In addition to data, computer hardware, software, and personnel are critical
organizational resources. Some organizations have multimillion dollar
investments in hardware. Even with adequate insurance, the intentional or
unintentional loss of hardware can cause considerable disruption. Similarly,
software often constitutes a considerable investment of an organization's
resources. If the software is corrupted or destroyed, the organization might
be unable to continue operations if it cannot recover the software promptly.
If the software is stolen, confidential information could be disclosed to
competitors; or, if the software is a proprietary package, lost revenues or
lawsuits could arise. Finally, personnel are always a valuable resource,
particularly in light of an ongoing scarcity of well-trained computer
professionals in many countries.

1.2.5 High Costs of Computer Error

Computers now automatically perform many critical functions within our
society. For example, they monitor the condition of patients during surgery,
direct the flight of a missile, control a nuclear reactor, and steer a ship on its
course. Consequently, the costs of a computer error in terms of loss of life,
deprivation of liberty, or damage to the environment can be high. For
example, data errors in a computer system used to control flight paths
resulted in the death of 257 people when an airplane crashed into a
mountain in Antarctica; a person was jailed incorrectly for five months
because of erroneous data contained in a computer system.

The costs of computer error in financial terms can also be high. An error in
an Australian government computer system resulted in a $126 million
overpayment of pharmaceutical benefits. As a result of a human error and
deficiencies in its computer systems design, a company had to pay
substantial damages for delivering 93,000 barrels of oil to the wrong
consignee. Increasingly, it appears that organizations will be held liable for
damages that occur as a result of errors in the design, implementation, or
operation of their computer systems.

1.2.6 Maintenance of Privacy

Much data is now collected about us as individuals: taxation, credit, medical,
educational, employment, residence, and so on. This data was also
collected before computers. Nonetheless, the powerful data processing
capabilities of computers, particularly their rapid throughput, integration, and
retrieval capabilities, cause many people to wonder whether the privacy of
individuals (and organizations) has now been eroded beyond acceptable
levels. In the United States, for example, civil rights activists have long held

SYSTEMS AUDITING

NOTES

8

substantial concerns about using computer systems for computer-matching
purposes (Shattuck 1984). In computer matching, disparate files are merged
or compared to build up a profile on a person. A person's taxation data
might be compared with data on the social security benefits they receive to
detect possible instances of welfare fraud.

Similarly, in Australia, many people were concerned when the then-federal
government proposed that it would introduce an Australia card (Graham
1990). Privacy activists argued that use of the Australia card as a universal
identifier for each Australian would significantly undermine individual
privacy.

More recently, some people have been concerned about the establishment
of human genome data banks and the potential to use computers in
conjunction with human genetic data to obtain detailed information about a
person. They are concerned that knowledge about a person's genetics could
be used in decisions about them for example, whether to give them a job or
whether to give them life insurance. Also, some people are concerned about
the impact of the Internet on personal privacy (Meeks 1997). For example,
they fear that search engines could be used to extract data from large
databases that could compromise a person's privacy.

Aside from any constitutional aspect, many nations deem privacy to be
human right. These nations consider it to be the responsibility of those
people concerned with computer data processing to ensure that computer
use does not evolve to the stage where data about people can be collected,
integrated, and retrieved quickly. Furthermore, they consider that computer
professionals of all kinds have a responsibility to ensure that data is used
only for the purposes intended. Unfortunately, there are now many instances
in which computers have been used to abuse the privacy of individuals. As a
result, computer professionals are now coming under increasing pressure to
ensure that this does not happen.

1.2.7 Controlled Evolution of Computer Use

From time to time, major conflicts arise over how computer technology
should be used in our societies. For example, some computer scientists
continue to b concerned about using computers to support nuclear weapons
command and control systems. Many became especially vocal during the
debate over the U.S Strategic Defense Initiative's battle management
systems. They argue that the reliability of complex computer systems
usually cannot be guaranteed and that the consequences of using unreliable
computer systems can be catastrophic.

Similarly, many people are concerned about the effects that use of
computers can have on a person's working life. Should computer technology
be allowed to displace people from the workforce or to stultify jobs? What
effects do computers have on the physical and mental well-being of their
users?

SYSTEMS AUDITING

NOTES

9

It might be argued that technology is neutral it is neither good nor bad. The
use of technology, however, can produce major social problems. In this light,
important, ongoing decisions must be made about how computers should be
used in our societies. Governments, professional bodies, pressure groups,
organizations, and individual persons all must be concerned with evaluating
and monitoring how we deploy computer technology.

1.3 Information systems auditing defined

Information systems auditing is the process of collecting and evaluating
evidence to determine whether a computer system safeguards assets,
maintains data integrity, allows organizational goals to be achieved
effectively, and uses resources efficiently. Thus, information systems
auditing supports traditional audit objectives: attest objectives (those of the
external auditor) that focus on asset safeguarding and data integrity and
management objectives (those of the internal auditor) that encompass not
only attest objectives but also effectiveness and efficiency objectives.

Sometimes information systems auditing has another objective namely
ensuring that an organization complies with some regulation, rule, or
condition. For example, a bank might have to comply with a government
regulation about how much it can lend; an introduction agency might seek to
comply with a voluntary code in relation to use of personal data about its
clients; or an organization might seek to comply with a covenant in a loan
contract that it has with a merchant bank.

FIGURE 1-2 Impact of the information systems audit function on
organizations.

SYSTEMS AUDITING

NOTES

10

However, we will not pursue the compliance auditing objective further, for
the following reasons: First, we can conceive of compliance concerns within
the broader framework of effectiveness objectives. (One goal of an
organization is to comply with regulations, rules, and conditions to which it is
subject either voluntarily or involuntarily.) Second, in any event, our broad
treatment of control and audit within a computer environment should prove
useful to auditors who must carry out compliance work. Third, at least in
principle the notion of compliance work is straightforward, and it can be
incorporated fairly easily.

In this light, Figure 1-2 shows that throughout this book we conceive infor-
mation systems auditing as being a force that enables organizations to
better achieve four major objectives. In the following subsections, we
consider each of these objectives in detail.

1.3.1 Asset Safeguarding Objectives

The information system assets of an organization include hardware,
software, facilities, people (knowledge), data files, system documentation,
and supplies. Like all assets, they must be protected by a system of internal
control. Hardware can be damaged maliciously. Proprietary software and
the contents of data files can be stolen or destroyed. Supplies of negotiable
forms can be used for unauthorized purposes. These assets are often
concentrated in one or a small number of locations, such as a single disk.
As a result, asset safeguarding becomes an especially important objective
for many organizations to achieve.

1.3.2 Data Integrity Objectives

Data integrity is a fundamental concept in information systems auditing. It is
a state implying data has certain attributes: completeness, soundness,
purity, and veracity. If data integrity is not maintained, an organization no
longer has a true representation of itself or of events. Moreover, if the
integrity of an organization's data is low, it could suffer from a loss of
competitive advantage. Nonetheless, maintaining data integrity can be
achieved only at a cost. The benefits obtained should exceed the costs of
the control procedures needed.

Three major factors affect the value of a data item to an organization and
thus the importance of maintaining the integrity of that data item:

1. The value of the informational content of the data item for individual
decision makers: The informational content of a data item depends on its
ability to change the level of uncertainty surrounding a decision and, as a
result, to change the expected payoffs of the decisions that might be
made. These notices have been well developed within statistical decision
theory.

2. The extent to which the data item is shared among decision makers: If
data is shared, corruption of data integrity affects not just one user but
many. The value of a data item is some aggregate function of the value of

SYSTEMS AUDITING

NOTES

11

the data item to the individual users of the data item. Thus, maintenance
of data integrity becomes more critical in a shared data environment.

3. The value of the data item to competitors: If a data item is valuable to a
competitor, its loss might undermine an organization's position in the
marketplace. Competitors could exploit the informational content of the
data item to reduce the profitability of the organization and to bring about
bankruptcy, liquidation, takeover, or merger.

1.3.3 System Effectiveness Objectives

An effective information system accomplishes its objectives. Evaluating
effectiveness implies knowledge of user needs. To evaluate whether a
system reports information in a way that facilitates decision making by its
users, auditors must know the characteristics of users and the decision-
making environment.

Effectiveness auditing often occurs after a system has been running for
some time. Management requests a postaudit to determine whether the
system is achieving its stated objectives. This evaluation provides input to
the decision on whether to scrap the system, continue running it, or modify it
in some way.

Effectiveness auditing also can be carried out during the design stages of a
system. Users often have difficulty identifying or agreeing on their needs.
Moreover, substantial communication problems often occur between system
designers and users. If a system is complex and costly to implement,
management might want auditors to perform an independent evaluation of
whether the design is likely to fulfill user needs.

1.3.4 System Efficiency Objectives

An efficient information system uses minimum resources to achieve its re-
quired objectives. Information systems consume various resources: machine
time, peripherals, system software, and labor. These resources are scarce,
and different application systems usually compete for their use.

The question of whether an information system is efficient often has no
clear-cut answer. The efficiency of any particular system cannot be
considered in isolation from other systems. Problems of suboptimization
occur if one system is "optimized" at the expense of other systems. For
example, minimizing an application system's execution time might require
dedication of some hardware resource (e.g., a printer) to that system. The
system might not use the hardware fully, however, while it undertakes its
work. The slack resource will not be available to other application systems if
it is dedicated to one system.

System efficiency becomes especially important when a computer no longer
has excess capacity. The performance of individual application systems
degrades (e.g., slower response times occur), and users can become
increasingly frustrated. Management must then decide whether efficiency

SYSTEMS AUDITING

NOTES

12

can be improved or extra resources must be purchased. Because extra
hardware and software is a cost issue, management needs to know whether
available capacity has been exhausted because individual application
systems are inefficient or because existing allocations of computer
resources are causing bottlenecks. Because auditors are perceived to be
independent, management might ask them to assist with or even perform
this evaluation.

1.4 Effects of computers on internal controls

The goals of asset safeguarding, data integrity, system effectiveness, and
system efficiency can be achieved only if an organization's management
sets up a system of internal control. Traditionally, major components of an
internal control system include separation of duties, clear delegation of
authority and responsibility, recruitment and training of high-quality
personnel, a system of authorizations, adequate documents and records,
physical control over assets and records, management supervision,
independent checks on performance, and periodic comparison of recorded
accountability with assets. In a computer system, these components must
still exist; however, use of computers affects the implementation of these
internal control components in several ways. In essence, they have been
adopted and adapted to fit in with a computer environment (Figure 1-3). In
the following subsections, we briefly examine some of the major areas of
impact.

1.4.1 Separation of Duties

In a manual system, separate persons should be responsible for initiating
transactions, recording transactions, and maintaining custody of assets. As
a basic control, separation of duties prevents or detects errors and
irregularities. In a computer system, however, the traditional notion of
separation of duties does not always apply. For example, a program could
reconcile a vendor invoice against a receiving document and print a check
for the amount owed to a creditor. Thus, the program is performing functions
that in manual systems would be considered to be incompatible.
Nevertheless, it might be inefficient and, from a control viewpoint, useless to
place these functions in separate programs. Instead, separation of duties
must exist in a different form. When it has been determined that the program
executes correctly, the capability to run the program in production mode and
the capability to change the program must be separated.

In minicomputer and microcomputer environments, separation of incom-
patible functions could be even more difficult to achieve. Some
minicomputers and microcomputers allow users to change programs and
data easily. Furthermore, they might not provide a record of these changes.
Thus, determining whether incompatible functions have been performed by
system users can be difficult or impossible.

SYSTEMS AUDITING

NOTES

13

FIGURE 1-3 Effects of computer –based information systems on
traditional internal controls.

1.4.2 Delegation of Authority and Responsibility

A clear line of authority and responsibility is an essential control in both
manual and computer systems. In a computer system, however, delegating
authority and responsibility in an unambiguous way might be difficult
because some resources are shared among multiple users. For example,
one objective of using a database management system is to provide multiple
users with access to the same data, thereby reducing the control problems
that arise with maintaining redundant data. When multiple users have
access to the same data and the integrity of the data is somehow violated, it
is not always easy to trace who is responsible for corrupting the data and
who is responsible for identifying and correcting the error. Some
organizations have attempted to overcome these problems by designating a
single user as the owner of the data. This user assumes ultimate
responsibility for the integrity of the data.

Authority and responsibility lines have also been blurred by the rapid growth
in end-user computing. Because high-level languages are more readily
available, more users are developing, modifying, operating, and maintaining
their own application systems instead of having this work performed by
information systems professionals. Although these developments have
substantial benefits for the users of computing services in an organization,
unfortunately they exacerbate the problems of exercising overall control over
computing use.

1.4.3 Competent and Trustworthy Personnel

Substantial power is often vested in the persons responsible for the
computer based information systems developed, implemented, operated,
and maintained within organizations. For example, a systems analyst might
be responsible for advising management on the suitability of high-cost, high-
technology equipment. Similarly, a computer operator sometimes takes

SYSTEMS AUDITING

NOTES

14

responsibility for safeguarding critical software and critical data during
execution of or backup of a system. The power vested in the personnel
responsible for computer systems often exceeds the power vested in the
personnel responsible for manual systems.

Unfortunately, ensuring that an organization has competent and trustworthy
information systems personnel is a difficult task. In many countries and
across many years, well-trained and experienced information systems
personnel have been in short supply. Therefore, organizations sometimes
have been forced to compromise in their choice of staff. Moreover, it is not
always easy for organizations to assess the competence and integrity of
their information systems staff. High turnover among these staff has been
the norm. Therefore, managers have had insufficient time to evaluate them
properly. In addition, the rapid evolution of technology inhibits
management's ability to evaluate an information systems employee's skills.
Some information systems personnel also seem to lack a well-developed
sense of ethics, and some seem to delight in subverting controls.

1.4.4 System of Authorizations

Management issues two types of authorizations to execute transactions.
First, general authorizations establish policies for the organization to follow.
For example, a fixed price list is issued for personnel to use when products
are sold. Second, specific authorizations apply to individual transactions. For
example acquisitions of major capital assets might have to be approved by
the board of directors.

In a manual system, auditors evaluate the adequacy of procedures for au-
thorization by examining the work of employees. In a computer system,
authorization procedures often are embedded within a computer program.
For example, the order-entry module in a sales system might determine the
price to be charged to a customer. Thus, when evaluating the adequacy of
authorization procedures, auditors must examine not only the work of
employees but also the veracity of program processing.

In a computer system it is also more difficult to assess whether the authority
assigned to individual persons is consistent with management's wishes. For
example, it might be hard to determine exactly what data users can access
when they are provided with a generalized retrieval language. Users might
be able to formulate queries on a database in such a way that they could
infer the contents of confidential information. Indeed, substantial research is
now being undertaken on controls that prevent violation of the privacy of
data. Chapter 15 examines inference controls in more detail.

1.4.5 Adequate Documents and Records

In a manual system, adequate documents and records are needed to
provide an audit trail of activities within the system. In computer systems,
documents might not be used to support the initiation, execution, and
recording of some transactions. For example, in an online order-entry
system, customers' orders received by telephone might be entered directly

SYSTEMS AUDITING

NOTES

15

into the system. Similarly, some transactions might be activated
automatically by a computer system. For example, an inventory
replenishment program could initiate purchase orders when stock levels fall
below a set amount. Thus, no visible audit or management trail would be
available to trace the transaction.

The absence of a visible audit trail is not a problem for auditors, provided
that systems have been designed to maintain a record of all events and the
record can be easily accessed. In well-designed computer systems, audit
trails are often more extensive than those maintained in manual systems.
Unfortunately, not all computer systems are well designed. Some software,
for example, does not provide adequate access controls and logging
facilities to ensure preservation of an accurate and complete audit trail.
When this situation is coupled with a decreased ability to separate
incompatible functions, serious control problems can arise.

1.4.6 Physical Control over Assets and Records

Physical control over access to assets and records is critical in both manual
systems and computer systems. Computer systems differ from manual
systems, however, in the way they concentrate the information systems
assets and records of an organization. For example, in a manual system, a
person wishing to perpetrate a fraud might need access to records that are
maintained at different physical locations. In a computer system, however,
all the necessary records can be maintained at a single site namely, the site
where the computer is located. Thus, the perpetrator does not have to go to
physically disparate locations to execute the fraud.

This concentration of information systems assets and records also increases
the losses that can arise from computer abuse or a disaster. For example, a
fire that destroys a computer room could result in the loss of all major
master files in an organization. If the organization does not have suitable
backup, it might be unable to continue operations.

1.4.7 Adequate Management Supervision

In a manual system, management supervision of employee activities is rela-
tively straightforward because the managers and the employees are often at
the same physical location. In computer systems, however, data
communications facilities can be used to enable employees to be closer to
the customers they service. Thus, supervision of employees might have to
be carried out remotely. Supervisory controls must be built into the computer
system to compensate for the controls that usually can be exercised through
observation and inquiry.

Computer systems also make the activities of employees less visible to
management. Because many activities are performed electronically,
managers must periodically access the audit trail of employee activities and
examine it for unauthorized actions. Again, the effectiveness of observation
and inquiry as controls is decreased.

SYSTEMS AUDITING

NOTES

16

1.4.8 Independent Checks on Performance

In manual systems, independent checks are carried out because employees
are likely to forget procedures, make genuine mistakes, become careless, or
intentionally fail to follow prescribed procedures. Checks by an independent
person help to detect any errors or irregularities. If the program code in a
computer system is authorized, accurate, and complete, the system will
always follow the designated procedures in the absence of some other type
of failure tike a hardware or systems software failure. Thus, independent
checks on the performance of programs often have little value. Instead, the
control emphasis shifts to ensuring the veracity of program code. Insofar as
many independent checks on performance are no longer appropriate,
auditors must now evaluate the controls established for program
development, modification, operation, and maintenance.

1.4.9 Comparing Recorded Accountability with Assets

Data and the assets that the data purports to represent should periodically
be compared to determine whether incompleteness or inaccuracies in the
data exist or whether shortages or excesses in the assets have occurred. In
a manual system, independent staffs prepare the basic data used for
comparison purposes. In a computer system, however, software is used to
prepare this data. For example, a program can be implemented to sort an
inventory file by warehouse location and to prepare counts by inventory item
at the different warehouses. li unauthorized modifications occur to the
program or the data files that the program uses, an irregularity might not be
discovered for example, pilfering of inventory from a particular warehouse
bin. Again, internal controls must be implemented to ensure the veracity of
program code, because traditional separation of duties no longer applies to
the data being prepared for comparison purposes.

1.5 Effects of computers on auditing

When computer systems first appeared, many auditors were concerned that
the fundamental nature of auditing might have to change to cope with the
new technology. It is now clear this is not the case. Auditors must still
provide a competent, independent evaluation as to whether a set of
economic activities has been recorded and reported according to
established standards or criteria,

Nevertheless, computer systems have affected how auditors carry out their
two basic functions: evidence collection and evidence evaluation. We
examine some of these changes in the following subsections.

1.5.1 Changes to Evidence Collection

Collecting evidence on the reliability of a computer system is often more
complex than collecting evidence on the reliability of a manual system.
Auditors confront a diverse and sometimes complex range of internal control
technology that did not exist in manual systems. For example, accurate and
complete operation of a disk drive requires a set of hardware controls not

SYSTEMS AUDITING

NOTES

17

used in a manual system. Similarly, system development controls include
procedures for testing programs that would not be found in the development
of manual systems. Auditors must understand these controls if they are to
be able to collect evidence competently on the reliability of the controls.

Unfortunately, understanding the control technology is not always easy.
Hardware and software continue to evolve rapidly. Although some time lag
occurs, the associated controls evolve rapidly also. For example, with
increasing use of data communications for data transfer, substantial
research continues to be undertaken on the development of cryptographic
controls to protect the privacy of data. Auditors must keep up with these
developments if they are to be able to evaluate the reliability of
communications networks competently.

The continuing evolution of control technology also makes it more difficult for
auditors to collect evidence on the reliability of controls. Indeed, in some
cases auditors might be unable to collect audit evidence using manual
means. Thus, they need computer systems themselves if they are to be able
to collect the necessary evidence. The development of generalized audit
software occurred, for example, because auditors needed access to data
maintained on magnetic media. Similarly, new audit tools might be required
in due course if auditors are to be able to evaluate the reliability of controls
in data communications networks competently. Unfortunately, the
development of these audit tools usually lags the development of the
technology that must be evaluated. In the meantime, auditors are often
forced to compromise in some way when performing the evidence collection
function.

1.5.2 Changes to Evidence Evaluation

Given the increased complexity of computer systems and internal control
technology, it is also more difficult to evaluate the consequences of control
strengths and weaknesses for the overall reliability of systems. First,
auditors must understand when a control is acting reliably or malfunctioning.
Next, they must be able to trace the consequences of the control strength or
weakness through the system. In a shared data environment, for example,
this task might be difficult. A single input transaction could update multiple
data items that are used by diverse, physically disparate users. Somehow
auditors must be able to trace the consequences of an error in the
transaction input for all users.

In some ways, auditors are also under greater stress when they perform the
evidence evaluation function for computer systems. As noted earlier, the
consequences of errors in a computer system can be more serious than the
consequences of errors in a manual system. Errors in manual systems tend
to occur stochastically; for example, periodically a clerk prices an inventory
item incorrectly. Errors in computer systems tend to be deterministic; for
example, an erroneous program always will execute incorrectly. Moreover,
errors are generated at high speed, and the cost to correct and rerun
programs can be high. Whereas fast feedback can be provided to clerks if

SYSTEMS AUDITING

NOTES

18

they make errors, errors in computer programs can involve extensive
redesign and reprogramming. Thus, internal controls that ensure that high-
quality computer systems are designed, implemented, operated, and
maintained are critical. The onus is on auditors to ensure that these controls
are sufficient to maintain asset safeguarding, data integrity, system
effectiveness, and system efficiency and that they are in place and working
reliably.

1.6 Foundations of information systems auditing

Information systems auditing is not just a simple extension of traditional
auditing. Recognition of the need for an information systems audit function
comes from two directions. First, auditors realized that computers had
affected their ability to perform the attest function. Second, both corporate
and information systems management recognized that computers were
valuable resources that needed controlling like any other key resource within
an organization.

Figure 1-4 shows that the discipline of information systems auditing has
been shaped by knowledge obtained from four other disciplines: traditional
auditing, information systems management, behavioral science, and
computer science.

FIGURE 1-4 Information systems auditing as an intersection of other
disciplines

1.6.1 Traditional Auditing

Traditional auditing brought to information systems auditing a wealth of
knowledge and experience with internal control techniques. This knowledge
and experience has had an impact on the design of both the manual and
machine components of an information system.

SYSTEMS AUDITING

NOTES

19

For example, in a computer system, clerical activities, such as data prepara-
tion activities, are often a critical component of the system. As with manual
systems, these activities should be subject to internal control principles such
as separating incompatible duties, having competent and trustworthy
personnel, and establishing clear definitions of duties. By applying these
principles, management seeks to ensure that the integrity of data is
maintained before it is entered into the computer-based components of the
information system.

Similarly, traditional auditing concepts like control totals are also relevant to
the update and maintenance of files by computer programs. Computer pro
grams must ensure that all transaction data are processed and that they are
processed correctly. Control totals have had longstanding use in information
systems because these concerns also exist when humans (rather than
programs) update and maintain files.

The general methodologies for evidence collection and evidence evaluation
used by information system auditors are also based on traditional auditing
methodologies. The long evolution of and extensive experience gained in
traditional auditing highlight the critical importance of having objective,
verifiable evidence and an independent evaluation of information systems.

Perhaps most important, traditional auditing brings to information systems
auditing a control philosophy. It is difficult to articulate the nature of this phi-
losophy. One can glean elements, however, by reading auditing literature or
examining the work of auditors. The philosophy involves examining informa-
tion systems with a critical mind, always with a view to questioning the
capability of an information system to safeguard assets, maintain data
integrity, and achieve its objectives effectively and efficiently.

1.6.2 Information Systems Management

The early history of computer-based information systems shows some
spectacular disasters. Massive cost overruns occurred, and many systems
failed to achieve their stated objectives. As a result, for many years
researchers have been concerned with identifying better ways of managing
the development and implementation of information systems.

Some important advances have been made. For example, techniques of
project management have been carried across into the information systems
area with considerable success. Documentation, standards, budgets, and
variance investigation are now emphasized. Better ways of developing and
implementing systems have been developed. For example, object-oriented
analysis, design, and programming have enabled programmers to develop
software faster, with fewer errors and easier maintenance characteristics.
These advances affect information systems auditing because they ultimately
affect asset safeguarding, data integrity, system effectiveness, and system
efficiency objectives.

SYSTEMS AUDITING

NOTES

20

2. Conducting an information systems audit

Structure

2.1 Introduction

2.2 The nature of controls

2.3 Dealing with complexity

2.3.1 Subsystem Factoring

2.3.2 Assessing Subsystem Reliability

2.4 Audit risks

2.5 Types of audit procedures

2.6 Overview of steps in an audit

2.6.1 Planning the Audit

2.6.2 Tests of Controls

2.6.3 Tests of Transactions

2.6.4 Tests of Balances or Overall Results

2.6.5 Completion of the Audit

2.7 Auditing around or through the computer

2.7.1 Auditing Around the Computer

2.7.2 Auditing Through the Computer

Objective

In this lesson you will learn about:

 information system audit controls

 dealing with audit complexity and risk factors

 types of audit procedures

 planning of audit control

2.1 Introduction

It is a sobering experience to be in charge of the information systems audit
of an organization that has several hundred programmers and analysts,
many computers, and thousands of files. Obviously, all organizations are not
this size. Except for the smallest organizations, however, auditors usually

SYSTEMS AUDITING

NOTES

21

cannot perform a detailed check of all the data processing carried out within
the information systems function. Instead, they must rely on a sample of
data to determine whether the objectives of information systems auditing are
being achieved.

How, then, can we perform information systems audits so that we obtain
reasonable assurance that an organization safeguards its data-processing
assets, maintains data integrity, and achieves system effectiveness and
efficiency? To address this question, this chapter provides an overview of a
general approach that we can use to conduct an information systems audit.

We start by examining the nature of controls and discussing some
techniques for simplifying and providing order to the complexity encountered
when .making evaluation judgments on computer-based information
systems. Next we consider some of the basic risks auditors’ face, how these
risks affect the overall approach to an audit, and the types of audit
procedures used to assess or control the level of these risks. We then
consider the basic steps to be undertaken in the conduct of an information
systems audit. Finally, we examine a major decision auditors must make
when planning and conducting an information systems audit namely, how
much do they need to know about the internal workings of a computer-
based information system before an effective audit can be conducted?

2.2 The nature of controls

Information systems auditors ultimately are concerned with evaluating the
reliability, or operating effectiveness, of controls. It is important, therefore,
that we understand what is meant by a control.

A control is a system that prevents, detects, or corrects unlawful events.
There are three key aspects to this definition.

First, a control is a system. In other words, it comprises a set of interrelated
components that function together to achieve some overall purpose.
Unfortunately, we tend to name controls by focusing on just one feature of
the control. For example, probably all of us are familiar with a password
control. A password, per se, however, is not a control. Passwords become a
control only in the context of a system that allows secure issue of or choice
of passwords, correct validation of passwords, secure storage of passwords,
follow-up on illicit use of passwords, and so on. If this system breaks down
in some way, passwords will be ineffective as a control. In short, the term
"password control" is a notation for the constellation of things that work
together to ensure only authorized people use computing resources. When
we evaluate a control, therefore, we must consider its reliability from a
systems perspective.

Second, the focus of controls is unlawful events. An unlawful event can arise
if unauthorized, inaccurate, incomplete, redundant, ineffective, or inefficient
input enters the system. For example, a data-entry clerk might key incom-
plete data into the system. An unlawful event can also arise if the system

SYSTEMS AUDITING

NOTES

22

transforms the input in an unauthorized, inaccurate, incomplete, redundant,
ineffective, or inefficient way. For example, a program could contain
erroneous instructions that result in incorrect computations being performed.
Whatever the reason, the system moves into a state that we deem to be
unacceptable.

Third, controls are used to prevent, detect, or correct unlawful events. Con-
sider some examples:

1. Preventive control: Instructions are placed on a source document to
prevent clerks from filling it out incorrectly. Note that the control works
only if the instructions are sufficiently clear and the clerk is sufficiently
well trained to understand the instructions. Thus, both the clerk and the
instructions are components of the system that constitutes the control.
The instructions by themselves are not the control.

2. Detective control: An input program identifies incorrect data entered into a
system via a terminal. Again, the control is a system because various
parts of the program must work together to pinpoint errors.

3. Corrective control: A program uses special codes that enable it to correct
data corrupted because of noise on a communications line. Once more,
the control is a system because various parts of the program must work
together in conjunction with the error-correcting codes to rectify the error.

FIGURE 2-1 Lawful and unlawful events in an information system

The overall purpose of controls is to reduce expected losses from unlawful
events that can occur in a system. They do so in two ways. First, preventive
controls reduce the probability of unlawful events occurring in the first place.

SYSTEMS AUDITING

NOTES

23

For example, instructions on a source document reduce the likelihood of the
clerk who completes the document making an error. Second, detective and
corrective controls reduce the amount of the losses that arise if the unlawful
event occurs. For example, if a data-entry clerk keys incorrect data into a
computer system, an input validation control might detect that the data is in
error and halt further processing. A small loss arises from delayed
processing, but larger losses associated with a corrupted database do not
occur. In addition, the control might be able to determine the nature of the
keying error made, perhaps on the basis of past keying errors, and correct
the error without the clerk having to intervene. Thus, the losses associated
with recovering from the error are also reduced.

The auditor's task is to determine whether controls are in place and working
to prevent the unlawful events that might occur within a system. Auditors
must be concerned to see that at least one control exists to cover each
unlawful event that might occur. Usually, some unlawful events in a system
will not be covered because a cost-effective control cannot be found (Figure
2-1). Even if an unlawful event is covered by a control, however, auditors
must evaluate whether the control is operating effectively. Moreover, if more
than one control covers an unlawful event (i.e., redundant controls exist),
auditors must ensure that all operate effectively. Otherwise, losses can be
incurred because of reliance on a malfunctioning control instead of a reliable
one.

2.3 Dealing with complexity

Conducting an information systems audit is an exercise in dealing with com-
plexity. Auditors somehow must accomplish their objectives given the
myriad of systems. Because complexity is a root cause of the problems
faced by many professionals (e.g., engineers, architects), researchers have
attempted to develop guidelines that reduce complexity (see, e.g., Simon-
1981). In the following subsections we consider two major guidelines that
underlie the approach taken when conducting an information systems audit:

1. Given the purposes of the information systems audit, factor the system to
be evaluated into subsystems.

2. Determine the reliability of each subsystem and the implications of each
subsystem's level of reliability for the overall level of reliability in the
system.

2.3.1 Subsystem Factoring

The first step in understanding a complex system is breaking it up into
subsystems. A subsystem is a component of a system that performs some
basic function needed by the overall system to enable it to attain its
fundamental objectives. Subsystems are logical components rather than
physical components. In other words, you cannot "touch" a subsystem. It
exists only in the eye of the beholder. For example, we cannot see the input
subsystem in a computer system. Instead, we see such things as terminals

SYSTEMS AUDITING

NOTES

24

and data-entry clerks that function to get data into the system, but these
things are components of the input subsystem and not the subsystem itself.

The process of decomposing a system into subsystems is called factoring.
Factoring is an iterative process that terminates when we feel we have
broken down the system into parts small enough to be understood and
evaluated. In other words, each subsystem is decomposed into its
constituent subsystems, which, in turn, are decomposed again until we can
sufficiently comprehend the subsystem with which we are dealing. The
system to be evaluated can then be described as a level structure of
subsystems, with each subsystem performing a function needed by some
higher-level subsystem (Figure 2-2).

To undertake the factoring process, we need some basis for identifying
subsystems. One basis has been suggested already: The essence of a
subsystem is the function it performs. Auditors should look first; therefore,
for the fundamental functions a system performs to accomplish its overall
objectives. Different functions delineate different subsystems. For example,
the overall objective of some types of organizational systems is to make a
profit. One critical function that must be performed in these systems is the
receipt of customer orders. This function delineates the order-entry
subsystem, which is distinct from, say, the subsystem that receives and
processes customer payments as its basic function. The order-entry
subsystem, in turn, can be broken down into further subsystems. These
lower-level subsystems are defined on the basis of (sub)functions that must
be performed to accomplish the overall objective of getting orders recorded
accurately and completely. For example, functions are required to check
whether sufficient inventory is available to satisfy an order and determine
whether a customer's credit limit has been exceeded.

Besides function, systems theory indicates that two other guidelines should
underlie the way in which we identify and delineate subsystems.

FIGURE 2-2 Level structure of systems and subsystems

SYSTEMS AUDITING

NOTES

25

First each subsystem should be relatively independent of other subsystems.
The objective is for each subsystem to be loosely coupled to other
subsystems. If this objective can be achieved, auditors can evaluate the
subsystem in relative isolation from other subsystems. In other words, to
some extent auditors can disregard the effects of control strengths and
weaknesses in other systems.

Second, each subsystem should be internally cohesive. All the activities
performed by the subsystem should be directed toward accomplishing a
single function. If this objective can be achieved, it will be easier for auditors
to understand and evaluate the activities carried out by the subsystem.

The theory of coupling and cohesion has been extensively developed. From
an audit viewpoint, however, the pragmatic issue is that subsystems are
difficult to understand and their reliability is difficult to evaluate unless they
are loosely coupled with other subsystems and internally cohesive. An
understanding of complex systems can only be obtained if each of their
parts can be studied relatively independently and the activities performed by
each part are clear. When we decompose a system into subsystems,
therefore, we should evaluate the extent of coupling and cohesion in the
subsystems we choose. If the subsystems are not loosely coupled and
internally cohesive, we should attempt a different factoring. If no factoring
seems to delineate subsystems that possess these characteristics, we will
have difficulty evaluating the reliability of the system because its activities
are too convoluted. Indeed, auditors have long recognized that some
systems cannot be audited. The theory of coupling and cohesion provides
the underlying rationale for this conclusion when such systems are
encountered.

At least conceptually, auditors might choose to factor systems in several
different ways. Over time, however, auditors have found two ways to be
especially useful when conducting information systems audits (Figure 2-3).
The first is according to the managerial functions that must be performed to
ensure that development, implementation, operation, and maintenance of
information systems proceed in a planned and controlled manner.
Managerial systems function to provide a stable infrastructure in which
information systems can be built, operated, and maintained on a day-to-day
basis. Several types of management subsystems have been identified that
correspond to the organizational hierarchy and some of the major tasks
performed by the information systems function:

SYSTEMS AUDITING

NOTES

26

FIGURE 2-3. Decomposition of the information-systems function

SYSTEMS AUDITING

NOTES

27

The second factoring is according to the application functions that need to
be undertaken to accomplish reliable information processing. This factoring
corresponds to the "cycles" approach auditors have traditionally used to
conduct an audit. The information systems supporting an organization are
first grouped into cycles. These cycles vary across industries, but a typical
set for a commercial or manufacturing enterprise includes (a) sales and
collections, (b) payroll and personnel, (c) acquisitions and payments, (d)
conversion, inventory, and warehousing, and (e) treasury. Each cycle is then
factored into one or more application systems. For example, the sales and
collections cycle comprises an order-entry application system, a billing
application system, and an accounts-receivable application system.
Application systems, in turn, are then factored into subsystems. The set of
application subsystems includes the following:

APPLICATION SYSTEM DESCRIPTION OF SUBSYSTEM

Boundary Comprises the components that establish the
interface between the user and the system

Input Comprises the components that capture,
prepare, and enter commands and data into
the system

Communications Comprises components that transmit data
among subsystems and systems

Processing Comprises the components that perform
decision making, computation, classification,
ordering, and summarization of data in the
system

Database Comprises the components that define, add,
access, modify, and delete data in the system

Output Comprises the components that retrieve and
present data to users of the system

Neither of these two types of decomposition is irrevocable, and in due
course others might prove better. Nevertheless, they currently underlie the
audit approaches advocated by many professional bodies of auditors. They
allow us to decrease complexity to a point where we can understand and
evaluate the nature of and reliability of subsystems. Throughout the rest of
this book, these two factorings will be used in our examination of information
systems controls.

SYSTEMS AUDITING

NOTES

28

2.3.2 Assessing Subsystem Reliability

After we have identified the lowest-level subsystems in our level structure of
subsystems, we can evaluate the reliability of controls. Beginning with the
lowest-level subsystems, we first attempt to identify all the different types of
events that might occur in these subsystems. We must be mindful of both
the lawful events and the unlawful events that can occur. Nevertheless, an
auditor's primary concern will be with any unlawful events that might arise.

As a basis for identifying lawful and unlawful events in management
subsystems, we focus on the major functions each subsystem performs. We
consider how each function should be undertaken and then evaluate how
well a subsystem complies with our normative views. For example, an
important function that should be performed by the top-management
subsystem is information systems planning. Given the nature of the
organization we are auditing, we might determine that top management
should undertake extensive strategic planning but only a moderate level of
operational planning if the long-run future of information systems within the
organization is to be ensured. These views form the basis for determining
which information systems planning events are to be deemed lawful and
which are to be deemed unlawful. We then identify the information systems
planning events that have occurred and classify them as either lawful or
unlawful. For example, if no strategic planning has been undertaken, an
unlawful event has occurred. Failure to plan ultimately undermines asset
safeguarding, data integrity, system effectiveness, and system efficiency
objectives. Similarly, if too much operational planning has been undertaken,
an unlawful event has occurred because resources have been wasted. As a
result, system effectiveness and system efficiency objectives have been
undermined.

Perhaps the key aspect of identifying lawful and unlawful events in man-
agement subsystems is the decision of how a particular function should be
performed within the subsystem. After substantial research on information
systems management, it is now clear that the way information systems
management functions should be performed in organizations must vary, de-
pending on the particular circumstances faced by each organization. For
example, in some organizations, strategic information systems planning are
a critical function, but in others it has only minor importance. Auditors must
be knowledgeable and astute in determining the ways that management
functions should be performed in each organization evaluated. Otherwise,
judgments on what events are lawful will be misguided.

As a basis for identifying lawful and unlawful events in application
subsystems, we focus on the transactions that can occur as input to the
subsystem. All events in an application system must arise from a
transaction. The application system initially changes state (an event occurs)
when the transaction is first received as an input. For example, an order-
entry system must record an order when it is first entered into the system.
Further state changes (events) then occur as the application system
processes the transaction. For example, after an order-entry system has

SYSTEMS AUDITING

NOTES

29

stored an open order, it then attempts to fill the order. Lawful events will
arise if the transaction and subsequent processing are authorized, accurate,
complete, non-redundant, effective, and efficient. Otherwise, unlawful events
will occur.

To identify all the events that might arise in an application system as a result
of a transaction, we must understand how the system is likely to process the
transaction. Historically, auditors have used walk-through techniques to ac-
complish this objective: They consider a particular transaction, identify the
particular components in the system that process the transaction, and then
try to understand each processing step that each component executes.
They also consider any errors or irregularities (unlawful events) that might
occur along the way. For example, auditors might focus on a credit-sale
transaction. After the transaction has been entered into the sales system,
they would trace the credit sale through each processing step executed by
the order-entry program. They would also consider how the transaction
might be entered improperly and how subsequent processing errors or
irregularities might arise.

It is often costly to trace each individual transaction through an application
system to obtain an understanding of all the different types of events that
can occur in the system. For this reason, auditors sometimes focus on
classes of transactions. In other words, they group transactions together if
the transactions undergo similar processing. They then try to understand
these transactions and the events that arise as a result of these transactions
as a group. In addition, they focus only on those transactions they consider
to be material from the viewpoint of their audit objectives. Using these
strategies, not all events that can occur in a system are identified.
Nevertheless, auditors should examine all those transactions and events
that they consider to be important.

When the material events that can occur in a management of application
system have been identified, auditors must evaluate whether controls are in
place and working to cover the unlawful events. Accordingly, they collect
evidence on the existence and reliability of controls to determine whether
expected losses from unlawful events have been reduced to an acceptable
level. They consider each type of unlawful event that might arise, whether
controls cover each of these events, how reliable these controls are, and
whether a material error or irregularity can still occur. Lists have been
published to assist with this task, showing failings that occur in management
subsystems and errors and irregularities that occur for different types of
transactions in different types of application systems. These lists also show
various controls that can be used to reduce expected losses from these
errors and irregularities. Table is an example of one such list for a customer-
order transaction in an order-entry application system. The table shows a
controls matrix in which the columns show errors or irregularities that can
occur and the rows show controls that can be set up to reduce expected
losses from these errors and irregularities. The elements of the matrix show
an auditor's assessment of how effective each control is in reducing
expected losses from each type of error or irregularity.

SYSTEMS AUDITING

NOTES

30

The evaluation of reliability proceeds upwards in the level structure of a
system. Lower-level subsystems are components of higher-level systems.
When the reliability of a lower-level system has been assessed, its impact
on the nature of and frequency of unlawful events in higher-level systems
can be evaluated. The evaluation proceeds until the highest-level system
(the entire system) has been considered. For every system at every level in
the level structure, the evaluation steps are the same. The transactions that
might enter the system are first identified. The lawful and unlawful events
that can occur as a result are then considered. Finally, the reliability of the
controls that cover the unlawful events is assessed.

As we evaluate higher-level systems, we are likely to encounter new
controls for three reasons. First, controls in lower-level systems can
malfunction. Recall, a control is a system itself, and it can be unreliable like
any other system. A higher-level control might be implemented to cover
unlawful events that arise when lower-level controls fail to prevent, detect, or
correct them. For example, consider a group of clerks that process mail
orders. Work might be divided among them based on the first letter of
customers' surnames. Thus, several subsystems exist to process orders
from different groups of customers. Each clerk might exercise certain
controls to prevent, detect, or correct errors. Nevertheless, their manager
might also examine the quality of their work. Managers are responsible for
the quality of work in all subsystems, and they are exercising a higher-level
control in case a lower-level control malfunctions.

Second, it might be more cost-effective to implement controls at higher
levels. Again, consider our example of the group of clerks who process mail
orders. If they are well trained and diligent, they might not be required to
double-check their work. Given the low error rate that is expected to occur,
the cost of double-checking might be too high. Their manager periodically
might take a sample of their work, however, to assess its quality. The
higher-level control is more cost-effective because it is exercised by one
person who has greater facility with the control rather than multiple persons,
each of whom has less facility with the control.

Third, some events are not manifested as unlawful except in higher-level
systems. For example, an employee might query a database to obtain the

SYSTEMS AUDITING

NOTES

31

average salary of female consultants employed within an organization. The
subsystem that processes the query might deem this query to be a lawful
event. The person might then query the database to obtain the number of
female consultants employed within the organization. Again, the subsystem
that processes the query might deem it to be lawful. If the organization
employs only one female consultant, however, the employee now knows the
consultant's salary. A higher-level system control is needed to detect the
violation of the confidentiality of her salary. When the two lawful events are
considered together, the overall event is unlawful.

Clearly, the process of aggregating subsystem reliability assessments to
higher levels can be a difficult task. Errors made at one level of assessment
will propagate to higher levels of assessment. Auditors must take substantial
care with evidence-collection processes and evaluation judgments,
especially as they begin to fix evaluation judgments in lower-level
subsystems and move to higher-level subsystems and systems.

2.4 Audit risks

Recall that information systems auditors are concerned with four objectives:
asset safeguarding, data integrity, system effectiveness, and system
efficiency. Both external and internal auditors are concerned with whether
errors or irregularities cause material losses to an organization or material
misstatements in the financial information prepared by the organization. If
you are an internal auditor, it is likely you will also be concerned with
material losses that have occurred or might occur through ineffective or
inefficient operations. External auditors, too, might be concerned when
ineffective or inefficient operations threaten to undermine the organization.
Moreover, many external auditors report such problems as part of their
professional services to the management of an organization.

To assess whether an organization achieves the asset safeguarding, data
integrity, system effectiveness, and system efficiency objectives, auditors
collect evidence. Because of the test nature of auditing, auditors might fail to
detect real or potential material losses or account misstatements. The risk of
an auditor failing to detect actual or potential material losses or account
misstatements at the conclusion of the audit is called the audit risk. Auditors
choose an audit approach and design audit procedures in an attempt to
reduce this risk to a level deemed acceptable.

As a basis for determining the level of desired audit risk, some professional
bodies of auditors have adopted the following audit risk model for the
external audit function:

DAR = IR X CR X DR

In this model, DAR is the desired audit risk (as discussed previously). IR is
the inherent risk, which reflects the likelihood that a material loss or account
misstatement exists in some segment of the audit before the reliability of
internal controls is considered. CR is the control risk, which reflects the

SYSTEMS AUDITING

NOTES

32

likelihood that internal controls in some segment of the audit will not prevent,
detect, or correct material losses or account misstatements that arise. DR is
the detection risk, which reflects that the audit procedures used in some
segment of the audit will fail to detect material losses or account
misstatements.

Note that in all cases the risks incorporated into this model are defined to be
those associated with the attest objectives of external auditors. We can eas-
ily broaden them, however, to include the risks associated with real or
potential material losses from ineffective or inefficient operations. In other
words, the model is sufficiently general to cover our four objectives for
information systems auditing. Throughout the remainder of this book, we
assign this broader meaning to the audit risk model.

To apply the model, auditors first choose their level of desired audit risk.
External auditors consider such factors as the level of reliance external
parties are likely to place on the financial statements and the likelihood of
the organization encountering financial difficulties subsequent to the audit.
Internal auditors also consider these factors. In addition, they assess the
short- and long-run consequences for their organizations if they fail to detect
real or potential material losses from ineffective or inefficient operations.

Next auditors consider the level of inherent risk. Initially auditors consider
general factors such as the nature of the organization (e.g., Is it a high
flyer?), the industry in which it operates (e.g.. Is the industry subject to rapid
change?), the characteristics of management (e.g.. Is management
aggressive and autocratic?), and accounting and auditing concerns (e.g..
Are creative accounting practices used?). Auditors then consider the
inherent risk associated with different segments of the audit (cycles,
application systems, and financial statement accounts). For each segment,
auditors consider such factors as the following:

SYSTEMS AUDITING

NOTES

33

To assess the level of control risk associated with a segment of the audit,
auditors consider the reliability of both management and application
controls. Auditors usually identify and evaluate controls in management
subsystems first. Management (subsystem) controls are fundamental
controls because they cover all application systems. Thus, the absence of a
management control is a serious concern for auditors. Conceptually,
management controls constitute protective layers of "onion skins" around
applications (Figure 2-4). Forces that erode asset safeguarding, data
integrity, system effectiveness, and system efficiency must penetrate each
layer to undermine a lower layer. To the extent the outer layers of controls
are intact; the inner layers of controls are more likely to be intact. In addition,
it is often more efficient if auditors evaluate management controls before
application controls. After auditors have evaluated a management control,
auditors usually do not have to evaluate it again because it should function
across all applications. For example, if auditors find that an organization
enforces high-quality documentation standards, it is unlikely they will have to
review the quality of documentation for each application system.

SYSTEMS AUDITING

NOTES

34

FIGURE 2-4. Management controls as an onion skin around

application controls

Next auditors calculate the level of detection risk they must attain to achieve
their desired audit risk. They then design evidence collection procedures in
an attempt to achieve this level of detection risk, to estimate the level of
detection risk they might achieve with a set of audit procedures, they must
have a good understanding of how likely these audit procedures are to
detect a material loss or account misstatement when one exists. Moreover,
auditors must evaluate how reliably the audit procedures are likely to be
applied. Not only must they choose audit procedures that have the capacity
to provide us with a desired level of detection risk, they also must ensure
they are properly executed.

In summary, the whole point to our considering the audit risk model is that
audit efforts should be focused where they will have the highest payoffs. In
most cases auditors cannot collect evidence to the extent they would like.
Accordingly, they must be astute in terms of where they apply their audit
procedures and how they interpret the evidence they collect. Throughout the
audit they must continually make decisions on what to do next. Their notions
of materiality and audit risk guide them in making this decision.

2.5 Types of audit procedures

When external auditors gather evidence to determine whether material
losses have occurred or financial information has been materially misstated,
they use five types of procedures:

SYSTEMS AUDITING

NOTES

35

1. Procedures to obtain an understanding of controls: Inquiries, inspections,
and observations can be used to gain an understanding of what controls
supposedly exist, how well they have been designed, and whether they
have been placed in operation.

2. Tests of controls: Inquiries, inspections, observations, and reperformance
of control procedures can be used to evaluate whether controls are
operating effectively.

3. Substantive tests of details of transactions: These tests are designed to
detect dollar errors or irregularities in transactions that would affect the
financial statements. For example, an external auditor might verify that
purchase and disbursement transactions are correctly recorded in
journals and ledgers.

4. Substantive tests of details of account balances: These tests focus on the
ending general ledger balances in the balance sheet and income
statement. For example, an external auditor might circularize a sample of
customers to test the existence and valuation of the debtors balance.

5. Analytical review procedures: These tests focus on relationships among
data items with the objective of identifying areas that require further audit
work. For example, an external auditor might examine the level of sales
revenue across time to determine whether a material fluctuation that
requires further investigation has occurred in the current year.

Auditors can use similar types of procedures if they are concerned wit
evaluating the effectiveness and efficiency of an organization's operations:

1. Procedures to obtain an understanding of controls: Inquiries, inspections,
and observations can be used to gain an understanding of the
administrative controls set up to achieve effectiveness and efficiency
objectives rather than the accounting controls set up to achieve asset
safeguarding and data integrity objectives.

2. Tests of controls: Tests of controls focus on whether administrative
controls have been well designed and whether they are operating
effectively. For example, auditors might interview an operations manager
to check whether she regularly reviews the response-time performance of
a critical online system and, so, what action she takes when response
times are unacceptable.

3. Substantive tests of details of transactions: From an effectiveness and
efficiency perspective, auditors still have a notion of substantive tests of
details of transactions. Using the response-time example discussed
previously, auditors might check the response times for a sample of
individual transactions to determine whether they are within acceptable
bounds.

4. Substantive tests of overall results: The notion of account balances does
not app in the context of effectiveness and efficiency concerns.

SYSTEMS AUDITING

NOTES

36

Nevertheless, auditors have a notion of overall effectiveness and
efficiency results. For example, management might assert the average
response time for an application system over 12-month period is two
seconds. As a substantive test of this claimed overall re suit, auditors
might survey users of the system to determine its validity.

5. Analytical review procedures: Analytical review procedures are still
relevant the context of effectiveness and efficiency concerns. For
example, auditors might build a queuing model or a simulation model of
an application system evaluate whether the resources consumed by the
application system seem reasonable.

Often, the order of tests from the least costly to the most costly is as fi lows:
analytical review procedures, procedures to obtain understanding controls,
tests of controls, substantive tests of details of transactions, and substantive
tests of balances/overall results. On the other hand, the order is reversed
when we consider the reliability and information content of the evidence
provided by the different audit procedures. Accordingly, auditors usually
carry out the less costly audit procedures first in the hope the evidence
obtained from these procedures indicates it is unlikely a material loss or
material misstatement has occurred or will occur. If this outcome arises,
auditors can alter the nature, timing, and extent of the more costly tests
used. For example, on the basis of their understanding ot controls and tests
of controls, auditors might conclude controls are well designed and
operating effectively. In this light, they would seek to reduce the costs of
substantive testing in the following ways: change the nature of substantive
testing by employing less costly substantive tests directed toward internal
parties rather than external parties; change the timing of substantive testing
by spreading it across a longer period to reduce costs; and change the
extent of substantive tests by choosing smaller sample sizes to reduce
costs.

2.6 Overview of steps in an audit

Keeping in mind the lessons in the previous sections on the nature of
controls, the importance of system factoring in reducing complexity, the
nature and consequences of audit risks, and the types of audit procedures
auditors can carry out. Figure 2-5 flowcharts the major steps to be
undertaken in an audit. The general approach shown in the flowchart is
representative of the approaches advocated by many professional bodies of
auditors.

The following subsections briefly describe each step in an audit and high-
light those parts of the audit where the information systems auditor often
plays an important role. Although Figure 2-5 and the ensuing discussion
imply a sequential progression of audit steps, some steps can be carried out
concurrently and some iteration of steps can occur. For example, some tests
of controls could be carried out as auditors attempt to understand the
controls that are supposed to be in place. Furthermore, while both external
and internal auditors will follow the general approach shown in Figure 2-5,

SYSTEMS AUDITING

NOTES

37

the decisions they take at each step in the audit might vary because they
have different roles. For example, internal auditors might spend more time
testing controls because they are more concerned than external auditors
about the efficiency of the controls. The following discussion points out how
external and internal auditors might differ in the decisions they take at each
stage of the audit.

2.6.1 Planning the Audit

Planning is the first phase of an audit. For an external auditor, this means
investigating new and continuing clients to determine whether the audit
engagement should be accepted, assigning appropriate staff to the audit,
obtaining an engagement letter, obtaining background information on the
client, understanding the client's legal obligations, and undertaking analytical
review procedures to understand the client's business better and identify
areas of risk in the audit. For an internal auditor, this means understanding
the objectives to be accomplished in the audit, obtaining background
information, assigning appropriate staff, and identifying areas of risk.

During the planning phase, auditors must decide on the preliminary mate-
riality level to he set for the audit. An external auditor's concerns will he the
size of misstatements in the financial statements that would affect the
decisions of users of the financial statements. Internal auditors might also be
concerned about the size of losses that have arisen or might arise through
ineffective or inefficient operations.

SYSTEMS AUDITING

NOTES

38

FIGURE 2-5. Flowchart of major steps in an IS audit

Auditors must also make a judgment on desired audit risk. Usually the level
of desired audit risk is set for the overall audit rather than for segments of it.
For external auditors, this reflects the risk they are willing to take to issue an
unqualified opinion even though the financial statements are materially in
error. For internal auditors, desired audit risk might also reflect the risk they
are willing to take to issue an unqualified opinion even though material
losses have occurred or might occur through ineffective or inefficient
operations.

The levels of inherent risk will vary across different segments of the audit.
Some segments are more susceptible to errors, irregularities,
ineffectiveness, and inefficiencies. Auditors must consider each segment of
the audit in turn and evaluate the factors that lead to inherent risk associated
with the segment. For example, systems that involve handling of cash are
susceptible to defalcations; technologically complex systems are susceptible
to inefficient use of resources.

SYSTEMS AUDITING

NOTES

39

Perhaps the most difficult decision to make in the planning phase is the
judgment on the level of control risk associated with each segment of the
audit. When making this judgment, information systems audit skills are
especially important. The American Institute of Certified Public Accountants
argues that to decide on the level of control risk, auditors must first
understand the internal controls used within an organization. Internal
controls comprise five interrelated components:

1. Control environment: Elements that establish the control context in which
specific accounting systems and control procedures must operate. The
control environment is manifested in management's philosophy and
operating style, the ways authority and responsibility are assigned, the
way the audit committee functions, the methods used to plan and
monitor performance, and so on.

2. Risk assessment: Elements that identify and analyze the risks faced by
an organization and the ways these risks can be managed.

3. Control activities: Elements that operate to ensure transactions are
authorized, duties are segregated, adequate documents and records are
maintained, assets and records are safeguarded, and independent
checks on performance and valuation of recorded amounts occur. These
elements are usually called accounting controls. Internal auditors,
however, also might be concerned with administrative controls
established to achieve effectiveness and efficiency objectives.

4. Information and. communication: Elements in which information is
identified, captured, and exchanged in a timely and appropriate form to
allow personnel to discharge their responsibilities properly.

5. Monitoring: Elements that ensure internal controls operate reliably over
time.

In the context of the concepts examined earlier in this chapter and the role
information systems auditors perform, understanding internal controls in an
organization involves factoring and examining both management controls
and application system controls. Auditors can understand the control
environment and risk assessment components primarily by examining
management controls. For example, when auditors determine whether an
information systems steering committee exists, they seek to understand the
control environment and risk assessment components of internal control.
Auditors can understand specific control activities by reviewing both
management controls and application controls. For example, when auditors
review those activities associated with production release of programs or
entry of data to an application system, they are seeking to understand the
control activities undertaken. Auditors can understand the information and
communication component by examining both management controls and
application controls. For example, when auditors examine how management
communicates roles and responsibilities or how transactions are captured,
recorded, processed, and summarized within an application system, they
are seeking to understand the information and management component.

SYSTEMS AUDITING

NOTES

40

Auditors can understand the monitoring component primarily by examining
management controls. For example, when auditors examine the ways
management evaluates employee performance, they are seeking to
understand the monitoring component.

Management controls can differ substantially from organization to organi-
zation. For example, an organization might have all information processing
performed at a single site that is under the control of a single information
systems department. In this situation, there is only one management system
to evaluate that associated with the information systems department.
Auditors would factor this system into various subsystems top management,
systems development management, programming management, and so on
and seek to understand internal controls in the context of each of these
subsystems.

On the other hand, another organization's information systems function
might be widely dispersed. For example, the organization might have a
highly decentralized structure. Divisions might have responsibility for
developing, operating, and maintaining their own information systems. Each
might have its own computer center and information systems staff. End-user
computing also could be substantial. Some end users might be developing,
maintaining, and operating their own systems. In these circumstances,
auditors must evaluate multiple management systems: one for each
divisional site and perhaps one for each major end-user computing site.
They must consider each management system in turn, evaluate the risks
associated with each, and factor those that are material into their various
subsystems. In short, auditors might have to examine multiple top-
management subsystems, multiple systems development management
subsystems, multiple programming management subsystems, and so on, to
understand the internal controls.

Application controls also might be substantially diverse. In a highly cen-
tralized organization, there might be only one set of cycles to evaluate. In a
highly decentralized organization, however, there might be multiple sets of
cycles, each of which must be evaluated. For example, each division might
have its own sales and collections cycle, payroll and personnel cycle,
acquisitions and payments cycle, conversion, inventory, and warehousing
cycle, and treasury cycle. Auditors must identify those cycles that are
material to the audit, factor the cycles into application systems and
subsystems, understand these systems and subsystems, and identify the
controls that have been implemented over each important class of
transactions that passes through the different systems and subsystems.

There are several types of evidence collection techniques used to under-
stand the internal controls: review of working papers from prior audits, inter-
views with top management and information systems personnel,
observations of activities carried out within the information systems function',
and reviews of information systems documentation. The evidence can be
documented by completing questionnaires, constructing high-level
flowcharts and decision tables, and preparing narratives. A computer can be

SYSTEMS AUDITING

NOTES

41

helpful to employ these techniques and auditors might use a computer-aided
software engineering (CASE) tool to draw flowcharts. Similarly, they might
interact with questionnaire software that elicits responses on the status of
various types of internal controls (see Chapter 16). Auditors must be careful
not to undertake too much work, however, during this phase. The goal is to
obtain just enough information to understand internal controls and to decide
how to proceed with the audit.

After obtaining a satisfactory understanding of the internal controls, auditors
must assess the level of control risk. External auditors assess control risk in
terms of each major assertion that management should be prepared to
make about material items in the financial statements (Table). Thus auditors
must relate their understanding of internal controls to the impact they
ultimately have on the figures presented in the financial statements. In the
case of management controls, the relationship usually is indirect and if
careful control is exercised over program maintenance, auditors might have
increased confidence that a specific control in an application system will
continue to be exercised properly throughout the financial period. As a
result, they would be confident the control supports, say, the completeness
assertion for a particular financial statement component. In the case of
application controls, the relationship to financial statement components is
usually fairly direct. If the control has not been designed properly or has not
been operated effectively, the potential impact on a financial statement
assertion is usually clear.

Internal auditors can also assess control risk in terms of assertions that
management implicitly or explicitly make about the effectiveness and
efficiency of systems. For example, management might say a system
achieves a certain throughput rate and that customers of the organization
who use the output of the system have a certain level of satisfaction with the
performance of the system. Auditors must use their understanding of the
internal controls to evaluate whether they have been designed appropriately
and whether they have been placed in operation to support management's
assertions.

SYSTEMS AUDITING

NOTES

42

After auditors obtain an understanding of the internal controls, they then
must determine the control risk in relation to each assertion:

1. If auditors assess control risk at less than the maximum level, they must
then identify the material controls that relate to the assertion and test the
controls to evaluate whether they are operating effectively. They work on
the assumption that tests will show that if the controls are operating
effectively they can reduce the extent of substantive testing needed to
reach an audit opinion.

2. If auditors assess control risk at the maximum level, they do not test
controls; they might conclude that internal controls are unlikely to be
effective and therefore cannot be relied upon or that a more effective and
efficient audit can be conducted using a substantive approach.

2.6.2 Tests of Controls

Auditors test controls when they assess the control risk for an assertion at
less than the maximum level. They rely on controls as a basis for reducing
more costly testing. At this stage in the audit, however, auditors do not know
whether the controls identified operate effectively. Tests of controls,
therefore, evaluate whether specific, material controls are, in fact, reliable.

This phase usually begins by again focusing first on management controls. If
testing shows that, contrary to expectations, management controls are not
operating reliably, there might be little point to testing application controls. If
auditors identify serious management-control weaknesses, they might have
to issue an adverse opinion or undertake substantive tests of transactions
and balances or overall results. Auditors conduct the evaluation iteratively
for each management subsystem and each application subsystem that is
material to the assertion.

To illustrate how to test management controls, assume that as auditors
came to an understanding of internal controls, they are informed that senior
management regularly undertakes information systems planning. To test
whether this control is operating effectively, they might examine the minutes
of meetings held by senior management to evaluate whether they
conscientiously attend to planning on a regular basis. In addition, they might
request a copy of the current information systems plan to evaluate its
quality.

Assume that as auditors came to an understanding of the internal controls,
they have identified standards covering program documentation. In light of
their discussions with programmers, they believe programmers comply with
these standards when they write programs. To test the control, auditors
might identify a sample of programs they consider material to audit
objectives. They could then examine the documentation for these programs
to determine whether, in fact, documentation exists and whether it complies
with the standards.

SYSTEMS AUDITING

NOTES

43

If auditors conclude that management controls are in place and working
satisfactorily, they then would evaluate the reliability of application controls
by tracing instances of material classes of transactions through each
significant control exercised in the various application subsystems. For each
transaction considered, auditors evaluate whether the control is operating
effectively.

To illustrate how to test application controls, assume that as auditors came
to an understanding of internal controls, they identified a control that
required an accounts manager to check that her control clerk cleared all
errors reported during an update run of a batch application system. Auditors
might select a sample of update reports generated during the financial
period and check for a signature to indicate that the accounts manager was
regularly checking the work of the accounts clerk.

Assume that as auditors came to an understanding of internal controls, they
identified a control that required a data-entry operator to enter customer
orders only if customers had provided a signed order form. Auditors might
select a sample of orders that had been entered throughout the financial
period and check to see each entered order is supported by a signed, hard-
copy order.

After auditors have completed tests of controls, they again assess control
risk. In light of the test results, they might revise the preliminary assessment
of control risk downwards or upwards. In other words, auditors might
conclude that internal controls are stronger or weaker than initially
anticipated. They might also conclude that it is worthwhile to perform more
tests of controls with a view to further reducing the substantive testing.
Perhaps internal controls are stronger than initially believed. Accordingly,
auditors conclude control risk has decreased and seek further evidence to
support this assessment.

During the controls-testing phase, internal auditors and external auditors
might differ in their approaches to the audit. If internal auditors identify
control weaknesses, they might expand their investigations to gain a better
understanding of the nature of and implications of these weaknesses. Their
objective might be to provide in-depth recommendations to rectify the control
weaknesses. External auditors, on the other hand, will tend to cut short their
investigations when they identify control weaknesses and proceed to
undertake expanded substantive tests in light of the increased control risk
they perceive.

2.6.3 Tests of Transactions

From an attest perspective, recall auditors use tests of transactions to
evaluate whether erroneous or irregular processing of a transaction has led
to a material misstatement of financial information. Typical attest tests of
transactions include tracing journal entries to their source documents,
examining price files for propriety, and testing computational accuracy. The
computer is quite useful to perform these tests, and auditors might use

SYSTEMS AUDITING

NOTES

44

generalized audit software to check whether the interest paid on bank
accounts has been calculated correctly.

From an operational perspective, auditors use tests of transactions to eval-
uate whether transactions or events have been handled effectively and effi-
ciently. For example, to indicate a database system's effectiveness, auditors
might examine a sample of queries recorded on a transaction log to
evaluate whether the queries have been generated by a wide cross-section
of users of the database system. To evaluate efficiency, auditors might
examine the turnaround times for a sample of jobs submitted to an
application system. Again, the computer can help to carry out these tests.
For example, auditors may use generalized audit software to select a
sample of database queries from a transaction log for evaluation.

In an attest audit, auditors conduct tests of transactions at interim dates in
order to reduce the amount of substantive tests of balances to be done at
financial year end and thus to reduce the overall costs of the audit. In an
operational audit for effectiveness and efficiency purposes, auditors also use
tests of transactions at interim dates in order to reduce the amount of
substantive testing of overall results to be done near the reporting date. For
example, if the response times for a sample of transactions that occur
throughout the period under review are satisfactory, auditors can reduce the
number of users surveyed near the report date to determine whether they
consider response times to be satisfactory. To follow this strategy, auditors
must know an operational audit is required well in advance of the reporting
date.

If the results of tests of transactions indicate that material losses have oc-
curred or might occur or that financial information is or might be materially
misstated, substantive tests of balances or overall results will be expanded.
Auditors can use expanded tests of balances or overall results to obtain a
better estimate of the losses or misstatements that have occurred or might
occur.

2.6.4 Tests of Balances or Overall Results

Auditors conduct tests of balances or overall results to obtain sufficient
evidence for making a final judgment on the extent of losses or account
misstatements that occur when the information systems function fails to
safeguard assets, maintain data integrity, and achieve system effectiveness
and efficiency. In general, tests of balances or overall results are the most
expensive of the audit. Thus, auditors should design and execute these
tests carefully.

To understand the approach in this phase, consider, first, the asset-safe-
guarding and data-integrity objectives. Some typical substantive tests of
balances used are confirmation of receivables, physical counts of inventory,
and recalculation of depreciation on fixed assets. Recall that if auditors
believe controls are reliable on the basis of prior audit work, they will limit
the number and scope of these tests because material losses or material
account misstatements that have arisen through failure to safeguard assets

SYSTEMS AUDITING

NOTES

45

and maintain data integrity are not expected. On the other hand, if auditors
believe controls are not reliable, they will need to expand the extent of
substantive tests of balances to estimate better the size of the losses and
account misstatements.

Consider, now, the system-effectiveness and system-efficiency objectives.
The tests conducted to estimate losses from failure to achieve these
objectives are less clear cut than those associated with asset safeguarding
and data integrity objectives. For example, auditors might work with users of
an application system to estimate the losses they believe have arisen
because the system does not provide them with the output they require to
make high-quality decisions. As another example, auditors might attempt to
estimate the costs of inefficiencies that have occurred because failures in
information systems planning have resulted in inappropriate hardware
purchases. Again, the extent of the audit work performed depends on the
auditor's prior assessment of the reliability of administrative controls.

Computer support is often required to undertake substantive tests of bal-
ances or overall results effectively and efficiently. For example, generalized
audit software can be used to select and print confirmations; an expert
system can be used to estimate the likely bad debts that will arise with
receivables; a simulation package can be used to estimate how much
throughput of work has been lost because a hardware/software platform has
been 'poorly configured. Recall that the focus of the tests is to estimate the
size of losses and account misstatements. The computer is a critical tool in
these efforts.

As with the prior phases, the nature and conduct of the audit work during
this phase can vary considerably, depending on the type of organization
auditors are examining. At one extreme the audit could be a small
organization that has a single, centralized information systems function. The
audit work focuses on the losses and account misstatements that might
have arisen from a limited number of sources. At the other extreme, the
audit could be of a large, decentralized organization in which the information
systems function is widely dispersed. The audit work must be extensive to
take into account losses and misstatements that could- have arisen from a
large number of sources.

2.6.5 Completion of the Audit

In the final phase of the audit, external auditors undertake several additional
tests to bring the collection of evidence to a close. For example, they
undertake reviews for subsequent events (events that occur subsequent to
the financial statement date but that affect the information that should be
reported in the financial statements) and contingent liabilities (potential
liabilities that must be disclosed in the financial statements). They must then
formulate an opinion about whether material losses or account
misstatements have occurred and issue a report. The professional
standards in many countries require one of four types of opinion are issued:

SYSTEMS AUDITING

NOTES

46

1. Disclaimer of opinion: On the basis of the audit work conducted, the
auditor is unable to reach an opinion.

2. Adverse opinion: The auditor concludes that material losses have
occurred or that the financial statements are materially misstated.

3. Qualified opinion: The auditor concludes that losses have occurred or that
the financial statements are misstated but that the amounts are not
material.

4. Unqualified opinion: The auditor believes that no material losses or
account misstatements have occurred.

In addition to asset safeguarding and data integrity concerns, internal audi-
tors might also have to decide whether material losses have occurred
because the information systems function has failed to achieve system
effectiveness and efficiency objectives. Unlike the asset safeguarding and
data integrity objectives, the form of the audit opinion relating to system
effectiveness and efficiency objectives is not prescribed by professional
standards. Therefore, auditors must formulate their wording for the opinion
so that it clearly communicates the findings and judgment. Nevertheless, a
typical report would include an introduction that describes the audit
objectives, scope, and general approach employed, a summary of critical
findings, recommendations to address the major issues that arise from the
findings, and data to support the critical findings listed in the report.

Auditors are also concerned with prognoses about losses and account
misstatements. In other words, even though auditors might have concluded
no material losses or misstatements have occurred, they might believe
control weaknesses exist that mean such losses or misstatements could
occur in the future. These weaknesses might motivate a concern about the
viability of the organization if a major threat eventuates. In addition, auditors
might be concerned about contingent liabilities associated with losses that
arise through significant control weaknesses. For example, customers could
sue an organization if it cannot provide products or services because its
computer systems are not operational. At the conclusion of an audit,
therefore, an important function that auditors perform is to provide
management with a report documenting any control weaknesses they have
identified, the potential consequences of these control weaknesses, and
some recommendations for remedial actions.

2.7 Auditing around or through the computer

When auditors come to the controls testing phase of an information systems
audit, one of the major decisions they must make is whether to test controls
by auditing around or through the computer. The phrases "auditing around
the computer" and "auditing through the computer" are carryovers from the
past. They arose during the period when auditors were debating how much
technical knowledge was required to audit computer systems. Some argued
that little knowledge was needed because auditors could evaluate computer

SYSTEMS AUDITING

NOTES

47

systems simply by checking their input and output. Others contended audits
could not be conducted properly unless the internal workings of computer
systems were examined and evaluated. Unfortunately, the arguments of the
former group were sometimes motivated by their lack of technical
knowledge about computers. Thus, among some auditors the phrase
"auditing around the computer" had derogatory connotations. Today we
recognize that the two approaches each have their merits and limitations
and that each must be considered carefully in the context of planning and
executing the most cost-effective audit.

2.7.1 Auditing Around the Computer

Auditing around the computer involves arriving at an audit opinion through
examining and evaluating management controls and then input and output
only for application systems. Based on the quality of an application system's
input and output, auditors infer the quality of the application system's
processing. The application system's processing is not examined directly.
Instead, auditors view the computer as a black box.

Auditors should audit around the computer when it is the most cost-effective
way to undertake the audit. This circumstance often arises when an appli-
cation system has three characteristics. First, the system is simple and
batch oriented. Sometimes batch computer systems are a straightforward
extension of manual systems. They have the following properties:

1. Their inherent risk is low. They are unlikely to be subject to material errors
or irregularities or to be associated with significant ineffectiveness or
inefficiencies in operations.

2. Their logic is straightforward. No special routines have been developed to
allow the computer to process data.

3. Input transactions are batched, and control is maintained using traditional
methods for example, separation of duties and management supervision.

4. Processing primarily consists of sorting the input data and updating the
master file sequentially.

5. A clear audit trail exists. Detailed reports are prepared at key points within
the system.

6. The task environment is relatively constant and the system is rarely
modified.

Second, often it is cost-effective to audit around the computer when an
application system uses a generalized package as its software platform. If
the package has been provided by a reputable vendor, has received
widespread use, and appears error free, auditors might decide not to test
the processing aspects of the system directly. Instead they might seek to
ensure (1) the organization has not modified the package in any way; (2)
adequate controls exist over the source code, object code, and

SYSTEMS AUDITING

NOTES

48

documentation to prevent unauthorized modification of the package; and (3)
high-quality controls exist over input to and output from the package.

Note, however, that not all generalized software packages make application
systems amenable to auditing around the computer. Some packages pro-
vide a set of generalized functions that still must be selected and combined
to accomplish application-system purposes. For example, database
management system software might provide generalized update functions,
but a high-level program still must be written to combine these functions in
the required ways. In this situation, auditors are less able to infer the quality
of processing from simply examining the system's input and output.

Third, auditors might audit around the computer when a high reliance is
placed on user rather than computer controls to safeguard assets, maintain
data integrity, and attain effectiveness and efficiency objectives. In testing,
the focus is on the reliability of user controls rather than the reliability of
computer controls.

Usually auditing around the computer is a simple approach to the conduct of
the audit, and it can be performed by auditors who have little technical
knowledge of computers. The audit should be managed, however, by
someone who has expertise in information systems auditing.

The approach has two major limitations. First, the type of computer system
in which it is applicable is very restricted. It should not be used when
systems are complex. Otherwise, auditors might fail to understand some
aspect of a system that could have a significant effect on the audit
approach. Second, it does not provide information about the system's ability
to cope with change. Systems can be designed and programs can be written
in certain ways to inhibit their degradation when user requirements change.
For internal auditors, the system's robustness could be an important
concern in light of their effectiveness and efficiency objectives.

2.7.2 Auditing Through the Computer

For the most part, auditors are now involved in auditing through the
computer. They use the computer to test (1) the processing logic and
controls existing within the system and (2) the records produced by the
system. Depending on the complexity of the application system, the task of
auditing through the computer might be fairly simple, or it might require
extensive technical competence on the part of the auditor.

Auditing through the computer must be used in the following cases:

1. The inherent risk associated with the application system is high.

2. The application system processes large volumes of input and produces
large volumes of output that make extensive, direct examination of the
validity of input and output difficult to undertake.

SYSTEMS AUDITING

NOTES

49

3. Significant parts of the internal control system are embodied in the
computer system. For example, in an online banking system, a computer
program might batch transactions for individual tellers to provide control
totals for reconciliation at the end of the day's processing.

4. The processing logic embedded within the application system is complex.
Moreover, large portions of system code are intended to facilitate use of
the system or efficient processing.

5. Because of cost-benefit considerations, substantial gaps in the visible
audit trail are common in the system.

The primary advantage of auditing through the computer is that auditors
have increased power to test an application system effectively. They can
expand the range and capability of tests they can perform and thus increase
their confidence in the reliability of the evidence collection and evaluation.
Furthermore, by directly examining the processing logic embedded within an
application system, auditors are better able to assess the system's ability to
cope with change and the likelihood of losses or account misstatements
arising in the future.

The approach has two disadvantages. First, it can sometimes be costly,
especially in terms of the labor hours that must be expended to understand
the internal workings of an application system. Second, in some cases we
will need extensive technical expertise if we are to understand how the
system works. These disadvantages are really spurious, however, if auditing
through the computer is the only viable method of carrying out the audit.

3. SUMMARY

Information systems auditing is an organizational function that evaluates
asset safeguarding, data integrity, system effectiveness, and system
efficiency in computer-based information systems. It has arisen for seven
major reasons:

1. The consequences of losing the data resource;

2. The possibility of misallocating resources because of decisions based on
incorrect data or decision rules;

3. The possibility of computer abuse if computer systems are not controlled;

4. The high value of computer hardware, software, and personnel;

5. The high costs of computer error;

6. The need to maintain the privacy of individual persons; and

7. The need to control the evolutionary use of computers.

Asset safeguarding, data integrity, system effectiveness, and system effi-
ciency can be achieved only if a sound system of internal control exists. Use

SYSTEMS AUDITING

NOTES

50

of computers does not affect the basic objectives of internal control;
however, it affects how these objectives must be achieved.

The use of computers affects both the evidence collection and evidence
evaluation functions auditors perform. Computer control technology is often
more complex than manual system control technology; consequently, it is
more difficult to understand controls and collect evidence on the reliability of
controls. Similarly, it is more difficult to understand the implications of a
control strength or weakness for the overall reliability of a system.

Information systems auditing borrows much of its theory and methodologies
from other areas. Traditional auditing contributes knowledge of internal
control practices and an overall control philosophy. Information systems
management provides methodologies necessary to achieve successful
design and implementation of systems. Behavioral science indicates when
and why information systems are likely to fail because of people problems.
Computer science contributes knowledge about how hardware and software
should be designed to be effective and efficient and to safeguard assets and
maintain data integrity.

There are five major steps to be undertaken during the conduct of an audit.
First, auditors must plan the audit. In particular, auditors must reach an
overall understanding of internal controls. Second, if auditors expect to rely
on internal controls, controls must be tested to evaluate whether they are
operating effectively. Third, auditors must carry out substantive tests of
details of transactions to evaluate whether a material loss or account
misstatement has occurred or might occur. Fourth, auditors must carry out
substantive tests of balances or overall results to gather sufficient evidence
to make a judgment on the size of the losses or account misstatements that
have occurred or might occur. Fifth, based on their evaluation of the
evidence collected, auditors issue an audit opinion.

4. QUESTIONS

1. Why is there a need for control and audit of computer systems?
2. What are the implications of a company losing its:

a. Personnel master file b. Inventory master file

3. How can inadequate controls in a computer system lead to incorrect
decision making?

4. Why is the control stills needed to protect hardware, software, and
personnel even though substantial insurance coverage might have been
taken out by organization?

5. Why does the computer cause us to have increased concerns about the
privacy of individuals?

6. What are the major assets in an information systems facility?

7. Define data integrity. What factors affect the importance of data integrity
an organization?

SYSTEMS AUDITING

NOTES

51

8. How does the continuing evolution of computer hardware and software
technology affect an auditor's ability to (a) understand controls, and (b)
collect evidence on the reliability of controls?

9. What impact does the use of computers have on the nature and conduct
of the evidence evaluation function carried out by auditors?

10. Briefly explain the contribution of the following areas to information
systems.

11. Define the concept of a control.

12. Why must auditors focus on controls as a system?

13. Briefly explain the cycles approach to conducting an information systems
audit.

14. Briefly describe two types of evidence collection procedures you might
use to obtain an understanding of internal controls.

15. How do controls reduce expected losses?

5. REFERENCE BOOKS

1. Weber R; Information Systems Control and Audit (Person Education)

2. Dube: Information systems for Auditing (TMH)

3. Auditing Information Systems, 2nd Edition. Jack J. Champlain (Wiley)

SYSTEMS AUDITING

NOTES

52

UNIT – II

1. Programming Management Controls

Structure

1.1 Introduction

1.2 The program development life cycle

1.2.1 Planning

1.2.2 Control

1.2.3 Design

1.2.4 Coding

1.2.5 Module Implementation and Integration Strategy

1.2.6 Coding Strategy

1.2.7 Documentation Strategy

1.2.8 Testing

1.2.9 Unit Testing

1.2.10 Integration Testing

1.2.11 Whole-of-Program Testing

1.2.12 Operation and Maintenance

1.3 Organizing the programming team

1.3.1 Chief Programmer Teams

1.3.2 Adaptive Teams

1.3.3 Controlled-Decentralized Teams

1.4 Managing the system programming group

1.4.1 Control Problems

1.4.2 Control Measures

Objectives

After going through this lesson, you should be able to know:

• how to implement program development life cycle

• how to Organizing the programming team

• how to Managing the system programming group

SYSTEMS AUDITING

NOTES

53

1.1 Introduction

In this lesson we examine those practices that lead to the production or
acquisition of high-quality software. We begin by examining the major
phases in the program development life cycle. The discussion highlights the
types of good practices that should exist and the control concerns that audi-
tors have with respect to each phase. Next we examine alternative ways of
organizing and managing programming teams. In particular, from a control
perspective we focus on the advantages and disadvantages of the different
team structures that can be used. Finally, we examine the special control
problems that arise in relation to the activities of system programmers. We
consider some approaches that can be used to alleviate these control prob-
lems.

1.2 The program development life cycle

As program development and acquisition is a major phase within the
systems development life cycle. The primary objectives of this phase are to
produce or acquire and to implement high-quality programs. Some major
characteristics of high-quality programs follow:

1. They perform their functions correctly and completely.

2. They have a high-quality user interface.

3. They work efficiently.

4. They are well designed and well documented.

5. They are easy to maintain.

6. They are robust under abnormal conditions.

If programs are to have these characteristics, development, acquisition, and
implementation activities must be well managed. As with systems develop-
ment, auditors can use a life-cycle model to better understand, plan, and
carry out the tasks that must be undertaken to obtain high quality software.
During audits, this model can also guide the conduct of their evidence-
collection and evidence-evaluation activities.

The following sections provide normative guidelines for six major phases in
the program development life cycle (Figure 1-1): (1) planning, (2) control, (3)
design, (4) coding, (5) testing, and (6) operation and maintenance. As with
the systems development life cycle, the conduct of these phases can vary
considerably, depending on certain contingencies. We examine the effects
of such contingencies on each phase and the ways in which the audit
approach must be adjusted to take them into account.

SYSTEMS AUDITING

NOTES

54

FIGURES 1-1 Program development life cycle

1.2.1 Planning

Perhaps the major task that management must undertake during the
planning phase is to estimate the amount of resources (especially worker
hours) required for software development, acquisition, and implementation.
If, for example, the software is to be written in house and the development
and implementation task is substantial, management might attempt to
estimate the lines of source code to be written or the number of function
points to be produced. These estimates might then be extrapolated to the
number of worker hours required to produce the software.

1. Estimate the number of domain items for the program.

2. Assign a weight to each domain item based on experience and expert
advice.

3. Compute F = Sum (Fi) using the following table.

4. Compute a complexity adjustment C based on such factors as whether
data communications or distributed processing functions are required.

5. Compute the function point value, FP, using the following formula:

FP =F* (0.65 + 0.01 C) where the constants 0.65 and 0.01 are determined
empirically.

If software is to be developed and implemented in house, management
should use the five major software cost-estimation techniques identified by
Boehm:

1. Algorithmic models: These models estimate resources needed based on
a set of "cost drivers" for example, the estimated number of source
instructions to be written, the programming language to be used, and the

SYSTEMS AUDITING

NOTES

55

volatility of the requirements definition. A well-known example is
Boehm's COCOMO model.

2. Expert judgment: Experts might estimate the resources needed to
undertake the programming project.

3. Analogy: If a similar software project has been undertaken already,
resource requirements can be estimated based on this prior experience.

4. Top-down estimation: The project is first subdivided into its various tasks,
and resource requirements for each task are then estimated.

5. Bottom-up estimation: If the tasks to be undertaken are fairly well defined
at the outset, the resource needs for each can be estimated and
aggregated to obtain those needed for the entire project.

If software is to be acquired, three major types of costs that will be incurred
are purchase costs, the costs associated with contracting for and
implementing the software, and the costs of operating and maintaining the
software. Potential vendors will provide estimates of purchase costs and
operation and maintenance costs. Expert judgment, analogy, top-down
estimation, and bottom-up estimation might still be used, however, to predict
the costs associated with contracting for and implementing the software.

Besides estimating resource requirements, management must address sev-
eral other important decisions during the planning phase:

SYSTEMS AUDITING

NOTES

56

The importance and complexity of planning decisions can vary considerably,
depending on such factors as the size of the software to be developed or
purchased and the uncertainty relating to user requirements or support
technology. For example, consider the extent of resource planning needed
for a large project involving thousands of lines of programming code versus
a small project that can be programmed using a spreadsheet package.
Similarly, consider the extent of test and integration planning needed for a
large, extensively modified, purchased software package versus a small, off-
the-shelf, unaltered, purchased software package. Clearly, the approaches
to and effort expended on planning across these cases should not be the
same.

Auditors should have two major concerns about the conduct of the planning
phase. First, they should evaluate whether the nature of and extent of
planning are appropriate to the different types of software that are developed
or acquired. They can gather this evidence in the normal ways for example,
interviews, observations, and reviews of documentation. Second, they must
evaluate how well the planning work is being undertaken. For example, they
might assess how accurately resource requirements have been estimated. If
they conclude planning is well done, they should be more confident about
the conduct of the remaining phases in the software life cycle. If planning is
problematic, however, the conduct of the remaining phases may be
undermined.

How difficult it will be to carry out evidence collection and evaluation will
vary, depending on the extent to which responsibility for software develop-
ment, acquisition, and implementation is dispersed throughout the organiza-
tion. If, for example, end users employ high-level languages to develop pro-
grams that are material in the context of audit objectives, auditors must
evaluate the quality of the planning work end users are performing, wherever
they are located. The audit work will have to extend beyond the boundaries
of the information systems department. If, however, responsibility for
software development and acquisition is confined to a single, central group,
the evidence collection and evaluation tasks are easier.

1.2.2 Control

The control phase has two major purposes. First, task progress in the
various software life-cycle phases should be monitored against plan. Any
significant deviations detected form the basis for corrective action. Second,
control over software development, acquisition, and implementation tasks
should be exercised to ensure software released for production use is
authentic, accurate, and complete. Note in Figure 1-1 that the control phase
is a "phantom" phase that extends in parallel with all other phases of the
software life cycle.

To help monitor progress against plan, several techniques can be used.
Work breakdown structures (WBS) can be prepared to identify the specific
tasks that have to be undertaken to develop, acquire, and implement

SYSTEMS AUDITING

NOTES

57

software (Figure 1-2). Detailed resource requirements then can be estimated
for each task. These estimates form the basis for monitoring progress.

FIGURE 1-2 Partial work breakdown structure for an order-entry system

Gantt charts can be prepared to help schedule tasks (Figure 1-3). They
show when tasks should begin and end, what tasks can be undertaken
concurrently, and what tasks must proceed serially. They help identify the
consequences of early or late completion of a task. The actual progress of a
software project can be plotted on a Gantt chart to show pictorially whether
the project is on track.

FIGURE 1-3 Gantt chart for order-entry system

SYSTEMS AUDITING

NOTES

58

Program evaluation and review technique (PERT) charts show the tasks that
have to be undertaken, how they are interrelated, and the resource
requirements for each task (Figure 1-4). They allow the critical path to be
determined that is, the path along which any delay in completion of a task
will result in the overall software project being delayed (the bold line in
Figure 1-4). Like Gantt charts, therefore, they enable management to
determine the consequences of early or late completion of a task.

To help ensure that authentic, accurate, and complete software is released,
management must establish review procedures and access controls. Review
procedures can be undertaken as each major milestone during software
development, acquisition, or implementation is reached. The quality of work
per formed up to that point should be assessed, and a decision must be
made on whether the project should proceed to the next phase. In some
cases, a formal review process might be undertaken. For example, in a large
software-development project that will have a widespread impact, a review
team might be constituted comprising representatives of all the major
stakeholder groups. This team is responsible for evaluating the quality of
work completed and approving subsequent work. In other cases, the review
is somewhat informal. For example, end users might be developing software
using fourth-generation languages or acquiring off-the-shelf software that is
material from an audit perspective. Nevertheless, the software might have
only a localized impact on the organization. In this situation, less onerous
review and approval procedures could provide a satisfactory level of control.

FIGURE 1-4 PERT chart for order-entry system

Both manual and automated access controls can be established over the
development, acquisition, and maintenance of software. Manual controls can
be used, for example, to restrict access to hard-copy documentation.
Without management approval, a librarian may not permit a programmer to
remove program documentation from a library.

Automated controls can be established via program library software. This
software permits source and object code files to be established. Access to

SYSTEMS AUDITING

NOTES

59

these files can then be controlled via passwords. The software provides an
audit trail of accesses to and changes to source and object files that
management can review for propriety. In some cases, program library
software can provide a means of ensuring compliance with licensing
agreements pertaining to acquired software. For example, access controls in
the software reduce the threat of software piracy.

Many organizations also use library software to set up separate test and
production libraries of source and object files. Programmers are not
permitted to access the production library. When a developed or acquired
program has been approved for production release, a separate control group
transfers the program from the test library to the production library. If a
program must be maintained, the control group transfers a copy of the
program to the test library, where it can be accessed by the programmer au-
thorized to maintain it.

As with the planning phase, the nature of and importance of procedures
exercised in the control phase can vary considerably, depending upon the
type of software being developed, acquired, or maintained. Consider, for
example, the control procedures that should be used in the development of a
large electronic data interchange program versus a small spreadsheet
application. As the materiality of software increases, clearly control
procedures become more critical. As materiality decreases, however, less
rigorous control procedures can be used.

Auditors should have two concerns about the conduct of the control phase.
First, they must evaluate whether the nature of and extent of control
activities undertaken are appropriate for the different types of software that
are developed or acquired. Auditors should identify those locations in an
organization where material software is being produced or purchased and
determine whether the control procedures in place are appropriate for the
varying levels of materiality of the software.

Second, auditors must gather evidence on whether the control procedures
are operating reliably. For example, they might first choose a sample of past
and current software development and acquisition projects carried out at dif-
ferent locations in the organization they are auditing. They might then use
observations, interviews, and a review of documentation to determine
whether management regularly monitors progress against plan. If the organi-
zation audited uses program library software, auditors might also choose a
sample of programs and examine the audit trail of accesses to and mainte-
nance of these programs to evaluate whether unauthorized activities have
occurred.

1.2.3 Design

If programs are to be developed or acquired software is to be modified,
design activities must be undertaken. During the design phase,
programmers seek to specify the structure and operation of programs that
will meet the requirements articulated during the information processing
system design phase of systems development. In small systems, a single

SYSTEMS AUDITING

NOTES

60

program might be able to meet these requirements. For example, one
spreadsheet program might satisfy the requirements specified for a decision
support system application. Larger systems, however, might have been
broken up into various job steps. Different programs must be designed to
satisfy the requirements associated with each job step.

During the design phase, the auditor's primary concern will be to find out
whether programmers use some type of systematic approach to design. The
auditor must vary expectations depending on such factors as the size and
materiality of the program. The need for rigorous, systematic design
increases as programs become larger and more material. Auditors must also
vary expectations depending on the type of personnel who develop
programs. They are likely to have fewer concerns if a centralized,
professional information systems group develops programs relative to, say,
dispersed, and end-user groups.

To some extent, design approaches will also vary depending on the type of
programming language that has been or will be used to implement the pro-
gram. For example, if programmers believe they can develop a program
using spreadsheet software, they will think about satisfying requirements in
the context of matrices and operations on matrices. Auditors should see
design practices that evidence the kinds of ideas shown in Table 1-1.

If, on the other hand, programmers use a third-generation language (such as
COBOL), the auditor should check to see whether some type of structured
design approach has been used. The relative merits of these different
structured design approaches are still a contentious matter, but auditors
usually need not be concerned about the debate. Providing at least some
type of structured design approach is used, they can have increased
confidence in the quality of work performed during the design phase.

If programmers use an object-oriented programming language, they will
probably use some type of object-oriented approach to program design.
Again, although object-oriented design approaches might vary, an auditor's
primary concern will be to determine whether at least one of the more widely
accepted approaches is used.

Systematic design is still important even when fourth-generation languages
are used to implement programs. Fourth-generation languages alleviate
many of the detailed design issues that must be addressed with third-
generation languages for example, how files will be opened, closed, and
accessed. Nevertheless, poor-quality fourth-generation programs will be
produced if programmers do not give sufficient thought to the structure and
dynamics of the programs they are writing. Design approaches like
functional decomposition, data flow design, and data structure design are
still useful in a fourth-generation language environment.

Auditors can obtain evidence of the design practices used by undertaking
interviews, observations, and reviews of documentation. They can talk
with programmers to determine whether they have an understanding of
the need for systematic design approaches and, if so, whether and how

SYSTEMS AUDITING

NOTES

61

they use them. Auditors can observe programmers at their work to
determine whether they are using systematic approaches to program
design. They can review program documentation to determine whether it
contains items like structure charts as evidence those programmers are
using a systematic approach to design.

TABLE 1-2 Some Good Spreadsheet Design Practices

1. Start with a design plan.

2. Separate data-entry areas from calculation areas.

3. Store constants and parameters in a separate area.

4. Design data-capture areas to mirror existing data-capture forms.

5. Enter data in either rows or columns but not both.

6. Place instructions and meaningful names in the spreadsheet itself.

7. Protect critical cells/formulas with the cell-protect feature.

8. To speed up data entry, use the manual recalculation feature for large
spread sheets.

9. Use range names for related cells whenever possible.

1.2.4 Coding

The coding phase is undertaken when software is to be developed or
acquired software is to be modified. During the coding phase,
programmers write and document source code in some programming
language to implement the program design. Sometimes coding can
proceed concurrently with the design and testing phases. Some part of a
program is designed; it is then implemented and tested.

Programming management must attend to several major issues during the
coding phase. Each is discussed briefly in the following subsections,
together with some audit implications.

1.2.5 Module Implementation and Integration Strategy

As programs become larger, management must give more consideration to
the order in which modules will be coded. Management must also decide
how individual modules will eventually be integrated.

Three major module implementation and integration strategies that can be
used follow:

SYSTEMS AUDITING

NOTES

62

Auditors should seek evidence on the level of care exercised by program-
ming management in choosing a module implementation and integration
strategy. Especially with large programs, use of a poor strategy can
seriously undermine the quality of the program produced. Auditors might use
interviews, for example, to determine whether management employs a
systematic approach to choosing a module implementation and integration
strategy. They might also examine program documentation to obtain
evidence on the types of strategies that have been adopted.

1.2.6 Coding Strategy

Irrespective of the module implementation and integration strategy chosen,
programming management must ensure that program code is written
whenever possible, according to structured programming conventions.
These conventions constrain code to three basic control structures, none of
which require a "GO TO" mechanism:

1. Simple sequence (SEQUENCE);

2. Selection based on a test (IF-THEN-ELSE); and

3. Conditional repetition (DO-WHILE).

In addition, each module in a program should have only one entry and one
exit point, the length of modules should be restricted to about 50-100 source
statements, and a top-down flow of control should be used.

If structured programming conventions are followed, it is generally believed
that programmers write source code that contains fewer errors, is easier to

SYSTEMS AUDITING

NOTES

63

understand, and is easier to maintain. This belief holds irrespective of the
type of programming language used. Programs written in a fourth-generation
language like SQL, for example, benefit in the same ways as programs
written in a third-generation language like COBOL. Even when high-level
code must be written in, say, a macro for a spreadsheet application, the
code is more likely to be error-free, easier to understand, and easier to
maintain if structured programming conventions are followed.

Auditors should seek evidence to determine whether programming
management ensures that programmers follow structured programming
conventions. They can interview managers and programmers and ask them
about the practices they follow, observe programmers at their work, and
examine program documentation to determine how code has been written. If
high-quality code has been produced, auditors can have increased
confidence that programs meet their objectives. If low-quality code has been
written, however, auditors might conclude that they have to expand the
extent of substantive test procedures.

Auditors should also check to see whether programmers employ automated
facilities to assist them with their coding work. Some useful types of au-
tomated coding facilities follow:

If auditors find that programmers are using automated facilities, they can
have more confidence in the quality of their coding work. Automated facilities
reduce the likelihood of human errors and irregularities, improve
programmer productivity, and enhance greater standardization of work.

1.2.7 Documentation Strategy

High-quality source code documentation is an important means of reducing
coding errors when a program is initially written and facilitating subsequent
maintenance of the program. Some generally accepted guidelines for
improving the quality of program documentation follow:

1. Provide charts that show the overall makeup of the program in terms of
its major components and the relationships among these components.

2. Use comment lines liberally throughout a program to explain the nature of
the program, its various components, and the flow of logic. Program
header comments can be used to describe the overall purpose of the
program, major functions performed by the program, and important files
used. Module comments can be used to explain the function performed
by a module and how it fits into the overall program. Line comments can
be used to elucidate complex pieces of logic in the program.

3. Use names for variables, constants, types, paragraphs, modules, and
sections that are meaningful to the readers of program source code.
Meaningful names can greatly enhance the self-documenting features of
a program.

SYSTEMS AUDITING

NOTES

64

4. Lay out program source code so it is easy to read. For example, each
sentence should begin on a new line; subsequent lines belonging to a
sentence should be indented; statements following conditional tests
should be indented; white space should be used to set off related blocks
of code.

5. Group related types of code together. For example, in a spreadsheet
program, data-entry areas can be separated from areas where
computations are performed. In a third-generation language, all the
variables and constants relating to a particular module or function can be
grouped together.

Several automated tools are available to assist programmers to produce well
documented program code. For example, editors can be used to ensure that
data items are named consistently and pretty-print facilities can be used to
make program code more readable. To the extent these types of automated
tools are used, higher-quality documentation is likely to be produced.

Perhaps the quickest way for auditors to determine the quality of program
documentation is to obtain a sample and to examine it for evidence of high
quality practices. If the documentation quality is low, auditors should have
concerns about the care with which software is being developed. In addition,
auditors should have concerns about how well subsequent modifications to
and maintenance of software can be undertaken. If the quality of
documentation is high, they can place increased reliance on the software
and decrease the extent of their substantive test procedures.

1.2.8 Testing

During the testing phase, a developed or acquired program is evaluated to
determine whether it achieves its specified requirements. Testing can
identify program design errors or program coding errors. In some cases,
testing may also pinpoint inaccurate or incomplete specifications. Note,
however, that testing can identify only the presence of errors. It cannot
identify their absence.

Unless tests are designed specifically to tease out an error, most likely the
error will remain undetected.

As with the previous phases of the program development life cycle, the test-
ing phase can vary considerably, depending on such factors as the size of
the program and its materiality. Nevertheless, testing often involves seven
steps:

1. Select the boundaries of the test: Testing can focus on an individual
module in a program, several modules, or the entire program.

2. Determine the goals of the test: Testing can be used to identify
unauthorized, inaccurate, incomplete, ineffective, or inefficient code. A
particular test should focus on only one (or a small number) of goals for
example, the performance of the program under load stress.

SYSTEMS AUDITING

NOTES

65

3. Choose the testing approach: Several testing approaches have been
developed and are now widely used for example, black-box testing and
white-box testing. These approaches are discussed in subsequent
sections.

4. Develop the test: Test data or test scenarios must be developed that will
accomplish the goals of the test. In particular, the expected results of
the test must be determined.

5. Conduct the test: The conduct of the test can involve, for example,
executing test data through a program or performing a hand-simulation
of the program's execution pattern under various test scenarios.

6. Evaluate the test results: The actual results obtained under the test must
be compared against the expected results. The nature of any
discrepancies identified must be determined.

7. Document the test: All steps in the testing process must be documented.

Auditors usually pay special attention to the testing phase of the program
development life cycle. The quality of testing can have a major impact on
how well other phases are performed. High-quality testing forces
programmers to undertake other phases of the program development life
cycle rigorously. Furthermore, in many software projects, experience has
shown that testing consumes 40 percent to 70 percent of development and
implementation resources. Given audit concerns with effectiveness and effi-
ciency, therefore, testing is often a material item auditors must consider
during system development.

Testing because it is an important means auditors use to gather evidence
on the quality of a system they are evaluating. The following sections
provide an overview; however, of three levels of testing that can be
conducted during program testing: unit testing, integration testing, and
whole-of-program were testing. They describe the nature of each level of
testing, how it might be undertaken, and some concerns auditors should
have. They also describe how the conduct of each level of testing might
vary depending upon various contingencies, such as the size of the
program and whether the program has been developed or acquired.

1.2.9 Unit Testing

Unit testing focuses on evaluating individual modules within a program.
Thus, unit testing tends to be undertaken only for large programs in which
individual modules constitute substantive pieces of work. If a program is
being developed in house or under contract, the applicability of unit testing
should always be considered. If an off-the-shelf program has been
purchased, however, unit testing is unlikely to be employed unless the
program has been modified in some way.

Two major types of unit tests may be undertaken. The first type, static
analysis tests, evaluates the quality of a module through a direct
examination of source code. The module is not executed on a machine,

SYSTEMS AUDITING

NOTES

66

although it might be executed in someone's mind. Some important types of
static analysis checks follow:

Some types of static analysis can be undertaken using automated tools. For
example, these tools can identify deviations from coding standards, variables
that are declared but never initialized or used, module calling sequences,
and parameters passed between modules.

The second type of unit testing that can be undertaken is a dynamic analysis
test. Unlike static tests, dynamic tests require the module to be executed on
a machine. Two important types of dynamic tests follow:

SYSTEMS AUDITING

NOTES

67

FIGURE 1.5(a) Black-box testing of programs, (b) White-box testing of
programs.

As with static analysis, automated tools are also available to assist
programmers undertake dynamic analysis of a module. For example, tools
are available to generate test cases, control the execution of the test, vary
the workload under which the module must perform, capture output, identify
which execution paths have been traversed by test data, and compare actual
output with expected output.

Auditors can use interviews, observations, and examination of documenta-
tion to evaluate how well unit testing is conducted. They can ask
programmers how they undertake unit testing, observe them at their work,
and choose a sample of test documentation to evaluate how well static
analysis and dynamic analysis are performed. They should see evidence of
automated tools being used to improve the quality of unit testing.

Unless end users are developing large programs, most likely audit concerns
about unit testing will focus on the work done by information systems profes-

SYSTEMS AUDITING

NOTES

68

sionals. This latter group typically has responsibility for developing the sorts
of programs where unit testing is needed. Furthermore, they typically have
responsibility for evaluating acquired software where unit testing is an
important facet of the overall contractual process.

1.2.10 Integration Testing

Integration testing focuses on evaluating groups of program modules pri-
marily to determine (1) whether their interfaces are defective, and (2)
overall, whether they fail to meet their requirements specifications. In some
cases, integration testing can also be used to determine whether the
performance of a set of modules degenerates under high workloads and
whether processing is carried out efficiently.

Like unit testing, integration testing is typically undertaken only when larger
and more complex programs are being developed either in house or via
contractors. Auditors, therefore, will most likely be concerned primarily with
the quality of integration testing work carried out by information systems
professionals rather than end users. The amount of integration-testing work
carried out by end users is likely to be small.

Two different strategies can be used to undertake integration testing: big-
bang testing and incremental testing (Figure 1-6). When big-bang testing is
used, all individual modules are coded, tested individually, and then
assembled in total to perform the integration tests. In short, all intermodule
dependencies are tested together, and in effect integration testing
disappears. The test really becomes a whole-of-program test. Big-bang
testing might be an efficient way to proceed in small to moderate-size
systems, but it is risky if complex intermodule dependencies exist. Critical
errors or irregularities may not be identified on a timely basis.

FIGURE 1-6 (a) Big-bang testing (b) Incremental testing.

SYSTEMS AUDITING

NOTES

69

Incremental testing means subsets of modules are assembled iteratively and
tested until the total program is finally in place. Depending on the design and
coding strategy used to develop the program, three types of integration-
testing approaches may be used:

An auditor's primary concern will be to see that a systematic approach to
integration testing has been chosen for those programs where it is
applicable and that the approach chosen has been well executed. Auditors
can gather evidence via interviews, observations, and reviews of
documentation for a sample of programs. They should also check whether
automated tools have been used to enhance the quality of integration
testing.

1.2.11 Whole-of-Program Testing

Whole-of-program tests focus on the program, in total, to determine
whether it meets its requirements. Even when a program is too small to
make unit testing or integration testing worthwhile, whole-of-program testing
should be undertaken to evaluate its quality. Similarly, if unit testing or
integration testing is inappropriate because a program has been purchased,
whole-of-program testing should still be undertaken When programs are
acquired, whole-of-program tests are an important means of determining
whether developers have fulfilled their part of the contract.

Pfleeger identifies four types of whole-of-program tests that might be
undertaken:

SYSTEMS AUDITING

NOTES

70

An auditor's primary concerns will be to see that whole-of-program tests
have been undertaken for all material programs and that these tests have
been well-designed and executed. Whereas unit testing and integration
testing might not always be applicable during program development or
acquisition, whole-of-program testing should always be undertaken. Auditors
can use observations, interviews, and reviews of documentation to assess
how well it has been done, expecting that evidence-gathering activities will
be dispersed more widely with whole-of-program testing compared with unit
and integration testing. Whereas the latter two types of testing primarily will
be carried out by information systems professionals, whole-of-program
testing could be undertaken by anyone in the organization who has
responsibility for the development, implementation, or acquisition of
programs. Whole-of-program testing should be undertaken by end users, for
example, who develop material programs using high-level programming
languages.

1.2.12 Operation and Maintenance

A program becomes operational when it is released for day-to-day use within
an organization. From an audit perspective, our primary concern with the
operational use of a program is that its performance be monitored properly.
Someone must be responsible for identifying when a program needs to be
maintained. Otherwise, timely identification of maintenance needs might not
occur. As a result, the program might corrupt a database, fail to meet user
requirements, or operate inefficiently. Formal mechanisms for monitoring the
status of operational programs are especially important when the users of a
program are dispersed widely throughout an organization.

SYSTEMS AUDITING

NOTES

71

As programs carry out their day-to-day work, three types of maintenance
might be needed to keep them operational: (1) repair maintenance errors
might be discovered that have to be corrected; (2) adaptive maintenance
user needs may change and the program has to be altered accordingly;
and (3) perfective maintenance the program could be tuned to decrease its
resource consumption. Overall, these three types of maintenance tasks
often account for a substantial part of the cost of owning software. Some
estimates place maintenance costs, on average, at two-thirds of the total
cost of owning a program.

1.3 Organizing the programming team

The way in which programmers are organized to undertake their work can
have an important effect on the quality of the resulting software and the re-
sources consumed to produce the software. They can be organized
functionally, whereby each performs a specialized activity for example,
COBOL coding, maintenance work, or communications programming.
Functional structures work best when projects are straightforward and they
can be decomposed into relatively self-contained, small- to moderate-sized
tasks. They also allow programmers to develop specialist skills and,
therefore, can reduce the resource consumption required to complete a
task.

Alternatively, programmers can be organized as teams. They work for
some period of time on a project. At the conclusion of the project, the team
might be disbanded. Teams facilitate communication among their
members. Accordingly, they are useful organizational structures when the
project to be undertaken is complex and uncertain. On the other hand, team
structures incur overheads associated with the high levels of interaction that
can occur among their members and the overall management of the team.

Much software development, acquisition, and implementation is now un-
dertaken by teams. In this light, the following subsections examine three
major team structures that are used to organize programmers. Each has its
advantages and disadvantages. From an audit perspective, the concern is
to see that management has chosen a team structure carefully in light of
the project size, the level of uncertainty/complexity facing the project, and
the level of slack that exists in the project schedule. Moreover, auditors
should be concerned to see that management has chosen the team
members carefully so their skills and temperament are suited to the team
structure in which they must work.

1.3.1 Chief Programmer Teams

In 1971, IBM completed a project for The New York Times newspaper. The
system developed and implemented was an online retrieval system for the
newspaper's file of clippings'. Throughout the project, IBM used a
programming team structure that was radically different from the typical
ways programming teams were then organized. For the size of the project
about 83,000 lines of source code the results were impressive: The project

SYSTEMS AUDITING

NOTES

72

was delivered on time with few errors; programmer productivity was very
high; errors discovered were easy to correct.

FIGURE 1-7 Chief programmer team organization structure.

The particular organization structure used by IBM on The New York Times
project is known as a chief programmer team. A chief programmer team is
simply a specific form of a project-based organizational structure one that
has a high level of centralized control. Figure 1-7 shows the structure of a
chief programmer team. The functions of the various personnel who are
members of the team follow:

The chief programmer team structure is designed to reduce the need for
information processing among the team members and to increase their
capacities to process information. It achieves these objectives in three ways.
First, it reduces the number of communications channels needed among
team members by minimizing the number of personnel on the team. As a

SYSTEMS AUDITING

NOTES

73

consequence, however, it places more onerous productivity requirements on
each team member to compensate for the loss of worker resources.

Second, each member of the chief programmer team performs specialized
tasks. The chief programmer primarily is responsible for designing, coding,
and testing the system. The backup programmer and support programmers
provide specialized support; for example, they might advise the chief
programmer on the intricacies of the operating system. The librarian relieves
the chief programmer, backup programmer, and support programmers of the
routine, clerical duties associated with the system. Thus, the structure aims
at improving productivity by having team members do what they do best.

TABLE 1-2 Choosing a Programming Team Structure

Third, the team's capacity to process information is increased by having the
librarian perform a lateral, coordinating role. Central to this role is a
program production library consisting of two parts: internal and external.
The internal part comprises source code, object code, linkage commands,
job control statements, and so on. It is maintained solely by the librarian,
not the programmers. The external part comprises folders containing
compilation results, test results, and other supporting documentation. The
programmers work only with the external library, making whatever changes
they need on program listings or coding sheets. The librarian then
implements these changes. Each team member has access to the external
library; thus, code, test results, etc., are public. Programmers are
encouraged to examine each other's work so errors or potential interface
problems are identified.

Chief programmer teams will be most successful when the task is well de-
fined and moderate in size (Table 1-2). Centralized structures like a chief
programmer team inhibit the information flows that are needed to generate
innovative alternatives when the task is uncertain. Nevertheless, by
controlling interaction among group members, chief programmer teams are
more likely to meet tight deadlines than decentralized groups. For large
tasks, the productivity requirements placed on members of a chief
programmer team become too onerous. Other types of team structures that
allow more members need to be adopted.

SYSTEMS AUDITING

NOTES

74

1.3.2 Adaptive Teams

Weinberg proposes another type of team structure for programmers: an
adaptive team (Figure 1-8). Like chief programmer teams, adaptive teams
comprise only a small number of persons. The structure of the team is
meant to cater for two sets of needs: (1) the organization's requirements for
quality programs to be produced and (2) the social/psychological needs of
each programmer in the team.

Adaptive teams differ from chief programmer teams in three ways. First
adaptive teams have no hierarchy of authority. The leadership of the team
rotates among its members. The person having greatest skill with the
activity undertaken usually assumes the leadership for the duration of that
activity. Second, in an adaptive team, tasks are assigned to members of the
team rather than defined positions. In the assignment of tasks, the objective
is to exploit the strengths and avoid the weaknesses of each team member.
Thus, there is no notion of a chief programmer with a defined role, a backup
programmer with a defined role, and so on; an adaptive team is a self-
organizing entity. Third, an adaptive team has no formal librarian role to
perform a lateral coordinating function. Instead, team members are
responsible for carefully examining and evaluating one another's work. The
intent is to foster a feeling of joint responsibility for the quality of the
programming product. At the same time, team members cannot have an
ego attachment to the work they perform if open evaluation is to exist;
hence, this type of team is sometimes called an "egoless" team.

FIGURE 1-8 Adaptive team organization

The structure of an adaptive team is based upon the fact that substantial in-
dividual differences exist among programmers in their abilities to perform
various types of programming tasks. It is also structured to allow the free

SYSTEMS AUDITING

NOTES

75

flow of information among team members. Thus, adaptive teams are suited
to programming tasks where a high level of uncertainty exists (Table 1-2).

Nevertheless, Mantei points out they have several limitations. First, because
an adaptive team is a form of decentralized organization structure, it will
generate more communications than a centralized team. Although this in-
crease is an advantage in a long-term, difficult project, it is a disadvantage
when a project is subject to tight time constraints. Second, groups engage in
riskier behavior than individual people because the effects of failure can be
dispersed: thus, an adaptive team might adopt risky solutions to a
programming problem. Third, contrary to expectations, adaptive teams
sometimes discourage innovative programming solutions. Decentralized
groups tend to exhibit greater conformity than centralized groups because
they enforce uniformity of behavior and punish deviations from the norm.

To overcome some of the problems of adaptive teams, Constantine
advocates using a structured open team for software engineering projects. A
structured open team fosters collaborative teamwork and consensus to
achieve both innovation and coordination. The team leader adopts a
supportive and democratic style with team members, but nevertheless they
have full external responsibility for the performance of the team.

1.3.3 Controlled-Decentralized Teams

A fourth type of organization structure for programmers is a controlled-
decentralized team (Figure 1-9). This structure has a group of junior
programmers reporting to senior programmers who in turn report to a project
leader. Information flows occur within a group and upward through the senior
programmer to the project leader. Thus, the controlled-decentralized team
ideally reaps the benefits of both the chief programmer and adaptive team
structures.

Mantei argues controlled-decentralized teams are best used when the
programming task is large and difficult (Table 1-2). Large tasks cannot he
accomplished by chief programmer teams, whatever the productivity of the
team members. Moreover, complex problems are best solved by
decentralized groups, and the group structure of the controlled-
decentralized team facilitates problem solving. Nevertheless, controlled-
decentralized teams do not work well when the programming task cannot
be subdivided, nor are they suited to projects that must meet tight
deadlines.

SYSTEMS AUDITING

NOTES

76

FIGURE 1-9 Controlled-decentralized organization structure.

1.4 Managing the system programming group

Programmers are often classified as either application programmers or
system programmers. The former develop and maintain programs for
application systems. The latter develop and maintain system software that
is, software, such as operating systems, database management systems,
and communications software, which provides general functions useful to a
wide range of application software.

1.4.1 Control Problems

Both the nature of system software and the nature of system programming
activities can present substantial control problems for management. System
software is a critical, shared resource; thus, errors or irregularities in system
software can affect any application systems that use it. Furthermore,
system software often must operate in privileged mode to perform its
functions; that is, it has a special execution status that enables it to
circumvent many standard controls. This privileged status can be abused.
For example, system software might be used to gain unauthorized access
to private data that can be sold to competitors or to allow jobs to execute
without being charged for resource consumption via the normal job
accounting software. In the latter case, system programmers could be
carrying out private consulting activities, for example, and using the
machine as a free resource.

Controlling system programmers is a difficult task. They are usually highly
skilled persons who often work alone or in small groups. Thus, exercising

SYSTEMS AUDITING

NOTES

77

traditional controls over their activities, such as separation of duties and
independent checks on performance, is difficult. Moreover, they often work
in crisis situations in which the need to get a job running overrides the need
to maintain established control procedures. For example, the
communications software might crash during a peak load period. A system
programmer might be required to devise a quick "fix" so terminals can be
reactivated and customers once again can be serviced.

1.4.2 Control Measures

In many organizations, management has tended to regard the system
programming group as uncontrollable. Indeed, some information systems
professionals argue the imposition of controls over system programmers
will cause their work to deteriorate: They are sensitive, creative, often
erratic persons who do not take kindly to restrictions. They need autonomy
if they are to produce their best work, especially if they are subject to tight
deadlines.

Auditors, however, should be skeptical of-these claims. Organizations that
hold to these beliefs run the risk of major losses occurring through system
programming errors or irregularities. Well-controlled system programming
groups do exist. These groups experience neither high staff turnover nor
poor quality work. Although it is difficult to exercise strong and varied
controls over system programmers, some of the following measures can be
implemented:

1. Hire only high-quality system programming staff. Compared with
application programmers, management might undertake more in-depth
background checking and interviewing when hiring system
programmers.

2. Separate duties to the extent possible. If more than one system
programmer is employed, duties should be separated to the extent
possible. For example, responsibilities for designing and coding a
system program might be separated from responsibilities for testing the
program.

3. Develop and document methods and performance standards. System
programmers should know what is expected of them in terms of how
they perform their jobs. They should not be left to devise their own
approaches, which could run contrary to the organization's control
objectives.

4. Restrict the powers of system programmers. System programmers
should not be allowed to "tinker" with the system software during
production time. Moreover, they should be permitted to develop and test
system software that runs in privileged mode only during special test
periods. During production periods, system programmers usually should
have only the same powers as application programmers.

5. Keep a manual and machine log of system programmer activities.
Independent, secure logs of system programmer activities should be

SYSTEMS AUDITING

NOTES

78

kept. Periodically, these logs should be scrutinized to determine
whether unauthorized activities have occurred.

6. Employ outside consultants to evaluate system programming work. If
internal expertise is not available to evaluate the work of system
programmers, outside experts might be hired from time to time to review
the work of system programmers.

7. Have application programmers periodically evaluate system
programmers. Although application programmers might not be capable
of writing high-quality system software, they might still be able to
evaluate the quality of work performed by the system programming
group.

Even with these control measures in place and operating reliably, however,
ultimately the best control might be to indoctrinate system programmers in
the organization's policies. If system programmers see management
exercising high ethical behavior and communicating a clear expectation that
all employees must follow this norm, they will find it more difficult to
rationalize any abuse of their powers.

Auditors should pay special attention to system programmers because of
the high exposure associated with their activities. They should see at least
some of the control measures described in this chapter in place and
operating reliably. To the extent that controls over system programmers are
weak, however, the consequences potentially are widespread. As
discussed previously, errors or irregularities in system software can
undermine the integrity of all application software that uses the system
software. In this light, substantial reliance might have to be placed on
compensating controls or the extent of substantive testing conducted may
have to be expanded.

SYSTEMS AUDITING

NOTES

79

2. Security Management Controls

Structure

2.1 Introduction

2.2 Conducting a security program

2.2.1 Preparation of a Project Plan

2.2.2 Identification of Assets

2.2.3 Valuation of Assets

2.2.4Threats Identification

2.2.5 Threats Likelihood Assessment

2.2.6 Exposures Analysis

2.2.7 Controls Adjustment

2.2.8 Report Preparation

2.3 Major security threats and remedial measures

2.3.1 Fire Damage

2.3.2 Water Damage

2.3.3 Energy Variations

2.3.4 Structural Damage

2.3.5 Pollution

2.3.6 Unauthorized Intrusion
2.3.7 Viruses and Worms

2.3.8 Misuse of Software, Data, and Services

2.3.9 Hacking

2.4 Controls of last resort

2.4.1 Disaster Recovery Plan

2.4.2 Emergency Plan

2.4.3 Backup Plan

2.4.4 Recovery Plan

2.4.5 Test Plan

2.4.6 Insurance

2.5 Some organizational issues

SYSTEMS AUDITING

NOTES

80

Objectives

After going through this lesson, you should be able to:

• understand how to Conducting a security program;

• discuss about Major security threats and remedial measures

• understand how Controls of last resort

2.1 Introduction

Information systems security administrators are responsible for ensuring that
information systems assets are secure. Assets are secure when the
expected losses that will occur from threats eventuating over some time
period are at an acceptable level. Note three important aspects of this
definition of security. First, we accept that some losses will inevitably occur.
Eliminating all possible losses is either impossible or too costly. Second, we
specify some level of acceptable losses. This level will dictate how much we
are willing to spend on controls. Third, we must choose a time period. We
determine what level of loss we would be willing to bear during this time
period.

FIGURE 2-1 Categories of information systems assets.

SYSTEMS AUDITING

NOTES

81

Figure 2-2 Is security administration responsibility

The information systems assets we must protect via security measures can
be classified in two ways (Figure 2-1). The physical assets comprise
personnel, hardware (including storage media and peripherals), facilities,
supplies, and documentation. The logical assets comprise data/information
and software. In a sense, this entire book deals with measures auditors can
use to ensure these assets are secure.

In this lesson, however, we focus on the work usually performed by infor-
mation systems security administrators. Although their specific functions
vary across organizations, they tend to be responsible for controls over (1)
both malicious and non-malicious threats to physical assets and (2)
malicious threats to logical assets (Figure 2-2). In addition, they often are
responsible for controls of last resort. These controls comprise backup and
recovery procedures and insurance. They are invoked when all else fails.

We begin our discussion of security administration by examining the major
functions that security administrators perform during the conduct of a
security program. Next we consider some major threats to security that
security administrators must consider and some controls they might
implement to reduce expected losses from these threats. We then examine
controls of last resort. Finally, we consider where information systems
security administrators should be placed within the organizational hierarchy
if they are to be able to perform their role effectively and efficiently.

2.2 Conducting a security program

A security program is a series of ongoing, regular, periodic reviews
conducted to ensure that assets associated with the information systems
function are safeguarded adequately. The first security review conducted is
often a major exercise. Security administrators have to consider an
extensive list of possible threats to the assets associated with the
information systems function, prepare an inventory of assets, evaluate the
adequacy of controls over assets, and perhaps modify existing controls or
implement new controls. One outcome of the initial security review might be

SYSTEMS AUDITING

NOTES

82

a security policy to guide security practices within an organization and to
provide a basis for subsequent evaluation of these practices., Subsequent
security reviews might focus only on changes that have occurred for
example, acquisition of a new mainframe computer, distribution of
microcomputers to more sites, construction of new facilities, establishment of
a new local area or wide area network, or the emergence of a new security
threat. A security policy, if one exists, might need to be updated in light of
these subsequent reviews.

Several formalized approaches have been proposed to undertake security
reviews. For example, the United Kingdom Government's Central Computer
and Telecommunications Agency has developed an approach called
CRAMM (CCTA's Risk Analysis and Management Methodology), which is
used as a government wide, standard approach to risk analysis and security
management. Software also has been designed and implemented to support
each stage of the approach. Baskerville provides an overview of the different
security-evaluation approaches and their associated decision support
software.

Prepare a project plan

Identify assets

Value assets

Identify threads

Asses likelihood of threads

Analyze exposures

Adjust controls

Prepare security report

FIGURE 2-3 Major steps in the conduct of a security program.

Auditors must evaluate whether security administrators are conducting on-
going, high-quality security reviews. If the security of information systems as-
sets is at risk, asset safeguarding and data integrity objectives can be under-
mined. For example, fire could destroy a mainframe facility, or employees
might damage storage media to cover up evidence associated with frauds
they have perpetrated. Similarly, system effectiveness and efficiency
objectives can be undermined. For example, the destruction of an
application system's documentation might mean programmers have difficulty
modifying the system to accommodate changing user needs. Likewise, the
destruction of hardware could mean required system response times cannot
be achieved until the hardware is replaced.

In this light, the following sections describe eight major steps to be under-
taken when conducting a security review (Figure 2-3): (1) preparation of a
project plan, (2) identification of assets, (3) valuation of assets, (4) threats

SYSTEMS AUDITING

NOTES

83

identification, (5) threats likelihood assessment, (6) exposures analysis, (7)
controls adjustment, and (8) report preparation. As we study these sections,
our objective is to gain sufficient understanding of the steps in a security re-
view for us to be able to evaluate how well they are performed by security
administrators.

2.2.1 Preparation of a Project Plan

It might seem an obvious requirement that security reviews should
commence with the preparation of a project plan. Unfortunately, security
reviews are a mine field for the unwary. Security administrators, and any
project team established to assist them, can get bogged down in detail
unless strict constraints are imposed on the conduct of the review. If the
review's objectives are not kept clearly in mind, too much work will be
undertaken that has only marginal benefits. In due course this detail might
be appropriate, but at the outset security administrators might wish to adopt
a phased approach to the conduct of the overall security review program.
Initial reviews focus on critical areas; subsequent reviews then address
lesser concerns.

The project plan for a security review should encompass the following items:

SYSTEMS AUDITING

NOTES

84

The security-review plan should be documented formally to provide working
guidelines for the project team. Standard tools such as Gantt charts and
PERT charts can be used to assist the documentation and communication
processes. As the project progresses, security administrators must monitor
progress of the review against the plan.

2.2.2 Identification of Assets

The second major step in a security review is to identify the assets
associated with the information systems function. This step can be difficult
for two reasons. First, some organizations possess a substantial number of
information systems assets. For example, a large organization might have
several mainframe computers, hundreds of microcomputers, a wide-area
communications network, many local area communication networks, and
thousands of files and programs. Second, the information systems assets
might be widely distributed throughout an organization. For example, they
could be scattered across different divisions and departments, and many
might be located with end users.

One way to identify assets is to seek out instances within various general
categories. For example, security administrators might use\the categories
shown in Figure 2-1:

SYSTEMS AUDITING

NOTES

85

Within each category, the review team must prepare a comprehensive list of
assets. The difficult part knows the level of aggregation at which to work. For
example, consider the problem of preparing an inventory of application
programs in a large organization that has several thousand programs. On
the one hand, for backup purposes a complete inventory of these programs
will be needed. On the other hand, from the viewpoint of deciding what
controls should be exercised over the disks on which they are stored, it
might be possible to consider groups of programs rather than individual
programs.

Similar problems exist with data files. Do data assets need to be identified at
the data item, group, record, or file level? Clearly, the finer the level of asset
identification required, the more costly will be the review process.

2.2.3 Valuation of Assets

The third step in a security review, valuing the assets, is also a difficult step.
Parker points out that the valuation might differ depending on who is asked
to give the valuation, the way in which the asset could be lost, the period of
time for which it is lost, and the age of the asset (Figure 2-4). In terms of who
values the asset, an asset might be more useful to some people than to oth-
ers. For example, end users who employ a generalized retrieval package
more frequently than programmers are more likely to assign a higher value
to the package. In terms of how the asset is lost, accidental loss might be
less serious than loss that arises through an irregularity. For example,
although the accidental destruction of a customer master file might be
serious, management might be more concerned if it is stolen by a
competitor. In terms of the time period of loss, for most assets the loss
becomes more serious as use of the asset is denied for a longer period. For
example, if it is difficult to replace a piece of hardware quickly, management
might value it more highly than other hardware that has a higher capital cost

SYSTEMS AUDITING

NOTES

86

but that, nonetheless, can be replaced immediately. In terms of the age of
the asset, most assets deteriorate with age. For example, management
might be less concerned about a competitor gaining access to an old
customer master file.

Valuation of physical assets also cannot be considered in isolation from val-
uation of logical assets. The reason is that the value of physical assets often
must be considered in light of the logical assets they store. For example,
consider the value of a microcomputer's hard disk. The replacement value of
the physical disk might be only a few hundred dollars. Its contents, however,
might be worth thousands, even millions of dollars. The project team must
take care, therefore, to prepare an inventory of all material physical and
logical assets that fall within the scope of the review. Otherwise, the team
might fail to identify significant exposures.

FIGURE 2-4 Factors that affect the valuation of information systems assets.

Several techniques can be used to assign a value to an asset. In some
cases, users might be able to provide a direct dollar valuation for the asset.
For example, if an item of hardware can be replaced quickly, they simply
might value it at its acquisition cost, assuming the item does not store logical
assets whose value must also be taken into account. Often, however,
precise dollar valuations are hard to assign to assets. For example, it can be
difficult to determine the loss of customer goodwill that occurs when system
failure leads to degradation in service or to estimate the lost revenues that
result when a competitor steals proprietary software. In these types of
situations, the following sorts of indirect valuation techniques might be used:

1. A formal procedure, such as the Delphi method, can be used to try to get
stakeholder consensus on an asset valuation. The Delphi method
employs successive rounds of confidential questionnaires to elicit the
respondents' opinions on some matter. Feedback is provided after the
results of each round are obtained in case respondents then wish to
revise their views.

SYSTEMS AUDITING

NOTES

87

2. Users can be asked to value an asset on some type of scale where, say,
a score of 1 represents a low value and a score of 10 represents a high
value. This approach might help users rank assets in order of importance.

3. Courtney suggests that users be asked to value assets on a logarithmic
scale. They assign a rating, v, to an asset based on their estimate of the
dollar value as a function of the base 10. Thus, an asset valued around
$100 would be assigned a v of 2; an asset valued around $1 million would
be assigned a v of 6. Using this technique, respondents are not forced
into making fine discriminations between assets based on value.

When undertaking the asset-valuation task, security administrators must be
careful that the evaluation does not flounder because it becomes too
onerous. The primary objectives of asset valuation are to develop users'
sensitivity to the possible consequences of a threat that eventuates and
ultimately to enable an estimate to be made of the amount that can be
justified as expenditure on safeguards. The task of asset valuation should be
pursued only to the extent that these objectives can be accomplished
satisfactorily.

2.2.4Threats Identification

A threat is some action or event that can lead to a loss. During the threats-
identification phase, security administrators attempt to flesh out all material
threats that can eventuate and result in information systems assets being
exposed, removed either temporarily or permanently, lost, damaged,
destroyed, or used for unauthorized purposes.

One useful way to identify threats is first to consider possible sources of
threats and then to consider the types of threats these sources might initiate
(Figure 2-5). When considering the types of threats, it is also useful to
categorize threats as malicious (intent to do harm) or nor-malicious
(accidental). For example, the following threats arise from sources that are
external to the organization:

FIGURE 2-5 Types of threats facing information systems assets.

SYSTEMS AUDITING

NOTES

88

Similarly, the following threats arise from sources that are internal to the
organization:

Some types of threats are clear because their consequences are immediate
and obvious. For example, the nature of and impact of fire on information
systems assets usually will be readily apparent. Other types of threats are
more subtle. For example, astute actions by a competitor can undermine the
financial viability of an organization. As a result, controls might not be
maintained because management initiates cost-cutting measures.

2.2.5 Threats Likelihood Assessment

Having identified the threats that face the information systems function,
security administrators must next attempt to estimate their likelihood of
occurrence of each threat over a specified time period. In some cases,
statistical data might be available. For example, an insurance company

SYSTEMS AUDITING

NOTES

89

might be able to provide information on the probability of a fire occurring
over varying time periods. Similarly, analyses have been undertaken on
cases of computer abuse that give insights into their likelihood of
occurrence.

Often, however, prior data is not available. Security administrators must then
elicit the likelihood of occurrence of a threat from the stake holders
associated with an information system. For example, users can probably
best estimate the likelihood of erroneous data leading to decisions that incur
significant losses, and management can probably best estimate the
likelihood of controls being compromised because financial distress has
arisen. As with asset valuation, security administrators can use formal
elicitation techniques like the Delphi method to obtain estimates of the
likelihood of occurrence of a threat.

To some extent, the nature and value of the assets associated with the in-
formation systems function affect the likelihood of occurrence of a threat. If
the information systems function has many high-value, proprietary software
packages, for example, it is a prime target for piracy attempts. Thus, the
identification and valuation of assets also assists with the identification of
threats and their likelihood of occurrence.

Periodically, we must reassess the likelihood of a threat occurring. Changes
can occur in the structure, direction, and environment of an organization that
produce changes in the threat profile that face an organization.

2.2.6 Exposures Analysis

The exposures analysis phase comprises four tasks: (1) identification of the
controls in place; (2) assessment of the reliability of the controls in place; (3)
evaluation of the likelihood that a threat incident will be successful, given the
set of controls in place and their reliability; and (4) assessment of the loss
that will result if a threat incident circumvents the controls in place (Figure 2-
6). When these tasks are accomplished, the exposures associated with the
information systems function can be determined. An exposure is simply the
expected loss that will occur over some time period, given the reliability of
the controls in place. Exposures arise because either (1) there is no control
to cover the threat incident or (2) there is some probability that the control in
place will not operate reliably for the particular threat incident that occurs
(Figure 2-7).

Consider, then, the first task: identifying the controls in place. Perhaps the
easiest way to perform this task is to use one of the many questionnaires de-
signed to assess security. These questionnaires contain extensive control
checklists that security administrators can use to determine systematically
whether a control is missing. Like auditors, security administrators can use
interviews, observations, and documentation to obtain information about the
controls in place.

SYSTEMS AUDITING

NOTES

90

Identify the control in place

Assess the reliability of the control in place

Evaluate the likelihood a thread will be successful

Assess the resulting loss if the threat is successful

FIGURE 2-6. Major tasks in the exposures analysis phase.

To assess the reliability of these controls, security administrators must test
them. In some cases, tests are straightforward. For example, usually it is
easy to determine whether locked doors prevent unauthorized access to a
computer room. Some types of controls, however, are difficult to test. For
example, to check whether fire extinguishers work, usually one would not
start a fire and then discharge the extinguisher to evaluate its effectiveness.
Instead, auditors must rely on assurances given by the manufacturer and
examine the extinguisher's servicing tag to see whether it has been
maintained regularly. Similarly, testing whether the fire extinguisher system
for a computer room works can cost many thousands of dollars. In some
high-exposure situations auditors might periodically simulate a fire in the
computer room to determine whether the system extinguishes the fire.
Usually, however, auditors rely on maintenance records and the
manufacturer's assurances that the system will operate effectively.

FIGURE 2-7 Threats, control reliability, control coverage, and exposures.

SYSTEMS AUDITING

NOTES

91

To evaluate the likelihood of a threat incident circumventing a control, the
security administrator considers each of the assets or categories of assets
identified during the second phase of the review, considers each of the
threats identified during the fourth phase of the review, determines whether
a control exists to cover the threat incident, and, if so, evaluates the
probability of the control operating effectively to eliminate or mitigate the
effects of the threat incident. To aid in this task, Parker recommends that
security administrators write scenarios to describe how threat incidents could
compromise controls. These scenarios then can be considered by
stakeholders to assess their realism (Table 2-1).

To determine the losses that will be incurred from a threat incident that cir-
cumvents controls, the effect of the threat incident should first be
determined. Will the asset be lost, damaged, exposed, removed, destroyed,
or used for unauthorized purposes? Next, a value must be assigned to the
effect. The value of the asset determined in the third phase of the review
provides the basis for this assessment. Security administrators must
determine whether the full value of the asset will be lost if the threat is
successful or whether the loss will be partial.

Table 2-1 Scenario analysis of exposures

SYSTEMS AUDITING

NOTES

92

For each asset and each threat, the expected loss can then be calculated
using the following formula:

EL = pt X pf X L where:

EL = expected loss associated with asset (exposure)

pt = probability of threat incident occurring

pf = probability of control failure

L = resulting loss if threat is successful

For example, given the controls that exist, if the likelihood, pt, that a fire will
occur in a corporation's computer room in any one year is .001, the
probability, pf, of controls failing to detect and extinguish the fire is .1, and
the loss, L, that will occur as a result is $4 million, the expected loss each
year, EL, with respect to the fire threat and the computer room assets is
$400; that is, EL = .001 X .1 X $4,000,000. The exposure, therefore, is $400.

If security administrators have not chosen the right level of aggregation in
their identification of assets and threats, the exposures-analysis phase may
falter badly. Clearly, substantial work can be involved in carrying out an
exposures analysis. Too much detail will undermine the analysis. Security
administrators need to devote most effort to material assets and material
threats. In this regard, the choices they make during prior phases of a
security review about the assets and threats that are important have
significant implications for the conduct of the exposures-analysis phase.

2.2.7 Controls Adjustment

Subsequent to the exposures analysis, security administrators must evaluate
whether the level of each exposure is acceptable. Formally, this evaluation
means they must determine whether over some time period any control can
be designed, implemented, and operated such that the cost of the control is
less than the reduction in expected losses that occurs by virtue of having the
control in place and working to cover one or more threats. In other words,
the benefits of a control that arise because it reduces expected losses from
threats must exceed the costs of designing, implementing, and operating the
control.

How security administrators make this decision is in large part a matter of
judgment, experience, and training. To some extent, guidance can be
obtained from the control questionnaires used to identify missing controls
during the exposures-analysis phase. These controls are candidates for
inclusion in a revised controls system. Security administrators also might
consult their colleagues in other organizations to determine control profiles
that are used commonly. These profiles represent the combined experience
and judgments of others who have faced similar problems. As such, they
could provide important insights into controls that will be cost-effective.

SYSTEMS AUDITING

NOTES

93

2.2.8 Report Preparation

The final phase in a security review is the preparation of a management
report. This report documents the findings of the review and, in particular,
makes recommendations as to new safeguards that should be implemented
and existing safeguards that should be terminated or modified.

Like all reports to management, often the most difficult part is getting the
recommendations accepted. The level of acceptance depends on the extent
to which management agrees with the criticality of the exposures identified
and whether they perceive the recommended safeguards are economically,
technically, and operationally feasible. Again, scenarios are a useful
technique for increasing management's sensitivity to the exposures
identified. They provide a tangible basis for management to evaluate how
concerned they should be about an exposure. With respect to the feasibility
of the safeguards recommended, the onus is on security administrators to
demonstrate that the safeguards are within the information systems
function's capabilities to design, implement, and operate.

The security report also must include a plan for implementing the safeguards
recommended. Both the seriousness of the exposure to be rectified and the
difficulty of implementing the remedial safeguards must be considered. The
most serious exposures should be addressed first, but then the ease with
which a safeguard can be installed or modified should determine the order of
implementation. To the extent some safeguards are interdependent and
management decides not to implement them all, the report must consider
alternative control configurations.

2.3 Major security threats and remedial measures

The previous section describes a general methodology for evaluating
security over information systems assets and selecting and implementing
controls. This section briefly discusses some of the major security threats
that face the information systems function (Figure 2-8) and safeguards that
can be implemented. Auditors must understand the nature and potential
consequences of these threats for audit objectives and the controls that are
likely to be effective. If an auditor deems controls over these threats to be
inadequate or unreliable, the extent of substantive testing will have to be
expanded, especially in relation to asset safeguarding and data integrity
objectives.

SYSTEMS AUDITING

NOTES

94

FIGURE 2-8. Major threats to the information systems function.

2.3.1 Fire Damage

Some countries have various public service and governmental organizations
that provide advice on fire-protection measures. Nevertheless, implementing
a specific fire-protection system usually requires specialist advice. Some
major features of a well-designed fire-protection system follow:

SYSTEMS AUDITING

NOTES

95

1. Both automatic and manual fire alarms are placed at strategic locations
throughout those parts of the organization where material information
systems assets are sited.

2. Automatic fire-extinguisher systems exist at strategic locations that
dispense the appropriate suppressant: water, carbon dioxide, or halon.
Water is the least harmful suppressant for humans; however, it can
damage equipment. Carbon dioxide is relatively cheap, but it can
debilitate a person in seconds. Halon gas is a widely used suppressant
because it is safe and effective. Personnel will not be debilitated by halon,
for example, providing only short-term exposure occurs. Moreover, it is
noncorrosive, nonconductive, highly compressible, and chemically stable.
In some countries, however, production of halon gas is now prohibited
because of its detrimental effect on the earth's ozone layer. Alternative
suppressants are being sought.

3. Appropriate types of manual fire extinguishers exist at strategic locations
throughout those parts of the organization where material information
systems assets are sited.

4. A control panel shows where in the organization an automatic or a manual
alarm has been triggered.

5. Beside the control panel, master switches exist for power (including air
conditioning) and automatic extinguisher systems.

6. Buildings where material information systems assets are sited have been
constructed from fire-resistant materials, and they are structurally stable
when fire damage occurs.

7. Fire extinguishers and fire exits are marked clearly and can be accessed
easily by staff.

8. When a fire alarm is activated, a signal is sent automatically to a control
station that is always staffed.

9. Good housekeeping procedures ensure that combustible pollutants and
materials are minimized around high-value information systems assets for
example, computer rooms are cleaned regularly to remove paper lint, and
printer paper supplies are kept in a separate room.

10. To reduce the risk of extensive damage from electrical fires, electrical
wiring should be placed in fire-resistant panels and conduit.

Security administrators should arrange regular inspections and tests of all
fire protection systems and ensure that they are properly serviced. Proper
use of these systems also requires staff training and periodic drills. The
procedures to be followed during an emergency also should be documented.

2.3.2 Water Damage

Water damage to information systems assets can be the outcome of a fire;
for example, an extinguisher system sprays water that enters hardware, or
water pipes could burst. Water damage can result, however, from other

SYSTEMS AUDITING

NOTES

96

sources: cyclones, tornadoes, ice, and torrential rains. In 1974, for example,
the city of Brisbane experienced freak flooding after torrential rains. As a
result, the Brisbane River burst its banks. One mainframe computer room in
close proximity to the river was submerged completely.

Some major ways of protecting information systems assets against water
damage follow:

1. Where possible, have waterproof ceilings, walls, and floors.

2. Ensure that an adequate drainage system exists.

3. Install alarms at strategic points where material information systems
assets are located.

4. In flood areas, have all material information systems assets located above
the high-water level.

5. Have a master switch for all water mains.

6. Use a dry-pipe automatic sprinkler system that is charged by an alarm
and activated by the fire.

7. Cover hardware with a protective fabric when it is not in use.

8. To prevent flooding, locate information systems assets above the ground
floor of the buildings in which they are housed

9. Have a dry moat around buildings where material information systems
assets are housed.

Again, regular inspections, tests, and drills are essential if the disaster plan
is to be operational when a situation of potential water damage arises.

2.3.3 Energy Variations

Energy variations take the form of increases in power (surges or spikes), de-
creases in power (sags or brownouts), or loss of power (blackouts). They
can disrupt not only hardware operations but also the systems needed to
maintain an acceptable operational environment one that is dust free and
relatively constant with respect to temperature and humidity. Thus, careful
assessment of the likelihood of unacceptable energy variations occurring is
essential to the ongoing operations of the information systems function.
Moreover, energy sources must be monitored constantly to ensure their
continuing adequacy and reliability.

To protect hardware against temporary increases in power, voltage regula-
tors can be used. To protect hardware against sustained increases in power,
circuit breakers can be used. A wide range of voltage) regulators and circuit
breakers can now be purchased for mainframe computers, minicomputers,
and microcomputers.

To protect hardware against power loss, if possible, two independent supply
sources should exist so that one can be used if the other fails. In addition,
uninterruptible power supply systems (UPSs) can be installed. Three types
are available. Static UPSs rely primarily on batteries and are intended as

SYSTEMS AUDITING

NOTES

97

short-term backup. Rotary UPSs provide a generator as backup. Usually
they are driven by diesel engines and are intended for longer-term power
loss. Hybrid UPSs employ both batteries to provide power initially and a
generator that takes over when the batteries run low. Like rotary UPSs, they
are intended for longer-term power loss. Unless sustained operation of a
microcomputer is critical to an organization's operations, usually UPSs are
purchased to support only mainframe computers and minicomputers.

The design of security for the information systems function must provide for
the possibility of total loss of power. For example, certain controls such as
doors can fail-safe on a power loss. It must be possible to deactivate these
controls manually should staff need to exit the building quickly. Other
safeguards such as alarms and extinguisher systems also might fail to
operate in the event of power loss. Alternative controls must then be used.
For example, buildings might be evacuated and locked to protect personnel
and to reduce the likelihood of unauthorized access to and use of hardware,
software, and data.

2.3.4 Structural Damage

Structural damage to information systems assets can occur in several ways:
earthquake, wind, mud, snow, avalanche, and mishap. Structural damage
can also be an outcome of some other disaster. For example, fire might
weaken the floor of a room in which mainframe computers and their
associated peripherals are housed. Eventually the floor might collapse, and
hardware might be damaged as a result.

Some information systems assets are more prone to structural damage than
others. Those located in an earthquake region, for example, face a higher
risk. Similarly, smaller assets, like microcomputers, are prone to mishap. A
microcomputer might be dropped, for example, as it is carried from one desk
to another. The microcomputer's hard disk drive, as well as other
components, could be damaged.

Preventing disaster from occurring through structural damage is often an
engineering problem. In the design of a building, for example, the engineers
will consider the structural stresses the building might endure. They should
be notified, however, if significant computer hardware is to be housed in the
building. They can then take this fact into consideration when they prepare
their building plans and strengthen, say, the floor areas where equipment will
be located.

If there is some choice as to where information systems assets are to be lo-
cated, the site chosen should be the least prone to structural damage for ex-
ample, away from a floodplain or an earthquake region. Similarly,
information systems assets should be located, if possible, on an upper floor
of a building. They are less susceptible to damage by floods.

Information systems assets also should be secured so they will not dislodge
or tip easily. For example, microcomputers should be placed on stable desks
that are not located near major thoroughfares. Similarly, mainframe

SYSTEMS AUDITING

NOTES

98

hardware and storage cabinets should be secured so they will not overturn if
structural stress is placed on a building during, say, an earthquake.

2.3.5 Pollution

The ongoing operations of much of the equipment used by the information
systems function depend on having an environment that is relatively
unpolluted. Pollution can damage a disk drive, for example, and as a result
critical data could be lost. Valuable time also could be lost while the
damaged equipment is repaired. Pollution can also cause fires. Toigo
reports that one major information systems insurer attributes a significant
percentage of fires to pollution-related spontaneous internal combustion
associated with hardware components.

The major pollutant is dust. Dust can become a problem if the air passing
through the air conditioning system is filtered inadequately or if it is allowed
to accumulate on, say, floors and ceilings. More subtle forms of pollution
exist, however. For example, coffee is a pollutant if it is spilled in a
microcomputer keyboard or printer, thereby rendering the keyboard or
printer inoperable.

Several steps can be taken to reduce losses from pollution. Ceilings, walls,
floors, storage cabinets, and equipment should be cleaned regularly.
Vacuuming is especially important, particularly in areas where dust collects,
such as under raised floors. Dust collecting rugs can be placed at entrances.
Floors can be treated with special antistatic compounds. Dust generating
activities for example, paper shredding, decollation, or bursting should be
carried out well away from dust-sensitive equipment. Foodstuffs can be
prohibited in certain areas such as mainframe computer rooms or
microcomputer work areas, especially where pests such as rodents and
insects can cause problems. Regular emptying of wastepaper baskets also
prevents dust and combustible materials from collecting.

2.3.6 Unauthorized Intrusion

Unauthorized intrusion takes two forms. The intruder physically could enter
an organization to steal information systems assets or carry out sabotage or
extortion. For example, intruders might be seeking to remove magnetic
tapes, disk and tape cartridges, or diskettes or to plant a bomb. Alternatively,
the intruder might eavesdrop by wiretapping, installing an electronic bug, or
using a receiver that picks up electromagnetic signals. One other form of
eavesdropping is visual eavesdropping. The intruder might photograph
sensitive information or use a telescope to view the information.

Physical intrusion can be inhibited or prevented by erecting various barriers.
Buildings that house information systems assets can be protected by a wall,
a fence, or a dry moat. Doors and windows should be secured. Some type of
card locking system might then be used, for example, to restrict entry to
authorized personnel. Sometimes air conditioning ducts allow unauthorized
entry to buildings. Intruders simply have to gain access to the roof of the
building (perhaps via the fire escape) and crawl through the ducts. Thus,

SYSTEMS AUDITING

NOTES

99

security administrators must ensure that air conditioning ducts are secure.
Buildings that house high-value information systems assets, such as an
organization's mainframe computer installation, might be disguised to reduce
the likelihood of unauthorized intrusion occurring.

Alarms and guards can be used to detect unauthorized intruders. Various
types of security devices and systems can be installed that signal the
presence of an intruder. Nevertheless, these defenses can be compromised:
a guard could be bribed or a security device improperly deactivated. The last
lines of protection are then safes, vaults, filing cabinets, or locks. For
example, magnetic tapes, disk and tape cartridges, and diskettes can be
locked in filing cabinets, microcomputer components can be secured using
lockdown devices, and check stationery (negotiable instruments) can be
stored in a safe. Nonetheless, even these controls might not withstand the
threats posed by a saboteur or terrorist intent on destruction.

Intruders also could pose as visitors or employees to attempt unauthorized
entry to buildings that house information systems assets. Receptionists or
guards can challenge unidentified visitors and provide advance warning of
unauthorized intrusion. A badge system can be used to identify the status of
personnel within the building: permanent staff or visitors. All visitors should
be escorted by a permanent staff member. Unescorted visitors or persons
without a badge should be questioned about their presence in the building. A
security check might be performed before visitors are issued a badge.

Eavesdropping breaches the privacy of data. Intruders seek access to sensi-
tive information such as passwords, sales information, geological survey
information, and engineering design information.

Controls must be implemented to prevent eavesdropping via the electro-
magnetic emanations that computer equipment produces. For example,
eavesdropping devices can be used to pick up emissions from
microcomputers or printers. Some manufacturers shield their computer
equipment against electromagnetic emanations. Alternatively, equipment
must be housed in buildings that are designed to inhibit emissions. For
example, specially screened rooms can be built to prevent emanations from
equipment that processes highly sensitive data.

Eavesdropping can also be undertaken via bugs that are installed by intrud-
ers. Various devices are available to detect the presence of bugs. Security
administrators periodically might employ a security firm that possesses these
devices to check whether bugs are present.

In a communications network the points most likely to be wiretapped are the
junction boxes and the private branch exchange. It is difficult to wiretap a
communications line after it leaves the building in which the computer is
housed; the line might be underground, signals might be sent via microwave,
several thousand channels might be multiplexed together. Thus, security ad-
ministrators should ensure that the junction boxes and private branch
exchange are secure.

SYSTEMS AUDITING

NOTES

100

Visual eavesdropping can be prevented in several ways. Cameras should
not be allowed in buildings where security is a concern. Some buildings have
no windows; however, staff might object to the absence of natural light. If
windows do exist, they can be shielded by blinds or curtains. Visual display
units can also be placed strategically so intruders outside a building cannot
use telescopes or cameras with a telescopic lens to view or photograph
output.

2.3.7 Viruses and Worms

A virus is a program that requests the operating system of a computer to ap-
pend it to other programs (Figure 2-9). In this way the virus propagates to
other programs. Viruses can be easily transmitted, for example, via files that
contain macros that are sent as attachments to electronic-mail messages.
For example, macros in word processing files can be infected with viruses.
When recipients open these infected files with their own copies of the word
processing software, their system will be infected unless their word
processing software first checks for the presence of these viruses.

A virus can be relatively benign; for example, it can cause minor disruptions
by printing humorous messages or drawing diagrams on visual-display
screens. Alternatively, it might be malignant; for-example, it could delete
files, corrupt other programs so they are unusable, or severely disrupt the
operations of application systems.

SYSTEMS AUDITING

NOTES

101

Figure 2-9 Program corruption through viruses

To reduce expected losses from viruses, security administrators can imple-
ment the following types of controls:

SYSTEMS AUDITING

NOTES

102

Like viruses, worms propagate copies of themselves with benign or ma-
lignant intent. Whereas viruses attach themselves to other legitimate pro-
grams, however, worms usually exist as separate, independent programs.
Worms use operating system services as their means of replication. Often
they exploit some type of bug or security weakness in the operating system
to infiltrate other systems. For example, a worm introduced into the Internet
computer network in 1988 exploited a bug and a security weakness in the
UNIX operating system and e-mail facilities to propagate rapidly to machines
connected to the network. The worm caused major disruption as machines
in the network labored to execute the worm's many replicas. Machines had
to be taken off line and purged of all copies of the worm.

Threats from worms arise when an organization connects its computers to
an open network one that users can join relatively easily and one in which
they are not subjected to rigorous security requirements. Use of open
networks is likely to increase because many advantages accrue from easy
access to other computers for example, facilitating use of e-mail, electronic
commerce, and the World Wide Web.

Unfortunately, establishing effective controls over worms is often more dif-
ficult than establishing effective controls over viruses. Exposures that arise
from viruses can be controlled to a large extent by actions the organization
takes itself. Exposures that arise from worms, however, must be addressed

SYSTEMS AUDITING

NOTES

103

by all users of a network. Otherwise, control weaknesses in one user's
system can undermine security in another user's system.

If security administrators work for organizations that participate in open •
networks, they should undertake the following types of control steps:

1. Actively lobby to establish network security administration groups that will
take responsibility for security in the networks in which their organization
participates.

2. Participate in efforts to establish control protocols for network users to
follow to reduce exposures from threats like worms.

3. Be aware of weaknesses in network resources that can undermine
security. Implement any remedial measures that can cost-effectively
reduce exposures from these weaknesses. For example, change any
system default passwords and remove "visitor" accounts.

4. Ensure that strong access controls exist over those resources that are the
security administrator's responsibility. For example, inform users of the
importance of choosing passwords that are difficult to guess.

5. Educate users so they are aware of the importance of controls, the need
for backup, and the actions they should take when they suspect a security
violation has occurred.

2.3.8 Misuse of Software, Data, and Services

Organizations can incur losses because software, data, and services they
own are misused. For example, the following types of abuses can arise:

1. Generalized software and proprietary databases that the organization
develops are stolen by employees or competitors. The organization loses
the revenue it would otherwise obtain from sales of the software and
databases.

2. The organization fails to protect the personal privacy of individuals about
whom it stores data in its databases. It may incur losses because of
legislative breaches or unfavorable publicity.

3. Employees use information systems services to support their own
personal activities. For example, they may use computer time for private
consulting purposes or have the organization acquire resources (e.g.,
microcomputer hardware and software) for their own private use.

Security administrators can implement various controls to reduce expected
losses from these types of abuses. In some countries (e.g., Australia, the
United States, the United Kingdom), software is protected via copyright laws.
Also, software sometimes can be protected via patents, licensing
agreements, or trade-secret laws. Moreover, when the name of a software
package is deemed important to its marketing, protection might be available
through a trademark. Security administrators must evaluate each piece of
software to determine whether it needs .to be protected, the form of
protection needed, and the best means of providing protection.

SYSTEMS AUDITING

NOTES

104

Control can also be enhanced if security administrators take responsibility
for or are informed about acquisition of hardware/software and enforcement
of licensing agreements. Centralized control over hardware, software, data,
and services reduces organizational flexibility, but it might be necessary to
reduce expected losses from abuse to an acceptable level.

TABLE 2-2 Example Code of Conduct for Information Systems Personnel

1. Be honest, fair, and trustworthy.

2. Honor property rights with respect to information systems assets and
take steps to preserve these property rights.

3. Respect a person's, groups, or organization's right to privacy and take
steps to preserve privacy.

4. Respect confidentiality requirements and take steps to preserve
confidentiality.

5. Respect the work of others and give proper credit when using the work
of others.

6. Maintain professional competence.

7. Exercise due care when developing, implementing, and operating
information systems.

8. Carefully evaluate the potential impact of systems.

9. Act ethically where deleterious impacts might arise from information
systems work.

10. Seek and provide appropriate peer review of information systems work.

11. Respect access privileges assigned to information systems assets.

12. Keep management fully informed of material issues relating to
information systems assets or the conduct of information systems work.

2.3.9 Hacking

A computer hacker is a person who attempts to gain unauthorized entry to a
computer system by circumventing the system's access controls. Hackers
can have benign or malignant intent. They simply might explore the
capabilities of the system they hack or read files without changing them
(computer trespass). Alternatively, they could wreak havoc by deleting
critical files, disrupting system operations, or stealing sensitive data and
programs.

In some countries, laws have been changed specifically to cover the activi-
ties of hackers (e.g., Australia, the United States). Because laws might not
provide adequate remedial damages, however, it is better to prevent hacking
in the first place. In this light, the primary preventive safeguards that security
administrators can employ are access controls, especially logical access
controls such as hard-to-determine passwords.

SYSTEMS AUDITING

NOTES

105

2.4 Controls of last resort

In spite of safeguards that might be implemented, the information systems
function still could suffer a disaster. A control might fail, or a threat might
occur that management has not considered or that management has
decided to accept as an exposure that cannot be covered via cost-effective
controls. When disaster strikes, it still must be possible to recover operations
and mitigate losses. In this situation, two controls of last resort must take
effect: (1) a disaster recovery plan and (2) insurance.

2.4.1 Disaster Recovery Plan

The purpose of a disaster recovery plan or contingency plan is to enable the
information systems function to restore operations in the event of some type
of disaster. The impact of a disaster might be localized; for example, a
personal-computer user might accidentally delete critical data stored on a
hard disk. The impact, however, might be widespread; for example, an
organization's mainframe computer installation might be destroyed by fire.

Periodically, surveys have been undertaken of organizations to assess the
adequacy of their disaster recovery plans. A common, recurring finding is
that the quality of disaster recovery plans, if an organization even has one, is
low. This situation exists even though other surveys report that on average
the length of time organizations can survive in the event their information-
processing function is lost is decreasing. Perhaps these findings reflect that
disaster recovery plans are costly and difficult to prepare, maintain, and test.
In organizations that have extensive decentralization and distribution of
computing resources, for example, disaster recovery planning will be an
onerous activity. For a start, security administrators are likely to have
difficulty obtaining a commitment from large numbers of microcomputer
users to maintaining effective backup.

FIGURE 2-10 Disaster recovery plan and its components

Auditors are concerned to see that the organizations audited have appro-
priate, high-quality disaster recovery plans in place. Because the
preparation, maintenance, and ongoing testing of disaster recovery plans

SYSTEMS AUDITING

NOTES

106

are often costly, the plan should be appropriate to the needs of the
organization. Clearly, organizations that depend more on computers to
support their operations will have greater needs. External auditors will be
especially interested in a client's ability to continue as a going concern in the
event disaster strikes and recovery cannot be affected quickly. They must
also consider whether contingent claims might arise because contractual
agreements the client has with other parties specify an appropriate, high-
quality, regularly tested disaster recovery plan must be in place. Indeed, in
some cases, clients might be governed by legislation that requires that they
have appropriate, high-quality disaster recovery plans. Internal auditors will
have the same concerns. In addition, they might also evaluate whether
preparation, maintenance, and testing of the plan is carried out efficiently.

Comprehensive disaster recovery plan comprise four parts (1) an
emergency plan, (2) a backup plan, (3) a recovery plan, and (4) a test plan
(Figure 2-10). The plan lays down the policies, guidelines, and procedures
for all personnel who have responsibility for the information systems function
to follow. For example, it specifies the daily backup procedures that
microcomputer users should follow and the site where recovery of
mainframe operations is to be affected in the event of a fire. As a basis for
assisting the audit evaluation, the following subsections briefly examine the
nature, content, and preparation of each of the four parts of the plan.

2.4.2 Emergency Plan

The emergency plan specifies the actions to be undertaken immediately
when a disaster occurs. Management must identify those situations that
require the plan to be invoked for example, major fire, major structural
damage, and terrorist attack. The actions to be initiated can vary somewhat
depending on the nature of the disaster that occurs. For example, some
disasters require that all personnel leave the information systems facilities
immediately; others require a few select personnel remain behind for a short
period to sound alarms, shut down equipment, and so on.

If an organization undertakes a comprehensive security review program, the
threats identification and exposures analysis phases involve identifying
those situations that require the emergency plan to be invoked. Each
situation will be an exposure; that is, it will be a threat that eventuates and
brings about losses because controls have failed or none exist to cover the
threat.

2.4.3 Backup Plan

The backup plan specifies the type of backup to be kept, the frequency with
which backup is to be undertaken, the procedures for making backup, the
location of backup resources, the site where these resources can be
assembled and operations restarted, the personnel who are responsible for
gathering backup resources and restarting operations, the priorities to be
assigned to recovering the various systems, and a time frame in which
recovery of each system must be effected. For some resources, the
procedures specified in the backup plan might be straightforward. For

SYSTEMS AUDITING

NOTES

107

example, microcomputer users might be admonished to make backup
copies of critical files and store them off site. In other cases, the procedures
specified in the backup plan could be complex and somewhat uncertain. For
example, it might be difficult to specify exactly how an organization's
mainframe facility will be recovered in the event of a fire.

The backup plan needs continuous updating as change occurs. For exam-
ple, as personnel with key responsibilities in executing the plan leave the
organization, the plan must be modified accordingly. Indeed, it is prudent to
have more than one person knowledgeable in a backup task in case
someone is injured when a disaster occurs. Similarly, lists of hardware and
software must be updated to reflect acquisitions and disposals.

Perhaps the most difficult part in preparing a backup plan is to ensure that all
critical resources are backed up. The following resources must be
considered:

The selection of backup sites is an important decision. These sites must be
close enough to enable easy pickup and delivery of backup resources. They
must be sufficiently distant, however, so it is unlikely that both the organiza-
tion's information systems facilities and the backup-site facilities will be de-
stroyed as the result of a single disaster. In some cases, this objective might
be difficult to achieve. For example, if a major earthquake were to occur,
nearby backup sites might also be destroyed.

Provision of suitable backup for mainframe computers usually is a more
difficult task than provision of suitable backup for minicomputers and micro-
computers. Replacement minicomputers and microcomputers often can be
obtained quickly. Furthermore, usually they have minimum requirements in
terms of an appropriate operating environment. Mainframe computers, on
the other hand, typically require specialized operational facilities. Security
administrators should consider the following backup options:

SYSTEMS AUDITING

NOTES

108

1. Cold site: If an organization can tolerate some downtime, cold-site backup
might be appropriate. A cold site has all the facilities needed to install a
mainframe system raised floors, air conditioning, power, communications
lines, and so on. The mainframe is not present, however, and it must be
provided by the organization wanting to use the cold site. An organization
can establish its own cold-site facility or enter into an agreement with
another organization to provide a cold-site facility.

2. Hot site: If fast recovery is critical, an organization might need hot-site
backup. All hardware and operations facilities will be available at the hot
site. In some cases, software, data, and supplies might also be stored
there. Hot sites are expensive to maintain. They usually are shared with
other organizations that have hot-site needs.

3. Warm site: A warm site provides an intermediate level of backup. It has all
cold-site facilities plus hardware that might be difficult to obtain or install.
For example, a warm site might contain selected peripheral equipment
plus a small mainframe with sufficient power to handle critical applications
in the short run.

4. Reciprocal agreement: Two or more organizations might agree to provide
backup facilities to each other in the event of one suffering a disaster.
This backup option is relatively cheap, but each participant must maintain
sufficient capacity to operate another's critical systems. Reciprocal
agreements are often informal in nature.

If a third-party site is to be used for backup and recovery purposes, security
administrators must ensure that a contract is written to cover such issues as
(1) how soon the site will be made available subsequent to a disaster, (2) the
number of organizations that will be allowed to use the site concurrently in
the event of a disaster, (3) the priority to be given to concurrent users of the
site in the event of a common disaster, (4) the period during which the site
can be used, (5) the conditions under which the site can be used, (6) the
facilities and services the site provider agrees to make available, and (7)
what controls will be in place and working at the off-site facility. These issues
are often poorly specified in reciprocal agreements. Moreover, they can be
difficult to enforce under a reciprocal agreement because of the informal
nature of the agreement.

The need for backup highlights the value of using hardware and system
software that conform to widely accepted standards and developing portable
application systems. Specialized hardware and software might be more
effective and more efficient, but they undermine an organization's ability to
recover from a disaster quickly.

The recovery component of the backup plan needs careful consideration. In
the event of a disaster, personnel will be responsible for tasks they
undertake infrequently. Furthermore, they might be working under stress in
an unfamiliar environment. The backup plan must assist them by providing
concise, complete, clear instructions on recovery procedures they must
follow.

SYSTEMS AUDITING

NOTES

109

2.4.4 Recovery Plan

Whereas the backup plan is intended to restore operations quickly so the
information systems function can continue to service an organization, recov-
ery plans set out procedures to restore full information systems capabilities.
The specifics of how recovery is to be affected are often difficult to articulate.
They depend on the circumstances of the disaster. For example, they will
depend on whether the disaster is global or localized and, if localized, the
nature of the machine (e.g., microcomputer, minicomputer, and mainframe),
the applications, and the data to be recovered. In this light, recovery plans
should identify a recovery committee that will be responsible for working out
the specifics of the recovery to be undertaken. The plan should specify the
responsibilities of the committee and provide guidelines on priorities to be
followed. For example, certain members of the committee could be
responsible for hardware replacement. The plan might also indicate which
applications are to be recovered first.

2.4.5 Test Plan

The final component of a disaster recovery plan is a test plan. The purpose
of the test plan is to identify deficiencies in the emergency, backup, or
recovery plans or in the preparedness of an organization and its personnel in
the event of a disaster. It must enable a range of disasters to be simulated
and specify the criteria by which the emergency, backup, and recovery plans
can be deemed satisfactory.

Periodically, test plans must be invoked; that is, a disaster must be simu-
lated and information systems personnel required to follow backup and
recovery procedures. Unfortunately, top managers are often unwilling to
carry out a test because daily operations are disrupted: They also fear a real
disaster could arise as a result of the test procedures.

To facilitate testing, a phased approach can be adopted. First, the disaster
recovery plan can be tested by desk checking and inspection and walk-
throughs, much like the validation procedures adopted for programs. Next, a
disaster can be simulated at a convenient time for example, during a slow
period in the day. Anyone who will be affected by the test (e.g., personnel
and customers) also might be given prior notice of the test so they are
prepared. Finally, disasters could be simulated without warning at any time.
These are the acid tests of the organization's-ability to recover from a real
catastrophe.

2.4.6 Insurance

Insurance sometimes can be used to mitigate losses that arise when
disasters eventuate. Policies usually can be obtained to cover the following
resources:

SYSTEMS AUDITING

NOTES

110

Insurance coverage for certain types of losses, however, might be difficult, if
not impossible, to obtain. For example, security administrators might be un-
able to purchase insurance to mitigate losses from some types of computer
crime, such as, destruction of critical files by a virus. Information systems
insurance is still a reasonably new area, and the types of policies that are
available are continuing to evolve.

When an insurance policy has been written, security administrators must
ensure that their organizations fulfill any obligations under the policy. For
example, some policies require the insured have an up-to-date, compre-
hensive disaster recovery plan. In addition, usually the insurer must be noti-
fied of any substantive change in risk. Just what constitutes a substantive
change in risk might be unclear. Usually it includes changes to hardware, but
the position with respect to changes to software and data files may be
uncertain.

If organizations act as an outsourcing vendor or a service bureau or use an
outsourcing vendor or a service bureau to perform some of their information
systems functions, special care must be taken to establish responsibilities
for safeguards as a basis for determining the types of insurance that are
then needed. The following matters must be considered:

1. What liability does the outsourcing vendor or service bureau have for
malpractice, errors, and omissions?

2. What liability does the outsourcing vendor or service bureau have for
failure to deliver promised services?

SYSTEMS AUDITING

NOTES

111

3. Who owns each of the programs and data files maintained by the
outsourcing vendor or service bureau?

4. What are the respective responsibilities of the outsourcing vendor or
service bureau and customers with respect to backup and recovery?

Each of these matters needs to be addressed contractually. If possible,
residual exposures should then be covered by insurance.

2.5 Some organizational issues

Depending on the size of an organization and its reliance on its information
systems function, the security-administration role can occupy four possible
positions within the organizational hierarchy (Figure 2-11). In small
organizations that use turnkey systems that is, hardware and software
systems that have been purchased as a package rather than developed in

FIGURE 2-11. Organizational location of the IS security administration
function.

SYSTEMS AUDITING

NOTES

112

house there might be no full-time professional information systems staff. As
a consequence, no one obvious might be available to assume the security-
administration role. Nonetheless, even in a small organization, security
administration is still important. A small business that processes all its
accounting records on a microcomputer could be forced into liquidation, for
example, if a malicious employee or a virus were to destroy its critical master
files. Someone, therefore, must take responsibility for security. Possibly the
organization's president or accountant might assume this role.

If an organization has its own information systems staff but insufficient work
to justify an ongoing, separate security administration position, responsibility
for security matters might be vested in the operations manager. Because
operations managers are responsible for the day-to-day running of hardware
and software systems, security-administration functions seem a natural
extension of their responsibilities. A concern with this approach, however, is
that operations managers then have direct access to systems as well as
responsibility for security over these systems. A dishonest or malicious
operations manager could easily compromise security.

SYSTEMS AUDITING

NOTES

113

3. Quality assurance (QA) management

Structure

3.1 Introduction

3.2 Motivations toward the QA role

3.3 QA Functions

3.3.1 Developing Quality Goals

3.3.2 Developing, Promulgating, and Maintaining Standards for the
Information Systems Function

3.3.3 Monitoring Compliance with QA Standards

3.3.4 Identifying Areas for Improvement

3.3.5 Reporting to Management

3.3.6 Training in QA Standards and Procedures

3.4 Organizational considerations

3.4.1 Placement of the QA Function

3.4.2 Staffing the QA Function

3.5 Relationship between quality assurance and auditing

Objectives

After going through this lesson, you should be able to:

• understand how to implement QA Functions

• discuss about a Organizational considerations

• understand Relationship between quality assurance and auditing

3.1 Introduction

Quality assurance (QA) management is concerned with ensuring that (1) the
information systems produced by the information systems function achieve
certain quality goals and (2) development, implementation, operation, and
maintenance of information systems comply with a set of quality standards.
The QA function has come into existence because many organizations now
recognize they can no longer compete effectively unless they emphasize
quality throughout all their operations. Moreover, they also recognize the

SYSTEMS AUDITING

NOTES

114

need for independent review of the work done by information systems
development, maintenance, and operations staff. Even with the best
intentions, people cannot properly evaluate the quality of their own work.
Independent, objective assessments are required.

Like the data administration function, the information systems QA function is
relatively new. Auditors might not find it in all organizations. It is more likely
to exist in those organizations where the information systems function is
large and those that produce software where the quality of the software is a
paramount requirement. Where a QA function does exist, however, it can
have an important impact on the conduct of audit work. QA personnel are
concerned with controls compliance in the same way that auditors have this
focus. If auditors find a high-quality QA function in place, most likely greater
reliance can be placed on controls, and the extent of substantive testing
during the audit can be reduced.

In this lesson we first address the motivations for establishing an information
systems QA role within organizations. Next we examine the various func-
tions that QA personnel should perform. We then discuss some
organizational issues that relate to where the QA function should be placed
within the organizational hierarchy and how it should be staffed. Finally, we
examine briefly how the existence of a QA function impacts the audit
function.

3.2 Motivations toward the QA role

There are six reasons why the information systems QA role has emerged in
many organizations (Figure 3-1). First, increasingly organizations are
producing safety-critical information systems. For example, software is now
used to support air traffic control, weapon guidance systems, ship guidance
systems, nuclear reactors, radiation therapy equipment, heart pacemakers,
and drug infusion systems. Errors in these systems can have devastating
effects, such as loss of life, extensive destruction of property, and wide-
spread damage to the environment. Organizations that produce safety-
critical software must strive to ensure it is error free.

Second, users are becoming more demanding in terms of their expectations
about the quality of software they employ to undertake their work. Many
organizations that produce software now believe they will not be able to
compete effectively in the marketplace unless their software meets stringent
quality control standards. Otherwise their customers will simply switch to
competitors who produce higher-quality software. Some customers also
require that software developers meet certain quality standards. In Australia,
for example, in the absence of mitigating circumstances, the Queensland
State Government will not purchase software from developers unless they
have been certified by a third party as meeting Australian Standard
AS3563—Software Quality Management System.

Third, organizations are undertaking more ambitious projects when they
build software. As information systems development skills, tools, and

SYSTEMS AUDITING

NOTES

115

methodologies improve and the needs of more straightforward applications
have been addressed, organizations are looking to pioneering and
innovative applications for software in an attempt to gain a competitive
advantage. These applications are often large and complex. As a result,
their development, implementation, operation, and maintenance are difficult.
If these applications are to accomplish their objectives, they must meet
stringent quality control standards.

Fourth, organizations are becoming increasingly concerned about their lia-
bilities if they produce and sell defective software. Although the law relating
to this area is still evolving, there are signs that companies might be liable
for losses caused by defective software unless they have taken reasonable
and prudent steps to ensure the quality of the software they market. In any
event, even if eventually a company is not found liable for defective software
it has produced and sold, the loss of customer goodwill that might arise
could severely undermine its profitability.

FIGURE 3-1 Motivations toward implementation of the information systems
quality assurance function.

Fifth, poor quality control over the production, implementation, operation,
and maintenance of software can be costly in terms of missed deadlines,
dissatisfied users and customers, lower morale among information systems
staff, higher maintenance, and strategic projects that must be abandoned. In
some cases the senior management of organizations has had to explain to
shareholders why software development debacles have severely affected
profits, dividends, and share prices. In short, high-quality information
systems and high profitability are inextricably bound in some organizations.
Indeed, many proponents of quality management argue it is free. The
benefits of quality management exceed its costs.

Sixth, improving the quality of information systems is part of a worldwide
trend among organizations to improve the quality of the goods and services
they sell. Many Western organizations, for example, are seeking to emulate

SYSTEMS AUDITING

NOTES

116

the success of Japanese companies which have had an unbending focus on
customer needs, continuous quality improvement, and the production of
zero-defect goods and services. Total quality management (TQM) is now a
major driving force in many organizations because of their need to compete
effectively in international marketplaces.

3.3 QA Functions

QA personnel should work closely with information systems personnel to im-
prove the quality of information systems produced, implemented, operated,
and maintained in an organization. They perform a monitoring role for man-
agement to ensure that (1) quality goals are established and understood
clearly by all stakeholders and (2) compliance occurs with the standards that
are in place to attain quality information systems. Like auditors, QA
personnel should not assume responsibility for performing development,
implementation, operations, or maintenance work. Otherwise, they will lose
their independence. Moreover, they will become embroiled in costly, time-
consuming disputes over specific issues and lose perspective on whether
the information systems function overall is striving to meet quality goals.

3.3.1 Developing Quality Goals

One of the more difficult tasks that QA personnel must undertake is to
develop quality goals for the information systems function and to develop or
approve quality goals for specific information systems. Three problems arise.
The first is that quality can have a different meaning depending on whose
perspective is adopted. Top management, for example, might evaluate
quality in terms of whether an information system allows their organization to
compete better in a marketplace. Programmers, on the other hand, might
evaluate quality in terms of whether the program code for an information
system is well structured. Customers might evaluate quality in terms of the
level of functionality the system provides. Many different notions of quality
might have to be taken into account, therefore, when formulating quality
goals.

The second problem is that' quality goals might need to vary across infor-
mation systems. In safety-critical systems, for example, accuracy and
completeness may be paramount objectives. In a strategic planning system,
however, achieving timely reporting could override data accuracy and
completeness goals. In short, quality goals can vary, depending on the
nature of the system to be developed, operated, and maintained.

The third problem is that quality goals could be in conflict with one another.
For example, one quality goal for an information system might be a fast
response time. This goal might be achieved, however, only by writing
complex algorithms that are difficult for programmers to understand and
maintain. Specifying the goals for information systems, therefore, sometimes
requires that decisions be made on how one goal will be traded off against
another.

SYSTEMS AUDITING

NOTES

117

At the level of specific information systems, however, articulating quality
goals is more difficult. If QA personnel are responsible for preparing the
quality plan, they must work with the stakeholders in an information system
to elicit the quality goals they deem important. These goals can differ across
information systems. For example, as discussed previously, in some cases
the goals of an information system may focus on accuracy and
completeness; in other cases timeliness goals may mean that accuracy and
completeness goals have to be compromised.

Table 3-1 Software quality characteristics

Table 3-1 shows six quality characteristics that the International Organiza-
tion for Standardization has adopted in their standard for Software Product
Evaluation (ISO 9126, 1991). QA personnel can use these characteristics to
articulate quality goals for individual information systems. The six
characteristics provide a checklist that QA personnel can use during their
interviews with stakeholders to determine quality goals. The levels required
for each characteristic can be evaluated, and trade-offs that need to be
made among the characteristics can be considered.

When formulating or evaluating the quality goals for a specific information
system, QA personnel must take care to ensure the specific goals are not in
conflict with the overall goals of the organization. For example, to achieve
certain strategic goals for the organization, management might require that
information systems not be sold to customers if the likelihood of a system
containing a defect is above a certain level. It might be impossible to achieve
this goal, however, if a particular system is to be developed within a time
frame that is acceptable to its customers. Either management must
relinquish the overall quality goal, or customers must compromise with
respect to the development time frame. If neither of these alternatives is
acceptable, the organization may have to desist from developing the system.

Similarly, the goals of individual information systems can be in conflict. For
example, to achieve the desired response time for an information system,
substantial operational resources (e.g., the amount of memory and disk
space) might have to be allocated to the system. As a result, response times

SYSTEMS AUDITING

NOTES

118

for other systems that operate concurrently with the system may decline to
unacceptable levels. QA personnel must be mindful of quality goals for a
specific information system in the context of quality goals that exist for other
information systems.

Gaining acceptance among stakeholders of the quality goals for a specific
information system can be difficult. In the case of system-development staff,
for example, they might consider that quality goals place unwanted
constraints on the ways they work. Only token acceptance of quality goals
might occur. As a result, quality goals are compromised quickly when
problems are encountered during system development. For this reason,
some organizations require that the quality plan for a specific information
system be prepared by a quality-control group within the project team. These
organizations believe quality goals are more likely to be owned by the
project team if team members have responsibility for preparing the quality
plan. QA personnel then play the role of approving the quality plan prepared
by the project team and monitoring how the project team uses the plan to
achieve quality goals (Figure 3-2).

When quality goals have been determined for a specific information system,
it is important that quality metrics be chosen. Quality goals are unlikely to be
accomplished satisfactorily unless information systems personnel know the
criteria to be used to determine whether quality goals have been met.
Because the adequacy of various quality measures can be a contentious
area, it is important that QA personnel again consult all stakeholders and try
to negotiate agreement on the quality metrics to be used.

FIGURE 3-2 using a project quality plan to attain quality goals

SYSTEMS AUDITING

NOTES

119

3.3.2 Developing, Promulgating, and Maintaining Standards for the
Information Systems Function

Information systems standards are an important means of achieving asset
safeguarding, data integrity, system effectiveness, and system efficiency
objectives. They must cover all major tasks performed within the information
systems function for example, requirements analysis, design, programming,
testing, documentation, operations, and maintenance. They must also
recognize that substantial diversity exists in the ways the information
systems function is now performed. For example, they must take into
account that information systems are developed under varying levels of
uncertainty, that information systems functions are sometimes performed on
mainframe computers and sometimes performed on microcomputers, and
that information systems are sometimes developed by information systems
professionals and sometimes by end users. In general, the objective is to
provide minimal specification of standards: The standards should enable
quality objectives to be attained, but they should not stultify the ways in
which information systems personnel must work to accomplish their jobs.

There are four advantages to having QA personnel assume responsibility for
the development, promulgation, and maintenance of information systems
standards. First, QA personnel are charged with being knowledgeable about
and remaining up to date with best practice in information systems
standards. They should be familiar with the types of standards that have
been adopted by organizations that are similar to their own. Furthermore,
they should be knowledgeable about standards that are being developed or
those that have been adopted by national or international standards
organizations. Given the substantial work that is now being undertaken
worldwide on information systems standards, organizations must make a
major commitment to keep up to date with developments and to understand
the potential impacts that standards may have on their own activities.

Second, within an organization, decisions on standards can often be a polit-
ical issue that evokes strong, emotive reactions. Standards can have a
major impact on the ways work is done. Some people perceive that
standards will inhibit their work; others will argue that standards allow too
much freedom; still others will be concerned about how standards affect the
formal or informal power they hold. Consequently, many people have a
vested interest in the outcome of standards decisions. Of all stakeholders,
QA personnel are likely to be perceived as the most independent if they
assume responsibility for the development, promulgation, and maintenance
of information systems standards. QA personnel are charged with adopting
an organization wide view on standards. To the extent they do not adopt this
broad perspective, their position within the organizations is likely to become
untenable.

Third, QA personnel are supposed to undertake analyses of the reasons
when an organization fails to achieve its information systems quality goals
(see the following section). In this light, they should obtain insights and
understanding that will allow them to make good judgments on the

SYSTEMS AUDITING

NOTES

120

characteristics of standards that are best suited to their organizations. They
should be able to identify any new standards that need to be developed or
any existing standards that need to be modified based upon the follow-up
analyses of information systems problems that they undertake. Again, they
are likely to be better placed than any other stakeholder to make judgments
on standards because their work allows them to obtain a broad overview of
information systems activities within their organizations.

Fourth, QA personnel should have incentives to ensure that their organi-
zation adopts and complies with the best set of information systems
standards possible. No other personnel within the organization are likely to
have their performance evaluated on the basis of attainment of quality goals
to the extent that QA personnel are evaluated on this basis. Moreover, other
personnel inevitably face dilemmas because quality goals conflict with other
goals that are more central to their role. For example, development
personnel might face a situation in which deadlines will be missed if they
comply with documentation standards. If senior management establishes the
correct incentives for the QA function, it should always be in the best
interests of QA personnel to seek to achieve both the short- and long-term
quality goals of the organization.

QA personnel have an important role to play in monitoring national and
international information systems standards that could affect their organiza-
tion. These standards should inform the process of developing the overall
standards to be used by an organization's information systems function and
any specific standards that are needed to support the work conducted in
relation to a particular information system project (Figure 3-3).

QA personnel also might want to actively participate in the development of
national or international standards. In some cases, these standards can be
exceedingly helpful to an organization attaining its goals. For example,
agreement on some type of data communication standard can allow an
organization to interact well electronically with its customers and to
strengthen its position within the marketplace. In other cases, however,
standards could undermine an organization's competitive position. For
example, the organization may have invested heavily in systems that are at
odds with the standards eventually adopted. By participating in the standard-
setting process, QA personnel can seek to safeguard the interests of their
organizations and provide timely warning when adverse standards are likely
to be adopted.

QA personnel also have an important role to play in monitoring best prac-
tices in other organizations. As with national and international standards,
best practices can affect the specific information system processes that are
adopted and enforced as standards within an organization. In some cases,
knowledge about best practice can be obtained via publications. For
example, the clean-room method of software development is widely
accepted as best practice in producing software with known and certified
mean time to failure (MTTF). It involves relying heavily on software
practitioners using formal specifications, formal verification, formal design

SYSTEMS AUDITING

NOTES

121

and code inspections, independent software product testing, and statistical
process control. The processes associated with the clean room method are
now well documented. In other cases, however, knowledge about best
practice is not readily available. It can be obtained only by QA personnel
fostering a network of professional contacts and attending conferences and
professional meetings.

FIGURE 3-3 informing the standards development process.

Whatever standards or practices are chosen, QA personnel must take care
to match the capabilities of their organization with the demands that arise
from seeking to adhere to different types of standards or practices. In this
regard, the Software Engineering Institute at Carnegie Mellon University has
developed a Capability Maturity Model (CMM) that defines five levels of
organizational maturity and the software quality processes associated with
each of these levels (Figure 3-4). Organizations are admonished not to try to
jump levels. Rather, they are urged to undertake continuous process
improvement and to move through these levels in an evolutionary way, Only
by mastering the software quality processes associated with lower levels in
the CMM is an organization likely to be able to implement successfully the
software quality processes associated with higher levels in the CMM.

Auditors can use interviews, observations, and reviews of documentation to
evaluate how well QA personnel develop, promulgate, and maintain stan-
dards for the information systems function. They can ask QA personnel
about the procedures they use to develop, promulgate, and maintain
standards. Similarly, they can ask stakeholders to evaluate how well QA

SYSTEMS AUDITING

NOTES

122

personnel undertake these activities. By attending meetings where QA
personnel focus on standards, auditors can observe how they undertake
standards work. Because standards should be documented, they can review
this documentation to assess the quality of the standards work carried out by
QA personnel.

FIGURE 3-4 Characteristics of levels in Software Engineering Institute's
capability maturity model

3.3.3 Monitoring Compliance with QA Standards

QA personnel undertake two types of monitoring of compliance with QA
standards. First, they monitor compliance with the QA plan prepared for a
specific system. In this regard they focus on development, implementation,
operations, and maintenance activities associated with that system. In their
compliance monitoring role, they might participate as moderators during
design and code inspections, evaluate whether test data has been properly
documented, and participate in review meetings when important milestones
occur. They should also check to see that project personnel are themselves
monitoring compliance with the quality plan prepared for the project. In this
regard, they should see project personnel actively using standard quality-
control tools that allow deviations from plans to be identified and
improvements in project activities to be effected. For example, fishbone
diagrams should be used to diagnose the causes of problems and to identify
ways to mitigate these problems in future software projects (Figure 3-5).

SYSTEMS AUDITING

NOTES

123

QA personnel also should monkor compliance with general standards
(standards that do not focus on a specific system). For example, an
organization might have standards relating to the amount of ongoing
professional development training that information systems staff must
undertake. Certain managers might be responsible for ensuring that staff
under take the requisite training. QA personnel, in turn, should evaluate
whether both staff and management are complying with the training
standard.

Two principles govern how compliance monitoring should be undertaken by
QA personnel. First, they must remember that their role is to facilitate rather
than to inhibit information systems development, implementation, operations,
and maintenance. In this light they must be constructive and positive in their
monitoring role. If they adopt an arbitrary, antagonistic, negative stance, they
will lose credibility, and they no longer will be able to play an effective role.

FIGURE 3-5 Fishbone diagram to analyze causes of a poor-quality user
interface.

Second, QA personnel should seek to avoid disputes over detail. Instead,
their role should be to notify management when compliance with standards
has not occurred. Management is then responsible for resolving specific
difficulties that have ensued or may ensue. Ultimately, management must
decide whether it wishes to insist that compliance with standards occurs. If
QA personnel engage in disputes over details and petitions to enforce
compliance, they will lose the confidence of information systems staff and
management.

SYSTEMS AUDITING

NOTES

124

When a compliance failure occurs, QA personnel should seek to understand
the reasons for the failure so they can advise management. In some cases,
there could be good reasons for noncompliance. Such reasons could
motivate reconsideration of standards and ultimately bring about improved
standards. In other cases, noncompliance could reflect a breakdown in a
process, in which case corrective action will be needed.

QA personnel should also consider the consequences of compliance failure
and brief management on these consequences. The repercussions could be
serious if, for example, the failure results in a breach of contract with a
customer or the potential arise for a substantial liability associated with a
defective software product. On the other hand, the consequences might not
be serious, at least in the short run, and urgent action might not be required.

When compliance failure occurs, QA personnel should consider appropriate
corrective actions so they can make recommendations to management. Bet-
ter recommendations can be made if QA personnel have a sound
understanding of the reasons for the failure and the potential consequences
of the failure. The recommendations are likely to be more concrete, more
specific, and more compelling. Whether management acts on the
recommendations, however, is their prerogative. Again, QA personnel
should seek to avoid becoming involved in specific debates.

Compliance monitoring can be an important element of any certification that
the organization has been given with respect to software quality. When the
organization is being recertified, the certifying party might look to see that
monitoring is carried out rigorously and that management takes appropriate
actions in light of advice received on the basis of the monitoring process.

Auditors can use interviews, observations, and reviews of documentation to
evaluate how well QA personnel perform their monitoring role. They can ask
QA personnel what monitoring procedures they follow, talk with stakeholders
to determine their experience of the QA monitoring process, observe QA
personnel as they undertake the monitoring process, and review reports
produced as a result of the monitoring process. Auditors should also seek to
determine what actions have been undertaken as a result of the monitoring
process to reach a decision on whether it is effective.

3.3.4 Identifying Areas for Improvement

An important outcome of QA personnel's monitoring role is that they should
identify areas where the activities of the information systems function can be
improved. As discussed previously, noncompliance with quality standards
means either the standards have to be revised because they are deficient or
a development; implementation, operations, or maintenance process has to
be improved because there has been a genuine breakdown. In either case,
non-compliance should lead to improved standards or processes.

For two reasons, QA personnel should have responsibility for identifying
areas where the information systems function can be improved. First, given
their overarching concern with quality assurance, they are in the best

SYSTEMS AUDITING

NOTES

125

position to offer independent advice. Other stakeholders, such as
programmers and users, have vested interests. As a result, their
recommendations will tend to lack credibility. For example, to reduce the
number of missed development deadlines, programmers might argue that
users have to be more diligent when they provide requirements
specifications. Given the conflicts of interest that often exist between users
and programmers, however, users are likely to be skeptical about such
views. QA personnel, on the other hand, have no allegiance to a particular
stakeholder group. Thus, their recommendations are more likely to be
accepted. Nevertheless, they must be mindful that they will be given this
trust only if they both act independently and are perceived to act
independently. Like auditors, independence "in fact" and "in mind" are
essential to the effective discharge of their duties.

Second, QA personnel should have the knowledge and experience to make
the best recommendations for improvements to information systems
standards or processes. QA personnel are supposed to keep up-to-date with
the types of difficulties that all stakeholders in the information systems
function encounter. Moreover, they should be aware of the best practice to
overcome or to mitigate these difficulties. Given their duties, they also should
have a broad appreciation of activities across all stakeholder groups. In this
light, they should be able to address issues such as (1) the likelihood that
information systems activities can be improved cost effectively, (2) the
appropriateness of changes to information systems standards, (3) the impact
that changes to standards or processes will have on all stakeholder groups,
(4) the likelihood that changes to standards or processes will evoke
behavioral resistance, and (5) the support that is likely be forthcoming from
management if standards or processes are changed.

As discussed previously, regular monitoring for compliance of information
systems activities against standards provides an important basis for QA
personnel identifying areas where the information system function can be
improved. In addition, material information systems errors that occur should
also be reported routinely to QA personnel. For example, QA personnel
should be informed when an application program updates a database
incorrectly or an application program aborts prematurely during production
execution. An error-management system should be in place to record these
types of errors and to report them to QA personnel on a timely basis. QA
personnel should then analyze the errors to identify their causes and to
determine whether standards or processes need to be improved. For
example, in the short run, QA personnel might be able to alert programmers
that certain types of errors have been made frequently in programs that
update distributed databases. In the long run, program testing standards
may be modified to detect these errors before programs are released into
production.

As with recommendations for corrective actions when noncompliance with
standards occurs, recommendations for improved standards or processes
will be more compelling if they are based on analyses of particular
deficiencies that have occurred, a sound understanding of the reasons for

SYSTEMS AUDITING

NOTES

126

these deficiencies, and careful argumentation as to why the
recommendations will overcome or mitigate the deficiencies. Stakeholders,
especially management, are unlikely to be convinced by abstract arguments.
Consequently, QA personnel should strive to be specific and concrete in the
recommendations they make.

When conducting activities to identify areas for improvement, QA personnel
should be guided by the Japanese notion of Kaizen. Kaizen means "ongoing
improvement." It involves everyone in an organization (managers and
workers), and it has been fundamental to Japan's success with TQM. It
stresses the need for a continuous, process-oriented cycle of planning, ap-
proval; execution, monitoring, and evaluation (Figure 3-6). In this light, QA
personnel must regard the identification of areas for improvement as an
ongoing activity rather than a periodic activity. Furthermore, Kaizen focuses
on the need to base improvement decisions on facts rather than experience
or intuition. QA personnel should seek, therefore, to make recommendations
for improvement only if they have a substantive empirical basis to back up
their recommendations.

Auditors can evaluate how well QA personnel make recommendations for
improved standards or processes through interviews, observations, and
reviews of documentation. For example, they can interview stakeholders in
the information systems function to obtain their opinions on the quality of
advice provided by QA personnel with respect to improvement in standards
and processes. They can observe the procedures followed to report material
errors to QA personnel and the actions they follow upon being notified of
material errors. Auditors can review reports to assess the quality of the
recommendations provided by QA personnel with respect to improvements
in standards and processes. In particular, auditors should seek to determine
what actions were taken by management in light of the recommendations. If
they conclude that QA personnel function effectively to provide advice on
improved standards and processes, they can have greater confidence in the
overall reliability of information systems controls. Accordingly, it is likely
auditors will be able to reduce the extent of substantive testing. If they do not
function effectively, however, most likely the extent of substantive testing will
have to be increased.

SYSTEMS AUDITING

NOTES

127

FIGURE 3-6 the quality spiral.

3.3.5 Reporting to Management

QA reporting is an important but difficult undertaking. Given the nature of the
QA function, stakeholders could be quick to take umbrage with the contents
of reports. As a result, political difficulties can ensue. Moreover, it is
sometimes difficult to identify who should receive a QA report in order to
achieve the greatest impact.

QA personnel must take great care in preparing their reports. The reports
must not degenerate into a long list of defects that have been identified.
Otherwise, they will cause anger among stakeholders, and conflict will arise.
Instead, the reports must focus on major findings and fundamental issues
that need to be addressed. Recommendations must be backed up by sound
analyses based on concrete facts. The reports also must be positive in
nature, and they should contain no surprises. Otherwise the reports will
evoke protracted escalation meetings where stakeholders seek to defend
their positions. When this outcome arises, inevitably QA personnel lose their
credibility, and the effectiveness of the QA function is undermined.

Regular reports on compliance with general information systems standards
should be provided to the manager of the information systems function.
Those who should be the recipients of project-based reports, however, are
less clear-cut. Project managers need to receive copies of these reports
because they provide the basis for better management of their projects.
Moreover, they have a right to know the contents of reports about projects
under their control. Project managers have vested interests in projects under
their control, however, and as a result they may resist recommendations for
change. In this light, QA reports must be provided to stakeholders who have

SYSTEMS AUDITING

NOTES

128

opposing interests. The views of one group who oppose the changes can
then be counterbalanced by another group who support the changes.
Nevertheless, lines of reporting must be agreed on at the outset of a project
so recipients are not altered midstream to further some group of
stakeholder's political ends.

Auditors can evaluate how well QA personnel undertake the reporting
function through interviews, observations, and reviews of documentation.
For example, auditors can interview QA personnel to determine the
approaches they use to report their findings. They can also interview
stakeholders to determine their levels of satisfaction with the QA reporting
process. When meetings are called to discuss the contents of reports,
auditors can attend to see how the reports are received and what changes
they evoke. They can also review a sample of QA reports to obtain evidence
to make a judgment on their quality.

If auditors conclude that QA personnel are carrying out the reporting function
effectively, they can have greater confidence in the likelihood that QA efforts
are having a material impact on the quality of information systems that are
being developed, implemented, and maintained. Accordingly, auditors can
reduce the extent of substantive testing. If, on the other hand, the reporting
function is not being carried out effectively, QA activities are likely to have lit-
tie impact on information systems practices. Even if all other QA functions
are well carried out, poor reporting can negate their impact. As a result,
auditors will have to increase the extent of substantive testing.

3.3.6 Training in QA Standards and Procedures

Training is an essential element to maintenance of and compliance with QA
standards and procedures. Indeed, Deutsch and Willis argue that "the
cornerstone of quality is skilled and motivated people." Without training, QA
standards and procedures are likely to fall into disuse because they are not
updated or due to either ignorance or apathy on the part of stakeholders.

QA personnel have responsibility for training all stakeholders in the infor-
mation systems function in QA standards and procedures. They must under-
take two types of training. The first focuses on providing general knowledge
about quality assurance. It addresses the nature of and motivations for
quality assurance. It also examines the general standards and procedures
established to attain QA objectives. For example, stakeholders would be
apprised of systems-development milestones that require formal approval
and sign-off and requirements for user documentation that must be met
before software will be released for production use.

The second type of training focuses on standards and procedures that will
be specific to an application system. For example, because a particular
application to be developed will support life-critical activities, a third party
might be employed to undertake independent verification and validation of
the system. In the normal course of events, an organization might not
develop life-critical applications. As a result, specific QA standards and
procedures might have to be formulated for the application. These specific

SYSTEMS AUDITING

NOTES

129

standards and procedures should be identified when the QA plan for the
application is prepared. Information systems personnel associated with the
development, operation, and maintenance of the system then must be
appraised of these standards and procedures.

QA training should be focused. A personal development plan should exist for
each information systems employee. This plan should reflect both the orga-
nization's and the employee's goals and a development strategy for the em-
ployee to attain these goals. In relation to quality assurance, it should specify
general education that the employee should acquire, specific training that
the employee should undertake, and work experience that the employee
should obtain. By analyzing the needs manifested in these personal
development plans, QA personnel can formulate an overall QA training
program for their organization.

QA training should also be ongoing. New employees must be inducted in the
QA goals, standards, and procedures that have been adopted by the infor-
mation systems function. Such induction is especially important when new
employees are experienced information systems professionals who have not
worked previously in organizations where quality is a paramount goal.
Breaking undesirable work habits among experienced professionals can be
a difficult problem to overcome. Subsequent training must he undertaken
regularly. If a QA program is to work effectively, all stakeholders must be
constantly reminded of its importance. Moreover, through ^regular training
they can be admonished to achieve QA goals and objectives and reminded
how they can achieve these goals and objectives.

QA personnel can use in-service training as an important means of discern-
ment in relation to QA standards and procedures. Stakeholders have an
opportunity to articulate the problems they have experienced in complying
with QA standards and procedures. Discussion and debate can ensue.
Furthermore, the shared wisdom of the group can be brought to bear to help
resolve problems that people might be experiencing and to provide feedback
on ways in which QA standards and procedures can be improved. In short,
QA personnel should actively use in-service training opportunities to enact
two-way communication: from themselves to stakeholders, and from
stakeholders to themselves (Figure 3-7).

FIGURE 3-7 Quality assurance in-service training as a discernment process.

SYSTEMS AUDITING

NOTES

130

The quality of QA training is an important indicator of management's level of
commitment to the production of quality information systems products and
services. In the absence of management providing adequate resources for
training, stakeholders are likely to become skeptical about management's
commitment to quality. Quality goals will not be accomplished if stakeholders
are not provided with the knowledge and experience to attain them.

Auditors can evaluate how well QA personnel manage training by using in-
terviews, observations, and reviews of documentation. They can interview
QA personnel to obtain an understanding of the approach they follow to
undertake QA training within their organization. Another option is to interview
stakeholders to obtain their views on whether the nature, scope, and
frequency of QA training are satisfactory. By observing QA training sessions
in progress, auditors obtain evidence on how well they are conducted.
Reviews of training schedules and training materials also provide evidence
on whether QA training is being carried out satisfactorily. Moreover, auditors
can examine personnel records to determine whether QA training is being
properly directed to meet the needs of individual stakeholders.

If auditors conclude that QA personnel are carrying out the training function
reliably, they can reduce the extent of substantive testing. If they conclude
that training is not being carried out reliably, however, in the absence of
compensating controls substantive testing must be expanded. Inadequate
training usually means breakdowns in other areas. For example, monitoring
for compliance with QA standards and procedures becomes problematic
when stakeholders are not fully apprised of the standards and procedures in
the first place. In short, the quality of training is likely to be an important
indicator of how well QA personnel are carrying out other QA functions. It is
also an important indicator of management's commitment to the QA function.

3.4 Organizational considerations

If the QA function is to be effective, it must be properly established within the
organizational hierarchy of the information systems function. Moreover, it
must be staffed properly.

3.4.1 Placement of the QA Function

The QA function must be placed within the organizational hierarchy of the in-
formation systems function so that it can act independently of other informa-
tion systems activities. In this light, it cannot report to a manager responsible
for development, maintenance, or operations. Otherwise, it will not be per-
ceived as independent, and its activities also will be too easily subject to
duress. Instead, it must report directly to the executive who has overall
responsibility for the information systems function (Figure 3-8). Moreover,
managers responsible for the QA function must be given appropriate
seniority to enable them to maintain their independence and to ensure their
arguments carry sufficient weight in any disputes that arise.

SYSTEMS AUDITING

NOTES

131

To operate effectively, the QA function must also have a properly approved
charter. This charter should be prepared in consultation with information
systems stakeholders. When the final form of the charter has been negoti-
ated, it should be endorsed by senior management so it has force in terms of
the ways information systems personnel conduct their activities. To avoid
confusion and disputation, the charter should lay out clearly the rights and
responsibilities of the QA function. Job positions must also be defined to
fulfill responsibilities under the charter. Authority and accountability
commensurate with the activities that have to be performed in each job
should be specified. If the charter is to continue to have force, senior
management will need to affirm periodically the importance of the charter.
Moreover, they will have to provide adequate resources so the QA function
can discharge its responsibilities under the charter.

Auditors must evaluate whether the QA function has been placed within the
organizational hierarchy of the information systems function such that it can
perform an independent evaluative role. They should determine that it
reports directly to the executive in charge of the information systems
function. Moreover, they should determine that a properly approved charter
exists that documents the rights and responsibilities of the QA personnel.
The charter should be supplemented by job descriptions that allow the
charter to be fulfilled. Auditors can interview QA staff, information systems
staff, and information systems users to determine the scope and depth of
QA work and to assess whether funding of the QA function is adequate.
They can also review documentation to evaluate whether the work that has
been undertaken by QA personnel is consistent with their charter.

FIGURE 3-8 Placement of the QA function within the organizational
hierarchy of the information systems function.

SYSTEMS AUDITING

NOTES

132

3.4.2 Staffing the QA Function

The QA function poses some special problems in terms of staffing. QA
personnel must be well trained and competent, and their skills must be kept
up to date. Otherwise, they will not command the respect of the information
systems personnel whose work they must evaluate.

QA personnel also require a high level of interpersonal skills because the
potential for conflict between QA personnel and information systems person-
nel is high. If interactions are not handled tactfully, the level of disputation is
likely to become pathological. Senior management should have to become
involved in disputes only on an infrequent basis. When they do, often the
pressures to finish a job mean that senior management will support the
development staff in a dispute rather than the QA staff. Long-term goals can
be compromised to meet short-term objectives.

Many organizations report difficulties in attracting competent staff to QA
positions. In general, information systems professionals prefer to develop,
implement, and operate systems rather than to evaluate them for quality.
Indeed, quality assurance work often is afforded lower prestige than other
types of information systems work. If QA responsibilities are to be
discharged effectively, however, competent, experienced personnel must be
attracted to QA positions. Senior management must engender a culture that
sees the QA role as important.

Auditors should evaluate whether QA personnel have adequate knowledge
of information systems development, implementation, and operations
procedures. They should also evaluate whether they receive ongoing,
regular training. Through interviews with information systems users and
information systems staff, auditors can determine whether QA staff is
considered to be competent. They can also use these interviews to
determine whether QA staff exercise a high level of interpersonal skills. If
auditors conclude that QA staff lack required knowledge or their level of
interpersonal skills is not high, they must place less reliance on QA controls
when planning the remainder of the audit.

3.5 Relationship between quality assurance and
auditing

In many ways, the objectives of and functions performed by QA personnel
and auditors are the same. Both QA personnel and auditors are concerned
with the existence of information systems standards, compliance with these
standards, and timely, corrective actions when deviations from standards
occur. Prior to the existence of the QA function, auditors performed many of
the checks that QA personnel now perform. For example, they sought
evidence on whether systems-development practices followed prescribed
standards.

The existence of a QA function might change how both internal auditors and
external auditors perform their work in several ways. First, if a QA function is

SYSTEMS AUDITING

NOTES

133

in place and working reliably, auditors most likely can reduce the extent of
substantive testing they undertake. The existence of a QA function manifests
an organization's commitment to quality. Moreover, the functions performed
by QA personnel provide greater assurance that high-quality controls are in
place and working over the information systems function. As a result, au-
ditors can place greater reliance on controls during the conduct of their
audits.

Second, QA personnel most likely will undertake more comprehensive
checking of information systems controls than auditors. Although both QA
personnel and auditors inevitably rely on sampling for their evidence-
collection purposes, QA personnel probably will examine more extensive
samples. As a .result, auditors usually can place higher reliance on
information systems controls and reduce the extent of their substantive
testing.

Third, auditors can now focus primarily on ensuring the QA function works
reliably rather than undertaking direct tests of information systems controls.
Providing auditors have confidence in the QA function, they can rely on the
conclusions reached by QA personnel in relation to information systems
controls and plan the conduct of their audit accordingly. Auditors should
have less work to undertake because QA personnel should be able to
provide them with much of the evidence they need to plan an audit and to
reach an audit opinion.

In short, auditors should welcome the existence of a QA function in any or-
ganization. The control risk associated with the organization should be
lower, and less work should be required to gather the evidential matter
needed to reach an audit opinion. With proper planning, auditors can work
hand in hand with QA personnel to achieve the four objectives of asset
safeguarding, maintenance of data integrity, system effectiveness, and
system efficiency.

4. SUMMARY

Program development and acquisition is a major phase within the systems
development life cycle. The primary objective of this phase is to produce or
acquire and to implement high-quality programs. The activities to be
conducted during this phase can be managed in the context of a program
development life cycle that comprises six phases: (1) planning, (2) control,
(3) design, (4) coding, (5) testing, and (6) operation and maintenance.
Auditors can use this life-cycle model to determine what types of activities
should be conducted in each phase and to collect evidence on and to
evaluate the conduct of these activities. Auditors must recognize that the
ways in which these activities will be performed will vary, depending on
such contingencies as the size of and complexity of the program to be
developed. In this light auditors must be able to adjust the audit approach to
take into account the effects of these contingent factors.

SYSTEMS AUDITING

NOTES

134

Information systems security administrators are responsible for ensuring that
information systems assets are secure. Assets are secure when the
expected losses that will occur from threats eventuating over some time
period are at an acceptable level.

Quality assurance personnel within the information systems function are
concerned with ensuring that the information systems produced achieve
certain quality goals and that development, implementation, operation, and
maintenance of information systems comply with a set of quality standards.

5. Questions

1. Give three attributes of a high-quality program.

2. What are the major phases in the program development life cycle?
Which phase is a phantom phase? Briefly explain why it is a phantom
phase.

3. Briefly describe two concerns auditors might have when evaluating the
planning phase of the program development life cycle.

4. Briefly describe the two major purposes of the control phase of the
program development life cycle.

5. How do techniques like Work Breakdown Structures, Gantt charts, and
PERT charts help during the control phase of the program development
life cycle?

6. Briefly explain the difference between unit testing, integration testing, and
whole-of-program testing.

7. Briefly describe the relationship between desk checking, structured walk-
throughs, and design and code inspections.

8. What two factors should have a major impact on the way programming
teams are organized?

9. When is information systems asset secure?

10. In the context of information systems assets, briefly explain the
difference between physical security and logical security.

11. Briefly describe the four major tasks that must be undertaken during the
exposures analysis phase of a security program.

12. Briefly discuss the responsibilities of security administrators with respect
to maintenance of the supply of energy to the information systems
function.

13. What are the controls of last resort? Briefly explain the nature of each.

14. What considerations affect the choice of a backup site?

15. What is the primary role of quality assurance management as it operates
within the information systems function?

16. Give three reasons why the QA function has emerged in organizations.

17. Why is it best to strive for minimal specification of standards when
preparing information systems standards?

SYSTEMS AUDITING

NOTES

135

18. Why should QA personnel be notified routinely of errors or irregularities
that occur in information systems?

19. Why do QA personnel need to monitor national and international
information systems standards?

20. Why is it important to include quality metrics in an information systems
quality assurance project plan?

REFERENCE BOOKS

1. Weber R; Information Systems Control and Audit (Person Education)

2. Dube: Information systems for Auditing (TMH)

3. Auditing Information Systems, 2nd Edition. Jack J. Champlain (Wiley)

SYSTEMS AUDITING

NOTES

136

UNIT – III

1. Input Controls

Structure

1.1 Introduction

1.2 Data input methods

1.3 Source document design

1.4 Data screen design

1.4.1 Screen Organization

1.4.2 Caption Design

1.4.3 Data-Entry Field Design

1.4.4 Tabbing and Skipping

1.5 Data code controls

1.5.1 Data Coding Errors

1.5.2 Types of Coding Systems

1.5.3 Serial Codes

1.5.4 Block Sequence Codes

1.5.5 Hierarchical Codes

1.5.6 Association Codes

1.6 Check digits

1.6.1 Nature of Check Digits

1.6.2 Calculating Check Digits

1.6.3 When to Use Check Digits

1.7 Batch controls

1.7.1 Types of Batches

1.7.2 Means of Batch Control

1.8 Validation of data input

1.8.1 Types of Data Input Validation Checks

1.8.2 Reporting Data Input Errors

1.9 Instruction input

SYSTEMS AUDITING

NOTES

137

1.9.1 Menu-Driven Languages

1.9.2 Question-Answer Dialogs

1.9.2 Command Languages
1.9.3 Forms-Based Languages

1.9.4 Natural Languages

1.10 Validation of instruction input

1.10.1 Types of Instruction Input Validation Checks

1.11 Audit trail controls

1.11.1 Accounting Audit Trail

Objectives

After going through this lesson, you should be able to:

• understand the data input methods

• understand Data screen design and controls

• understand how to Check digits impliment

• discuss about validation of data input

• Discuss about instruction input and validation

• understand how to Audit trail controls.

1.1 Introduction

Components in the input subsystem are responsible for bringing both data
and instructions into an application system. Both types of input must be
validated Moreover, any errors detected must be controlled so input
resubmission is accurate, complete, unique, and timely.

This lesson examines controls over the input subsystem. From auditor’s
viewpoint, input controls are critical tor three reasons. First, in many
information systems the largest number of controls exists in the input
subsystem. Consequently, auditors will often spend substantial time
assessing the reliability of input controls. Second, input subsystem activities
sometimes involve large amounts of routine, monotonous human
intervention. Thus, they are error-prone. Third, the input subsystem is often
the target of fraud. Many irregularities that have been discovered involve
addition, deletion, or alteration of input transactions.

SYSTEMS AUDITING

NOTES

138

1.2 Data input methods

Recall that a typical way auditors evaluate controls in an application system
is to trace instances of material transaction types through the system. If
they are to undertake this task, however, they must first understand how
the application system obtains its data input.

Figure 1-1 provides an overview of the diverse ways in which data input can
be entered into an application system. In all cases, auditors are interested
in recording the state of some object or thing or an event that has occurred
to some object or thing. For example, auditors might want to record a
person's pay rate (a state) or an order placed by a customer (an event).

In many cases, data about the state or event will be input directly to a sys-
tem (the lower branch of Figure 1-1). For example, a customer might ap-
proach a sales counter and place an order, and an order-entry clerk might
then key data about the order into a terminal. Beside keyboard-based input
devices, many other types now exist that allow direct-entry input of data for
example, touch screens, mice, joysticks, trackballs, voice, video, and
sound. Some types of devices will even track eye movements and gestures
that a person makes with their hands.

Data about a state or event might also be recorded on some medium
before it is entered into a system (the upper branch of Figure 1-1). For
example, a salesperson might transcribe data about a sale onto a source
document: data about a person's account number might be recorded on the
magnetic strip on the back of a plastic credit card: a universal product code
(UPC) might be printed on the packaging material for some product. In
some cases, the medium then might be read directly by an input device for
example, an optical character reader or imaging device. In other cases,
data recorded on the medium might be keyed into a terminal for example; a
data-entry operator keys data off source documents into a microcomputer.
When this input method is used, data preparation activities are often
undertaken prior to entering the data into the system. For example, source
documents might he scanned for authenticity, accuracy, and completeness
prior to their being keyed at a terminal. Similarly, annotations and notes
might need to be erased and paper clips and staples might need to be
removed before documents are read by an imaging device. The documents
might then be sorted and assembled into batches.

SYSTEMS AUDITING

NOTES

139

FIGURE 1-1 Input methods

When data is recorded on some medium prior to input to an application
system, either prerecording or postrecording of the state or event can
occur. Under prerecording, the state or event is recorded on the medium
before the existence of the state is detected or the event has occurred. For
example, an organization might record on a plastic credit card that one of
its customers is always entitled to a discount when the customer purchases
goods (prerecording of a state), or the characteristics of a clothing item and
its price might be recorded on a tag so that these data can be read using an
optical wand at the time of sale (prerecording of an event). Under
postrecording, the state or event is recorded on the medium after the
existence of the state has been detected or the event has occurred. For
example, a person's marital status might he recorded on a source
document during an interview (postrecording of a state), or a sale might be
recorded on a source document after it has occurred (postrecording of an
event).

Combinations of data input methods can also be used. For example, when
customers use an automatic teller machine (ATM), the machine reads data
from the plastic card (e.g., an account number) that customers insert into
the machine (prerecorded, medium-based data entry). Customers also use
the machine's keypad to enter the amount they wish to withdraw from their
accounts (direct entry).

SYSTEMS AUDITING

NOTES

140

TABLE 1-1 Control Advantages of Using Point-of-Sale Terminals

--

1. Optical scanning of a premarked code improves pricing accuracy.

2. Customers can verify accuracy and completeness of a sale because they
can be provided with a detailed receipt.

3. Improved control over tender because the terminal controls the cash
drawer, automatically dispenses change and stamps, and handles any
types of tender cash checks, coupons, food stamps.

4. Automatic check authorization or credit-card authorization. Customers
can also enter PINs to authorize funds transfer from their accounts to the
vendor's account.

5. Maintenance of independent records of transactions undertaken via
journal tapes.

6. Better inventory control through more timely information on item sales.

--

TABLE 1-2 Control Advantages of Using Automatic Teller Machine

--

1. Physical security over cash. Many have antitheft features like alarms,
camera surveillance, movement indicators, and heat detectors.

2. Maintenance of independent records of transactions undertaken via
journal tapes and control counters.

3. Cryptographic facilities to preserve the privacy of data entered.

4. Software to guide customers through the input process, thereby
minimizing errors or omissions.

By understanding the types of data input methods used within an
application system, auditors can develop expectations about the probable
control strengths and weaknesses in the input subsystem. Consider, for
example, the following three aspects of input methods and how they are
likely to affect auditors' assessment of control strengths and weaknesses:

1. As the amount of human intervention in the data input method increases,
the likelihood of errors or irregularities occurring increases. For example,
if sales data is first recorded onto a source document and then keyed
into an application system, there is a greater chance of errors occurring
than if the data is keyed immediately into a microcomputer or scanned
from a tag. In the former case, errors can occur during transcription as
well as during keying, whereas in the latter two cases, errors can occur
only during keying or scanning. In general, relative to direct-entry input or
prerecorded, medium-based input methods, post-recorded, medium-

SYSTEMS AUDITING

NOTES

141

based input methods are more prone to errors and irregularities because
they are more labor intensive.

2. As the time interval between detecting the existence of a state or event
and input of the state or event to an application system increases, the
likelihood of errors or irregularities occurring increases. Data about the
state or event could be forgotten; or the person who enters the data
might not be the person who observed the state or event, and thus he or
she might be less able to respond to queries about the validity of the
data. As the time interval lengthens, more opportunities also arise for
data about the state or event to be -altered improperly.

3. Use of certain types of input devices facilitates control within the input
subsystem because they possess characteristics that militate against
errors or irregularities. For example, Tables 1-1 and 1-2 list some of the
major control advantages that arise when point-of-sale terminals and
automatic teller machines are used as input devices.

1.3 Source document design

Some data-input methods use source documents to record data that will be
entered into a computer system. Source documents are often used when
there will be a delay between capturing the data about a state or event and
input of that data into a computer system. For example, sales data might be
captured remotely and mailed to the head office of an organization for input
to an order-entry system. Source documents are also used as turnaround
documents. For example, a computer-prepared remittance advice could be
sent to customers with their invoices. Customers are asked to return the
remittance advice along with their payment. The remittance advice is then
read optically into an accounts receivable system.

From a control viewpoint, a well-designed source document achieves sev-
eral purposes:

1. It reduces the likelihood of data recording errors;

2. It increases the speed with which data can be recorded;

3. It controls the work flow;

4. It facilitates data entry into a computer system;

5. For pattern recognition devices, it increases the speed and accuracy with
which data can be read; and

6. It facilitates subsequent reference checking.

Auditors, therefore, must understand the fundamentals of good source
document design. Source document design begins after carrying out source
document analysis. Source document analysis determines what data will be
captured, how the data will be captured, who will capture the data, how the
data will be prepared and entered into a computer system, and how the
document will be handled, stored, and filed.

After these requirements have been determined, two decisions can be
made. First, the characteristics of the paper medium to be used for the

SYSTEMS AUDITING

NOTES

142

source document can be chosen. This decision involves selecting the
length and width of the paper, its grade and weight, and whether single-part
or multipart paper will be used. If the wrong length and width is chosen, for
example, the source document might be difficult to handle or to read via
some type of scanning device. If the wrong grade and weight are chosen,
the paper could smudge or tear under adverse conditions. If the wrong
decision is made on whether to use single- or multipart paper, multiple
recordings of the same source data could have to be made, or alternatively
the multipart paper chosen to avoid multiple recordings could tear because
it is too thin.

The second decision relates to the layout and style that will be used for the
source document. The choice of layout and style has an important impact
on the number of input errors that will be made using the source document.
Some important design guidelines follow:

1. Preprint wherever possible. Preprint all constant information on a source
document. If only a limited number of responses to a question is
appropriate, preprint the responses and have the user tick or circle the
correct responses or delete those that are inappropriate.

2. Provide titles, headings, notes, and instructions. A title clearly identifies
the purpose of the source document. Headings break up the document
into logical sections. Notes and instructions assist the user to complete
the document. Where codes are used preprint their meaning on the form
so the user does not have to rely on memory or waste time looking up
reference manuals.

3. Use techniques for emphasis and to highlight differences. Different type
fonts such as italics and boldface give emphasis to different parts of the
source document. Heavy thick lines or hatching highlight important fields
or sections of the source document. Different colors facilitate distribution
of different copies of the source document. Background colors
emphasize special sections of the source document for example, those
for office use only.

4. Arrange fields for ease of use. Design the source document to be
completed in a natural sequence from left to right, top to bottom. Group
related items together. The sequence of fields should follow the work
flow: The most used fields on the left of the document; those usually
used in the center; and those seldom used on the right.

5. Use the "caption above fill-in area” approach for captions and data fields.
Figure 1-2a shows three approaches to designing the layout of captions
and fields on a source document: caption preceding the fill-in area,
caption within the fill-in area, and caption above the fill-in area (floating
box). Galitz argues that the "caption above fill-in area" or floating-box
approach is the best. The caption should be centered above the fill-in
area or left justified above the fill-in area if the fill-in area is long.

SYSTEMS AUDITING

NOTES

143

6. When possible, provide multiple-choice answers to questions to avoid
omissions. Figure 1-2b shows how this technique can be used with the
floating-box approach. Rather than ask users to remember all the
business subjects they studied, provide a list they can check.

7. Use tick marks or indicator values to identify field-size errors. Figure 1-2c
shows how these techniques highlight field overflow or underflow. Tick
marks can be used when a field must contain a fixed number of
characters. Indicator values can be used to show the maximum when a
variable number of characters can be inserted in the field.

8. Combine instructions with questions. Figure 1-2d shows how this
technique overcomes possible confusion about the format for a date.

9. Space items appropriately on forms. Correct spacing of fields on forms is
particularly important if responses are to be typewritten (e.g., the form is
input to a laser printer to receive output from a word processing package).

10. Design for ease of keying. Have the order in which fields are keyed
follow the order of field placement.

11. Prenumber source documents. Prenumber source documents so users
can account for every document. If each document has a unique serial
number, input transactions can be sorted by serial number and breaks in
the sequence of numbers identified.

12. Conform to organizational standards. An organization should have a
forms control section responsible for overall forms design standards; for
example, numbering and color conventions, placement of the
organization's logos, retention requirements, and ordering and stock
keeping requirements. Ensure the source document design conforms to
these standards.

FIGURE 1-2(a) Caption preceding fill in area, caption within fill-in area, and
caption above fill in area source document design approaches. (b) using
multiple choice to prevent omission (c) using tick marks and indicator
values to identify field size errors (d) combining instructions with questions

SYSTEMS AUDITING

NOTES

144

1.4 Data screen design

If data is keyed into a system via a terminal, high-quality screen design is
important to minimizing input errors and to achieving an effective and
efficient input subsystem. Auditors must be able to examine the data-entry
screens used in an application system and to come to a judgment on the
frequency with which input errors are likely to be made and the extent to
which the screen design enhances or undermines effectiveness and
efficiency. This judgment will affect the way they decide to conduct the
remainder of the audit.

The following subsections provide a brief introduction to screen design is-
sues and are based primarily on Galitz, Weinschenk and Yeo, Mullet and
Sano, and Horton. Certain design principles apply to all types of data-entry
screens. Others vary, however, depending on whether the screen is used
for direct-entry input or input of data already captured on a source
document. Interestingly, different authors often have conflicting recom-
mendations on what constitutes good screen design. For example, some
recommend that boxes be placed around data-entry fields, whereas others
recommend use of the underscore character. Similarly, some recommend
that field captions always be left-aligned, whereas other recommend that
they be right-aligned if the size of the captions is markedly different.
Auditors ultimately must make a judgment about the quality of the data-
entry screen design confronted. Currently there are guidelines to assist
auditors' judgment, but there are no fixed design rules.

1.4.1 Screen Organization

Screens should be designed so they are uncluttered and symmetrically bal-
anced. The data elements should be organized into functional, semantic
groups. Boxes can be used to highlight certain groupings of data elements.

As the number of rows, vertical alignment points, and data elements on a
screen increases, the complexity of the screen increases. Using a measure
of complexity proposed by Galitz, the screen in Figure 1-3a is more
complex than the screen in Figure 1-3b. Thus, the former screen is likely to
be more error prone than the latter. In addition, data entry using the former
screen is likely to be slower.

SYSTEMS AUDITING

NOTES

145

FIGURE 1-3 Evaluating screen complexity

All the information needed to perform a task must be on a screen, yet users
still should be able to identify quickly the information they require. Where
multiple screens must be used to capture a transaction, the screens should
be broken at some logical point. Symmetry can be achieved by grouping
like elements together, balancing the number of elements on both sides of
the screen, ensuring elements are aligned, and using blank space and line
delimiters strategically.

If a screen is used for direct-entry input of data, the layout of elements on
the screen must mirror the way in which data is obtained during the data-
capture task. If the screen is used for source-document data entry,
however, the screen must be an image of the source document on which
the data is first captured and transcribed. In the former case, the screen
guides users through the data-capture process. In the latter case, users
should be able to keep their eyes on the source document during the
keying process and be required to view the screen only when they
encounter some problem.

An important objective in screen design is consistency. Users develop facil-
ity with a particular design. Consequently, whenever possible this design
should be used repeatedly across applications. For example, certain parts
of a screen should always be used to display instructions for completing the
screen, error messages, instructions for screen disposition, and status
messages.

1.4.2 Caption Design

Captions indicate the nature of the data to be entered in a field on a screen.
Design considerations include structure, size, type font, display intensity,

SYSTEMS AUDITING

NOTES

146

format, alignment, justification, and spacing. Again, the primary factor
affecting the design of captions is whether the screen is used for direct-
entry input of data or input of data already captured on a source document.

Captions must be' fully spelled out if a screen is used for direct-entry data
capture. Because the screen guides the user during the data-capture
process, the meaning of the captions must be unambiguous. If data entry is
based on a source document, however, captions can be abbreviated
because users can refer to the source document to obtain the full meaning
of a caption.

Captions must be distinguished clearly from their associated data-entry
field. For example, uppercase type font might be used for all captions, and
lowercase type font might be used for the data entered by a keyboard
operator. To further differentiate captions and data-entry fields, different
display intensities can be used. Because captions are the primary focus
during data entry, they should have higher display intensity than the data
entered by users. Alternatively, captions and data-entry fields can be
displayed using different colors.

Captions should always precede their associated data-entry field on the
same line as the data-entry field. One exception to this guideline is where
multiple data-entry fields relate to the same caption. In this case, the data
entry fields should be stacked under the caption. For example:

SALESPERSON: ______________ PREVIOUS OCCUPATION

Where the caption and data-entry field appear on the same line the caption
should be followed immediately by a colon. At least one space also should
exist between the colon and the data-entry field. Where the data-entry fields
are stacked, however, a colon is not needed before each data-entry field
(providing underscores indicate the field position and size).

If direct-entry input of data is used, captions should be aligned vertically in
columns. Within a column, Galitz argues that either (1) both captions and
data-entry fields should be left justified or (2) captions should be right
justified or data-entry fields should be left justified. For example:

NAME: ___________ NAME: __________
AGE: ___________ AGE: __________
POSITION: ___________ POSITION: __________

If the screen is used for entry of data already captured on a source
document, however, alignment and justification are dictated by the source
document. The screen design should be an image of the source document.

Both horizontal and vertical spacing around captions are important to at-
taining an uncluttered screen. For horizontal spacing, direct-entry data
capture screens should have a minimum of five spaces between the
longest data entry field in a column and the leftmost caption in an adjacent
column. Source document screens should have a minimum of three spaces
between a data-entry field and the following caption. For vertical spacing,

SYSTEMS AUDITING

NOTES

147

direct-entry data capture screens should have a blank line every fifth row;
that is, captions and the associated data-entry fields should be clustered in
groups of five. Source-document screens, on the other hand, should mirror
the vertical spacing found on the source document.

1.4.3 Data-Entry Field Design

Data-entry fields should immediately follow their associated caption either
on the same line or, in the case of a repeating field, on several lines
immediately below the caption. The size of a field should be indicated by
using an underscore character or some other character. As each new
character is entered into the field, the existing character is replaced.
Alternatively, the size of a field can be indicated by using a lined box filled
in with a contrasting color or background reports, however, that empirical
studies have shown the underscore character is the best means of
indicating field size.

Where direct-entry data capture screens are used, completion aids can be
used to reduce keying errors. For example, if a date must be entered, either
the caption or the field-size characters can be used to indicate the date
format:

DATE(YYMMDD):___________ DATE: YYMMDD

On the other hand, where source-document screens are used, completion
aids are not needed because the keyboard operator can refer to the source
document for completion instructions.

Radio buttons, check boxes, list boxes, and spin boxes are now frequently
used for direct-entry data capture. Radio buttons and check boxes should
be used only if one or a small number of options exists. With long lists of
options, list boxes can be used. Spin boxes can be used to cycle through a
limited number of options.

1.4.4 Tabbing and Skipping

Galitz argues that automatic skipping to a new field should be avoided in
data-entry screen design for two reasons. First, with an automatic skip
feature, keyboard operators might make a field-size error that remains un-
detected because the cursor simply skips to a new field. The additional
character inadvertently added to the field will affect the character positions
of all other fields, thereby causing them to be in error. Second, in many
applications, data-entry fields often are not filled anyway. Thus, keyboard
operators must still tab to the next field. Rather than having keyboard
operators decide whether tabbing is needed, it is simpler to require them
always to tab to the next field. Although the tab requires an additional
keystroke, the operator's keying rhythm is maintained.

1.5 Data code controls

Data codes have two purposes. First, they uniquely identify an entity or
identify an entity as a member of a group or set. Textual or narrative
description does not always uniquely identify an entity: for example, two
people could have the same name. Second, for identification purposes,

SYSTEMS AUDITING

NOTES

148

codes often are more compact than textual or narrative description because
they require fewer characters to carry a given amount of information.

Poorly designed codes affect the input process in two ways: They are error
prone, and they cause recording and keying processes to be inefficient.
Auditors, therefore, must evaluate the quality of the coding systems used in
application systems to determine their likely impact on data integrity,
effectiveness, and efficiency objectives.

1.5.1 Data Coding Errors

There are five types of data coding errors:

1. Addition. An extra character is added to the code, e.g., 87942 coded as
879142.

2. Truncation. A character is omitted from the code, e.g., 87942 coded as
8792.

3. Transcription. A wrong character is recorded, e.g., 87942 coded as
81942.

4. Transposition. Adjacent characters of the code are reversed, e.g., 87942
coded as 78942.

5. Double transposition. Characters separated by one or more characters
are reversed, e.g., 87942 coded as 84972.

Five factors affect the frequency with which these coding errors are made:

1. Length of the code. Longer codes are more error prone. The notion that
length could be important derives from the work of Miller (1956). He
argues that humans effectively can hold only about five to nine (average
seven) "chunks" of information in short-term memory. In this light, long
codes should be broken up into chunks by using, for example, hyphens,
slashes, or spaces to reduce coding errors.

2. Alphabetic/numeric mix. If alphabetic and numeric characters are to be
mixed in a code, the error rate is lower if the alphabetic are grouped to-
gether and the numeric’s are grouped together. Thus, a code such as
ABN653 is less error prone than the code A6BS3N. The latter code is
also harder to key because it breaks the keying rhythm by interchanging
alphabetic and numeric’s.

3. Choice of characters. If possible, the characters B, I, 0, S, V, and Z
should be avoided in codes because they are frequently confused with
the characters 8,1, 0, 5, U, and 2. Also, the letters Y and N often are
illegible when they must be handwritten.

4. Mixing uppercase/lowercase fonts. Having to use the shift key during
keying of a code breaks the keying rhythm and increases the likelihood
of error. If possible, only an uppercase or a lowercase font should be
used for a code. Special characters, such as @, *, and # also cause
problems because the shift key must be used.

5. Predictability of character sequence. Some character sequences are
more predictable than others and, as such, are less error prone. For

SYSTEMS AUDITING

NOTES

149

example, the character sequence THE is more predictable than the
character sequence ZXQ.

1.5.2 Types of Coding Systems

Specific codes are chosen within the context of a coding system. Ideally, a
coding system achieves five objectives:

Unfortunately, it is impossible to achieve all these objectives simultane-
ously. The following subsections briefly examine four types of coding
systems that auditors will encounter frequently and the extent to which they
achieve these objectives.

1.5.3 Serial Codes

Serial coding systems assign consecutive numbers (or alphabetic) to an en-
tity, irrespective of the attributes of the entity. Thus, a serial code uniquely
identifies an entity. The code indicates nothing further about the entity, how-
ever, such as the category of items to which it belongs.

The major advantages of a serial code are the ease with which a new item
can be added and conciseness. The low mnemonic value of serial codes
can also be an advantage in some circumstances. For example, consider a
database environment in which extensive sharing of data occurs and the
number and types of users and their needs are in a state of flux. Different
users might wish to view data differently. A code that presumes one view of
data might be inappropriate for certain users. Thus, a serial coding system
might contribute better to the evolution of the system.

The code presents problems when the file of items is volatile that is,
significant numbers of additions and deletions occur. Deleted items must
have their codes reassigned to new items; otherwise, significant gaps in the
sequence occur, and the code is no longer concise. Users can become
confused if the codes are constantly reassigned to new entities. Because
the codes have no mnemonic value, they are also difficult to remember.

SYSTEMS AUDITING

NOTES

150

1.5.4 Block Sequence Codes

Block sequence codes assign blocks of numbers to particular categories of
an entity. The primary attribute on which entities are to be categorized must
be chosen, and blocks of numbers must be assigned for each value of the
attribute. For example, if account numbers are assigned to customers on
the basis of the discount allowed each customer, a block sequence code
would look like this:

Block sequence codes have the advantage of giving some mnemonic value
to the code. Nevertheless, choosing the size of the block needed can be
difficult (and the remedy if overflow occurs). If the block sizes are too large,
characters are wasted, and the code is no longer concise. Long codes are
more difficult to remember.

1.5.5 Hierarchical Codes

Hierarchical codes require selection of the set of attributes of the entity to
be coded and their ordering by importance. The value of the code is a
combination of the values of the codes for each attribute of the entity. For
example, the-following hierarchical code for an account has three
components (expenditure within departments within divisions):

C65 423 3956

Division number Department number Type of expenditure

Hierarchical codes are more meaningful than serial or block sequence
codes because they describe more attributes of the entities to which they
apply. Thus, they should be easier to recall. Nevertheless, they are not
always concise. As a result, their length undermines recall accuracy.
Sometimes they also mix alphabetics and numerics, which again
undermines recall accuracy.

Hierarchical codes sometimes present problems when change occurs. In
the example given previously, consider the implications of a change to the
organizational structure for example, department 423 might be assigned to

SYSTEMS AUDITING

NOTES

151

a different division C25. The codes for many items might have to be altered,
and in some cases extensive re-sequencing of master files might have to
occur.

1.5.6 Association Codes

With an association code, the attributes of the entity to be coded are se-
lected, and unique codes are then assigned to each attribute value. The
codes can be numeric, alphabetic, or alphanumeric. The code for the entity
is simply the concatenation of the different codes assigned to the attributes
of the entity. Unlike an hierarchical code, however, the order in which the
codes for the attributes occur in the overall code does not necessarily imply
some type of hierarchical relationship.

The following is an example of an association code assigned to a shirt:

SHM32DRCOT

where SH = shirt

M = male

32 = 32 centimeters, the neck size

DR = dress shirt

COT = cotton fabric

Association codes have high mnemonic value. They can be error-prone,
however, if they are not concise or they contain too much of a mixture of al-
phabetic and numeric characters. Error-prone characters, such as I, 0, and
S, also might have to be used if the code is to have mnemonic value.

1.6 Check digits

In some cases, errors made in transcribing and keying data can have
serious consequences. For example, keying the wrong stock number can
result in a large quantity of the wrong inventory being dispatched to a
customer. Aside from the costs of retrieving the inventory and replacing it
with the correct inventory, customer goodwill can be lost. One control used
to guard against these types of errors is a check digit. Check digits are now
used as a means of detecting errors in many applications for example,
airline ticketing, credit card processing, bank account processing, blood
bank item processing, and driver's license processing.

1.6.1 Nature of Check Digits

A check digit is a redundant digit(s) added to a code that enables the
accuracy of other characters in the code to be checked. The check digit can
act as a prefix or suffix character, or it can be placed somewhere in the
middle of the code. When the code is entered, a program recalculates the
check digit to determine whether the entered check digit and the calculated
check digit are the same. If they are the same, the code is most likely to be
correct. If they differ, the code is most likely to be in error.

1.6.2 Calculating Check Digits

There are many ways of calculating check digits. A simple way is to add up
the digits in a number and assign the result as a suffix character. For

SYSTEMS AUDITING

NOTES

152

example, if the code is 2148, the check digit is 2 + 1 -I- 4 + 8 = 15. Dropping
the tens digit, the check digit will be 5 and the code 21485. This check digit
does not detect a very common kind of coding error, however namely, a
transposition error. The incorrect code 2814 still produces the correct check
digit.

To overcome this problem a different method of calculating a check digit
can be used. The approach assigns different weights to different digits in
the code. Given, again, the code 2148, the steps are as follows:

1. Multiply each digit by a weight. Assume the weight used will be 5-4-3-2;
that is, 2 for the units digit, 3 for the tens digit, 4 for the hundreds digit, and
5 the thousands digit, viz:

8X2 =16

4X3 =12

1x4=4

2x5 =10

2. Sum the products = 42.

3. Divide by a modulus. In this case, assume we choose the modulus 11:

42 -.-.-= 3 with remainder 9

4. Subtract the remainder from the modulus and the result constitutes the
check digit.

11-9=2

5. Add the check digit to the code as a suffix. The result is 21482.

The check digit can be recalculated upon keying to detect a coding or key-
ing error, or upon reading the data into the computer. The recalculation for
this code proceeds as follows:

1. Multiply each digit by its corresponding weight. The check digit takes a
weight of 1.

2X1=2

8X2 =16

4X3 =12

1X4=4

2X5 =10

2. Sum the products = 44.

3. Divide by the modulus (44/11)=4

4. If the remainder is zero, there is a high probability the code is correct.

If the code contains alphabetics or a special character (such as a hyphen),
a check digit can still be calculated. Each alphabetic or special character
must be assigned a number according to some rule.

SYSTEMS AUDITING

NOTES

153

1.6.3 When to Use Check Digits

Overheads arise from using check digits because a redundant character
must be carried at least partially through the system. Extra computation is
also needed to calculate and validate the check digit. Therefore, use of
check digits should be limited to critical fields.

Manual calculation of or checking of check digits should be avoided. The
process is time-consuming and error-prone. For new codes, the check digit
should be precalculated automatically and assigned as part of the code.

Validation of check digits should be undertaken only by a machine for
example, during keying or by an input program. To save storage space, the
check digit can be dropped after it has been read by an input program and
recalculated upon output. The trade-off here is storage space versus
processing time.

1.7 Batch controls

Some of the simplest and most effective controls over data capture and
entry activities are batch controls. Batching is the process of grouping
together transactions that bear some type of relationship to each other.
Various controls then can be exercised over the batch to prevent or detect
errors or irregularities.

1.7.1 Types of Batches

There are two types of batches: physical batches and logical batches.
Physical batches are groups of transactions that constitute a physical unit.
For example, source documents might be obtained via the mail, assembled
into batches, spiked and tied together, and then given to a data-entry clerk
to be entered into an application system at a terminal. Similarly, documents
that are to he input to an electronic imaging system might be assembled
into batches before they are scanned or filmed.

Logical hatches are groups of transactions bound together on some logical
basis, rather than being physically contiguous. For example, different clerks
might use the same terminal to enter transactions into an application
system. Clerks keep control totals of the transactions that they have
entered. The input program logically groups transactions entered on the
basis of the clerk's identification number. After some period has elapsed, it
prepares control totals for reconciliation with the clerk's control totals.

1.7.2 Means of Batch Control

Two documents are needed to help exercise control over physical batches:
a batch cover sheet and a batch control register. A batch cover sheet
contains the following types of information:

1. A unique batch number:

2. Control totals for the batch:

3. Data common to the various transactions in the batch, e.g. transaction
type;

SYSTEMS AUDITING

NOTES

154

4. Date when the batch was prepared;

5. Information on errors detected in the batch: and

6. Space for signatures of personnel who have handled the batch in some
way, e.g. the person who prepared the batch and the person who keyed
the hatch.

A batch control register records the transit of physical batches between
various locations within an organization. Each person responsible for
handling batches has a batch register. The register is signed each time a
batch is received or dispatched. The person who brings the batch or takes it
away countersigns the register. In some cases the person taking over
responsibility for the batch also checks its contents. If a dispute arises over
the location of a batch, the batch control registers can be consulted.

1.8 Validation of data input

Data submitted as input to an application system should be validated as
soon as possible after it has been captured and as close as possible to its
source. Errors then can be corrected by persons who are likely to have
most knowledge about them and while the circumstances surrounding the
data are still fresh in their minds. Sometimes this objective cannot be
achieved. For example, the data in error might have been received from a
remote organization via an electronic data interchange system. Some time
could elapse before the receiving organization resolves the error with the
sending organization.

Any errors identified that are not corrected immediately should be
written to an error file (Figure 1-4). Otherwise, users might forget to correct
the errors. The input subsystem should use the error file to remind users
when they have not corrected errors on a timely basis. Reminder messages
can be displayed on screens or printed on hard-copy reports.

FIGURE 1-4 Use of an error file for data validation

SYSTEMS AUDITING

NOTES

155

1.8.1 Types of Data Input Validation Checks

To some extent the types of data input validation checks undertaken
depend on the nature of the data input method used. For example, if
documents are scanned via an imaging device, a quality-control person
should be responsible for examining document images, comparing them
against the original documents, and rejecting the image or undertaking
cleanup work if its quality is unacceptable.

To illustrate the nature of data input validation checks, however, consider
four types that can be undertaken when input data that is keyed in at a
terminal: (1) field checks, (2) record checks, (3) batch checks, and (4) file
checks. Each is discussed briefly in the following subsections.

Field checks

With a field check, the validation tests applied to the field do not depend on
other fields within the input record or within other input records. For exam-
ple, we can check whether a field that is supposed to contain numeric data
only does, in fact, contains only numeric characters.

Record Checks

With a record check, the validation tests applied to a field depend on the
field's logical interrelationships with other fields in a record. For example,
auditors can check whether the range of salary values in one field is
reasonable given the value of another field that indicates a person's
seniority.

Batch Checks

With a batch check, the validation tests examine whether the characteristics
of a batch of records entered are congruent with the stated characteristics
of the batch. For example, auditors can check whether the total of all
financial .fields in the batch of records equals the grand total given for the
batch.

File Checks

With a file check, the validation tests examine whether the characteristics of
a file used during data entry are congruent with the stated characteristics of
the file. For example, if auditors validate some of the characteristics of data
that is keyed into an application system against a master file, they can
check whether they are using the latest version of the master file.

1.8.2 Reporting Data Input Errors

Errors must be reported by the input validation program in a way that facili-
tates fast and accurate correction of the errors. Errors can be signaled via a
buzzer or bell. The cursor also can be made to flash to show the data item
in error. An error message should then be displayed to indicate the nature
of the error and possible corrective actions that might be undertaken. Error
messages must be designed carefully to be

SYSTEMS AUDITING

NOTES

156

1. Clear and concise. Messages should use short, meaningful, and familiar
words, avoid the passive voice, avoid contractions and abbreviations,
and issue instructions in the sequence to be followed.

2. Courteous and neutral. Messages should avoid familiarity, be polite and
instructive, avoid humor or condemnation, and assist the user to solve
the problem even if repeated errors are made.

1.9 Instruction input

Ensuring the quality of instruction input to an application system is a more
difficult objective to achieve than ensuring the quality of data input. Data
input tends to follow standardized patterns. The errors or irregularities that
are likely to occur usually can be anticipated. During instruction input,
however, users often attempt to communicate complex actions that they
want the system to undertake. On the one hand, the input subsystem must
provide considerable flexibility so users can accomplish their processing
objectives. On the other hand, it must exercise careful control over the
actions they undertake. The approaches used to communicate instructions
to an application system tend to trade off flexibility with control.

1.9.1 Menu-Driven Languages

The simplest way for users to provide instructions to an application system
is via a menu. The system presents users with a list of options. Users then
choose an option in some way for example, by typing a number or letter to
indicate their choice, positioning the cursor on the selection and pressing
the return key, pressing or releasing a button on a mouse, using a light pen,
or touching the screen with their ringer,

Different types of menus can be used. Menu bars contain items that always
appear on a screen. They provide major guidance for users when inter-
acting with a screen. Pull-down menus contain items that are used less fre-
quently. They disappear, for example, when users release a mouse button.
Pull-down menus often lead into cascading menus where highlighting one
menu item leads to a list of subsidiary menu items then being displayed.
Popup menus are used to provide users with a limited set of actions
specific to a certain place where they are located on a screen or a particular
action they are taking.

The following guidelines should reduce the number of errors that are likely
to occur using menu input.

1. Menu items should be grouped logically so they are meaningful and
memorable.

2. Menus with greater breadth and less depth are usually faster to use and
less error prone than menus with greater depth and less breadth.

3. Menu items should follow any natural order that exists. If no natural
order exists, short menus are often best ordered by frequency of
occurrence and long menus by alphabetical order.

SYSTEMS AUDITING

NOTES

157

4. Menu items that appear in more than one menu should retain the same
position within the different menus.

5. Menu items should be fully spelled, clear, concise, verbs or nouns or
verb-noun pairs.

6. The basis for selecting a menu item should be clear for example,
numbers (starting with one, not zero), a mnemonic abbreviation, or a
radio button.

7. Where other output is displayed on a screen, the menu should be clearly
differentiated. Alternatively, pull-down or pop-up menus can be used to
hide some or the entire menu.

1.9.2 Question-Answer Dialogs

Question-answer dialogs are used primarily to obtain data input. The
application system asks a question about the value of some data item, and
the user responds. Nevertheless, question-answer dialogs also can be
used to obtain instruction input in conjunction with data input.

If the answers to be provided in a question-answer dialog are not clear,
users could make errors when they provide instruction (or data) input. A
well-designed question-answer dialog makes clear the set of answers that
are valid. In those cases in which the required answers are not obvious, a
help facility can be used to assist inexperienced users.

1.9.2 Command Languages

Command languages require users to specify commands to invoke some
process and a set of arguments that specify precisely how the process
should be executed. For example, SQL is a database interrogation
language that uses a command-language format. To print the customer
numbers of those customers who had more than ten transactions over
$200, the following SQL command sequence might be specified:

SELECT CUSTNO

FROM TRANS

WHERE AMOUNT > '200'

GROUP BY CUSTNO

HAVING COUNT (*) > '10';

In this example, "SELECT" is a command, and "CUSTNO" is an argument.

Two major decisions must be made in the design of command languages:
first, whether to use a large number of commands with a small number of
arguments or a small number of commands with a large number of
arguments; and second, whether to use keywords or position to specify the
arguments. These decisions affect how easy the language is to use and the
number of errors users are likely to make.

SYSTEMS AUDITING

NOTES

158

In most situations, it appears better to use command languages with a
small number of commands and a large number of arguments. Inevitably,
users seem to employ only a small subset of the commands available in a
command language perhaps because they have 'difficulty remembering all
the commands. Thus, it seems better to make these commands powerful
by providing an extensive list of arguments.

Whether arguments should be specified by keywords or position seems to
depend on the user's expertise with the command language. With a little
experience, presumably most users would prefer to type the following:

COPY MYFILE YOURFILE

instead of

COPY FROM = MYFILE TO = YOURFILE

Nevertheless, as argument lists become longer, remembering the position
of each argument and whether it is mandatory or optional becomes more
difficult. Keyword specification of arguments might then be preferred.

To facilitate recall of commands, command names should be meaningful.
Moreover, commands that specify opposite actions should be congruent
with one another in the sense of everyday usage of the commands. For
example, when users wish to add characters to or remove them from a file,
they are likely to prefer the commands INSERT/DELETE to the commands
INSERT/OMIT.

To reduce typing effort, it should be possible to truncate commands. This
strategy is easier to implement when only a small number of commands are
used because truncations are likely to be unique. There are several ways to
truncate commands for example, use the first and last letter of the
command or delete vowels from the command. Whatever the truncation
strategy used, it should be applied consistently across all commands.

Prompts and defaults reduce the number of errors made using a command
language. For example, if users cannot remember the arguments asso-
ciated with a command, they should be able to type a "?" or press some
other key to obtain a prompt from the language on each argument required.
Similarly, a command language reduces typing effort if it supplies the likely
value of an argument as a default. For example, some spreadsheet
command languages use the position of the current cell as the default value
in many commands. The default can simply be overwritten if it is not the
value required.

1.9.3 Forms-Based Languages

Forms-based languages require users to specify commands and data in the
context of either some input or output form. if the output were some type of
graph, users might employ a light pen to select a command that indicates
they want the scales of the axes to be changed.

Forms-based languages can be successful if users solve problems in the
context of input and output forms. In these cases the syntax of the
language corresponds to the ways users think about the problem. As a
result, input errors are reduced, and the language tends to be used

SYSTEMS AUDITING

NOTES

159

effectively and efficiently. When the functions to be performed do not map
easily into the context of input and output forms, however, forms-based
languages tend to be awkward and unwieldy to use.

1.9.4 Natural Languages

Natural language interfaces are still primarily the subject of substantial re-
search and development efforts. Nevertheless, a few commercial products
are now available. Auditors, therefore, might confront them increasingly in
selected application domains and be required to evaluate their capabilities.

The ultimate goal of research on natural language interfaces is to enable
relatively free-form natural language interaction to occur between users and
an application system, perhaps via a speech production/recognition device.
For certain types of applications, this objective might be laudable. Natural
language might not be the best form of interface, however, for all types of
applications. In particular, many of the sorts of applications that tend to
concern auditors might not be suited to natural language interfaces.

Current natural language interfaces have several limitations:

1. They do not always cope well with the ambiguity and redundancy present
in natural language. For example, the meaning of the sentence "Time
flies." is different depending on whether "time" is the noun and "flies" is
the verb or vice versa.

2. Substantial effort sometimes must be expended to establish the lexicon
for the natural language interface. Users must define all possible words
they could use, and this work must be redone each time a new
application domain is to be accessed via natural language.

3. Even minor deviations outside the lexicon established for the application
domain can cause problems. Users might be unaware of the precise
boundaries of the domain and be inhibited in the commands they issue
in case they traverse these boundaries.

4. If the database with which users interact is subject to frequent definitional
changes, natural language interfaces can quickly become problematic.
The lexicon must be able to evolve in light of definitional changes.
Current lexicons do not always adapt well to changes in the database
definition.

5. Users might be unaware of the ambiguity that can exist in natural
language responses that the system gives to the commands they issue.
For example, the query "How many stores in Tasmania had price
overrides for sales of windsurfers?" might evoke a response of "none." If
no stores in Tasmania are selling windsurfers, however, the response
might be misleading.

6. It is still unclear whether the wordiness of natural language leads to
ineffective and inefficient interaction with an application system. If users
wish to express commands, therefore, in a formal, constrained, or

SYSTEMS AUDITING

NOTES

160

abbreviated way, a natural language interface should be able to accept
this form of input.

7. Users still need some training when they employ natural language inter-
faces. Otherwise, they might ask queries that a natural language
interface with even an extensive lexicon might not be able to interpret.

Until these technical problems have been overcome, auditors should be
cautious in their evaluation of natural language interfaces. If it is critical that
absolute precision be attained in the command and data input supplied to
an application system and in the responses obtained from the system, other
types of interfaces might be better.

1.10 Validation of instruction input

Like data input, instruction input entered into an application system also
must be validated. Auditors might have little concern about the validity of
instruction input when (1) the instructions are provided as part of a widely
used application software package (e.g., the menu in an accounts
receivable package) or (2) the instructions are interpreted via a high-level
programming language (e.g., SQL commands in a database management
system package). Where instruction input is designed and implemented
specifically for a particular application system, however, auditors must
evaluate the ways instructions are validated more carefully.

1.10.1 Types of Instruction Input Validation Checks

Three types of validation checks can be undertaken on input instructions:
(7) lexical checks, (2) syntactic checks and (3) semantic checks. Each is
discussed briefly in the following subsections.

Lexical Validation

During lexical validation, the system evaluates each "word" entered by a
user. Three types of words can be encountered: (1) identifiers (labels, vari-
ables), (2) terminals (operators, reserved words), and (3) literals (numerical
constants, strings). Because words are formed from characters, the system
must establish rules whereby strings of characters are recognized as
discrete words. Usually this recognition occurs via boundary characters and
delimiters. For example, a space or an operator (*, /, +,—) might delimit a
word.

To illustrate lexical analysis, assume the following SQL command is en-
tered by a user:

SELECT name

FROM employee

WHERE salary > '15000'

The lexical analyzer in the system would read the command, character by
character, and attempt to identify the words entered. For example, it would
see that a space terminates the characters S, E, L, E, C, and T and that the
character string "SELECT" is a reserved word within the language.

SYSTEMS AUDITING

NOTES

161

Similarly, a space terminates the variable "salary," the constant "15000" is
delimited by the quotes symbol, and the variable "salary" and the constant "
'15000' " are separated by an operator ">." If the lexical analyzer cannot
recognize a valid word, it must print or display an error message so users
can undertake corrective action.

Syntactic Validation

During syntactic validation, the system reads the string of words identified
and validated by the lexical analyzer and attempts to determine the
sequence of operations that the string of words is intended to invoke. For
example, an instruction issued in an interactive command language might
be the following:

INTEARN = (OLDBAL + DEPOSITS - WITHDRAWS)*INTEREST

The parentheses imply a particular sequence of operations, namely:

Add DEPOSITS to OLDBAL

Subtract WITHDRAWS from the result

Multiply the results by INTEREST

Store the result in INTEARN (interest earned)

Without the parentheses, the first action invoked might be to multiply WITH-
DRAWS by INTEREST.

The syntax analyzer validates the syntax of an instruction by parsing the
string of words entered to determine whether it conforms to a particular rule
in the grammar of the language. Thus, the quality of syntactic validation
depends on having a formal and complete description of the grammar on
which the language is based and on making a good choice with respect to
the parsing scheme chosen. Otherwise, errors in an instruction entered
might not be identified or the error message displayed or printed might not
be meaningful.

Semantic Validation

During semantic validation, the system completes its analysis of the mean-
ing of the instruction entered. The boundary between syntactic validation
and semantic validation is often obscure. During semantic validation,
however, the language might check, for example, whether two variables
that are to be multiplied together are numeric types and not alphabetic or
alphanumeric types. Similarly, the system might prevent a comparison of
two numeric values that would be meaningless for example, the salaries of
employees with their weight.

The quality of semantic analysis depends on how well the constraints that
relate to the data on which the instructions operate can be expressed.
Database management systems that provide extensive data definition
facilities, for example, allow high-quality semantic validation to be
performed. The system can check that the operations to be undertaken on
data items or the results produced conform to the constraints expressed in
relation to the data items in the data definition.

SYSTEMS AUDITING

NOTES

162

Reporting Instruction Input Errors

The guidelines for reporting errors discussed earlier for data validation
apply also to instruction validation. Error messages must communicate to
users as completely and meaningfully as possible the nature of errors made
during instruction input. Because the instructions that users enter could be
variable and complex, substantial time can be lost if error messages do not
allow users to pinpoint errors quickly. Multiple levels of error messages
might be provided to cater for different levels of user expertise.
Furthermore, if the system fails to identify an error, unbeknown to users,
meaningless results can be produced.

1.11 Audit trail controls

The audit trail in the input subsystem maintains the chronology of events
from the time data and instructions are captured and entered into an
application system until the time they are deemed valid and passed onto
other subsystems within the application system (e.g., the communications
subsystem or the processing subsystem).

1.11.1 Accounting Audit Trail

In the case of data input, the accounting audit trail must record the origin of,
contents of, and timing of the transaction entered into an application
system. The types of data collected include the following:

1. The identity of the person (organization) who was the source of the data,

2. The identity of the person (organization) who entered the data into the
system,

3. The time and date when the data was captured,

4. The identifier of the physical device used to enter the data into the
system,

5. The account or record to be updated by the transaction,

6. The standing data to be updated by the transaction,

7. The details of the transaction, and

8. The number of the physical or logical batch to which the transaction
belongs.

This data must be collected irrespective of whether the data was first
captured on source documents, entered or read directly into the application
system, or received from another organization via some type of inter
organizational information system (say, an electronic data interchange
system).

When input data is validated, a time and date stamp should be attached so
the timing of data validation, error correction, and error resubmission
subsequently can be determined. In some cases, a processing reference
might be attached to the input data to indicate the program that performed
the validation tests. In a distributed system, for example, input validation
software could be replicated and executed at multiple sites. It might be

SYSTEMS AUDITING

NOTES

163

important to know which instance of the software performed the validation
tests, particularly if doubts exist about consistency among replications.

If the input validation program identifies an error that cannot be corrected
immediately, it must generate and attach a unique error number to the data
in error. This error number must be associated with the data until it is
corrected. It must be printed out or displayed on reports, entered on source
documents used to correct the error, or keyed in at a terminal if the data is
subsequently retrieved from the error file and corrected interactively. In this
way the history of the erroneous data can be traced until the time of its
correction.

In the case of instruction input, the audit trail might record the following
types of data:

1. The identity of the originator of the instruction,

2. The time and date when the instruction was entered,

3. The identifier of the physical device used to enter the instruction,

4. The type of instruction entered and its arguments, and

5. The results produced in light of the instruction.

Like data, instructions entered in error can also be assigned a unique error
number by the program that undertakes the validation. Unlike data,
however, erroneous instructions often are not recorded on an error file that
must be cleared. Instead, users simply reenter the instruction when they
have determined the nature of the error they have made. If they do not
reenter the instruction, the instruction is "lost." Any record of the instruction
error typically is used for other purposes for example, analysis of the
frequency with which different types of instruction errors are made.

SYSTEMS AUDITING

NOTES

164

2. Communication Controls

Structure

2.1 Introduction

2.2 Communication subsystem exposures

2.2.1 Transmission Impairments

2.2.2 Component Failure

2.2.3 Subversive Threats

2.3 Physical component controls

2.3.1 Transmission Media

2.3.2 Communication Lines

2.3.3 Modems

2.3.4 Port-Protection Devices

2.3.5 Multiplexors and Concentrators

2.4 Line error controls
2.4.1 Error Detection

2.4.2 Error Correction

2.5 Flow controls

2.6 Link controls

2.7 Topological controls

2.7.1 Local Area Network Topologies

2.7.3 Wide Area Network Topologies

2.8 Channel access controls

2.8.1 Polling Methods

2.8.2 Contention Methods

2.9 Controls over subversive threats

2.9.1 Link Encryption

2.9.2 End-to-End Encryption

2.9.3 Stream Ciphers

2.9.4 Error Propagation Codes

2.9.5 Message Authentication Codes

2.9.6 Message Sequence Numbers

SYSTEMS AUDITING

NOTES

165

2.9.7 Request-Response Mechanisms

2.10 Internetworking controls

2.11 Communication architectures and controls

2.12 Audit trail controls

2.12.1 Accounting Audit Trail

2.12.2 Operations Audit Trail

2.13 Existence controls

Objectives

After going through this unit, you should be able to:

• understand how to communication subsystem exposures

• understand how to Physical component controls

• understand how to Line error controls
• understand how to Flow controls and Link controls

• understand how to Topological controls

• understand how to Channel access controls and Controls over subversive
threats

• understand how to Internetworking controls

• understand how to Audit trail controls

2.1 Introduction

The communication subsystem is responsible for transporting data among
all the other subsystems within a system and for transporting data to or
receiving data from another system. Its physical manifestation could be a
cable (channel or bus) linking a disk drive with a central processor, or it
could be a complex configuration of minicomputers, microcomputers, and
communication lines) linking remote computers that must interact with one
another.

Auditors are likely to spend increasing amounts of time evaluating control
relating to the communication subsystem. The worldwide growth in
communications traffic associated with computer systems has been
dramatic, and it is likely to continue unabated for some time yet. Indeed,
many organizations now could not survive in the absence of secure,
effective, and efficient computer communication networks. We are also
moving progressively toward information superhighways that will provide
enormous capacity to transmit large volumes of voice, image, video, and
data communications. Many organizations will have to make use of these
superhighways if they are to survive competitively.

SYSTEMS AUDITING

NOTES

166

In this lesson we examine the types of controls that can be established
within the communication subsystem to preserve asset safeguarding and
data integrity. Although effectiveness and efficiency objectives are critical,
we are able to consider them only in passing because they involve complex
issues that warrant separate volumes. We focus, instead, on controls to
reduce losses from failure in the subsystem components and deliberate
attempts to subvert the authenticity and privacy of data traversing the
subsystem components.

2.2 Communication subsystem exposures

Three major types of exposure arise in the communication subsystem:
First, transmission impairments can cause differences between the data
sent and the data received; second, data can be lost or corrupted through
component failure; and third, a hostile party could seek to subvert data that
is transmitted through the subsystem. The following subsections briefly
examine each type of exposure.

2.2.1 Transmission Impairments

When data is transported across a transmission medium, three types of
impairments can arise: attenuation, delay distortion, and noise. Attenuation
is the weakening of a signal that occurs as it traverses a medium. It
increases as the distance traveled by the signal increases. In the case of
analog signals, amplifiers must be used after a signal has traveled a certain
distance to boost the signal to a higher strength (amplitude). Otherwise, the
receiver will not be able to detect and interpret the signal, or it will be
corrupted by noise. In the case of digital signals, repeaters are used to
boost the signal strength periodically as the signal traverses the medium.
Attenuation can also cause distortion of analog signals. An analog signal is
made up of a number of frequencies, and the amount of attenuation
suffered varies across frequencies. Digital signals also suffer from
attenuation distortion. They use a narrower range of frequencies, however,
and thus the attenuation distortion that arises is less.

Delay distortion occurs when a signal is transmitted through bounded
media (twisted-pair wire, coaxial cable, optical fiber). It does not occur when
the signal is transmitted through air or space (free-space transmission).
Different signal frequencies traverse bounded media with different
velocities. Thus, signals are distorted because their different frequency
components are subject to different delays. Delay distortion can have a
marked effect on digital data because the signal energy in one bit position
can spill over into another bit position.

Noise is the random electric signals that degrade performance in the
transmission medium. There are four types of noise: white noise, inter
modulation noise, crosstalk, and impulse noise. White noise (thermal noise)
arises through the motion of electrons. It increases as a function of absolute
temperature. Intermodulation noise arises when the output from a
component in the communication subsystem is not a linear function of its

SYSTEMS AUDITING

NOTES

167

input. It can arise because of component malfunctioning. Crosstalk arises
because signal paths become coupled. Bounded media are placed too
close to each other, or the signal emitted by antennas used with unbounded
media overlap. Impulse noise arises for a variety of reasons: atmospheric
conditions (e.g., lightning), faulty switching gear, and poor contacts.

Noise increases as more data is transmitted over a medium. If the public
telephone exchange network is used for data transmission, for example,
line errors increase during peak periods because the increased traffic
produces additional noise. Aside from the problems that arise with
transmission errors caused by noise, wire tappers also can use noise to
mask unauthorized activities.

2.2.2 Component Failure

The primary components in the communication subsystem are (1)
transmission media for example, twisted-pair wire, optical fiber, and
microwave; (2) hardware for example, ports, modems, amplifiers,
repeaters, multiplexors, switches, concentrators; and (3) software for
example, packet switching software, polling software, data compression
software. Each of these components may fail. As a result, data in the
communication subsystem may be lost, corrupted, or routed incorrectly
through the network and perhaps displayed to a person who is
unauthorized to view the data.

Hardware and software failure can occur for many reasons for example,
failure in an integrated circuit, a disk crash, a power surge, insufficient
temporary storage for a queue, or program bugs. The failure can be either
temporary or permanent. For example, an intermittent failure in a modem
could corrupt a bit pattern only in short bursts a temporary failure. Or an
operating system could crash for some unknown reason, however, and the
operator might be unable to restart it on a timely basis a permanent failure.
The failure also can be either local or global. For example, the failure of a
microcomputer terminal affects only the users of the terminal a local failure.
Failure in a concentrator, however, affects all users connected to the
concentrator a global failure.

2.2.3 Subversive Threats

In a subversive attack on the communication subsystem, an intruder
attempts to violate the integrity of some component in the subsystem. For
example, invasive or inductive taps can be installed on telephone lines
using, say, a data scope. An invasive tap enables the intruder either to read
or to modify the data being transmitted over the line. An inductive tap
monitors electromagnetic transmissions from the line and allows the data to
be read only. Similarly, satellite signals propagated in broadcast mode can
be read by a ground receiver over a wide geographic area. Modifying
satellite transmissions, on the other hand, is more difficult.

Subversive attacks can be either passive or active (Figure 2-1). In a
passive attack, intruders attempt to learn some characteristic of the data

SYSTEMS AUDITING

NOTES

168

being transmitted. They might be able to read the contents of the data so
the privacy of the data is violated. Alternatively, although the content of the
data itself might remain secure, intruders could read and analyze the clear
text source and destination identifiers attached to a message for routing
purposes. They also could examine the lengths and frequency of messages
that are transmitted. These latter attacks are known as traffic analysis. They
can provide an intruder with important information about messages being
transmitted. For example, analysis of source and destination identifiers can
provide insights into troop movements in a military application, or they could
provide sales information in a commercial application. Similarly, the lengths
and frequency of messages could indicate the types of messages being
transmitted.

FIGURE 2-1 Subversive threats to the communication subsystem.

There are seven types of active attack:

1. Intruders could insert a message in the message stream being
transmitted. For example, in an electronic funds transfer system
(EFTS), they could add a deposit transaction for their account to the
message stream being transmitted.

2. Intruders could delete a message being transmitted. For example, they
could remove an account withdrawal transaction from the message
stream being transmitted.

3. Intruders could modify the contents of a message being transmitted. For
example, they could increase the amount field in a deposit transaction.

SYSTEMS AUDITING

NOTES

169

4. Intruders could alter the order of messages in a message stream. For
example, they could change the sequence of deposit and withdrawal
transactions to affect penalties incurred or interest charged or earned
on their account.

5. Intruders could duplicate messages in a message stream. For example,
they could copy deposit transactions for their account.

6. Intruders could deny message services between a sender and a
receiver by corrupting (jamming), discarding, or delaying messages.
This attack is similar to a message deletion attack. Message deletion is
a transient attack on an established association between a sender and
a receiver, however, whereas an attack that denies message services
prevents the association from being established in the first place. It
might be used by a competitor to severely impair the day-to-day
operations of an organization.

7. Intruders could use techniques to establish spurious associations so
they are regarded as legitimate users of a system. For example, they
could play back a handshaking sequence previously used by a
legitimate user of the system. Chapter 10 discusses this type of attack
as part of our consideration of boundary subsystem controls.

2.3 Physical component controls

One way to reduce expected losses in the communications subsystem is to
choose physical components that have characteristics that make them
reliable and that incorporate features or provide controls that mitigate the
possible effects of exposures. The following subsections give an overview
of how physical components can affect communication subsystem
reliability.

2.3.1 Transmission Media

A transmission medium is a physical path along which a signal can be
transported between a sender and a receiver. Figure 2-2 shows the various
types of transmission media that can be used in the communications
subsystem. With bounded (or guided) media, the signals are transported
along an enclosed physical path. Bounded media comprise twisted-pair
wire, coaxial cable, and optical fiber. With unbounded (unguided) media,
the signals propagate via free-space emission rather than along an
enclosed physical path. Unbounded media comprise terrestrial and satellite
microwave, radio frequency, and infrared.

SYSTEMS AUDITING

NOTES

170

FIGURE 2-2 Types of transmission media

Tables 2-1a and 2-1b provide an overview of the capabilities of the various
transmission media and their relative strengths and weaknesses in relation
to the various exposures that can arise in the communication subsystem.
Twisted-pair wire permits only a low rate of data transmission. Amplifiers for
analog signals or repeaters for digital signals must be placed every few
kilometers if data is to be transmitted over long distances. Unfortunately,
amplifiers also increase distortion on the line. Moreover, by increasing the
strength of the signal, both amplifiers and repeaters increase free-space
emanations that can be picked up via an inductive wiretap. Indeed, wiretaps
can be installed easily on twisted pair. Twisted pair is also highly
susceptible to interference such as crosstalk and noise. These problems
are offset to some extent, however, by the low cost of twisted pair.

Coaxial cable permits a moderate rate of data transmission over relatively
short distances. If data is to be transmitted over long distances, amplifiers
or repeaters must be installed more frequently than for twisted pair. Coaxial
cable is moderately susceptible to various forms of interference, although
less so than twisted-pair wire. It is relatively easy to install a wiretap on
coaxial cable, although more difficult than with twisted pair. Coaxial cable is
also more expensive to install than twisted pair.

Optical fiber permits very high rates of data transmission over relatively
long distances before repeaters must be used. Although signals transmitted
over optical fiber suffer from attenuation, nonetheless, they are immune to
other forms of interference such as noise and crosstalk. Moreover, it is
difficult to install a wiretap on optical fiber. Chao describes two methods of
wiretapping that can be used, both of which are expensive. Under the
bending method, the fiber is bent such that some light loss occurs at the

SYSTEMS AUDITING

NOTES

171

bend. Sensitive equipment is needed to pick up the light loss that results.
Under the insertion method, the fiber is first broken.

TABLE 2-1a Characteristics of Bounded Transmission Media

TABLE 2-1b Characteristics of unbounded Transmission Media

A tapping device and transmitter with a light source are then inserted.
Providing a continuous flow of data is maintained over the fiber, installation
of the insertion wiretap will be detected because the link will go down for a
short period.

Terrestrial microwave permits moderate rates of data transmission over rel-
atively long distances. Line-of-sight transmission is required; however, thus,
a microwave station is needed about every 40 kilometers because of the
earth's curvature. Microwave transmission is highly susceptible to various
forms of interference. For example, rain causes signal attenuation. It is also
relatively easy to install a wiretap. The wiretap will break the line-of-sight
transmission, however, and therefore it should be easy to detect.

Satellite microwave permits moderate rates of data transmission over long
distances. Line-of-sight transmission is maintained by having the satellite
orbit the earth so it remains stationary with respect to its earth stations
(achieved by having the satellite at a height of approximately 35,800
kilometers). Like terrestrial microwave, satellite microwave is highly
susceptible to interference, and it can be wiretapped easily. If point-to-point
transmission is used, installation of the wiretap should be detected because
the signal will be broken. If the satellite is operating in broadcast mode
(point-to-multipoint transmission), however, the wiretap will not be detected.

SYSTEMS AUDITING

NOTES

172

Any earth station within the area of broadcast will be able to pick up the
satellite's transmission.

Radio frequency permits moderate rates of data transmission over
moderate distances. Like microwave transmission, it is highly susceptible to
interference. Radio frequency is omni-directional, however; that is, the
signal is transmitted in all directions. Thus, it is easy to wiretap, and the
wiretap will not be detected.

Infrared permits moderate rates of data transmission over short distances.
It is highly susceptible to interference, and it requires line-of-sight
transmission. Like microwave and radio frequency, it is easy to wiretap. The
wiretap will break the line-of-sight transmission, however, and therefore it
should be easy to detect.

2.3.2 Communication Lines

The reliability of data transmission can be improved by choosing a private
(leased) communication line rather than a public communication line. Public
lines use the normal public switching exchange facilities. As a result, users
often have no control over the lines allocated to them for data transmission
purposes. In some cases, however, users can specify the characteristics of
the lines they require. The switching center will then allocate them a line
having those characteristics. For small amounts of data transmission
(generally, less than a few hours per day), public lines are cheaper than
private lines.

Private lines are lines that are dedicated to service a particular user. In
terms of transmission reliability, they have two advantages. First, they allow
higher rates of data transmission. Thus, they are better able to
accommodate the overheads associated with controls that might be
implemented over transmitted data (e.g., encryption controls). Second,
private lines can be conditioned; that is, the carrier ensures the line has
certain quality attributes. A conditioned line limits the amounts of
attenuation, distortion, and noise that its users will encounter.

2.3.3 Modems

Computer hardware uses and generates discrete binary signals (Figure 2-
3a). For transmission purposes, these signals are sometimes converted to
analog signals (Figure 2-3b). The device that accomplishes this conversion
is called a modem or data set.

SYSTEMS AUDITING

NOTES

173

FIGURE 2-3(a) Digital signal (b) Analog signal

Modems undertake three other functions that affect the reliability of the
communication subsystem. First, they increase the speed with which data
can be transmitted over a communication line. They accomplish this
objective by using some type of multiplexing technique (discussed
subsequently). Higher rates of data transmission mean the overheads
associated with controls have less impact. Higher rates of data
transmission also mean that someone who successfully wiretaps a line gets
access to more data.

Second, modems can reduce the number of line errors that arise through
distortion if they use a process called equalization. If a modem has dynamic
equalization capabilities, it will continuously measure the characteristics of
a line and perform automatic adjustments for attenuation and delay
distortion. Dynamic equalization is especially useful when public,
unconditioned lines are used. Recall, that users have no prior knowledge of
the characteristics of these lines.

Third, modems can reduce the number of line errors that arise through
noise. To compensate for noise, a variable-speed modem will decrease the
rate of data transmission as higher levels of noise are encountered. Recall
that as transmission speeds increase, the effects of noise are more
pronounced.

Modems work by varying either the amplitude, frequency, or phase of an
analog signal to represent a digital signal (Figure 2-4). Noise affects the
performance of the three modulation methods differently. Phase modulation
outperforms frequency modulation, which in turn outperforms amplitude
modulation. The high-speed modems now in use sometimes employ a
combination of methods to increase the speed of data transmission for
example, amplitude and phase modulation.

SYSTEMS AUDITING

NOTES

174

FIGURE 2-4 ((a) Wave form characteristics (b) Modulation techniques

2.3.4 Port-Protection Devices

Port-protection devices are used to mitigate exposures associated with dial-
up access to a computer system. When users place a call to the system
they seek to access, a connection is established with the port-protection
device rather than the host system. The port-protection device then
performs various security functions to authenticate users. Some examples
of these security functions follow:

1. Users could be permitted to place calls to the host system only from
authorized telephone numbers. When they dial the host system's
telephone number, the port-protection device could disconnect them and
then dial them back at their authorized number to ensure that they are
calling from an authorized location.

SYSTEMS AUDITING

NOTES

175

2. A port-protection device could eliminate the telltale modem tone that
autodialer routines can detect. It might respond to a call with a
synthesized voice message or with silence as it awaits further user input.

3. Users could be required to provide passwords before the port-protection
device will allow them access to the host system. The host system might
in turn exercise its own user authentication functions.

4. Port-protection devices could maintain an audit trail of all successful and
unsuccessful accesses to the host system. In addition, they might record
the times when different activities occurred and the duration of each
activity.

2.3.5 Multiplexors and Concentrators

Multiplexing and concentration techniques allow the bandwidth or capacity
of a communication line to be used more effectively. The common objective
is to share the use of a high-cost transmission line among many messages
that arrive at the multiplexor or concentration point from multiple low-cost
source lines.

Multiplexing techniques use static channel derivation schemes to assign
transmission capacity on a fixed, predetermined basis. Each data source
shares a common transmission medium, but each has its own channel.

The two common multiplexing techniques used are frequency-division mul-
tiplexing and time-division multiplexing. The former divides a single
bandwidth into several smaller bandwidths that are used as independent
frequency channels (Figure 2-5a). The latter assigns small, fixed time slots
to a user during which the user transmits the whole or part of a message
(Figure 2-5b). Thus, channels are defined in terms of either a frequency
band or a time slot.

Two types of time-division multiplexing are used. Synchronous time-division
multiplexing assigns time slots to each signal source on a round-robin
basis. If the source has no data to transmit when its turn arrives, its
corresponding time slot will be empty. Statistical or asynchronous
multiplexing assigns time slots on a needs basis. Each signal source has
an input buffer, and the multiplexor scans the input buffers collecting input
data to fill a frame. The multiplexor sends the frame when it is full. In this
light, statistical time-division multiplexing is more efficient than either
frequency-division or synchronous time-division multiplexing because
frequency bands and time slots are not wasted if a source has no data to
send.

Concentration techniques use schemes whereby some number of input
channels dynamically share a smaller number of output channels on a
demand basis. Three common concentration techniques are message
switching, packet switching, and line switching. In message switching, a
complete message is sent to the concentration point and stored until a
communication path can be established with the destination node. In packet

SYSTEMS AUDITING

NOTES

176

switching, a message is broken up into small, fixed-length packets. The
packets are routed individually through the network depending on the
availability of a channel for each packet. In line switching or circuit
switching, a device establishes temporary connections between input
channels and output channels where the number of input channels exceeds
the number of output channels.

FIGURE 2-5(a) Frequency division multiplexing, (b) Time division
multiplexing

Multiplexing and concentration techniques affect system reliability in several
ways:

1. Both allow more efficient use to be made of available channel capacity.
As a result, some channel capacity can often be used for backup
purposes.

2. Concentration techniques can route a message over a different path if a
particular channel fails.

SYSTEMS AUDITING

NOTES

177

3. Multiplexing and concentration functions often are incorporated into an
intelligent front-end processor that performs other functions such as
message validation and protocol conversion. These functions would
otherwise be performed by the host processor, thereby increasing the
workload of and reliance that must be placed on the host processor.

4. Both techniques help to protect data against subversive attacks. Wire
tappers have greater difficulty disentangling the myriad of messages
passing over a channel connected to a multiplexor or concentrator.
Conversely, sophisticated intruders gain access to more data if they
have suitable hardware and software and can determine the multiplexing
or concentration techniques used.

5. Multiplexors and concentrators are critical components in a network.
Thus, they should have a high mean-time-between-failure (MTBF).

2.4 Line error controls

Whenever data is transmitted over a communication line, recall that it can
be received in error because of attenuation, distortion, or noise that occurs
on the line. These errors must be detected and corrected. In the following
subsections, we examine some major methods used to detect and correct
transmission errors.

2.4.1 Error Detection

Line errors can be detected by either using a loop (echo) check or building
some form of redundancy into the message transmitted. A loop check
involves the receiver of a message sending back the message received to
the sender (Figure 2-6). The sender checks the correctness of the message
received by the receiver by comparing it with a stored copy of the message
sent. If a difference exists, the message is retransmitted with suitable line
protocol data to indicate the previous message received was in error. On
some occasions, the message received might have been correct. The
receiver's retransmission of the message back to the sender might have
been corrupted, however, and hence a difference exists.

FIGURE 2-6 Loop check on communications line

SYSTEMS AUDITING

NOTES

178

Because a loop check at least halves the throughput on communication
lines, normally it is used on full-duplex (simultaneous two-way
communication) lines or where communication lines are short. If lines are
short, the high protection afforded data transmission using a loop check
could justify the costs of the extra channel capacity needed. On full-duplex
lines, the return path is often underused anyway. In this light, it can be used
productively for error detection purposes.

Redundancy involves attaching extra data to a message that will allow cor-
rupted data to be detected. Two common forms of redundancy-based error
detection methods are parity checks and cyclic redundancy checks.

Parity checking involves adding an extra bit to a string of bits. Figure 2-7
shows the use of both horizontal parity bits and vertical parity bits on a 10-
character block of data. Each horizontal parity bit is used to detect whether
a character in the block has been corrupted. Nevertheless, if a burst of
noise on a line causes two bits in a character to flip from, say, zero to one,
a horizontal parity check will not detect the error. A vertical or block parity
check will detect the error, however.

With cyclic redundancy checks (CRCs), the block of data to be transmitted
is treated as a binary number. This number is then divided by a prime
binary number. The remainder is attached to the block to be transmitted.
The receiver recalculates the remainder to check whether any data in the
block has been corrupted.

Parity checks are employed when asynchronous data transmission is used
that is, when data is transmitted one character at a time. CRCs can also be
used with asynchronous transmission, but they tend to be used with
synchronous transmission that is, where data is sent as a continuous
stream of bits.

FIGURE 2-7 Horizontal and vertical odd parity check

2.4.2 Error Correction

When line errors have been detected, they must then be corrected. Two
methods used are (1) forward error correcting codes, and (2)
retransmission of data in error (backward error correction).

SYSTEMS AUDITING

NOTES

179

Forward error correcting codes enable line errors to be corrected at the re-
ceiving station. To determine what the correct data should be. redundant
data must he added to the data transmitted. If line errors are infrequent, this
redundant data can impose high overheads on the communication
subsystem. Moreover, even with redundant data. there is always a risk that
an attempted correction to an error will be carried out incorrectly. For these
reasons, retransmission of erroneous data is often the error correction
strategy chosen in preference to forward error correcting codes.

Nonetheless, forward error correcting codes have their place. For example,
retransmission is costly when propagation times are long, such as in
satellite transmission. Similarly, retransmission might be impractical in
broadcast situations where multiple receivers exist. The sender would have
to wait for multiple receivers to acknowledge correct receipt of the data.
Moreover, only some receivers might receive corrupted data.
Rebroadcasting the data would therefore impose overheads on receivers
who received the data correctly.

With retransmission, the sender sends the data again if the receiver indi-
cates the data has been received in error. An agreed-upon protocol is used
to indicate correct or incorrect receipt of the message. In the ASCII ACK-
NAK protocol, for example, an ACK signal is transmitted by the receiver if
the message received is correct, and a NAK signal is transmitted by the
receiver if the message received is incorrect. In some protocols, the sender
wails for either an ACK or a NAK signal before transmitting the next
message (stop and wait). In other cases, the sender continues to transmit
messages while awaiting an ACK or NAK signal. If a NAK signal is
received, the sender goes back to the message sent in error and
retransmits messages from that point (go back N).

Noise also can corrupt the control characters used for retransmission in an
error detection and correction system. An odd-even record count enables
such errors to be detected. For example, consider a situation in which
control characters are corrupted and two messages appear to the receiver
to be a single message. Assume the control character for the first message
was odd. The control character for the second message, an even number,
has been corrupted. Thus, when the receiver identifies a third message
having an. odd-numbered control character, it will recognize a message is
missing and an error has occurred.

2.5 Flow controls

Flow controls are needed because two nodes in a network can differ in
terms of the rate at which they can send. Receive, and process data. For
example, a mainframe can transmit data to a microcomputer terminal. The
microcomputer cannot display data on its screen at the same rate the data
arrives from the mainframe. Moreover, the microcomputer will have limited
buffer space. Thus it cannot continue to receive data from the mainframe
and to store the data in its buffer pending display of the data on its screen.
Flow controls will be used. Therefore, to prevent the mainframe swamping
the microcomputer and. as a result, data being lost.

The simplest form of flow control is stop-and-wait flow control. Using this
approach, the sender transmits a frame of data. When the receiver is ready

SYSTEMS AUDITING

NOTES

180

to accept another frame, it transmits an acknowledgment to the sender. The
sender will not transmit another frame until it receives an acknowledgment
from the receiver. Thus, the receiver controls the rate at which data reaches
it.

The stop-and-wait flow control protocol is inefficient because the commu-
nication channel remains unused for periods of time while the receiver is
processing the frames received. For this reason, the sliding-window flow
control approach has been developed. Using this approach, both the
sender and receiver have buffers that hold multiple frames of data which
allow them to overlap transmission and processing of data.

Figure 2-8 provides an overview of a sliding-window control protocol.
Assume the sender and receiver both has windows of seven frames (the
shaded boxes at time?). Think of the data to be sent and received, also, as
an endless sequence of data that will be broken up and allocated to one of
eight windows in a sending or receiving buffer. The protocol works as
follows:

1. At time t1, the sender sends frames F0 and F1 to the receiver.

2. At time t2, the sender's window shrinks by two frames to indicate frames
F0 and F1 have been sent.

3. At time t3, the receiver receives frames F0 and F1. The receiver's window
shrinks by two frames to indicate receipt of the frames.

4. At time t4, the receiver sends an acknowledgment to the sender
indicating readiness to receive frame F2 (thereby signaling that F0 and
F1 have been received safely). It then expands its window by two
frames.

5. At time t5, the sender receives the acknowledgment from the receiver
and expands its window by two frames. It then sends four frames F2, F3,
F4, and F5 to the receiver.

6. At time t6, the sender's window shrinks by four frames to indicate frames
F2, F3, F4, and F5 have been sent.

7. At time t7 the receiver receives frames F2, F3, F4, and F5. The receiver's
window shrinks by four frames to indicate receipt of the frames.

And so the process goes on. At any time, the receiver can also send a
receive-Not-Ready (RNR) frame. This type of frame acknowledges receipt
of prior frames but forbids the sender from transmitting any more frames
until a further instruction is issued.

SYSTEMS AUDITING

NOTES

181

FIGURE 2-8 Sliding-window flow control

2.6 Link controls

In wide area networks, line error control and flow control are important func-
tions in the component that manages the link between two nodes in a
network. The way these link-management components operate is specified
via a protocol. Two common protocols that are used are the International
Organization for Standardization's Higher-level Data Link Control (HDLC)
protocol and IBM's Synchronous Data Link Control (SDLC) protocol. Both
are packet protocols developed specifically for computer communications.
A newer packet protocol is Asynchronous Transfer Mode (ATM), which has
been designed to handle a wider variety of data rates and data types than
HDLC and SDLC. It is used commonly with broadband integrated services
digital networks (B-ISDN), which have been developed to support high-
speed communication of all types of data for example, sound and video as
well as computer data.

From an auditors' viewpoint, however, they can have increased confidence
in the likelihood of data being transferred accurately and completely
between two nodes in a wide area network if well-developed and well-
accepted protocols like HDLC, SDLC, and ATM are being used. To the
extent that little-known or idiosyncratic data link protocols are being used,
auditors must expand their evidence-collection work to obtain assurance
that data are being transferred accurately and completely between two
nodes in a wide area network.

2.7 Topological controls

A communication network topology specifies the location of nodes within a
network, the ways in which these nodes will be linked, and the data
transmission capabilities of the links between the nodes. Specifying the
optimum topology for a network can be a problem of immense complexity.

SYSTEMS AUDITING

NOTES

182

Consider some of the design constraints that must be taken into account.
First, an overall cost ceiling will apply, perhaps expressed as a limit on the
cost per bit of information to be transmitted. Second, throughput and
response time constraints exist. Communication of messages between
different points in the network must be achieved within a certain time. Third,
availability and reliability constraints exist. The network must be available
for use at any one time by a given number of users. If a component of the
network fails, alternative routing of messages or alternative hardware and
software might be needed.

In the following two subsections, we examine the topologies that are com-
monly used in local and wide area networks. We briefly examine the nature
of each topology and their strengths and weaknesses from a controls
viewpoint.

2.7.1 Local Area Network Topologies

Local area networks tend to have three characteristics: (1) they are
privately owned networks; (2) they provide high-speed communication
among nodes: and (3) they are confined to limited geographic areas (for
example, a single floor or building or locations within a few kilometers of
each other). They are implemented using four basic types of topologies: (1)
bus topology, (2) tree topology, (3) ring topology, and (4) star topology.
Hybrid topologies like the star-ring topology and the star-bus topology are
also used.

Bus Topology

In a bus topology, nodes in the network are connected in parallel to a single
communication line (Figure 2-9). Each node in the network is passive. A tap
is used to transmit data onto and receive data from the bus. Data is
broadcast in both directions along the bus. At each end of the bus is a
terminator that absorbs a signal on the bus, thereby removing it from the
bus. A bus is a multipoint topology because more than two nodes share the
same communication line

Two types of bus are used. A baseband bus uses digital signaling. The sig-
nal consumes the entire bandwidth of the transmission medium. Thus, fre-
quency division multiplexing is not possible. Transmission is bidirectional
over short distances. Repeaters must be used to increase the length of the
network. Each repeater joins different segments of the communication line.
A baseband bus is susceptible to wiretapping because only a single signal
is traversing the bus.

A broadband bus uses analog signaling. Thus, frequency division multiplex-
ing can be used to support different types of traffic on the network.
Transmission is unidirectional because the amplifiers used in broadband
bus networks are unidirectional devices. Thus, an inbound and an outbound
path are required in the network. This objective is achieved by using either
two cables (one for each path) or using different frequencies on the same
cable. One end of the bus is designated as the head end. The head end
then either acts as a passive conductor between the inbound and outbound
cable, or it converts inbound frequencies to outbound frequencies on a
single cable. Broadband buses cover longer distances than baseband
buses because analog signals suffer less from attenuation, distortion, and

SYSTEMS AUDITING

NOTES

183

noise than digital signals. A broadband bus is also less susceptible to
wiretapping than a baseband bus because multiple signals are traversing
the bus.

From the auditors' perspective, the following control considerations arise
with a bus topology:

1. Relative to other topologies like the ring, a bus degrades the
performance ot the transmission medium because the taps that connect
each node to the bus introduce attenuation and distortion to the signal
being transmitted.

2. Because the taps that connect each node to the network are passive,
the network will not fail if a node fails. Thus, bus networks are fairly
robust when node failures occur.

3. Because all nodes have access to traffic on the network, messages not
intended for a particular node can be accessed either deliberately or
accidentally by the node. Thus, controls must be implemented to protect
the privacy of sensitive data (e.g., encryption controls).

FIGURE 2-9 Bus network topology

FIGURE 2-10 Tree network topology

SYSTEMS AUDITING

NOTES

184

Tree Topology

In a tree topology, nodes in the network are connected to a branching com-
munication line that has no closed loops (Figure 12-10). In this regard, a
tree topology is simply a generalization of a bus topology. As with a bus,
messages are broadcast along the transmission medium. Moreover, as with
a bus, each node uses a passive tap to broadcast data onto and receive
data from the communication line.

It is difficult to propagate digital signals through the branching points that
exist in a tree topology. Thus, tree topologies use analog signaling rather
than digital signaling. Each node broadcasts messages in the direction of
the root of the tree (which constitutes the head end). The root then
propagates messages along the outbound path.

From the auditors' perspective, the control considerations that apply to a
bus topology also apply to a tree topology.

Ring Topology

In a ring topology, nodes in the network are connected via repeaters to a
communication line that is configured as a closed loop (Figure 2-11). The
repeater is an active device: It inserts data onto a line, receives data from a
line, and removes data from a line. In many ring networks, data is
transmitted only in one direction on the ring (either clockwise or
counterclockwise). A node often breaks a message up into packets of data
and then inserts each packet on the ring. A ring is an example of a point-to-
point (rather than a multipoint) topology. Each node is connected directly to
another node; no intermediate node has to be traversed.

FIGURE 2-11. Ring network topology.

From the auditors' perspective, the following control considerations arise
with a ring topology:

1. Unlike the taps used in a bus network, repeaters do not introduce
attenuation and distortion to the signal being transmitted. Indeed,
repeaters retransmit a clean signal after the signal has been received.
Timing errors arise, however, as bits of data are transmitted around the
network. These timing errors accumulate and effectively limit the number
of repeaters that can be used in the network.

SYSTEMS AUDITING

NOTES

185

2. Because repeaters are active components in a ring topology, they will
bring the network down if they fail. Repeaters might have a bypass
mode, which is useful if their node is down.

3. Because all traffic on the network must be routed through each node's
repeater, messages not intended for a particular node can be accessed
either deliberately or accidentally by the node. As with bus networks,
controls must be implemented to protect the privacy of sensitive data
(e.g., encryption controls).

Star Topology

In a star topology, nodes in the network are connected in a point-to-point
configuration to a central hub (Figure 2-12). The central hub can act as a
switch. It can route messages from one outlying node to another outlying
node. Alternatively, it can broadcast messages from one node to all other
nodes or some subset of nodes.

From the auditors' perspective, the following control considerations arise
with a star topology:

1. The reliability of the central hub is critical in a star network. If the central
hub fails, the entire network will be brought down.

2. Failure in an outlying node or in a communication line linking a node to
the hub has only a limited effect on the network. The remaining nodes
can still transmit data to each other.

3. The security of the central hub is critical. All data must be transmitted
through the hub. Therefore, compromise of the hub can mean all
messages are compromised.

4. Servicing and maintenance of a star network are relatively easy.
Diagnosis of problems can be performed from the central hub, and faults
usually can be located quickly.

FIGURE2-12.Star network topology

SYSTEMS AUDITING

NOTES

186

Hybrid Topologies

Various types of hybrid topologies are also used in local area networks. For
example, in the star-bus topology, nodes are connected via relatively long
communication lines to a short bus that is usually housed in a wiring closet.
Star-bus networks can be expanded easily, simply by connecting another
drop cable to the bus. They have the control advantages and
disadvantages of a bus. Nevertheless, they have an additional advantage
because physically the short-length bus can be easily secured.

In the star-ring topology, nodes are connected via relatively long communi-
cation lines to a short-diameter ring. Again, this type of topology allows the
network to be expanded relatively easily. From a control viewpoint, star-ring
topologies have the advantages and disadvantages of a ring. They have an
additional advantage, however, in that physically the short-diameter ring
can be easily secured.

2.7.3 Wide Area Network Topologies

Wide area networks have the following characteristics:

(1) they often encompass components that are owned by other parties
(e.g., a telephone company);

(2) they provide relatively low-speed communication among nodes; and

(3) they span large geographic areas.

With the exception of the bus topology, all other topologies that are used to
implement local area networks can also be used to implement wide area
networks. The most commonly used topology in a wide area network,
however, is a mesh topology. In a mesh topology, conceptually every node
in the network can have a point-to-point connection with every other node
(a fully connected network). This topology is usually too expensive,
however, and one node often must communicate with another node through
intermediate nodes (Figure 2-13). A path between nodes is established
using any of the concentration techniques discussed previously: message
switching, packet switching, and line switching.

From a controls viewpoint, a mesh topology is inherently reliable because
data can be routed via alternative paths through the network. If one path
fails, the concentration methods used allow the data to be routed via
another path. A major concern, however, is that reliance often must be
placed on other parties to ensure the security, integrity, and reliability of the
network. If, for example, a node that is owned and managed by another
party is compromised, all data passing through this node is at risk. These
concerns motivate the use of encryption controls in wide area networks.

SYSTEMS AUDITING

NOTES

187

FIGURE 2-13 Mesh network topology

2.8 Channel access controls

Two different nodes in a network can compete to use a communication
channel. Whenever the possibility of contention for the channel exists,
some type of channel access control technique must be used. These
techniques fall into two classes: polling methods and contention methods.
The following subsections provide a brief description of each class of
techniques.

2.8.1 Polling Methods

Polling (noncontention) techniques establish an order in which a node can
gain access to channel capacity. There are two forms of polling: centralized
polling and distributed polling. In centralized polling, one node within the
network is designated as the control node or master node. This node takes
responsibility for asking each other node in turn whether they wish to use
the channel. For example, in the bus topology shown in Figure 2-14, the
control node polls each other node according to a preset polling list: first
node 1, then node 2, then node 3, then node 4, and so on, until it returns
again to poll node 1. If a node has no message to send, the control node
polls the next node on the list. If a node has a message to send, however,
channel access is given to the node until its message or packet is sent. The
next node on the polling list is then polled.

FIGURE 2-14. Centralized polling via a central node on a bus

SYSTEMS AUDITING

NOTES

188

In distributed polling, each node takes some responsibility for control over
channel access. For example, a common form of distributed polling is token
passing. A token is a special packet of information that traverses the
channel. When a node wants to transmit data, it must first obtain the token
and remove it from the channel. A common approach is to change a bit in
the token so that it becomes a start-of-packet header. In Figure 2-15, for
example, assume node 1 on the ring wants to send' a message to node 4.
Node 1 will "grab" the token as soon as it passes, "attach" its message to
the token, and insert it onto the ring. The address of the message will be
read by each node as it passes along the ring. Node 4 will recognize that it
is the intended recipient and read the message. It will not remove the
message, however, from the ring. Instead, it will allow it to return to node 1
(the sender). Node 1 can then determine that the message has reached its
intended destination. It will remove the message from the ring and then
return the token to the ring.

FIGURE 2-15. Distributed polling with token passing

Several types of problems can arise with token passing techniques:

1. A token can be corrupted as it traverses the communications line. As a
result, nodes in the network that wish to send data will not be able to
detect the token. Some type of protocol must exist whereby one of the
nodes will introduce a new token on the channel if it does not detect a
token within some time period. If that node fails to enter a token within
some time period, another node might then enter a token onto the
channel.

2. A node could fail to release the token after capturing it to read a
message. Again, other nodes in the network that wish to send data will
not be able to detect the token, and so a protocol must exist to
reintroduce a token onto the channel.

3. The receiving node's address in a message could be corrupted. As a
result, the receiving node might not detect a message intended for it.

SYSTEMS AUDITING

NOTES

189

The sending node must recognize that the token has returned without
the message having been read by the intended receiver. The message
must then be resent.

4. The sending node's address could be corrupted.

2.8.2 Contention Methods

Using contention methods, nodes in a network must compete with each
other to gain access to a channel. Each node is given immediate right of
access to the channel. Whether the node can use the channel successfully,
however, depends on the actions of other nodes connected to the channel.

Although several different types of contention methods have been pro-
posed, one commonly used with bus local area networks is called carrier
sense multiple access with collision detection (CSMA/CD). With CSMA/CD,
a node wishing to send a message first "listens" to the channel. If the
channel is clear, it transmits the message to be sent. If another node also
sends a message at the same time, however, a collision between the two
messages will occur as they traverse the channel. To detect collisions,
each node that sends a message must continue to listen to the channel. If a
sending node "hears" a collision, it knows it must retransmit its message.
To try to reduce the possibility of a further collision, a node will wait for
some time interval before retransmitting its message. Different nodes will
wait for different time intervals. If further collisions occur, nodes will wait
longer time intervals before retransmitting their messages.

2.9 Controls over subversive threats

There are two types of control over subversive threats to the
communication subsystem. The first seeks to establish physical barriers to
the data traversing the subsystem. The second accepts that an intruder
somehow will gain access to the data and seeks, therefore, to render the
data useless when access occurs. We examine this type of control in the
following subsections. Table 2-2 provides an overview of the controls
discussed.

2.9.1 Link Encryption

Link encryption protects data traversing a communication channel
connecting two nodes in a network (Figure 2-16). The sending node
encrypts data it receives and then transmits the data in encrypted form to
the receiving node. The receiving node subsequently decrypts the data,
reads the destination address from the data, determines the next channel
over which to transmit the data, and encrypts the data under the key that
applies to the channel over which the data will next be sent.

With link encryption, the cryptographic key might be common to all nodes in
the network in which case it is easy to establish a communication session
between any two nodes, but it is difficult to protect the privacy of the key.
Alternatively, each node must know the cryptographic keys of all other
nodes with which it communicates in which case the keys are more secure,
but key management is more difficult.

SYSTEMS AUDITING

NOTES

190

Link encryption reduces expected losses from traffic analysis. With link en-
cryption, the message and its associated source and destination identifiers
can be encrypted. Thus, a wire tapper has difficulty determining the identity
of the sender and receiver of the message. In addition, frequency and
length patterns in data can be masked by maintaining a continuous stream
of cipher text between two nodes.

FIGURE 2-16. Link-encryption

Because each node must be able to decrypt a message to determine where
it should be forwarded, link encryption cannot protect the integrity of data if
a node in the network is subverted. In this light, encryption and decryption
should be performed by a tamperproof cryptographic facility. Thus, even if
intruders subvert a node in the network, the integrity of cryptographic
operations is still protected.

SYSTEMS AUDITING

NOTES

191

2.9.2 End-to-End Encryption

Link encryption has several limitations:

1. If an intermediate node in the network is subverted, all traffic passing
through the node is exposed. As a result, high costs might have to be
incurred to protect the security of each node in the network. For
example, security personnel might have to be present, physical barriers
might have to be constructed, and regular security reviews might have
to be undertaken.

2. Users of a public network might rely on link encryption to protect their
data. In this light, the owners of the network could incur high insurance
costs to protect themselves against damages resulting from security
violations.

3. It can be difficult to work out a transfer-pricing scheme for allocating link
encryption costs to users, particularly if some users argue that they do
not need protection.

To help overcome these problems, end-to-end encryption can be used.
End-to-end encryption protects the integrity of data passing between a
sender and a receiver, independently of the nodes the data traverses.
Thus, a cryptographic facility must be available to each sender and receiver
because each now takes responsibility for implementing cryptographic
protection. The sender en-crypts data before it is given to the network for
transmission to the receiver. The data traverses each node and each
communication channel in encrypted form. It is not decrypted until it
reaches the receiver.

Although end-to-end encryption reduces expected losses from active or
passive attacks when an intermediate node is subverted, it provides only
limited protection against traffic analysis. Recall that with end-to-end
encryption, intermediate nodes that the data traverses do not possess the
key under which the data has been encrypted. If intermediate nodes are to
send data over the correct route, therefore, the source and destination
identifiers attached to a message must exist in the clear. In this light, link
encryption can be used in conjunction .with end-to-end encryption to reduce
exposures from traffic analysis.

2.9.3 Stream Ciphers

There are two types of ciphers: block ciphers and stream ciphers. With
block ciphers, fixed-length blocks of cleartext are transformed under a
constant fixed-length key (Figure 2-17). The Data Encryption Standard
(DES) provides this mode of encryption via its electronic code book (ECB)
mode. With stream ciphers, however, clear text is transformed on a bit-by-
bit basis under the control of a stream of key bits. The stream can be
generated in various ways. A widely used technique, however, is to make
the key bit stream a function of an initialization value, an encryption key,
and generated ciphertext. Figure 2-18 shows this method as implemented
in the DES cipher block chaining (CBC) mode. The cleartext is first

SYSTEMS AUDITING

NOTES

192

partitioned into fixed-length blocks. Next, the first clear-text block is added
(modulus 2) to this block. The result is enciphered, and the ciphertext
produced is added (modulus 2) to the next cleartext block to be enciphered
once more. The process continues iteratively.

Stream ciphers have two important characteristics. First, they make it more
difficult to analyze patterns in ciphertext. In block mode, each enciphered
block is independent of each other block. A cryptanalyst can examine
character frequency patterns, which can lead to the cipher being broken.
Stream ciphers, however, create interbit dependencies. Thus, patterns are
masked from the cryptanalyst. Second, because interbit dependencies
exist, changes to ciphertext propagate to subsequent ciphertext. If data is
corrupted via a burst of noise on a line, at least some of the subsequent
ciphertext will be unreadable. Similarly, if a wiretapper undertakes an active
attack and modifies data in transit, at least some of the subsequent
ciphertext will be affected. In this light, stream ciphers reduce expected
losses from both active attacks and passive attacks.

FIGURE 2-17 DES electronic code book (ECB) mode

SYSTEMS AUDITING

NOTES

193

FIGURE 2-18 DES cipher block chaining (CBC) mode

2.9.4 Error Propagation Codes

Unfortunately, using stream ciphers alone is not sufficient to prevent all
types of message modification. Even if messages are partitioned into fixed-
length blocks and the CBC mode of encryption is used, cryptanalysts might
still be able to make changes that will not be detected to the order of blocks
within messages. This type of attack can also be undertaken successfully
on other types of stream ciphers. The procedures to implement the attack
are fairly complex, and we do not examine them here.

SYSTEMS AUDITING

NOTES

194

To protect the integrity of messages, a suitable error propagation code
must be used. The code must be sensitive to the order of bits in a message
so that a change to the order of blocks has a high probability of being
detected. Several common error propagation codes, such as longitudinal
parity checks, are unsuitable for this purpose because cryptanalysts can
fairly easily determine changes to the ciphertext that will produce the same
error detection code. Peterson and Weldon describe some error detection
codes that are suitable because they are sensitive to bit order. The auditors'
primary concern is to see that suitable error propagation codes have been
chosen and implemented whenever attacks on message order could
produce material losses.

2.9.5 Message Authentication Codes

In electronic funds transfer systems, a control used to identify changes to a
message in transit is a message authentication code (MAC). The MAC is
calculated by applying the DES algorithm and a secret key to selected data
items in a message or to the entire message. Think of a MAC as an
encrypted checksum calculated on the basis of some or all of the fields in a
message. The MAC is then appended to the message and sent to the
receiver, who recalculates the MAC on the basis of the message received
to determine whether the calculated MAC arid the received MAC are equal.
If the calculated MAC and the received MAC are not equal, the message
has been altered in some way during transit. The transmitted message
could be in the clear, or only selected data items in the message (such as
the personal identification number) might be encrypted.

2.9.6 Message Sequence Numbers

Message sequence numbers are used to detect an attack on the order of
messages that are transmitted between, a sender and a receiver. An
intruder could delete messages from a stream of messages, change the
order of messages in a stream, or duplicate legitimate messages. In each
case the receiver does not obtain messages in the order generated by the
sender.

If each message contains a sequence number and the order of sequence
numbers is checked, these attacks will not be successful. It must be
impossible, however, for the intruder to alter the sequence number in a
message. Controls to prevent message modification have been discussed
already: stream ciphers, error propagation codes, and message
authentication codes. Furthermore, to prevent message duplication
(playback), sequence numbers must not be reused during a communication
session between a sender and a receiver. A unique identification number
must be established for each communication session, and within this
identification number each message sequence number must be unique.

2.9.7 Request-Response Mechanisms

A request-response mechanism is used to identify attacks by an intruder
aimed at denying message services to a sender and a receiver. Recall that
this type of attack is a form of message stream modification whereby the
intruder deletes messages passing over a communication line or delays
them for an extended period. If the parties to a communication session are
not continuously communicating with each other, the receiver cannot detect

SYSTEMS AUDITING

NOTES

195

that a message should have arrived from the sender. The sender might
realize that the receiver has not obtained the message because no
acknowledgment has been returned by the receiver. In some cases,
however, the sender might have no means of notifying the receiver that the
communication channel has been broken. For example, in certain high-
security applications, the sender might not be able to place a telephone call
to the receiver to notify the receiver of the attack.

With a request-response mechanism, a timer is placed with the sender and
receiver. The timer periodically triggers a control message from the sender.
Because the timer at the receiver is synchronized with the sender, the
receiver must respond to show that the communication link has not been
broken. Providing that the timing signals can be generated with a pattern
that is difficult to determine, the intruder will find it hard to undertake
temporary undetected attacks that deny message service. In addition, the
intruder must not be able to provide valid responses to the control
messages. Otherwise, the sender will believe the channel is still open, and
the receiver will be unaware that message services have been denied.
Thus, those controls that establish the authenticity of the response must be
applied to the request-response mechanism.

2.10 Internetworking controls

Internetworking is the process of connecting two or more communication
networks together to allow the users of one network to communicate with
the users of other networks. The networks connected to each other might or
might not employ the same underlying hardware-software platform. In other
words, internetworking might be based on either homogeneous networks or
heterogeneous networks. The overall set of interconnected networks is
called an internet. An individual network within an internet is called a
subnetwork.

Three types of devices are used to connect subnetworks in an internet:

Bridges, routers, and gateways perform several useful control functions.
First, because they allow the total network to be broken up into several
smaller networks, they improve the overall reliability of the network. Failure

SYSTEMS AUDITING

NOTES

196

in a node or communication line within a subnetwork, for example, will not
disable all nodes in an internet. Second, for security reasons it might be
desirable to keep different types of applications on different subnetworks.
For example, high-exposure electronic funds transfer messages might be
routed over a high-security, high-cost subnetwork. Low-exposure
administrative messages, on the other hand, might be routed over a
relatively insecure, low-cost subnetwork. Bridges, routers, and gateways
might allow users of an internet to specify the subnetworks they wish their
messages to traverse. Third, bridges, routers, and gateways may provide
access control mechanisms to restrict access to subnetworks only to
authorized users (Popalzai 1996). Not all users in a local area network, for
example, may be allowed to access other subnetworks in an internet.

2.11 Communication architectures and controls

So far we have examined the functions and controls performed within the
communication subsystem in a somewhat disjointed fashion. In an effort to
provide an integrated view of these functions and controls, many people
have developed coherent models of the communication subsystem. These
models, or architectures, classify communication functions into a hierarchy
of layers. Protocols for each layer are then defined, which are the set of
syntactic, semantic, and timing rules governing the behavior of the
components that provide the functions in each layer. Researchers have
tried to show how various types of communication controls map onto the
different layers in architecture.

Although a fair number of architectures have been proposed, three that
have achieved prominence are the open-systems interconnection (OSI)
architecture, IBM's system network architecture (SNA), and the
transmission control protocol/internet protocol (TCP/IP) architecture. To
illustrate the nature of these architectures and the placement of controls
within them, we examine only the OSI model. Stallings provides a good
discussion of the SNA and TCP/IP architectures.

The OSI architecture has been proposed by the International Organization
for Standardization (ISO). The purpose of the architecture is to allow
heterogeneous hardware/software platforms to communicate with one
another across local area networks or wide area networks, providing they
conform with the architecture. The architecture has seven layers of
functions, each of which has associated controls:

SYSTEMS AUDITING

NOTES

197

Figure 2-19 shows how two nodes using the OSI architecture communicate
with each other via an intermediate node that also uses the OSI architec-
ture. The sending node passes a message it wants to transmit down
through the various layers. Hardware, firmware, or software perform the
various functions assigned to each layer. When data reaches the physical
layer, it is finally entered onto and sent over the transmission medium.
Intermediate nodes will perform functions associated with layers 1-3 to
ensure that the data is routed accurately, completely, and securely to its
correct destination. The receiving node then passes the data it receives up
through the various layers until it reappears to users at the application level.
In effect, each layer in the sending node communicates with its peer layer
in the receiving node (and vice versa) although the actual transmission of
data occurs only at the physical layer level.

Auditors can organize their examination and evaluation of controls in the
communication subsystem in terms of the various layers in the
communication architecture they encounter. Unfortunately, the placement
of controls within the various layers of a particular architecture is not always
clear-cut. Indeed, the relationship of different controls to different layers is
still a research issue with a number of communication architectures. In spite
of these difficulties, however, the layers still provide a compelling way of
thinking about controls in the communication subsystem.

SYSTEMS AUDITING

NOTES

198

FIGURE 2-19 Transmission of data through the OSI layers.

2.12 Audit trail controls

The audit trail in the communication subsystem maintains the chronology of
events from the time a sender dispatches a message to the time a receiver
obtains the message. With the rapid growth in the use of data
communications technology, the audit trail in the communication subsystem
has become increasingly important. In an electronic data interchange
system, for example, the absence of paper documents to support business
transactions might mean that data contained in the audit trail is essential to
the resolution of disputes that arise and the enforcement of contracts.
Similarly, past messages dispatched via an e-mail system might be
subpoenaed in the event of a dispute between parties to an electronic
exchange of information.

2.12.1 Accounting Audit Trail

The accounting audit trail must allow a message to be traced through each
node in a network. Some examples of data items that might be kept in the
accounting audit trail follow:

1. Unique identifier of the source node,

2. Unique identifier of the person or process authorizing dispatch of the
message,

3. Time and date at which message dispatched,

4. Message sequence number,

5. Unique identifier of each node in the network that the message
traversed,

6. Time and date at which each node in the network was traversed by the
message,

7. Unique identifier of the sink node,

SYSTEMS AUDITING

NOTES

199

8. Time and date at which the message was received by the sink node, and

9. Image of message received at each node traversed in the network.

Given that a message should not be changed as it traverses a node
in the network, keeping all this information might seem pointless. Indeed, if
a message traverses a public network or interchange network, the owner of
the network might not be willing to maintain or supply the audit trail
information. Nevertheless, the audit trail information is needed if (1) a
message is lost in the network or (2) a node has been compromised or it
has been malfunctioning and unwanted changes have occurred to the
message. Nevertheless, what audit trail information should be kept and how
long it should be kept as always is a cost-benefit decision.

2.12.2 Operations Audit Trail

The operations audit trail in the communication subsystem is especially
important. The performance and, ultimately, the integrity of the network
depend on the availability of comprehensive operations audit trail data.
Using this data, network supervisors can identify where problem areas are
occurring in the network. They can then reconfigure the network to mitigate
the impact of these problems. Some examples of data items that might be
kept in the operations audit trail follow:

1. Number of messages that have traversed each link,

2. Number of messages that have traversed each node,

3. Queue lengths at each node,

4. Number of errors occurring on each link or at each node,

5. Number of retransmissions that have occurred across each link,

6. Log of errors to identify locations and patterns of errors,

7. Log of system restarts, and

8. Message transit times between nodes and at nodes.

The availability of high-quality network control software is essential
to network supervisors being able to make effective use of the operations
audit trail. Although substantial operations audit trail data might be
available, often it is not readily accessible or presented in a form that
permits effective decision making. Good network control software will
access the relevant operations audit trail data and provide reports that allow
network supervisors to maintain or improve the performance of the network.

2.13 Existence controls

Recovering a communication network if it fails can be problematical. Some
components might be complex, and determining the location and nature of
a failure is often difficult. The status of the network upon failure also can be
hard to assess. Message fragments might be dispersed throughout the
network at various stages of processing. Ensuring complete and accurate

SYSTEMS AUDITING

NOTES

200

recovery of these in-flight messages can be difficult. It is also hard to
provide backup for all network components. Some might be remote
geographically. High costs could be incurred if redundant components are
to be provided at these remote locations. Yet the network could be severely
disrupted if long lead times are required to recover operations in these
remote components.

Some backup and recovery controls that should be -implemented in a com-
munication network are discussed earlier in this chapter when network
reliability was considered: automatic line speed adjustment by modems
based on differing noise levels, modems on private lines having automatic
or semiautomatic dial-up capabilities for the public network, choice of a
network topology that provides alternative routes between the source node
and the sink node, and acquisition and use of high-quality network control
software. Some additional backup and recovery controls follow:

1. Where possible, place redundant components (e.g., modems) and spare
parts throughout the network.

2. Use equipment with in-built fault diagnosis capabilities.

3. Acquire high-quality test equipment.

4. Ensure adequate maintenance of hardware and software, especially at
remote sites.

5. Ensure that adequate logging facilities exist for recovery purposes,
especially where store-and-forward operations must be carried out in the
network.

Because recovery can be a highly complex process that must be executed
under severe time pressures, it is essential that well-trained, technically
competent personnel operate the network. They must be provided with
well-documented backup and recovery procedures either for a warm start
(partial failure) or for a cold start (total failure). Given that multiple,
physically dispersed components might have to be recovered in a
coordinated way, a control site must exist for reporting all problems in the
network and for managing personnel involved in the recovery process.
Network backup and recovery procedures must be practiced regularly.

SYSTEMS AUDITING

NOTES

201

3. Database Controls

Structure

3.1 Introduction

3.2 access controls

3.2.1 Discretionary Access Controls

3.2.2 Mandatory Access Controls

3.2.3 Some Implementation Issues

3.3 Integrity controls

3.3.1 Entity-Relationship Model Integrity Constraints

3.3.2 Object Data Model Integrity Constraints

3.4 Application software controls

3.4.1 Update Protocols

3.4.2 Sequence Check Transaction and Master Files

3.4.3 Ensure All Records on Files Are Processed

3.4.4 Process Multiple Transactions/or a Single Record in the

Correct Order

3.4.5 Maintain a Suspense Account

3.4.6 Report Protocols

3.4.7 Print Control Data for Internal Tables (Standing Data)

3.4.8 Print Run-to-Run Control Totals

3.4.9 Print Suspense Account Entries

3.5 Concurrency controls

3.5.1 Nature of the Shared Data Resource Problem
3.5.2 The Problem of Deadlock

3.5.3 Solutions to Deadlock

3.5.4 Preventing Deadlock

3.5.5 Distributed Database Concurrency Controls

3.6 Cryptographic controls

3.7 File handling controls

3.8 Audit trail controls

3.8.1 Accounting Audit Trail

3.8.2 Operations Audit Trail

3.9 Existence controls

SYSTEMS AUDITING

NOTES

202

Objectives

After going through this lesson, you should be able to:

• understand to access controls;

• understand to Integrity controls

• understand to Application software controls

• understand to Concurrency controls

• understand to Cryptographic controls

• understand to File handling controls

• understand to Existence controls

3.1 Introduction

The database subsystem provides functions to define, create, modify,
delete, and read data in an information system. Historically, the primary
type of data maintained in the database subsystem has been declarative
data that is, data that describes the static aspects of real-world objects and
associations among these objects. For example, a payroll file and
personnel file store information about the pay rates for each employee, the
various positions within an organization, and the employees who have been
assigned to each position. The database subsystem might also be used,
however, to maintain procedural data that is, data that describes the
dynamic aspects of real-world objects and the associations among these
objects. For example, the database might contain a set of rules describing
how an expert portfolio manager makes decisions about which stocks and
bonds to choose for investment purposes. When both declarative and pro-
cedural data are stored, the database is sometimes called a knowledge
base to reflect the greater "power" of the data maintained in the database
subsystem.

The database subsystem is also being used increasingly to store (1) data
about designs (e.g., manufacturing designs), in which the focus is design
objects that can be composed or decomposed into other design objects,
and (2) images, graphics, audio, and video, which can be used to support a
multimedia application. In this light, substantial work is now being
undertaken on object-oriented database management systems to support
these types of applications. Moreover, with the emergence of huge
databases and increasing use of decision support systems and executive
information systems, there has been renewed interest in how databases
should be structured to allow recognition of patterns among data, thereby
facilitating knowledge discovery by decision makers. Huge databases that
contain integrated data, detailed and summarized data, historical data, and
metadata are sometimes called data warehouses. Databases that contain a
selection of data from a data warehouse that is intended for a single
function or department are called data marts. The process of recognizing
patterns among data in data warehouses or data marts is sometimes called
data mining.

SYSTEMS AUDITING

NOTES

203

Initially, the major components in the database subsystem were the appli-
cation programs that defined, created, modified, and deleted data, the
operating system that performed the basic input/output operations to move
data to and from various storage media, the central processor and primary
storage in which these activities were performed, and the storage media
that maintained the permanent or semi-permanent copy of the data. For
example, the activities previously performed by application programs and
operating systems have been migrated to database management systems;
special database machines have been developed to support the database
subsystem; expert systems have been developed to support the processing
of procedural data.

In this lesson we examine controls over the database subsystem. We begin
by discussing the policies and mechanisms needed to prevent unauthorized
access to and use of the database. Next we examine the various types of
integrity constraints that a database management system should maintain
over a database. We then discuss the various controls that can be used
within application software to maintain the integrity of data, the controls that
must be exercised to prevent integrity violations when multiple programs
have concurrent access to data, the ways in which data privacy can be
preserved via cryptographic controls in the database subsystem, and the
ways in which files must be processed to prevent integrity violations.
Finally, we examine audit trail controls and existence controls within the
database subsystem.

3.2 access controls

Access controls in the database subsystem seek to prevent unauthorized
access to and use of data. As with all subsystems, access controls are
implemented by first specifying a security policy for the subsystem and then
choosing an access control mechanism that will enforce the policy chosen.

We examined security policies that enforce discretionary access control
and security policies that enforce mandatory access control. In the
database subsystem, the former allow users to specify who can access
data they own and what action privileges they have with respect to that
data. The latter require a system administrator to assign security attributes
to data that cannot be changed by database users. In the following two
subsections, we examine how both types of security policy might be applied
within the database subsystem. In the third subsection, we discuss some
implementation issues relating to the access control mechanisms that are
used in the database subsystem.

3.2.1 Discretionary Access Controls

In the database subsystem, discretionary access controls can vary
considerably. For example, if a relational database management subsystem
is used to support the database subsystem, a user may be authorized to do
the following:

• Create a schema;

• Create, modify, or delete views associated with the schema;

SYSTEMS AUDITING

NOTES

204

• Create, modify, or delete relations associated with the schema;

• Create, modify, or delete tuples in relations associated with the
schema; and

• Retrieve data from tuples in relations associated with the schema.

These privileges often are given to users who are designated as the
"owners" of a particular schema and its associated views and relations.
Nevertheless, some might be assigned to users even if they are not the
owners of a schema and its associated views and relations. For example,
nonowner users might be allowed to create relational tuples or to delete
tuples.

If users are not the owners of a schema and its associated views and rela-
tions, however, often they will be assigned more restricted privileges than
those assigned to owners. These restrictions can be many and varied.
Some important types of restrictions, however, are the following:

1. Name-dependent restrictions. Users either have access to a named data
resource or they do not have access to the resource. If users have
access to a data resource, the action privileges they have must also be
specified.

2. content-dependent restrictions. Users are permitted or denied access to
a data resource depending on its contents.

3. context-dependent restrictions. Users are permitted or denied access to
a data resource depending on the context in which they are seeking
access.

4. History-dependent restrictions. Users are permitted or denied access to a
resource depending on the series of access to and actions they have
under taken on data resource.

3.2.2 Mandatory Access Controls

A classification level might also be assigned to a record/relation as a whole.
The value of the classification level assigned to each record/relation should
be equal to the highest classification level assigned to a data item/attribute
in the record/relation.

3.2.3 Some Implementation Issues

A major factor affecting the reliability of the access control mechanism is
the extent to which it is located in a single component or multiple
components. Unfortunately, practical constraints often dictate that the
access control mechanism be distributed across several components. As
the functions to be performed by the access control mechanism increase,
the size and complexity of the kernel increase correspondingly. Thus,
devising efficient implementations of the kernel is more difficult to achieve.
Moreover, it becomes more difficult to verify the accuracy and
completeness of the functions performed by the kernel and to maintain the
security and integrity of the kernel.

SYSTEMS AUDITING

NOTES

205

3.3 Integrity controls

A good database management system will enforce various types of integrity
constraints within the database subsystem. Integrity constraints are
established to maintain the accuracy, completeness, and uniqueness of
instances of the constructs used within the conceptual modelling or data
modelling approach used to represent the real-world phenomena about
which data is to be stored in the database subsystem.

3.3.1 Entity-Relationship Model Integrity Constraints

The fundamental constructs in the entity-relationship model are entities,
relationships between entities, and attributes of entities. Entities constitute
the basic types (classes) of things (objects) in the real world to be
modelled. Within the database subsystem, the following integrity constraints
might be applied to entities:

In the entity-relationship model, relationships reflect that two or more enti-
ties are coupled in some way. For example, a relationship might be shown
between a student entity and a university entity to indicate that students
attend universities. Within the database subsystem, a major type of integrity
constraint that applies to relationships is a cardinality constraint. A
cardinality constraint specifies either (1) the maximum number of instances
of an entity that can be associated with an instance of another entity (or
tuple of instances of multiple entities) or (2) the minimum number of
instances of an entity that can be associated with an instance of another
entity (or tuple of instances of multiple entities) (Figure 3-1).

SYSTEMS AUDITING

NOTES

206

FIGURE 3-1 Cardinality integrity constraints on relationships within the
entity-relationship model.

In the entity-relationship model, attributes reflect the properties possessed
by entities. For example, two attributes of a person entity are age and
gender. Within the database subsystem, the following integrity constraints
might be applied to attributes:

Relational Data Model Integrity Constraints

The fundamental construct in the relational data model is a relation. Within
the database subsystem, the following integrity constraints might be applied
to relations:

SYSTEMS AUDITING

NOTES

207

3.3.2 Object Data Model Integrity Constraints

The fundamental constructs in the object data model are objects and
relationships among objects. Objects possess structural properties
(attributes), which reflect the static characteristics of the object, and
dynamic properties (methods or procedures), which reflect how the state of
an object can change. Within the database subsystem, the following
integrity constraints might be applied to the structural properties of objects:

SYSTEMS AUDITING

NOTES

208

In the object data model, dynamic properties are the procedures that
operate on objects. Dynamic properties facilitate encapsulation, whereby
the structural characteristics of an object (or most of them) are kept hidden
and only the procedures or methods (or at least a subset of them) are made
public. Within the database subsystem, methods or procedures must
comply with the syntactic and semantic rules of the language used to
express them.

In the object data model, relationships among objects indicate that the
property values of at least one of the objects depend on the property values
of other objects in the relationship or that an object is a component of
another object (aggregation or composition). Within the database
subsystem, the following integrity constraints might be applied to
relationships:

3.4 Application software controls

As with the processing subsystem, the integrity of the database subsystem
depends in part on controls that have been implemented in any application
programs that use the database. Even though the database management
system rather than the application software should directly access and
update the database, nevertheless the database management system still
depends on the application software to pass across a correct sequence of
commands and update parameters and to take appropriate actions when
certain types of exception conditions arise. Accordingly, the following

SYSTEMS AUDITING

NOTES

209

subsections describe various update and report protocols that might be
implemented in application software to protect the integrity of the database.

3.4.1 Update Protocols

Update protocols in application software seek to ensure that changes to the
database reflect changes to the real-world entities and associations
between entities that data in the database is supposed to represent. We
briefly examine some of the more important protocols in the following
subsections.

3.4.2 Sequence Check Transaction and Master Files

In a batch update run, the transaction file is often sorted prior to the update
of the master file or the tables in the database. In some cases, the master
file or tables to be updated might also be sorted into a particular order. It
might seem superfluous, therefore, for the update program to then check
the sequence of the transaction file (and perhaps the master file or tables)
as it processes each record. Nevertheless, sometimes situations arise that
result in records on the transaction file (or master file) unexpectedly getting
out of sequence. First, some "patching" of the file can occur because of a
previous error. If the patching is done incorrectly, the file could get out of
sequence. Second, an erroneous program could insert records in the
incorrect sequence on the file. Third, on rare occasions a sort utility
incorrectly sorts a file, or a hardware/system software error that corrupts the
sequence of a file goes undetected. Fourth, undetected corruption of data
might have occurred when the file was sent across a communication line.

3.4.3 Ensure All Records on Files Are Processed

If a master file is maintained in sequential order, correct end-of-file
protocols must be followed in an update program to ensure records are not
lost from either a transaction file or a master file. Common errors are to
close the transaction file upon reaching the end of the master file or to close
the master file upon reaching the end of the transaction file. In the former
case, the transaction file might contain new records for insertion after the
last record on the old master file. In the latter case, existing master file
records could be lost because an end-of-file marker is placed at the point of
closure. Designing and implementing correct end-of-file protocols can be an
especially complex task if multiple sequential transaction files and multiple
sequential master files are to be processed concurrently.

3.4.4 Process Multiple Transactions/or a Single Record in the Correct
Order

Multiple transactions can occur for a single master record (tuple). For ex-
ample, several sales orders plus a change-of-address transaction might
have to be processed against a customer master record. The order in which
transactions are processed against the master record can be important.
Otherwise, several types of error can occur. For example, a customer might
be billed at a wrong address, an employee might be paid after termination,
or a person might receive welfare payments to which they are not entitled.
Different types of transactions must be given transaction codes that result
in their being sorted in the correct order before being processed against a
master record.

SYSTEMS AUDITING

NOTES

210

3.4.5 Maintain a Suspense Account

Whenever monetary transactions must be processed against a master file
(tables), the update program should maintain a suspense account. The sus-
pense account is the repository for monetary transactions for which a
matching master record cannot be found at the time an update is
attempted. Mismatches can occur for several reasons; for example, an
account number might be coded incorrectly in a transaction, a new account
might not have been inserted correctly on the master file (table), or a
transaction for a master record (tuple) might arrive before the master record
(tuple) has been created. If monetary transactions for which a
corresponding master record cannot be found are not charged to a
suspense account, they can be lost because someone fails to correct the
mismatch. Suspense accounts that have a nonzero balance provide a
reminder that errors have occurred which still have to be corrected,

3.4.6 Report Protocols

Report protocols in application software have been designed to provide
information to users of the database that will enable them to identify errors
or irregularities that have occurred when the database has been updated.
We briefly examine three such protocols.

3.4.7 Print Control Data for Internal Tables (Standing Data)

Many programs have internal tables that they use to perform various
functions. For example, a payroll program might have an internal table of
pay rates that it uses to calculate gross pays; a billing program might have
an internal table of prices that it uses to prepare invoices; an electronic data
interchange program might have a table that it uses to route orders to
various suppliers; or an interest payment program might have a table of
interest rates that it uses to pay customers interest on their bank accounts.
Sometimes multiple versions of a table could be stored within the program.
Different versions can take effect during different time periods, or perhaps a
new version is prepared carefully over some time period to take effect after
a certain date.

Maintaining the integrity of these tables is critical because the effects of er-
rors in them can be substantial. For example, an error in a table of prices
could mean a large number of customers are underbilled for merchandise
they have received. It might be too costly to recover the monies lost.
Furthermore, an organization might not want the error to be known publicly
because of an adverse reaction by shareholders, creditors, and so on. In
this light, access controls over the tables should be implemented to prevent
unauthorized changes to them. Moreover, any changes made to internal
tables (e.g., updating a pay rate) should be checked carefully for
authenticity, accuracy, and completeness. One report protocol for standing
data, therefore, is to print out internal tables after they have been changed
to allow the changes made to be evaluated for authenticity, accuracy, and
completeness.

Even if no changes are made to standing data, internal tables might still be
printed periodically. Unauthorized changes could have been made to a
table, or the table might have been corrupted in some way. Alternatively, if
the table is large, it might not be printed and instead some type of control

SYSTEMS AUDITING

NOTES

211

total (such as a hash total) could be calculated and reported. Users can
then check this control total to determine whether it differs from the
previous control total.

3.4.8 Print Run-to-Run Control Totals

Sometimes the execution of an application system involves running multiple
programs that pass files between each other. (Chapter 13 discusses the
need to calculate and print run-to-run control totals as a basis for identifying
errors in the processing subsystem in these situations.) Run-to-run control
totals are also a useful means of identifying errors or irregularities that
occur in the database subsystem. For example, they could signal that a
record (tuple) has been dropped erroneously from a master file (table) that
has been updated.

3.4.9 Print Suspense Account Entries

As mentioned previously, monetary update transactions that mismatch a
master record must be written to a suspense account. To ensure that these
transactions are ultimately cleared to their correct accounts, a suspense ac-
count report must be prepared periodically showing the transactions that
were posted to the suspense account. The mismatches must also be
written to an error file and removed as they are corrected. The suspense
account report should remind users that they must take action to clear the
errors if they are not removed from the error file promptly.

3.5 Concurrency controls

Unfortunately, sharing data resources produces a new set of problems that
must be handled by the database subsystem if data integrity is to be
preserved. In the following subsections we examine the nature of these
problems and the various strategies that can be used to overcome them.
Note that these problems are general in nature. Although we focus on
shared data resources, they arise with any resource that might be shared.

3.5.1 Nature of the Shared Data Resource Problem

The best way to understand the problems that arise when we share data
resources is via an example. Consider, then, an inventory application in a
company in which a sales clerk and a receiving clerk have online access to
the inventory master file. Assume, also, that they have concurrent access to
the file; in other words, both can access the inventory master file at the
same time.

Figure 3-2 shows a time sequence of events that can occur which results in
data integrity being violated. First, a supplier delivers 100 units of good
XYZ. As a result, the receiving clerk accesses the record for XYZ to update
it. Input/output routines then copy an image of the existing record into the
receiving program's buffer. The program next commences to update the
image of the record. At the same time a customer places an order for 175
units of XYZ. As a result, the sales clerk accesses the record for XYZ to
update it. Input/output routines copy an image of the record into the
program's buffer. In the meantime, the receiving program completes its
update and writes its buffer image of the record to the master file. The sales

SYSTEMS AUDITING

NOTES

212

program also carries out its update and writes its buffer image to the master
file. Instead of the inventory record showing 425 units, it shows only 325
units.

FIGURE 3-2 Concurrent processes as a threat to data integrity

Data integrity problems caused by concurrent processes are not confined to
update programs. Read-only programs also can produce erroneous results
if they operate concurrently with an update program. For example, a read-
only program might be producing a trial balance for an accounts file. If an
update program is concurrently posting debit and credit entries to the
accounts, a situation might arise in which only one side (e.g., the debit) of a
double-entry transaction is posted prior to the read-only program accessing
the records to b updated. Thus, the trial balance will not balance.

The obvious solution to the data integrity problems caused by concurrer
processes is to lock out one process from a data resource while it is being
use by another process. Unfortunately, this solution leads to another set of
problems. It can cause a system to come to a halt because of a situation
called deadlock or the "deadly embrace."

3.5.2 The Problem of Deadlock

Figure 3-3 shows the problems that can arise when one process is allowed
to lock out another process from a resource. At time t, process P acquires
exclusive control of data resource 1, and process Q also acquires exclusive
control of data resource 2. At time t + 1, process P makes an additional
request for data resource 2, and process Q also made an additional request
ft data resource 1. Neither process can continue until the other releases

SYSTEMS AUDITING

NOTES

213

content of the data resource that it has acquired at time t. A deadlock
situation results.

FIGURE 3-3 A deadlock situation.

The necessary and sufficient conditions for deadlock to occur follow:

3.5.3 Solutions to Deadlock

How can a deadlock situation be resolved? At first thought we might believe
the situation in Figure 3-3 can be overcome by simply forcing either process
P or process Q to release the data resource over which it has exclusive
control. This approach could indeed be a solution in some cases.
Unfortunately, however, it does not always resolve the problem.

SYSTEMS AUDITING

NOTES

214

Consider the following simple example. Salesperson 1 receives a request
from a customer for a certain set of parts say, 80 units of Part A and 90
units of Part B. The customer is unwilling to take the order unless all the
parts requested can be supplied. Salesperson 2 receives a similar request
from another customer say, 50 units of Part A and 100 units of Part B. Both
salespersons initially query the database to determine whether sufficient
inventory exists for all the parts requested (a read-only process).
Recognizing that inventory could be depleted in the meantime because of
other orders, they both commence to place their orders.

Figure 3-4 shows the situation that could result. Assume part A and part B
is required in both salespersons’ orders. Salesperson 1 acquires exclusive
control of part A's record first and decreases the existing stock of 100 units
by 80 units. At the same time, salesperson 2 acquires exclusive control of
part B's record and decreases the existing stock of 150 units by 100 units.
At time t + 1 a deadlock situation results. Consider what would happen if
salesperson 1's program was allowed to preempt salesperson 2's program.
After accessing part B's record, salesperson 1's program would find only 50
units (150 - 100) of part B available because salesperson 2's program has
already updated part B's record. Thus, salesperson 1's order would have to
be canceled in its entirety because 90 units of part B are required.

FIGURE 3-4. Inventory example of a deadlock

The same situation results if salesperson 2's program is allowed to preempt
salesperson 1's program. Unless one program's updates are undone before
the other program continues, both customer orders are lost, whereas only
one order need be lost.

Problems arise because the database is in an inconsistent state when the
preemption occurs. The updates of one program, therefore, need to be
undone. Unfortunately, in some cases rolling back the actions that have
been undertaken by a program can be difficult. Shipping notices, invoices,
and so on might have been prepared and transmitted by the program that is
preempted. The locations of these outputs have to be identified, and they

SYSTEMS AUDITING

NOTES

215

then have to be canceled. The degree of complexity associated with the
preemption, therefore, is affected by how far the program needs to be rolled
back. Moreover, a decision must also be made on which program should be
preempted.

3.5.4 Preventing Deadlock

Over the years, a number of solutions have been proposed to resolve the
problem of deadlock. The most widely accepted solution now, however, is
called two-phase locking. It applies to a transaction that is being processed
against the database. A transaction constitutes a sequence of interactions
with the database that represents some meaningful unit of activity to a user.
For example, in the context of the inventory application we examined
previously, it would represent the sequence of operations needed to
retrieve the relevant inventory records that satisfy the customer's request
and to update them with the amounts ordered. Similarly, in the context of
the trial-balance run discussed previously, it would represent the entire run
from start to finish.

More precisely, however, a transaction must have four properties—the so-
called ACID properties:

1. Atomicity. All actions taken by a transaction must be indivisible. Either all
actions undertaken by a transaction are manifested in the current state
of the database, or nothing is allowed to occur.

2. Consistency. A transaction must preserve the consistency of the
database. The effects of a transaction are not reflected in the database
until it commits its results. That is, all changes are first made in a
temporary workspace until they can be written permanently, as an
indivisible unit, to the database. Commitment is a two-phase process.
During the first phase, the system writes the changes in the temporary
workspace created for the transaction to some type of secure storage. If
failure occurs during this phase, no harm has been done because the
changes have not been applied to the database. During the second
phase, the system copies the changes from secure storage to the
database. If failure occurs during this phase, the new values of the
database are recovered from secure storage. In either case, the
transaction leaves the database in a consistent state.

3. Isolation. The events that occur within a transaction must be transparent
to other transactions that are executing concurrently. In other words, no
type of interference among transactions can be permitted.

4. Durability. When the results of a transaction have been committed, the
system must guarantee that the changes survive any subsequent failure
of the database. Existence controls, which we consider later in this
chapter, are needed to achieve transaction durability.

Two-phase locking handles a transaction using the following protocol. First,
before a transaction can read a data item, it must "own" a "read-lock" on the
data item. Similarly, before a transaction can write a data item, it must own
a "write-lock" on the data item. Second, different transactions are not al-
lowed to own "conflicting" locks simultaneously. This rule means that two
transactions can own read-locks on the same data item, but a read-lock

SYSTEMS AUDITING

NOTES

216

and a write-lock or two write-locks are not permitted to occur
simultaneously. Recall that inconsistent results can be obtained if two
processes concurrently read and write a data item or two processes
concurrently write a data item. It does not matter, however, if two processes
concurrently read a data item. Third, when a transaction releases
ownership of a lock, it cannot obtain additional locks. Release of a lock
gives another transaction the opportunity to obtain control over the data
item, and the consistency of results can no longer be guaranteed. Thus, a
transaction should commit its database changes before it releases its locks.

Two-phase locking, therefore, has a growing phase and a shrinking phase.
During the growing phase, the transaction acquires locks without releasing
locks. When the transaction releases a lock, it enters the shrinking phase,
and it must proceed irrevocably to release all its locks. Locks could be
released because (1) the transaction has committed its updates or (2) it has
been unable to acquire all the locks it needs.

3.5.5 Distributed Database Concurrency Controls

When databases are distributed, their contents are stored at multiple sites.
Various distribution strategies are used. At one extreme, a replicated copy
of the database can be stored at all sites. At the other extreme, the
database can be fragmented into nonoverlapping partitions. Each partition
is then stored at exactly one site. Between these extremes are strategies
where some data is replicated and stored at some subset of sites and other
data is partitioned and stored at one site only.

Concurrency and deadlock problems can become a major threat to distrib-
uted database integrity unless the database management system has
suitable controls. In the case of a replicated database, the system must
somehow ensure that all versions of a data item are kept in a consistent
state. In this light, some concurrency and deadlock strategies for replicated
databases require that all instances of the data item needed must be locked
before update operations can precede. In the case of a partitioned
database, the location of the data item requested must be identified. Its
lock" then must be activated.

The locking task for both replicated and partitioned databases conceptually
might seem straightforward. Implementing it efficiently and reliably, how-
ever, is another matter. To illustrate how concurrency controls might work
for a distributed database, consider the two-phase locking scheme
examined previously for a centralized database. First, a two-phase
scheduler must be constructed to process and to enforce the locking
protocols. Next, in a replicated database, one of the following two strategies
might be implemented:

1. Schedulers are replicated and stored with each version of the data item.
If a read-lock is requested, the transaction need only request the lock at
the most convenient scheduler. If a write-lock is requested, however, the
transaction must request the lock of all replications of the scheduler for
the data item needed. Alternatively, voting schemes might be used
whereby a transaction is granted the lock if it acquires the lock from the
majority of the data item's schedulers. It then notifies all of the data
item's schedulers that it has been granted the lock. The voting method
seeks to improve throughput, but it is more complex and error prone.

SYSTEMS AUDITING

NOTES

217

2. One version of the data item and its associated scheduler is designated
as the primary copy. Before accessing a data item, a transaction must
acquire the lock for the primary copy. The location of the primary copy is
chosen to try to optimize system throughput. Transactions access a
directory to determine the location of the primary copy. Alternatively,
primary copies are all located at a central site. Under both approaches,
difficulties arise if primary copies are lost or corrupted. Moreover, if
primary copies are stored at a single site, they could all be lost if the site
fails or is destroyed. For these reasons a second copy of the data item
and its associated scheduler might be made, stored at a different site to
the primary copy, and designated as the backup copy.

In a partitioned database, a transaction must acquire a read-lock or write-
lock by first locating the scheduler for the data item requested. It must then
activate the lock. Difficulties arise if the scheduler is lost or corrupted. As
with a replicated database in which a primary-copy scheme is used, a
second copy of the scheduler might be made and stored at another site as
a backup copy.

Other strategies exist for handling concurrency and deadlock problems in
distributed systems. Unfortunately, the area is complex. It could be difficult
for auditors, therefore, to determine whether the concurrency controls
implemented in a distributed database management system will maintain
the integrity of data under all situations in which data resource conflicts
arise.

3.6 Cryptographic controls

Cryptographic controls can also be used to protect the integrity of data
stored in databases. The primary means of protecting stored data is block
encryption. Recall that block encryption operates on individual blocks of
data. It differs from stream encryption, in which the cryptographic value of
one block of data depends on the cryptographic value of another block of
data. Clearly, users who want to access a record or a data item in a record
usually are unwilling to wait while the cryptographic mechanism decrypts all
prior records or data items in the file. This outcome would occur under
stream encryption. In short, stream encryption is useful for transferring
entire files between two users, but block encryption should be used when
users require access to only part of a file.

Data stored on portable storage media, such as tapes, diskettes, and car-
tridges, can be protected by implementing a secure encryption device in the
device controllers for the media. Data is encrypted automatically each time
it is written and decrypted automatically each time it is read. Although this
type of encryption protects the privacy of data should the storage medium
be stolen, it does not protect one user's data from another user because the
cryptographic key used for encryption/decryption purposes is common to all
users.

If little or no sharing of data among users occurs, individual users can pro-
tect their own files using a personal cryptographic key. They must present
this key to the system when they wish to perform operations on their files.

SYSTEMS AUDITING

NOTES

218

This system is unsatisfactory, however, when data is shared. File owners
must make their keys known to other users who require access to their file.
As a result, encryption keys can become widely known, and the risk of key
compromise increases.

Alternative cryptographic schemes have been devised when data must be
shared. By way of illustration, however, consider the following scheme:

1. Each owner of a file is assigned a file key to perform cryptographic
operations on the file.

2. A secondary key is assigned to encrypt/decrypt the file keys for the files
owned by a particular user. Secondary keys create a protection domain
that applies to a number of files, each of which has its own key. The file
keys encrypted under the secondary key can be stored in the header
records of the files to which they apply so they can be retrieved easily
each time the file needs to be accessed. The file keys are secure
because they are encrypted under the secondary key.

3. A master key is used to encrypt the secondary keys. Thus, the master
key can be changed without having to reencrypt all data in the database.
Only the secondary keys have to be decrypted and reencrypted.

4. To read and write a file, users must have access to the secondary key for
the file so the file key in turn can be accessed and used for cryptographic
purposes. Access to the secondary key can be protected using the
standard types of access controls described in Chapter 10. Note the
value of the secondary key is not revealed to users; they simply are
permitted or denied access to it for cryptographic purposes.

Use of cryptographic controls in the database subsystem becomes
more complex when the database is distributed. If the database is
replicated, a decision must be made on whether the same keys will be
maintained with each replication of the database. If a replica is lost or
destroyed and the same keys are used, it is then relatively straightforward
to make a copy of another replica to restore the lost replica. Moreover, it is
also relatively easy to route a user transaction to another site if one site has
a work overload and load balancing is being attempted. Several
disadvantages arise, however, with this strategy:

(1) The keys must be distributed in a secure way; (2) they reside at more
sites so the risk of compromise is higher; and (3) changes to keys at one
site mean keys at all other sites must also be changed. Alternatively, if each
site has its own set of keys, the keys will be more secure. It is more difficult
to use replicas for backup purposes, however, and it is also more difficult to
process transactions at sites other than the ones where they were initiated.

If the database is partitioned, in some 'cases data owned by a user could
be located at multiple sites. If the same keys are assigned to a user across
all sites where the user's data is located,' gaining access to the user's data
is fairly straightforward. When a user transaction has been given the keys, it
can access data at any site. Because the keys must be maintained at-
multiple sites', however, the disadvantages described above again apply.
Alternatively, if different sites have different keys, data at each site is more

SYSTEMS AUDITING

NOTES

219

secure, but higher processing overheads are incurred when transactions
must access data at multiple sites.

3.7 File handling controls

File handling controls are used to prevent accidental destruction of data
contained on a storage medium. They are exercised by hardware, software,
and the operators or users who load and unload storage media (e.g.,
tapes,, diskettes, cartridges) used for the database, dumps of the database,
transaction files,} work files, logs, and audit trails.

Several types of data can be stored in a file's header and trailer records so
that a program can determine whether it is accessing the correct file:

Several hardware controls are also used to prevent accidental erasure of
information on storage media. File protection rings are used to protect data
on magnetic tapes. To enable data to be written to a tape, a plastic ring
must be inserted into the recess at the back of the reel. If the ring is
removed, data cannot be written to the tape. Similarly, disks can be
protected by activating a readonly switch on a disk drive, and diskettes can
be protected by sliding a plastic tab on the diskette so that the hole the tab
covers is open. If multiple files are stored on a disk or diskette, individual
files can also be locked by setting a flag to prevent erasure of data.

To assist users or operators in loading the correct files, external labels can
be stuck on the outside casing of storage media. These labels can contain
the name of the file, its creation date, and a code to indicate whether the file
is a master file, a transaction file, a work file, or a backup file. External
labels are not a substitute for internal labels, however, because labels can
become detached from the storage media, or they might not be updated to
reflect the current contents of the storage medium.

SYSTEMS AUDITING

NOTES

220

3.8 Audit trail controls

The audit trail in the database subsystem maintains the chronology of
events that occur either to the database definition or the database itself. In
many cases, the full set of events must be recorded: creations,
modifications, deletions, and retrievals. Otherwise, it might be impossible to
determine how the database definition or the database attained its current
state, or who, via a retrieval transaction, relied on some past state of the
database definition or the database.

3.8.1 Accounting Audit Trail

To maintain the accounting audit trail in an application system, the
database subsystem must .undertake three functions. First, it must attach a
unique time stamp to all transactions applied against the database
definition or the database. This time stamp has two purposes: (1) It
confirms a transaction ultimately reached the database definition or the
database and (2) it identifies a transaction's unique position in the time
series of events that has occurred to a data item in the database definition
or the database.

Perhaps the most difficult problems encountered in supporting the audit trail
arise from having to accommodate the effects of changes that occur within
an application system. Consider the implications of the following types of
changes on the audit trail:

1. A new data item is defined in the database definition and data collected
to populate the database.

2. An existing data item is deleted from the database definition, and data is
no longer collected for that data item.

3. The name used for a data item is changed.

4. A change of measurement scale occurs for a data item—for example,
conversion from pounds to kilograms.

5. The coding system used for a data item changes—for example,
conversion from a numeric to an alphanumeric code.

6. The key used to encrypt a data item is changed.

3.8.2 Operations Audit Trail

The operations audit trail in the database subsystem maintains the
chronology of resource consumption events that affect the database
definition or the database. On the basis of the operations audit trail, data
administrators or database administrators can make two decisions. First, in
light of response times or the amount of resources consumed when
transactions are applied against the database, the need for database
reorganization might become clear. Reorganization might involve
establishing new access paths via indexes or pointers, clearing overflow
areas, assigning data to faster storage devices, and so on. Second, re-
source consumption data could indicate that the processes which apply
transactions to the database definition or the database need to be

SYSTEMS AUDITING

NOTES

221

restructured or to be rewritten. For example, a database administrator might
determine that a new database management system would better meet the
needs of their organization, given the types of updates that occur to the
database and the types of queries made on the database.

3.9 Existence controls

The whole or portion of a database can be lost (destroyed or corrupted)
through five types of failure:

1. Application program error. An application program can update data
incorrectly because it contains a bug. Usually only localized damage
occurs to the database because the program updates only a small
subset of data in the database.

2. System software error. System software, such as an operating system,
database management system, telecommunications monitor, or utility
program, could contain a bug. The bug might lead to erroneous updates
of the database, corruption of data, or a system crash. Whether local or
global damage occurs to the database depends on the nature of the bug.

3. Hardware failure. In spite of the high reliability of most hardware
components, failure can still occur. The failure might be minor and
transient, and as a result only localized damage occurs to the database.
The failure might be serious and permanent, however, in which case
extensive damage could occur to the database; for example, a disk
crash destroys the contents of a disk.

4. Procedural error. An operator or user could make a procedural error that
damages the database. For example, operators might undertake an
incorrect action when recovering from a system crash, or a user might
supply incorrect parameters to an update run. Whether the damage is
local or global depends upon the nature of the error made.

5. Environmental failure. Environmental failure, such as flood, fire, or
sabotage can occur. Often extensive damage to the database occurs.
Off-site storage of files is essential to restoring the database after many
types of environmental failure.

Existence controls in the database subsystem must restore the database in
the event of loss. They encompass both a backup strategy and a recovery
strategy. All backup strategies involve maintaining a prior version of the
database and a log of transactions or changes to the database. If an update
program creates a new physical version of a file, the previous version and
the file of transactions used during the update can be used for backup
purposes. If update occurs in place, however, periodically a dump of the
database must be taken, and a log of changes to the database since the
dump also must be maintained.

Recovery strategies take two forms. First, the current state of the database
might have to be restored if the entire database or a portion of the database

SYSTEMS AUDITING

NOTES

222

is lost. This task involves a rollforward operation using a prior version or
dump of the database and a log of transactions or changes that have
occurred to the database since the dump was taken. Second, a prior state
of the database might have to be restored because the current state of the
database is invalid. This task involves a rollback operation to undo the
updates that have caused the database to be corrupted. A log of changes
to the database is used to restore the database to a prior, valid state.

In the following subsections, we examine the various forms of backup and
recovery that can be used to restore a damaged or destroyed database.
Auditors should have two concerns: (1) that a damaged or destroyed
database can be restored in an authentic, accurate, complete, and timely
way and (2) that the privacy of data is protected during all backup and
recovery activities.

SYSTEMS AUDITING

NOTES

223

4. Out Put Controls

Structure

4.1 Introduction

4.2 Inference controls

4.3 Batch output production and distribution controls

4.3.1 Stationery Supplies Storage Controls

4.3.2 Report Program Execution Controls

4.3.3 Queuing/Spooling/Printer File Controls

4.3.4 Printing Controls

4.3.5 Report Collection Controls

4.3.6 User/Client Services Review Controls

4.3.7 Report Distribution Controls

4.3.8 User Output Controls

4.3.9 Storage Controls

4.3.10 Retention Controls

4.3.11 Destruction Controls

4.4 Batch report design controls

4.5 Audit trail controls

Objectives

After going through this lesson, you should be able to:

• understand how to Inference

• understand how to Batch output production and distribution controls

• understand to Batch report design controls

• understand to Audit trail controls

4.1 Introduction

The output subsystem provides functions that determine the content of data
that will be provided to users, the ways data will be formatted and
presented to users, and the ways data will be prepared for and routed to
users. The major components of the output system are the software and
personnel that determine the content, format, and timeliness of data to be
provided to users, the various hardware devices used to present the
formatted output data to users (e.g., printers, terminals, voice synthesizers),
and the hardware, software, and personnel that route the output to users.

SYSTEMS AUDITING

NOTES

224

Many changes have occurred and are continuing to occur in the output sub-
system. Much output that previously was produced as hard copy (printed
output) is now produced as soft copy (displayed on a screen). With
improvements in database technology, communications technology, and
reporting software, users are better able to obtain the output they want
directly rather than having to go through some intermediary. In this regard,
printers are now often dispersed widely throughout organizations rather
than being located in a single facility as they were in the past (the computer
room). Output is now more varied—for example, relative to the 1980s,
today much greater use is made of sound, video, and images as forms of
output. Laser printers have become ubiquitous as the means of producing
the reports, graphs, and drawings that previously were produced on impact
printers and plotters. With the widespread availability of cheap, high-density
storage devices such as CD-ROMs, greater use is now made of imaging
software to read, store, and present images as output. Many organizations
now seek to enable public access to information about them; for example,
they establish pages on the World Wide Web that provide textual, video,
image, and sound (multimedia) output to users who access these pages.

In this lesson we examine controls in the output subsystem. We begin by
examining how inference controls can be used to filter the output that users
are permitted to see. These controls are especially important when users
are given access to statistical databases. We then discuss controls over the
production and distribution of batch output. Next we consider how the
design of batch reports can contribute to effective control over batch output.
Subsequently we discuss controls over the production and distribution of
online reports. Finally, we examine the audit trail and existence controls
that should be implemented in the output subsystem.

4.2 Inference controls

The access control models examined in previous chapters permit or deny
access to a data item based on the name of the data item, the content of
the data item, or some characteristic of the query or time series of queries
made on the data item. In some cases, however, it might be desirable to
grant access to a data item but to restrict the type of information that can be
derived from accessing the data item. This situation arises especially with
statistical databases databases from which users can obtain only aggregate
statistics rather than the values of individual data items. In statistical data-
bases, sensitive and confidential data items, such as medical history data
items, are maintained. Moreover, access to each data item is needed to
provide statistical summaries of the information contained in the database.
Users must not be able to deduce information about specific data item
values, however, on the basis of a query.

Inference controls over statistical databases seek to prevent four types of
compromise that can occur:

1. Positive compromise. Users determine that a person has a particular
attribute value—for example, the person called John Doe is an alcoholic.

2. Negative compromise. Users determine that a person does not have a
particular attribute value—for example, the person called John Doe is not
an alcoholic.

SYSTEMS AUDITING

NOTES

225

3. Exact compromise. Users determine the precise value of an attribute
possessed by a person—for example, the person called Mary Doe has a
salary of exactly $120,000 per annum.

4. Approximate compromise. Users determine within some range the value
of an attribute possessed by a person—for example, the person called
Mary Doe has a salary in the range $100,000 to $140,000.

Note that a compromise must be either positive or negative, and it also
must be either exact or approximate. Thus, there are four combinations:
positive and exact (Doe's salary is $120,000); positive and approximate
(Doe's salary is in the range $100,000 to $140,000); negative and exact
(Doe's salary is not $120,000); and negative and approximate (Doe's salary
is not in the range $100,000 to $140,000).

4.3 Batch output production and distribution controls

Batch output is output that is produced at some operations facility and
subsequently distributed to or collected by the custodians or users of the
output. It can take many forms for example, a hard-copy management
control report;

pages containing tables, graphs, or images; negotiable instruments such as
checks for distribution to employees, clients, or vendors; film or 35mm
slides; a CD-ROM containing images and sound; microfiche containing
document images; and a cartridge containing data for archival storage.

Production and distribution controls over batch output are established to
ensure that accurate, complete, and timely output is provided only to autho-
rized custodians or users. If the output is lost or corrupted, severe
disruption can occur to the operations of the organization. For example, if
customer bills are destroyed and the organization does not have backup,
cash flow difficulties can arise. Likewise, if the privacy of output is violated,
the organization can suffer losses in several ways: Unauthorized persons
could use the information to gain access to the organization's information
systems; confidential information, such as trade secrets, patents, marketing
information, and credit information could be lost to a competitor; a criminal
could blackmail the organization by threatening to expose confidential
information about customers or clients.

We can structure our discussion on controls over batch output if we con-
sider the different phases through which batch output must pass to be pro-
duced for and distributed to authorized custodians or users. As perhaps our
most important example of batch output, consider batch reports. (We can
use our discussion on batch reports also to illustrate controls that might be
applied to other types of batch output.) Figure 4-1 shows the phases
through which batch reports may pass in the output subsystem. Not all
batch reports necessarily pass through each phase; for example, a report
might be printed directly rather than queued or spooled. Moreover, what
controls are exercised within each phase will depend on costs and benefits;
more sensitive reports ought to be subjected to more controls. In the
following subsections, however, we consider illustrative controls within each
phase.

SYSTEMS AUDITING

NOTES

226

4.3.1 Stationery Supplies Storage Controls

Historically, when organizations used impact printers, they often had large
amounts of preprinted stationery; for example, their invoice or customer
statement stationery had a preprinted logo, address, and telephone number
for the organization. It was more visually appealing to have these items
preprinted (perhaps in color) rather than having them printed by an impact
printer when output was produced. With widespread use of laser printers,
however, use of preprinted stationery has declined. Many laser printers
allow templates or masks of logos, addresses, telephone numbers, and so
on, to be stored in them and printed (perhaps in color) on the plain-paper
stationery they use. Alternatively, these templates or masks can be stored
in programs (e.g., word processing programs) and printed on laser printers.

FIGURE 4-1 Stages in the production and distribution of batch output.

For several reasons, however, many types of preprinted stationery are still
used. First, for some applications the preprinted features or the special
paper on which the preprinting is done mitigate against forgeries. For
example, negotiable instruments like checks are still used by some
organizations, and they are likely to be prepared using preprinted
stationery. Second, an organization might deem that preprinted stationery is
still more visually appealing than printing constant output (e.g., the
organization's logo) via a laser printer on plain-paper stationery. Various
types of shading and dropout colors, for example, cannot be produced
easily via laser printers. Third, printing speeds decrease and the costs of
printing increase (e.g., because of increased consumption of toner) as
larger amounts of information must be printed by a laser printer. In high-
volume output applications, using preprinted stationery for output plight be
faster and cheaper.

SYSTEMS AUDITING

NOTES

227

Whenever preprinted stationery is used, auditors should check to determine
whether the organization exercises careful controls over the stationery. For
example, the following controls might be used:

In the absence of these controls, losses can arise. For example, check sta-
tionery might be stolen, and word processing software might then be used
to print fraudulent details on the check. Moreover, authorized signatures
can also be scanned and then subsequently printed on the check, perhaps
to appear like a signature stamp or to give the impression of a valid written
signature. Similarly, if an organization's customer database is stolen along
with the organization's preprinted invoice stationery, a competitor can
produce and distribute fraudulent invoices to the organization's customers
to destroy the organization's goodwill.

4.3.2 Report Program Execution Controls

Auditors should have three concerns in relation to the execution of report
programs. First, only authorized persons should be able to execute them.
Otherwise, confidential data could be divulged. For example, a bank would
want to restrict the execution of the program that prints personal
identification numbers (PINs) for customers to only a few trusted
employees. Likewise, most organizations would seek to restrict access to
programs that print negotiable instruments like checks and authorization
images like signatures to only a few trusted employees. During an audit,
auditors should determine what report programs are sensitive. They should
then check to see which users have access to these programs. They
should also check whether high-quality identification and authentication

SYSTEMS AUDITING

NOTES

228

controls are in place and working to ensure that only authorized users
access the programs.

Second, the action privileges assigned to authorized users of report pro-
grams should be appropriate to their needs. For example, an organization
might wish to limit the number of copies of a report that a user can produce
or to limit production of a report to certain times of the day or certain days
within a month. Auditors should check to see whether the access control
mechanism used by the organization can enforce these types of
restrictions. If it can enforce this type of restriction, auditors should then
evaluate the ways in which action privileges have been assigned to users.

Third, report programs that produce a large amount of output should in-
clude checkpoint/restart facilities. Recall from Chapter 13 that checkpoint/
restart facilities can reduce the amount of work that has to be redone when
some type of system failure occurs. From the viewpoint of our evaluating
controls in the output subsystem, however, auditors should be concerned to
see that checkpoint/restart facilities are not misused. For example, they
should not be invoked to produce an unauthorized copy of a report. If
auditors are concerned about this exposure, they can examine the
operating system log for evidence of unauthorized use of checkpoint/restart
facilities associated with sensitive report programs.

4.3.3 Queuing/Spooling/Printer File Controls

If a report program cannot write immediately to a printer, the output is
queued or spooled. System software causes the report program to "think" it
is writing to the printer when actually it is writing a printer file to disk
storage. When the printer becomes available, spooling software reads the
file and produces the report.

The presence of an intermediate file in the printing process leads to two
control problems. First, printer files provide opportunities for unauthorized
modifications to and copying of reports. For example, software can be used
to change the value of a data item in a printer file, perhaps to prevent
disclosure of some irregularity. Similarly, a copy of the printer file can be
made and transmitted to an off-site location. Second, spooling software
might be used inappropriately. For example, to recover from a printer
malfunction, spooling software might allow operators to return to some prior
intermediate point and to restart printing of a report. Unauthorized copies of
the report might be produced in this way. Likewise, spooling software might
allow operators to request more copies of a report than the number
requested by the person who initiated printing of the report. Again,
unauthorized copies of the report might be made.

Auditors must evaluate how well their client organizations achieve the fol-
lowing control objectives in relation to queuing or pooling of printer files:

1. The contents of printer files cannot be altered.

2. Unauthorized copies of printer files cannot be made.

3. Printer files are printed only once.

SYSTEMS AUDITING

NOTES

229

4. If copies of printer files are kept for backup and recovery purposes, they
are not used to make unauthorized copies of reports.

4.3.4 Printing Controls

Controls over printing have three purposes: (1) to ensure that reports are
printed on the correct printer; (2) to prevent unauthorized parties from scan-
ning sensitive data that are printed on reports; and (3) to ensure that proper
control is exercised over printing of negotiable forms or instruments.

Reports can be printed either intentionally or unintentionally on the wrong
printer. If users have access to multiple printers, probably they will select
which printer they wish to employ by making choices from a screen menu.
Some printers that users can access might be secure because they are
kept behind locked doors. Others might be insecure because they are
located in public areas. Users who seek to perpetrate an irregularity could
intentionally direct a sensitive report to a printer that is not in a secure
location to provide a copy to an unauthorized user or to facilitate
unauthorized removal of a copy themselves to an off-site location. Printing
might also occur on the wrong printer, however, simply because (1) users
forget to change their menu selection from a printer that is not in a secure
location to one that is in a secure location or (2) a fault in the
communications subsystem sends output to an incorrect device address.

Several steps might be undertaken to try to ensure that sensitive reports
are printed only on a secure printer. First, users might be permitted to
activate printing of sensitive reports from workstations that can access only
secure printers. Second, users might be trained to check that they have
selected the correct printer before they print sensitive reports. Third,
software controls might be implemented to trap sensitive reports before
they are printed on a printer that is not in a secure location

4.3.5 Report Collection Controls

When output has been produced, it should be secured to prevent loss or
unauthorized removal, especially if the output contains negotiable
instruments. For example, user/client services group employees might
collect output reports, film, or cartridges and hold them pending collection
by users. They should collect the output promptly and store it securely.
Alternatively, if users direct output to an unattended device say, reports to a
laser printer they should be responsible for prompt collection of the output,
especially if the device is in a public area.

If user/client services group representatives have responsibility for collect-
ing output, they should maintain records of the output they handle. For
example, they should note the date and time when each output item was
collected and the state of the output when it was received for example,
whether all output was intact (see the next section). The identity of the
user/client services group representative who collected the output should
also be recorded.

Controls should exist to identify when output is not collected promptly and
secured. For example, the manager in charge of information systems
operations should have a system in place to indicate when any output has

SYSTEMS AUDITING

NOTES

230

not been collected promptly from a production facility. Similarly, someone
should have responsibility for removing and securing output that has not
been collected promptly from output devices that are in public areas.

4.3.6 User/Client Services Review Controls

Before output is distributed to users, a user/client services representative
might check it for obvious errors. The following types of checks could be
undertaken: (1) whether pages in a printed report are illegible because, say,
a laser printer is low on toner; (2) whether the quality of film output is
satisfactory; (3) whether tape cartridges or CD-ROMs have been labeled
properly; (4) whether any pages in a printed report are missing; and (5)
whether any pages in a report have been printed askew. This type of
checking has two purposes. First, it provides a higher level of service by the
information systems function to users. Users should obtain higher-quality
output than they might otherwise receive. Second, if errors or irregularities
in output are subsequently detected, it may be easier to detect their likely
source. If pages in a report are missing, for example, responsibility can be
assigned to user staff rather than to the information systems personnel who
are responsible for production of the report.

4.3.7 Report Distribution Controls

If user/client services group representatives have responsibility for
collecting output, they must ensure that it is distributed securely and
promptly to the correct users. Distribution can occur in various ways:

1. Output might be placed in locked bins that users clear periodically.

2. Output might be delivered directly to users.

3. Output might be mailed to users, either via internal mail or via the
normal postal service.

4. Output might be handed over to users or user representatives who
present themselves to collect the output.

5. Output might be dispatched to users via a courier service.

6. Output might be given to a mail distribution organization; for example,
customer invoices might be given to the organization to be stuffed in
envelopes and dispatched.

To exercise control over output distribution activities, records should be
kept of the date and time at which output was distributed and the identity of
the person who received the output. Likewise, if output is given to a mail
distribution organization, control totals should be kept and checked to
ensure that all output is given to the organization and that the organization
dispatches all output. These records provide a basis for identifying the
nature and source of output errors or irregularities if they occur.

Controls must be in place to ensure that output is dispatched on a timely
basis. If mailing of invoices is delayed, for example, an organization might
experience cash flow difficulties. Similarly, managers could make wrong
decisions if they do not promptly receive reports that notify them of

SYSTEMS AUDITING

NOTES

231

important changes in, say, their organization's financial position. Regular
reviews should be undertaken, therefore, to ensure that output has been
collected or distributed on a timely basis. These reviews should extend to
third parties, such as mail distribution organizations, who distribute batch
output.

Special care must be taken when a large number of copies of a report have
to be distributed. A recipient name-and-address file should be maintained.
To facilitate distribution of the report, the file then might be printed on
gummed labels that are attached to individual copies of the report. If the
user population changes frequently, the number of copies of the report
required could vary from run to run. In these situations, maintaining the
integrity of the name-and-address file is critical. If an unauthorized party
were to insert their name and address on the file, a gummed label would be
produced for them. They would then receive a copy of the report.

In some cases many different users collect output from a user/client ser-
vices group. Alternatively, the collection is undertaken on behalf of users by
a third party (e.g., a courier). Where users or third parties are unknown to
the user/client services group, they should be asked to identify and
authenticate themselves. Either prior authorization must have been given to
hand over the output to the unknown user or third party. Alternatively, the
users or third party should produce evidence to show they are authorized to
collect the output.

4.3.8 User Output Controls

Users should perform reviews similar to those carried out by user/client ser-
vices representatives in the information systems function to detect
problems with output. Because users are more familiar with the application
area, however, they are better placed to detect errors and irregularities in
output. Moreover, periodically they should undertake an in-depth review of
output to evaluate its quality. For example, they might perform test
calculations to check the accuracy of extensions or control totals shown in
an output report, or they might undertake a physical count of some
inventory items to check whether the amounts on hand correspond to those
shown in an inventory listing.

Procedures must be established to allow complete and timely reporting of
output problems identified by users to someone who has overall
responsibility for the quality of the application system that generated the
output. Moreover, users must be properly informed of these procedures. If
reporting procedures have not been established or users are unaware of
these procedures, output problems that manifest important errors or
irregularities in the application system might be overlooked or not identified
promptly.

Controls should be in place to ensure that users review output on a timely
basis. There is little point to providing users with prompt, accurate, and
complete output if they then fail to attend to it within an appropriate time
interval. Serious losses might arise as a result of users' tardiness in
examining the output provided to them. For example, an organization might
fail to adjust its portfolio of investments in light of important changes in the
stock market. To ensure that output is used promptly, management might

SYSTEMS AUDITING

NOTES

232

undertake periodic reviews. In this light, employees might be required to
endorse batch reports with the time and date of their review.

4.3.9 Storage Controls

Three major controls should exist in relation to storage of output. First,
output should be stored in an environment that will allow it to be preserved
for the period it is required. In this regard, various output media have
different requirements in terms of the environments in which they should be
kept. For example, although cartridges and CD-ROMs are fairly robust,
nonetheless to maximize their lives they should be stored in environments
that have a constant temperature and are dust free. Some laser-printed
output will also deteriorate quickly if it is stored in hot, humid environments.
Microfiche and microfilm should also be stored in cool, dry, dust-free
environments.

Second, output must be stored securely. Stored output might contain confi-
dential data that would lead to serious exposures if it fell into the hands of
unauthorized parties. In some cases the stored output could be negotiable
instruments, and an organization would incur direct financial losses if the
instruments were stolen. Stored output might also contain data that is
essential to the ongoing operations of an organization. If it were lost,
damaged, or destroyed accidentally, the organization could suffer severe
disruptions.

Third, appropriate inventory controls must be kept over stored output. For
example, records must be kept of what output is in storage, where it is
stored, and who has removed or returned output. To reduce the likelihood
of loss or damage, the output should also be stored tidily in proper facilities.
Periodically, checks should be made to ensure that the output that is
actually stored matches the records of what is supposedly stored. If the
output is kept by a third party, assurances must be obtained (perhaps from
the third party's auditor) that the third party maintains adequate controls
over storage.

4.3.10 Retention Controls

A decision must be made on how long each type of output will be retained.
This decision can affect the choice of output medium and the way in which
the output is stored. For example: reports produced by a laser printer
deteriorate faster than reports produced by an impact printer; images stored
on CD-ROMs deteriorate faster than those stored on microfiche; reports
stored in warm, humid environments will deteriorate faster than those
stored in cool, dry environments.

The decision on a retention period also affects how stored output must be
managed. For example, output that has to be stored on magnetic media for
long periods of time occasionally must be rewritten to ensure that it can still
be read accurately and completely. Magnetic media will deteriorate be-
cause of stray magnetic fields, oxidation, or other types of material decay.
Storage media also can become unreadable because they depend on old
technology that becomes obsolete sooner than expected. For example,
Rothenberg (1995) reports that the 1960 U.S. Census data was nearly lost
because it was stored on magnetic tapes using formats that had been
superseded by new, incompatible formats. Likewise, documents that were

SYSTEMS AUDITING

NOTES

233

created using word processors or spreadsheet packages at some time in
the past say, ten years ago might no longer be readable because storage
formats have changed. Recognition of such exposures requires careful
management of stored output.

A retention date should be determined for each output item produced. The
output item must then be kept until its retention date expires. Various
factors affect the retention date assigned to an output item for example, the
need for archival reference of a report, backup and recovery needs,
taxation legislation specifying a minimum retention time for data, and
privacy legislation specifying a maximum retention time for data.

4.3.11 Destruction Controls

When output is no longer needed, it should be destroyed. Report
destruction can be accomplished easily using a paper shredder. As
retention dates expire, reports should be transported in a secure manner to
the shredding facility. Partially printed reports from aborted report runs and
discarded stationery also should be shredded to prevent any unauthorized
use.

4.4 Batch report design controls

An important element in the effective execution of production and
distribution controls over batch output reports is the quality of their design.
Good report design facilitates the orderly flow of reports through the various
output phases examined in the previous section. Good management
ensures that users employ these design features to comply with the control
procedures laid down for batch reports during the output process.

Table 4-1 shows the information that should be included in a well-designed
batch report to facilitate its flow through the output process and the exe-
cution of controls as it passes through each phase. The title page contains
information that assists operators and user/client services personnel to
perform their work. In an environment where large numbers of reports are
produced, this information is especially important. If the same report is
produced several times a day, or a report program has to be rerun for some
reason, confusion can arise if each instance of a report is not identified
uniquely.

The title page should also contain details about the person to contact in the
event that operational problems have occurred in the production of the
report; for example, the print might be. too light, or some pages might have
been printed askew. This person can then take control over the defective
report; for example, they might ensure that a confidential report is
destroyed securely and authorize the production of another copy of the
report. The title page should also contain details of the person to contact in
the event that errors or irregularities are discovered on the basis of
information contained within the report. Recall that we discussed previously
the need for organizations to ensure that employees know the procedures
they should follow when they discover errors and irregularities as a result of
their examination of reports.

SYSTEMS AUDITING

NOTES

234

The information on the detail pages of a report prevents the unauthorized
removal of data from the report. A person wishing to prevent a fraud from
being discovered might remove a page containing exception information.
Certain pages of a report might be especially valuable to a competitor.
Page numbering and end-of-job markers are used, therefore, to prevent the
unauthorized removal of a report page.

TABLE 4-1 Control information to be included in a well designed report

SYSTEMS AUDITING

NOTES

235

4.5 Audit trail controls

Audit trail controls in the output subsystem maintain the chronology of
events that occur from the time the content of output is determined until the
time users complete their disposal of output because it no longer should be
retained.

Accounting Audit Trail

The accounting audit trail shows what output was presented to users, who
received the output, when the output was received, and what actions were
subsequently taken with the output. This information can be used for
various purposes. For example, as discussed previously, it might be
required to fulfill statutory obligations. Because of these obligations, an
organization can be called to account for past events that have occurred.
The accounting audit trail can provide the data needed to respond to any
statutory request for information.

If an erroneous data item is discovered in an organization's output, the ac-
counting audit trail also can be used to determine those users who might
have relied on the output to make a decision. These users can then be
notified to enable them to determine whether they need to take any actions
to mitigate their exposure. If users who relied on the erroneous output are
internal to the organization, it might be fairly straightforward to notify them
promptly of the situation. If the erroneous output has been placed in a page
on the Web, however, the situation is often problematic. The output might
have been accessed by a large number of persons who are external to the
organization. The organization must then determine what responsibilities it
has, if any, to notify these users. Likewise, if an organization broadcasts
erroneous output via a list server, it might be impossible to track down all
the people who have relied on the output. The output might have been
transmitted to other list servers and rebroad-cast multiple times. For this
reason, organizations that make output publicly available often place a
disclaimer with the output notifying people that they use the output at their
own risk. Nevertheless, even if the disclaimer can be sustained in all cases
of erroneous output, an organization might still want to notify users who
have obtained erroneous output to reduce losses of goodwill that may arise.

The audit trail can also be used to determine whether unauthorized users
have gained access to or unauthorized activities have occurred in the
output subsystem. In this light, periodically management could examine the
audit trail to determine whether the contents of output provided to users
reflect improper access or improper activities. As a deterrent to
irregularities, some organizations warn users that their activities are being
logged. For example, an external user who gains access to an
organization's Web pages via a browser might be informed that they should
act appropriately and that all actions they take will be recorded.

Unfortunately, perhaps more than any other subsystem, efficiency consid-
erations in the output subsystem dictate how complete the audit trail should
be and how long it should be kept. Internal and external users of an
organization's output subsystem can generate large amounts of batch and
online output. The costs to store all this output for long periods of time can
be excessive. Moreover, the exposures associated with much of this output

SYSTEMS AUDITING

NOTES

236

could be low. Accordingly, organizations must evaluate the exposures
associated with different types of output. A decision can then be made on
what output will be stored in the audit trail and the retention period that will
apply to the different types of output.

Operations Audit Trail

Activities in the output subsystem can consume substantial resources; for
example, expensive output devices might be required to produce graphs
and images, consumption of costly, high-quality preprinted stationery could
be high, large amounts of machine time might be required to produce
image output, substantial storage space might be required to archive
output, and a costly communications infrastructure might have to be
implemented and maintained to support online access to output by both
internal and external users.

The operations audit trail maintains a record of the resources consumed to
produce the various types of output. For example, it can be used to record
the number of report pages printed or the volume of output requested by
external users. In addition, it might record data that enables print times,
response times, and display rates for output to be determined. This data
can then be analyzed to determine whether an organization should
continue to provide different types of output to users. It can also provide
information that enables the organization to improve the timeliness of
output production and reduce the amount of resources consumed in
producing output.

5. SUMMARY

The components in the input subsystem are responsible for bringing both
data and instructions into an application system. Both types of input must
be validated Moreover, any errors detected must be controlled so input
resubmission is accurate, complete, unique, and timely.

The communication subsystem is responsible for transmitting data among
all the other subsystems within a system or for transmitting data to or
receiving data from another system. The integrity of data within the
subsystem can be undermined by impairments in transmission media
(attenuation, distortion, and noise), hardware and software component
failure, passive subversive threats (release of message contents and traffic
analysis), and active subversive threats (insertion, deletion, modification,
and duplication of messages, changes to the order of messages, denial of
messages services, and establishment of spurious associations).

The database subsystem provides functions to define, create, modify,
delete, and read data in an information system. Several major types of
controls must be implemented in the database subsystem to improve the
reliability of its components and to protect the integrity of data stored in the
database. Access controls restrict the actions that users can undertake on
the database and the database definition to the authorized set of actions.

The output subsystem provides functions that determine the content of data
that will be provided to users, the ways data will be formatted and

SYSTEMS AUDITING

NOTES

237

presented to users, and the ways data will be prepared for and routed to
users.

6. QUESTIONS

1. From an audit perspective, why are controls over the input subsystem
critical?

2. Briefly distinguish between direct entry of input data and medium based
entry of input data. Why must auditors understand the different types of
methods used to input data into an application system?

3. What techniques can be used to indicate the size of a field on a data-
entry screen?

4. What attributes of a data code affect the likelihood of a recording error
being made by a user of the code? Briefly outline some strategies to
reduce error rates that occur with data codes.

5. Briefly describe the three major types of exposure in the communication
subsystem.

6. What is meant by noise on a communication line? What factors affect
the amount of noise that exists on a line? What are the effects of
noise?

7. What control advantages do private communication lines offer over
public communication lines?

8. What is meant by the topology of a network? List three factors that
should be considered when choosing a network topology.

9. Distinguish between link encryption and end-to-end encryption. What
are the relative strengths and limitations of link encryption versus end-
to-end encryption?

10. What is communication architecture? How is the concept of
communication architecture useful to us as auditors?

11. Briefly describe the functions of the database subsystem.

12. How can views be used to enforce access controls in the database
subsystem?

13. Briefly describe the functions of the output subsystem.

14. Give three purposes to controls over printing of batch reports.

7. REFERENCE BOOKS

1. Weber R; Information Systems Control and Audit (Person Education)

2. Dube: Information systems for Auditing (TMH)

3. Auditing Information Systems, 2nd Edition. Jack J. Champlain (Wiley)

SYSTEMS AUDITING

NOTES

238

UNIT – IV

1. Audit software

Structure

1.1 Introduction

1.2 Generalized audit software

1.2.1 Motivations for Generalized Audit Software Development

1.2.2 Functional Capabilities of Generalized Audit Software

1.2.3 Audit Tasks that Can Be Accomplished Using Generalized

Audit Software

1.2.4 Functional Limitations of Generalized Audit Software

1.2.5 Accessing Data with Generalized Audit Software

1.2.6 Managing a Generalized Audit Software Application

1.3 Industry-specific audit software

1.4 High-level languages

1.5 Utility software

1.6 Expert systems

1.7 Specialized audit software

1.7.1 Reasons for Developing Specialized Audit Software

1.7.2 Development and Implementation of Specialized Audit

Software

1.8 Control of audit software

Objectives

After going through this unit, you should be able to:

• understand how to Generalized audit software

• understand how to Industry-specific audit software

• discuss about High-level languages

• discuss about Utility software , Specialized audit software, and Control of
audit software

SYSTEMS AUDITING

NOTES

239

1.1 Introduction

In this chapter we begin our discussion of various tools that auditors can
use to collect evidence on the reliability of controls within an application
system. Specifically, we focus on different types of software that auditors
can employ to facilitate their evidence-collection work. A wide range of
software now exists that auditors might find useful during an audit. In this
light, we must have an understanding of the nature of this software, the
functions it can perform, where it might be used within an audit, and its
inherent strengths and limitations.

In the following discussion, we focus first on four types of off-the-shelf
software that auditors often use during the evidence-collection phase of an
audit: generalized audit software, industry-specific audit software, high-
level languages, and utility software. We then examine two types of audit
software that have their roots in artificial intelligence namely, expert
systems and neural networks. Next, we discuss specialized software that
auditors sometimes must develop and implement to address needs that
cannot be met satisfactorily using off-the-shelf audit software. We then
briefly examine some other types of audit software that have been
developed over the years but have not enjoyed widespread use. By having
an appreciation of this software, we can gain insights into how auditors use
other audit software in innovative ways. Finally, we examine the
approaches they can use to exercise control over audit software so that
they have confidence in the integrity of the results they obtain using the
software.

1.2 Generalized audit software

Generalized audit software is off-the-shelf software that provides a means
to gain access to and manipulate data maintained on computer storage
media. Auditors can obtain evidence directly on the quality of the records
produced and maintained by application systems. In turn, their judgments
on the quality of the records will enable them to make judgments about the
quality of the application system that processes these records.

Generalized audit software packages first appeared in the mid-1960s. They
were developed by several large public accounting firms to facilitate the
audit work they needed to carry out on mainframe computers. Enhanced
versions of these mainframe generalized audit software packages are still
available and still used. Today, however, microcomputer-based generalized
audit software packages are available. Data is often transferred from a
mainframe to a microcomputer to enable auditors to work with a
generalized audit software package. Over the years, the extent of usage of
generalized audit software by auditors has been monitored. It has remained
the most frequently used computer-assisted auditing tool.

SYSTEMS AUDITING

NOTES

240

1.2.1 Motivations for Generalized Audit Software Development

The primary motivation for developing generalized audit software is the set
of problems caused by the diversity of computerized information processing
environments that auditors might confront. The characteristics of
information systems can vary considerably: different hardware and
software environments, different data structures, different record formats,
and different processing functions. With resource constraints, it is often
impossible to develop specific programs for every system that will extract,
manipulate, and report data required for audit purposes. Generalized audit
software has been developed specifically to accommodate a wide variety of
different hardware and software platforms. The trade-off is a loss of
processing efficiency for the ability to develop quickly a program capable of
accomplishing audit objectives in a new environment. In many cases,
however, the loss in processing efficiency is more than compensated by
savings in the labor hours required to develop audit software capabilities for
specific computer systems.

A second major motivation for developing generalized audit software is the
need to develop quickly an audit capability in light of changing audit
objectives. Both external and internal auditors often face situations in which
new audit objectives must be developed or existing audit objectives
change. For example, the volume of transactions processed through an
application system might increase markedly such that the system becomes
a high-materiality system rather than a low-materiality system. Generalized
audit software allows us to adapt quickly when these types of changes
occur.

A third major motivation for developing generalized audit software is the
need to provide audit capabilities to auditors who might be relatively
unskilled in the use of computers. In the past, few auditors had extensive
training and experience in computers. Today, many auditors have a broad,
general understanding of computer systems. They might lack the specific
knowledge and experience needed, however, to be able to cope with the
different types of hardware and software platforms they confront. Most
generalized audit software packages can be used by auditors who are not
computer audit specialists. In this light, the computer audit capabilities of
these auditors can be extended.

1.2.2 Functional Capabilities of Generalized Audit Software

Table 1-1 shows the major sets of functions that auditors can perform using
generalized audit software. These functions can be executed using some
type of high-level user interface, such as a graphical user interface.

SYSTEMS AUDITING

NOTES

241

TABLE 1-1 Major sets of functions performed by generalized audit software

In the following subsections, we examine each set of functions listed in
Table 1-1 in more detail.

File Access

The file access functions enable files having different data coding schemes,
record formats, and file structures to be read. Coding schemes like ASCII,
EBCDIC, zoned, packed, and binary often can be read. Records can have
fixed or variable formats. Typically, the file structures that can be accessed
are sequential, index sequential, and random, although some packages
provide access to more complex structures such as trees and networks.
Some generalized audit software packages allow several files to be read
simultaneously. Some also provide direct access to files created by several
popular database management systems, accounting packages,
spreadsheet packages, and word processing packages.

File Reorganization

The file reorganization functions allow data to be sorted into different orders
and data from different files to be merged onto one file. Sorting capabilities
are necessary for a variety of purposes for example, reporting data in a
specified order or comparing data on two files. Merging capabilities are
needed if data from separate files is to be combined on a separate work
file. Functions can then be executed on this work file for example, statistical
functions or various kinds of calculations.

SYSTEMS AUDITING

NOTES

242

Selection

Generalized audit software provides powerful selection capabilities for ex-
tracting data that satisfies certain tests. Typically, the Boolean operators
AND, OR are provided as well as the relational operators EQ, GT, LT, NE,
GE, LE that is, equal to, greater than, less than, not equal to, greater than
or equal to, and less than or equal to. Brackets establish precedence. For
example, the query (PAY GT 24000 AND (OVERTIME GE 6000 OR
ALLOWANCES EQ 6)) would extract employee records in which pay is
greater than $24,000 per year and overtime is greater than or equal to
$6,000 per year, or employee records in which pay is greater than $24,000
and the allowances classification is category 6.

Statistical

The statistical capabilities of generalized audit software vary from moder-
ately powerful to sophisticated. At a basic level, every nth record can be
selected or records can be selected at random. Some packages also pro-
vide comprehensive attributes sampling, variables sampling, combined
attributes/variables sampling, discovery sampling, stratified sampling, and
dollar-unit sampling capabilities. Some also provide functions to support
analytical review procedures for example, regression and financial ratio
analysis capabilities. Selected data and key analytical review results from
prior years can be saved and brought forward to facilitate analytical review
in subsequent years. Generalized audit software also can be designed to
provide input to separate statistical and financial modelling software where
more powerful capabilities are required.

Arithmetic

Generalized audit software provides the full set of arithmetic operators en-
abling work fields to be computed, the arithmetic accuracy of data to be
checked, control totals to be produced, and so on. For example, net pay
calculations for a payroll file can be recomputed, or files can be
crossfooted. Often the calculations can be made based on data from more
than one input record. Calculated fields can be stored and then used in
subsequent calculations. With some packages, calculated fields can also
be used to develop tables for look-up purposes.

Stratification and Frequency Analysis

Generalized audit software packages often provide good capabilities with
respect to stratification and frequency analysis. Different types of
stratification, frequency analysis, and aging analysis can be undertaken.
For example, the frequency of accounts receivable balances in certain
classes can be determined: $0-$200, $200.01-$400, $400.01-$600, and so
on. The distribution of accounts receivables balances could be an important
determinant of the type of sampling method chosen or the substantive audit
procedures chosen.

SYSTEMS AUDITING

NOTES

243

File Creation and Updating

Some generalized audit software packages allow work files to be created
and updated. For example, the output could contain samples of input file
records or user-defined records that include fields extracted from input
records or calculated fields. In some cases, the output files can be written
in formats that are suitable for input into widely used database
management software, spreadsheet software, or word processing software.
Auditors can use generalized audit software to extract the data needed for
audit purposes from the application system files. By using the work file
instead of the application system files, auditors then cause minimum
interference to normal application system processing.

Reporting

Comprehensive reporting facilities are often available in generalized audit
software packages. For example, free-form reports can be produced that
allow auditors to control the title of the report, content of column headings,
width of columns in the report, levels of subtotals, number of detail lines,
page footers and page headers, and formatting of fields (such as zero
suppression and the addition of dollar signs). Some reports that contain
data that most auditors will require during an audit are produced
automatically for example, reports containing control totals, record counts,
negative amounts, and blank or zero fields. Special-purpose reports also
may be available for example, those that will be sent to outside parties for
confirmation purposes.

1.2.3 Audit Tasks that Can Be Accomplished Using Generalized Audit
Software

Auditors can combine the functional capabilities of generalized audit
software to accomplish several audit tasks:

1. Examine the quality of data,

2. Examine the quality of system processes,

3. Examine the existence of the entities the data purports to represent, and

4. Undertake analytical review.

In the following subsections, we briefly examine the ways in which these
tasks can be accomplished.

Examine the Quality of Data

Auditors can use the functional capabilities of generalized audit software to
examine the existence, accuracy, completeness, consistency, and
timeliness .of data maintained on computer storage media. Consider the
following examples:

SYSTEMS AUDITING

NOTES

244

1. Records for various fixed assets can be retrieved to see if, in fact, the
records exist.

2. The calculation of sales discounts can be checked for accuracy.

3. The address field for customers in an accounts receivable file can be
examined to see if it contains blanks.

4. Records on the personnel file and the payroll file can be compared for
consistency.

5. A file of share prices can be checked to determine the last time it was
updated.

Auditors might examine the quality of data maintained in application system
files or in an organization's database for two reasons. First, the quality of
the data reflects the quality of the application system that processes the
data. For example, if the address field in a debtor's records is blank, we
should question the adequacy of the validation processes contained in the
system. Second, the quality of data reflects the quality of the personnel
who developed and maintain the application system and the quality of the
personnel who use the system. If the data is low in quality, the application
system processing the data could be poorly designed, poorly implemented,
or poorly maintained. If this situation has been allowed to continue, the
quality of the personnel who use the system also must be questioned.
Moreover, even if the system is well designed, implemented, and
maintained, the data supplied by users might still be low in quality.

Examine the Quality of System Processes

Even though the quality of the data in an application system might be high,
the quality of system processes still could be low from the viewpoint of
achieving the objectives of an organization. For example, the data in an
accounts receivable file might be accurate, complete, consistent, and
timely. A substantial number of overdue accounts might exist, however,
which reflects adversely on both the accounts receivable application
system and the personnel who use the system. The system might not be
producing adequate management reports to enable timely collection of
receivables. Alternatively, the system might be producing adequate reports.
Nonetheless, accounts receivable personnel may not be using the reports
or not properly following up on collections.

Besides examining the quality of data, auditors can use generalized audit
software to examine the quality of system processes in other ways. For
example, in our accounts receivable example, auditors could use it to age
the accounts receivable file to determine whether debtors were paying their
accounts on a timely basis. Similarly, auditors could use generalized audit
software to calculate inventory turnover statistics as a basis for identifying
obsolete inventory. If they identified substantial amounts of obsolete
inventory, auditors should then question the adequacy of system processes

SYSTEMS AUDITING

NOTES

245

for managing inventory. Moreover, auditors should also question whether
inventory is overvalued.

Examine the Existence of the Entities the Data Purports to Represent

Data could exist and be accurate, complete, and consistent. It might not
represent an object in the real world, however. For example, it might
represent a bogus insurance policy or an inventory item that no longer
exists. Auditors must determine, therefore, whether the entities that the
data purports to describe really exist.

The statistical sampling capabilities of generalized audit software provide
an important means of doing this. For example, auditors can use these
capabilities to select a sample of debtors for confirmation or a sample of
inventory for physical observation. The powerful reporting capabilities of
generalized audit software can then be used to print confirmations in the
form required for mailing to debtors or to sort and print inventory data in a
way that will facilitate auditors' physical counts of inventory. They can then
input the results obtained from their confirmations or physical inventory
work to generalized audit software to obtain probabilistic statements about
the number of errors or the size of the dollar error that is likely to exist in
the accounts.

Undertake Analytical Review

Analytical review is the process of obtaining key ratios and totals from an
organization's data for comparison with previous years' ratios and totals or
industry wide ratios and totals. The information obtained from analytical
review is used to support or question preliminary audit conclusions based
on system reviews and other substantive tests. For example, a decline in
the working capital ratio of an organization might be used to support a
preliminary audit conclusion that the ongoing viability of the organization is
at risk.

Auditors can use generalized audit software to support analytical review
work in several ways. First, they can use generalized audit software to
extract data required for analytical review from an organization's database
or an outside database and to prepare various ratios and totals. Second, if
generalized audit software provides regression analysis capabilities,
auditors can use the software to examine firm and industry trends.
Alternatively, they can use generalized audit software to prepare data in a
format suitable for input to another package that provides regression
capabilities or other kinds of modelling capabilities required. Third, auditors
can use generalized audit software to maintain a database of key data and
key indicators across time. For example, auditors might want to store key
indicators from the current year's audit for future years so trends across
years can be identified.

SYSTEMS AUDITING

NOTES

246

1.2.4 Functional Limitations of Generalized Audit Software

To use generalized audit software effectively and efficiently, auditors must
understand both its capabilities and its limitations. The following
subsections examine three limitations that undermine its usefulness as a
means of collecting evidence on the reliability of information systems:

1. Generalized audit software permits auditors to undertake only ex.post
auditing and not concurrent auditing.

2. Generalized audit software has only limited capabilities for verifying
processing logic.

3. It is difficult for auditors to determine the application system's propensity
for error using generalized audit software.

Ex Post Auditing Only

Generalized audit software enables evidence to be collected only on the
state of an application system after the fact. In other words, the software
examines the quality of data after it has been processed. Even if auditors
use generalized audit software to undertake parallel simulation, the results
produced by the parallel simulation program are checked against a set of
existing results produced by the application system. Thus, some time lag
will occur between an application system error occurring and its possible
identification using generalized audit software. In some cases this elapsed
time could be substantial if the application system is not audited on a
regular basis.

For some types of systems, timely identification of errors could be critical.
For example, consider a situation in which multiple online users access a
shared database. Unless an error that occurs in a data item is discovered
quickly, it could permeate the database and cause several incorrect
decisions to be made by users. Timely identification and correction of the
error is therefore critical. In this light, Chapter 18 discusses the use of
concurrent auditing techniques that permit evidence to be collected, and
sometimes evaluated, at the same time as application system processing
occurs. Auditors must use specialized rather than generalized audit
software, however, to implement concurrent auditing techniques.

Limited Ability to Verify Processing Logic

Often the tests performed with generalized audit software involve "live"
data that is, data captured and processed by the application system during
the normal course of business. The limitations of using live data to test
application systems, however, are well known. The data might not manifest
the exceptional conditions that occur occasionally within the application. As
a result, the application system's capability to handle these exceptional
conditions accurately and completely is not tested. To overcome this
problem, test data must be de signed specifically to determine how the

SYSTEMS AUDITING

NOTES

247

application system handles exceptional conditions. (Chapter 17 discusses
this issue in more detail.)

Limited Ability to Determine Propensity/or Error

Systems can be designed and implemented in ways that allow them, at
least to some extent, to accommodate change. For example, database
management systems can be used to isolate certain types of changes to
the database design from the application systems that access the
database. Alternatively, application systems can be designed and
implemented in ways that cause them to degenerate quickly when change
occurs. Perhaps they are written in this way to allow them to process data
efficiently.

1.2.5 Accessing Data with Generalized Audit Software

The way auditors access data with generalized audit software will depend
on whether the data they need to access resides on the same machine as
the generalized audit software package they are using. If the data they
need to access resides on the same machine as their package for
example, they are using a mainframe-based generalized audit software
package access usually is straightforward. They simply define the file,
record, and data formats of the file they wish to access. Their generalized
audit software package then should be able to access the file. In some
situations, the file might be stored using a format that cannot be read by
their generalized audit software package. They then might have to use
some type of utility to convert the file into a format that can be read by their
generalized audit software package.

To illustrate how auditors might undertake a file transfer, assume that
the file resides on a mainframe and the generalized audit software package
resides on a microcomputer. Several methods can be used to undertake
the file transfer:

1. If the file to be transferred is large, it can be written to a cartridge or
perhaps a tape. Before transfer, it might be useful to sort the file in the
order that will be most useful to the generalized audit software
application. It might also be useful to select only certain fields in records
for transfer or certain records for transfer. These actions will reduce
processing time on the microcomputer. The microcomputer on which the
generalized audit software package resides must have a device that can
read the cartridge or tape.

2. If the file to be transferred is small, it can be written to a diskette. The
diskette can then be transported to the microcomputer on which the
generalized audit software resides.

3. A modem plus some type of file transfer utility can be used to transfer
the file from the mainframe computer to the microcomputer.

SYSTEMS AUDITING

NOTES

248

4. The mainframe can be connected via a gateway to a local area network.
The microcomputer on which the generalized audit software resides is
also connected to this network. A file transfer utility can then be used to
transfer the file to be accessed from the mainframe to the
microcomputer.

1.2.6 Managing a Generalized Audit Software Application

Whenever auditors develop a generalized audit software application will be
simple and require few resources. Accordingly, project management
concerns will be minimal. In other cases, however, the application will be
complex and costly. Careful control will have to be exercised, therefore, to
ensure that the development work is carried out effectively and efficiently.
In the following subsections, we briefly examine the work that should be
undertaken during the major phases of developing and implementing a
generalized audit software application.

Feasibility Analysis and Planning

Certain types of generalized audit software applications are costly to
develop, implement, and operate. Auditors should take care to estimate the
costs and benefits of a generalized audit software application whenever it
has some or all of the following characteristics:

1. The application will access large data files such that the execution time
required will be substantial.

2. The application is complex such that the development and testing time
required will be substantial.

3. The application system to be evaluated using generalized audit software
is poorly documented and poorly understood.

4. The application system to be evaluated using generalized audit software
is subject to frequent changes that will require the generalized audit
software application to be modified frequently.

5. The application is to be run frequently; it is not a one-off or occasional
use o generalized audit software.

6. The audit staff are not skilled users of computer systems, or they lack
knowledge of and experience with the generalized audit software
package.

7. The audit objectives to be accomplished with the generalized audit
software application are unclear or still evolving.

When auditors estimate the costs associated with a generalized audit
software application, they must ensure that they take into account all the
material costs that are likely to be incurred. Many different types of costs
can arise for example, labor costs associated with understanding,
developing, implementing and operating the application; labor costs

SYSTEMS AUDITING

NOTES

249

associated with application systems staff and technical and administrative
staff who must provide assistance; computing costs associated with the
development, testing, and execution of the application; supply costs such
as those associated with the special stationery used for confirmation
letters; and costs of disruption if errors are introduced into the application
system as a result of their using generalized audit software. Similarly, many
different types of benefits can accrue from using generalized audit software
for example, reductions in the amount of time to perform the audit,
improved detection of errors and irregularities, and improved feedback to
the users of application systems on the quality of controls. Again, auditors
must be sure that they take all material benefits into account when
determining whether a generalized audit software application will be
worthwhile.

Having estimated the costs and benefits associated with a generalized
audit software application, auditors should then prepare a budget to
determine whether the benefits of the application are likely to exceed the
costs. The budget will also form the basis for controlling the development,
implementation, and operation of the application. Auditors also need to
prepare a timetable for development to ensure that the application can be
developed within the required timeframe.

Application Design

During the application design phase, auditors undertake detailed design of
the generalized audit software application. The amount of work done during
this phase will depend on such factors as the size, complexity, and
criticality of the application. For example, if the application is large and will
consume substantial amounts of machine time to execute, auditors should
take substantial care to ensure that the logic is correct from the outset and
that the generalized ''audit software package will perform the functions
required as efficiently as possible. On the other hand, if the application is
small and requires few machine resources, auditors might use a
prototyping approach when preparing the application. For example,
auditors might prepare a quick, preliminary design with a view to obtaining
a working version of the application that they can use on an experimental
basis.

Some of the important design steps to be undertaken during this phase are
as follows:

SYSTEMS AUDITING

NOTES

250

When auditors have completed the design phase, they might need to
review and to evaluate the design against the budget and timetable
prepared during the feasibility analysis phase. In light of the design
prepared, it might be clear that they cannot achieve the outcomes required
of the generalized audit software application within the budget or timetable
prepared. More resources or additional time might have to be allocated to
the application. Alternatively, the application might have to be scrapped or
modified in some way.

Coding and Testing

After the design has been completed, the application must be coded and
tested. In some cases, auditors simply input commands to the generalized
audit software package and observe the outcome as each command is
interpreted and executed. They are likely to follow this approach if the
results from each command can be obtained quickly. In other cases,
however, auditors might write a series of commands and store them in a
command file that is subsequently read and executed by the generalized
audit software package. They are likely to follow this approach if the
commands take substantial time to execute. The command file might be
read and invoked at some time during the night when the load on the

SYSTEMS AUDITING

NOTES

251

machine used to execute the generalized audit software application is low.
Because online and batch execution of commands is often needed, some
packages allow a command file to be created for subsequent use as
auditors input each command and observe its outcome. Thus, auditors can
develop the application iteratively and store the final version for subsequent
execution as a command file.

Auditors should ensure that the results produced by a generalized audit
software application are correct and complete. For example, they might
select a few input records from the application system's files and validate
the output produced by the generalized audit software program in light of
these input records. In this regard, some packages provide a facility to
select a small number of records from a file to enable testing of the
generalized audit software application to be undertaken before the entire
file is accessed. If the generalized audit software program will consume
substantial resources during its execution, testing the application becomes
especially critical before production running is undertaken.

Operation, Evaluation, and Documentation of Results

As discussed previously, sometimes operation of a generalized audit
software application simply involves submitting input commands to the
package that are interpreted and executed immediately. If auditors prepare
batch command files for delayed execution, however, they might need to
establish a processing schedule with the operations manager. Furthermore,
if some time has elapsed since the audit software application was last run,
auditors should check to see that no changes have been made to the
application system that would impact its completeness and correctness.
For example, a change to a record format could cause the application to
produce erroneous output.

Upon obtaining the reports produced by the audit software application, au-
ditors should review the output to check for any errors, derive a set of audit
conclusions, and determine whether audit objectives have been attained.
Re-specification and rerunning of the application might be necessary. The
output must be incorporated into the audit working papers along with audit
conclusions and any suggestions for improvements in future use of the
application. In this regard, some packages prepare output and an audit trail
to facilitate preparation of audit working papers. The costs and benefits of
the application also should be compared with the budget. Finally, any files
created by the application that might be needed for future use should be
secured.

1.3 Industry-specific audit software

Some types of audit software packages are now available that are oriented
toward specific industries for example, the financial services, health care,
and insurance industries. The packages are still generalized because they
provide auditors with high-level languages that can be used to invoke a
wide range of functions. They differ from the types of audit software

SYSTEMS AUDITING

NOTES

252

examined previously, however, in two ways. First, because they are
oriented toward a particular industry, they provide high-level commands
that invoke common audit functions needed within the industry. For
example, in the banking industry, they might use a single command to
invoke logic that would check for account kiting. If generalized audit
software were to be used to check for kiting, several commands might be
required to express the logic needed to execute the various tests. Second,
industry-specific audit software could have been developed to access data
maintained by a specific generalized application package that is used
extensively within the industry. Accordingly, the file, record, and field
definitions used by the application package could be built into the audit
software package; that is, auditors do not have to provide these definitions
each time they want to run the package.

The CAPS package developed by Brisbane-based Kendalls Chartered Ac-
countants is an example of an industry-specific audit software package. It
has been designed for auditors of financial institutions (primarily auditors of
credit unions and building societies). As such, it provides high-level
commands to invoke functions that they will need. In addition, CAPS has
been written to access the data maintained by two widely used generalized
application packages within the finance industry. Indeed, CAPS cannot be
used unless auditees employ one of these two packages for their basic
application processing. If the auditee uses one of those packages,
however, CAPS provides nine major sets of audit capabilities:

1. Loan arrears audit. CAPS can be used to evaluate the movements in
loan arrears on a member's loan balance throughout a specified period.
For example, a report is provided showing any case in which a new
disbursement has occurred in spite of the loan being in arrears. Using
this type of information, auditors could assess the auditee's controls over
loan arrears.

2. Interest audit. This module recalculates all interest on member loans and
savings accounts to provide an independent check on calculations
carried out by the application system.

3. Term deposit interest audit. This module recalculates total term deposit
interest to a specified date to provide an independent check on
calculations carried out by the application system.

4. Member ledger balances audit. This module provides several functions
that assist auditors to evaluate the veracity of member ledger balances.
For example, it provides summarized information on each loans,
savings, and investments ledger; it allows stratified sampling of member
ledger balances for confirmation purposes; and it provides routines to
statistically evaluate the results of a confirmation of members.

5. Member ledger transactions audit. This module examines ledger
transactions for evidence of unusual circumstances. For example, it
identifies transaction values outside a specified range; it identifies when

SYSTEMS AUDITING

NOTES

253

a disproportionate number of a particular transaction type has occurred;
and it selects transactions randomly for audit scrutiny.

6. Member biographical audit. This module examines the reasonableness
of various demographic and personal data held about a member. For
example, it looks for member names without vowels (unusual names); it
tests for post codes (zip codes) outside a particular range; and it tests
for members who have a post office box number as a primary address.

7. Dormancy audit. This module identifies member accounts that are
dormant and that, as a consequence, bear a greater risk of fraudulent or
unauthorized transactions remaining undetected for some time. The
module retains a separate file of dormant accounts and provides a report
on changes to the file when subsequent dormancy audits are conducted.

8. Incompatible duties audit. This module allows the set of transactions that
different operators (tellers) are allowed to execute to be defined. It will
then check transaction log files to determine whether any operators are
executing transactions that manifest inadequate separation of duties.

9. Legislative compliance audit. This module determines whether the
financial position of an organization complies with legislative
requirements. For example, a credit union might have to ensure that the
proportions of its loans maturing within 3 months, 6 months, 9 months,
12 months, and greater than 12 months fall within certain ranges.
Otherwise, it will be in breach of legislation.

The primary advantages of industry-specific audit software over general-
ized audit software are that it runs more efficiently and that it is easier to
use because it incorporates higher-level functions. The primary
disadvantage is that. it has a more limited domain of application than
generalized audit software. As such, it tends to be more useful for internal
auditors or external auditors who perform a large number of audits within a
specific industry.

1.4 High-level languages

Besides generalized audit software, auditors can often use a high-level lan-
guage to gain access to data and manipulate this data. In particular, many
auditors now use fourth-generation programming languages, such as SQL
and QBE, and generalized statistical software, such as SPSS™ and SAS®,
to collect evidence on system reliability.

Fourth-generation languages have proved useful to auditors' work for sev-
eral reasons. First, most functions incorporated within generalized audit
software packages are also included within fourth-generation languages.
For example, auditors can use fourth-generation languages to select data
from files that satisfy certain criteria and to format this data for reporting
purposes. They might have weaker capabilities in a few areas for example,
statistical sampling capabilities. Often auditors can overcome these
difficulties, however, by using "macros," which allow them to write programs

SYSTEMS AUDITING

NOTES

254

(perhaps using the high-level language) to perform particular functions and
then to invoke these programs with a single command. Furthermore, some
vendors of fourth-generation languages have adapted their software to
produce specialized versions for auditors that contain, for example,
statistical sampling functions.

Second, for the types of functions auditors might want to perform, fourth-
generation languages could be more user friendly than generalized audit
software. For example, a fourth-generation language might provide them
with more flexible reporting capabilities. Auditors might also be able to
avoid difficult downloading of data from one computer to another computer
or troublesome conversion of one file or data format to another file or data
format.

Third, if auditors use a fourth-generation language that is employed exten-
sively throughout the organization audited, they are likely to be able to get
good support to overcome any difficulties they might encounter. For
example, if the organization uses a relational database and SQL, many
persons within the organization should be able to assist auditors if they
have problems using SQL to access and manipulate data in the database.

Many auditors have also become more frequent users of statistical pack-
ages because they now place increased reliance on analytical review as a
diagnostic tool in the conduct of audits. In some generalized audit software
packages, the statistical capabilities provided are fairly basic. They are
oriented primarily toward support of statistical sampling activities. Analytical
review often relies on using other statistical models, however, some of
which are complex and require substantial computational support. For
example, if auditors undertake time series modelling, they need various
types of linear and nonlinear regression models; if auditors develop
bankruptcy prediction models, they need discriminant analysis models.
Statistical packages often offer very powerful modelling capabilities, and
these capabilities are continually being enhanced. Moreover, the user
interfaces are friendly, and highquality help functions and documentation
exist to support their users.

As with generalized audit software, the widespread deployment of
microcomputers has contributed significantly to auditors' increased use of
fourth-generation languages and generalized statistical packages. With
suitable utility software, auditors can download or transfer a copy of the
data they need from another computer. The microcomputer versions of
fourth-generation languages and statistical packages can then be
employed to access and manipulate the data and prepare reports. In this
way, auditors can work in a standardized environment rather than having to
deal with multiple hardware/software platforms.

1.5 Utility software

Utility software is software that performs fairly specific functions that are
needed frequently, often by a large number of users, during the operation

SYSTEMS AUDITING

NOTES

255

of computer systems. For example, they include copy programs, sort
programs, disk search programs, and disk formatting programs. They often
come as part of the suite of programs provided with major system software,
such as operating systems, database management systems, fourth-
generation languages, or data communications software. Much
independent utility software has now been developed, however. It can be
purchased to undertake functions that cannot be accomplished using the
utility programs provided with system software or alternatively to undertake
functions more effectively and efficiently than the utility programs provided
with system software. Some also exists as freeware or shareware
(although free use might be restricted only to personal use rather than
business use). It might be downloaded, for example, from a site on the
Internet. Auditors use utility software tor five reasons:

1. Utility software might have been developed to perform a specific security
or integrity-related function. For example, auditors might use a utility
program to check for viruses on a disk.

2. Before auditors can use generalized audit software or other types of
audit software, they might need to format and download data using utility
software.

3. Utility software might perform functions that cannot be performed using
generalized audit software or other audit software available. For
example, auditors might use a utility program to try to recover a
damaged disk file that contains data that is material to the audit. It is
unlikely that audit software will be able to perform this function.

4. Utility software might accomplish audit tasks more effectively and more
efficiently than audit software. For example, it might be possible to select
certain kinds of data and print a report using generalized audit software.
Utility software might perform the same functions but consume fewer
resources and prepare better-formatted reports.

5. Auditors might use utility software to assist with the development of new
audit software. For example, they might seek to develop audit modules
that they can embed in application systems to collect evidence at the
same time that application system processing occurs. Auditors might
use utility software to help test whether the modules work accurately and
completely before they release the modules into production.

The following utilities illustrate those auditors might find useful from time
to time:

SYSTEMS AUDITING

NOTES

256

1.6 Expert systems

Expert systems are programs that encapsulate the knowledge that human
experts have acquired about a particular domain and possess capabilities
to reproduce this knowledge when presented with a particular problem.
Throughout the 1980s, several audit firms, internal audit groups, and
independent vendors expended substantial resources to develop expert
systems to assist with audit work. In light of the success enjoyed with these
expert systems, development work has continued. As a result, auditors can
now use expert systems to assist them with both evidence-collection and
evidence-evaluation activities.

Motivations for Using Expert Systems

There are three major reasons why auditors might develop, maintain, and
use expert systems:

1. Expert systems make available to many auditors the knowledge typically
possessed by only a few auditors. By definition, expertise is a scarce
resource. When expertise is embodied in an expert system, however, it

SYSTEMS AUDITING

NOTES

257

can be accessed and used widely without the expert having to be
present. Thus, expert systems provide a mechanism for effectively
disseminating and operationalizing expertise in the audit domain.

2. Because computer technology evolves rapidly, it is difficult for auditors to
remain knowledgeable across the range of technologies they are likely
to confront in an audit. They might attempt to handle this complexity by
designating certain audit colleagues as having responsibility for
remaining current in a particular technology, embodying their expertise
in an expert system, and disseminating their expertise via the expert
system.

3. Expert systems provide a mechanism for increasing consensus and
consistency in auditors' evaluation judgments. Because expert systems
can be used to guide auditors through a series of judgmental steps, they
help ensure that (a) important judgments are not omitted; (b) auditors
are aware of significant information that may affect their judgment; (c)
auditors are alerted to judgmental inconsistencies; (d) auditors are
aware of alternative judgments that might be made on the basis of the
evidence available; and (e) auditors maintain a proper record of
documentation to support their decision making.

1.7 Specialized audit software

Specialized audit software is software written in a procedure- or problem-
oriented language to fulfill a specific set of audit tasks. The term
"specialized" does not mean the software performs only a narrow range of
functions. Indeed, in some cases the software has extensive functionality.
Rather, specialized means auditors have developed and implemented the
software where the purposes and users of the software are well-defined
before the software is written. On the other hand, with generalized
software, the specific tasks to be undertaken by the software and the
identity of users will not be known at the outset.

1.7.1 Reasons for Developing Specialized Audit Software

There are six reasons auditors might develop specialized audit software:

1. Unavailability of alternative software. Occasionally, auditors might
encounter situations in which no generalized software is available to
perform audit procedures. For example, the auditee might have
developed or purchased some type of specialized hardware platform on
which only a minimal suite of software will run.

2. Functional limitations of alternative software. Even if auditors have
generalized software available to perform an audit task, its functionality
might be limited. For example, government auditors sometimes
undertake complex information processing activities to check for errors
and irregularities. They match data from tax returns, bank accounts,
share transactions, welfare payments, and so on, to identify whether
citizens are defrauding their government. The generalized software

SYSTEMS AUDITING

NOTES

258

available to government auditors might not be capable of processing
the large number of files that must be matched concurrently nor han-
dling the complex data formats and file structures that have been used.

3. Efficiency considerations. In some cases, the audit tasks to be
undertaken consume substantial resources, perhaps because auditors
have to access large databases or have to perform audit tasks
frequently. For example, in the complex matching task sometimes
undertaken by government auditors examined previously, processing
efficiency is often a primary objective. The matching task can be very
costly because large, complex data files have to be processed. In this
light, government auditors often develop specialized audit sdftware
because it will perform the matching task more efficiently than
generalized software.

4. Increased understanding of systems. Sometimes the systems to be
audited are complex. Nonetheless, it is important that auditors gain a
proper understanding of the system as a basis for conducting the audit.
One way that they might seek to gain this understanding is to prepare
program specifications and to write the source code for specialized
audit software. In the case of the computer matching example
examined previously, government a valuable insights into the
application systems that process the files used in the matching task if
they participate in the development and implementation of the
specialized software used to carry out the matching task.

5. Opportunity for easy implementation. Opportunities sometimes exist to
develop and implement specialized audit software quickly and easily.
For example, auditors might be able to insert a few instructions in an
application system that gathers data that is critical to a judgment on the
reliability of controls in an application system.

6. Increased auditor independence/respect. To the extent that auditors
develop their own software and are not reliant on the auditee to provide
software or staff support, they are more independent in the conduct of
their audit. Moreover, auditors have an opportunity to demonstrate
professional competence to the auditee. As a result, the auditee might
have increased respect for their work. In the case of the government
matching example examined previously, this respect and confidence in
the auditor's abilities could be essential to obtaining support by the
legislature to continue matching work. If the legislature loses confidence
in its auditors, it might deem that the rights of individual persons
overrule the need to search out fraud. As a result, it might order that the
matching activities be stopped.

One important area where auditors often have to prepare specialized audit
software is in the development and implementation of concurrent auditing
techniques. Concurrent auditing techniques collect audit evidence at the
same time as the application system is processing production data. They
require audit hooks, modules, or routines to be embedded in the application

SYSTEMS AUDITING

NOTES

259

system to select the evidence required. These are often implemented via
specialized program code.

1.7.2 Development and Implementation of Specialized Audit Software

Specialized audit software can be developed and implemented in three
ways. First, auditors can take total responsibility for developing and
implementing the software themselves. This approach allows auditors to
exercise a high level of control over the software. To produce high-quality
software, however, auditors must possess good analysis, design, and
programming skills. Second, internal auditors can ask programmers in their
own organization to develop and implement the software. Alternatively,
external auditors can ask programmers in the client organization to develop
and implement the software. Third, auditors could ask an outside software
vendor to prepare the software. Auditors might adopt this approach if the
software is especially sensitive. Though the costs might be higher, using
the services of an independent third party provides extra assurance that
integrity violations have not occurred during the development and
implementation process.

Whatever approach auditors use to develop and implement specialized
audit software, they must exercise careful control over the development
and implementation process to ensure that the software meets their
objectives and the integrity of the software is preserved. Auditors can
exercise most control when they prepare the software themselves. If
auditors use other personnel to prepare the software, however, they should
still take responsibility for preparing program specifications, managing the
programming process, performing acceptance testing, and preparing user
documentation. Unless auditors perform these tasks, they must be
circumspect about placing reliance on the integrity of the program.

1.8 Control of audit software

When using audit software for evidence-collection purposes, auditors
should evaluate the level of control they are able to exercise over the
software. If auditors have to employ software controlled by other parties,
they run the risk that the software might have been modified improperly
(either deliberately or unintentionally). The results produced using the
software, therefore, might not be accurate or complete. Similarly, if auditors
must rely on other parties to execute software on their behalf, they run the
risk that the results obtained will lack integrity. The execution of the
software might have been compromised in some way. Alternatively, a
mistake might have been made when executing the software.

If auditors have to employ software controlled by other parties, there are
two ways they can determine whether the software has been modified:

1. Hash total. At a prior time, auditors might have been able to obtain or
calculate a hash total of the object code for the software. They can then
calculate the hash total for the object code of the program provided and

SYSTEMS AUDITING

NOTES

260

compare the result obtained with the previous hash total calculated. If
auditors are to be able to rely on the results, they need to have control
over the program that computes the hash total.

2. Test data. Auditors can develop test data to test out those functions in
the software on which they intend to rely. Unless auditors are confident
that the software has not been modified since they last used it, they will
need to execute the test data each time they employ the software for
evidence collection purposes.

If auditors rely on other parties to execute software on their behalf, they
must carefully examine the results provided for evidence of any errors or
irregularities. Auditors might desk check a sample of computations
performed by the software, for example, to satisfy them selves that the
software has been executed properly.

If auditors maintain an independently controlled library of audit software,
unauthorized modifications to the software are less likely to occur. Auditors
can protect the library via access controls. Moreover, they might be able to
maintain the software on a machine that they control. For external auditors,
maintaining an independent library on their own machine has an additional
advantage: Providing they can download data to their own machine, they
are less constrained in carrying out audit work by the availability of software
on the client platform audited.

SYSTEMS AUDITING

NOTES

261

2. Code review, Test data, and Code
comparison

Structure

2.1 Introduction

2.2 Where do program defects occur?

2.3 Program source-code review

2.3.1 Objectives of Code Review

2.3.2 Source-Code Review Methodology

2.4 Test data

2.4.1 Nature of Reliable Test Data

2.4.2 Approaches to Designing Test Data

2.4.3 Black-Box Test-Data Design Methods

2.4.4 White-Box Test-Data Design Methods

2.4.5 Creating Test Data

2.4.6 Automated Aids to Support Design, Creation, and Use of

Test Data

2.4.7 Benefits and Costs of Test Data

2.5 Program code comparison

2.5.1 Types of Code Comparison

2.5.2 Using Code Comparison

2.5.3 Benefits and Costs of Code Comparison

Objectives

After going through this lesson, you should be able to:

• understand where do program defects occur?

• understand how to Test data

• understand how to Program code comparison

SYSTEMS AUDITING

NOTES

262

2.1 Introduction

In this lesson, we examine three evidence-collection techniques used
during substantive testing to determine primarily whether (1) programs
meet their functional requirements and (2) program code is defective
because it is unauthorized, inaccurate, incomplete, ineffective, or
inefficient. The first technique is program code review, whereby we obtain
program source-code listings and read these listings to evaluate the quality
of the program code. The second technique is test data, whereby we
design a sample of data to be executed by the program and then examine
the output produced to reach a judgment on the quality of the program. The
third technique is code comparison, whereby we compare two versions of a
program's source or object code. One version the blueprint has known
attributes, and we seek to determine whether the other version has the
same attributes.

Each of these techniques can be used independently. Sometimes,
however, we might choose to use them in a coordinated way (Figure 2-1).
First, we undertake program code review to generate hypotheses about
deficiencies in the program code for example, errors or inefficiencies. Next
we design and execute test data to test these hypotheses. We can then
ask that any deficiencies we confirm using the test data be corrected.
These two steps might be carried out iteratively until we are satisfied with
the quality of the program code. The resulting version of the program then
becomes a blueprint. At a later time, we then compare production versions
of the program against this blueprint to determine whether any
discrepancies exist.

In the subsequent discussion, we first examine where we are likely to iden-
tify defects in a program. By knowing this we can better focus our efforts
during program code review and test-data design and execution. We then
discuss the nature of program code review, test data, and code
comparison, their use in our evidence-collection work, and their strengths
and weaknesses.

SYSTEMS AUDITING

NOTES

263

FIGURE 2-1 Integrated use of code review, test data, and code comparison
for evidence-collection

2.2 Where do program defects occur?

Code review and test data can be time-consuming evidence-collection
techniques to use. Auditors should apply them, therefore, where they will
have most effect. In this light, it would be useful if we knew those program
locations where defective code is most likely to occur.

In spite of the enormity of the programming effort worldwide, unfortunately,
few rigorous studies of where the problem areas in programs lie have been
reported. The bibliography at the end of this chapter contains references for
several of these studies. Here are a few tentative conclusions, however,
that we can draw based on the studies conducted so far:

1. Pareto's law seems to apply in programming: A small number of
program modules will have a large number of faults, and a large
number of modules will have none or only a few faults. Moreover, a

SYSTEMS AUDITING

NOTES

264

small number of faults affect a large number of modules, and a large
number of faults affect only a small number of modules.

2. Requirements specification and design errors are just as prominent, if
not more prominent, than coding errors. Auditors should be careful,
therefore, if they rely on the accuracy and completeness of the
program requirements or program design in their evidence-collection
work.

3. Design errors seem to relate primarily to interface problems with users,
input/output devices, and the database. Many design errors also
reflect that the programmer has failed to implement part of the
specifications—in other words, logic has been omitted.

4. Coding errors seem to relate primarily to incorrect computation,
incorrect indexing, or incorrect control flow.

5. Defects relating to management of data seem to be more common
than defects relating to computation.

The extent to which defects exist in a program is also likely to depend on
the age of the program. The more times a program has been used for
production purposes, the more likely it is that defects will have been
identified and corrected. Thus auditors often should he able to limit the
extent of the testing undertaken with older programs. In some cases,
however, organizations have learned to live with defective older programs,
in which case auditors might need to expand the extent of their testing.

2.3 Program source-code review

Auditors will use program source-code review when they are unwilling to
treat a program as a black box. In other words, they decide that they are
not prepared to make inferences about the quality of a program's code
based only on an examination of the program's input and output. Instead,
they wish to look at the internal workings of the program to evaluate its
quality.

2.3.1 Objectives of Code Review

When undertaking code review, it is important that auditors have the objec-
tives they wish to accomplish clearly fixed in their minds. The code review
task is complex, and they can be distracted easily if they do not have clear
goals. The objectives auditors might seek to accomplish are the following:

1. Identify erroneous code. The use of code review to identify erroneous
code is well established. Recall that we discuss this purpose in Chapter
5 under various headings: desk checking, structured walkthroughs, and
design and code inspections. The empirical evidence we examined
earlier in the chapter indicates that coding errors are still a major cause
of low-quality programs. Thus, auditors can use code review to
determine whether program code complies with its specifications.

SYSTEMS AUDITING

NOTES

265

2. Identify unauthorized code. Without directly examining a program's
source code, auditors are unlikely to identify unauthorized code in a
program. Unauthorized code often is triggered by a specific data value
or combination of data values. For example, a fraudulent programmer
might modify a program so it does not print out details of his or her own
account when it is overdrawn. Similarly, he or she might modify a
program to exclude transactions having certain account number and
date values from normal data validation processes. Unless auditors
submit test data having these specific values and have a way of
checking that the test data has traversed all execution paths in the code
that is their focus, they are unlikely to detect this unauthorized code.

3. Identify ineffective code. Auditors can examine whether code is
ineffective in two ways. First, they can evaluate whether the code meets
the documented program specifications. Second, they can examine
whether the code meets user requirements. Recall, the empirical
evidence discussed earlier in the chapter suggests that documented
program specifications and user requirements often do not correspond.
Moreover, assuming the program specifications are correct, design
errors that result in the program not complying with specifications are'
also prevalent.

4. Identify inefficient code. Code review also can allow auditors to identify
inefficient segments of code. For example, in a sequence of tests of
transaction types, the tests might not have been ordered according to
their frequency of occurrence. As a result, the program executes more of
its code than it would have to if the tests were reordered. Auditors might
also use code review to identify the existence of instructions that
execute inefficiently on the hardware/software platform used.

5. Identify nonstandard code. Nonstandard code takes a variety of forms.
For example, it could be code that does not comply with organizational
standards covering data item names or internal documentation.
Alternatively, it could be code that does not employ structured
programming control structures. Whatever the nature of the nonstandard
code, often it manifests other defects in the code for example,
unauthorized code or erroneous code.

Which of these objectives should be emphasized within code review will
depend on the objectives auditors have for the audit and the nature of the
material exposures they conclude exist. For example, if their primary
concern in the audit is the integrity of the data in the financial statements,
their focus will be on whether unauthorized or erroneous code exists. If
auditors conclude, however, that there are few opportunities for
defalcations associated with the code they are examining, they will
probably narrow their focus to determining whether erroneous code exists.

SYSTEMS AUDITING

NOTES

266

2.3.2 Source-Code Review Methodology

A review of program source code involves seven steps:

1. Select the source code to be examined.

2. Review the organization's programming standards.

3. Obtain an understanding of the program specifications.

4. Obtain the source-code listing.

5. Review the programming language used to implement the code.

6. Review the source code.

7. Formulate flaw hypotheses.

The following subsections briefly discuss each of these steps.

Source-Code Selection

Program source-code review can be a time-consuming evidence-collection
technique to use. In this light, auditors should select source code for review
that is material to their audit objectives. Risk assessment techniques can
be applied to determine the level of materiality associated with the source
code. For example, Sherer and Paul describe a methodology for identifying
high-risk program modules. It involves five major steps:

1. The hazards (e.g., errors or irregularities) that can occur with a program
are identified.

2. The expected losses associated with the occurrence of each hazard are
estimated.

3. The exposure associated with each program module is estimated by
relating factors like the module's functions and frequency of use to the
hazards and their financial consequences.

4. A software reliability model is used to determine the expected number of
failures that will occur in each module as a result of software faults.

5. The expected losses of failure in each module are estimated based on
the likelihood of it failing, the hazards that will arise as a consequence,
and the expected losses associated with these hazards.

Review Programming Standards

By reviewing the organization's programming standards, auditors develop a
set of expectations about the characteristics of the code they will review for
example, the way labels will be assigned to variables and constants, the
way programs will be structured, and the way comments will be placed
throughout the program. Deficiencies in the standards might also indicate
where defects are likely to occur in the code. For example, the standards
might not place a limit on the size of program modules. In this light, auditors
might expect that some modules will be large, inherently complex, and
therefore error prone.

SYSTEMS AUDITING

NOTES

267

Understand the Program Specifications

By understanding the program specifications, auditors can address the
question. Does the program do what it is supposed to do? Here they must
make a choice about how they will obtain an understanding of the program
specifications. One alternative is to review the documented program
specifications those used by the programmer as the basis for constructing
the code. By reviewing these specifications, auditors can check the
correspondence of the code with the specifications. Using this approach,
deficiencies in the specifications might also become apparent; for example,
auditors might identify an important control that is missing in the
specifications.

Obtain Source Code

When auditors obtain the source code that they wish to review, they must
take steps to ensure that it is the current version and not outdated.
Otherwise, auditors might not identify important defects in the source code
for example. Un-authorized code that has been introduced to enable a
defalcation to be perpetrated.

Review Programming Language Used

From the auditor’s viewpoint, unfortunately a large number of programming
languages now exist. They might often encounter a situation, therefore, in
which they are not familiar with the programming language used to
implement the source code they want to review. In these situations,
auditors must either acquire familiarity with the programming language or
rely on someone else to undertake the code review on their behalf. If
auditors must rely on someone else to undertake the review and they
conclude they cannot be confident in the integrity of the information that will
provided to them, they must choose a technique other than code review to
gather evidence.

Review Source Code

Currently, we have little theory or empirical evidence to help us choose the
most effective and efficient way of reviewing program code. Many
questions remain unanswered. Do some ways of reviewing code identify
more errors than others? Are some ways of reviewing code faster than
others? Does the best way depend on how the code is written (structured)?
Should code be reviewed differently if, say, efficiency is the main concern
rather than, say, data integrity? Does the effectiveness and efficiency of a
code review technique depend upon our psychological and demographic
characteristics?

Formulate Flaw Hypotheses

If auditors do not identify any defects in the source code that they review,
most likely they can conclude that they can place reliance on the code to
meet control objectives. In this light, auditors should be able to conclude

SYSTEMS AUDITING

NOTES

268

also that they can reduce the extent of subsequent substantive testing they
undertake.

If auditors believe they have identified a defect in the code they have re-
viewed, however, two alternatives are then available. First, auditors might
conclude that they do not wish to place reliance on the code in meeting
control objectives. Accordingly, auditors should expand the extent of
subsequent substantive tests to determine how the defect they believe
exists has impacted the attainment of control objectives. Second, auditors
might conclude that they need to investigate the presumed defect further.
They should then formulate flaw hypotheses that predict the impact of the
defect on control objectives. Auditors can then use some other evidence-
collection technique to determine whether the predicted defect has the
anticipated effect on control objectives. For example, they can design and
use test data to test their flaw hypotheses.

Benefits and Costs of Code Review

The primary benefit of reviewing program source code is that it provides a
level of detailed knowledge about a program that auditors will find difficult
to acquire using other evidence-collection techniques. With other evidence-
collection techniques, inferences must be made about the quality of the
code on the basis of some test result. With program source-code review,
however, auditors examine the code directly. In this light, they can obtain
high levels of assurance about the quality of the code if they cannot identify
any defects. Alternatively, if auditors do identify a defect, they can often
make fairly precise predictions about' the impact of this defect on the
financial statement assertions or effectiveness and efficiency assertions
made by management.

2.4 Test data

The use of a sample of data to assess the quality of a program is
fundamental to many evidence-collection techniques. It is based on the
premise that it is possible to generalize about the overall reliability of a
program if it is reliable for a set of specific tests.

As with program code review, it is unlikely that auditors will be interested in
testing an entire program. Rather, they will focus on testing those parts of a
program that they deem to be material and on which they intend to rely.
Like program code review, test data can be an expensive evidence-
collection procedure. Auditors need to focus their efforts, therefore, on
those parts of a program where the payoffs will be highest.

In the following subsections, we first examine the nature of reliable test
data. We then discuss some major approaches to the design of test data
that auditors might employ. Finally, we examine some ways that auditors
can create test data and how they might use various automated tools to
assist them in the design, creation, and use of test data.

SYSTEMS AUDITING

NOTES

269

2.4.1 Nature of Reliable Test Data

As background to our discussion on test data techniques, let us examine
first the nature of reliable test data. Perhaps the most widely accepted
notion of reliable test data has been proposed by Gerhart and Goodenough
and Howden. They argue as follows. Suppose we have a program, P, for

computing a function, F, whose domain (input) is a set, D. Let be the
test data used to determine whether P contains any defects. Tis deemed to
be a reliable set of test data for P if:

In other words, T is reliable if it reveals an error in P whenever P contains
an error. The fact that P has no defects when it processes every element in
the set of test data is sufficient to ensure that P will have no defects when it
processes any element in its input domain.

2.4.2 Approaches to Designing Test Data

Because we cannot automatically generate a reliable set of test data, test
data therefore must be designed. To improve the quality of the test-data
design, we should use a systematic approach. Otherwise, important
defects in the program might be missed. Moreover, excessive test data
might be designed and used. We must avoid the tendency to believe that
more comprehensive testing will result when a larger amount of data is
designed, created, and executed through a program. Unfortunately, a
larger amount of test data ensures neither that a program's critical features
will be tested, nor that testing will be carried out in the most economical
manner. Auditors are often subject to severe cost constraints. In this light,
their use of systematic approaches to the design of test data, therefore, is
essential.

2.4.3 Black-Box Test-Data Design Methods

Auditors use black-box test-data design methods whenever their primary
focus is on whether some part of an application system meets its functional
requirements. Besides functional defects, however, black-box testing might
also help to identify other types of defects in programs: (1) user interface
errors, (2) errors in interfacing with external systems or databases, (3)
efficiency problems, (4) initialization errors, and (5) termination errors.

2.4.4 White-Box Test-Data Design Methods

Auditors use white-box test-data design methods whenever their primary
focus is on whether defective execution paths exist in a program. The
underlying assumption is that significant information about any defects in a
program can be obtained by systematic execution of different logic paths
through the program. Furthermore, when auditors use white-box test-data
design methods, they are recognizing that predicting the actual behavior of

SYSTEMS AUDITING

NOTES

270

a program is still difficult even when they have substantial prior information
about the program.

As with black-box testing, auditors begin white-box testing by choosing
those parts of a program that they deem to be material from the viewpoint
of their audit. Next auditors study a source-code listing of the program to
identify where these parts have been implemented within the program
code. Their primary goal is to identify the control structure underlying the
code because the control structure indicates the different execution paths
through the program. Having identified the critical sections of source code
and the control structure, auditors can then proceed to design test data to
traverse this code.

2.4.5 Creating Test Data

When auditors have designed the test data they need for evidence-
collection purposes, their next step is to create test data that complies with
the design. This task can be difficult and time-consuming to complete,
especially when auditors must prepare a large number of test cases.

One approach auditors can use to reduce the amount of resources required
to create test data is to rely on existing production data. They should not
simply select a random sample of this production data and execute it
through the code on which they intend to rely. This approach is unlikely to
lead to effective and efficient testing. Rather, auditors should select
instances of production data that comply with their test-data design. In this
light, they might use generalized audit software, for example, to select
cases off the production files that satisfy their design. If there are no
production cases that satisfy the design, auditors might still select cases
that almost comply with the design and modify them appropriately.

Whenever auditors use production data as the basis for test data creation,
however, they must take care that they do not overlook logic that is
exercised infrequently by production data and therefore might be missing
from the production files they use as the basis for creating their test data.
By ensuring that they check the correspondence between test-data design
and the production data they have selected, auditors reduce the chances of
failing to exercise important logic when they use production data.

Auditors might also be able to use test data prepared by the auditee to as-
sist in the creation of their own test data. The auditee's information systems
personnel should have prepared test cases to test the program that is the
focus of the evaluation. Again, auditors can select test cases off the
auditee's test data files that comply with their design using, say,
generalized audit software. Once more, auditors must be diligent in
checking the correspondence between the set of test cases they choose
and their test-data design.

Sometimes, also, the auditee will prepare test data for an application sys-
tem in cooperation with the auditor. The objective is to prepare a
comprehensive "base case" that can be used to test the application'system

SYSTEMS AUDITING

NOTES

271

before it is released into production and during subsequent releases after
maintenance work has been carried out to the application system.
Whenever auditors participate in the development of test data for base
case system evaluation (BCSE), production test data is more likely to be
useful as a means of accomplishing testing objectives.

New test data must be created if cases that satisfy an auditor's test-data
design are not available from either existing production files or the auditee's
test data files. Various types of automated aids are available to assist with
test. data creation (see the next section). Parameter values must be
provided as input to these aids—for example, the range of values to be
generated for a particular data item. These parameter values should not be
chosen haphazardly. Rather, they should be chosen carefully on the basis
of the test-data design.

2.4.6 Automated Aids to Support Design, Creation, and Use of Test
Data

Because design, creation, and use of test data are often time-consuming,
resource intensive, and error prone, various automated aids have been
developed to assist in the completion of these tasks. Auditors might find the
following aids to be valuable when undertaking evidence-collection work
using test data:

To illustrate how these tools might be used, assume auditors have
employed decision tables to facilitate their design of test data using the
equivalence partitioning approach. Recall that equivalence partitioning is a
black-box testing approach; that is, it is based on the program's
specifications rather than direct examination of the program's source code
to identify its control structure. The risk with equivalence partitioning,
therefore, is that auditors will not execute sections of code because they
are not documented in the specifications.

SYSTEMS AUDITING

NOTES

272

SYSTEMS AUDITING

NOTES

273

After auditors have designed and created the test data, they might then in-
strument the program using an execution path monitor tool. They can then
execute the instrumented program using the test data they have created. If
the execution path monitor identifies sections of code they have not tested,
three possibilities exist: (1) their test data is erroneous or incomplete; (2)
the program code is erroneous; (3) the program code does not comply with
the specifications. Whatever the reason, auditors can then go back and
either modify their test data or investigate the program further to detect the
source of the discrepancy.

2.4.7 Benefits and Costs of Test Data

The major benefit of using test data as an evidence-collection technique is
that it allows auditors to examine the quality of program code directly. Well-
designed test data specifically addresses the question of whether the code
complies with specifications. The quality of the code need not be inferred
from the quality of production data that the program has processed. Well-
designed test data also specifically addresses the question of whether
defective execution paths exist in the code.

Some people claim that a major benefit of using test data arises from audi-
tors needing little technical competence with computers to use the
technique. For a simple batch system or an undisciplined approach to the
use of test data, this claim could be true. As we have seen in this chapter,
however, the design and creation of high-quality test data and the use of
automated tools to support the test data approach require auditors to have
substantial knowledge of information technology.

The primary disadvantage of using test data as an .evidence-collection
technique is that it is often time-consuming and costly. As the theory
underlying test-data design improves and automated tools to support test-
data design, implementation, and use become more widely available, this
disadvantage might become less important. As the quality of code
improves and more code is implemented via high-level languages, use of
test data also becomes more feasible.

2.5 Program code comparison

Auditors use program code comparison for two reasons. First, it provides
some assurance that they are auditing the correct version of software. For
example, they might wish to undertake code review of the material parts of
a program. They need to determine, therefore, whether the source code
provided to them for review purposes corresponds to the source code used
to compile the production object code. Using program code comparison,
auditors can determine whether the two versions of the source code are the
same. We discuss this use of code comparison next.

Second, it provides some assurance that any software used as an audit
tool is the correct version of the software. For example, assume an
organization has used specialized audit software to collect audit evidence

SYSTEMS AUDITING

NOTES

274

throughout some period of time. Auditors need to determine whether they
can rely on the evidence as a basis for forming their audit judgments. In
this light, auditors might wish to compare an audit version of the specialized
audit software (one that they have tested comprehensively at a prior time
and one that they have judged to be free of material defects) with the
organization's version of the software. If auditors find correspondence
between the audit version and the organization's version of the software,
they might then conclude they can rely on the evidence collected by the
specialized audit software as the basis for the audit judgments they make.

2.5.1 Types of Code Comparison

Software is available to undertake two types of program code comparison:
(1) source-code comparison and (2) object-code comparison. With source-
code comparison, the software should provide a meaningful listing of any
discrepancies between two versions of a program's source code.
Nevertheless, often auditors must obtain further assurance that the source-
code version they are evaluating is the one used to compile the production
object code.

With object-code comparison, auditors will have difficulty identifying the
nature of any discrepancies found between two versions of object code.
Recall that few people can read and understand object code. Thus, a report
of discrepancies is unlikely to provide much assistance. Instead, object-
code comparison is better used to obtain an answer to the following simple
question: Are there any discrepancies between two versions of object
code? If discrepancies are identified, other techniques must be used to
identify the nature of and cause of the discrepancies.

2.5.2 Using Code Comparison

Source-code and object-code comparison are often most effective as audit
techniques when auditors use them in conjunction with each other. Figure
2-2 shows an overall approach we can follow. First, we compare the audit
version of a program's source code with that version that the organization
we are auditing contends is the source code used to compile the production
object code. Any discrepancies identified between the source-code
versions must be reconciled. Second, we compile either the audit or
organizational version of the source code with the compiler used to
produce the production object code. Third, we compare the object code
produced via this compilation with the production version of the object
code. Any discrepancies identified mean either the wrong compiler has
been used or the organization has supplied us with the wrong version of
the source code or production object code.

SYSTEMS AUDITING

NOTES

275

FIGURE 2-2 Use of code comparison for evidence gathering

2.5.3 Benefits and Costs of Code Comparison

The code comparison technique is an easy way of identifying changes
made to programs. The software that performs code comparison usually is
neither costly to purchase nor to execute. Furthermore, auditors require
little technical skill to be able to use the software.

Identifying the implications of any discrepancies found in the code, how-
ever, requires some knowledge of programming and the programming lan-
guage used. Auditors must be able to determine whether a discrepancy
reflects a material change to the program or a minor change. They must
also he able to read and understand the program code if they are to be
capable of making an informed judgment on the materiality of the
discrepancy.

A limitation of the technique is that it does not provide any evidence directly
on the quality of the code being compared. Auditors do not know, for ex-
ample, whether the code safeguards assets or is efficient. They must first
thoroughly evaluate one version of the code against audit objectives and
then use this version as a blueprint for comparison purposes. If auditors
identify discrepancies between another version of the code and this
blueprint version, they must then be able to judge whether the changes
made have undermined the quality of the code.

SYSTEMS AUDITING

NOTES

276

Code comparison programs also differ in terms of the quality of their output.
For example, assume two versions of code differ because a block of
documentation text in the program has been shifted from one position in
the program to another position in the program. Some code comparison
programs will show that the entire block has been changed. They will print
out the entire block as having been deleted from one part of the code. They
will also print out the entire block as having been inserted in another
section of the code. Other code comparison programs will show that the
block of text simply has been shifted in terms of its position in the program.
If auditors were to frequently use the former type of code comparison
program, eventually, they might become careless and miss a material
change that was made in a block of code that had also been shifted within
the program they arc evaluating.

SYSTEMS AUDITING

NOTES

277

3. Concurrent Auditing Techniques

Structure

3.1 Introduction

3.2 Basic nature of concurrent auditing techniques

3.3 Need for concurrent auditing techniques

3.3.1 Disappearing Paper-Based Audit Trail

3.3.2 Continuous Monitoring Required by Advanced Systems

3.3.3 Increasing Difficulty of Performing Transaction Walkthroughs

3.3.4 Presence of Entropy in Systems

3.4 Types of concurrent auditing techniques

3.4.1 Integrated Test Facility

3.4.2 Snapshot/Extended Record

3.4.3 System Control Audit Review File

3.5 Implementing concurrent auditing techniques

3.5.1 Perform a Feasibility Study

3.5.2 Seek the Support of Groups Affected by Concurrent Auditing

3.5.3 Ensure that the Relevant Expertise Is Available

3.5.4 Ensure the Commitment of Stakeholders

3.5.5 Make the Necessary Technical Decisions

3.5.6 Plan the Design and Implementation

3.5.7 Implement and Test

3.5.8 Post-audit the Results

3.6 strengths/limitations of concurrent auditing techniques

Objectives

After going through this unit, you should be able to:

• understand to Basic nature of concurrent auditing techniques

• understand to Need for concurrent auditing techniques

• understand to Types of concurrent auditing techniques

• understand to Implementing concurrent auditing techniques

• understand to strengths/limitations of concurrent auditing techniques

SYSTEMS AUDITING

NOTES

278

3.1 Introduction

In this lesson, we examine the basic nature of concurrent auditing tech-
niques, the reasons why they were developed, their relative advantages
and disadvantages, and some methods of implementing concurrent
auditing techniques. A large number of different concurrent auditing
techniques have now been developed. A close examination, however,
reveals that they are all variations on a theme. For this reason, here we
cover just a few of the major techniques that have been used. If we
understand the nature of these few techniques, we should then be able to
adapt them in various ways to suit the particular needs of any audit we
might wish to undertake.

3.2 Basic nature of concurrent auditing techniques

Concurrent auditing techniques use two bases for collecting audit evidence.
First, special audit modules are embedded in application systems or
system software to collect, process, and print audit evidence. Second, in
some cases, special audit records are used to store the audit evidence
collected so auditors can examine this evidence at a later stage. These
records can be stored on application system files or on a separate audit
file.

Though evidence collection is concurrent with application system process-
ing, the timing of evidence reporting is a decision that auditors can make. If
a concurrent auditing technique identifies a critical error or irregularity,
auditors might program the embedded audit routines to report the error or
irregularity immediately. In this light, the evidence could be transmitted
directly to a printer or terminal in the auditor's office (Figure 3-1a). In other
cases, however, immediate reporting of the error or irregularity might not be
essential. Auditors can then store the evidence for reporting at some later
time (Figure 1-1b).

FIGURE 3-1 (a) Immediate reporting of event with concurrent auditing, (b)
Delayed reporting of event with concurrent auditing.

SYSTEMS AUDITING

NOTES

279

3.3 Need for concurrent auditing techniques

Concurrent auditing techniques were developed in the late 1960s and early
1970s to address a set of problems that were arising as computer-based
information systems became more widespread. Moreover, several recent
trends provide further impetus to deploy concurrent auditing techniques
more extensively. We examine these factors briefly in the following
subsections.

3.3.1 Disappearing Paper-Based Audit Trail

Historically, auditors have placed substantial reliance in evidence-collection
work on the paper trail that documents the sequence of events that have
occurred within an information system. This trail has provided a means of
determining whether material errors or irregularities have occurred in an
information system.

Paper-based audit trails have been progressively disappearing, however,
as computer systems have replaced manual systems and as source
documents have given away to screen-based input and output. A paper
audit trail is no longer left automatically as the outcome of an event in an
application system. Instead, the existence of an adequate audit trail
depends on purposeful design and implementation of processes to record
events in computer systems.

3.3.2 Continuous Monitoring Required by Advanced Systems

A common characteristic of advanced information systems is that they are
tightly coupled; that is, an event in one application system leads to an event
in another application system. For example, consider the set of systems
shown in Figure 3-2. The receipt of an order from a customer leads
automatically to the issuance of a production order. This order is then
exploded via a bill-of-materials application system to determine the parts
and labor needed to fulfill the order. An inventory system next checks the
availability of inventory, reserves the inventory if it is available, and places
an order on a supplier via an electronic data interchange system if any part
is in short supply. A production scheduling system then schedules the order
for production. When production is to be started, a production control
system initiates the issue of materials and labor requisitions and collects
production performance and costing data as the order progresses through
the production system. When production of the goods is completed, a
finished goods system updates inventory. Finally, a shipments system
initiates dispatch of the goods to the customer.

SYSTEMS AUDITING

NOTES

280

FIGURE 3-2 Example of tightly coupled application systems.

When systems are tightly coupled, errors or irregularities in one system can
quickly propagate to other systems and cause material losses. For
example, assume an order-entry program corrupted data in an order in the
set of systems described previously. If the corrupted data resulted in an
overstatement of the quantity required by the customer, the bill-of-materials
system would in turn overstate the quantities of materials and labor
required. Excessive raw materials might then be ordered as inventory falls
below reorder levels, and additional labor might be hired unnecessarily.
Subsequent orders might be lost because the inventory system indicates
insufficient materials and labor are available to fill these orders on a timely
basis. Limited production capacity might be wasted as goods are produced
that no one has ordered. Further costs might be incurred as excessive
goods are shipped to the customer and presumably eventually returned by
the customer.

To mitigate losses when systems are tightly coupled, timely identification of
errors or irregularities is essential. For this reason, auditors might use
concurrent auditing techniques to report any event that could manifest an
error or irregularity immediately it occurs. They can then follow up on the
event to determine whether it represents a material exposure.

SYSTEMS AUDITING

NOTES

281

3.3.3 Increasing Difficulty of Performing Transaction Walkthroughs

Auditors often gain an understanding of an application system by taking
typical transactions and tracing them through the various execution paths
that can be traversed within the system. Walking typical transactions
through a system also helps to identify the system's strengths and
weaknesses and plan subsequent audit tests.

Advanced information systems make the walkthrough process more difficult
because they often have a large number of complex execution paths. As
demonstrated previously, extensive coupling between different application
systems also complicates matters. For example, understanding how a parts
master file is updated might mean auditors must examine processes in the
production scheduling system, inventory reordering system, purchasing
system, receiving system, and warehousing system.

Concurrent auditing techniques facilitate our understanding of advanced
systems by collecting all the information normally obtained from a walk-
through in the one place. They can be used to capture images of a
transaction as it traverses a particular execution path. These images then
can be written to a file for subsequent examination. When auditors then
attempt to understand a system and to identify its strengths and
weaknesses, all the information associated with the different execution
paths in the system exists in the one place.

3.3.4 Presence of Entropy in Systems

All systems have characteristic called entropy, which is the tendency of
systems toward internal disorder and eventual collapse. In information
systems, entropy arises in a variety of ways. One form occurs because
user information requirements change as the business they undertake
changes. As a result, existing information systems become less effective at
meeting their needs. A second form occurs through increases in the
numbers of transactions that must be processed. The existing hardware
and software eventually becomes unable to handle the workload
satisfactorily. Errors then occur, for example, because transaction queues
exceed their maximum allowed length. A third form arises through having to
maintain existing systems. Knowledge about existing systems gradually
degrades over time as the personnel who developed these systems leave
to take other positions. As a result, errors creep into systems during
maintenance work because maintenance staff does not fully understand
the systems on which they are working.

Concurrent auditing techniques provide a means of identifying increasing
entropy in information systems at an early stage. They can be used to
gather data on error and exception frequencies and to give advance
warning of stresses being placed on systems. Thus, they facilitate auditors'
understanding of a system's evolution. They also assist the stakeholders in
an information system to mitigate the consequences of errors by providing
feedback that allows them to undertake timely modifications in light of
changing circumstances.

SYSTEMS AUDITING

NOTES

282

3.4 Types of concurrent auditing techniques

Although many concurrent auditing techniques have been developed,
Mohrweiss argues that they all fall into three categories: (1) those that can
be used to evaluate application systems with test data while they undertake
production processing, (2) those that can be used to select transactions for
audit review while application systems undertake production processing,
and (3) those that can be used to trace or map the changing states of
application systems as they undertake production processing. With this
classification in mind, we examine four major concurrent auditing
techniques in the following subsections:

1. Integrated test facility (ITF),

2. Snapshot/extended record,

3. System control audit review file (SCARF), and

4. Continuous and intermittent simulation (CIS).

The ITF technique can be used to test an application system with test data
during normal production processing. The snapshot/extended record
technique can be used to trace the changing states of an application
system as it undertakes production processing. The SCARF and CIS
techniques can be used to select transactions during production processing
for audit review.

3.4.1 Integrated Test Facility

The ITF technique involves establishing a minicompany or dummy entity on
an application system's files and processing audit test data against the
entity as a means of verifying processing authenticity, accuracy, and
completeness. For example, auditors could use ITF in the following ways: If
the application is a payroll system, they might set up a fictitious person in
the database; if the application is an inventory system, they might set up a
fictitious stock item in the database; if the application is an EDI system,
they might work cooperatively with auditors in other organizations and set
up dummy entities in the database of their own organization or client
organization as well as the databases of other organizations with which
their own organization or client organization interacts. Auditors would then
use test data to update the fictitious entities. This test data would be
included with the normal production data used as input to the application
system.

Using ITF involves two major design decisions:

1. What method will be used to enter test data?

2. What method will be used to remove the effects of ITF transactions?

3.4.2 Snapshot/Extended Record

For application systems that are large or complex, tracing the different
execution paths through the system can be difficult. If auditors wish to
perform transaction walkthroughs, therefore, they could face a difficult or
impossible task. A simple solution to the problem is to use the computer to
assist with performing transaction walkthroughs.

SYSTEMS AUDITING

NOTES

283

The snapshot technique involves having software take "pictures" of a trans-
action as it flows through an application system. Typically auditors embed
the software in the application system at those points where they deem
material processing occurs. The embedded software then captures images
of a transaction as it progresses through these various processing points.
To validate processing at the different snapshot points, auditors usually
have the embedded software capture both beforeimages and afterimages
of the transaction. They then can assess the authenticity, accuracy, and
completeness of the processing carried out on the transaction by
scrutinizing the beforeimage, the afterimage, and the transformation that
has occurred on the transaction. Figure 18^t shows how the technique
might be used to obtain audit evidence at various points in a simple batch
system.

Implementing the snapshot technique requires auditors to make three
major decisions. First, they must decide where to locate the snapshot
points within the application system that is the focus of the audit. Auditors
should make this decision on the basis of the materiality of the processing
that occurs at each point in the application system. In some circumstances,
however, auditors might have to temper their desire to capture snapshots in
light of demands placed on the application system. For example, a
processing point might be material, but efficiency considerations might be
paramount. If auditors embed software to capture snapshots at this point,
they might produce an unacceptable degradation in response times when
the system is under load.

The second decision auditors must make is when they will capture snap-
shots of transactions. Auditors might have the embedded software always
make snapshots for certain high-exposure transactions—for example,
transactions in a financial institution that alter the terms of major loans.
Alternatively, they might choose particular transactions for scrutiny via
snapshot before they are entered into the application system. They must
then tag these transactions in some way, and the embedded software must
recognize that the transactions are tagged for snapshot purposes. Auditors
might also program the embedded software to make snapshots of various
transactions based on some type of sampling plan. Whatever the approach
auditors use, they must be careful to obtain sufficient, reliable evidence but
not to capture so much evidence that they suffer from information overload.

The third decision auditors must make relates to reporting of the snapshot
data that is captured. The embedded software must provide sufficient
identification and timestamp information for each transaction to enable
auditors to determine the transaction to which the snapshot data applies,
the sequence of state changes that has occurred as the transaction has
passed through the various snapshot points, the processing points for
which the snapshot data has been captured, and the time and date at
which the snapshot data for each processing point was captured. A
reporting system must also he designed and implemented to present this
data in a meaningful way.

A modification of the snapshot technique is the extended record technique.
Instead of having the software write one record for each snapshot point,
auditors can have it construct a single record that is built up from the
images captured at each snapshot point. This record is progressively built

SYSTEMS AUDITING

NOTES

284

as the transaction that is of interest to auditors traverses the various
snapshot points in the application system. Extended records have the
advantage of collecting all the snapshot data related to a transaction in one
place, thereby facilitating audit evaluation work.

3.4.3 System Control Audit Review File

The system control audit review file (SCARF) technique is the most
complex of the four concurrent auditing techniques we will examine. It
involves embed-ding audit software modules within a host application
system to provide continuous monitoring of the system's transactions.
These audit modules are placed at predetermined points to gather
information about transactions or events J within the system that auditors
deem to be material. The information collected j is written onto a special
audit file the SCARF master file. Auditors then examine the information
contained on this file to see if some aspect of the application system needs
follow-up. Figure 18-6 illustrates the method as applied to a master file
update program.

In many ways, the SCARF technique is like the snapshot/extended record
technique. Indeed, the SCARF embedded software can be used to capture
snapshots and to create extended records. We see subsequently, however,
that other types of data can be collected via the SCARF embedded
modules for example, system exceptions deemed material. Moreover, we
also see subsequently that the SCARF technique uses a more complex
reporting system than the snapshot and extended record techniques.

Using SCARF involves two major design decisions:

1. Determining what information will be collected by SCARF embedded
audit routines, and

2. Determining the reporting system to be used with SCARF.

FIGURE 3-3 Use of SCARF with a master file update program.

SYSTEMS AUDITING

NOTES

285

3.5 Implementing concurrent auditing techniques

When auditors implement concurrent auditing techniques, they should
follow the same steps necessary to achieve any well-implemented system.
Because these steps have been described extensively in Chapters 4 and 5,
the following sections provide only a brief overview and highlight those
aspects having special relevance for concurrent auditing.

3.5.1 Perform a Feasibility Study

Concurrent auditing techniques result in overheads for application systems
he-cause special audit records and audit routines must be embedded
within them. Sometimes these overheads can be minor. For example,
response times and turnaround times increase only marginally. Sometimes
they can be unacceptable. For example, system response times degrade to
the point where users are seriously impaired in carrying out their work.

Auditors must always consider carefully the costs and benefits of using
concurrent auditing techniques. The costs include development costs,
implementation costs, maintenance costs, and operations costs. When
determining operations costs, auditors must take into account the
externalities caused by concurrent auditing techniques, such as the
overhead costs imposed on the host application system and the resulting
impact on users. When determining benefits, auditors should recognize that
the work carried out by several groups of stakeholders might be facilitated
by the existence of concurrent auditing techniques. Beside the benefits
obtained for the audit, information systems staff, for example, might benefit
because concurrent auditing techniques facilitate testing of application
systems.

If auditors can implement concurrent auditing techniques when an applica-
tion system is first developed, the costs are likely to be lower. The system
can then be designed from the outset to accommodate the concurrent
auditing techniques. If auditors have to modify an existing application
system to accommodate concurrent auditing techniques, however, often
the costs will be high. In this light, auditors should seek to participate in the
development of new application systems to determine whether concurrent
auditing techniques should be incorporated in them.

3.5.2 Seek the Support of Groups Affected by Concurrent Auditing

Because concurrent auditing techniques require ongoing support, they are
typically the responsibility of an organization's internal audit staff.
Nevertheless, the organization's external auditors should also be contacted
as they might have requirements that can be met by concurrent auditing
techniques. In any event, they must be apprised of how concurrent auditing
techniques are used within the organization. Use of concurrent auditing
techniques might mean that external auditors can place greater reliance on
the work carried out by internal auditors. Moreover, if the techniques are
used properly, external auditors are likely to assign a lower control risk to
the organization and decrease the extent of substantive testing accordingly.

SYSTEMS AUDITING

NOTES

286

3.5.3 Ensure that the Relevant Expertise Is Available

If auditors are to use concurrent auditing techniques successfully, they
must have a reasonable level of expertise in information systems audit and
control. For a start, auditors must be able to identify where material
processing points occur within application systems. Otherwise, they will not
be able to determine where embedded audit modules are best placed.
Auditors must also be able to make astute decisions in relation to such
matters as the record structures and reporting systems that concurrent
auditing techniques will use. Otherwise, they might not collect the evidence
they require, or they might not be able to obtain the evidence in a form that
is useful to them. Finally, auditors need the expertise either to implement,
operate, and maintain concurrent auditing techniques or to evaluate the
work of others who undertake these tasks on their behalf.

3.5.4 Ensure the Commitment of Stakeholders

Concurrent auditing techniques require resources to develop, implement,
operate, and maintain. Auditors require management's commitment;
therefore, if the resources needed to support concurrent auditing
techniques are to be available on an ongoing basis. Management should
be committed if they can see clear payoffs from using concurrent auditing
techniques. The onus is on auditors, therefore, to use concurrent auditing
techniques effectively and to demonstrate clearly that benefits exceed
costs.

3.5.5 Make the Necessary Technical Decisions

When auditors implement concurrent auditing techniques, recall that they
must make several key technical design decisions. For ITF, they must
choose the test data method to be used and the method of removing the
effects of the ITF transactions. For snapshot/extended records and
SCARF, they must decide on those points in the system where data will be
captured and the type of data that will be captured. In the case of SCARF,
they must also determine the structure of the reporting system. For CIS,
they must choose the transactions whose application system processing
will be simulated.

3.5.6 Plan the Design and Implementation

When the necessary technical decisions have been made, auditors can
proceed with the specific design for the concurrent auditing techniques.
They can also plan the implementation of the concurrent auditing
techniques. Decisions must be made, for example, on the data structures
to be used, the programming language to be used, the ways in which audit
modules will be embedded within the host application systems, and the
methods to be used to protect the integrity of the audit modules.

3.5.7 Implement and Test

The implementation of concurrent auditing techniques will be facilitated if
high-level software is available to support use of concurrent auditing. For
some types of hardware/software platforms, for example, software has
been developed to initiate calls to a library of concurrent auditing routines,

SYSTEMS AUDITING

NOTES

287

receive information back from these routines, and process and present the
information in a form that facilitates audit work.

3.5.8 Postaudit the Results

After concurrent auditing techniques have been running for some time,
auditors should evaluate their costs and benefits, particularly in light of the
estimates of costs and benefits they made during the feasibility phase. This
postaudit identifies defects that possibly can be corrected or ways in which
the techniques can be used more effectively and efficiently. It also-can lead
to the conclusion that concurrent auditing techniques should be scrapped.

A postaudit also formalizes the experience gained with concurrent auditing
techniques and establishes guidelines for their design and implementation
in other application systems. Auditors are then better placed to make
decisions on whether the techniques should be implemented elsewhere
and, if so, how they should be implemented.

3.6 Strengths/limitations of concurrent auditing
techniques

In spite of the apparent advantages of concurrent auditing techniques, their
use has not been widespread. Periodically, surveys have been undertaken
of the extent of their use. The results of these surveys are problematical for
several reasons. First, they have not used common definitions for the
different types of concurrent auditing techniques. Second, in some cases,
data on a particular technique has not been collected. Third, different types
of auditors have been surveyed. Nonetheless, a common theme emerges:
Use of concurrent auditing techniques has been fairly stable and limited
over many years. The following table summarizes the results of several of
these surveys, where the percentages in the table reflect the number of
respondents who indicated they had used the concurrent auditing
technique:

The results of these surveys also indicate that several factors affect the use
of concurrent auditing techniques:

1. Internal auditors are more likely to use concurrent auditing techniques
than external auditors. This situation occurs because internal auditors

SYSTEMS AUDITING

NOTES

288

should be able to obtain the resources required from their organizations
to support the development, implementation, operation, and
maintenance of concurrent auditing techniques.

2. Concurrent auditing techniques are more likely to be used if auditors are
involved in the development work associated with a new application
system. As discussed previously, it is easier to install concurrent auditing
techniques at the outset rather than to retrofit an application system with
these techniques.

3. Concurrent auditing techniques are more likely to be used if auditors
employ other computer-based audit techniques. In short, auditors need
the knowledge j and experience of working with computer systems to be
able to use concurrent auditing techniques effectively and efficiently.

4. Concurrent auditing techniques are more likely to be used as the
incidence of i automatically generated transactions in application
systems goes up. The audit trail is less visible for these types of
transactions, and the costs of errors and irregularities associated with
them can be high.

Limitations of concurrent auditing techniques:

1. The costs of developing, implementing, operating, and maintaining
concurrent auditing techniques can be high. For this reason, the benefits
of using concurrent auditing techniques must be clear to all
stakeholders. Otherwise, the needed resources and support will not be
forthcoming.

2. Unless we have substantial knowledge of and experience with
information systems auditing, it is unlikely that we will be able to use
concurrent auditing techniques effectively and efficiently. Moreover, we
must have a good understanding of the target application system if we
are to be capable of placing concurrent auditing techniques at strategic
points within it.

3. Concurrent auditing techniques are unlikely to be effective unless they
are implemented in application systems that are relatively stable. If the
host application system is changing frequently, the costs of maintaining
concurrent auditing techniques are likely to be high. We might be able to
justify these costs on the basis of the high exposures associated with the
high levels of volatility in the application system. Nonetheless, we must
be aware of the increased difficulties we are likely to face.

In summary, assessing the benefits and costs of using concurrent auditing
techniques can be difficult. For a start, identifying all the benefits and costs
associated with their use is hard. Because several different sets of
stakeholders exist, we must take care in assessing how concurrent auditing
techniques affect each of them. Valuing the benefits and costs is also
difficult. Again, we need to consider value from the viewpoints of all the
different stakeholder groups.

SYSTEMS AUDITING

NOTES

289

4. SUMMARY

There is a variety of software available to auditors to assist in evidence
collection. For a start, auditors can use generalized audit software, which
has been designed specifically to allow them to gain access to and
manipulate data maintained on computer storage media. It provides
powerful functions that enable access to files maintained in a variety of
formats, sorting and merging of files, selection of data that satisfy certain
conditions, statistical sampling and evaluation of data, arithmetic operations
on data, stratification and frequency analysis of data, file creation and
updating, and flexible reporting of results obtained.

Three evidence-collection techniques used primarily to evaluate the quality
of program logic are code review, test data, and code comparison. Each
can be used independently. Each can also be used in conjunction with the
other two, however, to perform an integrated test of whether defects exist in
a program. Code review provides a basis for auditors to generate flaw
hypotheses about program logic. Test data enables auditors to test these
hypotheses. Code comparison allows auditors to test whether the
production version of a program used is the tested version.

Concurrent auditing techniques collect audit evidence at the same time as
application system processing occurs. This evidence can be written to a file
and periodically printed for auditors to analyze and evaluate. Alternatively,
auditors can print or display the evidence immediately so they can
determine whether to take some type of immediate action for example,
commence investigation of a potential irregularity.

5. Questions

1. Briefly discuss the motivations for developing generalized software
specifically for audit purposes. Even though generalized retrieval
software already existed before audit software was developed, why did
auditors prefer to develop their own software packages?

2. What is a generalized audit software package?

3. What purposes might auditors seek to achieve in using generalized
audit software to examine the quality of data maintained on an
application system files?

4. How can auditors use generalized audit software to examine the
existence of entities that the data purports to represent?

5. Briefly explain how code review can he used to identity ineffective code
and nonstandard code in a program.

6. On what criteria should auditors select the source code to be examined
during program source code review?

7. Briefly explain the difference between the black-box approach to test-
data design and the white-box approach to test-data design.

8. Briefly explain the nature of concurrent auditing techniques.

SYSTEMS AUDITING

NOTES

290

9. What is entropy? Information systems staff often has a very high rate of
turnover in their jobs. Is this a form of entropy in information systems? If
so, how can concurrent auditing techniques are used to help mitigate
the effects of this form of entropy?

10. Give two advantages of using concurrent auditing techniques in an
organization.

6. REFERENCE BOOKS

1. Weber R; Information Systems Control and Audit (Person Education)

2. Dube: Information systems for Auditing (TMH)

3. Auditing Information Systems, 2nd Edition. Jack J. Champlain (Wiley)

SYSTEMS AUDITING

NOTES

291

UNIT – V

1. Evaluating Asset Safeguarding and
Data Integrity

Structure

1.1 Introduction

1.2 Measures of asset safeguarding and data integrity

1.3 Nature of the global evaluation decision

1.4 Determinants of judgment performance

1.4.1 Auditor's Ability

1.4.2 Auditor's Knowledge

1.4.3 Audit Environment

1.4.4 Auditor's Motivation

1.5 Audit technology to assist the evaluation decision

1.5.1 Control Matrices

1.5.2 Deterministic Models

1.5.3 Software Reliability Models

1.5.4 Engineering Reliability Models

1.5.5 Simulation Models

1.6 Cost-effectiveness considerations

1.6.1 Costs and Benefits of Controls

1.6.2 A Controls Matrix View of the Cost-Effectiveness of Controls

1.6.3 Controls as an Investment Decision

Objectives

After going through this lesson, you should be able to:

• discuss measures of asset safeguarding and data integrity

• discuss about a nature of the global evaluation decision

• understand how to determinants of judgment performance

• discuss about Audit technology to assist the evaluation decision

• discuss about Cost-effectiveness considerations

SYSTEMS AUDITING

NOTES

292

1.1 Introduction

In this lesson, we examine both the decision on how well assets are safe-
guarded and the decision on how well data integrity is maintained. We
consider these decisions jointly because substantial overlap exists in terms
of the evaluation methodologies that auditors can use for each decision.

The lesson proceeds as follows. In the first section, we discuss various
measures of asset safeguarding and data integrity that auditors can use as
the basis for their judgment process. Next, we examine the nature of the
global evaluation decision they must make. We then discuss those factors
that audit research has shown are major determinants of the quality of
auditors' judgments when they make the global evaluation decision. In the
subsequent section, we examine various tools that have been developed to
assist auditors make the global evaluation decision. Finally, we discuss
how auditors might evaluate the cost-effectiveness of controls.

1.2 Measures of asset safeguarding and data integrity

To evaluate how well assets are safeguarded and data integrity is
maintained, auditors need some kind of measurement scale. Asset
safeguarding and maintenance of data integrity are not all-or-nothing
affairs; assets are safeguarded and systems maintain data integrity to
varying degrees. Auditors need to be able to evaluate the extent to which
assets have been safeguarded and data integrity has been maintained.

A measure of asset safeguarding that auditors can use is the expected loss
that occurs if the asset is destroyed, stolen, or used for unauthorized
purposes. Auditors can assign different probabilities to the different losses
that could occur that is, if there is uncertainty surrounding the size of the
dollar losses that result if assets are not safeguarded, the losses can be
described via a probability distribution. Auditors can then calculate the
expected loss if the asset is not safeguarded.

For example, assume that there is a .3 probability of losing $900,000 if an
asset is destroyed (in, say, lost revenues generated via the asset), a .6
probability of losing $1,000,000, and a .1 probability of losing $1,200,000.
The expected loss can then be calculated using this formula:

= (900,000 • .3) + (1,000,000 • .6) + (1,200,000 • .1)

=990,000

The measure of data integrity that auditors use during an audit depends on
their audit objectives and the nature of the data item on which they focus.
Their overall concern is the extent to which a system of internal control
permits errors to occur. External auditors' focus is likely to be on whether a
material dollar error exists in the financial statements. The measure of data
integrity will be the size of the dollar error that external auditors estimate
exists in the accounts as a result of internal control weaknesses. Internal
auditors are also likely to be concerned about dollar errors that might exist
already or that might arise at some time in the future. In addition, they

SYSTEMS AUDITING

NOTES

293

might also be concerned about the existing or potential size of quantity
errors and the existing or potential number of errors. For example, they
might be evaluating the quantities-on-hand for inventory where their focus
is whether the recorded quantities-on-hand are accurate. Similarly, they
might be evaluating the accuracy and completeness of name-and-address
records, where their focus is the number of records that are in error.
External auditors might also be concerned about quantity errors and the
number of errors, but perhaps only to the extent that they are related to
dollar errors in the accounts.

If internal controls can fail stochastically, an auditor's estimate of data in-
tegrity must be made in terms of a probability distribution of error that might
arise. For example, from time to time a clerk might enter a wrong amount at
a terminal that an input validation program is unable to detect. If this error
occurs randomly, the impact of data integrity will depend on factors like the
nature and seriousness of the input error made, the timing of the error, and
the ways it compounds or compensates with other errors that might be
made. A single point estimate of the resulting error, therefore, is unlikely to
suffice. Instead, auditors need to determine the shape of the probability
distribution of the error that might result and the various moments of that
distribution.

1.3 Nature of the global evaluation decision

When auditors make the global evaluation decision, they seek to determine
the overall impact of individual control strengths and weaknesses on how
well assets are safeguarded and how well data integrity is maintained.
External auditors' primary focus will be on (1) whether material losses have
occurred already because assets have not been safeguarded and (2)
whether material errors exist in the financial statements because data
integrity has not been preserved. Because external auditors will also be
concerned about providing advice to management to assist them to
discharge their responsibilities, they will also consider the potential for
losses from failure to safeguard assets and to maintain data integrity. This
provision of advice, however, is not their primary responsibility. On the
other hand, internal auditors most likely will give equal emphasis to losses
that have occurred and losses that could occur as a result of a failure to
safeguard assets and to maintain data integrity. Their responsibilities are
likely to be somewhat broader, therefore, than those of external auditors.

As auditors conduct tests of controls, they will continue to make global
evaluation judgments. When they evaluate the reliability of each control,
they will consider its impact on asset safeguarding and data integrity within
the management or application subsystem or system that is their focus. To
the extent that auditors believe material losses or account misstatements
could have occurred, they will expand the scope and extent of their
substantive testing. Likewise, as auditors conduct substantive tests, they
will again be making global evaluation judgments. Once more they will
expand the scope and extent of substantive testing if they conclude
material losses or account misstatements could have occurred.

During the conduct of tests of controls and substantive testing, note that
auditors are usually making the global evaluation judgment at the
subsystem or system level. For example, they might conclude that the

SYSTEMS AUDITING

NOTES

294

planning subsystem within the head-office information systems division is
defective or that the input subsystem in an order-entry system is defective.
Auditors make a global assessment of the impact of these defects on the
particular management system or application system that they are
evaluating.

External auditors, however, must bring all these individual global evaluation
judgments together. They must consider the losses or account misstate-
ments that they estimate have occurred within individual application
systems, aggregate them to the cycle level, and then aggregate them once
more to the financial statements level (Figure 1-1). As external auditors
undertake this aggregation process, they must consider the ways in which
losses or account misstatements at the system or cycle level can
compound and compensate. This final aggregation is the basis for the
opinion they render on the financial statements.

FIGURE 1-1 Levels of the global evaluation judgement

1.4 Determinants of judgment performance

Since the mid-1970s, a substantial amount of research has been
undertaken to try to identify and understand the impact of those factors that
impact the quality of auditor judgments. In light of the results obtained in
these studies, Libby and Luft argue that the determinants of judgment
performance can be usefully grouped into four categories: (1) the decision
maker's ability, (2) the decision maker's knowledge, (3) the environment in
which the decision maker must make his or her judgments, and (4) the
decision maker's motivation level In the following subsections, we briefly
examine the nature and impact of these determinants because they will
help us to understand how auditors might make better judgments on how
well systems safeguard assets and maintain data integrity. There are also
lessons to be learned for how auditors might make judgments on how well
systems achieve their effectiveness and efficiency objectives matters we
will examine in the next two chapters.

SYSTEMS AUDITING

NOTES

295

1.4.1 Auditor's Ability

Whenever we seek to make a judgment about the level of asset
safeguarding or data integrity maintained, we need to recognize that as
humans we have various inherent cognitive strengths and limitations. Our
cognitive abilities affect the quality of the judgments we will make.

For example, one of the cognitive strengths we possess as humans is our
ability to identify relationships and patterns in cues that come to our
attention. Consider, for example, the remarkable ways in which many
people can "read the body language" emitted by another person with whom
they interact. This ability to somehow assimilate diverse cues and to
identify complex and abstruse patterns helps us when we must examine
internal control evidence to reach a judgment on how well system
safeguards assets and maintains data integrity.

The first is the representativeness heuristic; whereby we tend to assess the
probability that one thing is representative of another thing by the degree to
which the first thing resembles the second thing. For example, assume that
we believe a high level of security exists in relation to a computer facility we
are evaluating. For a start, this belief might or might not be well founded.
Nevertheless, suppose we collect some evidence on the reliability of
security controls associated with the facility. After having examined just a
few controls, we find they are representative of reliable security controls. As
humans, we then are likely to be biased toward concluding that the overall
control system will be reliable, even though sampling theory might indicate
that we cannot reach this conclusion on the basis of the small number of
controls we have examined.

The second is the anchoring and adjustment heuristic, whereby we tend to
start from an initial base and adjust that base to reach our final judgment.
For example, during our preliminary evaluation of an internal control
system, we might conclude that the controls we are examining are reliable.
When we collect further evidence on the reliability of the controls, however,
we might find several instances of test results that manifest that the
controls are unreliable. The signals, in fact, might be clear that the control
system is unreliable, but as humans we will often tend to anchor on our
initial judgment that the system is reliable and under-adjust our judgment
as we receive additional information.

The third is the availability heuristic, whereby we tend to assess the fre-
quency of a class or the probability of some event by the ease with which
we can remember instances of the class or the event. For example, we
might evaluate the risk of a particular type of security exposure in an
organization on the basis of the extent to which we can remember
encountering the same exposure in other organizations we have audited.
Unfortunately, our recall of the frequency with which the exposure occurred
in other organizations might be a poor basis for assessing the risk of the
exposure in the current organization we are auditing.

1.4.2 Auditor's Knowledge

Auditors' knowledge comes from two basic sources: first, the education and
training received; and second, the experience accumulated in audit work

SYSTEMS AUDITING

NOTES

296

(Figure 1-2). Although the knowledge acquired from both sources overlaps
to some extent, important differences also arise. For example, after you
have studied this book, you should have a reasonable level of knowledge
about, say, the nature of errors that could occur in data input and the
controls that you could use to reduce losses from these errors. You are
unlikely to have gained substantial insights, however, about the sources of
inherent risk that pertain to a financial institution that undertakes complex
transactions on the stock exchange. You might acquire some of this
knowledge if you studied books about the stock market. Probably, however,
you need to have direct experience of these institutions to have well-
developed knowledge of the inherent risks associated with them.

The education and training and the experience received can also be
general or specific. In the previous example, you might attend training
courses that have been designed specifically to address the inherent risks
associated with the type of financial institution you are auditing. You might
also have carried out a large number of audits of these types of financial
institution. Alternatively, most of your training might relate to general audit
procedures, and most of your experience might be dispersed across a
large number of different types of organizations.

FIGURE 1-2 Source of audit knowledge

As we might expect, both general and specific knowledge play a part in
determining the quality of audit judgments. For many audits, the level of
gene knowledge could be an important determinant of the decision quality
wt making asset safeguarding and data integrity judgments. For example,
the organization we are auditing might not be complex, and it might also be
representative of many other types of organizations we have encountered.
As the level of specificity associated with the organization we are auditing
increases, however, the complexity associated with the judgments we must
make also creases. As a result, we need to have more specialized
knowledge if we are make high-quality judgments.

SYSTEMS AUDITING

NOTES

297

1.4.3 Audit Environment

The audit environment describes the context in which auditors must make
their evaluation judgment. Potentially, many characteristics of the
environment might bear on auditor judgment processes. Libby and Luft
identify four characteristics, however, that seem to be especially important.

The first is the audit technology that auditors can use to guide and support
their audit judgment. We are using the term here in a broad sense. It
includes elements like the internal control questionnaires used to structure
the evaluation of internal controls, the audit standards and policies used to
guide the conduct of audits, the expert systems used to help in evaluations,
the way we structure audit teams to try to improve the quality of the audit,
and the ways we document our findings to try to facilitate our making a final
judgment. Auditors use this technology to try to overcome some of the
deficiencies in their judgment processes and to extend their cognitive
abilities.

The second environmental characteristic is group processes. One of the in-
teresting features of the audit profession is that it uses groups extensively
during the conduct of an audit; it does not rely on individual persons to
make judgments. Unfortunately, research in auditing is only just beginning
to provide us with some understanding of why group processes in auditing
might be useful and why, therefore, auditors are likely to have incorporated
group processes into their work.

The third environmental characteristic is prior involvement in an audit. On
the one hand, prior involvement with an audit (say, in a previous year)
might enhance the knowledge that auditors bring to the evaluation
judgment. In this light,' it might improve the quality of their judgment. On the
other hand, prior involvement might cause auditors to be less critical of the
audit work they examine as it represents some of their own work. Thus,
prior involvement might undermine the quality of their evaluation judgment.
Again, audit research is only just beginning to provide us with insights on
the effects of prior involvement on judgment quality.

The fourth environmental characteristic is accountability. Auditors are ac-
countable for their work in many different ways. For example, they are
accountable to their supervisors and their clients, and they will also be held
accountable for their work under the law. The positive aspect of
accountability is that it should motivate auditors to try to make high-quality
judgments whenever they evaluate asset safeguarding and data integrity. A
potential downside, however, is that auditors might become too concerned
with accountability issues (like keeping extensive documentation). As a
result, auditors might become exhausted and devote insufficient attention
to the cognitive processes they need to exercise to make a high-quality
evaluation decision.

1.4.4 Auditor's Motivation

The motivation auditors have to perform an audit task can affect (1) the
effort they exert to perform the task and (2) the cognitive processes
associated with the task. For example, if auditors are making a judgment
about whether material errors exist in financial statements, the loss function

SYSTEMS AUDITING

NOTES

298

they face is likely to affect the amount of effort they exert to make this
judgment. If a large number of people rely on the financial statements and
auditors make a poor judgment, they could be sued for substantial
amounts. This potential for loss is also likely to affect the salience of certain
evidence to the evaluation judgment. For example, auditors might be more
sensitive to evidence that suggests the possibility of top management fraud
when many people rely on their audit opinion.

1.5 Audit technology to assist the evaluation decision

In this section, we examine some of the technology that has been
developed to assist auditors to make the global evaluation decision on how
well system safeguards assets and protect data integrity. By technology,
recall from the previous discussion that we are interpreting this term in a
broad sense. It is not just confined to computer technology; it also applies
to any tool, structure, policy, or approach developed to facilitate
undertaking the audit. Given the complexity of the evaluation judgment
auditors must make, this technology can help by structuring and perhaps in
part automating the evaluation decision. It also might provide auditors with
insights that help them to understand the evaluation decision better.

1.5.1 Control Matrices

One of the earliest technologies developed to assist with the evaluation
decision are control matrices. Control matrices can be prepared in various
ways. Table 1-1 shows a common approach, however, using the example
of the data capture activities associated with the input subsystem belonging
to an application system.

TABLE 1-1 Input subsystem evaluation for customer order transaction
class

SYSTEMS AUDITING

NOTES

299

Note the structure of the controls matrix shown in Table 1-1. The columns
of the matrix show causes of loss in this case, circumstances that would
cause a loss to occur if they arose during the data capture stage of an ap-
plication system's processing. The rows of the matrix are controls exercised
over the causes of loss to reduce expected losses from the causes. The
elements of the matrix might be some rating of the effectiveness of each
control at reducing expected losses from each cause, the reliability of the
control with respect to each control in light of tests of controls that have
been conducted, or the marginal benefits and costs of exercising the
control. In Table 1-1, the elements show a simple rating of whether a
control is likely to have high, medium, or low reliability in reducing losses
from a particular exposure.

To undertake the evaluation decision using the control matrix, conceptually
we first examine each column of the matrix and ask the following question:

For a given cause of loss, do the controls over the cause reduce the
expected loss from the cause to an acceptable level? For each cause of
loss, we must somehow weigh up the effect of the various controls and
determine whether the exposure that remains is at an acceptable level. We
must consider the columns in total to determine whether a material loss
could still arise.

A control matrix can be prepared at various levels of aggregation in our
evaluation decision. In Table 1-1, we see it used at the application
subsystem level. It can also be used, however, at the system level, cycle
level, and overall accounts level. Basically, it is a way of bringing together
some of the important factors auditors must consider when making the
evaluation decision.

1.5.2 Deterministic Models

Deterministic models can be useful when evaluating part of a system of
internal control or obtaining a first approximation of how well a computer
system safeguards assets and maintains data integrity. For example,
consider the access control mechanism in an operating system. Assume
we discover an integrity flaw in the system that allows hackers, under
certain conditions, to violate the privacy of a data file. In other words, the
flaw can be exploited so the data file (asset) is no longer safeguarded
against unauthorized use.

To determine the consequences of the flaw, we might access the system
log to determine how many times the flaw has been exploited, assuming, of
course, that the integrity of the log has been preserved. Calculating the loss
that has resulted because of the flaw involves estimating the loss on each
occasion that the flaw was exploited and summing the losses. Thus, the
model used in this example is deterministic, provided there is no
uncertainty about the losses involved.

Deterministic models are relatively simple to construct. Auditors might use
them to perform a pencil-and-paper analysis of how well a system
safeguards assets and maintains data integrity. The models provide only
limited information, however, about the forms of the probability distribution
of error that can be produced when a system contains stochastic elements.

SYSTEMS AUDITING

NOTES

300

In these circumstances, auditors must exercise caution when they interpret
the results they obtain using them.

1.5.3 Software Reliability Models

Software reliability models use statistical techniques to estimate the
likelihood that an error will occur during some time period on the basis of
the patterns of past errors that have been discovered in the system. The
models assume that the number of errors discovered over time increases
at a decreasing rate. This assumption seems reasonable. When a system
is first tested, errors are found relatively quickly. As testing proceeds,
however, each additional error is harder to find. Provided that records are
kept of the error discovery process, the shape of the function that relates
the probability that an error will occur to the age of the system can be
estimated and predictions made about the likelihood that future errors will
occur. Note that the age of the system might need to be measured in terms
of the number of times it has been executed rather than elapsed time.
Substantial elapsed time might have occurred, but a system might be
executed infrequently and after variable intervals during this period. As a
result, errors might not surface because only a few execution paths through
the system have been exercised.

1.5.4 Engineering Reliability Models

Engineering reliability models allow auditors to estimate the overall
reliability of a system as a function of the reliability of the individual
components and individual internal controls that make up the system. In
this respect they mirror the auditor's traditional approach to assessing the
overall reliability of a system based on evidence collected about the
reliability of individual internal controls within the system. In some ways the
assumptions underlying the models are restrictive. Moreover, their practical
usefulness is still questionable. Nevertheless, the models provide important
insights into how control strengths and weaknesses can compensate and
compound to affect the overall reliability of a system. As such, they help
auditors to understand how the overall evaluation of internal control should
be made.

1.5.5 Simulation Models

Whenever possible, auditors should use analytical models toTielp them
make the evaluation judgment. With analytical models, usually auditors can
evaluate the value of the dependent variables that interest them at low cost
over a wide range of variations in the independent variables and the
structure of the model. The deterministic models and probabilistic models
examined previously, for example, often can be developed and solved
quickly and cheaply.

Sometimes, however, analytical models are not appropriate to use when
auditors make the global evaluation judgment. For a start, they might
conclude that the assumptions underlying the models are too restrictive
and thus do not mirror reality sufficiently well. In addition, analytical models
might not be mathematically tractable because the appropriate equations to
use to model the system are not obvious or the equations appear to be

SYSTEMS AUDITING

NOTES

301

insolvable. In these cases, auditors might consider using simulation models
to assist their making the global evaluation judgment.

When auditors use a simulation model, they can evaluate the behavior of a
system over time. For example, consider how we might use a simulation
model to evaluate asset safeguarding. We might be evaluating a security
system in which there is some probability that a guard will fail to detect an
intruder, some probability that a surveillance system also might fail to
detect the intruder, some probability that the intruder can crack a password
system, and so on, and eventually the intruder gains access to and steals
sensitive data files. Often an analytical model can be used to determine the
probability of all controls failing. Nevertheless, if controls compound and
compensate in different ways, we might need to use a simulation model to
obtain the needed insights for us to he confident in our evaluation of the
reliability of the system of controls. Moreover, we can study how the
security system responds over time as it is subjected to various types of
threats. We are not basing our decision, therefore, on a one-off situation in
which the security system might or might not detect the intruder.

1.6 Cost-effectiveness considerations

So far our discussion has proceeded without our considering the costs of
safeguarding assets or maintaining data integrity. Reliable systems can be
achieved, however, only at a cost. Whenever we invest in making a system
more reliable, we must consider whether the benefits we expect to obtain
exceed the costs we expect we will incur.

In the following subsections, we briefly examine some aspects of the judg-
ment auditors must make on whether the controls in place are cost-
effective. We deal with this decision only at a reasonably intuitive level.
Some of the approaches that have been developed to help us to make this
decision, however, are somewhat complex.

1.6.1 Costs and Benefits of Controls

Implementing and operating controls in a system involves five costs:

1. Initial setup costs must be incurred to design and implement controls.
For example, a security specialist might have to be employed to design
a physical security system, and a systems analyst might be assigned the
task of designing the validation routines for an input program. When
these design tasks are completed, costs will then be incurred, for
example, to install magnetic card door locks and to write programs.

2. Costs associated with executing controls will be incurred. For example,
the wages of a security officer must be paid, and the costs associated
with using a processor to execute input validation routines must be met.

SYSTEMS AUDITING

NOTES

302

3. When a control signals that some type of error or irregularity has
occurred, costs will be incurred to search for the error or irregularity, to
determine whether one exists (that is, the control has operated reliably in
signaling an error or irregularity), and to correct any errors or
irregularities that are found.

4. Costs arise because controls do not detect some errors or irregularities
(the control might malfunction or it might not have been designed to
detect the error or irregularity that has occurred), and costs arise
because the control system fails to correct errors and irregularities
properly when they are discovered. These undetected or uncorrected
errors or irregularities then cause losses. For example, an uncorrected
error or irregularity could allow a defalcation to occur.

5. Maintenance costs are incurred to ensure the controls are kept in correct
working order. For example, periodically a security guard must be
retrained, and input validation routines might have to be rewritten as the
format of input data changes.

The first cost described here is the outlay for a system of controls. The
remaining four costs are the ongoing operational costs of a control system.

1.6.2 A Controls Matrix View of the Cost-Effectiveness of Controls

Earlier in the chapter we examined the use of control matrices to evaluate
whether a set of controls had reduced exposures to an acceptable level.
Control matrices can also be used to help us to characterize the decision
on whether controls are cost-effective.

When we examine a column of a control matrix, recall that we are seeking
to determine whether a set of controls reduces an exposure to an
acceptable level. In essence, we are asking whether the reduction in
expected losses exceeds the costs of designing, implementing, operating,
and maintaining the set of controls. To determine whether we should put
additional controls in place, we also need to consider whether the marginal
reduction in expected losses from .the exposure from having additional
controls will exceed the marginal costs of the controls.

Even if a control is not cost-effective in terms of a single exposure, how-
ever, it might be cost-effective in terms of all the exposures where it acts to
reduce expected losses. In this light, we must also consider each row of the
controls matrix. As we work across each of the rows in Table 1-1, for
example, we are considering the reduction in expected losses that occurs
for each of the exposures listed in the columns with regard to the particular
control in the row we are considering. In other words, we focus on a
particular control by choosing a row in the controls matrix, and we consider
the impact of this control on all exposures by working across the row in the
controls matrix.

The global evaluation question involves our asking this question: What is
the optimal set of controls for the organization? The answer to this question
somehow involves our undertaking a joint evaluation of the columns and

SYSTEMS AUDITING

NOTES

303

rows in the controls matrix. Whereas from a columnar perspective, it might
not be worthwhile to have a control, from a row perspective the benefits of
the control when it is exercised over all exposures might exceed its cost.

Unfortunately, there are two complicating factors when auditors seek to
make this global evaluation decision. First, as discussed previously, the
marginal benefits and costs of exercising a control might depend on what
controls are in place already and the reliability of these controls. In other
words, the benefits and costs of a control are conditional parameters.
Second, there is an overriding constraint on how many controls should
exist in a system. This constraint applies when for all controls that still
might be exercised the marginal benefits of any one control exceed the
marginal costs of that control. In short, although auditors might understand
conceptually the nature of the global evaluation decision on controls, the
pragmatics associated with making this decision are difficult.

1.6.3 Controls as an Investment Decision

The design, implementation, operation, and maintenance of a control
produce a stream of benefits and costs over its life. As discussed
previously, at the outset, costs are incurred associated with designing and
implementing the control. Each year, benefits are then obtained in the form
of reduced expected losses from exposures. Each year, costs are also
incurred associated with operating and maintaining the control. In this light,
we should conceive of a control as a form of investment. At least
conceptually, we should calculate the net present value for each control
and invest in the control if its net present value is greater than or equal to
zero. Where there are competing controls (controls that reduce expected
losses for the same exposures), we should invest in that control which has
the highest net present value. Because the costs of evaluating each control
we might implement are likely to be excessive, we will probably need to
focus our evaluation on a set or system of controls. In other words, we will
consider the set or system of internal controls as the investment rather than
individual controls as the investment.

One difficulty we will face in considering controls as an investment is to es-
timate the size of the stream of benefits and costs that will occur during
each period of the control system's life. Perhaps the more difficult decision
we will have to make, however, is to determine the appropriate discount
rate to use in our net present value calculations. Current finance theory
tells us that the discount rate, k, that we should use should be calculated as
follows:

where:

kf = risk-free rate of return

= expected rate of return on the market portfolio

= beta coefficient of a security

SYSTEMS AUDITING

NOTES

304

The coefficient of a security indicates the riskiness of returns on the secu-
rity relative to returns on the market portfolio. The value of p can be
obtained by regressing the returns on the security to returns on the market
portfolio.

What is the we should use, however, for an investment in a control sys-
tem? Conceptually we need to find a firm that operates in the market that
invests only in the control system we are seeking to evaluate. Of course,
practically we know that such firms are unlikely to exist. In this light, we
might use the of the firm that is seeking to design, implement, operate,
and maintain the control system we are evaluating and make some
adjustment to (upwards or downwards) depending on our estimate of the
risk associated with the control system relative to the overall risk
associated with the firm.

SYSTEMS AUDITING

NOTES

305

2. Evaluating System Effectiveness

Structure

2.1 Introduction

2.2 overview of the effectiveness evaluation process

2.3 A model of information system effectiveness

2.4 Evaluating system quality

2.5 Evaluating information quality

2.6 Evaluating perceived usefulness

2.7 Evaluating perceived ease of use

2.8 Evaluating computer self-efficacy

2.9 Evaluating information system use

2.9.1 Voluntary versus Involuntary Use

2.9.2 Amount and Frequency of Use

2.9.3 Nature of Use

2.9.4 Source of Use

2.10 Evaluating individual impact

2.10.1 Task Accomplishment Impacts

2.10.2 Quality of Working Life Impacts

2.11 Evaluating information system satisfaction

2.12 Evaluation organizational impact

2.12.1 Organizational Effectiveness

2.12.2 Economic Effectiveness

Objectives

After going through this unit, you should be able to:

• understand to overview of the effectiveness evaluation process

• understand to A model of information system effectiveness

• discuss for varies evaluating system techniques

SYSTEMS AUDITING

NOTES

306

2.1 Introduction

In this lesson, we focus primarily on the first objective of a post-
implementation review namely, evaluating systems to determine how well
they meet their objectives. The first section will provide an overview of how
we undertake an evaluation of system effectiveness. Next, we examine a
model that has been developed to show the major factors that are believed
to affect information system effectiveness. We then discuss the influence of
each of these factors on information system effectiveness. Our goal is to
develop an understanding of the nature of each of these factors, the ways
they are interrelated, and the approaches we might use to measure them
and their impact.

2.2 overview of the effectiveness evaluation process

Ideally, all information systems should be subjected periodically to a post
implementation review to assess how well they are meeting their
objectives. Empirical research has shown, however, that only certain
systems undergo post implementation evaluations. Several factors appear
to affect which information systems are selected for review. For example, if
top managers have few doubts about the success of a system, they might
not request a post implementation review. Conversely, if they have sub-
stantial doubts about the success of the system, they may commission a
review.

Reviews also can be undertaken for political reasons. For example, man-
agers might request that a review be undertaken on a system for which
they are responsible even when they know the system is a success. By
having someone independent confirm its success, they might be seeking to
enhance their standing with senior management. They might have an
expectation that they can then extract more resources from the
organization for their own purposes. Whenever auditors are requested to
undertake a post implementation review, therefore, they should be
circumspect about the underlying motivations for the evaluation.

An evaluation of system effectiveness involves six steps:

1. Identify the objectives of the information system. Sometimes the
objectives might have been stated clearly when the system was first
developed. Sometimes, however, the objectives might be vague and ill
defined. Different stakeholders in the information system also might
have different objectives for the system. Somehow auditors must tease
out the objectives that each stakeholder group has for the system so
they can determine which of these objectives have been achieved.

2. Select the measures to be used. Auditors need to he able to measure
the extent to which each objective they identify for the system has been
achieved. In some cases, they might use quantitative measures that
they obtain via, say, questionnaires administered to users or statistics
relating to productivity. In other cases, auditors might use qualitative
measures obtained via. Say, interviews with and observations of users.

SYSTEMS AUDITING

NOTES

307

3. Identify data sources. Having chosen the measures they wish to obtain,

auditors must then identify the best sources of data for these measures.
In some cases, it might be various types of users. In other cases, it
might he, for examples, manufacturing records on productivity,

wastage, spoilage, and so on that are maintained routinely by an
organization.

4. Obtain ex ante values for measures. When auditors have identified the
measures and the best sources of data for these measures, they must

attempt to determine the values of these measures before the system
they are evaluating was implemented. Auditors need a basis for
establishing the impact of the system. Unless these ex ante values
were collected prior to the implementation of the system, it could be
difficult to obtain them after the system is operational.

5. Obtain ex post values for measures. After the system is implemented,
auditors then must collect data on the measures they have chosen to
evaluate effectiveness. One difficulty they face is determining what time
period should elapse before the measures should be taken. It might
take some time before the effects of an information system on an
organization begin to stabilize. It might also be important to collect data
on these measures over time if they are interested in the patterns of
changes that are occurring.

6. Assess the system impact. When auditors have values for the ex ante
and ex post measures, they can then assess the impact of the system
by comparing the values for the two sets of measures. It is important
that they try to look beyond the measures to understand the reasons for
any changes they observe. Their report will be more useful to
management if they can account for the changes they have identified.

2.3 A model of information system effectiveness

For many years, researchers in the information systems discipline have at-
tempted to understand what we mean by information system 'effectiveness,
to develop valid and reliable measures of information system effectiveness,
and to identify the major factors that affect information system
effectiveness. Unfortunately, these goals have proved especially difficult to
achieve. Although we have made some progress, much research is still
needed if we are ever likely to obtain a thorough understanding of the
nature of information system effectiveness and the factors that impact
information system effectiveness.

Figure 2-1 shows a model of information system effectiveness that is
intended to be an amalgam of work that has been carried out by several
researchers. We examine each of the components of this model in the
following sections. In summary, however, the model manifests a set of
hypothesized relationships among factors that are thought to have an
impact ultimately on whether an information system is effective. First, the
quality of the system and the quality of the information it produces are hy-

SYSTEMS AUDITING

NOTES

308

pothesized to affect whether users perceive the system to be both useful
and easy to use. These two perceptions are also affected, however, by
users' beliefs about their abilities to use computers competently (self-
efficacy). Users' perceptions about the usefulness and ease of use of the
system in turn affect how they use the system for example, the frequency
with which they use the system and the ways in which they use the system.
How they use the system then affects their performance in their
organizational role and ultimately the overall performance of the
organization. How they use the system also affects their satisfaction with
the system. There is also a hypothesized two-way relationship between
satisfaction and individual impact. To the extent users are more satisfied
with a system, it is likely to have a greater effect on them. Similarly, to the
extent the system has a greater positive (negative) effect on them, they are
more (less) likely to be satisfied with the system

FIGURE 2-1 A model of factors affecting IS effectiveness

Auditors can use the model shown in Figure 2-1 in two ways. First, they
can use it to structure their approach to the collection of the data they will
need to make a judgment about whether a system meets its objectives
effectively. Each component in the model indicates the types of evidence
auditors must collect to be able to reach a global evaluation about the
effectiveness of the system. Second, auditors can use the model to help

SYSTEMS AUDITING

NOTES

309

them understand why a system might be effective or ineffective. In some
ways they could approach the evaluation of system effectiveness by simply
collecting evidence about the individual and organizational impacts that
arise as a result of implementing and operating a system the final
components in the model. If auditors do not collect data on the preceding
components, however, they will not have a sound basis for determining
why a system is effective or ineffective. For example, if auditors find a
system has not had the desired individual and organizational impacts,
management might ask them to provide the reasons why the desired
impacts have not occurred and the remedial actions they should take. Audi-
tors can use the model to help them think about potential causes and to
provide a basis for their making recommendations to try to improve the
effectiveness of the system.

2.4 Evaluating system quality

Potentially many characteristics of the hardware and software components
of an information system might affect users' perceptions of the usefulness
and ease of use of the system. One set of characteristics will be fairly
apparent to users after they have interacted with the system for only a short
period of time. It includes the following:

1. Response time (online system),

2. Turnaround time (batch system),

3. Reliability (stability) of the system,

4. Ease of interaction with the system,

5. Usefulness of the functionality provided by the system,

6. Ease of learning,

7. Quality of documentation and help facilities, and

8. Extent of integration with other systems.

From the viewpoints of the users of a system, however, these factors tend
to have a somewhat immediate impact on their attitudes toward the system.
If users find it difficult to interact with a system, for example, they are
unlikely to have favorable perceptions about the usefulness of the system
and the ease with which they can use the system to accomplish their goals.

Some of these factors are also associated with software effectiveness. To
assist auditors to make a judgment about software effectiveness, they
should examine four attributes of the software used to support the system:

1. History of repair maintenance. The history of program repair
maintenance indicates the quality of a program's logic. Recall that
repair maintenance is carried out to correct logic errors. Extensive
repair maintenance means inappropriate design, coding, or testing
technologies have been used to implement the program.

2. History of adaptive maintenance. Adaptive maintenance is carried out
to alter a program to accommodate changing requirements. There are

two reasons why it occurs. First, program designers might have

SYSTEMS AUDITING

NOTES

310

formulated incorrect specifications in the first place. As a result, the
specifications have to be changed and the program logic altered.
Incorrect program specifications mean they should examine the
approaches used to develop the specifications. Second, user

requirements might change. As a result, the program has to be altered
to meet these new user requirements. Nonetheless, frequent
modifications to meet changes in user needs might mean the program
is inflexible; in other words, it has not been designed to accommodate
change.

3. History of perfective maintenance. Perfective maintenance is carried

out to improve program resource consumption that is, to make the
program execute more efficiently. Large amounts of perfective

maintenance might mean that the program has been designed poorly.
Alternatively, perhaps the hardware platform on which the program
runs is being changed frequently and the program has to be constantly
tuned to adapt to the new platform.

4. Run-time resource consumption. If at run time an application program

consumes resources inefficiently, it could mean that it is poorly
designed or that the programming language or compiler used is
inappropriate for the task to be performed. Auditors should examine
the technology used to support these aspects of software
implementation.

The designers and programmers responsible for carrying out program
modification and repair maintenance and the operators responsible for

running programs can provide auditors with information on the
appropriateness of the software technology used to support an application
system. Designers and programmers can make judgments on the overall
quality of programs. For example, they know whether a program is easy to
modify or repair. Operators often can make judgments on whether a
program consumes abnormal amounts of resources at run time.

2.5 Evaluating information quality

The quality of the information produced by an information system can have
important effects on users' perceptions of the usefulness of the system and
ease of use of the system. Some of the attributes of information quality that
auditors might seek to measure are the following:

1. Authenticity,

2. Accuracy,

3. Completeness,

4. Uniqueness (nonredundancy),

5. Timeliness,

SYSTEMS AUDITING

NOTES

311

6. Relevance,

7. Comprehensibility,

8. Precision,

9. Conciseness, and

10. Informativeness.

When auditors evaluate the quality of information produced by a system,
note that they are basically trying to assess how well the information
enables users to undertake their jobs. Nonetheless, auditors should be
sensitive to the fact that the information provided by a system can have
other impacts on users' lives. For example, users might have a negative
view of the quality of information provided by a system if they perceive that
the information is used by management to gain increased power over them.

2.6 Evaluating perceived usefulness

Several items have been used to measure the perceived usefulness of an
information system. Davis has found the following items to be valid and
reliable, however:

1. Users perceive that the information system enables them to accomplish
tasks associated with their job more quickly.

2. Users perceive that the information system enables them to improve
their job performance.

3. Users perceive that the information system enables them to increase
their productivity.

4. Users perceive that the information system enables them to increase
their effectiveness on the job.

5. Users perceive that the information system makes it easier for them to
undertake the tasks associated with their job.

6. Users perceive the information system to be useful in their job.

If auditors are seeking to evaluate the perceived usefulness of an
information system, therefore, they might wish to use these items in a
questionnaire or as the basis for any interviews they conduct with users.

2.7 Evaluating perceived ease of use

Several items have been used to measure the perceived ease of use of an
information system. Davis has found the following items to be valid and
reliable, however:

1. Users perceive that it is easy for them to learn to operate the information
system.

2. Users perceive that it is easy for them to get the information system to
do what they want it to do.

SYSTEMS AUDITING

NOTES

312

3. Users perceive that they can interact with the system in a clear and
understandable way.

4. Users perceive that interaction with the information system is flexible.

5. Users perceive that they can quickly become skilful with the information
system.

6. Users perceive that the information system will be easy to use.

If auditors are seeking to evaluate the perceived ease of use of an informa-
tion system, as with perceived usefulness they can use these items in a
questionnaire or as the basis for any interviews they conduct with users.
Moreover, as with perceived usefulness, auditors should be mindful of
other factors (like quality-of-working-life effects) that might affect users'
perceptions of the ease with which an information system can be used.

2.8 Evaluating computer self-efficacy

Several researchers believe that computer self-efficacy is an important vari-
able in accounting for the likely effectiveness of an information system. In
this regard, Figure 2-1 shows that computer self-efficacy is predicted to
affect users' perceptions of the usefulness of and ease of use of an
information system. If users have a poor perception of themselves in terms
of their competence to use computers, it is unlikely that they will perceive
the output provided by a system to be useful or that the system will be easy
to use.

If auditors wish to measure users' computer self-efficacy, they will need
some kind of measurement instrument. In this regard, Compeau and
Higgins have developed a questionnaire designed to measure computer
self-efficacy. Initial research conducted using the questionnaire indicates
that it is valid and reliable. It first asks respondents to consider a new
software package designed to assist them with their work. Under various
conditions, it then asks them whether they think they could complete their
job using the software package and, if they answer yes, how confident they
feel in their judgment. Examples of conditions are no one being available to
tell users what to do, only the software manuals being available for
reference, and the respondent having used a similar package before.

In some cases, computer self-efficacy might not be a major concern in
terms of whether an information system is likely to be effective. For
example, auditors might be dealing with users who have extensive
experience with similar sorts of computer systems to the one they are
evaluating. Where such conditions do not exist, however, auditors should
be mindful of the impact that users' perceptions of computer self-efficacy
might have on the effectiveness of an information system.

2.9 Evaluating information system use

If people perceive that an information system is useful and that it is easy to
use, research indicates that they will have positive attitudes toward the
system. These positive attitudes in turn will translate into favorable

SYSTEMS AUDITING

NOTES

313

intentions toward using the system. Intentions have been shown to be a
good predictor of actual use of the system.

In the interests of simplicity, however, Figure 2-1 does not show the link
between perceived usefulness and perceived ease of use of an information
system and a user's attitude toward the system, nor does it show the link
between attitude and behavioral intention. Rather, we focus instead on how
the information system is used. In this regard, the concept of information
system usage turns out to be problematical. In the following subsections,
we briefly explore various notions of usage.

2.9.1 Voluntary versus Involuntary Use

Whenever auditors measure information system use, they must be careful
to determine whether use is voluntary or involuntary. In some systems,
users can choose whether they employ a system to help them with the
tasks they are performing. In other systems, reports are generated on a
routine basis, and users receive the reports unsolicited. Users might also
be compelled by management to use the output provided by the
information system.

If system use is voluntary, auditors can build monitors into the system to
determine unobtrusively how often the system is invoked by users to
perform different tasks. If use is involuntary, however, auditors must then
attempt to determine whether use is "real" or "apparent." Auditors can try to
obtain evidence, for example, on whether system output has actually been
employed to undertake a task. Alternatively, they might use interviews or
questionnaires to gauge employees' real use of the system. Auditors
should take care, however, if they use interviews or questionnaires to
obtain data about system use from employees. The results they obtain
might not be reliable. Users might not accurately recall how frequently they
use a system, for example, or they might overstate frequency of use to gain
favor with management.

2.9.2 Amount and Frequency of Use

Auditors can employ amount of use and frequency of use of an information
system as a means of trying to establish "how much" the system is used.
There are various measures of amount of use that might be helpful. For
example, auditors could use the following:

1. Duration of connect time to the system,

2. Number of inquiries made,

3. Number of functions invoked in the system,

4. Number of records accessed in database,

5. Number of reports generated, and

SYSTEMS AUDITING

NOTES

314

6. Size of chargeout costs for system use.

Problems exist with all these measures, however, in terms of establishing
the impact of an information system on users. For example, system
connect time might be high, but the system might be idle for much of the
time that the connection exists. Likewise, connect time might be high
because users have little competence in using the system. As a result,
they consume excessive resources to produce the output they require.

In light of these problems, frequency of use is sometimes employed as a
measure of system use. Frequency of use might be a good indicator of a
user's reliance on an information system. If users frequently invoke a
system's functionality, presumably they find the system useful in
performing their tasks. Indeed, the amount of use (as measured by, say,
connect time) might be low because users can quickly accomplish their
tasks. Fast but frequent access of the system, however, might still indicate
that the system is effective.

2.9.3 Nature of Use

Ginzberg has argued that frequency of use is often an inappropriate
measure to evaluate system effectiveness. He points to situations in which
a system is used infrequently yet it is considered to be successful. For
example, the act of building a decision support system could provide
important insights into how an ongoing problem should be approached. In
this light, users might consider the system to be successful even though
their day-to-day use of the system may be low.

As a consequence, Ginzberg argues that the overall success of a system
must be evaluated in terms of the way if is used and not just the frequency
of use. The way a system is used evokes different types of change in a
user's actions.

Auditors should be careful, therefore, not to conclude that a system has
high operational effectiveness solely on the basis of its amount or
frequency of use. Ginzberg's research suggests that the level of change
brought about by the system also must be examined. In this light, auditors
also need to examine the way in which a system is being used to assess its
effectiveness.

2.9.4 Source of Use

Auditors might also need to determine who uses an information system
when they assess its effectiveness. In some cases, users themselves might
interact directly with the information system. In other cases, an intermediary
might act on their behalf. For example, for some decision support systems
that have been developed to facilitate group work, a person called a "chauf-
feur" is often needed to assist users to work with the system. The chauffeur
is an expert in the group decision support system who helps users to
"drive" the system. If users interact infrequently with the system, they might
need assistance from someone who is familiar with the system to deal with
its complexities.

SYSTEMS AUDITING

NOTES

315

2.10 Evaluating individual impact

The impact of an information system on users can be manifested in several
ways. Two major types of impacts that auditors need to consider when they
assess a system's effectiveness, however, are task accomplishment
impacts and quality-of-working-life impacts. In particular, auditors need to
remember that an interaction most likely will exist between the two. If a
system improves users' task accomplishment, it might also improve their
quality of working life. ,For example, they might be more satisfied with their
jobs. Similarly, if a system improves users' quality of working life, it may
also improve their task accomplishment. For example, if a system allows
users greater opportunities to use their abilities on the job, it might improve
their task accomplishment. On the other hand, if a system produces a
negative impact on one, the interaction effects might produce a negative
impact on the other. In the following subsections, therefore, we will seek to
obtain a better understanding of these two types of outcome.

2.10.1 Task Accomplishment Impacts

An effective information system improves the task accomplishment of its
users. The following are some general measures that auditors can use to
try to determine whether a user's task accomplishment has improved:

1. Decision accuracy,

2. Time to make decision,

3. Decision confidence,

4. Effectiveness of decision,

5. Quality of product or service produced,

6. Customer satisfaction with product or service produced, and

7. Time to undertake task.

Often, however, auditors need to identify specific measures of task accom-
plishment to determine whether an information system is effective. Unfortu-
nately, performance measures for task accomplishment differ considerably
across applications (and sometimes across organizations).

To illustrate this problem, consider the ways task accomplishment might be
assessed for a manufacturing control system, a sales system, and a
welfare system that supports counselors in their work. Some measures of
task accomplishment that auditor might use for the manufacturing control
system follow:

1. Number of units output,

2. Number of defective units reworked,

3. Number of units scrapped,

4. Amount of waste produced,

SYSTEMS AUDITING

NOTES

316

5. Amount of downtime, and

6. Amount of idle time.

For the sales system, some measures of task accomplishment that auditor
might use follow:

1. Dollar value of sales made,

2. Changes in customer satisfaction ratings,

3. Amount of doubtful/bad debts that arise,

4. Average time for delivery of goods to customer,

5. Number of new customers acquired, and

6. Number of sales made to old customers.

For the welfare system, some of the measures of task accomplishment that'
auditors might use follow:

1. Number of clients successfully counseled,

2. Average cost per client,

3. Number of clients returning for counseling, and

4. Client satisfaction ratings of counseling service provided.

2.10.2 Quality of Working Life Impacts

Besides affecting task accomplishment, an information system can also
affect its users' quality of working life. Auditors must be mindful of this
impact, because important relationships appear to exist between the quality
of working life of people and their physical and mental health. For example,
research has found associations between the characteristics of work and
the incidence of heart disease, peptic ulcers, arthritis, psychosomatic
illness, alienation, and suicide among employees. In many countries, the
direct and indirect costs of employee ill health are substantial.

What are the factors that contribute to a high quality of working life? The
following are often listed:

SYSTEMS AUDITING

NOTES

317

If auditors try to use these factors to assess the impact of an information
system on the quality of working life of its users, they will encounter two
problems. First, they will find that different users have different perceptions
of what constitutes a high quality of working life. For example, some will
consider the quality of working life from a productivity perspective, some
from physical conditions and wages perspective, and some from an
alienation perspective. In this light, auditors should recognize the limitations
of overall measures of the quality of working life as opposed to measures
tailored specifically for individual persons.

Second, it is often difficult to find valid and reliable measurement instru-
ments to assess the quality of working life. One problem that the designers
of these instruments face is that somehow their measures must take into
account the variation in responses by persons to the same environment.
For example, a person who has had several jobs is likely to have a higher
level of satisfaction with a particular job than a person who is employed for
the first time. The time span for measurement also must be chosen.
Employees who are subject to poor working conditions might report a high
quality of working life if they have high expectations of better things to
come. The measures also must be verifiable and not subject to

SYSTEMS AUDITING

NOTES

318

manipulation. Otherwise, responses could be biased intentionally by a
particular person or interest group to further their cause.

Because of these problems, one approach auditors can adopt to assess
the quality of working life is to use surrogate measures that is, measures
that act as indicators of the level of the quality of work life existing instead
of dir measuring attributes of the quality of working life. Some surrogate
measures that have been widely used follow:

Changes in these measures manifest changes in the quality of working life.
For example, a lowered quality of working life can cause increased turnover
of employees or a greater number of strikes. Thus, to assess the
effectiveness of an information system, the focus is on how these
measures change after the system has been implemented.

2.11 Evaluating information system satisfaction

Several instruments to measure information system satisfaction have been
developed that auditors might use during an audit to evaluate the
effectiveness of an information system. Some examples of the types of
items included in these instruments are the following:

1. Relationships with information system staff,

2. Processing of system change requests,

3. Timeliness of information,

4. Level of information system training provided to users,

SYSTEMS AUDITING

NOTES

319

5. Relevance of output,

6. Amount of output,

7. Quality of documentation provided, and

8. Dependability of the information system.

The users of an information system are then asked to rate how satisfied or
dissatisfied they are with these items.

Whenever auditors use an instrument to measure information system satis-
faction, however, they need to consider whether they should tailor the
instrument to the specific type of information system they are evaluating.
Instruments that have been developed for a batch general ledger system,
for example, might not provide valid and reliable measures of user
satisfaction with a decision support system. Although questions about user
satisfaction with the interactive features of the latter system are' likely to be
important, these same questions most likely will be irrelevant in the context
of user satisfaction with the former system.

Auditors should note, also, that the distinction between information system
satisfaction and other measures like perceived usefulness and perceived
ease of use of an information system is not clear-cut. Some of the items
included in published instruments for measuring information system
satisfaction are similar to those included in instruments to measure
perceived usefulness and perceived ease of use of an information system.
When auditors evaluate the effectiveness of an information system,
therefore, they need to be circumspect about the potential overlap between
measures.

2.12 Evaluation organizational impact

If an information system has a positive impact on the people who use it,
presumably it will also have a positive impact on the organization in which
these people are members. The relationship between the impact on people
and the impact on their organization, however, is not straightforward.
People might become more efficient in performing their jobs, for example,
but they still might not contribute significantly to the attainment of the
organization's overall goals.

In the following subsections we examine the potential impact of an infor-
mation system on an organization from two perspectives: first, from the
viewpoint of its impact on the overall effectiveness of the organization: and
second, from the viewpoint of its impact on economic effectiveness. The
latter impact is simply one aspect of the former impact. However, often
auditors will be asked to give particular attention to the economic impacts
of an information system. Moreover, some difficult issues arise when
evaluating the economic impact of an information system.

2.12.1 Organizational Effectiveness

What are (should be) the goals of a high-quality information system? This
question turns out to be a frustrating and difficult one to answer. One
possible response is that the overall objective of an information system is to

SYSTEMS AUDITING

NOTES

320

increase the effectiveness of the organization it services. This response
simply shifts the problem; however, for the next question we must ask is
this: What are the goals of an effective organization? The goals of an
information system and the goals of the organization it serves are
inextricably intertwined. Information systems are developed to help an
organization meet its goals. Thus, whether or not a system is effective must
be assessed in terms of organizational goals.

Unfortunately, little consensus exists on what constitute the goals of an or-
ganization. When Steers undertook a review of the literature on
organizational effectiveness, for example, he found that many different
types of indicators had been used to measure goal accomplishment. They
included measures of profitability, growth, turnover, absenteeism, job
satisfaction, stability, flexibility, morale, and readiness. We might debate
whether some of these indicators measure goal accomplishment or the
state of factors that affect .goal accomplishment. For example, economists
might argue that ultimately the effectiveness of organizations is solely a
function of their profitability. Factors like turnover, stability, readiness, and
absenteeism all affect profitability. An organizational theorist might argue,
however, that profitability is too gross a measure of effectiveness for it to be
especially useful. Managers need to understand how well their
organizations are performing on the factors that ultimately could affect
profitability, such as the ability of the organization to adapt to changes in its
environment and the quality of working life of its employees.

An important model of organizational effectiveness, however, has been
proposed by Quinn and Rohrbaugh and Quinn and Cameron. This model,
called the competing values model, has two dimensions of organizational
effectiveness: a focus dimension and a structure dimension (Figure 2-2). In
terms of focus, organizations can pursue goals that address either external
concerns, such as pressure from shareholders and environmental lobby-
ists, or internal concerns, such as the well-being of employees and the
level of morale within the organization. In terms of structure, organizations
can pursue goals that address either flexibility concerns, such as
environmental monitoring and maintaining readiness for change, or stability
concerns, such as maintaining control over operations.-

The competing values model underscores the difficulties that exist in terms
of how organizations often have to pursue different goals to survive.
Somehow, management must balance these goals so that pursuit of one
does not substantially undermine another to the point where the
organization is unable to survive. Indeed, Cameron (1986) argues that an
important characteristic of effective organizations is the way they manage
paradox. Somehow they achieve goals concurrently that are in conflict with
one another for example, high specialization of roles to achieve efficiencies
and at the same time high generalization of roles to achieve flexibility.
Moreover, the emphasis that management needs to give to one set of
goals versus another set might vary throughout the life of an organization.
For example, a young organization might place more emphasis on flexibility
and innovation and less emphasis on profitability. A mature organization,
on the other hand, might place more emphasis on profitability and control
and less emphasis on human-resource issues.

SYSTEMS AUDITING

NOTES

321

When auditors evaluate the effectiveness of an information system, there-
fore, they need to frame their evaluation in the context of the goals that the
stakeholders in the information system are seeking to pursue. It will not be
helpful, for example, if auditors evaluate an information system on the basis
of how much it has contributed to productivity when its stakeholders' goals
are more oriented toward promoting flexibility and openness within an
organization. Such an evaluation could be misleading, if not useless.

Figure 2-2 Competing values model of organizational effectiveness

Auditors need to recognize, also, that the goals held by stakeholders in re-
lation to an information system may be both overt and covert. In other
words, they might be stated formally or at least discussed openly and
perhaps agreed upon by the stakeholders in the system. Alternatively, they
might not be articulated formally or discussed openly, perhaps because of
the political damage that might accrue. For example, management might
have a covert goal to gain more control over employees, which might cause
major difficulties with a union if it were to be articulated openly.

The importance of different goals among different stakeholder could also
vary, and in some case the goals might even conflict with one another. For
example, a group of donors to a charitable organization might view the
effectiveness of an information system in terms of how well it permits
efficient use of scarce funds. The professionals who work within the
charitable organization, however, might be more concerned with how well
the information system permits them to provide services to their clients.

SYSTEMS AUDITING

NOTES

322

In summary, whenever auditors evaluate the impact of an information sys-
tem on an organization, they have to take great care at the outset to reach
a good understanding of the important stakeholders in the information
system and the goals they have for the system (both overt and covert). If
auditors do not have a sound understanding of the stakeholders and their
goals, the usefulness of their effectiveness evaluation will be undermined.
Auditors need to recognize that they could have to evaluate an information
system on multiple bases and that sometimes these bases might be
incongruous with one another. Auditors also need to be careful whenever
they make judgments about the merits of one set of goals over another set
of goals. These judgments might reflect that they have adopted the
perspective of one group of stakeholders only and that they are not
"seeing" the system from the viewpoints of other groups of stakeholders.

2.12.2 Economic Effectiveness

One particular type of effectiveness that management is likely to ask
auditors to evaluate in relation to an information system is economic
effectiveness. In particular, management might be concerned with whether
an information system has contributed to the profitability of an organization.

Evaluating the economic effectiveness of information systems has proved
to be an especially difficult task. During the late 1980s and early 1990s, for
example, several researchers pointed to a phenomenon that they called the
"productivity paradox". They observed that organizations were continuing to
invest large sums of money in information technology. When they tried to
identify the payoffs that organizations were obtaining from this investment,
however, they were unable to determine whether any had materialized. The
question they asked, therefore, was why organizations were continuing to
undertake seemingly irrational behavior namely, investing in information
technology when little or no payoffs were evident.

Hitt and Brynjolfsson have pointed out how the productivity paradox might
be resolved. Whenever we evaluate the impact of investments in in-
formation technology, they argue we must address three separate but
interrelated questions:

1. Has an investment in information technology increased productivity
within an organization?

2. Has an investment in information technology increased profitability
within an organization?

3. Has an investment in information technology created value for
consumers?

Hitt and Brynjolfsson present evidence that investments in information
technology often produce payoffs in terms of productivity and value for
consumers but not in terms of organizational profitability. In other words,
the benefits of using information technology can be captured in terms of
outcomes like employees performing their tasks more efficiently and
customers being provided with higher-quality products and services. An

SYSTEMS AUDITING

NOTES

323

organization might have no increase in profitability, however, as a result of
its investments in information technology. The reason is that profitability
gains from improved productivity and increased consumer value are quickly
competed away. When one organization uses information technology in
innovative ways, other organizations often can quickly copy these
innovations. As a result, the profitability payoffs obtained from the use of
information technology by the innovating organization are short-lived.
Nonetheless, if an organization were not to invest in information
technology, it might find that its competitive position is eroded. Eventually, it
could go out of business. In short, management might have no option but to
invest in information technology if they want to stay .in business, even
though these investments might produce no improvement in profitability.

Auditors must be careful, therefore, when approaching the evaluation of
economic effectiveness for an information system. In particular, they need
to address the three questions asked previously. They might have to point
out to management why investments in information technology are
important,, even though there is no payoff in terms of improved profitability.

In principle, however, there are four steps auditors should seek to under-
take when they evaluate the economic effectiveness of an information
system:

Step 1: Identify the benefits of the information system

Step 2: Identify the costs of the information system

Step 3: Value the benefits and costs of the information system

Step 4: Determine the net present value of the information system

3. Summary

When evaluating asset safeguarding and data integrity, auditors attempt to
determine whether assets could be destroyed, damaged, or used for
unauthorized purposes, and how well the completeness, soundness, purity,
and veracity of data are maintained. The evaluation process involves
auditors making a complex global judgement using piecemeal evidence
collected on the strengths and wellness of internal control systems.

The evaluation of system effectiveness involves determining how well a
system meets its objectives. The process involves six steps: (1) identifying
the objectives of the information system, (2) selecting the measures to be
used, (3) identifying data sources, (4) obtaining ex ante values for the
measures, (5) obtaining ex post values for the measures, and (6) assessing
the impact of the system by comparing the ex post and ex ante values of
the measures.

Auditors must also recognize that it is sometimes difficult to identify where
the benefits and costs from implementing an information system have oc-
curred. For example, information systems often have no payoffs in terms of

SYSTEMS AUDITING

NOTES

324

improved profitability for an organization. The organization might be more
productive, however, and consumers might capture more value from the
products and services produced by the organization. The difficulty faced by
the organization is that any profitability gains from the information system
are quickly competed away. If it does not invest in the information system,
however, it might go out of business because it is not competitive.

QUESTIONS

1. List the six major steps to be undertaken when evaluating an information
system to assess its effectiveness.

2. Give four measures of system quality.

3. How might the history of adaptive maintenance for a system affect our

assessment of its quality?

4. What is meant by the perceived usefulness of an information system?
Give four measures of perceived usefulness.

5. How might the source of use of an information system impact an
auditor's evaluation of its effectiveness?

REFERENCE BOOKS

1. Weber R; Information Systems Control and Audit (Person Education)

2. Dube: Information systems for Auditing (TMH)

3. Auditing Information Systems, 2nd Edition. Jack J. Champlain (Wiley)

